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I

Zusammenfassung

Um die im Titel der Dissertation erwähnten Optimierungen der Kabel aus Hochtem-

peratursupraleitern durchführen zu können, wird ein numerisches Modell vorgestellt,

welches in der Lage ist, das physikalische Verhalten von Supraleitern und Ferromag-

neten zu simulieren. Dieses wird mittels Magnetisierungs- und Transportstrommes-

sungen an Supraleiter/Ferromagnet-Heterostrukturen verifiziert. Die angesprochenen

Heterostrukturen bestehen aus einem sogenannten Bandleiter (Hochtemperatursupra-

leiter zweiter Generation) mit ferromagnetischen Schilden, die die Hystereseverluste

durch Herumleiten des magnetischen Flusses um den Supraleiter herabsetzen sollen.

Neben den Bandleitern werden verschiedene Spulengeometrien untersucht. Auch

untersucht wird das sogenannte Twisted Stacked Tape Conductor Kabel, welches

für Hochstromanwendungen, beispielsweise in der Fusionstechnologie, entwickelt

wird. Hierfür wird das zweidimensionale numerische Modell um die dritte Dimen-

sion erweitert und außerdem werden Möglichkeiten untersucht, durch Rand- oder

Zwangsbedingungen die Kontaktwiderstände zu berücksichtigen. Dies ist notwendig,

wenn die Translationssymmetrie des Kabels beibehalten werden soll und die Kon-

taktwiderstände nicht als eigenständige geometrische Objekte in Erscheinung treten

sollen. Bei der Optimierung werden verschiedene Geometrien vorgestellt, in welchen

Hystereseverluste durch ferromagnetische Schilde zum Teil um eine Größenordnung

herabgesetzt werden können.
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1 Introduction

Increasing industrialisation and automation all over the world in combination with

increasing scarcity of conventional resources on the one hand and political decisions to

abandon existing power generation technology on the other hand are leading to rapid

evolution in the energy sector [SSA+07]. The shift from conventional sources of power

generation is being made to sustainable and renewable energy sources such as wind,

solar and tidal forces [Pre11]. This development in combination with breakthrough

discoveries in material science having lead to high temperature superconducting

materials in the last two and a half decades promote innovative applications, especially

in the energy but also in the transportation sector [BM86, NNM+01, LGFP01, Mal12].

Increasingly localised power generation requires efficient energy distribution and

the temporal variation of power generation due to unsteadily available wind and

solar power entails the need for energy storage. New technologies and innovative

solutions are required to overcome these challenges and superconductors have great

potential [NEM+13].

Superconducting applications differ considerably in their state of implementation.

Some are merely exotic concepts, such as the all electric air-plane for which rotating

machinery, power electronics and linear motors are required [MBSL07, MCT+09,

LMN+09]. Others like superconducting motors for naval propulsion have passed the

demonstrator stage and are tested on regular duty [NFK+10, UAY+10, MSU+13]. An-

other example of superconducting rotating machinery being investigated at present are

superconducting wind turbine generators [LM07, AMS+09, AMS+10, AJS+11]. Super-

conducting wind turbines could significantly reduce the overall weight of the nacelle

thereby considerably reducing mechanical stress on the support structure and thus re-

ducing the investment cost while at the same time reaching a higher power than would

be possible using conventional technology [AMS+10, SGKW11, FOS+11, TSO12].

Superconducting fault current limiters have been around for a long time [GF78,

BP83, Row95, NS07] and demonstrator as well as commercial appliances are avail-

able [DKH+10, HEB+12, KSC+12]; transformers have not been commercialised but

several demonstrator projects exist [KHH+02, IHO+09, BTI+05, KHF+06, WWS+09,

WZH+08, GSB+11, KKK+11, TOO+11], for superconducting magnetic energy stor-

age systems [JGK+02, NHK+04, NHS+04, KSC+06, OCA+06, KNN+09, XWD+08,

KKL+06, TBD+07, KLL+09] and for superconducting high current, medium voltage
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cables [KKT+99, KWN+01, Mas02, MKY+02, HHJ+04, XHB+04, KJL+05, SCK+06,

CBK+06, Mal06, MSB+07, DSJ+07, TYM+07, SHL+07, Tsu08, YAI+09, MSBW09,

MFL+09, MKH+09, SVF+10, SMN+12] which are being tested in commercial power

grids. Persistent mode very high field coil systems are being developed that use

superconducting coated conductors [MKO+12, MLW+12, MBJC13, WMV+13]. Super-

conductors are also interesting as bulk material for high magnetic field permanent

magnets [HM04, CLY+11, XLC+12, NSF12, WFDR+12].

The significant increase in critical temperature from low temperature superconductors

to high temperature superconductors results in a considerable reduction of the cooling

cost [LGFP01, GFH+08]. Instead of expensive liquid Helium, liquid Nitrogen may be

used as the cryogenic medium for the high temperature superconductors, e.g. of the

oxocuprate class due to their high critical temperature [BM86]. Conduction cooling is

also possible [YHP+07, DYZ+06, TOK+05].

Oxocuprate superconductors are exceedingly interesting technologically not least

due to their extremely high current density resulting in minuscule material volume

requirements [GNB+96]. Two possibilities exist at present to manufacture conductors

using these materials: the first generation was produced via the powder-in-tube tech-

nique [HTT89]. The second generation of these ceramic superconductors is deposited

as a thin film layer on top of various metallic [GNB+96, GNK+97, BSK99, GAF+02]

and ceramic substrates. Possible ceramic substrates used as wafers for superconducting

circuitry include corundum varieties such as sapphire (α-Al2O3) [MJBM88, TWP89].

They are of little importance for energy applications considered subsequently and

will not be expatiated upon any further. Instead the metallic coated conductor tapes

are explored which are presently the mainly manufactured oxocuprate superconduct-

ors [MFR+08].

The particular geometry of the superconducting layer of the coated conductors which

is about 1 cm wide and only 1 µm thick and thus has high aspect ratios up to or

even above 10000 entails a peculiar behaviour that is not intuitively predictable,

especially so since superconducting materials per se behave quite differently from

regular conductors. Several analytical models exist that are very successful in de-

scribing the behaviour of coated conductor takes under selected boundary condi-

tions [Bea64, Bea62, BD62, Nor70, BI93, Bra96, Maw96, MC01, Kaw01, Maw08].

Despite their idealisations, restrictions regarding boundary conditions, material prop-

erties and geometry they yield qualitatively excellent results and describe the su-

perconducting behaviour well. Unless symmetries are exploited, modelling multiple

superconducting domains is taxing however and not all arbitrarily complex geometries
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can be considered. The case becomes even more difficult if additional material classes

such as ferromagnetic domains are present [Maw08]. The analytic models will be

used in order to verify the numerical models in Cap. 5, Cap. 6 and Cap. 7.

Hysteretic losses are an important heat source in superconductors when AC electric

currents and magnetic fields are applied. A single 10 mm wide coated conductor

dissipates around 0.5 W m−1 at Ia/Ic [Nor70, GPS+14]. Elevated energy dissipation

results in a higher heat load on the refrigeration units. Even an ideal cryocooler is

limited by the Carnot efficiency. This results in the refrigeration unit requiring at least

2.9 W theoretically for every Watt dissipated at 77 K. The ratio worsens the lower

the temperature is: at 30 K, 9 W are required and at 4.2 K, 70 W are required [KC07,

p. 1195]. Realistic estimates even for 77 K put the cooling penalty factor at 15 and to

over 1000 for 4.2 K [RLR+98, GPS+14].

Though some applications are already capable of competing with conventional tech-

nology [YKT+14] most superconducting applications still suffer from high investment

and operating costs which reduces their economic appeal [MH12]. The investment

costs are higher than those of conventional machines because on the one hand the

superconductors are still too expensive to be economically competitive and on the

other hand there is the additional cryogenic system to be considered, which is required

for keeping the superconductors operational. On the operating cost side the additional

cooling costs have to be taken into account, even if the superconductors result in lower

operating costs than a comparable conventional machine. The cost of superconducting

material is expected to become more accommodating in the future [MH12, Haz13].

Besides capitalising upon the effects of scale and technological advance in materials

science, there is a material independent approach to reducing both investment as

well as operational costs: reducing hysteretic losses and optimising the appliances

by geometry and material combination optimisation. The reduced requirements on

the cryogenic system due to decreased thermal load lead to lower investments in

the refrigeration unit and also to reduced operating costs because of the reduced

energy requirement of the cooling system. As will become apparent in this thesis, the

reduction in hysteretic losses achievable by design optimisations is substantial.

In order to optimise superconducting applications, appropriate tools have to be avail-

able to allow researchers and developers to analyse and design machines. Numerical

modelling provides fast and cheap methods towards that purpose.

At the outset of the thesis was a survey of the possibilities to improve the hysteretic loss

of superconducting applications and possibly provide tools to ease the design process.
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Several numerical modelling approaches exist, the T − Ω- [HSM+91, AMBM98],

the A- [NTFA89, Seb94, Pri97, BMDH99, CFD99, CFD99, HYT+00, ST10], the

electrostatic-magnetostatic analogue [GRKN09], the magnetic vector potential critical

state [Cam07, Cam09], or the adaptive resistivity implementation [FFG10]. The

time-dependent H-model was used extensively [BV83, KTK+01, KHY+03, PMC+03,

HCC06, BGM07, NAW09] but no three dimensional simulations of actual cables have

been shown so far.

The goal of this thesis is to demonstrate a comprehensive implementation of a numer-

ical model capable of simulating superconducting as well as ferromagnetic domains in

two and three dimensions. Besides the ability to simulate magnetic field and electric

current distributions and calculate hysteretic losses, the model should be modular in

order to allow additional functionality to be implemented. The model is extensively

verified using analytical formulations and experimental data. Additionally, a new

boundary condition for finite element modelling is developed in order to be able to

simulate contact resistances.

The numerical model is used to analyse various coated conductor geometries like

isolated tapes, bifilar and pancake coils with and without ferromagnetic shielding in

order to verify the possibility of reducing the hysteretic losses. A three dimensional

model is used to model the behaviour of the Twisted Stacked Tape cable. Apart from

the theoretical work, the concept of ferromagnetic shielding was also investigated

experimentally. A method for applying ferromagnetic material on superconducting

tapes was developed and samples were measured in applied magnetic background

field and electric transport current.

The structure of this thesis is as follows: the fundamentals of superconductivity

and ferromagnetism are explained in Cap. 2. Then, the concepts of analytical and

numerical modelling of superconductors are explored in Cap. 3. The experimental set-

ups are detailed in Cap. 4. The physical behaviour of coated conductors is discussed

in Cap. 5 and that of various assemblies with and without ferromagnetic shielding in

Cap. 6. Lastly, the Twisted Stacked Tape Cable is investigated with analytic and, more

importantly, a three-dimensional numerical model in Cap. 7.
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2 Fundamentals

Superconductivity is a physical phenomenon observable in a number of materials,

among them pure metals, alloys, inorganic compounds – most prominent among

those: ceramics – and even organic compounds (see Cap. 2.7). The most eminent

property of superconducting materials is their vanishing electric resistance below

the critical temperature Tc (see Fig. 2.1). This effect was first recorded by Heike

Kammerling Onnes in 1911 [Onn12]. The extremely low energy dissipation (due to

extremely low resistance) and high energy density in applications are among the main

reasons for interest in these fascinating materials. In addition to conducting electric

currents entirely without dissipation in certain cases, superconductors differ from a

theoretical perfect conductor in that they expel all magnetic flux from their volume;

this behaviour is called the Meißner-Ochsenfeld-effect [MO33].

There are two types of superconductors: conventional Type-I superconductors which

show a perfect Meißner-Ochsenfeld-effect and Type-II, also called technical supercon-

ductors. All pure elemental superconductors with the exception of Hafnium, Niobium,

Tantalum, Titanium, Thorium, Vanadium, Uranium and Zirconium are Type-I super-

conductors [WC52]. Due to thermodynamical reasons, in Type-II superconductors a

temperature T

re
si

st
an

ce
R

Tc

0

Figure 2.1: In superconducting materials, the electric resistivity vanishes below a char-
acteristic temperature. Tc is determined by measuring the DC resistivity of a sample.
However, in order to prove superconducting behaviour, a jump in resistivity is not
sufficient. The Meißner-Ochsenfeld-effect has to be shown [Tin96, pp. 2 & 3].
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state of bulk superconductivity with locally confined volumes of magnetic flux is ener-

getically more convenient (see Cap. 2.1). Since by definition, regions with magnetic

flux cannot be superconducting because they do not fulfil the prerequisite of showing

the Meißner-Ochsenfeld-effect, those locally confined volumes of magnetic flux are

normal conducting [MU97, pp. 101 ff.]. One single such volume is called a fluxon or,

more commonly, a flux vortex. Vortices are of importance when considering losses in

superconductors because in normal conducting volumes conventional loss mechanisms

are present. In order to facilitate understanding of hysteretic loss mechanisms in

superconductors, an introduction to superconductor theory is given below.

Some superconductors are deposited on ferromagnetic material that influences the

magnetic field distribution and thus has influence on the behaviour of the supercon-

ductor. This influence is investigated and the concept of ferromagnetic shielding

is explored. The shielding is supposed to reshape the magnetic field around a su-

perconductor thus rerouteing flux to lower the hysteretic losses occurring in the

superconductor. In Cap. 2.8, basic properties of ferromagnetic materials are discussed.

2.1 Theories of Superconductivity

The London-Theory, published in 1935 [LL35], accounts for the already mentioned

behaviour of vanishing electric resistivity and the Meißner-Ochsenfeld-effect. It

first proposed the London penetration depth λL, see Cap. 2.1.1. The phenomenolo-

gical Ginzburg-Landau-Theory, published in 1950 [GL50], accounts for macroscopic

as well as quantum effects. It proposed a second characteristic parameter import-

ant in superconductor theory, the coherence length ξ, see Cap. 2.1.2. Without

deriving the theories completely, those characteristic parameters will be explained

in the following chapters. Lastly, the Bardeen-Cooper-Schrieffer-theory [BCS57]

provides a microscopical explanation of superconductivity (which explains classical

superconductors).

2.1.1 The London Penetration Depth

The London-theory [LL35] was the first to describe the currents flowing in and the

electromagnetic fields generated by superconductors. Magnetic fields were found to

cause so called shielding currents to flow in surface regions of the superconductor and

generate fields of equal magnitude to the external fields thereby effectively shielding

the superconducting volume from magnetic flux entry. Shielding currents only flow in
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thin surface regions penetrating a characteristic length called the London penetration

depth λL. Solving the London equations, the characteristic length λL over which

an external applied magnetic field is suppressed to 1/e its initial strength inside the

superconductor is found to be [MU97, p. 22]:

λL =
√

√ m
µ0nsq2

(2.1)

with the charge mass m, the permeability constant µ0, the charge particle density ns

and the charge q. The charge q was later found to be twice the electron charge

e− [Coo56, Gor59, GMB64].

2.1.2 The Coherence Length

In addition to the already mentioned London penetration depth, the macroscopic

Ginzburg-Landau-theory [GL50] (also: Ginzburg-Landau-Abrikosov-Gor’kov-theory)

predicts another characteristic length in superconducting materials, the coherence

length ξ. The theory is built upon the understanding that the superconducting charge

ensemble – the entirety of all superconducting charge carriers – may be described by

the complex order parameter field ψ. ξ is the material specific characteristic length

inside of which ψ may be assumed constant. It was later discovered that ψ is a

measure of the charge particle density ns=|ψ|2 [Tin96, p. 9].

In the scope of the microscopic Bardeen-Cooper-Schrieffer-theory [BCS57], the co-

herence length may be understood as the average distance at which two electrons

interact to form a Cooper-pair, the basic superconducting charge carrier. In order

for electrons to pair, their Coulomb repulsion has to be overcome. In conventional

superconductors, this is brought about through interaction of two electrons via phon-

ons (a weak interaction): supposing an electron moves along a metal’s crystal lattice,

then the positively charged lattice will be attracted by the negatively charged elec-

tron. Due to the high electron velocity ve and the comparatively high inertia of the

lattice resulting in a low Debye frequency of the phonon lattice wD, the maximum

deformation of the lattice will be reached in a distance of ve2π/wD ≈ 100 nm where

ve ≈ 106m s−1 and 2π/wD ≈ 10−13s. This characteristic length is large enough to

effectively shield the Coulomb repulsive force, meaning the electrons can interact and

couple (compare [MU97, pp. 150-152]).
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The mechanism of superconductivity in Type-II superconductors is not yet fully un-

derstood and it has been questioned whether it is indeed due to electron-electron

interaction. It would seem that the mechanism involving phonons alone, a weak

interaction, insufficiently explains the so-called d-pairing observed in a number of

high-Tc superconductors, particularly in the technically interesting oxocuprates (see

Cap. 2.7.3). The strong interaction required to understand superconductivity in

high-Tc superconductors could possibly be connected to mechanisms involving elec-

tron deficient holes, spin-wave coupling or excitonic processes. For the scope of this

introduction, the knowledge that an interaction exists is sufficient however.

The Ginzburg-Landau-theory introduces the Ginzburg–Landau parameter κ which is

the ratio of λL and ξ:

κ=
λL

ξ
=

√

√ m2β

2µ0q2ħh2
(2.2)

with the Dirac constant ħh and the empirical Ginzburg-Landau parameter β . The

Ginzburg–Landau parameter κ will be useful for characterising superconductors into

Type-I and Type-II, see Cap. 2.2.

H

T

Hc,2

Hc,1

Tc

Meißner phase

Shubnikov phase

normal
phase

Figure 2.2: In conventional Type-I superconductors only the Meißner-phase exists,
bounded by material specific critical parameters Hc and Tc; in Type-II superconductors,
the critical magnetic field Hc,1 below which the perfect Meißner-Ochsenfeld effect
is observable is usually negligibly small for technical applications. However, there
exists another state: the Shubnikov-phase in which magnetic flux penetrates the
superconductor. The Shubnikov-phase is bounded by Hc,2 and Tc.
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2.2 Type-II Superconductors

The Ginzburg-Landau-theory proposes the existence of superconductors in which the

interface energy between normal and superconducting domains is positive. Such

materials were indeed discovered later on to have magnetic flux entering above a

certain threshold magnetic field strength called the lower critical magnetic field Hc,1.

Above this threshold magnetic field, the superconductor enters the Shubnikov phase

(see Fig. 2.2). For an overview of the superconducting materials and the most

important Type-II superconductors, see Cap. 2.7.

Type-II superconductors have, due to the mechanism of magnetic flux entering their

volume, one crucial advantage when compared to Type-I superconductors: they

tolerate much higher magnetic fields before losing their superconducting properties

completely. Above the lower critical magnetic field Hc,1, magnetic flux may penetrate

the superconductor but the superconducting state is preserved in most of the volume.

At the upper critical magnetic field Hc,2, all bulk superconductivity is lost but this is

usually much higher than the thermodynamic critical magnetic field Hc,th which marks

the loss of superconducting properties in Type-I superconductors (see the plot of the

sample magnetisation M versus magnetic field H in Fig. 2.3). The technically more

interesting irreversibility field is also much higher, often in the range of multiple tens

of Tesla. The magnetic irreversibility field is defined as the magnetic field above which

the critical current becomes vanishingly small at a given temperature. For example, the

Hc,th of all Type-I superconductors is in the range of < 200 mT [Kit96, p. 336] while

the most important Type-II superconductors have an upper critical magnetic field Hc,2

of over 200 T [BK04, pp. 82 & 99]. The barium strontium calcium oxocuprates

(henceforth termed BSCCO) only have a magnetic irreversibility field of 200 mT at

77 K but at lower temperatures they can tolerate much higher fields and at liquid

Helium temperatures they can be used at field strengths exceeding 10 T [vdLvEtH+01].

NbTi, Nb3Sn and MgB2 show similar magnetic properties, although they only become

superconducting at much lower temperatures. The rare earth barium oxocuprates

(henceforth termed REBCO) can even tolerate magnetic fields over 30 T [HKC+07].

The penetration of magnetic flux into the superconductor volume is governed by the

competing energetic influences of the loss of condensation energy and the conservation

of energy saved by not having to displace magnetic flux. Upon flux penetration,

condensation energy is lost because electrons that would otherwise tend to form

Cooper pairs due to the superconducting state in general being energetically more

favourable below a temperature T<Tc fail to do so. On the other hand, since the
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H

M

Hc,1 Hc,th Hc,2

Figure 2.3: The lower critical magnetic field Hc,1 denotes the field amplitude above
which magnetic flux starts to penetrate the superconducting volume resulting in
changes to the sample magnetisation M ; above the upper critical magnetic field Hc,2
bulk superconductivity is not observable. The thermodynamic critical magnetic field
Hc,th is the thermodynamic critical field that in the case of Type-I superconductors
marks the onset of the normal conducting state; in the case of Type-II superconductors
it is the magnetic field at which the difference of the integrals of the magnetisation
curves below and the integral of the magnetisation curve above Hc,th equal.

process of displacing magnetic flux from inside the superconductor expends energy

and allowing some flux to enter its volume saves a fraction of said energy, a balance

arises that depends on the two factors. Consider the interface surface energy σ which

is approximately defined by [MU97, pp. 57-60]:

σ ≈ 1
2
µ0H2(ξ−λL). (2.3)

with the magnetic field H. In conventional superconductors λL < ξ so that σ >

0 where in Type-II superconductors λL > ξ so that σ < 0. Tab. 2.1 shows the

classification of superconducting materials into the two possible classes. Type-II

superconductors consequently profit energetically from flux entering the volume. At

the same time, in order for the superconducting state to persist, some domains need

to remain flux free. This leads to the question of what the resistive domains look like

which will be discussed in Cap. 2.3.

2.3 Magnetic Flux Quantisation

Since the positive interface energy entails an energy gain when the interface is

maximised, it is energetically convenient for the magnetic flux to segment into a
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Classification of superconductors

Type-I Type-II

κ < 1/
p

2 κ > 1/
p

2
σ > 0 σ < 0

Table 2.1: Using the Ginzburg–Landau parameter κ (see Eq. 2.2) and the interface
surface energy σ to classify superconducting materials. When rigorously solving the
Ginzburg-Landau theory and not using the approximate formula given in Eq. 2.3, it can
be shown thatσ is zero if κ is exactly 1/

p
2. When κ is larger than 1/

p
2, the coherence

length ξ is shorter than the London penetration depth λL and the material is Type-II
and vice versa. Similarly, whenσ is smaller than zero, it is energetically more convenient
to allow a certain amount of magnetic flux to penetrate the superconductor volume
which is characteristic of Type-II superconductors.

multitude of disconnected volumes instead of staying singly connected. This leads

to the formation of fluxons, or flux vortices, which usually arrange in distinctive

geometric patterns. With cryogenic scanning tunnelling microscopy, it is possible

to observe these vortex patterns in situ [SSS+03] (compare Fig. 2.4). Quantum

mechanics dictates a lower limit for the amount of flux contained in any such vortex.

Figure 2.4: (a-d) STM Fermi-level conductance images of the vortex lattice of V3Si as
a function of applied magnetic field at 2.3 K. (e-h) Corresponding auto-correlation
images showing the unit cell of the vortex lattice undergoing a hexagonal-to-square
symmetry transition. Reprinted figure with kind permission from Sosolik et al., Phys-
ical Review B 68, 140503/1-4, 2003. Copyright 2003 by the American Physical Soci-
ety [SSS+03].

Consider the Cooper-pair ensemble being described by the complex order parameter

field ψ, in this instance interpreted as the macroscopic wave function. After a

revolution along an arbitrarily chosen path integral contour C , when returning to the
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place of origin, ψ has to retain its initial amplitude and phase. Then it is intuitively

understandable that magnetic flux Φ is quantised in superconductors since the London

theory states that the electric current ~J is a function of the phase of the macroscopic

wave function φ and the magnetic vector potential ~A:

~J =
nsqħh

m
∇φ − nsq

2

m
~A. (2.4)

Due to the constraint mentioned earlier and because φ is defined up to integer

multiples of 2 ·π, we get:

ψ=
p

nse
iφ =

p

nse
i(φ+2πn) (2.5)

with the integer n. The total variation of the phase along the closed path integral

contour C is thus:

∆ψ=

∮

C

∇φ · d~l = 2πn. (2.6)

with the infinitesimal length ~l, which, using Eq. 2.4, leads to the condition:

∮

C

~J · d~l + nsq
2

m

∮

C

~A · d~l = 2πn
nsqħh

m
. (2.7)

Choosing the path integral contour C far from the surface/vortex core (at a distance

much larger than λL), the supercurrent ~J vanishes, leading to

q

∮

C

~A · d~l = qΦ= 2πnħh. (2.8)

The magnetic flux Φ is thus quantised in integer units of the magnetic flux quantum Φ0

(fluxoid):

Φ0 =
2πħh

q
=

h
2e−

. (2.9)

where we used q= 2e− and the Planck constant h. The magnetic flux quantum Φ0 has

also been experimentally measured to be [DN61]:

Φ0 = 2.067833758(46) fWb. (2.10)
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2.4 Flux Pinning and Critical Current

If isotropic material properties of superconductors in the Shubnikov phase were

assumed, there should be a measurable loss due to the vortices moving through

the material. The movement stems from the Lorentz force acting on the vortices,

displacing them perpendicular to the transport current and the resulting magnetic

field (see Fig. 2.5). The losses occurring during the movement of the vortices stem

from the normal-conducting electrons in the vortex cores interacting with the crystal

lattice [MU97, pp. 132 ff.]. The fact that Type-II superconductors may carry dc electric

current without dissipation under certain conditions gives rise to the assumption that

this may not be entirely correct. Indeed, it is well known that if the applied magnetic

field is not too high and the thermal energy is below a threshold, the vortices will stay

fixed in place [BK04, pp. 282 ff.].

transport current j
Lorentz force FL

background magnetic field H

Figure 2.5: A Lorentz force acting on the flux vortices results from the electric transport
current and a background magnetic field of depicted direction. The Lorentz force
displaces the vortices laterally with respect to the transport current and perpendicular
to the magnetic background field. If no active pinning centres are present, the
movement is unimpeded and the superconductor is in the so called flux flow regime.

The sites at which vortices stay at a fixed position are called pinning centres and

act as potential wells, reducing the total energy of the vortices. There is a range

of pinning centres, both intrinsic to the material as well as artificially introduced:

zero-dimensional pinning centres such as crystal lattice point defects, one-dimensional

pinning centres such as displacement lines, two-dimensional pinning centres such

as grain and domain boundaries or surface defects and three-dimensional pinning

centres such as artificially introduced precipitations and columnar defect channels

introduced by ion or electron bombardment. A material without any pinning centres
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whatsoever would only be of limited technical use since its critical current would be

zero.

With the vortices fixed in place, no dissipation is observable. If the Lorentz force acting

on a particular vortex becomes larger than the pinning force however, the vortex will

tear free of the pinning centre. It will continue moving through the superconductor

until it is either pinned by another pinning centre or leaves the superconducting

domain. The pinning force therefore directly influences the critical current density jc,

since it is defined as the maximum current that a superconductor can carry without

dissipation. So if the current flowing locally becomes larger than jc, the excessive

current will shift to regions where the electric current density j is still below jc. Not

only the electric energy determines whether a vortex will tear free of a pinning centre.

The magnetic and thermal energies are equally important. Besides the pinning force,

the pinning centre density influences the total electric critical current as well, resulting

in the total critical current being proportional to both the pinning centre density ρp

and the pinning force Fp:

Ic∝ Fp ·ρp. (2.11)

2.5 Voltage-Current Dependence

In the dissipation free state a voltage drop is not observable due to the superconducting

currents. That means that the total electric current I flowing is below the critical

electric current Ic. On reaching the transition state at Ic, a measurable resistance

occurs (see Fig. 2.6).

Mathematically, the observed behaviour is often conveniently modelled by a power-law

dependence relating the voltage U to the total electric current I . The critical electric

current Ic is determined using the arbitrary 1 µV cm−1 criterion: for a sample with

voltage taps placed 5 cm apart, the critical current is reached when the total measured

voltage reaches 5 µV. This technique has not yet been standardised for REBCO coated

conductors, only for Nb3Sn, NbTi and BSCCO tapes [DKE07a, DKE07b, DKE06]. For

the low-Tc superconductor material class, the criterion is actually 100 nV cm−1 due to

their steeper transition. The power-law dependence with the power-law exponent np

determining the steepness of the transition of the dependence of the scalar electric

field E as a function of the I is:

E = Ec

�

�

�

�

I
Ic

�

�

�

�

np

(2.12)
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Figure 2.6: Superconducting U-I-characteristic measured on a 12 mm wide Superpower
tape and fitted with a power-law dependency and the following parameters: Ic=
274 A and np= 30. The voltage taps were situated 5 cm apart, hence the 5 µV Ic
criterion. The region where a notable resistance is measured, close to Ic, is called the
transition state.

where the critical electric field Ec of around 10−4 V m−1 is a typical value for high

Tc-superconductors. The current-voltage characteristic can easily be fitted to measured

data, see Fig. 2.6.

2.6 Loss Mechanisms in Superconductors

Despite the fact that ideal superconductors with applied electric transport currents or

background magnetic fields insufficient to cause magnetic flux penetration show no

dissipation, in measurements of Type-II superconductors, losses are often observed.

Some of the losses stem from normal conducting components and others from super-

conducting components. The different loss mechanisms will be explained subsequently.

Their location of occurrence is roughly sketched in Fig. 2.7.

Hysteretic losses will be analysed in Cap. 2.6.1 and, they being an important source

of losses, in great detail later on. Since superconducting wires or cables usually

also comprise some normal conducting materials (see Cap. 2.7), a few more loss

mechanisms are discussed, some of them solely prevailing to the normal conducting

regions. The concept of flux creep (see Cap. 2.6.2) and flux flow (see Cap. 2.6.3) is

introduced which is important for Type-II and, among those, for high-Tc superconduct-

ors especially. The high-Tc superconductors are afflicted with flux creep to a greater



16 2 Fundamentals

degree since not only are their working temperatures usually higher but they also

have shorter coherence lengths as compared to conventional superconductors that

result in smaller pinning energies [BI93]. Coupling losses are important when a cable

or wire consists of more than one superconducting filament (see Cap. 2.6.6). A similar

loss mechanisms that is observed in superconductors with one filament as well is the

eddy current loss (see Cap. 2.6.4). And lastly, ohmic losses in normal conducting

regions are discussed (see Cap. 2.6.5).

2.6.1 Hysteretic Losses

When applying an electric transport current or, alternatively, a background magnetic

field, magnetic flux will start penetrating the superconductor above a certain threshold,

as discussed in Cap. 2.4. Supposing a certain magnetic flux is located in the volume of

the superconductor enclosed in vortices, then reversing the electric transport current or

the excitatory background magnetic field and applying an equally large but opposing

current or field leads to the same magnetic flux penetrating the superconducting

volume as initially, just with its polarity reversed. Since energy has to be expended in

order to tear vortices from their pinning centres, a hysteresis of the magnetisation is

observable and energy is dissipated [SM60].

In order to design superconducting applications, understanding hysteretic losses is

vitally important since they are one of the most important loss factors resulting in heat

dissipation in superconducting applications with transient electric currents or magnetic

fields. This also makes them an important cost factor. Knowing where, spatially and

temporally, energy is dissipated is also crucial for designing superconducting systems:

finding hot spots and optimising geometries and materials in applications is necessary

for maintaining operational stability on parameters like temperature, magnetic field

1

2

4

3
region with flux
penetration

ferromagnetic substrate

HTS

metal

Figure 2.7: Schematic of a typical HTS coated conductor with locations of various loss
mechanisms: 1) hysteretic losses in regions where magnetic flux has penetrated 2) eddy
current losses in the normal conducting metal stabiliser 3) coupling losses between
superconducting filaments (in multiple strand wires, cables or striated conductors) 4)
ferromagnetic losses in the substrate.
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and current density. Since parameters like magnetic field and electric current are

interdependent, being able to simulate applications is necessary if prototyping via

multiple trial and error iterations is to be avoided.

In isotropic and Type-I superconductors hysteretic losses are not observed as only

Type-II superconductors show this loss mechanism. The losses are a direct result of the

irreversibility of the flux pinning. They are equal to the integral of the area enclosed

by the magnetisation-curve, with the energy dissipation per cycle Q a function of the

magnetic field H and the sample magnetisation M :

Q =

∫

H · dM =

∫

M · dH. (2.13)

Since the magnetisation only changes as a consequence of a change of magnetic field,

the fact that the hysteretic losses are caused by temporal transients in the field is

immediately obvious. If the magnetic field, either due to an ambient background field

or due to the self field created by a transport current does not change, no hysteretic

losses will be observable. Conversely, a change in magnetic field or an alternating

electric current will lead to hysteretic losses.

2.6.2 Flux Creep

The initial vortex distribution forming due to the influences of either an electric

transport current flowing or a background magnetic field being applied are influenced

by the magnetic history of the material and the pinning force Fp as well as the pinning

centre density ρp. If the superconducting state is stable and far from the critical

parameters, that is, if the superconductor is not in the flux flow regime, the vortex

distribution will not change significantly. This behaviour may also be thought of as

the thermal energy not being sufficiently high enough to supply the activation energy

to allow a flux vortex to tear free of its pinning centre. A vortex can still tunnel out of

its position, however [FGLL93].

When energy of sufficient magnitude is supplied, either in thermal, electric or magnetic

form, the statistical probability of the vortex overcoming the pinning force Fp and

tearing free of its pinning centre is enlarged and eventually a vortex will be released

from its initial position to move through the superconductor under the influence of the

Lorentz force FL until trapped again. Over time, the local magnetisation diminishes

and a thermodynamically more stable state is achieved, with an electric current
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density j flowing that may be significantly lower than the critical current density jc.

After an infinite amount of time, the vortices will be distributed evenly in the material.

The initial vortex distribution smears out over time. This thermally activated vortex

movement is called flux creep.

Because flux creep is a thermally activated mechanism, it scales according to the

Boltzmann law and the frequency with which the vortices will tear free is proportional

to exp (−∆Ea/kBT ), with the Boltzmann constant kB and the activation energy Ea,

which depends on the electric current density j as the vortices break free at the critical

current density jc even at a temperature T=0 K: Ea∝∆( jc − j).

Because of the temperature dependence, flux creep is particularly relevant for high-

Tc superconductors. This is why, for high-Tc superconductors, the voltage-current

characteristic is much smoother at the transition than for low-Tc superconductors.

2.6.3 Flux Flow

Flux flow is a state of constant flux movement, where the pinning force is either

non-existent or too small to counteract the Lorentz force FL. This means that the

fluxons are in constant motion and thus steadily dissipate energy because transient

magnetic fields induce electric fields. The electric field resulting from the vortices

moving perpendicular to the transport current is anti-parallel to the electric field of the

transport current. This constitutes a resistive voltage and power is dissipated [Tin96,

pp. 162-176]. As is the case with flux creep, flux flow is more important in high-

Tc superconductors, especially if the operating temperature is close to the critical

temperature Tc. The higher the thermal energy of the system, meaning the closer the

temperature is to the superconductor’s critical temperature, the weaker the pinning

forces will become. This is why even high-Tc superconductors perform better at lower

temperatures [MU97, pp. 123 ff.].

2.6.4 Eddy Currents

When conductors (not only superconductors but also normal conductors) are exposed

to varying magnetic fields, electric currents are induced. These eddies of current

themselves cause magnetic fields. Since the induced electric currents and the resulting

magnetic flux add to the magnetisation of the superconductor, eddy currents may

lead to hysteretic losses (compare Cap. 2.6.1) [VLW04, pp. 71 ff.]. Because the

eddy currents are superimposed on the possibly already established transport or
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shielding currents and may interact constructively or destructively, the local current

and magnetic field distribution may be strongly influenced. This can lead to increased

losses. Because the losses connected with eddy currents scale with the square of

the frequency of the incident magnetic field, they can be identified in dissipation

measurements.

Losses due to eddy currents may be reduced by special geometric designs. In cables,

twisting of the strands with complete strand transposition reduces the effective area

through which the flux passes, leading to reduced eddy currents. The twisting also

leads to the eddy currents flowing in smaller loops, balancing out in the cross-over

regions, further reducing the load on the conductor.

2.6.5 Ohmic Losses

Joule heating can occur with stabilised superconducting wires. If the outer layer

is not superconducting but as in some coated conductors made of copper or other

normal conducting materials, the current may not immediately transpose into the

superconducting material. This leads to a voltage drop and consequently to ohmic

losses due to resistive conduction. This effect most often occurs at contacts but

can also be observed at defects in the superconductor. The influence of end effects

is observable in U(I)-measurements as a linear component superimposed onto the

power-law behaviour (compare with Cap. 2.5). Apart from these end effects, the

normal conducting electrons inside the flux vortices generate ohmic losses according

to Joule’s first law with the energy dissipation per cycle Q, the total electric current I

and the total electric resistance R:

Q = I2R. (2.14)

2.6.6 Coupling Losses

The term coupling losses is usually not used to describe losses at engineered junctions

in superconductors, for example when two cables are patched together. Instead,

the term describes the losses occurring in the normal-conducting matrix between

superconducting filaments. Often, all the filaments or strands of a cable or wire are

transposed to reduce the eddy currents. If the strands are transposed but embedded

in a conducting matrix, additional losses due to ohmic resistance will arise however,
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should the eddy currents flow through normal conducting parts. These losses are the

so called coupling losses [Cam97].

2.7 Superconducting Materials

Superconductivity is not a rare phenomenon. In fact, almost half of the chemical

elements are superconducting in pure form (see Fig. 2.8). Almost all of the elemental

superconductors are Type-I superconductors whereas most compound superconduct-

ors are Type-II superconductors with only a few elemental Type-II superconductors

like those mentioned in the beginning of Cap. 2. Prominent examples of Type-II

superconductors are high-Tc superconductors of the oxocuprate class such as the rare

earth barium oxocuprates, the barium strontium calcium oxocuprates and MgB2, but

also NbTi and Nb3Sn. The latter two materials are low-Tc superconductors, and to

date account for roughly 99 % of the total superconducting material market volume

together with MgB2 [Con].

