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Abstract

An accurate measurement of the content of water vapor in the atmosphere is a key requirement

for the weather forecasting and climate research. Since water vapor affects the microwave

signal propagating in the atmosphere by a high temporally and spatially variable delay, precise

determination of water vapor content is also essential for remote sensing applications of global

navigation satellite systems (GNSS) and interferometric synthetic aperture radar (InSAR).

The specific objective of this work is to derive maps of the wet delay, caused by atmospheric

water vapor, by analyzing the atmospheric delay “error” in GNSS and InSAR observations.

GNSS provide absolute measurements of the wet delay at spatially sparse locations, while

Persistent Scatterer InSAR (PSI) is applied to build temporally-differenced maps of the wet

delay at a high spatial resolution. We present a method for estimating maps of the wet

delay eliminated by building interferograms or later when reducing the topographic phase and

orbital ramp based on the wet delay measurements at the sparse network of GNSS sites. Least

squares inversion is applied to the wet delay-difference maps derived from PSI to obtain maps

of the wet delay residuals at each SAR acquisition time, under the constraint of zero temporal

mean. We combine the complementary maps from GNSS and PSI to build absolute maps of

the wet delay at a high spatial resolution. Comparing the maps derived using the presented

approach with integrated water vapor (IWV) maps from MERIS (MEdium Resolution Imaging

Spectrometer) demonstrates strong spatial correlation up to 92%. The difference maps have a

normal distribution with root mean square values below 1 mm (IWV), for 5 different examples.

The second objective of this work is to achieve a rigorous data fusion of the derived absolute

wet delay and IWV maps simulated by the Weather Research and Forecasting Modeling System

(WRF). The fusion strategy should properly address the problems of computational burden for

massive data, incompatible support, gaps and noise. Therefore, we exploit the methodology

of spatial statistical data fusion (SSDF). SSDF extends the approach of fixed-rank kriging

(FRK), which is used for data prediction from single sets, for assimilating multiple data sets.

The FRK covariance model highly reduces the computational complexity for obtaining the

predictions and uncertainties, solves the change of data support (see 4) and it does not require

the assumptions of stationarity and isotropy. The maps inferred based on the SSDF have better

correlation with MERIS maps than those predicted from single data sets and the artifacts that

might exist in single sets are suppressed. The results show that the difference between the

maps computed by applying the SSDF method and MERIS has a root mean square value of

less that 1 mm (IWV), while the maps predicted from single sets show larger values.
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Kurzfassung

Eine präzise Bestimmung von atmosphärischem Wasserdampfgehalt ist von größer Bedeutung

für Meteorologie und Klimaforschung. Elektromagnetische Wellen von Globalen Satellitennav-

igationssystemen (GNSS) oder RADAR Interferometrie (InSAR) werden auf dem Weg vom

Sender zum Empfänger beeinträchtigt. Die Einflüsse der Erdatmosphäre können in iono- und

neutrosphärische Einflüsse eingeteilt werden. Die Neutrosphäre ist für Mikrowellen mit Fre-

quenzen weniger als 30 GHz nicht dispersiv und deren Einflüsse können nicht durch lineare

Kombination von Mehrfrequenzmessung eliminiert werden. Die neutrosphärischen Einflüsse

lassen sich in eine trockene Komponente, verursacht durch trockene Gase, und eine feuchte

Komponente, verursacht durch Wasserdampf, unterteilen. Obwohl der Einfluss der feuchten

Komponente weniger als 10% beträgt, enthält dieser jedoch wertvolle Informationen über den

Wasserdampfgehalt in der Neutrosphäre. Diese Fehlerquelle wird in dieser Arbeit als nützliche

Information benutzt um den atmosphärischen Wasserdampfgehalt zu bestimmen.

Die Nutzung von InSAR zur Wasserdampfbestimmung hat ein größes Potential, da aus

InSAR 2D Wasserdampffelder in höher räumlicher Auflösung bestimmt werden können. Da

die InSAR Messungen relative zu einem Referenzbild definiert werden, sind die modellierten

Wasserdampfgehälter somit auch relative Werte. Im Gegensatz zu InSAR, werden absolute

Werte des Wasserdampfgehaltes mit der Precise Point Positioning (PPP) Strategie aus GNSS

Phasenbeobachtungen bestimmt. Im Hauptteil dieser Arbeit wird eine Strategie für die Kom-

bination von InSAR und GNSS entwickelt um die gesamten räumlich hochaufgelösten integri-

erten Wasserdampfwerte (IWV) bestimmen zu können. Die Ergebnisse werden anschließend

mit den integrierten Wasserdampfwerten aus MERIS (MEdium resolution Imaging Spectrom-

eter) validiert. Die Validierung der Daten gegen MERIS zeigt eine hohe räumliche Korrelation,

welche 92% erreicht. Die RMS-Werte der Differenzen zwischen den Wasserdampfgehaltkarten,

die basierend auf der entwickelten Strategie ermittelt wurden, und deren von MERIS sind

unter 1 mm IWV.

Ein weiteres Ziel der Arbeit ist es ein Verfahren zu entwickeln, das eine rigorose Fusion

von den Wasserdampfgehaltkarten, welche den Wasserdampfgehalt aus der Kombination von

InSAR und GNSS ableiten, und Karten von dem Model Weather Research and Forecasting

(WRF) ermöglicht. Das Fusionsverfahren soll verschiedene Faktoren betrachten: Rechen-

zeit für größe Datensätze, change of support problems, Datenlücken, und Rauschen in den

Daten. In dieser Arbeit wird das räumliche-statistische Datenfusionsverfahren (spatial sta-

tistical data fusion, SSDF) benutzt. Der Verfahren ist für die Datensätze von WRF und
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InSAR-GNSS angepasst. Die Ergebnisse der Fusion werden anschließend mit den integrierten

Wasserdampfwerten aus MERIS validiert. Die Ergebnisse der Fusion produzieren, im gegen-

satz zu den einzelnen Datensätzen, genauere und durchgängige IWV Karten.
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1 Introduction

Over the past twenty years, repeat-pass spaceborne Interferometric Synthetic Aperture Radar

(InSAR) has been widely used as a geodetic technique to generate maps of the Earth’s topogra-

phy and to measure surface deformation. In this work, we exploit InSAR as a meteorological

tool to derive maps of water vapor content in the atmosphere. Water vapor resides in the

electrically-neutral atmosphere (neutrosphere) even under clear skies, and its content shows

high variations over time and space. It is the most active greenhouse gas in the atmosphere and

it influences the Earth’s radiation budget, energy transfer, cloud formation and precipitation.

Therefore, it is a key element in climate studies and weather forecasting. Also, water vapor

got high attention in the field of active microwave remote sensing systems, such as InSAR

and Global Navigation Satellite Systems (GNSS). Microwave signals transmitted from remote

sensing sensors are delayed by atmospheric water vapor, which increases the time they need to

reach the ground. Although it contributes to less than 10% of the total neutrospheric delay,

this delay is considered as a significant source of limitation in InSAR and GNSS applications.

That is because water vapor content is highly variable in time and space which makes the cor-

responding delay not easily modeled. The time delay caused by water vapor, called wet delay,

can be related to the integrated water vapor (IWV) content along the signal path; hence, we

consider IWV and wet delay as two sides of the same coin.

InSAR has been used to generate high-resolution maps of the Earth’s surface topography

[Zebker and Goldstein, 1986]. One of the projects established for generating digital elevation

models (DEM) of the Earth’s surface is the Shuttle Radar Topography Mission (SRTM), which

provides DEM maps up to latitudes of 60◦ at a spatial resolution of 30-90 m. The TanDEM-X

(TerraSAR-X Add-on for Digital Elevation Measurements) is a radar mission started in 2010

with the primary goal of deriving global DEM maps at a resolution of 12 m and an absolute

height accuracy of 10 m [Eineder et al., 2012]. InSAR has also been widely used to study

geodynamic processes, where the main advantage of InSAR is the ability to provide maps of

surface deformation at a high spatial resolution, particularly in regions where in situ measure-

ments are impossible. This includes using InSAR observations, for example, to detect crustal

deformation from single interferograms [Massonnet et al., 1993; Wright et al., 2003; Zebker

et al., 1994] or by time series analysis [Ferretti et al., 2001; Hetland et al., 2012; Hooper et al.,

2007], to measure volcanic inflation [Hooper et al., 2004; Lu, 2007] and to observe surface sub-

sidence [Hoffmann et al., 2003; Meyer et al., 2007; Osmanoglu et al., 2011; Plattner et al., 2010].
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1. Introduction

One of the limiting error sources in the measurement of, for example, crustal deformation

using repeat-pass InSAR is the effect of spatial and temporal variations of the propagation

delay due to turbulent mixing of atmospheric water vapor [Hanssen, 2001; Williams et al.,

1998; Zebker et al., 1997]. Several studies have been carried out to develop robust methods for

mitigating the effect of neutrospheric distortions in InSAR interferograms either by stacking

or calibration based on external data. Based on the fact that the neutrospheric wet delay is

uncorrelated for time periods longer than one day [Hanssen, 2001; Williams et al., 1998; Zebker

et al., 1997], the stacking approach mitigates the delay by averaging an adequate number of

independent interferograms [Peltzer et al., 2001; Sandwell and Price, 1998; Schmidt et al., 2005;

Wright et al., 2001]. The neutrospheric artifacts can also be mitigated by temporal filtering

or smoothing in time series analysis, which have, for instance, been proposed by [Adam et al.,

2005; Ferretti et al., 2001; González et al., 2010; Hooper et al., 2007; Kampes, 2005]. Reducing

neutrospheric noise via calibration involves the elimination of a part or all of the delay using

data from independent sources. Delacourt et al. [1998] used a model originally developed for

correcting the neutrospheric delay in GPS (Global Positioning Systems) for correcting InSAR

interferograms. Data from near-IR sensors such as MODerate resolution Imaging Spectrometer

(MODIS) and MEdium Resolution Imaging Spectrometer (MERIS) have been successfully used

to correct water vapor distortions in InSAR interferograms as presented in [Li et al., 2005] and

[Li et al., 2006b], respectively. Also, data from GNSS networks have been used by [Doin et al.,

2009; Li et al., 2006a; Onn and Zebker, 2006] to model and correct the elevation-dependent

wet delay (vertically-stratified wet delay) in study areas with strong topography. Numerical

atmospheric models provide maps of IWV and meteorological data, which have also been

exploited for correcting the neutrospheric phase distortions [Foster et al., 2006; Gong et al.,

2010; Wadge et al., 2002]. The correction of the wet delay using the introduced methods

has different limitations. Calibration of the neutrospheric delay using data from MODIS and

MERIS is limited under the presence of cloud coverage, while the sparse spatial distribution of

the sites is the main limitation of the GNSS data. In addition, based on data from the GNSS,

neutrospheric effects with a wavelength longer than the sites spacing and signals correlated

with surface elevation can be reduced. The correction of short-scale (say, less than 15 km)

neutrospheric distortions, however, requires highly-dense GNSS sites within the interferogram.

The use of numerical atmospheric models is still limited by the coarse horizontal resolution,

unpredictable weather and sensitivity of the model to the boundary conditions.

In the aforementioned studies, the atmospheric effects have been addressed as an error term

that should be corrected. Since InSAR and GNSS are affected by the atmosphere in a similar

way [Onn and Zebker, 2006], this “error” signal can be investigated as a valuable source

of information to determine the atmospheric water vapor content. Since the 1990’s, GNSS

observations have been considered as an efficient tool for atmospheric sounding. Different

studies were carried out to prove the potential of the neutrospheric parameters estimated from

GNSS observations [Bevis et al., 1992; Rocken et al., 1995]. Since then, numerous studies

have been carried out for estimating and mapping water vapor in the atmosphere using GNSS

observations [Bai and Feng, 2003; Bender et al., 2008; Jade and Vijayan, 2008; Karabatić et al.,
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2011; Luo et al., 2008]. Using InSAR observations as a meteorological tool is a relatively new

research field. The focus of previous research was put on comparing the neutrospheric phase

maps in InSAR with data from numerical weather models, GNSS and MERIS to anticipate the

ability of these data to mitigate phase distortions in InSAR images. Pichelli et al. [2010] have

compared IWV maps from MM5 model (Mesoscale Model, http://www.mmm.ucar.edu/mm5)

with the corresponding maps from InSAR. The results presented by the authors show good

agreement between the IWV difference maps from InSAR and MM5. Therefore, they suggested

the assimilation of water vapor fields derived from InSAR with data from MM5 to improve the

model resolution and the structure of atmospheric patterns. Mateus et al. [2010] compared

IWV content estimated from GNSS observations with IWV difference maps extracted from

InSAR interferograms. IWV estimates (temporal differences) from GNSS observations show

similar values and similar spatial variations to those derived from InSAR. Also, the results

presented by Meyer et al. [2008] show a good agreement between IWV maps derived based on

persistent scatterer InSAR (PSI) and the corresponding maps from MERIS.

In this work, we use data from PSI, GNSS, MERIS and numerical weather prediction (NWP)

models to quantify and analyze water vapor content and properties. These systems show

complementary temporal or spatial properties. Figure 1.1 shows IWV content in the at-

mosphere, at SAR overpass time on 09.05.2005 (format: month.day.year), produced by four

systems: (a) GNSS, (b) PSI, (c) MERIS and (d) Weather Research and Forecasting Model-

ing System (WRF). The method of Precise Point Positioning (PPP) is applied to the GNSS

measurements to produce time series of the total (absolute) atmospheric content of IWV at a

temporal resolution of 60 minutes. These measurements are available at horizontally distant

sites (Figure 1.1 (a)), such that continuous 2D fields of IWV can be generated using inference

techniques. However, short-scale spatial variations of water vapor cannot be observed based

only on spatially-sparse GNSS measurements, even by using highly sophisticated interpola-

tion techniques. PSI can be used to derive fields of IWV content at a high spatial density

where atmospheric patterns within sub-kilometer range are detected. Since PSI observations

are obtained with respect to a reference scene, they do not provide the total (absolute) con-

tent of water vapor, rather they measure temporal and spatial differences of IWV as shown

Figure 1.1 (b). Moreover, InSAR data are lost in areas of low coherence such as forests,

vegetation regions and over water surfaces. MERIS is a near-IR sensor such that the observa-

tions of IWV under cloud cover are extremely underestimated and thus not representative for

IWV content in the atmosphere. In (c) is shown a map of IWV measured by MERIS under

clear weather. WRF is a NWP model that provides simulations of atmospheric parameters.

The IWV maps generated by WRF have relatively coarse spatial resolution (here 3×3 km2),

so they do not model small-scale structures in the atmosphere. The model output data are

limited by the selection of initial conditions and the model configurations for boundary layers.

Therefore, IWV maps received from WRF may deviate from the actual state of the atmo-

sphere. In Figure 1.1 (d), we illustrate an example for an IWV map generated by the model,

which shows a poor spatial correlation with the map measured by MERIS in some regions and

good correlation in others.
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1. Introduction

Combination of GNSS and InSAR IWV observations taking the benefit of their comple-

mentary properties is considered as a promising strategy to build 2D fields of absolute IWV

content. These maps can be investigated for (i) to better understand and model temporal and

spatial variations of water vapor, (ii) to test the influence of local observations in improving

the estimation of initial conditions for the WRF model and the ability to model short-scale

variations due to turbulent mixing of water vapor and (iii) to better adjust the configurations

of the boundary layer. If the assimilation of these maps into the model can improve the quality

of the output data and the ability to model short-scale variations of water vapor, then the

maps generated by the WRF model can successfully be used in a reverse way to correct for

the neutrospheric delay in InSAR and GNSS measurements.

(a) GNSS (b) PSI

(c) MERIS (d) WRF

Figure 1.1: IWV derived from GNSS, PSI and MERIS observations and WRF simulations at
the SAR overpass time on 09.05.2005. The resolution of MERIS and WRF data are,
respectively 0.3×0.3 km2 and 3×3 km2. PSI provides point-level data with a density
of 11 points/km

2
. The minimum spacing between the GNSS sites approximates

20 km.
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1.1. Objectives

1.1 Objectives

In this work, the focus is put on the time delay caused by atmospheric water vapor in InSAR

and GNSS observations as a data source for water vapor mapping. Persistent Scatterer InSAR

(PSI) methods are used to derive wet delay-difference maps, where a large component is

eliminated by interferometric data processing. The primary objective of the work is to achieve

a proper combination of the wet delay derived from PSI and GNSS observations to reconstruct

the eliminated wet delay signal and build maps of absolute wet delay, which can be converted

into IWV content. Because wet delay is correlated in space, we use statistical interpolation

methods to produce wet delay over regular grids. We then apply spatial statistical data fusion

of the wet delay maps derived from the combined PSI-GNSS solution and IWV (converted

into wet delay) maps from WRF.

As will be explained in Chapter 5, we extract maps of the neutrospheric phase from InSAR by

processing a stack of coregistered images using the PSI technique. Separating the displacement

phase component from InSAR interferograms may pose a challenge depending on the surface

motion in the test area. In our test region, however, only very small long-term tectonic

motions were observed, such that the corresponding phase in the interferogram can reasonably

be assumed negligible. The neutrospheric phase maps at each SAR acquisition are obtained

by least squares (LSQ) inversion. These maps contain only a component of the neutrospheric

phase, while a large part of the phase vanished due to interferogram formation. At the GNSS

sites distributed within the SAR image, the total neutrospheric delay is estimated during GNSS

data processing. In the presence of meteorological observations of air pressure, temperature

and relative humidity, the delay due to water vapor (wet delay) can be accurately determined.

Based also on meteorological data, a value of the empirical constant used to convert the wet

delay into IWV content is calculated. The main advantage of GNSS wet delay estimates over

those from PSI is that they determine the total (absolute) wet delay, while PSI provides only

the residuals of the wet delay. Based on GNSS wet delay observations we model the wet delay

components eliminated in PSI processing. We combine the modeled component with the wet

delay-partial maps derived from PSI to derive 2D fields of the absolute wet delay.

Several authors have suggested the mitigation of neutrospheric effects in InSAR by using

GPS observations [Emardson et al., 2003; Li et al., 2006a; Williams et al., 1998]. Nevertheless,

the authors have mentioned that the success of this approach to model high spatial variations of

water vapor is limited by the spatial density of the GNSS sites. We use GNSS measurements to

reconstruct the subtracted wet delay signal. This includes estimating the wet delay component

that is correlated with topography and a signal that has a wavelength larger than the sites

spacing (2D linear trend). This means that the GNSS sites do not have to be dense, but they

should be well distributed within the SAR scene to properly cover the entire topography range.

IWV fields generated by combining GNSS and PSI observations produce absolute, accurate

and spatially dense measurements, but the measurements may be absent in forest and vege-
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1. Introduction

tated regions. WRF on the other side, provides continuous less accurate fields of IWV at a

coarser horizontal resolution. Therefore, the other objective of this work is to fuse IWV from

the combined PSI-GNSS measurements and WRF simulations to infer IWV values at contin-

uous grids of a predefined resolution and to measure the quality of the predictions. We take

the benefit of the model to obtain values of the wet delay in areas where no remote sensing

measurements are available.

1.2 Contributions

This thesis signifies the importance of GNSS and InSAR or PSI systems as successful meteoro-

logical tools for measuring IWV content in the atmosphere. Moreover, within this research we

investigate spatial statistical data fusion of remote sensing observations of IWV from GNSS

and PSI and data from the WRF model. In particular, (i) we use meteorological observations

to derive time series of the wet delay from the total neutrospheric delay estimated during

GNSS data processing. (ii) We develop a new method that uses wet delay observations from

the GNSS sites distributed within the SAR image to reconstruct the delay components van-

ished when building interferograms. This includes modeling an elevation-dependent component

and a linear trend. Since the GNSS sites are sparsely distributed within the SAR image, we

first estimate an elevation-dependent wet delay component and then the residuals are used to

model the long-wavelength trend. We combine the elevation-dependent wet delay, the long-

wavelength wet delay and the wet delay-partial map extracted from the interferograms to build

absolute maps of the wet delay. (iii) We apply spatial statistical data fusion to assimilate the

wet delay maps derived in (ii) with water vapor maps from WRF first, to even out the deficits

of each data set and second, to test the influence of local measurements on the quality of the

maps generated by the model.

1.3 Outline

Chapter 2 presents a background overview of atmospheric physics. We focus on water vapor

and the instrumentation used to measure its content in the atmosphere. We discuss the

importance of understanding and modeling water vapor for environmental purposes and for

remote sensing applications. We also present the models used to quantify the content of IWV

based on meteorological parameters.

Chapter 3 presents the test site and the reasons behind its selection. We present also a brief

description of the data sets investigated in this work and the spatial and temporal properties

of each set.

Chapter 4 presents the interpolation and estimation techniques we used in this work. We

describe the difference between the geostatistical and non-geostatistical techniques and the
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reasons to use both of them. We discuss the limitations of the ordinary kriging and how they

are overcome by using the fixed-rank kriging. We present an example of using ordinary kriging

and fixed-rank kriging to interpolate scattered IWV data from single data sets.

In Chapter 5, we discuss the methods exploited to obtain estimations of the IWV from

GNSS and InSAR observations. We present the method of precise point positioning as a

processing strategy of GNSS observations. Then the Stanford Method for Persistent Scatterers

(StaMPS) applied to retrieve wet delay maps from the interferogram is presented. We present

a comparative analysis of our results with IWV maps from MERIS and WRF.

In Chapter 6, we present the method we developed to combine wet delay observations from

PSI and GNSS to build absolute maps of the wet delay. We present comparisons of the results

with IWV measured by MERIS.

In Chapter 7, we discuss the method of spatial statistical data fusion which is applied to

fuse maps of absolute wet delay derived in Chapter 6 with IWV maps from WRF. We present

the mathematical background of the algorithm and the possible difficulties. We discuss the

results of the fusion and compare them with available data from MERIS.

Chapter 8 presents a summary of the results achieved in this work followed by suggestions

for possible future investigations.
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2 Physics of the Earth’s atmosphere

In this chapter, we describe the effect of the Earth’s atmosphere on microwave signals trans-

mitted by space-borne transmitters such as GNSS and Synthetic Aperture Radar (SAR). The

atmosphere is a heterogeneous medium extending to altitudes of 1000 km above the Earth’s

surface, with significant variations in its physical parameters such as temperature, pressure

and humidity, particularly in the vertical direction. It is classified based on the electrical

characteristics into two layers, the ionosphere and the neutrosphere. The ionosphere, which

extends from altitudes of about 50 to 1000 km above the Earth’s surface [Misra and Enge,

2001, p. 162], contains electrically charged particles. The neutrosphere is, however, electrically

neutral and represents approximately the lowest 50 km of the atmosphere.

Electromagnetic signals transmitted from space-borne sensors encounter inevitable changes

when they propagate through the atmosphere. The atmosphere changes the propagation speed

of the microwave signals in a non-uniform way along the traveling path. The ratio of the signal

speed in vacuum and the its speed in a medium defines a quantity called the refractive index

of the medium [Misra and Enge, 2001, p. 169]. The medium is said to be dispersive, if its

refractive index depends upon the frequency of the signal. For radio signals of frequencies

below 30 GHz the ionosphere is a dispersive medium [Dach et al., 2007, pp. 37], while the

neutrosphere is not [Davis, 1986, pp. 17]. In Section 2.1, we briefly describe the effect of the

ionosphere on radio signals. We explain how the ionospheric delay is effectively reduced by a

linear combination of multiple frequencies in the GNSS data processing, and its negligible effect

in the InSAR data. We describe the neutrospheric layer and its constituents in Section 2.2. In

Section 2.2.1, the neutrospheric water vapor and the existing methods to measure its content

are introduced. We explain the refraction of radio signals due to dry gases and water vapor in

Section 2.2.2. In 2.2.3, we discuss how the time delay is quantified based on empirical models.

Then we describe the temporal and spatial properties of the time delay caused by water vapor

and dry gases in Section 2.2.4. In Section 2.3, we describe the conversion factor required for

translating the delay into water vapor content and vise versa. The mapping function techniques

used for modeling the zenith-directed delay in terms of the line-of-sight delay are presented in

Section 2.4.
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2.1. The ionosphere

2.1 The ionosphere

The ionosphere, the upper and largest layer of the atmosphere, contains free electrons and ions.

The degree of ionization is variable with the solar activity that is characterized by the sunspot

number. According to [Dach et al., 2007, pp. 255], the sunspot number shows a repeat cycle of

about 11 years and an 80-100 years super cycle. Figure 2.1 Depicts the sunspot numbers from

the year 1999 to 2012. In the most recent full cycle, the maximum solar activity occurred in

the years 2000-2002 and the minimum solar activity occurred in the years 2008-2010. Within

the period of our study (2003-2009), the ionospheric activity is low.
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Figure 2.1: Daily, monthly, and monthly-smoothed sunspot numbers for the past 14 years as ob-
tained from [http://www.sidc.oma.be]. The little black squares specify the sunspot
numbers at the SAR overpass time.

The ionosphere refracts radio signals transmitted from space delaying the time required by

these signals to reach the ground. This delay is determined by the number of free electrons

and ions in the ionospheric layers. In order to quantify the ionospheric delay in microwave

signals, we define the slant total electron content (TEC) over the signal path from the receiver

(R) to the satellite (S):

TEC =

∫ S

R
ne(s)ds (2.1)

where TEC is measured by TEC units (TECU), and ne is the electron density in units of

electrons/m3. The ionospheric refractive index (nI) is a function of ne and the carrier frequency

(f), such that

nI = 1− 40.3ne
f2

(2.2)

where the higher order terms in the equation above are neglected. The ionospheric delay
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2. Physics of the Earth’s atmosphere

(∆Liono) is then given by [Hofmann-Wellenhof et al., 2008, pp. 120]:

∆Liono =

∫
s
(nI − 1)ds = −40.3 TEC

f2
(2.3)

The ionosphere is a dispersive medium which means that the ionospheric delay depends

on the carrier frequency, eq. (2.3). Therefore, applying a linear combination of two or more

microwave signals transmitted at different frequencies succeeds to significantly reduce the effect

of the ionosphere on the signal transit time. GPS, for example, which transmits at several

frequencies in the L-band, employs linear combinations of L1, L2, and L5 phase observations

to effectively reduce the ionospheric refraction in the observations [Hofmann-Wellenhof et al.,

2008, pp. 126]. In repeat-pass InSAR with wavelength less than 6 cm (C- and X-band),

the ionospheric effects are generally smaller than those observed in the L-band[Gray et al.,

2000; Meyer et al., 2006]. Also, the sunspot numbers show low solar activity at the SAR

overpass time as observed from Figure 2.1, which makes the ionospheric effect in the InSAR

data negligible. For these reasons, we put the potential of this work on the neutrospheric

propagation delay in the GNSS and InSAR observations.

2.2 The neutrosphere

The neutrosphere extends to heights of about 50 km above the Earth’s surface. It is a mixture

of dry gases, mainly nitrogen and oxygen, and water vapor. The refractive index of the neutro-

sphere is slightly larger than unity (the value in vacuum); therefore, the speed of propagation

of GNSS and SAR signals in the neutrosphere differs from than that in vacuum. The excess in

the traveled path is in the approximate range of 2.5-25 m depending on the satellite elevation

angle [Misra and Enge, 2001, pp. 169]. The time delay of traveling signals is originating from

both dry gases and water vapor. The delay caused by dry gases is called the dry delay and

it shows smooth variations over time and space. The wet delay defines the excess in the sig-

nal path due to water vapor. The neutrospheric delay can also be divided into a hydrostatic

component (contains the delay and a part of the wet delay) and a non-hydrostatic component.

In the following, we present an overview of water vapor in the neutrosphere and the existing

measurement techniques. Then, we describe the influence of dry gases and water vapor on the

propagation time of radio signals.

2.2.1 Neutrospheric water vapor

Water can exist in the neutrosphere in one of three different phases: solid, liquid, or gas. Snow

and ice crystals observed in clouds represent the solid phase. The liquid phase is observed in

the rain falling from sky and clouds which are made up of tiny droplets of water. The largest
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amount of water is suspended in the atmosphere in a gaseous form called water vapor. Water

vapor is concentrated in the layer stretching from the Earth’s surface to altitudes of about

12 km, measured from sea level, and most of its amount is found in the lowest 4 km. Water

vapor is present even under clear sky conditions, but its concentration deviates from minimum

over deserts to maximum over oceans. It is characterized by high variations in time and space.

Although water vapor constitutes a small fraction of the neutrosphere compared to the dry

gases, it has a crucial impact on atmospheric processes. First, it is a major player in the hydro-

logical cycle. The content and distribution of water vapor is highly interconnected with clouds

distribution and rainfall [Bevis et al., 1992]. Second, water vapor is known to be the Earth’s

most abundant greenhouse gas, which plays an important role not only in weather but also in

climate. Greenhouse gases absorb the thermal energy radiated from the Earth’s surface and

re-radiate it in all directions. A part of the re-radiated energy goes back to the surface and the

lower atmosphere, which results in increasing the surface temperature. Water vapor has a large

latent energy associated with phase change of water; this energy redistributes continuously in

the atmosphere with the help of wind that transports water vapor horizontally and vertically.

The transmission and absorption of this heat through the circulation in the atmosphere (e.g.,

condensation and evaporation) is considered as an important component of Earth’s surface

energy budget. It is observed that a 1% increase of the water vapor content increases the

average surface temperature by more than 4◦C [Physorg, 2006]. Without greenhouse gases,

the temperature of the planet’s surface would be below freezing [Seidel, 2002].

