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Public Key Cryptography enables entity authentication protocols based on a platform’s knowledge of other platforms’ public key.
This is particularly advantageous for embedded systems, such as FPGA platforms, with limited or none read-protected memory
resources. For access control systems, an access token is authenticated by the mobile system. Only the public key of authorized
tokens needs to be stored inside the mobile platform. At some point during the platform’s lifetime, these might need to be updated
in the field due to loss or damage of tokens. This paper proposes a holistic approach for an automotive access control system based
on Public Key Cryptography. Next to a FPGA-based hardware architecture, we focus on a secure scheme for key flashing of public
keys to highly mobile systems. The main goal of the proposed scheme is the minimization of online dependencies to Trusted Third
Parties, Certification Authorities, or the like, to enable key flashing in remote locations with only minor technical infrastructure.
Introducing trusted mediator devices, new tokens can be authorized and later their public key can be flashed into a mobile system
on demand.

1. Introduction

Embedded systems in various safety critical application
domains such as automotive, avionic, and medical care
perform more and more complex tasks using distributed
systems like networks of electronic control units (ECUs).
Introducing Public Key Cryptography (PKC) to embedded
systems provides essential benefits for the fabrication of
electronic units needing to meet security requirements as
well as for the logistics involved. Due to the nature of
PKC, the number of keys that need to be stored in the
individual platform is minimized. Only the private key of the
platform itself needs to be stored secretly inside each entity—
in contrast to symmetric crypto systems where a single secret
key needs to be stored inside several different entities. In
context of PKC, if one entity is compromised, the others
remain unaffected.

Besides encrypting or signing of messages, PKC can be
employed to control user access to a device via electronic
tokens. Examples for this are Remote Keyless Entry (RKE)

systems [1] in the automotive domain or Hilti’s TPS tech-
nology [2]. These systems incorporate contactless electronic
tokens that substitute classical mechanical keys. The owner
or authorized user identifies himself to the user device (��)
by possession of the token. �� and token are linked. Only if a
linked token is presented to ��, it is enabled or access to �� is
granted. In order to present a token to ��, information has to
be exchanged between the two. The communication channel
is usually assumed to be insecure. To prevent the usage of
a device or its accessibility by an unauthorized person, the
authentication has to be performed in a secure manner.

Authentication schemes based on Public Key Cryptogra-
phy such as the Needham-Schroeder protocol [3], Okamoto-
Protocol [4], and Schnorr-Protocol [5] provide authentica-
tion procedures where no confidential data is transmitted.
Secret keys are stored in the tokens only and not in ��, thus
omitting the need for costly security measures in the ��. Only
public keys have to be introduced into �� (see Section 2),
which can usually only be done by the manufacturer (���) of
��. In real-world operation, the introduction of public keys is
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done in the field where �� is not necessarily under the control
of ��� and a live online connection to ��� may not be
possible. PKC is computationally very expensive, especially
when aiming for high security levels. Dedicated hardware can
provide the necessary speed up of cryptographic operations.
With the decreasing cost of FPGAs, these devices are
introduced more and more into embedded systems and mass
market products. Therefore, hardware accelerators can be
made available in these cost sensitive systems by adding
cryptographic computation blocks on FPGA.

We propose a system to introduce public keys into FPGA
based user devices to pair them with a new token. The
proposed key flashing method allows authorization of the
flashing process by ���. Additionally it can be carried out
with �� in the field and with no active online connection to
��� while flashing a key into ��. Introduction or flashing of
new keys to an embedded device can be seen as a special case
of a software update. Latter focuses on protection of the intel-
lectual property, interoperability, correctness, robustness,
and security. Recent approaches for the automotive area have
been developed, for example, in the german HIS [6, 7] or
the EAST-EEA [8] project. A general approach considering
security and multiple software providers is given in [9].
Nevertheless, general update approaches are focused on the
protection of IP and the provider against unauthorized
copying and less on the case that the system has to be
especially protected against unwanted updates as in our key
flashing scenario.

The remainder of this paper is structured as follows.
In Section 2, we present the basic application scenario
followed by a short introduction to public key cryptography
in Section 3. Section 4 describes a high-speed architecture
for cryptographic computations. The requirements for the
keyflashing scenario are described in Section 5. Based on this,
we propose our flashing concept in Section 6, followed by the
according requirements (Section 6.3). Section 7 details the
flashing protocol with a live online connection available and
Section 8 the protocol with no online dependability. Imple-
mentation details of the prototypical flashing framework are
given in Section 9. We conclude with a security analysis and
an outlook to future work in Sections 10 and 11.

2. Application Scenario: Automotive Access
Control Systems

The target application focused on in this work is foremost
automotive access control system. They comprise an entity
that acts as the verifier (an ECU within the car) and an entity
that acts as a prover (the traditional car key). Traditionally, a
standard car key serves the sole purpose of identifying the
current owner of the key as the authenticated user of the
car (authentication by ownership). This also holds true for
electronic car keys. As depicted in Figure 1, access to the car
is granted by unlocking the doors only if the correct car key
(prover) is presented to the car. The same procedure can be
employed to disable or enable the immobilizer of the car,
allowing the car’s engine to start or not.

ProverVerifier

100011 100011 100011 0011110 0011110

Figure 1: Access control: authentication scheme.

The automotive domain implies a very specific set of
requirements. The industry is extremely cost driven, thus
creating the need for very small hardware footprints. To
comply with limited cost, OEMs tend to resort to cheap
off-the-shelf components instead of specialized ASICs or
complete systems-on-chip (SoC). Additionally a car’s life
cycle is about 10–15 years. Within this time span, all systems
should work flawlessly.

Access control systems are a natural point of attack.
Therefore, they need to offer very good security. To pro-
vide this, electronic car keys incorporate some kind of
cryptographic algorithm. Raising security levels in this
context can be achieved by adaption of the authentication
protocol being used, enlarging key lengths, or substituting
cryptographic primitives. All these measures tend to increase
computation times. But all underlying computations and
algorithms incorporated in access systems shall not be
noticeable to the user of a car for best usability. Keeping
the underlying hardware platform adaptable to varying
interfaces and functionalities, it enables for integration
of the same hardware components into a wide range of
car keys for a multitude of different car models. With
FPGAs dropping in cost over the last years, they also have
been introduced more and more in cost driven industries
such as the automotive domain. These devices are already
being used in infotainment and multimedia devices. In
addition to that, they can be used to provide dedicated
hardware modules to accelerate cryptographic computations
within user authentication in these systems. By using FPGA
platforms for access control systems, they are adaptable over
the lifetime of a car and offer some flexibility regarding
changes in protocol and processing units.

In summary, we will regard the following application
scenario: an access control system is applied to a mobile user
device (��); in our case, a vehicle is depicted in Figure 2.
Through the access control system, the use of the �� can
be restricted by allowing only the owner or authorized
user access to the device. A transponder (���) serves as an
electronic version of a mechanical key. ��� communicates
to �� over a wireless communication channel. The user
device accepts a limited number of transponders. If one of
these is presented to the user device, it authenticates the
transponder and the device is unlocked, thus granting access.
Anyone possessing a valid ��� is considered an authorized
user (�	
). This setup forms an authentication chain for
usage of ��. An authorized user is authenticated through the
possession of a valid ��� paired to the the ��. ��� in turn is
authenticated by ��.
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Figure 2: Entities and application scenario.

In automotive systems, authentication of a ��� can
be achieved through a number of methods: rolling codes,
symmetric codes, one-way-functions, or asymmetric codes.
As analyzed in [10], there is a major disadvantage in using
rolling codes and symmetric codes since secrets have to
be stored within ��� as well as in ��, demanding for
highly secure key management. One-way-functions such as
cryptographic hash functions can circumvent this to some
extent but demand for a substantial amount of secure
storage. The most wide spread method for authentication in
mobile devices is probably the usage of rolling codes (such
as the KeeLoq [11] algorithm) due to easy implementation,
followed by one-way-functions.

Asymmetric codes are very computationally expensive,
although they provide extremely high security. With the
advent of more and more computational power in embedded
systems [12, 13], introducing such codes for user authentica-
tion is now feasible.

��� is the manufacturer of ��. Due to the mobility
of ��, it may be nowhere near ���. Therefore, a service
infrastructure has been established by ��� to repair, service,
or replace a �� in the field. This infrastructure consists of
a number of service points �� that are ��� certified. In the
depicted example from the automotive domain, this would
be a dealer or a car repair shop. �� is enabled by the ��� to
carry out certain work on �� and acts in a way as a substitute
for the ��� in the field.

