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Jens Küchenmeister,1 Thomas Zebrowski,1 and Kurt Busch2,∗
1 Institut für Theoretische Festkörperphysik and DFG-Center for Functional Nanostructures
(CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe,

Germany

2 Humboldt-Universität zu Berlin, Institut für Physik, AG Theoretische Optik & Photonik,
Newtonstr. 15, 12489 Berlin, and Max-Born-Institut, Max–Born–Str. 2A, 12489 Berlin,

Germany

*kurt.busch@physik.hu-berlin.de

Abstract: The concepts of adaptive coordinates and adaptive spatial
resolution significantly enhance the performance of Fourier Modal Method
for the simulation of periodic photonic structures, especially metallo-
dielectric systems. We present several approaches for constructing different
types of analytical coordinate transformations that are applicable to a
great variety of structures. In addition, we analyze these meshes with an
emphasis on the resulting convergence characteristics. This allows us to for-
mulate general guidelines for the choice of mesh type and mesh parameters.
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1. Introduction

In recent years, periodic nanostructures have gathered a tremendous amount of interest [1]. Both
photonic crystals and metamaterials exhibit remarkable optical properties—complete photonic
bandgaps, left-handed behavior, and high polarization rotation represent prominent examples.
The experimental realization of such system remains a challenging field of research, so that
numerical modeling is necessary both for a deeper understanding as well as for finding opti-
mized and/or robust designs. Especially the latter requires fast and versatile numerical methods
in order to cover large parameter spaces.

One of the methods used to predict the transmission properties of periodic photonic systems
(both dielectric and metallic) is the Fourier Modal Method (FMM). Within FMM, one usually
considers systems that are finite in z-direction (propagation direction) and infinitely extended
into the xy-plane, where the dielectric material properties are lattice-periodic with respect to
the lateral coordinates in the xy-plane. The basic idea of FMM is that this periodicity should
be reflected in the basis functions that are used to solve Maxwell’s equations - an appropri-
ately constructed plane wave basis is the natural choice for representing the discrete periodicity
with respect to the lateral coordinates. The three-dimensional system is stair-cased in propa-
gation direction, i.e., it is sliced into several two-dimensional layers each of which is assumed
to be invariant in the propagation direction. This invariance allows for a harmonic ansatz for
the z-dependence of the electromagnetic field, thus facilitating a reformulation of Maxwell’s
equations into an eigenvalue problem for the corresponding propagation constant. After solv-
ing the corresponding eigenvalue problems, the electromagnetic fields in the different layers
are expanded into the respective eigenmodes and the layers are recursively connected with a
scattering matrix algorithm, which ensures the continuity conditions of the tangential fields in
adjacent layers [2].

A significant advancement has been achieved when Lalanne and Morris [3] and Granet and
Guizal [4] found an improved formulation of the FMM for lamellar gratings. In fact, it is cru-
cial for the FMM that the permittivity distribution is correctly Fourier transformed. The cor-
responding Fourier factorization rules have been put on a rigorous mathematical footing by Li
[5]. However, calculating the response of a metallic structure remained difficult due to in-plane
stair-casing effects for not-grid-aligned permittivity distributions and most of all the Gibbs
phenomenon. The latter refers to the oscillations that occur when a step function such as the
permittivity distribution is approximated by a finite Fourier series.

Two interrelated approaches are pursued to address these challenges: Adaptive Coordinates
(AC) and Adaptive Spatial Resolution (ASR). Both concepts employ coordinate transforma-
tions that lead to modifications of the permittivity distribution so that the convergence of FMM
is accelerated. Within the AC approach, the coordinate lines are adapted to the surface of the
structure [6]. Thereby, the structures exhibit straight and grid-aligned surfaces in the trans-
formed space. The coordinate transformations for ASR increase the density of coordinate lines
close to the structure surface so that discontinuities in the permittivity are resolved better and
the problems associated with the Gibbs phenomenon are alleviated [7, 8, 9].

Hence, the challenge is to find suitable coordinate transformations. During the past few years,
two conceptually different approaches have emerged: in Ref. [10] an automated, numerical
generation of meshes was presented. This offers a versatile tool since arbitrary permittivity dis-
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tributions can be treated. The second approach is to find analytical coordinate transformations
such as in Ref. [6]. Here, an analytical coordinate transformation for a square array of cylinders
has been presented. Such analytical mesh generation offers a lot of freedom in terms of se-
lective and systematic change in the mesh properties. It can also be very time-efficient: when a
large parameter scan is required in which the geometrical parameters of the structure are varied,
analytical transformations can be easily adjusted.

In this work, we focus on how analytical meshes can be constructed even for complicated
structures. In addition, we investigate the role of differentiability of the meshes and which mesh
parameters should be used for a specific structure.

In section 2, we briefly recapitulate the basics of the FMM approach with AC and ASR.
We follow up in sections 3, 4 and 5 with descriptions how to construct non-differentiable,
smoothed, and differentiable AC meshes, respectively. In sections 6 and 7, we provide details
on the realization of periodic meshes for complex geometries and non-rectangular unit cells.
Subsequently, in section 8, we describe the compression of coordinate lines of AC meshes in
order to realize ASR. Finally, in section 9, we carry out a comprehensive study regarding the
parameter choices and the convergence characteristics for the different meshes. Based on this,
we formulate guidelines for the choice of the mesh and corresponding parameters for specific
structures.

2. Covariant formulation of the Fourier Modal Method with generalized coordinates

In this section, we discuss the basics of the FMM in generalized coordinates. A typical system
of interest is displayed in Fig. 1.

Fig. 1. Schematic view of a typical system of interest in FMM computations. The system
is finite in x3-direction and periodic with respect to the x1x2 plane. kin denotes the wave
vector of an incident plane wave. Ox1x2x3 describes a Cartesian coordinate system.

In content and notation we follow previous publications on the topic [6, 10, 11] so that we
may be brief. Explicitly, for a given layer we distinguish between a Cartesian coordinate system
Ox1x2x3 and a curvilinear coordinate system Ox1x2x3. They are connected by a transformation
within the lateral plane of the general form

x1 = x1(x1,x2) , (1)

x2 = x2(x1,x2) , (2)

x3 = x3. (3)

Our aim is to solve Maxwell’s curl equations which are given in covariant form as [11]

ξ ρστ ∂σ Eτ = ik0
√

gμρσ Hσ , (4)

ξ ρστ ∂σ Hτ = −ik0
√

gερσ Eσ . (5)
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In these equations, ξ denotes the Levi-Civita symbol and Eσ and Hσ are covariant components
of the electric and magnetic field. Here, and throughout the manuscript, Greek indices run
over the range 1, 2, 3, and we utilize the Einstein sum convention where repeated indices are
implicitly summed over. Further k0 = ω/c is the vacuum wave number (c denotes the vacuum
speed of light and ω the frequency). The metric tensor is

gρσ =
∂xρ

∂xτ
∂xσ

∂xτ , (6)

and g (as used in Eqs. (4) and (5)) denotes the reciprocal of its determinant. As a consequence
of the coordinate transformation, the permittivity changes according to

ερσ =
∂xρ

∂xτ
∂xσ

∂xχ ετχ , (7)

where ετχ is the permittivity tensor in the Cartesian system. The permeability transforms iden-
tically. At this point, we wish to emphasize that an isotropic material will in general become
anisotropic after applying a coordinate transformation.

From here onward, we obtain a working scheme by proceeding along the lines of standard
FMM—we employ a Fourier-Floquet ansatz for the fields, including a plane wave ansatz in
x3 direction, and formulate an eigenvalue problem using the correct Fourier factorization rules
[5, 11]. The fields are expanded into the corresponding eigenmodes and the procedure is carried
out for all layers. The layers are connected using a scattering matrix which ensures boundary
conditions between adjacent layers [2]. This gives the expansion coefficients for the fields in
each layer. Finally, we transform the resulting fields in the corresponding regions back into the
Cartesian system in order to find the transmittance and reflectance coefficients [12]. Since we
focus in this manuscript on the construction of the transformations (1) and (2), we refer to Ref.
[10, 11] for further details on the FMM with and without coordinate transformation. For an
alternative approach based on normal-to-the-surface vectors, see Ref. [13].

Before we present in the subsequent sections different approaches to the actual construction
of coordinate transformations, we describe the general idea of adaptive coordinates in more
detail by way of an example. Without coordinate transformation, the permittivity distribution
within a unit cell of a cylindrical fiber array may look like the one depicted in Fig. 2(a). Here,
we display the material matrix of a fiber with εfib = 2 in a background material with εbg = 1
on a grid with 1024×1024 points. This is the same discretization we use in our computations
in section 9. A coordinate transformation designed for a cylinder is given in Ref. [6] and a
corresponding sector of the resulting mesh is shown in Fig. 2(b). The mesh has two important
properties. First, there are many points where the mesh is not differentiable—some of them
are marked with green, dashed circles. Second, there is one point (marked with a red circle)
where the coordinate lines in x1- and in x2-direction are parallel. In the following, we show
how this transformation affects the eigenvalue problem of the FMM. The matrix that is Fourier
transformed when using FMM with AC and/or ASR is not the permittivity itself but rather√

gερσ , with the square root of the reciprocal of the metric determinant
√

g and ερσ like in Eq.
(7). Therefore, we refer to

√
gερσ from now on as the effective permittivity. For our present

example, we depict the
√

gε11-component of the tensor in Fig. 2(c). Several features are worth
pointing out: First, the structure is now grid-aligned, i.e., the coordinate transformation maps
the circular fiber cross section onto a squarish geometry for which the Fourier factorization
rules are much more effective. Second, depending on the tensor component under investigation
the nondifferentiable points in the mesh lead to discontinuities in the effective permittivity. The
third feature is actually not visible here since the color scale is saturated at 4: In the corners
of the material square, values in excess of 5000 are reached. In order to understand why, we
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investigate the derivative ∂x1/∂x1. It can be obtained by (for other derivatives, the situation is
completely analogous)

∂x1

∂x1 =

(
∂x1

∂x1

∂x2

∂x2 −
∂x1

∂x2

∂x2

∂x1

)−1

︸ ︷︷ ︸
= |J|−1

∂x2

∂x2 . (8)

If the coordinate lines of the mesh are parallel in x1- and x2-direction at one point, the deter-
minant of the Jacobian J of the coordinate transformation will become zero at this point. This
leads to a diverging derivative ∂x1/∂x1 and, thereby, to a diverging effective permittivity.