A variety of means have been developed to continuously monitor the vertical and horizon-

tal distributions of water vapor in the atmosphere. These devices are used either from the

ground such as radiosondes and ground-based water vapor radiometers or from space such as

space-based water vapor radiometers and infra-red sensors. Radiosondes are balloon-borne in-

strument packages that provide measurements of temperature, humidity, and pressure at a fine

vertical resolution. Radiosonde measurements are, however, inadequate to resolve horizontal

variations of water vapor. Due to high costs the number of radiosonde launching is restricted

to twice daily as mentioned in Bevis et al. [1992]. Accordingly, temporal variations within

time scales of less than 12 hours cannot be resolved using radiosonde observations. Space-

based downward-looking water vapor radiometers are passive remote sensing instruments that

provide measures of water vapor content over wide spatial areas [Bevis et al., 1992]. They

determine the distribution of water vapor by measuring the amount of thermal energy radi-

ated from the Earth and absorbed by the moisture in the atmosphere. The recovery of IWV

by these devices is complicated, since it requires information of the background temperature

that is quite variable and difficult to determine over land. The use of space-based water vapor

radiometers is more suitable over oceans and their performance is degraded in the presence of

clouds [Bevis et al., 1992]. Space-borne Infra-Red sensors, such as MODIS and MERIS, have

been used to provide measurements of IWV at a high horizontal resolution. MODIS provides

IWV measurements at a resolution of 1 km, while MERIS IWV observations have a spatial

resolution of 300 m (full resolution mode). Measurements of MODIS and MERIS can only
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be provided during the day and they are degraded by the presence of clouds. In regions with

cloud cover, the measured IWV value corresponds to water vapor integrated from the sensor to

the could top. Hence, in cloudy regions, IWV measurements are significantly underestimated.

The importance of quantifying the content of water vapor in the neutrosphere is not only

arising from being a key element in the atmospheric processes, but also as a source of distortion

in high precision geodetic and imagery remote sensing applications of GNSS and InSAR. The

neutrosphere is a non-dispersive medium, for frequency bands less than 30 GHz,such that the

neutrospheric delay in general and the wet delay in particular cannot be reduced through a

linear combination of dual frequencies, rather it has to be modeled and removed from the

observations. One of the key tasks of the GNSS data processing software is to accurately

estimate and correct the neutrospheric delay [Bevis et al., 1992]. Phase observations from,

for example, InSAR exhibit temporal and spatial fluctuations most likely due to water vapor

[Zebker et al., 1997]. The wet delay caused by water vapor represents less than 10% of the

total neutrospheric delay [Misra and Enge, 2001, pp. 170], nevertheless it is a significant source

of limitation in GNSS and InSAR geodetic and remote sensing applications. That is because

water vapor content varies with weather and can change quickly in time and space, which

makes the corresponding wet delay not easily modeled. Unlike the dry delay that can be

accurately estimated from surface meteorological observations, it is not easy to predict the

wet delay [Askne and Nordius, 1987; Elgered et al., 1991].

2.2.2 Wet and dry delays

The extent of the path delay experienced by a microwave signal due to the propagation through

the neutrosphere depends on the refractive index of the air mass that varies along the signal

path. The neutrospheric refractive index (n) is related to the neutrospheric refractivity (N)

by the following formula:

n = 1 + 10−6N (2.4)

As the signal travels downwards in the neutrosphere, the increment in the signal phase can be

related to the incremental path length as follows:

dφ =
2πn(z)

λ
dz

where λ is the wavelength of the carrier signal, and the factor 2π
λ relates the path length in

meters to the phase in radians. The phase shift is then obtained by integrating along the

propagation path, i.e.,

φ =

∫
z

2πn(z)

λ
dz (2.5)

12



2.2. The neutrosphere

From eqs. (2.4) and (2.5), a signal propagating vertically in the neutrosphere arrives the

observed point, of local coordinates (x, y), with a phase shift given by:

φ(x, y) =
2π

λ

(∫ L

0
dz + 10−6

∫ L

0
N(x, y, z)dz

)
(2.6)

where L is the total path length through the atmosphere. The first integral term represents

the geometrical path from the satellite to the point at the Earth’s surface, while the second

denotes the excess in the path due to the propagation in the neutrosphere. The neutrospheric

zenith total delay (ZTD) is defined as

ZTD(x, y, t) = 10−6

∫ L

0
N(x, y, z, t)dz (2.7)

In the above equation the delay due to ray bending is neglected. Bevis et al. [1992] observed

that the bending component is small compared to the total path excess for signals traveling at

an elevation angle greater than about 15◦, while for signals traveling in the zenith direction the

bending term most likely vanishes. The dry and wet constituents of the neutrosphere affect

microwave signals differently; hence, it is convenient to classify the neutrospheric refractivity

and delay into a dry term and a wet term. eq. (2.7) can then be written as a superposition of

the two components,

ZTD(x, y, t) = 10−6

(∫ L

0
Ndry(x, y, z, t)dz +

∫ L

0
Nwet(x, y, z, t)dz

)
(2.8)

where Ndry is the dry refractivity (for dry gases) and Nwet is the wet refractivity (for water

vapor). The widely used formula for the refractivity as a function of meteorological parameters

is [Smith and Weintraub, 1953; Thayer, 1974]

N = k1
Pd
T

+
(
k2
e

T
+ k3

e

T 2

)
+ 1.4W (2.9)

Pd: Pressure of dry air in units of hecto-Pascal [hPa]

e: Partial pressure of water vapor in [hPa]

T : Air temperature in Kelvin [K]

W : Liquid water content in [g/m3]

k1, k3, k3: Physical constants

The physical constants k1, k2, k3 have been determined in different laboratory experiments,

for example [Bevis et al., 1994; Smith and Weintraub, 1953; Thayer, 1974]. Bevis et al. [1994]

adopted the values of 77.6 [KhPa−1], 70.4 [KhPa−1], and 3.739×105 [K2hPa−1] for k1, k2, and

13



2. Physics of the Earth’s atmosphere

k3, respectively. In eq. (2.9), the first term refers to the Ndry, and the term in the parentheses

denotes the Nwet. Hence, the zenith dry delay (ZDD) can be calculated from:

ZDD = 10−6

∫ L

0
k1
Pd
T
dz (2.10)

and the zenith wet delay (ZWD) is

ZWD = 10−6

∫ L

0

(
k2
e

T
+ k3

e

T 2

)
dz (2.11)

Neglecting the effect of liquid water and summing up eqs. (2.10) and (2.11), the neutrospheric

ZTD is:

ZTD = ZDD + ZWD (2.12)

2.2.3 Empirical neutrospheric a priori models

There are different empirical neutrospheric a priori models that calculate the dry and wet

delays in microwave signals based on surface meteorological data. The most popular models

were presented by [Saastamoinen, 1973] and [Hopfield, 1969]. In the Saastamoinen model, the

neutrospheric ZTD is modeled as a function of the air pressure and the partial pressure of

water vapor:

ZTDmodel = 0.002277D

[
P +

(
1255

T
+ 0.05

)
e

]
(2.13)

where the factor D depends on the altitude (z) and the geographical latitude (φ) at which the

neutrospheric delay is computed,

D = 1 + 0.0026 cos(2φ) + 0.00028 z (2.14)

The zenith dry delay (ZDDmodel) and the wet delay (ZWDmodel), according to Saastamoinen,

are given by:

ZDDmodel = 0.002277D(P − 0.155471 e) (2.15)

ZWDmodel = 0.002277D

(
1255

T
+ 0.205471

)
e (2.16)

While the dry component is accurately modeled, the model of the wet component is poor [Misra

and Enge, 2001, pp. 172]. In order to use the Saastamoinen model for accurately quantifying

the dry delay, for example, at a GNSS site, observations of the air pressure, temperature, and

the partial pressure of water vapor on the Earth’s surface are required. Since e in eq. (2.15)

14



2.2. The neutrosphere

has a value significantly smaller than P , the dry delay can be calculated based only on the

air pressure neglecting the partial pressure of water vapor. A value for e can be computed

based on observations of the air temperature and relative humidity using Using eq. (2.20), if

direct observations of e are not available. The meteorological data have to be interpolated or

extrapolated at the GNSS site, if the site is not equipped with meteorological sensors. In the

absence of meteorological observations, calculations can be made by substituting representative

values from the standard atmosphere. The meteorological parameters at a GNSS site of

an altitude (zs), in [km], can be extrapolated from the parameters at the mean sea level

(z0 = 0 [km]) as follows:

T = T0 − 6.5(zs − z0) [K] (2.17)

P = P0(1− 0.0226(zs − z0))5.225 [hPa] (2.18)

rh =
rh0

100
· exp(−0.6396(zs − z0)) [%] (2.19)

e =
rh

100
· exp (−37.2465 + 0.2131665T − 0.000256908T 2) [hPa] (2.20)

The standard values of the air temperature (T0), the air pressure (P0), and the relative humidity

(rh0) at the mean sea level are:

T0 = 291.15 [K]

P0 = 1013.2 [hPa]

rh0 = 50%

(2.21)

The eqs. (2.17) to (2.20) and eq. (2.21) are reported in [Dach et al., 2007, p. 243].

2.2.4 Neutrospheric delay in time and space

Both dry and wet delay vary temporally and spatially (horizontally and vertically); however,

the wet delay is more variable. Due to the variations in the atmospheric layer thickness and the

refractivity profiles of the neutrosphere in the vertical direction, the neutrospheric effects (dry

and wet) are proportional to the surface altitude. In Figure 2.2, the expected neutrospheric

delay at point B, which exists at a higher altitude, is less than that at point A due to variations

in pressure, temperature and the thickness of the neutrospheric layer above each point. The

delay varying in the vertical direction is called vertically-stratified delay.

Variations of dry delay are linked to the variations in the pressure of dry gases, which have

smooth spatial variations with long wavelength and so does the dry delay. In time, the pressure

of dry gases shows small variations, especially if the variations of the air temperature are small.

This makes the dry delay quite repeatable [Zebker et al., 1997]. Vertical profiles of dry delay

observations show a clear reduction in the dry delay by moving upwards away from the Earth’s

surface.
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2. Physics of the Earth’s atmosphere
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Figure 2.2: Stratified refractivity and turbulent mixing in the neutrosphere. If microwave signals
are received at points A, B, the neutrospheric delay at point B is lower. Turbulent
mixing above point C makes the delay larger compared to that at point B, despite
being at the same altitude.

Short-scale spatial variations of the wet delay results from turbulent mixing of water vapor

in the neutrosphere, called turbulently-mixed wet delay. Atmospheric turbulence is associated

with short-scale, irregular air motions at different speeds and in different directions. This oc-

curs because, when solar radiation heats the Earth’s surface, the air above it becomes warmer

and more buoyant, and cooler, denser air descends to displace it. The resulting vertical move-

ment of air together with flow disturbances around surface obstacles, makes low-level winds

extremely irregular. Atmospheric turbulence up to heights of approximately 2 km causes

transport and mixing of water vapor, changing its distribution vertically and horizontally.

Due to the strong variations of water vapor distributions and the strong consistency of the

dry delay, water vapor is considered as an approximate tracer of the variations in the neutro-

spheric refractivity. It is also the main source of the temporal and spatial fluctuations of the

neutrospheric wet delay observed in GNSS and PSI measurements. Temporally, the wet delay

is uncorrelated for time periods longer than one day [Hanssen, 2001; Williams et al., 1998;

Zebker et al., 1997]. In Figure 2.2, the neutrospheric delay at point C is greater than the

delay at point B, although they exist at the same altitude. This is due to the turbulent mixing

in the surrounding of point C that raises the value of the wet delay.

Spatial and temporal variations of the wet delay can be described by statistical functions

such as the power spectral density or structure functions [Hanssen, 2001; Onn, 2006; Treuhaft

and Lanyi, 1987]. Kolmogorov elementary theory of turbulence [Tatarskii, 1961] describes the

expected theoretical parameters of these statistical functions and defines the theoretical spatial

patterns of water vapor patches (see Section 5.2.6). Water vapor has been considered as an

approximate tracer of the atmospheric turbulence [Ishimaru, 1978]; therefore, temporal and

spatial fluctuations of water vapor (or wet delay) should also follow the theory of Kolmogorov.

On the basis of the temporal and spatial properties of the dry and wet delays in microwave

signals, the neutrospheric delay measured at any point on the Earth’s surface can be classified

into a homogeneous component and a heterogeneous component. The homogeneous component

is a dry delay of a value proportional to the thickness of the neutrospheric layer above the

observed point. The heterogeneous component is a sum of dry and wet delays varying with
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2.2. The neutrosphere

the weather conditions and the path of the transmitted signal. This classification will be

required to detect which components of the water vapor are eliminated by building InSAR

interferograms.

In Figure 2.3, we show IWV maps measured by MERIS at two different times as well as

the corresponding map of surface topography. We observe that the map in (a) is dominated

by the vertically-stratified IWV, such that we can observe high correlation between the IWV

map and the map of surface topography. In (b), however, we observe the large content of IWV

distributing from the south west due to the turbulent mixing in the neutrosphere. Evidence

for the high neutrospheric activity during the acquisition time is the presence of clouds, which

is visible as white areas in the southern part of the map in Figure 2.3 (b).
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(a) IWV on 07.17.2006
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(b) IWV on 04.23.2007
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Figure 2.3: IWV maps measured by MERIS and the corresponding surface topography. The
maps show the IWV dominated by the stratified water vapor (a) and turbulently-
mixed water vapor (b). Empty areas in the map in (b) indicate the presence of
clouds.
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2. Physics of the Earth’s atmosphere

2.3 Relation between wet delay and water vapor

The relations between vertically integrated water vapor at any point on the surface and the

ZWD at that point has been studied by several researchers, such as [Askne and Nordius, 1987;

Bevis et al., 1994; Emardson and Derks, 2000; Webley et al., 2002]. Based on their findings,

the path delay can be converted to IWV content by the following relation:

IWV = Π · ZWD and ZWD = Q · IWV (2.22)

Please note that the above relation is given in Bevis et al. [1992] to calculate the total pre-

cipitable water. However, taking into account the density of liquid water (approximately

1 g/cm3), the IWV expressed in kg/m2 is equivalent to the total precipitable water expressed

in mm. Q = 1
Π and Π is an empirical constant calculated from a formula presented by Askne

and Nordius [1987] and reported in Bevis et al. [1994], i.e.,

Π =
106

ρwRw

(
k3

Tm
+ k2 − k1

Mw

Md

) (2.23)

Tm: Weighted mean temperature of the atmosphere in [K]

ρw: Density of water

Rw: Specific gas constant of water vapor [8.134 J/mol·K]

Mw: Molar mass of water vapor in [18.0152 g/mol]

Md: Molar mass of dry air in [28.9644 g/mol]

The values for Rw,Mw and Md are given in Askne and Nordius [1987]. The factor Q has been

derived empirically, and is reported in [Schüler, 2001, pp. 186]:

Q ≈ 0.10200 +
1708.08

Tm
(2.24)

Several empirical relations were developed to determine the mean temperature based on surface

temperature [Bevis et al., 1994, 1992; Davis et al., 1985; Schüler, 2001]. We compute Tm from

the expression presented by Bevis et al. [1992]:

Tm ≈ 70.2 + 0.72Ts (2.25)

Ts is the surface temperature in [K]. According to Bevis et al. [1992], this linear regression

allows the estimation of the mean temperature with an RMS relative error of less than 2%. As
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2.3. Relation between wet delay and water vapor

a rule of thumb, Π = 0.15, suggested by Bevis et al. [1994], is commonly used in atmospheric

research, but the actual value is varying with the surface temperature. In [Leick, 2004, pp. 201],

the factor Q has a value in the range of 5.9-6.5. Webley et al. [2002] carried out a study over

Europe to compute the value of Π from different models. The analysis was done for two time

intervals: the first interval includes ten days in August/September 2000, where Q changed

from 6.15 to 6.5. The second interval includes ten days in October 2000 and the range of Q

was 6.25-6.5.

We consider the study interval examined by [Webley et al., 2002] to be a short time window

and it neither examines low temperature in winter nor high temperature in Summer. In

order to test the sensitivity of Q to the surface temperature, we used the model of eq. (2.24)

to compute its value over 96 days in the years 2002 and 2004. The values of Q calculated

using observations of the surface temperature from three meteorology stations are depicted in

Figure 2.4. We observed that Q is in the range 6.039-6.633 using the observations of year

2002, while it varies from 6.047 to 6.570 in the year 2004. The value of Q is linearly decreasing

with a slope of -0.0236/[K] and -0.0232/[K] for the years 2002 and 2004, respectively. It is

evident that the value of Q (and hence Π) depends significantly on Ts, which should have

accurate values to obtain accurate values for Q.
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Figure 2.4: The empirical constant Q = 1
Π calculated based on the surface temperature measured

by three meteorology stations and their average. The measurements taken at 10:00 am
over 96 days (8 days/month) in the years 2002 and 2004 are used in the calculations.
The slope of the red line in (a) is -0.0236/[K], and -0.0232/[K] for the red line in (b)

We found that inaccurate values of Q can cause a significant bias in the ZWD or IWV values

after conversion if the amount of water vapor in the atmosphere is large. Hence, we calculated

the value of Q from the linear regression in eq. (2.24) on the basis of surface temperature

measurements at SAR acquisition times. The result is depicted in Figure 2.5, where one

value is calculated at each SAR acquisition time. As observed from the figure, the value of
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2. Physics of the Earth’s atmosphere

Q determined from the temperature measurements is less than 1
0.15 and there is a significant

change with the surface temperature. We concluded that the value of Π = 0.15 is not suitable

for our test site, in the Upper Rhine Graben (URG).
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Figure 2.5: Empirical constant Q calculated based on measurements of the surface temperature.
Each blue square refers to the value of Q used at each SAR acquisition time. The
red line represents the value of Q = 1

0.15 .

2.4 Mapping functions

The dry or the wet neutrospheric delay along the satellite LOS is modeled by the product of

the zenith delay and a geometric factor, referred to as the mapping function [Niell, 1996]. The

mapping function (MF) describes the dependence of the delay on the elevation angle assuming

azimuthal symmetry [Niell, 1996]. Scientists have proposed a number of MFs starting from

simple models to sophisticated ones. The simplest model of an MF is

MF(θel) =
1

sin θel
(2.26)

where θel is the satellite elevation angle (see Figure 2.6). This model is reasonable if the

satellite is transmitting signals at high elevation angles, while it is poor for low-elevation

satellites. A more sophisticated model was proposed by Marini [1972] by expanding in a

continued fraction in terms of sin θel

MF(θel) =
1

sin θel +
a

sin θel +
b

sin θel +
c

· · ·

(2.27)

where a, b, and c are constant coefficients. The form in eq. (2.27) was the basis for the most

further MFs [Boehm and Schuh, 2004; Herring, 1992; Niell, 1996], except for [Lanyi, 1984].

Moreover, forms were developed for mapping the wet and dry delays independently. In this
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2.4. Mapping functions

work we use the model suggested by Niell [1996] for mapping wet and dry delays at elevation

angles down to 3◦, which has the following form:

MF
Niell,i

(θel) =

1 +
ai

1 +
bi

1 + ci

sin θel +
ai

sin θel +
bi

sin θel + ci

(2.28)

where the subscript i in the equation defines either a wet or a dry MF. The coefficients ai, bi,

and ci are empirically determined and depend on the latitude and altitude of the observing

site for the dry MF, while the wet MF requires only the site latitude [Niell, 1996]. Using a

proper MF, the SWD can be obtained from the IWV as follows:

SWD = MFwet ·Q · IWV (2.29)

where MFwet is the wet MF. We remind the reader that eq. (2.29) does not consider the

azimuthal anisotropy of the neutrosphere. Therefore, we describe in Chapter 5 a method to

model the total LOS delay by using neutrospheric gradients and phase residuals.

The need for sophisticated MFs grows if the satellite flies at low elevation angles. For Envisat

SAR system, the acquisitions are made with a side looking satellite at incidence angles (off-

nadir angles) of about 23◦. Thus, for mapping the delay estimated over the radar LOS to the

zenith direction, the following MF is suitable:

MF(θel) =
1

cos θinc
(2.30)

with θinc the incidence angle of the SAR.

SAR GNSS

θ
el

θ
inc

Figure 2.6: Elevation and incidence angles for a GNSS satellite and a SAR, respectively.
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3 Data sets and study region

In this chapter, we present the study region and the data sets used in this work either for

estimating water vapor or for comparing and evaluating our estimates. We first describe the

study region and the reasons behind its choice. SAR data and their location are presented

in Section 3.2. In Section 3.3, we describe the GNSS database and present the neutrospheric

ZTD time series, which are used for computing the wet delay. In Section 3.4, we describe the

importance of the meteorological data for precisely extracting the wet delay from the total

neutrospheric delay. We describe the extraction of water vapor information from MERIS data

in Section 3.5, which are used later for evaluating our estimates of water vapor. Meteorolog-

ical data, including water vapor maps, are received from the model of WRF as presented in

Section 3.6. The temporal and spatial properties of all data sets are then summarized at the

end of the chapter.

3.1 Study region: Upper Rhine Graben

We selected the area of Upper Rhine Graben (URG) as a test region for this study for two

reasons: the first reason is, the high availability of data, i.e., the region is well-covered by

GNSS sites and it is increasingly acquired by synthetic aperture radar. Second, it has been

shown in earlier studies that the tectonic deformation rate in the area of URG does not exceed

0.5 mm/year [Fuhrmann et al., 2012]. Hence, we can consider surface deformation to have a

minimal contribution in the interferometric phase. This is important for the InSAR processing,

where it is often challenging to separate the atmospheric phase from the crustal deformation

phase. Figure 3.1 shows the study region, the locations of the GNSS sites, the SAR image

location, and the location of meteorological stations.

3.2 InSAR data

SAR data acquired by the ESA (European Space Agency) Envisat satellite are collected over

the region indicated by the gray box in Figure 3.1 The captured images contain urban areas

and natural terrain with smooth topography. We built a stack of 17 co-registered advanced

SAR (ASAR) scenes covering an area of 100× 100 km2 that is centered on 49 09’ 38”N, 8 04’

45”E. The images are acquired in the time period of 2003 to 2008 during descending passes at
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Figure 3.1: Study region in the Upper Rhine Plain (Graben). The little red squares indicate the
locations of the GNSS sites in Germany, France, and Switzerland, while the yellow
circles indicate the locations of the meteorology stations. The frame of the SAR
image is shown by the gray box.

time interval of multiples of 35 days. Detailed information about the ASAR images is given

in Table 3.1. Interferometric SAR (InSAR) processing is applied with respect to a single

reference image (called the master) acquired on 06.27.2005 at 09:51 (UTC). The master scene

has been selected such that the neutrospheric effects in the image are minimum. The temporal

and spatial distribution of the images is shown in Figure 3.2. A map for surface topography

is required in the InSAR data processing; therefore, we use a laser digital elevation model

(DEM) of a spatial resolution of 10 × 10 m2. Persistent scatterer InSAR (PSI) processing is

applied to the built interferograms in order to identify stable points that are used to estimate

the neutrospheric phase maps. The processing of InSAR data for atmospheric mapping will

be described in Chapter 6.
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3. Data sets and study region

ID Acquisition day Acquisition time (UTC) Orbit Frame Processing

1 12.15.2003 09:51:28.09 9366 2614 SLC
2 07.12.2004 09:51:32.83 12372 2614 SLC
3 11.29.2004 09:51:30.57 14376 2614 SLC
4 01.03.2005 09:51:24.50 14877 2614 SLC
5 02.07.2005 09:51:27.67 15378 2614 SLC
6 03.14.2005 09:51:26.18 15879 2614 SLC
7 04.18.2005 09:51:32.54 16380 2614 SLC
8 05.23.2005 09:51:33.44 16881 2614 SLC
9 06.27.2005 09:51:35.22 17382 2614 SLC
10 08.01.2005 09:51:32.54 17883 2614 SLC
11 09.05.2005 09:51:29.05 18384 2614 SLC
12 11.14.2005 09:51:31.06 19386 2614 SLC
13 07.17.2006 09:51:31.20 22893 2614 SLC
14 10.30.2006 09:51:29.90 24396 2614 SLC
15 01.08.2007 09:51:24.39 25398 2614 SLC
16 04.23.2007 09:51:23.21 26901 2614 SLC
17 12.08.2008 09:51:18.55 35418 2614 SLC

Table 3.1: Available SAR scenes.
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Figure 3.2: Temporal and perpendicular baselines corresponding to each ASAR scene.

3.3 GNSS data

The GNSS data are received from a set of permanent GNSS sites located in the Upper Rhine

region, as illustarted in Figure 3.4. These sites belong to the GNSS Upper Rhine Graben

Network (GURN). GURN is a cooperative project between the Geodetic Institute Karlsruhe

(GIK, Karlsruhe, Germany) and the Institut de Physique du Globe de Strasbourg (Ecole et

Observatoire des Sciences de la Terre, Strasbourg, France). The network contains Global Po-

sitioning System (GPS) and GLONASS sites [Mayer et al., 2012]; However, only GPS data are

used in this study. Most of the German sites of GURN are serviced by the Satellite Positioning
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3.3. GNSS data

Service of the German State Survey, SAPOS R©, in Baden-Württemberg and Rheinland-Pfalz.

GURN contains beside the German sites, French and Swiss sites. Phase observations are

available at the GPS sites at a temporal resolution of 30 seconds. The sites were installed at

different times, for example, some sites have data profiles since 2002, but others have profiles

since 2007. The distribution of GURN sites and the corresponding altitudes are shown in Fig-

ure 3.4. Names are added to the sites used for the combination with InSAR wet delay maps.

Some GNSS sites within the image frame are not named since they have short profiles and are

not available for the entire SAR observation period. The exact geographical coordinates and

altitudes of these sites are given in Table 3.2. As will be presented in Chapter 5, the ZTD

observations are used to derive values for the wet delay or the IWV.

The GNSS phase and code observations were processed at the GIK using the Bernese GNSS

Software Version 5.0 (BS5) to extract time series of absolute neutrospheric ZTD at the GNSS

sites. In Figure 3.3, we show the 24-hours time series of the ZTD determined at the available

GNSS sites for 05.23.2005 (late sparing, warm weather) and 02.07.2005 (winter, cold weather)

at 09:51 UTC (SAR overpass times). The warm weather results in evaporating a huge amount

of water that increases the water vapor content in the atmosphere. Therefore, the ZTD values

in (a) are larger than those values in (b) due to the higher content of water vapor in the

neutrosphere and hence a larger wet delay on 05.23.2005. The temporal variations observed

in the time series are associated mainly with the variations in water vapor content. Since

URG region has dry weather conditions in winter (low water vapor content), the ZTD values

are almost constant in plot (b). The ZTD measurements are used to retrieve the wet delay

observed at each GNSS site as presented in Chapter 5.

Site name City Longitude [◦] Latitude [◦] Altitude [m]

Freud Freudenstadt 8.4158 48.4645 784.4000

Heid Heidelberg 8.6753 49.3889 168.8000

Heil Heilbronn 9.2183 49.1385 234.8000

Iffe Iffezheim 8.1126 48.8301 185.4000

Kais Kaiserslautern 7.7740 49.4441 307.4000

Karl Karlsruhe 8.4113 49.0112 182.9000

Land Landau 8.1094 49.1998 208.0000

Ludw Ludwigshafen 8.4506 49.4687 158.3000

Offe Offenburg 7.9510 48.4730 233.5000

Pirm Pirmasens 7.6025 49.2021 448.4000

Table 3.2: Names, locations, and ellipsoidal altitudes of the GNSS sites located within and close
to the SAR scene.
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Figure 3.3: Time series of the ZTD estimated from GNSS observations at 17 receivers on
05.23.2005 (a) and 02.07.2005 (b). In general, the higher GNSS site is, the lower
the ZTD value. The vertical black line in each plot indicates the acquisition time of
SAR.

3.4 Meteorological measurements

Accurate retrieval of the wet delay requires measurements of the air temperature, pressure, and

relative humidity. Hence, Meteorological data received from the Landesanstalt für Umwelt,

Messungen und Naturschutz Baden-Württemberg (LUBW) and from WRF are used to sup-

port the calculation the wet delay. The spatial locations and altitudes of the meteorological

stations are shown in Figure 3.4. The LUBW meteorological stations provides measurement

of the air pressure, temperature and dew point temperature. The measurements of the mete-

orological stations are available at a temporal resolution of 30-60 minutes over different time

periods as specified in Table 3.3. Measurements of the air temperature and dew point tem-

perature are used to compute the relative humidity and the partial pressure of water vapor
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3.5. MERIS data

as described in Section 5.1.3. Since the meteorological stations are not located directly at

the location of the GNSS site, spatial interpolations or extrapolations are essential (see, Sec-

tion 5.1.3). LUBW stations provide point measurements at 4 meteorological stations, while

the model WRF produces grids of pressure and temperature. The WRF simulations of surface

temperature are used to calculate the constant Π presented in Section 2.3.
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Figure 3.4: Spatial distribution and ellipsoidal altitudes of the GNSS sites and meteorological
stations. Names are added to the sites with data profiles that extends over the
period covered by the SAR.

