Universität Karlsruhe (TH) Institut für Baustatik

Genaue Berechnung der elastischen Grenzmomente von Walzprofilen bei Torsionsbelastung

W. Wagner, F. Gruttmann

Mitteilung 9(2002)

Genaue Berechnung der elastischen Grenzmomente von Walzprofilen bei Torsionsbelastung

W. Wagner, F. Gruttmann

Mitteilung 9(2002)

Prof. Dr.–Ing. W. Wagner Institut für Baustatik Universität Karlsruhe Postfach 6980 76128 Karlsruhe

(C)

 Werner Wagner und Friedrich Gruttmann

Genaue Berechnung der elastischen Grenzmomente von Walzprofilen bei Torsionsbelastung $_{\scriptscriptstyle +}$

⁺ Herrn Prof. Dr.-Ing. Dr.-Ing. E.h. Friedrich-Wilhelm Bornscheuer zur Vollendung seines 85. Lebensjahres gewidmet.

In dieser Arbeit werden elastische Grenzmomente bei einer Torsionsbelastung prismatischer Stäbe für einige wesentliche Walzprofilreihen mittels der Methode der finiten Elemente berechnet und tabelliert. Die Grenzmomente sind dadurch definiert, dass an einem oder mehreren Punkten des Querschnitts die Vergleichsspannung nach von Mises die Fliessspannung gerade erreicht. Die Grundlage der Berechnung ist die St. Venantsche Torsionstheorie für beliebige dickwandige offene und geschlossene Querschnitte. Dabei können Spannungskonzentrationen, die an einspringenden Ecken mit Ausrundungen entstehen, im Rahmen einer vorgegeben Genauigkeit berechnet werden. Die ermittelten elastischen Grenzmomente sind um ungefähr 40 - 80% geringer im Vergleich zu einer Theorie dünnwandiger Querschnitte, welche die Spannungskonzentrationen nicht berücksichtigt. Somit liegt eine Berechnung mit der Theorie dünnwandiger Querschnitte erheblich auf der unsicheren Seite.

Accurate calculation of elastic limit moments of rolled steel sections subjected to torsion

In this paper elastic limit moments for rolled steel sections subjected to torsion are calculated. The limit moment is defined in such a way, that at one or various points of the cross section the von Mises stress attains the yield stress. The computations are based on the Saint Venant torsion theory for arbitrary simply and multiple connected cross sections. Stress concentrations which occur at re-entrant corners with roundings can be evaluated within a predefined accuracy. The computed limit moments are about 40 - 80% less than the quantities of a theory for thin–walled sections where the stress concentrations cannot be considered. Thus the theory of thin walled sections leads to results which are substantial unsafe.

1 Einleitung

Die Torsion dünnwandiger offener und geschlossener Profile ohne Wölbbehinderung wird durch die Theorie von St. Venant beschrieben. Bei einer konstanten Verdrillung erfahren alle Querschnitte die gleiche Verwölbung. Weiterhin wird vorausgesetzt, dass die Profile durch hinreichende Aussteifung formtreu bleiben. Die Theorie und Lösungen für einfache Geometrien sind in vielen Lehrbüchern enthalten, siehe z.B. Timoshenko und Goodier [1] oder Petersen [2]. Bei elastischem Werkstoffverhalten ist das Randwertproblem durch eine Laplacegleichung mit der Wölbfunktion als primärer Variable und Spannungsrandbedingungen beschrieben. Die zugehörige schwache Form ist besonders für eine näherungsweise Lösung mit der FE-Methode geeignet, [3, 4, 5, 6]. Die Spannungsrandbedingungen werden im Rahmen des Verfahrens näherungsweise erfüllt. Damit ist zur Unterbindung von Starrkörperbewegungen nur ein Knoten zu halten. Ein weiterer entscheidender Vorteil ergibt sich für mehrfach zusammenhängende Gebiete. In diesem Fall sind zu erfüllenden Kontinuitätsbedingungen automatisch befriedigt. Dies ist bei der alternativen Formulierung mit einer Spannungsfunktion nicht der Fall. Bei Profilen mit einspringenden Ecken und Ausrundungen liefert die Elastizitätstheorie entsprechende Konzentrationen der Schubspannungen. Im Grenzfall eines verschwindenden Radius erhält man einen singulären Spannungszustand. Grobe Näherungsformeln bei Annahme eines rotationssymmetrischen Spannungszustandes findet man in [1]. Für ein Winkelprofil mit unendlich langen Schenkeln und kleinem Ausrundungsradius ist von Trefftz [7] eine Näherungslösung hergeleitet worden.

Eine systematische Darstellung der Wölbkrafttorsion von dünnwandigen geschlossenen und offenen Profilen ist von Bornscheuer in [8] beschrieben worden. Bei dünnwandigen offenen Profilen kann eine linear veränderliche Schubspannungsverteilung über die Wanddicke angenommen werden. Bei geschlossenen Profilen ist der umlaufende Bredt'sche Schubfluss dominant. Somit ist die Torsionsschubspannung näherungsweise konstant in Dickenrichtung. Die erhöhten Schubspannungen im Bereich einspringender Ecken können jedoch für beide Profilformen, bedingt durch die eindimensionale Betrachtungsweise, nicht bestimmt werden.

In dieser Arbeit werden aufbauend auf [5] die elastischen Grenzmomente für Torsionsbelastung für die wichtigsten Walzprofilreihen berechnet. Dazu werden die Schubspannungen mit der FE-Methode durch Ableitung der Wölbfunktion im Rahmen einer vorgegebenen Genauigkeit bestimmt. Im Unterschied zu [5] wird die Variationsformulierung so modifiziert, dass Randintegrale nicht auftauchen. Dadurch vereinfacht sich die programmtechnische Umsetzung erheblich. Dies gilt auch für die Erstellung der Eingabedaten für die Randbedingungen. Die Grenzmomente sind dadurch definiert, dass an einem oder mehreren Punkten des Querschnitts die Vergleichsspannung nach von Mises die Fliessspannung gerade erreicht. Die elastischen Torsionsmomente werden mit den Ergebnissen der Theorie dünnwandiger Querschnitte verglichen und tabelliert.

2 St. Venantsche Torsion dickwandiger Profile

Es wird ein prismatischer Stab mit Stabachse x und Querschnittsachsen y, z, die nicht Hauptachsen sein müssen, betrachtet. Der Koordinatenursprung ist ein beliebiger Punkt des Querschnitts, siehe Bild 1. Das Gebiet Ω mit Rändern $\partial\Omega$ kann einfach oder mehrfach zusammenhängend sein. Auf $\partial\Omega$ wird das rechtshändige orthonormale Basissystem, bestehend aus dem Tangentenvektor \mathbf{t} und dem nach außen gerichteten Normalenvektor $\mathbf{n} = [n_y, n_z]^T$, definiert. Dadurch ist mit \mathbf{t} die Richtung der zugehörigen Randkoordinate s an Außen– und Innenrändern eindeutig definiert.