(a) (b) (c)

Fig. 2. Illustration of the effect of adaptive coordinates. Panel (a) depicts the permittivity
distribution for a fiber with radius 0.3 centered in a square unit cell within a Cartesian co-
ordinate system. Panel (b) displays a section of the nondifferentiable fiber mesh from Ref.
[6]. Some points where the mesh is nondifferentiable have been marked with green, dashed
circles. The point where the coordinate lines of the mesh are parallel in x1- and x2-direction
is marked with a red circle. Panel (c) displays the

√
gε11-component of the effective per-

mittivity tensor that is obtained when the adaptive coordinates from (b) are applied to (a).
In the transformed space, the effective permittivity tensor is fully grid-aligned but the nu-
merical values at the rectangle edges are several orders of magnitude larger than 4. The
color scale has been saturated at 4 in order to show more features.

In the following sections, we show how to construct various classes of meshes. The first
class is very similar to the one just discussed—in the transformed space, the material distribu-
tion assumes a rectangular form. As hinted to above, this means that the material surface is
enclosed by four specific coordinate lines and no specific attention to smoothness is paid. We
delineate how to construct such nondifferentiable meshes even for complex structures in sec-
tion 3. The second class of meshes, called smoothed meshes, is built in such a way that the
four specific coordinate lines are smooth. In section 4, we discuss that this does not yet lead
to fully differentiable meshes. However, smoothed meshes deform the shape of the structure
in the transformed space away from the advantageous rectangular forms. Finally, we construct
a third class of meshes for which all coordinate lines are differentiable everywhere in the unit
cell. This differentiable meshing is discussed in section 5.

At the end of this section, we would like to point out the two distinct interpretations that may
be associated with the coordinate transformations discussed here. The first interpretation is that
we map a given permittivity distribution onto a new distribution according to a given mesh. This
means that we go from bent coordinate lines to straight coordinate lines (or material surfaces)
as shown in Fig. 2. This interpretation is particularly useful when we discuss the shape of the
transformed material matrix in the FMM. The second interpretation is used for constructing the
meshes. Then, we talk about how to map straight coordinate lines onto bent lines that match
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the surface given by the material distribution. Both these interpretations are valid—which one
to use depends on whether the construction or the application of the meshes is emphasized.

3. Construction of nondifferentiable meshes

In this section, we show how to construct nondifferentiable meshes associated with complex
structures by way of a particular example, the crescent depicted in Fig. 3(a). Its tips are rounded
so that it is defined by six quantities: the radius r1 and the center (M1,N1) of the large (outer)
circle, the radius r2 and the center (M2,N2) of the small (inner) circle, and the radii r3 and r4 of
the tiny circles that form the tips (see Fig. 3(b)). We assume that these quantities are given and,
furthermore, that the crescent is symmetric (i.e., r4 = r3) and not rotated in the unit cell, i.e.,
M1 = M2. While this makes the following example easier, it does in no way restrict the method.
Henceforth, all geometric quantities such as radii, side lengths, etc., are given in units of the
lattice constant.

(a) (b)

Fig. 3. Layout of a complex unit cell for the illustration of mesh construction. A crescent
with rounded tips is described by four circles—a large, outer circle (blue, radius r1), a small,
inner circle (red, radius r2), and two tiny circles at the crescent tips (radii r3 and r4). To
define the orientation of the crescent within the unit cell, the centers (M1,N1) and (M2,N2)
of the inner and outer circles need to be specified. The centers (M3,N3) and (M4,N4) of the
tiny circles are uniquely determined, once the centers of the inner and outer circles and the
radii of all four circles are specified.

The crescent is composed of four circle arcs described by
(
x1−Mi

)2
+
(
x2−Ni

)2
= r2

i , i = 1, ...,4, (9)

where the circles are labeled by their numbers 1 to 4. After some geometric considerations (see
Fig. 3(b)), we find the center of circle 3 at

N3 =
(r2 + r3)

2− (r1− r3)
2 +N2

1 −N2
2

2N1−2N2
, M3 = M1−

√
(r1− r3)2− (N3−N1)2. (10)

The point P = (x1
P,x

2
P) where the tip circle 3 meets the outer circle 1 is given by

x1
P = M3− r3 cos

(
arctan

(
N3−N1

M1−M3

))
, x2

P = N3 +
√

r2
3− (x1

P−M3)2, (11)

while the intersection point D = (x1
D,x

2
D) of circle 3 and 2 is

x1
D = M3 + r3 cos

(
arctan

(
N2−N3

M2−M3

))
, x2

D = N3 +
√

r2
3− (x1

D−M3)2. (12)

We now proceed with the actual meshing procedure. First, as many coordinate lines as neces-
sary are selected so that their mapping to the structure’s surface leads to its complete coverage.
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Second, the surface is parametrized so as to obtain an analytical expression for the mapping of
the coordinate lines from step one. Third, the mappings for the remaining coordinate lines are
obtained by linear interpolation between the selected coordinate lines.

For the linear transition we define the useful function

LT (c,c,d,d,x) =
d− c
d− c

x+ c− c
d− c
d− c

(13)

which, as a function of x ∈ [c,d], defines a straight line through the points (c,c) and (d,d).
Moreover, we can enter entire coordinate lines in LT (i.e., c = c(y), etc.) such that LT describes
the linear transition between these coordinate lines. Therefore, when a coordinate line c(y) is
mapped on a new coordinate line c(y) and a coordinate line d(y) is mapped on a new coordinate
line d(y) then the mapping of the coordinate line x is given by LT . In Fig. 4, we provide an
illustration of such a mapping where the left and right vertical coordinate lines are mapped onto
curvy lines (green and blue). The coordinate lines in between (marked with crosses) are given
by a linear transition from the left to the right curvy line, i.e., the distances on the horizontal axis
are the same between the coordinate lines. As in any linear function, it does not matter in which
sequence the points (or coordinate lines) are arranged—i.e., LT (c,c,d,d,e)≡ LT (d,d,c,c,e).

Fig. 4. Illustration of a linear transition from Cartesian coordinate lines to curved coordi-
nate lines via the linear transition function LT . The straight coordinate lines a and b are,
respectively, mapped onto the green and blue bent coordinate lines. The mapped lines in
between (marked with crosses) are given by the linear transition between the bent outer
lines.

Based on this, we illustrate in Figs. 5(a) and 5(b) the meshing of the crescent-shaped structure
introduced in Fig. 3. First, the four characteristic points P,Q,R and S are found. Point P is given
by Eq. (11) and point R = (x1

R,x
2
R) is given by the intersection of the (Cartesian) coordinate line

x1
P with the structure surface. Then, points Q and R follow from the structure’s symmetry.

R =

(
x1

P,N1−
√

r2
1− (x1

R−M1)2

)
, Q = (2M1− x1

P,x
2
P), S = (x1

Q,x
2
R). (14)

The (Cartesian) coordinate lines passing through any two of these characteristic points divide
the unit cell into the zones 1© to 9©. Second, the so selected (Cartesian) coordinate lines have
to be deformed in order to follow the crescent’s surface and this surface has to be parametrized
(see Eq. (9)). Third and final, we have to find the two-dimensional transformation function(
x1
(
x1,x2

)
,x2

(
x1,x2

))
that maps the unit cell onto itself by a linear transition between these

deformed coordinate lines. This is done separately for all nine zones in the unit cell and we will
discuss only zone 4© (see Figs. 5(a) and 5(b)). The red (horizontal) coordinate lines in zone
4© in Fig. 5(a) are not affected by the mapping (i.e. they are in the same position in Figs. 5(a)
and 5(b)). This means that the mapping for x2 (corresponding to the horizontal red lines) is the
identity mapping

x2(x1,x2)= x2,
(
x1,x2) ∈ 4©. (15)
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The same applies to the leftmost coordinate line. The rightmost coordinate line experiences a
deformation from a straight line to the arc given in Eq. (9). Explicitly, this reads

x1(x1,x2) = LT ( 0 , 0
︸ ︷︷ ︸

map left edge onto itself

, x1
P , M1−

√
r2
1− (x2−N1)

2

︸ ︷︷ ︸
map PR coordinate line on circle arc

,x1)

(13)
= M1−

√
r2
1− (x2−N1)

2 x1

x1
P

,
(
x1,x2) ∈ 4©. (16)

The interior coordinate lines have thus been mapped with the help of the linear transition LT
as described above. Analogous mappings can be constructed for all other zones in the unit cell
[0,1]× [0,L].

