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Abstract:  Coherent X-ray diffraction imaging (CXDI) of the displace-
ment field and strain distribution of nanostructures in kinematic far-field
conditions requires solving a set of non-linear and non-local equations. One
approach to solving these equations, which utilizes only the object’s geom-
etry and the intensity distribution in the vicinity of a Bragg peak as a priori
knowledge, is the HIO+ER-algorithm. Despite its success for a number of
applications, reconstruction in the case of highly strained nanostructures is
likely to fail. To overcome the algorithm’s current limitations, we propose
the HIOI(\)/[R+ERM-a1gorithm which allows taking advantage of additional a
priori knowledge of the local scattering magnitude and remedies HIO+ER’s
stagnation by incorporation of randomized overrelaxation at the same time.
This approach achieves significant improvements in CXDI data analysis at
high strains and greatly reduces sensitivity to the reconstruction’s initial
guess. These benefits are demonstrated in a systematic numerical study for
a periodic array of strained silicon nanowires. Finally, appropriate treatment
of reciprocal space points below noise level is investigated.
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Coherent X-ray diffraction imaging (CXDI) has great potential for investigating the displace-
ment field of inhomogeneously strained nanostructures in a non-destructive manner. Such inves-
tigations typically focus on the coherently scattered intensity distribution Iy, (¢) in the vicinity
of one or more Bragg peaks Qp, which is determined by the displacement field u, the shape Q
of the nanocrystal and its chemical composition profile within a specific framework of approx-
imations. g denotes the distance in reciprocal space from the Bragg peak QOg.

Given far field conditions, the intensity Ip,(g) is proportional to [f(Qp + q)
|FT 0+ x{Pe1(x)}|* where pei(x) is the electron density of the illuminated sample. However,
a measurement of the intensity distribution Ip,(¢) does not reveal the g-dependence of the
phase information arg (f(Qg + ¢)). Once this phase information is available, the displacement
field u is obtained by inverse Fourier transform. Consequently, considerable efforts are put in
the development of robust algorithms for retrieving this lost phase information based on proper
a priori knowledge [1-7].

One recent technique aiming to extract the nanostructure’s displacement field u from the
coherently scattered intensity Ip, (¢) utilizes the object’s geometry Q as a priori knowledge
combined with proper reconstruction algorithms. The shape Q can be accessed by complemen-
tary techniques like GISAXS [8], AFM [9-12] or SEM [13]. By this approach, several inho-
mogeneously strained nano-sized objects like quantum dots and quantum wires have already
been inspected at synchrotron facilities by CXDI [2,5, 6, 14-28]. In most cases, a combination
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of the hybrid input output algorithm (HIO-algorithm) and error reduction (ER-algorithm) has
been employed [29-31] to solve the non-linear non-local system of equations underlying the
reconstruction of the displacement field. Despite great success of this algorithm for a number
of applications, its capabilities are not yet fully satisfactory [1,2,31]. The frequent failure of
the method for highly inhomogeneously strained systems forced researchers to explore novel
strategies to overcome current limitations. For this purpose, mainly two strategies are pursued:

On the one hand, the incorporation of additional a priori knowledge in direct space beyond
the object’s geometry proved valuable for retrieving the displacement field # from a particular
experimental data set of a highly inhomogeneously strained nanostructure [2,4, 5]. However,
additional a priori knowledge does not eliminate the non-convex operations involved during re-
construction. These operations are claimed to cause stagnation or convergence to local minima
and typically imply a strong dependence on the initial guess of the reconstruction.

On the other hand, novel algorithms which do not require additional a priori knowledge in
comparison to the existing algorithms are developed [1,3,7,31,32]. One such algorithm is the
HIOgq, +ER-algorithm [1]: it is an extension of the HIO+ER-algorithm [29, 30] based on ran-
domized overrelaxation [33,34]. This way some residual shortcomings [1,31] of the traditional
HIO+ER-algorithm could be overcome without requiring additional a priori knowledge beyond
shape Q in direct space and intensity distribution Ip, (¢) in reciprocal space. In particular, the
dependence on the initial guess of the reconstruction is reduced significantly. Therefore, the
combination of randomized overrelaxation and additional a priori knowledge is very promis-
ing.

In the present manuscript a systematic numerical study of a periodic array of strained sili-
con nanowires reveals current capabilities and limitations of CXDI data analysis: For the first
time, the interplay of randomized overrelaxation (in reciprocal space) and additional a priori-
knowledge in direct space is studied. In the authors’ opinion, the most relevant direct space
constraints are lower and upper bounds on the local scattering magnitude and, therefore, have
been chosen for this investigation.

The structure of the manuscript is as follows: In Sec. 1, we discuss the theoretical background
of our investigation: First, we review the system of equations which CXDI reconstruction al-
gorithms need to solve. Then, we define and discuss the constraints on the local scattering
magnitude and their incorporation in the HIOg, +ER-algorithm. We refer to the resulting algo-
rithm as HIOI\OAR +ERM-algorithm. Next, we introduce the physical system we have chosen for
our investigation — a periodic array of strained silicon nanowires. The next subsection in the
theoretical background is devoted to the figure of merits which are important for judging the
output of the reconstruction procedure. Finally, we introduce models for treating (the typically
large fraction of) reciprocal space data points which are so weak that the true signal is super-
seded by noise in experimental data. In Sec. 2, we apply the HIOI\O/[R+ERM-alg0rithm to our
physical model system and systematically increase the strain until the reconstruction process
fails. First, ideal data is considered. Finally, the behavior for missing low signal information
within the concepts introduced in Sec. 1.4 is investigated in Sec. 2.2.