In case of loss of a transponder, it is desirable to replace
it, particularly if the user device itself is very costly or actually
irreplaceable. Since the user device is mobile, linking a new
transponder to a �� usually needs to be done in the field.
This might include very secluded areas with minor to none
communication infrastructure.

3. Basic PKC Functionalities

In 1976, Diffie and Hellman introduced the first PKC
crypto system [14] for data encryption and confidential data
transfer. Two different keys are used, one public (PK) and
the other secret (SK). SK and corresponding PK are a fixed
and unique keypair. It must be computational infeasible to
deduce the secret key (SK) from the public key. With PK,
a message Mp can be encrypted into Mc but not decrypted
with the same key. This can only be done with knowledge of

SK. If an entity Alice wants to transmit a message MAlice to an
entity Bob, it encrypts it with Bobs public key PKBob. Only
Bob can retrieve the plain text from the encrypted message,
by applying the appropriate decryption algorithm using his
own secret key SKBob.

PKC can also be used to digitally sign a message. For
this, a signature scheme is used that is usually different
from the encryption scheme. When signing a message, the
secret key is used and the signature can be verified using
the according public key. In other words, if Bob wants to
sign a message, he uses his own private key that is unique
to him and solely known to himself. This key is used to sign a
cryptographic hash value of the message MBob. The resulting
value {HASH(MBob)}sig is transmitted together with MBob.
A receiver can validate the signature by using Bob’s public
key to retrieve HASH(MBob). From MBob, the receiver can
compute the according hash value and compare it with
the retrieved value. If both match, the signature has been
validated. Since in the case of signature schemes the public
key is often called verification key and the secret key is called
signing key, we denote them accordingly VK and SK in the
following.

4. Cryptographic Processing Entity

Computational efforts of cryptographic functionalities for
PKC are very high and time consuming if carried out
on today’s standard platforms (i.e., microcontrollers) for
embedded applications. Integrating security algorithms into
FPGA platforms can provide high speed up of demanding
PKC crypto systems such as hyper elliptic curve cryptography
(HECC). By adding dedicated hardware modules for certain
parts of a crypto algorithm, a substantial reduction of
computation time can be achieved [15, 16].

In [16], an FPGA platform has been introduced which
allows extremely fast authentication as proven by an exper-
imental setup with two of these platforms. For this demon-
strator, both platforms have been implemented on a Xilinx
Spartan-3 XC3S2000 FPGA at 33 MHz. The communication
channel in the setup is a wireless automotive transmitter [17]
as is currently used in keyless go systems and is clocked with
412,5 kHz. The transceiver is connected to the FPGA system
over ��I. Authentication of ��� via the Schnorr-protocol
[5] in this setup lasts 120 ms including communication
times over the wireless channel. To enable for even faster
computation, we have developed a new, lean cryptographic
core for Xilinx FPGA. It enables to carry out aforementioned
mutual authentication within 82 ms.

Both platforms carry out calculations for public key
cryptography based on hyper elliptic curves (HECC). They
offer a higher security level than RSA while relying on
relatively small key sizes of around 160 bit [18]. A detailed
view on HECC and its underlying mathematics can be found
in [19].

As shown in Figure 3, the automotive electronic con-
trol unit (ECU) comprises a MicroBlaze processor that
handles arbitrary tasks necessary for running the car and
is equipped with an appropriate interface such as CAN
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Figure 3: Overview of the system design.

to communicate with other ECUs residing in the vehicle.
Additionally, a coprocessing unit composes of a PicoBlaze
processor [20] and a Cryptographic Processing Module (CPM)
is included. All cryptographic computations are done within
this coprocessor. When no extensive tasks need to be
run and only cryptographic functionality is needed, the
coprocessor can also be run without the MicroBlaze. In
this case, the PicoBlaze Controller is interfaced directly to
the communication interface. This setup is very suitable for
implementing a car key (���).

For HECC, three types of operations are essential (Pi
denoting a point on a hyperelliptic curve and k, y, a, e, r
are denoting integer values):

(i) calculation on a hyperelliptic curve (k·P and P1+P2),

(ii) integer calculation with large operands (y = a·e+r),

(iii) data exchange to/from the cryptographic unit.

Each arithmetic operation is assigned to a specialized
hardware module to enable fast computation. At the same
time, all cryptographic functionality is bound strictly to
CPM, thus keeping all sensitive data on chip.

4.1. Cryptographic Processing Module. The Cryptographic
Processing Module (CPM) is designed to efficiently compute
k·P on a hyperelliptic curve, as well as integer multiplication
with large operands. As depicted in Figure 4, the proposed
architecture encompasses dedicated modules (HPU, bigINT-
mul) for these two operations and an additional module for
generating random numbers (RNG).

A small finite state machine (FSM) is implemented for
control flow of the calculations and to provide data exchange
over the PicoBlaze processor. It controls all modules within
the CPM directly. All arithmetic modules can work fully
in parallel, allowing for concurrent operations within the
protocol if necessary. A set of registers is provided for
data exchange that can be accessed directly by PicoBlaze.
Register e acts as input whereas yi and the address space

X of the CPM’s internal memory DataMem are doubling
as output registers. Some additional internal registers store
cryptographic key material (Reg ai) or random numbers
(Reg ri) and cannot be accessed from outside the CPM.

4.1.1. bigINTmul. A dedicated integer unit performing y =
a·b+c on large operands is included in the CPM. Input to the
multiplier are two operands a and b. The result p = a ·b and
operand c are then input to an adder stage calculating y = p+
c. A sequential multiplier as depicted in Figure 5 is provided
to execute a naive shift&add algorithm. p is accumulated by
bitwise shifting of the bigger operand b, evaluating the least
significant bit and adding a to the intermediate result if b0 =
1, and then shifting p. If b0 = 0, p is shifted without adding a.

In our use case, the two operands do not have the same
bitlength since one input is the platforms secret key ai and
the other input is the challenge e.

4.1.2. HECC Processing Unit. The HECC Processing Unit
(HPU) acts as a stand alone module for scalar multiplication
Xi = ri ·Pi on a hyper elliptic curve. It comprises a dedicated
arithmetic logical unit dALU for finite field arithmetic
(GF-operations), internal memory DataMem for storage of
intermediate values such as curve parameters and points Pi,
and a control entity HECC CTRL connected to a program
memory pMEM.

HECC CTRL in conjunction with pMEM implements the
control flow of a dedicated algorithm for a scalar multiplica-
tion as a fixed sequence of GF-operations. The control flow
is strongly optimized to execute a scalar multiplication in
wMOF [21, 22]. To execute it, a highly specialized instruction
set is implemented. An example of such an instruction is
shiftl 2 which shifts the content of the accumulator 2 bits
to the left, an operation essential in wMOF [22]. The full
instruction sequence of wMOF is stored in pMEM.

HPU is laid out as accumulator machine with harvard
architecture. This enables to implement different data widths
for DataMem and pMEM individually. This is particularly
advantageous as we operate on galois fields GF(2n), n being
a big prime number, resulting in data words of n-bit length
being stored in DataMem, while pMEM only stores minimal
instruction codes.

Input to the HECC processing unit is a scalar ri (bitlength
of ri ≤ l) that is written into a dedicated register rREG of
length l. Point Pi is a predetermined common point on a
hyperelliptic curve and acts as a constant input decided upon
during design time. Therefore, it is permanently stored in
DataMem together with other curve parameters.

After storing r1, HPU is triggered via the signal 
������
to start a scalar multiplication. As soon as the result X rep-
resenting the commitment is available, this is signaled by
HPU over �������. All ri are random numbers generated
by RNG. Therefore r1 is loaded from the RNG module into
HPU and X = r1 · P1 is computed. Simultaneously, RNG
generates a new random number r2. After HPU signals the
end of the current operation, r2 can be loaded into rREG and
HPU can calculate a new result X = r2P2.

The dedicated arithmetic logical unit (dALU) can per-
form u + v, u · v mod p and u2 with u, v ∈ GF(2n).
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On galois fields of genus 2, addition and subtraction can
be implemented very efficiently by a bitwise XOR of the
two operands u and v. Modular multiplication can be
implemented as shown in Algorithm 1. It is performed as a
Shift&Add algorithm with modular reduction in every step
by adding the irreducible polynomial P(x) if the intermediate
result T(x) exceeds the field size of GF(2n). A single GF-
multiplication U ·V mod P will take n clock cycles since the
size of the input word U is n-bit and U is examined bitwise
(line 2–7 in Algorithm 1).

