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Abstract In this paper shear correction factors for arbitrary shaped beam cross–
sections are calculated. Based on the equations of linear elasticity and further assump-
tions for the stress field the boundary value problem and a variational formulation are
developed. The shear stresses are obtained from derivatives of the warping function.
The developed element formulation can easily be implemented in a standard finite ele-
ment program. Continuity conditions which occur for multiple connected domains are
automatically fulfilled.

1 Introduction

The problem of torsional and flexural shearing stresses in prismatic beams has been stud-
ied in several papers. Here, publications in [1, 2, 3] are mentioned among others. Further-
more the text books of e.g. Timoshenko and Goodier [4] or Sokolnikoff [5] give detailed
representations of the topics. A finite element formulation has been discussed by Mason
and Herrmann [6]. Based on assumptions for the displacement field and exploiting the
principle of minimum potential energy triangular finite elements are developed. Zeller [7]
evaluates warping of beam cross–sections subjected to torsion and bending.
In the present paper shear correction factors for arbitrary shaped cross-sections using
the finite element method are evaluated. The considered rod is subjected to torsionless
bending. Different definitions on this term have been introduced in the literature, see
Timoshenko and Goodier [4]. Here we follow the approach of Trefftz [3], where uncoupling
of the strain energy for torsion and bending is assumed. The essential features and novel
aspects of the present formulation are summarized as follows.

All basic equations are formulated with respect to an arbitrary cartesian coordinate system
which is not restricted to principal axes. Thus the origin of this system is not necessarily a
special point like the centroid. This relieves the input of the finite element data. Based on
the equilibrium and compatibility equations of elasticity and further assumptions for the
stress field the weak form of the boundary value problem is derived. The shear stresses are
obtained from derivatives of a warping function. The essential advantage compared with
stress functions introduced by other authors, like Schwalbe [2], Weber [1] or Trefftz [3]
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is the fact that the present formulation is also applicable to multiple connected domains
without fulfilment of further constraints. Within the approach of [2, ?, 3] the continuity
conditions yield additional constraints for cross sections with holes. In contrast to a
previous paper [8] the present formulation leads to homogeneous Neumann boundary
conditions. This simplifies the finite element implementation and reduces the amount of
input data in a significant way. Within our approach shear correction factors are defined
comparing the strain energies of the average shear stresses with those obtained from the
equilibrium. Other definitions are discussed in the paper. The computed quantities are
necessary to determine the shear stiffness of beams with arbitrary cross–sections.

2 Torsionless bending of a prismatic beam

We consider a rod with arbitrary reference axis x and section coordinates y and z. The
parallel system ȳ = y − yS and z̄ = z − zS intersects at the centroid. According to
Fig. 1 the domain is denoted by Ω and the boundary by ∂Ω. The tangent vector t with
associated coordinate s and the outward normal vector n = [ny, nz]

T form a right–handed
system. In the following the vector of shear stresses τ = [τxy, τxz]

T due to bending is
derived from the theory of linear elasticity. For this purpose we summarize some basic
equations of elasticity.
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Fig. 1: Cross–section of a prismatic beam

The equilibrium equations neglecting body forces read

σx,x +τxy,y +τxz,z = 0
σy,y +τyz,z +τxy,x = 0
σz,z +τxz,x +τyz,y = 0 ,

(1)

where commas denote partial differentiation. Furthermore, the compatibility conditions
in terms of stresses have to be satisfied

(1 + ν)∆σx + s,xx = 0 (1 + ν)∆τyz + s,yz = 0

(1 + ν)∆σy + s,yy = 0 (1 + ν)∆τxy + s,xy = 0

(1 + ν)∆σz + s,zz = 0 (1 + ν)∆τxz + s,xz = 0 .