A compact representation of the complete coordinate transformation is facilitated by defining
circle arc (CA) functions for either the left, right, top, or bottom side of the crescent. Their form
is derived from Eq. (9) by choosing the correct sign of the square root

CAL/R

(
i,x2

)
= Mi∓

√
r2
i − (x2−Ni)

2,

CAT/B
(
i,x1

)
= Ni±

√
r2
i − (x1−Mi)

2,
i = 1, ...,4. (17)

Here, the subscripts L,R,T , and B refer to left, right, top, and bottom, respectively.
Finally, upon introducing the point E = (x1

E ,x
2
E) = (2M1−x1

D,x
2
D), we arrive at the complete

coordinate transformation as

x1(x1,x2)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1
(
x1,x2

) ∈ 1©, 2©,
3©, 7©, 8©, 9©

LT
(
0,0,x1

P,CAL
(
1,x2

)
,x1

) (
x1,x2

) ∈ 4©
LT

(
x1

P,CAL
(
1,x2

)
,x1

Q,CAR
(
1,x2

)
,x1

) (
x1,x2

) ∈ 5©
LT

(
x1

Q,CAR
(
1,x2

)
,1,1,x1

) (
x1,x2

) ∈ 6©.

(18)

The x2 mapping is more complex but the construction follows the same principles. It reads

x2
(
x1,x2

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2
(
x1,x2

) ∈ 1©,
3©, 4©, 6©, 7©, 9©

LT
(
L,L,x2

P,CAT
(
3,x1

)
,x2

)
x1 ≤ x1

D
LT

(
L,L,x2

P,CAB
(
2,x1

)
,x2

)
x1 ∈ (x1

D,x
1
E)

LT
(
L,L,x2

P,CAT
(
4,x1

)
,x2

)
x1

E ≤ x1

⎫
⎬

⎭
(
x1,x2

) ∈ 2©

LT
(
x2

P,CAT
(
3,x1

)
,x2

R,CAB
(
1,x1

)
,x2

)
x1 ≤ x1

D
LT

(
x2

P,CAB
(
2,x1

)
,x2

R,CAB
(
1,x1

)
,x2

)
x1 ∈ (x1

D,x
1
E)

LT
(
x2

P,CAT
(
4,x1

)
,x2

R,CAB
(
1,x1

)
,x2

)
x1

E ≤ x1

⎫
⎬

⎭
(
x1,x2

) ∈ 5©

LT
(
x2

R,CAB
(
1,x1

)
,0,0,x2

) (
x1,x2

) ∈ 8©.

(19)

In Fig. 6(a), we display the resulting mesh. In addition, we may compress the coordinate lines
towards the crescent’s surface as depicted in Fig. 6(b). However, we postpone a discussion of
coordinate line compression to section 8.

The construction principle described above represents a very general procedure and can be
applied to a great variety of structures. For instance, in Fig. 7 we display characteristic points,
selected coordinate lines and the resulting mesh for a step-index fiber.
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(a) (b)

Fig. 5. Illustration of how to mesh complex structures. Specific coordinate lines that
pass through the structure’s characteristic points are selected (panel (a)) and subsequently
mapped onto the structure’s surface.

(a) (b) (c)

Fig. 6. Nondifferentiable meshes for a crescent with parameters r1 = 0.25, r2 = 0.2, r3 =
r4 = 0.02, M1 = 0.45, N1 = 0.38, M2 = M1, N2 = 0.5884, L = 0.8. Panel (a) displays
the basic analytical mesh. Panel (b) depicts a mesh where an additional coordinate line
compression using the parameters G= 0.05, Δx1 = 0.4, x1

1 = x1
P, x1

2 = x1
Q, Δx2 = 0.4, x2

1 =

x2
R, x2

2 = x2
P has been applied (see section 8 for details). Panel (c) features a close-up of (a)

of the left crescent tip.

(a) (b) (c)

Fig. 7. Characteristic points, selected coordinate lines, and nondifferentiable mesh for a
step-index fiber. The outer radius is 0.3 and the inner radius is 0.1. The circles are centered
in (0.45,0.4) and the unit cell is [0,1]× [0,0.8].

A similar mesh for a circular structure has been developed by Weiss et al. [6] (see also Fig.
2(b)). In the subsequent sections, we will use this simple structure in order to illustrate the
construction of smoothed and fully differentiable meshes and to compare their performance in
actual FMM computations.
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4. Construction of smoothed meshes

The construction principle for the above meshes has two key properties. First, at the character-
istic points the meshes are typically nondifferentiable. Second, at some points the coordinate
lines are parallel in x1- and in x2-direction (see Fig. 2(b)). The latter causes a divergent effective
permittivity (see Eq. (7)). Therefore, we will now describe a way to design smoothed meshes
that avoid these singularities. In this context, smoothed means that the characteristic coordi-
nate lines are mapped onto smooth curves. The result are meshes whose partial derivatives are
still discontinuous at several points. In this sense, the present section represents an intermediate
step from nondifferentiable to fully differentiable meshes which are discussed in the subsequent
section.

(a) (b) (c)

Fig. 8. Illustration of the construction principle for smoothed meshes. Panel (a) depicts
how the nondifferentiable transition from (Cartesian) characteristic line to a circle arc (as
described in section 3) is smoothed by a (differentiable) parabola. The parabola and the
circle arc meet at the point u = x− + τ with smoothing parameter τ . Straight line and
parabola meet at a which also depends on τ . Panels (b) and (c) show how the characteristic
coordinate lines passing through P,Q,R and S are mapped.

For illustrative purposes, we consider a square unit cell [0,1]× [0,1] with a circle of radius
r located in the center. Just as in the previous section, we choose characteristic points, namely
the four points R = (x−,x−), S = (x+,x−), P = (x−,x+) and Q = (x+,x+), where we have
introduced the abbreviations x± = 0.5± r√

2
.

In order to obtain partial differentiability for the characteristic coordinate lines, we smooth
the transition from straight line to circle arc with a parabola (see Fig. 8(a)). The parabola is
adjusted such that it is differentiable both at point a and at point u. We determine u by choosing
a smoothing parameter τ , i.e., u = x−+τ . Apparently, this adjustment of the transition function
is not unique and one could use functions other than parabolas. By assuming a general form of

g(x1,a,b,x−) = b(x1−a)2 + x− (20)

for the parabola g we assure continuity and differentiability at a. Demanding continuity and
differentiability at u determines the parameters a and b.

a = − 2
u−0.5

(
−
√

r2− (u−0.5)2 +0.5− x−
)√

r2− (u−0.5)2 +u, (21)

b =
1
4
(u−0.5)2

[(
−
√

r2− (u−0.5)2 +0.5− x−
)(

r2− (u−0.5)2
)]−1

. (22)

The mapping itself is performed with the same methods as described in the preceding sec-
tion. The coordinate lines that pass through any pair of characteristic points P,Q,R,S are
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mapped onto the smoothed curves as depicted in Fig. 8. The other coordinate lines fol-
low by a linear transition. The functions needed are given in Eq. (13), Eq. (20) and by

CA±(x1) =±
√

r2− (x1−0.5)2+0.5. The mapping for the horizontal lines, i.e., the component

x2 then reads

x2
(
x1,x2

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2, x1 ∈ [0,a)∪ (1−a,1], x2 ∈ [0,1]

LT
(
0,0,x−,g(x1,a,b,x−),x2

)
, x1 ∈ [a,u]

LT
(
0,0,x−,CA−

(
x1
)
,x2

)
, x1 ∈ (u,1−u)

LT
(
0,0,x−,g(x1,1−a,b,x−),x2

)
, x1 ∈ [1−u,1−a]

⎫
⎬

⎭
x2 ∈ [0,x−]

LT
(
x−,g(x1,a,b,x−),x+,g(x1,a,−b,x+),x2

)
, x1 ∈ [a,u]

LT
(
x−,CA−

(
x1
)
,x+,CA+

(
x1
)
,x2

)
, x1 ∈ (u,1−u)

LT
(
x−,g(x1,1−a,b,x−),x+,g(x1,1−a,−b,x+),x2

)
, x1 ∈ [1−u,1−a]

⎫
⎬

⎭
x2 ∈ (x−,x+)

LT
(
x+,g(x1,a,−b,x+),1,1,x2

)
, x1 ∈ [a,u]

LT
(
x+,CA+

(
x1
)
,1,1,x2

)
, x1 ∈ (u,1−u)

LT
(
x+,g(x1,1−a,−b,x+),1,1,x2

)
, x1 ∈ [1−u,1−a]

⎫
⎬

⎭
x2 ∈ [x+,1]

(23)
The mapping for the vertical lines, i.e., the component x1 can be found in an analogous man-
ner. For our simple system, symmetry mandates that the coordinate x1 is constructed from the
horizontal line mapping, Eq. (23), by interchanging x1 and x2. We depict in Fig. 9 the final
results of this mapping (cf. Fig. 2(b) for a corresponding ”unsmoothed” mesh). An important
effect of this smoothing procedure is that the structure’s surface is no longer grid-aligned in the
undistorted, Cartesian space described by Eq. (7).

(a) (b) (c)

Fig. 9. Smoothed meshes for a circular structure (radius r = 0.3) centered in a square unit
cell. Panels (a) and (b) depict meshes with smoothing parameters τ = 0.07 and τ = 0.035,
respectively. Panel (c) shows a close-up of the mesh in (b). See text for details.