REBCO is considered a high potential material because of the high critical temperature

of around 90 K and the excellent in-field performance, meaning the material is able

to conduct large amounts of electric current even when exposed to strong magnetic

fields. Another advantage of REBCO as opposed to BSCCO is the absence of the silver

matrix due to which the latter is very expensive. Even if no additional manufacturing

costs are assumed the price for BSCCO will stay high. The high critical temperature

allows liquid Nitrogen to be used as coolant for these materials instead of Helium

which is considerably more cost-efficient. The raw-materials required in order to

produce a superconducting REBCO tape are minuscule since the superconducting

layer is only in the order of 1 µm thick. The REBCO tapes are mechanically more

robust than the BSCCO variant due to their steel substrate which is important in high

magnetic field applications where large forces may act on cables and tapes.

Superconducting materials are legion with superconductivity even being observed in

organic compounds such as the Bechgaard salts [JMRB80] and alkali-doped fullerenes

such as RbCs2C60 [BW96]. Niobium based superconductors are used in a lot of

technical applications (see Cap. 2.7.1). MgB2 is gaining importance and is introduced

in Cap. 2.7.2 but does not reach as high critical currents as the oxocuprates while

having a significantly lower critical temperature. Therefore, the research was focused

on the promising material group of the oxocuprates, see Cap. 2.7.3.
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Figure 2.8: Periodic system of superconducting elements.
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2.7.1 Niobium Based Superconductors

x
z y

Figure 2.9: Crystal structure of
Nb3Sn, with the lattice parameter
a = 5.29 Å.

x
z y

Figure 2.10: Hexagonal crystal
structure of MgB2, with lattice
parameters a = 3.086 Å and
c = 3.5240 Å.

Niobium even in elemental form being one of the Type-II superconductors (Tc of

9.2 K) is widely used in superconducting applications. Prominent among the Niobium

based superconducting materials are NbTi and Nb3Sn. NbTi is the most used material

except in very specialised, high performance applications. It is also used due to its

easy workability and hence cost-effectiveness [Bra09] and has a critical temperature

of 9.8 K.

When even higher magnetic fields are required, Nb3Sn is used, see Fig. 2.9. It is

costly because of its complicated manufacturing process due to its extreme brittle-

ness [JLL03]. It cannot be worked once synthesised and hence has to be shaped while

in precursor form and then tempered; for coils, this manufacturing process is called

wind and react [KTA+96]. The crystal structure of Nb3Sn is that of a body centred

cubic of the β -Tungsten (also called A15) structure. Its upper critical field is 24 T and

its critical temperature 23.2 K. Conductors made from both Nb3Sn and NbTi consist of

a multiplicity of thin superconducting strands, weaved together as opposed to coated

conductors, whose superconducting layer is singly connected, see Cap. 2.7.3.

2.7.2 Magnesium Diboride

Although MgB2 had been known for half a century and was even commercially

available, its superconducting properties were only discovered in 2001 [NNM+01].

That same year, MgB2 has been used to manufacture superconducting wires [CFB+01].

It has a moderately high critical temperature of Tc = 39 K. This means that liquid
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Nitrogen cannot be used to cool MgB2, one of the main advantages of REBCO (see

Cap. 2.7.3).

Nevertheless, MgB2 still has considerable potential due to the manufacturing process

being much less complicated, faster and hence cheaper than in the case of REBCO or

Nb3Sn [VKS07]. MgB2 cables are round as opposed to the high aspect ratio REBCO

tapes which diminishes magnetisation losses. Also, liquid Helium is not necessarily

required for cooling MgB2 as conduction cooling may be used. Conductors made from

MgB2 consist, just like those made from Niobium based superconductors, of lots of

thin strands combined into one wire. The wire need not only consist of MgB2 strands.

Different designs include copper for stabilisation or structural materials in order to

improve the mechanical stability of the resulting wire. See Fig. 2.10 for the crystal

structure of MgB2.

2.7.3 Oxocuprates

Oxocuprates were the focus of intense research following their discover in

1986 [BM86]. Technically, two groups of oxocuprates are of particular interest:

BSCCO and, above all, REBCO. BSCCO (Ba2Sr2Ca1Cu2O8+δ with a Tc of 94 K and

Ba2Sr2Ca2Cu3O10+δ with a Tc of 107 K) is expensive due to the silver matrix enclosing

the superconducting strands. Like MgB2, BSCCO is usually manufactured using the

powder in tube route.

x
z y

Figure 2.11: Perovskite based crystal structure of YBa2Cu3O7−δ, with lattice paramet-
ers a = 3.8227 Å, b = 3.8872 Å and c = 11.6802 Å.
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Coated conductors, which sport superconducting layers made from REBCO are con-

sidered to have huge potential for technical applications. Not only because of their

excellent physical properties such as high critical temperatures above the boiling

point of liquid Nitrogen (Tc(YBa2Cu3O7-δ)=93 K) and high critical current density

of about 10 kA mm−2 but also due to the minuscule amount of material needed and

the resulting low material costs. For a schematic view of a coated conductor, refer to

Fig. 2.12. The actual superconducting layer is only in the order of 1 µm thick, see

Fig. 2.13.

Actual conductors are usually between 2 mm and 12 mm wide, leading to aspect

ratios between 2000 and 12000. These high aspect ratios – also in combination with

the single connectivity of coated conductors – are of importance when considering

hysteretic losses in coated conductors. In perpendicular magnetic fields or when

carrying electric transport currents, magnetic flux will start penetrating from the

lateral edges where the magnetic field line density is highest. Due to the geometric

layout and the high aspect ratio, the magnetic field in these regions is strongly

intensified. This leads to much stronger magnetic flux penetration as for example

the same transport current in a cylindrical conductor would. For more detailed

information on material properties of coated conductors, refer to [Bar13, Cap. 2.3.3].

All important high current cable designs, both for fusion as well as for power applic-

ations, are based on coated conductors, as are most power application designs like

transformers, fault current limiters and rotating machinery. This is why subsequently

the coated conductors will solely be considered.

2.8 Ferromagnetic Materials

Ferromagnetic materials are of interest when investigating the properties of supercon-

ductors since the magnetic properties of both influence the magnetic field response of

each other. Unlike superconductors which, in the Meißner state, are perfect diamag-

nets and thus expel magnetic flux from their volume, ferromagnets attract magnetic

flux lines. This leads to the magnetic flux density being much higher inside ferro-

magnetic materials compared to vacuum or air. The ratio by which the magnetic

flux density is amplified is governed by the relative magnetic permeability µr. For

ferromagnetic materials, µr >> 1 whereas for superconductors −1<= µr < 1. Ideal

superconductors show µr = −1. Just like superconductors, ferromagnets have hys-

teretic behaviour: upon exposition to oscillating magnetic fields they dissipate energy

as heat.
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copper stabilisation
silver shunt

REBCO layer
buffer layers

stainless steel substrate

Figure 2.12: Schematic of the layered structure of a coated conductor. Instead of
steel substrates, Rolling Assisted Biaxially Textured Substrates (RABiTS) are also used.
These are mostly made from the ferromagnetic alloy Ni95 %W5 %. Those ferromagnetic
substrates influence the hysteretic loss behaviour quite strongly, see Cap. 5.2. Note
that the aspect ratio of the coated conductor shown is not representative. Reproduced
with permission from [Bar13].

Figure 2.13: REM microscopy of a Superpower coated conductor tape. The supercon-
ducting layer is only about 850 nm thick while the buffer layers are even thinner, about
120 nm in total. For a schematic view of the layer structure, refer to Fig. 2.12. Picture
courtesy of A. Jung, KIT.
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H

B

BS

Hmc

BR

Figure 2.14: Hysteresis of ferromagnetic materials. The initial magnetisation is shown
with a dotted curve. The hysteretic loss in ferromagnetic materials is proportional
to the area enclosed by the B(H) curve. A material with a higher remanence BR,
saturation flux density BS and magnetic coercive field Hmc does not necessarily need
to have a larger hysteretic loss as the area depends on both BS and Hmc and if one is
small, the resulting area integral is small as well.

The hysteretic behaviour of ferromagnetic materials is sketched in Fig. 2.14. The

hysteretic losses in the ferromagnet depend on the area enclosed by the hysteresis

curve. Generally speaking, the higher the saturation flux density BS and the magnetic

coercive field Hmc, the higher the losses. Higher saturation flux density BS or magnetic

coercive field Hmc do not automatically result in higher losses however: if one para-

meter remains low resulting in a narrow shape of the curve, the losses remain small.

The remanence BR denotes the amount of magnetic flux remaining in the sample after

the outer magnetic field has been removed.

When the applied magnetic fields vary in amplitude, not only does the magnetisation

of the ferromagnetic material change, but also the relative permeability. For all known

materials, if the applied magnetic field approaches infinity, the relative permeability

tends to unity. This accounts for the fact that the material is saturated and the

magnetisation does not change even if higher fields are applied.

2.8.1 Nickel

Nickel is one of three elements besides iron and cobalt showing ferromagnetic prop-

erties at room temperature. At cryogenic temperatures, Gadolinium (Tc = 289 K),
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Terbium (Tc = 220 K), Dysprosium (Tc = 85 K), Holmium (Tc = 20 K) and Erbium

(Tc = 32 K) become ferromagnetic as well. Being an elemental ferromagnetic ma-

terial eases deposition considerably as Nickel can simply be electroplated from a

wet solution. Most of the other ferromagnetic materials are compounds and thus

plating methods would have to be developed. Additionally, the corrosion resistance of

Nickel is very good and it is a well understood material. All of the above predestine

Nickel as a material for initial investigations of the interactions of superconductors

and ferromagnetic materials.

In order to be able to account for Nickel in the numerical simulations, its permeability

and loss function have to be modelled correctly. With data from [GvV+07], a numer-

ically efficient formula was constructed for the dependence of the relative magnetic

permeability µr on the local magnetic field amplitude H:

µr(H) = −75.5 · {arctan (0.00017 ·H)}0.9924 + 119.19 (2.15)

The loss function is defined as the sum of the integrals over the area of the ferromag-

netic domains:

QFM =
n
∑

i=1

∫

SFM

fFM dSFMi
(2.16)

where n is the number of ferromagnetic domains present. Then we have the surface

SFM of the ferromagnetic domain in question. The arbitrary loss function fFM is defined

as:

fFM =







Qsat ·
�

~B
~Bsat

�2
~B ≤ ~Bsat

Qsat ~B > ~Bsat

(2.17)

with the local flux density amplitude B= µ0 · µr · H, the saturation flux density

Bsat = 500 mT and the saturation energy dissipation per cycle Qsat = 2.75 MJ m−3 per

cycle.

We used electroplating to deposit Nickel on the samples and the solution used was a

Watts bath. For concentration information, see Tab. 2.2.

Reaching the desired thickness of the Nickel coating by electroplating is quite simple

using Faraday’s law of electrolysis:

md =
I · t ·M

z · F . (2.18)
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Concentration of reagents required for electroplating Nickel

Reagent Concentration / g l−1

Nickel Sulfate NiSO4 240− 310
Nickel Chloride NiCl2 20− 50
Nickel Dihydrate Ni(HCOO)2·2H2O ≈ 45
Boric Acid H3BO3 20− 40
Cobalt(II) sulfate CoSO4 ≈ 4.5
Formaldehyde CH2O ≈ 2.5
Ammonium Sulphate (NH4)2SO4 ≈ 0.75

Table 2.2: Concentration of reagents required for electroplating Nickel using a Watts
bath. Other bath compositions are also possible (Nickel Sulfamate, all-Chloride, Sulfate-
Chloride, all Sulfate, hard Nickel). The electromagnetic properties of the deposited
Nickel have to be checked when other electroplating methods are used.

Here, md is the mass to be deposited, calculated from the volume and density ρ of

Nickel:

md = w · l · dsub ·ρ. (2.19)

where w is the width of the shielded area, l is the length of the sample and dsub is the

shield thickness. Care has to be taken to compute the correct volume: usually two

sides of a conductor will have to be coated. The time t designates the period for which

a current I has to flow and the valence of Nickel z (for all practical considerations: 2).

Finally, F is the Faraday constant, which is 96 485 C mol−1.

In general, it is advisable to chose a current that is rather too low than too high, since

a lower current produces more uniform results. Additionally, a lower voltage is needed

in order to maintain the chosen current. Through the coating gaining in thickness

and thus in resistivity and the ions in solution depleting, the total conductivity of the

Watts bath is reduced with time and the voltage needs to be increased in order to

balance this effect. Since the voltage of any given current source is limited, keeping

the deposition current low ensures a stable process without reaching the voltage limit.

Additionally, it is considered to be beneficial to arrange the sample in a way that the

wide face of the coated conductor faces the electrode. This allows uniform deposition

due to the symmetrical arrangement. If one side were situated closer to the electrode,

Nickel would primarily be deposited there.
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2.8.2 Nickel-Wolfram Alloys

There are two distinctive approaches to manufacturing coated conductors at present:

using electropolished non-magnetic stainless steel substrates with a number of buf-

fer layers or using rolling assisted biaxially textured substrates (RABiTS), which

were first proposed in 1996 [GNB+96, GNK+97]. The material class used for RABiT

substrates is a NiW-alloy. Various stoichiometries such as Ni9%W and others have

been used [DGL+05, SZL+07], but the most common variant is Ni5%W which is

ferromagnetic [DTG+03, DGL+05, MGC+06, GBF+06, MYV+07, MFR+08].

In order to achieve the required crystallisation structure of REBCO with low-angle grain

boundaries, the superconducting layer has to be deposited on a suitably prepared

surface. The RABiTS process provides such a surface in a very efficient manner

since rolling is a fast mechanical process whereas depositing thin film buffer layers

physically or chemically is slow in comparison [GNB+96, GNK+97]. Using NiW-alloy

based substrates reduces the number of required buffer layers considerably and

provides a favourable structure while speeding up the production process. Because

of the interaction of ferromagnetic material and superconductors, a RABiTS based

coated conductor behaves differently from a conductor with non-magnetic substrate

(see Cap. 5.2).

In order to model the physical behaviour of the Ni5%W-alloy, fitting functions repro-

ducing the µr(B) and the Q(B) response were employed which in turn are based on

measured data from [MYU+08].

2.8.3 Further Ferromagnetic Materials

Nickel as a ferromagnetic material does not have a particularly high relative magnetic

permeability nor a particularly low loss function. Materials with high permeability

and low hysteretic losses would be ideally suited for ferromagnetic shielding (see

Cap. 2.8.4) since the flux rerouting would be stronger and the addition to the overall

losses smaller. In Tab. 2.3, an overview of interesting materials is provided. It should

be noted that further investigations recording detailed ferromagnetic behaviour have

to be conducted as single values for initial relative permeability, saturation flux

density and hysteresis loss are not sufficient for modelling and understanding the

complex interactions between superconductors and ferromagnetic materials. Also,

measurements at cryogenic temperatures are required in order to know how these

materials behave in liquid Nitrogen or Helium.
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Typical properties of several soft magnetic materials at room temperature

Material Initial Relative
Permeability µr

Saturation Flux
Density BS / T

Hysteresis Loss
per Cycle /
J m−3

Commercial iron ingot 150 2.14 270
Silicon-iron (oriented) 1400 2.01 40
45 Permalloy 2500 1.60 120
*Ferroxcube A 1400 0.33 40
*Ferroxcube B 650 0.36 35
Sendust 35000 1.0 18
Hiperco >3000 2.4 200
Permendur 700 2.45 300
Cold-rolled Si-Steel 1500 2.0 44
78.5 Permalloy 10000 1.07 20
3.8-78.5 Cr-Permalloy 12000 0.80 20
3.8-78.5 Mo-Permalloy 20000 0.85 20
*Supermalloy 100000 0.8 20
Hipernik 4500 1.6 10
*TDK PE 22 1800 0.51 3.16
*TDK PE 90 2200 0.53 2.4

Table 2.3: Properties of ferromagnetic materials at room temperature adapted from
[CR10, p. 822] and [Hos52, pp. 204, 214, 231, 236] and from a material data sheet on
PE 22 & PE 90 (v.D07EA2 2010.05.17) by TDK Corporation, Tokyo, Japan. A compre-
hensive study at cryogenic temperatures would be most interesting. Asterisks mark
possibly interesting materials.

2.8.4 Ferromagnetic Shielding

While superconductivity is usually suppressed by high magnetic fields and magnetic

impurities in the material, in 1999, it was predicted that ferromagnetic materials could

also have a beneficial effect on superconductors by increasing the critical current if

placed in certain geometric configurations [GUF99]. Properly shaped and positioned

ferromagnetic shields are supposed to redirect flux and thus permit a metastable state

to assert itself. By delaying the flux entry they should permit overcritical currents

flowing in the superconductor volume up to a certain threshold [GSF00, Gen02, JJF02,

JBH05, GRKN09]. Later, the concept was extended to reduce hysteretic losses in the

superconductor [GVPv09]. However, since the ferromagnetic material also dissipates

energy in oscillating magnetic fields, a trade-off has to be found between reducing
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losses in the superconductor and increasing losses in the ferromagnetic material. Also,

great care has to be taken regarding placement and geometry of the ferromagnet lest

only detrimental effects occur.
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3 Modelling Superconductors

Even though only direct measurements provide final confirmation regarding the

outcome of experiments, employing modelling in a scientific setting is often beneficial

if practicality and convenience are considered: modelling complex systems may not

only speed up investigations considerably, it may furnish tools to investigate otherwise

inaccessible observables. The latter in particular is extremely helpful in discerning the

influences of convoluted variables, helping to understand basic principles.

While analytic models provide exact solutions for a given set of boundary conditions

(see Cap. 3.1), numerical methods are able to consider almost arbitrary problems (see

Cap. 3.2).

3.1 Analytic Models

The earliest analytic model able to account for the behaviour of Type-II superconduct-

ors is the critical state model discussed in Cap. 3.1.1 [Bea62, BD62, Bea64, Lon63].

Simplifying, it assumes constant critical current which to a degree is remedied by incor-

porating vector-field-dependent critical current densities (see Cap. 3.1.2). Geometries

like the technically highly interesting coated conductors tapes and ellipse-shaped

conductors are taken into account by the Norris and Brandt models in Cap. 3.1.3.

3.1.1 Critical State Model

The basic assumption of the macroscopic critical state theory, also called Bean theory,

accounts for the fact that hysteresis was observed in superconducting samples [Bea62,

BD62, Bea64, Lon63]. Opposed to the microscopic theory focusing on vortices and

pinning centres however, the critical state model is a field theory. This means that the

material is treated as isotropic and instead of the Lorentz force FL and the pinning

centre density ρp, a macroscopic quantity has to be found to account for the observed

behaviour. This quantity is the critical electric current Ic. It relates to the magnetic

field as:

µ0 · jc = |∇~B|. (3.1)
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Ht=t0
= H0

Ht=t1
= H1

Ht=t2
= 2 ·H1

x

H

(a) Application of a magnetic
field of various amplitudes in
parallel to a superconductor.

x

H

Ht=t3
= 0

Ht=t4
= −H1

Ht=t5
= −2 ·H1

(b) Subsequent application of
a magnetic field of inverted dir-
ection.

Figure 3.1: A slab of superconductor never having experienced magnetic fields or
currents is subjected to a magnetic field of various amplitudes and directions: at t = t0
there is no applied background magnetic field and null field inside the superconductor.
At t = t1 a field H1 is applied, leading to a linearly diminishing field inside the
superconductor with dH/d x = jc. After having applied a field of 2 ·H1 at t = t2, the
total measurable magnetisation will only become zero at t = t4 with an applied field
of −H1.

In that respect, the critical state theory and the macroscopic theory are alike: once

the local critical current density jc is reached, the current penetrates further into the

superconducting volume and the magnetic field changes accordingly.

Areas where no magnetic field is present are initially devoid of current in the virgin

superconducting state, meaning they have not experienced exposure to magnetic

fields or transport currents since entering the superconducting state. The hysteresis

stems from the superconductor remembering the history of magnetisation: suppose a

superconductor was exposed to a magnetic field of sufficient magnitude to penetrate

its volume but insufficient to cause total penetration. The shielding currents induced

by said field will continue to flow due to the dissipation free state even if the excitation

field is removed.

The superconductor will retain its magnetisation and will act as a permanent magnet as

long as neither the superconducting state collapses nor the polarity of the exciting field

is reversed. Should the latter be the case and a field of half the magnitude but opposing

direction to the primary excitation field be applied and subsequently removed, the

summary magnetisation of the superconductor will be zero. This intriguing behaviour

is due to the fact that during the application of the second field, the flux trapped in the

superconductor volume has to change polarity. This is achieved by vortices moving out

of and vortices of opposing polarity moving into the material. Even though the total
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magnetisation of the superconductor will be null, the current profile of the sample

will not be the same as in the virgin state: inside the superconductor, two shielding

currents of equal magnitude will flow contra-directionally (see Fig. 3.1).

3.1.2 Vector-field-dependent Critical Current Densities

While Bean acknowledged the fact that the critical current density jc should be

dependent on the local magnetic field in his original paper [Bea62], he still assumed it

to be constant in his theory. While in reality jc should be a vector due to the anisotropy

of many superconductors, it is in fact assumed to be scalar in almost all analytical

and numerical models. The first model incorporating a field dependence was the Kim

model [KHS62], relating jc to the scalar magnetic flux density B as

jc(B) = α/B. (3.2)

Apart from this very simple approach, depending on the material and the geometry

under observation, it is sometimes necessary to take into account the components of

the magnetic field independently. Especially when dealing with quasi two-dimensional

material structures as in oxocuprates [ITTT87]. A reasonable agreement with meas-

urements sufficient for most cases is achieved by using the following equation with

the intrinsic zero-field critical current density jc0, the parameter of anisotropy k, the

parallel flux density component B‖, the perpendicular flux density component B⊥, the

characteristic flux density B0 and the field-dependence exponent b [GK06]:

jc(x , y) =
jc0

�

1+
p

k2·B‖2+B⊥2

B0

�b
. (3.3)

The most thorough descriptions of the critical currents in anisotropic supercon-

ductors with isotropic pinning sites being manufactured today requires taking

care of reproducing the predominant direction of pinning centres. This is pos-

sible using linear combinations with multiple components of elliptical dependen-

cies [BGL92, DBT+04, GLG+07]. Most prevalent coated conductors may be described

using the following set of equations very successfully [PVGv11], where the incident

magnetic field angle θ of magnetic flux density ~B is taken into account:

jc(|~B|(x , y),θ ) = { jc,ab[|~B| fab(θ )]
m + jc,c[|~B| fc(θ )]m + jc,i[|~B| fi(θ )]m}

1
m (3.4)
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with

jc,ab[|~B| fab(θ )] =
j0p

[1+ |~B| fab(θ )/B0ab]b

jc,c[|~B| fc(θ )] =
j0p

[1+ |~B| fc(θ )/B0c]b

jc,i[|~B| fi(θ )] =
j0i

[1+ |~B| fi(θ )/B0i]a

(3.5)

and

fab(θ ) =

(

fab0(θ ) ∀θ ∈ [−90◦ +δab, 90◦ +δab]

fabπ(θ ) ∀θ 6∈ [−90◦ +δab, 90◦ +δab]
(3.6)

and finally

fab0(θ ) =
Ç

cos2 (θ −δab) + u2
ab sin2 (θ −δab)

fabπ(θ ) =
Ç

v 2 cos2 (θ −δab) + u2
ab sin2 (θ −δab)

fc(θ ) =
q

u2
c cos2 (θ −δc) + sin2 (θ −δc)

fi(θ ) =
q

cos2 (θ −δi) + u2
i sin2 (θ −δi).

(3.7)

All the parameters ( j0p, j0i, B0ab, B0c, B0i, a, b,δab,δc,δi, uab, uc, ui, v ) with the excep-

tion of the exponent m= 8 are material specific and the functions have to be fitted to

measured data. For exemplary data, see [PVGv11].

Closely related to the simulation of critical current densities being dependent on the

local magnetic field amplitude are critical current densities depending on mechan-

ical stress fields. The twisted stacked tape cable for example, see Cap. 7, with its

longitudinal screw-like geometry is affected by compressive and tensile stress. If

the twist pitch becomes too small, reversible and – at even smaller twist pitches –

irreversible degradation of the critical current density is observed. This behaviour has

been investigated in [TMBB10]. The formulas required to model the dependence of

the critical current on the mechanical stress were implemented but the differences in

results compared to not taking into account said effects are negligible for all practical

considerations. At the same time, the computational effort required rises unreason-

ably due to the increased complexity. Because the dependence of the critical current

density is material specific and negligible below a threshold (in this case: less than

100 · 10−3 %), there is little benefit in taking into account the effects. Especially so
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since the dependence has to be measured anyway and simply keeping the twist pitch

above the threshold of permanent material damage removes the requirement for

simulation altogether. This is generally true for power applications, a mechanical

stress analysis might be in order for magnet applications.

3.1.3 Analytic Model for Coated Conductors

Both the Norris [Nor70] as well as the Brandt [BI93] model is able to predict the

magnetic field and the electric current distribution around and inside superconductors

for a number of geometries. Only the latter is able to also account for background

applied magnetic fields however. Most important for technical applications are the

solutions for the strip and the ellipse geometry as those resemble REBCO and BSCCO

tapes, respectively.

For applied transport current, the hysteretic power loss P in a strip and an ellipse

is [Nor70]:

P =
f · Ic

2 ·µ0

π

¨�

(1− I/Ic) · ln (1− I/Ic) + (1+ I/Ic) · ln (1+ I/Ic)− (I/Ic)
2
	

(Strip)

{(1− I/Ic) · ln (1− I/Ic) + (2− I/Ic) · (I/Ic)} (Ellipse)
(3.8)

For an applied background field the losses in a strip are:

P = 4 f ·µ0 · a2 · JS,c ·Ha(2Hc/Ha) · ln (cosh (Ha/Hc))− tanh (Ha/Hc), (3.9)

with the frequency f , the half width of the superconducting strip a, the applied

magnetic background field Ha and the critical magnetic field Hc, in the Brandt model

defined as Hc = JS,c/π where the critical sheet current JS,c is defined as JS,c = Ic/(2a).

It is good practise to compare numerical and experimental results obtained from

geometries resembling strips or ellipses to the analytical Norris and Brandt solutions

for initial comparison since striking deviations usually indicate erroneous data. It is

fortunate that both the technically interesting coated conductors and also the first

generation conductors made from BSCCO are described quite well by these geometric

abstractions.

In the following chapters, when considering coated conductor tapes, electric current

as well as magnetic field profiles that are results of numerical simulations are often

compared with analytic formulas. The analytical solutions for the sheet current JS as
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well as the magnetic field amplitude H are again taken from Ref. [BI93]. The analytic

formula for the case of applied electric transport current relies on the magnetic field

penetration depth position γ, which is defined in this case as:

γ= a ·
√

√

√

1−
�

Ia

Ic

�2

(3.10)

and is:

JS(x) =







(2 · JS,c/π) · arctan
r

a2−γ2

γ2−x2 |x |< γ
JS,c γ < |x |< a.

(3.11)

For the case of applied background magnetic field, γ is defined as:

γ= a/cosh(Ha/Hc) (3.12)

with Hc defined as in Cap. 3.1.3 and a further temporary constant c is introduced for

readability:

c = tanh
�

Ha

Hc

�

. (3.13)

Finally, the formula for the sheet current is:

JS(x) =







(2 · JS,c/π) · arctan
�

c·xp
γ2−x2

�

|x |< γ
JS,c

x
|x | γ < |x |< a.

(3.14)

The combined load case of applied electric transport current and applied magnetic

background field is basically a superposition of the two cases and is calculated as:

JS(x) = JS,c[ j(x +w, a+w,γ) + pp · j(−x −w, a−w,γ)] (3.15)

with c defined as in Eq. 3.13, a similarly defined constant ζ for the fraction of the

applied critical electric current Ic:

ζ=
Ia

Ic
, (3.16)
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the constants b1:

b1 = a ·
p

1− ζ2 ·
p

1− c2 + ζ · c, (3.17)

and b2:

b2 = a ·
p

1− ζ2 ·
p

1− c2 − ζ · c, (3.18)

and a field penetration depth position γ resulting therefrom:

γ=
b1 + b2

2
, (3.19)

and further constants w:

w=
b1 − b2

2
, (3.20)

p:

p =
Æ

|x2 − γ2| · (a− γ), (3.21)

and the function j(x , a,γ):

j(x , a,γ) =















1 γ≤ x ≤ a

(1/π) · arccot
�

γ2−a·x
p

�

x ≤ |γ|
0 −∞< x ≤ −γ

(3.22)

The formula for the magnetic field profile in the case of applied transport current

relies on γ as defined before in Eq. 3.10 and is:

H(x) =















0 |x |< γ
Hc·x
|x | · arctanh

r

x2−γ2

a2−γ2 γ < |x |< a
Hc·x
|x | · arctanh

r

a2−γ2

x2−γ2 |x |> a.

(3.23)
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The magnetic field profile in the case of applied background magnetic field, with γ

defined as in Eq. 3.12, is:

H(x) =















0 |x |< γ
Hc · arctanh

p
x2−γ2

c·|x | γ < |x |< a

Hc · arctanh c·|x |p
x2−γ2

|x |> a.

(3.24)

And the formula in the case of both applied electric transport current and background

magnetic field, with γ defined as in Eq. 3.19, is:

H(x) = Hc[h(x +w, a+w,γ)− pp · h(−x −w, a−w,γ)], (3.25)

with

h(x , a,γ) =

(

0 |x | ≤ γ
x

2·|x | · arctanh
�

p
a·x−γ2

�

γ≤ |x | ≤∞.
(3.26)

The polarity constant pp in Eq. 3.15 and in Eq. 3.25 may take the values ±1 and

governs whether the electric current dominated or the magnetic field dominated case

is calculated. The following cases determine which value pp takes:

pp =

(

−1 if I < I∗(Ha)

+1 if I > I∗(Ha)
(3.27)

which is equivalent to

pp =

(

−1 if Ha < Ha
∗(Ia)

+1 if Ha < Ha
∗(Ia).

(3.28)

The star denotes the electric current I generated by the applied magnetic field Ha and

vice versa.

3.1.4 Analytic Model for Bilayered Coated Conductors

Just as is the case with single coated conductors, simple bilayer structures consist-

ing of a superconducting and a ferromagnetic layer may also be described using
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analytical formulas [Maw08]. Assuming the critical state, infinitesimally thin layer

structures and infinite permeability of the ferromagnetic layer allows the solution of

this particular problem using conformal mapping.

The field lines resulting from an applied magnetic field are calculated as follows (see

Ref. [Maw08]):

H(x) =

(

0 |x |< γ
ℜ(H)(x + iε) γ≤ |x | ≤ a

(3.29)

with γ defined as in Eq. 3.12, the positive infinitesimal ε tending towards zero and

the complex field H:

ℜ(H) = 2·Hc/π·arctanh





√

√

√

p

a2 − γ2 · (η+ a)

a · (η+pa2 − γ2)



−
q

a ·pa2 − γ2 · (η+ a) · (η+pa2 − γ2)

(a+
p

a2 − γ2) ·η
(3.30)

with the transformed variable η, used to calculate the conformal mapping:

η= i ·
Æ

(x + i y)2 − a2. (3.31)

As mentioned before, the analytic solutions serve as reliable test cases. They behave

like a numerical simulation with np =∞ so for high np values, say np = 1000, the

results should be almost indistinguishable. In the case of a ferromagnetic substrate

being present, the same is true for the permeability: since in the analytic formulation,

the permeability is assumed infinite, the higher the permeability in the numerical

simulations, the more the results should be in accord.

3.2 Numerical Finite Element Models

Experimental work suffers from two major drawbacks: physical effects may seldom

be observed isolatedly and preparing samples and conducting experiments may be

expensive due to costly materials. Analytic formulas on the other hand provide exact

and elegant solutions to problems but are often unsuited for arbitrary problems such

as complex geometries. Numerical solutions however are able to answer problems of

almost unlimited complexity, at least within the constraints of computational power at

disposal. Variables are observable that may not be directly accessible experimentally

and numerical simulations are in most cases much faster than experiments. Using
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parametrisation and additional degrees of freedom, it is possible to optimise a given

problem for a set of parameters; a task most cumbersome with experimental work.

Geometric optimisation could for example be used to find the best possible layout

without prototyping.

The Finite-Element-Analysis is a numerical method for solving partial differential

equations. The simulation domain Ω is discretised into an arbitrary amount of

elements. These elements have finite size and the subsequent description of the

problem using a finite amount of degrees of freedom lent the method its name. The

size of the elements and, consequently, the amount of degrees of freedom determine

the speed with which the problem will be solved. For large geometries, extensive

parameter sets or excessively fine detail, the computation time may become extremely

high, ranging from hours to days or even weeks. It is therefore imperative to optimise

the simulation. It is always possible to trade accuracy for speed but with intelligent

design, it is also possible to reduce complexity without sacrificing accuracy.

A number of numerical formulations and models exist for simulating superconductors,

including the T-Ω-formulation based on the current vector potential T and the scalar

magnetic potential Ω [HSM+91, AMBM98], the A- or A-V-formulation based on the

magnetic vector potential [NTFA89, Seb94, Pri97, BMDH99, CFD99, CFD99, HYT+00,

ST10] and the magnetic vector potential critical state model [Cam07, Cam09]. The

finite element model employed in almost all of the simulations in this work is based

on the well established H-formulation [BV83, KTK+01, KHY+03, PMC+03, HCC06,

BGM07, NAW09]. During the investigations detailed subsequently, the extensions

to the H-model allowing for non-linear ~B- ~H-relations as in [NAW09] were further

developed. A considerable speed-up and improvement of stability was achieved (see

Cap. 3.2.5). Additionally, in order to be able to account for end-effects such as contact

resistances, a new boundary condition was developed, see Cap. 3.2.6.

For finding the parameters to model the superconducting tapes used during the

experimental work correctly, a model based on the A-V-formulation was used. The

parameters that were extracted from the measurements are critical current, np-value

and the modified Kim-model [GK06] parameters field-dependence exponent b and

parameter of anisotropy k (compare Cap. 2.5 & 3.1.2). The model based on the

A-V-formulation was used since it solves steady-state problems much faster than the

H-formulation, which is sufficient for the purpose of the investigation. Since the model

was only used once a thorough explanation is skipped. It shall be mentioned that

imposing boundary conditions is not as straightforward as in the H-model [HC10]. The
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same applies for calculating hysteretic losses [ST10]. In all numerical investigations,

the commercially available FEM software COMSOL was used [COM13].

3.2.1 Governing Equation

The H-formulation uses the magnetic field as its state variable and is based on the

following set of equations:

∇× ~H − ∂ ~D
∂ t
= ~J , (3.32)

with the electric current ~J , the variable of time t and, since we are only investigating

problems in the low frequency regime such as power applications and the displacement

current ~D being assumed negligible and hence zero, the equation is therefore simplified

to:

∇× ~H = ~J . (3.33)

Further, the Maxwell–Faraday equation:

∇× ~E = ∂ ~B
∂ t

, (3.34)

and Gauß’s law for magnetism is used:

∇ · ~B = 0. (3.35)

The electric field ~E is related to ~J with the resistivity ρ as:

~E = ρ~J , (3.36)

and ~B to H:

~B = µ0µr ~H. (3.37)

Substituting Eq. 3.36 and 3.37 into the Maxwell-Faraday Eq. 3.34:

∇× (ρ∇× ~H) = −∂ (µ0µr ~H)
∂ t

(3.38)
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and Eq. 3.37 into Gauß’s law for magnetism, Eq. 3.35, we obtain:

∇ · (µ0µr ~H) = 0. (3.39)

Since the equation system containing both Eq. 3.38 and 3.39 is over-constrained,

the approach by Kajikawa et al. is used and the divergence of Eq. 3.38 is taken,

yielding [KHY+03]:

∇ · (∇× (ρ∇× ~H)) =∇ ·
�

−∂ (µ0µr ~H)
∂ t

�

. (3.40)

The divergence of a curl being equal to zero and exchanging:

∇ ·
�

−∂ (µ0µr ~H)
∂ t

�

=

�

−∂ (∇ · (µ0µr ~H))
∂ t

�

=

�

−∂ (∇ · (~B))
∂ t

�

, (3.41)

it is immediately obvious that if ∇ · (~B) = 0 at the timestep zero t0, then ∇ · (~B) =
0 ∀ t > t0. Strictly speaking, this constraint is only true at the timestep t0 and

numerical errors may accumulate over time. This leads to divergence of the solution.

Appropriate measures such as tweaking of the temporal and spatial discretisation and

of the numerical solver (the Newton method was generally used) can mediate this

behaviour. It follows that one constraint of the equation system has to state that:

∇ · (~B(t0)) = 0. (3.42)

Eq. 3.40 is the governing equation being solved for the state variable H by the

numerical simulation software. Since we use COMSOL, our formula has to be slightly

rearranged to conform with COMSOL notation, which usually denotes the state

variable u. For two-dimensional simulations:

u=

�

H x

H y

�

(3.43)

The equation being solved is:

ea
∂ 2u
∂ t2

+ da
∂ u
∂ t
+∇ · Γ = fs. (3.44)
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The mass coefficient ea is always zero in the (first order) H-model and the damping

coefficient da is defined as:

da =

�

µ0µr 0

0 µ0µr

�

. (3.45)

The source term fs is also zero while the conservative flux vector Γ is defined as:

Γ =

�

0 Ez

−Ez 0

�

. (3.46)

3.2.2 Applying Background Magnetic Field and Transport Current

The constitutive equations having been outlined in Cap. 3.2.1, some boundary con-

ditions are still needed in order to apply excitatory influences. Dirichlet boundary

conditions imposed on the circumferential simulation domain boundary ∂Ω of the

simulation environment are suited to the application of magnetic field, with some

complications also for transport currents or a combination of both. The boundary

condition specifies the values the solution may take in that particular position.