(2)
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Here, ∆ denotes the Laplace operator, ν is Poisson’s ratio, and s = σx + σy + σz, respec-
tively.
We proceed with assumptions for the stress field. The shape of the normal stresses σx is
given according to the elementary beam theory, thus linear with respect to ȳ and z̄. The
stresses σy, σz and τyz are neglected. The transverse shear stresses follow from derivatives
of the warping function ϕ(y, z). Thus, it holds

σx = ay(x)ȳ + az(x)z̄

σy = σz = τyz = 0

τxy = ϕ,y −f1

τxz = ϕ,z −f2

(3)

where we assume that ay and az are linear functions of x. Furthermore the functions

f1(z) = − ν

2(1 + ν)
a′

y(z − z0)
2 f2(y) = − ν

2(1 + ν)
a′

z(y − y0)
2 . (4)

are specified, where ()′ denotes the derivative with respect to x. Using a definition for
torsionless bending the constants y0 and z0 are derived in the appendix. As is shown in
this section considering the functions f1(z) and f2(y) one obtains a differential equation
by which the equilibrium and compatibility equations can be advantageously combined.
The rod is stress free along the cylindrical surface which yields the boundary condition

τxy ny + τxz nz = 0 . (5)

Next, the derivative of the normal stresses σx,x := f0(y, z) reads

f0(y, z) = a′
yȳ + a′

z z̄ . (6)

The unknown constants a′
y und a′

z are determined with

Qy =
∫

(Ω)

τxy dA Qz =
∫

(Ω)

τxz dA . (7)

The integral of the shear stresses τxy considering (1)1 and applying integration by parts
yields ∫

(Ω)

τxy dA =
∫

(Ω)

[τxy + ȳ (τxy,y +τxz,z +f0)]dA

=
∫

(Ω)

[(ȳτxy),y +(ȳτxz),z ] dA +
∫

(Ω)

ȳ f0 dA

=
∮

(∂Ω)

ȳ (τxyny + τxynz) ds +
∫

(Ω)

ȳ f0 dA .

(8)

The boundary integral vanishes considering (5). Thus, inserting eq. (6) we obtain

∫
(Ω)

τxy dA =
∫

(Ω)

ȳ(a′
yȳ + a′

z z̄) dA . (9)
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In an analogous way the integral of the shear stresses τxz can be reformulated.
Hence, using the notation Aab =

∫
(Ω) ab dA eqs. (7) leads to the system of equations


 Aȳȳ Aȳz̄

Aȳz̄ Az̄z̄





 a′

y

a′
z


 =


 Qy

Qz


 (10)

for the unknowns a′
y und a′

z. The solution yields

a′
y =

QyAz̄z̄ − QzAȳz̄

AȳȳAz̄z̄ − A2
ȳz̄

a′
z =

QzAȳȳ − QyAȳz̄

AȳȳAz̄z̄ − A2
ȳz̄

. (11)

Considering (3) one can easily verify that the compatibility conditions (2)1 − (2)4 are
identically fulfilled. The last two equations of (2) can be reformulated as follows

(1 + ν)∆τxy + s,xy = (1 + ν) (∆ϕ,y +
ν

1 + ν
a′

y) + a′
y = 0

(1 + ν)∆τxz + s,xz = (1 + ν) (∆ϕ,z +
ν

1 + ν
a′

z) + a′
z = 0 ,

(12)

or
∆ϕ,y +a′

y = 0 ∆ϕ,z +a′
z = 0 . (13)

The solution of the Poisson equation ∆ϕ + f0 = 0 fulfills (13). This differential equation
also follows when inserting (3) into the equilibrium (1)1.
Hence, the resulting boundary value problem follows from (1)1 and (5)

τxy,y +τxz,z +f0(y, z) = 0 in Ω τxy ny + τxz nz = 0 on ∂Ω . (14)

The solution of (14) using (3) satisfies the equations of three–dimensional elasticity (1)
and (2) altogether.
The associated weak form is obtained weighting the differential equation with test func-
tions η ∈ H1(Ω) and integrating over the domain

g(ϕ, η) = −
∫

(Ω)

[τxy,y +τxz,z +f0(y, z)] η dA = 0 . (15)

Integration by parts yields

g(ϕ, η) =
∫

(Ω)

[τxyη,y +τxzη,z −f0(y, z) η] dA −
∮

(∂Ω)