Nevertheless, upon inspecting the above expressions we find that the mesh is nondifferen-
tiable at points x1 ∈ (a,1−a), x2 = x± and x1 = x±, x2 ∈ (a,1−a). The effect of this nondif-
ferentiability manifests itself in a sudden change of the density of coordinate lines (see Fig. 9).
As mentioned above, without any smoothing (i.e., Eq. (23) with τ = 0) we obtain the expres-
sions for the nondifferentiable circle mesh as described in Ref. [6]. In the remainder, we refer
to this mesh as the nondifferentiable circle mesh. We will now improve the smoothed meshes
by illustrating how to construct fully 2D differentiable meshes, i.e., meshes for which all partial
derivatives exist and are continuous at all points throughout the unit cell.
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5. Construction of differentiable meshes

In the case of smoothed meshes we performed the ”parabola construction” only for the co-
ordinate lines passing through the characteristic points. The coordinate lines in between were
obtained by linear interpolation and it is this linear interpolation that eventually leads to dis-
continuous partial derivatives. Therefore, we can obtain fully differentiable meshes by applying
the ”parabola-construction” to all coordinate lines. We reuse the illustrative example of the pre-
vious section: A circle with radius r is centered within a square unit cell [0,1]× [0,1]. The
intersection of parabola and straight line is given by a just like in Eq. (21). Also, we use the
same definition of x± and of u = x−+ τ . Again, τ is the only free parameter and determines
how strongly the mesh is smoothed. In Fig. 10(a), we display how the unit cell is divided for
the construction of the mapping. We restrict our discussion to the mapping in the zones 1© to
6©—the other regions may be treated in an analogous fashion or follow directly from symmetry
considerations.

(a) (b)

Fig. 10. Illustration of the construction principle for differentiable meshes. Panel (a) shows
the partitioning of the unit cell and panel (b) depicts the resulting differentiable mapping.

Zones 1©, 2©, 3©: In these regions, we choose the mappings exactly as in the case of the
nondifferentiable circle mesh (see Ref. [6] or section 4); the mappings read

x1(x1,x2)= x1, x2(x1,x2)= x2,
(
x1,x2) ∈ 1©, (24)

x1(x1,x2)=
x1

x−

(
0.5−

√
r2− (x2−0.5)2

)
, x2(x1,x2)= x2,

(
x1,x2) ∈ 2©, (25)

x1(x1,x2)=
2x1−1
x+− x−

√
r2− (x2−0.5)2 +

1
2
, x2(x1,x2)= x1(x2,x1),

(
x1,x2) ∈ 3©. (26)

Zone 4©: To construct the mapping in this zone we have to deal with transitions from straight
lines (zone 1©) to ellipse arcs (zone 2©). The general form of the ellipse arcs is given by

r2 =
(
x1− x1

0

)2 δ +
(
x2− x2

0

)2 γ (27)

with the parameters x1
0,x

2
0,δ and γ . From this, we can infer the ellipse parameters in zone 2© by

comparing with the mapping in Eq. (25): x1
0 =

1
2

x1

x− , x2
0 = 0.5, δ =

(
x−
x1

)2
, γ = 1. We aim to

connect the straight lines (i.e., the identity mapping) in zone 1© with the ellipse arcs by a family
of parabolas of the form

x1(x1,x2)= b
(
x1)(x2−a

)2
+ x1, x2(x1,x2)= x2,

(
x1,x2) ∈ 4©. (28)
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Note, that even though a is still given by Eq. (21), b is not a constant anymore as it has been in
Eq. (22)—thus b(x1) parametrizes the family of parabolas. Continuity and differentiability at
x2 = u require that

b
(
x1)=

1
4

(
u− x2

0

)2

δ
γ2

(
r2− γ

(
u− x2

0

)2
)(
−
√

1
δ

(
r2− γ

(
u− x2

0

)2
)
+ x1

0− x1

) . (29)

Zone 5©: To find suitable differentiable mappings in the zones 5© and 6© we will utilize an
alternative approach: We formulate the requirements in terms of continuity and differentiability
and then make an ansatz to find appropriate functions. We start by considering the boundary
conditions for the x1(x1,x2) component in zone 5© which follow directly from the transforma-
tions in the neighboring zones 2© and 3©. Continuity requires

x1(a,x2) (25)
=

a
x−

(
0.5−

√
r2− (x2−0.5)2

)
, x1(u,x2) (26)

=
2u−1

x+− x−

√
r2− (x2−0.5)2 +0.5,

(30)
whereas differentiability requires

∂x1

∂x1

∣
∣
∣
(a,x2)

(25)
= 1

x−

(
0.5−

√
r2− (x2−0.5)2

)
, ∂x1

∂x1

∣
∣
∣
(u,x2)

(26)
=

2
√

r2−(x2−0.5)
2

x+−x− ,

∂x1

∂x2

∣
∣
∣
(a,x2)

(25)
= a

x−
x2−0.5√

r2−(x2−0.5)
2
, ∂x1

∂x2

∣
∣
∣
(u,x2)

(26)
= − 2u−1

x+−x−
x2−0.5√

r2−(x2−0.5)
2
.

(31)

Next, we make an ansatz for the mapping inside zone 5© using a function f which is assumed
to be differentiable but otherwise still unknown. The ansatz reads

x1(x1,x2)= x1(a,x2) x1−u
a−u

+ x1(u,x2) x1−a
u−a

+ f
(
x1,x2)(x1−u

)(
x1−a

)
. (32)

This ansatz fulfills the continuity requirements of Eq. (30) provided f does not exhibit a pole
at x1 = a or x1 = u. Further, the ansatz ensures that the derivative with respect to x2 fulfills Eq.
(31) provided (∂ f/∂x2) does not exhibit poles at x1 = a or x1 = u. The remaining requirements
refer to the derivative of Eq. (32) with respect to x1 which reads

∂x1

∂x1

(
x1,x2) =

x1
(
a,x2

)

a−u
+

x1
(
u,x2

)

u−a
+

∂ f
∂x1

(
x1,x2)(x1−u

)(
x1−a

)

+ f
(
x1,x2)(x1−a

)
+ f

(
x1,x2)(x1−u

)
. (33)

Evaluating Eq. (33) at u and a and comparing with Eq. (31) results in

f
(
u,x2

)
= 1

u−a

(
− x1(a,x2)

a−u −
x1(u,x2)

u−a + ∂x1

∂x1

∣
∣
∣
(u,x2)

)
,

f
(
a,x2

)
= 1

a−u

(
− x1(a,x2)

a−u −
x1(u,x2)

u−a + ∂x1

∂x1

∣
∣
∣
(a,x2)

)
.

(34)

We would like to emphasize that every function f that fulfills Eq. (34) and does not have poles at
x1 = a or x1 = u is a suitable function so that the ansatz made in Eq. (32) fulfills all requirements
in Eqs. (30) and (31). We choose a linear function which is given by

f
(
x1,x2)=

f
(
u,x2

)− f
(
a,x2

)

u−a
x1 + f

(
u,x2)− f

(
u,x2

)− f
(
a,x2

)

u−a
u. (35)
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Thereby, we acquired a differentiable mapping x1(x1,x2) in zone 5©—namely Eq. (32) with f
given by Eq. (35).

We obtain the remaining differentiable mapping x2(x1,x2) in this zone by a ”parabola-
construction” as in the case of zone 4©, this time, however, in the x2-direction

x2(x1,x2)= b
(
x2)(x1−a

)2
+ x2. (36)

Then, b
(
x2
)

is identical to Eq. (29) except that δ is interchanged with γ and x1
0 with x2

0. The
ellipse parameters taken from the x2 transformation in zone 3© (see Eq. (26)) are

x1
0 = 0.5, x2

0 = 0.5, γ =

(
x+− x−
2x2−1

)2

, δ = 1. (37)

Zone 6©: In this zone we only need to find the mapping of one component because any point
in this area obeys the symmetry relation

(
x1(x1,x2) ,x2(x1,x2))=

(
x2(x2,x1) ,x1(x2,x1)) . (38)

The boundary conditions for this zone are derived from the mappings in zones 4© and 5©. In
particular, we use symmetry to connect the x2 mapping in zone 5© (Eq. (36)) to the x1 mapping
in the area [u,1−u]× [a,u]. With the abbreviations Δ := x+−x−, v := u−0.5 and s :=

√
r2− v2

the boundary conditions read

x1
(
a,x2

) (28)
= b′(a)

(
x2−a

)2
+a, with b′(a)

(29)
= 1

4
a

x−
v2

(−s+0.5−x−) s2 ,

x1
(
u,x2

) (36)
= b′′(u)

(
x2−a

)2
+u, with b′′(u)

(37)
= 1

2
v3

(s−0.5Δ)Δ s2 ,
(39)

∂x1

∂x2

∣
∣
∣
(a,x2)

(28)
= 2b′(a)

(
x2−a

)
, ∂x1

∂x1

∣
∣
∣
(a,x2)

(28)
= 1

4
v2 (x2−a)

2

(−s+0.5−x−) x− s2 +1,

∂x1

∂x2

∣
∣
∣
(u,x2)

(36)
= 2b′′(u)

(
x2−a

)
, ∂x1

∂x1

∣
∣
∣
(u,x2)

(36)
= 1

2
v2 (x2−a)

2

(s−0.5Δ)Δ s2 +1.
(40)

In order to find the desired mapping, we take advantage of the generality of our formalism
developed above—Eqs. (32) to (35) are all perfectly valid for the present considerations. Upon
inserting Eqs. (39) and (40) in Eqs. (32) to (35), we finish the construction of a mesh that is
differentiable everywhere in the unit cell. The mappings in the zones are depicted separately
in Fig. 10(b). The parabola transitions are recognizable very well at the edges of the mapped
zones 5© and 6©. The only free parameter used for the construction of the differentiable mesh
of the circle is the smoothing parameter τ . In Fig. 11 we depict the resulting meshes for two
different values of τ .