Der Stab wird einem Torsionsmoment M_T mit konstanter Verdrillung θ unterworfen. Der Verdrehwinkel $\chi = \theta x$ soll dabei klein sein. Es liegt keine Wölbbehinderung vor und die Querschnittsform bleibt erhalten. Somit wird für das Verschiebungsfeld der übliche Ansatz mit der Wölbfunktion $\omega(y, z)$

$$u_x = \theta \,\omega \,, \qquad \qquad u_y = -\theta \, xz \,, \qquad \qquad u_z = \theta \, xy \tag{1}$$

gewählt. Mit θ = konstant wird angenommen, dass sich alle Querschnitte unabhängig von x verwölben. Es lässt sich leicht zeigen, dass bei dickwandigen Querschnitten nur Kreis- und Kreisringquerschnitte wölbfrei sind, d.h. $\omega(y, z) \equiv 0$, siehe [1].

Bild 1: Bezeichnungen für eine Querschnittsfläche. Fig. 1. Notation of a cross-section

Die Gleitungen ergeben sich in einer geometrisch linearen Theorie zu

$$\gamma_{xy} = u_{x,y} + u_{y,x} = \theta (\omega_{,y} - z)$$

$$\gamma_{xz} = u_{x,z} + u_{z,x} = \theta (\omega_{,z} + y),$$
(2)

wobei partielle Ableitungen durch Kommas gekennzeichnet sind. Die übrigen Verzerrungen $\varepsilon_x, \varepsilon_y, \varepsilon_z, \gamma_{yz}$ sind identisch Null. Die Schubspannungen folgen mit dem linearelastischen Stoffgesetz

$$\tau_{xy} = G \gamma_{xy} \qquad \qquad \tau_{xz} = G \gamma_{xz} , \qquad (3)$$

wobei G den Schubmodul bezeichnet. Im Rahmen der St.Venantschen Torsionstheorie wird angenommen, dass die Normalspannungen σ_x , σ_y , σ_z und die Schubspannungen τ_{xy} verschwinden. Weiterhin müssen Randbedingungen erfüllt werden. Der prismatische Stab ist an den Seitenflächen spannungsfrei. Der Vektor der Schubspannungen $\boldsymbol{\tau} = [\tau_{xy}, \tau_{xz}]^T$ muss damit am Rand orthogonal zum Normalenvektor **n** sein. Die Randwertaufgabe ist somit bei Vernachlässigung von Volumenkräften wie folgt beschrieben:

$$\tau_{xy,y} + \tau_{xz,z} = 0$$
 in Ω $\boldsymbol{\tau}^T \mathbf{n} = \tau_{xy} n_y + \tau_{xz} n_z = 0$ auf $\partial \Omega$. (4)

Die zugehörige schwache Form erhält man durch Wichtung der Differentialgleichung $(4)_1$ mit Testfunktionen $\eta \in H_0^1(\Omega)$ und Integration über das Gebiet Ω

$$g(\omega,\eta) = -\int_{(\Omega)} \left(\tau_{xy,y} + \tau_{xz,z}\right) \eta \, \mathrm{d}A = 0.$$
(5)

Mit partieller Integration folgt

$$g(\omega,\eta) = \int_{(\Omega)} (\tau_{xy}\eta_{,y} + \tau_{xz}\eta_{,z}) \, \mathrm{d}A - \int_{(\partial\Omega)} (\tau_{xy}n_y + \tau_{xz}n_z) \, \eta \, \mathrm{d}s = 0 \,, \tag{6}$$

wobei das Randintegral bei Beachtung von Gl. $(4)_2$ verschwindet.

Einsetzen von (2) und (3) und Kürzen des Faktors $G\theta$ liefert dann

$$g(\omega,\eta) = \int_{(\Omega)} (\omega_{,y}\eta_{,y} + \omega_{,z}\eta_{,z}) \,\mathrm{d}A - \int_{(\Omega)} (z\eta_{,y} - y\eta_{,z}) \,\mathrm{d}A = 0.$$
(7)

Das Torsionsmoment wird durch Integration über den Querschnitt

$$M_T = \int_{(\Omega)} (\tau_{xz} y - \tau_{xy} z) \,\mathrm{d}A \tag{8}$$

berechnet. Unter der Voraussetzung, dass die Spannungsverteilung keine Singularitäten aufweist, ist M_T^{el} dasjenige Moment, bei dem ein oder mehrere Punkte des Querschnitts gerade zu plastizieren beginnen. Das Kriterium hierfür ist die Fliessbedingung nach v.Mises. Danach muss die Vergleichsspannung der Fliessspannung σ_F entsprechen:

$$\sigma_v = \sqrt{3\left(\tau_{xy}^2 + \tau_{xz}^2\right)} = \sigma_F \,. \tag{9}$$

Da die Verdrillung θ linear bei der Berechnung der Schubspannungen nach (3) eingeht, kann θ so bestimmt werden, dass die Fliessbedingung (9) gerade erfüllt ist. Mit diesem Faktor kann dann das elastische Grenzmoment nach (8) berechnet werden.

3 Theorie dünnwandiger Querschnitte

Mit der Torsionsschubfliessspannung $\tau_F = \sigma_F / \sqrt{3}$ folgt das elastische Grenzmoment

$$M_T^{el} = W_T \,\tau_F \,. \tag{10}$$

Die Schubspannungen sind bei offenen Profilen linear über die Blechdicke verteilt mit einem Nulldurchgang in der Profilmittellinie. Dabei gilt für offene Profile $W_T = I_T/t$ mit der größten Dicke t. Der St. Venantsche Torsionswiderstand I_T dünnwandiger offener Profile wird unter Verwendung der üblichen Bezeichnungen mit der Formel

$$I_T = 2\left[\frac{1}{3}bt^3\left(1 - 0.63\frac{t}{b}\right)\right] + \frac{1}{3}\left(h - 2t\right)s^3 + 2\alpha D^4$$
(11)

berechnet. Der erste Term liefert den Beitrag der Flansche, der zweite Term den Beitrag des Steges und der letzte Term berücksichtigt die Ausrundungen zwischen Steg und Flanschen. Bei Querschnittsteilen mit veränderlicher Wandstärke kann bei einer geringen Neigung näherungsweise mit der mittleren Dicke t_m gerechnet werden. Der Beiwert α berechnet sich für I–Profile mit beidseitiger Ausrundung an den Flanschen zu

$$\alpha = \left(0.1 \,\frac{r}{t} + 0.145\right) \frac{s}{t} \,, \tag{12}$$

für Profile mit einseitiger Ausrundung zu

$$\alpha = \left(0.07 \,\frac{r}{t} + 0.076\right) \frac{s}{t}.\tag{13}$$

Der Durchmesser D wird mit der Formel

$$D = \left[(t+r)^2 + s\left(r + \frac{s}{4}\right) \right] / (2r+t)$$
(14)

Bild 2: Zur Berechnung des Durchmessers D – On the calculation of diameter D

bestimmt. Dabei bedeuten in (11) – (14) s = Stegdicke, t = Flanschdicke und r = Radius bei der Ausrundung im Bereich des Übergangs vom Flansch zum Steg, siehe Bild 2. Bei der Bestimmung des Torsionswiderstands von gleichschenkligen und ungleichschenkligen Winkelprofilen wird die Näherung eines langen Rechtecks angewendet. Für ein gleichschenkliges Winkelprofil ergibt sich I_T zu

$$I_T = \frac{1}{3} s^3 \left(2 a - s\right) \tag{15}$$

mit s = Profildicke und a = Schenkellänge. Für ein ungleichschenkliges Winkelprofil errechnet sich I_T zu

$$I_T = \frac{1}{3} s^3 \left(a + b - s \right) \tag{16}$$

mit s = Profildicke und a,b = Länge der einzelnen Schenkel. Ausführliche Darstellungen hierzu findet man z.B. in [2], [10]. Torsionswiderstände für Walzprofile sind in Zusammenhang mit weiteren Kennwerten von Bornscheuer berechnet und vertafelt worden, [9].

