

 Karlsruhe Reports in Informatics 2014,4
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

FRESCO: A Framework for the Energy

Estimation of Computers

Extended Version

Pavel Efros, Erik Buchmann and Klemens Böhm

 2014

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

FRESCO: A Framework for the Energy Estimation
of Computers

Extended Version

Pavel Efros, Erik Buchmann and Klemens Böhm
Karlsruhe Institute of Technology (KIT)

76131 Karlsruhe, Germany

Abstract—Many application areas, e.g., demand response,
energy accounting or energy-aware scheduling, require estimates
of the energy consumption of computer systems. However, ex-
isting estimation approaches often make restrictive assumptions
regarding the effort at setup time or run time that is acceptable,
they are tailored for specific hardware or software, or they cannot
provide accuracy guarantees for the estimates.

In this paper, we introduce FRESCO, a FRamework for
the Energy eStimation of COmputers. FRESCO is a flexible
framework for the estimation of the energy consumption of
a wide range of computer systems. In particular, FRESCO
considers technical information of the hardware manufacturer,
system specifications like the average load, information that have
been sampled at run time, e.g., the time the CPU spent in a
specific state, and energy consumption profiles that might have
been learned at setup time. Based on accuracy requirements and
information available, FRESCO deploys and executes appropriate
estimators. We have evaluated FRESCO with three real-world use
cases. Our evaluation shows that FRESCO produces meaningful
estimates for a wide range of analytical scenarios.

I. INTRODUCTION

[1] has estimated the share of energy consumed by
computers to be 7.15% of the total electricity consumption,
and it is estimated to grow further (approx. 14.6% by 2020).
Thus, the energy consumption of IT systems is an important
cost driver for any large enterprise, and quantifying this type
of consumption reliably is a cornerstone for many current
business models. For example, the energy consumption has
a significant impact on the total costs of ownership of a data
center. It must be considered for total absorption accounting.
Furthermore, in the context of the smart grid, that data gives
way to new business models, e.g., by scheduling data centers
according to an oversupply of renewable energies.

One way to quantify this type of energy consumption and
integrate it into the Smart Grid is to deploy a smart meter
for each computer system [2], [3]. Since it is expensive to
equip existing hardware components with such meters, this
is doable only in rare cases. Recent research has provided
methods to estimate the energy consumption of computer hard-
ware, e.g., based on nameplate information [4], sophisticated
hardware models [5], or by profiling system and component
power usage [6], [7]. However, all of these approaches have
different characteristics in terms of setup effort, estimation
effort, estimation accuracy and hardware requirements. It is
difficult to decide when to use which approach and how to

determine meaningful estimation parameters, as well as the
accuracy requirements of a given application.

Our goal is to devise a flexible framework for the esti-
mation of the energy consumption of computer systems that
considers many different accuracy and effort measures. This
is challenging, because today’s computer systems come with
a wide range of different usage parameters and technical
specifications, and we have to consider use cases that differ
very much in the accuracy required and the effort acceptable
for the operator.

In this paper we introduce FRESCO, A FRamework for
the Energy eStimation of COmputers. FRESCO consists of
a highly configurable set of estimators, and a workflow to
set up and run an instance of an estimator. In particular,
FRESCO is able to (a) suggest a set of appropriate estimators
for computer energy consumption according to the effort the
operator is willing to invest and to the requirements of a certain
application, and (b) to execute an instance of the selected
estimator with settings that are appropriate for the application.
Depending on the kind of estimator, FRESCO can estimate the
energy consumption of a computer from various parameters.
Such parameters include (1) hardware characteristics, e.g., the
energy consumption of a hard disk as specified by its vendor,
(2) usage information like CPU load and network activity, and
(3) calibration data, e.g., an energy consumption profile that
has been recorded by an energy meter for a specific hardware
configuration.

FRESCO explicitly models the trade-off between the ac-
curacy of the estimation and the effort of obtaining technical
specifications, building energy profiles or measuring CPU
usage information. For example, FRESCO can estimate the
energy consumption of a PC with a high precision in hourly
intervals, but also with a lower precision in intervals of a few
seconds. Furthermore, FRESCO can provide upper and lower
bounds for the estimation, and it considers heterogeneous
hardware components and heterogeneous loads.

In this paper, we make the following contributions:

• We introduce three flexible power-estimation models that
generalize state-of-the-art approaches to cover a wide
range of accuracy requirements and computer systems.

• We describe FRESCO, which integrates these models into
an estimation workflow that allows to choose, configure
and run an estimator depending on the use case.

• We evaluate our approach with three use cases, namely

energy-aware data center management, demand response
and energy accounting.

Our evaluation confirms that FRESCO can estimate the
energy consumption of IT systems by considering a wide range
of parameters and with an accuracy of up to 95%, and that it
supports many different use cases.

Paper structure: Section II describes three application scenar-
ios for energy estimation. Section III explains the requirements
and classes of effort our framework must take into account.
Section IV introduces FRESCO, which Section V evaluates.
Finally, Section VI reviews related work, and Section VII
concludes.

II. APPLICATION SCENARIOS

In this section, we describe three different use cases that
cover the spectrum of energy-aware applications for FRESCO.

A. Energy-Aware Management of Data Centers

Increasing the performance per watt is a key performance
optimization for data centers [8], [9]. For this purpose, it is
important to obtain the energy consumption of a complex
IT system as early as the design time of the data center
or the allocation time of the various computing workloads.
Recent approaches, e.g., in the area of energy-aware cloud
data centers [10] or energy management for warehouse-sized
computing centers [11], distinguish (1) the (static) energy
consumption at idle state, and (2) the (dynamic) energy con-
sumption depending on the workload of the target system. This
is important to design the power distribution infrastructure, to
decide about computing hardware acquisitions or to find out
if a scheduled workload exceeds the cooling capacity.