3.5 MERIS data

An independent source for atmospheric water vapor measurements is required to evaluate

and compare water vapor content obtained from GNSS and InSAR data. Since water vapor

is highly variable, it is necessary to have IWV maps simultaneous to our estimates. The

MEdium resolution Imaging Spectrometer (MERIS) is located together with the advanced

SAR (ASAR) sensor on board of the Envisat platform, so that the two sensors can acquire data

simultaneously during daytime. Thus for the collected ASAR scenes, simultaneous water vapor

maps are available from MERIS. MERIS is a passive imaging spectrometer and it performs

spatial and spectral imaging of the Earth, by looking in the nadir direction [ESA, 2006, pp. 16].

Beside the primary mission to measure ocean color, MERIS made also a significant contribution

27



3. Data sets and study region

to atmospheric and land surface related studies [ESA, 2006, pp. 26]. The swath width covered

by MERIS is around 1150 km with a spatial resolution of 260 × 290 m2 at full mode. MERIS

allows for the global retrieval of total atmospheric water vapor content of the Earth every

3 days.

MERIS measures the solar radiation reflected from the Earth’s surface and clouds. Fischer

and Bennartz [1997] proposed a general algorithm to relate the integrated water vapor content

to the ratio of the radiance values measured at the channels 14 and 15 that are located at

885 nm and 900 nm, respectively. We use the IWV maps produced by MERIS as a reference

data for the purpose of comparison and evaluation. In cloudy regions, however, the columnar

water values correspond to the water vapor integrated from the cloud top up to the sensor,

which means that a large part of the perceptible water is missing since it is concentrated

at low altitudes. We mask out IWV measurements in cloudy regions, which can result in

removing more than 90% of the observations when clouds are covering wide areas of the map.

Hence for the defined time period, only five MERIS IWV maps were observed under cloud-free

conditions. An example of the IWV maps measured by MERIS, under clear sky weather, in

the region covered by the ASAR image is shown in Figure 3.5.

The largest amount of IWV in this example is coming from the stratified water vapor in the

neutrospheric layers.

Figure 3.5: IWV as measured by MERIS on 09.05.2005 at 09:51 UTC. The scene covers approx-
imately the area covered by the SAR image in the Upper Rhine region.

3.6 Weather Research and Forecasting Modeling System

Measurements of the water vapor from GNSS are available at spatially-sparse points, and

MERIS provides measurements only under cloud free conditions. We investigated meteorolog-

ical data produced by the weather research and forecasting modeling System (WRF) for two

reasons. The first is, to have continuous grids of meteorological data required for wet delay
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3.6. Weather Research and Forecasting Modeling System

computations or for the sake of comparison. The second reason is that, IWV fields generated

by WRF are used in Chapter 7 for data fusion to provide continuous grids of IWV. NWP mod-

els supply products of atmospheric processes at different spatial and temporal scales. WRF is

the state-of-the-art atmospheric modeling system that bestows simulations of the atmosphere

at local, regional, and global scales. WRF provides simulations of different atmospheric quan-

tities at 2D or 3D continuous grids and the corresponding geographic locations and altitudes.

Compared to its predecessors, WRF has been improved in the accuracy level and grid scales.

However, the initial boundary conditions are ingested based on the output of a global atmo-

spheric model, which is critical for predicting local atmospheric phenomena. This means that

WRF can show scenarios at which the generated grids of IWV deviate from the real state of

the atmosphere.

WRF data are received from the Institute of Meteorology and Climate Research, Atmo-

spheric Environmental Research (IMK-IFU) at Karlsruhe institute of technology. We obtain,

for example, simulations of air temperature, pressure, and relative humidity in 3D and 2D

maps of the IWV. The model is run with 3 nested domains at spatial resolutions of 27, 9, and

3 km. The time-variant boundary conditions are addressed by ingesting the ERAInterim re-

analysis data [Dee et al., 2011] received from the European Center for Medium-range Weather

Forecasts (ECMWF) into the model. For the inner domain (3 km), 2D IWV fields are gener-

ated on a horizontal coverage of 500×500 km2 centered on Karlsruhe (Germany). The data

are simulated over a period of 15 months (July, 2004 - September, 2005) at a temporal rate

of 10 minutes. Every point on the horizontal grid has a value for the water vapor integrated

over 38 vertical layers, extending from the Earth’s surface to heights of approximately 14 km.

Figure 3.6 shows the region over which the simulations were made and a map of the WRF-

derived IWV for 06.27.2005 at 10:00 am. The IWV content is relatively high due to the high

activity of the atmosphere in summer. IWV is strongly dependent of surface elevation such

that the higher the elevation, the lower the IWV. The correlation of the water vapor content

with the topography is clearly observed from the map.

Data set System Spatial resolution Temporal resolution Availability

GNSS GPS point-wise 30 sec since 2002

PSI Envisat 11 points/km2 35 days 2003-2009

WRF WRF 3.1 3× 3 km2 10 min July, 2004 -

September, 2005

MERIS Envisat 260× 290 m2 3 days 2003-2009

LUBW Meteorological
sensors

point-wise 30-60 min since 1991

Table 3.3: Spatial and temporal characteristics of the data sets used in this study.

29



3. Data sets and study region

Figure 3.6: The map shows the test site URG, and the black frame specifies the grid over which
the WRF simulations are made. An example of the IWV produces by the model on
06.27.2005 at 10:00 (UTC) is shown.
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4 Spatial interpolation and estimation

techniques

This chapter presents the spatial interpolation and estimation techniques applied to single

data sets for the purpose of generating regular and continuous grids of all observed variables.

First, we discuss the support of the data and the change of support problems, Section 4.1.

In Section 4.2, we discuss the non-geostatistical interpolation techniques, moving-window av-

eraging (local mean), curve fitting, and inverse distance weighting (IDW), then we discuss

geostatistical techniques, i.e., kriging in Section sec: kriging. In Section 4.2.2.1, we present

the ordinary kriging (OK) method and explain its limitations. We describe the variogram

(also called structure functions) as a geostatistical tool used to describe the spatial relations

between the observations. We present the method of FRK in Section 4.2.2.3, and we discuss

how this method is used to overcome the limitations of OK. In Section 4.2.3, the method of

block kriging is presented as a geostatistical solution for the point-to-area change of support

problems. We describe the theoretical covariance model associated with the FRK method and

the algorithm used for estimating its parameters in Section 4.3. In Section 4.4, we show a case

study for using OK and FRK for spatial interpolations of neutrospheric parameters. At the

end of the chapter, we give a summary of the presented techniques.

4.1 Change of support problems

One important aspect of remote sensing data is their support. In geostatistics, the term

support reflects the geometrical size, shape, and orientation of the regions over which the

measurement is available [Gelfand et al., 2001]. In practice, spatial data could be collected ex-

actly at points or associated with areal units. The former are called point-level data or simply

point data while the latter are areal-level or block data [Gelfand et al., 2001]. The change of

support problem (COSP) is associated with the inference of values correctly at support levels

different from the support level at which the data were observed. The COSP may result when

studying single variables or when relating two or more spatial variables of different supports.

If we inspect the different data sets investigated in this work, we find that PSI observations

are point-level data, while WRF and MERIS provide areal-level data. GNSS also provide

areal-level observations of the neutrospheric parameters. Accordingly, the change of support

effect should be considered when comparing or assimilating these data. We should also resolve

the COSP, if we are interested in estimating block-level data from data at point-level support
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(point-to-area COSP) or estimating point-level processes but the available data are at areal-

level (area-to-point COSP).

Changing the support of a variable, for example by aggregation, creates a new variable

that is related to the original one but is expected to have different statistical and spatial

properties [Gotway and Young, 2002]. For block data that can be expressed by block average,

the following model should be appropriate. Consider a random variable Y (·) that captures a

geophysical variable (also called field or process) over the spatial domain D. Let s be a point

location in D, and suppose that, instead of observing Y (·) at a point-level (si), it is observed

at an areal-level (Bi), then the data model is defined as:

Y (Bi) =
1

|Bi|

∫
Bi

Y (s)ds (4.1)

|Bi| is the observations volume within the footprint Bi. Assuming error-free observations, this

model defines the observed process for the cell Bi as an average of the data as if observed at

a point-level within the coverage of Bi. The assumption about block data as an average of

point data holds, for example, for rainfall, temperature, pollutant level, and Earth’s surface

elevation [Gelfand et al., 2001]. We found that this model also holds for the wet path delay

or IWV measurements. It is worth mentioning that the observations are in practice discrete,

hence the integral in Eq. (4.1) is replaced with a summation.

Let the point-to-point or simply point covariance of the variable of interest be C(si, sj) =

cov(Y (si), Y (sj)), for all s in the domain of Y . Based on the data model in eq. (4.1), the

covariance between aggregated data (areal-level) can be related to the point-level covariance

as follows [Gotway and Young, 2002]

C(Bi, Bj) = cov

(
1

|Bi|

∫
Bi

Y (u)du,
1

|Bj |

∫
Bj

Y (v)dv

)

=
1

|Bi||Bj |

∫
Bi

∫
Bj

C(u,v) du dv (4.2)

where C(Bi, Bj) is the block-to-block or block covariance function and C(u,v) is the point

covariance function. Since the system adds a random noise to the measurements, we rewrite

the model in (4.1), such that

Z(Bi) =
1

|Bi|

∫
Bi

Y (s)ds + ε(Bi) (4.3)

where ε(Bi) is the measurement error, which is assumed uncorrelated Gaussian process of

mean zero and a variance σ2
ε . The noise is also assumed independent of the measurements.
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The block covariance of the measurements can be written in terms of the point covariance as

cov(Z(Bi), Z(Bj)) = cov

(
1

|Bi|

∫
Bi

Y (u)du + ε(Bi),
1

|Bj |

∫
Bj

Y (v)dv + ε(Bj)

)

=
1

|Bi||Bj |

∫
Bi

∫
Bj

C(u,v) du dv + cov

(
1

|Bi|

∫
Bi

Y (u)du, ε(Bi)

)
+ cov

(
1

|Bj |

∫
Bj

Y (v)dv, ε(Bj)

)
+ cov (ε(Bi), ε(Bj))

=
1

|Bi||Bj |

∫
Bi

∫
Bj

C(u,v) du dv + σ2
ε · δij (4.4)

where δij has a value of one only if i = j, and zero otherwise. The eqs. (4.2) and (4.4)

form a basis for the COSP solution [Gotway and Young, 2002]. The point-level covariance

should be known or estimated from the data. It is then used to define a valid positive definite

theoretical covariance model, which is fitted for the purpose of prediction. These expressions

will be required in the method of block kriging, which is used to solve point-to-area COSP

(Section 4.2.3), to relate point-level covariance to block-level covariance.

4.2 Spatial interpolation techniques

Spatial continuous fields of atmospheric water vapor are not readily available from remote

sensing satellites. PSI, for example, provides clusters of measurements which are most likely

absent in vegetated areas (as presented in Chapter 5), while MERIS measurements are removed

in cloudy regions since they are significantly underestimated. For the sake of comparison

or making justified interpretations about a geophysical phenomenon, spatial interpolation

techniques are essential for estimating continuous grids of the variable of interest from the

discrete measurements. There are numerous spatial interpolation methods which can fall into

one of three categories, namely: non-geostatistical interpolators, geostatistical interpolators,

or combined methods [Li and Heap, 2008, pp. 4]. The non-geostatistical methods are based

on weighting the surrounding measured values and use mathematical formulas that determine

the smoothness of the resulting surface. The geostatistical methods are based on statistical

models that include spatial correlations among the measurements [Li and Heap, 2008, pp. 11].

The majority of spatial interpolation methods computes estimations as a weighted average

of sampled data. The general estimation formula is written as:

Ẑ(s0) =

N∑
i=1

λiZ(si) (4.5)

where Ẑ(s0) is the estimated value at the point s0, Z(si) is the observed value at the location
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si, λi is the weighting coefficient, and N is the number of observations. In the method of

local mean or also called moving-window averaging, a value is computed at the location s0

using eq. (4.5) by averaging the observations falling within the neighborhood of a predefined

cell centered at the location s0, i.e., λi = 1/N . The method of curve fitting models the spatial

variations in the data by creating an interpolant that has the best fit to the scattered data.

This interpolant can then be utilized to compute a value of the variable at any location.

4.2.1 Inverse distance weighting

Inverse distance weighting (IDW) is a method that infers a value at a certain location by

a weighted mean of the observations available within a predefined radius. The weights are

selected such that they are inversely proportional to the squared distance to the prediction

location. Given the observations Z(si) = [Z(s1), . . . , Z(sN )]
′
at the locations si = [s1, . . . , sN ]

′
,

a new value can be inferred at the location s0 using

Ẑ(s0) =

∑N
i=1

1
D2

i0
Z(si)∑N

i=1
1
D2

i0

, Di0 > 0 (4.6)

where Di0 is the Euclidean distance between the location of the ith observation and the pre-

diction location. IDW is a simple interpolation method, and it is not a model-based technique.

If IDW is used for interpolation in regions where the measurements are missing or outside the

measurements coverage, the uncertainty increases and the quality of predictions is poor.

4.2.2 Kriging

Kriging is a geostatistical interpolation technique that provides predictions of the quantity of

interest by considering the spatial correlations between the measurements. IDW and kriging

are similar in that they predict a new value by weighting the surrounding measured values.

Kriging differs, however, in that it requires not only the distance to the predicted location, but

also the spatial correlations. Kriging is used in this work to generate estimates of the wet path

delay. PSI, for example, provides measurements of the wet delay at scattered locations and

sometimes there could be gaps in the map due to the lack of coherence in vegetation regions or

over water surfaces. Taking spatial correlation between observations into account, the values

of the wet delay can be inferred at a regular grid by applying, for example, the technique of

OK. This is a widely used prediction technique since the predictions are made by looking for

the best linear unbiased estimator and it provides measures of the quality of estimates. In the

following, we present the ordinary kriging (OK) method, its limitations, and the alternative

method Fixed-Rank Kriging (FRK). Most of the material presented to explain the OK method

draws from Deutsch and Journel [1998] and Li and Heap [2008].
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The approach of kriging divides the signal into a component that is mostly deterministic

and can be modeled by a linear trend and a component that is more random. Consider a

geostatistical field Z of N point-level observations. The data are observed at a finite number

of spatial locations [s1, . . . , sN ]′ such that Z ≡ [Z(s1), . . . , Z(sN )]′. The Gaussian forward

model of Z(s) is a sum of a real-valued true spatial process Y(s) and a spatial white noise

process ε

Z(s) = Y(s) + ε(s) (4.7)

Y(s) = [Y (s1), . . . , Y (sN )]
′
, s ∈ D and D is the spatial domain of the geophysical process. The

measurement error is assumed to be uncorrelated zero-mean Gaussian process with a finite

variance σ2
ε . The hidden process Y (s) is modeled by a linear combination of a deterministic

trend and a spatially-random component [Cressie and Johannesson, 2008]. The former reflects

the long-scale spatial behavior of Y, while the latter contains the spatial variations that cannot

be modeled by a linear trend. The model for the hidden process Y (s) has the following [Cressie

and Johannesson, 2008]:

Y (s) = T(s) ·α+ ν(s) (4.8)

where T(s) · α indicates a deterministic linear trend, T has a size of N × 3 and each row

has three entries: a one and the longitude and latitude of the location s. α is the vector of

least squares regression coefficient. ν(s) is a spatial process of mean zero and has generally

a non-stationary covariance function. Applying the method of kriging requires removing the

deterministic signal from the data ahead of prediction, we use the estimate of α to calculate

the residuals,

Z̃ = Z−Tα̂ (4.9)

In the absence of prior information about the spatial covariance, α is estimated from the

measurements by means of ordinary least squares adjustment as follows

α̂ = (T T′)−1T′Z (4.10)

The residual field contains the signal of medium to fine spatial random variations and the

noise. We proceed with the analysis using the detrended field, which is assumed to have a

mean zero. From eqs. (4.7) and (4.8), the residual signal can be written as:

Z̃(s) = ν(s) + ε(s) (4.11)

Kriging estimates the value of Z(s0) at the known location s0 from Eq.(4.5), where the weights

λi are selected such that the mean squared prediction error (MSPE) between the estimated
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value and the true process is minimized, i.e.,

min
λi

E


(

N∑
i=1

λiZ(si)− Z(s0)

)2
 (4.12)

To ensure unbiased prediction, it is required that
∑N

i=1 λi = 1.

4.2.2.1 Ordinary Kriging

In the ordinary kriging, the weights in λ are derived on the basis of a covariance function or

a semivariogram, which should characterize the spatial properties of the residual signal Z̃. In

order to estimate λ, the Lagrange multipliers are utilized to solve the constrained minimization

and the solution is given by:

λ = c′0(s0)Γ−1 (4.13)

with: Γ =


γ11 · · · γ1N 1
...

. . .
...

...

γN1 · · · γNN 1

1 · · · 1 0

, c0 =


γ10
...

γN0

1

, and λ =


λ1
...

λN

m


γij denotes the semi-variance corresponding to the distance separating the observations i and

j, and its value is computed from the semivariogram model (presented in Section 4.2.2.2). m

is the unknown Lagrange parameter associated with the unbiasedness constraint. γi0 denotes

the modeled semivariance corresponding to the distance separating the ith observation and the

prediction location. Let k = [λ1 , λ2 , · · · , λN ], then the formula of the OK predictor is:

Ŷ (s0) = T(s0)α̂+ kZ̃ (4.14)

It is conventional to use the semivariogram to form the matrix Γ rather than the covariance

although kriging systems are easily solved with the covariance matrices [Deutsch and Journel,

1998, pp. 13]. Assuming that ν and ε are independent, the covariance function of Z̃ is given

by

Σ = C + σ2
εVε (4.15)

C is the covariance matrix of ν, where C(u,v) = cov(ν(u), ν(v)). σ2
εVε is the covariance

matrix of the noise and since the noise is assumed independent and identically distributed Vε

is an identity matrix of the observations size. The covariance matrix can be estimated from

the detrended field as described later in this chapter. The formula for the kriging predictor in
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terms of the full covariance function has the following form [Cressie and Johannesson, 2008]

Ŷ (s0) = T(s0)α̂+ k(s0)Z̃ (4.16)

where α̂ is determined from eq. (4.10) and k(s0) is calculated from:

k(s0) = c(s0)′Σ−1 (4.17)

c(s0) ≡ [C(s0, s1), . . . , C(s0, sN )]′ is a vector that contains the covariance values between the

process at the observed locations and the process at the prediction location s0. These covari-

ance values are derived from the theoretical covariance model used by the kriging algorithm.

4.2.2.2 Semivariograms

The variogram, also called structure function [Wald, 1983], is a geostatistical tool that has been

widely used to measure the spatial variability of the phenomenon under study. Considering the

stationary random function Z(u), the theoretical variogram D(h) is defined as the expected

squared difference between two or more data values separated by a displacement vector h, i.e.,

D(h) = 2γ(h) = E{[Y (u + h)− Y (u)]2}, (4.18)

where u is the spatial location of the measurement and h is the displacement vector. It

is conventional to denominate γ(h) a semivariogram. If there exist N pairs of observations

separated by a displacement vector h, then the classical semivariogram estimator as presented

in [Gringarten and Deutsch, 2001] is

γ(h) =
1

2|N(h)|

|N(h)|∑
i=1

[Z(ui)− Z(uj)]
2 (4.19)

N(h) = {(ui,uj) : ui − uj = h} and |N(h)| is the cardinality of N(h). The semivariogram is

related to the stationary covariance C(h) as

γ(h) = C(0)− C(h) (4.20)

with C(0) the a priori variance of the random function, i.e., C(0) = var{Z(u)}.

The variogram illustrates the spatial variability as the observations get more distant. In

general, the semivariogram should have an initial value of zero at the origin that increases with

h until a certain spatial range. On the contrary to the semivariance, the spatial correlation

between the observations decreases with the separation distance until a distance at which
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4. Spatial interpolation and estimation techniques

no spatial correlation is evident. This is called the range of correlation. The semivariance

corresponding to the range is called the sill, which is simply the a priori variance of the

random function, C(0). Another important measure of the semivariogram is the short-scale

semivariance or the nugget effect. It is a discontinuity in the semivariogram at the origin.

The empirical semivariogram should show no nugget effect, but sometimes it exists due to

errors in the data or spatial structures with correlation ranges shorter than the minimum

sample spacing (1-lag separating distance) [Gringarten and Deutsch, 2001]. Figure 4.1 shows

typical and experimental semivariograms. The experimental semivariogram is computed for

a PSI neutrospheric delay-difference map using (4.19). From the plot we observe that the

range is approximately 25 km and the corresponding sill is 18.66 mm2. The spatial correlation

between the observations, which are used to fine the kriging solution, are derived from the

semivariogram.
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Figure 4.1: Typical and experimental semivariograms. The experimental semivariogram is com-
puted for a PSI neutrospheric delay-difference map, the range is approximately 25 km
and the sill is 18.66 mm2.

The estimator in expression (4.19) can behave poorly if the data contain outliers; thus, a

more robust semivariogram estimator was proposed by Cressie and Hawkins [1980],

2γ(h) =

 1

|N(h)|
∑
N(h)

∣∣∣Z(ui)− Z(uj)
∣∣∣1/2
4/(

0.457 +
0.494

|N(h)|

)
(4.21)

Prediction of the spatial process at uncovered locations using ordinary kriging requires a

theoretical semivariogram or a covariance model. Therefore, it is necessary to fit a theoretical

semivariogram model to the empirical one. There are various methods for model fitting, such

as least squares, maximum likelihood, and robust methods [Lark, 2000]. There are different

standard theoretical semivariogram models such as spherical, exponential, Gaussian, and other

models. Once the data are explored, the experimental semivariogram is obtained, a variogram

model is fitted, and the output grid is defined. We use eq. (4.13) to obtain the λi’s after fitting
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a semivariogram model depending on the performance of the experimental semivariogram.

The weights are substituted in eq. (4.5) to get predictions at the predefined locations.

Two common assumptions are made in the above presented OK method, these are station-

arity and isotropy. Stationarity implies that the covariance of the random function at two

different locations is a function of the displacement vector between them, i.e.,

C(Z(ui), Z(uj)) = C(ui − uj)

Isotropy indicates that the process is uniform in all directions, so that one variogram is rep-

resentative for the spatial variations of the signal. Hence the covariance is a function of the

distance between the two locations (h),

C(Z(ui), Z(uj)) = C(h)

These assumptions do not necessarily hold for geophysical data [Braverman et al., 2009;

Nguyen, 2009]. However, the most critical limitation of conventional kriging is the lack of

scalability. As observed from eq. (4.13), calculating kriging weighting coefficients requires

constructing and inverting the matrix Γ or Σ, which have the size (N+1)×(N+1), for N

observations. For massive data sets, where N could be on the order of hundreds of thousands

or more, traditional kriging is not possible even with high-end consumer-oriented computers

[Nguyen, 2009]. There are a number of different investigations to make kriging feasible for

huge data sets, for more details the reader is referred to Nguyen [2009]. An approach called

fixed-rank kriging introduced by Cressie and Johannesson [2008] is investigated in this work.

4.2.2.3 Fixed-rank kriging and multi-scale process modeling

Generally, kriging requires a theoretical covariance (or variogram) model to compute the co-

variance C(s0, si) for any output location s0. We look for a covariance model that does not

make any assumptions of stationary and isotropy. Also, it is obvious that inverting the ma-

trix Σ in expression (4.17) is unavoidable; however, direct inversion is not always achievable

specially for large N . We address these problems by using the fixed-rank kriging (FRK) algo-

rithm presented by Cressie and Johannesson [2008]. In this algorithm, the authors suggested

the following covariance model for the signal ν(s):

C(si, sj) = S(si) K S(sj)
′ (4.22)

K is a positive-definite covariance matrix of size r × r and S has the size N × r with r � N .
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This covariance model implies that the term ν(s) in the expression (4.11) is extended into:

ν(s) = S(s)η (4.23)

where η = [η1, . . . , ηr]
′

is a zero-mean vector of r spatial random effects with a covariance

matrix K = var(η). According to Cressie and Johannesson [2008], the model of ν(s) is

called the spatial random effects (SRE) model, which represents a multi-scale modeling of the

geophysical process. The models in the eqs. (4.22) and (4.23) assumes that the true process is

smooth, so we use the most general model presented in [Kang and Cressie, 2011] that considers

not only the smooth variations but also the fine-scale variations of rough processes,

C(si, sj) = S(si) K S(sj)
′ + σ2

ζ · I(si = sj), ∀si, sj ∈ D (4.24)

where σ2
ζ · I(si = sj) is the covariance matrix of the fine-scale signal. The corresponding SRE

model is

ν(s) = S(s)η + ζ(s) (4.25)

ζ(s) is assumed uncorrelated Gaussian with mean zero and a variance σ2
ζ . ζ accounts for the

fine-scale spatial variations and is assumed independent of η.

From the SRE model in (4.25), we observe that the detrended signal is represented by a linear

combination of the elements of the vector η added with a random signal due to the fine-scale

variations. Each row in the matrix S contains r weights used to encode each location s such

that we can find a vector η for which
∑r

j=1 Sj(s)ηj gives an approximation of the detrended

component of Y at that location. The weights depends on the distance between the location s

and a set of predefined nodes, and their values are obtained from a set of basis functions (BF)

with their centers located at the r nodes. Figure 4.2 (a) shows the observation domain and

the nodes at the locations mi, where each observation location s in the observation domain is

encoded by four weights depending upon its distance di from mi. The radius of the blue circle

defines the radius within which the BF has a positive value.

The nodes are selected to cover multiple resolutions so that they can capture spatial vari-

ations at different spatial scales. At each level of spatial resolution, the BFs should have a

certain effective radius and the number of the resolution levels is determined according to the

spatial variations in the observed field. There are several choices of the BFs that could be

used such as smoothing spline BFs, wavelet BFs, and bisquare BFs [Cressie and Johannesson,

2008]. The coefficients S(s) = [S(1)(s), S(2)(s), . . . , S(r)(s)] are calculated based on the loca-

tions of the observations and not the observations themselves. In Figure 4.2 (b) is shown the

bisquare BF, which is a bell-shaped function with a peak one at the center. The local bisquare
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Figure 4.2: The observation domain is shown in (a), where the black dots define the locations
at which the data were observed. The red dots indicate the nodes of the encoding
scheme. The weights for each location s are related to the distances di and their value
is calculated from BFs centered at the nodes mi. The blue circles define the radius
of the BF. In (b) is shown the bisquare BF.

function at each location s has the form

S(l)(s) =


[
1− (||s−ml||/rl)2

]2
, for ||s−ml|| ≤ rl,

0 otherwise
(4.26)

ml is the node (center point) of the BF of the lth resolution, and rl is the effective radius

of the BF at the lth resolution. The bisquare function is a bell-shaped function that has

its maximum value at ml and decreases smoothly until it reaches zero at widths larger than

rl. The bisquare BF curve agrees with the decrease in correlation as the distance between

observations increases. It is worth mentioning that the matrix S is known and remains fix

since the encoding nodes and the BFs are selected by the user. η, however, is not known and

has be estimated from the observations. Using the SRE model in (4.25), the model for Y (s)

will be

Y (s) = T(s)α+ S(s)η + ζ(s) (4.27)

The covariance matrix (Σ) of Z̃ is expressed as

Σ = cov(Sη) + cov(ζ) + cov(ε)

= S K S′ + σ2
ζVζ + σ2

εVε (4.28)
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Note that σ2
ζ and σ2

ε are not summed as one component, because the first is a part of the

predicted process, while the other is the noise variance. Vζ and Vε are identity matrices. The

covariance between the true process at the prediction location and the observations is given

by

c(s0) = cov{Y (s0),Z} = cov{(S(s0)η + ζ(s0)) , (Sη + ζ + ε)}

= Sp(s0)K S′ + σ2
ζ1(s0 = s) (4.29)

Sp(·) is the weighting matrix for the prediction locations. 1(s0 = s) is a vector of the size N

with a value one at the location s0 = s and zeros elsewhere. In a similar way to OK, the FRK

estimator of the process Y has the following form:

Ŷ (s0) = k(s0)′Z̃ (4.30)

with

k(s0) = c(s0)′Σ−1 (4.31)

We can rewrite Eq. (4.16) in a more insightful form

Ŷ (s0) = T(s0)α̂+
(
Sp(s0) K S′ + σ2

ζ · 1(s0 = s)
)
Σ−1Z̃ (4.32)

and the corresponding MSPE of Ŷ (s0), E{(Ŷ (s0)− Y (s0))2}, is:

σ2(s0) = C(s0, s0)− k(s0)′Σk(s0)′ + (T(s0)− T ′k(s0)′)′(T T′)−1(T(s0)−T′k(s0)′) (4.33)

So far, all components required to obtain the predictions and predictions errors can be found

either from one of the above expressions of as explained in Section 4.3. Table 4.1 summarizes

the procedures followed to calculate predictions based on the FRK technique.

It remains to find a feasible way to achieve the matrix inversion in eq (4.32) for large N .