Bei geschlossenen Profilen ist der Bredt'sche Schubfluss dominant. In diesem Fall folgt W_T aus der 1. Bredt'schen Formel:

$$W_T = 2A_m t \,. \tag{17}$$

Dabei sind A_m die von den Profilmittellinien umschlossene Fläche und t die Profildicke. Die Herleitung dieser Formel erfolgt mit der Annahme konstanter wandparalleler Schubspannungen über die Blechdicke. Explizite Ausdrücke für W_T und den Torsionswiderstand I_T findet man für Hohlprofile in der DIN EN 10210-2.

Damit kann das elastische Grenzmoment mit Gleichung (10) berechnet werden.

4 Finite–Element–Berechnungen

4.1 FE–Formulierungen

Die schwache Form des Randwertproblems (7) wird näherungsweise im Rahmen der Methode der finiten Elemente gelöst. Dazu werden für die Koordinaten $\mathbf{x} = [y, z]^T$, die Wölbfunktion ω und die Testfunktionen η innerhalb eines isoparametrischen Konzepts die gleichen Ansätze gewählt:

$$\mathbf{x}^{h} = \sum_{I=1}^{nel} N_{I}(\xi_{1},\xi_{2}) \,\mathbf{x}_{I} \,, \qquad \omega^{h} = \sum_{I=1}^{nel} N_{I}(\xi_{1},\xi_{2}) \,\omega_{I} \,, \qquad \eta^{h} = \sum_{I=1}^{nel} N_{I}(\xi_{1},\xi_{2}) \,\eta_{I} \,. \tag{18}$$

Dabei bezeichnen *nel* die Anzahl der Knoten pro Element und N_I entsprechende Lagrange-Funktionen, die von den normierten Koordinaten ξ_1 und ξ_2 abhängen. Der Index *h* kennzeichnet den Näherungscharakter der FE-Lösung. Durch Einsetzen der Ansätze in (7) folgt

$$g(\omega^{h}, \eta^{h}) = \bigcup_{e=1}^{numel} \sum_{I=1}^{nel} \sum_{K=1}^{nel} \eta_{I} \left(K_{IK}^{e} \,\omega_{K} - F_{I}^{e} \right) = 0 \,.$$
(19)

Der Operator \bigcup beschreibt den Zusammenbau mit *numel* als Gesamtanzahl der finiten Elemente zur Berechnung des Problems. Der Beitrag der Steifigkeitsmatrix K_{IK}^e zu den Knoten I und K sowie der rechten Seite F_I^e lautet

$$K_{IK}^{e} = \int_{(\Omega_{e})} (N_{I,y} N_{K,y} + N_{I,z} N_{K,z}) \, \mathrm{d}A_{e} \,, \qquad F_{I}^{e} = \int_{(\Omega_{e})} (z^{h} N_{I,y} - y^{h} N_{I,z}) \, \mathrm{d}A_{e} \,. \tag{20}$$

Nach dem Zusammenbau der Elementanteile liefert Gl. (19) ein lineares Gleichungssystem mit den unbekannten Wölbordinaten. Zur Lösung muss die Randbedingung $\omega_I = 0$ für einen beliebigen Knotenpunkt I berücksichtigt werden. Durch die Wahl eines anderen Knotenpunkts werden lediglich alle Knotenwerte um eine Konstante verändert. Bei der Berechnung der Ableitungen für die Verzerrungen ist diese jedoch unerheblich. Auf vorhandenen Symmetrieachsen ist die Wölbfunktion jeweils Null. Auf Grund dieser Tatsache kann die Berechnung am jeweiligen Teilsystem zur Reduktion der Gesamtanzahl der Unbekannten durchgeführt werden.

4.2 Allgemeine Bemerkungen zur Diskretisierung

Folgende allgemeine Bemerkungen gelten für die durchgeführten Berechnungen:

- Es wurden Testrechnungen mit isoparametrischen Elementen mit 3, 4, 8 und 9 Knoten pro Element durchgeführt. Die unten abgedruckten Ergebnisse sind mit der 4–Knoten–Version berechnet worden.
- Bei den FE-Berechnungen der untersuchten Walzprofile wurde die vorhandene Querschnittsgeometrie, d.h. die Ausrundungen und die Abrundungen an den Flanschenden sowie die Flanschneigungen berücksichtigt. Die Kreisbögen der Ausrundungen wurden entsprechend der gewählten Diskretisierung stückweise durch den Ansatz (18)₁ approximiert. Vorhandene Symmetrien werden bei der FE-Diskretisierung berücksichtigt.
- Die FE–Daten wurden mit einem Netzgenerierungsprogramm in allgemeiner Form erstellt. Je Profilreihe sind nur jeweils die profilspezifischen Daten wie z.B. h, b, s, t, r_1, r_2 anzugeben.
- Bei der Diskretisierung kann die Netzdichte vorgegeben werden. Die automatische Vernetzung erfolgt nach der 'Advancing Front Method'. Die nachfolgend gezeigten FE–Netze stellen nur überschaubare Beispiele dar. Die FE–Netze wurden solange verfeinert, bis M_T^{el} bis auf 1% genau berechnet wurde.

5 Auswertungen der Profilreihen nach DIN

Den Berechnungen liegen die Materialwerte für Stahl $G = 81000 \, kN/cm^2$ und $\sigma_F = 24 \, kN/cm^2$ zugrunde.

Die nachfolgenden Abschnitte gliedern sich wie folgt: Je Profilreihe werden zunächst zwei Beispiele der FE–Vernetzung geplottet. Anschließend werden die zugehörigen resultierenden Schubspannungen $\tau_{res} = \sqrt{\tau_{xy}^2 + \tau_{xz}^2}$ sowie die Schubspannungsvektoren bei Aufbringung des elastischen Grenzmomentes dargestellt. Damit wird als Größtwert die Schubfliessspannung $\tau_F = 13.86 \ kN/cm^2$ erreicht. In den darauffolgenden Tabellen werden die Werte M_{T2}^{el} basierend auf der Theorie dickwandiger Querschnitte – berechnet mit Hilfe der FEM – den Werten M_{T1}^{el} der Theorie dünnwandiger Querschnitte gegenübergestellt. Als prozentualer Fehler wird das Verhältnis 100 $(M_{T1}^{el} - M_{T2}^{el})/M_{T2}^{el}$ definiert.

