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In this article an idea is presented, which allows for the explanation of superluminal muon neu-
trinos. It is based on the introduction of a new superluminal, massless gauge boson coupling to the
neutrino only, but not to other standard model particles.

The model is discussed with regard to the Supernova 1987 (SN 1987) velocity bound on electron
antineutrinos and the Cohen–Glashow constraint on superluminal neutrino propagation. The latter
can be circumvented if — within the framework of the model — a sterile neutrino mixing with the
active neutrino mass eigenstates is introduced. The suggestion of a sterile neutrino accounting for
superluminal neutrinos has already been proposed in several papers.

It is possible to choose mixing angles with the sterile neutrino sector such that the model respects
both the SN 1987 bound and the muon neutrino travels superluminally.
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I. INTRODUCTION

At the end of September 2011, the OPERA collabora-
tion announced the remarkable detection of superluminal
muon neutrinos at the 6.2σ-level [1]. Their experimental
result with statistical and systematical error was given
by:1

(vνµ |Eνµ=17GeV)− c
c

= (2.37± 0.32 +0.34
−0.24) · 10−5 . (1.1)

Unfortunately, on February, 2012 two error sources had
become evident, which were likely to ruin their result.
First, a fiber connection to a computer card had not been
attached properly. Second, there had been a problem
with the clock at OPERA used between the synchroniza-
tions with the Global Positioning System.

At the 25th International Conference on Neutrino
Physics and Astrophysics in Kyoto on June 8th, 2012 a
final update on the OPERA time-of-flight measurement
was given:

δt = 1.6± 1.1+6.1
−3.7 ns . (1.2)

This number states the deviation of the muon neutrino
time-of-flight from the time that light needs to travel the
distance from CERN to the Gran Sasso underground lab-
oratory. Hence, the deviation is now consistent with zero.

The physics community had considered the result given
by Eq. (1.1) with care, since the deviation from the speed
of light lay several orders of magnitude above what would
be expected, if it was from quantum gravitational origin.

∗ marco.schreck@kit.edu
1 These numbers can be found in the updated version 2.0 of [1].

The authors of [2–7] tried to figure out how the OPERA
result could be explained by possible systematical errors.
Beyond that, in [8] a cross-check for the result was pro-
posed. It was demonstrated that muon neutrinos trav-
eling with superluminal velocity can produce signatures
for highly-boosted tt-quark pairs at the LHC, where one
or both quarks decay semileptonically.

Furthermore, on the one hand, Cohen and Glashow
showed that a superluminal neutrino would lose its en-
ergy quickly by the emission of electron positron pairs
[9]. If muon neutrinos moved faster than light, the pro-
cess νµ → νµe+e− would be energetically possible above
a certain neutrino energy threshold resulting in a copious
production of electron positron pairs. On the other hand,
the authors of [10, 11] discussed that the Cohen–Glashow
constraint can be avoided. This may be the case when,
for example, Lorentz-violating effects depend quadrati-
cally on the neutrino energy or if Lorentz-violation is not
fixed but covariant with the neutrino four-momentum.

In [12] two models were investigated, where the first
gave rise to deformed energy conservation laws and the
second resulted in deformed momentum conservation
laws. For these models the bounds of [9] are not ap-
plicable.

In the article [13] further constraints on the deviation
of the neutrino velocity from the speed of light were given
by considering pion decay and TeV-neutrinos detected by
ICECUBE. These gave severe bounds on Lorentz sym-
metry violation in the neutrino sector clashing with the
experimental OPERA result.

Although the OPERA result has now proven to be
wrong, it stimulated theoretical ideas in this field and
led to many new models, which can perhaps be applied
to other realms of physics. It may also be the case that
a certain neutrino species indeed travels superluminally.
However, the deviation from the speed of light is then
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expected to be much smaller than the value measured by
OPERA. For this reason some representative examples
for models that try to describe superluminal neutrinos
will be listed:

• It is well-known that dispersion relations of par-
ticles will be modified, if they propagate through
a medium. In [14, 15] the superluminal motion
of muon neutrinos is interpreted in the framework
of deformed dispersion relations, which are a low-
energy manifestation of Lorentz-violating physics
at the Planck scale. In these theories the vacuum
behaves as an effective medium.