To speed up the multiplication a scalable GF-Multiplier
(MALU) is integrated into the HPU. Instead of examining
U a single bit at a time, a number d of neighboring bits
in U are evaluated blockwise and in parallel. Algorithm 2
shows how d adder stages with modular reduction are fed
with the operandsU andV (line 3–6). This gives d individual
intermediate results Td(x) which are then added and reduced
to form the result T(x) (line 6). This addition step is done
over d cascading adders, so no additional clock cycle is
necessary. The final result of a GF-multiplication is available
after �(n + d − 1)/d� clock cycles.

Speed up of the multiplication is achieved through the
parallelization of additions, but hardware area increases as
well. No additional instructions in pMEM are necessary,
thus keeping this change in algorithm transparent to HECC
CTRL.

Although u2 can be calculated by feeding u into both
inputs of MALU , a dedicated HW squarer requires 25% less
computation time [23]. Because HECADD and HECDBL
operations depend heavily on squaring [24], we included a
GF-Square module in dALU .

4.2. Resource Usage and Timing Results. Table 1 gives a
detailed view of the size of our system, and Table 2 shows
the processing speed. To the best of our knowledge, no mea-
surements of the execution time of Schnorr- and Okamoto-
Authentication protocols based on HECC in the domain of
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Requires: U(x) = un−1xn−1 + · · · + u1x + u0 ∈ GF(2n),
V(x) = vn−1xn−1 + · · · + v1x + u0 ∈ GF(2n),
P(x) = xn + pn−1xn−1 + · · · + p1x + p0 ∈ GF(2n+1)

Ensure: U(x)V(x) mod P(x)
(1) T(x) = tnxn + · · · + t1x + 0 ← 0
(2) for i = n− 1 to 0 do
(3) m ← ui ·V(x)
(4) r ← tn · P(x)
(5) T(x) ← (T(x) +m− r)x
(6) i← i− 1
(7) end for
(8) return T(x)/x

Algorithm 1: GF multiplication of U ·V mod P by adding n times.

Requires: U(x) = un−1xn−1 + · · · + u1x + u0 ∈ GF(2n),
V(x) = vn−1xn−1 + · · · + v1x + u0 ∈ GF(2n),
P(x) = xn + pn−1xn−1 + · · · + p1x + p0 ∈ GF(2n+1)

Ensure: U(x)V(x) mod P(x)
(1) T(x) = tnxn + · · · + t1x + 0 ← 0
(2) for i = n− 1 to≤ 0 do
(3) for j = i to i− d + 1 do
(4) mj ← uj ·V(x)
(5) rj ← tn · P(x)
(6) T(x) ← (T(x) +mj − rj)x
(7) end for
(8) i← i− d
(9) end for
(10) returen T(x)/(xd−�(n+d−1) mod d�)

Algorithm 2: GF multiplication of U ·V mod P by adding �(n + d − 1)/d� times.

embedded systems has been published. Because of this, we
use the execution time of one scalar multiplication k · P
as a benchmark in Table 3 to give a fair comparison of our
architecture to other implementations.

As shown in Table 1, the deviation in size of the platform
synthesized for executing a single scalar multiplication and
the platform synthesized for execution two of this operation
is less than 10%. The increase lies in the Cryptographic
Processing Module (CPM) due to the increase in memory
needed. An additional secret key a2, as well as an additional
random number r2, needs to be stored, thus adding two
registers. Also a 2nd memory page is needed, reflecting
directly in the doubled number of BRAMs. These in turn
require some additional slices for glue logic and enlarged
multiplexers.

In a prototypical setup both the Schnorr- and Okamoto
authentication protocols have been implemented. Table 2
shows that for both variants our architecture easily beats the
real-time constraint of 180 ms, which is the average human
reaction time [25].

When comparing our architecture with others (see
Table 3), we compute a single k · P in roughly 8 ms. This is
more than twice as fast as the platform no. 3 and no. 4. It
also outperforms platform no. 1 which is one of the first full
hardware implementations of a HECC scalar multiplication.

5. Pairing of Verifier/Prover Devices

With introduction of public-key-cryptography to automo-
tive access control systems is advantageous for logistics. Less
secret key material has to be handled. When integrating
an authentication protocol such as Schnorr [5], no secret
key resides in a vehicle (��)—it only needs to be stored in
the vehicle’s transponder key token (���). Pairing of the
two is done by storing a transponders public key in ��. In
this paper, we mainly focus on this key flashing procedure
for automotive entities and especially introduction of key
material into �� during it’s lifetime in the field.

Every �� has a number of public keys of transponders
securely stored, thus establishing a “guest list” of legal ���s.
During production, at least two initial public keys of ���s
are written to the user device. This ensures that upon loss
of one of the transponders, the remaining can be used to
authenticate the owner. This initial operation certainly has
to be secured against attacks to ensure that the “guest list” is
not altered maliciously, otherwise illegal access to a �� might
be granted.

As mentioned above, it is necessary to pair ���s with a
��. This is achieved by flashing the public key of ��� into the
user device, where the key is stored securely and is protected
against unauthorized alteration. A number of initial ���s are
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Table 1: Resource usage.

Okamoto Schnorr

Slices Slice FlipFlops LUTs BRAMs Slices Slice FlipFlops LUTs BRAMs

Complete system 2651 2263 4323 8 2439 2026 3799 5

I PicoBlaze 389 286 714 1 389 286 714 1

II CPM 2275 1977 3585 0 2039 1740 3055 0

II-a BigINTmul 265 392 201 0 265 392 201 0

II-b HECC processing 1684 1082 2855 7 1682 1081 2759 4

II-b-i HECCCTRL 61 32 108 0 61 32 108 0

II-b-ii dALU 953 658 1611 0 953 658 1611 0

II-b-iii ProgramMem 50 70 93 1 50 70 93 1

II-b-iv dbus 98 0 162 0 98 0 162 0

II-b-v DataMem(singlepage) 453 324 838 6 — — — —

II-b-vi DataMem(doublepage) — — — — 452 324 657 3

Table 2: Performance speed.

Operation
[μs]@50 MHz

Schnorr Okamoto

Scalar multiplication k · P 8 069

Complete protocol 81 621 132 858

paired during production in a secured environment by the
���. Today pairing ��� to �� is done by introducing some
kind of key material into ��, thus authorizing this token to
use ��. Today’s procedures either demand a live online con-
nection to ��� or accept new ���s if a “master” token (����)
is presented to the device [28, 29]. This means that such ��

specific ���� have to be stored very securely by �� and ���

has to fully entrust �� to do so. At the same time, there is no
way to prevent ���s to be flashed into a ��. Therefore, they
have to be kept in secure, physical storage as well.

When employing asymmetric codes, these drawbacks are
inexistent. Pairing procedures in this case depend mostly
on a trusted third party (TTP) that generates key pairs and
distributes them to the different entities. Because not only
public key material is transferred but also secret key material
this demands for fully encrypted end-to-end communication
channels. Traditionally, this is done by establishing a mutual
secret key between the two communication partners (i.e.,
via Diffie-Hellman key exchange [14]) and using symmetric
ciphers to encrypt all data over the communication channel.

In our application scenario, we have the following main
participants:

(i) a user device �� that may only be accessed or used by
an authenticated user,

(ii) a human user �	
 and he is authorized to access or
use �� if he possesses a legitimate token,

(iii) a transponder key token ���orig originally linked to
�� and a second token ���new that shall be flashed to
�� additionally,

(iv) the manufacturer ��� that produces ��.

�� accepts a number of ��� to identify an authenticated
user �	
 of the ��. At least, two tokens are linked to a �� by

storing the respective public keys ��TRK inside the ��. The
��� is initially the only entity allowed to write public keys
into any ��.

Solely, the public keys stored inside the �� shall be used
for any authorization check of ���s. The ���’s public key
��OEM is stored in the �� as well.

���, ���, and �� can communicate over any insecure
medium, through defined communication interfaces.

5.1. Goals and Security Requirements. A new transponder
���new should be linked to �� to substitute an original token
���orig that has been lost or is defective. In the following,
we will call the process of linking ���new to an �� flashing.
Introduction of a ��� should be possible anytime in the
complete life cycle of the ��. When flashing the �� it is
probably nowhere near the ���’s location while introducing
a ��� needs to be explicitly authorized by the ���. Also
should any ��� only be flashable into a single ��. Theft or
unauthorized use of the �� resulting from improper pairing
of a ��� needs to be prohibited. In addition, we demand
that online connection of �� and ��� during the pairing
procedure must not be imperative.

In summary, the protocol shall allow dependable autho-
rized flashing under minimal assumptions while preventing
unauthorized flashing reliably. Therefore, it has to guarantee
the following properties, while assuming communication
over an unsecured open channel.

(i) Correctness. In absence of an adversary, the protocol
has to deliver the desired result, that is, after complete
execution of the protocol, the flashing should be
accomplished.