5.1 I–Reihe nach DIN 1025 Teil 1

Bild 3: FE–Netze der Profile I 100 sowie I 400 – FE–meshes of the sections I 100 and I 400

Bild 4: Resultierende Schubspannungen der Profile I 100 sowie I 400 – Resultant shear stresses of the sections I 100 and I 400

Bild 5: Schubspannungsvektoren der Profile I 100 sowie I 400 – Shear stress vectors of the sections I 100 and I 400

Bei der FE-Berechnung der Werte für den Torsionswiderstand I_{T2} wird durchweg ein kleinerer Wert ermittelt. Die Abweichungen zu den Werten I_{T1} , berechnet nach Formel (11), betragen zwischen 2.3% und 6.9%. Die Abrundungen der Flanschenden gehen in den Näherungsformeln nicht ein. Da die Flanschneigungen gering sind, wird in (11) näherungsweise die mittlere Flanschdicke eingesetzt. Beachtliche Unterschiede von maximal 68% werden für die elastischen

Ι	1-dünnwandig		2-dic	kwandig	Fehler
Profil	$I_{T_1} \ [cm^4]$	$M_{T_1}^{el} \; [kNcm]$	$I_{T_2} \ [cm^4]$	$M_{T_2}^{el} \ [kNcm]$	$\left(\frac{M_{T_1}^{el}}{M_{T_2}^{el}} - 1\right) 100 \ [\%]$
80	0.869	20.41	0.818	12.23	66.87
100	1.60	32.60	1.512	19.55	66.76
120	2.71	48.77	2.569	29.17	67.18
140	4.32	69.60	4.104	42.05	65.52
160	6.57	95.83	6.238	57.39	66.97
180	9.58	127.64	9.114	76.74	66.32
200	13.5	165.54	12.88	99.61	66.18
220	18.6	211.25	17.72	125.74	68.00
240	25.0	264.43	23.80	157.36	68.04
260	33.5	329.20	31.78	195.74	68.18
280	44.2	402.92	41.95	241.01	67.18
300	56.8	485.82	53.71	289.85	67.61
320	72.5	580.67	68.50	347.14	67.27
340	90.4	684.47	85.30	409.42	67.18
360	115	817.15	108.0	485.79	68.21
400	170	1090.52	160.0	652.05	67.24
450	267	1522.45	250.6	914.72	66.44
500	402	2063.00	375.4	1237.58	66.70

Tabelle 1: Elastische Grenzmomente für die –Reihe nach DIN 1025 Teil 1 – Elastic limit moments of the sections | according to DIN 1025 part 1

Grenzmomente im Vergleich beider Theorien berechnet. Dies wird durch die Plots der resultierenden Schubspannungen in Bild 4 und der Schubspannungsvektoren in Bild 5 verdeutlicht. In den ausgerundeten einspringenden Ecken erhält man erhebliche Spannungskonzentrationen.

5.2 IPE-, HEA-, HEB- und HEM-Reihe nach DIN 1025 Teile 2-5

Bild 6: FE–Netze der Profile IPE 100 sowie HEM 100 – FE–meshes of the sections IPE 100 and HEM 100

Bild 7: Resultierende Schubspannung der Profile IPE 100 sowie HEM 100 – Resultant shear stresses of the sections IPE 100 and HEM 100

Bild 8: Schubspannungsvektoren der Profile IPE 100 sowie HEM 100 – Shear stress vectors of the sections IPE 100 and HEM 100

IPE	1-dünnwandig		2-dic	kwandig	Fehler
Profil	$I_{T_1} [cm^4]$	$M_{T_1}^{el} \; [kNcm]$	$I_{T_2} [cm^4]$	$M_{T_2}^{el} \ [kNcm]$	$\left(\frac{M_{T_1}^{el}}{M_{T_2}^{el}} - 1\right) 100 \ [\%]$
80	0.70	18.599	0.673	11,77	58.05
100	1.20	29.171	1.153	17,72	64.67
120	1.74	38.269	1.688	24,21	58.07
140	2.45	49.199	2.402	$31,\!85$	54.47
160	3.60	67.408	3.526	42,49	58.64
180	4.79	82.963	4.727	$54,\!17$	53.15
200	6.98	113.782	6.849	69,28	64.24
220	9.07	136.602	8.978	$85,\!98$	58.88
240	12.9	182.390	12.73	109,93	65.91
270	15.9	215.991	15.71	131,74	63.95
300	20.1	260.286	19.75	$158,\!49$	64.23
330	28.1	338.568	27.63	$202,\!07$	67.55
360	37.3	406.952	37.13	$254,\!44$	59.94
400	51.1	524.475	50.43	$313,\!67$	67.21
450	66.9	634.908	65.91	$391,\!29$	62.26
500	89.3	773.338	88.31	488,50	58.31
550	123	990.865	121.4	$614,\!02$	61.37
600	165	1203.284	164.7	$775,\!37$	55.19

Tabelle 2: Elastische Grenzmomente für die IPE-Reihe nach DIN 1025 Teil 5 – Elastic limit moments of the sections IPE according to DIN 1025 part 5

HEB	1-dünnwandig		2-dic	kwandig	Fehler
Profil	$I_{T_1} \ [cm^4]$	$M_{T_1}^{el} \; [kNcm]$	$I_{T_2} \ [cm^4]$	$M_{T_2}^{el} \; [kNcm]$	$\left(\frac{M_{T_1}^{el}}{M_{T_2}^{el}} - 1\right) 100 \ [\%]$
100	9.25	128.17	9.3064	85.01	50.77
120	13.8	173.83	13.944	118.95	46.14
140	20.1	232.09	20.181	160.70	44.42
160	31.2	332.54	31.232	220.28	50.96
180	42.2	417.66	42.234	282.73	47.72
200	59.3	547.77	59.587	363.32	50.77
220	76.6	663.36	77.063	442.96	49.76
240	103	839.51	103.62	560.32	49.83
260	124	981.80	125.81	642.90	52.71
280	144	1108.5	145.26	726.05	52.67
300	185	1349.1	187.61	880.88	53.16
320	225	1520.8	229.30	1018.9	49.26
340	257	1656.3	262.22	1117.4	48.23
360	292	1798.2	297.93	1237.8	45.27
400	356	2055.3	360.50	1425.5	44.18
450	440	2344.9	449.59	1650.1	42.10
500	538	2662.3	550.01	1900.7	40.07
550	600	2866.8	612.43	2064.7	38.85
600	667	3080.7	679.53	2243.4	37.32
650	739	3303.1	751.69	2411.1	37.00
700	831	3598.2	842.16	2597.1	38.55
800	946	3972.1	960.26	2836.4	40.04
900	1137	4501.2	1154.2	3229.3	39.39
1000	1254	4826.5	1280.0	3483.4	38.56

Tabelle 3: Elastische Grenzmomente für die HEB–Reihe nach DIN 1025 Teil2–Elastic limit moments of the sections HEB according to DIN 1025 part 2