Such a medium can result from standard model
physics, as well. For example, in [16] superlumi-
nal neutrinos are explained by the assumption that
Earth is surrounded by a special kind of matter con-
sisting of separated quarks. If the wave functions
of quarks are entangled, they can form colorless ob-
jects and, hence, are confined, even when they are
spatially separated by a large distance.

• In [17] a model is proposed which describes a
spontaneous breakdown of Lorentz symmetry by a
scalar background field that is added to the action
via a Lagrange multiplier. This framework leads to
a modified neutrino dispersion relation depending
on the momentum of the neutrino.

• The neutrino velocity can be modified by Fermi
point splitting (for a recent review see [18]), which
removes the degeneracy of zeros of the fermionic
energy spectrum [19].

• The neutrino dispersion relation can change be-
cause of environmental effects caused by fields that
accumulate at the position of the Earth. These may
lead to an effective metric, in which the neutrino
propagates with superluminal velocity [20, 21].2

Furthermore, in the context of general relativity, a
particle traveling along a geodesic path in a metric
different from the Minkowski metric can be inves-
tigated [23]. In the article previously mentioned
the mean velocity of such a particle is calculated
with the assumption that the observer stays at rest.
The average velocity can be larger than the speed of
light, even if the velocity as a local property defined
in a spacetime point is smaller. This is investigated
for a Schwarzschild metric.

• A further alternative is to consider models of mod-
ified gravity. In the article [24] particle propa-
gation in a Hořava-Lifshitz modified gravitational

2 Reference [22] gives new experimental bounds on the mass scale
M∗ that is characteristic for the model presented in [20].

background is considered. The authors derive the
Dirac equation for a fermion traveling through such
a background. The condition for the existence of
nontrivial solutions of the Dirac equation leads to
a modified neutrino dispersion relation. The neu-
trino velocity can be larger than the speed of light
for a special Hořava-Lifshitz scenario.

• In [25] the existence of a sterile neutrino that travels
with a superluminal velocity is proposed. Sterile
neutrinos cleverly get around the Cohen–Glashow
bound, since they do not couple to the Z boson. An
analysis involving sterile superluminal neutrinos is
presented e.g. in [26].

Furthermore, assuming superluminal neutrino propaga-
tion at a certain energy, neutrinos may propagate with a
velocity v � c at very high energies leading to a different
neutrino horizon. In [27] bounds from astrophysical ob-
servations are set on v/c for very high neutrino energies.

II. EXTENSION OF THE LORENTZ GROUP —
NEUTRINOS AND A HIDDEN SECTOR

Let us, for now, take Eq. (1.1) as it stands, since the
idea of superluminal muon neutrinos proposed in the cur-
rent article is purely theoretical and does not rely on the
OPERA result. The goal is to describe a superluminal
neutrino species without quantum gravity effects, but by
the introduction of new particles coupling to neutrinos.
For the analysis presented as follows the OPERA value
can be chosen just as an example (independently of its
correctness) in order to demonstrate the model proposed.
That is why we will often refer to Eq. (1.1) in the rest of
the paper.

A. Invariant and maximum velocity

The foundations of special relativity are the relativity
principle and the constancy (invariance) of the speed of
light. As a result, the Galilei group of classical mechanics
is replaced by the Lorentz group, which leads, for exam-
ple, to the relativistic law of addition of velocities. The
fact that the speed of light is the maximum attainable
velocity of all particles does not directly follow from the
Lorentz group, since it only delivers an invariant velocity
at first. In order to understand this, three Gedankenex-
periments will be performed, whose concept was initiated
in [28].