Our results demonstrate that the HIOI\O/[R+ERM-alg0rithm constitutes a major improvement
for the investigation of inhomogeneously strained nanocrystals in comparison to the traditional
HIO+ER-algorithm.

1. Theoretical background

This section summarizes the theoretical basis underlying current phase retrieval techniques
which aim to extract the displacement field of inhomogeneously strained nanocrystals.

We restrict to phase retrieval techniques based on kinematic theory and far-field limit. Ab-
sorption is neglected. The coherence volume of the impinging beam is assumed to be bigger
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than the sample’s strained region. Our discussion does not include multiple scattering which is
negligible as long as the extension of the sample domain under investigation is much smaller
than the mean free path of the propagating radiation. Whereas this length decreases for “typi-
cal” photonic crystals illuminated at optical frequencies to a single (photonic) unit cell [35-40],
coherent X-ray radiation is suited for the investigation of nanocrystalline samples containing a
huge number of (atomic) unit cells.

These approximations relate the scattering factor

(0) = Floc {pa(v)} = [ a'x pu(x)e®” 0

of the nanostructure to the experimentally measured intensity distribution I(g) of the scattered
incident radiation by I(Q) o< |f(Q)|* where Q = kou — ki is the scattering vector. kg, and kou
are the incident and outgoing wave vector respectively. pej(x) is the electron density of the
nanostructure. We restrict to the displacement in samples which can be considered as inho-
mogeneously strained crystalline structures with fully elastic strain. Heterogeneous material
systems are included as long as their interface is coupled elastically. In the vicinity of a Bragg
peak Qg # 0, the contribution of amorphous domains in the sample to the scattered intensity is
typically negligible. So, amorphous domains may also be present in the nanostructure.

The (by assumption coherently scattered) intensity Iy, (¢), where g = kou — kin — Qp denotes
the distance from the scattering vector Q to the Bragg peak Og, can be simplified further in a
Bragg peak’s vicinity for Qg # 0: It is valid to substitute the full electron density Pei(x) in Eq.
(1) by the complex valued effective electron density

peir(x, Op) = €% o, (x)Q(x) = TF Ty {0, (4)} - @)

In this equation, Q(x) describes the geometry of the strained crystalline region of the sample un-
der consideration. Its value is one for any point x inside this strained region and zero otherwise.
In the framework of the Takagi approximation [41,42] for chemically homogeneous samples,
the local scattering magnitude (o, (x) is a constant complex number. If we allow small changes
in the chemical composition of the sample, o, (x) varies in phase and amplitude, but its phase
variation is typically much smaller than the contribution from Qg - u(x). Therefore, we neglect
the phase contribution arg ({g, (x)). Thus, o, (x) reduces to a complex function with constant
phase, but a small variation in magnitude related to the local chemical composition. This con-
stant phase of (g, (x) is physically irrelevant. As a consequence, o, (x) can be considered a
real function of almost constant magnitude. Hence,

I, (q) o< ’fQB (61)|2 = |Fqux{Peft‘(x)}|2 . €

The remainder of this manuscript is based upon the model (2) combined with Eq. (3) and
will focus on finding the solution pegr(x) given either only the shape Q(x) and the amplitudes
Iy = \/Ip, (q) or given this information plus additional knowledge of o, (x). If this additional
knowledge is exploited in the reconstruction procedure, the range of applicability of phase re-
trieval is significantly extended to higher values of strain and the robustness of the method for
equal strain distribution is increased. Some remarks on uniqueness of the solution and numeri-
cal discretization can be found in Sec. A in the appendix.

1.1. The HIO%IR +ERM-algorithm

In this section, we extend the HIOq, +ER-algorithm [1, 29] to additionally incorporate lower
and upper bounds on the local scattering magnitude {p,. The HIOq, +ER-algorithm is an it-
erative procedure which is build up by two blocks, HIOg, and ER. Each iteration of the
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HIOgq, +ER-algorithm Nyjo repetitions of the HIOq, -algorithm are performed, followed by
Nrgr repetitions of the ER-algorithm. We shortly summarize both building blocks:
The ER-algorithm [29,30] is defined by

) — A 1) . A = (FT) Pg (IFT) Py @

P, is a linear projection operator on the interior of the object’s geometry Q, i.e.,

Paéﬁ&%={gﬂ“) gjzgj )

Pr is a non-linear and non-convex projection operator in reciprocal space. It enforces the am-
plitudes I'; in f<i>(q) without modifying the phases arg (f(i) (q)) Hence, its formal definition

1S i
Prfi)(q) =T, & *2(1"@) (6)

The HIOq, -algorithm can be interpreted as a feedback based iterative mapping with feedback
parameter 3. A single iterative step is defined as

(i) .