(ii) Authentication. The flashing should only be feasible
if both ��� and �	
 have been authenticated and
have authorized the operation.

(iii) No online dependency. The protocol shall not rely on
any live online connection to the ���.

(iv) Secrecy. No confidential data like secret keys should
be retrievable by an adversary.
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Table 3: Duration of 1 scalar multiplication k · P.

No. Platform Slices f [MHz] t [ms] tnormalized( f )

1 Full Custom HW [26] � 16000 45 20,2 1,03

2 8051 μC & CoPro [18] 3781 12 2488 33,89

3 Microblaze & Coproc [16] 1984 33 26,7 1

4 CrμP [27] 1854 (+2379 for memory) 31,25 30,3 1,07

4 HECC processor This work 2439 50 8,0693 0,46

5.2. Adversary Model. We assume an adversary A that is
polynomially bounded in processing power and memory.
A has access to all inter device communications, meaning
he can eavesdrop, delete, delay, alter, replay, or insert any
messages. We assume further that the adversary is attacking
on software level without tampering with the participating
devices. Without choosing particular instances of the crypto-
graphic primitives, we assume that the signature scheme used
is secure against existential forgery of signatures and regard
the cryptographic hash function used as a random oracle.

6. Key Flashing Definitions and Requirements

The objective of the proposed key flashing protocol is the
introduction of a public key ����� into ��. Main focus of
it is the security aspect of the protocol itself, while it shall
be usable under real world constraints as well. The protocol
shall ensure the legitimacy of all entities involved as well
as the security of the protocol itself to prevent misuse by
a malicious attacker. Only after a correct, complete and
successful flashing procedure, a new public key may be
accepted and stored inside ��. If any error occurs during the
flashing procedure, all previous steps in the protocol have to
be revoked. All data resulting from these steps shall carry no
information that can be exploited by an attacker.

Since ���s gain their relevance only after successfully
linking them to ��, they shall have no utility value before
a successful key flashing procedure. This enables holding
numerous ���s in stock without an inherent need to restrict
access to unflashed ���s.

Two basic flashing scenarios are conceivable. One is that
���s are flashed directly by the ���, either during production
or via an online connection as is addressed in Section 7. The
second scenario is the flashing of ���s through an authorized
service point (��) with no immediate online connection to
the ��� (see Section 8).

6.1. Notations. For presentation of the protocols, we abstract
from the specific algorithms and use abstract cryptographic
primitives instead. Therefore, we introduce some assump-
tions, definitions, and notations.

LetH be a collision resistant cryptographic hash function
of length k that maps any input of arbitrary bit length to
an output of fixed bit length k. Application of H can be
seen as taking a fingerprint of the input and is often used
by signature systems. Nevertheless, our notion of a signature
system given in Definition 1, abstracts from any implicitly
used hash function.

Definition 1 (signature system). Let Σ1,Σ2 be finite alpha-
bets. A signature system SigSys is a 7-tuple

SigSys =
(
M, S, SK , VK , f , S̃, Ṽ

)
(1)

with

(1) M a nonempty set of messages ∅ /=M ⊆ Σ∗1 of
arbitrary length over alphabet Σ1,

(2) S a nonempty set of signatures S ⊆ Σ∗2 ,

(3) SK a nonempty set of signature keys,

(4) VK a nonempty set of verification keys,

(5) f a bijective function f : SK → VK , mapping each
signature key SK ∈ SK on the respective verification
key f (SK) = VK ∈ VK , and we define a set K ⊂
SK ×VK of key pairs by K = {(SK, VK) ∈ SK ×
VK | f (SK) = VK},

(6) S̃ : M × SK → S a signature function,

(7) Ṽ : M × S × VK → {0, 1} a verification function
with the property, that for SK ∈ SK , VK ∈
VK , M,M′ ∈M holds:

Ṽ
(
M, S̃(M′, SK), VK

)
= 1

⇐⇒ f (SK) = VK, M′ =M.
(2)

To ease readability and presentation, we introduce a
shortened notation. We define the signed message

���SK(M) =
(
M, S̃(M, SK)

)
(3)

as the message M together with the respective signature. Let
SM be the set of all signed messages. In the following, we use
an extended signature function

S :M × SK −→ SM,

(M, SK) �−→ ���SK(M),
(4)

and the respective extended verification function

V :SM ×VK −→ {0, 1},
(
���SK(M), VK

) �−→ Ṽ
(
M, S̃(M, SK), VK

)
.

(5)

For a tuple (M, S′), where either the signature or the message
is altered, we define

V((M, S′), VK) = Ṽ(M, S′, VK). (6)

Furthermore, the tuple (SKX , VKX) ∈ K denotes the key
pair of entity X.
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6.2. Entities. In addition to the entities introduced in
Section 5 (��, �	
, ���, and ���), we use three additional
participants, namely the transponder manufacturer ����,
a service point �� and an employee ��� of this service
point conducting the flashing procedure. In the following,
an overview of the entities involved as well as their required
properties and abilities is given.

6.2.1. OEM: Manufacturer. The ��� manufactures the ��

and delivers it to �	
. �	
 issued the corresponding ���s
linked to the ��. All ��s are obviously known to the
���. Furthermore, ���� and all �� and the respective
public verification keys are known to the ���. We regard
the entity ��� as a trusted central server with database
functionality. ��� can store data, sign data with �����, and
send data. It possesses all cryptographic abilities for PKC
based authentication schemes and can thereby authenticate
communication partners.

6.2.2. TRK: Transponder. ��� possesses a keypair (�����,
�����) for PKC functionality. It is generated inside ���

to ensure that the secret key ����� is known solely to
���. Read access to ����� is granted to any entity over
a communication interface. As ���s can be manufactured
by a supplier ���� that has been certified by ���, the
����� is signed by ���� after generation and stored in ���

as a certificate. ��� possesses cryptographic primitives for
PKC-based authentication schemes on prover’s side and can
thereby be authenticated by communication partners.

6.2.3. TRKM: Transponder Manufacturer. ���� is a supplier
for ���s that has been certified by ��� and manufactures
���s that fulfill ���’s requirements. Certification of ���� is
bound to the fulfillment of the conditions of manufacturing,
defined by ��� and is enforced through appropriate legal
contracting. ���� possesses cryptographic abilities to sign
the public key ����� of ���. These signed keys act as
certificates guaranteeing the origin of the respective ��� as
well as the compliance of ���� to all of ���’s manufacturing
policies.

6.2.4. UD: User Device. �� is enabled only when a linked
��� is presented by authenticating the ��� via a PKC
authentication scheme. All linked ���s’ public keys ����� are
stored in ��. Additionally, the public key of the ��� ����� is
stored in �� and cannot be erased or altered in any way. ��
grants read access to all stored public keys. Write access to
the memory location of ����� is only granted in the context
of the proposed key flashing scheme. �� possesses all crypto-
graphic abilities for PKC-based authentication schemes and
can thereby authenticate communication partners.

6.2.5. OWN: Legal User. �	
 is the legal user of �� and can
prove this by possession of a linked ���orig.

6.2.6. SP: Service Point. �� is a service point in the field
such as a wholesaler or workshop, certified by the ���. For
the protocol, �� is considered to be a computer terminal at

the respective institution. The terminal and access to it is
secured by appropriate means as in standard PC practice. ��
can communicate to the ��� as well as to ��. In addition, it
is able to read the ����� of any ���.

Furthermore, �� constitutes a trusted platform meaning
that it always behaves in the expected manner for the flashing
procedure and accommodates a trusted module responsible
for:

(i) storage of ���-authorized keymaterial of ���s,

(ii) key management of ��� keys,

(iii) secure counter.

�� possesses cryptographic primitives for PKC-based
authentication schemes on prover’s and verifier’s side and
can thereby be authenticated by communication partners,
while it can also actively authenticate communication part-
ners.

6.2.7. SPE: Employee of Service Point. ��� is a physical person
that is operating �� and has to be authenticated prior to
a flashing procedure to prevent misuse of the system. At
the same time, ��� is regarded as a potential attacker of
the flashing operation so that the protocol has to have
a certain robustness against a compromised ���. Access
control of ��� to �� is enforced via password or similar. ���
is responsible for the system setup for the flashing application
consisting of establishing the communication links of ��, ��,
���, and ��� if needed.

��, ���new, and �� are under control of ���, and the
communication links to ��, ���orig, ���new, ��, and ���

can be eavesdropped, but the trusted module cannot be
penetrated.