Even when not seeking to apply excitatory loads to the simulation on the outermost

boundary, setting boundary conditions is required in order to minimise influences of

the finite simulation environment on simulation results. In order to compensate for the

finite size of the simulation geometry, the asymptotic boundary value has to be set to be

consistent with any other boundary conditions. But still, the simulation environment

should not be too small in order to allow the numerical error to dissipate in the air

(or vacuum) domain surrounding the superconductor. If no magnetic field and no

electric transport current is applied, the Dirichlet boundary condition is trivially zero.

If however the magnetic field generated by possibly flowing electric transport currents

that were also imposed as boundary conditions need to be compensated, we need to

account for the influence of the electric transport currents on the magnetic field and

define the magnetic field perturbation Hp on the simulation domain boundary ∂Ω.

Assuming ∂Ω is sufficiently far from the conductor (at least ten times the width of the

widest superconductor dimension) and only far field effects need to be allowed for,



46 3 Modelling Superconductors

the incident magnetic field on the boundary may be treated as if generated by a point

source:

Hp = Iext(t)/
�

2π ·
Æ

x2 + y2
�

(3.47)

where the applied transport current Iext is the total applied transport current in

the longitudinal (in this instance, in the cartesian coordinate z) direction and r =
p

x2 + y2 (with the cartesian coordinate x and the cartesian coordinate y) is the

distance from the conductor (also see Fig. 3.2). The externally applied magnetic

field Hext is the applied magnetic field to be imposed on the boundary.

x

y

z

r

yi

x i

Figure 3.2: If the boundary is sufficiently far away from the superconductor (roughly
ten times the width of the widest superconductor dimension), the latter may be treated
as having a dimensionality of zero in the cross-section which enables calculation of the
field given solely the distance from the origin where the conductor is situated and
the total electric current flowing through the conductor. For any point Pi on ∂Ω, the
distance is simply r =

q

x2
i + y2

i .

Since the magnetic field ~H is used as the state variable, this means that ~H has

to be constrained component-wise to specific values as a function of time on the

boundary. With the superconducting cable, tape or wire arbitrarily oriented with

the wide face parallel to the xz-plane, the direction of perpendicular field with

respect to the conductor is along the y-direction. Since for most investigations, the

case of perpendicular field is the most interesting, the following example shows a

background magnetic field being applied along the y-axis-direction. Naturally, any
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other orientation is possible as well. The component-wise definition of the Dirichlet

boundary condition is:

H x = −Hp · y/
Æ

x2 + y2, (3.48)

H y = −Hext(t) +Hp · x/
Æ

x2 + y2. (3.49)

If a three-dimensional geometry is considered, there is usually no reason to apply

magnetic field along the longitudinal direction of the tapes or wires, so the third

component is zero:

Hz = 0. (3.50)

When investigating power-applications, sinusoidal current and field profiles are usually

used so the following definitions would be typical for the applied background magnetic

field:

Hext = rm(t) ·µ0 ·Ha · sin (2π f t) = rm(t) ·µ0 ·Ha · sin (ωt) (3.51)

with the pulsatance ω defined as ω = 2π f . Since the simulation converges much

faster if a consistent set of initiation variables has been set (remember that∇·(~B(t0)) =
0, compare Eq. 3.42), the internal ramping function rm( f ) of the FEM software is

used, resulting in an applied current profile as in Fig. 3.3. It is important that not

only Hext(t0) = 0 but also dHext(t0)/d t = 0 so an adequate ramp function has to be

used. The COMSOL ramping function is set to have a starting value of zero and two

continuous derivatives. This speeds up the initial convergence considerably.

Given the case of transport current, possibly flowing in several conductors, integral

boundary conditions provide an easier possibility to apply the loads as the field

distribution does not have to be known in advance. The coupled case where the

applied current distributes self-consistently according to the self-field effect is achieved

by defining one integral boundary condition encompassing all the conductor surfaces:

I =
n
∑

i=1

∫

j · dSn. (3.52)
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Figure 3.3: Typical magnetic background field profile applied in investigations of
power applications. Shown is the applied background field normalised by the peak
applied field. Transport current boundary conditions are similar but apply an electrical
current instead of a magnetic field, of course. Using a ramping function to not only
ensure Hext(t0) = 0 but also dHext(t0)/d t = 0 leads to a significant speed-up as the
initial numerical convergence is much faster; the green plot shows the first quarter of
the whole profile enlarged.

Imposing a different electric current in each conductor is achieved by using one

integral boundary condition per conductor (uncoupled case) where the current In

flowing in a particular singly connected superconducting domain with the Sn is:

In =

∫

j · dSn. (3.53)

The total applied current Iext is then equal to the sum of the current in all supercon-

ducting domains. The applied transport current function is very similar to the function

used to apply background magnetic fields in power applications:

Iext = rm(t) · Ia · sin (ωt) (3.54)

with the applied electric transport current Ia.
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3.2.3 Material Laws

Apart from the equations mentioned in Cap. 3.2.1, initial conditions satisfying Eq. 3.39

and a set of boundary conditions and/or constraints, the model requires material

laws. For superconducting domains, the ~E-~J -relationship has to be defined. Most

modelling applications assume isotropic tensors as does the model used. Some recent

studies [BL01, Cam11, CWDC11] found that may not be sufficient and imply that

an anisotropic tensor might be required. For the time being however, the following

dependence for ρ is used:

ρ =
Ec

jc
·
�

�

�

�

j
jc

�

�

�

�

n

(3.55)

with the critical electric field Ec. While in Eq. 3.55, the critical current density jc is

described as a scalar, in general it depends on the local magnetic field (see Cap. 3.1.2)

and the position, due to variations in the manufacturing uniformity.

3.2.4 Calculation of Hysteretic Loss

Once the magnetic and electric field profiles as well as the current distribution are

calculated, extracting the hysteretic losses merely requires post-processing of the data.

Since the air domain also present in the numerical simulations does not carry any

current, the current distribution is physically meaningful inside of the superconducting

domains only. Due to numerical reasons, an infinitesimally small current is present

in the air region. The field distribution however is also interesting outside the

superconducting domains since it is required in order to study background field effects

on one particular superconducting domain.

The method used to extract the hysteretic losses in one or all superconducting domains

depends slightly on the applied signal. For non-periodical loads the whole signal

is taken into consideration. But when investigating steady-state dissipation and

observing a periodic signal in a superconductor, the first half-cycle is disregarded,

because it shows initial magnetisation effects and is not representative.
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Figure 3.4: Exemplary normalised loss profile of a coated conductor with an electric
transport current load of 50 % Ic. The applied electric transport current is plotted in
red. The first half-cycle shows less dissipation because of the magnetisation from virgin
state. For steady-state investigations, only the second half-cycle marked in green is
therefore considered. Subsequent cycles provide no new information. Note the phase
difference between peak applied current and maximum dissipation.

In the case of a sinusoidal signal for example, the integral over the second half is

taken. So with the frequency f , the energy dissipation per cycle Q in J/m3/cycle for

all n superconducting domains is:

Q = 2 ·
n
∑

i=1

∫ 1/ f

1/2 f

d t

∫

S

~J · ~E dSi. (3.56)

For other kinds of time-dependent signals such as ramps, the whole time range has to

be considered:

Q =
n
∑

i=1

∫

d t

∫

S

~J · ~E dSi. (3.57)

In subsequent numerical simulations, usually only the axial (along the tape) compon-

ent of the electric current and electric field are taken into account as the others are

negligible.
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3.2.5 Modelling Ferromagnetic Material

When seeking to simulate ferromagnetic materials using the H-model, it has to be

taken into account that not only does the permeability have an influence on the

magnetic field distribution, but the magnetic field strength at a given position also

determines the local permeability of the ferromagnetic material. On top of that, since

the ferromagnetic material also shows hysteretic behaviour, the additional losses in

the ferromagnetic domains have to be taken into consideration.

The dependence of the permeability on the local magnetic field amplitude is in-

corporated with a material law while the inclusion of the ferromagnetic material’s

dynamic influence on the magnetic field distribution is more intricate. In order to

model ferromagnetic materials, consider the Maxwell-Faraday Eq. 3.38 rewritten as

in [NAW+10]:

µ0
∂ (µr(| ~H|) ~H)

∂ t
︸ ︷︷ ︸

compare Eq. 3.59

+ ρ∇× ~J
︸ ︷︷ ︸

compare Eq. 3.63

= 0 (3.58)

If the first summand of Eq. 3.58 is expressed as:

µ0
∂ (µr(| ~H|) ~H)

∂ t
= µ0

∂ µr(| ~H|)
∂ t

~H
︸ ︷︷ ︸

compare Eq. 3.60

+µ0µr(| ~H|)
∂ ~H
∂ t

, (3.59)

where again the first summand is conveniently rearranged for 2D geometries by

neglecting µ0 ~H for the time being as:

∂ µr(| ~H|)
∂ t

=
∂ µr(| ~H|)
∂ ~H

· ∂ ~H
∂ t

~H=
Ç

H2
x+H2

y
======⇒ ∂ µr(| ~H|)

∂ ~H

�

∂ ~H
∂ H x

· ∂ H x

∂ t
+
∂ ~H
∂ H y

· ∂ H y

∂ t

�

=
∂ µr(| ~H|)
∂ ~H

 

1
2
· 2H x
q

H2
x +H2

y

∂ H x

∂ t
+

1
2
· 2H y
q

H2
x +H2

y

∂ H y

∂ t

!

=
∂ µr(| ~H|)
∂ ~H

�

H x

~H

∂ H x

∂ t
+

H y

~H

∂ H y

∂ t

�

=
∂ µr(| ~H|)
~H∂ ~H

︸ ︷︷ ︸

≡ f

�

H x
∂ H x

∂ t
+H y

∂ H y

∂ t

�

.

(3.60)
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Reinserting Eq. 3.60 into Eq. 3.59 yields:

µ0 f ~H

�

H x
∂ H x

∂ t
+H y

∂ H y

∂ t

�

+µ0µr(| ~H|)
∂ ~H
∂ t

(3.61)

Separating Eq. 3.61 into single component form:

x : µ0 f H x

�

H x
∂ H x

∂ t
+H y

∂ H y

∂ t

�

+µ0µr(| ~H|)
∂ H x

∂ t

= µ0

�

f H2
x +µr(| ~H|)

� ∂ H x

∂ t
+µ0 f H x H y

∂ H y

∂ t

y : µ0 f H y

�

H x
∂ H x

∂ t
+H y

∂ H y

∂ t

�

+µ0µr(| ~H|)
∂ H y

∂ t

= µ0

�

f H2
y +µr(| ~H|)

� ∂ H y

∂ t
+µ0 f H x H y

∂ H x

∂ t

. (3.62)

The second summand of Eq. 3.58 is better written as

ρ∇× ~J = ρ









∂ ~Jz
∂ y −

∂ ~J y
∂ z

∂ ~J x
∂ z − ∂ ~Jz

∂ x
∂ ~J y
∂ x − ∂ ~J x

∂ y









= ρ







∂ ~Jz
∂ y

−∂ ~Jz
∂ x

0






(3.63)

which if reinserted in Eq. 3.58 together with Eq. 3.62 results in the final set of

equations:

µ0(µr(| ~H|) +H2
x f )
∂ H x

∂ t
+µ0H x H y f

∂ H y

∂ t
+ρ

~J z

∂ y
= 0

µ0(µr(| ~H|) +H2
y f )
∂ H y

∂ t
+µ0H x H y f

∂ H x

∂ t
+ρ

~J z

∂ x
= 0.

(3.64)

Remembering Eq. 3.43, we have to slightly alter our partial differential equation

set-up since the dynamic ferromagnetic influence needs to be included in either fs or

in da. Eq. 3.64 can be inserted directly into da:

da =

�

(µr +
∂ µr
∂ H H2

x/| ~H|) ·µ0 µ0 ·H x H y · ∂ µr
∂ H /| ~H|

µ0 ·H x H y · ∂ µr
∂ H /| ~H| (µr +

∂ µr
∂ H H2

x/| ~H|) ·µ0

�

(3.65)
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but the differential ∂ µr/∂ | ~H| has to be calculated beforehand, since the FEM software

is incapable of providing the solution on-the-fly.

In the course of the investigations, it was discovered that the stability of the above

solution leaves a lot to be desired and the simulations often do not converge in a

timely manner, sometimes not at all. The simulations are quite often unstable and

tend to diverge without actually triggering an error, therefore producing erratic results

or running indefinitely.

Instead of using the damping coefficient to account for the dynamic ferromagnetic

influence, it is also possible to rewrite the equations so that the ferromagnetic influence

is accounted for in the source term. This approach has the additional advantage of

not having to evaluate the computationally expensive derivation ∂ µr/∂ | ~H| and the

FEM software provides direct access to ∂ µr/∂ t. So by simply forcing:

fs =







−∂ µr
∂ t H x

−∂ µr
∂ t H y






(3.66)

not only is the convergence and reliability of the numerical simulations increased

considerably, the simulation is also sped up by about 15 % to 50 %. When using the

source term to simulate the ferromagnetic material, the damping coefficient has to be

reset to the initial configuration:

da =

�

µ0µr 0

0 µ0µr

�

. (3.67)

Lastly, the analytic function itself used to model the ferromagnetic material’s response

to the magnetic field also influences the speed of the simulation. For a qualitative

comparison of the fitting, see Fig. 3.5. The exponential fitting function could be

expanded to better fit the measured data but even a simple exponential fitting function

of the form a · exp (x/b)c + d is computationally about one order of magnitude slower

than a comparable trigonometric function. While using the optimised fitting function

does not result in the speed up of 1000 % unfortunately, the total simulation time

does decrease by about 10 %, which is considerable.
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Figure 3.5: Comparison of different analytic functions to describe the µr(H) depend-
ency. The exponential fitting function a exp (x/b)d + e and the trigonometric fitting
function a(arctan (bx)c) + d are compared. Note the considerably better fit using the
arcus tangens function. On top of the fitting function being a qualitatively better fit,
it is also evaluated faster by one order of magnitude. This results in the FEM simulation
running about 10 % faster.

3.2.6 Contact Resistances

The model outlined subsequently is a three-dimensional expansion of the model

presented earlier. It is capable of not only simulating electric transport currents in

three dimensions but also background magnetic fields. Additionally, without loss of

generality nor disruption of translational symmetry, it is possible to take into account

end-effects such as contact resistances.

Contact resistances are important in short samples as their influence may completely

mask or suppress self-field effects. Even though they may be relatively small in long

length samples, the contact resistances determine current distribution and hence

electric behaviour in short length cables. Hence, it is highly interesting to be able to

discern between the various influences. Also, in order to understand measurements

better, modelling the contact resistance end-effects helps to deconvolute the two

effects.

In order for the simulation of the end-effects to not influence the primary simulation

environment and thus disrupt translational symmetry (when for example only one

twist pitch is simulated), contacts cannot be included as distinct geometric objects

in the primary simulation environment. Since the physical behaviour of the contacts
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themselves is not under scrutiny, a howsoever constructed analytic consideration

would be preferable, ideally in the form of a zero-dimensional boundary condition,

imposed as a constraint.

For a cable consisting of multiple superconducting wires or tapes, two suitable bound-

ary conditions come to mind: instead of floating the electric potential on an arbitrary

but equal level for all contacts, finding a gauge and adding an arbitrary offset to the

electric potential for each superconducting tape representing the contact resistance

of that particular tape. The electric potential offset of a contact resistance ∆U i is

calculated from the product of the (measured) contact resistance Ri and the current

flowing through that particular conductor I i:

U i = Ri · I i. (3.68)

If the common electric potential is fixed and U i can be calculated from the sum of the

resistance of the contact Ri and due to the self field effect Rc, then the electric current

I i flowing in a particular conductor i is:

I i =
U i

(Ri + Rc)
. (3.69)

For the DC case, the following approach is valid: the electric potential of the contact

is extracted from the boundary surface perpendicular to the translational symmetry

by averaging over the electric field component normal to the surface. In the model

developed here the translational symmetry is always along the z-component. The

averaging is achieved by utilising an averaging operator of the FEM software:

U i = 〈Ez,i〉 · Li (3.70)

and multiplying with the length of the simulated conductor Li.

Another possibility to construct a suitable boundary condition is by calculating the

equivalent resistivity and adding a constant value to each conductor according to its

contact resistance. Calculation of the resistivity of the conductor is possible if firstly

the size of each discretised element along the cross-section is known and secondly

the resistivity of each element is known. Given these criteria, the conductor may be

treated as a series of parallel connections of resistances and thus the total resistivity

may be calculated. However in reality due to the material specific peculiar magnetic
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field and electric current distributions inside a superconductor most of the elements

situated in the centre of the conductor will have zero resistance at low fields. Since

the power-law is employed as a material law in the numerical simulations, this need

not necessarily be a problem per se, as the power-law will always have a finite value,

however small. Unluckily, for infinitesimally small values, convergence of the solution

tends to become exceedingly slow and the simulation takes very long to complete,

if it is able to converge steadily at all. If a finite minimum resistivity is ensured the

simulation is much more stable. This is achieved by using a function to select the

bigger of two input variables with the first variable being the positive infinitesimal ε

and the second being the resistivity ρ. For two-dimensional problems and in the DC

case, this leads to:

U i =

∫

jzdSi
∫

1
max(ρ,ε)dSi

. (3.71)

One such boundary condition has to be constructed for each conductor i present.

Unfortunately, while both boundary conditions work theoretically, each suffers from

different limitations. The parallel resistivity integration method’s results rely heavily

on the chosen value of ε. If one were to run the electric field averaging method first

and use the result to gauge the parallel resistivity integration method, in subsequent

runs, a correct solution could be obtained much faster. However, this approach is

impractical. The electric field averaging method suffers the same affliction as the

original parallel resistivity integration method without the complication of the max

function: its convergence is exceedingly slow and hence as good as unusable in power

applications with oscillating fields where long relaxation times of the simulation

cannot be tolerated. Relaxation in this context means that an excitation load is

ramped up quickly and then held constant (this is the so called relaxation) so that the

numerical errors may dissipate. The longer (in amount of time-steps) the simulation

is left sitting with constant loads, the better the result will resemble the physical

behaviour.

If the already mentioned solution of a zero-dimensional boundary cannot be created,

a remedy is the creation of a second simulation environment disconnected from the

first (the domains remain entirely separated). For an example demonstrating such

a configuration, please refer to Fig. 7.13. The only aspect which is of interest in

this environment is the total resistance of arbitrarily sized domains representing the

contacts. The magnetic field surrounding these contacts and the contact geometry

should be of no consequence. A separate air domain for each contact would be even
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1
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Tape 2
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Tape 4

Figure 3.6: If no contact resistance is simulated, the current is applied at point 1 and
since all coated conductor tapes are on the same potential the current will distribute
according to the self-field effect only.
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Tape 1

Tape 2

Tape 3
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R1
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Figure 3.7: If a contact is simulated, the current is applied at point 2 and the contact
resistances are added in series to the resistances of the tapes. Since now the potential is
only the same before the resistors, both the voltage drop due to the contact resistance
as well as that due to the self-field effect is taken into account.

more ideal. Then, the only complication lies in ensuring the continuity of current

flows. This is achieved by integrating operators on each tape and contact surface

perpendicular to the translational symmetry and global constraints forcing the currents

to be equal in a contact and its corresponding tape via two corresponding integrating

operators. The only thing left to do then is to assign the correct resistance to each
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contact domain in order to model the contacts correctly. The set-up is outlined in

Fig. 3.7.

One additional restriction to keep in mind regards the skin effect as with increasing

frequency and decreasing conductivity the current tends to flow on the outside

(the skin) of any conductor. For quasi-static loads this is of little importance but

when considering high frequency applications the dimensions of the contact domains

may become important. It has been mentioned above that the domain size of the

contact resistances may be chosen arbitrarily as long as the resistivity of the domain

is calculated accordingly in order to result in the required total contact resistance.

If the domain is large, the resistivity may be relatively small and vice versa. For

power frequencies, this relation is unproblematic. For higher frequencies however,

the domain has to be made smaller and resultingly the resistivity higher. Eventually,

the difference between the air domain resistivity and the contact domain resistivity

will become small so that a non-negligible fraction of the current may flow in the air

region. This is highly undesirable of course. At this point, only a high resolution mesh

in combination with larger contact resistance domains can help. Generally, it is of

course advisable to select the contact domain dimensions in such a way that the skin

effect is negligible. The skin depth is determined approximately as follows:

δ =

√

√ 2 ·ρ
2 · f ·µ (3.72)

with the skin depth δ, the resistivity ρ, the frequency f and the permeability µ which

is a product of the permeability constant µ0 and the relative magnetic permeability µr.

For simplicity reasons, we assume the latter to be unity which does not influence the

simulation.

Alternatively, it is also possible to mesh the contact domains so densely that even if the

current should only be flowing on the outside, the correct resistance is still ensured.

This leads to increased complexity and hence computation time however so this is not

advisable.

Another possibility to model contact resistances reduces the required computational

effort even further and also allows two-dimensional modelling. This approximation

was developed by V. Zermeno (private communication). The influence of the contact

resistances on the current distributions may be included in a boundary condition that

is directly patched into the partial differential equation. A domain specific offset has
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to be added to the conservative flux term (compare with Eq. 3.46) and the respective

offsets declared domain-wise:

Γ =

�

0 Ez + V

−Ez + V 0

�

. (3.73)

For the superconducting domains and the air domain, this offset is null. For the

contact resistance domains, the offset V is declared as:

V =
n
∑

i=1

Ri ·
∫

jzdSi (3.74)

for each i up to n total domains. Strictly speaking, this approach is only possible for

quasi-static simulations where E is virtually constant with time and uniform over a

domain. Using the offset assumes average values of the electric field which is not the

case when temporal variations are present. On the other hand, it is presumed that the

approach is valid as a qualitative reliable approximation in the very low frequency

regime as well since initial simulations showed plausible results.

3.2.7 Meshing

While in the case of choosing a mathematically convenient analytic function for µr

speed was the only concern, the quality of discretisation also directly influences the

accuracy of the simulation. Not only do the degrees of freedom depend directly on

the size and distribution of the mesh, a good mesh also helps the simulation converge

towards the solution more quickly. Conversely, a bad mesh might impede convergence

altogether, though mathematically a solution exists. Even worse are erratic results

which might not be immediately obvious. This is why numerical simulations require

careful plausibility checks.

Instead of Lagrange (also called nodal) elements often used in FEM, the H-model

employs curl-conforming Whitney 1 (also called Nédélec, edge- or curl-) elements.

Theoretically, edge elements, which are computationally more expensive, are not

required when simulating simple magnetic field models since nodal elements also work.

However, the latter supposedly rely on the properties of the media, and consequently

the electric and magnetic field, to be continuous functions of the spatial coordinates for

mathematical rigidity [Mur94]. In geometries like the ones subsequently investigated,
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this is true only for the air region. Alternatively, a very fine mesh would also work,

discretising the discontinuities. Consequently, a much larger number of degrees of

freedom would be required to achieve the same accuracy as with edge elements.

Using nodal elements, the simulation could be considerably accelerated for the air

regions. Unfortunately, we were not able to find suitable coupling constraints allowing

us to connect domains with different types of elements (such as nodal and edge

elements) in tests using our FEM software as the flux conservation could not be

ensured. The reason this was investigated is that nodal elements are better suited for

modelling the air domain and should result in faster convergence of the model.

It has been stated that edge elements inherently ensure divergence free fields [BGM07]

but this is a misconception of the fact that edge elements themselves are internally

free of divergence. Divergences may occur at the interface of two adjacent elements

(only the continuity of the tangential field component is enforced) as the normal

field component is free to jump at each of the interfaces [Mur94]. However, in our

investigations we carefully verified that the solutions are correct and the possibly

occurring local errors apparently do not influence the overall precision. The effect is

mitigated in general in large parts by constructing high quality meshes.

High quality meshes comprise preferably isosceles triangular elements as the normal

components of the state variable u to be solved of elongated elements may become

almost degenerate with respect to each other, resulting in large local errors [Mur94].

Since the edge elements are linear internally, extremely elongated elements will lead

to strong local dislocation artefacts, where regions of high contrast may show non-

physical tendrils. Averaging shows these tendrils as smudges diluting high-contrast

areas.

Also problematic are inverted elements, where quadrangular meshes in particular

show re-entrant corners which lead to spurious local results. This need not necessarily

lead to non-converging or wrong global solutions however. Due to peculiarities in the

FEM software COMSOL, also triangular elements may be inverted.

Often, the perpendicular magnetic field component is the most important for coated

conductors. Using quadrangular elements to model these geometries leads to the

component of elevated interest being aligned with the normal component of the

elements therefore enhancing the accuracy besides saving half of the elements and,

consequently, half of the degrees of freedom (as opposed to using triangular elements)

in those regions.
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Manually constraining the mesh using mapped meshes and forcing certain distribu-

tions is usually preferable to using the automatic mesher for the complete geometry,

see the comparison in Fig. 3.8.
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Zoom factor: 1x Zoom factor: 1x

Free mesh, zoom level 0 Mapped mesh, zoom level 0

Zoom factor: 25x Zoom factor: 25x

Free mesh, zoom level 1 Mapped mesh, zoom level 1

Zoom factor: 333x Zoom factor: 333x

Free mesh, zoom level 2 Mapped mesh, zoom level 2

Zoom factor: 20000x Zoom factor: 20 000x

Free mesh, zoom level 3 Mapped mesh, zoom level 3
Figure 3.8: Comparison of free and mapped mesh. If an unconstrained automatic
triangular mesh is used for a simple coated conductor, roughly 100 000 elements are
needed. If a manually adjusted quadrangular mesh is used for the same geometry,
only around 2000 elements are required – without loss of precision. A reduction by a
factor of 50.
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4 Experimental Set-ups

To verify the numerical simulations with experimental investigations, two methods

were employed for applied magnetic field measurements: the magnetisation loss

and the calibration free method, see Cap. 4.2.1 and Cap. 4.2.2. The losses occurring

under applied electric transport currents were measured using a lock-in amplifier and

with digital acquisition units enabling high-speed measurements, see Cap. 4.3.1 and

Cap 4.3.2. To discern the critical current and np-value of the coated conductor tapes,

high speed, high precision four-point measurements were conducted, see Cap. 4.1.

nanovolt meter

lock-in amplifier

oscilloscope

amplifier

multimeter

function generator

multiplexer

Figure 4.1: Picture of the instrumentation used for experiments. Not shown is a PC
used for instrument control and data acquisition. The oscilloscope is used for in-situ
surveillance to notice erroneous measurements in a timely manner. Also not shown
here is the capacitor bank used for the calibration free method, see Cap. 4.2.2 as well
as the parallel amplifier array used for the high-speed DAQ applied transport current
measurements, see Cap. 4.3.2.
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4.1 Critical Current Measurements

The difficulty in conducting critical current measurements on coated conductor tapes

is to avoid destroying the tapes in the process. Due to their high np-value and thus

fast transition from superconducting to ohmic behaviour and often little stabilisation,

they are extremely delicate and burn out quickly. Since exact data on tape behaviour

is required for realistic numerical simulations, the tapes have to be measured never-

theless and care has to be taken not to damage them. An additional complication is

the fact that the tapes cannot be measured slowly as they dissipate heat close to their

transition point, which leads to heating and thus falsifies the measurements. Ideally,

the measurements are conducted as fast as possible while at the same time taking

care not to burn out the coated conductors.

voltage taps

coated conductor sample

measurement signal
amplifier

current leads

Figure 4.2: Picture of the critical current measuring system with one pair of voltage
taps and one measurement signal amplifier shown. In the actual measurements, three
pairs of voltage taps and measurement signal amplifiers are used with additional taps
on the current leads and the shunt. The shunt (not shown for simplicity) is fastened to
the empty mounting points on the copper terminals.

A special measuring system was set up that has extensive protective measures. Firstly,

a large shunt with a small resistance was put in parallel to the coated conductor in

order to carry the current once the coated conductor transitions to isolating behaviour.

Secondly, the voltage was measured at the current terminals, on the shunt and on the

coated conductor itself so a holistic monitoring was possible. Thirdly, high quality,

high gain measurement signal amplifiers were used in order to register the transient

behaviour as soon as possible. The zero-drift (0.5 µV K−1) signal amplifiers have a
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very low input noise of 0.4 nV/Hz0.5 and up to 100 dB amplification. Fourthly, high

speed (16 bit, 250 kHz) as well as high precision (20 bit, 250 Hz) digital acquisition

units were used concurrently so that not only very exact measurement points could

be obtained, but the burn out protection could react very quickly. And lastly, the

measuring speed was reduced to 0.5 A s−1 (down from 1 A s−1) once the beginning of

the transition from superconducting to ohmic behaviour was detected.

The shunt was selected such that its resistance is below the burn out threshold of

the coated conductor. A copper cable of 1 cm2 diameter was patched in parallel

to the sample and the contacts were polished beforehand to ensure a low contact

resistance. The copper cable was about 15 cm long. Such a cable has a total resistance

of somewhere between 20 µΩ and 40 µΩ, with contact resistances roughly 50 µΩ at

most. Everything below 30 µΩ cm−1 was tested to be safe for a coated conductor. The

threshold of the voltage detected on the taps on the superconductor above which the

current source was shut down was set to 10 µΩ. For an exemplary measurement, see

Fig. 2.6. With the gain of the amplifiers set to 40 dB, this means voltages somewhere

in the order of 1 nΩ to 10 nΩ can be detected reliably in the 0.5 s period in between

steps of the current ramp. With the voltage taps placed 5 cm apart and the critical

current criterion being 1 µV cm−1 (see Cap. 2.5), this leaves a more than ample safety

margin while at the same time insuring precise data acquisition.

4.2 Background Field Magnetisation Loss Measurements

Background fields of a high enough amplitude will cause flux penetration into and

magnetisation of the superconducting sample. Due to the mechanism outlined in

Cap. 2.6.1, a change in magnetisation will necessarily lead to energy dissipation.

There are two complementary methods for measuring the dissipated energy: as a

temperature difference (see Cap. 4.2.1) and measuring the energy loss of the excitatory

magnetic field (see Cap. 4.2.1 and 4.2.2).

4.2.1 Combined Thermal/Complex Susceptibility Measurement Method

Calorimetric methods have the advantage of simplicity. The measurements of tem-

perature differences or gas flow due to cryogenic coolant boil-off and the resulting

correlation with the dissipated power are not afflicted with complex calibrations

and the resulting errors. They are hindered however by their long time constants,



66 4 Experimental Set-ups

especially at liquid Nitrogen and even at liquid Helium temperatures. Calorimetric

measurements are therefore either slow or inexact [Sch00].

The combined thermal/complex susceptibility measuring apparatus used in the in-

vestigations contains two distinct measuring systems to combine the advantages

mentioned above and measures both calorimetrically as well as magnetically. For

an exemplary measurement see Fig. 4.3, which shows the temperature rise due to

applied magnetic background field, the resulting hysteretic losses and the subsequent

replication of this temperature rise using a resistive heating circuit. For a schematic

view of the measuring system, see Fig. 4.4. The calorimetric method registers the

temperature and the rise in said observable due to applied oscillating magnetic fields

causing dissipation. Later, this temperature difference is matched by resistively heating

the sample with known power.

0 100 200 300 400 500
0

1

2

3

4
2011-03-18-a-PK

Time t / s

Te
m

pe
ra

tu
re
∆

T
/

K

Figure 4.3: Exemplary calorimetric measurement; the temperature rise induced by the
hysteretic loss is plotted in blue while the orange plot shows the temperature rise due
to the heater and the stepping up of the current in order to match the temperature
rise due to the hysteretic loss.

With the copper resistance changing by about 2.9 % per 1 K around 77 K, the change

in temperature is:

∆T =

� RT,in
RT,out

− 1
�

2.9 % K−1 . (4.1)

In order to acquire less noisy data, the sample, heater and sensors are enclosed

in a vessel with thermal insulation in order to have a thermal resistance between

sample and cryogenic coolant bath. RT,in and RT,out are the temperature sensors

inside and outside of the thermal insulation around the sample. This enables steady-
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state measurements after thermal equilibrium has been achieved. For an exemplary

measurement, see Fig. 4.3. The power dissipated by the resistive heater is calculated

from the voltage Uh and current Ih measured in the heater circuit:

Pdc = Uh · Ih. (4.2)

Lastly, the applied magnetic field needs to be recorded which is calculated from the

voltage in the pick-up coil Upc, the frequency f and a calibration constant of the

pick-up coil cp:

Ba =
Upc · cp

f
. (4.3)

The calibration constant of the pick-up coil cp is determined by leveraging Faraday’s

law:

U = N · Ba · S
t

(4.4)

which, rearranged, leads to:

cp = (N · S)−1 =
Ba · f

U
(4.5)

with the number of coil turns N and the surface S which is the cross-section of the pick-

up coil. For a narrow temperature range, the response of the system may be assumed

linear, so that using a thermal constant ct, dependent on the thermal conductivity of

the insulation and geometry is defined as:

ct =
Pdc

dTdc
(4.6)

and may be used to calculate the power dissipation:

Pac = ct · dT ac. (4.7)

In order to obtain precise measurements, dT ac and dTdc should be as close as possible.

While measuring the difference in temperature is relatively simple, the method is slow

since it relies on establishing thermal equilibrium. Magnetisation measurements are

much faster, a calibration is required for every individual sample however. The calib-
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Figure 4.4: Block diagram of magnetisation loss measuring setup with included calori-
metric calibration and measuring system.

ration constant is obtained using mixed calorimetric/magnetisation measurements.

When using the magnetisation measurement system, two coils are used to register

the measuring signal: the pick-up coil in the sample holder and the compensation

coil situated close to the outer coils producing the magnetic field. The two measuring

coils are connected in series in such a way that the total signal is zero without a

sample (anti-inductive configuration). Additionally, the signal of the second coil, the

compensation coil, is also registered isolatedly, meaning not in series with the first

measuring coil. This is done in order to measure the applied flux density Ba.

In practise the compensated signal deviates from zero due to the pick-up and the

compensation coil not being ideally tuned. This does not pose a problem because the

integration of the voltage over one cycle still yields zero [Sch00]. When a sample is

present, the voltage is proportional to the time derivative of the sample magnetisation:

U(t)∝ dΦ(t)
d t

. (4.8)
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Where the magnetic flux Φ is defined as an integral over the surface S:

Φ=

∫

S

~BdS. (4.9)

Since the signals are recorded using a lock-in amplifier, two loss components of the

voltage induced in the coils can be measured: in-phase with the current driving the

magnetisation coils and shifted by 90◦ out-of-phase. The former represents the loss

component while the latter is the inductive component, proportional to the magnetic

energy stored in the coils.

The calibration factor cf required for the magnetisation measurements may be determ-

ined using Eq. 4.7:

cf =
Pac

Ba · Up,y
. (4.10)

For Eq. 4.10, the inductive voltage component registered in the pick-up coil Up,x is

not of interest. Only the loss voltage component Up,y is required. The inductive

voltage component of the pick-up coil is in-phase with the voltage registered in the

compensation coil Ucomp which is why pick-up coil and compensation coil need to be

tuned to supply the same signal amplitude (ideally). By subtracting the compensation

coil voltage signal Ucomp from the pick-up coil voltage signal and thus attenuating

the stray signal of the inductive component it is possible to register the loss voltage

component with much higher precision.

The ac loss dissipated in the system is then:

Q =
Ba · Up,y · cf

f
. (4.11)

4.2.2 Calibration Free Method

When a sample is subjected to an ac field generated by a coil system, the power

dissipated by the superconductor has to be supplied by the current source and is a

fraction of the ac power supplied to the coil system [Voj10, pp. 54 ff.]. If it were

possible to distinguish this fraction from all the other sources of loss in the system, the

absolute value of the ac loss could be obtained. The biggest influence will be the loss

of the coil system. Using two identical coil systems having been connected in series
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and using two pick-up coils connected in series but with reversed polarity results in

the signals of the pick-up coils inside the two coil systems compensating each other,

see Fig. 4.5.

The variable capacitor shown in parallel with the coil system is required when driving

the system at high magnetic fields. The current source is not used to directly drive the

coils but only pumps energy into the resonant circuit. Since the capacity has to be

tuned for every frequency, we use a capacitor bank with disconnectable capacitors.

The tuning is accomplished by simply having the current source drive the coils

and connecting and disconnecting capacitors until an also connected Rogowski coil

registers maximal electric current flowing through the system.

V

Rogowski coil

VA

sample

coil 2coil 1

variable capacitor

Figure 4.5: Calibration free magnetisation loss measurement system; note that both
the voltages of the pick-up coils as well as of the Rogowski coil are measured using a
lock-in amplifier. The variable capacity is tunable in order to reach maximal magnetic
field strength in the coil system while not damaging the current source. The resonant
frequency depends on the frequency of the applied background field and on the
current source, cables and environmental influences like temperature or magnetic
surroundings.

Supposing the two coil systems are identical then the only measurable signal will

be that due to the sample being present in one of them. The measured voltage will

be [vGV05]:

U =
dΦ
d t

. (4.12)

The signal should be zero without a sample present and only carry information about

the dissipated power. The electrical current powering the magnet coils is measured
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with a Rogowski coil. Theoretically, voltage taps on the primary circuit powering the

coils are possible. However, this method of electrical current measurement is not

advisable due to the risk of destroying the lock-in amplifier through overdriving with

too high signals.

As with the magnetisation method, the registered voltage has a component in phase

with the electric current driving the magnet coils and an out-of-phase component.

Using the lock-in amplifier, the in-phase component is measured and the hysteretic

power loss P is:

P = I ·Re(U). (4.13)

Due to imperfections in the coil system, the signal is not zero even without a sample

being present however. In order to correct for these spurious signals, the response

of the coils has to be tuned in both the resistive loss as well as the inductive voltage

component. The resistive component is most easily influenced by introducing a

conducting material such as a metallic block into the coil with the lower losses,

thereby increasing the losses and thus balancing the signals of the two pick-up coils.