(i+1) Mc(Ar) P (x) ifxeQ,

P (x) = ! ; i . (7a)
o { Péfz(X) - ﬁMC(lr)Péfz(x) ifx¢Q,

where the mapping
Mc(Ar) = (IFT) Qr,.(FT) . (7b)

incorporates all available constraints and information except finite direct space geometry Q2.
Qry- is the overrelaxed map of Pr, i.e.,

Qrj. =14+Ar(Pr—1) . (7Tc)

Whereas overrelaxation with a fixed relaxation parameter Ar typically even decreases the per-
formance of the HIO-algorithm, randomization of the relaxation parameter turned out to be a
key feature for overcoming stagnation in the iterative procedure [1]. Each iteration, the overre-
laxation parameter Ar- is drawn from a uniform random distribution in the interval [1 — v, 1+ V],
v > 0. Unless stated otherwise, we choose v = 0.5. The success of the HIOg, +ER-algorithm
neither depends sensitively on the value of parameter 3 in the range [0.5,1.0] nor on the partic-
ular choice of the internal parameters Nyjo and Ngr for v = 0.5 [1]. The traditional HIO+ER-
algorithm is contained for v =0 (i.e., Ar = 1).
Finally, we need to specify the initial guess of the iterative procedure. We choose

Tor(q) = T,ei® @®)

with randomly generated phases @, at each point g.

Once a solution for f(g) is found (and, therefore, the solution for pefr(x)), we can rely on Eq.
(2) to extract the displacement field u. Depending on the amount of strain in the sample and the
value of O, unwrapping [43] of the phase (not considered in this manuscript) may or may not
be necessary.

Incorporation of additional a priori knowledge may significantly expand the range of ap-
plicability of CXDI to highly inhomogeneously strained samples [4, 5]. Therefore, we now
focus on incorporating assumptions on the local scattering magnitude §(x) (see Eq. (2)) in the
HIOgq, +ER-algorithm. The following property is true for most experimental samples: We can
define sample domains Q; C Q in which the local scattering magnitude {(x) deviates only
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slightly from its average value (e.g., substrate region or full sample in case of homogeneous
chemical composition). The unification of the domains ; does not need to coincide with the
full sample Q. Moreover, the domains may even overlap.

The most stringent case for this assumption is a chemically homogeneous material, for which
the scattering magnitude {(x) is constant as long as we neglect the changes originating in strain.
Hence, the deviation of {(x) from its average is equal to zero. If the nanostructure is not fully
chemically homogeneous, at least the substrate region can typically be considered chemically
homogeneous and almost unstrained. Hence, the scattering magnitude in this subdomain of the
full structure deviates only slightly from this subdomain’s average value — independent of the
local scattering magnitude of additionally grown nanostructures on top. For the nanostructure
on top of the substrate, we can constrain §(x) in addition with bounds representing a different
average and a larger distance to this average.

For the remainder of this manuscript, we focus on this kind of direct space constraints and
turn to the question of their proper implementation: limiting {(x) by

MLJéjSC(x)SMH,J'EJ‘VXGQJ-QQ, )

where Q; are the domains to be constrained. M j < 1 and My; > 1 are additional parameters
which need to be known a priori for every domain j. Moreover, the lower and upper bounds
My and My fulfill My &y > Mp a8, and MGy < My Gy, if the domains Q,, and Q,
intersect.

We now define the set of (nonlinear) operators

: : (@)
M(l) (x) el a'rg(pcff(x)) lf.x c Qj )

My ol (x) = & , (10a)
Pegt (%) ifx¢ Q;,
M () = min (Myg; £} max (M o)) (10)

where (i) labels iterations and () labels the domains Q;. Each iteration, the averages 4 ; are
estimated during reconstruction by evaluating

_j(l) - \/< Po,
()

Note, that in general the mappings My, are no projection operators: If one of them is applied
repeatedly to an object, the average during the next action may be different from the current one.
Thus, the operator is no longer idempotent as required for a projection operator. An exception

Pe(g ; P, ’

Per

)/(Po;:Pa,) - (10c)

is the case M j = My ; = 1. In this case, applying a mapping Mf\fl) repeatedly yields in the same
result as applying it once.

The constraints Mf\f[) can be incorporated in the HIOq, +ER-algorithm by modifying Mc(Ar)
(see Eq. (7b)) to

Mc(Ar) = My (IFT) Q. (FT) , My = []MY) . (11)
j

At this point, we define the HIOI(\)AR—algorithm by Egs. (7a) and (11) (see Fig. 1). The solution
Pef(x) remains a fixed point of the iterative procedure for the proposed extension (11) due to
the fact that Mc reduces to Mc = 1 if applied to p.s(x). For the ERM-algorithm, we employ

1w = (FT) Po My (IFT) Pr (12)
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Fig. 1. Schematics of the HIO%’IR -algorithm according to Egs. (7a) and (11): In addition to
Qr-.3,. in the HIOq, -algorithm the operator My is applied before the calculation of the next
iterative candidate pé? D (x) is performed. In the limit My , — 0 and My , — oo for all n,
the algorithm reduces to HIOg, because My — 1.

instead of Eq. (4). Finally, we define the HIOI\OAR+ERM-algorithm as a combiniation of
Nyio iterations of HIOBO/[R-algorithm followed by Ngg iterations of the ERM-algorithm. The

HIOI(\)/IR +ERM-algorithm is computational as efficient as HIOq, +ER and standard HIO+ER: All
extensions can be implemented numerically as local, independent single pixel operations. Thus,
they can be performed very efficiently and executed in parallel. Hence, computational efficiency
is limited by the Nlog(N)-scaling of the FFT algorithm.