Let the matrix Di = σ2
ζI + σ2

ε I, then the matrix Σ can be inverted by applying the Sherman-

Morrison-Woodbury formula [Hager, 1989],

Σ−1
ii = (Di + Si Ki S′i)

−1

= D−1
i −D−1

i Si(K
−1 + S′i D−1

i Si)
−1S′iD

−1
i (4.34)

The computations require the inversion of the matrices K and (K−1 + S′i D−1
i Si), both of

which have the size r × r. Note that Di is a diagonal matrix and it is inverted by taking the

reciprocal of the diagonal elements. Using FRK, the matrix Σ−1 can be obtained by inverting

matrices of the dimension r × r with a fixed r; therefore, it is called fixed-rank kriging. The
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In the FRK technique, we need to:

1. define the input data and spatial locations

2. define the output grid (prediction locations)

3. estimate α and detrend the data

4. compute the robust semivariogram and estimate the error variance σ2
ε , if unknown

5. fix r and set up the nodes and the BFs

6. compose S for the input locations and the output locations

7. determine the empirical covariance matrix of the detrended data

8. compute the maximum likelihood estimates of K and σ2
ζ

9. obtain the predictions and the corresponding MSPE

Table 4.1: Procedure of the FRK method

computational burden for inverting the matrix Σ reduces from O(N3) to O(N) [Cressie and

Johannesson, 2008]. This means that the computation costs for the FRK method is linear

with the observations size N , which makes FRK feasible for huge data sets.

4.2.3 Block kriging

Spatial data could be observed exactly at point locations or as an average over a given footprint

which is called the support of the data, as mentioned earlier. In many occasions, we are

interested in finding predictions over a block (cell) rather than at point locations. In fact,

this a change of support problem, where point-level observations are available, while we are

interested in block-level predictions. A naive solution is to allocate a regularly-spaced grid over

the block and predict the values at all points and then calculate the average over the block, as

shown in Figure 4.3. This is conceptually simple but if utilized with OK, this procedure may

be computationally extensive if the number of point estimates is very high. In geostatistics,

the method of block kriging has been developed to solve the point-to-area COSPs [Gotway

and Young, 2002], such that it achieves the same result by constructing and solving only one

kriging system for each block estimate. In this section, we describe how the method of block

kriging is applied under FRK and OK.

Suppose that the data Y = [Y (B1), Y (B2), . . . , Y (BN )]′, at a cell size Bi, should be predicted

from point-level observations by means of kriging. Applying kriging requires the covariance

function of the observations and a covariance model used to obtain the covariances between

the predictions and the observations. As presented before, the point-level covariance function

can be related to the block-level covariance. Using the FRK covariance structure (4.24), the
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point-to-block covariance in eq. (4.4) can be written as:

cov(Z(Bi), Z(Bj)) =
1

|Bi|
1

|Bj |

∫
Bi

∫
Bj

S(u) K S(v)dudv

=
1

|Bi|

∫
Bi

S(u)du K
1

|Bj |

∫
Bj

S(v)dv

= S̃(Bi) K S̃(Bj)
′ + σ2

ζδij + σ2
ε δij (4.35)

where

δij =

1 for i = j

0 for i 6= j

with the matrix S(·) aggregated within the block Bi,

S̃ =
[
S̃1(Bi), S̃2(Bi), . . . , S̃r(Bi)

]
S̃j(Bi) =

1

|Bi|

∫
Bi

Sj(u)du

We should notice that the covariance terms due to fine-scale signal (ζ) and the noise disap-

peared from the expression, since both signals are assumed to be spatially uncorrelated and

independent from other components. Expression (4.35) relates the block covariance with the

point covariance on the basis of the FRK covariance model. The covariance between two point

locations s1 and s2 is S(s1) K S(s2)′. The covariance parameter K can be used to obtain the

covariance function at any aggregation level by changing the structure of the matrix S from

point-level to aggregated area-level. In a similar way, the covariance function between the

input signal Z(Bi) and the true process at a point location s is given by

cov(Z(Bi), Y (s))) = cov

((
1

|Bi|

∫
Bi

Y (s)ds + ε(Bi)

)
, Y (s)

)
= S̃(Bi) K Sp(s)′ (4.36)

where Sp(s) is the weighting matrix for the prediction locations, which are at point-level in

this case. The block kriging weights λ are obtained by solving the minimization problem in

the same way as with FRK at point-level, i.e.,

min
λ

E

{(
Y (B)− λ′Z̃

)2
}

(4.37)

Note that the vector λ has in the last entry an estimate for the Lagrange multiplier.
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The estimation of Y (B) (which is considered as a mean value over the cell B) is given by:

Ŷ (B) = T(B)α̂+ k(B)Z̃ (4.38)

where

k(B) = c(B)Σ−1 (4.39)

c(B) = C(Z̃(s),Y(B)) = S̄p(B) K S(s)′, S̄p(B) =
1

|B|

∫
s∈B

Sp(s)ds (4.40)

S̄p(B) is the weighting matrix constructed for all prediction blocks, and |B| is the number

of points within the area B. Note that the difference between point-level kriging and block

kriging is only the calculation of the weighting matrix S̄p(B) rather than Sp(s), while other

parameters stay unchanged.

+

Block B

+ +

+
+

+

+
+

+
+

+

+

+

+

+

++

+

+

+ Observed samples locations

Regularly-spaced locations 

+

+

Figure 4.3: Kriging by block where the small black box shows the area at which the new value
should be predicted. The plus signs denote the locations of the observed samples,
while the red dots represent the regularly-spaced grid set up within the block.

In a similar way, OK can be applied over a block B. The weights are calculated as in

eq. (4.13) by replacing the vector c0 with the vector c0 = [γ̄1B, . . . , γ̄NB, 1]′, where

γ̄iB =
1

|B|
∑
j∈B

γij (4.41)

It remains to mention that the grid allocated within the block being estimated should be

always regular. The spacing between points can be larger in one direction than the other, if

the spatial continuity is anisotropic [Deutsch and Journel, 1998, pp. 107].
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4.3 Estimating covariance model parameters

Predicting the stochastic component of the atmospheric signal using kriging requires the esti-

mation of the covariance function and fitting a covariance model. Using the FRK covariance

model in eq. (4.24), we need to estimate the matrix K, the noise variance σ2
ε , and the variance

of the fine-scale signal σ2
ζ . The first method proposed to find K is called binned method-of-

moments (MM) [Cressie and Johannesson, 2008; Nguyen, 2009]. This approach derives the

empirical estimator for Σ and finds K such that ||Σ̂− Σ||F is minimum, where || · ||F refers

to the Frobenius norm. Another approach proposed by Katzfuss and Cressie [2009] targets to

determine the covariance parameters using the algorithm of maximum likelihood estimation

(MLE). Furthermore, they made the estimations using the expectation-maximization (E-M)

algorithm to reduce the computational burden. This algorithm provides estimates not only

of K but also of σ2
ζ , where the solution of MLEs is found iteratively [Dempster et al., 1977].

Within each iteration the algorithm performs two steps, the expectation and maximization.

In the following, we present a description on how to obtain the maximum likelihood estimates

of the covariance model parameters via the E-M algorithm. In Section 7.4.2, we show the

derivation of the MM method and how it is used to estimate the matrix K.

Assuming that the observations in Z̃ follow a multivariate Gaussian distribution, that is

Z̃ ∼ N(0,Σ) with Σ of the form in (4.28). Let the parameters of interest K and σ2
ζ be

summarized in the vector Θ, then the likelihood function L(Θ) [Katzfuss and Cressie, 2009]

−2 logL(Θ) = −2f(Z̃; Θ)

= log det Σ + Z̃
′
Σ−1Z̃ + c

= log det Σ + tr(Σ−1Z̃Z̃
′
) + c (4.42)

where c = (N/2) log 2π is a constant independent of Θ and hence it cancels out in the maxi-

mization step. tr(·) denotes the trace operator of a square matrix, with tr(A) =
∑n

i=1 aii.

In the expectation step of the algorithm, we calculate

Q(Θ; Θ[t]) = EΘ[t]{−2 logL(η, ζ; Θ)|Z̃} (4.43)

given that:

−2 logL(η, ζ; Θ) = log det K + tr(K−1ηη′) +N log σ2
ζ + σ−2

ζ tr(ζζ′)

+N log σ2
ε + σ−2

ε tr(εε′)
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Then Eq. (4.43) becomes

Q(Θ; Θ[t]) = −1

2

[
log det K + tr(K−1EΘ[t]{ηη′|Z̃})

+N log σ2
ζ + σ−2

ζ tr(V−1
ζ EΘ[t]{ζζ′|Z̃})

+N log σ2
ε + σ−2

ε tr(V−1
ε EΘ[t]{εε′|Z̃})

]
(4.44)

We should remind the reader that the parameters to be estimated here are K and σ2
ζ , while

σ2
ε is already estimated from the robust semivariogram. To proceed with the solution, it is

required to quantify the conditional expectations in eq. (4.44). Using the standard formula

required for calculating conditional expectations for multivariate normal distribution, given in

Appendix A, the expectations will have the following form [Katzfuss and Cressie, 2009]

EΘ[t]{ηη′|Z̃} = Σ[t]
η + µ[t]

η µ
′[t]
η

EΘ[t]{ζζ′|Z̃} = Σ
[t]
ζ + µ

[t]
ζ µ
′[t]
ζ

with

µ
[t]
η = EΘ[t]{η|Z̃} = K[t]S′Σt−1

Z̃

µ
[t]
ζ = EΘ[t]{ζ|Z̃} = σ2

ζ
[t]

VζΣ
[t]−1

Z̃

Σ[t]
η = covΘ[t](η|Z̃) = K[t] −K[t]S′Σ[t]−1

SK[t]

Σ
[t]
ζ = covΘ[t](ζ|Z̃) = σ2

ζ
[t]

Vζ − σ2
ζ

[t]
VζΣ

[t]−1
σ2
ζ

[t]
Vζ

After the expectation step, we perform a maximization step. The parameters K and σ2
ζ in

Eq. (4.44) should be selected such that Q(·) is maximized. The partial derivative is taken

with respect to both parameters and the result is assigned to zero. Finding the derivative here

is rather simple since η and ζ do not show dependency on each other, as observed from Eq.

(4.44). The updating scheme of the E-M algorithm in each iteration is

K[t+1] = K[t] + K[t]
(
S′Σ[t]−1

(
Z̃Z̃
′
Σ[t]−1 − IN

)
S
)

K[t] (4.45)

σ2
ζ

[t+1]
= σ2

ζ
[t]

+ σ2
ζ

[t]
tr

(
1

N
Σ[t]−1

(
Z̃Z̃
′
Σ[t]−1 − IN

)
Vζ

)
σ2
ζ

[t]
(4.46)

We keep updating the solution until the algorithm converges. One criterion to monitor con-

vergence is to calculate the norm of the difference between the current and last update of the

vector Θ (which is of size r2 +1). That means ||Θ[t+1]−Θ[t]|| < b should hold for small enough

and positive value of b. Following Katzfuss and Cressie [2009], b is assigned a value of 10−6r2.

The starting choice of K and σ2
ζ should be valid; strictly speaking, K[0] must be symmetric

and positive-definite and σ2
ζ

[0]
must be positive. Default values as suggested by Katzfuss and
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Cressie [2009] are: K[0] = 0.9 · var(Z̃)Ir and σ2
ζ

[0]
= 0.1 · var(Z̃).

The measurement error variance σ2
ε is estimated separately from the empirical semivariogram

of the data. Estimating both σ2
ε and σ2

ζ from the data is not a trivial task. That is because

the nugget effect in the semivariogram reflects not only the error variance but also the fine-

scale variance. Therefore, having information about the error distribution and variance is

worthwhile. In our case we estimate the sum σ2
ε+σ2

ζ using the method of robust semivariogram,

eq. (4.21).

We estimate the semivariogram as a function of the separation distance h. In order to obtain

values of σ2
ε and σ2

ζ , we follow the approach presented in [Kang et al., 2010]. To obtain an

estimate of σ2
ε , a strait line is fitted to the estimated semivariogram at short h. Since the slope

of the structure function (variogram) describing atmospheric turbulence is expected to vary

with h [Treuhaft and Lanyi, 1987], we made the line fitting based on the estimates of the first

3 km (empirically defined). Let the line fit be γ̂(h) = γ̂(0+) + bh, then the estimate of σ2
ε is

σ̂2
ε = γ̂(0+) (4.47)

Should γ̂(0+) have a negative value, σ̂2
ε is set to zero. σ2

ζ is estimated from the 1-lag semivari-

ance after removing the noise effect, i.e.,

σ̂2
ζ =

1

2|N(h1)|
∑
|N(h1)|

{
(Y (ui)− Y (uj))

2 − σ̂2
ε (vε(ui + vε(uj))

}
(4.48)

where 1-lag distance h1 equals the minimum distance separating two pixels. The noise was

assumed to have a covariance function of the from σ2
εVε with Vε = diag[vε(u1), . . . , vε(uj)].

We assumed Vε to be an identity matrix.

4.4 A case study

In this section, we present an example of spatial data prediction by applying the algorithms

of FRK and OK to single data sets. SWD fields derived in Chapter 6 are used as input to

the two algorithms. The input data are at point-level support, where the spatial density of

the measurements varies over the region acquired by the radar. The density is high in urban

areas; however, it decreases dramatically in forests and agricultural regions, which results in

the gaps observed in Figure 4.4. As mentioned before, FRK and OK are able to infer SWD

values on a regular grid in spite of the lack of observations in some areas. That is possible

since these methods learn the spatial properties of the signal and fit a proper covariance model

prior to prediction.

We perform predictions of SWD on a continuous field using PSI observations. Predictions

48



4.4. A case study

are achieved at point-level and areal-level. We do not have concrete information about the

accuracy of the master and slave atmospheric components and the error term remains after the

PSI data processing. It is necessary to explore the statistical properties of atmospheric data

received by processing InSAR and GNSS data. We use the method of FRK as a geostatistical

prediction technique that inspects the spatial dependence of the data, the fine-scale variance,

and the error variance prior to prediction. As observed from eq. (4.32), the parameters we

need to estimate are {α, σ2
ε , σ

2
ζ ,K}. α is estimated from the absolute SWD observations as

shown in Eq. (4.10). A linear trend is then calculated and subtracted from the data as the

other parameters should be estimated from the detrended data (zero mean).

We estimate the parameter α using eq. (4.10) and compute the long-wavelength component.

The observations are detrended by subtracting the estimated component. Figure 4.4 shows

the zero-mean SWD field (05.23.2005, 9:51 am). The field contains 76841 scattered observa-

tions within an area of about 100×100 km2. We can see the low density of observations in the

area between longitude lines 7◦30′ and 8◦06′, and in the south-eastern part. For the sake of

comparison with the SWD fields obtained from WRF, we predict at a regular grid of 3×3 km2.

Because the input data are at point-level support and the output data have block-level sup-

port, we should solve point-to-area COSP. Therefore, we apply block kriging (OK and FRK)

to derive SWD fields at the required spatial resolution.

To proceed, first with the OK algorithm, we should compute the empirical semivariogram

and fit a theoretical model (exponential function for this example). The weights are computed

based on the semivariogram model and the predictions are then derived by applying eq. (4.5).

Figure 4.7(a, b) shows the SWD inferred on a regular grid of resolution 3×3 km2 using OK

and the corresponding MSPE maps.

Next, we perform prediction using the FRK algorithm. At the beginning, we estimate a
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Figure 4.4: SWD observations derived in Chapter 6, where the long-wavelength component is
subtracted. Forest areas in the middle and the south east contain almost no PS
points. Acquisition date: 05.23.2005
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4. Spatial interpolation and estimation techniques

robust semivariogram using eq. (4.21). By line fitting, the error variance σ2
ε is estimated from

the robust semivariogram method, eq. (4.47). We specify a set of nodes at different spatial

resolutions such that they cover the entire observation domain. The number of nodes is r = 93,

and to capture spatial variations on several scales we distributed the nodes at three spatial

resolutions. In the first group, 4 nodes are put at a resolution of about 40 km, while the

resolution of the second group is 20 km and there exist 16 nodes. The last group contains 64

nodes at spatial spacing of 10 km. The nodes represent the center point of the BFs required to

encode all locations in the observation domain. We use the bisquare BF in eq. (7.34) to assign

weights to each observation and prediction location and form the matrix S(s) and S̄p(s) . The

set-up of the nodes is depicted in Figure 4.5. We then estimate K, and σ2
ζ using the E-M

algorithm as described in Section 4.3.

7.4 7.6 7.8 8.0 8.2 8.4 8.6

48.7

48.8

48.9

49.0

49.1

49.2

49.3

49.4

49.5

Longitude [°]

La
tit

ud
e 

[°
]

 

 

Resolution1 Resolution2 Resolution3

Figure 4.5: FRK nodes or center locations of 93 basis functions at three spatial resolutions. The
first resolution is 40 km, the second resolution is 20 km, and the third resolution is
10 km.

The result of the FRK predictions and MSPEs are exhibited in Figure 4.7 (c, d). WRF

data are shown in Figure 4.6, in which the IWV values are mapped to SWD values using

eq. (2.22). The long-wavelength component is reduced to achieve a proper comparison. From

the plots in Figure 4.7, we observe similar results from both OK and FRK that agree with

the original WRF data. The predictions based on FRK agree with those obtained using the

OK method, and the correlation coefficients with the original data of WRF are approximately

84% and 83% for FRK and OK, respectively. The MSPE plots in Figure 4.7 (b, d) show

that the error increases in areas where observations are sparse. In general, the MSPE values

of the FRK method are smaller compared with those of the OK method. This ensures that

the weights found based on the covariance model of the FRK method are more appropriate.
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Figure 4.6: Detrended SWD maps received from WRF. The resolution of the grid is 3×3 km2.

In the lower right corner of Figure 4.7 (b), we notice larger uncertainty in OK predictions

compared with FRK values in (d) and the penalty of single ’outliers’ when the observations

are sparse (inspect the change from red to blue in the lower part of the figure).

The most impressive point here is the computational time reported for both algorithms. The

FRK algorithm is fast so that it requires a short time to compute the predictions. Most of the

time is invested in the calculations of the covariance model parameters and constructing the

matrices S and Σ. On the other hand, we implement the OK algorithm so that the predictions

are found iteratively to reduce computational time. We also consider the observations which

are located within a predefined radius. Nevertheless, the algorithm requires computational

time with an order of magnitude higher than that required by the FRK method to obtain

predictions on the same grid, using the same machine. The computational time should rise

proportional to the growth of prediction locations. If we apply the traditional OK, where Σ−1

is constructed for N observations, the computational time grows significantly.

4.5 Summary

In this chapter, we presented the spatial interpolation and estimation techniques used in the

study. Due to lack of SWD (or IWV) fields on contentious grids and the different spatial

resolutions of the data sets, it is required to apply spatial interpolations to bring the data

into a common basis. We used moving-window averaging, IDW and surface fitting as non-

geostatistical interpolation methods, which obtain interpolations within the data coverage.

Due to the presence of gaps in SWD fields from, derived for example from PSI, we used

geostatistical interpolators, namely kriging, to get predictions on any predefined grid. These

interpolators are based on the observation that the variability of a specific spatial process

should have a particular structure modeled by a variogram. We used OK with the assumptions

of isotropy and stationary of the SWD fields. Generally, these assumptions do not hold for

geophysical quantities, Moreover, the OK requires high computational costs and as the size of
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Figure 4.7: In (a) is shown the prediction map using the block OK method, and in (b) are the
corresponding MSPEs. Predictions of the SWD by applying the block FRK algorithm
are shown in (c) and the corresponding MSPEs are shown (d). The resolution of the
grid is 3 × 3 km2. A point-level SWD map, on 05.23.2005 at 09:51 UTC, is used as
input to the algorithms.

the observations exceeds a certain limit, OK becomes non-feasible. To overcome the limitations

of OK, the method of FRK was applied. Using FRK, it is also possible to solve change of

support problems. The FRK method is the basis for spatial data fusion approach presented

in Chapter 7.
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5 Remote sensing of water vapor

Our primary objective in this work is to derive maps of the atmospheric wet delay by processing

InSAR phase observations and to reconstruct the absolute wet delay signal (and hence IWV

maps) using supporting data from GNSS. These maps are then assimilated with wet delay

maps generated from the WRF model to test the influence of data fusion on the quality of the

output maps. Figure 5.1 shows a setup of the GNSS and SAR systems used for remote sensing

of water vapor. We described in Chapter 2 the influence of the atmosphere, in particular the

neutrosphere, on the propagation of microwave signals. The neutrospheric delay is considered

as the major source of error since it cannot be eliminated by linear combination of multiple

frequencies. Different approaches have been developed to model and substantially reduce this

error, as presented in Chapter 1. Both GNSS and InSAR are affected by the neutrosphere

in a similar manner [Williams et al., 1998]. GNSS have been exploited since the 1990’s for

water vapor sounding; yet, this is a quite new research field for InSAR. In this chapter, we

describe the methods to obtain the neutrospheric delay from GNSS and InSAR observations,

such that we can investigate this “error” signal for measuring the content of water vapor in

the neutrosphere. Since phase observations from GNSS and InSAR are a superposition of

different contributions, our first goal is to separate the neutrospheric delay from other phase

components. We present in Section 5.1 the methods used to estimate the neutrospheric delay

from GNSS observations. In Section 5.2, we describe the phase measured by InSAR and the

contribution of the neutrosphere in the interferograms. We explain the strategy to extract the

contribution of the neutrosphere by applying PSI. Furthermore, we present comparisons of our

results with IWV maps from MERIS and WRF as well as measures of the spatial structure of

the SWD maps by means of the power spectral density and structure function calculations.

5.1 Neutrospheric delay in GNSS phase observations

GNSS, mainly GPS, have been used as a data source for a number highly precise geodetic

applications. Because GNSS signals are delayed when penetrating the Earth’s atmosphere,

one of the main tasks of the processing software is to successfully estimate and remove the

atmospheric effect from the signal. Both the ionosphere and the neutrosphere introduce time

delay into the signal and there exist a variety of techniques to eliminate them. While the iono-

sphere is dispersive and the ionospheric delay can be effectively reduced by linear combination

of multiple frequencies, the neutrosphere is non-dispersive for L-band frequencies and the its
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Figure 5.1: Schematic diagram illustrating the geometry and the spatial coverage of GNSS and
(In)SAR. GNSS satellites fly at altitudes of 20,000 km, while the SAR flies at 700 km
in a direction perpendicular to the page (azimuth) and captures a swath of width
100 km (in range). GNSS measurements are received at single sites distributed within
the SAR image on the ground.

delay has to be modeled. Bevis et al. [1992] suggested the investigation of the signal propa-

gation error to characterize atmospheric parameters such as the water vapor content. Since

then, different studies have been carried out to estimate water vapor content in the atmosphere

using GNSS signals, for example [Bender et al., 2008; Karabatić et al., 2011; Luo et al., 2008].

The growing number of GNSS constellations, such as GPS, GLONASS, and GALILEO, of-

fer promising possibilities to determine several atmospheric parameters at a satisfying quality

level. We focus on the neutrospheric delay derived during GNSS data processing as a valuable

source to determine the atmospheric water vapor content and to analyze its temporal and

spatial properties.

5.1.1 Precise Point Positioning and Differential GNSS

GNSS data processing can be achieved either by Differential Phase GNSS (DPGNSS) or PPP.

The method of DPGNSS is based on using a reference GNSS receiver with a known position

[Misra and Enge, 2001, p. 49]. Since its position is known, the receiver can provide esti-
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5.1. Neutrospheric delay in GNSS phase observations

mates of the error signals that can be used by close receivers to mitigate the errors in their

measurements.

On the other hand, the concept of Precise Point Positioning (PPP) was first introduced in

the 1970’s, and it has been substantially used since the end of the 1990’s when accurate orbit

and satellite clock data were made available [Zumberge et al., 1997]. The method of PPP

utilizes a linear combination of L1 and L2 frequencies to remove the first order component

of the ionospheric delay, which is an excellent approximation as mentioned in [Dach et al.,

2007, p. 257]. Using a linear combination of dual frequencies succeeds to effectively reduce the

ionospheric delay, but inaccurate information about satellite orbits and clocks can extremely

worsen the position estimates. Therefore, the accuracy can be significantly improved by ex-

ploiting highly precise satellite orbits and clock information available from the International

GNSS Service (IGS) [http://igscb.jpl.nasa.gov/]. The remaining propagation error is

caused mainly by the neutrosphere. PPP has the following benefits over DPGNSS:

• Only one GNSS receiver

Unlike the DPGNSS, which requires simultaneous measurements at two or more GNSS

sites, the PPP strategy utilizes observations from only one GNSS site. Hence, no simul-

taneous measurements are necessary, which saves time and costs, and there is no need

to examine the limitations on the length of the spatial baselines between sites.

• No correlation between the processed sites

In the method of DPGNSS, the results at two or more sites are correlated because

differences are built with respect to a reference site. If the signal of the reference site is

inaccurate, the results in the whole network are affected. This source of failure is avoided

when using the method of PPP.

• Absolute measurements of neutrospheric delay

The most important point about using the PPP method in this work is that it delivers

absolute measurements of the neutrospheric delay, while the DPGNSS produces relative

measurements of the neutrospheric delay at short baselines.

On the other hand, there are some disadvantages behind using PPP:

• Linear combination of L1 and L2 frequencies

To eliminate the ionospheric delay, a linear combination of L1 and L2 observations must

be applied. Because the linear combination removes the first order ionospheric delay, the

remaining error from higher order components may affect the accuracy of the estimates of

the neutrospheric delay. Also, under the use of linear combinations, the phase ambiguity

is no longer integer number.

• Dependency on the quality of the input data

The accuracy of the estimated parameters is dependent of the input data of satellite

orbits, as well as satellite and antenna clock information. Highly precise orbit and clock

data are available several days after the observations; accordingly, the accuracy of the
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5. Remote sensing of water vapor

PPP estimations in real-time is not adequate for the state-of-the-art research.

• Accuracy and observations time window

In order to achieve the same accuracy as DPGNSS, observations over longer time windows

are required for PPP processing.

By revealing tradeoffs, uncertainties, and requirements, we made the decision to use data

processed by the PPP strategy, since we are most interested in absolute measurements of the

neutrospheric delay. The aforementioned disadvantages of PPP can still be addressed to attain

a satisfying accuracy. For the current work, real-time data processing is not essential.

A GNSS satellite transmits coded messages modulated onto the carrier signals at L1 (1.57542

GHz) or L2 (1.2276 GHz) frequencies. The carrier phase at L1 and L2 frequencies is given by

[Misra and Enge, 2001, pp. 166]:

φgnss,kr = λ−1ρkr +
c

λ
(δtr − δtk)− λ−1∆Lgnssr,iono + λ−1∆Lgnssr,neu +Nk

r + εgnssr (5.1)

φgnss,kr : Carrier phase measured by the receiver r, from a signal transmitted from

the kth GNSS satellite, in units of cycles

ρkr : Geometrical distance from the kth satellite to the receiver r

δtk, δtr: Clock error of the kth satellite and the receiver clock error, respectively

∆Lgnssiono : Delay, in meters, due to the propagation in the ionosphere

∆Lgnssneu : Delay, in meters, due to the propagation in the neutrosphere

εgnssr : Phase noise, which includes orbit inaccuracies, multipath, and antenna

phase center variations

λ: Wavelength of the signal; 19 cm at L1 and 24 cm at L2

Nk
r : Integer number ambiguity in the signal transmitted from the kth satellite

c: Speed of light in vacuum, 2.99792458× 108 m/s

The phase measurement is converted into a path length in units of meters using the scaling

factor λ
2π . For this work, the interesting term in eq. (5.1) is the delay due to the neutrosphere.

Let the satellite coordinates be given by [Xs, Ys, Zs] and the receiver coordinates are [Xr, Yr, Zr],

then ρkr is computed from

ρkr =
√

(Xr −Xk
s )2 + (Yr − Y k

s )2 + (Zr − Zks )2 (5.2)

The most popular PPP-related linear combination of the carrier phase of L1 and L2 frequencies
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is achieved by the following relation

φIF =
1

f2
1 − f2

2

(f2
1φL1 − f2

2φL2) (5.3)

The ionosphere-free (IF) combination of the carrier phase measurements, φgnss,kr,IF , reads

φgnss,kr,IF = λ−1ρkr −
c

λ
δtr + λ−1∆Lgnssr,neu +Nk

r,IF + εgnssr (5.4)

Nk
r,IF : Ionosphere-free ambiguity, no longer integer

GNSS observations (code and phase) are processed using the BS5 software http://www.

bernese.unibe.ch/ [Dach et al., 2007], where the code measurements are required for the

preprocessing step. In the presence of satellite orbits and clock information, GNSS data are

processed to estimate: the three location coordinates of the GNSS receiver (antenna), the

receiver clock error, the phase ambiguity, and a so-called site specific neutrospheric parameter

(SSNP). The estimation of the parameters is achieved by the weighted least squares inversion.

For detailed description of GNSS data processing for this work, the reader is referred to

[Fuhrmann et al., 2010, Chapter 5].