Finally, we find it very instructive to compare the transformed permittivities for the different
mesh types. In Fig. 12, we display the

√
gε11-component of the effective permittivity, i.e.,√

gε11 as introduced in section 2, for the nondifferentiable (panel (a)), a smoothed (panel (b)),
and a differentiable mesh (panel (c)) for a circular structure of radius 0.3 that is centered within
a square [0,1]× [0,1] unit cell. The corresponding meshes are displayed in Figs. 2(b), 9(b), and
11(b), respectively. In all cases, only the area [0.2,0.8]× [0.2,0.8] is shown and the effective
permittivity has been sampled with 1024× 1024 points (the same sampling is used for the
numerical simulations which we present in section 9). Figure 12(a) depicts the distribution we
already showed in Fig. 2(c).

First, we observe that the different mappings indeed transform the circular structure to a
square-shaped object. For the above sampling, the effective permittivity values for the non-
differentiable mesh exceed 5000 in the corners of the square, a clear sign of the unavoidable
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(a) (b) (c)

Fig. 11. Differentiable meshes for a circular structure (radius r = 0.3) centered in a square
unit cell. Panels (a) and (b) depict meshes with smoothing parameters τ = 0.07 and τ =
0.035, respectively. Panel (c) shows a close-up of the mesh in (b). See text for details.

(a) (b) (c)

Fig. 12.
√

gε11-component of the effective permittivity for different meshes for a circular
structure (radius r = 0.3) that is centered in a square unit cell. Panels (a), (b), and (c) show
the transformed permittivity for the nondifferentiable, the smoothed, and the differentiable
meshes of Figs. 2(b), 9(b), and 11(b), respectively. For a sampling with 1024×1024 points,
the values at the corners of the rectangle for the nondifferentiable mesh exceed 5000. How-
ever, we have saturated the color scale at 4 in order to be able to display more features. The
smoothed and differentiable meshes have been constructed with a smoothing parameter
τ = 0.035. All plots show the sector [0.2,0.8]× [0.2,0.8] of the [0,1]× [0,1] unit cell.

singularities associated with applying a nondifferentiable mesh to a circular structure (see sec-
tion 2). In addition, the circle is exactly mapped onto the square. For the smoothed as well
as for the differentiable mesh the circle is mapped on a square with rounded corners and is,
thus, not fully grid-aligned. However, the values of the effective permittivity are considerable
lower in both cases. The difference between them is the slightly different behavior at the struc-
ture’s boundaries. The effective permittivity of the differentiable mesh shows jumps only at
the surface of the transformed structure. In contrast, the effective permittivity of the smoothed
mesh features additional discontinuities since it is not differentiable everywhere (see section 4).
We find qualitatively similar behavior for all non-zero components of the effective permittivity
tensor.

Based on the above observations, it is an interesting question to ask which of the meshes will
exhibit the best convergence characteristics for FMM-computations. The strictly grid-aligned
effective permittivity for the nondifferentiable meshes is ideally suited for the Fourier factor-
ization rules (see section 1) but its rather high values are clearly detrimental. The situation is
reversed for the smoothed and the differentiable mesh.
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However, before we address this question, we first complete the discussion of the mesh con-
struction in sections 6-8, where we will provide guidelines for the realization of periodic meshes
for low-symmetry motifs in the unit cell (section 6), the construction of meshes for nonrectan-
gular lattices (section 7), and the implementation of adaptive spatial resolution via coordinate
line compression (section 8).
In order to prepare for the latter, we note in the case of the nondifferentiable and the smoothed
mesh, the coordinate line that is mapped onto the circle’s surface is given by x− (see Fig. 8). In
order to find the corresponding coordinate line α for the differentiable mesh, we numerically
compute the point that fulfills

0.5− r = x1(α,0.5), (α,0.5) ∈ 5©. (41)

6. Enforcing periodicity

The meshes that we have constructed in the previous sections exhibit a mandatory requirement
for being used with FMM computations: They are periodic, i.e., every coordinate line enters and
leaves the unit cell at opposing unit cell edges. Apparently, certain meshes that are generated
by our formalism described above do not exhibit this property (see, e.g., Fig. 13). For instance,
in order to construct a mesh for a square array of ellipses, the natural choice of characteristic
points are those where the major and minor axes pierce the ellipse’s surface. However, if the
ellipse is rotated relative to the square lattice, our formalism leads to nonperiodic meshes.

(a) (b) (c)

Fig. 13. Construction points and mesh for an elliptical structure that is not aligned with the
axes of the square array associated with the unit cell. This example further illustrates how
our construction principle may lead to aperiodic meshes. See text for further details.

There are three ways to restore periodicity. First, one could choose a different set of charac-
teristic points that does lead to periodic meshes. Second, one can change the way the character-
istic coordinate lines are mapped. We depict this approach in Figs. 14(a) and 14(b). Here, the
characteristic coordinate lines were modified by additional straight line segments (dashed) so
that the coordinate lines leave the unit cell at the same point they entered at the opposite face of
the unit cell. The dashed part does not have to be composed of straight lines—other functions
such as higher order polynomials are conceivable as well. Third, one can use a mirror structure.
We illustrate this approach in Fig. 14(c). Here, a mesh for the cross section of a trapezoidal rib
waveguide has been created. The periodicity is assured by an additional structure in the unit
cell which features similar geometrical properties as the structure under investigation and, thus,
periodicity is restored. As this mirror structure has the same permittivity as the background
medium it is physically nonexistent and the numerical artifacts created by the distorted mesh
are negligible.

In order to demonstrate that neither the mirror-structure approach nor the linear transitions
to the unit cell edges lead to discernible errors, we investigate the rib waveguide sketched in
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(a) (b) (c)

Fig. 14. Illustration of different approaches for enforcing periodicity of meshes. Panels (a)
and (b) depict the method of adding linear transitions to the outer edge of the unit cell.
Panel (c) illustrates the method of the mirror structure. Color has been added to mark the
actual structure. See text for further details.

Fig. 15(a). To obtain a converged result we used 2601 Fourier coefficients with a real space
discretization of 1024×1024 points. The unit cell is 4 μm ×4 μm and the symmetric trapezoid
has a top length of 240 nm and a bottom length of 960 nm. Its height is 360 nm. This trapezoid
consists of silicon with a dielectric constant εs = 12.1 while the background medium is air with
εbg = 1. The incoming wavelength was chosen to be the telecom wavelength at 1550 nm.

(a) (b) (c)

Fig. 15. Analysis of a square array of silicon waveguides with trapezoidal cross section
using the mirror-structure approach for periodic mesh construction. Panel (a) depicts a
schematic of the system. Panels (b) and (c) show, respectively, the periodic mesh for the
trapezoidal structure and the absolute value of the transverse electric field distribution of
the fundamental mode on a logarithmic scale. There are no discernable detrimental effects
due to the mirror structure that is used to ensure periodicity of the mesh. The yellow color
in panel (b) and the white trapezoid in panel (c) have been added to guide the eye.

Figure 15(c) shows the absolute value of the transverse electric field of the rib waveguide’s
fundamental mode. Since the permittivity is transformed according to Eq. (7), any coordinate
line other than the identity will result in a distortion of the effective permittivity. Yet, Fig. 15(c)
shows that the values of the numerical artifacts in the region of the mirror structure are several
orders of magnitude lower than the physical fields at the trapezoid.

7. Nonrectangular unit cells

So far, we have focused on rectangular unit cells. Apparently, for many systems more free-
dom in the unit cell choice is highly desirable. In fact, treating nonrectangular unit cells in
the framework of FMM without adaptive meshing is well known [12]. In this section, we will
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briefly discuss how adaptive meshing for a nonrectangular unit cell can be realized and present
an array of circular rods in a hexagonal lattice as an example.
The basic idea is to map the hexagonal unit cell to a rectangular one (including the structure!),
perform the mesh generation as discussed in the previous sections and map the rectangular unit
cell (including the mesh) back to the hexagonal unit cell. A mapping between a nonrectangular
unit cell with lattice angle α and a rectangular unit cell is given by [12]

xα = xrec + yrec sinα ←→ xrec = xα − yα
sinα
cosα ,

yα = yrec cosα ←→ yrec = yα
1

cosα .
(42)

Here, the coordinates xα , yα , and xrec, yrec refer to the coordinates in ordinary (Cartesian) and
transformed space, respectively. We illustrate this in Figs. 16(a) and 16(b), where, in addition,
we also depict a circle which we would like to mesh. Upon mapping the nonrectangular unit
cell onto a rectangular one, the circle that is centered in the unit cell turns into an ellipse. We can
mesh this ellipse by means of any of the methods discussed in sections 3-5 (where applicable
together with the methods to recover periodic meshes introduced in section 6). Mapping back
onto ordinary (Cartesian) space then delivers the final mesh as displayed in Fig. 16(c). Actually,
we have obtained this mesh by first compressing the coordinate lines (see section 8) of the
ellipse mesh displayed in Fig. 14(b) and mapping back this mesh to ordinary (Cartesian) space.

(a) (b) (c)

Fig. 16. Illustration of the meshing in nonrectangular unit cells. Panel (a) depicts the struc-
ture in ordinary (Cartesian) space—a circular rod in a hexagonal lattice. Panel (b) shows the
transformed structure when the nonrectangular unit cell is mapped onto the rectangular unit
cell—the circle turns into an ellipse. Panel (c) shows the mesh in the original unit cell that
is obtained by meshing the ellipse and mapping this mesh back into ordinary (Cartesian)
space. The parameters are r = 0.2, α = 30◦ and a [0,1]× [0,1] unit cell.