At this point we want to stress the different nature of both modifications of HIO%’IR +ERM with
respect to standard HIO+ER: Whereas randomized overrelaxation tries to exploit the same set
of given a priori knowledge — either {Q(x), I';} or {Q(x), 'y, ML (x), My, (x)} in our case
— more successfully, the constraints My aim at regularization of the model (2) by adding the
additional a priori knowledge {My_ (x), My, (x)}.

1.2.  Generation of the input data for the reconstruction

The benefits of the HIOI(\)/IR +ERM-algorithm will be illustrated for a nanostructure for which
the displacement field u has been obtained by finite element modeling (FEM) of linear elas-
ticity theory (LET) [44—49]. This displacement field and the shape of the nanostructure were
extracted and used for the generation of the input data of the reconstructions. We focus on a pe-
riodic array of Si-(001)-nanowires like the one studied experimentally by Eberlein et al. [50,51].
Their samples have been fabricated by etching trenches in a silicon substrate (black domain in
Fig. 2(a)). These trenches have been filled with amorphous silicon-oxide SiO, (gray domain
in Fig. 2(a)). Different thermal expansion coefficients of the crystalline and amorphous region
result in non-vanishing strain in the nanostructure after cooling down to room temperature.

For our simulations of the Si-nanowire system, the commercial FEM software “COMSOL
Multiphysics” was used to calculate the desired displacement field u. Translational symmetry
along the wires allows performing the simulation in a planar cut perpendicular to the direction
of the wires. Thus, the system can be treated in two dimensions. Due to the periodic arrange-
ment of the wires, simulations are restricted to a single block of the periodic object.

The geometry and dimensions of the system are as follows: the lateral periodicity is 200nm.
The substrate has been etched to a depth of 237nm in vertical direction and filled with amor-
phous silicon oxide to a height of approximately 258nm which results in a cap layer of 21nm
thickness. A 1000nm thick substrate domain below the bottom of the nanowire was included.

In our numerical simulations in Sec. 2, we increase the sample’s strain by linear rescal-
ing of the displacement field u. The strain distribution is characterized by its maximum strain
ev = max (d;u;) in the crystalline part on the wire’s central axis. The resulting phase field
of the effective electron density for the values ey = {0.10%,0.30%,0.60%} is depicted in
Figs. 2(b)-2(d). In addition, Figs. 2(e)-2(g) gives an impression of the scattering signal I'; for
em = {0.10%,0.20%,0.28%}.
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Fig. 2. Illustration of the physical system used for our investigation of the HIOI(‘)/IR +ERM-
algorithm. Figure (a) shows the geometry and composition of the upper region of a periodic
unit of the periodic Si-nanowire system. The hatched domain will become important in next
sections. Figures (b)-(d) depict the phase field Qg - u(x) of effective electron density pegt(x)
for this system for different values of the maximum strain & on the wires’ symmetry axis
in the crystalline domain, if the Bragg peak Qg = [004] is investigated. Figures (e)-(g) show
the scattering signal in presence of the low signal cutoff I'y (see Sec. 1.4). Only the central
region of the scattering signal around the Bragg peak Qg is shown (Qp is located at the
yellow dot). Data points below the noise level I'y are masked in dark cyan.

1.3.  Measures for success in numerical simulations

The results peg of the iterative reconstructions after (i) iterations of the HIOI(\)/IR +ERM-algorithm
are compared to the perfect solution pesr(x) by evaluating

9" = arccos U<p£§2;peff>\ (P P pres )| (13)

This measure eliminates the undefined global phase in the reconstructed effective electron den-
sity (see Sec. A in the appendix).

The iterative reconstruction procedure has been terminated if either a maximum number of
iterations was reached or if the change of p.g from iteration to iteration dropped below a certain
value. This change has been monitored by the angle

i i1 (i i—1) . (i—1 0.
2 = arccos U<p§ff )’Péf2>‘/\/<Péff )’Pe(ff )><P§f3’P§f3> . (14)
In [1], Kohl et al. provided a more detailed discussion of Egs. (13) and (14).

1.4.  Artifacts in reciprocal space

Our simulated input data for the reciprocal space amplitudes I'; exhibits a signal to noise ratio
which is limited only by finite digit precision. In contrast to that, the signal to noise ratio of
the experimental scattering data used by Minkevich et al. in [24,25] had signal to noise ratio of
approximately 100 (in the diffuse cloud, excluding the central Bragg peak). As a consequence,
most data points in reciprocal space are corrupted by noise and additional diffuse scattering,
e.g., by optical elements, Be windows of vacuum flight tubes, etc. . Thus, their true value is in-
accessible by current experimental measurements: for those data points we should only assume
that they are bound by the noise level I'y from above, i.e., I'; < I'y. As no beamstop is required
in case of imaging strained nanocrystals at Qg # 0 (in contrast to performing diffractive imag-
ing measurements in forward direction Qg = 0 [52]), this upper bound I'y is well defined and
experimentally accessible.
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Table 1. Definition of k for five models (A)-(E) which are investigated for treating data
points below a given low cutoff I'y.