5.1.2 Estimating the neutrospheric delay

The azimuthally-isotropic neutrospheric zenith total delay (ZTD) caused by the column of air

above the GNSS receiver is determined in the BS5 from the following formula:

ZTDgnss
iso = ∆model + ∆z (5.5)

ZTDgnss
iso : Azimuthally-isotropic neutrospheric zenith total delay from GNSS observa-

tions in [meters]

∆model: neutrospheric delay in [meters], obtained from Saastamoinen model

∆z: zenith-directed SSNP (Correction term) in [meters]

Note that ∆model can slightly differ from the value of the ZDD. As we mentioned in Sec-

tion 2.2.2, the ZDD is accurately determined from empirical neutrospheric a priori models;

therefore, it is calculated in the BS5 by substituting representative meteorological parameters

from the standard atmosphere in eq. (2.21). Note that by using representative values from the

standard atmosphere, the calculated ZDD will remain constant over time since it depends only

on the altitude and latitude of GNSS site, eq. (2.15).
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5. Remote sensing of water vapor

In order to make the estimated ZTD more realistic, the BS5 estimates a correction term

(SSNP), which is more variable over time. One value for the SSNP is estimated every hour such

that for estimating the SSNP at 02:00 (UTC), the observations in the interval from 01:30-02:30

(UTC) are used, and the estimated SSNP value is valid for that interval. A large part of the

SSNP corresponds to the wet delay, but it also contains a small fraction of the dry delay. The

accuracy of the estimated receiver position as well as the SSNP is affected by different factors,

for example, the weighting of the observations and correcting the site-specific multipath effects

[Luo et al., 2008]. Figure 5.2 shows time series obtained from the BS5 for the modeled ZDD

as well as the sum of the ZDD and the SSNP at the site KARL on 07.12.2004 (see Figure 3.4

for site location and altitude).
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Figure 5.2: The modeled ZDD and the corresponding correction term (SSNP) as received from
BS5, site: KARL (49.0112◦N,8.4113◦ E), day: 07.12.2004. The values are estimated
at times (UTC): [00:51, 01:51,. . . , 23:51], and the SAR overpass time is 09:51.

A GNSS receiver records the signals from all visible satellites with elevation angles above the

cut-off elevation (7◦ for this work). The estimated ZTD measures the average effect of the

conical neutrosphere above the GNSS receiver. Since most of the water vapor is located near

the Earth’s surface, we can approximate the radius of the cone. Referring to the schematic

diagram shown in Figure 5.3, if the minimum cut-off elevation (θmin) is 7◦ and assuming

that water vapor is concentrated in the lower 1 km of the atmosphere, the corresponding cone

radius is rc ≈ 8 km. The ZTD estimated in the BS5 software contains the delay effects of

the azimuthally-isotropic neutrosphere. Estimating the path delay along the satellite LOS is

however more challenging as it requires to account for the anisotropy of the neutrosphere. The

neutrospheric delay along the satellite LOS, called the slant total delay (STD), is estimated as

a sum of four components: the ZDD, the SSNP, the neutrospheric horizontal gradients, and

the related phase residuals after least squares, i.e.,

STDgnss = ∆model ·MFdry+∆z ·MFwet+∆n · ∂MFwet
∂z

·cosA+∆e · ∂MFwet
∂z

· sinA+∆r (5.6)
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Figure 5.3: A GNSS antenna receives signals from different satellites at a minimum elevation
angle (θmin) that defines a cone-like neutrospheric section above the GNSS receiver.
Assuming water vapor resides in the lower 1 km of the neutrosphere, rc ≈ 8 km for
θmin of 7◦.

STDgnss: Neutrospheric slant total delay from GNSS observations in [meters]

∆n,∆e: Northing and easting neutrospheric gradients, respectively

∆r: Anisotropic wet component extracted from the phase residuals in [meters]

A, z: Satellite azimuth and zenith angles

MF : Mapping function (here Niell MF)

The BS5 provides estimates of the northing and easting neutrospheric gradients to account

for the neutrospheric tilting [MacMillan, 1995]. This tilting means that zenith direction of the

neutrosphere (with minimum neutrospheric delay) can slightly mismatch the ellipsoidal zenith.

The neutrospheric gradients have an influence at low elevation angles, while they cancel out at

90◦ elevation. The neutrospheric gradients depict insignificant variations over one day, hence

they are estimated in the BS5 once every 24 hours.

A more significant component to account for the neutrospheric anisotropy is the component

of the wet delay extracted using the phase residuals resulting from computing the difference

between the estimated GNSS solution and the measurements. The residuals contain, how-

ever, other error sources due to multipath (MP) and antenna phase center variations (PCV).

Fuhrmann et al. [2010] proposed a spatial stacking approach to compensate errors due to MP

and nonmodeled antenna PCV and extract the wet delay component. After filtering out MP

and antenna PCV errors, the azimuthally-anisotropic neutrospheric delay ∆r is retrieved and

added to the other estimated components to produce the entire STD.
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5. Remote sensing of water vapor

5.1.3 Quantifying the zenith wet delay

The ZDD is computed in the BS5 using representative meteorological parameters from the

standard atmosphere. A fraction of the dry delay depends on the weather conditions, which

we classified as a heterogeneous component in Section 2.2.4. Because the SSNP is a correction

term that is calculated for the total neutrospheric delay, it is not exactly the wet delay, but it

also contains the heterogeneous fraction of the dry delay. In order to retrieve the wet delay,

we calculate a value for the ZDD by substituting meteorological observations in eq. (2.15), and

subtract it from the ZTD, i.e.,

ZWDgnss
iso = ZTDgnss

iso − ZDD
meteo

= ∆model + ∆z − ZDDmeteo (5.7)

ZWDgnss
iso : Azimuthally-isotropic zenith wet delay from GNSS observations in [meters]

ZDDmeteo: Zenith dry delay in [meters], obtained from Saastamoinen model using me-

teorological data

This approach has been exploited in different studies [Fuhrmann et al., 2010; Jade and Vijayan,

2008; Jin and Luo, 2009; Karabatić et al., 2011]. We compute a value for the dry delay from

the Saastamoinen model by substituting the values of P, T , and e from surface meteorological

observations of 30-60 minutes sampling time. When the meteorological data are not available

at the acquisition time of the remote sensing data, temporal interpolations of meteorological

data are done by applying cubic spline interpolators, while spatial interpolations are made by

kriging as presented in Section 5.1.5. In addition, we use the meteorological data from the

WRF model, which are available at a 10 minutes temporal resolution and a spatial resolution

of 3×3 km2. WRF surface temperature data are mainly used to calculate the weighted mean

temperature of the atmosphere, which is required for calculating the conversion factor Pi

(Section 2.3). Once the ZWD component is calculated, it is mapped to the LOS of the

satellite to add the anisotropic component of the wet delay, Hence, the SWD is:

SWDgnss = ZWDgnss
iso ·MFwet + ∆n · ∂MFwet

∂z
· cosA+ ∆e · ∂MFwet

∂z
· sinA+ ∆r (5.8)

The SWD is then mapped back to the vertical direction to obtain the ZWD that contains the

azimuthally-isotropic and anisotropic water vapor components as follow:

ZWDgnss =
SWDgnss

MFwet
(5.9)

The procedure followed to determine the SWD from the GNSS observations are summarized
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Figure 5.4: A flowchart summarizing the procedures of retrieving the ZWD from GNSS phase
observations based on the PPP strategy. Meteorological observations are necessary
for accurate separation of the wet delay.

in Figure 5.4. It remains to describe how the ZDD is calculated from the Saastamoinen model

(eq. (2.15)) using observations of the air pressure, temperature, and relative humidity at the

GNSS sites. The relative humidity is necessary to determine the partial pressure of water

vapor. Some stations provide measurements of the dew point temperature, which can be

related to the relative humidity as presented by Lawrence [2005] using the following formula:

rh ≈ 100− 5(T − Td) [%] (5.10)

T : Air temperature

Td: dew point temperature, and both T, Td are in degrees Celsius.

The partial pressure of water vapor is determined using meteorological data from one of the
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following empirical expressions:

e = 6.1162 · exp

(
17.67Td
Td + 243.5

)
, Td in [◦C] (5.11)

e =
rh

100
· exp (−37.2465 + 0.2131665T − 0.000256908T 2), T in [K] (5.12)

Since these data are often not available exactly at the site, we have to interpolate or extrapolate

horizontally and vertically. If the meteorological station is located adjacent to the GNSS site,

the air pressure at the meteorology station PMET is used to extrapolate the air pressure at

the altitude of the GNSS site (P gnss) using a form of the hydrostatic equations [Barry and

Chorley, 1987; Byers, 1974]:

P gnss = PMET

(
Tmeteo − L(zgnss − zmeteo)

Tmeteo

)g/RL
(5.13)

Tmeteo: Air temperature at the meteorology station [K]

zgnss: Ellipsoidal altitude of the GNSS site (antenna) [m]

zmeteo: Ellipsoidal altitude of the Meteorology station [m]

L: Temperature lapse rate ≈ 0.0065 [K/m] [Barry and Chorley, 1987, pp. 56]

R: Universal gas constant ≈ 8.31447 [J/mol K]

g: Earth’s gravitational acceleration ≈ 9.80665 [m/s2]

In a similar way, the partial pressure of water vapor is computed at the GNSS site using

eq. (5.13). Given the air pressure and the partial pressure of water vapor at the GNSS site,

the ZDD can be calculated using eq. (2.15). Figure 5.5 shows 24-hours time series of the

ZTD, ZDD, and ZWD quantified at 10 sites from GNSS observations on the days 06.27.2005

(summer) and 01.03.2005 (winter). The ellipsoidal altitudes of the GNSS sites are shown in

Figure 5.6 and the geographic locations of the sites are provided in Table 3.2. We can

observe that the higher the GNSS site is, the lower the neutrospheric delay becomes. The

ZTD values in summer are higher than the ZTD values in winter; this increase is resulting

from the ZWD component since the air is more humid and the amount of water vapor in the

neutrosphere is larger in summer. The ZWD shows higher temporal variations compared with

the ZDD. If we examine the ZDD, we notice a small increase in the winter values. This can be

explained by cold air temperature in winter that is associated with high air pressure, while in

summer warm air is more buoyant and has a lower pressure. Also, in winter the air pressure

increases while the partial pressure of water vapor decreases, then the pressure of dry gases

(Pd = P − e) and hence the ZDD will have greater values.
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Figure 5.5: 24-hours time series of ZTD, ZDD, and ZWD from GNSS observations at 10 sites on
the days 06.27.2005 and 01.03.2005. The exact geographic locations of the sites are
given in Table 3.2, and their heights are shown in Figure 5.6.
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Figure 5.6: Ellipsoidal heights of the GNSS sites.
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5. Remote sensing of water vapor

5.1.4 Comparing ZWD derived from GNSS, MERIS, and WRF data

For the sake of verifying the ZWD estimated from GNSS observations, we use data from MERIS

and WRF. MERIS provides maps of IWV, which are mapped into ZWD values to be compared

with the absolute values of the ZWD measurements retrieved from GNSS. Because of the

aforementioned cone-averaging of GNSS observations, ZWD measurements from MERIS are

averaged within 15 km by 15 km blocks centered at the location of the GNSS site (Figure 5.7).

Figure 5.8 (a) shows the ZWD from MERIS against the ZWD measured at 10 GNSS receivers

on 5 days, for which the cloud-free MERIS maps were available. We observe strong correlation

between the ZWD values of GNSS and MERIS for all days. We also compute the difference

of ZWD values as depicted in Figure 5.8 (b), and the root mean squared (RMS) values

of the differences are given in Table 5.1. The results show low RMS values except for the

observations on the day 10.30.2006. We notice that the differences are large at some receivers

compared to the others, which is explained by the partial presence of clouds in the area close

to those receivers. Because the data are masked out in the cloudy regions using a threshold,

the available data decrease and there can be samples in the remaining IWV observations which

are underestimated. This can make the IWV observed by MERIS differ from that estimated

from GNSS measurements.

8.280 8.335 8.390 8.445 8.500 8.540
48.92

48.97

49.02

49.07

49.10

 

 
ZWD from MERIS [mm]

Longitude [°]

La
tit

ud
e 

[°
]

48.440

87.564

Figure 5.7: MERIS measurements of ZWD in a block of 15×15 km2, and the little black circle
defines the location of the GNSS site (KARL).

Time 06.27.2005 09.05.2005 07.17.2006 10.30.2006 04.23.2007

RMS [mm] 6.3514 5.7456 5.6483 8.1244 3.3830

Table 5.1: RMS of the difference between GNSS and MERIS ZWD observations

We compare in the same way the GNSS ZWD with the IWV simulated by the WRF model,

after converting into ZWD values. In Figure 5.9 the ZWD from GPS and WRF are shown,

and the corresponding correlation coefficient (CC) and RMS values are given in Table 5.2.
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Figure 5.8: (a) MERIS ZWD plotted against GNSS ZWD from 10 receivers at SAR overpass time
in 5 days. The MERIS observations are averaged in blocks of 15×15 km2 to emulate
GNSS. The slope of the black line is 1. (b) The difference between the ZWD values
from GNSS and MERIS. The difference is calculated at the 10 receivers at 5 days.

Generally, it is expected that the ZWD values at the 10 GNSS sites decrease in the direction of

increasing heights. Nevertheless, this reduction of the ZWD values with the increasing surface

altitude might not be observed from the data. This is well explained by the spatial variability

of water vapor content and the local effects of turbulently-mixing water vapor around each

site. These effects may increase the wet delay observed at the site even if it is located at a

higher altitude. This effect will be more clear if the GNSS sites are widely separated and the

differences of their altitudes are small.

Time 11.29.2004 03.14.2005 05.23.2005 08.01.2005

RMS [mm] 7.862 4.0248 15.3143 12.4249

Correlation coefficient 0.8461 0.8058 0.9279 0.8011

Table 5.2: Correlation coefficients between GNSS and WRF ZWD data and the RMS values.

5.1.5 Interpolation of surface meteorological temperature and pressure data

In many cases, meteorological stations are distant from the location of the GNSS site; for that

reason, spatial interpolations of meteorological parameters (e.g., P, T) are imperative. If we

inspect the temperature, it can be divided into two components: one (the largest) is elevation

dependent and the second is dependent of the spatial location. In order to interpolate the

temperature in space, we do the following: the altitude dependent component is removed by

line fitting (T (z) = az + b), then we build a variogram of the temperature residuals. The

spatial variations of temperature in the area of URG (600 × 600 km2) can be modeled by

an exponential variogram function with a range of about 300 km. To find the value of the

temperature at any (x, y, z) location, we calculate a height-dependent component using the
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Figure 5.9: ZWD from GPS and WRF at three SAR acquisition times observed by 10 sites. ZWD
from WRF is averaged within a box centered at the GPS site. The corresponding
correlation coefficient and RMS values are depicted in Table 5.2.

coefficients of the line fitting and add a correction value to account for the horizontal variations,

T (x, y, z) = T0(z) + ∆Tcorr(x, y) (5.14)

where T0(z) = az + b, and ∆Tcorr(x, y) is a correction term depending on the spatial location

of the site, which is modeled by a semivariogram. We analyzed more than 40 variograms

of the temperature residuals in different year seasons. I is observed a similar performance

in all of them with a slight difference in the variogram sill but the variogram range remains

almost unchanged. Accordingly, we can use a representative variogram model with an average

sill from all inspected variograms. The variogram model in Figure 5.10 can be utilized in

the absence of spatially-dense meteorological data, where building a proper variogram is not

possible.
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Figure 5.10: The experimental and theoretical semivariogram models for the temperature maps
simulated by the WRF model.
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We used WRF temperature simulations to test this method. Due to the lack of other 2D

data, we used temperature maps of WRF down-sampled by a factor of ten as input for the

method. The output grid is defined at a spatial resolution of 9×9 km2. The original tempera-

ture maps are aggregated into 9 km cells to be compared with the interpolated temperature.

Figure 5.11 shows the results for a day in winter and a day in summer. The interpolations

made using the semivariogram model shown in Figure 5.10, show a strong agreement with

the maps simulated by WRF. The difference maps follow a Gaussian distribution with a mean

close to zero and a standard deviation of less that 0.3◦C.

In order to interpolate the air pressure to different spatial locations, a similar scenario is

used. The elevation-dependent component can then be computed at different altitudes using

eq. (5.13), and the residuals are spatially interpolated using the method of IDW. Because the

partial pressure of water vapor is more variable, we only interpolate or extrapolate the pressure

of the dry air. It was not possible to compute one common variogram for the pressure, since

the data in different areas depicted different spatial behavior.
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Figure 5.11: Temperature maps constructed by summing a height dependent component and a
correction value accounting for spatial variations determined by kriging. The first
row shows results using data on 01.03.2005 and the second on 06.27.2005. The mean
(µ) and the standard deviation (σ) of the differences are shown in the histogram
plots.

5.2 Neutrospheric delay in InSAR

In the previous section, we discussed the procedure followed to estimate the ZWD at the GNSS

sites. In this section, we present the method used to derive the wet delay maps from InSAR

data. We first give an overview of the SAR system and the InSAR technique.
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5. Remote sensing of water vapor

5.2.1 SAR

Synthetic aperture radar (SAR) is an active remote sensing sensor that has its own illumination

source; therefore, it can collect data at day and night times. The operating frequencies are

selected properly to allow the operation during all weather conditions, so that the microwave

signal can penetrate clouds, haze, rain, fog and precipitation with marginal attenuation. To

overcome the limitation of physical antenna aperture, SAR applies signal processing techniques

(using the Doppler effect associated with each echo) to achieve high spatial resolution through

the combination of many low-resolution but correlated radar images. In order to form an

image, the radar transmits pulses to the ground, and the return echos scattered from the

objects on the ground are received by the antenna. The image can be acquired in different

modes such as stripmap (which is used in this work), ScanSAR, and spotlight by adjusting the

radar imaging geometry [Bamler and Hartl, 1998]. The raw data are processed to generate a

single look complex (SLC) SAR image. A SAR image can be thought of as a two-dimensional

array of complex values, representing the brightness of the scattering objects on the ground and

the phase associated with the traveled distance. Each resolution cell observed on the ground

returns a signal that is received by the radar and stored in the array as a complex number in

range and azimuth coordinates. The size of the ground cell depends on the parameters of the

SAR system; for example, Envisat radar has a spatial resolution of about 20×4 m2.

The information of the image can be represented in amplitude and phase components. The

phase signal of one SAR image is uniformly distributed due to the random superposition of

echoes from all scatterers within each resolution cell. This effect masks the useful information

about the geometric range between the radar and the ground. To make use of the phase

information for measuring different signals such as surface displacement and elevation, the

technique of Interferometric SAR (InSAR) is applied.

5.2.2 InSAR

In most InSAR applications, two images acquired for the same region, but with slightly different

viewing geometries are used. The images can be captured by the same antenna with a temporal

shift (repeat-pass InSAR), or by two different antennas at the same time (single-pass InSAR)

[Bamler and Hartl, 1998]. In single-pass InSAR, the change in the atmospheric effect between

the two images is insignificant and it cancels out by interferometry. Therefore, we limit this

study to repeat-pass InSAR. Interferometry is achieved by multiplying the first SLC image

(S1 = |S1| exp(jφ1) by the complex conjugate of the other (S2 = |S2| exp(jφ2)), i.e.,

V = S1S
∗
2 = |S1||S2| exp(j(φ1 − φ2)) (5.15)

where V is called complex interferogram, φ1 and φ2 are the phase of the first and the second

image, respectively. The star in the above equation indicates the conjugate. The phase of each
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5.2. Neutrospheric delay in InSAR

resolution cell is a sum of a component that is proportional to the geometric distance and a

scattering phase. If the scattering characteristics of the resolution cell stay the same during

the two acquisitions, then the phase due to the scattering effect nearly cancels out [Hanssen,

2001, p. 36]. Under these conditions, each element in the interferogram contains a value of the

interferometric phase that measures the difference of the distances from the satellite to the

ground, i.e.,

φint(x, y) = −4π

λ
∆R+ φnoise (5.16)

where ∆R = R1 − R2 denotes the difference between the observed distance from the ground

cell to the radar at the first and the second overpass times, see Figure 5.12.

Figure 5.12: Imaging geometry of InSAR. R1, R2 measure the distances from the satellite to the
ground at the first and the second overpass times. B is the spatial baseline, B⊥ is
the perpendicular baseline, and θinc is the radar incidence angle.

The interferometric phase for each pixel in an interferogram is given by the superposition

of different contributions such as topography, Earth surface displacement, and atmosphere.

InSAR phase for each pixel in the interferogram is given by:

φint = φtopo + φdisp + φneu + φiono + φorbit + φflat + φnoise (5.17)

where φtopo is the topographic phase component. φdisp is the phase component due to the

Earth’s surface displacement between the two SAR acquisitions. φneu is defined as differential

phase shift caused by the propagation of the signal through the neutrosphere. Similarly, φiono

is the differential phase shift due to the signal propagation through the ionosphere. The phase

component due to the inaccuracy of the satellite orbit is denoted by φorbit and φflat is the

phase component due to the Earth’s reference phase. φnoise is the component due to the

system thermal noise and the loss of coherence between the two observations.
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The focus of this work aims at separating the neutrospheric phase from other phase compo-

nents in eq. (5.17). We will describe later in this chapter the way to reduce the contribution

of all other phase components to extract the neutrospheric phase. The ionosphere has a

marginal influence on radar signals transmitted at frequencies of C- and X-band [Gray et al.,

2000], while it has been shown that the ionosphere has a significant impact in L-band SAR

observations [Meyer et al., 2006]. Furthermore, the ionospheric effect is expected to model a

trend of long-wavelength that is inseparable from other phase ramps; thus, they are eliminated

during InSAR processing [Zebker et al., 1997]. In Chapter 2, we examined the influence of

the neutrosphere on microwave signals and classified the encountered delay into wet and dry

components. In the same way, the neutrospheric phase in InSAR is given by

φneu = φdry + φwet (5.18)

The dry delay is characterized by smooth and slow variations in time and space. By applying

interferometry, the dry delay is mostly eliminated and the artifacts observed in the interfero-

gram are mainly caused by wet delay [Zebker et al., 1997]. GNSS and InSAR are affected by

the neutrospheric delay in a similar way. However, GNSS provide absolute measurements of

the delay while the neutrospheric observations from InSAR represent a difference between the

neutrospheric states at two acquisition times. GNSS provide observations at spatially sparse

locations compared to the high spatial resolution of InSAR observations.

The phase observations in InSAR is given by the difference of two observations, hence the

neutrospheric phase observed in InSAR is given by

φneu(x, y, t1, t2) = − 4π

λ cos θinc
10−6

(∫ Z

0
N(x, y, z, t1)dz −

∫ Z

0
N(x, y, z, t2)dz

)
(5.19)

where t1 and t2 denote the SAR acquisition times. θinc is the radar incidence angle and the

factor 1
cos θinc

is a mapping function applied to project the neutrospheric delay from the zenith

direction to the radar LOS. The theoretical value of θinc for Envisat is ≈ 23◦. Because the

radar signal travels downwards and upwards through the neutrosphere, a factor of 2 apparent

in eq. (5.19). It should be noticed that the fraction −4π
λ is used to convert the delay in meters

into phase delay in radians, and its reciprocal is used to convert the radians into meters.

5.2.3 InSAR time-series analysis

It is common that interferograms with long temporal baselines contain noisy areas where no

measurement is possible. This noise can originate from temporal decorrelation in vegetation

areas where low or even no coherence between the two SAR images is observed [Li and Gold-

stein, 1990]. Decorrelation can also result from the change in the viewing geometry, where

the change in the spatial baselines can change the coherent sum of the wavelets from different
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scatterers within the resolution cell resulting in spatial decorrelation [Zebker and Villasenor,

1992]. Spatial decorrelation restricts the number of image pairs suitable for interferometric

applications [Ferretti et al., 2001]. Multi-temporal InSAR techniques are extensions of con-

ventional InSAR methods developed to address the problems of decorrelation and optimized

to minimize errors caused by the neutrospheric delay. These techniques involve simultaneous

processing of multiple SAR acquisitions of the same area to increase the spatial density of

extractable information and to reduce the error associated with the estimated deformation

signal. Currently, there are two categories of algorithms for processing multiple acquisitions:

persistent Scatterers InSAR (PSI) and small BAseline Subset (SBAS) method [Hooper, 2008].

If the scatterers are of comparable strength, the SBAS method mitigates the neutrospheric

effect by averaging numerous interferograms of short spatial baselines under the assumption

of zero-mean Gaussian properties of the atmospheric signal delays. Through averaging large

data stacks, improved information about average surface velocity measurements can be ob-

tained. On the contrary, if the resolution cell is dominated by one scatterer, the influence of

other scatterers is minimal and the received signal is stable, it is recommended to use PSI.

The PSI technique aims at identifying temporally coherent targets that show phase stability

at all acquisition times. These targets are point-wise objects that are plentiful in the city-type

environments but are less likely in non-urban regions. PSI was developed to overcome InSAR

limitations of temporal and geometrical decorrelation [Ferretti et al., 2001]. Different meth-

ods have been developed to identify PS points in the interferograms, which were successful

in urban areas where many man-made objects are available and hence many PS points are

possible, but tend to provide only few PS points in the areas of natural terrain [Ferretti et al.,

2001; Kampes, 2005; Lyons and Sandwell, 2003]. The Stanford Method for Persistent Scat-

terers (StaMPS) is an alternative approach that was successfully developed to define a larger

number of PS candidates even in non-urban areas [Hooper et al., 2007, 2004]. SBAS will be

used in future work within the project to extract neutrospheric phase from interferograms and

to test the influence of redundancy from difference subsets on the reconstruction of the phase

at each SAR overpass time. A new method for PSI analysis, SqueeSAR, has been developed to

increase the density of stable targets by analyzing both point-wise PS targets and distributed

scatterers [Ferretti et al., 2011]. This technique should be used in future work to increase the

number of stable targets particularly in the green areas, which are common in the URG.

5.2.4 StaMPS framework

StaMPS was initially developed for PSI applications in natural regions [Hooper et al., 2007,

2004], and then SBAS analysis was added to the package of StaMPS [Hooper, 2008]. The

StaMPS framework contains a collection of spatial and temporal filtering routines that allow

to estimate each of the phase components contained in the interferometric phase by assuming

its spatial and temporal structure. We use StaMPS in this work to process an Envisat image

stack and reconstruct the neutrospheric phase. Data processing in StaMPS, selection of PS

pixels, estimation of other phase components and noise, and phase unwrapping are described
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in [Hooper et al., 2007], from which we built most of the material in this section.

The selection of the PS pixels in StaMPS is achieved by inspecting the amplitude and the

phase of the pixels, where testing the amplitude is done to reduce the computation time. As

the amplitude stability is a measure for phase stability of a pixel in the interferogram, the

PS candidates are selected in the first iteration such that the amplitude dispersion index is

below a threshold value. The amplitude dispersion index is defined as the ratio between the

standard deviation and the mean of the SAR pixel amplitude [Ferretti et al., 2001]. We tested

different threshold values and the most suitable value for the natural terrain in URG was 0.4.

The amplitude analysis provides first PS candidates and then the phase stability is measured

for the selected candidates by phase analysis. By applying phase analysis, unstable pixels or

partially stable pixels (stable in some interferograms) are rejected. It is required to estimate

the phase noise for each PS candidate and the final PS pixels are those pixels that have very

little noise. Since the wrapped phase for each pixel has different contributions as given in

eq. (5.20), the noise is dominated by the variations of the first four components. Therefore,

we first need to separate the useful signal from the noise. The phase noise is temporally

and spatially uncorrelated, hence to estimate the phase noise other phase components, that

are spatially correlated, are filtered out. However, the phase due to look angle error has a

component that is spatially uncorrelated, and it is estimated using least squares fitting taking

the benefit of its correlation with the perpendicular baseline. By subtracting the spatially

correlated terms and the residual look angle error, the remaining component is the phase

noise. The variation of the phase noise is determined for each pixel and by setting a threshold

value the pixel can be confirmed to be a PS pixel or not. We followed the above described

strategy to define the PS points in the SAR images.

The interferograms are formed at full resolution in range and azimuth in order to maximize

the signal-to-clutter ratio of the resolution cells containing a single dominant scatterer [Agram,

2010]. The signal-to-clutter ratio is defined as the ratio between the reflected energy from the

dominant scatterer in the resolution cell to that of the energy reflected from the rest of the

elements in the cell [Adam et al., 2003; Kampes, 2005]. The interferograms are corrected for

the phase trend generated by flat Earth before the StaMPS processing. Also, the phase due

to the Earth’s topography is subtracted with the aid of a DEM model of 10 m resolution. The

residual wrapped phase for each PS point is then given by:

∆ψpsiik = W
{
φdisp,ik + φneu,ik + ∆φorbit,ik + ∆φla,ik + φnoise,ik

}
(5.20)

where ∆ψik is the residual interferometric phase for the ith PS point in the kth interferogram.

φdisp,ik if the phase change due to the displacement of the PS in the radar LOS direction.

The neutrospheric phase is denoted by φneu,ik. The residual phase due to the inaccuracies

in the satellite orbits is ∆φorbit,ik. The slightly different acquisition geometries between the

first and the second overpass times and the error in the DEM can result in a residual phase

term, called look angle error, denoted by ∆φla,ik. φnoise,ik is the noise due to variability in
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5.2. Neutrospheric delay in InSAR

scattering, thermal noise, coregistration error, and uncertainty in the phase center in azimuth,

and W{·} defines the wrapping operator. Note that the term φiono apparent in eq. (5.17) is

removed here by assuming that it often has a negligible effect in C-band data.

The retrieval of the neutrospheric phase is achieved in StaMPS by analyzing the spatial and

temporal characteristics of each phase component in the interferogram. Table 5.3 shows the

spatial and temporal properties of all phase components appearing in eq. (5.20). The first four

terms in the equation are correlated in space while the noise is uncorrelated; therefore, using

a low pass filter in space separates the noise from the signals. The noise signal is assessed

statistically and the statistical parameters of the noise are used to adapt the filter and the

first four terms are re-estimated and subtracted to obtain a new estimate of the noise. This

is iterated in a loop until the estimate of the noise converges, and we get a component for the

correlated phases. The uncorrelated component of ∆φla,ik is approximated by a linear relation

with the perpendicular baseline and it can be estimated by least squares. After subtracting

the uncorrelated phase terms, phase unwrapping is applied and the resulting unwrapped phase

is:

∆φpsiik = φdisp,ik + φneu,ik + ∆φorbit,ik + ∆φcla,ik + ∆φnoise,ik + 2nikπ (5.21)

∆φcla,ik is the spatially-correlated part of the phase ∆φla,ik, and ∆φnoise,ik is the residual noise

term. nik is the integer ambiguity which should remain unchanged for most PS points in the

interferogram if the unwrapping was done correctly.

