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Abstract

This paper is concerned with the performance of shell finite elements, well estab-
lished in locking free computations with linear constitutive laws, in the case of nonlinear
elastic material behaviour. Specifically enhanced strain elements are focused on. It is
shown that the element beahviour does depend on the resulting form of the stress ten-
sor. Phenomenological models for highly nonlinear and elastically deforming rubber,
like that of Odgen, are compared with the statistical-based constitutive model devel-
oped by Arruda and Boyce. Whereas computations with the Odgen, or any equivalent
phenomenological model, prove unstable, the behaviour of the enhanced elements, when
the statistical model is applied, is shown to be superior. The behaviour is attributed
to the mathematical form of the resulting stress tensor.

Keywords: Enhanced finite elements, large elastic strains, shell computations.

1 Introduction

Modelling of material behaviour at large elastic strains as well as corresponding numerical
computations is a field of great interest and is of various practical applications. The be-
haviour of rubber is perhaps the most known example which was studied at depth over the
years. The so-called neo-Hookian law is the most simple form to describe such a behaviour.
The Mooney-Rivlin law is a more accurate extension where the free energy function is as-
sumed to depend on two invariants only. For many years the experiments of Treloar [13]
have been a reference to model the behaviour of rubber. With the model of Ogden [7] a sig-
nificantly accurate model was achieved and the mentioned experiments have been detected
with sufficient accuracy up to elongation rate of 6. The constitutive model of Ogden (see
e.g. [7]) exhibits two basic characteristics: 1) it is mathematically sound with the resulting
field equations being elliptic and, 2) it is formulated in terms of eigen values of the stretch
tensor. The second feature has direct impact on the numerical schemes to be adopted within
a solution procedure. The formulation in the eigen values makes the computation of the tan-
gent matrix an extensive task as second derivatives of the free energy function with respect
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to the right Cauchy-Green strain tensor are to be evaluated. The task becomes even more
involved once third derivatives become necessary as in the case of optimization problems.

With an eye on implementation, a formulation of constitutive laws for finite strain hy-
perelasticity in terms of the invariants of the right Cauchy-Green tensor circumvents the
mentioned difficulties as 1) the evaluation of the derivative at any order is straightforward
and 2) the formulation is not restricted to isotropic material behaviour. Such an approach
has been followed in e.g. Sansour [9] where eight terms in the invariants have been considered.
The model proved to be very accurate in the sense of reproducing the experimental results
mentioned above. However, the simplicity was achieved at the cost of the loss of ellipticity
of the governing equations at very high strain values, in fact an undesirable feature.

A common feature of the models mentioned so far is the inclusion of phenomenological
material constants which are predicted by reproducing a specific set of experiments. Usually
the experimental data considered is limited in many respects: uni-axial stretch, bi-axial
stretch, and shear. One hopes that the model parameters evaluated, using a specific set of
experiments, are universally valid and can predict a case of arbitrary deformation as well.
In fact, given a specific set of experiments one may predict very accurately the measured
response using e.g. an Ogden model or alternatively an equivalent model by determining the
model parameters using the set of experiments at hand. Once the material parameters are
fixed there is no guarantee, anyhow, that the same accuracy can be achieved for an arbitrary
case of deformation.

A completely different philosophy is followed by the statistically-based constitutive models
as developed e.g. by Arruda and Boyce [2]. The model predicts the highly nonlinear rubber
material response using three constants only. The parameters have direct physical meaning
and are as such independent of the specific kind of an experiment. They can be determined
in one simple compressive test. The model of Arruda and Boyce is especially attractive for
simulation purposes as well, due to the fact that physical and mathematical soundness is
combined with simplicity. The stored energy function is formulated in terms of only the
first invariant of the Cauchy-Green tensor. By that the resulting expression for the stress
tensor becomes very much the same as that of linear elasticity with the significant difference
that the shear modulus is deformation dependent. Accordingly, mathematically, the stress
tensor takes a form well known from linear constitutive equations, a fact which seems to
have impact in conjunction with the finite element formulation to be addressed next.