Condition — Model | @A | B | © | o | (B |
if T, > I'n T, T, T, T, T,
if (O <TAGR <N | o | 1| B IR | eolid)
if (T, <Tn) A (fY)] > Tx) 0 0 roTy I'n I'n

In this manuscript, we compare five strategies for treating data points I'y < I'y. We hope
that our investigation will contribute to establishing CXDI of inhomogeneously strained nanos-
tructures as a robust technique of experimental value. The investigation of other artifacts (like
the “inconsistent” Bragg peak in experimental data, photon noise in the signal I, [7], smearing
of I, by instrumental effects and corrections from higher order scattering beyond kinematic
approximation) goes beyond the scope of this manuscript.

In all five approaches the definition of Pr as given in Eq. (6) is modified to

Pr 1 (q) = g, ¢t (0. (15)

The individual approaches differ in the definition of x; and are defined in Table 1.

The first approach (A) incorporates the noisy region as the weak signal limit, i.e., approxi-
mating all amplitudes below the lower cutoff I'y as zero. However, small inconsistencies be-
tween direct space support  and Fourier space amplitudes k; are inevitable in this approach.
Therefore, our second, third and fourth approach allow the reciprocal space amplitude at every
g-point to evolve freely until it exceeds the given cutoff I'y. The approaches differ in the be-
havior if the cutoff is exceeded during the iterative procedure: In the second approach (B), the
respective amplitude is reset to zero. In the third approach (C), it is reset to a random value in
the interval [0,I'x] (uniform distribution). The fourth approach (D) resets the amplitude only to
its upper bound I'y. Finally, the fifth approach (E) contains a small damping cp < 1 in regions
below I'y. This way, we regularize the corrupted region such that high frequency contributions
to the direct space effective electron density pesr(x) are suppressed. Note, that the last approach
(E) reduces to the fourth approach (D) in the limit cp — 1.

2. Results

In this section, we present the results of our numerical investigation. We focus on the suc-
cess rate s € [0%, 100%] of fully automated reconstructions (no user interaction like tuning of
parameters during reconstruction). The success rate is a statistical quantity for all cases we con-
sider, because random numbers influence the reconstruction at two stages: first, the initial guess
itself is based on random phases for the given amplitudes in reciprocal space. Therefore, the
success rate s is a statistical quantity even for the traditional HIO+ER-algorithm. Second, for
those reconstructions that exploit randomized overrelaxation (v > 0), the iterative approxima-
tion to the solution varies from one trial to another even for the same initial guess. Therefore,
we estimate the success rate s by evaluating a set of Ngea = 100 trials. Every trial has its own
random initial guess and its own random overrelaxation parameters Ar. For a robust, automated
reconstruction, this success rate should reach values close to 100% within a practical number
of iterations MNyer.

The success rate s may depend on the strain &y, the number of iterations (i) which has been
performed and our choice of the angle @max which is used to distinguish successful recon-
structions from failed reconstructions based on Eq. (13). We will investigate its behavior by
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two-dimensional cuts through this three dimensional parameter space and use a unified color-
coding to encode the success rate s.

The rectangular discretization grid contained 232x798 pixels (N1, = 185136). A single pixel
corresponds to a distance of 0.862nm in x-direction and 1.575nm in z-direction. The substrate
was truncated in such a way that an oversampling ¢ of 3.6326 has been achieved. The pa-
rameters of the reconstructions were chosen as Ngr = 10, Ngio = 130, 8 = 0.8, ¢cp = 0.99
and either v = 0 (“without randomized overrelaxation™) or v = 0.5 (“with randomized overre-
laxation”). The reconstruction procedure was terminated, if either Ny = 500 iterations have
been performed or the change of the iterative approximation from the current to the previous
approximation ) as defined in Eq. (14) dropped below 10~° rad.

2.1.  Full reciprocal space information within the framework defined by Egs. (2) and (3)

We first focus on the case I'v = 0 in Fig. 3. Figures 3(a)-3(d) are devoted to the classical
HIO+ER-algorithm (v = 0 and no constraints on {). The range &y from 0.02% to 0.40% was
covered in steps d&y = 0.02%. For a maximum strain up to &y = 0.10%, all trials converged
to the solution p.gr within very few iterations (see Fig. 3(a) as well as Figs. 2(b) and 2(e)). For
em = 0.12% the success probability dropped down to s = 38%, for &y = 0.16% to s = 15% and
for any &y > 0.20% (see Fig. 2(f)), success probability was essentially s = 0%. In the range
em = 0.12% to &y = 0.20%, sometimes stagnation close to the solution pg can be observed
(see Figs. 3(b) and 3(c)). However, in most cases stagnation is observed on a level ¢ far from
the true solution (¢ > 20°). Figures 3(c) and 3(d) demonstrate that once the classical HIO+ER-
algorithm is stuck in a level of stagnation, the mean number of iterations that the iterative
procedure remains there is very high, even if this level is far from the solution pefy.