1) We consider some hypothetical beings living in a
fluid. They are assumed to consist of fluid atoms,
which are held together solely by phonon-mediated
forces. The beings do not feel other forces such as
electromagnetism or gravitation. Their dynamics
is expected to be governed by an acoustic Lorentz
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FIG. 1. Hidden sector that decouples from all the standard model particles except the neutrino. The neutrino is assumed to
carry a charge, which massless hidden sector gauge bosons γ̂ couple to. These move with a velocity ĉ that is larger than the
speed of light c.

group with the invariant velocity being the veloc-
ity of sound cs in the fluid [28]. We expect the
beings to build a rocket, which can be accelerated
by phonon emission. From the relativistic addition
of velocities it follows that the maximum attainable
velocity of the rocket is given by cs.

2) Einstein found that the dynamics of particles in
our universe is governed by the “standard” Lorentz
group with the invariant speed of light c. His the-
ory has been heralded or substantiated by various
experiments [29–31]. In the second Gedankenexper-
iment humans build a rocket which is accelerated
by a light engine, namely the emission of photons.
In this case, the relativistic addition of velocities
leads to c as the upper limit of the rocket velocity.

3) Now we are ready to discuss the central idea of this
article. The basic assumption is that the photon is
not the gauge boson which moves with the highest
velocity. We adopt neutrinos carrying a new charge
q̂ differing from all charges of the standard model.
This charge is to be mediated by a postulated mass-
less gauge boson γ̂ moving with a speed ĉ > c. Neu-
trinos couple to these gauge bosons, which form —
possibly together with other unknown particles —
a hidden sector. The latter does not interact with
any other particle of the standard model, cf. Fig.
1. This leads to a neutrino dynamics which is based
on a “hidden sector Lorentz group” with an invari-
ant velocity ĉ. The third Gedankenexperiment is to
build a rocket consisting of neutrinos with an ac-
celeration process working by the emission of gauge
bosons γ̂. The limiting velocity of the rocket is then
given by ĉ, which is larger than the speed of light.

The consequences from this deliberation is that different
levels of the Lorentz group each with a distinct invariant
velocity can be realized in nature. The coupling con-
stant is assumed to be small enough such that neutrino
propagation is not affected too much to violate existing
bounds on the interaction of neutrinos with matter. The
size of the coupling is not important for now — only its
existence. The situation described is depicted in Fig. 2.

Each new coupling of particles to massless gauge bosons3

opens a new sector with a maximum attainable velocity
for these particles from left to right.

B. Modified neutrino kinematics and Lagrangian of
the hidden sector

The gauge boson γ̂ is assumed to couple to neutrino
mass eigenstates. This seems a more natural choice than
the coupling to flavor eigenstates, since the hidden sector
does not know anything about neutrino flavors. Hence,
the neutrino mass eigenstates νi (i ∈ {1, 2, 3}) obey a
kinematics resting upon special relativity, but with the
speed of light replaced by the speed ĉ of the hidden sector
gauge boson γ̂:

Eνi
=

√(
miĉ 2

)2
+ (pνĉ )2 ' pνĉ

[
1 +

1

2

(
miĉ

pν

)2
]

= Gpνc

[
1 +
G2

2

(
mic

pν

)2
]
, G =

ĉ

c
. (2.3)

Here Eνi
is the relativistic neutrino energy of the i-th

mass eigenstate, pν the neutrino momentum, and mi

its mass.4 The modified neutrino dispersion relation in
Eq. (2.3) is isotropic and G gives the deformation. If
we suppress the mass eigenstate index i for a moment
and interpret neutrinos as matter waves with frequency
ω and three-momentum k, we have to carry out the re-
placements Eν = ~ων and pν = ~kν, which leads to:

ων ' Gkνc

[
1 +
G2

2

(
mc

~kν

)2
]
. (2.4)

3 Remark that the phonon is not a gauge boson, but a Goldstone
boson (massless excitation) resulting from the spontaneously
broken translation symmetry in a solid. This does not matter
for the argument, though.