On the side of computations it is well documented that thin structures exhibit various
locking phenomena when low dimensional finite elements are used. The experience is well
established when constitutive laws with two material parameters (e.g. Young’s modulus
and Poisson ratio) are considered. Membrane, shear, and thickness locking observed in
shell computations motivated intensive research leading to mixed formulations which proved
capable of circumventing locking. Hybrid stress, hybrid strain, assumed, and enhanced strain
finite element have been intensively developed and discussed in the literature. In Betsch and
Stein [4], Klinkel and Wagner [6], Bischoff and Ramm [5] combinations of an assumed strain
ansatz for the shear and transversal normal strains, and enhanced strains for the membran
strains have been adopted. In Sansour [8] hybrid stress methods have been successfully
developed. Contrasting this in Sansour and Kollmann [10] an enhanced strain model was
considered. A comparison of these models for 4-node and 9-node elements including a strain
hybrid method can be found in Sansour and Kollmann [11].
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Whereas hybrid stress and enhanced strain elements proved to be equivalent in the case
of linear elastic laws (within regular meshes), the enhanced strain concept is a strain-based
formulation and can be well applied when the constitutive law is not linear and a Legen-
dre transformation is not available. An interesting observation reported in [9] is that the
application of nonlinear constitutive laws of the Ogden-type or an equivalent phenomeno-
logical model (such as the eight parameter model mentioned above) results in conjunction
with the mentioned locking-free elements in totally unstable computations. In other words,
those elements, well developed and successfully applied using linear constitutive laws, failed
completely in shell computations when nonlinear constitutive laws of the mentioned type
are considered.

The question now arises, whether this experience is generally valid for any nonlinear
elastic constitutive law or whether it is connected to the form of the constitutive law at hand.
Recalling the fact that the statistical model results in expressions mathematically very much
the same as those of the linear constitutive law, the model is an ideal candidate to examine
this question. Accordingly, the paper is concerned with the finite element computations of
thin shells at large strains using the statistical model and an enhanced strain finite element
formulation as compared to alternative models such as the eight-parameter one. In fact it is
one of the basic results of this study that the raised question can be given a clear answer: the
stability of the enhanced strain elements depends radically on the form of the constitutive
law at hand. The application of the statistical model in conjunction with the enhanced strain
elements results in superior behaviour. The deformation can be easily detected even in the
regime of very high strains.

The paper is organized as follows. In sections 2, the constitutive models are briefly
presented and in section 3, the expressions for the stress tensor as well as the material
tangent are derived. Section 4 summarizes the shell theory and in section 5 the numerical
results are presented. The paper closes with a discussion.

2 The constitutive model

Let F be the deformation gradient, C = FTF the right Cauchy-Green strain tensor. The
class of elastic materials being interesting for this work is characterized by the well estab-
lished volumetric-isochoric split. The developed constitutive equations are functions of the
invariants of C which are defined by

I1 = trC, I2 =
1

2

[
(trC)2 − trC2

]
, I3 = detC , (1)

where the operator tr denotes the trace operation and det is the determinant of a tensor.

For the volumetric-isochoric split it is convenient to define the modified invariants

Ī1 =
I1

I
1
3
3

, Ī2 =
I2

I
2
3
3

, (2)

because these allow for a purely isochoric deformation.
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In what follows we briefly describe only the statistical model and the 8 parameter model.
The Odgen model will not be discussed as it is well established and well documented in the
literature.

2.1 The statistical model

Many attempts for phenomenological models of rubber deformation have been developed
and a summary of those is given by Treloar [13]. However, most of these models do not try
to link the adjustable parameters to any physical deformation mechanism or are not able to
predict the behaviour of rubber material sufficiently well.

The implemented constitutive relation by Arruda, Boyce [2] and Anand [1] is based on an
eight-chain representation of the underlying macromolecular network structure of the rubber
and the non-Gaussian behaviour of the individual chains in the network. The eight-chain
model accurately captures the cooperative nature of network deformation and requires only
two parameters: a shear modulus CR and a parameter N describing the limiting extensi-
bility of the chains. The chain extension reduces to a function of the root-mean-square of
the principal applied stretches, therefore capturing the three-dimensional behaviour of the
material. Langevin statistics are used to describe the limited extensibility of polymer chains
during the elastic ext ension.