The inductive voltage component is corrected by inserting a compensation coil into

the system and connecting it in series with the two pick-up coils. Both the metal as

well as the compensation coil have to be positioned precisely in such a way as to

correct the signal. Since the response of the system is dependent on frequency and

conducting materials in its surrounding, the compensation should be checked before

each measurement.

The compensation free system was fitted with a few improvements to speed up

the measuring process: before measuring each data point, the sensitivity has to be

adjusted. In order not to overdrive the lock-in, the highest setting is always used

in the first step. The system is then used to simply evaluate whether the signal was

between 50 % and 100 % and stopped increasing the sensitivity if that was the case.

Else, the sensitivity would be increased and the procedure repeated. Each step takes

about ten seconds so the whole process takes a lot of time.

An algorithm was developed that estimates the correct sensitivity and jumps up the

resistivity accordingly in only two or three steps so that the process takes much less

time, speeding up the whole measuring cycle.

Additionally, instead of moving a metallic block about in the liquid cryogen bath

which is tedious, a tunable coil with adjustable resistance was installed. Another

improvement regards the distribution of measuring points: in order to record linear
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or logarithmic sweeps, loops or focus a certain region while sweeping, an additional

program allows generating complex measurement configurations.

Figure 4.6: Picture of the calibration free method coil system. Shown are the two coil
systems (green) with the current leads feeding the coils (yellow), the Rogowski coil
used for current measurements (red), the contacts for the pick-up coil wires (pink) and
the tunable compensation coils with contacts (blue).

4.3 Transport Current Loss Measurements

Multiple methods to measure transport current losses in superconducting components

exist. The thermal and boil-off methods use the rise in temperature and the subsequent

evaporation of cryogenic liquids respectively to measure the energy dissipation in

superconducting components. The secondary voltage method measures the energy

delivered to the sample by the source instead of the dissipated energy [vG02]. One of

the most convenient approaches is to simply use voltage taps and either use a lock-in

amplifier (see. Cap. 4.3.1) or high-speed digital acquisition units (see. Cap. 4.3.2).



4.3 Transport Current Loss Measurements 73

4.3.1 Lock-in Measurements

Using the lock-in measurement technique for applied electrical transport current

measurements is conceptually very similar to the magnetisation measurements. The

alternating electric transport current that is applied to the sample leads to hysteretic

losses in the superconducting tape. If the transport current has not reached Ic however,

a certain region in the centre of the superconductor will be void of current. For both

the lock-in as well as the high-speed digital acquisition methods, care has to be taken

when placing and connecting the voltage taps, since the hysteretic losses can not be

measured by only detecting the voltage drop over the coated conductor.

The magnetic field surrounding the conductor is equally important which is why the

wires connecting the voltage taps have to be laid out in such a way that an area as large

as possible is covered. On the other hand, a larger loop will have a higher noise signal.

The signal is proportional to the voltage drop and the time derivative of the magnetic

flux. With constrictions of the measuring system and practical considerations in mind,

previous research suggests that an area at least three times the half width of the tape

is required for a satisfactory accuracy of more than 95 % (see Fig. 4.7) [YHB+96].

Increasing the area of the loop helps to record more of the magnetic field and therefore

improves accuracy of course.

Placing the voltage taps in the central part of the tape entails an underestimation of

the actual losses that is gradually improved by enlarging the area of the loop. The

voltage taps may also be placed on the edge on one side of the tape. This leads to an

overestimation of the losses that is also gradually improved by enlarging the area of

the loop.

aa

V

3a

l

Figure 4.7: Schematical drawing of where and how to place voltage taps when con-
ducting electric transport current measurements. The hysteretic losses cannot be
measured by only detecting the voltage drop over the coated conductor. The mag-
netic field surrounding the conductor is equally important which is why the wires
connecting the voltage taps have to be laid out in such a way that an area as large as
possible is covered. Previous research suggests that an area at least three times the
half width of the tape is required [YHB+96].
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Due to the non-linear behaviour of the superconductor during flux penetration, even

when a harmonic electric transport current is applied, the resulting voltage signal is

not harmonic. The lock-in amplifier is therefore used to obtain the voltage component

in-phase with the applied electric transport current. The transport loss is equal to the

product of the root mean square of the transport current and the real part of the root

mean square voltage:

P = I rms · Re(U rms). (4.14)

Because the loss is frequency independent when it is purely hysteretic in origin,

considering the energy dissipation per cycle Q may prove useful:

Q =
I rms · Re(U rms)

f
. (4.15)

In the applied transport current measurements using a lock-in amplifier, a Rogowski

coil is used to acquire the electric current signal just like in the applied background

magnetic field measurements (see Fig. 4.8). The current transducer also shown is

only used for high-speed measurements (see Cap. 4.3.2).

A

V

LEM current transducer

V

Rogowski coil

V

Figure 4.8: System for electrical transport current loss measurements with both
a current transducer as well as a Rogowski coil for reference electrical current
measurements.
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4.3.2 High-speed Digital Acquisition Measurements

Instead of using a lock-in amplifier for signal recording, using high-speed digital

acquisition units is also possible. Precise voltage and current measurements with a

sample rate of up to 500 kHz provide data that can be used to directly calculate the

instantaneous losses:

P(t) = I(t) · U(t). (4.16)

Q is then:

Q =

∫ 1/ f

0

P(t)d t =

∫ 1/ f

0

I(t) · U(t)d t. (4.17)

Using high-speed digital acquisition units has the advantage of speed: since phase

alignment does not have to be enforced and monitored, not only is one error source

removed, but also one setup step. In addition to using high-speed digital acquisition

units, a current transducer was used to acquire the current signal. While at very high

frequencies, its accuracy is limited by the time resolution, for power frequencies, it is

more than sufficient. It has the advantage of not shifting the current signal by 90◦

like the Rogowski coil. The current transducer also does not have to be calibrated. In

order to corroborate the high-speed measurements, reference data points were always

taken using the slower lock-in method. These two systems can also be combined into

one, see Fig. 4.8.

4.4 Comparison of Experimental Methods

Four different methods were presented in order to measure hysteretic losses in su-

perconductors: two for applied electric transport currents and two for background

magnetic field measurements. Conceptually, the calibration free method for measuring

the hysteretic loss in background magnetic fields and the lock-in method for measuring

with transport current are similar. Both use a lock-in amplifier in order to measure the

real part of the voltage signal which records the superconductor’s response in order to

calculate the hysteretic loss. The post processing of the high-speed measurements is

comparatively simple as the high temporal resolution allows the direct calculation of

the losses from the current and voltage signals. The combined method is the most

tedious and the slowest as a separate calibration has to be taken for every frequency
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and both the calibration as well as the following lock-in measurements take a long

time. Refer to Tab. 4.1 for a quick overview.

Comparison of experimental measurement set-ups

Method Complexity Speed Accuracy

Combined Method 0 0 +
Calibration Free + + 0
Lock-in + 0 +
HiSpeed DAQ 0 + 0
Evaporation 0 − +

Table 4.1: Experimental measurement set-ups are compared with regards to the com-
plexity of setting up the systems, the speed of the measurements and their accuracy.
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5 Coated Conductors

Besides bulk specimen of REBCO that are being used as permanent magnets in

specialised applications, the most basic entity of all superconducting appliances is

the superconducting wire or tape. Cables and coils are wound from multiple such

conductors, and most superconducting assemblies are in turn built from multiple

cables or coils. In order to understand and predict the behaviour of even complex

machinery, understanding the basic properties of cables and coils is fundamental.

There are two distinct coated conductor designs being manufactured: the specimen

with non-magnetic substrates and a complex structure of buffer layers (see Cap. 2.7.3)

and the RABiTS kind with ferromagnetic substrates (see Cap. 2.8.2). Since the

ferromagnetic substrates have a rolling texture with a lattice parameter very close

to that of REBCO, less buffer layers are required in order to provide a well defined

surface on which to grow the superconducting layer. Coated conductors of the first

kind were measured and simulated and the results will be discussed in Cap. 5.1 while

the latter are discussed in Cap. 5.2.

5.1 Single Coated Conductors

Since the buffer layers are usually insulating and the conductivity of the stainless steel

substrate is negligible, the electric and magnetic influence of both substrate as well as

the buffer layers is disregarded when simulating. Only the superconducting layer is

actually simulated electrodynamically. This is a valid approach since the steel substrate

has a resistivity orders of magnitude smaller than the superconducting layer, there

is an isolating barrier between them and the steel substrate is non-magnetic (unless

RABiTS substrates are considered, see Cap. 5.2). Geometrically, the proportions are

retained, see Fig. 5.1. This helps keep the complexity of the simulation down leading

to reduced computational effort while not degrading simulation quality.

While the computational investigations were mostly carried out numerically, analytical

formulations are often used as extreme test cases as mentioned in Cap. 3.1.3. In the

following sections, reference is often made to these solutions. In order to reach an

even higher degree of confidence in the results, the compliance of various numerical

models is tested in Cap. 5.1.1. Subsequently, the influence of different parameters
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d
2 · a

x

y

Figure 5.1: Drawing of a simulated coated conductor. The width, here denoted as 2a
in reference to the formulas in Cap. 3, is usually 1 cm while the thickness d is usually
1 µm.

is investigated with regard to the effects on losses and magnetic field and electric

current distributions. See Fig. 6.9 for an exemplary numerical simulation showing

the relative magnetic field amplitude and direction surrounding the edge of a coated

conductor with applied transport current.

5.1.1 Compliance of Numerical Models

In [GRK11], we were able to show that even using rough estimations like constant

critical currents, reasonable agreement may be achieved between simulations and

measurements when comparing hysteretic losses. And, unlike in the case of ferromag-

netic substrates, no distinct features of the curves are lost. It is however important

to understand the simplest case of just one superconducting layer in order to be able

to understand more complex geometries. Mixed boundary conditions like applied

electric transport current and applied background magnetic field for example yield

quite a complex superconductor response.

In the case just mentioned, the behaviour may be understood more easily if the

response is regarded as a superposition of both an applied electric transport current

as well as a background magnetic field. It may also be computed as such (see

Cap. 3.1.3 and Ref. [BI93]). While the work mentioned in Ref. [BI93] solves this

problem analytically, it is still interesting to simulate this case: the analytic solution

just mentioned only shows the magnetic field and electric current distributions at

maximum penetration while all intermittent steps are not accessible. But this evolution

from a virgin state of the electric current and magnetic field being zero everywhere

in the superconductor is helpful in understanding the resulting complex current and

field profiles.
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Figure 5.2: Temporal evolution of current and field profiles for applied background
magnetic field in a superconducting strip of 1 cm width and a thickness of 1 µm. The
critical current is 300 A and the np-value 35, the time step is indicated as a percentage
of a full cycle which in the case at hand is 0.02 s since the frequency of the background
magnetic field is 50 Hz.
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Figure 5.3: Temporal evolution of current and field profiles for applied electric trans-
port current in a superconducting strip of 1 cm width and a thickness of 1 µm. The
critical current is 300 A and the np-value is 35, the time step is indicated as a percentage
of a full cycle which in the case at hand is 0.02 s since the frequency of the background
magnetic field is 50 Hz.
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Figure 5.4: Temporal evolution of current and field profiles for applied electric trans-
port current and background magnetic field in a superconducting strip of 1 cm width
and a thickness of 1 µm. The critical current is 300 A, the np-value 35 and the time
step is indicated as a percentage of a full cycle (here: 0.02 s) since the frequency of
the background magnetic field is 50 Hz.
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In order to better understand the evolution of field and current profiles, both tempor-

ally and depending on the models and parameters chosen, regard Fig. 5.2, Fig. 5.3

and Fig. 5.4. There are two possible simple load scenarios: applied background

magnetic field (Fig. 5.2) and applied electric transport current (Fig. 5.3). These lead

to complementary symmetric and antisymmetric profiles. The third possible scenario

includes both applied electric transport current and applied background magnetic

field concurrently, leading to more complicated profiles (Fig. 5.4).

Numerical models are required when excitations different from ramps or alternating

current cycles need to be simulated, for example current spikes or disturbances.

The fact that for the combined load case the profiles are not symmetrical anymore

with respect to the centre of the strip has bearing on how the losses evolve, especially

when ferromagnetic materials are involved. This is why even for a relatively simple

geometry such as a single strip, it is not easy to intuitively understand hysteretic losses.

It is even more complicated for composite geometries. Due to the complex response

of superconductors, every geometry has to be optimised for specific load scenarios.
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Figure 5.5: Hysteretic losses as a function of applied transport current in coated con-
ductors. For low applied currents, the losses scale as I4 in both the analytic solution
(after [Nor70]) for the strip as well as the numerical simulation for a tape 12 mm wide
and 1 µm thick with an Ic of 300 A and an np-value of 35. While the analytic solution
assumes a one-dimensional strip, it is obvious that even though the coated conductor
has a finite thickness, the solution for the strip predicts the behaviour very well. This
also pertains to simulations utilising more than one mesh element across the width of
the tape.
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We compared simulation and analytic solution and found that due to the high aspect

ratio of at least around 1 : 1000 but up to 1 : 12000, the hysteretic loss response

of the coated conductors is virtually indistinguishable of the analytic solution. Even

the assumption of constant critical current does not influence the results greatly as

the application of a vertical magnetic field and the fact that REBCO conductors are

usually more sensitive to perpendicular than parallel field with regard to the a-b-plane

both mitigate the inaccuracies of this approximation (see Fig. 5.5). When using FEM

simulations, the superconducting strip is often modelled by using only one mesh

element across the width, reducing computational effort considerably by effectively

suppressing lateral electric currents due to averaging and only allowing longitudinal

currents to flow. It is important to bear this in mind when analysing configurations

with incident background magnetic fields of other than perpendicular orientation.

If the dependence of the critical current density on the magnetic field is important

and if not either applied electric transport currents (where the field orientation is

less important) or applied magnetic fields perpendicular to the superconductor are

investigated, it is advisable to adapt the model as the anisotropy of the superconductor

has to be considered. This includes both meshing the superconductor with more than

one element across its thickness and taking the critical current density dependence

into account.

5.1.2 Influence of Power-Law Exponent

It has been mentioned that the analytic solution is only able to reproduce cases where

np =∞. This is due to the fact that Brandt [BI93] assumes a critical state model

(see Cap. 3.1.1) whereas the H-model is based on the power-law (see Cap. 2.5). The

differences are quite pronounced, as can be seen in Fig. 5.6. The analytic solution is an

edge case of the H-model, with np tending to infinity. The other extremal parameter

is the frequency f , which will be discussed in Cap. 5.1.3.

The most striking feature of the comparison is that at low np-values, an overcritical

sheet current JS may flow. The higher np becomes, the less pronounced this effect

and the closer the resulting electric current and magnetic field profiles are to the

analytic case. Solving the H-model – based on the power-law – for np =∞ is not

possible mathematically which is why the profile shown was obtained using the

adaptive-resistive method and is merely shown for reference.

The adaptive-resistivity method [GH05, FFG10] uses iterative adjustment of the

material resistivity in order to approach the critical state model. Initially, a constant
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resistivity ρ = ρ0 is assumed in all i = 1, ..., M elements of the superconducting

domains. In a subsequent iterative process, the resistivity of all the elements is

adjusted according to:

ρk+1
i =max

�

ρk
i

�

� jki
�

�

jc
,ρε

�

(5.1)

where k is a time step counter and j and jc are the current density and the critical

current density, respectively. The minimum meaningful value for the resistivity is

given by ρε. This process continues until:

ρk+1
i −ρk

i

ρk
i

< ε (5.2)

with the positive infinitesimal ε determining the simulation accuracy.

The power-law exponent np governs the abruptness of the transition between super-

conducting and normal-conducting state. The transition becomes steeper with a rising

value of np. This explains the observed behaviour of currents above critical sheet
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Figure 5.6: Influence of the power-law exponent np; shown are the results of a 12 mm
wide and 1 µm thick coated conductor with a critical electric current Ic of 300 A and a
critical magnetic field of Hc = JS,c · d/π where d is the thickness of the conductor. The
tape was loaded with an applied electric transport current of 0.7 · Ic and a background
magnetic field of 0.7 ·Hc. The numerical result with infinite power-law exponent np
was simulated using the adaptive resistivity model. The other three current profiles
are the result of H-model simulations.
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current JS,c flowing: the superconducting state does not collapse abruptly but rather

fades away smoothly. Overcritical currents are not steady-state effects however, which

is why the frequency influences superconducting behaviour ever more strongly the

lower the value of power-law exponent np becomes. For a discussion of this frequency

influence, refer to Cap. 5.1.3.

5.1.3 Frequency Influence on the Electric Current Profiles

In the critical state model, the frequency does not have any influence on the energy

dissipation since both the magnetic field and electric current distributions as well as

the hysteretic losses themselves are frequency independent. This means that while the

hysteretic losses per time rise as the frequency increases, the losses per cycle do not.

As previously mentioned however (see Cap. 5.1.2), when using the power law and

low np-values in the H-model, the electric current distribution is not in equilibrium

anymore. Looking at Fig. 5.7, the effect of ever decreasing frequency is obvious:

towards infinitely small frequencies or, equivalently, constant loads, the initially

well defined current distribution dilutes and, given enough time, the current in a

superconducting strip will tend to distribute uniformly towards infinity: while the total

current flowing in the superconducting strip remains constant, the current distribution

may change substantially. In this case, the frequency does have direct influence on

the energy dissipation as the hysteretic losses depend non-linearly on the current

distribution.

5.2 Coated Conductor Bilayer with Ferromagnetic Substrate

Rolling certain metallic alloys results in emerging textures. These are called called

rolling textures and are due to specific crystal structures. Special physical proper-

ties result from these textures. For the previously mentioned Ni5%W95% alloy (see

Cap. 2.8.2), this texture is extremely conducive to the growing of REBCO supercon-

ducting layers since the rolling texture and the superconducting layer’s crystal unit cell

and orientation are very similar [GNB+96]. Using the RABiTS approach, deposition

of superconducting layers on metallic substrates is possible with few or even no buffer

layers present [GNB+96, GNK+97]. However, the ferromagnetic properties of the

substrate have to be considered, because not only do they influence the electric current

and magnetic field profiles and the hysteretic loss profile of the superconducting layer,

but they also produce hysteretic losses of their own.
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Figure 5.7: Plot of the sheet current as a function of the tape position for various
frequencies in a 12 mm wide and 1 µm thick coated conductor with a critical current
of 300 A and an np-value of 35. At high frequencies, the applied transport current
flows preferably at the lateral edges of the conductor. Towards low frequencies, the
current rearranges more evenly over the width of the conductor. At extremely low
frequencies the current will eventually be uniformly distributed due to flux creep.

5.2.1 Influence of Permeability on Magnetic Field Distribution

For a single tape geometry with a ferromagnetic substrate, the magnetic field profiles

resulting from using substrates of varying but constant relative permeabilities with

analytical calculations were compared. The permeability of the substrate was varied

between unity and infinity. Because the analytical solutions are incapable of calculating

the losses in the ferromagnetic material, we carry this simplification over. This means

that the numerical simulations also do not take the losses in the ferromagnetic material

into account. We also demonstrate intermittent µr values to show the evolution of the

field profile (see Fig. 5.8).

It is obvious that the presence of the ferromagnetic substrate slows the penetration

of flux into the superconductor. This change in the magnetic field profile is a clear

indicator that the ferromagnetic substrate, by influencing the magnetic field around

the superconductor, also influences the superconductor itself. In reality, this interaction

is mutual and complex, since both the superconductor’s as well as the ferromagnet’s

physical properties rely on the amplitude of the local magnetic field since both the

critical current as well as the permeability are functions of the field.
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Figure 5.8: Influence of the substrate’s relative magnetic permeability µr on the mag-
netic field profile with applied background magnetic fields of twice the critical field.
The simulation consisted of a superconducting layer 4 mm wide, 1 µm thick with a
critical current of 100 A, an np-value of 101 and of a substrate layer of varying but
not field-dependent permeability. The substrate is 80 µm thick. Note that the field
strength has been normalised as the critical tape current is of no importance in this plot.
In the case of a ferromagnetic substrate, the magnetic field clearly does not penetrate
as far into the superconducting strip as in the case of a non-magnetic substrate.

Keeping the limitation of not considering hysteretic losses in the ferromagnetic domain,

we regard the hysteretic losses as a function of applied background magnetic field.

Using these simulations to further investigate the agreement of different numerical

models, we compare the losses calculated by the H-model, the adaptive-resistivity

model [FFG10] and the electrostatic-magnetostatic-analogue model [GRKN09]. The

agreement is generally very good, reinforcing our assumption that the H-model is

reliable also when considering ferromagnetic materials [KGF11].

5.2.2 Field Dependent Current Distributions

All the numerical simulations shown previously have been run with a constant critical

sheet current JS,c. However, JS,c is usually dependent on the local magnetic field (see

Cap. 3.1.2). This effect is important when looking at coated conductors due to their

high aspect ratio (see Fig. 5.10).

As a matter of curiosity, the response of the coated conductor to applied electric trans-

port current and applied background magnetic field loads when using the JS,c(|~B|)

dependence (using the enhanced Kim-model, see Eq. 3.3 with parameters k = 0.1 and
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Figure 5.9: The agreement when calculating losses using simulations of various numer-
ical models, namely the H-, the adaptive-resistivity and the electrostatic-magnetostatic
analogue model, is striking, strongly hinting at the validity of these numerical models.
The simulated geometry has the same properties as the one shown in Fig. 5.8. Refer
to the accompanying text for tape parameters.

b = 0.5) is closer to the analytic solution than if constant JS,c were assumed. All things

considered, this effect seems to be purely coincidental and may be attributed to the

fact that np values as high as 35 allow a electric current density j higher than critical

current density jc. The field dependence on the other hand reduces the effective jc
and the resulting distribution looks similar to the analytical solution.

The differences are towards the extremal points in the graph: close to the central

points where the local magnetic field vanishes (also compare Fig. 5.2, Fig. 5.3 and

Fig. 5.4) the sheet current JS exceeds JS,c. Towards the lateral edges where the field

lines are concentrated due to the high aspect ratio of the coated conductor the local

magnetic field amplitude is higher. This leads to reduced critical sheet current JS,c,

explaining the reduced sheet current flowing in these regions.

5.2.3 Magnetisation Losses of a Superconductor-Ferromagnet Bilayer

The comparison of the different numerical models in Fig. 5.9 does not yet account

for the losses in the ferromagnetic material itself. The electrostatic-magnetostatic

analogue model in its present state is incapable of simulating the losses in the ferro-

magnetic material itself and is limited to modelling the changes in the electric and, by
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Figure 5.10: Shown to the right is the JS,c distribution of a field dependent critical current.
To the left is the sheet current in a coated conductor for the case of applied electric transport
current (top), applied background magnetic field (middle) and both (bottom). The red curves
to the left are the sheet current profiles resulting from the critical sheet current distributions
on the right.
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Figure 5.11: Plotted are the measured and simulated hysteretic losses in a bilayer struc-
ture consisting of a superconductor and a ferromagnet versus the applied field. The
superconductor is 1 cm wide and 2.3 µm thick and has a critical current of 269.1 A.
The ferromagnetic substrate is 100 µm thick. The contributions from the supercon-
ductor and those of the ferromagnet may be regarded individually. The ferromagnetic
substrate increases the total losses of the assembly at low fields and decreases them
towards higher fields. The measured data points were adapted and rescaled from
Ref. [SIS+08].

inference, the magnetic field. The goal of the comparison in Fig. 5.9 was therefore to

ensure that this part of the simulation is consistent.

Ferromagnetic materials in general show a non-linear response to local magnetic fields

not unlike that of superconductors (see Cap. 2.8), meaning that not only does the

relative local permeability depend on the local magnetic field strength, but also the

local hysteretic losses of the ferromagnet depend on both local magnetic permeability

and, by induction, the local magnetic field. This is why the electrostatic-magnetostatic

analogue model should only be regarded as a first order approximation and more

complex approaches such as the H-model should be considered.

The physical properties of ferromagnetic materials were implemented in the H-model

as outlined in Cap. 3.2.5 and compared to measured data. In the case of applied

background magnetic field (see Fig. 5.11), not only are the total losses increased

at low applied fields, but also the losses in the superconductor are increased by

the deflection of magnetic flux by the ferromagnetic substrate. At medium to high

magnetic fields, both the losses in the superconductor itself as well as the total losses

are reduced when the ferromagnetic substrate is present. Note that the losses in the

ferromagnetic substrate in fact do not wane but they saturate. The downward trend
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is solely due to the normalisation with the square of the applied background field

that makes it easier to read the graph and is common in literature about hysteretic

losses [GvV+07, GRK11].

5.2.4 Self Field Losses of a Superconductor-Ferromagnet Bilayer

When the superconductor is supplied with an electric transport current, it is affected

more detrimentally by the presence of a ferromagnetic substrate, see Fig. 5.12. Not

only are the losses in the ferromagnetic substrate by itself higher than those in the

superconductor with non-magnetic substrate until well above 30 %, the field shaping

effect enacted by the substrate also increases the losses in the superconductor by

roughly two orders of magnitude.

This effect is observable up until very high load rates. Only above 95 % of critical

electric current Ic, the losses are reduced by the presence of the ferromagnetic sub-

strate. At Ic they reach almost 20 %. This does little to remedy the detrimental effects

of the ferromagnetic substrate with the exception of the unrealistic load profile with

the superconductor carrying almost 100 % of its critical transport current at all times.

All presented results do little to recommend superconducting tapes deposited on

ferromagnetic substrates for any of the investigated applications. Especially given

the fact that the possibility to manufacture coated conductors with non-magnetic

substrates exists as well. However, heterostructures of ferromagnetic materials and

superconductors are not necessarily antagonistic. Arranged in carefully chosen config-

urations, this material combination can be very effective in enhancing the physical

properties of the assembly, see Cap. 6.
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CC with FM: losses in FMFigure 5.12: The hysteretic losses are plotted as a function of the applied field for a

bilayer consisting of a superconducting and a ferromagnetic layer. The dimensions and
the critical current of the superconductor are the same as in the applied field case: the
superconductor is 1 cm wide, 2.3 µm thick, has a critical current of 269.1 A and an np-
value of 35. The substrate is 100 µm thick. The presence of a ferromagnetic substrate
leads to amplified hysteretic losses, both due to the rerouteing of the magnetic
flux as well as the additional losses in the ferromagnetic substrate. At applied electric
transport currents higher than 95 % the total losses are actually reduced, but except for
this very specific and rather unrealistic case, the effect of the ferromagnetic substrate
is extremely detrimental to the conductor performance.



93

6 Ferromagnetic Shielding

In the subsequently presented research, the influence of ferromagnetic shields on

various geometric configurations is investigated. The effect of hysteretic loss reduction

through the application of ferromagnetic shields for coated conductor geometries

(see Cap. 6.1) as well as stacks of coated conductors (see Cap. 6.2), for bifilar coils

(see Cap. 6.3) and for pancake coils (see Cap. 6.4) is demonstrated. Additionally, the

hypothesis of supercritical currents is investigated for single coated conductors.

6.1 Single Coated Conductors

One of the most convenient geometries to investigate is the coated conductor, since

preparing samples is straight forward as laid out in Cap. 6.1.3. Being able to compare

simulation with measurement is important in order to verify the numerical model.

Before coating of the samples simulations are run in order to optimise the shielding

geometry to find a configuration that optimally reduces hysteretic losses. Two para-

meters are easily varied in the sample preparation: the coverage and the thickness

of the ferromagnetic shield. For a schematic drawing of a coated conductor with

ferromagnetic shields, see Fig. 6.1. A picture of actual coated conductor samples with

ferromagnetic shielding is seen in Fig. 6.2.

d
FM
d

gap

d

d
sub

dgap

2 · a

cx

y

Figure 6.1: Drawing of a shielded coated conductor. The coated conductor itself has a
width 2 · a, a thickness d and the shields have a thickness dFM, a coverage c and they
are positioned close to the superconductor with a gap dgap. Instead of a substrate,
there is an air gap sized dsub. The substrate is usually between 50 µm and 100 µm thick
but the thickness has little influence.
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The coverage is the fraction of the surface starting from the lateral edges that is covered

by the ferromagnetic material. The central parts are always left clear in order not to

attract the magnetic flux lines towards the centre thereby speeding flux entry into the

superconducting tape. This would basically constitute the detrimental effect already

observed in the configuration of the bilayer structure consisting of a superconducting

tape deposited on a ferromagnetic substrate. The idea of ferromagnetic shielding is to

help deflect flux lines away from the superconductor thereby effectively reducing the

local field around the superconductor and consequently reducing the hysteretic losses.

Figure 6.2: Coated conductor samples with applied ferromagnetic shielding. Note the
uncoated areas at one end of the tapes where the electrodes were fastened onto the
tapes. The coverage of the shields shown is 50 % of the total width of the coated
conductors or in other words 25 % from each side.

6.1.1 Influence of Coverage and Thickness

As mentioned above, both coverage as well as thickness are easily varied; the former

by simply changing the width of a plastic foil used to cover central parts of the strip

during the electroplating and the latter by either increasing the current flowing in the

Watts bath or by increasing deposition time (see Cap. 6.1.3). Increasing deposition

time is the safer options for reasons explained in Cap. 2.8.1.

In order to reach optimal shield performance, the geometry of the shields has to

be adjusted for specific load scenarios. An application operating at low load rates

requires a different shield from a different application at medium or high load rates.

See Cap. 6.1.2 for a more thorough discussion.
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Here, we assume magnetisation load, meaning the superconductor is only subjected

to a background magnetic field and no electric transport currents. In all applications

in which superconductors are exposed to background magnetic fields leading to flux

penetration, hysteretic losses are a major concern. Various magnetic field amplitudes

are applied and the response of the shielded tape compared to the unshielded tape is

considered. An optimal performing shield would reduce the hysteretic losses at all

applied field amplitudes, or at least over as wide a range as possible.
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Figure 6.3: This plot shows the influence of the shield coverage for a given thickness
(75 µm) of the ferromagnetic shields on the losses as a function of applied magnetic
field. The superconductor is 6 mm wide, 1 µm thick and has a critical current of
87 A. The term coverage denotes the percentage of the coated conductor covered
by ferromagnetic material. There is no single coverage that performs best: the ideal
configuration depends on the load profile. At predominantly low loads, a small
coverage is best since the reduction is greater at low fields. Towards higher loads,
larger coverages result in a higher loss reduction at higher fields but also show less
optimal behaviour at low fields.

Regarding Fig. 6.3 it becomes obvious that there is no single best configuration. The

coverage was swept from as low values as 12.5 % to as high values as 97.5 % and there

are different optimal regions for each configurations. Low coverages perform better at

low applied magnetic fields but show less hysteretic loss reduction at high magnetic

fields while high coverages perform better at high magnetic fields but show increased

hysteretic losses at low fields when compared to lower coverages. In summary, for

applied magnetic background fields, a coverage of more than 50 % does not seem

advisable. For coverages between 30 % and 50 %, the reduction of hysteretic losses
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around 20 mT is roughly 60 %. For higher magnetic background fields around 80 mT,

the savings are reduced to around 20 %.

The observed behaviour of the hysteretic losses at different coverages is due to the

interaction of the hysteretic losses in the superconductor and in the ferromagnet. The

hysteretic losses in the ferromagnetic shields contribute a lot at low loads, so reducing

the volume of ferromagnetic material results in reduced losses at low fields. At the

same time, the shielding performance is reduced at high fields because less shielding

material is present. The losses in the ferromagnetic material saturate however so

towards higher loads, they become small relative to the losses in the superconductor.

In order to optimally size the ferromagnetic shields, the expected load profile has to

be known.

In order to investigate the influence of the shield thickness, various shield thickness

configurations were simulated for a number of coverages, see Fig. 6.4. Consider the

first three configurations, 25 %, 50 % and 75 %: the effect of the first step to higher

thickness seems to be much more drastic than the second. Even for the remaining

two configurations, the effect of the second step up arguably is not as pronounced as

the first. All configurations show that applying thicker shields leads to higher losses

initially while at higher applied fields the losses are reduced, if only slightly.

Initially elevated total losses are in accord with expectations as hysteretic losses in

superconductors are in-existent or at least negligible at very low loads. At the same

time, even low loads lead to measurable losses in ferromagnetic materials. These

however saturate so their influence wanes. Towards higher loads they become incon-

sequential when compared to the hysteretic losses stemming from the superconducting

components.

6.1.2 Optimising for Various Load Profiles

General design recommendations may be given taking into account previous observa-

tions and conclusions resulting therefrom: when the expected load profile is geared

towards very low fields, no shielding should be put on the conductor. At low to

medium fields, the shield should be scaled up accordingly. At very high fields, an even

thicker shield may prove beneficial. The same is true for the coverage: the lower it is,

the more the break-even point shifts towards lower fields and vice versa. In any case,

it is extremely important to know or have a good estimate of what the load profile

will look like and what kind of loads are to be expected most of the time in order
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Figure 6.4: Each graph shows the influence of varying the thickness of the shields for
different shield coverages on the hysteretic losses. In all cases under scrutiny, the result
is generally the same: a shield of increased thickness leads to higher losses initially
while at higher fields, the losses are reduced. Conductor properties are the same as in
Fig. 6.3.
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to optimise for that particular regime. Applied magnetic fields, electric currents and

combined loads all require their own special design.

6.1.3 Electroplating Ferromagnetic Shields onto Coated Conductors

Nickel was used as the material of choice in the investigation of ferromagnetic shield-

ing since it is both well understood, characterised and easily electroplated as men-

tioned previously in Cap. 2.8.1. After having established the optimal coverage and

thickness of ferromagnetic shields to be measured in magnetisation measurements,

samples were prepared. In order to electroplate them with Nickel, a first batch of silver

stabilised Superpower REBCO tapes were laminated with a thin plastic foil, covering

just the middle of the tape. The plastic foil was cut to correspond to the correct

fraction of the tape to be left without ferromagnetic material. The plastic foil used

was self-adhesive and no glue was used in its fixation to allow convenient removal

of the foil at a later stage. At one end, a short length of the tape was left uncovered

so the electrode required for the electroplating procedure could be connected (see

Fig. 6.5).

Figure 6.5: A sample clad with copper (20 µm) instead of just being stabilised with a
thin silver shunt. The blue plastic foil is applied before the electroplating procedure in
order to prevent Nickel deposition in the central area.

While the sample is submerged in the bath solution and the process of electroplating

Nickel is running, it is advisable to jolt the sample being coated every minute or

so. This procedure helps insure a high quality deposition layer of the ferromagnetic

material as little gas bubbles invariably forming on the ferromagnetic layer and

clinging to the surface are shaken free. If not removed regularly, these bubbles hinder
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local deposition and lead to pitting in the layer and thus inhomogeneous material

deposition, see Fig. 6.6.

Figure 6.6: If not jolted regularly, gas bubbles cling to the freshly deposited ferromag-
netic layer and cause pitting (see red boxes). The pits are about 200 µm in diameter
and between 10 µm and 25 µm deep.

Hysteretic loss measurements were taken after having completed the first batch of

samples and compared with numerical results from FEM modelling. Their agreement

was found to be very poor which lead to extensive plausibility checks. After having

verified the numerical model with test cases, every single parameter of the simulation

was swept over a range of plausible values in order to find the cause of the divergence.

The systematic sweep included parameters like superconductor width and height,

different meshes, the response and loss functions of the ferromagnetic material,

coverage and thickness and finally superconductor critical current. It turned out that

with a critical current of roughly half the initial value, the hysteretic loss measurements

could be matched.

The superconductor was then scrutinised for possible damage and indeed, as the

plastic foil covering the central parts of the conductor was removed, portions of the

silver stabilisation were found to be ablated as well, see Fig. 6.7.

Figure 6.7: A sample without copper plating shows ablating of the silver shunt. The
superconductor below is also affected. Some of the damaged regions are marked red.

The acidic environment of the Watts bath is able to penetrate the porous silver layer

which is only 1 µm thick and dissolves the superconductor. In order to protect the

superconductor from the detrimental effects of submerging the coated conductor for

some time in an acidic solution, samples clad with a 20 µm thick copper layer were

used. The copper successfully hindered the solution from coming in contact with
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Figure 6.8: Shown are Ic measurements before and after the coating process. The
samples were clad with a 20 µm layer of copper, to ensure the acidic Watts bath used
in the electroplating procedure could not reach the superconducting layer. Note that
no increase in critical electric current Ic is observed after coating. No considerable
degradation is noticeable either, though.

the superconductor. In the new samples no degradation of the critical current was

observed, see Fig. 6.8.

An increase in critical electric current Ic as predicted in Refs. [GSF00, Gen02, JJF02,

JBH05, GRKN09] could not be observed in the measurements. No localised current

distributions were investigated, for example using magneto-optical techniques. Since

only integral currents were measured, such possibly present local supercritical currents

would go unnoticed, if they do not result in a significant global increase in critical

current. The measurements show however that careful handling certainly does not

diminish conductor properties, either.

6.1.4 Applied Magnetic Fields

Having ascertained that the coating process itself did not diminish the critical current

of the copper clad samples, we measured their hysteretic losses after the coating pro-

cess at various frequencies and amplitudes. The numerical simulations were compared

with the measurements taken with the combined thermal/complex susceptibility and

the calibration free measuring system (see Cap. 4.2).

We simulated a Superpower 2G coated conductor that was 12 mm wide and 1 µm

thick, clad with 20 µm copper and we used superconducting properties fitted to the
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data obtained from measurements of the bare conductor. The critical current of the

tape was determined to be 286 A and the np-value to be 50. We further used the

following parameters for the extended Kim model mentioned in Cap. 3.1.2: k = 0.01,

b = 0.2. The ferromagnetic shield covered 3 mm from each side and is 30 µm thick.

Fig. 6.9 and Fig. 6.10 illustrate how the ferromagnetic shielding works and where it

redirects the magnetic flux surrounding the superconductor. When reading the arrow

plot, it is important to keep in mind that the arrows each show the direction of the

magnetic field at their point of origin only. The ferromagnetic shield clearly attracts

the magnetic field and in the lower part the arrows showing the horizontal flow of the

magnetic field demonstrate the guiding of the magnetic field inside the ferromagnetic

shields.