4 We assume that all mass eigenstates propagate with the same
momentum pν. Whenever we refer to kinematics we stick to
the notation of m with an index (denoting the mass or flavor
eigenstate) for the neutrino mass.
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FIG. 2. Illustration of the situation presented in the previous three Gedankenexperiments. The horizonal axis shows different
sectors, each containing a massless boson which transforms under the Lorentz group with a special invariant velocity. The
velocity of this boson sets the maximum attainable velocity for all particles coupling to the corresponding sector. In the first
sector the maximum velocity is given by the speed of sound cs of phonons. Note that the phonon takes a special role here, since
it is not a gauge boson. However, for the very general argument this is not of importance. In the second sector the photon sets
the upper limit, which manifests itself as the speed of light c, whereas for the hidden sector it is the velocity ĉ of the gauge
boson γ̂. There is the possibility of further sectors whose invariant velocity may also be smaller than c. If in the latter case
a standard model particle couples to such a sector, its kinematics will still be governed by a Lorentz group with the invariant
velocity c.

The front velocity, which corresponds to the velocity of
the highest frequency forerunners of a wave, is then given
by [32]:

vfr,ν = lim
kν 7→∞

ων

kν
= Gc . (2.5)

It equals the signal velocity of a δ-function shaped pulse
in configuration space. Hence, any possible distortion of
a signal does not play a role for the front velocity. The
case G > 1 is related to superluminal, G = 1 to luminal,
and G < 1 to subluminal motion.

If the gauge boson γ̂ is assumed to have spin 1 anal-
ogously to the photon, at the level of Lagrange densi-
ties the ordinary minimal coupling procedure can be per-
formed with c again replaced by ĉ:

Lmass eigenstate νi
hidden sector = νi

(
iγµD̂µ

)
νi−


L(i)
Dirac

L(i)
Maj,1

L(i)
Maj,2

 , (2.6a)

L(i)
Dirac =

M
(i)
D ĉ

~
(νL,iνR,i + νR,iνL,i)

=
M

(i)
D ĉ

~
νiνi , (2.6b)

L(i)
Maj,1 =

M̃
(i)
1 ĉ

~
(
ν cL,iνL,i + νL,iν

c
L,i

)
, (2.6c)

L(i)
Maj,2 =

M̃
(i)
2 ĉ

~
(
ν cR,iνL,i + νL,iν

c
R,i

)
, (2.6d)

D̂µ = ∂µ + i
q̂

~
Âµ , (2.6e)

νL =
14 − γ5

2
ν , νR =

14 + γ5

2
ν , (2.6f)

νc = Cγ0ν∗ = iγ2ν∗ , (2.6g)

where {νi, νi ≡ ν∗i γ
0} are the neutrino spinor fields de-

scribing a specific mass eigenstate and γµ are the stan-
dard Dirac matrices. The covariant derivative D̂µ con-

tains the vector field Âµ of the gauge boson γ̂ and the
charge q̂, to which γ̂ couples. Both a Dirac mass term
and two possible choices for Majorana mass terms [33]

with Dirac mass MD and Majorana masses M̃1, M̃2 are
given.5 Here, νL is a left-handed, νR a right-handed neu-
trino spinor, and C in Eq. (2.6g) denotes the charge con-
jugation operator.

5 The question, whether the neutrino is a Dirac or a Majorana
particle, has not been answered so far.
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Note that there is a ĉ in the zeroth component of the
partial derivative ∂µ. In the context of the Lorentz-
violating Standard Model Extension [34] the nonzero
Lorentz-violating coefficients can be found in the left-
handed neutrino sector of LCPT−even

lepton in their Eq. (9).6

If we write this term in the mass eigenstate basis and de-
note the corresponding coefficients by (c̃L)ij , the (c̃L)ij-
matrix is both diagonal in the eigenstate coefficients i,
j and diagonal in the Lorentz indices. The latter holds,
since the model is isotropic. This leads to

(c̃L)µν,ij = (c̃L)00 diag

(
1,

1

3
,

1

3
,

1

3

)
µν

δij . (2.7)

The coefficient matrix (c̃L)µν is both symmetric and
traceless:

(c̃L)µν = (c̃L)νµ , (c̃L)µµ = 0 . (2.8)

This resembles the CPT -even nonbirefringent modified
Maxwell theory coefficients κ̃µν in the photon sector [36,
37], which is clear, since both sectors are related by a
coordinate transformation — at least at first order in the
Lorentz-violating coefficients [37].