It is important to realize that the nonrectangular unit cell given by Eq. (42) is still described
in a Cartesian coordinate system, i.e., we do not switch to an oblique-angled coordinate system.
Hence, the equation of a circle remains valid and we can perform the mapping to the rectangular
unit cell according to

Circleα =

{

(x,y) :

(
x− 1

2
(1+ sinα)

)2

+

(
y− 1

2
cosα

)2

= r2

}

, (43)

Circlerec
(42)
=

{(
x− y

sinα
cosα

,y
1

cosα

)
:

(
x− 1

2
(1+ sinα)

)2

+

(
y− 1

2
cosα

)2

= r2

}

,

=

{

(x,y) :

(
x+ ysinα− 1

2
(1+ sinα)

)2

+

(
ycosα− 1

2
cosα

)2

= r2

}

.(44)

In order to perform the mesh generation analytically, we have to extract the ellipse parameters
from Eq. (44). An ellipse with center (x0,y0) that is rotated by an angle φ with semi-axes c and
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d is described by

(
x− x0 y− y0

)
(

cosφ −sinφ
sinφ cosφ

)(
c−2 0
0 d−2

)(
cosφ sinφ
−sinφ cosφ

)(
x− x0

y− y0

)
= 1.

(45)
Comparing Eq. (44) with Eq. (45) yields

c = r (1− sinα)−1/2, d = r (1+ sinα)−1/2, φ =−45◦, (x0,y0) = (0.5,0.5). (46)

By symmetry, another solution which yields the same ellipse is φ = 45◦ and c and d inter-
changed. The resulting ellipse is shown in Fig. 16(b). We have obtained the resulting mesh
displayed in Fig. 16(c) using the mapping in Eq. (42) with α = 30◦ (hexagonal lattice).

8. Compression of coordinate lines - adaptive spatial resolution

As stated several times above, it is often very desirable to increase the density of coordinate
lines within a structure or at its surface in order to realize adaptive spatial resolution (ASR).
We have used such coordinate compressions for constructing the meshes depicted in Fig. 6(b),
Fig. 15(b), and Fig. 16(c). In this section, we provide the required details. In essence, ASR
and adaptive coordinates (AC) are performed sequentially—first, the coordinate lines are com-
pressed and then the mapping for the AC is applied. Technically, ASR it is just another co-
ordinate transformation. A good proposal for a one-dimensional compression function can be
found in Ref. [9]. In this work we have, in general, to apply two-dimensional compressions
which we construct by two successive one-dimensional compressions after slightly modifying
the compression functions of Ref. [9]. In Fig. 17(a), we display an illustrative example of such
a one-dimensional compression.
The transformation function of Ref. [9] is

x(x) = α +βx+
γ

2π
sin

(
2π

x− xl−1

xl− xl−1

)
, x ∈ [xl−1,xl ], l = 2, ...,n (47)

with

α =
xlxl−1− xl−1xl

xl− xl−1
, β =

xl− xl−1

xl− xl−1
, γ = (xl− xl−1)G− (xl− xl−1), (48)

where {xl : l = 1, ...,n} and {xl : l = 1, ...,n} denote two sets of points. By design, this means
that x(xl) = xl for l = 1, ...,n. Further, G denotes the slope of the function at all positions xl . The
compressed coordinates are described by x(x)—the transformation is a linear function super-
imposed with a sine. In the vicinity of the points xl the coordinate line density is increased—for
instance, these points could represent material interfaces along the x-coordinate line. The inter-
val [xl−1,xl ] is mapped onto the interval [xl−1,xl ]. In order to maintain periodicity with period
L, one chooses x1 = 0 and xn = L. This means that the coordinate lines are compressed at the
unit cell edges. For the structures considered in Ref. [9] this is intended. We, on the other hand,
would like to place the structures in the center of the unit cell. This amounts to shifting the
compression function and we show how to accomplish this with two material interfaces. This
is straightforwardly generalized to more interfaces.

We start with two parallel material interfaces in the unit cell located at two given coordinates
x1 and x2. Furthermore, we assume that the length of the interval that is mapped onto [x1,x2]
is given—it is referred to as Δx. Then, we perform the mapping Eq. (47) as if the first material
interface lies at 0.

x ∈ [0,Δx] : x(x) =
x2− x1

Δx
x+

G Δx− (x2− x1)

2π
sin

(
2π

x
Δx

)
, (49)

x ∈ [Δx,L] : x(x) = α̃ + β̃x+ γ̃ sin

(
2π

x−Δx
L−Δx

)
. (50)
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Fig. 17. Illustration of how to shift the compression function from Ref. [9]. In all panels
x is plotted on the horizontal axis and x on the vertical axis. Panel (a) depicts the original
compression function. Panel (b) shows how the function is shifted to larger values. The
point of intersection where the transformed coordinate leaves the unit cell is denoted by
x̃. In panel (c) the compression function is shifted by exactly this amount to the right. The
piece that is outside the unit cell in panel (c) is attached to the left side due to periodicity.
Panel (d) shows how the equidistant coordinate lines (vertical) are mapped onto compressed
coordinate lines (horizontal).

Here, we have introduced the abbreviations

α̃ =
L(x2− x1)−Δx L

L−Δx
, β̃ =

L− (x2− x1)

L−Δx
, γ̃ =

G (L−Δx)− (L− (x2− x1))

2π
. (51)

The result is depicted in Fig. 17(a)—we now have a compression at two interfaces with the
correct spacing between them, albeit at the wrong locations. In order to achieve the compression
in the interior in the unit cell, we first shift the function by x1 upwards, see Fig. 17(b). The point
where the compression function intersects with the unit cell edge, denoted x̃, is

L = α̃ + β̃ x̃+ γ̃ sin

(
2π

x̃−Δx
L−Δx

)
+ x1 (52)

Unfortunately, Eq. (52) is a transcendental equation and, therefore, we have to find the point
x̃ numerically. Next, we shift the function to the right by L̃ = L− x̃, see Fig. 17(c). The part
that is still outside the unit cell (marked in red) is attached at the left side of the unit cell—this
makes sense due to periodic boundaries in the FMM. Finally, in Fig. 17(d) we depict how the
equidistant, vertical coordinate lines are now mapped to the compressed horizontal lines. The
compression function for two material interface points x1 and x2 in the interior of the unit cell
then reads

x ∈ [0, L̃] : x(x) = α̃ + β̃ (x+ x̃)+ γ̃ sin

(
2π

x+ x̃−Δx
L−Δx

)
+ x1−L , (53)

x ∈ (L̃, L̃+Δx) : x(x) =
x2− x1

Δx

(
x− L̃

)
+

G Δx− (x2− x1)

2π
sin

(
2π

x− L̃
Δx

)
+ x1, (54)

x ∈ [L̃+Δx,L] : x(x) = α̃ + β̃
(
x− L̃

)
+ γ̃ sin

(
2π

x− L̃−Δx
L−Δx

)
+ x1. (55)

We want to stress that one needs to start with the separation Δx of the interfaces instead of
starting with their exact locations x1 and x2 (as has been the case in Eq. (47)). This is due to
the fact that these locations are determined by the shift of the entire function and cannot be
specified beforehand.
In Figs. 18(a) and 18(b), we display two examples of compression functions. They are plotted
together as a two dimensional mesh in Fig. 18(c) where the compression in Fig. 18(a) was
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applied in the horizontal direction and the compression in Fig. 18(b) in the vertical direction.
When choosing the compression parameters it is important to make sure that x is monotonically
increasing. If a constant coordinate line density is desired, the transformations above offer a
simple way to do so. For two compression points, G is chosen to be (x2− x1)/Δx which leads
to a vanishing prefactor of the sine in Eq. (47). This is how we have obtained the compression
in Fig. 18(b).
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Fig. 18. Illustration how two one-dimensional compression functions are combined to a
two-dimensional compressed mesh. The compression in (a) is applied in horizontal direc-
tion and the compression depicted in (b) (with a constant density between x1 and x2) is
applied in the vertical direction. Panel (c) depicts the resulting mesh.

This completes our illustration of adaptive coordinates with adaptive spatial resolution: In
order to obtain meshes as those depicted in Fig. 6(b), we first map a Cartesian grid to a grid that
is compressed in certain regions by way of Eqs. (53) - (55). We then use this locally compressed
grid as input for the adaptive coordinate mapping that deforms the grid in the desired way
(nondifferentiable, smoothed, or differentiable), e.g., as in Eqs. (18) and (19).
The smoothed meshes remove the (unphysical) singularities in the effective permittivity, Eq.
(7), of the nondifferentiable meshes and only certain discontinuities in the partial derivatives
remain. These discontinuities, too, can be removed by using differentiable meshes. Obviously,
this removal of singularities and discontinuities will be conductive for the convergence of FMM.
However, another important aspect of the smoothed and the differentiable meshes is that—
in contrast to the nondifferentiable meshes—the structure’s surface is no longer grid-aligned
in the transformed space described by Eq. (7) (see Fig. 12). Yet, the success of the Fourier
factorization rules critically depends on grid-alignment.
Which aspect is more important in which circumstances? This is the subject to be studied in the
next (and final) section.