Thus, two different accuracy requirements exist: It must be
possible (a) to provide estimates for the typical case that are
sufficiently accurate to make educated decisions for hardware
acquisitions, and (b) to provide upper bounds for the energy
consumption in extreme cases. Both requirements must be
fulfilled at design time or at allocation time, i.e., before the
operator can measure the workload or the energy consumption.
Furthermore, an estimator must consider that some in-depth
hardware specifications might be unavailable at design time.

B. Demand-Response

Demand Response (DR) influences energy consumption
patterns. For example, DR might be used to shift energy-
intensive computing tasks to times of an energy surplus [12].
DR can be divided into (a) incentive-based DR and (b) time-
based rates DR [12]. Incentive-based DR measures shift the
energy consumption by providing, say, tariffs that reward to
shift energy consumption into off-peak hours. In contrast, time-
based rates DR makes use of static schedules.

Since a data center is a large, adjustable energy sink,
it is particularly well suited to perform demand response
measures [13]. To realize DR in a data center, an estimator
must deliver continuous estimates of the energy consumption
of the various IT components at run time. In particular, the
estimates must be adequate to identify system states that
produce energy-consumption peaks. Furthermore, the personal
and computational effort of the estimation must not exceed

potential savings from DR. Finally, the estimator must cope
with technical parameters on different levels of detail. For
example, a coarse estimate could measure the average CPU
load only, while a fine-grained approach might also consider
the voltage and frequency of the CPU and the states of other
hardware components.

C. Computer Energy Accounting and Billing

Energy accounting and billing of the IT infrastructure
becomes more and more important. For example, in the context
of total absorption accounting, an enterprise might wish to
assign each benefactor (a good or a service) the energy costs
required for its production [14].

Typically, computer Energy Accounting requires estimates
of the consumption with a frequency of 15 minutes to one hour.
Furthermore, the estimator must provide stochastic accuracy
guarantees (e.g., an accuracy of ± 10%), that allows to assign
the energy consumption of an IT system to a department or a
product line. As for the previous scenarios, the estimator has
to be applicable to a large variety of computer systems, with
an effort that is adaptable.

III. ESTIMATION REQUIREMENTS AND EFFORT

In this section, we compile requirements and effort classes
for the energy estimation resulting from the application sce-
narios described in Section II.

A. Requirements for the Estimation

We have compiled the following requirements for our
framework from the application scenarios just described:

R1: Generalizability To be applicable to a wide spectrum of
current and future IT systems, the estimation framework
should enable the integration of a wide range of different
approaches for energy estimation.

R2: Adaptivity Our framework must be able to provide
(1) estimates and (2) accuracy guarantees on these es-
timates depending on the information available.

R3: Accuracy and Effort Constraints FRESCO should al-
low to trade off accuracy and effort. In particular, depend-
ing on the application scenario, FRESCO should allow
the operator to rule out estimation approaches that are
dominated by others in terms of accuracy and efforts.

B. The Classes of Effort

We have identified two classes of effort, which our frame-
work must take into account:

E1: Setup The setup effort is the one that is necessary to
set the estimator up and running. This includes collecting
technical specifications of the energy consumption of
certain hardware components, e.g., the energy consump-
tion of a CPU in activity states like idle or sleeping.
Furthermore, it contains the effort of installing a mon-
itoring application to measure run-time parameters of
the hardware usage, e.g., disk activity. Finally, the setup
effort includes the calibration of an energy consumption
profile for a given hardware, e.g., measuring the energy
consumption while executing a benchmark application.

E2: Run-time The run-time effort includes the network over-
head and the computational overhead of the estimation
process, and the overhead of a monitoring application
collecting hardware parameters like CPU frequency or
rotation speed of the hard disks, if required by the
estimator. The more parameters the estimator samples, the
higher is the data volume transferred, the computational
overhead and the complexity of the estimation.

We expect that the two effort classes will be traded for
each other. For example, the same accuracy requirement can
be met either (a) by measuring an energy consumption profile
at setup time or (b) by using detailed specifications and usage
parameters at run time.

IV. FRESCO

In this section we describe the workflow and the estimators
of FRESCO, our FRamework for the Energy eStimation of
COmputers.

A. The FRESCO Workflow

With “Target System” we refer to the computer system
whose energy consumption FRESCO must estimate. “The
Operator” is responsible for installing and maintaining the
estimator on the target system. FRESCO consists of three
subsequent stages “Setup”, “Configuration” and “Estimation”,
as shown in Figure 1, which we explain in the following.

a) Setup: At the first stage, the operator quantifies the
trade-off between effort and estimation accuracy for the target
system. In particular, the operator specifies the categories of
information obtainable from the target system. This includes
three kinds of information:

• The nameplate information available, e.g., if the energy
consumption of the network card can be obtained.

• The parameters measurable on the target system, e.g.,
CPU frequency, CPU voltage or hard disk activity.

• If it is possible to measure a consumption profile for the
target system, and with which accuracy.

Among the requirements the operator can have are the type
of estimates and their type of error guarantees. These require-
ments influence the choice of estimator FRESCO suggests to
use.

At the end of the setup stage, FRESCO either indicates the
operator that, given his input, estimation is impossible or lets
the operator choose one or a combination of estimators. In the
latter case, FRESCO provides information on the estimation
accuracy possible and the effort required for each estimator.

b) Configuration: At this stage, FRESCO helps the
operator to configure the estimators selected, according to the
following aspects:

• The usage parameters that must be measured to meet the
accuracy specified in the setup stage.

• The frequency at which the parameters must be measured.
• The energy consumption profile, if necessary.

If the operator has chosen a calibration-based estimator,
FRESCO provides a set of benchmarks and guides the operator
through the process of measuring the energy consumption.

Obtain
requirements

Obtain
effort

Obtain
information

stop

impossible
configurationSe

tu
p

C
o
n
fi
gu
ra
ti
o
n

Es
ti
m
at
io
n

Configure
static

estimator

Configure
dynamic

estimator

Configure
calibration-

based estimator

Get
estimates

static
estimate

time-series
of estimates

Perform
calibration

Install
monitoring
application

error
bounds

stochastic
guarantees

Fig. 1: FRESCO Workflow

The result of the configuration stage is the combination of
configured estimators.

c) Estimation: Finally, FRESCO runs instances of the
chosen estimators with the configuration parameters just fixed
on the target system, estimates its energy consumption and
sends the estimates to the operator.