The hysteretic losses calculated using numerical simulation and the measured loss

values were compared. The results show excellent agreement, with the exception of

the low field regime, were we overestimated the losses in the ferromagnetic shield,

see Fig. 6.12. This is probably due to the rather idealised layout of our numerical

simulations: we assume a constant thickness over the wide face of the tape. However,

it is well known that due to field elevation at sharp edges the electroplating process

will deposit tear shaped coatings at the pointed lateral edges: the so called dog-boning

effect. If the cross-section of the tape is considered, it will remotely resemble a

dog-bone – hence the name. The dog-boning effect is visible on one of samples shown

in Fig. 6.11. The density and physical properties of the Nickel might also not be

homogeneous on top of the superconductor possibly having lower JS,c at the edges,

leading to further complex interactions. Additionally, the critical current density

towards the edges of a coated conductor is usually diminished as compared to the

central parts of a tape.
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Figure 6.9: The magnetic field surrounding the left edge of a single coated conductor is
shown. The arrows show the orientation of the field whereas the colour plot shows the relative
magnetic field amplitude. Note the magnetic field being parallel to the superconductor where
magnetic flux has not penetrated the superconductor.
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Figure 6.10: The magnetic field surrounding the left edge of a ferromagnetically shielded
coated conductor is shown. The arrows show the orientation of the field whereas the colour
plot shows the relative magnetic field amplitude. Note the flux rerouting in the lower part of
the shield and how the ferromagnetic domain attracts magnetic flux.
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copper cladding of coated conductor

ferromagnetic nickel shield

surplus nickel deposition

Figure 6.11: Picture of a copper clad coated conductor with applied ferromagnetic
shielding. The copper cladding is visible at the top, the silver colored nickel shows a
dog-boning effect at the right side.

For the applied background magnetic field simulations and experiments, the observed

loss reduction was almost 50 % at 10 mm and still about 30 % at a magnetic field

strength of 20 %. At higher magnetic background fields, the reduction steadily

decreased. Apart from the low field region, no increase in total hysteretic losses was

observed so that our data suggests always using magnetic shielding if background

magnetic fields of not too high a magnitude are present.

The measurements of the unshielded and shielded coated conductor samples were

taken with the calibration free measuring system. The measurements were taken with

various samples and at various frequencies. Since the latter did not influence the

losses per cycle, the data is shown indiscriminately.

It would be highly interesting to use materials with improved magnetic permeabilities,

low loss functions and low saturation field densities. When referring to Eq. 2.15 it is

obvious that Nickel’s initial relative magnetic permeability of about µr = 120 which is

low to begin with decreases swiftly towards higher magnetic fields. It is decreased

by more than 50 % at fields as low as 10 mT. Other materials should be much better

suited to shield the superconducting volume from magnetic flux entry.

In want of a complete dataset for Ferroxcube A, we used Nickel’s loss function adjusting

the loss per cycle as well as the saturation flux density and used a constant permeability

of µr = 1400 with the boundary condition of applied oscillating background fields

while keeping the geometric layout constant. For the loss per cycle and the saturation

flux density, we used the values provided in Tab. 2.3. Exemplary simulations with

Ferroxcube A as the material for the ferromagnetic shields demonstrate the high

potential of using high permeability, low loss ferromagnetic materials
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Figure 6.12: Measurements and simulations of hysteretic losses due to the application
of oscillating magnetic fields; plotted are the Brandt [BI93] solution for a single coated
conductor, the numerical simulations and the measurements for both the unshielded
as well as the shielded coated conductor. The black crosses and circles mark measured
data for the unshielded and shielded coated conductor, respectively. It was acquired
using the calibration free measuring system, see Cap. 4.2.2. Using Ferroxcube A
(solid green) instead of Nickel, the total hysteretic losses should be much lower due
to its higher permeability (in these simulations, we used a constant permeability of
µr = 1400) and lower loss per cycle (40 J m−3 instead of 2.75 MJ m−3).

The saturation level of the hysteretic ferromagnetic losses depends foremost on the

saturation field density and the hysteresis loss per cycle. There is always a trade-off

when considering materials with low saturation field densities on the one hand and

materials with high saturation field densities on the other: if the saturation field

density is low, the hysteretic losses in the ferromagnetic material saturate faster but

the shielding is not effective anymore because the relative permeability becomes unity.

On the other hand, if the saturation field density is high, the shielding is effective until

higher fields but the hysteretic losses in the ferromagnetic contribute more. An ideal

material has a high relative permeability and low hysteretic losses per cycle. Then,

even if the saturation field density is high, the hysteretic losses in the ferromagnetic

material will still be low while on the hysteretic losses in the superconductor are still

effectively reduced. Materials with magnetic properties better suited to shielding

applications than Nickel are found in Tab. 2.3. This does not imply easy mechanical

workability which should be further investigated.
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6.1.5 Applied Electric Transport Currents

The same samples as in Cap. 6.1.4 were also used in applied transport current

measurements. The simulations fit measured data equally well under these bound-

ary conditions (see Fig. 6.13). Above roughly 170 A, the hysteretic losses in the

heterostructure are reduced as compared to those in the pristine superconductor.

Much as is the case for applied background fields above 5 mT, an effective reduction

of hysteretic loss in the heterostructure assembly is only observed above certain fill

rates as the reductions in hysteretic loss in the superconductor are counteracted by

additional losses in the ferromagnetic material. With the shielding geometry in use,

a hysteretic loss reduction which steadily increases is observed above a threshold of

56 % of Ic. The loss reduction is around 12 % initially, in the investigated geometry

at about 66 % of Ic and around 20 % at Ic. The measurements were taken with both

the lock-in method as well as using high-speed digital acquisition units, see Cap. 4.3.1

and Cap. 4.3.2.
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Figure 6.13: Hysteretic loss plotted versus applied electric transport current for both
the unshielded as well as the shielded conductor. Above roughly 170 A the losses
in the shielded coated conductor are lower than in the unshielded sample. The
measurements were taken at 24 Hz for the unshielded samples and at 1.2 Hz and at
72 Hz for the shielded sample. The black crosses and circles mark measurement data
for the unshielded and shielded case, respectively. The data was obtained using both
lock-in as well as high-speed DAQ measurements. We did not observe any frequency
dependence, ruling out eddy currents as cause for the losses.

It is worth pointing out that the total hysteretic losses at low to medium fill rates are

dominated by the losses in the ferromagnetic material. By modifying the coverage and
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thickness of the ferromagnetic coating or using different ferromagnetic material, the

shield performance can not only be tuned for specific load scenarios but also improved

in general.

The samples having been specifically optimised for reduction of the hysteretic losses

in background field magnetisation, the reduction in the applied electric transport

current case is not optimal. However, the measurements were only used to validate

the numerical model. Having established its validity by showing it correctly predicted

the physical behaviour of the heterostructure consisting of a superconductor and a

ferromagnet, we encourage its use to optimise geometries for specific usage scenarios.

6.2 Coated Conductor Stacks

The next logical step up from single conductors is considering stacks of tapes, since

the geometry is very similar but includes more than one superconducting domain. A

stack of five coated conductors was investigated with applied electric transport current

and applied background magnetic field. Stacks of coated conductors by itself have an

intrinsic shielding effect because the tapes at outer positions shield the inner ones. This

effect raised a lot of scientific interest [GAS06, Sch06, BGN+09, M9̈9, Maw96, PS11].

For a drawing of the shielded coated conductor geometry, see Fig. 6.14. For the

significance of the advanced shielding geometry, see Cap. 6.2.3.
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Figure 6.14: Drawing of a simple shielding geometry for a CC stack; the green parts in-
dicate ferromagnetic domains. Their coverage c of the superconducting stack (colored
blue) is varied. The thickness dFM of the ferromagnetic shields is altered as well. A
tiny gap dgap exists between superconductors and ferromagnetic shields which is in
the order of 10 µm. The spacing between two adjacent superconductors due to the
presence of the substrate is dsub.
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6.2.1 Shielded Stack with Applied Field

A coated conductor stack of five coupled coated conductor tapes was subjected to

background magnetic fields. The tapes are 1 cm wide and 1 µm thick, have a critical

current density of 300 A and an np-value of 35 and are only separated by a 50 µm

thick substrate.

The results of the hysteretic loss investigation show an increase in total hysteretic

losses at low loads, see Fig. 6.15. With a shielding coverage of 50 % and a shield

thickness of 30 µm, this translates to background magnetic fields up to 20 mT. Above,

the total hysteretic losses are reduced and at 30 mT, the losses are reduced by 15 %.

At 50 mT, the reduction of total hysteretic losses reaches 20 %. The hysteretic losses

in the shielded sample are considerably lower than those in the unshielded sample.

The reduction of the total hysteretic losses persists at about 20 %.

Up until medium fields, the losses in the unshielded sample are lower, mostly be-

cause the penetration of magnetic flux into the central coated conductors is small

to begin with and the added hysteretic losses in the ferromagnetic shields cannot

counterbalance the savings achieved at such low magnetic fields. Above the threshold

value however where the cross-over takes place, a net reduction of hysteretic losses

is achieved by ferromagnetic shielding. The behaviour has to be tuned to the load

profile. Like in the single coated conductor case, lower coverage and thickness results

in lower total hysteretic losses at low loads but reduced effectivity at high loads.

6.2.2 Shielded Stack with Applied Current

An electric transport current was applied to a stack of five coated conductors, treating

the stack of tapes as parallel and coupled as if they were connected to the same

current lead. Alternatively, this geometry is also a two-dimensional representation

of a coil. Simulation of such coils is also possible, including out-of-phase excitatory

electric currents.

Fig. 6.16 shows the hysteretic losses in the coated conductor stack plotted versus the

applied electric transport current. The dimensions of both the unshielded as well as

the shielded coated conductor stack are the same as those mentioned in the previous

subchapter about applied background magnetic fields.

Above roughly 120 A which corresponds to 40 % load, the losses are reduced. While

the reduction does not seem substantial in the logarithmic plot, the hysteretic loss
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Figure 6.15: Plot of hysteretic losses versus applied magnetic background fields for
both the unshielded as well as the shielded coated conductor stack. Above 20 mT the
losses in the shielded coated conductor are lower than in the unshielded sample.

decrease holds steady at about 20 % as compared to the unshielded case. Again, if

the level of the ferromagnetic losses could be reduced, ferromagnetic shielding would

become even more attractive for a wider range of applications as the usage would be

more universally applicable.
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Figure 6.16: Hysteretic loss plotted versus applied electric transport current for both
the unshielded as well as the shielded coated conductor stack. Above roughly 120 A
the losses in the shielded coated conductor are lower than in the unshielded sample.
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6.2.3 Alternate Shielding Geometry

In the first iteration, the same basic shielding layout as in the single coated conductor

configuration was used, see Fig. 6.14. This is not optimal because each geometric

configuration and each load case requires its own specifically optimised shielding.
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Figure 6.17: Drawing of an altered shielding geometry for a coated conductor stack.
Note the missing parts of the ferromagnetic shields at the side. In addition to the
dimensions mentioned in Fig. 6.14, the free spacing where the ferromagnetic shielding
has been removed is given as dspace. In general, the shielding of a stack of coated
conductors requires less ferromagnetic shield coverage than that of a single coated
conductor. Removing even more of the ferromagnetic material results in a better
shield performance at low to medium loads due to reduced losses in the ferromagnetic
parts.

A stack of coupled coated conductors generates a magnetic field that resembles that

of a bulk superconductor of the same dimensions as the stack as a whole rather

closely. This means that the geometry of the ferromagnetic shields has to be adapted

accordingly. A bulk has a less extreme aspect ratio which results in reduced hysteretic

losses because the magnetic flux penetration is reduced.

A novel four part shielding geometry was constructed that mainly shields the corners

of the stack, see Fig. 6.17. The sides of the stack are left without shields in order to

reduce hysteretic losses. Since the flux does not need to be guided in those regions

and the load on the superconducting tapes in the centre is low to begin with, removing

the shielding there has little detrimental effect. Since the flux penetration is not as

strong as in a single conductor, the coverage was reduced.
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Figure 6.18: Arrow plot of the magnetic field surrounding an unshielded coated con-
ductor stack. The colour plot in the background shows the magnetic field amplitude.
Note how the field is considerably lower in amplitude inside of the stack, the outermost
conductors shield the inside from magnetic flux entry.
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Figure 6.19: Arrow plot of the magnetic field surrounding a shielded coated conductor
stack with an advanced shielding layout. The arrows show the direction of the mag-
netic field whereas the colour plot shows the normalised magnetic field amplitude.
The optimised geometry with reduced coverage (see Fig. 6.17) is very effective in
shielding the superconductors while at the same time not adding much losses on its
own.
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Fig. 6.18 shows the magnetic field surrounding an unshielded superconducting stack.

In Fig. 6.19, the same view of a superconducting stack is shown, this time including

a ferromagnetic shield of the just mentioned improved design. The strong magnetic

field at the lateral edge of the superconductors where the magnetic shield is missing is

clearly visible. This field would induce hysteretic losses in the ferromagnetic shielding

material thereby reducing the overall effectiveness of the losses. Since the rerouteing

of magnetic flux is not required in these areas, it is possible to simply remove the

ferromagnetic parts there.

Looking very closely at the direction of the magnetic field shows the effect of the

ferromagnetic shielding as the arrows representing the magnetic field direction are

not quite as steep (the orthogonal component with respect to the superconductor

is smaller) as in the case without shields. The flux rerouteing is visible inside the

ferromagnetic shields where the direction of the magnetic field and hence also the

arrows follow the shape of the ferromagnetic domains.
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Figure 6.20: Hysteretic losses plotted against applied current in a coated conductor
stack with alternative shielding geometry; the green curve shows the results of the
shielding geometry shown in Fig. 6.14 whereas the red curve those of the alternat-
ive shielding geometry shown in Fig. 6.17. Note the different optimal regimes; the
alternative geometry shows much earlier cross-over.

This optimised geometry performs much better at low current loads compared to the

original shielding geometry, see Fig. 6.20. Only at very high electric transport current

fill rates, the losses become higher than those of the regular shielded conductor stack.

This is due to the central tapes carrying more current and the ferromagnetic shields

not being able to shield them due to the absence of the lateral central parts. The
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total hysteretic losses are still lower than those of the unshielded stack, however. By

adjusting coverage, thickness and the size of the gaps in the ferromagnetic shields, the

behaviour can be tuned further. This again demonstrates the requirement of designing

a ferromagnetic shield not only for each geometry but for a specific load case as well

in order to achieve optimal performance.

In order to achieve optimal shielding performance, data on the actual load profile

should be acquired. This can be used in order to apply realistic boundary conditions.

A topological optimisation can then provide the best possible layout under the given

constrictions. The only concern here is the speed of the simulation but with a suffi-

ciently optimised model and starting with a rough approximation for the topological

optimisation, the computational load is manageable.

6.3 Bifilar Coils

Bifilar coils are wound two-in-a-hand, meaning two conductors are used to wind

the coil and are then connected in the middle. By having one conductor carry an

inward and the adjacent conductor carry an outward current, their inductances

cancel out resulting in a non-inductively wound coil. Another advantage is that the

hysteretic losses are reduced due to the partial cancellation of the perpendicular

component of the self field. Such an assembly is for example used in fault current

limiters [EKF+11, EKB+12]. For a three-dimensional drawing of a bifilar coil, see

Fig. 6.21.

Figure 6.21: Three-dimensional drawing of a bifilar coil. The conductor changes colour
from red to blue in the middle to better discern the winding. Because of the bifilar
winding, each adjacent conductor carries anti-parallel current. Also see the graphic
demonstrating the idealisation of the numerical model in Fig. 6.22. Picture courtesy of
J. Brand, KIT.



6.3 Bifilar Coils 113

If considered two-dimensionally and neglecting end-effects, the bifilar coil may be

represented by an infinitely stacked array of superconductors and thus be modelled,

due to symmetrical reasons, by a single superconductor and adequate boundary

conditions. In the following simulations, a superconductor width of 2 · a = 10 mm

and a superconductor thickness sample thickness d of d = 1 µm was chosen. The

separation between two adjacent superconductors was assumed to be dsep = 1.5 mm,

as reported in Ref. [EKF+11].

The lines equidistant from an arbitrarily chosen superconductor with respect to both

its neighbours are taken as the top and bottom boundaries of the simulation envir-

onment and the perpendicular field component is forced to zero along their course,

making use of a Dirichlet boundary condition: Hy = 0 ∀ y = ±dsep/2. The Dirichlet

boundary condition is used because the magnetic field component perpendicular

to the tape surface generated by two adjacent superconductors carrying current in

opposing directions cancels out on the demarcation line situated equidistantly from

both conductors, compare Fig. 6.22.

Hy = 0

Hy = 0

d
sep

d

x

y

Figure 6.22: Drawing of the bifilar simulation environment with the superconductors
coloured blue. The separation between two adjacent conductors is dsep = 1.5 mm
whereas the thickness of the superconductor is d = 1 µm. The Dirichlet boundary
condition along the dashed lines is Hy = 0 ∀ y = ±dsep/2. The red box sketches the
region shown in Fig. 6.23.
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Designing the shielding geometry for a bifilar coil requires knowledge of how the

magnetic field looks like around the superconductors in order to find geometries

that effectively reroute magnetic flux and lower the overall hysteretic loss. Refer to

Fig. 6.23 for an arrow plot of the magnetic field surrounding an unshielded bifilar coil

which is quite different from that of a single coated conductor due to the different

boundary conditions (compare with Fig. 6.9).

The bifilar coil is loaded with an electric transport current. Applying a background

magnetic field is nonsensical as the coil in a first approximation behaves like an infinite

stack and the usage of bifilar coils is probably exclusively in applied current cases.

An analytical solution for an infinite y-stack of superconducting tapes exists [Cle08]
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Figure 6.23: Arrow plot of the magnetic field surrounding the lefthand edge of a
bifilar coil, the region shown is that encircled in red in Fig. 6.22. The arrow plot shows
the direction of the magnetic field at the arrows’ point of origin whereas the colour
plot shows the normalised magnetic field amplitude. Note the magnetic field being
parallel to the top and bottom boundary - a result of the boundary condition forcing
the vertical component of the magnetic field to zero.

and may be used for comparison with the simulations in the case of absent shields,

see Fig. 6.24. Note the excellent agreement apart from the deviations at regions with

critical sheet current where the FEM simulation behaves differently due to a low np

value. This behaviour is similar to that in the single coated conductor, see Fig. 5.6.

The agreement is taken as proof that the Dirichlet boundary condition is enforced

correctly. This further raises confidence that the results of the numerical simulations

will also provide correct results once ferromagnetic shields are included.
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Figure 6.24: Comparison of the normalised sheet current profile resulting from the
numerical FEM simulation with an analytic solution from Ref. [Cle08]. Shown are the
results of a 1 cm wide and 1 µm thick coated conductor with an applied transport
current of 70 % of the critical current of 300 A. The np-value is 35.

6.3.1 Influence of Shield Coverage

Using the same geometric layout for the ferromagnetic shielding of the bifilar coil

as in the coated conductor case yields poor results, see Fig. 6.25. In order to better

understand the magnetic field distribution surrounding the superconductor in the

geometry layout of a bifilar coil, it is advisable to consider the arrow plot presented in

Fig. 6.23.

It should be obvious that a high coverage provides little advantages since the magnetic

field is parallel to the wide face of the superconductor already. Hence, a short coverage

should perform equally well with regards to shaping the magnetic field while at the

same time contributing much lower ferromagnetic hysteretic losses. The effect of

ferromagnetic shielding is observable in Fig. 6.26.

Refer to Fig. 6.25 to see that a lower coverage indeed reduces the hysteretic losses. A

lower coverage in general will lead to lower losses in the ferromagnetic parts which is

why the cross-over to reducing the hysteretic losses happens at lower applied transport

currents.

As is obvious from looking at the high load region, this initial reduction entails a lower

shielding effect at high transport currents. Both the configuration with a coverage of

100 µm as well as the configuration with 10 µm show exceptional performance. Over
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Figure 6.25: The total hysteretic loss of a bifilar coil with and without ferromagnetic
shielding is compared for various coverages as a function of the applied transport
current. Note the bad performance with a coverage of 1 mm on each side, corres-
ponding to 20 % coverage. Only at considerably lower coverages the influence of the
ferromagnetic shields becomes beneficial.

the whole range of applied currents the reduction is considerable but some regions

even show a total hysteretic loss reduction of one order of magnitude.

A coverage of 10 µm is very difficult to obtain since the coating process is not suitable

for such small coverages. Another problem are the forces occurring in real applications,

especially coils at power frequency since they tend to vibrate. To mitigate these

problems, slightly larger coverages can be used. Alternatively, the ferromagnetic

material could just be positioned in the vicinity of the coil’s turns instead of being

directly applied to the edges. This should produce the same results with the added

benefit of mechanical stability.

Only a small coverage is required since the bifilar arrangement itself tends to displace

the electric currents towards narrow regions near the edges, as seen in Fig. 6.24.
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Figure 6.26: The two plots above show the magnetic field surrounding an unshielded
(top) and a shielded (bottom) bifilar coil. The arrows give the direction of the magnetic
field while the colour plot shows the normalised magnetic field strength. The magnetic
flux is rerouted by the presence of a ferromagnetic shield. Note how the magnetic
field is aligned in parallel to the superconductor anyway so the presence of the shield
does little to improve the overall orientation of the magnetic field.

6.3.2 Influence of Shield Position

A further investigation targets not the coverage of the ferromagnetic shields but

their placement relative to the conductor and their design. Besides testing out a

ferromagnetic coating of varying thickness, the vertical position of the shields is

shifted. The influence of removing the substrate is tested as well as separating the

shields from the superconductor and positioning them equidistantly from both wide

sides of the superconductor, see Fig. 6.27.

The total hysteretic losses of the various geometries were compared in Fig. 6.28.

The configuration without a substrate is the worst at high transport current loads

above 30 % Ic because the shields are not situated as far away from the supercon-
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Figure 6.27: Drawing of a shielded bifilar simulation environment with the supercon-
ductors coloured blue and the ferromagnetic shields coloured green. The left-hand
side shows a ferromagnetic shield with a substrate of thickness dsub, this results in a
larger gap between superconductor and ferromagnet at the bottom of the coated
conductor. The separation between two adjacent superconductors (or, in this case
equivalently, between the symmetry boundaries) is again dsep. The right-hand side
shows a layout just with gaps and without a substrate which results in a ferromagnetic
shield positioned equidistantly from both wide sides of the superconductor.

ductor on one side as in the other configurations so the flux is pulled closer towards

the superconductor. This configuration would be impractical anyway as a coated

conductor requires some sort of carrier material and simply getting rid of it is not

possible. Simply coating the edges with ferromagnetic material of varying thickness

on the other hand is possible without complex processes. And these simple geometries

perform very well.

Due to the special geometric configuration of the bifilar coil and the resulting boundary

conditions for the numerical simulations, the hysteretic losses in these geometries are

much lower than those in a single coated conductor regarded isolatedly as in Cap. 5.

The shielding effect of adjacent coated conductor tapes in this geometry reduces the

magnetic self field effect. Using ferromagnetic shielding only on the very edges of a

tape supports this behaviour by additionally keeping the magnetic flux parallel to the

wide face of the superconductor thereby delaying flux entry. This results in the large
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Figure 6.28: Hysteretic losses as a function of applied transport current are compared
for various shield configurations. The gap configuration has a shield with equidistantly
positioned parts covering the superconductor surface. Regular shields only have a
tiny gap on one side where no substrate is present, see Fig. 6.27. The configuration
labelled dFM = 50 µm has thicker shields than the regular 30 µm.

reduction of hysteretic losses in the superconductor that is observed. Only relatively

small volumes of ferromagnetic material are required. This leads to small additional

losses which results in an effective shielding over almost the whole range of applied

transport current loads.

6.3.3 Influence of Shield Thickness

Instead of varying the shield coverage or position, a configuration that proved be-

neficial in the previous chapters was taken and the influence of the ferromagnetic

shield thickness investigated. A coverage of 10 µm with a (non-magnetic) substrate

being present was chosen. After investigating the range of 10 µm to 50 µm thickness,

it would seem that applying thicker shields in the bifilar coil configuration seems to

always increase shielding performance, see Fig. 6.29.

It is rather interesting to see that opposed to varying the coverage, the effect of increas-

ing the thickness of the ferromagnetic shields is always beneficial in the investigated

range. Not only are the hysteretic losses reduced as the shield thickness is increased,

the cross-over point is reduced. Below a certain value of applied electric transport

current, the total hysteretic losses are increased because of the additional losses in
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the ferromagnetic material. Above this point the loss reduction in the superconductor

is more substantial than the additional losses in the ferromagnetic material so the

total hysteretic losses are reduced. So using thicker shields lowers the applied electric

transport current cut-off value above which the addition of ferromagnetic shields is

showing beneficial effects.
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Figure 6.29: The hysteretic loss of bifilar coils with varying shield thickness is compared.
The coil is wound from 1 cm wide tape with a thickness of 1 µm, a critical current of
300 A and an np-value of 35. The separation between two adjacent tapes is again
1.5 mm. The ferromagnetic shield coverage of the superconductor is 10 µm in all
geometries. Note the trend in the investigated range that applying thicker shields is
almost always beneficial except for very low applied transport currents.

The reason of the considerable hysteretic loss reduction becomes obvious when

considering the electric sheet current and the magnetic field profiles shown in Fig. 6.30

and in Fig. 6.31, respectively. The electric sheet currents being slightly lower in

combination with the magnetic field component perpendicular to the superconductor

surface being considerably lower in the lateral edge regions leads to considerably

lower hysteretic losses. This results in the improved behaviour of the hysteretic losses

observed in Fig. 6.29.

Since the ferromagnetic shielding provides beneficial hysteretic loss reduction over

almost the whole range of applied transport currents, using it is generally highly

recommended in bifilar coils.
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Figure 6.30: Electric sheet currents of shielded and unshielded bifilar coils plotted
versus tape position are compared. Note the electric sheet currents flowing in the
lateral edge regions being slightly smaller in the shielded stack geometry.
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Figure 6.31: Magnetic field profiles of shielded and unshielded bifilar coils plotted
versus tape position are compared. Note the perpendicular magnetic field component
being much smaller in the shielded geometry. This effect in combination with the
reduced electric sheet current flowing in the edge regions leads to greatly reduced
hysteretic losses.
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6.4 Pancake Coils

Pancake coils are closely related to bifilar coils from a geometrical point of view. The

electric transport current direction in two adjacent conductors is different though:

where any two neighbouring conductors in a bifilar coil carry electric currents in

opposing directions, they carry codirectional electric currents in pancake coils.

This results in the boundary conditions constructed for the bifilar coil being unsuitable.

Instead of the perpendicular component being zero along the previously mentioned

demarcation line halfway between two adjacent conductors now the component

of the magnetic field parallel to the wide superconductor face has to be forced to

zero. Hence, the new Dirichlet boundary condition that needs to be enforced is

Hx = 0 ∀ |y|= ±dsep/2, see Fig. 6.32.

Hx = 0

Hx = 0

d
sep

d

x

y

Figure 6.32: Drawing of the pancake simulation environment with the superconduct-
ors coloured blue. The geometric setup is assumed to be the same as in the case of a
bifilar coil, so the separation between two adjacent conductors is dsep = 1.5 mm and
the thickness of the superconductor is d = 1 µm. The Dirichlet boundary condition
along the dashed lines is Hx = 0 ∀ |y| = ±dsep/2. The red box sketches the region
shown in Fig. 6.33.
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Figure 6.33: The magnetic field surrounding the lefthand side of a pancake coil, repres-
ented by an arrow plot showing direction and a colour plot showing relative magnetic
field amplitude. The plotted region is marked red in Fig. 6.32. The Dirichlet boundary
condition at the top and bottom forces the magnetic field component parallel to the
wide superconductor face to zero.

Since the magnetic field generated in the pancake coil configuration is so different

from the one surrounding a bifilar coil, it is likely the magnetic shielding has to be

considerably altered.

6.4.1 Influence of Shield Coverage

As in the previous investigations, the ferromagnetic shields’ coverage of the coated

conductor was varied. Geometries with coverages starting from 10 µm and going up

to 3 mm were tested in order to find the optimal configuration. Maximum hysteretic

loss reduction was observed around 1 mm coverage which is why a detailed study

was started focusing on that region, see Fig. 6.34.

The sweep demonstrates the influence of shortening or lengthening the ferromagnetic

shields. The shorter the shields are, the lower are the losses at low applied electric

transport currents since the ferromagnetic shields add losses themselves. At the same

time, the shielding at higher load rates becomes less effective. Conversely, the longer

the ferromagnetic shields are, the higher the losses due to increased losses in the

ferromagnetic material and the more effective at higher load rates.

The hysteretic loss reduction due to the presence of the ferromagnetic shields in the

pancake geometry is very interesting because it is manifest over almost the whole

load range. Even though the reduction becomes less important towards higher loads,

it is always present and at low to medium applied transport currents, it is pronounced.
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From about 15 % up to 30 % Ic, the hysteretic losses are reduced by more than 50 %

and at 50 % Ic, the reduction is still about 25 %.
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Figure 6.34: The influence of various shield coverages on the hysteretic loss behaviour
of pancake coils is compared under applied electric transport current. The coated
conductor is 1 cm wide and 1 µm thick, has a critical current of 300 A and an np-value
of 35. The spacing between two adjacent tapes is 1.5 mm.

How the ferromagnetic shields reroute magnetic flux in the pancake coil geometry

is demonstrated in Fig. 6.35. The magnetic field distribution demonstrates why the

losses in the pancake coil geometry are so much higher than in the bifilar coil geo-

metry: coated conductors are much more sensitive to perpendicular magnetic fields

and the boundary conditions force the field to be perpendicular very close to the

superconductor. In the bifilar configuration, the boundary condition forces the per-

pendicular component of the magnetic field to zero which reduces the perpendicular

magnetic field on the superconductor surface considerably.

6.4.2 Influence of Shield Thickness

The configuration with a 1 mm coverage was selected since the hysteretic loss re-

duction turned out promising in the investigation of the shield coverage. For this

coverage, the influence of the shield thickness was investigated. The peculiarities of

the geometric boundary conditions seem to favour thick ferromagnetic shields. Even

though a larger volume of ferromagnetic material implies higher hysteretic losses in

ferromagnetic domains, this is apparently counterbalanced by a reduction of hysteretic
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Figure 6.35: The magnetic field surrounding the lefthand side of a ferromagnetically
shielded (bottom) and an unshielded (top) pancake coil is shown. The arrow plot
shows direction and the colour plot shows relative magnetic field amplitude. The
plot only shows a fraction of the simulation geometry, the region is marked with a
red dotted rectangle in Fig. 6.32. Note how the presence of the shield changes the
magnetic field distribution around the superconductor.

losses in the superconducting domain resulting in an overall total loss reduction, see

Fig. 6.36.

One aspect is different from the results observed in Cap. 6.3.3: the losses at low load

factors are increased as the thickness is increased. In the bifilar coil configuration,

the losses were reduced at low applied electric transport currents as well. The

total hysteretic losses are reduced above 45 A which corresponds to 15 % of the

critical current. At as low as 60 A (20 % Ic), the ferromagnetic shielding reduces the

hysteretic losses by about 40 %. At about twice the applied current, around 40 %

Ic, the hysteretic losses are reduced by about 60 % as compared to the unshielded

geometry. Above 66 %, the ferromagnetic shielding is less effective and only a

reduction of the hysteretic losses of about 10 % is observable.
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The different behaviour of the pancake coils as opposed to the bifilar coils stems

from the different current flows which result in the already mentioned different

boundary conditions of these two coil configurations. The observed higher losses at

low loads in the pancake geometry stem from the fact that the magnetic field is aligned

perpendicular to the superconductor to a much higher degree than in the case of a

bifilar coil. This leads to an earlier rise in magnetic field at the lateral edges leading

to higher losses in the ferromagnetic shields. Comparing Fig. 6.36 and Fig. 6.29 the

difference in magnitude is immediately obvious.
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Figure 6.36: The influence of varying the shield thickness on the hysteretic loss beha-
viour of pancake coils is compared under applied electric transport current. The coated
conductor tape is 1 cm wide and 1 µm thick, has a critical current of 300 A and an
np-value of 35. The gap distance to the adjacent tape is 1.5 mm. Thicker shields lead
to higher losses at low load rates and to lower losses at higher load rates.

6.5 High Field Coil

All superconducting coils suffer from the self field effect suppressing the critical current

density on the outlying turns thereby reducing the overall current and, by inference,

the magnetic field. If the self field effect could be abated, the coil would become more

effective, independently of the material used. In previous chapters the potential of

ferromagnetic materials to reroute magnetic flux was explored. The effect was utilised

in order to reduce hysteretic losses but we propose it is also possible to increase coil

performance employing the same principles.

Various shielding geometries are tested, resorting to a similar boundary condition as

in the geometric configuration of the bifilar coil. This time however, a quasi infinite
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half-space is simulated to model the physical properties of a cylindrical coil, see

Fig. 6.37.

The reason this geometric design is able to decrease hysteretic losses is the same it is

able to increase coil performance: the abatement of magnetic field leads to less self

field degradation and less critical current depression which in turn allows higher total

currents to pass through the coil.

As with previous geometries, it is important to optimise the shielding geometry in

order to improve the coil performance. We therefore investigate the influence of

various shield shapes, coverages and variations in thickness in the following sections.

The coil being investigated consists of five turns of a 4 mm wide coated conductor

of 1 µm thickness with a critical current of 300 A and a power-law exponent of 35.

We use the advanced Kim model formula stated in Eq. 3.3 for modelling the critical

current dependence on the magnetic field with parameters b = 0.3 and k = 0.1. These

values are in accordance with previously published works and represent typical values

for high-Tc superconducting tapes [GvV+07, GvS+08].

The electric transport current is applied as a 10 s linear ramp. The current in each

tape is acquired with the help of an integration operator on the current component

flowing along the longitudinal direction of the tape. The voltage drop per length

unit is extracted utilising an averaging operator on the component of the electric

field along the longitudinal direction. The simulated coil has an arbitrarily chosen

bore of 2 cm. Different bore sizes were also investigated and results did not differ

qualitatively.

Hy = 0

x

y

Figure 6.37: Drawing of the high magnetic field coil simulation environment with
superconductors coloured blue and ferromagnetic shields coloured green. The bound-
ary condition at the lower simulation boundary is similar to those in the bifilar coil
simulations. However, only one boundary condition is required as the top half space is
not constrained. The Dirichlet boundary condition along the dashed lines is Hy = 0.

The shield shape was investigated which was varied between L- and C-shapes of vary-

ing coverage and thickness. The C-shaped shields proved to have worse performance
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Figure 6.38: Combined arrow and colour plot showing the direction and relative amp-
litude of the magnetic field surrounding the outermost tape of a high magnetic field
coil. Note the superelevation of the magnetic field at the lateral edge of the tape.
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Figure 6.39: Combined arrow and colour plot showing the direction and relative amp-
litude of the magnetic field surrounding the outermost tape of a ferromagnetically
shielded high magnetic field coil. Note the considerably reduced magnetic field
component orthogonal to the superconducting tape.
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than the L-shaped shields in all investigated configurations. The shield shape was

therefore fixed to the L-shape with the short part of the shield extending just 50 µm

into the bore. Only the two outermost tapes are covered with the ferromagnetic

shields as shields also covering the tapes situated in the inner turns did not improve

the coil performance. The shields are shaped as shown in Fig. 6.39 with the ideal

coverage of the wide face of the superconductor being about half the width of the

superconducting tape.

Having established the principal superiority of this shield design, the thickness of the

shield part covering the wide superconductor face was altered from 100 µm to 900 µm.

Coverages smaller or larger than the just mentioned values are neither practical

nor functionally interesting for the coil under consideration. Their investigation is

therefore omitted.

The FEM source code used to reproduce the simulations in Fig. 6.40 is found in

Cap. A.1.2.
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Figure 6.40: The voltage drop of an arbitrary tape length is plotted as a function of
applied current. The tapes situated in the middle of the coil are hardly influenced
by the presence of the shields. Therefore only the response of the outermost tape is
shown. Since the self field effect is strongest for the extremal tapes, this is sufficient.

Since the maximum attainable coil performance improvement is negligible at least in

the specific coil and model under consideration, this concept is at present not further

investigated. The case may be entirely different for larger coils, insets and for different

shielding materials. Further thorough research is therefore required before altogether
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abandoning the idea of ferromagnetic shielding in superconducting high field coils,

especially since the field homogeneity may be favourably influenced.

6.6 Effectivity of Shielding

In Tab. 6.1 the effectivity of ferromagnetic shielding is summed up for all previously

investigated geometric configurations. With the exception of the high field coil where

the ferromagnetic shielding was supposed to mitigate the critical electric current

suppression, the ferromagnetic shielding is a concept worth investigating.

The high field coil geometry seems not to benefit significantly from the ferromagnetic

shielding. The goal when applying ferromagnetic shielding to bifilar and pancake

coils, to tapes and to stacks of tapes was a reduction of hysteretic losses which was

reached. In the case of the high field coil, the shielding was supposed to reduce critical

electric current suppression. This appears to be almost ineffective, at least with the

parameters used in the investigations in Cap. 6.5.

Whether the shielding concept is correct is impossible to say however since it was

later found that the H-model is incapable of observing these supercritical states due

to the reliance on the power-law. In order to investigate the concept as proposed

in [GSF00, Gen02, JJF02, JBH05, GRKN09], further research is needed. The flux

entry is delayed in the investigated geometries using ferromagnetic shields and the

local magnetic field strength is reduced by a small amount. This leads to a slight

decrease of the critical electric current suppression in superconducting materials.