C. Extension of the toy model to three neutrino
flavors

The neutrino masses mi are eigenvalues to the mass
eigenstates |νi〉. However, the weak interaction gauge
bosons couple to flavor eigenstates |να〉 with α ∈
{e, µ, τ}. The transformation from mass to flavor eigen-
states and (vice versa) is governed by the unitary (3×3)-
PNMS matrix U :

|να〉 =
∑

i=1,2,3

Uα,i|νi〉 , |νi〉 =
∑

α=e,µ,τ

U∗i,α|να〉 . (2.9a)

When, for simplicity, the CP -violating phases are set to
zero,7 the matrix U reads

U =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13
0 1 0
−s13 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


=

 c12c13 s12c13 s13
−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13

s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13

 ,

(2.9b)

where, for brevity, sij ≡ sin θij and cij ≡ cos θij have
been used [38]. Here, θij for (i, j) ∈ {(1, 2), (1, 3), (2, 3)}

6 Alternatively, the effective Hamiltonian given by Eq. (14) in [35]
can be considered.

7 Furthermore, currently no experimental data concerning these
phases are on hand [38].

are the neutrino mixing angles. Kinematik measurements
of neutrino masses (e.g. for pion decay and beta de-
cay8) lead to “masses of neutrino flavors,” which are the
weighted average of the neutrino mass eigenvalues [39]:

m2
νe
≡

∑
i=1,2,3

|Ue,i|2m2
i , (2.10a)

m2
νµ
≡

∑
i=1,2,3

|Uµ,i|2m2
i , (2.10b)

m2
ντ
≡

∑
i=1,2,3

|Uτ,i|2m2
i . (2.10c)

Since in Eq. (2.3) the neutrino mass eigenvalues mi are
multiplied by ĉ 2

i , the maximum velocity of each neutrino
flavor will be defined in the following way:

ĉ 4
νe
≡

∑
i=1,2,3

|Ue,i|2 ĉ 4
i , (2.11a)

ĉ 4
νµ
≡

∑
i=1,2,3

|Uµ,i|2 ĉ 4
i , (2.11b)

ĉ 4
ντ
≡

∑
i=1,2,3

|Uτ,i|2 ĉ 4
i . (2.11c)

If we assume

δĉi/ĉi � 1 , δĉi ≡ ĉi − c , (2.12a)

δĉνα
/ĉνα

� 1 , δĉνα
≡ ĉνα

− c , (2.12b)

it is sufficient to linearize the equations above:

c4 + 4c3δĉνα
'

∑
i=1,2,3

|Uα,i|2(c4 + 4c3δĉi)

= c4 + 4c3
∑

i=1,2,3

|Uα,i|2δĉi . (2.13)

Here, α ∈ {e, µ, τ}. From the latter equation follows the
simplified result

δĉνα
'

∑
i=1,2,3

|Uα,i|2δĉi , (2.14a)

⇒ ĉνα
'

∑
i=1,2,3

|Uα,i|2 ĉi . (2.14b)

In the rest of the article the neutrino velocities will be ap-
proximated by ĉi for the mass eigenstates and by ĉνα for
the flavor eigenstates, since neutrino masses are assumed
to be much smaller than neutrino energies.

8 Neutrinoless double beta decay that occurs for Majorana neu-
trinos leads to a different definition of the “flavor eigenstate
mass” [39].
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1. The Supernova 1987 bound

The point of extending the toy model to all active neu-
trino flavors, is to account for the Supernova 1987 (SN
1987) bound on electron antineutrinos9 [40, 41]:∣∣∣∣ (vνe |Eνe

∈[7.5,36]MeV)− c
c

∣∣∣∣ . 2 · 10−9 . (2.15)

An electron neutrino produced by a weak interaction pro-
cess is a mixture of neutrino mass eigenstates according
to the relation

|νe〉 =
∑

i=1,2,3

Ue,i|νi〉 . (2.16)