The energy storage function in compressible form is derived by Anand [1] (for explanation
see also [2]) and can be formulated in terms of the modified first invariant and the determinant
of the deformation gradient. Making use of the volumetric-isochoric split described above it
follows

W = W iso + W vol with (3)

W iso = CR

(
1

2
(Ī1 − 3) +

1

20N
(Ī2

1 − 9) +
11

1050N2
(Ī3

1 − 27) (4)

+
19

7000N3
(Ī4

1 − 81) +
519

673750N4
(Ī5

1 − 243) + . . .
)

W vol =
1

2
κ(ln

√
I3)

2 , (5)

where CR can be compared with the shear modulus, N describes the limiting extensibility of
the polymer chains and κ the bulk modulus of the rubber material. The first two constants
are based directly on physical deformation mechanisms. For the energy storage form the
series expansion form of the inverse Langevin function is needed which can be found in [13].

Note that the energy storage function does not depend on the second invariant of the
Cauchy-Green tensor. This fact is due to the basic idea of the statistically-based eight-chain
material model. For further details and discussion of the model and its statistical background
see [2].
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2.2 An eight-parameter model

As an example of a model which takes different invariants into account we consider briefly
an eight-parameter model the energy storage function of which is given as

W = W iso + W vol with (6)

W iso = α1Ī1 + α2Ī2 + α3Ī
2
1 + α4Ī1Ī2 + α5Ī

3
1 + α6Ī

2
2 + α7Ī

4
1 + α8Ī

2
2 Ī1 (7)

W vol = α9(ln
√

I3)
2. (8)

The constants α1 to α8 are the eight material parameters. They are determined with the
help of the least squares method by comparing the theoretically resulting 1. Piola-Kirchhoff
stresses with those stresses measured and reported by Treloar [13]. The values are determined
by Sansour [9] and given below

α1 = 0.1796

α2 = 0.0145

α3 = −0.1684 × 10−2

α4 = 0.3268 × 10−3

α5 = 0.3473 × 10−4

α6 = −0.8439 × 10−3

α7 = 0.432 × 10−7

α8 = 0.5513 × 10−5 .

The parameter α9 can again be seen as the bulk modulus. For further details and discussion
of the model see [9]. It is to be stressed that the model does not preserve ellipticity in
the very high strain regime. This issue is anyhow of less interest in this paper, as we are
interested in discussing the stability aspects of enhanced strain elements depending on the
form of the resulting stress tensor. For a sufficiently large range of strains the model is
applicable and can be used to explore the mentioned question of stability.

3 Stress tensor and tangent operator

In this section a closed form of the derived tangent operator and stress tensor is given.

The second Piola-Kirchhoff stress tensor S can be calculated by finding the derivative of
the energy storage function with respect to C

S = 2
∂W

∂C
= a11 + a2C + a3C

−1 . (9)

Furthermore, the following expressions will be needed later on

∂I1

∂C
= 1 (10)

∂I2

∂C
= I11 − C (11)

∂I3

∂C
= I3C

−1 . (12)

The tangent matrix D can be determined like the stress tensor by calculating the second
derivative of the energy storage function with respect to C

D =
∂S

∂C
= 2

∂2W

∂C ∂C
. (13)
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3.1 The statistical model

Calculating the stress according to Eq. 9 leads to

S = a11 + a2C + a3C
−1 with (14)

a1 = 2CR

(
1

2
+

1

10N
Ī1 +

11

350N2
Ī2
1 +

19

1750N3
Ī3
1

+
519

134750N4
Ī4
1 + . . .

)
I
− 1

3
3

a2 = 0

a3 = −2

3
CR

(
1

2
+

1

10N
Ī1 +

11

350N2
Ī2
1 +

19

1750N3
Ī3
1

+
519

134750N4
Ī4
1 + . . .

)
Ī1 + κ ln

√
I3 .

The expression for a2 is zero as the energy storage function does not depend on the second
invariant.

The tangent matrix can be determined according to Eq. 13. This leads to the following
compact and closed form for the tangent matrix in index notation

(D)ijrs = 2
[
b1(δ)ij(δ)rs + b2

(
(C−1)ij(δ)rs + (δ)ij(C−1)rs

)

+(b3 + b4)(C
−1)ij(C−1)rs − (b5 + b6)(C

−1)ir(C−1)sj
]

(15)

with the following coefficients

b1 = CRI
− 1

3
3

[
1

10N
+

11

175N2
Ī1 +

57

1750N3
Ī2
1 +

1038

67375N4
Ī3
1

+
59991

8758750N5
Ī4
1 + · · ·

]

b2 = −1

3
CRI

− 1
3

3

[
1

2
+

1

5N
Ī1 +

33

350N2
Ī2
1 +

38

875N3
Ī3
1

+
519

26950N4
Ī4
1 + · · ·

]

b3 =
1

9
CR

[
1

2
Ī1 +

1

5N
Ī2
1 +

33

350N2
Ī3
1 +

38

875N3
Ī4
1 +

519

26950N4
Ī5
1 + · · ·

]

b4 =
κ

4

b5 = −1

3
CR

(
1

2
+

1

10N
Ī1 +

11

350N2
Ī2
1 +

19

1750N3
Ī3
1

+
519

134750N4
Ī4
1 + . . .