B. The FRESCO Estimators

FRESCO considers three estimators which differ regarding
the effort required, as sketched in Figure 2: The Static estima-
tor makes use of static information on the computational load
and hardware specifications. The Dynamic estimator predicts
the energy consumption from hardware specifications and run-
time parameters measured. The Calibration-based estimator
uses an energy consumption profile that has been calibrated
at the configuration stage. In the following, we describe each
estimator, and we discuss its effort and accuracy.

1) Static Estimator: Our static estimator has been inspired
by [4]. It is tailored for servers running a single application,
e.g., similarly to the TPC benchmark suite, at peak load. Thus,
this estimator aggregates the peak power consumption of all

Static

Dynamic

Calibration-
Based

Setup

Ru
nt
im

e

Fig. 2: Effort Required by Our Estimators

Power Supply Unit RAM

CPU

Hard Disk

Screen

Motherboard

Sleep

Active

Idle

Read/Write

Brightness

PSU Level Component Level Component State Level

. . .

Fig. 3: Classes of Information Used by the Static Estimator

hardware components. Since we are interested in estimates for
a wide range of target systems operating at different loads, we
have extended this approach in two ways:

Generalization FRESCO models a wide range of com-
puter architectures and hardware components, e.g., laptop
screens or motherboards of standard PCs.

Detail Levels FRESCO considers three levels of detail to
model the computer architecture, namely the PSU level,
the component level and the component state level, as
shown in Figure 3.

The PSU level considers only the specification of the Power
Supply Unit (PSU) powering the target system. In this case, the
estimator calculates the total energy consumption E by using
the maximum power PSUmax the PSU is able to supply and
the run time ∆T of the target system:

E = ∆T · PSUmax (1)

If a higher accuracy is required, if more informa-
tion is available, and if more effort at setup time is ac-
ceptable, FRESCO considers information at the component
level. In this case, the consumption E is the sum of
the power consumptions Pi of each component i ∈ C,
C = {CPU,RAM,Hard Disk, ...}, multiplied with the
run time ∆T :

E = ∆T ·
∑
i∈C

Pi (2)

Note that we represent the CPU of a multicore system as
a set of components. One component constitutes the core-
independent consumption of the CPU, e.g., due to caches
and data transmission facilities shared by all cores. The other
components represent the individual CPU cores.

The component state level is the highest level of detail of
our static estimator. It includes information on (1) the power
consumption of the different states of the components of the
target system and (2) the time the components typically spent
in certain states, given the typical computational load. In this
case, FRESCO obtains the total consumption E by summing
up the energy consumption Pij of each component i ∈ C in
a particular state j ∈ Si (the set of states of component i),
multiplied with the time ∆Tij each component typically is in
this state:

E =
∑
i∈C

∑
j∈Si

∆Tij · Pij (3)

In the case of a virtualized environment, the static estimator
can incorporate virtual machines at the component state level.
In this case, the operator can map components to virtual
machines and use these together with their predicted states
instead of the hardware components.

Component Model Power Consumption

CPU Intel i5-3320M Idle – 2.9 W
Minimum active – 7.5 W
TDP – 35 W
Maximum active – 80.56 W

Memory Micron Technology Minimum – 0.3 W
2x4 GB DDR3L SDRAM Typical – 1.48 W
800 MHz Maximum – 1.68 W

Hard Disk Hitachi HTS725050 Sleep – 0.1 W
500 GB at 7200rpm Standby – 0.2 W

Low power idle – 0.7 W
Active idle – 1.0 W
Performance idle – 1.7 W
Read/write – 1.8 W
Seek – 2.0 W
Startup – 5.5 W

TABLE I: Laptop Components

The accuracy of a static estimator depends on the detail
level used and on confidence intervals on the input parameters.
In the following, we will briefly discuss two extreme cases:

Minimal information: By using Equation 1, the operator ob-
tains a very coarse upper bound of the energy consumption
of the target system. This is because the PSU intake, as
described on its nameplate, is usually overestimated for safety
reasons [11]. However, if the manufacturer has provided toler-
ance bounds for the PSU intake in typical settings, the operator
might be able to narrow down this upper bound.

Full information: Each hardware manufacturer provides de-
tailed data sheets containing the minimal, typical and maxi-
mal energy consumption of any hardware component. If the
operator specifies parameters on the component state level
(cf. Equation 3), this information can be used to obtain hard
upper and lower bounds for the energy consumption.

Example 1: Consider a laptop as described in Table I. The
lower bound on the consumption is the sum of the minimum

values of each of the components, i.e., 2.9 W + 0.3 W + 0.1 W
= 3.3 W. Likewise, the upper bound is the sum of the maximum
values: 80.56 W + 5.5 W + 1.68 W = 87.74 W.

Summary: A static estimator might be sufficient for any
application that does not need time series of estimates. It
requires a small effort at setup time for obtaining the hardware
specifications, and no effort at run time. The accuracy of this
estimator depends on the detail level of its input values and
the availability of tolerance bounds. In particular, the static
estimator can provide bounds on the energy consumption.