(τxyny + τxznz) η ds = 0 , (16)

where the boundary integral considering (14)2 vanishes. Inserting the shear stresses using
(3) we obtain

g(ϕ, η) =
∫

(Ω)

[ϕ,y η,y +ϕ,z η,z ] dA −
∫

(Ω)

[f0 η + f1 η,y +f2 η,z ] dA = 0 (17)

which completes the variational formulation.
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3 Shear correction factors

There are several definitions of the shear correction factor κ, see e.g. Cowper [9] for a
review. According to the work of Timoshenko κ is the ratio of the average shear strain on
a section to the shear strain at the centroid. The analysis which leads to this definition is
given in [10]. However, several authors have pointed out that one obtains unsatisfactory
results when Timoshenko’s beam equations and above defined shear correction factor
are used to calculate the high–frequency spectrum of vibrating beams, [9]. Thus, further
research on this problem has been done. The influence of transverse loading and of support
on the shear deformation has been studied e.g. by Stojek [11], Cowper [9] or Mason and
Herrmann [6].
Here, we follow the approach of Bach [12] and Stojek [11] using the balance of energy of
the beam for linear elasticity

1

2
Fδ =

1

2

∫
(x)

∫
(Ω)

(
σ2

x

E
+

τ 2
xy + τ 2

xz

G
) dA dx . (18)

The left–hand side describes the work of the external force F acting on the considered
beam such that bending without torsion occurs and δ is the unknown displacement pro-
jection of the loading point. Furthermore, E and G denote Young’s modulus and shear
modulus, respectively. Eq. (18) shows, that δ depends on the distribution of the normal
stresses σx and the shear stresses τxy and τxz.
In the following the shear terms are reformulated. First, we introduce the average shear
stresses by

τ̄xy =
Qy

Asy

τ̄xz =
Qz

Asz

(19)

where the so–called shear areas are related to the area of the considered cross–section A
by

Asy = κyA Asz = κzA . (20)

The shear correction factors κy and κz are defined comparing the strain energies and
considering (19) and (20)

∫
(Ω)

(τ 2
xy + τ 2

xz) dA =
∫

(Ωsy)

τ̄ 2
xy dAsy +

∫
(Ωsz)

τ̄ 2
xz dAsz = αy

Q2
y

A
+ αz

Q2
z

A
(21)

with αy = 1/κy and αz = 1/κz. Reformulation of the left–hand side yields with (3) and
integration by parts

∫
(Ω)

(τ 2
xy + τ 2

xz) dA

=
∫

(Ω)

(τxyϕ,y +τxzϕ,z ) dA −
∫

(Ω)

(τxyf1 + τxzf2) dA

= −
∫

(Ω)

(τxy,y +τxz,z ) ϕ dA +
∮

(∂Ω)

(τxy ny + τxz nz) ϕ ds −
∫

(Ω)

(τxyf1 + τxzf2) dA .

(22)
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The boundary integral vanishes when considering (14)2. Furthermore we insert (14)1, (6)
and (4)

∫
(Ω)

(τ 2
xy + τ 2

xz) dA =
∫

(Ω)

f0 ϕ dA −
∫

(Ω)

(τxyf1 + τxzf2) dA

= a′
y(Aϕȳ +

ν

2(1 + ν)
Czz) + a′

z(Aϕz̄ +
ν

2(1 + ν)
Cyy)

(23)

where
Cyy =

∫
(Ω)

τxz (y − y0)
2 dA Czz =

∫
(Ω)

τxy (z − z0)
2 dA . (24)

Inserting (11) into (23) and the result with (19) into (21) yields

Qy [
AϕȳAz̄z̄ − Aϕz̄Aȳz̄

AȳȳAz̄z̄ − A2
ȳz̄

+
ν

2(1 + ν)

(CzzAz̄z̄ − CyyAȳz̄)

(AȳȳAz̄z̄ − A2
ȳz̄)

− αy
Qy

A
]

+ Qz [
Aϕz̄Aȳȳ − AϕȳAȳz̄

AȳȳAz̄z̄ − A2
ȳz̄

+
ν

2(1 + ν)

(CyyAȳȳ − CzzAȳz̄)

(AȳȳAz̄z̄ − A2
ȳz̄)

− αz
Qz

A
] = 0 .