)
Ī1

b6 =
1

2
κ ln

√
I3 .

Note that the material stress tensor related to the spatial Kirchhoff tensor is an Eshelby-
like quantity defined by

Ξ = CS. (16)
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The Kirchhoff stress tensor τ is then given as τ = F−TΞFT revealing the significance of Ξ
as it shares with τ the same invariants. From (16) and (14) one concludes

Ξ = a1C + a31, (17)

and correspondingly,

τ = a1b + a31, (18)

where b = FFT being the left Cauchy-Green strain tensor. From the last two equations it
is clear that, mathematically, the form of the equation is that of the linear theory with the
only difference being that the parameters are not constant.

3.2 The eight-parameter model

The stress for this model can be calculated according to Eq. 9, to result in

S = a11 + a2C + a3C
−1, (19)

with

a1 = 2I
− 1

3
3

(
α1 + α2Ī1 + 2α3Ī1 + α4Ī

2
1 + 3α5Ī

2
1 + 4α7Ī

3
1 + α4Ī2

+2α6Ī1Ī2 + 2α8Ī
2
1 Ī2 + α8Ī

2
2

)
,

a2 = −2I
− 2

3
3

(
α2 + α4Ī1 + 2α6Ī2 + 2α8Ī1Ī2

)
,

a3 = −2

3

(
α1Ī1 + 2α3Ī

2
1 + 3α5Ī

3
1 + 4α7Ī

4
1 + 2α2Ī2 + 3α4Ī1Ī2+

4α6Ī
2
2 + 5α8Ī1Ī

2
2 − 3α9 ln(I3)

)
.

The tangent matrix is calculated by Eq. 13 resulting in the following expression

(D)ijrs = b1(C
−1)ij(C−1)rs + b2

[
(C)ij(C−1)rs + (C−1)ij(C)rs

]
+

b3

[
(C−1)ij(δ)rs + (δ)ij(C−1)rs

]
+ b4(C)ij(C)rs + b5

[
(C)ij(δ)rs+

(δ)ij(C)rs
]
+ b6(δ)ij(δ)rs + a2(δ)ir(δ)js − a3(C

−1)ir(C−1)sj . (20)

The factors b1 . . . b6 are

b1 =
2

9

(
α1Ī1 + 4α1Ī

2
1 + 9α5Ī

3
1 + 16α7Ī

4
1 + 4α2Ī2 + 9α4Ī1Ī2

+16α6Ī
2
2 + 25α8Ī1Ī

2
2 + 9α9

)
,

b2 =
2

3
I
− 2

3
3

(
2α2 + 3α2Ī1 + 8α6Ī2 + 10α8Ī1Ī2

)
,

b3 = −4

3

(
α1 + 2α2Ī1 + 4α3Ī1 + 3α4Ī

2
1 + 9α5Ī

2
1 + 16α7Ī

3
1

3α4Ī2 + 8α6Ī1Ī2 + 10α8Ī
2
1 Ī2 + 5α8Ī

2
2

)
,

b4 = 2I
− 4

3
3

(
2α6 + 2α8Ī1

)
,
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b5 = −2I−1
3

(
α4 + 2α6Ī1 + 2α8Ī

2
1 + 2α8Ī2

)
,

b6 = 2I
− 2

3
3

(
α2 + 2α3 + 3α4Ī1 + 6α5Ī1 + 2α6Ī

2
1 + 12α7Ī

2
1 + 2α8Ī

3
1

+2α6Ī2 + 6α8Ī1Ī2

)
.

Recalling (16), the material stress tensor takes the form

Ξ = a1C + a2C
2 + a31 . (21)

A comparison with (19) reveals that, beyond the scalar values of a1 and a3, it is the term
quadratic in C which constitutes the difference. It is also this term which makes the difference
to a linear constitutive law which as well known depends on two scalar (but constant) elastic
parameters.