After the neutrino has traveled through space and reaches
a distance L from the origin of its production it holds

|νe(L)〉 ≈
∑

i=1,2,3

Ue,i exp

(
−i
m2
i

2E
L

)
|νi〉

=
∑

β=e,µ,τ

 ∑
i=1,2,3

Ue,i exp

(
−i
m2
i

2E
L

)
U∗i,β

 |νβ〉 ,
(2.17)

where mi � E has been assumed [38]. Hence, the initial
electron neutrino state then corresponds to a mixture of
all flavor eigenstates. However, the initial composition
of mass eigenstates remains the same, because quantum
mechanically the statement

|〈νj |νe(L)〉|2 =
∣∣∣ ∑
i=1,2,3

Ue,i exp

(
−i
m2
i

2E
L

)
δij

∣∣∣2
=
∣∣∣Ue,j exp

(
−i
m2
j

2E
L

)∣∣∣2 = |Ue,j |2 , (2.18)

is valid. As a result of that, also the velocity of the
neutrino does not change during its propagation, since it
is determined by the initial composition of mass eigen-
states. The antineutrinos coming from the supernova
were detected as electron antineutrinos on Earth. For
this reason the bound of Eq. (2.15) will be considered as
a bound on the velocity of electron neutrinos — regard-
less of whether their flavor was different on their way to
Earth.

We assume three distinct hidden sectors each with its
own gauge boson γ̂i, where γ̂1 only couples to the first
mass eigenstate, γ̂2 to the second, and γ̂3 to the third, via

9 An antineutrino is assumed to travel with the same velocity
as the corresponding neutrino. This makes sense, since the
model presented corresponds to a CPT -even term of the Lorentz-
violating Standard Model Extension. See the end of Sec. II B for
a brief discussion concerning this issue.

the respective charge q̂i for i = 1, 2, and 3, respectively.
If any sector obeys a different invariant velocity ĉ1 6=
ĉ2 6= ĉ3, the constraint of Eq. (2.15) does not necessarily
contradict a deviation from the speed of light of the order
of 10−5 for one single neutrino flavor. This will be shown
as follows.

The current experimental values or bounds for the
three neutrino mixing angles θ12, θ23, and θ13 are [38]:

sin2(2θ12) = 0.87± 0.03 , (2.19a)

sin2(2θ23) > 0.92 , (2.19b)

sin2(2θ13) < 0.15 . (2.19c)

With the lower bound on θ23 and the upper bound on
θ13 we obtain the PNMS matrix

U ≈

 0.81 0.55 0.20
−0.55 0.59 0.59
0.21 −0.58 0.79

 . (2.20)

Current experimental data imply that neutrinos are al-
most massless. Concretely, this means mνe, µ, τ

. 1 eV/c2

from neutrino oscillation data [38] and10∑
f=e,µ,τ

mνf
< 0.67 eV/c2 (95% CL) , (2.21)

which is obtained from WMAP observations [42]. There-
fore, an approximate value of ĉνµ

directly follows from
Eq. (1.1):

ĉνµ
= Gµc , Gµ ' 1 + 2.37 · 10−5 . (2.22)

Assuming ĉ3 = c and ĉνe
= c we obtain:11

ĉ1 − c
c
≈ −5.30 · 10−5 ,

ĉ2 − c
c
≈ 1.13 · 10−4 . (2.23)

Hence, Eq. (1.1) for muon neutrinos and the SN 1987
bound for electron neutrinos do not clash, if the veloc-
ity of the first mass eigenstate is a little bit lower than
c and if the second moves faster than c. Since the first
eigenstate propagates slower than c, it need not necessar-
ily couple to any hidden sector. In contrast, the second
mass eigenstate has to couple to a γ̂2 traveling faster than
light.

10 Note that under the assumptions taken, the unit eV/c2 should
be replaced by eV/ĉ 2, as well. But since the mass values given
have been obtained in the context of special relativity, where the
speed of light c is the invariant velocity, we keep c.