Next, we benchmark the impact of randomized overrelaxation on the traditional HIO+ER-
algorithm (i.e., v > 0) in Figs. 3(e)-3(h). In the range &y < 0.10%, no negative penalty of
randomized overrelaxation has been discovered (see Fig. 3(e)). Within the range &y = 0.12%
to em = 0.28% (see Fig. 2(g)), the HIOq, +ER-algorithm is clearly superior to the classical
HIO+ER-algorithm (see Fig. 3(e)). Successful reconstructions are possible independent of the
random initial guess with a success probability s close to 100% within i = 500 iterations. How-
ever, the number of iterations which is required to achieve a success rate close to 100% is
increasing with increasing strain (see Fig. 3(e)). Figures 3(f)-3(h) investigate this observation
in more detail and are to be compared to Figs. 3(c)-3(d) for the traditional HIO+ER-algorithm.
In contrast to the traditional HIO+ER-algorithm, the iterative reconstruction procedure with
randomized overrelaxation manages to escape from levels of stagnation up to & > 0.28%
within a reasonable number of iterations (i < 500). This behavior can be observed particularly
well for &y > 0.26% in Fig. 3(h). Finally, for &y > 0.30% (see Fig. 2(c)), robust automatic
reconstructions are not possible even with randomized overrelaxation within i = 500 iterations.

The rest of Fig. 3 is dedicated to the investigation of the impact of bounds on the local
scattering magnitude: Whereas Figs. 3(i)-3(1) illustrate the behavior of the success rate s for the
traditional HIO+ER-algorithm extended for bounds on the local scattering magnitude ¢ without
randomized overrelaxation, Figs. 3(m)-3(p) demonstrate the benefits from the combination of
randomized overrelaxation and our constraints on the local scattering magnitude.

In the reconstructions underlying Figs. 3(i), 3(j) and 3(m), {(x) was constrained by My, =
My, = 1.0 in the full domain Q. Most importantly, we observe, that such strict lower and upper
bounds on §(x) tremendously enhance the range of applicability: Without randomized over-
relaxation, almost stagnation free reconstructions proved to be possible up to approximately
em < 0.56% (see Fig. 2(d)) — in contrast to &y < 0.10% without such bounds (see Fig. 3(a)).
Moreover, even up to &y = 1.00%, some random initial trails have converged to the solution
Pest (compared to ey < 0.20% for traditional HIO+ER-algorithm). However, if a random initial
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Fig. 3. Behavior of the HIOp, +ERM-algorithm (including its limiting cases without ran-
domization and/or without constraints on the local scattering magnitude, see grey boxes
with black border at the beginning of each row of four subfigures) for ideal data: Depicted
are two-dimensional cuts of the success rate s through the three dimensional parameter
space for either fixed strain &, number of iterations i or angle @pax. We count all random
initial trails as success for which the angle (p (deﬁned in Eq. (13)) to the reference so-
lution pess is below @ypax in iteration (i) for that particular value of strain &y. The domain
Qgyp corresponds to the hatched domain in Fig. 2(a).

trial stagnated, it typically stagnated on a level ¢ > 20°, i.e., far from the solution.

Therefore, stagnation like for classical HIO is persistent even with the additional a priori
knowledge, but without randomized overrelaxation.

At &y = 1.0% we stopped our investigation because the number of pixels in discrete numer-
ical grid representing the fastest 27-oscillation in the effective electron density pes dropped to
approximately eight pixels.

If randomized overrelaxation is switch on, no stagnation remains up to &y > 1.00% (see Fig.
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Table 2. Characteristics of reciprocal space input data I'; in case of low signal cutoff I'y.

&M ‘ Oeff # points > I'y # Poli\']I;Z?FN ||r|‘|11fqr”f‘f Iy ||1"|¢|11qu"”1\1 Il

1 2
0.10% | 0.0304 1548 0.84% 64.6% 0.433%
0.20% | 0.0392 2000 1.08% 59.7% 0.401%
0.28% | 0.0442 2255 1.22% 56.3% 0.396%

3(m)): reconstructions typically reach a distance of ¢ = 1.0° to the solution pes for iterations
i < 500.

If we apply M, = My, = 1.0 only in the substrate region Qs,, (thickness in z-direction equal
to 80 pixel, hatched domain in Fig. 2(a)), we can observe the behavior depicted in Fig. 3(k) for
v = 0 (no overrelaxation) and in Fig. 3(o) for v = 0.5 (with overrelaxation). Again, the benefits
of lower and upper bounds on the magnitude in direct space and randomized overrelaxation are
clearly visible.

Moreover, we can relax the bounds My and My,. The results for My, = 0.7 and My, = 1.3
are depicted in Figs. 3(1) and 3(p). Without randomized overrelaxation (see Fig. 3(1)), stagnation
is still very strong, but at least some random initial trials converged to a level close to the true
solution. Interestingly, even randomized overrelaxation does not eliminate stagnation for such
bounds (see Fig. 3(p)): nevertheless, the behavior becomes independent of the random initial
trail and manages to come close to the true solution. The latter is not true for &y > 0.30%
without bounds on the local scattering magnitude. Up to &y = 0.28% — the limit for successful
reconstructions without bounds for the local scattering magnitude — no negative penalty is
observed.