4 Summary of the shell theory

In what follows we summarize the basic issues of the shell theory adopted. For detailed
description of the theory we refer to [8, 9].

The shell theory is based on the following fundamental assumption. We assume that any
configuration of the shell space is determined by the equation

x(ϑα, z) = x0(ϑα) + (z + z2χ(ϑα))a3(ϑ
α), (22)

where z is the co-ordinate in thickness direction and x0 denotes a configuration of the mid-
surface. By that the ordered triple (x0, a3, χ) defines the configuration space of the shell.

The assumed shell kinematics is the simplest possible which allows for a linear distri-
bution of the transverse strains over the shell thickness. Consequently, three-dimensional
constitutive equations can be applied. Accordingly, the formulation is suitable for small as
well as for large strain cases in elasticity or elasto-viscoplasticity . Restricting ourselves to
only linear terms in z, the right Cauchy Green strain tensor of the shell space C takes the
additive form

C = C0 + zK. (23)

C0 relates to the shell mid-surface and is independent of z.

At the shell mid-surface the triple Aα,N, (α = 1, 2) defines the natural covariant base. At
any point in the shell space, the natural covariant base vectors are given by Gα,N, (α = 1, 2).
The relation holds Gα = JAα, where the two-dimensional tensor J defines the so-called
schifter tensor which is determined by the geometry and the curvature of the shell: J = 1−zB
with B being the curvature tensor. Introducing the displacement field u0 and the difference
vector w according to

u0 : = x0 − X0, (24)

w : = a3 − N, (25)
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where X0 defines a reference configuration of the mid-surface, and considering the following
decompositions

C0 = CαβA
β ⊗ Aα + C3αA

α ⊗ N + Cα3N ⊗ Aα + C33N ⊗ N, (26)

K = KαβA
β ⊗ Aα + K3αA

α ⊗ N + Kα3N ⊗ Aα + K33N ⊗ N, (27)

one arrives at the following expressions

Cαβ = Aαβ + Aβ · u0
,α + Aα · u0

,β + u0
,α · u0

,β, (28)

Cα3 = N · u0
,α + Aα · w + u0

,α · w, (29)

C3α = Cα3, (30)

C33 = 1 + 2N · w + w · w, (31)

Kαβ = Bαβ + 2(N,α · u0
,β + N,β · u0

,α + Aα · w,β + Aβ · w,α + u0
,α · w,β + u0

,β · w,α),(32)

Kα3 = (N,α · w + N · w,α + w · w,α) + 2χ(Aα · w + N · u0
,α + w · u0

,α), (33)

K33 = 4χ(1 + 2N · w + w · w), (34)

to be considered as the dominating strain measures of the shell.

The principle of virtual displacement in three dimensions reads

∫
B

1

2
S : δC dV −

∫
B
f · δx dV −

∫
∂B

t · δx dS = 0, (35)

where the scalar product of tensors is denoted by the use of (:), B denotes the shell body, ∂B
its boundary, dV and dS are the volume and surface elements, respectively, f , t are the body
and the surface forces, respectively. The relation holds dV = Jdσdz, with J denoting detJ,
the determinant of the shifter, and with dσ being a surface element of the shell mid-surface.
We further denote the shell thickness by h and its mid-surface by M. We assume that
the shell mid-surface has a smooth curve ∂M as a boundary, with the parameter length s
and the external normal vector ν. The boundary of the shell consists of three parts: an
upper (z = h/2), a lower (z = −h/2), and a lateral surface. If we denote the upper surface
by ∂B+, the lower one by ∂B− and the lateral one by ∂Bs and make use of the notation
J+ = J |z=h/2, J

− = J |z=−h/2, and Js for J at the lateral surface, we may write for the surface
elements dS+ = J+dσ, dS− = J−dσ and dSs = Jsdzds.

First let us consider the external virtual work of the shell space

δWext :=
∫
B
f · δx dV +

∫
∂B

t · δx dS . (36)

With the definitions

p : =
∫ h/2

−h/2
fJ dz + J+t+ + J−t−, (37)

l : =
∫ h/2

−h/2
zfJ dz +

h

2
J+t+ − h

2
J−t−, (38)

ps : =
∫ h/2

−h/2
tsJs dz, (39)

ls : =
∫ h/2

−h/2
ztsJs dz, (40)
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Eq. (36) reduces to

δWext =
∫
M

(
p · δx0 + l · δa3

)
dσ +

∫
∂M

(
ps · δx0 + l

s · δa3

)
ds (41)

as the two dimensional form of the external power. Higher order terms which include also
those related to χ have been neglected.