(25)

By letting Qz = 0 we obtain αy and with Qy = 0 we obtain αz as

αy =
A

Qy

[
AϕȳAz̄z̄ − Aϕz̄Aȳz̄

AȳȳAz̄z̄ − A2
ȳz̄

+
ν

2(1 + ν)

(CzzAz̄z̄ − CyyAȳz̄)

AȳȳAz̄z̄ − A2
ȳz̄

]

αz =
A

Qz

[
Aϕz̄Aȳȳ − AϕȳAȳz̄

AȳȳAz̄z̄ − A2
ȳz̄

+
ν

2(1 + ν)

(CyyAȳȳ − CzzAȳz̄)

AȳȳAz̄z̄ − A2
ȳz̄

]
.

(26)

Using (26) the shear stiffness parameters GAsy = GA/αy and GAsz = GA/αz in Timo-
shenko’s beam theory are defined. In our approach αy and αz are pure shape factors and
do not consider e.g. the influence of the transverse loading or the support.
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4 Finite element formulation

The weak form of the boundary value problem (17) is solved approximately using the
finite element method. Since only derivatives of first order occur, C0–continuous elements
can be used for the finite element discretization. Applying an isoparametric concept the
coordinates x = [y, z]T , the warping function ϕ and the test function η are interpolated
as follows

xh =
nel∑
I=1

NI(ξ, η)xI ϕh =
nel∑
I=1

NI(ξ, η) ϕI ηh =
nel∑
I=1

NI(ξ, η) ηI , (27)

where nel denotes the number of nodes per element. The index h is used to denote the
approximate solution of the finite element method. The derivatives of the shape functions
NI(ξ, η) with respect to y and z are obtained in a standard way using the chain rule.
Inserting the derivatives of ϕh and ηh into the weak form (17) yields the finite element
equation

g(ϕh, ηh) = A
e=1

numel nel∑
I=1

nel∑
K=1

ηI (Ke
IK ϕK − F e

I ) = 0 . (28)

Here, A denotes the assembly operator with numel the total number of elements to
discretize the problem. The contribution of nodes I and K to the stiffness matrix and of
node I to the load vector reads

Ke
IK =

∫
(Ωe)

(NI ,y NK ,y +NI ,z NK ,z ) dAe F e
I =

∫
(Ωe)

(f0 NI + f1 NI ,y +f2 NI ,z ) dAe ,

(29)
where the functions f0(y, z), f1(z) and f2(y) are given in (6) and (4), respectively. The
section quantities A,Aȳȳ, Az̄z̄, Aȳz̄, yS, zS, y0 and z0 must be known. This can be achieved
using a finite element solution, see [13]. Eq. (28) leads to a linear system of equation. To
solve the system the value ϕI of one arbitrary nodal point I has to be suppressed.
The present weak form (17) does not show any boundary integral. Thus, the associated
element formulation (29) is easy to implement into a finite element program and reduces
the amount of input data in comparison to the previous formulation in [8].
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5 Examples

The presented finite element formulation has been implemented into an enhanced version
of the program FEAP. A documentation of the basis version may be found in the book
of Zienkiewicz und Taylor [14]. At re-entrant corners the shear stresses are unbounded.
The below presented plots show the distribution for a chosen mesh density. Further
mesh refinement influences the results only in the direct vicinity of the singularity. The
evaluated shear correction factors represent converged solutions.