2) Dynamic Estimator: Our dynamic estimator models
the energy consumption similarly to the static estimator, but
installs a monitoring application on the target system to peri-
odically measure detailed load information in real-time, e.g.,
CPU load or sleep times of the hard disk. Thus, our dynamic
estimator generates time series of energy consumption data.
Our dynamic estimator uses a monitoring application to record
at run time in which state j ∈ Si the component i ∈ C operates
at time t. The energy consumption Et at time t is the sum of
the consumptions Pit of the components i:

Et =
∑
i∈C

Pit (4)

The consumption E for a time interval [tp; tq] is the sum
of the consumption at each point in time, multiplied with the
period of time ∆t between taking two consecutive samples:

E =

tq∑
i=tp

Ei ·∆t (5)

Note that the energy consumption P of the components
can be modeled in different ways. For example, consider the
consumption PCPU

t of the CPU. Suppose that the monitoring
application measures the state information “CPU load” lCPU

t ,
and the operator knows the minimum and maximum power
PCPU
min and PCPU

max the CPU can consume. In this case, PCPU
t

is:
PCPU
t = PCPU

min + lCPU
t · (PCPU

max − PCPU
min) (6)

We have used this approach in our evaluation. An alterna-
tive approach [5] computes the consumption of the CPU from
its operating frequency ft and voltage Vt measured at time t,
and the CPU capacitance c:

PCPU
t = c · ft · V 2

t (7)

It is also possible to integrate specific models for multi-core
systems [15] and to model virtual machines as components of
the target system. Orthogonally to this, FRESCO can model
the energy consumption on different levels, similarly to the
static estimator. Another option is to combine the static and
the dynamic estimator, e.g., the energy consumption of the
CPU can be estimated dynamically, while the consumption of
all other components is a static estimation.

While the accuracy of the static estimator depends on
the knowledge about the typical load of the target system,
our dynamic estimator samples such parameters. Thus, the
accuracy of our dynamic estimator depends on the sampling

frequency of the monitoring application. The reason is as
follows: If a state changes between taking two consecutive
samples, the estimator does not know to which extent the states
were active. However, FRESCO provides upper and lower
bounds on the energy consumption by assuming that a state
change has taken place immediately before or after taking a
sample.

Time

Power

Standby
0.2 W

Active idle
1.0 W

Read/Write
1.8 W

𝑡1 𝑡2 𝑡3 … 𝑡𝑛 𝑡𝑛−1 𝑡4 𝑡𝑛−2

Fig. 4: Example Sampling of Hard-Disk Power Consumption

Example 2: We illustrate this with the hard disk of a laptop
(cf. Table I): The hard disk has three states, as shown on the
y-axis in Figure 4. The x-axis shows the time intervals the
samples were taken (dotted lines). Assume the disk has been
observed in standby at time t3, and in the idle state at t4.
Thus, the lower bound for the energy consumption in interval
[t3 : t4] is 0.2W ·∆t, and the upper bound is 1.0W ·∆t.

Formally, consider a component with the sequence of states
S = (s1, s2, · · · , sn), ordered by the power Pi the component
consumes in state i, i = 1, . . . , n. Let st = (st1 , st2 , . . .) be
the time series of the states of the component sampled at times
t1, t2, The upper bound Eu

∆t on the energy consumption
during time interval ∆t between consecutive samples tj and
tj+1 is:

Eu
∆t =



P1 ·∆t if stj+1
= s1 ∧ stj = s1

. . .
Pi ·∆t if stj+1 = si ∧ stj ≤ si∨

stj = si ∧ stj+1
≤ si

. . .
Pn ·∆t if stj+1

= sn ∧ stj ≤ sn∨
stj = sn ∧ stj+1

≤ sn

We calculate the lower bound El
∆t likewise.

Summary: Our dynamic estimator is suitable for applications
that require time series of the energy consumption of the target
system at run time. Since this estimator also needs technical
specifications, it requires a similar effort at setup time as a
static estimator. The effort at run time depends on the number
of parameters that the estimator samples, and on the sampling
frequency. The accuracy of our dynamic estimator depends on
the tolerances of the technical specifications and the sampling
frequency. The estimator can compute bounds on the energy
consumption.

3) Calibration-Based Estimator: This estimator borrows
from the Mantis approach [16], which estimates the power
consumption of a system by correlating AC power measure-
ments from a calibration phase with performance counters of
the CPU. Our calibration-based estimator executes a detailed
benchmark at setup time, which gradually stresses each system
component in isolation. At the same time, a digital power meter
records the actual energy consumption, and our monitoring
application measures load information such as CPU frequency
and voltage, hard disk usage, etc. FRESCO then performs a
regression analysis to build a consumption profile that relates
any load information to the total energy consumption of the
target system.

More specifically, let MCPU (l, f),MDisk(l),MRAM (l)
be the regression models obtained through calibration for
the CPU, Hard Disk and RAM, and let l be the load of
the component and f the frequency of the CPU. Given the
load information lCPU

t , lDisk
t , lRAM

t and ft at time t, our
calibration-based estimator computes the energy consumption
E at time interval [t1, tn] as follows:

E =

tn∑
i=t1

(
MCPU (lCPU

i , fi)+M
RAM (lRAM

i)+MDisk(lDisk
i)

)
(8)

The calibration-based estimator can derive stochastic ac-
curacy guarantees from the regression model used, by consid-
ering the maximal and minimal energy consumption that has
been recorded for each distinct benchmark load. For example,
think of a regression model which uses only CPU load l and
CPU frequency f to estimate the total energy consumption. Let
(f, l) be the pair of values for the current load and frequency
of the CPU and El,f = {e1, e2, ..., em} be the set of values
for the real energy consumption that the calibration phase
had measured for the pair (f, l). The upper bound Eu

∆t for
the energy consumption during the time ∆t when the CPU
operates at frequency f and at load l is

Eu
∆t = maxEl,f ·∆t (9)

while the lower bound El
∆t is:

El
∆t = minEl,f ·∆t (10)

We calculate upper and lower bounds for other pairs of values
of frequency and load the same way.

Example 3: Assume that the benchmark has resulted in a
CPU load of 50% and in a frequency of 2.4 GHz for some time
interval, and the energy consumption measured has been {97.5
W , 99 W , 100 W , 102 W , 102.5 W , 103 W}. Thus, for this
load and frequency FRESCO would stochastically guarantee a
maximal (minimal) energy consumption of 103W ·∆t (97.5W ·
∆t). Since the dynamic estimator and the calibration-based
estimator use the same monitoring application, it is possible
to obtain upper and lower bounds for the energy consumption
from our dynamic estimator in tandem.