11 The latter choice is reasonable, since |(vνe − c)/(vνµ − c)|exp .
8.4 · 10−5 according to Eqs. (1.1) and (2.15). We keep in mind
that the constraints on vνe and vνµ were obtained at different
neutrino energies, but this does not play a role in our model,
though.
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D. Challenges of the model and introduction of
sterile neutrinos

The argument of [9] resulting in the rapid loss of
the neutrino energy by electron positron emission relies
on fundamental principles: four-momentum conservation
and the coupling of the neutrino sector to the Z boson.
Models for superluminal neutrino propagation have to
compete with the very general result mentioned, and this
is also the case for the toy model presented here.

1) We could assume the energy loss of muon neutri-
nos to be compensated by a Compton scattering
type process, where gauge bosons γ̂ scatter with
muon neutrinos. However, this argument leads to
additional problems. First of all, the free parame-
ters of the model (e.g. the charge q̂ or the initial
energy of a γ̂ boson) have to be chosen such that
this compensation is possible, which requires ex-
treme finetuning. If the momentum distribution of
γ̂ is homogeneous and isotropic, the average energy
transfer to the neutrino will be zero. In principle,
the distribution may be anisotropic, but then neu-
trinos might be deflected on their way from CERN
to the Gran Sasso underground laboratory.

2) An alternative proposal is that a neutrino itself is
part of the hidden sector making it to some kind
of superluminal, sterile neutrino νs. Then the neu-
trino does not couple to the Z boson, rendering the
process νs → νse

+e− forbidden. The sterile neu-
trino may mix with the active neutrino species lead-
ing to superluminal propagation of at least some of
the standard model neutrino flavors. This idea has
already been suggested in other publications, see
e.g. [25, 43] and references therein. Reference [44]
states that sterile neutrino models may be in con-
flict with the atmospheric neutrino data measured
at Super-Kamiokande. However, the models con-
sidered in the latter article only involve one ster-
ile neutrino and one single mixing angle with this
neutrino. Conclusions for models with more mixing
angles have not been obtained.

According to the second item of the list above, we extend
the toy model by Ns sterile neutrino mass eigenstates.
Then the transformation between the 3 + Ns flavor and
mass eigenstates is governed by a unitary (3+Ns)× (3+
Ns)-matrix Us:

|να〉 =

3+Ns∑
i=1

Usα,i|νi〉 , (2.24)

Following Eq. (2.14) we can write:

ĉνα
'

3+Ns∑
i=1

|Usα,i|2 ĉi . (2.25)

For our toy model we consider the simplest case with one
single sterile neutrino, hence Ns = 1. In principle, this
sterile neutrino mass eigenstate ν4 mixes with the active
neutrino mass eigenstates νi for i ∈ {1, 2, 3}. This mixing
can be described by introducing three additional mixing
angles θ14, θ24, and θ34. The corresponding (4×4)-mixing
matrix Us can then be constructed from U as follows:12

Us ≡
(
U 0
0ᵀ 1

)
c14 0 0 s14
0 1 0 0
0 0 1 0
−s14 0 0 c14



×


1 0 0 0
0 c24 0 s24
0 0 1 0
0 −s24 0 c24




1 0 0 0
0 1 0 0
0 0 c34 s34
0 0 −s34 c34

 , (2.26)

where 0 = (0, 0, 0). In what follows, we examine a sub-
space of the free toy model parameters, which is seven-
dimensional. It is spanned by the three sterile neutrino
mixing angles θ14, θ24, θ34 and by the invariant velocities
of the neutrino mass eigenstates ĉ1, ĉ2, ĉ3, ĉ4. Since this
phase space is that large, it will be reduced by the special
choice below. We assume that the invariant velocities of
the three standard neutrino mass eigenstates correspond
to the speed of light, which means ĉ1 = ĉ2 = ĉ3 = c. The
single sterile neutrino is assumed to travel with superlu-
minal speed: we therefore set ĉ4 = (1 + 3 · 10−5)c.