5.1 Rectangular cross–section

The first example is concerned with a rectangular cross–section, see Fig. 2. In the following
the distribution of the shear stresses due to a shear force Qz = 1 is investigated. Within
the elementary beam theory the shear stresses τxz are given according to the quadratic
parabola τxz = τ ∗[1 − (2 z/h)2] with τ ∗ = 1.5 Qz/A.

y

z

b/2

h/
2

b/2

h/
2

Fig. 2: Rectangular cross–section

Table 1: Factors for the shear stresses of a rect-
angular cross–section (ν = 0.25)

h/b 2 1 0.5 0.25

z=0, y=0 0.983 0.940 0.856 0.805

z=0, y =b/2 1.033 1.126 1.396 1.988

Considering symmetry one quarter is discretized by n× n 4–noded elements. With Pois-
son’s ratio ν = 0 we obtain the finite element solution τxy = 0 and τxz according to the
elementary theory, thus constant in y and quadratic in z. For ν �= 0 a theoretical solu-
tion has been evaluated by Timoshenko and Goodier [4] using Fourier series. The finite
element results of two points for ν = 0.25 and different ratios of h/b correspond with the
series solution published in [4], see table 1. The above defined maximum shear stress τ ∗

of the elementary beam theory has to be multiplied with the factors of the table to obtain
the correct stresses at the specified points. For a square cross–section the error in the
maximum stress of the elementary beam theory is about 13 %. Plots of the normalized
shear stresses τxz/τ

∗ for a square are given in Fig. 3. Fig. 4 shows that the shape of τxz
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for ν = 0 is identical with the quadratic parabola of the elementary theory. Furthermore
the distribution along z = 0 and ν = 0.25 is given in Fig. 5. The stress concentration at
z = 0, y = ±b/2 can be seen clearly.
Finally shear correction factors according to eq. (26) are computed, see table 2. As can
be seen the well–known quantity κz = 5/6 has been verified for ν = 0. However, for a
decreasing ratio h/b and increasing ν much lower values for κz are evaluated. This result
is obvious since the shear stress distribution deviates considerable from the elementary
beam theory, see table 1. The factors of Cowper [9] are independent of the aspect ratio.
In our approach this holds only for ν = 0.

Table 2: Shear correction factors κz for a rectangular cross–section

h/b 2 1 0.5 0.25

ν = 0 0.8333 0.8333 0.8333 0.8333

ν = 0.25 0.8331 0.8295 0.7961 0.6308

ν = 0.5 0.8325 0.8228 0.7375 0.4404

1.126E+00 max

1.000E+00

8.000E-01

6.000E-01

4.000E-01

2.000E-01

0.000E+00 min

�xz��
�

� � ��� � � ����

Fig. 3: Normalized shear stresses for a square cross–section

9



0

0.25

0.5

0.75

1

1.25

1.5

-0.5 -0.25 0 0.25 0.5

A
 
τ x
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Fig. 4: Normalized shear stresses for a square with y = constant and ν = 0

0.92

0.96

1.00

1.04

1.08

1.12

-0.5 0 0.5

� x
z
��

�

y�b

Fig. 5: Normalized shear stresses at z = 0 for a square with ν = 0.25
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5.2 Cross–section with varying width

The next example is concerned with a cross–section with varying width, see Fig. 6. The
geometrical data are a = 10 cm, zS = 1.6667 a, zM = 1.4457 a and z0 = 1.5871 a. Con-
sidering symmetry one half of the cross–section is discretized with four–node elements.
Fig. 7 shows a plot of the shear stresses τxz for ν = 0 and ν = 0.2 due to Qz = −1 kN .
The distribution in y–direction deviates considerably from a constant shape. Applying
further mesh refinement one recognizes a singularity at the re-entrant corner. A plot of
the resulting shear stresses is depicted in Fig. 8. The shear correction factors are com-
puted for different ratios ν and are summarized in table 3. In this case Poisson’s ratio
does not influence the results in a significant way.