HEA	1-dünnwandig		2-dic	kwandig	Fehler
Profil	$I_{T_1} \ [cm^4]$	$M_{T_1}^{el} \; [kNcm]$	$I_{T_2} \ [cm^4]$	$M_{T_2}^{el} \; [kNcm]$	$\left(\frac{M_{T_1}^{el}}{M_{T_2}^{el}} - 1\right) 100 \ [\%]$
100	5.24	90.76	5.200	55.77	62.73
120	5.99	103.75	5.959	64.48	60.90
140	8.13	132.53	8.035	82.89	59.88
160	12.2	187.83	11.826	107.10	75.37
180	14.8	215.86	14.662	129.93	66.14
200	21.0	290.98	20.434	164.29	77.11
220	28.5	359.00	28.147	211.83	69.47
240	41.6	480.34	41.063	281.34	70.73
260	52.4	580.84	51.933	329.83	76.10
280	62.1	661.89	61.608	380.32	74.04
300	85.2	843.24	84.344	477.62	76.55
320	108	965.45	109.16	577.93	67.05
340	127	1066.5	128.82	659.32	61.76
360	149	1179.7	151.37	748.05	57.71
400	189	1378.3	191.72	891.29	54.64
450	244	1609.9	248.65	1091.5	47.50
500	309	1861.5	317.92	1303.9	42.77
550	352	2032.2	360.59	1418.5	43.26
600	398	2205.9	407.32	1569.8	40.52
650	448	2387.5	459.10	1719.8	38.82
700	514	2637.8	522.57	1866.7	41.31
800	597	2954.3	609.77	2069.2	42.77
900	737	3404.0	750.45	2413.0	41.07
1000	822	3674.1	835.90	2653.9	38.44

Tabelle 4: Elastische Grenzmomente für die HEA–Reihe nach DIN 1025 Teil 3 – Elastic limit moments of the sections HEA according to DIN 1025 part 3

HEM	1-dünnwandig		2-dic	kwandig	Fehler
Profil	$I_{T_1} [cm^4]$	$M_{T_1}^{el} \; [kNcm]$	$I_{T_2} \ [cm^4]$	$M_{T_2}^{el} \ [kNcm]$	$\left(\frac{M_{T_1}^{el}}{M_{T_2}^{el}} - 1\right) 100 \ [\%]$
100	68.2	472.49	67.271	327.50	44.27
120	91.7	605.05	90.523	420.64	43.84
140	120	755.78	118.62	527.54	43.27
160	162	975.94	160.79	682.39	43.02
180	203	1172.0	201.38	820.29	42.87
200	259	1435.5	258.10	1006.0	42.69
220	315	1678.7	313.58	1182.4	41.97
240	628	2719.2	627.27	1947.1	39.66
260	719	3065.4	722.09	2198.0	39.46
280	807	3388.4	809.29	2430.2	39.43
300	1408	5002.4	1415.0	3591.6	39.28
320	1501	5199.5	1510.3	3762.0	38.21
340	1506	5216.8	1515.5	3767.0	38.49
360	1507	5220.2	1517.4	3780.8	38.07
400	1515	5248.0	1523.5	3794.6	38.30
450	1529	5296.5	1538.2	3829.9	38.29
500	1539	5331.1	1548.3	3872.0	37.68
550	1554	5383.1	1564.2	3905.7	37.83
600	1564	5417.7	1574.0	3911.3	38.51
650	1579	5469.7	1588.0	3951.4	38.42
700	1589	5504.3	1599.5	3972.8	38.55
800	1646	5701.7	1661.6	4121.7	38.33
900	1671	5788.3	1690.9	4211.3	37.45
1000	1701	5892.3	1718.0	4278.8	37.71

Tabelle 5: Elastische Grenzmomente für die HEM-Reihe nach DIN 1025 Teil 4 – Elastic limit moments of the sections HEM according to DIN 1025 part 4

Die Torsionswiderstände I_T für die einzelnen Profilreihen zeigen unterschiedliche Ergebnisse. Für die Reihe IPE sind die nach Formel (11) ermittelten Werte größer, für die Reihe HEB kleiner als die hier berechneten FE-Werte. Bei den Reihen HEA und HEM ergibt sich ein zweigeteiltes Bild. Die Ausrundungen haben bekanntermaßen einen nicht zu vernachlässigenden Einfluss auf den Torsionswiderstand. Er kann je nach Profil bis zu 30 % des Gesamtwertes von I_T betragen.

Wieder sind die Unterschiede bei den elastischen Grenzmomenten beachtlich. Sie betragen bis zu 67 % bei der IPE-Reihe, bis zu 53 % bei der HEB-Reihe, bis zu 77 % bei der HEA-Reihe und bis zu 44 % bei der HEM-Reihe. Die Plots der Bilder 7 und 8 zeigen die Spannungskonzentrationen im Bereich der Ausrundungen.

5.3 U–Profile nach DIN 1026

Bild 9: FE–Netze der Profile U 60 sowie U 300 – FE–meshes of the sections U 60 and U 300

Bild 10: Resultierende Schubspannungen der Profile U 60 sowie U 300 – Resultant shear stresses of the sections U 60 and U 300

Bild 11: Schubspannungsvektoren der Profile U 60 sowie U 300 – Shear stress vectors of the sections U 60 and U 300

Die Theorie dünnwandiger Profile kann die geneigten Flansche und die Ausrundungen nur unzureichend erfassen. Die veränderliche Dicke der Flansche wird näherungsweise durch die mittlere Dicke erfaßt. Die Abrundungen an den Flanschenden sind nicht berücksichtigt. Dadurch erhält man Abweichungen beim Torsionswiderstand I_T bis zu 7% im Vergleich zur Theorie dickwandiger Querschnitte . Beim elastischen Grenzmoment beträgt die größte Abweichung ungefähr 61% beim U 60. Insbesondere bei den kleinen Profilen sind die Querschnitte nicht mehr dünnwandig, siehe Bild 9.

U	1-dünnwandig		2-dic	kwandig	Fehler
Profil	$I_{T_1} \ [cm^4]$	$M_{T_1}^{el} \ [kNcm]$	$I_{T_2} \ [cm^4]$	$M_{T_2}^{el} \ [kNcm]$	$\left(\frac{M_{T_1}^{el}}{M_{T_2}^{el}} - 1\right) 100 \ [\%]$
30	0.912	18.05	0.889	12.99	38,97
40	1.00	19.79	0.980	14.21	$39,\!30$
50	1.12	22.17	1.097	15.91	39,34
60	0.939	21.68	0.873	13.48	$60,\!87$
65	1.61	29.74	1.572	21.00	41,64
80	2.16	37.41	2.156	26.86	39,28
100	2.81	45.81	2.824	33.48	$36,\!82$
120	4.15	63.89	4.146	45.15	41,51
140	5.68	78.70	5.723	57.66	$36,\!49$
160	7.39	97.52	7.438	70.98	$37,\!39$
180	9.55	120.30	9.523	86.21	$39,\!54$
200	11.9	143.38	12.02	103.44	38,61
220	16.0	177.36	16.16	126.91	39,75
240	19.7	209.97	19.83	149.65	40,31
260	25.5	252.38	25.76	181.00	$39,\!43$
280	31.0	286.36	31.45	209.44	36,73
300	37.4	323.88	38.07	240.73	$34,\!54$
320	66.7	528.11	68.02	381.09	$38,\!58$
350	61.2	529.99	62.07	366.29	44,69
380	59.1	511.81	61.75	368.74	$38,\!80$
400	81.6	706.66	82.94	454.29	$55,\!55$
$30 \ge 15$	0.165	5.08	0.156	3.420	48.55
40 x 20	0.363	9.14	0.380	6.793	34.62
$50 \ge 25$	0.878 *	20.28	0.573	9.556	112.18
$50\ge 25$	0.573 **	13.23	0.573	9.556	38.47

* Beim Profil 50 x 25 erhält man mit dem tabellierten $I_t = 0.878 \ cm^4$ einen Fehler von über 100 %, der deutlich von den übrigen Werten abweicht.