In this work, we are interested in retrieving the term φneu,ik from the unwrapped phase in

eq. (5.21). The most challenging point is to separate the neutrospheric phase from the phase

due to surface displacement. However, the tectonic surface motion in the test area of URG

is observed to have a small, long-term change. Accordingly, the phase component φdisp,ik

can be assumed negligible. For the remaining phase terms, StaMPS attempts to separate the

master and slave contributions by temporal filtering. The contribution of the master to the

neutrospheric and the orbital phases is correlated in time, while the contributions from the

slaves are not correlated in time as well as the component ∆φcla,ik. The master contribution to

the neutrospheric and orbital phase can be retrieved by applying a low-pass filter in time. The

slave contributions are retrieved by applying a high-pass filter in time followed by a low-pass

filter in space to remove noise. The spatially-correlated look angle (SCLA) error is dependent

of the baseline and it is estimated using least squares. The orbital phase can be modeled by a

2D linear trend and subtracted from the unwrapped phase. The neutrospheric phase in each

interferogram is the sum of the phase of the master and the corresponding slave. Estimating

the neutrospheric contribution of the slave requires adjusting temporal and spatial parameters

of the filter, we found the phase estimates of the slave neutrosphere depend highly on the filter

parameters (e.g., temporal and spatial correlation lengths), which are not easy to fix. Because

we assumed that the displacement phase is negligible, we filtered out noise and subtracted

the estimated orbital trend and the SCLA signal, so that the remaining phase is due to the

neutrosphere without the need for splitting the master and slave signals at this stage.
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Phase component Spatial correlation Temporal correlation

φdisp,ik correlated correlated

φneu,ik correlated master signal is correlated, slaves not

∆φorbit,ik correlated master signal is correlated, slaves not

∆φla,ik only partially correlated uncorrelated

φnoise,ik uncorrelated uncorrelated

Table 5.3: Temporal and spatial properties of the phase components in the interferogram

5.2.5 Extracting SWD-difference maps

The neutrospheric phase is converted into slant delay (along the radar LOS) in units of mil-

limeters by multiplying the phase value, in radians, by the factor −4π
λ , i.e.,

∆STDpsi(x, y) = −4π

λ
φneu(x, y) (5.22)

where ∆STDpsi(x, y) is the slant neutrospheric delay-difference, and λ is the wavelength of the

microwave signal, which is about 56 mm in the C-band. As mentioned earlier, the neutrospheric

phase is a sum of a phase shift due to dry gases and a phase shift due to water vapor. Since dry

gases are quite repeatable [Zebker et al., 1997], their effect is significantly reduced when build-

ing the interferogram. If a residual component of the dry delay remains in the interferogram, it

will be indistinguishable from the orbital ramps, and it will be eliminated when modeling and

subtracting those ramps. Accordingly, we consider the neutrospheric phase extracted from the

set of interferograms to be caused by water vapor (i.e., ∆STDpsi = ∆SWDpsi). The ZWD

at any spatial location (x, y) can be obtained from the SWD measurements using a mapping

function that is dependent of the radar incidence angle, i.e.,

∆ZWDpsi(x, y) = ∆SWDpsi(x, y) cos θinc (5.23)

where ∆ZWDpsi is the zenith-directed wet delay-difference and ∆SWDpsi is the SWD-

difference. θinc is the incidence angle of the radar (see Figure 5.12). Since the SWD-difference

maps extracted from the interferograms are relative measurements to a reference master, we

call them SWD-difference maps, and they can be converted into IWV-difference maps.

We built interferograms from an Envisat image stack with respect to a single reference image

(the master) acquired on 06.27.2005 at 09:51 (UTC). StaMPS is applied to 16 interferograms

corrected for flat Earth trends and topography. The total number of identified stable-phase pix-

els is 76841, and the average density of PS points in the interferogram is about 11 points/km2.

Please note, that the density is much higher in urban regions, but due to the absence of PS
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5.2. Neutrospheric delay in InSAR

points in forest regions, the overall average decreases. This density is however good enough for

atmospheric studies where we can rely upon the spatial correlation between the observations.

After the PS points are identified and all other points are discarded, we started separating the

neutrospheric phase from other phase components as described before. Figure 5.13 shows

different examples of the SWD fields extracted from the interferograms. The regions of forests

and vegetation west to the Rhine valley and the southern-east show almost no presence of PS

targets, while the PS density is high within the cities. The spatial variability of the SWD fields

is dependent of the neutrospheric state at the acquisition time of the master and slave scenes.

We can observe correlations between the six SWD-difference maps due to the presence of the

master contribution in each map. In the map shown in (a,f), the observed signal is dominated

by the contribution of the master, that is explained by the low activity and dry weather con-

ditions during December (slave image acquisition time) in the URG region where insignificant

water vapor content and variations are expected, in contrary to the master signal. In (b),

for example, the SWD signal is caused mainly by water vapor stratified in the neutrospheric

layers; however, the map in (e) depicts clearly the effects of turbulent mixing of water vapor.

5.2.6 Comparative analysis

Before proceeding to further investigations, we had to evaluate and analyze the neutrospheric

phases derived from the interferograms to confirm if they are appropriate for water vapor map-

ping. We used the data available from MERIS to compare the SWD-difference maps derived

from PSI. IWV maps from MERIS are translated into ZWD values and mapped to the LOS of

the radar using eq. (2.29). The empirical constant Q apparent in the equation is determined

from eq. (2.24) using surface meteorological observations. For the sake of comparison, we built

differences of SWD maps from MERIS (∆SWDmeris). To emulate InSAR, we eliminated the

long-wavelength signal (2-dimensional linear trend) by fitting a plane to the data using least

squares. The other point that should be considered here is that PSI SWD difference maps are

point-level data, while ∆SWDmeris has a spatial resolution of approximately 300 × 300 m2.

Therefore, we aggregate PSI data to the MERIS resolution, which is achieved either by spatial

averaging or interpolation.

We made a comparative analysis of MERIS and PSI SWD-difference maps by comparing the

data pixel by pixel, and by inspecting the spatial properties. In Figure 5.14, are shown the

SWD maps derived from the interferograms and the corresponding SWD maps from MERIS for

two different dates. InSAR data are interpolated at he MERIS resolution using the method

of moving-window averaging. The results show strong spatial correlation between PSI and

MERIS, with correlation coefficients of 0.86 and 0.84, respectively for the upper and lower

maps. The difference between the PSI and MERIS maps follow a Gaussian distribution with

a mean close to zero and a σ of 4-5 mm.

Furthermore, we applied four interpolation methods: moving-window averaging, IDW, sur-

face fitting, and OK. The first three methods are not based on statistical properties of the
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5. Remote sensing of water vapor

(a) 12.15.2003 (b) 07.12.2005

(c) 09.05.2005 (d) 07.17.2006

(e) 04.23.2007 (f) 12.08.2008

Figure 5.13: Neutrospheric delay difference maps derived from PSI. The master scene (reference)
was acquired on 06.27.2005 and the acquisition dates of the slaves are specified in
the figure. The spatial variations in each sub-figure depend on the atmospheric state
at the acquisition time of the master and slave images.

data, which means that in the areas where no PSI data are available, we cannot provide proper

estimates of the SWD. For that reason, we masked out the MERIS data in the corresponding

regions. For the moving-window averaging, we simply average the SWD values for the PS

points located within a MERIS cell. In a similar way, the IDW method calculates a weighted

average of the SWD at the PS points within the cell using eq. (4.6). In the third method,
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Figure 5.14: Comparison of the SWD-difference maps derived from PSI and MERIS. The master
image was acquired on 06.27.2005, while the slaves were acquired on 09.05.2005 (top)
and 04.23.2007 (bottom). The spatial correlation coefficients are 0.86 for the upper
example and 0.84 for the lower. The difference maps have Gaussian distributions
with mean (µ) and standard deviation (σ) as shown within the histogram plots.

we create an interpolant by fitting a surface to the scattered PSI data and use it to make

the interpolations to any location. We note that this method, in its simple form, does not

account for the data change of support, which might make the results less accurate compared

to the other methods. The last method is the OK, details on using OK for interpolation are

described in Section 4.2.2.1. Figure 5.15 exhibits the SWD maps from MERIS, and the PSI

SWD maps interpolated at the MERIS locations using the four methods. The corresponding

correlation coefficients and the RMS values are summarized in Table 5.4. The four methods

lead to similar results with slight changes in the values of the correlation coefficients and the

RMS of the difference maps between PSI and MERIS data. The advantage of OK over the

other methods is that estimates can be made even in the lack of data in some regions because

this method creates a model of the spatial correlation between the observations. The compu-

tational complexity of kriging can be addressed as described in Section 4.2.2.3. If no gaps are

observed in the maps, the other methods can be exploited for generating regular maps at low

computation costs.

Microwave signals propagating in a turbulent neutrosphere are expected to have spatial

fluctuations described by the power spectral density and structure functions. These functions

should follow a power law described by the elementary turbulence theory of Kolmogorov.

We inspected the spatial variations of the SWD, as an approximate tracer of the refractivity
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5. Remote sensing of water vapor

(a)

(b) (c)

(d) (e)

Figure 5.15: (a) SWD-difference maps derived from MERIS IWV, where the difference is built
from the observations on 06.27.2005 and 09.05.2005. The long-wavelength compo-
nent is estimated and subtracted. SWD from PSI phase was interpolated at MERIS
locations using ordinary kriging (b), moving-window averaging (c), inverse distance
weighting (d), and surface fitting (e).

fluctuations. Assuming geometrical isotropy, we calculate the structure functions of PSI and

MERIS SWD-difference maps shown in Figure 5.14. The curves of the SFs are depicted in

Figure 5.16. The structure function predicts the decorrelation of the wet refractivity over the

distance. The decorrelation rate is less than 5/3 for distances of 1-2 km, and it decreases to 2/3

for distances larger than 2 km until a range where no spatial correlation is observed. Both data
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5.3. Summary

Quantity\ method Moving-window Ordinary kriging IDW Surface fitting

Correlation coefficient 0.8415 0.8193 0.8192 0.8078

RMS [mm] 3.6484 3.9226 3.9246 3.9883

Table 5.4: Correlation coefficients between MERIS and PSI data, and the RMS values of the
difference signal.

sets show a correlation range of about 20 km. These examples show a good correspondence

to the results presented in [Hanssen, 2001, pp. 144] and to the models presented by Treuhaft

and Lanyi [1987]. From the plots, we notice that the change of the weather conditions affects

the power of the signal, but not the slope of the structure function.

Next we analyzed the power spectra of the zero-mean SWD-difference maps. The power

spectrum reflects the energy transfer over distance, which is expected to decrease as the dis-

tance increases. Figure 5.17 depicts the rotationally-averaged power spectra computed for

the same maps, assuming geometrical isotropy. The power spectra of InSAR and MERIS fol-

low a decay slope of -8/3 on a log-log scale. [Hanssen, 2001, pp. 145] computed the PSD from

8 interferograms over the Netherlands with a decay at slope varying between -5/3 and -8/3 for

different regimes. Also, Goldstein [1995] observed that the PSD of the phase signatures over

Mojave Desert decays at a rate of -8/3.10
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Figure 5.16: Structure functions for two SWD-difference maps from PSI and MERIS. The master
image was acquired on 06.27.2005, while the acquisition dates of the slave images
are shown in the sub-figures. The black lines indicate the model shown by Treuhaft
and Lanyi [1987].

5.3 Summary

In this chapter, we described the methods applied to derive the neutrospheric delay from

GNSS and InSAR measurements. We explained the importance behind using meteorologi-

cal data (pressure, temperature, relative humidity) in the determination of the ZWD from

the ZTD estimated based on GNSS observations. The ZWD estimates from the GNSS ob-

servations show strong agreement with the data from MERIS and WRF. Since the GNSS

79



5. Remote sensing of water vapor

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

PSI

wavenumber [cycles/km]

P
ow

er
 S

pe
ct

ru
m

 [m
m

²]

 

 

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

MERIS

wavenumber [cycles/km]

 

 

09.05.2005

04.23.2007

09.05.2005

04.23.2007

−8/3 power law−8/3 power law

Figure 5.17: Rotationally-averaged spatial power spectra computed for the SWD-difference maps
from PSI and MERIS. The master image was acquired on 06.27.2005, while the
acquisition dates of the slave images are shown in the sub-figures. The black solid
line has a slope of -8/3.

ZWD estimates represent the average of the neutrospheric effect within a cone above the an-

tenna, aggregation of MERIS and WRF data is done to enable a proper comparison. Also,

we extracted SWD-difference maps from a coregistered ASAR image stack by applying the

technique of PSI. The comparative analysis with MERIS SWD-difference maps demonstrates

strong spatial correlation and a standard deviation of the differences of about 4-5 mm.
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In the previous chapter, we described how the neutrospheric delay is estimated from InSAR and

GNSS phase observations and how it is used to retrieve the wet delay. We used meteorological

observations of pressure, temperature, and relative humidity to retrieve the wet delay from

GNSS observations at each GNSS site. Unlike GNSS which is utilized to estimate absolute

values of the wet delay, wet delay maps extracted from InSAR data are the difference between

the wet delay maps at two acquisition times. We exploit the wet delay estimates obtained

from GNSS observations to reconstruct the missing delay component and generate maps of

absolute SWD at each SAR overpass time.

In order to specify which wet delay components were eliminated by building interferograms,

we analyzed maps of IWV measured by MERIS. In Chapter 2, we classified atmospheric water

vapor into an elevation-dependent (vertically-stratified) component, and turbulently mixing

water vapor. Accordingly, we split the maps of IWV measured by MERIS into an elevation-

dependent IWV and a residual component, i.e.,

IWV meris
resid = IWV meris − IWV meris

st (z) (6.1)

where IWV meris is the IWV measured by MERIS, IWV meris
st is the vertically-stratified IWV,

and IWV meris
resid is the residual IWV. We analyzed the residuals to test if there exists any deter-

ministic long-wavelength signal that results from the change of air pressure and temperature

over distance. This signal, if present, accounts for the neutrospheric anisotropy over large

scales. We found that in most cases the residuals contain beside the short-wavelength signal

caused by turbulent mixing water vapor, a long-wavelength signal (2-dimensional ramp). We

estimated this signal by fitting a 2-dimensional ramp to the residuals using least squares ad-

justment. The remaining signal after subtracting the vertically-stratified IWV and the ramp

is caused by short-scale mixing of water vapor. Figure 6.1 shows a map of MERIS IWV as

a sum of the three components: elevation-dependent component, long-wavelength component

(ramp), and short-wavelength component. We call the sum of the first two components the

non-turbulent wet delay and the third the turbulent wet delay. The ramp generally contains a

signal of small magnitude, but it is essential for building correct water vapor maps from GNSS

and InSAR as shown later.

In this chapter, we describe how the SWD-difference maps at each SAR overpass time

are estimated using the method of least squares inversion. We present a new method that
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MERIS IWV
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Figure 6.1: A map of IWV is a sum of three components: the first and the largest is the elevation-
dependent IWV, the second is a long-wavelength component resulting from the change
in air pressure and temperature over distance, and the third is the short-wavelength
component due to the turbulently mixing water vapor.

uses GNSS observations to estimates the wet delay component missing due to interferograms

formation. We combine these estimates of the missing delay at each PS pixel with those

extracted from the interferograms to derive absolute maps of SWD at the density of PS points.

We then compare the SWD absolute maps estimated using our method with IWV maps from

MERIS.

6.1 Extracting wet delay maps at SAR acquisition time

The SWD-difference maps retrieved from the interferograms are relative measurements, as they

measure the difference between the wet path delay at two acquisition times. Our goal is to

reconstruct the fields of SWD corresponding to each SAR observation time. By examining PSI

observations, there exist N -1 neutrospheric difference maps (interferograms) and N unknown

neutrospheric phase maps. Then this system is underestimated. To overcome this problem,

we need to either rely upon external data or to make an assumption. It is challenging to

have external data at the high resolution of PSI, so it is more convenient to apply least

squares inversion (LSQ) by adding a constraint. We used the “zero mean” assumption, in

which the average of the neutrospheric phases over time is assumed zero (
∑N

i=1
1
N φi,neu = 0).

Note that φi,neu is the partial neutrospheric phase, where a large signal is eliminated by

building interferograms. This assumption is generally used to derive observation residuals
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6.1. Extracting wet delay maps at SAR acquisition time

corresponding to each point from difference measurements as in [Liu et al., 2009; Luo et al.,

2008]. We construct a linear model to relate N − 1 observations to N unknowns for each PS

pixel such as



−1 0 · · · +1 0 · · · 0

0 −1 · · · +1 0 · · · 0
...

... · · · +1
... · · ·

...

0 0 · · · +1 0 · · · −1

β1 β2 · · · βM · · · βN−1 βN





φ1,neu

...

φM,neu

...

φN,neu


=



φ1M,neu

...

...

φ(N−1)M,neu

0


(6.2)

with βi = 1
N . The equation can be rewritten in a more compact form as:

AB = C (6.3)

A: Design matrix of size N ×N , N is the number of SAR scenes

B: Unknown phases of size N ×K, K is the number of PS points

C: Neutrospheric phase observations of size N×K

The subscript M in eq. (6.2) refers to the “master”. The solution for eq. (6.3) is found by

applying LSQ inversion,

B = (A′A)−1A′C (6.4)

The LSQ inversion is applied for all PS observations at once to reduce errors by taking

the advantage of spatial correlations between the PS observations. In B are the estimates

of the neutrospheric phase partial maps at each SAR overpass time. The phase is converted

into SWD, in millimeters, using eq. (5.22). In Figure 6.2 are shown three maps of the SWD

residuals at each SAR overpass time, in (c) is the SWD-partial map corresponding to the

“master”. Compared with the IWV maps available from MERIS, the reconstructed SWD-

partial maps at SAR acquisition time agree in amplitude and spatial variations with MERIS

IWV maps, as will be shown later in this chapter.

We examined the dependence of the SWD-partial maps from PSI and temporal-differences

of GNSS ZWD on the surface elevation in the study region. We found that the dependence of

the SWD differences on the altitude depends on the SWD value at the “master” and “slave”

acquisitions. Generally, we can say that the SWD decreases linearly as the surface elevation

increases, but by building differences, the correlation of the SWD differences with the surface

elevation will be poor or even zero as observed from the plots in Figure 6.3. The SWD

difference maps extracted from the interferograms have a mean zero and the region of URG

is generally characterized by smooth topography; therefore most of the elevation-dependent

signal is eliminated when building interferograms or by reducing the topographic phase. On
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Figure 6.2: Partial maps of SWD at SAR overpass times. The maps are retrieved by least squares
inversion of SWD-difference maps derived from the interferograms. To overcome rank
deficiency, we added a constraint by assuming the temporal mean of the partial SWD
observations is zero.

the other hand, the neutrospheric long-wavelength signal cannot be distinguished from orbital

ramps, so this signal is also eliminated during PSI data processing. We consider the SWD-

partial maps to measure the short-wavelength signal of the SWD, while the elevation-dependent

and the long-wavelength components are missing. For the purpose of reconstructing maps of

the absolute SWD along the signal path, we estimate the missing vertically-stratified and long-

wavelength SWD components using GNSS ZWD observations as presented in the following

section.
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Figure 6.3: Dependence of the IWV-difference maps on the surface elevation.

6.2 combination of SWD observations from PSI and GNSS

In this section, we present a new approach to combine the SWD-difference maps extracted

from PSI data and the estimates from GNSS data. First, the eliminated components are

defined and modeled using GNSS data, then the results are validated using the IWV maps

measured by MERIS.
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6.2. combination of SWD observations from PSI and GNSS

6.2.1 Modeling missing SWD components using GNSS

In this section, we focus on the elevation-dependent (vertically-stratified) ZWD and the long-

wavelength signals of the ZWD derived from GNSS observations. Davis et al. [1993] and

Elosegui et al. [1998] described the dependence of the wet refractivity, and hence the wet

delay, on the surface elevation by an exponential law. Onn and Zebker [2006] suggested a

more general model,

ZWDst(z) = C exp(−αz) + zαC exp(−αz) + ∆Lmin (6.5)

where ZWDst is the vertically-stratified wet delay, C, and α are the model parameters, and

∆Lmin is the minimum wet delay. This model fits better to the ZWD measurements at

low altitudes. By inspecting vertical profiles of the relative humidity and the water vapor

pressure generated by WRF, we observed that the model in eq. (6.5) fits well to the profiles

of water vapor partial pressure, as a measure for the wet delay, particularly at low altitudes.

In Figure 6.4, we show the wet delay measurements from MERIS and two models fitted to

the data, the first is the one in eq. (6.5) and the second is a regression line fitted using least

squares. The linear regression and the model of eq. (6.5) show similar fit to the data due to

the high density of observations, while in the case of GNSS data where the observations are

spatially sparse, the model of eq. (6.5) is more representative, in particular at low altitudes.

Nonetheless, the linear model can be used when no conversion towards a solution is possible

using the model in (6.5).

0 100 200 300 400 500 600 700
100

120

140

160

180

200

220

240

Altitude [m]

Z
W

D
 [m

m
]

 

 
Observations
Model1
Model2

Figure 6.4: IWV observations from MERIS, converted into ZWD values, as a function of surface
elevation. Model1 is a linear regression and Model2 is the model of eq. (6.5).

In fitting the model of eq. (6.5) to the ZWD measurements at the 10 GNSS sites, we need

to estimate the model parameters C and α and ∆Lmin. To measure the goodness of fit

between the model and the observations, we calculated the reduced chi-squared statistic from

the following formula [Onn and Zebker, 2006],

χ2
gnss =

1

ν

∑
i

(ZWDgnss(zi)− ZWDst(zi))
2

σ2
gnss,wet

(6.6)
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6. Combination of InSAR and GNSS data

ν is the degree of freedom, such that if there exist 10 GNSS observations and the model

requires the estimation of three parameters, then we have 7 degrees of freedom. σgnss,wet is

the GNSS ZWD estimation error of 5.048 mm, which is computed using MERIS observations

as an accepted reference due to the lack of a more accurate source of ground truth data.

If the GNSS sites are located close together at different altitudes, the variation in the

observed ZWD values is most likely due to the stratification of water vapor. For the purpose

of correcting the atmospheric phase, Onn and Zebker [2006] illustrated the ZWD as a function

of the altitude of 29 GPS sites located within an area of 60 km× 60 km with a very good fit

to the model of eq. (6.5). In our case study, however, the shortest baseline between two GNSS

sites is greater than 20 km and the number of sites is limited to 10. Because of this relatively

sparse distribution of the GNSS sites, the ZWD will show more variations due to local effects

of turbulent mixing around the site and effects of neutrospheric anisotropy. In order to retrieve

the non-turbulent signal of the ZWD, we estimated two components. First, we estimated the

elevation-dependent signal by fitting the model of eq. (6.5) to the data. Second, we analyzed

the residuals (the difference between the actual observations and the estimated model) to

check if they contain any deterministic long-wavelength signal (ramp), which is considered as

a correction term to account for the variations in pressure and temperature over large spatial

scales. The ZWD non-turbulent signal is the sum of the elevation-dependent signal and the

ramp. The parameters estimated for the model of eq. (6.5) and the ramp are used to compute

a value for, respectively, the vertically-stratified ZWD and the long-wavelength component at

any (x, y, z) location, hence the estimated ZWD component is written as:

ZWDnt(x, y, z) = ZWDst(x, y, z) + ∆corr(x, y) (6.7)

ZWDnt(x, y, z): The modeled non-turbulent ZWD using GNSS observations [mm]

ZWDst(x, y, z): Vertically-stratified ZWD [mm]

∆corr(x, y, z): Correction term estimated from the residuals [mm]

We use the model of eq. (6.7) to obtain the complementary signals for the SWD-partial maps

obtained from PSI, which are required to derive absolute SWD maps at each SAR acquisition

time. In Figure 6.5 (b, e), we show two maps of the non-turbulent SWD estimated at the

SAR overpass times on 06.27.2005 and 09.05.2005. In Figure 6.5 (a, d) are shown the GNSS

SWD observations (ZWD mapped to the SAR LOS) at two SAR acquisition times, against

sites altitudes. The vertically-stratified ZWD values at the PS locations are calculated using

the parameter estimates given in Table 6.1. From the examples depicted in Figure 6.5, we

observe that the SWD measurements on 06.27.2005 are less affected by variations due to local

neutrospheric effects, which makes the stratified delay dominant. Therefore, the fitting of the

model in eq. (6.5) achieves a goodness-of-fit much better than that for the example in (d).

However, since we use the residuals to estimate a correction signal, the non-turbulent SWD

can be accurately modeled. If we examine the maps in (c, f) for the ramps, we observe a larger
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6.2. combination of SWD observations from PSI and GNSS

signal estimated for the example in (d) to compensate the worse goodness-of-fit.

Day C [mm] α [km−1] ∆Lmin [mm] χ2

06.27.2005 48.7805 4.1342 151.9903 5.6705

09.05.2005 25.7566 6.0933 76.2429 21.4359

Table 6.1: Parameter estimates and goodness-of-fit (χ2) for the elevation-dependent SWD from
GNSS observations at SAR acquisition time.
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Figure 6.5: GNSS ZWD as a function of site altitudes at SAR overpass times on 06.27.2005
(a) and 09.05.2005 (d). The red curves represent the least squares fit of the model
in (6.5) to the ZWD observations. In (b, e) are shown the non-turbulent ZWD (an
elevation-dependent component and a ramp) calculated based on the fitting param-
eter estimates in Table 6.1 at the PS locations. The ramps are estimated from the
residuals are shown in (c, f).

From MERIS IWV maps and PSI SWD-difference maps we observed a special neutrospheric

structure on 04.23.2007, where the neutrosphere was more active in the southern area and

the water vapor content was larger due to turbulent mixing in the neutrosphere (see Fig-

ure 2.3 (b)). The GNSS ZWD observations agree with MERIS and PSI and show also higher

values at the sites located in the southern part of the SAR image (see the four observations

above the red curve in Figure 6.6 (a)). Because of the spatial variability, dominated by tur-

bulent mixing of the ZWD from south to north, the best fit of model (6.5) to the observations

underestimates the stratified delay mainly at low altitudes. The parameter estimates are sum-

marized in Table 6.2 and the model fitting is shown in Figure 6.6 (a, c). In the first row of

the table, where the model fitting was done based on observations from 10 sites, the estimate

for α is close to zero, which is not realistic, and the χ2 value is significantly large. In (b) is
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6. Combination of InSAR and GNSS data

Day C [mm] α [km−1] ∆Lmin [mm] χ2

04.23.2007 (1) 83.1995 0.0036 61.2255 44.6014

04.23.2007 (2) 43.8800 3.0216 78.9312 4.8363

Table 6.2: Parameter estimates and goodness-of-fit (χ2) for the elevation-dependent SWD from
GNSS observations on 04.23.2007. (1) means that observations from 10 sites were
used, while in (2) the observations from only 4 sites were used.

shown the non-turbulent SWD extrapolated at PS locations, where the spatial variations of

the map follow the estimated ramp since the stratified SWD component has almost a constant

value over the entire image. To improve the modeling of the vertically stratified ZWD, we

made the model fitting based only on four observations (Figure 6.6 (c)). The estimate of α

is more realistic and the goodness-of-fit improved. This can be automated by removing one

GNSS site each time and check the χ2 value and keep iterating until the χ2 resides. The ramp

was estimated using the residuals from all ten sites. In this special case, the importance of

analyzing the residuals after fitting the model in (6.5) can be clearly noticed. In the first case,

where observations from all sites are included, the SWD will be almost constant over the entire

map if we do not consider the residuals, which is intuitively not correct.

6.2.2 Combining PSI and GNSS SWD maps

The SWD-partial maps extracted from interferograms are combined with the non-turbulent

SWD maps modeled using GNSS SWD observations to build maps of absolute SWD. Fig-

ure 6.7 summarizes the method developed to derive absolute SWD maps by combining path

delay from GNSS and PSI observations. These maps are compared with the IWV maps re-

ceived from MERIS. IWV maps are first converted into the corresponding SWD values and

mapped to the radar LOS using eq. (2.29). In Figure 6.8, the absolute SWD maps derived

using our method, maps received from MERIS, and difference maps are shown. The spatial

CC between both data and the RMS, mean, and standard deviation (SDEV) of the difference

maps are summarized in Table 6.3. There exist strong spatial correlations between absolute

SWD maps derived from PSI and GNSS and those from MERIS. The difference maps follow a

Gaussian distribution with a mean close to zero and an SDEV of at most 6 mm. We show in

Table 6.3 also the parameters in case we did not analyze the GNSS residuals after fitting the

model in (6.5). The spatial correlation on 06.27.2005 (master) is low compared to the other

examples. We found that the ramp (gradient) estimated from the residuals does not agree in

direction with that observed in MERIS. At this point, we do not have an independent source

to conclude which of the maps is more accurate.