To consider the internal virtual power we define first the pull-back of S under J which
gives a stress tensor defined with respect to the mid-surface

S0 = J
−1

SJ−T . (42)

Note that S0 is still z-dependent. With the definitions

n : =
1

2

∫ +h/2

−h/2
S0 J dz =

∫ +h/2

−h/2
J−1∂W(C)

∂C
J−T J dz, (43)

m : =
1

2

∫ +h/2

−h/2
zS0 J dz =

∫ +h/2

−h/2
zJ−1∂W(C)

∂C
J−T J dz, (44)

where (9) has been used, the principle of virtual power takes the final form
∫
M

(n : δC0 + m : δK)dσ −
∫
M

(
p · δx0 + l · δa3

)
dσ −

∫
∂M

(
ps · δx0 + l

s · δa3

)
ds = 0.

(45)

Contrasting the external power, and in order to allow for the use of highly nonlinear con-
stitutive equations and to avoid cumbersome estimations of the leading terms depending
on powers in z, the elaboration of (43) and (44) is carried out, in practical computations,
numerically.

5 An enhanced strain finite element

According to the concept of enhanced strains the strain tensor itself is enhanced (see e.g.
[12]). We consider, accordingly, the following enhanced functional:

δ
∫
B

W(C + C̃)dV −
∫
M

(
p · δx0 + l · δa3+

)
dσ −

∫
∂M

(
ps · δx0 + l

s · δa3

)
ds = 0. (46)

Whereas C in (46) is the strain measure of the shell space as defined by the relations (23)
and (28)-(34), C̃ is the independent enhanced strain field (incompatible field). The choice
of the interpolation functions for C̃ is crucial in order to arrive at well behaving elements.
A guide to the formulation is the fact that it should be equivalent to the stress hybrid one
when applied to the same class of problems (see [11] for details). Accordingly we restrict C̃

to be of the form C̃ = J
−T

C̃0J
−1

where C̃0 is independent of z. This is equivalent to an
enhancement of the strains related to the mid-surface alone.

Since the enhanced strains are considered independent of the displacement field, Eq. (46)
splits into the two equations
∫
M

(n : δC0 + m : δK)dσ−
∫
M

(
p · δx0 + l · δa3

)
dσ−

∫
∂M

(
ps · δx0 + l

s · δa3

)
ds = 0, (47)
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and ∫
M

n : δC̃0dσ = 0, (48)

where we have

n : =
∫ +h/2

−h/2
J−1∂W(C + C̃)

∂C
J−T J dz, (49)

m : =
∫ +h/2

−h/2
zJ−1∂W(C + C̃)

∂C̃
J−T J dz. (50)

Note that the enhancement of the right Cauchy-green tensor is an additive one. The evalu-
ation of (49) and (50) must be carried out numerically.

In accordance with (26) we consider the decomposition

C̃0 = C̃αβG
α ⊗ Gβ + C̃α3G

α ⊗ N + C̃3αN ⊗ Gα + C̃33N ⊗ N. (51)

We restrict ourselves to four-noded elements. Accordingly all kinematical fields are in-
terpolated using bi-linear interpolation functions. In computations using linear constitutive
laws, the enhanced strain interpolation function proved to be of the following form (see again
[11]):

C̃11(ξ, η) = C1ξ + C2ξη, (52)

C̃22(ξ, η) = C3η + C4ξη, (53)

C̃33(ξ, η) = C5ξ + C6η + C7ξη, (54)

C̃12(ξ, η) = C8ξ + C9η + C10ξη, (55)

C̃13(ξ, η) = C11ξ + C12ξη, (56)

C̃23(ξ, η) = C13η + C14ξη. (57)

(58)

The fields C1....C12 are considered independent and are eliminated at the element level.

The introduction of interpolation functions of the displacement fields as well as of the
enhanced strain fields in (47) and (48) leads to two coupled nonlinear sets of equations
corresponding to the kinematical fields (u,w, χ) as well as to the enhanced strains C̃0.