** Eine Rechnung mit dem nach dickwandiger Theorie ermittelten $I_t = 0.573 \ cm^4$ liegt im üblichen Fehlerbereich. Es ist anzunehmen, dass der tabellierte Wert einen Schreibfehler enthält.

Tabelle 6: Elastische Grenzmomente für die U–Profilreihe nach DIN 1026 – Elastic limit moments of the U–sections according to DIN 1026

5.4 Winkelstähle nach DIN EN 10056

Bild 12: FE–Netze der Profile L 100×8 und L 100×12 – FE–meshes of the sections L 100×8 and L 100×12

Bild 13: Resultierende Schubspannungen der Profile L 100×8 und L 100×12 – Resultant shear stresses of the sections L 100×8 and L 100×12

Im Rahmen der FE-Untersuchungen erhält man im Unterschied zur Theorie dünnwandige Profile die Eigenverwölbung über die Flanschdicke. Die Profilmittellinien sind praktisch wölbfrei. Bei den Torsionswiderständen sind die Unterschiede bei den kleinen Profilen am größten.

Die Näherungswerte nach der Theorie dünnwandiger gleichschenklige Profile sind gemäß Gl. (15) berechnet worden. Die Fehler der elastischen Grenzmomente nehmen mit ungefähr 50% den Größtwert an.

Für ungleichschenklige Querschnitte gilt im Prinzip das gleiche wie für die gleichschenkligen Winkelprofile. Der Torsionswiderstand I_T nach Formel (16) ergibt Werte, die im Vergleich zur FE-Berechnung bis zu 7% geringer sind. Das elastische Grenzmoment wird durch die Theorie dünnwandiger Querschnitte um bis zu 43% überschätzt.

Bild 14: Schubspannungsvektoren der Profile L 100×8 und L 100×12 – Shear stress vectors of the sections L 100×8 and L 100×12

L gl	1-dür	1-dünnwandig		kwandig	Fehler
Profil	$I_{T_1} [cm^4]$	$M_{T_1}^{el} \; [kNcm]$	$I_{T_2} \ [cm^4]$	$M_{T_2}^{el} \; [kNcm]$	$\left(\frac{M_{T_1}^{el}}{M_{T_2}^{el}} - 1\right) 100 \ [\%]$
20x 3	0.0333	1.538	0.0370	1.138	35.15
25x 3	0.0423	1.954	0.0460	1.422	37.39
25x 4	0.0981	3.399	0.1038	2.453	38.58
30x 3	0.0513	2.369	0.0597	1.726	37.28
30x 4	0.1195	4.138	0.1333	3.065	35.02
35x 4	0.1408	4.877	0.1546	3.547	37.51
40x 4	0.1621	5.616	0.1830	4.059	38.37
40x 5	0.3125	8.660	0.3432	6.354	36.29
45x4.5	0.2597	7.997	0.2961	5.846	36.79
50x 4	0.2048	7.094	0.2344	5.062	40.15
50x 5	0.3958	10.97	0.4395	7.990	37.29
50x 6	0.6768	15.63	0.7363	11.38	37.34
60x 5	0.4792	13.28	0.5385	9.617	38.07
60x 6	0.8208	18.96	0.9021	13.74	37.95
60x 8	1.9115	33.11	2.0407	23.97	38.12
65x 7	1.4063	27.84	1.5447	20.13	38.28
70x 6	0.9648	22.28	1.0712	15.89	40.22
70x 7	1.5206	30.10	1.6591	21.67	38.90
75x 6	1.0368	23.94	1.1431	17.04	40.51
75x 8	2.4235	41.97	2.5964	30.43	37.94
80x 8	2.5941	44.93	2.8167	32.18	39.62
80x 10	5.0000	69.28	5.3159	49.74	39.28
90x 7	1.9780	39.15	2.1970	27.69	41.40
90x 8	2.9355	50.84	3.2120	36.35	39.87
90x 9	4.1553	63.97	4.4922	45.97	39.16
90x 10	5.6667	78.52	6.0669	56.44	39.12
100x 8	3.2768	56.75	3.6131	40.38	40.55
100x 10	6.3333	87.75	6.8252	63.03	39.23
100x 12	10.829	125.04	11.484	89.58	39.58
120x 10	7.6667	106.23	8.2620	75.47	40.76
120x 12	13.133	151.64	13.936	108.17	40.19
130x 12	14.285	164.94	15.241	117.82	39.99
150x 10	9.6667	133.94	10.620	93.61	43.08
150x 12	16.589	191.55	17.898	135.97	40.87
$150x\ 15$	32.063	296.17	33.952	211.45	40.07
160x 15	34.313	316.96	36.510	226.01	40.24
180x 16	46.967	406.74	49.745	289.82	40.34
180x 18	66.485	511.79	69.822	364.65	40.35
200x 16	52.429	454.03	55.217	322.64	40.72
200x 18	74.261	571.64	77.608	405.78	40.88
200x 20	101.33	702.04	105.19	493.36	42.30
200x 24	173.26	1000.29	177.91	697.80	43.35
250x 28	345.38	1709.13	350.20	1179.7	44.88
$250x\ 35$	664.56	2630.91	666.55	1751.2	50.23

Tabelle 7: Elastische Grenzmomente für gleichschenklige Winkelstähle nach DIN EN 10056 – Elastic limit moments of the equal-leg L-sections according to DIN EN 10056