Future research needs to investigate these geometries, possibly using an enhanced

electrostatic-magnetostatic analogy model. In its present state, this model can only

account for one superconducting domain.
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Shielding effectivity

Geometry Shielding effectivity in the case of

applied current applied field

Single Coated Conductor good above medium loads good at medium loads

Coated Conductor Stack good above low to medium
loads

good above low to medium
loads

Bifilar Coil very good from low to high
loads

not tested, no useful application

Pancake Coil very good from low to me-
dium loads, low at high loads

not tested, no useful application

High Field Coil ineffective not tested, no useful application

Table 6.1: Effectivity of all investigated geometries with transport and field load. Only
a very rough overview is given as the performance depends strongly on the load profile
and the geometry.
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7 Twisted Stacked Tape Conductor Cable 3D
Model

The Twisted Stacked Tape Conductor cable is a high current cable with a scalable

design that was developed for fusion applications [TCBM11]. It has a helical structure

and utilises multiple coated conductors in order to reach the required high current

densities, see Fig. 7.1 and Fig. 7.2.

optional jacket

coated conductors

Figure 7.1: Three-dimensional drawing of a single Twisted Stacked Tape Conductor.
Reproduced with kind permission from [Bar13].

A numerical model was developed to investigate the electromagnetic behaviour of the

TSTC cable. The measurements of the TSTC cable were conducted using an 80 cm

long sample. The DC transport current measurements are only directly comparable to

numerical simulations if the latter also take into account end effects like the terminals

of the cable: the contact resistances between the coated conductors and the copper

contacts have to be accounted for.

The application of transport current is possible in two dimensions without losing

information, assuming the cross-section is an accurate 2D description of the originally

helical 3D geometry and the current distribution is not influenced by the twisting.

Because of the twisting of the cable, applying a background magnetic field is not as
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easy. A numerical model which aims at successfully simulating the cable therefore has

to be three-dimensional. Since the contact resistances influence the tape behaviour a

lot especially in short samples, they need to be taken into account as well.

Figure 7.2: Picture of a section of a 2 m long TSTC cable with 32 tapes and a twist
pitch of 20 cm. Image courtesy of M. Takayasu, MIT.

The complex geometry of the TSTC cable with translational symmetry, helical structure

and contact resistances is therefore a perfect match for a first application of the three-

dimensional implementation of the H-formulation with the newly developed boundary

conditions. The numerical model is capable of simulating realistic three-dimensional

superconducting assemblies and capable of including contact resistances up to date.

To the best of our knowledge this combination has not yet been shown before. Note

should also be taken of the computational efficiency: a simulation of a Twisted

Stacked Tape Conductor cable in full three-dimensional complexity under applied

electric current or background magnetic field load including contact resistances takes

less than a day.

High performance superconducting magnets and coils require high-Tc superconductors

due to their potential for high field, high current application. They are also interesting

for running systems above liquid Helium temperature. Both first generation as well as

second generation high-Tc superconducting tapes are not ideally suited for cabling

due to their flat geometry. In general, round wires like in conventional conductors

would be preferable. Using superconducting tapes is still possible but the cable design

has to account for the flat geometry.

Apart from the TSTC cable, several other designs exist that use coated conduct-

ors. Even though the coated conductor tapes do not have an ideal geometry, their

potential for high current density, high temperature applications makes them inter-

esting. The expected low cost will be another advantage. There are several reg-

ular transmission line power cables which all carry below 5 kA, see for example

Refs. [KKT+99, KWN+01, Mas02, MKY+02, HHJ+04, XHB+04, KJL+05, SCK+06,

CBK+06, Mal06, DSJ+07, TYM+07, SHL+07, MSB+07, Tsu08, YAI+09, MSBW09,

MFL+09, MKH+09, SVF+10, SMN+12]. Of the dedicated high current cables, the
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most prominent are the Twisted Stacked Tape Conductor (TSTC) cable [TCBM11], see

Fig. 7.1, the Conductor On Round Core (CORC) cable [vdL09, vdLLG11], see Fig. 7.3

and the Röbel cable [GNK+06], see Fig. 7.4.

cooling channel

optional jacket

layered coated conductors

metal former

Figure 7.3: Three-dimensional drawing of the Conductor On Round Core cable. Note
how the diameter of the outer layers is necessarily different from the inner ones,
resulting in a different twist pitch. Reproduced with kind permission from [Bar13].

The transmission line power cables are mainly optimised for medium current, high

voltage applications. The CORC cable is geometrically akin to these transmission line

power cables with its coaxially wound multilayer design. It has already been used for

coil construction and showed not only good electrical and magnetic, but also good

mechanical stability [vdLNM+13, Bar13]. In the CORC design, the coated conductor

tapes are wound around a central former with an arbitrary twisting angle that depends

on the number of tapes and other factors. Usually, the twist pitch in each layer is

different. For fusion and AC applications, this difference in twist pitch becomes a grave

problem because of the inductivity mismatch and high losses resulting therefrom. The

CORC cable design is therefore preferred for DC applications.

The Röbel cable is very well suited for AC applications as all the tapes necessarily have

the same twist pitch due to the transposition. Another advantage of this design is the

identical behaviour of all the tapes as there are no distinguished tape positions due to

the tape transposition. The Röbel cable however is mechanically more challenging

as the stamping and the meanderlike structure of the tapes introduces positions of

superelevated mechanical stress. Moreover, the flexibility is constricted as the cable



136 7 Twisted Stacked Tape Conductor Cable 3D Model

coated conductors

Figure 7.4: Three-dimensional drawing of the Röbel cable. Note the meanderlike
structure and all tapes taking every possible position eventually. As a consequence, in
cables longer than half a twist pitch, all tapes will behave identically. Reproduced with
kind permission from [Bar13].

has only one almost unconfined degree of freedom for bending. The cost factor is

also higher for the Röbel cable since the meanderlike tape structure entails a higher

material requirement. The meanderlike structure of the Röbel cable is produced by

stamping coated conductors. This leaves some unusable pieces to be discarded as

waste.

The TSTC cable is mechanically flexible like the CORC cable and is not fully transposed

either. It is an easily manufactured high current cable with good scale up potential. The

possibility to enclose it in a round copper tube is extremely interesting for mechanical

reasons.

Regarding subsequent investigations, there are two cases to be considered: (quasi-)DC

loads where effects such as contact resistances are important and AC loads, where

they lose their influence and the superconducting properties of the cable are mostly

responsible for the physical behaviour. For DC loads, two methods to investigate

the cable behaviour are presented: the analytic model which simply disregards the

interaction of the superconductors via the magnetic field and hence is not able to

account for self-field effects and a fully three-dimensional numerical model that is

able to account for the self-field effects as well.
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It is considerably easier financially and experimentally to measure short samples. In

these, the contact resistances are large compared to the resistances of the supercon-

ducting tapes, even at high loads. Since the contact resistances and the tapes are

connected like serial resistors, the contact resistances are therefore expected to have a

big influence on the results in DC measurements, see Fig. 7.5.

R1

R2

R3

R4

SC1

SC2

SC3

SC4

Figure 7.5: Circuit model of a TSTC cable with contact resistances.

In order to validate the various models, they will be compared with measurements

of current distributions and among themselves. Afterwards, AC load cases will be

considered that are also very interesting for long length cables as they suffer most

from high hysteretic losses.

7.1 DC Behaviour of the TSTC Cable

The response of superconductors when loaded with very slow ramps and similar quasi-

static excitations is independent of the flux relaxation effect. The superconductor

merely acts as a resistor with no impedance. Thus, even superconducting systems may

be considered with a conventional analytic model under these boundary conditions.

Subsequently, the measurements of a four tape TSTC cable is shown and its behaviour

will be modelled with the analytic model. The numerical model will also be compared

to the analytic model. Due to the complexity of the measurements with the high
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number of parameters and the high computational effort required, the numerical

model will be verified with a specific test case only.

The measurements include influences of the critical current of each tape, the np-value

and the contact resistances all of which are difficult to measure and are therefore not

necessarily precise and correct.

7.1.1 DC Transport Current Measurements

Discerning the electrical currents flowing in each tape is not possible using the

simple four point measuring technique. The resistance of the superconductor is

infinitesimal which is why the four point measuring technique cannot register any

voltage. One possibility is to use hall probe sensors detecting the magnetic field

around each conductor and calculating the electric current. This requires measuring

as much of the magnetic field as possible which is achieved by surrounding each

individual superconductor with a ferromagnetic ring that surrounds it as completely

as possible [TCBM12].

Two configurations were measured: a TSTC cable with the tapes almost directly on

top of each other, resulting in a gap space between two adjacent tapes of only 100 µm

and the same cable arranged with insulating spacers, resulting in a gap of 4 mm. The

measurements of the 80 cm long TSTC cable with the just mentioned separations are

plotted in Fig. 7.7. Experimental measurement data was obtained during a research

stay at MIT and collaboration with Dr. Takayasu who also published some of the

results in [TCBM12].

The measurements are difficult to interpret as it is conceivable that some of the

parameters such as contact resistances changed between experiments. Current sharing

in the joints may also occur. The current distribution will be further analysed in

Cap. 7.2.1.3.

The contact resistances were measured separately after the current distribution meas-

urements and were determined to be roughly in the same range with the excep-

tion of the second coated conductor tape which was found to have a higher resist-

ance [TCBM12]. This is also visible in the measurements as the second tape initially

carries considerably less current than the three others. The contact resistances are

listed in Tab. 7.1.
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coated conductors

GRP former with

Hall probe sensors

Figure 7.6: The measurement system for the four tape TSTC cable tape current meas-
urements. The four-current-sensor assembly with four magnetic cores (11 mm ×
6.4 mm×3 mm) with Hall sensors is fixed on with some adhesive tape. Image courtesy
of M. Takayasu, MIT. Also refer to [TCBM12].

TSTC cable contact resistances

Tape Number Resistance / µΩ

R1 0.67
R2 1.06
R3 0.65
R4 0.73

Table 7.1: TSTC cable contact resistances.

7.1.2 Analytic DC Model

The experimental data showed curious behaviour of the TSTC cable not only with

respect to the spacing but also considering one cable by itself. When completely

disregarding the contact resistances some sort of symmetric behaviour could be

expected. Since the contrary behaviour is observed, the behaviour seems largely

governed by the contact resistances.
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Figure 7.7: The graphic shows the experimental measurements of the TSTC cable for
two configurations: with the tapes separated only 100 µm from each other (to the
left) and with the tapes separated by spacers of 4 mm width (to the right). From the
simulations with applied transport current, the tape current spread due to the tape
spacing was expected to be more pronounced. In the measurements, the effect is
barely visible. Data from [TCBM12] and from private communication with Dr. Takayasu.

Assuming quasi-static behaviour, we make use of the power-law to solve the following

equation system:

I1 > 0 V = Ec · (I1/Ic,1)n1 + R1I1

I2 > 0 V = Ec · (I2/Ic,2)n2 + R2I2

I3 > 0 V = Ec · (I3/Ic,3)n3 + R3I3

I4 > 0 V = Ec · (I4/Ic,4)n4 + R4I4.

(7.1)

Note that the voltage is actually the voltage drop over the cable so the units are in

V m−1 and Ri is defined in Ωm−1.

For the time being all tape critical currents and np-values are assumed identical. The

influence of various contact resistance configurations is investigated. The conceivably

simplest configuration is that all contact resistances are equally high:

R1 = R2 = R3 = R4, (7.2)

another assumes three contact resistances to be equal while one is different:

R1 = R2 = R3 = 2 · R4, (7.3)
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yet another has two contact resistances of equal magnitude while the other two are

twice as large:

R1 = 2 · R2 = 2 · R3 = R4, (7.4)

and lastly, we use the contact resistances listed in Tab. 7.1.

To compare the experimental results with the analytical model, the measured values

for the critical currents, the np values and the contact resistances are used in the

calculation:

Ic,1 = 82 A np,1 = 21

Ic,2 = 82 A np,2 = 29

Ic,3 = 84 A np,3 = 26

Ic,4 = 83 A np,4 = 24.

(7.5)

The eight analytical simulations are seen in Fig. 7.8 for the case of equal critical

current and power-law exponent np and in Fig. 7.9 for the measured values.

The influence of the contact resistance is visible in the linear regime of the plots. Above

a threshold depending on the magnitude of the contact resistances, the power-law

begins to dominate the formulas and the influence of the contact resistances begins to

wane. In our simulations this is observable in the range between 200 A and 300 A.

The same behaviour is visible in the experiments, see Fig. 7.7. Since the linear regime

ends much earlier in the plot showing experimental results, it is probable that the

contact resistances were measured to be much higher than in reality. The measurement

of contact resistances for superconductors is difficult and the contact resistance is

dependent on environmental parameters such as temperature [Hua89]. On top of

the difficult measurement, the sample was cut and its properties thus significantly

altered [TCBM12].

The analytic macroscopic model provides a useful tool for investigating the behaviour

of the TSTC cable in DC applications even though it is unable to account for the self

field effect.

The higher the frequency, the less important the contact resistances become since

the inductive behaviour of the cable and the self-field effect gain importance. Also,

connections can be made with less than 10 nΩ resistance so that current redistribution

due to contact resistance becomes even less important [Bar13, p. 106].
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Figure 7.8: The four plots show analytical solutions of various contact resistance con-
figurations for idealised conductors. The four coated conductors have the same
critical current and the same power-law exponent. In the top left plot, all contact
resistances are equal: R1 = R2 = R3 = R4, top right shows a configuration with
R1 = R2 = R3 = 2 · R4, bottom left shows R1 = 2 · R2 = 2 · R3 = R4 and bottom right
shows R1 = 670 nΩ, R2 = 1.06 µΩ, R3 = 650 nΩ, R4 = 730 nΩ.
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Figure 7.9: The four plots show analytical solutions of various contact resistance con-
figurations using measured conductor properties. The critical tape currents of the
four coated conductors are: Ic,1 = 82 A, Ic,2 = 82 A, Ic,3 = 84 A, Ic,4 = 83 A and their
power-law exponents are: np,1 = 21, np,2 = 29, np,3 = 26, np,4 = 24. In the top left
plot, all contact resistances are equal: R1 = R2 = R3 = R4, top right shows a config-
uration with R1 = R2 = R3 = 2 · R4, bottom left shows R1 = 2 · R2 = 2 · R3 = R4 and
bottom right shows R1 = 670 nΩ, R2 = 1.06 µΩ, R3 = 650 nΩ, R4 = 730 nΩ.
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7.1.3 Fitting the Measurements with the Analytic Model

Assuming the electric transport current measurements were slow enough to be con-

sidered quasi-static, it is permissible to use the analytic model in order to match

the measurement data. This allows the determination of the tape parameters like

critical current and contact resistances. The measurements of the Twisted Stacked

Tape Conductor cable with 4 mm tape spacing are used since in these the self-field

effect is smaller than in the tightly stacked cable. The result of the fit of the analytical

model to the measured data is shown in Fig. 7.10.
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Figure 7.10: The TSTC cable current measurements (thick lines) are compared with the
analytic model (dotted lines).

In order to successfully fit the measurements, data processing was used to clean up

the measurement data. Especially towards very low applied electric transport currents,

the data was assumed to be inaccurate. The following procedure was conceived by Dr.

Zermeno [Zn13, private communication].

The tape current data points above 10 A and below 100 A (for tapes 2, 3 and 4)

and below 80 A (for tape 1) of applied transport current were used in order to

determine a current offset using a linear regression analysis of the linear part of

the current profiles. The current offset was then subtracted from the measurements.

Afterwards, the contact resistances relative to an arbitrarily chosen contact resistance

are calculated (the current distribution is initially only dependent on the relation of
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the contact resistances with respect to each other). The contact resistance of the fourth

tape was assumed to be 1 µΩ which yields the following tape contact resistances:

R1 = 0.67 µΩ R2 = 3.78 µΩ

R3 = 1.13 µΩ R4 = 1 µΩ.
(7.6)

Assuming the same np-value of 35 in all the tapes for the sake of simplicity and

iteratively adjusting the critical current values yields the following critical current

values for the coated conductor tapes:

Ic,1 = 64.5 A Ic,2 = 67 A

Ic,3 = 58 A Ic,4 = 60 A.
(7.7)

The values tabulated in Eq. 7.6 and in Eq. 7.7 result in the plot shown in Fig. 7.10.

The extracted contact resistances are very reliable as they are directly connected to the

linear slope of the measurement data for each tape. The direct measurements of the

contact resistances were conducted after the tape was cut which most likely altered

the properties somewhat. The ratio of the contact resistances determines the current

distribution. This means the contact resistances are free to be scaled in magnitude, if

only the correct ratio is kept. The critical currents are not freely rescalable however.

The tape behaviour is almost perfectly reproduced by the analytic model.

The difference in measured and calculated parameter values is probably a combination

of various influences. For example, the tape critical currents in the assembled cable

are different from those of the isolated tapes due to the self-field effect and possibly

also thermal reasons. Contact resistances on the other hand are generally difficult

to measure as they may change when the cable is handled in order to conduct the

measurements.

7.1.4 Three-Dimensional FEM Model

The three-dimensional model was built to account for the twisted geometry of the

TSTC model. A stack of twisted coated conductors, see Fig. 7.11, is surrounded by a

larger air region, see Fig. 7.12. In order to successfully mesh the geometry, a manual

twisting procedure is required. This is why the geometry shows sectioning even

without being meshed.
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Comparison of tape parameters of a TSTC cable

Tape Number Tape Critical Current / A Contact Resistance / µΩ

measured simulated measured extracted

1 82 64.5 0.67 0.67
2 82 67 1.06 3.78
3 84 58 0.65 1.13
4 83 60 0.73 1

Table 7.2: Coated conductor tape parameter comparison between direct measure-
ments and extracted using analytic simulation.

The contact resistances are modelled as distinctive domains disconnected from the

primary simulation environment to prevent unwanted interaction, see Cap. 3.2.6.

They are surrounded by an air domain of their own, see Fig. 7.13. The four massive

blocks are the contact resistances.

The transport current is fed into one side of all of the four contact resistance blocks

concurrently and then one continuity boundary condition of the kind explained in

Cap. 3.2.6 feeds the current from the other side of each contact resistance block to the

corresponding tape. One block and one tape belonging together have been coloured

red to illustrate the concept. The tapes have additionally been separated in order to

be better visible.

When calculating the correct resistivity for the contact resistance domains one has to

be mindful of the skin effect as mentioned earlier in Cap. 3.2.6. If the skin effect leads

to a current distribution that is smaller than the dimensions of the contact domain,

the domain has either to be made smaller or to be meshed more densely to ensure the

correct application of the effective resistivity.

The discretisation of the simulation environment is vitally important to the efficiency

and speed of numerical FEM simulations. Great care was therefore taken to ensure

a high quality mesh. Defining the term "high-quality" is difficult, but as a general

guideline, high-quality meshes look aesthetic and have as few elements as possible. For

the coated conductor tapes, only one element was used for the thickness. If not using

field dependent critical current densities, this is an admissible simplification. The tapes

were also, like in the two-dimensional model, represented by quadrilateral elements.

This effectively halves the amount of elements needed while actually improving the

simulation accuracy. The air region was meshed with prismatic elements.
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Figure 7.11: View along a stack of twis-
ted coated conductors in the three-
dimensional FEM model. The subsec-
tions of each tape are required for the
discretisation.

air domain boundary

TSTC cable

Figure 7.12: View of a stack of twisted
coated conductors surrounded by the
air domain in the three-dimensional
FEM model. The axial faces of the air
domain are hidden to allow a view of
the coated conductor stack situated in
the middle.

Figure 7.13: View of the three-dimensional TSTC model with contact resist-
ances. The air region is again mostly hidden and only the outer boundaries
are shown. The four massive blocks are the contact resistances. The transport
current is fed into all of the four contact resistance blocks concurrently and
then one continuity boundary condition feeds the current from the other
side of each contact resistance block to the corresponding tape. One block
and one tape belonging together have been coloured red. The tapes have
additionally been separated in order to be better visible.
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Since using the trapezoidal elements to mesh the tape and the prismatic elements

to mesh the air region leads to identical cross-sections along the transposition, the

simulation is quite fast. Another advantage is to be able to impose periodicity (or

mirror) boundary conditions on the initial and the final faces, also see [ZnGS13].

This is only possible for a perfect identity map. In other words, the simulation field

components at each node on one face have to be mirrored to a corresponding node

on the other face which is only possible if the meshes on both faces are identical. If

the meshes are not identical, this mapping is only possible approximately which leads

to problems with the convergence. Also, it is not possible in COMSOL.

7.1.5 DC Compliance of the Three-Dimensional FEM Model

In the extreme case of quasi static loads, the analytic model provides a complete

description of an ideal superconducting cable by using the simple formulation in

Cap. 7.1.2. As such it can be used to validate the three-dimensional model when static

loads are assumed. For this purpose, a simple two tape configuration is considered.

The contact resistances of the two tapes differ: one tape has a contact resistance

of 10 % of the resistance of the coated conductor tape at Ic while the other tape

has a contact resistance of 20 % Ic. The tapes are 1 cm wide and 1 µm thick with a

critical current of 300 A and an np-value of 35. Their spacing should not matter as

the simulation is running in quasi-DC with an extremely low ramp rate; the spacing of

the tapes is 1 cm.

The qualitative and quantitative agreement of the two models under DC load is

excellent, see Fig. 7.14. For DC cases, the much faster analytic model can be used.

The striking agreement of the three-dimensional model with the analytic model

emphasises its reliability. It may be used for all those cases where the analytic model

is not applicable.

7.2 AC Behaviour of the TSTC Cable

When the behaviour of the Twisted Stacked Tape Conductor cable under sufficiently

rapid transient electric transport currents is under investigation or when background

magnetic fields, either static or dynamic, have to be simulated the three-dimensional

model has to be used. Combinations of the various loads are also possible. The

numerical model has to be used since the analytic model is not able to account for the

inductance in the superconductors.
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Figure 7.14: The current distribution of the analytic and the numeric TSTC model for a
two tape cable is shown as a function of applied transport current. Under DC load,
the agreement is excellent.

7.2.1 Influence of Self-Field Effect

The self-field effect should affect the tape current distribution in a Twisted Stacked

Tape Conductor cable even under quasi-static load when the contact resistances of

the tapes are disregarded entirely. The three cases of applied transport current,

background magnetic field and lastly the influence of the tape spacing under applied

transport current are explored.

7.2.1.1 Applying Background Magnetic Field

A global background magnetic field of three times the local critical field (see the

accompanying definitions of Eq. 3.9; in this instance amounts to 89 mT) was imposed

as an excitatory influence on a twisted stacked tape conductor cable consisting of

four coated conductors. The superconductors were 4 mm wide, 10 µm thick and

had a critical current of 300 A and an np-value of 35. While the Ic value may seem

unrealistically high for a 4 mm tape, it is worthwhile keeping in mind the high

thickness which results in a critical current density of 7.5 · 109 A m−2 which is realistic.

The high thickness reduces computational effort and speeds up the simulation. The

critical electric field was set to 1 µV cm−1 and the duration of the linearly ramped

simulation was 100 ms. The twist pitch of the cable was 20 cm.
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Because of the twisted design of the cable, a background magnetic field must not lead

to a net current as the shielding currents induced in the cable effectively cancel each

other out. Plotting the current in each tape as a function of the time of the simulation,

this behaviour is indeed observed, see Fig. 7.15. The currents in tape one and four and

in tape two and three, respectively, have the same amplitude but opposing polarity.

The applied magnetic background field results in shielding currents flowing that form

loops in each twist pitch. The loops close where the magnetic field is parallel to the

face of the superconducting tapes and crosses from one lateral edge to the other.
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Figure 7.15: Simulation of a TSTC cable with the individual tape currents plotted versus
time in the cycle with the background magnetic field being linearly ramped up. At the
last timestep of the simulation, the background magnetic field reaches 89 mT (3 ·Hc).
Initially, the two outer tapes carry most of the current thereby shielding the two inner
tapes. Later when the outer tapes are close to saturation, the inner tapes pick up more
current. Note the shielding currents flowing in opposing directions which results in
zero net transport current.

The current distribution of the current component flowing along the axis of the tape

is plotted in Fig. 7.16. As the TSTC cable is not saturated by the background magnetic

field of 3 ·Hc, the tapes carry differing currents. The outer tape shown on the top left

carries considerably more current than the inner tape shown to its right. Only one

half of the TSTC is plotted with two tapes showing. Since the spacing between them

is only 100 µm they are perceived as one single tape. The outer tape shields the inner

tape from the magnetic field and thus carries a higher current.

The central parts of the strip (halfway from one end of the simulation geometry to

the other end) show no current flowing along the cable’s axis. Here, the magnetic
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background field is parallel to the superconductor surface and the shielding currents

loop back. Because the current is flowing in one direction on one side of the tapes

and antiparallel on the other side, the net current is zero as is expected since no

electric transport current should appear in the background magnetic field case as only

shielding currents are flowing.

Each of the two outer and the two inner tapes behave exactly alike except that their

behaviour is chiral. With this knowledge, it is sufficient to regard only two coated

conductor tapes in the analysis since the behaviour of the two others is the same.
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Figure 7.16: Plotted is the current component flowing along the axis of the TSTC cable
when the latter is subjected to a background magnetic field. The top left tape is one
of the outer tapes, the one to the right is one of the inner tapes. Each of the two
structures shows two tapes: one outer and one inner tape. The right structure is
rotated by 180◦ so the second tape is visible. The TSTC cable is not saturated by the
relatively small background field of 3 ·Hc. Both tapes carry different currents therefore
and it is obvious that substantially more current is flowing in the outer tape. Refer to
Fig. 7.15 for TSTC properties.

7.2.1.2 Applying Electric Transport Current

The same Twisted Stacked Tape Conductor cable that has been simulated in the

applied magnetic field investigation is also used when applying electric transport

current.

The applied boundary condition is that of a linear ramp of transport current that

reaches the critical current at the end of the ramp. Opposed to the case of background
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magnetic field, the total net current is different from zero and equal to the sum of all

tape currents. The current in each tape will however not necessarily be the same.
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Figure 7.17: Individual tape current plotted versus time in the cycle. At the last
timestep of the simulation, the current has reached 100 % of the critical current.
Initially, the two outer tapes carry most of the current thereby shielding the two inner
tapes. Later when the outer tapes are saturated, the inner tapes begin to pick up
more of the current.

Indeed, solely due to the self-field effect, the tape currents are spread apart as

may be observed in Fig. 7.17. Unlike in the case of the measurements and the DC

simulations mentioned in Cap. 7.1.2, this difference in tape currents is not due to

contact resistances. The central tapes are shielded by the outer tapes so the inner

ones carry current only at higher load factors when the outer tapes saturate. Each

of the two outer and the two inner tapes behaves alike. This would be different if

the tape parameters were different. Unlike in the case of background magnetic field,

there is no chirality and the tapes carry equal current.

Since the tape current plotted in Fig. 7.17 is an integral observable which complic-

ates understanding, it might be enlightening to again consider three-dimensional

representations of the current distribution, see Fig. 7.18.

7.2.1.3 The Coated Conductor Tape Spacing

The distance between two coated conductor tapes in the Twisted Stacked Tape Con-

ductor cable cannot have any influence in the analytic results presented in Cap. 7.1.2

since the self field effect is not taken into account in the analytic model presented.
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Figure 7.18: Plotted is the current component flowing along the axis of the TSTC cable
when the latter is subjected to an electric transport current. The top left tape is one
of the outer tapes, the one to the right is one of the inner tapes. Each of the two
structures shows two tapes: one outer and one inner tape. The right structure is
rotated by 180◦ so the second tape is visible. The TSTC cable is not saturated by the
electric transport current yet. The configuration shown is about 90 % of Ic. Both
tapes carry different currents therefore and again the outer tape is saturated earlier
while the inner tape shares a reduced fraction of the load. Refer to Fig. 7.15 for TSTC
properties.

The three-dimensional FEM simulations however allow for an investigation of this

effect.

Looking at the experimental measurements in Fig. 7.6, the difference between the

two cases is not as large as might be expected from the simulations presented in

Cap. 7.2.1.2. It was already established that DC measurements are mainly governed

by the coated conductor tape contact resistances. For AC applications on the other

hand, the influence of the tape spacing is of interest. The contact resistances are

therefore assumed zero and two simulations only differing in the gap distance between

two adjacent coated conductors are compared, see Fig. 7.19.

The difference in current distributions visible in Fig. 7.19 due to the different gap

size between two adjacent superconducting tapes is quite pronounced. The spread

between the current distribution is reduced in the 4 mm configuration as expected

since the self field effect has less influence. Also, the spread is maintained until higher

transport currents until the normal resistance of the superconductors dominates. At

high currents, all tapes are limited by their critical transport current.
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Figure 7.19: The currents flowing in each tape are plotted versus the total applied
electric transport current. Because contact resistances are not taken into account,
coated conductor tape one and four as well as two and three are showing identical
behaviour due to the symmetric tape layout resulting in only two visible curves per
gap configuration.

7.2.2 Sinusoidal Loads

The load profiles considered up until now were either DC applications or slow ramps

which are also considered quasi-static. These loads lead only to low hysteretic losses

as the polarity of the electric transport current is not inverted as in electric power

grid applications. Other applications requiring high current cables operate at higher

frequencies making hysteretic loss investigations highly interesting.

In order to appraise the hysteretic losses, a sinusoidal transport current is applied to a

quadruple coated conductor TSTC cable. The conductor properties are the same as

those mentioned in Cap. 7.2.1.1: each of the tapes is 4 mm wide and 10 µm thick,

has an np-value of 35 and a critical current density of 300 A. The sinusoidal current

peaks at Ic during the cycle which has a duration of 20 ms. Due to the high frequency,

contact resistances are omitted since the behaviour would mostly be governed by the

superconductor behaviour anyway.

7.2.2.1 Current Distributions

The resulting current distribution is a response to the complicated interaction of the

tapes and varies in each tape and with time, see Fig. 7.20. Just as before, the inner
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tapes carry less current and the current profile shows the load profile lagging behind

that of the outer tapes. This behaviour is well known from previous investigations

as the outer conductors shield the inner ones. Contrary to the case of slow ramps

where the response of the tapes is in sync and the difference in tape current more

pronounced, the amplitude difference in tape currents between the outer and inner

tapes is much smaller.

The current profile of the inner tapes shows a distinctly delayed and slightly dispersed

response. The outer tapes on the other hand lead the applied transport current while

showing steeper transitions. The fact that the phase-shift of the outer tapes’ current

profile is negative is interesting and important when considering hysteretic losses.

Opposed to the current distribution in a Röbel cable where due to the complete

transposition of the tapes, every tape carries the same current [GP10], in the TSTC

cable, considerably higher load is carried by the outer tapes.
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Figure 7.20: Current distribution as a function of time in a TSTC cable with four coated
conductor tapes (4 mm wide and 10 µm thick with a critical current of 300 A and an
np-value of 35) due to sinusoidal applied electric transport current. Note the delayed
response of the inner tapes with the tape current in the central tapes lagging behind
that of the outer tapes due to shielding effects. The difference in current load is much
smaller in the sinusoidal than in the ramped case.

7.2.2.2 Hysteretic Losses

The hysteretic losses resulting from the current distribution plotted in Fig. 7.20 is

shown in Fig. 7.21. The losses in the outer tapes are much higher than those in the

inner tapes but interestingly and opposed to the behaviour of the current profiles,
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they are almost in sync, meaning there is only a small phase shift between the peaks.

The instantaneous losses in the first half cycle show initial magnetisation effects and

are therefore smaller than those in the second half cycle, see also Cap. 3.2.4.

The losses are higher in the outer tapes because the fraction of current carried by these

tapes is also higher. If the coated conductor tapes were fully transposed, there would

be no phase shift in the cable and hence the hysteretic losses would not only be the

same in all the tapes but generally be lower. If the tape parameters like critical tape

current and np-value are the same, the response of the two inner and the two outer

tapes is the same (apart from small numerical errors). If however those parameters

are different in each tape, the hysteretic loss response of each tape will be different

as well. To which degree this discrepancy occurs depends on the extent to which

the tape parameters differ. The effect of this influence depends strongly on the tape

parameters respective to each other: the hysteretic losses could be exacerbated or

diminished. Further investigations have to determine if this can be used to improve

the tape performance.

When comparing the two figures just mentioned, it is enlightening to take notice

of the fact that the hysteretic losses in all the tapes peak between the point where

the electric current reaches its maximum in the outer tapes and the point where the

electric current reaches its maximum in the inner tapes. In other words: the phase

shift in the tapes leads to increased losses which is why a Röbel cable performs so

well in AC applications. One way to reduce hysteretic losses in the TSTC therefore is

to minimise the phase-shift. Another way to reduce hysteretic losses is to apply the

concept of ferromagnetic shielding. Both these options have to be explored in future

investigations.

7.3 Further Development of the TSTC Cable and Model

The tape layout discussed so far is only one possibility of arranging coated conductors

in a twisted structure. Additionally, for very high current applications, multiple TSTC

cables have to be combined. The twisted stacks are soldered into cylindrical formers

in order for the assembly to be more mechanically robust and are then combined into

cable assemblies. Fig. 7.22 shows the cross-sections of three configurations as well as

an alternate method of stacking and twisting the tapes. Instead of one TSTC cable

consisting of only a single twisted stack, a cylindrical metal former characterised by

possessing three helical grooves is used into which three stacks of coated conductors

are inserted. The three stacks form a twisted helix. Theoretically, this configuration
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Figure 7.21: Instantaneous losses plotted versus time in the tapes of a TSTC during
application of a sinusoidal electric transport current. The two symmetrically positioned
tapes do not behave identically due to their physical properties being different. See
Cap. 7.1.2 for their critical current and np values.

could also be extended to contain an arbitrary amount of grooves and thus, stacks.

Beneficial effects are expected if a way could be found to transpose single coated

conductor tapes from the bottom of one stack to the top of another in order to obtain

a better current distribution.

The coaligned triple helical configuration is much easier fitted with ferromagnetic

shielding which is why further interest is warranted in this design especially.
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Figure 7.22: Cross-sectional drawings of various Twisted Stacked Tape Conductor cable
configurations. Top left: single TSTC, top right: 3x3 conductor layout, bottom left: 12
conductor layout, bottom right: coaligned rotated twisted stacked tape conductor.
The last configuration shown at the lower right consists of three stacks of coated
conductors instead of just one stack that are inserted into grooves. Multiple of these
coaligned TSTC assemblies can then again be combined to form larger cables as those
shown at to the upper right and lower left.
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8 Conclusions and Perspectives

This work provides researchers and developers alike with tools to investigate and

predict hysteretic losses in superconducting applications while at the same time

proving the feasibility of ferromagnetic shielding. Besides a two-dimensional H-

model implementation with the ability to model ferromagnetic materials and conduct

multiphysics analysis, a three-dimensional implementation for the simulation of

magnetic fields and current distributions in superconductors was built. The model

presented in this work is one of two in existence worldwide. Different descriptions for

superconducting and ferromagnetic materials such as field- and strain- or temperature-

dependency were also implemented. The model was verified to reproduce analytical

predictions. Experimental work complemented the verification process and coated

conductor samples with and without ferromagnetic shields were measured in both

background magnetic field as well as electric transport current measurements.

During the experimental part of this thesis, a method for coating the coated conductors

with ferromagnetic shielding using electroplating was developed and multiple samples

were prepared. The first batch of ten samples consisted of silver stabilised coated

conductors that were plated with a nickel layer of 20 µm. The second batch of

ten samples differed from the first because of an additional copper sheet around

the coated conductor. The copper protected the superconducting layer during the

electroplating procedure. The silver layer was still present to forestall copper poisoning

of the superconducting layer. The concept of ferromagnetic shielding has been

proposed before, but nobody had investigated coated conductor tapes before and no

experimental data was available until the experiments published in this thesis.

In the experimental section this thesis demonstrates the potential of ferromagnetic

shielding to reduce hysteretic losses in heterostructures of ferromagnets and super-

conductors. When considering single coated conductors, this reduction is up to 60 %

in the magnetic background field case and up to 50 % in the applied transport current

case. For stacks of coated conductor tapes, the hysteretic losses are reduced by up to

50 %, both with transport current as well as in background field. Bifilar coils even

show a reduction of the hysteretic losses of one order of magnitude, meaning the

losses with shields are as low as 10 % of the design without shields. Pancake coils

profit slightly less from ferromagnetic shielding, the highest achievable reduction of

hysteretic losses is about 40 %.
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With increasing geometric and physical complexity, numerical models may become

slow. An important task of this thesis was therefore besides the implementation, veri-

fication and the investigation of ferromagnetic shielding geometries the optimisation

of the numerical model. In this instance, the optimisation included finding a more

elegant and computationally less expensive way to implement the material laws and

governing equations but also reducing the mesh complexity without decreasing the

modelling accuracy. Optimisation also means exploiting and implementing symmetry

and boundary conditions resulting therefrom. For simple coated conductor geomet-

ries, this optimisation resulted in simulations requiring about two minutes instead of

one hour. For the three-dimensional model, the increase in computational efficiency

resulted in simulations requiring four hours instead of two weeks. For the former case

mentioned which regards the two-dimensional model, the savings amount to roughly

96 % of the total computation time so that the solution only requires 4 % of the time.

The optimisations for the three-dimensional model result in the optimised version

requiring about 1 % of the time of the unoptimised version.

A comparatively accessible interface with control over all the simulation parameters

was programmed in order to allow researchers with little experience to access and

alter the numerical model. It is found in the appendix. The script allows applying

arbitrarily complex load profiles, not only ramped electric current and background

magnetic field or sinusoidal loads.

The three-dimensional numerical model is the first one for superconductor simulation

that is capable of simulating contact resistances. It is possible to include these bound-

ary conditions without affecting the rest of the simulation environment, resulting

in unbroken translation symmetry. This new boundary condition can also be imple-

mented in other models and constitutes an important contribution to the numerical

modelling of superconductors.

Due to these achievements, the Twisted Stacked Tape Conductor cable could be

modelled and the influence of the geometry and of the contact resistances was

investigated. Contrary to the analytical model also presented which is valid only for

dc applications, the numerical model is additionally capable of simulating ac loads.

Concepts for reducing the hysteretic losses in the TSTC cable are proposed that could

lead to a more competitive performance in ac applications.