Summary: The calibration-based estimator is well-suited for
applications that require a calibrated zero point and stochas-
tical guarantees on the estimation quality, such as billing or
accounting. Due to the extensive calibration, this estimator

comes with a very high effort at setup time. At run time, the
effort of this estimator depends on the number of parameters
that must be sampled and on the sampling frequency, similarly
to the dynamic estimator.

Summing up everything, FRESCO can model a wide range
of computer architectures and environments, including multi-
core and virtualized systems. It can generate static ex-ante
estimates solely on hardware specifications as well as time
series of estimates at run time with a configurable estimation
frequency and different accuracy guarantees. FRESCO consid-
ers different kinds of effort at setup time and run time. In the
next section, we show that FRESCO covers a wide spectrum
of use cases.

V. EVALUATION

Our framework operates as intended if it provides estimates
that are appropriate for a wide range of applications. That is,
FRESCO must let the operator decide on a tradeoff between
accuracy and effort, according to the requirements of the
application. Thus, we evaluate FRESCO by means of three use
cases, and we measure the accuracy that can be obtained with
a certain effort, in terms of estimation frequency and technical
specifications provided.

A. Measures

To evaluate how well FRESCO can estimate the real data
measured by our digital multimeter, we have computed two
metrics.

The Mean Absolute Percentage Error (MAPE) measures
the average of the percentual deviation between the actual
values and the estimates:

MAPE =
1

n

n∑
i=1

|yi − y′i|
yi

where yi are the actual values and y′i are the estimates. n is
the number of records in the dataset. MAPE of zero means
that the estimated values perfectly match the ones measured.

Correspondingly, the Maximum Absolute Percentage Error
(MaxAPE) measures the maximum percentual deviation be-
tween the actual values and the estimates:

MaxAPE =
n

max
i=1

(|yi − y′i|
yi

)
B. Evaluation Setup

We have tested three datasets that have been obtained from
a server, a desktop PC, and a laptop. The architectures of these
target systems range from a multicore machine with redundant
components to a mobile architecture that has been optimized
to save energy. Furthermore, system usage differs very much,
as described next.

a) Server Dataset: This dataset is about a mail server
constantly executing SpamAssassin [17]. Its workload is a
daily pattern with a low usage during the night and a high
usage in the morning and afternoon hours. Load peaks occur
when the server checks bulks of e-mails sent to large mailing
lists. Table II shows the hardware components of this system.
To obtain our server dataset, we have used a digital multimeter

Wattsup PRO [18] (accuracy: 1.5%) to measure the energy
consumption at every minute as a reference. Furthermore, our
monitoring application has logged CPU usage, CPU frequency
and hard disk drive usage with a sampling frequency of one
second. Our measurements cover a period of three weeks.

Component Model Power Consumption

CPU 2 x AMD Opteron 275 Maximum – 95.2 W
P-State #1 – 90.3 W
P-State #2 – 75.9 W
Minimum P-State – 36.1 W
Halt Mode – 16.6 W

Memory Micron Technology Minimum – 9.9 W
4x1 GB DDR400 PC3200 Typical – 36.4

Maximum – 87.48 W

Hard Disk 2 x Seagate ST937401 Maximum – 10.2 W
2x74 GB at 10000 rpm Idle – 5.07 W

Minimum – 4.69 W

TABLE II: Server Dataset

b) Desktop Dataset: The desktop dataset contains mea-
surements of three weeks of energy consumption, CPU usage
and CPU frequency measured on an office computer with
a sampling frequency of one second. This target system is
equipped as shown in Table III. Its workload is the result of
typical secretarial tasks, e.g., MS Office, Internet Explorer and
a number of custom-made administrative applications. Thus,
the workload rarely reaches the maximal computing capacity,
and the computer is active only during office hours.

Component Model Power Consumption

CPU Intel Pentium Deeper Sleep – 4 W
Dual Core E5300 Extended Halt – 8 W

TDP – 65 W
Maximum – 92.9 W

Memory Crucial Memory - 2x2 GB Minimum – 3.65 W
DDR2 SDRAM 800 MHz Typical – 5.1 W

Maximum – 10.4 W

Hard Disk Western Digital Standby – 0.73 W
WD2500AAJS Sleep – 0.73 W
250 GB 7200 rpm Idle – 4.92 W

Read/Write – 5.36 W

TABLE III: Desktop Dataset

c) Laptop Dataset: The laptop dataset consists of two
weeks of energy consumption, CPU usage, -frequency and
-voltage, measured with a time resolution of one second on
a laptop as shown in Table I. The laptop has been used for
research purposes, i.e., the system load does not follow any
regular pattern and shows idle periods as well as maximum
load conditions.

C. Use Cases

We now evaluate FRESCO with the use cases described
in Section II, namely energy-aware data center management,
demand response and energy accounting.

1) Energy-Aware Data Center Management: This scenario
requires ex-ante estimates of the energy consumption de-
pending on a predefined workload. The estimates must be
sufficiently accurate for informed management decisions, e.g.,

it must be possible to find out if one target system requires
significantly more energy for a certain workload than another
one. Furthermore, it must be possible to find out if a certain
workload might exceed the cooling capacity in the worst
case. Thus, FRESCO proposes the static estimator model. To
evaluate this scenario, we let FRESCO estimate upper and
lower bounds on the energy consumption, and the average
energy consumption for a typical workload.

a) Minimal and Maximal Consumption: We let
FRESCO exemplarily estimate upper and lower bounds on
the consumption of a server (cf. Table II). With our use
case, the operator specifies manufacturer information on the
component level for CPU, RAM and disk. The CPU consumes
the least possible energy in HALT mode, which corresponds to
a consumption of 16.6 W. The maximum power consumption
of the CPU is the maximal current intake multiplied with
the highest voltage allowed by the manufacturer, which is
95.2 W. The minimum power the hard-disk consumes is its
power consumption in sleep mode: 4.69 W. The maximum
power it consumes is equal to the power consumption in
read/write mode at the highest rate of I/Os per second: 10.2 W.
Concerning the RAM, it consumes at least 9.9 W and at most
87.48 W. Thus, for our example system, the lower bound for
the total power consumption is (2·16.6 + 2·4.69 + 9.9) W
= 52.48 W. The upper bound for the energy consumption is
(2·95.2 + 2·10.2 + 87.48) W = 298.28 W. Our measurements
confirm that these bounds apply for the server dataset. The
bounds can be narrowed if the operator is able to specify
a limit for the time each component is in a specific state
(cf. Equation 3).