L ungl	1-dünnwandig		2-dic	kwandig	Fehler
Profil	$I_{T_1} \ [cm^4]$	$M_{T_1}^{el} \ [kNcm]$	$I_{T_2} \ [cm^4]$	$M_{T_2}^{el} \; [kNcm]$	$\left(\frac{M_{T_1}^{el}}{M_{T_2}^{el}} - 1\right) 100 \ [\%]$
40x 20x 4	0.1195	4.138	0.1276	2.985	38.64
$40x \ 25x \ 4$	0.1301	4.508	0.1383	3.258	38.36
$45x \ 30x \ 4$	0.1515	5.247	0.1623	3.809	37.75
$50x \ 30x \ 5$	0.3125	8.660	0.3323	6.256	38.43
$60x \ 30x \ 5$	0.3542	9.815	0.3741	7.082	38.59
60x 40x 5	0.3958	10.969	0.4267	7.878	39.24
60x 40x 6	0.6768	15.630	0.7178	11.24	39.05
65x 50x 5	0.4583	12.701	0.4896	9.120	39.27
70x 50x 6	0.8208	18.955	0.8805	13.61	39.27
75x 50x 6	0.8568	19.786	0.9170	14.21	39.24
75x 50x 8	1.9968	34.585	2.0881	24.71	39.96
80x 40x 6	0.8208	18.955	0.8807	13.71	38.26
80x 40x 8	1.9115	33.107	2.0024	23.72	39.57
80x 60x 7	1.5206	30.100	1.6263	21.84	37.82
100x 50x 6	1.0368	23.943	1.1182	16.92	41.51
100x 50x 8	2.4235	41.974	2.5529	29.77	41.00
100x 65x 7	1.8065	35.758	1.9821	25.40	40.78
100x 65x 8	2.6795	46.408	2.8999	33.32	39.28
100x 65x10	5.1667	71.589	5.4818	51.10	40.10
100x 75x 8	2.8501	49.364	3.0711	35.28	39.92
100x 75x10	5.5000	76.208	5.8152	54.60	39.58
100x 75x12	9.3888	108.409	9.7881	76.79	41.18
120x 80x 8	3.2768	56.754	3.5533	40.39	40.52
120x 80x10	6.3333	87.755	6.7321	63.02	39.25
120x 80x12	10.829	125.037	11.351	89.15	40.25
125x 75x 8	3.2768	56.754	3.5520	40.27	40.93
125x 75x10	6.3333	87.755	6.7324	62.73	39.89
125x 75x12	10.829	125.037	11.351	89.20	40.18
135x 65x 8	3.2768	56.754	3.5553	40.46	40.27
135x 65x10	6.3333	87.755	6.7326	62.80	39.74
150x 75x 9	5.2488	80.808	5.6608	57.70	40.05
150x 75x10	7.1667	99.301	7.6571	70.69	40.47
150x 75x12	12.269	141.664	12.924	100.74	40.62
150x 75x15	23.625	218.232	24.490	153.98	41.73
150x 90x10	7.6667	106.229	8.1610	75.71	40.31
150x 90x12	13.133	151.640	13.788	107.86	40.59
150x 90x15	25.313	233.820	26.181	165.26	41.49
150x100x10	8.0000	110.848	8.4923	78.34	41.50
150x100x12	13.709	158.291	14.369	112.69	40.47
200x100x10	9.6667	133.941	10.489	93.56	43.16
200x100x12	16.589	191.545	17.708	136.05	40.79
200x100x15	32.063	296.172	33.064	211.37	40.12
200x150x12	19.469	224.800	20.591	157.53	42.70
200x150x15	37.688	348.132	39.293	247.67	40.56

Tabelle 8: Elastische Grenzmomente für ungleichschenklige Winkelstähle nach DIN EN 10056 – Elastic limit moments of the unequal–leg L–sections according to DIN En 10056

5.5 Stahl–Hohlprofile nach DIN EN 10210–2

Bild 15: FE–Netze der Profile $150 \times 100 \times 4$ und $150 \times 100 \times 12$ – FE–meshes of sections $150 \times 100 \times 4$ and $150 \times 100 \times 12$

Bild 16: Resultierende Schubspannungen der Profile $150 \times 100 \times 4$ und $150 \times 100 \times 12$ - Resultant shear stresses of sections $150 \times 100 \times 4$ and $150 \times 100 \times 12$

Von jedem quadratisch bzw. rechteckförmigen Profil mit einer bestimmten Kantenlänge werden, um den Aufwand zu begrenzen, nur die Werte für eine Wandstärke berechnet. Alle untersuchten Querschnitte sind nicht wölbfrei. Die kleinen Profile weisen die größten Fehler von maximal 3% bei den Torsionswiderständen auf. Die Fehler der elastischen Grenzmomente betragen maximal 14% bei den großen Profilen und sind deutlich geringer als bei den offenen Profilen. Bild 16 zeigt, dass bei den dünnen Profilen ein Punkt im Innenbereich der Ausrundung maßgebend wird, während bei dickeren Profilen dies nicht der Fall ist. Werden Profile nach der alten DIN 59410 untersucht, stellt man fest, dass aufgrund anderer Radien wiederum Fehler in der

Quadr	Quadratrohr 1-dünnwandig 2-dickwandig		Fehler			
Profil		$I_{T_1} [cm^4]$	$M_{T_1}^{el} \ [kNcm]$	$I_{T_2} \ [cm^4]$	$M_{T_2}^{el} \ [kNcm]$	$\left(\frac{M_{T_1}^{el}}{M_{T_2}^{el}} - 1\right) 100 \ [\%]$
20x	2.5	1.41	16.63	1.464	16.73	-0.61
25x	2.5	2.97	28.82	3.071	28.98	-0.55
30x	3	6.16	49.88	6.368	50.08	-0.40
40x	4	19.5	118.33	20.13	118.69	-0.30
50x	4	40.4	200.91	41.47	201.26	-0.17
60x	5	86.4	356.10	88.79	357.35	-0.35
70x	5	142	509.90	145.39	510.52	-0.12
80x	5	217	690.03	221.92	679.25	1.59
90x	6	367	1029.50	375.27	1030.9	-0.14
100x	6	513	1306.62	523.34	1273.5	2.60
120x	8	1160	2438.66	1186.0	2443.0	-0.18
140x	8	1892	3450.14	1928.2	3329.0	3.64
150x	8	2351	4032.10	2393.6	3811.4	5.79
160x	8	2880	4641.76	2928.3	4350.2	6.70
180x	8	4162	6013.50	4224.8	5512.0	9.10
200x	10	7031	9075.68	7149.1	8476.8	7.06
220x	10	9473	11181.8	9618.9	10295	8.61
250x	10	14106	14756.6	14297	13236	11.49
260x	10	15932	16059.1	16139	14324	12.11
300x	10	24807	21823.2	25089	19107	14.22
350x	12	47154	35512.9	47703	31195	13.84
400x	16	92442	60439.9	93694	54250	11.41

Größenordnung von bis zu 70 % auftreten. Ebenso gibt es Profile mit rechnerischem Radius $r_i = 0$, die zu unendlich großen Schubspannungen führen.