6.3. Flashing Policies. In order to meet the goals defined
in Section 5, some additional requirements must be met as
follows:

(1) legitimation of the flashing procedure by �	
,

(2) legitimation of ���new by a certified ����,

(3) only an ���-authorized ��� may be flashed,

(4) any single ��� may only be flashed into a single ��.

Legitimation of a flashing procedure is achieved if the
legal owner of �	
 has commissioned and approved a
flashing procedure. Legal ownership of a �� is proven by �	

through possession of a valid ��� that is already activated
in ��. If no such ��� is available, legal documents proving
the ownership have to be presented to ���. Such a document
could be a deed of ownership, for example. If �	
 cannot
prove his legal ownership, it is mandatory to prohibit flashing
in order to prevent usage of an illegally acquired �� with an
unauthorized ���.

Legitimation of ��� is first achieved by adhering to all
manufacturing policies posed by ���. This is guaranteed
by ���� which in turn certifies the manufactured ���s
by signing their respective public keys �����. A main
requirement for a legitimate ��� is its uniqueness and
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accordingly the uniqueness of its cryptographic key material.
Otherwise two identical ���s, linked to two separate ��s
would automatically be able to access both ��s. Additionally
it has to be ensured and guaranteed that no secret key
material of ��� is available to any entity other than to ���

itself.
Authorization of a legitimate ��� to be flashed is handled

through ���. ��� verifies the identity of each individual
��� to be flashed. Identification of a ��� can be achieved
directly via checking �����. The identities are then stored
by ���. Only ���s that have their identities checked and
stored this way are considered to be authorized by ���. Prove
of authorization can be given by ��� through a signature
������ (VK���).

7. Key Flashing Protocol without Mediator

The most direct flashing scenario is depicted in Figure 7,
where the key flashing into a �� is done directly through
the ���. This scenario is valid during production of the ��

or if the �	
 is not able to legitimize the procedure through
the possession of a second ��� as is needed in the standard
flashing scenario as described later in Section 8. Therefore
the legitimation of the flashing procedure is done implicitly
through the ��� by checking the legal credentials of �	
 (i.e.,
billing receipts, legal records, etc.). Only if sufficient proof of
ownership is presented to the ���, the flashing procedure is
carried out.

The following entities are involved in the key flashing
protocol:

(i) manufacturer ���,

(ii) user device ��,

(iii) transponder ���new.

As shown in Algorithm 3, the direct flashing has two
requirements. It is mandatory that �� has stored an
immutable �����. This enables �� to verify the correctness of
the ���’s signature later in the flashing protocol. A manda-
tory requirement for carrying out the flashing procedure
is that the ��� has verified that the commissioning of the
flashing procedure has been done by the legal owner of ��.

In a first step, ��� reads out the public key of the ���

to be flashed (���Bob). The manufacturer ���� of ���Bob

has certified the key by signing it (���SK����
(VK���new )). The

��� then checks if ���� has fulfilled all legal obligations to
be considered as a trusted manufacturer. If this is the case,
the ��� checks if VK���new is already stored in its internal
database and if it has been already flashed to a �� or not. Only
if VK���new is a fresh key, it is stored in the ���’s database and
the protocol is continued.

The second step consists of the ��� triggering the start
of the flashing procedure. �� authenticates the ��� by
means of an appropriate public key authentication protocol,
referring to the internally stored VK���. The protocol can
only be passed successfully by the ��� since knowledge
of the signing key SK��� is mandatory for the entity
being authenticated. Subsequently, �� sends its self-signed
verification key ���SK��

(VK��) to the ���.

The signature is then verified by the ��� in order to
ensure that the transmitted verification key VK�� has not
been tampered with. Subsequently, the ��� binds VK���new

to VK�� by composing an adequate data packet and signing
it as a whole. This is then transmitted back to �� (Step 4 in
Algorithm 3 ).

�� verifies the correctness of the packet by checking the
���’s signature in Step 5. After that, �� verifies the correct
binding of data packet to its own identity by inspecting
the VK′

�� including the data packet received. Only if the
received VK′�� is identical to his own verification key VK��,
�� will accept VK���new included in the received data packet
as a valid, legitimate, and authorized transponder key to be
flashed. �� stores VK���new into internal protected memory
and sends an acknowledge message back to the ���. Storing
VK���new in �� turns ���new into an activated transponder
VK���orig linked to ��. ��� logs the successful conclusion
of the protocol and annotates the VK���new (now VK���orig )
accordingly to exempt it from future flashing attempts.

8. Key Flashing Protocol with Mediator

The procedure as outlined in Section 7 demands a live online
connection of �� to ���. To fully comply with the flashing
requirements introduced in Section 6, this online connection
shall not be mandatory for the complete protocol. Therefore,
an additional entity is introduced, a trusted Service Point
�� that substitutes for the ��� in the field for introducing
a new ����� into a �� when no direct online connection to
��� is possible. The mediator and its properties are detailed
in Section 8.1. The flashing procedure including a mediator
comprises the following steps (see also Figure 8 ):

(i) delegation of trust to ��,

(ii) authorization of ���new by ���,

(iii) introducing an authorized ���new into an ��.

The first two steps form an initialization phase to enable
an �� to substitute for the ���while flashing a new ��� into a
��. This two-step initialization will be detailed in Section 8.3.
These steps form the first phase of the flashing process and
can be done in advance without �� and �	
 but need a
communication link to ���.

The last of the three steps, the actual flashing process of
a new ����� into an ��, do no longer depend on any direct
interaction with ���. Details will be given in Section 8.4.

8.1. Mediator. Because a mediator has to partly replace the
��� during the flashing protocol and �� only allows ���s to
be flashed through a trustworthy source—namely the ���—
the mediator has to be enabled to act as a trustworthy entity
[30]. For this, the ��� has to delegate trust to a ��, in order to
enable �� to entrust �� enough to accept a flashing request
from it. It has to be ensured that the security of the overall
flashing protocol is not weakened. Every mediator (��) is
evaluated by the ��� for its trustworthiness. Assessment
factors can also include nontechnical aspects such as political
and cultural environment, legal issues, or business models.
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Requirements
(i) �� has knowledge of VK���

(ii) ��� has ensured, that the legal owner ��� of �� has commissioned the flashing procedure
Protocol
Step 1: For a new �	
new to be flashed ��� reads out the respective certified

verification key ��
SK����
(VK���new ) and verifies that VK���� is in

the internal database of trusted transponder manufacturers.
Step 2: ��� contacts �� and is authenticated using a PKC authentication protocol.

�� sends ��
SK��
(VK��) to ���.

Step 3: ��� verifies that V(��
SK��
(VK��), VK��)

!= 1
Step 4: ��� sends ��
SK���

(VK���new , VK��) to ��.

Step 5: �� verifies that V(��
SK���
(VK���new , VK′

��
), VK���)

!= 1.

Step 6: �� verifies that VK′
��

!= VK��. Then the new transponder �	
new can be activated.
The protocol is completed by sending a DONE-message to ���.

Algorithm 3: Direct flashing protocol (with online connection to ���).

Transponder TRK

OEM

FPGA user device
UD

(1) Readout of transponder
SigSK(TRKM)(VKTRK-new)

(2)Verification of
TRKM signature

(3) Request for flashing,
authentication of OEM)

(4) VKUD acknowledge

(5) Transponderpacket

(6) Verification of packet
(7) Transponder activation

Figure 7: Key flashing without mediator.

Based on this evaluation, trust credentials (see Section 8.2)
are issued to each individual ��.

To restrict access to the flashing capability of ��, as
might be necessary in order to comply with the flashing
policies of ��� a separate authentication of employees (���)
working at �� is suggested. Such authorization of ��� can
be done, for example, via a password (knowledge) or by
biometrical identification (physical property).

8.2. Service Point as Trusted Platform. An �� constitutes a
trusted platform as defined in [30] meaning that �� always
acts as specified at any point in the protocol. At the same
time, it needs to act reliably in order to enforce trust policies.
Typically, an �� might reside in a hostile environment and
can be accessible to malicious attackers. Therefore, some
minimal functionalities of �� must be inherently secure and
are encapsulated in a Trusted Zone (see Figure 9 ) as follows:

(i) generation of trust key pairs,

(ii) storage of private keys (SKTD
	
 and SK	
),

(iii) signature generation,

(iv) enforcement of Trust Policy.

For all key pairs that are generated to be used as
temporary trust keys, it has to be ensured that a SKTD

	
 is
never communicated to another entity. Also, it has to be
ensured that SKTD

	
 cannot be deducted from VKTD
	
 . This can

be ensured with a proper key generation algorithm. Signing
of messages has to be secure in order to prevent manipulation
of signed data packets. This means that any signing operation
is always done with the proper signing key residing in ��.