6 Numerical examples

Extensive numerical computations have been elaborated to identify the performance of the
enhanced strain elements. Both material models, the statistical and the eight parameter
model, have been applied. In addition, the well established model of Ogden was imple-
mented as well (the model has not been discussed in the paper as it is well well known and
established).

Both, the eight parameter model as well as the model of Ogden, result in a stress tensor
which differs in its form from the linear elastic one. In both cases the enhanced strain
computations exhibit poor convergence and stability characteristics. After the first converged

11



load steps, the convergence behaviour became so poor that very small steps where enforced
rendering large strain computations impossible.

To the contrary, the element behaviour in the case of the statistical model, with the stress
tensor having the same mathematical structure as that of linear elasticity, proved to be
superior.

In order to make sure that the above mentioned behaviour is not restricted to a certain
geometry or loading conditions, a large number of computations, documented in the following
subsections, with different geometries and loading conditions was carried out. In all cases
the following material parameter has been used: N = 8.0, CR = 1.56 MPa, and κ = 1000
MPa. κ has been chosen fairly high in comparison with CR to take into account the nearly
incompressible behaviour during elastic deformation of rubber material.

6.1 Thin sheet under internal pressure

A thin sheet, fixed at its ends, is subject to internal pressure. One half of the sheet is
modelled using 5 × 50 elements. The figures related to the problem definition, the load-
displacement curve for the vertical displacement at the mid-point, and the final deformed
configuration are given in the Figures 1-3.

6.2 Circular plate with hole under internal pressure

A circular plate with a hole is fixed at its outer boundary and subject to internal pressure.
The problem definition is given in Fig. 4. 10×30 finite elements are considered for modelling
the plate, where the 30 elements are taken in the radial direction. A load-displacement curve
for the vertical displacement at the points at the inner radius is documented in Fig. 5, and
the deformed configuration of the circular plate is captured in Fig. 6.

6.3 Circular plate with fixed hole under internal pressure

The same circular plate as in the previous example with same discretisation under the same
internal pressure is considered now with the only difference being that the inner boundary is
fixed as well. The response in this case is captured in the Figures 7-9. The load-displacement
curve is given for a point with the radial co-ordinate being 0.11 m.

6.4 Cylinder with rigid diaphragm under internal pressure

Fig. 10 shows a cylinder with rigid diaphragm under internal pressure. The boundaries are
free to move in the axial direction. One eighth of the cylinder is modelled using 16 × 16
elements. The load-displacement curve for the radial displacement at the mid of the cylinder
(symmetry axes) is reproduced in Fig. 11, and the final deformed configuration in Fig. 12.
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7 Discussion

In this paper the performance of an enhanced strain element formulation for shell compu-
tations at large elastic strains has been examined. Numerical experience shows clearly that
the performance does depend on the mathematical expression for the stress tensor. Three
models for rubber-like materials have been considered. The statistical model of Arruda and
Boyce with the resulting stress tensor being of the same mathematical structure as that of
linear elasticity, that is of the form σ = a11 + a2C, proves well suited for enhanced strain
formulations. In the non-linear case the scalars a1, a2 are simply not constant rather than
deformation dependent. In contrast, the eight parameter model as well as the Odgen model
resulted in unstable element performance.

As discussed in the introduction, other research groups have developed different shell
element formulations to prevent locking in geometrically exact, but materially linear compu-
tations, such as the assumed strain formulations and various assumed-enhanced formulations
(see references in introduction). It is interesting to note, that according to the experience of
the authors, these elements exhibit the same behaviour as reported here with regard to the
enhanced strain formulation.

Whether the computations remain stable for all possible and physically useful values of
a1 and a2 remains an open question. The presented numerical examples as well as further
ones not included in the paper, which incorporate a wide range of deformations, strongly
suggest this. But a final statement can only be met on the basis of a rigorous mathematical
analysis, which lies beyond the scope of the paper. Anyhow, it is hoped that this study will
motivate one.
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Fig. 2: Plate strip under internal pressure. Load-displacement curve
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Fig. 3: Plate strip under internal pressure. Deformed configuration
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Fig. 4: Circular plate under internal pressure. Problem definition.
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Fig. 6: Circular plate under internal pressure. Deformed configuration
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Fig. 7: Circular plate under internal pressure. Problem definition.
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Fig. 9: Circular plate under internal pressure. Deformed configuration
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Fig. 12: Cylinder under internal pressure. Deformed configuration
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