We should expect that maps of the absolute SWD derived using our method and those

from MERIS do not show perfect correlation. This is because MERIS measures the content

of IWV in vertical columns of 300×300 m2 base, which is then mapped to the radar LOS.

The radar, however, transmits signal at a look angle (off-nadir angle) of about 23◦. Due to
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Figure 6.6: (a) GNSS ZWD as a function of site altitudes at SAR overpass times on 04.23.2007
and the least squares fit of the model in (6.5) to the observations. (c) The fit of
eq. (6.5) (in red) is done using only four observations. In (b, d) are shown the non-
turbulent ZWD (elevation-dependent component and a ramp) extrapolated based on
the fitting parameters estimates at the PS locations.

the neutrospheric anisotropy, the IWV experienced along the signal path can differ from that

measured in the vertical direction. Also, GNSS measures the average ZWD within conical

sections of the neutrosphere and these measures are available at sparse sites. The modeling

of the missing signals can be improved by increasing the density of the GNSS sites. All this

results in differences between IWV maps measured by MERIS and those derived in this work.

6.3 Summary

In this chapter, we applied LSQ inversion to reconstruct SWD-partial maps corresponding to

each SAR acquisition time. Since we had a rank-deficient system of equations, we added a

constraint by assuming the weighted mean of the SWD residuals over time is zero. The SWD-

partial maps derived from PSI contain the wet delay residuals corresponding to the short-scale

SWD, while the largest part of the wet delay was reduced when building interferograms. To

reconstruct the missing signals, we made a combination of SWD observations estimated from
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Figure 6.7: Method developed to derive absolute maps of the SWD by combining neutrospheric
delay observations from GNSS and PSI.

GNSS and PSI. From GNSS observations we estimated the elevation-dependent wet delay

(vertically-stratified SWD), and the parameter estimates were used to extrapolate values at

the PS locations. Because the GNSS sites are relatively sparse in space, we used the residuals

(SWD - vertically-stratified SWD) to estimate a ramp accounting for long-wavelength varia-

tions. We then combined the short-scale SWD component from PSI with the non-turbulent

SWD (elevation-dependent and ramp) to build maps of the absolute SWD along the path

from the radar to the ground. We compared absolute SWD maps derived from combining

PSI and GNSS observations with absolute SWD maps from MERIS (5 maps available). The

results show strong spatial correlation up to 92.2 %. The difference maps follow a Gaussian

distribution with mean and standard deviations depicted in Table 6.3.
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6.3. Summary

Without residuals analysis With residuals analysis

Time CC
RMS 
[mm]

MEAN 
[mm]

SDEV 
[mm]

CC
RMS 
[mm]

MEAN 
[mm]

SDEV 
[mm]

06.27.2005 0.7354 6.3761 1.2256 6.2575 0.7505 6.0997 0.4361 6.0837

09.05.2005 0.5630 10.7338 6.7192 8.3710 0.8854 5.3577 2.3377 4.8210

04.23.2007 (1) 0.7309 9.9048 -3.5767 9.3191 0.9135 6.5413 -3.3733 5.6041

04.23.2007 (2) 0.6885 20.9622 18.5578 9.7484 0.9216 5.7584 -2.6767 5.2092

Table 6.3: Spatial correlation coefficients between SWD maps obtained from combining PSI and
GNSS observations and MERIS. The RMS, mean, and the STD of the difference maps
are summarized. 04.23.2007 (1) uses the model fitting in Figure 6.6 (a) and 04.23.2007
(2) uses the model in (c).
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Figure 6.8: Absolute SWD maps from (a) combining GNSS and PSI observations and (b) MERIS
at three SAR overpass times, 06.27.2005, 09.05.2005, and 04.23.2007. The difference
maps between the observations in (a) and (b) are shown in (c).
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7 Fusing remote sensing-based IWV maps and

data from atmospheric models

The topic of data fusion has been insistent with the rapid increase of remote sensing data that

are spatially, temporally, and spectrally inhomogeneous. Since the 1990’s, the amount of data

available for monitoring the Earth and its atmosphere by the satellites, such as GNSS and

InSAR, is growing in a rapid and continuous way. NWP models have also been increasingly

exploited to generate regular maps for quantifying different parameters of the atmosphere, for

example air pressure, temperature and IWV content. These data sources could supply differ-

ent representations of the geophysical quantity, which, if combined, can give a more complete

representation of the ongoing physical process. Data fusion is a process that attempts to pro-

duce improved knowledge of the interesting object by integrating data from multiple sources.

The process aims at synergetic exploitation of data that can be redundant or complementary

to provide complete, accurate, and consistent information. The applied data fusion method

should also be able to measure the quality of the output resulting from the fusion.

Data fusion is a wide topic of research in many scientific fields. In this review, we put the

focus on the methods that are relevant for remote sensing data used for observing the Earth

and the atmosphere. Geographic information systems packages contain several data fusion

methods that combine data using weighted linear functions. The data sets are interpolated

into a common grid by smoothing, moving-window averaging, IDW, or more complicated

methods. The interpolation maps from all data sources are then weighted such that the

weights are often related to the importance associated with each data source [Drobne and

Lisec, 2009]. These methods define the weights for each output point by assuming that this

point is independent from other points, which is usually not correct for geophysical phenomena.

Also, the interpolation methods assume that the underlying process is spatially continuous

although they may not be, which can result in a bias in the predicted value. Furthermore,

making the interpolation and the combination independently might not provide the optimal

solution. Therefore, data fusion approaches that are based on statistical analysis of the data

have been developed [Braverman et al., 2009; Nguyen, 2009]. For spatial data (e.g., geophysical

quantities) where close observations correlate more than distant ones, a covariance function is

exploited as an important source of information to obtain predictions based either on single or

multiple sets. For remote sensing data combination, the fusion methodology should consider

the problems of huge size of the input data, probably incompatible supports, presence of noise

and gaps. An approach that comprehensively solves these problems is the spatial statistical
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7.1. Spatial statistical data fusion via fixed-rank kriging

data fusion (SSDF) strategy presented in [Braverman et al., 2009; Nguyen, 2009], which we use

in this work for data fusion. This method is based on extending the FRK approach proposed

by Cressie and Johannesson [2008] and described in Chapter 4 for data fusion of multiple data

sets.

In this study, we are interested in deriving accurate and spatially-continuous SWD fields.

We introduced methods to quantify the SWD (as a measure for IWV) from different remote

sensing systems in the previous chapters. SWD fields obtained by combining GNSS and PSI

show discontinuities in regions of low coherence as in forests, vegetated areas, and over water

surfaces. IWV maps generated by WRF are available at continuous grids, but their spatial

resolution and the ability of the model to detect small atmospheric patterns are still limited.

SWD and WRF IWV maps are also different in their spatial support such that the SWD

maps are at point-level support, while WRF provides block data. Also, WRF might generate

maps that do not represent the real state of the atmosphere due to model limitations. When

comparing WRF maps of IWV with the IWV maps from MERIS, there are examples that show

good spatial correlation between both maps; however, there are scenarios where the simulated

map demonstrates low correlation with the observed map. Two examples are depicted in

Figure 7.1, the first (a, b) shows WRF and MERIS IWV maps that are strongly correlated

with a CC of 0.8, while the second example (c, d) exhibits a lower spatial correlation (CC=0.71)

between the maps. The IWV map from WRF has artifacts and an unexpected discontinuity

in the IWV values in the lower left corner, which reduces the correlation between the maps.

The goal in this chapter is to exploit the complementary properties of WRF and PSI-GNSS

data to accurately estimate continuous 2D fields of the SWD. In the following, we present the

applied SSDF method and explain the procedure required to obtain the predictions and the

uncertainties. We also present comparisons of the prediction maps based on single data sets

and those received from data fusion, and a validation of the results using IWV maps from

MERIS.

In Section 7.1, we present the method of SSDF. We describe the FRK covariance model used

for each data set depending on their support in Section 7.2. The matrix inversion method is

described in Section 7.3. In Section 7.4, we describe the methods we used to estimate the

covariance parameters required for the covariance model. We present examples for applying

the SSDF in Section 7.5 and the conclusions are presented in Section 7.6.

7.1 Spatial statistical data fusion via fixed-rank kriging

Spatial statistical data fusion (SSDF) is a methodology for combining spatial data to optimally

estimate the true values of the quantity of interest and the corresponding uncertainties at any

predefined grid [Braverman et al., 2009; Nguyen, 2009]. The input data sets might have

different characteristics, for example, spatial resolutions, continuity, and noise. Braverman

et al. [2009] applied the SSDF method to estimate the amount of carbon dioxide (CO2) in the
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(b) MERIS: 06.27.2005
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(c) WRF: 09.05.2005
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(d) MERIS: 09.05.2005

Figure 7.1: Maps of IWV content as received from MERIS and WRF, where a linear trend
is subtracted from each map. The upper data are received on 06.27.2005 (SAR
overpass), while the lower data on 09.05.2005. Gaussian averaging is applied to scale
the MERIS data at WRF resolution, 3×3 km2. The spatial CC between the upper
maps is 0.8 and the CC is 0.71 for the lower.

lower layer of the Earth’s atmosphere on a global scale. An advanced version of the algorithm

that investigates the temporal and spatial characteristics to obtain the predictions is called the

space-time data fusion (STDF) algorithm, which was developed by Braverman et al. [2011]

and Katzfuss and Cressie [2011a]. In this work, we focus on SWD fields as a measure for

water vapor concentration in the atmosphere. SWD maps derived in the previous chapter are

available at SAR overpass time every couple of days or weeks. For time periods longer than

one day, the SWD maps have no temporal correlation [Zebker et al., 1997]. Therefore, we

are interested in combining the data spatially at the time they are available, thus the SSDF

technique is appropriate.

SSDF is applied to statistically combine SWD fields from remote sensing data (PSI and

GNSS) and WRF. Fusion is attainable, in spite of all differences in the input data, by con-

structing a statistical model that describes the structure of the input data and relates the
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7.1. Spatial statistical data fusion via fixed-rank kriging

input data to the predictions. SSDF relies upon the assumptions that the underlying field

has a constant mean and the covariance structure follows the FRK model presented in Sec-

tion 4.2.2.3. For areal-level data, it is assumed that the value of the geophysical parameter

within a certain cell represents the average of all values as if observed at many points within

that cell, i.e.,

Z(Bi) =
1

|Bi|

∫
Bi

Z(s)ds (7.1)

These assumptions hold for the water vapor content in the atmosphere. In Chapter 4, we

presented how the method of OK finds the best estimator by minimizing the MSPE between

the observations and the true process. We also presented the FRK method to solve for the

lack of scalability of OK and to account for the data support. In this chapter, we present the

method that extends the use of FRK for data fusion and we present the strategy to derive the

true process from two data sets.

Let the underlying process Y (s) to be estimated at the location s from the two data sets Z1

and Z2 with the size N1 and N2, respectively. Z1 contains the point-level SWD observations

and Z2 contains the block-level WRF data, which have the structure in (7.1). The data in Z1

and Z2 are related to the true process as in eqs. (4.3) and (4.7), respectively. In Chapter 4, we

demonstrated the use of the FRK algorithm to infer the true SWD fields from single data sets

at a regular grid by minimizing the MSPE. In the same manner, the SSDF method attempts

to estimate the true process from the combined data by minimizing the MSPE. The estimator

Ŷ (s) at the location s from a single data set is obtained from (4.16), similarly Ŷ (s) is obtained

from two data sets using the following formula:

Ŷ (s) = a′1Z̃1 + a′2Z̃2 (7.2)

where a1 and a2 are the fusion weighting coefficients, and Z̃1 and Z̃2 are detrended data sets.

To ensure that the estimator is unbiased with respect to the true process, we search for the

weights (a1, a2) that solve the following constrained minimization problem:

min
a1,a2

E
{

(Ŷ (s)− Y (s))2
}

subject to E{Ŷ (s)} = E{Y (s)} (7.3)

under the constraint in (7.3), the MSPE E
{

(Ŷ (s)− Y (s))2
}

equals the variance, i.e.,

E
{

(Ŷ (s)− Y (s))2
}

= var
(
a′1Z̃1 + a′2Z̃2 − Y (s)

)
= a′1 var(Z̃1)a1 + a′2 var(Z̃2)a2 + var(Y (s))

+ 2a′1 cov(Z̃1, Z̃2)a2 − 2a′1 cov(Z̃1, Y (s))

− 2a′2 cov(Z̃2, Y (s)) (7.4)
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7. Fusing remote sensing-based IWV maps and data from atmospheric models

Let Σii = var(Z̃i), Σij = cov(Z̃i, Z̃j), and ci = cov(Z̃i, Y (s)) be the covariance functions

required to solve eq. (7.3), which are specified in Section 7.2. Let the mean of the true process

be µ, then the unbiasedness constraint in (7.3) implies that

E{Y (s)} = µ = E
{

a′1Z̃1 + a′2Z̃2

}
µ = a′11N1 · µ+ a′21N2 · µ

0 = a′11N1 + a′21N2 − 1 (7.5)

Then the minimization problem can be solved using the Lagrange multipliers [Bertsekas, 1996].

The Lagrangian function L for (7.4) under the constraint in (7.5) is written as

L = a′1Σ11a1 + a′2Σ22a2 + 2a′1Σ12a
′
2 − 2a′1c1 − 2a′2c2

+2m(a′11N1 + a′21N2 − 1) (7.6)

where 1Ni is a vector with all entries one and a length Ni, and the Lagrange multiplier is

denoted by m. The last term of L accounts for the unbiasedness constraint in (7.3). Differ-

entiating L with respect to a1,a2,m and assigning the results to zero, we get in the following

system of equations, 
Σ11 Σ12 1N1

Σ21 Σ22 1N2

1′N1
1′N2

0




a1

a2

m

 =


c1

c2

1

 (7.7)

then, we solve for a1,a2, and m,


a1

a2

m

 =


Σ11 Σ12 1N1

Σ21 Σ22 1N2

1′N1
1′N2

0


−1 

c1

c2

1

 (7.8)

This is a straight forward minimization problem and the solution can be found from eq. (7.8),

but the open question is how to compute the solution if the matrices Σii and Σij are extremely

huge, which is the case for most remote sensing data. Strictly speaking, two essential points

should be considered in eq. (7.8): the first is the matrix inversion for massive data sets where

the size of the covariance matrix is huge, and the other is the change of support problem

between input data and the predictions. The covariance matrices should be modeled such that

they would allow data prediction to any level of aggregation. In Chapter 4, we applied the

FRK covariance model suggested by Cressie and Johannesson [2008] to solve the two problems;

however, the model was applied for single data sets. In this chapter, we apply the generalized

SSDF model presented in [Braverman et al., 2009; Nguyen, 2009] for multiple data sets. We

will describe in Section 7.3 how the matrix inversion is achieved. In the next section, we
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7.2. Covariance model for multiple data sets

present the strategy to obtain the SSDF covariance terms apparent in eq. (7.8).

7.2 Covariance model for multiple data sets

In the previous section, we described the method of estimating the true process from multiple

data sets and how to obtain the fusion weighting coefficients. In order to obtain the predic-

tions, the covariance functions for different data sets and the covariance function between the

observations and the true process at the prediction locations are essential. In the OK method,

a semivariogram is estimated from the data and a semivariogram model is fit to the empirical

one in order to predict a value at any location. In fitting the variogram model, it is assumed

that the signal under study is isotropic. We show in Figure 7.2 the 2D spatial autocorrelation

functions computed directly from a detrended map of SWD derived from PSI-GNSS and the

equivalent map from MERIS. Both maps show that the SWD signal is anisotropic. Therefore,
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Figure 7.2: Spatial autocorrelation functions for SWD maps, with the long-wavelength compo-
nent removed, derived from MERIS and PSI data on 09.05.2005.

we make no assumptions of isotropy and we use the FRK covariance model.

The FRK covariance model for single data sets was presented in Section 4.2.2.3, and in

this section we present the generalized model for multiple data sets. This model solves the

two problems discussed before. This means that it first makes the computations required to

obtain the prediction and the MSPE maps scalable and linear in N , and second it addresses

the change of support problem.

Following the SME model described in Section 4.2.2.3, the linear model of the data sets in

Z1 can be written as follows

Z1 = T1α+ S1η + ζ1 + ε1 (7.9)
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7. Fusing remote sensing-based IWV maps and data from atmospheric models

and the linear model for Z2 is

Z2 = T2α+ S̃2η + ε2 (7.10)

where T is the design matrix that contains the longitude and latitude of the input data and

a column of ones and α contains regression coefficients. Si is a matrix of weights and η is a

hidden vector of random effects. ζ1 accounts for the fine-scale variations and it is assumed

to follow a Gaussian distribution of a mean zero and a variance σ2
ζ . Because WRF data are

smooth compared to the SWD maps, Z2 is modeled by a long-wavelength and medium- to

short-scale signals S̃2η, but no fine-scale signal. Note that the data of WRF are block data

and the weighting matrix S̃2 is constructed by computing the average from the grid points

superimposed to the grid of Z2. The model for both data sets can be rewritten in a more

compact form

Z = Tα+ Sη + ζ + ε (7.11)

where Z = [Z′1 ,Z
′
2]′, T = [T′1 ,T

′
2]′, S = [S′1 , S̃

′
2]′, ζ = [ζ′1 ,0

′]′, and ε = [ε′1 , ε
′
2]′. The first

term on the right-hand side of eq. (7.11) denotes the long-wavelength deterministic component

of the delay. The second component accounts for the medium scale variations, and the third

represents the fine-scale signal. ε is a vector that contains the error affecting each system. The

hidden state vector η has a fixed length r and the elements of this vector are random effects

corresponding to a set of predefined locations at several levels of spatial resolutions, so that it

can observe variations at several spatial scales. η is assumed to have a Gaussian distribution

with a mean zero and a covariance matrix K. ζ and ε are uncorrelated Gaussian distributed

signals with variances σ2
ζ and σ2

ε , respectively. Both ζ and ε are assumed independent of each

other and of η.

Recall the covariance model used in Section 4.2.2.3 for a single data set, the covariance

model associated with the each data set in eqs. (7.9) and (7.10) has the following structure:

Σ11 = var(Z̃1) = S1 K S′1 + σ2
ζVζ + σ2

ε1Vε1 (7.12)

Σ22 = var(Z̃2) = S̃2 K S̃
′
2 + σ2

ε2Vε2 (7.13)

Σ12 = cov(Z̃1, Z̃2) = S1 K S̃
′
2 = Σ′21 (7.14)

Note that in computing the cross covariance functions Σ12 and Σ21, the only part of the signals

that is assumed correlated is η. S1(·) is the weighting matrix of the size N1 × r and S̃2(·)
has the size N2 × r. Each row of the matrix represents an encoding vector for each spatial

location where a data point in available. The weights are obtained by evaluating the basis

functions given in eq. (7.34) at that location. In order to solve eq. (7.8), we need to specify the

covariance matrices of the data and find the covariance between the observations and the true

process at the prediction locations using the FRK covariance model. The covariance terms are
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7.2. Covariance model for multiple data sets

obtained from:

c1 = cov(Z̃1,Y(s)) = Sp(s) K S′1 (7.15)

c2 = cov(Z̃2,Y(s)) = Sp(s) K S̃
′
2 (7.16)

Sp(·) is the weighting matrix for the prediction locations. We should pay high attention to the

support of the data, so that the covariance matrix K is estimated despite having aggregated

data. To obtain predictions at block-level, the matrix Sp(s) is aggregated to the required

level using eq. (4.40). Table 7.1 compares the data at point-level and footprint-level and the

formulas to compute the components for each set.

Point-level data Areal-level data

True process Y (s) Y (Bi) = 1
|Bi|

∑
s⊂Bi

Y (s)

Trend T(s)α

(
1
|Bi|

∑
s⊂Bi

T(s)

)
α

Weighting matrix (S) S(s) 1
|Bi|

∑
s⊂Bi

S(s)

Medium-scale variations S(s)η

(
1
|Bi|

∑
s⊂Bi

S(s)

)
η

Fine-scale variations ζ(s) ζ(Bi) = 1
|Bi|

∑
s⊂Bi

ζ(s)

Error ε(s) ε(Bi)

Table 7.1: Point-level and areal-level data

Based on the SSDF covariance functions, the eqs. (7.2) and (7.8) can be rewritten such that

the estimator Ŷ (s) is

Ŷ (s) =

(
Sp(s) K

[
S′1 S̃

′
2

]′
+ σ2

ζE(s)

)Σ11 Σ12

Σ21 Σ22

−1 Z̃1

Z̃2

 (7.17)

The matrix E(s) has the size M×N , with M the number of prediction locations. It contains a

value of one at s = sj and zeros, otherwise. Note that Ŷ (s) does not contain the trend signal,

which can be computed from Tα̂ and added to result from (7.17) to obtain the absolute

process. The MSPE corresponding to Ŷ (s) can be obtained from

MSPE = a′1Σ11a1 + a′2Σ22a2 + 2a′1Σ12a2 − 2a′1c1 − 2a′2c2 (7.18)
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7. Fusing remote sensing-based IWV maps and data from atmospheric models

Figure 7.3 summarizes the procedure followed to obtain the SWD prediction and MSPE

maps by assimilating PSI-GNSS and WRF data by means of the SSDF strategy.

Data set I (PSI-GNSS) Data set II (WRF)Data set I (PSI-GNSS) Data set II (WRF)

Estimate ∝∝∝∝ and detrend Estimate ∝∝∝∝ and detrendEstimate ∝∝∝∝ and detrend
the data

Estimate ∝∝∝∝ and detrend
the data

Construct S Estimate error variance Construct S Estimate error varianceConstruct S1 Estimate error variance Construct S2 Estimate error variance

Estimate covariance parameters 

K, σ 2K, σξ
2

Define output grid and 

construct Sp

Make predictions and calculate the 

corresponding MSPEscorresponding MSPEs

Figure 7.3: The procedure required for data inference based on multiple sets by applying the
method of SSDF.

7.3 Matrix inversion

Using the FRK covariance model makes the matrix inversion of eq. (7.8) scalable. The matrix

inversion can be achieved by applying a recursive block-wise inversion as follows [Petersen and

Pedersen, 2006, pp. 46]:

A B

C D

−1

=

A−1 + A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

 (7.19)

where A,B,C,D are matrices of any size, and A,D must be square. For extremely large

data sets the system in (7.8) can also be solved in pieces as presented in [Nguyen, 2009],

see Appendix B.1. The inversion of individual matrices in (7.19) is achieved by applying the

formula of Sherman-Morrison-Woodbury, which is made possible due to the FRK covariance

structure,

Σ−1
ii = (Di + Si Ki S′i)

−1

= D−1
i −D−1

i Si(K
−1 + S′i D−1

i Si)
−1S′iD

−1
i (7.20)
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The computations require the inversion of the matrices K and (K−1 +S′iD
−1
i Si), where each of

them has the size r× r. Note that Di is a diagonal matrix, for which the inversion is achieved

by inverting the diagonal elements. Using the FRK covariance model makes the computational

burden for the matrix inversion linear with the data size [Cressie and Johannesson, 2008].

7.4 Estimating K

Since the SSDF method is based on the FRK covariance model, obtaining the predictions

requires the covariance matrix K, which should be estimated “offline” from the data. The

estimation of K can be achieved either by the E-M method or the method-of-moments (MM).

7.4.1 Expectation-maximization method

We use the SSDF to estimate a single process (SWD maps); therefore, one covariance matrix

K is estimated from all data sets [Braverman et al., 2009]. In Chapter 4, the matrix K was

estimated from one data set using the E-M algorithm. In this chapter, we extend the E-M

method to estimate one common matrix K based on the two data sets of WRF and PSI-GNSS.

Recall eq. (4.45)

K[t+1] = K[t] + K[t]
(
S′Σ[t]−1

(
Z̃Z̃
′
Σ[t]−1 − IN

)
S
)

K[t] (7.21)

σ2
ζ

[t+1]
= σ2

ζ
[t]

+ σ2
ζ

[t]
tr

(
1

N
Σ

[t]
11

−1(
Z̃1Z̃

′
1Σ

[t]
11

−1
− IN1

)
Vζ

)
σ2
ζ

[t]
(7.22)

where K is estimated from both data sets by setting Z̃ = [Z̃
′
Z̃
′
]′, S = [S′1S

′
2]′, and

Σ =

Σ11 Σ12

Σ21 Σ22


with Σii and Σij as given in eqs. (7.12) and (7.14), and the inversion is obtained using eq. (7.19).

Note that the fine-scale variance σ2
ζ is estimated only from the first data set (SWD observa-

tions).

7.4.2 Method-of-moments

Another approach for estimating K based on the estimation of the empirical covariance Σ was

proposed by Cressie and Johannesson [2008], which is called the method-of-moments (MM).

The method is described here briefly, and for more details the reader is referred to [Cressie and

Johannesson, 2008; Nguyen, 2009]. We describe the method first for a single data set and then
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7. Fusing remote sensing-based IWV maps and data from atmospheric models

we generalize the approach for multiple sets. In the MM method, the matrix K is estimated

from a single data set by minimizing the distance between the empirical covariance Σ̂ and the

FRK covariance Σ(K, σ2
ζ , σ

2
ε ) using the Frobenius norm, i.e.,

||Σ̂−Σ(K, σ2
ζ , σ

2
ε )||2F (7.23)

where Σ̂ is estimated directly from the data, and Σ is the theoretical covariance matrix from

the FRK model. || · ||F denotes the Frobenius norm, where for a matrix A, ||A||F =
√

tr(AA′).

In order to estimate the empirical covariance Σ̂ for the MM method, it is conventional to

bin the data to reduce the computational burden. The number of bins has to be greater than

r, but less than the data size N . For good estimates of the covariance matrix, the number

of bins is selected such that the number of observations within each bin is adequate for a

good estimate of the covariance matrix. According to Shi and Cressie [2007], the number of

observations should have an average of 40 per bin. The bin centers should offer a good coverage

over the spatial domain of the data, and they do not have to be the same for different data

sets [Nguyen, 2009]. Let {uj : j = 1, . . . ,M} be the bin center locations, and N(uj) define the

neighborhood of the location uj , then the observations average within the bin is given by:

Z̄j =
w′jZ̃

w′j1N
(7.24)

where wj = [wj1, . . . , wjN ]′ is a vector of ones and zeros such that

wji =

1 if si ∈ N(uj), i = 1, . . . , N

0 otherwise
(7.25)

The binned version of the matrix S can be computed as follows

S̄ = [S′1, . . . ,S
′
M ]′, Sj =

w′jS

(w′j1N )

The dimension of Sj is 1× r and the size of S̄ is M × r. In a similar way the matrices Vζ and

Vε can be binned such that:

V̄ζ = diag(Vζ,11, . . . , Vζ,MM ), Vjj =
w′jVζw

′
j

(w′j1N )2
(7.26)

V̄ε = diag(Vε,11, . . . , Vε,MM )′, Vε,11 =
w′jVεw

′
j

(w′j1N )2
(7.27)
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The empirical covariance matrix estimated from the binned data, denoted Σ̂B, is used to

estimate K by minimizing (7.23) [Cressie and Johannesson, 2008]. The FRK covariance Σ in

(7.23) equals S̄KS̄
′
+σ2

ζV̄ζ +σ2
ε V̄ε. Then the estimate for K, given that σ2

ε and σ2
ζ are known,

is

K̂ = R−1Q′(Σ̂B − σ2
ζ V̄ζ − σ2

ε V̄ε)Q(R−1)′ (7.28)

where Σ̂B is the empirical covariance matrix estimated from the binned data. S̄ = Q R, with

Q and R obtained via the Q-R decomposition of S̄ [Cressie and Johannesson, 2008].

Based on the above formulas for single data sets, we generalize the approach for two data

sets. The SSDF covariance functions for binned data are

Σ̄11 = S̄1 K S̄
′
1 + σ2

ζV̄ζ + σ2
ε1V̄ε1 (7.29)

Σ̄22 = S̄2 K S̄
′
2 + σ2

ε2V̄ε2 (7.30)

Σ̄12 = S̄1 K S̄
′
2 = Σ̄′21 (7.31)

Minimizing the norm between the empirical covariance functions and the SSDF covariances in

eq. (7.23) yields the following estimate for K

K̂ = R−1Q′

Σ̂11,B − σ2
ζ1

V̄ζ1 − σ2
ε1V̄ε1 Σ̂12,B

Σ̂21,B Σ̂22,B − σ2
ε2V̄ε2

Q(R−1)′ (7.32)

where [S̄
′
1S̄
′
2] = Q R. Σ̂11,B and Σ̂22,B is the empirical covariance matrices estimated from the

first and the seconds data sets, respectively. Σ̂12,B is the empirical cross covariance matrix.

The methods for estimating the empirical covariance matrices Σ̂ii,B and Σ̂ij,B are described

in Appendix B.2.