With the work on the TSTC cable, the basis for a comprehensive comparison of all

high current cable designs has been laid. A requirement for finding the optimal design

for high current fusion application cables, which are for example required in order to
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power the plasma containment high magnetic field coils. Topological optimisation can

further improve the cable performance and the application of ferromagnetic shielding

in the cable designs is another very interesting possibility.

Understanding the behaviour of complex systems including isolators, conductors,

superconductors and ferromagnets will help design and optimise appliances for in-

creased efficiency and high power density. This thesis contributes a powerful tool

to master those challenges, demonstrates the possibility of significantly optimising

superconducting applications and paves the way for further research into the field of

hysteretic loss reduction by ferromagnetic shielding.
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measurement of the AC magnetization loss.” Superconductor Science

and Technology 18, 592–595 (2005). http://dx.doi.org/10.1088/

0953-2048/18/5/003. (Cited on page 70)

http://dx.doi.org/10.1088/1742-6596/234/3/032060
http://dx.doi.org/10.1088/1742-6596/234/3/032060
http://dx.doi.org/10.1088/0953-2048/22/6/065013
http://dx.doi.org/10.1088/0953-2048/22/6/065013
http://dx.doi.org/10.1088/0953-2048/24/4/042001
http://dx.doi.org/10.1088/0953-2048/26/4/045005
http://dx.doi.org/10.1109/77.919779
http://dx.doi.org/10.1109/77.919779
http://dx.doi.org/0953-2048/02/060927
http://dx.doi.org/0953-2048/02/060927
http://dx.doi.org/10.1088/0953-2048/18/5/003
http://dx.doi.org/10.1088/0953-2048/18/5/003


9 Bibliography 189

[VKS07] Vinod, K., Kumar, R.G.A. and Syamaprasad, U. “Prospects for MgB2

superconductors for magnet application.” Superconductor Science

and Technology 20, R1–R13 (2007). http://dx.doi.org/10.1088/

0953-2048/20/1/R01. (Cited on page 23)

[VLW04] Vagner, I.D., Lembrikov, B.I. and Wyder, P. Electrodynamics of Mag-

netoactive Materials. Springer-Verlag, Berlin, 1st ed. (2004). ISBN

3-540-43694-4. (Cited on page 18)
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A Appendix

A.1 FEM Sourcecode

Following is the Matlab source code in order to reproduce the FEM simulations using

COMSOL.

A.1.1 Multipurpose H-model MATLAB/COMSOL Script

The following MATLAB script remotely controls COMSOL. Using this script, it is

possible to simulate single coated conductors, coated conductor stacks, bifilar and

pancake coils with and without ferromagnetic shielding. All parameters can be

conveniently set in the beginning of the source code.

% function out = GeoSel_DoubleSweep

import com.comsol.model.*

import com.comsol.model.util.*

model = ModelUtil.create(’Model’);

ModelUtil.showProgress(true);

model.resetAuthor(’Philipp A. C. Krueger’);

% Choose Geometry

geo = 1; % strip

% geo = 2; % substrate

% geo = 3; % shields

% geo = 4; % fcl

% geo = 5; % fcl w shields

% geo = 6; % pancake coil

% geo = 7; % pancake coil w shields

% geo = 8; % stack of 5 tapes

% geo = 9; % stack of 5 tapes, shielded

% geo = 10; % stack of 5 tapes, spaced by substrate

% geo = 11; % stack of 5 tapes, spaced by substrate, shielded

% Define parameters

% Fraction of critical field to apply

% Happl = [1e-3 2e-3 5e-3 1e-2 2e-2 5e-2 1e-1 2e-1 4e-1 6e-1 8e-1 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6];

Happl = 0;

% Fraction of critical current to apply

Iappl = [0.01 0.03 0.05 0.07 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];

% Iappl = 0;
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% Geometry parameters

% c = [2.0e-3 3.0e-3];

c = 3.0e-3;

gap = 1e-4;

gapTop = 5e-6;

gapSide = 5e-6;

gapBottom = 5e-6;

gapTapes = 2e-5;

Ic = 300;

MeshCountScWidth=200;

tSC = 1e-6;

tSub = 1e-4;

tShieldSide = 3e-5;

tShieldFace = 3e-5;

wSC = 1e-2;

% Solution details

nu=50;

TimeStart = 0;

TimeStop = 1/nu;

TimeStep = TimeStop/100;

TimeList = [’range(’,num2str(TimeStart),’,’,num2str(TimeStep),’,’,num2str(TimeStop),’)’];

Jc = (Ic/(wSC*tSC));

Hc = Jc*tSC/pi;

mu0 = pi*4e-7;

Bc = mu0*Hc;

model.param.set(’Bc’, ’mu0*Hc’);

%model.param.set(’Bext’, ’Happl*Bc*sin(2*pi*nu*t)/mu0’);

model.param.set(’Ec’, ’1e-4[V/m]’);

model.param.set(’Happl’, Happl(1));

model.param.set(’Hc’, ’Jc*tSC/pi’);

model.param.set(’Iappl’, Iappl(1));

model.param.set(’Ic’, [num2str(Ic),’[A]’]);

%model.param.set(’Iext’, ’Iappl*Ic*sin(2*pi*nu*t)’);

model.param.set(’Jc’, ’Ic/(wSC*tSC)’);

model.param.set(’mu0’, [num2str(mu0),’[N/A^2]’]);

model.param.set(’n’, ’35’);

model.param.set(’nu’, [num2str(nu),’[Hz]’]);

model.param.set(’rhoAir’, ’1[m/S]’);

model.param.set(’rhoFM’, ’1[m/S]’);

model.param.set(’tSC’, [num2str(tSC),’[m]’]);

model.param.set(’tRampDuration’, [num2str(1/nu),’[s]’]);

model.param.set(’wSC’, [num2str(wSC),’[m]’]);

model.modelNode.create(’mod1’);

model.func.create(’rm1’, ’Ramp’);

model.func.create(’an1’, ’Analytic’);

model.func.create(’an2’, ’Analytic’);

model.func(’rm1’).set(’smoothloc’, true);

model.func(’rm1’).set(’cutoffactive’, true);

model.func(’rm1’).set(’location’, ’tRampDuration*2e-3’);
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model.func(’rm1’).set(’smoothzone’, ’tRampDuration*3e-3’);

model.func(’rm1’).set(’slope’, ’40/tRampDuration’);

model.func(’an1’).set(’fununit’, ’A’);

model.func(’an1’).set(’expr’, ’rm1(t)*Iappl*Ic*sin(2*pi*nu*t)’);

model.func(’an1’).set(’argunit’, ’s’);

model.func(’an1’).set(’args’, {’t’});

model.func(’an1’).set(’plotargs’, {’t’ ’0’ ’tRampDuration’});

model.func(’an1’).set(’funcname’, ’Iext’);

model.func(’an2’).set(’fununit’, ’A/m’);

model.func(’an2’).set(’expr’, ’rm1(t)*Happl*Hc*sin(2*pi*nu*t)’);

model.func(’an2’).set(’argunit’, ’s’);

model.func(’an2’).set(’args’, {’t’});

model.func(’an2’).set(’plotargs’, {’t’ ’0’ ’tRampDuration’});

model.func(’an2’).set(’funcname’, ’Hext’);

model.geom.create(’geom1’, 2);

model.geom(’geom1’).feature.create(’c1’, ’Circle’);

model.geom(’geom1’).feature(’c1’).set(’r’, ’0.5’);

model.geom(’geom1’).feature.create(’r1’, ’Rectangle’);

% r1: superconductor

model.geom(’geom1’).feature(’r1’).set(’pos’, {’0’ ’0’});

model.geom(’geom1’).feature(’r1’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r1’).set(’size’, {’wSC [1/m]’ ’tSC [1/m]’});

if ((geo==3)||(geo==5)||(geo==7)||(geo==9)||(geo==11))

if ((geo==3)||(geo==5)||(geo==7))

ShieldWidth = num2str(c(1)+gapSide+tShieldSide,’%10.6e’);

ShieldThickness = num2str(2*tShieldFace+gapTop+gap+gapBottom+tSC+tSub,’%10.6e’);

CutWidth = num2str(wSC+2*gapSide,’%10.6e’);

CutThickness = num2str(tSC+gapTop+gap+gapBottom+tSub,’%10.6e’);

leftShieldPosX = num2str(-wSC/2-gapSide-tShieldSide+(c(1)+gapSide+tShieldSide)/2,’%10.6

e’);

leftShieldPosY = num2str(-(gap+gapBottom+tShieldFace+tSC/2+tSub)+(2*tShieldFace+gapTop+

gap+gapBottom+tSC+tSub)/2,’%10.6e’);

rightShieldPosX = num2str(wSC/2+gapSide+tShieldSide-(c(1)+gapSide+tShieldSide)/2,’%10.6

e’);

rightShieldPosY = num2str(-(gap+gapBottom+tShieldFace+tSC/2+tSub)+(2*tShieldFace+gapTop

+gap+gapBottom+tSC+tSub)/2,’%10.6e’);

carveBoxPosX = ’0’;

carveBoxPosY = num2str(-(gap+gapBottom+tShieldFace+tSC/2+tSub)+(2*tShieldFace+gapTop+

gap+gapBottom+tSC+tSub)/2,’%10.6e’);

elseif ((geo==8)||(geo==9))

ShieldWidth = num2str(c(1)+gapSide+tShieldSide,’%10.6e’);

ShieldThickness = num2str(2*tShieldFace+gapTop+gapBottom+5*tSC+4*gapTapes,’%10.6e’);

CutWidth = num2str(wSC+2*gapSide,’%10.6e’);

CutThickness = num2str(5*tSC+4*gapTapes+gapTop+gapBottom,’%10.6e’);

leftShieldPosX = num2str(-wSC/2-gapSide-tShieldSide+(c(1)+gapSide+tShieldSide)/2,’%10.6

e’);

leftShieldPosY = ’0’;

rightShieldPosX = num2str(wSC/2+gapSide+tShieldSide-(c(1)+gapSide+tShieldSide)/2,’%10.6

e’);

rightShieldPosY = ’0’;

carveBoxPosX = ’0’;

carveBoxPosY = ’0’;
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elseif ((geo==11))

ShieldWidth = num2str(c(1)+gapSide+tShieldSide,’%10.6e’);

ShieldThickness = num2str(5*(tSC+gap+tSub)+4*gapTapes+gapTop+gapBottom+2*tShieldFace,’

%10.6e’);

CutWidth = num2str(wSC+2*gapSide,’%10.6e’);

CutThickness = num2str(5*(tSC+gap+tSub)+4*gapTapes+gapTop+gapBottom,’%10.6e’);

leftShieldPosX = num2str((c(1)+gapSide+tShieldSide-wSC)/2-gapSide-tShieldSide,’%10.6e’)

;

leftShieldPosY = num2str(tSC/2+gapTop+tShieldFace-(5*(tSC+gap+tSub)+4*gapTapes+gapTop+

gapBottom+2*tShieldFace)/2,’%10.6e’);

rightShieldPosX = num2str(gapSide+tShieldSide+(wSC-(c(1)+gapSide+tShieldSide))/2,’%10.6

e’);

rightShieldPosY = num2str(tSC/2+tShieldFace+gapTop-(5*(tSC+gap+tSub)+4*gapTapes+

gapBottom+2*tShieldFace)/2,’%10.6e’);

carveBoxPosX = ’0’;

carveBoxPosY = num2str(tSC/2+gapTop+tShieldFace-(5*(tSC+gap+tSub)+4*gapTapes+gapTop+

gapBottom+2*tShieldFace)/2,’%10.6e’);

end

model.geom(’geom1’).feature.create(’r2’, ’Rectangle’);

model.geom(’geom1’).feature.create(’r3’, ’Rectangle’);

model.geom(’geom1’).feature.create(’r4’, ’Rectangle’);

model.geom(’geom1’).feature.create(’dif1’, ’Difference’);

% r2: left shield

model.geom(’geom1’).feature(’r2’).set(’pos’, {leftShieldPosX leftShieldPosY});

model.geom(’geom1’).feature(’r2’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r2’).set(’size’, {ShieldWidth ShieldThickness});

model.geom(’geom1’).feature(’r2’).active(true);

% r3: right shield

model.geom(’geom1’).feature(’r3’).set(’pos’, {rightShieldPosX rightShieldPosY});

model.geom(’geom1’).feature(’r3’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r3’).set(’size’, {ShieldWidth ShieldThickness});

model.geom(’geom1’).feature(’r3’).active(true);

% r4: shield carve block

model.geom(’geom1’).feature(’r4’).set(’pos’, {carveBoxPosX carveBoxPosY});

model.geom(’geom1’).feature(’r4’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r4’).set(’size’, {CutWidth CutThickness});

model.geom(’geom1’).feature(’r4’).active(true);

% dif1: carve shields

model.geom(’geom1’).feature(’dif1’).selection(’input’).set({’r2’ ’r3’});

model.geom(’geom1’).feature(’dif1’).selection(’input2’).set({’r4’});

model.geom(’geom1’).feature(’dif1’).active(true);

end

% carve FCL geometry slab

if ((geo==4)||(geo==5)||(geo==6)||(geo==7))

model.geom(’geom1’).feature.create(’r6’, ’Rectangle’);

model.geom(’geom1’).feature.create(’int1’, ’Intersection’);

model.geom(’geom1’).feature(’r6’).active(true);

model.geom(’geom1’).feature(’r6’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r6’).set(’size’, {’0.3’ ’1.5e-3’});

model.geom(’geom1’).feature(’r6’).set(’pos’, {’0’ ’0’});

model.geom(’geom1’).feature(’int1’).selection(’input’).set({’c1’ ’r6’});

model.geom(’geom1’).feature(’int1’).active(true);

end
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if ((geo==8)||(geo==9))

model.geom(’geom1’).feature.create(’r7’, ’Rectangle’);

model.geom(’geom1’).feature.create(’r8’, ’Rectangle’);

model.geom(’geom1’).feature.create(’r9’, ’Rectangle’);

model.geom(’geom1’).feature.create(’r10’, ’Rectangle’);

model.geom(’geom1’).feature(’r7’).set(’pos’, {’0’ num2str(0-gapTapes-tSC/2,’%10.6e’)});

model.geom(’geom1’).feature(’r7’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r7’).set(’size’, {’wSC’ ’tSC’});

model.geom(’geom1’).feature(’r7’).active(true);

model.geom(’geom1’).feature(’r8’).set(’pos’, {’0’ num2str(0-2*gapTapes-tSC/2,’%10.6e’)});

model.geom(’geom1’).feature(’r8’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r8’).set(’size’, {’wSC’ ’tSC’});

model.geom(’geom1’).feature(’r8’).active(true);

model.geom(’geom1’).feature(’r9’).set(’pos’, {’0’ num2str(0+gapTapes-tSC/2,’%10.6e’)});

model.geom(’geom1’).feature(’r9’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r9’).set(’size’, {’wSC’ ’tSC’});

model.geom(’geom1’).feature(’r9’).active(true);

model.geom(’geom1’).feature(’r10’).set(’pos’, {’0’ num2str(0+2*gapTapes-tSC/2,’%10.6e’)});

model.geom(’geom1’).feature(’r10’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r10’).set(’size’, {’wSC’ ’tSC’});

model.geom(’geom1’).feature(’r10’).active(true);

elseif ((geo==10)||(geo==11))

model.geom(’geom1’).feature.create(’r7’, ’Rectangle’);

model.geom(’geom1’).feature.create(’r8’, ’Rectangle’);

model.geom(’geom1’).feature.create(’r9’, ’Rectangle’);

model.geom(’geom1’).feature.create(’r10’, ’Rectangle’);

model.geom(’geom1’).feature(’r7’).set(’pos’, {’0’ num2str(-tSC-gap-tSub-gapTapes,’%10.6e’)});

model.geom(’geom1’).feature(’r7’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r7’).set(’size’, {’wSC’ ’tSC’});

model.geom(’geom1’).feature(’r7’).active(true);

model.geom(’geom1’).feature(’r8’).set(’pos’, {’0’ num2str(2*(-tSC-gap-tSub-gapTapes),’%10.6e’)

});

model.geom(’geom1’).feature(’r8’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r8’).set(’size’, {’wSC’ ’tSC’});

model.geom(’geom1’).feature(’r8’).active(true);

model.geom(’geom1’).feature(’r9’).set(’pos’, {’0’ num2str(3*(-tSC-gap-tSub-gapTapes),’%10.6e’)

});

model.geom(’geom1’).feature(’r9’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r9’).set(’size’, {’wSC’ ’tSC’});

model.geom(’geom1’).feature(’r9’).active(true);

model.geom(’geom1’).feature(’r10’).set(’pos’, {’0’ num2str(4*(-tSC-gap-tSub-gapTapes),’%10.6e’

)});

model.geom(’geom1’).feature(’r10’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r10’).set(’size’, {’wSC’ ’tSC’});

model.geom(’geom1’).feature(’r10’).active(true);

elseif (geo==2)

model.geom(’geom1’).feature.create(’r2’, ’Rectangle’);

%model.geom(’geom1’).feature(’r2’).set(’pos’, {’0’ num2str(tSub/2+gap)});

model.geom(’geom1’).feature(’r2’).set(’pos’, {’0’ num2str(-tSC/2-gap-tSub/2)});

model.geom(’geom1’).feature(’r2’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r2’).set(’size’, {num2str(wSC) num2str(tSub)});

model.geom(’geom1’).feature(’r2’).active(true);

end
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% force min. repair tolerance below smallest detail, else geometry will build uncontrollably

model.geom(’geom1’).feature(’fin’).set(’repairtol’, ’1.0E-8’);

model.geom(’geom1’).run;

% define superconducting domain

model.variable.create(’var1’);

model.variable(’var1’).model(’mod1’);

model.variable(’var1’).set(’rho’, ’Ec/Jc*abs(Jz/Jc)^(n-1)’);

model.variable(’var1’).set(’mu’, ’mu0’);

model.variable(’var1’).selection.geom(’geom1’, 2);

if ((geo==1)||(geo==4)||(geo==6))

model.variable(’var1’).selection.set(2);

elseif ((geo==3)||(geo==5)||(geo==7))

model.variable(’var1’).selection.set(3);

elseif ((geo==8)||(geo==10))

model.variable(’var1’).selection.set([2 3 4 5 6]);

elseif ((geo==9)||(geo==11))

model.variable(’var1’).selection.set([3 4 5 6 7]);

end

% define vacuum domain

model.variable.create(’var2’);

model.variable(’var2’).model(’mod1’);

model.variable(’var2’).set(’rho’, ’rhoAir’);

model.variable(’var2’).set(’mu’, ’mu0’);

model.variable(’var2’).selection.geom(’geom1’, 2);

model.variable(’var2’).selection.set(1);

% define general physics

model.variable.create(’var3’);

model.variable(’var3’).model(’mod1’);

model.variable(’var3’).set(’Jz’, ’H2x-H1y’);

model.variable(’var3’).set(’Ez’, ’rho*Jz’);

model.variable(’var3’).set(’Hm’, ’((H1+0.001)^2+(H2+0.001)^2)^0.5’);

model.variable(’var3’).set(’Hmax’, ’Iext(t)/(2*pi*(x^2+y^2)^0.5)’);

model.variable(’var3’).set(’Bm’, ’mu*Hm’);

% define ferromagnetic domain

if ((geo==3)||(geo==5)||(geo==7)||(geo==9)||(geo==11))

model.variable.create(’var4’);

model.variable(’var4’).model(’mod1’);

model.variable(’var4’).set(’rho’, ’rhoFM’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Nguyen formula for local permeability mu=f(H(x,y)) (RABiTS)

% model.variable(’var4’).set(’muFM’, ’1+30600*(1-exp(-((Hm[m/A])/295)^2.5))/(Hm[m/A])^0.81+45*

exp(-((Hm[m/A])/120)^2.5)’);

% model.variable(’var4’).set(’dmuFM’, ’-24786*(1-exp(-((Hm[m/A])/295)^2.5))/(Hm[m/A])

^1.81+259.322*exp(-((Hm[m/A])/295)^2.5)*((Hm[m/A])/295)^1.5/(Hm[m/A])^0.81-0.9375*exp(-((

Hm[m/A])/120)^2.5)*((Hm[m/A])/120)^1.5’);

% model.variable(’var4’).set(’muH1X’, ’(muFM+dmuFM*H1^2/(Hm[m/A]))*mu0’);

% model.variable(’var4’).set(’muH2Y’, ’(muFM+dmuFM*H2^2/(Hm[m/A]))*mu0’);

% model.variable(’var4’).set(’muH12’, ’mu0*H1[A/m]*H2[A/m]*dmuFM/Hm’);

% model.variable(’var4’).set(’mu’, ’(muFM+dmuFM*Hm^2[m^2/A^2]/(Hm[m/A]))*mu0’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Constant mu (independent of H)

% model.variable(’var4’).set(’muH1’, ’mu0’);

% model.variable(’var4’).set(’muH2’, ’mu0’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% formula for local permeability based on Goemoery data mu=f(B(x,y)) (Ni) -> converted to mu(H

(x,y))

% model.variable(’var4’).set(’muFM’, ’48.770*exp(-1.849e-4*(Hm[m/A])^8.267e-1)+69.969*exp

(-4.214e-5*(Hm[m/A])^1.186)+1’);

% model.variable(’var4’).set(’dmuFM’, ’-0.00745483*exp(-0.0001849*(Hm[m/A])^0.8267)/(Hm[m/A])

^0.1733-0.00349691*exp(-0.00004214*(Hm[m/A])^1.186)*(Hm[m/A])^0.186’);

% model.variable(’var4’).set(’dmuFM’, ’0.012738/((1+2.89e-8*x**2)*atan(0.00017*x)**0.00756)’);

% model.variable(’var4’).set(’muH1X’, ’(muFM+dmuFM*(H1[m/A])^2/(Hm[m/A]))*mu0’);

% model.variable(’var4’).set(’muH2Y’, ’(muFM+dmuFM*(H2[m/A])^2/(Hm[m/A]))*mu0’);

% model.variable(’var4’).set(’muH12’, ’mu0*H1[m/A]*H2[m/A]*dmuFM/(Hm[m/A])’);

model.variable(’var4’).set(’muFM’, ’-75.5*atan(0.00017*Hm[m/A])^0.99244+119.190934’);

model.variable(’var4’).set(’mu’, ’muFM*mu0’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Ni-W

% model.variable(’var4’).set(’muFM’, ’1+30600*(1-exp(-((Hm[m/A])/295)^2.5))/(Hm[m/A])^0.81+45*

exp(-((Hm[m/A])/120)^2.5)’);

% model.variable(’var4’).set(’mu’, ’muFM*mu0’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

model.variable(’var4’).selection.geom(’geom1’, 2);

if ((geo==3)||(geo==5)||(geo==7))

model.variable(’var4’).selection.set([2 4]);

elseif ((geo==9)||(geo==11))

model.variable(’var4’).selection.set([2 8]);

end

end

if (geo==2)

model.variable(’var1’).selection.set(3);

model.variable.create(’var4’);

model.variable(’var4’).model(’mod1’);

model.variable(’var4’).set(’rho’, ’rhoFM’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Nguyen formula for local permeability mu=f(H(x,y)) (RABiTS)

% model.variable(’var4’).set(’muFM’, ’-75.5*atan(0.00017*Hm[m/A])^0.99244+119.190934’);

% model.variable(’var4’).set(’mu’, ’mu0*muFM’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Constant mu (independent of H)

% model.variable(’var4’).set(’muH1’, ’mu0’);

% model.variable(’var4’).set(’muH2’, ’mu0’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Ni-W

model.variable(’var4’).set(’muFM’, ’1+30600*(1-exp(-((Hm[m/A])/295)^2.5))/(Hm[m/A])^0.81+45*

exp(-((Hm[m/A])/120)^2.5)’);

model.variable(’var4’).set(’mu’, ’muFM*mu0’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

model.variable(’var4’).selection.geom(’geom1’, 2);

model.variable(’var4’).selection.set(2);

end

model.physics.create(’g’, ’GeneralFormPDE’, ’geom1’);
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model.physics(’g’).feature.create(’dir1’, ’DirichletBoundary’, 1);

if (geo==1)

model.physics(’g’).feature(’dir1’).selection.set([5 6 7 8]);

elseif (geo==2)

model.physics(’g’).feature(’dir1’).selection.set([9 10 11 12]);

elseif (geo==3)

model.physics(’g’).feature(’dir1’).selection.set([21 22 23 24]);

elseif ((geo==4)||(geo==5)||(geo==6)||(geo==7))

model.physics(’g’).feature(’dir1’).selection.set([2 3]);

elseif ((geo==8)||(geo==10))

model.physics(’g’).feature(’dir1’).selection.set([21 22 23 24]);

elseif ((geo==9)||(geo==11))

model.physics(’g’).feature(’dir1’).selection.set([37 38 39 40]);

end

% for FCL geometry to force symetrical boundary conditions

% model.physics(’g’).feature(’dir1’).selection.set([2 3]);

model.physics(’g’).feature.create(’constr1’, ’PointwiseConstraint’, 1);

model.physics(’g’).feature(’constr1’).selection.set(1);

if (geo==4)

model.physics(’g’).feature.create(’constr2’, ’PointwiseConstraint’, 1);

model.physics(’g’).feature(’constr2’).selection.set([2 3]);

end

model.mesh.create(’mesh1’, ’geom1’);

model.mesh(’mesh1’).feature.create(’map1’, ’Map’);

model.mesh(’mesh1’).feature(’map1’).selection.geom(’geom1’, 2);

if ((geo==1)||(geo==4)||(geo==6))

model.mesh(’mesh1’).feature(’map1’).selection.set(2);

elseif (geo==2)

model.mesh(’mesh1’).feature(’map1’).selection.set([2 3]);

elseif ((geo==3)||(geo==5)||(geo==7))

model.mesh(’mesh1’).feature(’map1’).selection.set(3);

elseif ((geo==8)||(geo==10))

model.mesh(’mesh1’).feature(’map1’).selection.set([2 3 4 5 6]);

elseif ((geo==9)||(geo==11))

model.mesh(’mesh1’).feature(’map1’).selection.set([3 4 5 6 7]);

end

model.mesh(’mesh1’).feature(’map1’).feature.create(’dis1’, ’Distribution’);

if (geo==1)

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).selection.set([2 3]);

elseif (geo==2)

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).selection.set([2 3 5 6]);

elseif (geo==3)

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).selection.set([8 9]);

elseif ((geo==4)||(geo==6))

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).selection.set([5 6]);

elseif ((geo==5)||(geo==7))

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).selection.set([11 12]);

elseif ((geo==8)||(geo==10))

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).selection.set([2 3 5 6 8 9 11 12 14 15]);

elseif ((geo==9)||(geo==11))

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).selection.set([8 9 11 12 14 15 17 18 20

21]);
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end

model.mesh(’mesh1’).feature(’map1’).feature.create(’dis2’, ’Distribution’);

if (geo==1)

model.mesh(’mesh1’).feature(’map1’).feature(’dis2’).selection.set([1 4]);

elseif (geo==2)

model.mesh(’mesh1’).feature(’map1’).feature(’dis2’).selection.set(4);

model.mesh(’mesh1’).feature(’map1’).feature.create(’dis3’, ’Distribution’);

model.mesh(’mesh1’).feature(’map1’).feature(’dis3’).selection.set(1);

elseif (geo==3)

model.mesh(’mesh1’).feature(’map1’).feature(’dis2’).selection.set([7 18]);

elseif ((geo==4)||(geo==6))

model.mesh(’mesh1’).feature(’map1’).feature(’dis2’).selection.set([4 7]);

elseif ((geo==5)||(geo==7))

model.mesh(’mesh1’).feature(’map1’).feature(’dis2’).selection.set([10 21]);

elseif ((geo==8)||(geo==10))

model.mesh(’mesh1’).feature(’map1’).feature(’dis2’).selection.set([1 4 7 10 13 16 17 18 19 20]);

elseif ((geo==9)||(geo==11))

model.mesh(’mesh1’).feature(’map1’).feature(’dis2’).selection.set([7 10 13 16 19 30 31 32 33 34]);

end

model.mesh(’mesh1’).feature.create(’ftri1’, ’FreeTri’);

if ((geo==4)||(geo==5)||(geo==6)||(geo==7))

model.mesh(’mesh1’).feature(’ftri1’).feature.create(’dis1’, ’Distribution’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis1’).selection.set([2 3]);

end

if ((geo==5)||(geo==7))

model.mesh(’mesh1’).feature(’ftri1’).feature.create(’dis2’, ’Distribution’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis2’).selection.set(9);

model.mesh(’mesh1’).feature(’ftri1’).feature.create(’dis3’, ’Distribution’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis3’).selection.set(19);

end

model.cpl.create(’intop1’, ’Integration’, ’geom1’);

if ((geo==1)||(geo==4)||(geo==6))

model.cpl(’intop1’).selection.set(2);

elseif ((geo==2)||(geo==3)||(geo==5)||(geo==7))

model.cpl(’intop1’).selection.set(3);

elseif ((geo==8)||(geo==10))

model.cpl(’intop1’).selection.set([2 3 4 5 6]);

elseif ((geo==9)||(geo==11))

model.cpl(’intop1’).selection.set([3 4 5 6 7]);

end

model.variable(’var1’).name(’Domain: Supercond’);

model.variable(’var2’).name(’Domain: Vacuum’);

model.variable(’var3’).name(’Entire Sphere’);

if ((geo==3)||(geo==5)||(geo==7)||(geo==9))

model.variable(’var4’).name(’Domain: Ferromagnet’);

end

model.physics(’g’).field(’dimensionless’).component({’H1’ ’H2’});

model.physics(’g’).field(’dimensionless’).field(’H’);

model.physics(’g’).prop(’ShapeProperty’).set(’shapeFunctionType’, ’shcurl’);
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model.physics(’g’).prop(’ShapeProperty’).set(’order’, ’1’);

model.physics(’g’).prop(’Units’).set(’DependentVariableQuantity’, ’magneticfield’);

model.physics(’g’).prop(’Units’).set(’CustomSourceTermUnit’, 1, ’V*m^-2’);

model.physics(’g’).feature(’gfeq1’).set(’f’, {’-d(mu,t)*H1’; ’-d(mu,t)*H2’});

model.physics(’g’).feature(’gfeq1’).set(’Ga’, {’0’ ’Ez’; ’-Ez’ ’0’});

%model.physics(’g’).feature(’gfeq1’).set(’da’, {’muH1X’; ’muH12’; ’muH12’; ’muH2Y’});

model.physics(’g’).feature(’gfeq1’).set(’da’, {’mu’; ’0’; ’0’; ’mu’});

if ((geo==1)||(geo==2)||(geo==3)||(geo==8)||(geo==9)||(geo==10)||(geo==11))

model.physics(’g’).feature(’dir1’).set(’r’, {’-Hmax*y/(x^2+y^2)^0.5’; ’Hext(t)+Hmax*x/(x^2+y

^2)^0.5’});

elseif ((geo==4)||(geo==5)) % for FCL geometry to force symetrical boundary conditions

model.physics(’g’).feature(’dir1’).set(’r’, {’0’; ’0’});

model.physics(’g’).feature(’dir1’).set(’useDirichletCondition’, 1, ’0’);

elseif ((geo==6)||(geo==7)) % for pancake geometry to force symetrical boundary conditions

model.physics(’g’).feature(’dir1’).set(’r’, {’0’; ’0’});

model.physics(’g’).feature(’dir1’).set(’useDirichletCondition’, 1, ’1’);

model.physics(’g’).feature(’dir1’).set(’useDirichletCondition’, 2, ’0’);

end

model.physics(’g’).feature(’dir1’).active(true);

model.physics(’g’).feature(’constr1’).set(’constraintExpression’, ’intop1(Jz)-Iext(t)’);

model.physics(’g’).feature(’constr1’).active(true);

model.mesh(’mesh1’).feature(’size’).set(’hauto’, 6);

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).set(’type’, ’predefined’);

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).set(’elemcount’, MeshCountScWidth);

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).set(’elemratio’, ’8’);

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).set(’method’, ’geometric’);

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).set(’symmetric’, true);

model.mesh(’mesh1’).feature(’map1’).feature(’dis2’).set(’numelem’, ’1’);

if (geo==2)

model.mesh(’mesh1’).feature(’map1’).feature(’dis3’).set(’numelem’, ’10’);

end

if ((geo==4)||(geo==5)||(geo==6)||(geo==7))

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis1’).set(’type’, ’predefined’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis1’).set(’elemcount’, MeshCountScWidth*2);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis1’).set(’elemratio’, ’16’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis1’).set(’method’, ’geometric’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis1’).set(’symmetric’, true);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis1’).set(’reverse’, ’on’);

end

if ((geo==5)||(geo==7))

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis2’).set(’type’, ’predefined’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis2’).set(’elemcount’, MeshCountScWidth/(wSC/c)

+2);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis2’).set(’elemratio’, ’8’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis2’).set(’method’, ’geometric’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis2’).set(’symmetric’, false);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis2’).set(’reverse’, ’off’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis3’).set(’type’, ’predefined’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis3’).set(’elemcount’, MeshCountScWidth/(wSC/c)

+2);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis3’).set(’elemratio’, ’8’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis3’).set(’method’, ’geometric’);
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model.mesh(’mesh1’).feature(’ftri1’).feature(’dis3’).set(’symmetric’, false);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis3’).set(’reverse’, ’on’);

end

model.mesh(’mesh1’).run;

model.study.create(’std1’);

model.study(’std1’).feature.create(’time’, ’Transient’);

model.sol.create(’sol1’);

model.sol(’sol1’).study(’std1’);

model.sol(’sol1’).attach(’std1’);

model.sol(’sol1’).feature.create(’st1’, ’StudyStep’);

model.sol(’sol1’).feature.create(’v1’, ’Variables’);

model.sol(’sol1’).feature.create(’t1’, ’Time’);

model.result.dataset.create(’cln1’, ’CutLine2D’);

model.result.create(’pg1’, ’PlotGroup2D’);

model.result(’pg1’).feature.create(’surf1’, ’Surface’);

model.result.create(’pg2’, ’PlotGroup1D’);

model.result(’pg2’).feature.create(’lngr1’, ’LineGraph’);

model.result.create(’pg3’, ’PlotGroup1D’);

model.result(’pg3’).feature.create(’lngr1’, ’LineGraph’);

model.result.create(’pg4’, ’PlotGroup1D’);

model.result(’pg4’).feature.create(’ptgr1’, ’PointGraph’);

model.study(’std1’).feature(’time’).set(’tlist’, TimeList);

model.study(’std1’).feature(’time’).set(’rtol’, ’1e-7’);

model.study(’std1’).feature(’time’).set(’rtolactive’, false);

model.study(’std1’).feature(’time’).set(’plot’, ’off’);

model.sol(’sol1’).feature(’st1’).name(’Compile Equations: Time Dependent’);

model.sol(’sol1’).feature(’st1’).set(’studystep’, ’time’);

model.sol(’sol1’).feature(’v1’).set(’control’, ’time’);

model.sol(’sol1’).feature(’t1’).set(’control’, ’time’);

model.sol(’sol1’).feature(’t1’).set(’tlist’, ’range(0,1/nu/100,1/nu)’);

model.sol(’sol1’).feature(’t1’).set(’rtol’, ’1e-7’);

model.sol(’sol1’).feature(’t1’).set(’atolglobalmethod’, ’unscaled’);

model.sol(’sol1’).feature(’t1’).set(’atolglobal’, ’1e-7’);

model.sol(’sol1’).feature(’t1’).set(’initialstepbdfactive’, false);

model.sol(’sol1’).feature(’t1’).set(’maxstepbdf’, ’tRampDuration/1000’);

model.sol(’sol1’).feature(’t1’).set(’maxstepbdfactive’, false);

model.sol(’sol1’).feature(’t1’).set(’plot’, ’off’);

model.sol(’sol1’).feature(’t1’).feature(’dDef’).set(’mumpsalloc’, ’4’);

model.sol(’sol1’).feature(’t1’).feature(’fcDef’).active(true);

model.sol(’sol1’).feature(’t1’).feature(’fcDef’).set(’niter’, ’25’);

model.sol(’sol1’).feature(’t1’).feature(’fcDef’).set(’ntermauto’, ’itertol’);

model.sol(’sol1’).feature(’t1’).feature(’fcDef’).set(’dtech’, ’auto’);

model.sol(’sol1’).feature(’t1’).feature(’aDef’).set(’nullfun’, ’flspnull’);

model.sol(’sol1’).feature(’t1’).feature(’dDef’).set(’errorchk’, ’off’);

disp([’Geometry sweep (of ’,num2str(length(c)),’): 1’])

disp(’First run!’)
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if ~(exist([’Current_’,num2str(Iappl(1)*Ic,’%1.5f’),’/’,’Field_’,num2str(Happl(1)*Bc,’%1.5f’),’/’,’

Happl_’,num2str(Happl(1)*Bc,’%1.5f’),’_SCLossProfile.txt’],’file’))

model.sol(’sol1’).runAll;

else

model.param.set(’Iappl’, 0);

model.param.set(’Happl’, 0);

model.sol(’sol1’).runAll;

end

model.result.dataset(’cln1’).name(’Supercond’);

model.result.dataset(’cln1’).set(’genpoints’, {num2str(-wSC/2,’%10.6e’) ’0’; num2str(wSC/2,’%10.6e’)

’0’});

model.result(’pg1’).set(’solnum’, ’76’);

model.result(’pg1’).set(’view’, ’view1’);

model.result(’pg1’).set(’title’, ’Local magnetic field B (@t=0.0076)’);

model.result(’pg1’).set(’windowtitle’, ’Graphics’);

model.result(’pg1’).set(’titleactive’, false);

%model.result(’pg1’).feature(’surf1’).set(’rangecoloractive’, ’on’);

%model.result(’pg1’).feature(’surf1’).set(’rangecolormin’, ’-10000’);