0 200 400 600 800 1000

5
15

25
35

Time interval length (seconds)

M
A

P
E

 (
%

)

Server
Desktop
Laptop

Fig. 5: MAPE Depending on the Length of Interval - Static
Estimator

0 200 400 600 800 1000

10
30

50
70

Time interval length (seconds)

M
ax

A
P

E
 (

%
)

Server
Desktop
Laptop

Fig. 6: MaxAPE Depending on the Length of Interval - Static
Estimator

b) Average Consumption: Now we assume that the
operator wants FRESCO to estimate the energy consumption
for an average CPU load of 50%, in order to assess the
typical cooling requirement. To evaluate the accuracy of the
estimates, we aggregate the energy consumption, which we
have measured with a frequency of up to one second, to time
intervals from one second to 16 minutes. Furthermore, we let
FRESCO use the static estimator to provide estimates for the
same time intervals. Figure 5 shows the MAPE on the y-axis
and the length of the time interval on the x-axis, for each of
our three datasets. A value of 30% at the interval length of
1 minute for the laptop dataset means that, on average, the
energy consumption estimates summed up for intervals of 1
minute deviate by 30% from the corresponding consumption
measured. Figure 6 shows the MaxAPE for all datasets. The
figures indicate that for longer time intervals, FRESCO can
provide more accurate estimates. In particular, for the server
dataset, the maximum error goes from around 23% for an
aggregation level of one second to around 11% for a higher
aggregation level of 16 minutes, corresponding to a two-fold
decrease in value. Smaller decreases (69–62% and 31–30%)
occur for the other two datasets. This is because longer interval
lengths mitigate the effect of short-term deviations in the
workload. Evidently, the accuracy of the estimation can be
improved if the operator provides more accurate information
on the workload of the target system.

Summary: FRESCO has provided upper bounds for the energy
consumption. Furthermore, it is able to provide reasonable
estimates for the average workload by requiring only little
data from the operator. Thus, we conclude that FRESCO is
able to deal with the requirements of this use case.

2) Demand Response: Our second case study is a Demand
Shifting scenario as described in Section II-B. Demand Shift-
ing requires time series of estimates to identify periods of time
with high energy consumptions (peaks), together with upper
and lower bounds. As the operator is willing to invest only a
small effort, FRESCO suggests our dynamic estimator model.

To evaluate this scenario, we let FRESCO estimate the
consumption based on the CPU load and on information on the
maximal and minimal energy consumptions of our three target
systems, cf. Equation 6. We use these estimates to identify
points in time when the energy consumption is above a given
threshold. In particular, we evaluate two dynamic thresholds
that consider the difference between the largest and smallest
possible values of a time series T :

θ1 = 0.8 ·
(|T |

max
i=1

(Ti)−
|T |

min
i=1

(Ti)
)

(11)

θ2 = 0.95 ·
(|T |

max
i=1

(Ti)−
|T |

min
i=1

(Ti)
)

(12)

Given a time series of energy consumption T, we use a
filter φ to compute a time series of peak consumption T peak

that does not include values smaller than θ.

φ(v, θ) =

{
v if v ≥ θ
⊥ otherwise (13)

We compute such time series of peak consumption from our
measured values as well as for the time series FRESCO has
estimated. We use an estimation frequency of one second. If

our estimates are accurate, FRESCO can identify periods with
high energy consumption and can thus enable operators to
perform Demand Shifting.

Figure 7 illustrates the cumulative distribution function
(CDF) of the real energy consumption during specific intervals
for the desktop dataset. The first set of intervals is when
FRESCO estimated the consumption to be greater than θ1

(continuous line). The second set is when FRESCO estimated
the consumption to be greater than θ2 (dashed line). We
observe that, if the estimator predicts a value greater than θ1,
then the real energy consumption is greater or close to θ1.
Thus, in around 88% of all cases, a value predicted to be
greater than θ1, is also greater than θ1. Concerning estimates
predicted to be greater than θ2, these are also close to or
greater than θ2. In 80% of the predicted cases, the real energy
consumption was greater than 90% of θ2.

0.6 0.7 0.8 0.9 1.0

0.
0

0.
4

0.
8

Normalized range of energy consumption

C
D

F

greater than θ1
greater than θ2

Fig. 7: Distribution of Real Energy Consumption Values –
Desktop Dataset

Figure 8 illustrates the cumulative distribution function
(CDF) of the predicted energy consumption during specific
intervals for the desktop dataset. The first set of intervals is
when the real consumption was greater than θ1 (continuous
line). The second set is when the real consumption was greater
than θ2 (dashed line). Thus, the estimator predicted a value of
at least 75% of θ1 for values which were greater than θ1 in
90% of the cases. The estimator predicted a value of at least
80% of θ2 for all values which were greater than θ2 in all
cases.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
4

0.
8

Normalized range of energy consumption

C
D

F

greater than θ1
greater than θ2

Fig. 8: Distribution of Predicted Energy Consumption Values
– Desktop Dataset

For the laptop dataset (Figure 9), if our dynamic estimator
predicts that the energy consumption during an interval is
greater than θ1, then the actual consumption is greater than
75% of θ1 in 92% of the cases. Furthermore, a value greater

than θ2 of the estimated energy consumption is greater than
75% of θ2 of the real consumption in around 92% of the cases.
On the other hand (Figure 10), our estimator predicted a value
of at least 75% of θ1 for intervals with a consumption greater
than θ1 in 95% of the cases. Our estimator predicted values
greater than 80% of θ2 for all intervals with a consumption
greater than θ2.