2.2.  Low signal cutoff in reciprocal space

Next, we investigate the capabilities of the HIOI(\)/[R +ERM-algorithm for finite low cutoff I'y > 0
(see Sec. 1.4). To be specific, we define for every value of strain &y the low cutoff I'y as
I'n = u max, (I';) where u = 0.005. If we exclude the Bragg peak, this value for y corresponds
approximately to the experimental value for the signal to noise ratio which we mentioned in the
beginning of the section 1.4. Figures 2(e)-2(g) show which part of the scattering signal for
the particular values of strain &y = 0.10%, &y = 0.20% and &y = 0.28% exceeds this noise
level I'n. We define the effective oversampling ratio O as the ratio of the number of data
points exceeding the noise level I'y divided by the number of data points inside the direct space
support. It is listed in Table 2 together with the number and percentage of data points in the
scattering signal exceeding the cutoff I'y. Moreover, this table contains the fraction of the £ -
and .%>-norm which is accumulated in the scattering signal below the cutoff. The effective
oversampling ratio is in the range of O = 0.03 to Gt = 0.05 for the cases we present here.
The “residual” approximately 99% of data points need to be regularized in such a way that
the small fraction of data points exceeding I'y is sufficient for a successful reconstruction.
Of course, the precise values in Table 2 depend on the spacing of the discretization grid in
direct space (or equivalent: the extension of the domain in reciprocal space): A grid with larger
interpixel spacing in direct space will suffer from aliasing artifacts. On the contrary, a finer
grid will reduce the effective oversampling even further and, therefore, relies even more on an
efficient approach for low signal data points. However, the optimal choice of the direct space
pixel grid goes beyond the scope of this manuscript.

For the investigation of our models (A) to (E) as defined in Table 1, we need to eliminate the
amplitude information I'; from the initial guess (8) if I'; < I'y. Therefore, we enforce I'; = 0
for I'y <T'y in the initial guess. Moreover, we now need to take instabilities into account which
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Fig. 4. Characteristics of the HIOI(\)/[R +ERM-algorithm in presence of a low cutoff I'y. Fig-
ures (a) and (b) compare the success rate s of the models defined in Sec. 1.4 for fixed strain
em = {0.20%,0.28%} after i = 500 iterations. Figures (c)-(f) contain two-dimensional
plots of the success rate s for model (E) (analogue to Fig. 3). For Figs. (a), (c) and (d),
no constraints on § have been applied. Figures (b), (e) and (f) illustrate the improvement if
bounds on the local scattering magnitude are taken into account. Note the different range
of the strain axes.

have not occurred in our reconstructions for ideal data: For every reconstruction trial (each of
the NRrea = 100 trials with new random initial phases) we extract two numbers: First, we ex-
tract the smallest distance @) which was achieved at any iteration i < 500 (left bars in Figs.
4(a) and 4(b)). Second, we extract the distance ¢°%) i.e., the distance to the solution pef after

i =500 iterations (right bars in Figs. 4(a) and 4(b)). Thus, the left bars in Figs. 4(a) and 4(b) are

important if we find some robust criterion for selecting the best approximation pég from the set

{ pe(g}, i € [0,500], whereas the right bars are important as long as such a criterion is not avail-
able. Figure 4(a) compares the models (A) to (E) if no bounds on local scattering magnitude
are applied. For the data depicted in Fig. 4(b) strict bounds on the local scattering amplitude
(Mr, = My, = 1.0 in entire domain Q) have been exploited. We observe that model (A) (i.e.,
setting the low signal amplitudes simply to zero) results in very unstable behavior. Model (B) is
unstable without constraints on the local scattering magnitude, but partially regularized in pres-
ence of such constraints. Nevertheless, none of the models (B) to (D) succeeds in achieving a
small angle @ < 10.0° to the solution pegr. The small damping underlying model (E) provides
the by far best results.

For model (E), the success rate s is depicted as a function of strain &y vs. iteration i and
as a function of angle Qpx Vvs. strain &y in Figs. 4(c)-4(f), where the reciprocal space data
described by the non-zero cutoff in Table 2 has been used. In both cases, the success rate is
almost independent of the choice @uax for Puvax € [3.0°,20.0°].

In comparison to reconstructions without cutoff in reciprocal space (i.e., ['y = 0), the max-
imum strain &y which could be reconstructed in the framework of model (E) (with low cut-
off u = 0.005 resulting in effective oversampling ratios Oer =~ 0.03 to Cer =~ 0.05) dropped
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Fig. 5. Summary of our numerical investigation: Starting from standard HIO+ER, the
improvements which are achieved by randomized overrelaxation and the additional con-
straints M on the local scattering magnitude { are simplified to two values. The upper
value in each rectangular box is the maximum strain €1 for which an almost perfect solu-
tion could be reconstructed within i = 500 iterations and for almost all random initial trails.
The lower value is the maximum strain &y for which the reconstruction of the effective
electron density pe(sfoo) was successful if the requirement for success is relaxed: Any strain
&M for which at least some non-negligible fraction of initial guesses managed to achieve
a result close to the solution pegr (Prax S 10.0°) is classified as suitable for the respective
approach and constraints.

from &y = 0.28% to ey = 0.24% without constraints on the local scattering magnitude ¢. If
strict bounds on § in the entire domain Q are enforced in the framework of the HIOl(\)/[R +ERM-
algorithm, the maximum strain &y which could be reconstructed drops from &y > 1.0% to
em ~ 0.68%. This corresponds approximately to the phase field illustrated in Fig. 2(d). Keep in
mind that many other important artifacts in experimental data need to be taken care of which
we did not discuss in this manuscript, but will be subject of future research.