The main point of the trusted platform is the enforce-
ment of trust policies. �� is issued a temporal trust key pair
(SKTD

	
 , VKTD
	
 ) as will be described in Section 8.3. This key

pair expires after a timepoint T or after a certain amount of
flashing procedures N . Expiration is enforced from within
the Trusted Zone with a secure unforgeable counter that
is keeping track of the number of flashing cycles. As soon
as the counter value reaches N , the trust key pair is fully
deleted and the counter is reset. �� also compares its system
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(1) Readout of transponder

(3) Legitimation of transponder

(4) Verification of SP

(5) Verification of
transponder

(6) Transmission of data package

(I) Request for
trust key authentication

(II) data packet
(authenticated trust key, T, N)

(a) Request for flashing
(OEM issued credentials)

(b) VKUD as acknowledge

(c) Transponderpacket

(d) Verification of SP

(e) Verification of
transponder

(f) Authorization of key flashing

(g) Transponder
activation

OEM

FPGA user device
UD

Figure 8: Flashing scheme.

Service point SP

Trusted zone

TRK-keyStorageSP-keyStorage

SignatureGen

SecCounter (N)

KeyGen

(SKTD
SP , VKTD

SP )
SigSKOEM (VKSP, VKTD

SP ,T ,N)1

SigSKOEM (VKSP, VKTD
SP ,T ,N)

SigSKOEM (VKSP, VKTD
SP ,T ,N)2

SigSKOEM (VKSP, VKTD
SP ,T ,N)i

...

Figure 9: Service point as trusted platform.

time T	
 to T. If T	
 ≥ T the trust key pair is also fully
deleted.

8.3. Trust Delegation and TRKnew Authorization. To be able
to perform a key flashing procedure without an active link
to ���, a local representative has to be empowered by the
��� to perform the flashing, assuming that �� trusts only the

��� to flash legit keys. This is done by presenting a credential
to �� accounting that flashing is authorized by ���. The
exchange of this credential is denoted in the following as trust
delegation.

Algorithm 4 shows the protocol for instantiating a medi-
ator that can flash a ��� into a ��. Steps I.1 to I.4 detail the
trust delegation to ��. First of all, ��� is authenticated by ��
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Requirements
(i) ��� has knowledge of VK	
 and VK����

Protocol
Step I.1: ��� presents his credential CRED	
� and �� authenticates ���. After that ��

is activated and communication to ��� is enabled.
Step I.2: �� creates a new key pair (SKTD

	

, VKTD

	

) and sends its ID together with the created

verification key VKTD
	


as a signed request [��
SK	

(VKTD

	

), VK	
] for a trust credential to ���.

Step I.3: ��� verifies that �� and the respective verification key VK	
 is

listed in the internal database of trusted mediators and that V(��
SK	

(VKTD

	

), VK	
)

!= 1.
In this case ��� creates a trust delegation credential ��
SK���

(VKTD
	


, VK	
,T ,N) bound to ��

with timestamp T and number of granted transactions N and sends it to ��.
Step I.4: �� receives ��
SK���

(VK	
, VKTD
	


,T ,N) and stores it in the trusted storage.
This step completes the trust delegation for flashing.

Step II.1: For a number of �	
new to be flashed, �� reads out the respective certified
verification keys ��
SK����

(VK���new ) and sends ��
SK	

(��
SK����

(VK���new )) to ���.
Step II.2: ��� verifies that VK	
 and VK���� are in the internal

database of trusted peers and that V(��
SK	

(��
SK����

(VK���new )), VK	
)
!= 1 and

V(��
SK����
(VK���new ), VK����)

!= 1. Afterwards ��� creates ��
SK���
(VK���new , VKSP)

and sends it to ��.
Step II.3: �� receives ��
SK���

(VK���new , VK	
) and stores it in the trusted storage.
This step completes the activation of the transponder �	
new for flashing over ��.

Algorithm 4: Initialization step for mediated key flashing.

to prevent �� abusive operations. Afterwards, �� can connect
to ��� and request a trust credential (Step I.1).

A trust credential consists of a cryptographic temporal
trust key pair (SKTD

	
 , VKTD
	
 ) with the public key VKTD

	
 being
signed by ���. Therefore, �� creates a fresh trust key pair.
From this pair, �� sends the fresh verification key VKTD

	


as well as its ID as a signed data packet to the ���, while
the secret key SKTD

	
 never leaves ��. The ID is the standard
verification key VK	
 of the service point (see Algorithm 4
Step I.2). For ease of implementation, this can be replaced
with a unique identifier that can then be matched by the ���
to the appropriate VK	
 stored in an internal database.

Using VK	
 ��� verifies the correctness of the data
packet received. If �� is considered a trustworthy entity,
that is, if it adheres to all of ���s policies, ��� issues
a trust credential. As shown in Step I.3 (Algorithm 4) it
comprises the verification key of the trust key pair, the
standard verification key (VK	
) of ��, as well as a timestamp
T, and a maximum transaction number N in an ��� signed
packet. Through inclusion of VK	
, ��� binds the trust key
VKTD

	
 to ��. Later, this binding will be verified by �� (see
Section 8.4). A trust key pair is only valid for a limited time
and limited number of flashing operations after which it is
deleted by ��. Step I.4 concludes the trust delegation phase
with �� storing the ���-signed packet in trusted storage for
later use in the actual flashing procedure (Section 8.4).

In order to flash a ���new, the transponder needs to be
authorized by ���. The second part (Steps II.1–Step II.3)
of the protocol shown in Algorithm 4 accomplishes this
for a single ���new. If more than one ��� shall be set up
for flashing, this part of the protocol is rerun for each
additional ���new. �� reads out the verification key of ���
that previously has been certified and signed by ����. ��

send this key as a self-signed message as shown in Step II.1
to ��� for authorization. In Step II.2, ��� verifies both
signatures and ensures that ���� as well as �� are trusted
peers. If this is the case, ��� forms a data packet comprising
the public key of ���new as well as the standard public key
of �� and sends it as a signed message to ��. This message
effectively binds ���new to ��, thus enabling solely �� to flash
���new into �� later on. The second part of the protocol
in Algorithm 4 is finalized in Step II.3 by �� storing the
received, signed message in its trusted module.

Only a limited number of authorized ���s can be stored
at any given point in time. As soon as a ��� has been
authorized by the ���, physical access to the ��� needs to
be controlled. The authorization process of ���s is the only
step that demands a data connection between �� and ���.
This does not necessarily need to be an online connection
since data could also be transported via data carriers such as
CDs, memory sticks, or the like.

8.4. Flashing of ���. The actual flashing of a ���new to a
given �� is shown in Algorithm 5. It demands a valid new
transponder ���new and authorization by ��� and �	
.
Former either directly or delegated to �� using the credential
introduced above, latter done by presenting a valid and
linked ���orig assumed to be solely accessible by �	
. If an
online connection to ��� is available, the protocol can be
performed by �� and ��� directly as described in Section 7,
with �� only relaying communication.

If �� has to act as an offline mediator, the initialization
protocol (Algorithm 4) has had to be successfully completed.
From there on, the flashing protocol commences as shown
in Algorithm 5 with �� contacting �� and sending the trust
credentials that �� has received from ��� (Step 1). In Step 2,
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Requirements
(i) The initialization protocol has been completed successfully.
(ii) �� has knowledge of VK���.
(iii) �� has a valid trust key pair and has not reached the maximum quota N of

allowed flashing procedures.
Protocol
Step 1: �� contacts �� and sends ��
SK���

(VK	
, VKTD
	


,T ,N) to ��.

Step 2: �� verifies V(��
SK���
(VK	
, VKTD

	

,T ,N), VK���)

!= 1
and sends back ��
SK��

(VK��, VK	
) as an acknowledge.
Step 3: ��� authorizes the start of a key flashing procedure by presenting

a valid �	
orig. �� authenticates �	
orig using the internally
stored VK���orig and a PKC authentication protocol.

Step 4: �� sends the certified new key package ��
SKTD
	


(��
SK���
(VK���new , VK	
), VK��) to ��.

Step 5: �� verifies that V(��
SKTD
	


(SSK���
(VK���new , VK	
), VK��), VKTD

	

)

!= 1 and

V(��
SK���
(VK���new , VK	
), VK��, VK���)

!= 1. Then the new transponder �	
new can be
activated: TRKnew �→ TRKorig. The protocol is completed by sending a DONE-message to ��.

Algorithm 5: Indirect flashing protocol over a trusted mediator (no online connection to ���).