The success of the FRK and SSDF methods depends on the proper estimation of the matrix

K and the variances of the fine-scale component and the noise. For the sake of evaluation and

comparison, we estimate K based on the two presented methods, E-M and MM. The E-M

algorithm is based on the assumption that the data follow a joint Gaussian distribution, while

the MM does not depend on any statistical assumptions. As a consequence, the MM method

should be more robust [Katzfuss and Cressie, 2011b]. If the assumption of Gaussianity is

justified, which is most likely for the SWD data, the E-M algorithm shows more efficient results,

particularly when the observations are spatially sparse [Katzfuss and Cressie, 2009]. The fine-

scale variance, σ2
ζ is estimated independently for the MM from the robust semivariogram

as described in Section 4.2.2.3; however, it can be estimated together with K in the E-M

algorithm.
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7. Fusing remote sensing-based IWV maps and data from atmospheric models

7.4.3 Comparison of EM and MM estimations

In this section, we present an example for estimating the matrix K using the SWD maps

derived from PSI and GNSS in the previous chapter. We use the detrended observations to

estimate K and the associated variances σ2
ζ and σ2

ε , first by the E-M method and second by

the MM. The variances σ2
ζ and σ2

ε are estimated from the point-level observations based on the

robust semivariogram method. In the E-M method, we obtain the estimate for K (denoted

KEM ) iteratively as described in Section 4.3. Estimating K based on the MM (denoted

KMM ) requires binning the observations to block-level; therefore, the bin center locations are

created on a regular grid of 1 km. The SWD observations (available at the PS locations) are

aggregated within each bin and the bins utilized for estimating K should contain more than

25 observations while the others are rejected.

It remains to build the matrix S, so we construct a set of spatial nodes within the spatial

domain of the data, to which the locations of the measurements should be related. The nodes

are established in three groups such that the spacing between them is 40 km, 20 km, and

10 km for the first, the second and the third group, respectively. We used 93 nodes with 4

nodes in the first group, 17 in the second, and 72 in the third. The selection of the nodes was

adjusted until the FRK covariance fits the empirical covariance. The nodes setup is depicted

in Figure 7.4. These nodes define the centers of the BFs used to encode the locations of

the available data. This means that each location of the data is represented by a vector of r

weights. Each weight is computed by evaluating the BFs at the distance of the observation

point s to the nodes. These vectors are stored in the matrix S, which has the size of N × r
for N observations, such that S has the following form:

S =


S(1)(s1) S(2)(s1) · · · S(r)(s1)

S(1)(s2) S(2)(s2) · · · S(r)(s2)
...

...
. . .

...

S(1)(sN ) S(2)(sN ) · · · S(r)(sN )

 (7.33)

where the S(l) are selected from the bisquare BFs family, which has the following form

S(l)(s) =


[
1− (||s−ml||/rl)2

]2
, for ||s−ml|| ≤ rl,

0 otherwise
(7.34)

ml is the geographic location of the node and rl is the effective radius of the BF, which is

defined as 1.5 times the distance separating two adjacent nodes in a certain group of BFs

[Nguyen, 2009].

The results for the estimates of the covariance matrices KEM and KMM are shown in
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Figure 7.4: FRK nodes which also define the center locations of 93 basis functions at three spatial
resolutions. The first resolution is 40 km (4 nodes), the second resolution is 20 km
(17 nodes), and the third resolution is 10 km (72 nodes).

Figure 7.5. The estimate of KEM is slightly smoother than the estimate of KMM , but

the difference between the two matrices is small. We found that the difference between the

estimates of KMM and KEM increases when decreasing the number of bins, i.e., increasing

the bin size and hence aggregating more observations. From the matrices KEM and KMM ,

a maximum value is observed at the element (29,29), which is equivalent to the node in the

lower right corner at the location (8.524◦E, 48.69◦N), see Figure 7.4. This can be explained

by the sparseness of observations close to this node, and some of them have inaccurate values.

This large variance in K will affect only a small number of points in the covariance matrix,

and its effect will be insignificant if we infer at block-level. In Figure 7.5 are also shown the

corresponding covariance matrices of the detrended observations computed from the estimated

parameters using eq. (4.28). The covariance matrix is computed for the observations binned

into 7×7 km2 blocks to demonstrate covariance structure, and the covariance for 1×1 km2

grid is shown in Appendix B.3 in Figure B.2. The covariance matrices computed from both

estimates of K show almost identical values with marginal differences as observed from the

figure. We observe from the covariance matrices that the variances, on the main diagonal,

increase in areas of sparse observations. The reader should note that the observations do not

exist on a regular grid (due to the spatial distribution of PS points); hence, the covariance

values in the off-diagonal cells can be negative and then again positive.

The estimates of the covariance matrix K are exploited to obtain the predictions of the

SWD on a regular grid of 3×3 km2. The prediction maps and the corresponding MSPE maps

are illustrated in Figure 7.6. The prediction maps show almost the same spatial correlation
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Figure 7.5: Estimates of the covariance matrix K using the E-M and the MM algorithms and the
corresponding covariance matrices for the SWD maps from PSI-GNSS. The SWD ob-
servations are aggregated into maps of 7×7 km2 cells before their covariance matrices
are computed.

with the equivalent map from MERIS. When building the differences between the prediction

map and MERIS map, the RMS is about 5 mm in the case of using KEM and it is slightly

larger for the map predicted using KMM . The MSPE values tend to increase in regions of

sparse observations. We can also observe that the MSPE values are much higher when using

KMM than those associated with the matrix KEM . This might be explained by the lifting of

the eigenvalues for non positive-definite covariance matrices, which is used in the MM method

[Kang et al., 2010].

The surface altitude starts to increase when getting close to the lower right corner, which

means the SWD values should decrease. This is, however, not observed in either prediction
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7.5. Fusion of SWD maps

maps, since the observations in this area are sparse and their values in the original SWD map

are not accurate (biased). Using the SSDF method for prediction will overcome this problem

by taking the benefit of the data available from WRF, as will be presented in the next section.
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Figure 7.6: SWD prediction maps and the corresponding MSPE values using data from PSI-
GNSS combination on 09.05.2005 (09:51 UTC). The grids have a block size of
3×3 km2. The upper map is obtained using the covariance matrix KEM , while
the lower is predicted based on KMM .

7.5 Fusion of SWD maps

In this section, we apply the SSDF strategy to combine IWV maps, converted into wet delay,

from WRF and the absolute SWD maps derived from the combination of PSI and GNSS data

as explained in Chapter 6. The SWD maps from PSI-GNSS have point-level observations

available at 76841 discrete points. WRF provides data on a regular grid of 3×3 km2, which

have a block-level support following the structure in eq. (7.1). The WRF map over the region

covered by the SAR image contains 1296 data samples. The data to be fused have huge

size, different spatial support, gaps in the SWD maps, and noise. WRF simulates data on

regular grids, but the quality of the IWV maps and the ability of WRF to model the fine-
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7. Fusing remote sensing-based IWV maps and data from atmospheric models

to small-scale atmospheric structures should be improved. These reasons motivate the fusion

of SWD measurements from PSI-GNSS and WRF simulated maps to study the effect of data

fusion on generating accurate prediction maps on regular grids. Also, we test the benefit of

the observations in improving the capabilities of WRF to model spatial variations at short

scales. We present two examples of applying SSDF to produce regular SWD maps using data

on 06.27.2005 and 09.05.2005 (at SAR overpass time) , where PSI-GNSS, WRF, and MERIS

data are available.

First, the trends are removed from the data by constructing the matrix T with entries of

the longitude and latitude, and estimating the value of α using eq. (4.10). The centered maps

are shown in Figure 7.7. Then, the covariance parameters (K, σ2
ζ , σ

2
ε ) are estimated using the

centered data Z̃1, Z̃2 either individually or combined. The error variances of both data sets

are estimated as described in Chapter 4, while K and σ2
ζ for multiple data sets are estimated

as described in Section 7.4. Note that when the two data sets are combined to infer a single

process (SWD fields in this work), one K is estimated for all data sets.
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Figure 7.7: SWD maps from PSI-GNSS combination and IWV maps from WRF on 09.05.2005,
with a linear trend subtracted from each map. PSI-GNSS are point-level observations,
while WRF generates block data with a block size of 3×3 km2.

We use the FRK method described in Section 4.2.2.3 to interpolate each data set individually

on a regular grid and then perform a fusion of them using the SSDF method. Since we fuse

two data sets, there exist a matrix S1 for the first data set (SWD maps) and a matrix S2 for

the second data set (WRF IWV maps). The number of nodes and hence the BFs must be

the same for both data sets. The nodes are selected such that S does not contain columns of

zeros, otherwise the corresponding node has to be removed. For the point-level observations

from PSI-GNSS, a weighting value is calculated for each data point with respect to all basis

functions. However, WRF simulates block-level data, hence we superimpose the grid of WRF

with a lattice of regular points such that each cell in the WRF grid contains 9 points. A

weighting value is calculated for each point and the values are averaged to get a weighing

value for each WRF cell. We form the matrix S̃2 at the block-level support of WRF. Building
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7.5. Fusion of SWD maps

the matrix Sp for the prediction locations is done in a similar way, either at point-level or

block-level supports, depending on the output grid.

The output grid is defined at 3×3 km2 (block-level support). In the first example, we show

the results of applying the SSDF to the data on 09.05.2005. We compare the prediction maps

in three ways: first, we compare the interpolations obtained by applying FRK to single data

sets with those obtained by SSDF. Second, we compute the predictions based on K estimated

by the E-M and the MM methods. Third, we validate the results against IWV maps from

MERIS interpolated on the same prediction grid by applying the block FRK method.

In Figure 7.8, we show the prediction maps obtained by applying FRK to individual data

sets and the map obtained by SSDF. The figure also contains the MSPE maps corresponding

to each prediction map. The results show that the map obtained from SSDF correlate better

with the map predicted from PSI-GNSS observations. In the IWV map generated by WRF,

shown in Figure 7.7 (a), the area in the lower left corner shows artifacts that do not reflect the

real map of IWV as observed from its comparison with MERIS, Figure 7.1 (c, d). Applying

FRK to WRF does not remove these artifacts from the prediction map. However, in the map

obtained by the fusion of both data sets, the artifacts in the lower corner disappeared, but

the corresponding MSPE values are large for this region. The MSPE values corresponding to

the SSDF predictions are generally smaller, and we should note that in the regions of sparse

observations, the corresponding MSPE values tend to increase. In Figure 7.9, we show the

SWD profiles over a line drawn horizontally at the latitude 49.37◦N. It is observed from the

plots that the predictions made by applying the SSDF method are affected more by the data

from WRF in the region A, where the there is a lack in the remote sensing observations.

However, in region B, the WRF data are overestimated and they have a lower effect in the

predictions than those received from the remote sensing data. The results received by applying

the data fusion (SSDF) show a better correlation with the data from MERIS.

For regions of sparse observations in the SWD map (Figure 7.7 (b)), i.e., the areas in

the west of the Rhine valley or in the lower right corner, the map from WRF contributes to

improve the estimation of the SWD values in the prediction map. The region in the lower

right corner has a higher topography and the SWD values are expected to decrease as we

observe from the map of WRF. In the prediction map obtained by applying FRK to SWD

observations, the predicted values tend to increase since the observations in this area are sparse

and partially biased. By applying the SSDF approach, the data available from WRF influence

the predictions such that their values are more reasonable and they decrease by moving to

the lower right corner. In a similar way, the data from WRF improve the predictions in the

region around (7.8◦E, 49.25◦N), where only sparse SWD observations exist. The data from

the model, however, affects the prediction in the lower left corner such that they are smaller

than those observed in the MERIS map.

For the sake of comparison, we also estimated the matrix K once using the MM method

(KMM ) and second by applying the E-M method (KEM ) and data inference by SSDF was done
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7. Fusing remote sensing-based IWV maps and data from atmospheric models

using either estimates. We found that SSDF prediction map using KEM shows better spatial

correlation with MERIS and a lower RMS value. The more important point here is that the

corresponding MSPE values using KMM are larger than the other MSPE values by more than

an order of magnitude. This can be related to the estimate of K itself, where the MM method

requires data binning. According to Shi and Cressie [2007], the number of observations per bin

should be large enough (40 or more) to allow good estimates of the covariance between bins.

Since WRF data are at block-level and of limited data points, we made the binning with 9

points per bin. This might have influenced the computing the empirical covariance and hence

the estimation of K. One more point that can affect the estimation of K is the lifting of the

eigenvalues in case of non positive-definite covariance, which is used in the MM method [Kang

et al., 2010].

In order to validate the SSDF output maps, we exploit IWV maps from MERIS and block

FRK is applied to predict values on the same grid. In Table 7.2 are summarized the spatial

CCs and the RMS values of the difference maps. The map resulting from the SSDF offers the

largest spatial correlation and the smallest mean-squared difference to MERIS maps. From

the table, it becomes clear that the WRF map (on 09.05.2005) has a much smaller correlation

with the MERIS map and a large RMS value. However, in the synergistic approach, the SSDF

map shows better correlation and a lower RMS value compared to the maps from individual

data sets.
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Figure 7.8: SWD prediction maps and MSPE maps obtained by applying SSDF to SWD obser-
vations and IWV maps from WRF. Predictions are obtained also by applying FRK
is applied to individual maps. The data are available on 09.05.2005 at SAR overpass
time. The output grid has a block size of 3×3 km2.
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Figure 7.9: SWD profiles following a horizontal line on the latitude 49.37◦N in the SWD predic-
tion maps shown in Figure 7.8.

09.05.2005 06.27.2005

Method CC RMS [mm] CC RMS [mm]Method CC RMS [mm] CC RMS [mm]

FRK using PSI-GNSS data 0.8742 5.5427 0.7199 6.8437

FRK using GNSS data 0.7698 8.0081 0.3898 8.8171

FRK using WRF data 0.7022 8.1284 0.8555 5.2743

SSDF (KMM) 0.9042 5.1334 0.7980 6.2011

SSDF (KEM) 0.9111 5.0466 0.8585 5.6036

Table 7.2: Spatial correlations coefficients and the RMS values between SWD maps from MERIS
and SWD maps obtained either by SSDF or by FRK of single data sets.

We applied the SSDF approach again to show other maps (on 06.27.2005). The centered

data are shown in Figure 7.10, and Figure 7.11 depicts the prediction maps using the

SSDF and FRK methods. In this example, we have the opposite case where the WRF IWV

map exhibit better spatial correlation with the map from MERIS than that of PSI-GNSS,

see Table 7.2. Similar to the previous example, the SSDF map demonstrates better results

than predictions based on single data sets and the corresponding MSPE values are generally

smaller. However, the improvement is not significant and the RMS value of the difference

between MERIS and SSDF maps is larger than that for WRF and MERIS. This is related

to the support of the input data, where more data samples from the point-level observations

in the PSI-GNSS map can have a significant effect on the output value within the predicted

cell. The predictions made based on the matrix KEM are better than those achieved using

the matrix KMM . The CC and the RMS values are given in Table 7.2.
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Figure 7.10: IWV maps from WRF and SWD maps from PSI-GNSS combination, with a lin-
ear trend subtracted from each map. The data are received on 06.27.2005 (SAR
overpass). PSI-GNSS are point-level observations, while WRF IWV maps are block
data with block size of 3×3 km2.
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Figure 7.11: SWD prediction maps obtained by applying SSDF to SWD observations and IWV
maps from WRF. Predictions are obtained also by applying FRK is applied to
individual maps. The data are avilable on 06.27.2005 at SAR overpass time. The
output grid has a block size of 3×3 km2.
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7. Fusing remote sensing-based IWV maps and data from atmospheric models

7.6 Summary and discussion

Maps of absolute SWD were derived in Chapter 6 by combining observations from PSI and

GNSS. These maps are available at discrete points and the observations are absent in regions

of low coherence. In some areas where the observations are not dense, the value of SWD

might be biased. On the other hand, the WRF model provides simulations of the IWV in the

atmosphere on regular grids at a coarse spatial resolution, in which modeling the small-scale

structures in the atmosphere should be improved. Also, the quality of the maps is still to be

improved. In this chapter, we presented a method for spatial fusion of the SWD maps and

the IWV maps to infer maps on regular grids of any resolution. For that purpose, the SSDF

method, first presented in [Nguyen, 2009], was exploited. This method is based on the FRK

approach and it attempts to solve the problems of huge data sets, change of support, and

errors.

• We inferred SWD data on a grid of 3×3 km2 based on estimates from E-M and MM

methods and also compared the results with maps from MERIS inferred on the same

grid. There exist a strong correlation between SSDF maps and those maps from MERIS.

The difference between both maps has RMS values below 6.2 mm, which is lower than

that obtained from inferring data based on single sets. The CC and the RMS values for

the examples we presented are given in Table 7.2.

• In the SSDF, we construct a matrix Si for each data source by defining a set of spatial

nodes. The number of the nodes is adjusted such that we can estimate a matrix K that

is used to compute a covariance function for the data sets, which should approximate the

empirical covariance. In the future work, the size and the locations of nodes should be

optimized by minimizing the difference between the true covariance and the estimated

one.

• The estimation of the covariance matrix K was achieved by the methods of E-M and

MM. A comparison of the matrices shows a good correspondence of the estimates from

both methods, the difference may increase for the off-diagonal elements. We found that

increasing the size of bins, i.e., reducing their number, makes the difference between the

estimates severe and the relation is not anymore linear.

• The SSDF approach can be extended such that more than two data sets are used. We can

test the algorithm by including MERIS maps in the fusion. Hence, maps of IWV based

on spectral imaging systems, such as EnMAP (Environmental Mapping and Analysis

Program), can be investigated for improving the quality of the NWP models.

• For modeling the fine-scale signal, we assumed that it is spatially independent and iden-

tically distributed with a Gaussian distribution of mean zero and a variance σ2
ζ , such

that the covariance matrix has the form σ2
ζ · I, with I the identity matrix. If we assume

that the fine-scale signal is correlated within a certain radius, say approximately 2-3 km
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7.6. Summary and discussion

for atmospheric turbulence patterns, the model of this signal should be adapted, and at

the same time we should keep the computational costs feasible. If we follow the same

approach of setting a number of nodes, we should ensure that the matrix S does not

contain columns of zeros. This might mean that the nodes will be close together in the

areas of dense observations and sparse elsewhere.
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8 Conclusions and Outlook

Atmospheric water vapor is responsible for the high temporally and spatially variable distor-

tions observed in GNSS and InSAR measurements. Numerous methods have been developed

to mitigate these artifacts in order to improve the quality of the methods developed for high

precision positioning based on the GNSS and Earth’s surface monitoring using InSAR obser-

vations. In this work, we investigated this “error” signal to obtain time series and maps of the

slant wet delay (SWD), as a measure for IWV, from GNSS and Persistent Scatterer InSAR

(PSI) observations, respectively. Using the method of Precise Point Positioning (PPP), we

derived absolute measurements of the wet delay from GNSS at a coarse spatial density. PSI,

however, was applied to derive maps of the wet delay difference maps at a high spatial density.

We combined the wet delay measurements, of complementary properties, from GNSS and PSI

to build absolute maps of the wet delay at the density of PSI. Then, we applied data fusion of

the derived maps and the IWV maps simulated by the WRF model to overcome the deficits

of each set and to improve the quality of the output maps.

8.1 Summary

In this section, we briefly summarize the methods presented in the previous chapters. The

algorithm developed for combining PSI and GNSS observations addressed the following points:

• GNSS

– We used meteorological observations of air pressure, temperature, and relative hu-

midity to determine the zenith dry delay at the GNSS site based on the model of

Saastamoinen. The zenith dry delay was subtracted from the neutrospheric zenith

total delay, estimated from the phase measurements using the PPP strategy, to

obtain a value for the zenith wet delay at each site.

– The zenith wet delay observations were mapped to the radar line-of-sight to get

values of the SWD, which are used to model the elevation-dependent wet delay by

fitting the model in Eq. (6.5). The parameter estimates were exploited to extrapo-

late a value for the wet delay at each PS location depending on its altitude that is

obtained from a laser digital elevation model model.
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8.1. Summary

– We analyzed the residuals (after subtracting the elevation-dependent component

from the GNSS SWD observations) to estimate the parameters of a plane that

models the long-wavelength wet delay component, which are used to extrapolate a

value at each persistent scatterer location.

We compared the zenith wet delay estimated at each GNSS site with the ZWD obser-

vations from MERIS. The results show strong correlation between them and the RMS

values are significantly small.

• PSI

– We built 16 interferograms from the SAR images acquired by the Envisat satel-

lite. We subtracted the topographic phase and the flat Earth phase from each

interferogram. Then, we used the StaMPS software for PSI analysis.

– A series of spatial and temporal filtering was applied to extract the SWD maps

from the interferograms, which are then inverted by the method of least squares

inversion to derive maps at each SAR acquisition time.

The SWD-difference maps extracted from the interferograms show strong correlation

with the the SWD-difference maps from MERIS. We interpolated PSI observations at

the locations of MERIS by the method of inverse distance weighting, moving-window

averaging and kriging. All of the methods produce similar output maps with insignificant

variations in the correlation coefficient and the RMS values when compared with MERIS.

• Combination

– The maps derived using the GNSS and PSI data are combined to build absolute

maps of the SWD.

The comparison of the maps derived using our method with IWV maps from MERIS,

converted into wet delay and mapped to the radar line-of-sight, demonstrates strong spa-

tial correlations between 75% and 92% at 300×300 m2 spatial resolution. The difference

maps show RMS values of less than 1 mm (IWV).

• SSDF

We combined the derived absolute SWD maps together with the IWV maps generated

by the WRF model by a rigorous data fusion method. Data fusion is applied to test the

effect of combining multiple data sources on improving the quality of the output maps,

and to use data available from the model for predicting values of the SWD in areas where

no measurements are available. For data fusion, we exploited the geostatistical method

of SSDF that extends the method of fixed-rank-kriging (FRK) for combining multiple

data sets. Based on the FRK covariance model, we addressed the problems of massive

data sets, gaps, change of support, and non-stationary and non-isotropy assumptions.

In applying the SSDF method, the following points were processed:
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8. Conclusions and Outlook

– We subdivided the SWD into three components: the first is a long-wavelength signal

modeled by a 2D linear surface, the second is a component of small- to medium-scale

variations modeled by the spatial random effect model, and the third is a fine-scale

component modeled as an uncorrelated random signal with a Gaussian distribution

of a mean zero and a diagonal covariance matrix.

– We estimated the error variance for each data set using the robust semivariogram

method. The empirical covariance matrix for each data set and the cross covariance

of both sets were estimated directly from the data, and they were modeled by the

FRK covariance structure.

– We defined the output grid at a block-level support, which is considered in the

covariance model, and obtained the predictions of the SWD and the corresponding

mean squared prediction error values.

The results show that applying the SSDF approach produce prediction maps with a

better spatial correlation and a smaller distance to those from MERIS compared with the

maps predicted by applying the FRK method to each data set individually. The artifacts

that might exist in any of the data sets are compensated in the output map of the fusion.

In the maps predicted from the PSI-GNSS and WRF data on 09.05.2005, for example,

the prediction map obtained from applying the FRK method to the WRF map correlates

with the map from MERIS to 70%, and the SWD prediction map correlates with MERIS

to 87%; however, the prediction map obtained by applying the SSDF approach shows

correlations of 91%.

8.2 Recommendations and future work

There might be possible improvements to consider:

In the estimation of the neutrospheric phase from PSI, (i) we assumed that the contribution

of the surface displacement is negligible due to the stable crust in the region of URG. However,

we should consider the case where the interferogram also contains a displacement signal and

the possible ways to split its phase from the neutrospheric phase. (ii) The separation of the

neutrospheric signal from other phase components is attained by a series of temporal and

spatial filtering. Tuning the filter parameters, in particular for the temporal filters, can result

in removing a useful signal or adding a a non-neutrospheric signal. For more accurate results,

the extraction of the neutrospheric phase from the interferogram should be achieved in a more

efficient way. (iii) We used the StaMPS functions for PS processing where only PS are selected,

which results in empty regions in the forest and vegetated areas. To increase the density of

stable points, we suggest the use of the SqueeSAR approach, which considers not only PS

but also distributed scatterers. This can effectively increase the density of stable points and

reduces the probability to have regions with no observations.
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8.2. Recommendations and future work

In modeling the elevation-dependent wet delay from the GNSS SWD observations, (iv) we

assumed that the SWS-residual maps derived from the interferograms contain no altitude-

dependent signals since the region of research has a rather flat topography. If we consider

regions of strong topography, we should expect that the elevation-dependent signal will be

partially observed in the maps derived from PSI. Hence, only the missing component should

be modeled based on the GNSS observations. (v) Modeling the elevation-dependent component

can be improved by increasing the density of the GNSS sites such that they properly cover

the entire topography range.

In the topic of data fusion, we have solved the change of support problem by using the

extended FRK covariance model. The observations are related to a fixed set of nodes, which

are adjusted manually. (vi) The number of nodes and the spacing between them should be

optimized such that the norm of the difference between the empirical covariance and the FRK

covariance is minimized. (vii) For modeling the fine-scale signal, we assumed that it is spatially

independent and identically distributed with a Gaussian distribution of a mean zero and a

covariance matrix σ2
ζ · I. If we assume that the fine-scale signal is correlated within a certain

radius, say approximately 2-3 km for atmospheric turbulence patterns, the model of this signal

should be adapted and at the same time we should pay attention to the computational costs.

Following the same approach of setting a number of nodes, we should confirm that the matrix

S does not contain columns of zeros. This might mean that the nodes will be close together

in the areas of dense observations and sparse elsewhere.
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A General formulas

Let z be an observed random variable that has a signal component η and a noise component.

Then, the expectation of the signal, say η, conditional upon the observation z is [Klebaner,

2005]:

E{η|z} = E{η}+
cov(η, z)

var(z)
(z− E{z}) (A.1)

E{ηη′|z} = cov(η|z) + (E{η|z})2 (A.2)

cov(η|z) = var(η)− cov(η, z)

var(z)
(A.3)
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B Data fusion

B.1 SSDF for massive data sets

For large data sets, we can find the solution for Eq. (7.7) by partition:

a1 = −Σ−1
11 Σ12a2 + Σ−1

11 c1 − Σ−1
11 1N1m

a2 = −Σ−1
22 Σ21a1 + Σ−1

22 c2 − Σ−1
22 1N2m (B.1)

substituting the second equation into the first and vice versa, then define the following:

A1 = IN1
− Σ−1

11 Σ12Σ−1
22 Σ21

A2 = IN2
− Σ−1

22 Σ21Σ−1
11 Σ12

B1 = Σ−1
11 (c1 − Σ12Σ−1

22 c2)

B2 = Σ−1
22 (c2 − Σ21Σ−1

11 c1)

C1 = −Σ−1
11 (1N1 − Σ12Σ−1

22 1N2)

C2 = −Σ−1
22 (1N2 − Σ21Σ−1

11 1N1)

where INi
is an identity matrix of Ni ×Ni. Substituting in Eq. (B.1) then,

a1 = A−1
1 (B1 + C1m)

a2 = A−1
2 (B2 + C2m) (B.2)

Thus, we solve for m by substituting (B.2) into the constraint

a′11N1 + a′21N2 = 1

Then,

m =
1− 1′N1

A−1
1 B1 + 1′N2

A−1
2 B2

1′N1
A−1

1 C1 + 1′N2
A−1

2 C2

(B.3)

The value of m can be substituted back in Eq. (B.2) to obtain the optimal fusion coefficients.
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B. Data fusion

B.2 Estimation of the empirical covariance

In Section 7.4.2, we presented the method for estimating the covariance matrix K using the

MM. We assumed that the empirical covariance matrices Σ̂ii,B and Σ̂ij,B are known. We

now describe the methods for estimating these matrices directly from the data as presented in

[Cressie and Johannesson, 2008].

For a data sets Z̃ of the dimension N , the covariance, denoted C, of any two bins centered

at the locations uj and uk is given by:

C(uj ,uk) = Z̄(uj) · Z̄(uk), j, k = 1, . . . ,M (B.4)

where M is the number of bins and

Z̄(uj) =
w′jZ̃

w′j1N
(B.5)

where wj = [wj1, . . . , wjN ]′ is a vector of ones and zeros such that

wji =

1 if si ∈ N(uj), i = 1, . . . , N

0 otherwise
(B.6)

The variance,V , for any bin centered at uj is obtained from

V (uj) =

∑N
i=1wji(Z(si)− Z̄(uj))

2

w′j1N
, j, k = 1, . . . ,M (B.7)

Hence, the empirical covariance Σ̂B is determined from

Σ̂B = C + diag {V (u1), . . . , V (uM )} (B.8)

Where the matrix C contains the covariances calculated for all bins from (B.4).

The method presented before is exploited to estimate the covariance matrix for each data

set. The cross-covariance between any two bins within different data sets is computed from:

C(u1j ,u2k) = Z̄1(uj) · Z̄2(uk) (B.9)
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B.3. Additional graphs

where u1j is a bin center in the first data set and u2k is a bin center in the second set.

Z̄1(uj) =
w′1jZ̃1

w′1j1N1

, j = 1, . . . ,M1 (B.10)

Z̄2(uk) =
w′2kZ̃2

w′2k1N2

, j = 1, . . . ,M2 (B.11)

where N1 is the length of the first data set and N2 is the length of the second. M1 and M2 are

the number of bins of the first and the second data set, respectively. w1j and w2k are defined

using (B.6) for the first and the second data set, respectively. Then the cross-covariance matrix

is constructed for all bins, i.e.,

Σ̂12,B ≡ [C(u1j ,u2k)] (B.12)

B.3 Additional graphs
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Figure B.1: Estimates of the covariance matrix K using the EM and the MM algorithms and
the corresponding FRK covariance matrices for the SWD maps from PSI-GNSS on
06.27.2005. Note that the SWD observations are aggregated into maps of 1 km bins
before their covariance matrices are computed.
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Figure B.2: FRK covariance matrices for the SWD maps from PSI-GNSS on 09.05.2005. Note
that the SWD observations are aggregated into maps of 1 km bins before their
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