0.6 0.7 0.8 0.9 1.0

0.
0

0.
4

0.
8

Normalized range of energy consumption

C
D

F

greater than θ1
greater than θ2

Fig. 9: Distribution of Real Energy Consumption Values –
Laptop Dataset

0.6 0.7 0.8 0.9 1.0

0.
0

0.
4

0.
8

Normalized range of energy consumption

C
D

F

greater than θ1
greater than θ2

Fig. 10: Distribution of Predicted Energy Consumption Values
– Laptop Dataset

Concerning the server dataset, for which we use minute-
by-minute measurements and estimations, the accuracy of our
dynamic estimator is better. In 90% of the cases where an
estimate is greater than θ1, the real value also is greater than
θ1. Additionally, the estimator correctly predicted all values
greater than θ2. On the other hand, our estimator predicted a
value of at least 75% of θ1 for intervals with a consumption
greater than θ1 in 90% of the cases. Our estimator predicted
values greater than 80% of θ2 for all intervals with an actual
consumption greater than θ2.

Summary: Our dynamic estimator can identify periods of time
with peak energy consumptions with a reasonable accuracy
with a low estimation effort. That is, it uses only static
information on the minimal and maximal consumption of the
target system, and it samples only the CPU load. Moreover, the
estimator is flexible, i.e., it can sample more usage parameters
in order to improve its accuracy. We conclude that FRESCO
fulfills the requirements of this use case.

3) Energy Accounting: Our third use case is the energy
accounting scenario as described in Section II-C. This use case
requires estimates with stochastic guarantees. Thus, FRESCO
suggests a calibration-based estimator, which provides esti-
mates based on calibrated energy profiles.

Again, we evaluate this use case with our three target
systems, as described in Section V-B. In particular, we let
FRESCO calibrate energy profiles for each of our target
systems at the setup time of the estimator. At run time, our
monitoring application samples the CPU load with different
sampling frequencies. In order to compare the estimates with
the real values, we have calculated MAPE and MaxAPE for
all datasets. Figure 11 shows the MAPE on the y-axis and the
length of the time interval on the x-axis. The figure indicates
that the estimation accuracy is better for longer time intervals.
For all three datasets, the mean error decreases by around
a fourth (14–37% decrease) when the estimator aggregates
estimates for intervals of 16 minutes instead of one second.
Similarly, the MaxAPE decreases significantly for all datasets
with longer estimation intervals, as shown in Figure 12. In
particular, for the server dataset, the maximum error is around
6.5 times smaller, decreasing from about 35% to 5.3%. For
the other two datasets, the decrease in maximum error is
significant as well (2.4 times for the laptop dataset and 22
times for the desktop dataset, respectively).

Summary: With estimation intervals that make sense in energy
accounting, FRESCO is able to provide estimates of a high
accuracy. While the effort at run time is similar to the one
of the dynamic estimator, the effort at setup time is very
high. However, many energy accounting scenarios make use
of numerous target systems with identical hardware, e.g., for
typical office tasks. In such scenarios, the calibration effort
at setup time takes place only once. Thus, we conclude that
FRESCO can perform well in an energy accounting scenario.

0 200 400 600 800 1000

4
6

8
10

14

Time interval length (seconds)

M
A

P
E

 (
%

)

Server
Desktop
Laptop

Fig. 11: MAPE Depending on the Length of Interval -
Calibration-Based Estimator

0 200 400 600 800 1000

20
40

60
80

Time interval length (seconds)

M
ax

A
P

E
 (

%
)

Server
Desktop
Laptop

Fig. 12: MaxAPE Depending on the Length of Interval -
Calibration-Based Estimator

VI. RELATED WORK

The energy consumption of a computing system can be
monitored directly. This is done by measuring the energy con-
sumption using common digital meters [2], custom-designed
devices [3] or integrated hardware power sensors [19]. In the
case of large and heterogeneous computing centers, installing
digital meters or power sensors at every subsystem (server, PC,
etc.) is costly.

A related domain of significant interest in recent research is
computer power characterization at the system and subsystem
level. Part of recently developed power characterization models
are based on collecting microarchitectural events using hard-
ware registers. These models consider both subsystem [20],
[21], [22] and system [23] levels, as well as virtualized
environments [24].

A drawback of power characterization models which use
hardware registers is that these models are tailored to specific
hardware. This makes such models less portable and general.
Thus, in the case of large heterogeneous deployments of
computing systems, this lack of genericity would require a
significant effort for power consumption modeling and esti-
mation of the entire deployment. Another issue is that the
number of hardware performance events tends to be large [25].
Moreover, only a small part of them can be measured at
the same time [25], due to the limited number of hardware
registers. [26] proposes a solution, namely time-multiplexing
different sets of events on the hardware registers. While this
approach allows for a greater number of performance events
to be monitored, it increases the overhead and reduces the
accuracy.

Using high-level statistical information provided by the
operating system avoids the need for specific detailed (low-
level) hardware knowledge when designing power estimation
models. Recent work has proposed power consumption models
based solely on high-level performance or usage metrics pro-
vided by the operating system to maximize energy efficiency
using various optimizations. Thus, [11] uses CPU utilization in
order to estimate the power consumption of large numbers of
servers, reaching a mean error of 1% when considering groups
of several hundreds of servers. The power consumption model
proposed in [27] uses the expected load on a server cluster
in order to estimate its power consumption. JouleMeter [28]
is a solution for virtual machine power metering which infers
the power consumption from resource usage at runtime. [29]
proposes a model of the power consumption of idle servers.

The advantages of high-level black-box models are the low
overhead, simplicity and relatively good accuracy. However,
these models estimate full-system power consumption and do
not allow for a more fine-grained repartition of the power
consumption, such as per process or per application power
consumption. Moreover, the majority of the models has been
developed and tested on computer systems with a big share
of static energy, such as servers [11] or clusters of virtual
machines [28]. In order to model such computer systems, these
black-box models are easily integrable into FRESCO.