Table 3: Shear correction factors for a cross–section with varying width

ν 0 0.25 0.5

κy 0.7395 0.7355 0.7294

κz 0.6767 0.6753 0.6727

a a a a

zz 2a
2a

S

M

S

M

y

y

z z

Fig. 6: Cross–section with varying width
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-2.321E-03 min

-1.800E-03

-1.500E-03

-1.200E-03

-9.000E-04

-6.000E-04

 0.000E+00 max

�xz kN�cm
�

� � ��� � � ���

Fig. 7: Plot of shear stresses τxz

Fig. 8: Resulting shear stresses for ν = 0.2
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5.3 Crane rail A 100

The cross–section of a crane rail A100 according to the German code DIN 536 is investi-
gated next, see Fig. 9. We consider shear forces Qy = 1 kN and Qz = −1 kN . One half of
the cross–section is discretized using four–node–elements, see Fig. 10. The constant is de-
termined as z0 = 5.078 cm. As Fig. 11 shows there are considerable stress concentrations
in the cross–section. Only minor differences occur for the two ratios ν = 0 and ν = 0.3.
The resulting shear stresses are plotted for ν = 0.3 in Fig. 12 and Fig. 13. Finally, the
shear correction factors are summarized in table 4. There are only minor differences for
ν = 0 and ν = 0.3.

Table 4: Shear correction factors of a crane rail A 100

ν 0 0.3

κy 0.6845 0.6836

κz 0.4474 0.4468

5

r
2

r
4

b
2

b
3

k

h
3

h
2

h
1

b
1

f
3

f
2

f
1

r
3

r
1

r
6

r
7

r

k r1 r2 r3 r4 r5 r6 r7

100 10 500 6 6 8 6 1,5

b1 b2 b3 h1 h2 h3 f1 f2 f3
200 100 60 95 45,5 40 23 16,5 12

Fig. 9: Geometry of a crane rail A 100 in mm
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y

z

Fig. 10: Discretization of a crane rail

-4.056E-02 min

-3.000E-02

-2.400E-02

-1.800E-02

-1.200E-02

-6.000E-03

 0.000E+00 max

�xz kN�cm
�

� � ��� � � ���

Fig. 11: Shear stresses of a crane rail for Qz = −1 kN
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Fig. 12: Resulting shear stresses of a crane rail for Qz = −1 kN

Fig. 13: Resulting shear stresses of a crane rail for Qy = 1 kN
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5.4 Bridge cross–section

The bridge cross–section according to Fig. 14 is an example for a multiple connected
domain, see [7]. The constant z0 is evaluated as z0 = 1.775 m. Considering symmetry
the computation is performed at one half of the cross–section, see Fig. 15. The resulting
shear stresses are depicted for shear forces Qy and Qz in Fig. 16 and Fig. 17, respectively.
One can see the qualitative split of the flux at the branches. Table 5 shows that within
this example ν practically does not influence the shear correction factors.

Table 5: Shear correction factors of a bridge cross–section

ν 0 0.2

κy 0.5993 0.5993

κz 0.2312 0.2311

7,60

0,
30

0,
30

0,
45

0,
75

0,
30

2,00

3,30
3,50

0,
60

3,65

z

y

3,
45

2,50

4,50

3,75

Fig. 14: Bridge cross–section, with measurements in m
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Fig. 15: Discretization of the bridge cross–section

Fig. 16: Resulting shear stresses of the bridge cross–section for Qy = 1 kN

Fig. 17: Resulting shear stresses of the bridge cross–section for Qz = −1 kN
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6 Conclusions

Assuming linear elastic behaviour and using assumptions for the stress field the shear
stresses in prismatic beams subjected to torsionless bending are derived. One obtains a
simple weak form of the boundary value problem in terms of the warping function with
homogeneous stress boundary conditions. The associated element formulation can easily
be implemented into a standard finite element program. Based on the stored strain energy
of the shear stresses correction factors for arbitrary shaped beam sections are introduced
which consider the different stress distributions. Various examples show the efficiency
of the derived formulation. Poisson’s ratio has essential effect on wide cross–sections.
In contrast to that the results for thin–walled sections are practically insensitive against
transverse contraction.