�� verifies these credentials using the ���’s verification
key that is already embedded in �� (Section 6.2.4). The
verification key of the trusted key pair VKTD

	
 is stored
temporarily for use in Step 6. As an acknowledge message, ��
sends a self-signed packet to �� that includes its own public
key as well as the standard public key of ��.

Since �	
 has to authorize the flashing procedure he
presents his credential in form of an original ���orig already
linked to ��. �� authenticates ���orig by means of a public
key authentication protocol (Step 3). Only if ���orig has
been successfully authenticated �� will accept a ���new being
flashed into ��. In Step 4, �� sends the authorized data
packet for the ��� to be flashed that it has received from the
��� during the second phase of the initialization procedure
(Section 8.3). It is annotated with ��’s public key VKUD

and additionally signed by �� using the trust key pair. That
way, the ���new is bound to ��. To finalize the protocol,
�� enforces the flashing policies in Step 5. First it verifies
if the signature of �� is correct and has used the trust key
pair. If that is the case, it verifies the correctness of the ���’s
signature on the data packet for ���new. Since this data packet
has been bound to ��, �� verifies if its own public key has
been used to annotate VK���new . Only a correctly annotated
VK���new will be accepted, all others are dismissed and will
not be stored into ��.

In the case of successful verification, �� accepts the new
token ���new and adds VK���new to its internal list of linked
tokens thus transforming ���new into a ���orig. The correct
and full flashing is then reported back to ��. Subsequently,
�� will log this as a successful flashing procedure and
decrement its internal counter for allowed flashing processes.

8.5. Entity Requirements. Regarding the proposed flashing
protocols certain requirements for the entities’ functionali-
ties have to be satisfied. An overview is given in Table 4. Data
management is one of the key requirements in the protocol
in the sense that public key data needs to be stored. Secure

Table 4: Entity requirements.

OEM SP UD TRK

Initiate communication • •
Acknowledge communication • •
Generation of keypairs • • •
Signature generation • • •
Signature verification • • •
Datamanagement for suppliers •
Datamanagement for user devices •
Datamanagement for service points •
Datamanagement for �	
s • •
Secure storage for delegated trust •
Knowledge of ���’s public key • •

storage for delegated trust has some additional requirements
such as intrusion detection to protect data from being altered
in any way. At the same time, it is mandatory that this data
is always changed correctly as demanded by the protocol.
Also, the ���’s public key needs to be firmly embedded into
the entities and must not be altered in any way. Otherwise,
the ��� cannot be identified correctly within the proposed
protocols.

9. Implementation

The protocol has been implemented as a proof of concept
in a prototypical setup based on a network of standard
PCs representing ��� and �� (see Figure 10). Furthermore,
Digilent Spartan3E Starter Boards with a Xilinx XC3S500
FPGA represent ���s and ��s. ���, ��, and �� have to be
connected when flashing the key. The ��� connection needs
to be established anytime prior to the flashing according to
the proposed protocol and is connected via TCP/IP to the
��.
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Transponder
TRK

Service point
SP

User device
UD

Manufacturer
OEM

RS232 RS232

T
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/I
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Figure 10: Component interaction.

Table 5: Parameters for RSA-System.

Key length 1024 Bit

Exponent 216 + 1 (65537)

Padding scheme PKCS#1 v1.5

Signature scheme PKCS#1 v1.5

Hashing scheme used for signing SHA1

All other communication is done over RS232 interfaces
that are available both on PC and the FPGA boards. These
can be substituted for other communication structures if
needed, that is, wireless transmitters.

9.1. Choice of Cryptographic Primitives. The proposed key
flashing concept demands asymmetric encryption and a
cryptographic hash function. RSA [31] is chosen for encryp-
tion and signing, SHA1 [32] for hash functionality. Both
schemes are today’s standard and have not been broken
yet, but can be substituted in our implementation for more
secure schemes such as HECC if needed. RSA as well as
SHA1 implementations are freely available as software and
hardware modules for numerous platforms. RSA parameters
used in the prototype are given in Table 5.

All signatures in our context are SHA1-hash values of
data that has been encrypted according to the signing scheme
PKCS#1 v1.5 [33]. Such a signature has a length of 128 Byte
when using a key length of 1024 bit and hash values of 160
bit length.

9.2. OEM/Service Point-Software Platform. Both compo-
nents ��� and �� have been implemented on a standard PC
in software under the .NET framework version 2.0 [34] using
C#. The .NET framework provides the Berkeley Socket-
interface for communication over the PC’s serial interface.
It also includes the ������������-namespace providing all
needed cryptographic primitives including hash functions
and a random number generator that are based on the FIPS-
140-1 [35] certified Windows CryptoAPI. The software is
modularized to enable easy exchange of functional blocks
and seamless replacement of algorithms. Software modules

communicate only over defined interfaces to enable full
functional encapsulation. For ease of usage, a graphical user
interface (GUI) is included as well in both entities.

9.3. Transponder/UserDevice—FPGA platform. The targeted
user device is an FPGA. To ease reuse of functionalities the
exemplary ��� has been implemented on FPGA as well, but
can also be integrated into a smart card or RFID chip as long
as the appropriate cryptographic primitives are provided.

In the prototypical setup, we used a MicroBlaze-based
ECU (see Figure 3) for both �� and ���. We omitted
the coprocessor and implemented all functionality on the
MicroBlaze including cryptographic functions. Hardware
peripherals such as an LCD controller have been integrated
for debugging purposes. To enable handling of big numbers,
as are used in the cryptographic functions of the protocol, the
libraries ���������� [36] and ������
���� [37] are used.
Only necessary components have been extracted from those
libraries and are integrated into ��� and ��.

9.4. Resource Usage. The resource usage of the components
��� and �� are very similar, since almost identical functional
software blocks are used in both. Table 6 gives an exemplary
overview of the lines of code of the ��� implementation.
The memory footprint of the compiled ��� implementation
is 129 KB (139 KB for the �� implementation). At start up,
15400 KB of main memory is used. The execution times for
RSA- and SHA1-operations were measured on a PC (2 GHz,
1024 MB RAM) and are all in the range of milliseconds.

Resource usage of the FPGA-based components �� and
��� are given in Table 7. By implementing all functionality
on a MicroBlaze softcore, the hardware usage is quite
moderate. On the other hand, the software footprint is
295 KB for the �� implementation, due to the nonoptimized
memory usage of the crypto library.

Shown in Table 8 are the execution times of the diverse
protocol instances. The duration of parts of the protocol
that are based solely on ��� and �� is in the area of
few milliseconds. As soon as mobile devices (��, ���)
process parts of the protocol, speed is declining since all
crypto operations are currently carried out on an embedded
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Table 6: Properties of ��� component.

Module Lines of code Percentage

Main application 1234 41.77

GUI 264 8.94

Cryptography 385 13.03

Interaction 383 12.97

Communication 545 18.45

Data management 143 4.84

Total 2954 100

Table 7: FPGA resources.

Slices 1.791 of 4.656 (38%)

Slices: FlipFlops uses 1.590 of 9.312 (17%)

Slices: LUTs used 1.941 of 9.312 (20%)

BlockRAMs used 16 of 20 (80%)

Equivalent logic cells 1.135.468

Minimal clock period 18,777 ns

Maximum clock frequency 53,257 MHz

Table 8: Protocol execution times.

Protocol instance Duration (min:sec.ms)

ReadOut of transponder 01:32.000

Mutual authentication of �� and �	
 03:14.000

Direct keyflashing

Keyflashing to transponder by ��� 23:50.000

Keyflashing by servicePoint

Delegation of trust ��� to �� 00:00.350

Transponderdelegation 00:00.250

Keyflashing to transponder by �� 12:43.000

microcontroller. Main factor here is the RSA decryption
operation. With appropriate hardware support, choice of
parameters, cryptosystem, and substantial speedups can be
achieved as shown in [16].

10. Security Analysis

Looking at the security of the proposed concept some
points can be identified where security relies on policies and
implementing rules while other issues are covered by design.

Using PKC primitives and trusted computing approach-
es, the protocol ensures confidentiality of secret keys and
mutual authentication of �� and ���, �	
 and ��, �� and
��, ��, and ���. Due to the necessity of online indepen-
dence, there are some assumptions that have to be made
to guarantee security. This is mainly the trustworthiness of
the �� in combination with the physical protection of any
authorized ���new and all ���orig.

If these assumptions are broken, for example, by theft of
authorized ���, the corresponding �� and the ��� password,
unauthorized flashing may be possible. As countermeasures,
the usage of the protocol can be adapted to dilute effects
of such events. So, the number of allowed authorized ���

should be as low as possible and the �� should be imple-
mented using trusted components and based on a trusted
platform. Secrets should be especially protected against
misuse by a physical attacker.