9. Suitable parameter choice and convergence characteristics

More generally, in this section we deal with the important question which type of mesh and
which mesh parameters are suitable for a given structure. The number of parameters for the
mesh generation is very large—for each given frequency and structure, we can vary the com-
pression of the mesh (parameters G and Δx), we can use different types of meshes (Cartesian,
nondifferentiable, smoothed, and differentiable) some of which have a smoothing parameter
τ , and we have to choose how many points are used for the real space discretization. As it is
impossible to display every combination of those parameters, we aim at presenting the overall
tendencies along with corresponding rules-of-thumb that we found in our extensive parameter
scans.
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First, we examine dielectric structures. We start with a study on how and why different parame-
ters change the convergence results of the propagation constants of low-lying eigenmodes. This
will result in guidelines how to find suitable parameters. Second, we repeat this exercise for
metallic structures and their convergence characteristics.

9.1. Dielectric structures

In order to investigate the convergence behavior of the FMM with different meshes for dielec-
tric structures, we choose a fiber with cylindrical cross section as a test system. This choice
is motivated by the availability of analytical solutions for the guided eigenmodes of a single
cylindrical waveguide [14]. For such modes, the inherent periodicity of the FMM computations
is of no relevance once the unit cell is sufficiently large, i.e., we are then performing a supercell
computation. Clearly, this also means that we should exercise care for modes that are close
to the cut-off as they might be fairly extended. In our subsequent computations this has been
carefully checked.
Specifically, we consider a fiber of radius of r = 800 nm that is centered within a square unit
cell and whose index will be varied. The lattice constant is d = 4000 nm with a background
material of εbg = 1. The number of plane waves will be varied, but they will always come from
within a circle in reciprocal space centered around the origin. We analyze this system for a
wavelength of λ = 800 nm.
As a measure for the mesh quality, we compute the maximum relative error of the effective
refractive index of the first ten guided eigenmodes for a given number of plane waves, i.e.,

error = max

{ |neff,analyt,1st mode−neff,num,1st mode|
neff,analyt,1st mode

, ... ,
|neff,analyt,10th mode−neff,num,10th mode|

neff,analyt,10th mode

}
,

where the effective refractive index of an eigenmode with propagation constant γ is given by
neff = λγ/(2π). First, we compare the different types of meshes for a small dielectric contrast.
We initially refrain from compressing the coordinate lines in order to separate ASR and AC
effects. In Fig. 19(a), we depict the convergence characteristics for a fiber with dielectric con-
stant εfib = 2. The smoothed and especially the differentiable mesh performs better than the
Cartesian or the nondifferentiable mesh. From now on, we will concentrate on the comparison
of nondifferentiable and differentiable meshes since the smoothed meshes show a worse quality
than the differentiable meshes when a compression is used.

As the cylindrical fiber is centered in the square unit cell we can apply the same compression
function in x1- and x2-direction. The material surface, i.e., the compression points are x1 = x−
and x2 = x+ for the nondifferentiable mesh and x1 = α and x2 = 1−α for the differentiable
mesh (see section 4 and 5, respectively). In Figs. 19(b) to 19(d) we display the dependence
of the error on the compression parameters G and Δx for the nondifferentiable mesh (τ = 0,
panel (b)) and the differentiable mesh with parameters τ = 0.002 (panel (c)) and τ = 0.015
(panel (d)). Each computation has been performed with 997 plane waves in conjunction with
a discretization in transformed space of 1024× 1024 points. In these graphs the parameter G
has been stepped in 0.01 intervals and Δx in 0.0025 intervals. We have used the same parameter
stepping for G and Δx in Figs. 19 to 22. For illustrative purposes, we display in Fig. 19(d)
selected compression functions for vastly different parameter values G and Δx.
From Fig. 19(b), we infer that the nondifferentiable mesh performs well for small values of G.
This is intuitive since a small value of G means that the coordinate line density at the surface
of the structure is increased. However, we obtain the best results for this mesh for larger values
of G at specific values of Δx. For most values of these optimal combinations G and Δx, a small
change in Δx quickly compromises this optimal performance and significantly larger errors are
obtained. This is in contrast to the characteristics of the differentiable mesh. For this mesh with
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Fig. 19. Convergence characteristics of different meshes for computing the effective in-
dex of refraction of guided modes in a low-index fiber. Panel (a) displays the convergence
characteristics of Cartesian, nondifferentiable, smoothed, and differentiable meshes with-
out coordinate line compression. Panels (b) to (d) depict the corresponding dependence of
the relative error (color-coded) on the compression parameters G and Δx for a fixed number
of 997 plane waves. The same compression function is applied in x1- and x2-direction. All
computations have been performed on a grid with 1024× 1024 sampling points in trans-
formed space. Panel (b) displays the results for the nondifferentiable mesh. Panels (c) and
(d) depict results for the differentiable mesh with τ = 0.002 and τ = 0.015, respectively.
The sketches in panel (d) depict compression functions for four specific pairs of G and Δx.
The color bar of panel (d) also applies to panels (b) and (c). See the text for further details.

τ = 0.002, we infer from Fig. 19(c) very good performance for nearly all combinations of G
and Δx. The differentiable mesh with τ = 0.015 exhibits a slightly worse performance but the
qualitative behavior that very good results can be found for a wide parameter range is retained
(see Fig. 19(d)). Another feature which we extract from Figs. 19(b) to 19(d) is that, for a fixed
value of G, the error exhibits an apparent oscillatory dependence on Δx. We will return to this
issue once we have addressed the role of certain parameters.
To sum up our (partial) findings up to this point (see Fig. 19), nondifferentiable meshes yield
the overall best results but their performance sensitively depends on the correct choice of mesh
parameters. On the other hand, the differentiable meshes perform nearly as well as the optimal
nondifferentiable meshes but offer the advantage of being muss less sensitive to parameter
change.
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As alluded to above, an interesting aspect is how the meshes perform for different numbers of
plane waves. Therefore, we have performed similar computations as those depicted in Fig. 19
but this time with 293 plane waves. We display the results in Fig. 20 for the nondifferentiable
mesh (panel (a)), the differentiable mesh with τ = 0.002 (panel (b)) and with τ = 0.015 (panel
(c)). We do find our above (partial) summary confirmed: While the nondifferentiable mesh
performs best it does so only for very specific combinations of G and Δx, the differentiable
meshes yield slightly worse results but for a much wider range of mesh parameters.
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Fig. 20. Dependence of the relative error (color-coded) for a low-index fiber on the com-
pression parameters G and Δx for 293 planes waves and 1024×1024 discretization points
in transformed space (cf. Fig. 19 for the results of the same system with 997 plane waves).
Panel (a) depicts the results for the nondifferentiable mesh and panels (b) and (c) depict the
results for the differentiable mesh with τ = 0.002 and τ = 0.015, respectively. The color
bar of panel (c) also applies to panels (b) and (c). See the text for further details.

Moreover, these findings remain valid when the dielectric contrast is increased. In Fig. 21 we
display the results for computations using again 997 plane waves (as in Fig. 19) but this time
for a fiber with larger permittivity εfib = 10. The background material is again εbg = 1. We have
further checked that the above (partial) summary holds true for other values of the permittivity
by performing calculations with varying εfib where the compression parameters have been kept
the same (not shown) as well as for varying wavelengths where all other parameters have been
kept the same (not shown).

An important issue which we have yet to address is the influence of the real space discretiza-
tion. We have performed all the previous computations with 1024×1024 discretization points
in order to take full advantage of the capabilities of the Fast Fourier Transform. However, we
have to be aware that such a discretization must not necessarily be optimal for a given problem,
including our fiber system. This may be seen from the following argument: As described in sec-
tion 2, the nondifferentiable mesh leads to a diverging permittivity at specific points in space.
Depending on the number of real space points we use in the computations, the coordinate lines
are either close to these points or not. Hence, the maximum permittivity values ”seen” by the
numerical framework changes drastically when changing the number of real space points. An-
other important issue is the size of the structure ”seen” by the numerics—placing a coordinate
line right on the surface of the structure or next to the surface changes its effective size. In our
fiber system, for instance, the effective refractive indices of the modes change according to how
far away the coordinate lines are from the structure’s surface. A potential way of dealing with
this problem could be increasing the number of sampling points or to find ways of appropri-
ately distributing a given number of points. As the former option might require considerable
computational resources, we will, in the following, pursue the latter option.
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Fig. 21. Dependence of the relative error (color-coded) for a high-index fiber on the com-
pression parameters G and Δx for 997 planes waves and 1024×1024 discretization points
(cf. Fig. 19 for the results of a low-index fiber with the same number of plane waves). Panel
(a) depicts the results for the nondifferentiable mesh and panels (b) and (c) depict the re-
sults for the differentiable mesh with τ = 0.002 and τ = 0.015, respectively. The color bar
of panel (c) also applies to panels (b) and (c). See the text for further details.

In order to start the quantitative analysis, we perform computations for the same low-index fiber
for which we have obtained the results of Fig. 19—this time only with 1000 instead of 1024
discretization points per dimension. We depict our results in Fig. 22. As expected, the largest
changes occur for the nondifferentiable mesh (cf. Fig. 19(b) and Fig. 22(a)).
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Fig. 22. Dependence of the relative error (color-coded) for a low-index fiber on the com-
pression parameters G and Δx for 997 planes waves and 1000×1000 discretization points
(cf. Fig. 19 for the results of the same system with 1024×1024 discretization points). Panel
(a) depicts the results for the nondifferentiable mesh and panels (b) and (c) depict the re-
sults for the differentiable mesh with τ = 0.002 and τ = 0.015, respectively. The color bar
of panel (c) also applies to panels (b) and (c). The area within the white box in panel (a) is
selected for further detailed investigation in Fig. 23. See the text for further details.