A Appendix: Constants for torsionless bending

There are different definitions of torsionless bending in the literature, see Timoshenko
and Goodier [4]. Here, we follow the approach of Weber [1] and Trefftz [3]. Hence, the
application of the Betty–Maxwell reciprocal relations leads to the fact that the coordinates
of the center of shear and of the center of twist are identical, the latter being defined as
the point of rest in every cross–section of a twisted beam. As a result of this approach
yM and zM are independent of Poisson’s ratio ν. A different definition of bending without
torsion was given by Goodier [15].
Introducing the torsion function Φ of the Saint–Venant torsion theory by

− Φ,y = ω̄,z +y Φ,z = ω̄,y −z (30)

where ω̄ denotes the unit warping function and inserting this into the condition

QzyM − QyzM =
∫

(Ω)

(τxzy − τxyz) dA (31)

we obtain

QzyM − QyzM = −
∫

(Ω)

(τxyω̄,y +τxzω̄,z ) dA +
∫

(Ω)

(τxyΦ,z −τxzΦ,y ) dA . (32)

Applying integration by parts to the first integral yields

−
∫

(Ω)

(τxzω̄,z −τxzω̄,y ) dA =
∫

(Ω)

(τxy,y +τxz,z ) ω̄ dA −
∮

(∂Ω)

(τxyny + τxznz) ω̄ ds . (33)

The boundary integral vanishes considering (14)2. Inserting (14)1 and (6) one obtains

−
∫

(Ω)

(τxzω̄,z −τxzω̄,y ) dA = −
∫

(Ω)

f0 ω̄ dA = −a′
yAω̄ȳ − a′

zAω̄z̄ . (34)

Introducing the coordinates of the center of shear which are identical with the coordinates
of the center of twist, see e.g. [13]

yM = −Aω̄z̄Aȳȳ − Aω̄ȳAȳz̄

AȳȳAz̄z̄ − A2
ȳz̄

zM =
Aω̄ȳAz̄z̄ − Aω̄z̄Aȳz̄

AȳȳAz̄z̄ − A2
ȳz̄

(35)
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and combining (32) and (34) we obtain

0 =
∫

(Ω)

(τxyΦ,z −τxzΦ,y ) dA =
∫

(Ω)

[(ϕ,y −f1)Φ,z −(ϕ,z −f2)Φ,y ] dA . (36)

Integration by parts yields

∫
(Ω)

(Φ,z f1 − Φ,y f2) dA −
∫

(Ω)

(Φ,zy −Φ,yz )ϕ dA +
∮

(∂Ω)

(Φ,y nz − Φ,z ny) ϕ ds = 0 (37)

The second integral is obviously zero. The same holds for the boundary integral, since
dΦ = (Φ,y nz − Φ,z ny) ds = 0 on ∂Ω. Thus using (4), we obtain

∫
(Ω)

(Φ,z f1 − Φ,y f2) dA =
ν

2(1 + ν)

∫
(Ω)

[Φ,z a′
y(z − z0)

2 − Φ,y a′
z(y − y0)

2] dA = 0 . (38)

Next, the following definitions are introduced

By :=
∫

(Ω)

(−Φ,y ) y dA =
∫

(Ω)

(ω̄,z +y) y dA

Byy :=
∫

(Ω)

(−Φ,y ) y2 dA =
∫

(Ω)

(ω̄,z +y) y2 dA

Bz :=
∫

(Ω)

Φ,z z dA =
∫

(Ω)

(ω̄,y −z) z dA

Bzz :=
∫

(Ω)

Φ,z z2 dA =
∫

(Ω)

(ω̄,y −z) z2 dA .

(39)

The resultants of the torsion shear stresses vanish, Sokolnikoff [5]

∫
(Ω)

Φ,z dA = 0
∫

(Ω)

Φ,y dA = 0 . (40)

Inserting (39) and (40) into eq. (38) yields

ν

2(1 + ν)
[a′

y (Bzz − 2z0Bz) + a′
z (Byy − 2y0By)] = 0 . (41)

The constants a′
y and a′

z according to (11) are not zero. Therefore eq. (41) can only be
fulfilled if the terms in both brackets vanish which yields

y0 =
Byy

2By

z0 =
Bzz

2Bz

. (42)

If z is symmetry axis y0 = 0 holds and vice versa.
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