There certainly is a tradeoff between security and usa-
bility of the flashing scheme, since the protocol has been
designed for real-world implementation.

10.1. Security of Direct Flashing Scenario. In the flashing
scenario with no mediator (Section 7), an illegal flashing of
��� is not possible. The flashing procedure is authorized
through the ��� directly. Only the ��� is considered
trustworthy enough to accept flashing commands from. By
verifying the signature on a ���’s key, it can be checked if
a certain ��� has been manufactured by a certified supplier
���� or not. Certification policy ensures that such a ���

has a unique ID, unique cryptographic keys, and secret key
material is solely known to the ��� itself and is nowhere else
available or reproducible.

Verifying the signature of �� and the mutual authen-
tication phase of ��� and ��, ��� can be sure that a
�� is targeted in the flashing procedure that has been
manufactured by ���. In turn, �� can be sure that its
communication partner is the ���.

Binding the key material to be flashed to a dedicated
�� by incorporating a mutual signature of the key material
enforces that a certain transponder is flashed only into a
single ��. Also, it can be enforced that the packet containing
the VKTRK is only used for a single flashing procedure,
thus countermeasuring replay attacks. Neither unrecognized
mutation of dedicated parts of this communication packet
is possible, nor forging the signatures on data, due to the
security assumptions of the cryptographic primitives. No
confidential information is included in any communication
packet. By activating the VKTRK inside the �� only after
a successful transmission without errors, it is ensured that
the ��� has no previous utility value. Readingout the ���’s
VK��� has no benefit to an attacker. Therefore, a ��� has not
to be stored away safely before linking it to a ��. Loss of an
unlinked ��� does also not lead to any security issues.

If all entities involved in the flashing procedure adhere
to the protocol, abolish all data resulting from a disrupted
flashing procedure, and implement all cryptographic prim-
itives securely, an attacker is not able to carry out an illegal
flashing procedure.

10.2. Security of Mediator Flashing Scenario. In the flashing
scenario involving a mediator as described in Section 8, the
flashing procedure is legitimated through �	
 directly by
presenting a second ��� that is already linked to �� during
the last phase of the flashing process. A �� receiving the final
communication packet carrying the VKTRK to be flashed can
verify if the sender of the packet is legit and trustworthy by
checking the signatures of the ��� as well as checking the
trust credentials of the ��. Therefore, the �� directly enforces
the policy that only certified parties may flash a VKTRK by
dismissing any received VKTRK as soon as a invalid signature
is detected.
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Usage of �� through a ��� is restricted and protected
by appropriate access control, so no malicious outsider can
flash a VKTRK. Since trust has to be redelegated after a certain
time or amount of flashing procedures, it is not possible to
haphazardly flash ���s.

No sensitive data is transmitted during the flashing
protocol that might compromise the system’s security. It
seems that the data packet sent by ��� to �� might be
highly sensitive, but even if an attacker were able to access
the keypair forming the delegation of trust, it would not be
possible to authenticate new ���’s with the ��� since this
demands knowledge of SKSP known only to �� itself. ���’s
already authenticated by the ��� can also not be flashed into
a ��, since it will be impossible for an attacker to correctly
sign the data packet containing the ���’s public key, because
the signing key SKTD

	
 is also known solely by ��.
In this second flashing scenario, it is again ensured that

the ��� has no previous utility value before finally linking
it to a �� in the final step of the protocol. The loss of of
an unlinked ��� does not lead to any security issues as
long as it has not been authorized by the ���. Therefore all
unauthorized ��� do not pose a security risk. Authorized
���s do need to be stored away securely since they can be
flashed into a ��, but only with the �� that is linked to
the ���. As before, no attacker may be able to carry out
an illegal flashing procedure as long as all entities involved
in the flashing procedure adhere to the protocol, abolish
all data resulting from a disrupted flashing procedure, and
implement all cryptographic primitives securely.

10.3. Potential Risks. Although the technical aspects of the
flashing protocols can be secured against manipulation and
tampering, there are still some risks involved resulting from
nontechnical aspects. A malicious insider such as a ���

might be able to gain access to the ��, an authenticated
���new as well as a �� and the corresponding ���orig. Only
if ��� has access to all aforementioned entities, then it is
possible for him to flash ���new into ��, unknown to the
legal owner �	
. Although such malicious misbehavior of
��� cannot be prohibited, it can at least be traced by logging
all activity inside the ��.

A similar risk is faulty implementations of security
primitives that are used in the protocol leading to a leak
of secret cryptographic keys, thus enabling an attacker to
impersonate an entity. The two main concerns regarding
security leaks lie in the nontechnical aspects of the flashing
protocol through mediators.

10.3.1. Social Engineering. Since the flashing of keys involves
human interaction, this can offer an entry point for an
attacker using social engineering [38–40]. A conceivable
entry point is the ���. If an attacker is able to extract the
credentials from ���, he can gain access to �� and therefore
flash ���s into any user device of ���. This is a widely
known issue in security systems in general that can only
be countermeasured by proper training of ��� to enhance
security awareness. Any misuse of the system through an
��� can be tracked if a secure log of all activities is provided

within the trusted part of ��. As soon as misuse is detected,
the trust delegation to �� can be revoked by ��� through not
reissuing a trust keypair. Therefore, damage can be limited to
flashing of the ���new already prepared for introduction into
a ��.

Since the flashing scheme demands for authentication
of the procedure through �	
, it is necessary to ensure the
security of the second ���orig to be presented at the final
stage of the process. If the second ���orig is in possession of
an attacker and additionally the attacker has access to ��, he
is able to flash an additional ��� into one ��. This attack is
limited to a single ��, thus representing a fairly small risk,
which on the other hand can easily be countermeasured.

10.3.2. SP Theft Scenario. If an �� carrying a valid trust key
falls into the hands of a malicious attacker, the credential of
��� must also be known to the attacker in order to use ��

to flash ���s. Additionally, it is mandatory that the attacker
also has a ���new in his possession that has already been
certified by ���. Additionally, ���new has to be bound to
the stolen ��. If no such ���new is available, the system is
not compromised. Even in case of such an aggressive attack
the risk to the overall system is minimized, since only a very
limited number of ���s is flashable and a trust revocation
can be carried out.

The risk level for such a scenario can be adapted through
appropriate policies based on risk assessment through ���.
The most aggressive policy is not to allow flashing through a
mediator. A minimal risk policy is to only have a single ���
on location that can be flashed into a ��. Only after it has
been flashed successfully, does the ��� authenticate another
���. While providing higher security, such restrictive policies
will naturally inhibit usability.

11. Conclusions and Future Work

Access control systems are an important part in many
systems such as vehicles or expensive machinery. Authen-
tication protocols based on Public Key Cryptography offer
advantages in logistics and key handling. These protocols
are computationally very expensive but can be accelerated
in hardware. In this paper, we presented a high-speed
crypto architecture based on FPGA for fast authentication
protocols based on HECC. Exploiting the properties of PKC,
we introduced a scheme for pairing user devices (��) and
transponder tokens (���) by flashing public keys into ��.
Compared to current key flashing procedures, our proposed
protocol eliminates some logistic issues. ���s do not have to
be physically stored securely in �� any more. Also, shipment
of ���s does not have to be secured physically. Today ���

has to fully trust an �� to flash ���s in the field. With our
protocol the amount of trust in an �� can now be reduced to
allow for risk management.

Security of the system is guaranteed by appropriate policy
enforcement and usage of secure cryptographic primitives.
No online connection is mandatory for linking a new
transponder (���) for user authentication to a user device
(��). This makes it very practical for scenarios if ���’s have
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to be replaced in the field with no intact communication
infrastructure. It is applicable for a variety of embedded
systems that need to implement and enforce access or usage
restrictions in the field. We have shown the portability of
the concept to non-FPGA platforms by implementing the
protocol as a proof-of-concept using a combination of PC-
based and FGPA-based protocol participants.

Flashing speed is of utmost importance in real-world
implementation. To make allowance for a real world inte-
gration of the proposed flashing schemes, optimization is
needed regarding usage and speed of the computational units
involved. In the current prototype, the MicroBlaze processor
has been used for simplicity and to show that the protocol
can already be easily deployed in microprocessor driven
embedded system such as the automotive domain. With
the coprocessing unit in Section 7, very short computation
times are achieved, and on a public key cryptosystem with
a high security level than RSA. Adapting this system to
the complete flashing scheme is target of future work and
promises dramatic acceleration of the entire key flashing
procedure.

One crucial point is the protection of the ���’s public
key stored in the �� against physical attackers. Means to
countermeasure attacks that might alter stored keys on a
physical level need to be investigated in the future.
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