Tabelle 9: Elastische Grenzmomente für quadratische Hohlprofile nach DIN EN 10210–2 – Elastic limit moments of quadratic hollow sections according to DIN 10210–2

Rechteckrohr	1-dünnwandig		2-dic	kwandig	Fehler
Profil	$I_{T_1} \ [cm^4]$	$M_{T_1}^{el} \ [kNcm]$	$I_{T_2} \ [cm^4]$	$M_{T_2}^{el} \ [kNcm]$	$\left(\frac{M_{T_1}^{el}}{M_{T_2}^{el}} - 1\right) 100 \ [\%]$
50x 25x 3	9.64	72.05	9.894	72.42	-0.51
50x 30x 4	16.6	107.66	17.13	108.11	-0.42
60x 40x 5	43.0	217.54	44.38	218.65	-0.51
80x 40x 5	65.1	303.45	66.80	303.87	-0.14
90x 50x 6	133	512.67	136.81	513.91	-0.24
100x 50x 6	154	576.41	158.30	579.38	-0.51
100x 60x 6	216	721.90	221.65	723.88	-0.27
120x 60x 6	279	884.01	285.50	886.33	-0.26
120x 80x 6	468	1241.5	476.96	1222.9	1.52
140x 80x 6	583	1468.7	593.17	1428.1	2.85
150x100x 8	1203	2535.6	1228.9	2548.4	-0.50
160x 80x 6	701	1690.4	712.25	1634.7	3.41
180x100x 8	1560	3103.7	1589.9	3048.6	1.81
200x100x 8	1804	3477.9	1836.3	3391.4	2.55
200x120x 10	3001	5085.2	3062.9	5097.6	-0.24
250x150x 10	6090	8382.9	6192.3	7977.2	5.09
260x180x 10	8798	10738	8933.1	9952.0	7.90
300x200x 10	12908	14064	13082	12776	10.08
350x250x 10	23354	21130	23620	18596	13.63
400x200x 12	22622	22197	22925	20440	8.60
450x250x 12	39260	32201	39716	28804	11.79
500x300x 16	80329	56034	81413	51071	9.72

Tabelle 10: Elastische Grenzmomente für Rechteckhohlprofile nach DIN EN 10210–2– Elastic limit moments of rectangular hollow sections according to DIN 10210–2

6 Plastische Zonen

Werden Querschnitte tatsächlich mit dem Torsionsmoment M_{T1}^{el} , ermittelt aus der Theorie dünnwandiger Querschnitte, belastet, so treten wegen der bis zu 80 %-igen Überschätzung des tatsächlichen Wertes plastische Deformationen auf. Diese können beispielsweise unter Berücksichtigung eines elastisch-plastischen Materialgesetzes im Rahmen einer FE-Formulierung dickwandiger Querschnitte ermittelt werden. Die zugehörige Theorie und eine entsprechende FE-Formulierung findet sich z.B. in [11]. Die Verteilung der plastischen Zonen für diesen Fall ist exemplarisch im Bild 17 für die Profile U 60 und HEA 300 angegeben. Es ist zu erkennen, dass sich deutliche Plastizierungen in den Eck- und Ausrundungsbereichen einstellen.

Bild 17: Plastische Zonen der Profile U 60 sowie HEA 300 – plastic zones of the sections U 60 and HEA 300

7 Schlussfolgerungen

In dieser Arbeit werden elastische Grenzmomente für Torsionsbelastung einiger wesentlicher Walzprofilreihen berechnet. Dazu sind die Grundgleichungen der freien Torsion für eine effektive näherungsweise Lösung mit der FE-Methode aufbereitet worden. Die Torsionsschubspannungen ergeben sich dabei durch Ableitung der Wölbfunktion. Die sehr einfache FE-Formulierung kann für offene und geschlossene Profile gleichermaßen angewendet werden. Die Querschnitte werden mit einem Netzgenerierungsprogramm mit 4-Knoten-Elementen automatisch vernetzt. Dabei werden geneigte Flansche und Ausrundungen berücksichtigt. Hierbei liegen die Koordinaten der generierten Knotenpunkte auf den Kreisbögen. Dazwischen wird die Kreisfunktion stückweise durch Geraden approximiert. Die errechneten Zahlen für die elastischen Torsionsmomente, bei der die Fliessspannung an diskreten Punkten erreicht wird, können somit im Rahmen der vorgegebenen Genauigkeit und entsprechender Netzdichten als exakt betrachtet werden. In den einzelnen Profilreihen sind die berechneten Abweichungen gegenüber den Zahlen nach der Theorie dünnwandiger Profile ziemlich konstant. Zusammengefasst erhält man als Höchstwerte der berechneten Fehler:

Profilreihe	I	IPE	HEB	HEA	HEM	U	L	Hohlprofile
Fehler [%]	68	67	53	77	44	61	50	14

Damit liegt die Bemessung auf Grundlage der Theorie dünnwandiger Querschnitte ohne Berücksichtigung der Spannungskonzentrationen in den einspringenden Ecken erheblich auf der unsicheren Seite.

Danksagung:

Bei der Berechnung der einzelnen Profilreihen hat Herr Dipl.-Ing. Roger Sauer mitgewirkt, dem hiermit herzlich gedankt sei.

Literatur

- Timoshenko, S.P.; Goodier, J.N.: Theory of Elasticity. 3. Auflage, McGraw-Hill International Book Company, 1984 1, 2
- [2] Petersen, C.: Stahlbau. Braunschweig/Wiesbaden Vieweg & Sohn 1988 1, 3
- [3] Herrmann, L.R.: Elastic torsional analysis of irregular shapes. J. of the Eng. Mech. Div. ASCE 91 (1965) 11–19 1
- [4] Krahula, J.L.; Lauterbach, G.L.: A finite element solution for Saint–Venant Torsion. AIAA Journal 7(12) (1969) 2200–2203 1
- [5] Gruttmann, F.; Wagner, W.; Sauer, R.: Zur Berechnung von Wölbfunktion und Torsionskennwerten beliebiger Stabquerschnitte mit der Methode der finiten Elemente, Bauingenieur, 73 (3) (1998) 138–143 1
- [6] Wagner, W.; Sauer, R.; Gruttmann, F.: Tafeln der Torsionskenngrössen von Walzprofilen unter Verwendung von FE–Diskretisierungen, Stahlbau, 68 (2) (1999) 102–111.
- [7] Trefftz, E.: über die Wirkung einer Abrundung auf die Torsionsspannungen in der inneren Ecke eines Winkeleisens. ZAMM 2 (1922) 263–267 1
- [8] Bornscheuer, F.W.: Systematische Darstellung des Biege- und Verdrehvorgangs unter besonderer Berücksichtigung der Wölbkrafttorsion. Der Stahlbau 21(1) (1952) 1–9 1
- [9] Bornscheuer, F.W., Anhäuser, L.: Tafeln der Torsionskenngrössen für die Walzprofile der DIN 1025–1027. Der Stahlbau 30(3) (1961) 81–82 3
- [10] Schleicher, F. (Herausgeber): Taschenbuch f
 ür Bauingenieure, 2. Auflage (1955) Springer, Berlin, Heidelberg. 3
- [11] Gruttmann, F.; Wagner, W.: St. Venantsche Torsion prismatischer Stäbe mit elastoplastischem Werkstoffverhalten, Bauingenieur, 75 (2) (2000) 53–59 6

Autoren dieses Beitrages:

Prof. Dr.–Ing. habil. Werner Wagner, Institut für Baustatik, Universität Karlsruhe (TH), Kaiserstr. 12, D–76131 Karlsruhe,

Prof. Dr.–Ing. habil. Friedrich Gruttmann, Institut für Statik, Technische Universität Darmstadt, Alexanderstr. 7, D–64283 Darmstadt.