3. Conclusion

By combining randomized overrelaxation and easily accessible, but widely applicable addi-
tional a priori knowledge of the local scattering magnitude to the HIOI\O/IR+ERM-alg0rithm, we
succeeded in achieving success rates of the reconstruction procedure close to 100% for many
strain values which are very likely to fail without our modifications. Thus, the HIOl(\)’[R+ERM—
algorithm provides significant improvements over the traditional HIO+ER-algorithm: recon-
structions of highly strained objects with barely no stagnation became possible. Moreover, the
HIO%’IR+ERM-algorithm inherits the good computational scaling of the traditional HIO+ER-
algorithm and is easy to implement. Thus, current limitations of CXDI data analysis are shifted
to significantly higher values of strain.

Given the greatly improved performance of the HIOI\OAR+ERM-alg0rithm for ideal data, we
systematically investigated the consequences of one major experimental artifact on the recon-
struction process: We compared different models for treating data points in reciprocal space
with such a low intensity that their true value cannot be obtained in current experiments. Most
data points in reciprocal space need to be classified in that category resulting in typical effec-
tive oversampling ratios Ot << 1 (see Table 2). In our comparison the combination of a small
damping and limiting the reciprocal space amplitude by noise level I'y from above turned out
to be the most efficient model by far.
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Figure 5 gives a graphical summary of our numerical investigation: Starting from standard
HIO+ER, the improvements which are achieved by including randomized overrelaxation and
the additional constraints My separately or combined can be found. From this figure, our three
major results can be read off easily: First, the additional bounds on the local scattering magni-
tude — incorporated by the mapping My — enhance the range of applicability up to a factor
of five, but the result still depends on the random initial guess. Second, randomized overrelax-
ation manages to eliminate the sensitivity to the random initial guess to a large degree — with
and without the constraints My;. Third, randomized overrelaxation manages to increase the
range of applicability further (without any additional a priori knowledge) in all cases we pre-
sented. Therefore, we are confident that the combination of randomized overrelaxation Qr-. Ar
and the local scattering magnitude constraints My enhances current possibilities to reconstruct
the atomic displacement field from CXDI measurements.

As an outlook we point out that the impact of further experimental artifacts and limitations
on the reconstruction needs to be studied in a systematic way for a complete picture. This
will be a topic of future research activities. Moreover, the magnitude constraints (9) which
we presented here can also be further generalized: One possibility is to add couplings of the
averages of different domains and/or a global average in addition. This way, further a priori
known correlations of the effective electron density are added to the reconstruction process.

A. Uniqueness and discretization

The solution of the model Eqgs. (2) and (3) is only unique up to some inherent, unavoidable
ambiguities resulting from the mathematical properties of the Fourier transform: Shifting the
object in position space only results in a plane wave modulation in reciprocal space. Hence,
it produces the same intensity distribution Ip,(¢). These ambiguities are removed by fixing
the position of the shape Q in position space. If the shape Q of the nanocrystal is inversion
symmetric, an additional twofold ambiguity shows up: Both, pes(x) and pZ(—x) fulfill all
constraints enforced by the input data and, therefore, constitute two distinct solutions unless
Peit(x) o< pir(—x). We avoid this ambiguity by investigating a nanostructure with non inversion
symmetric shape. The only remaining ambiguity indicated by the mathematical properties of
the Fourier transform is a physically irrelevant global phase shift which is not constrained in
our reconstruction. Instead, the mathematical measure which we employ for judging upon the
success of a reconstruction is insensitive to this ambiguity (see Sec. 1.3).

For the numerical treatment of Egs. (2) and (3), position space and reciprocal space are sam-
pled on an rectangular equidistant grid and the continuous Fourier transform is approximated
by its discretized version, i.e., the DFT [53]. The spacing 8x,, and 8, of the grid in direction m

is connected to the domain boundaries ranging from (—X,,,X,,) and (—Q,,,Q,,) via éx,,, = ZN);’? ,
Oqm = 2}\(,2—”’1” and N,, = Sq,f%xm' This implies that by fixing ,, and &g,,, we implicitly choose

values for N, 0x,, and X,,. In theory, knowledge of the amplitudes I'; and the shape Q(x) is
sufficient, if the shape Q is finite, the dimensionality of the structure is at least equal to two
and the distance 8¢ of the measured points in reciprocal space is small enough to guarantee a
sufficient oversampling ratio ¢ on the grid (¢ > 2 is a lower bound) [1, 26, 54-56].
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