Upon this (rather minimal) change of the real space discretization, the results for the differ-
entiable meshes with τ = 0.002 and τ = 0.015 in Figs. 22(b) and 22(c), respectively, do not
change much relative to Figs. 19(c) and 19(d). Of course, this has been expected as otherwise
FMM computations would be rather useless to begin with. Nevertheless, throughout Fig. 22 we
observe the same interesting feature which we have already pointed out in the context of Fig.
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19: For fixed value of G, the error apparently oscillates as a function of Δx. Therefore, we now
turn to the analysis of this issue and investigate in more detail the parameter region delineated
by the white box in Fig. 22(a), i.e., with a much higher resolution in G and Δx.
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Fig. 23. Detailed investigation of the error associated with nondifferentiable and differen-
tiable meshes. Panel (a) represents at blow-up of the results highlighted in the white box of
Fig. 22(a). The maximum relative error of the first ten guided eigenmodes of a low-index
fiber have been obtained with 997 plane waves and 1000×1000 real-space points in steps
of 0.001 for G and 0.00005 for Δx. Panel (b) depicts a line-cut through (a) at G = 0.165 and
the relative error of each of the first ten guided eigenmodes together with the distance of the
structure’s physical surface to the numerical surface. Panel (c) illustrates the definition of
the numerical surface as the middle between the two coordinate lines closest to the physical
surface. Panel (d) displays the computed distance between numerical and physical surface
for the same parameter range that is used in (a). Panel (e) displays the results of a similar
computation as shown in (b), this time using the differentiable mesh with τ = 0.002 and
G = 0.165. See text for further details.

Indeed, while the error changes continuously with G, it exhibits oscillations and even jumps
as a function of Δx. This indicates that the error can be linked to the number of coordinate
lines within the structure—recall, that Δx determines how many coordinate lines are inside the
structure, while G controls the density at the surface. In order to investigate this, we show in
Fig. 23(b) the dependence on Δx of the relative error of the effective refractive index for each
of the first ten eigenmodes for a fixed value G = 0.165. In addition, we depict the distance
between the physical surface and the numerical surface. The latter is given by the center of
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the two coordinate lines closest to the physical surface (for an illustration, see Fig. 23(c)). The
dependence of this distance on the compression parameters G and Δx is also shown in Fig.
23(d). There exists a strong correlation between the accuracy of the FMM computations and
the distance between physical and numerical surface. As a matter of fact, the results of the FMM
computations for the nondifferentiable mesh are optimal when the physical and the numerical
surface coincide and deteriorate rapidly, when we move away from these sweet spots.
In Fig. 23(e) we display corresponding results of the relative error of each of the first ten guided
eigenmodes using a differentiable mesh with τ = 0.002. As expected, the above effect is visible,
too, i.e., the error oscillates as a function of Δx for a fixed value of G. However, and in particular
for the low-lying modes, the amplitude of the oscillations is significantly reduced relative to the
amplitude of the nondifferentiale mesh (cf. Fig. 23(b)); for our low-index fiber system about
one order of magnitude.
We have conducted extensive studies for values of G larger and smaller than those shown in
Fig. 23, for a larger and smaller number of plane waves, and for larger values of the dielectric
permittivity contrast. In all cases, the behavior as depicted in Fig. 23 is qualitatively reproduced.
This leads us to our final conclusion regarding ASR and AC within FMM for dielectric struc-
tures. The nondifferentiable mesh performs well for small values of G as this corresponds to a
good representation of the singularities in the effective permittivity due to an increased density
of coordinate lines at the surface. However, special care has to be exercised when choosing the
real space discretization and the parameters for the compression function(s). More precisely,
the number of real space points and the parameters G and Δx have to be chosen such as to best
represent the surface of the physical system. Here, an inconsistent choice of the mesh param-
eters easily leads to a rather significant loss of accuracy and/or erratic behavior with regard
to convergence. The differentiable mesh exhibits the same qualitative behavior but is consid-
erably less sensitive to the actual parameter choice, especially in terms of accuracy— good
performance is achieved over a wide range of compression parameters G and Δx. Overall, the
nondifferentiable mesh with optimal parameters does deliver somewhat better results than the
differentiable mesh. This is the manifestation of the grid-aligned effective permittivity of the
nondifferentiable mesh which is more compliant with the Fourier factorization rules than the
differentiable mesh (see section 5).

9.2. Metallic structures

We now turn to an investigation of metallic systems. While much of the above discussion qual-
itatively also applies in this case, the relative weighting of the above issues is rather different.
This may be seen as follows. Metals are characterized by permittivities with negative real part.
In turn, this leads to a finite penetration of the electromagnetic field into the metal as well as to
large field enhancements near the surfaces. As a result, for metallic structures, we expect that
surfaces and their adequate representation is even more important than for dielectric structures.
To be specific, we consider the same system that has been discussed in Ref. [6]. This means
that we investigate a square array (lattice constant d = 700 nm) of metallic cylinders (height 50
nm, radius 150 nm) in air. The cylinders are centered in the unit cell and their axes are oriented
in propagation direction. For the metal we use the permittivity given by a Drude model with the
parameters ε∞ = 9.0685, a plasma frequency ωD = 1.3544 ·1016 Hz and a damping coefficient
γ = 1.1536 · 1014 Hz, corresponding to gold [15]. In the absence of analytic solutions for this
problem, we have computed transmittance, reflectance and absorbance spectra for normal inci-
dence using several different compression functions and found qualitatively the same results. In
Fig. 24(a) we display the corresponding spectra using the nondifferentiable mesh, 1750 plane
waves and a compression with parameters G = 0.02 and Δx = 0.5. We find the resonance fre-
quency at 829 nm which is the subject of our further investigation. Specifically, in Fig. 24(b)
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we compare the convergence behavior of the reflectance for the nondifferentiable mesh, two
smoothed, and two differentiable meshes using the same compression function as in Fig. 24(a).
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Fig. 24. Convergence characteristics of different meshes for a square array of metallic cylin-
ders of finite height. Panel (a) shows the transmittance, reflectance, and absorbance spectra
that have been computed using 1750 plane waves and the nondifferentiable mesh. Our data
agree well with those of Ref. [6] for this system. Panel (b) depicts the convergence charac-
teristics (in terms of plane waves) of the reflectance for different meshes at the resonance
frequency of 829 nm. The data in panels (a) and (b) have been obtained by using the same
compression function with parameters G = 0.02 and Δx = 0.5 and a real space discretiza-
tion of 1024×1024 points.

From Fig. 24(b), we infer that the nondifferentiable mesh exhibits a considerably faster and
less erratic convergence behavior than the smoothed and differentiable meshes. Along the lines
of our analysis for dielectric systems, we have traced this to the fact that the transformed effec-
tive permittivity fails to be grid-aligned for the smoothed and differentiable meshes. Therefore,
it is less compliant with the Fourier factorization rules.

In contrast to dielectric structures, Fig. 24(b) strongly suggests that resolving the entire sur-
face and creating a grid-aligned structure for the transformed permittivity is crucial for the
performance when investigating metals with the FMM. Here, the nondifferentiable mesh has a
distinct advantage over the smoothed and the differentiable meshes.
Just as in the dielectric case, it is interesting to have a closer look at the compression param-
eters G and Δx. Consequently, we display in Fig. 25 the dependence of the reflectance at the
resonance on G and Δx for a fixed number of 997 plane waves and a real space discretization of
1024× 1024 points when using different meshes. For the nondifferentiable mesh, we observe
the same characteristics as in the dielectric case (smooth dependence on G with a preference for
low values, oscillatory behavior as function of Δx). In contrast, the differentiable mesh exhibits
a rather erratic behavior over much of the parameter space. Consequently, for metallic struc-
tures we obtain (not unexpectedly) that an accurate representation of the surface is of paramount
importance and that this can be facilitated best via the nondifferentiable mesh.

10. Conclusion

In this work we have dealt with several important aspects of the FMM when using adaptive
coordinates (AC) and adaptive spatial resolution (ASR). First, we have demonstrated how dif-
ferent issues in analytical mesh generation such as maintaining periodicity, non-rectangular
unit cells and compression of coordinate lines at material interfaces can be mastered even for
rather complex structures. Second, we have provided construction guidelines for different types
of meshes such as nondifferentiable, smoothed and differentiable meshes. Through a careful
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Fig. 25. Dependence of the on-resonance reflectance from a square array of finite-height
metallic cylinders on the compression parameters G and Δx for different meshes. Panel (a)
shows the results when using the nondifferentiable mesh and panel (b) shows the results
when using the differentiable mesh with τ = 0.005. All computations have been performed
with 997 plane waves with a real space grid of 1024×1024 sampling points. The parameter
G has been stepped in 0.005 intervals and Δx in 0.0025 intervals. The color scale was
saturated at 0.81. See text for further details.

convergence study, we have discovered ”sweet spots” for the nondifferentiable mesh where a
judicious choice of real space discretization and compression parameters leads to an optimal
surface representation that efficiently treats the (for this mesh unavoidable) singularities in the
effective permittivity. As the nondifferentiable meshes naturally lead to the best grid-alignment,
i.e., to optimal compliance with regard to the Fourier factorization rules, the nondifferentiable
mesh turns out to be the best choice—provided one knows what one is doing and one can realize
the correct surface representation.
The differentiable meshes exhibit a comparable performance for dielectric structures and are
considerably less sensitive to the correct choice of compression parameters. This is welcome
news for black-box approaches. For metals, however, obtaining grid-aligned structures is of
paramount importance and the optimized nondifferentiable mesh still performs rather well (nec-
essarily less efficient than in the dielectric case) while the smoothed and the differentiable mesh
clearly fall behind (but are, of course, still much better than a simple Cartesian grid).
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