As a result, only the sterile mixing angles remain as
free parameters. In Fig. 3 three cases are considered,
where in each one of these angles is fixed: θ14 = π/3,
θ24 = π/5, and θ34 = π/5. We would like to explore,
whether in each case the remaining two angles can be
chosen such that the electron anti-neutrino velocity re-
spects the SN 1987 bound of Eq. (2.15) and that the
muon neutrino velocity lies in the error band of Eq. (1.1).
In all plots overlapping regions are small, but they exist.
At least one of the three mixing angles has to be rather
large. A special possibility is θ14 = 5π/4, θ24 = π/5, and
θ34 = π/5 that becomes evident from the third panel.
With these values we obtain the following results for the
velocities of the three active neutrino flavors:

ĉνe − c
c

≈ 9.07 · 10−10 , (2.27a)

ĉνµ − c
c

≈ 2.33 · 10−5 , (2.27b)

ĉντ − c
c

≈ 2.31 · 10−7 . (2.27c)

12 with all CP-violating phases set to zero
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(a) θ14 = π/3 (b) θ24 = π/5 (c) θ34 = π/5

FIG. 3. Each panel shows the plane of a different pair of sterile neutrino mixing angles, where the remaining angle
is set to the special value given below the corresponding panel. Regions of the electron and the muon neutrino veloc-
ity are shown, where ĉ1 = ĉ2 = ĉ3 = c, and ĉ4 = (1 + 3 · 10−5)c is the common choice. The blue areas depict the region
(ĉνe/c− 1) < 10−8 and the green areas show the region (ĉνµ/c− 1) > (2.37 − 0.32 − 0.24) · 10−5 = 1.81 · 10−5. The con-
dition (ĉνµ/c− 1) < (2.37 + 0.32 + 0.34) · 10−5 = 3.03 · 10−5 is fulfilled for all possible mixing angles in each panel, so is
(ĉνe/c− 1) > −10−8.

Whether there exists a choice of angles that does not
contradict existing atmospheric neutrino data — as was
proposed in [44] — will not be examined here.

To summarize, within the toy model presented a su-
perluminal sterile neutrino mass eigenstate can be intro-
duced, such that the electron neutrino respects the SN
1987 bound and the muon neutrino travels with the su-
perluminal velocity that is given by Eq. (1.1). For the
parameters chosen above the tau neutrino is then slightly
superluminal, as well.

III. CONCLUSIONS

In this article a concept accounting for superluminal
muon neutrinos was presented. It is based on a multiple
Lorentz group structure. The dynamics of the neutrino
is assumed to obey the Lorentz group with an invariant
velocity that is larger than the speed of light. This will
be possible, if the neutrino couples to a hidden sector of
massless gauge bosons that move faster than photons.
Then the neutrino field transforms under the Lorentz
group with an invariant velocity which corresponds to
the velocity of these gauge bosons.

If an experiment measures a deviation of the neutrino
velocity that is much larger than the speed of light, this
will be very difficult to understand in the context of
physics at the Planck scale. The idea presented here
leads, in principle, to a modified dispersion relation of
the neutrino, as well. However, the framework is not
quantum gravity, but special relativity and field theory
with an invariant velocity imposed that differs from the
speed of light.

First of all, every physical model describing superlu-

minal muon neutrinos has to compete with the SN 1987
bound. This is a minor difficulty, since the toy model pre-
sented here can be altered such that electron neutrinos
behave differently compared to muon neutrinos. More
severe is the Cohen–Glashow constraint that is based on
fundamental principles of present-day physics, which are
difficult to circumvent. Honestly, the latter is also a se-
vere problem for the current model, unless the superlu-
minal neutrino itself is part of a hidden sector, hence
sterile.

Besides that, the toy model makes the following pre-
dictions that can be verified or falsified by experiment:

• If the muon neutrino moves with a superluminal ve-
locity, its velocity is isotropic and does not depend
on the neutrino energy (besides any mass-related
dependence).

• It is not a local effect, i.e. muon neutrinos move
with a superluminal velocity in interstellar space,
as well.

To find a physical theory both explaining superluminal
neutrinos without bothering already established data and
facts about the neutrino sector is a great challenge for
model builders.
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