VII. CONCLUSIONS

As the share of computer energy consumption increases,
it becomes increasingly important to quantify it in a solid

manner. Many important enterprise applications, accounting
procedures and business models require such data to allow
informed management decisions, e.g., in the context of energy-
aware management of IT resources, IT-energy accounting
or demand response. However, most existing estimators are
tailored to specific use cases, hardware architectures and usage
profiles. Moreover, due to their different characteristics in
terms of effort and accuracy, the choice of estimation method
to use for a given application is far from obvious. In this article,
we have proposed FRESCO – a general and flexible framework
for the estimation of the energy consumption of computers.
Depending on the effort the operator is willing to invest and
on the requirements of the application, FRESCO can propose
and run appropriate estimators with good parameters settings.
It is able to give quality guarantees on the output estimates.
FRESCO considers heterogeneous hardware components and
loads, as well as the frequency of the estimation. Comprehen-
sive experimental results based on three representative real-
world datasets show that our framework is useful in many
analytical scenarios.

ACKNOWLEDGMENT

The authors would like to thank Olaf Hopp and Manfred
Alef for their help with the energy and software measurements.

REFERENCES

[1] Vereecken W. et al., “Overall ICT Footprint and Green Communica-
tion Technologies,” in International Symposium on Communications,
Control and Signal Processing (ISCCSP), 2010.

[2] Ge R. et al., “PowerPack: Energy Profiling and Analysis of High-
Performance Systems and Applications,” IEEE Transactions on Parallel
and Distributed Systems, vol. 21, 2010.

[3] D. C. Snowdon, S. M. Petters, and G. Heiser, “Power Measurement as
the Basis for Power Management,” in Workshop on Operating Systems
Platforms for Embedded Real-Time applications, 2005.

[4] M. Poess and R. O. Nambiar, “Power Based Performance and Capacity
Estimation Models for Enterprise Information Systems,” IEEE Data
Engineering Bulletin, vol. 34, 2011.

[5] Noureddine A. et al., “Runtime Monitoring of Software Energy
Hotspots,” in IEEE/ACM International Conference on Automated Soft-
ware Engineering, 2012.

[6] S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A Comparison of High-
Level Full-System Power Models,” in HotPower, 2008.

[7] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
Machine Power Metering and Provisioning,” in ACM Symposium on
Cloud Computing, 2010.

[8] Rivoire S. et al., “JouleSort: A Balanced Energy-Efficiency Bench-
mark,” in ACM SIGMOD international conference on Management of
data, 2007.

[9] J. Laudon, “Performance/Watt: The New Server Focus,” ACM
SIGARCH Computer Architecture News, vol. 33, 2005.

[10] M. Milenkovic, E. Castro-Leon, and J. R. Blakley, “Power-Aware
Management in Cloud Data Centers,” in International Conference on
Cloud Computing (CloudCom), 2009.

[11] X. Fan, W.-D. Weber, and L. A. Barroso, “Power Provisioning for a
Warehouse-Sized Computer,” in Annual International Symposium on
Computer Architecture, 2007.

[12] P. Palensky and D. Dietrich, “Demand Side Management: Demand
Response, Intelligent Energy Systems, and Smart Loads,” IEEE Trans-
actions on Industrial Informatics, vol. 7, 2011.

[13] A. Berl et al., “Modelling Power Adaption Flexibility of Data Centres
for Demand-Response Management,” in Energy Efficiency in Large
Scale Distributed Systems, 2013.

[14] Jimenez V. et al., “Energy-Aware Accounting and Billing in Large-Scale
Computing Facilities,” IEEE Micro, vol. 31, 2011.

[15] R. Basmadjian and H. de Meer, “Evaluating and Modeling Power
Consumption of Multi-core Processors,” in International Conference
on Future Energy Systems (e-Energy), 2012.

[16] D. Economou, S. Rivoire, and C. Kozyrakis, “Full-System Power
Analysis and Modeling for Server Environments,” in Workshop on
Modeling Benchmarking and Simulation (MOBS), 2006.

[17] [Online]. Available: http://spamassassin.apache.org/
[18] [Online]. Available: https://www.wattsupmeters.com/secure/products.

php?pn=0&wai=638&spec=8
[19] Intel, “Intelligent platform management interface.” [Online]. Available:

http://www.intel.com/design/servers/ipmi/index.htm
[20] J. Janzen, “Calculating Memory System Power for DDR SDRAM,”

Designline, vol. 10, 2001.
[21] A. Merkel and F. Bellosa, “Balancing Power Consumption in Multipro-

cessor Systems,” in ACM SIGOPS/EuroSys European Conference on
Computer Systems, 2006.

[22] Bertran R. et al., “A Systematic Methodology to Generate Decompos-
able and Responsive Power Models for CMPs,” IEEE Transactions on
Computers, vol. PP, 2012.

[23] W. L. Bircher and L. K. John, “Complete System Power Estimation Us-
ing Processor Performance Events,” IEEE Transactions on Computers,
vol. 61, 2012.

[24] G. Dhiman, K. Mihic, and T. Rosing, “A System for Online Power Pre-
diction in Virtualized Environments Using Gaussian Mixture Models,”
in Design Automation Conference, 2010.

[25] S. M. Rivoire, “Models and Metrics for Energy-efficient Computer
Systems,” Ph.D. dissertation, Stanford University, 2008.

[26] R. Azimi, M. Stumm, and R. W. Wisniewski, “Online Performance
Analysis by Statistical Sampling of Microprocessor Performance Coun-
ters,” in Annual International Conference on Supercomputing, 2005.

[27] Heath T. et al., “Energy Conservation in Heterogeneous Server Clus-
ters,” in ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2005.

[28] Kansal A. et al., “Virtual Machine Power Metering and Provisioning,”
in ACM Symposium on Cloud Computing, 2010.

[29] R. Basmadjian, F. Niedermeier, and H. De Meer, “Modelling and
Analysing the Power Consumption of Idle Servers,” in Sustainable
Internet and ICT for Sustainability (SustainIT), 2012.

	2014,4_Titelbl.pdf
	ebk14.pdf