%model.result(’pg1’).feature(’surf1’).set(’rangecolormax’, ’10000’);

model.result(’pg2’).name(’1D Plot Jz’);

model.result(’pg2’).set(’data’, ’cln1’);

model.result(’pg2’).set(’innerinput’, ’manual’);

model.result(’pg2’).set(’solnum’, {’76’});

model.result(’pg2’).set(’title’, ’local current density Jz (A/m^2)’);

model.result(’pg2’).set(’xlabel’, ’x coordinate (m)’);

model.result(’pg2’).set(’ylabel’, ’-Jz (A/m^2)’);

model.result(’pg2’).feature(’lngr1’).set(’expr’, ’-Jz/Jc’);

model.result(’pg2’).feature(’lngr1’).set(’unit’, ’1’);

model.result(’pg2’).feature(’lngr1’).set(’descr’, ’-Jz/Jc’);

model.result(’pg2’).feature(’lngr1’).set(’xdata’, ’expr’);

model.result(’pg2’).feature(’lngr1’).set(’xdataexpr’, ’x’);

model.result(’pg3’).name(’1D Plot B’);

model.result(’pg3’).set(’data’, ’cln1’);

model.result(’pg3’).set(’innerinput’, ’manual’);

model.result(’pg3’).set(’solnum’, {’76’});

model.result(’pg3’).set(’title’, ’local magnetic field (H/m)’);

model.result(’pg3’).set(’xlabel’, ’x coordinate (m)’);

model.result(’pg2’).set(’ylabel’, ’mu0*H2 (H/m)’);

model.result(’pg3’).feature(’lngr1’).set(’expr’, ’mu0*H2’);

model.result(’pg3’).feature(’lngr1’).set(’unit’, ’V/m’);

model.result(’pg3’).feature(’lngr1’).set(’descr’, ’’);

model.result(’pg3’).feature(’lngr1’).set(’xdata’, ’expr’);

model.result(’pg3’).feature(’lngr1’).set(’xdataexpr’, ’x’);

model.result(’pg4’).set(’title’, ’Superconductor ac-losses P (W/m)’);

model.result(’pg4’).set(’xlabel’, ’Time (s)’);

model.result(’pg4’).set(’ylabel’, ’Losses P (W/m)’);

model.result(’pg4’).feature(’ptgr1’).set(’expr’, ’intop1(Jz*Ez)’);

model.result(’pg4’).feature(’ptgr1’).set(’unit’, ’W/m’);

model.result(’pg4’).feature(’ptgr1’).set(’descr’, ’intop1(Jz*Ez)’);

model.result(’pg4’).feature(’ptgr1’).selection.all;

model.result.export.create(’img1’, ’Image2D’);
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model.result.export(’img1’).set(’plotgroup’, ’pg1’);

model.result.export.create(’img2’, ’Image1D’);

model.result.export(’img2’).set(’plotgroup’, ’pg2’);

model.result.export.create(’img3’, ’Image1D’);

model.result.export(’img3’).set(’plotgroup’, ’pg3’);

model.result.export.create(’img4’, ’Image1D’);

model.result.export(’img4’).set(’plotgroup’, ’pg4’);

model.result.export.create(’plot1’, ’pg2’, ’lngr1’, ’Plot’);

model.result.export.create(’plot2’, ’pg3’, ’lngr1’, ’Plot’);

model.result.export.create(’plot3’, ’pg4’, ’ptgr1’, ’Plot’);

%%% Start outer iteration

SCLossX=cell(length(Iappl),length(Happl)); % initialise matrix for speed

SCLoss=cell(length(Iappl),length(Happl)); % initialise matrix for speed

FMLoss=cell(length(Iappl),length(Happl)); % initialise matrix for speed

FMLossShieldLeft=cell(length(Iappl),length(Happl)); % initialise matrix for speed

FMLossShieldRight=cell(length(Iappl),length(Happl)); % initialise matrix for speed

for i=1:length(Iappl)

for j=1:length(Happl)

% skip if configuration has already been run

CDir=[’Current_’,num2str(Iappl(i)*Ic,’%1.5f’)]; % construct path from parameters

FDir=[’Field_’,num2str(Happl(j)*Bc,’%1.5f’)]; % construct path from parameters

if (exist([CDir,’/’,FDir,’/’,’Happl_’,num2str(Happl(j)*Bc,’%1.5f’),’_SCLossProfile.txt’

],’file’)) % skip iteration if directory already exists

disp([’Iteration: ’,num2str((i-1)*length(Happl)+j),’/’,num2str(length(Happl)*

length(Iappl))])

disp([CDir,’/’,FDir,’/’,’Happl_’,num2str(Happl(j)*Bc,’%1.5f’),’_SCLossProfile.

txt’,’ already exists, skipping...’])

continue

end

% skip for first run because we want post-processing before starting next iteration

if ~((i==1)&&(j==1))

disp([’Iteration: ’,num2str((i-1)*length(Happl)+j),’/’,num2str(length(Happl)*

length(Iappl))])

disp([’Now running simulation with parameters: Iappl ’,num2str(Iappl(i)*Ic),’ A 

and Happl ’,num2str(Happl(j)*Bc),’ T’])

model.param.set(’Iappl’, Iappl(i)); % reset parameter for applied current Iappl

model.param.set(’Happl’, Happl(j)); % reset parameter for applied field Happl

model.sol(’sol1’).run; % run simulation

end

disp([’Simulation solved successfully for Iappl: ’,num2str(Iappl(i)*Ic,’%1.5f’),’, A 

and Happl: ’,num2str(Happl(j)*Bc,’%1.5f’),’ T’])

% extract instantaneous SC losses for each timestep from SC domain in W/m

tmpEval=mpheval(model,’intop1(Jz*Ez)’,’Edim’,1,’Selection’,1); % evaluate the integration

intop1(Jz*Ez) (defined above) over all the SCs

tmpEval.d1(:,1)=[]; % delete the superfluous first column that MATLAB adds to the

matrix it being just a copy of the second

% construct a matrix with the first column being the time and the

% second the instantaneous losses:

SCLossX{i,j}=[[TimeStart:TimeStep:TimeStop]’ tmpEval.d1]; %#ok
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% integrate SC losses over whole cycle and convert to J/m (divide by frequency nu)

SCLoss{i,j}=1/nu*trapz(SCLossX{i,j}(ceil(length(SCLossX{i,j})/2):length(SCLossX{i,j})

,1),SCLossX{i,j}(ceil(length(SCLossX{i,j})/2):length(SCLossX{i,j}),2))/(SCLossX{i,

j}(length(SCLossX{i,j}),1)-SCLossX{i,j}(ceil(length(SCLossX{i,j})/2),1));

% extract FM losses in each shield

if ((geo==3)||(geo==5)||(geo==7))

FMLossShieldLeft{i}=mphint(model,’(2750[J/m^3]*(mu0*muFM*Hm/(0.5[T]))^2)*((mu0*

muFM*Hm)<=0.4[T])+2750[J/m^3]*((mu0*muFM*Hm)>0.4[T])’,’t’,SCLossX{i,j}(ceil(

length(SCLossX{i,j})*3/4),1),’Edim’,2,’selection’,2);

FMLossShieldRight{i}=mphint(model,’(2750[J/m^3]*(mu0*muFM*Hm/(0.5[T]))^2)*((mu0*

muFM*Hm)<=0.4[T])+2750[J/m^3]*((mu0*muFM*Hm)>0.4[T])’,’t’,SCLossX{i,j}(ceil(

length(SCLossX{i,j})*3/4),1),’Edim’,2,’selection’,4);

elseif ((geo==9)||(geo==11))

FMLossShieldLeft{i}=mphint(model,’(2750[J/m^3]*(mu0*muFM*Hm/(0.5[T]))^2)*((mu0*

muFM*Hm)<=0.4[T])+2750[J/m^3]*((mu0*muFM*Hm)>0.4[T])’,’t’,SCLossX{i,j}(ceil(

length(SCLossX{i,j})*3/4),1),’Edim’,2,’selection’,2);

FMLossShieldRight{i}=mphint(model,’(2750[J/m^3]*(mu0*muFM*Hm/(0.5[T]))^2)*((mu0*

muFM*Hm)<=0.4[T])+2750[J/m^3]*((mu0*muFM*Hm)>0.4[T])’,’t’,SCLossX{i,j}(ceil(

length(SCLossX{i,j})*3/4),1),’Edim’,2,’selection’,8);

end

% combine for total FM loss

if ((geo==1)||(geo==4)||(geo==6)||(geo==8))

FMLoss{i,j}=0;

elseif (geo==2)

FMLoss{i,j}=mphint(model,’(0.8[J/m^3]*(mu0*muFM*Hm/(0.01[T]))^1.87)’,’t’,SCLossX{i,j}(ceil

(length(SCLossX{i,j})*3/4),1),’Edim’,2,’selection’,2);

elseif ((geo==3)||(geo==5)||(geo==7)||(geo==9)||(geo==11))

FMLoss{i,j}=FMLossShieldLeft{i}+FMLossShieldRight{i};

end

% extract magnetic field strength close to boundary

% Field{i}=abs(mphinterp(model,{’mu0*H2’},’coord’,[0; 0.49],’t’,SCLossX{i,j}(ceil(

length(SCLossX{i,j})*3/4),1))); %#ok

% save post-processed files

if ~(exist(CDir,’dir’))

mkdir(CDir);

end

cd(CDir);

if ~(exist(FDir,’dir’))

mkdir(FDir);

end

cd(FDir);

fid=fopen([’Happl_’,num2str(Happl(j)*Bc,’%1.5f’),’_SCLossProfile.txt’],’

wt’);

fprintf(fid,’%2.5e %2.5e\n’,[SCLossX{i,j}(:,1) SCLossX{i,j}(:,2)

;]’);

fclose(fid);

fid=fopen([’Happl_’,num2str(Happl(j)*Bc,’%1.5f’),’_Losses.txt’],’wt’);

fprintf(fid,’%2.5e\t%2.5e\t%2.5e\t%2.5e\n’,[Iappl(i)*Ic Happl(j)*

Bc SCLoss{i,j} FMLoss{i,j}]’);

fclose(fid);
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model.result(’pg1’).run;

model.result.export(’img1’).set(’pngfilename’, [pwd,’\’,’Happl_’,num2str(

Happl(j)*Bc,’%1.5f’),’_2D_H1.png’]);

model.result.export(’img1’).set(’options’, ’on’);

model.result.export(’img1’).set(’title’, ’on’);

model.result.export(’img1’).set(’logo’, ’off’);

model.result.export(’img1’).set(’legend’, ’off’);

model.result.export(’img1’).run;

model.result(’pg2’).run;

model.result.export(’img2’).set(’pngfilename’, [pwd,’\’,’Happl_’,num2str(

Happl(j)*Bc,’%1.5f’),’_1D_Jz.png’]);

model.result.export(’img2’).set(’options’, ’on’);

model.result.export(’img2’).set(’title’, ’on’);

model.result.export(’img2’).set(’logo’, ’off’);

model.result.export(’img2’).set(’legend’, ’off’);

model.result.export(’img2’).run;

model.result(’pg3’).run;

model.result.export(’img3’).set(’pngfilename’, [pwd,’\’,’Happl_’,num2str(

Happl(j)*Bc,’%1.5f’),’_1D_B.png’]);

model.result.export(’img3’).set(’options’, ’on’);

model.result.export(’img3’).set(’title’, ’on’);

model.result.export(’img3’).set(’logo’, ’off’);

model.result.export(’img3’).set(’legend’, ’off’);

model.result.export(’img3’).run;

model.result(’pg4’).run;

model.result.export(’img4’).set(’pngfilename’, [pwd,’\’,’Happl_’,num2str(

Happl(j)*Bc,’%1.5f’),’_1D_P.png’]);

model.result.export(’img4’).set(’options’, ’on’);

model.result.export(’img4’).set(’title’, ’on’);

model.result.export(’img4’).set(’logo’, ’off’);

model.result.export(’img4’).set(’legend’, ’off’);

model.result.export(’img4’).run;

model.result.export(’plot1’).set(’filename’, [pwd,’\’,’Happl_’,num2str(

Happl(j)*Bc,’%1.5f’),’_1D_Jz.txt’]);

model.result.export(’plot1’).run;

model.result.export(’plot2’).set(’filename’, [pwd,’\’,’Happl_’,num2str(

Happl(j)*Bc,’%1.5f’),’_1D_B.txt’]);

model.result.export(’plot2’).run;

model.result.export(’plot3’).set(’filename’, [pwd,’\’,’Happl_’,num2str(

Happl(j)*Bc,’%1.5f’),’_1D_P.txt’]);

model.result.export(’plot3’).run;

model.save([pwd,’\’,’Happl_’,num2str(Happl(j)*Bc,’%1.5f’),’_COMSOL.mph’]);

cd(’..’);

% save Loss.txt for subsweep after each run in case a simulation crashes

fid=fopen(’Loss.txt’,’wt’);

fprintf(fid,’#Iappl\t\tHappl*Bc\t\tSCloss\t\t\tFMLoss\n’);

for n=1:j

fprintf(fid,’%2.5e\t%2.5e\t%2.5e\t%2.5e\n’,[Iappl(i)*Ic Happl(n)*

Bc SCLoss{i,n} FMLoss{i,n}]’);

end

fclose(fid);

cd(’..’);
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end

end

% out = model;

A.1.2 High magnetic field coil with L-shaped ferromagnetic shields

import com.comsol.model.*

import com.comsol.model.util.*

model = ModelUtil.create(’Model’);

model.param.set(’Bc’, ’mu0*Hc’);

model.param.set(’Ec’, ’1e-4[V/m]’);

model.param.set(’Happl’, ’0’);

model.param.set(’Hc’, ’Jc*tSC/pi’);

model.param.set(’Iappl’, ’1.1’);

model.param.set(’Ic’, ’300[A]’);

model.param.set(’Jc’, ’Ic/(wSC*tSC)’);

model.param.set(’mu0’, ’1.2566e-06[N/A^2]’);

model.param.set(’n’, ’35’);

model.param.set(’nu’, ’50[Hz]’);

model.param.set(’rhoAir’, ’1[m/S]’);

model.param.set(’rhoFM’, ’1[m/S]’);

model.param.set(’tSC’, ’1e-6[m]’);

model.param.set(’tRampDuration’, ’10[s]’);

model.param.set(’wSC’, ’4e-3[m]’);

model.modelNode.create(’mod1’);

model.func.create(’rm1’, ’Ramp’);

model.func.create(’an1’, ’Analytic’);

model.func.create(’an2’, ’Analytic’);

model.func(’rm1’).set(’slope’, ’1/tRampDuration’);

model.func(’rm1’).set(’smoothzone’, ’tRampDuration*1e-2’);

model.func(’rm1’).set(’location’, ’tRampDuration*1e-2’);

model.func(’rm1’).set(’cutoffactive’, true);

model.func(’rm1’).set(’smoothloc’, true);

model.func(’an1’).set(’fununit’, ’A’);

model.func(’an1’).set(’plotargs’, {’t’ ’0’ ’tRampDuration’});

model.func(’an1’).set(’funcname’, ’Iext’);

model.func(’an1’).set(’args’, {’t’});

model.func(’an1’).set(’argunit’, ’s’);

model.func(’an1’).set(’expr’, ’rm1(t)*Iappl*Ic’);

model.func(’an2’).set(’fununit’, ’A/m’);

model.func(’an2’).set(’plotargs’, {’t’ ’0’ ’tRampDuration’});

model.func(’an2’).set(’funcname’, ’Hext’);

model.func(’an2’).set(’args’, {’t’});

model.func(’an2’).set(’argunit’, ’s’);

model.func(’an2’).set(’expr’, ’rm1(t)*mu0*Happl*Hc*sin(2*pi*nu*t)’);
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model.geom.create(’geom1’, 2);

model.geom(’geom1’).feature.create(’c1’, ’Circle’);

model.geom(’geom1’).feature.create(’r1’, ’Rectangle’);

model.geom(’geom1’).feature.create(’arr1’, ’Array’);

model.geom(’geom1’).feature.create(’r2’, ’Rectangle’);

model.geom(’geom1’).feature.create(’dif1’, ’Difference’);

model.geom(’geom1’).feature.create(’r3’, ’Rectangle’);

model.geom(’geom1’).feature.create(’r4’, ’Rectangle’);

model.geom(’geom1’).feature.create(’r5’, ’Rectangle’);

model.geom(’geom1’).feature.create(’dif2’, ’Difference’);

model.geom(’geom1’).feature(’c1’).set(’r’, ’0.5’);

model.geom(’geom1’).feature(’r1’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r1’).set(’pos’, {’-2.2*wSC’ ’2e-3’});

model.geom(’geom1’).feature(’r1’).set(’size’, {’wSC’ ’tSC’});

model.geom(’geom1’).feature(’arr1’).set(’size’, {’5’ ’1’});

model.geom(’geom1’).feature(’arr1’).set(’displ’, {’1.1*wSC’ ’0’});

model.geom(’geom1’).feature(’arr1’).selection(’input’).set({’r1’});

model.geom(’geom1’).feature(’r2’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r2’).set(’pos’, {’0’ ’-0.25’});

model.geom(’geom1’).feature(’r2’).set(’size’, {’1’ ’0.5’});

model.geom(’geom1’).feature(’dif1’).selection(’input’).set({’c1’});

model.geom(’geom1’).feature(’dif1’).selection(’input2’).set({’r2’});

model.geom(’geom1’).feature(’r3’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r3’).set(’pos’, {’-2.56*wSC’ ’2.2e-3’});

model.geom(’geom1’).feature(’r3’).set(’size’, {’wSC/3’ ’tSC*500’});

model.geom(’geom1’).feature(’r4’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r4’).set(’pos’, {’2.56*wSC’ ’2.2e-3’});

model.geom(’geom1’).feature(’r4’).set(’size’, {’wSC/3’ ’tSC*500’});

model.geom(’geom1’).feature(’r5’).set(’base’, ’center’);

model.geom(’geom1’).feature(’r5’).set(’pos’, {’0’ ’1.01e-3’});

model.geom(’geom1’).feature(’r5’).set(’size’, {’5.405*wSC’ ’2e-3’});

model.geom(’geom1’).feature(’dif2’).selection(’input’).set({’r3’ ’r4’});

model.geom(’geom1’).feature(’dif2’).selection(’input2’).set({’r5’});

model.geom(’geom1’).feature(’fin’).set(’repairtol’, ’1.0E-8’);

model.geom(’geom1’).run;

model.variable.create(’var4’);

model.variable(’var4’).model(’mod1’);

model.variable(’var4’).set(’rho’, ’rhoFM’);

model.variable(’var4’).set(’muFM’, ’1+30600*(1-exp(-((Hm[m/A])/295)^2.5))/(Hm[m/A])^0.81+45*exp(-((Hm

[m/A])/120)^2.5)’);

model.variable(’var4’).set(’mu’, ’mu0*muFM’);

model.variable(’var4’).selection.geom(’geom1’, 2);

model.variable(’var4’).selection.set([2 8]);

model.variable.create(’var1’);

model.variable(’var1’).model(’mod1’);

model.variable(’var1’).set(’rho’, ’Ec/Jc*abs(Jz/Jc)^(n-1)’);

model.variable(’var1’).set(’mu’, ’mu0’);

model.variable(’var1’).selection.geom(’geom1’, 2);

model.variable(’var1’).selection.set([3 4 5 6 7]);

model.variable.create(’var2’);

model.variable(’var2’).model(’mod1’);

model.variable(’var2’).set(’rho’, ’rhoAir’);
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model.variable(’var2’).set(’mu’, ’mu0’);

model.variable(’var2’).selection.geom(’geom1’, 2);

model.variable(’var2’).selection.set([1]);

model.variable.create(’var3’);

model.variable(’var3’).model(’mod1’);

model.variable(’var3’).set(’Jz’, ’H2x-H1y’);

model.variable(’var3’).set(’Ez’, ’rho*Jz’);

model.variable(’var3’).set(’Hm’, ’((H1+0.001)^2+(H2+0.001)^2)^0.5’);

model.variable(’var3’).set(’Hmax’, ’Iext(t)/(2*pi*(x^2+y^2)^0.5)’);

model.variable(’var3’).set(’Bm’, ’mu*Hm’);

model.cpl.create(’intop1’, ’Integration’, ’geom1’);

model.cpl.create(’intop2’, ’Integration’, ’geom1’);

model.cpl.create(’intop3’, ’Integration’, ’geom1’);

model.cpl.create(’intop4’, ’Integration’, ’geom1’);

model.cpl.create(’intop5’, ’Integration’, ’geom1’);

model.cpl.create(’aveop1’, ’Average’, ’geom1’);

model.cpl.create(’aveop2’, ’Average’, ’geom1’);

model.cpl.create(’aveop3’, ’Average’, ’geom1’);

model.cpl.create(’aveop4’, ’Average’, ’geom1’);

model.cpl.create(’aveop5’, ’Average’, ’geom1’);

model.cpl(’intop1’).selection.set([3]);

model.cpl(’intop2’).selection.set([4]);

model.cpl(’intop3’).selection.set([5]);

model.cpl(’intop4’).selection.set([6]);

model.cpl(’intop5’).selection.set([7]);

model.cpl(’aveop1’).selection.set([3]);

model.cpl(’aveop2’).selection.set([4]);

model.cpl(’aveop3’).selection.set([5]);

model.cpl(’aveop4’).selection.set([6]);

model.cpl(’aveop5’).selection.set([7]);

model.physics.create(’g’, ’GeneralFormPDE’, ’geom1’);

model.physics(’g’).field(’dimensionless’).field(’H’);

model.physics(’g’).field(’dimensionless’).component({’H1’ ’H2’});

model.physics(’g’).feature.create(’dir1’, ’DirichletBoundary’, 1);

model.physics(’g’).feature(’dir1’).selection.set([1]);

model.physics(’g’).feature.create(’constr1’, ’PointwiseConstraint’, 1);

model.physics(’g’).feature(’constr1’).selection.set([7 12 16 20 24]);

model.physics(’g’).feature.create(’constr2’, ’PointwiseConstraint’, 1);

model.physics(’g’).feature(’constr2’).selection.set([7 12 16 20 24]);

model.physics(’g’).feature.create(’constr3’, ’PointwiseConstraint’, 1);

model.physics(’g’).feature(’constr3’).selection.set([7 12 16 20 24]);

model.physics(’g’).feature.create(’constr4’, ’PointwiseConstraint’, 1);

model.physics(’g’).feature(’constr4’).selection.set([7 12 16 20 24]);

model.physics(’g’).feature.create(’constr5’, ’PointwiseConstraint’, 1);

model.physics(’g’).feature(’constr5’).selection.set([7 12 16 20 24]);

model.mesh.create(’mesh1’, ’geom1’);

model.mesh(’mesh1’).feature.create(’map1’, ’Map’);

model.mesh(’mesh1’).feature.create(’ftri1’, ’FreeTri’);

model.mesh(’mesh1’).feature(’map1’).selection.geom(’geom1’, 2);

model.mesh(’mesh1’).feature(’map1’).selection.set([3 4 5 6 7]);
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model.mesh(’mesh1’).feature(’map1’).feature.create(’dis1’, ’Distribution’);

model.mesh(’mesh1’).feature(’map1’).feature.create(’dis2’, ’Distribution’);

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).selection.set([8 9 13 14 17 18 21 22 25 26]);

model.mesh(’mesh1’).feature(’map1’).feature(’dis2’).selection.set([7 11 12 15 16 19 20 23 24 30]);

model.mesh(’mesh1’).feature(’ftri1’).feature.create(’dis1’, ’Distribution’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis1’).selection.set([1]);

model.variable(’var4’).name(’Domain: Ferromagnet’);

model.variable(’var1’).name(’Domain: Supercond’);

model.variable(’var2’).name(’Domain: Vacuum’);

model.variable(’var3’).name(’Entire Sphere’);

model.view(’view1’).axis.set(’xmin’, ’-0.011056667193770409’);

model.view(’view1’).axis.set(’ymin’, ’0.0015790574252605438’);

model.view(’view1’).axis.set(’xmax’, ’-0.009940456598997116’);

model.view(’view1’).axis.set(’ymax’, ’0.0024435482919216156’);

model.physics(’g’).prop(’ShapeProperty’).set(’shapeFunctionType’, ’shcurl’);

model.physics(’g’).prop(’ShapeProperty’).set(’order’, ’1’);

model.physics(’g’).prop(’Units’).set(’DependentVariableQuantity’, ’magneticfield’);

model.physics(’g’).prop(’Units’).set(’CustomSourceTermUnit’, ’V*m^-2’);

model.physics(’g’).feature(’gfeq1’).set(’f’, {’-d(mu,t)*H1’; ’-d(mu,t)*H2’});

model.physics(’g’).feature(’gfeq1’).set(’Ga’, {’0’ ’Ez’; ’-Ez’ ’0’});

model.physics(’g’).feature(’gfeq1’).set(’da’, {’mu’; ’0’; ’0’; ’mu’});

model.physics(’g’).feature(’dir1’).set(’r’, {’-Hmax*y/(x^2+y^2)^0.5’; ’0’});

model.physics(’g’).feature(’dir1’).set(’useDirichletCondition’, {’0’; ’1’});

model.physics(’g’).feature(’constr1’).set(’constraintExpression’, ’intop1(Jz)-Iext(t)’);

model.physics(’g’).feature(’constr2’).set(’constraintExpression’, ’intop2(Jz)-Iext(t)’);

model.physics(’g’).feature(’constr3’).set(’constraintExpression’, ’intop3(Jz)-Iext(t)’);

model.physics(’g’).feature(’constr4’).set(’constraintExpression’, ’intop4(Jz)-Iext(t)’);

model.physics(’g’).feature(’constr5’).set(’constraintExpression’, ’intop5(Jz)-Iext(t)’);

model.mesh(’mesh1’).feature(’size’).set(’hauto’, 6);

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).set(’elemratio’, ’4’);

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).set(’method’, ’geometric’);

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).set(’elemcount’, ’60’);

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).set(’symmetric’, true);

model.mesh(’mesh1’).feature(’map1’).feature(’dis1’).set(’type’, ’predefined’);

model.mesh(’mesh1’).feature(’map1’).feature(’dis2’).set(’numelem’, ’1’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis1’).set(’elemratio’, ’32’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis1’).set(’method’, ’geometric’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis1’).set(’elemcount’, ’100’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis1’).set(’symmetric’, true);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis1’).set(’type’, ’predefined’);

model.mesh(’mesh1’).feature(’ftri1’).feature(’dis1’).set(’reverse’, true);

model.mesh(’mesh1’).run;

model.frame(’material1’).sorder(1);

model.study.create(’std1’);

model.study(’std1’).feature.create(’time’, ’Transient’);

model.sol.create(’sol1’);
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model.sol(’sol1’).study(’std1’);

model.sol(’sol1’).attach(’std1’);

model.sol(’sol1’).feature.create(’st1’, ’StudyStep’);

model.sol(’sol1’).feature.create(’v1’, ’Variables’);

model.sol(’sol1’).feature.create(’t1’, ’Time’);

model.study(’std1’).feature(’time’).set(’initstudyhide’, ’on’);

model.study(’std1’).feature(’time’).set(’initsolhide’, ’on’);

model.study(’std1’).feature(’time’).set(’notstudyhide’, ’on’);

model.study(’std1’).feature(’time’).set(’notsolhide’, ’on’);

model.result.dataset.create(’cln1’, ’CutLine2D’);

model.result.dataset.create(’cln2’, ’CutLine2D’);

model.result.dataset.create(’cln3’, ’CutLine2D’);

model.result.dataset.create(’cln4’, ’CutLine2D’);

model.result.dataset.create(’cln5’, ’CutLine2D’);

model.result.create(’pg1’, ’PlotGroup2D’);

model.result.create(’pg2’, ’PlotGroup1D’);

model.result.create(’pg3’, ’PlotGroup1D’);

model.result.create(’pg4’, ’PlotGroup1D’);

model.result.create(’pg5’, ’PlotGroup1D’);

model.result(’pg1’).feature.create(’surf1’, ’Surface’);

model.result(’pg2’).feature.create(’lngr1’, ’LineGraph’);

model.result(’pg2’).feature.create(’lngr2’, ’LineGraph’);

model.result(’pg2’).feature.create(’lngr3’, ’LineGraph’);

model.result(’pg2’).feature.create(’lngr4’, ’LineGraph’);

model.result(’pg2’).feature.create(’lngr5’, ’LineGraph’);

model.result(’pg3’).feature.create(’lngr1’, ’LineGraph’);

model.result(’pg4’).feature.create(’glob1’, ’Global’);

model.result(’pg5’).feature.create(’glob1’, ’Global’);

model.result(’pg5’).feature.create(’glob2’, ’Global’);

model.result(’pg5’).feature.create(’glob3’, ’Global’);

model.result(’pg5’).feature.create(’glob4’, ’Global’);

model.result(’pg5’).feature.create(’glob5’, ’Global’);

model.result.export.create(’img1’, ’Image2D’);

model.result.export.create(’img2’, ’Image1D’);

model.result.export.create(’img3’, ’Image1D’);

model.result.export.create(’img4’, ’Image1D’);

model.result.export.create(’plot1’, ’Plot’);

model.result.export.create(’plot2’, ’Plot’);

model.result.export.create(’plot3’, ’Plot’);

model.study(’std1’).feature(’time’).set(’tlist’, ’range(0,1/tRampDuration,tRampDuration)’);

model.sol(’sol1’).attach(’std1’);

model.sol(’sol1’).feature(’st1’).name(’Compile Equations: Time Dependent’);

model.sol(’sol1’).feature(’st1’).set(’studystep’, ’time’);

model.sol(’sol1’).feature(’v1’).set(’control’, ’time’);

model.sol(’sol1’).feature(’v1’).feature(’mod1_H’).name(’mod1.H’);

model.sol(’sol1’).feature(’t1’).set(’atolglobal’, ’1e-7’);

model.sol(’sol1’).feature(’t1’).set(’initialstepbdf’, ’1e-5’);

model.sol(’sol1’).feature(’t1’).set(’maxstepbdf’, ’1e-4’);

model.sol(’sol1’).feature(’t1’).set(’atolglobalmethod’, ’unscaled’);
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model.sol(’sol1’).feature(’t1’).set(’tlist’, ’range(0,1/tRampDuration,tRampDuration)’);

model.sol(’sol1’).feature(’t1’).set(’control’, ’time’);

model.sol(’sol1’).feature(’t1’).set(’bwinitstepfrac’, ’1.0’);

model.sol(’sol1’).feature(’t1’).feature(’dDef’).set(’mumpsalloc’, ’4’);

model.sol(’sol1’).feature(’t1’).feature(’dDef’).set(’errorchk’, ’off’);

model.sol(’sol1’).feature(’t1’).feature(’fcDef’).set(’jtech’, ’onevery’);

model.sol(’sol1’).runAll;

model.result.dataset(’cln1’).name(’Superconductor 1’);

model.result.dataset(’cln1’).set(’genpoints’, {’-2.7*wSC’ ’2e-3’; ’-1.7*wSC’ ’2e-3’});

model.result.dataset(’cln2’).name(’Superconductor 2’);

model.result.dataset(’cln2’).set(’spacevars’, {’cln1x’});

model.result.dataset(’cln2’).set(’genpoints’, {’-1.6*wSC’ ’2e-3’; ’-.6*wSC’ ’2e-3’});

model.result.dataset(’cln3’).name(’Superconductor 3’);

model.result.dataset(’cln3’).set(’spacevars’, {’cln1x’});

model.result.dataset(’cln3’).set(’genpoints’, {’-.5*wSC’ ’2e-3’; ’.5*wSC’ ’2e-3’});

model.result.dataset(’cln4’).name(’Superconductor 4’);

model.result.dataset(’cln4’).set(’spacevars’, {’cln1x’});

model.result.dataset(’cln4’).set(’genpoints’, {’.6*wSC’ ’2e-3’; ’1.6*wSC’ ’2e-3’});

model.result.dataset(’cln5’).name(’Superconductor 5’);

model.result.dataset(’cln5’).set(’spacevars’, {’cln1x’});

model.result.dataset(’cln5’).set(’genpoints’, {’1.7*wSC’ ’2e-3’; ’2.7*wSC’ ’2e-3’});

model.result(’pg1’).set(’view’, ’view1’);

model.result(’pg1’).feature(’surf1’).set(’descr’, ’’);

model.result(’pg1’).feature(’surf1’).set(’expr’, ’Hm’);

model.result(’pg2’).name(’1D Plot Jz’);

model.result(’pg2’).set(’data’, ’none’);

model.result(’pg2’).set(’ylabel’, ’Jz*tSC (A/m)’);

model.result(’pg2’).set(’xlabel’, ’Arc length’);

model.result(’pg2’).set(’ylabelactive’, false);

model.result(’pg2’).set(’xlabelactive’, false);

model.result(’pg2’).feature(’lngr1’).set(’data’, ’cln1’);

model.result(’pg2’).feature(’lngr1’).set(’expr’, ’Jz*tSC’);

model.result(’pg2’).feature(’lngr1’).set(’descr’, ’Jz*tSC’);

model.result(’pg2’).feature(’lngr1’).set(’legendmethod’, ’manual’);

model.result(’pg2’).feature(’lngr1’).set(’legends’, {’SC1’});

model.result(’pg2’).feature(’lngr1’).set(’looplevelinput’, {’all’});

model.result(’pg2’).feature(’lngr1’).set(’legend’, true);

model.result(’pg2’).feature(’lngr2’).set(’data’, ’cln2’);

model.result(’pg2’).feature(’lngr2’).set(’expr’, ’Jz*tSC’);

model.result(’pg2’).feature(’lngr2’).set(’descr’, ’Jz*tSC’);

model.result(’pg2’).feature(’lngr2’).set(’legendmethod’, ’manual’);

model.result(’pg2’).feature(’lngr2’).set(’legends’, {’SC2’});

model.result(’pg2’).feature(’lngr2’).set(’looplevelinput’, {’all’});

model.result(’pg2’).feature(’lngr2’).set(’legend’, true);

model.result(’pg2’).feature(’lngr3’).set(’data’, ’cln3’);

model.result(’pg2’).feature(’lngr3’).set(’expr’, ’Jz*tSC’);

model.result(’pg2’).feature(’lngr3’).set(’descr’, ’Jz*tSC’);

model.result(’pg2’).feature(’lngr3’).set(’legendmethod’, ’manual’);

model.result(’pg2’).feature(’lngr3’).set(’legends’, {’SC3’});

model.result(’pg2’).feature(’lngr3’).set(’looplevelinput’, {’all’});

model.result(’pg2’).feature(’lngr3’).set(’legend’, true);

model.result(’pg2’).feature(’lngr4’).set(’data’, ’cln4’);
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model.result(’pg2’).feature(’lngr4’).set(’expr’, ’Jz*tSC’);

model.result(’pg2’).feature(’lngr4’).set(’descr’, ’Jz*tSC’);

model.result(’pg2’).feature(’lngr4’).set(’legendmethod’, ’manual’);

model.result(’pg2’).feature(’lngr4’).set(’legends’, {’SC4’});

model.result(’pg2’).feature(’lngr4’).set(’looplevelinput’, {’all’});

model.result(’pg2’).feature(’lngr4’).set(’legend’, true);

model.result(’pg2’).feature(’lngr5’).set(’data’, ’cln5’);

model.result(’pg2’).feature(’lngr5’).set(’expr’, ’Jz*tSC’);

model.result(’pg2’).feature(’lngr5’).set(’descr’, ’Jz*tSC’);

model.result(’pg2’).feature(’lngr5’).set(’legendmethod’, ’manual’);

model.result(’pg2’).feature(’lngr5’).set(’legends’, {’SC5’});

model.result(’pg2’).feature(’lngr5’).set(’looplevelinput’, {’all’});

model.result(’pg2’).feature(’lngr5’).set(’legend’, true);

model.result(’pg3’).name(’1D Plot B’);

model.result(’pg3’).set(’data’, ’none’);

model.result(’pg3’).set(’xlabel’, ’x-coordinate (m)’);

model.result(’pg3’).set(’xlabelactive’, false);

model.result(’pg3’).feature(’lngr1’).set(’data’, ’cln1’);

model.result(’pg3’).feature(’lngr1’).set(’unit’, ’’);

model.result(’pg3’).feature(’lngr1’).set(’xdataunit’, ’m’);

model.result(’pg3’).feature(’lngr1’).set(’xdata’, ’expr’);

model.result(’pg3’).feature(’lngr1’).set(’expr’, ’mu0*H2’);

model.result(’pg3’).feature(’lngr1’).set(’xdataexpr’, ’x’);

model.result(’pg3’).feature(’lngr1’).set(’descr’, ’’);

model.result(’pg3’).feature(’lngr1’).set(’xdatadescr’, ’x-coordinate’);

model.result(’pg3’).feature(’lngr1’).set(’looplevelinput’, {’all’});

model.result(’pg3’).feature(’lngr1’).set(’unit’, ’’);

model.result(’pg4’).name(’1D Plot P’);

model.result(’pg4’).set(’ylabel’, ’Losses P (W/m)’);

model.result(’pg4’).set(’title’, ’Superconductor ac-losses P (W/m)’);

model.result(’pg4’).set(’titletype’, ’manual’);

model.result(’pg4’).set(’ylabelactive’, true);

model.result(’pg4’).set(’xlabel’, ’Time (s)’);

model.result(’pg4’).set(’xlabelactive’, true);

model.result(’pg4’).feature(’glob1’).set(’expr’, {’intop1(Jz*Ez)’ ’intop2(Jz*Ez)’ ’intop3(Jz*Ez)’ ’

intop4(Jz*Ez)’ ’intop5(Jz*Ez)’});

model.result(’pg4’).feature(’glob1’).set(’unit’, {’W/m’ ’W/m’ ’W/m’ ’W/m’ ’W/m’});

model.result(’pg4’).feature(’glob1’).set(’descr’, {’’ ’’ ’’ ’’ ’’});

model.result(’pg5’).name(’1D Plot V’);

model.result(’pg5’).set(’axislimits’, ’on’);

model.result(’pg5’).set(’ymin’, ’0’);

model.result(’pg5’).set(’ymax’, ’4.999999873689376E-6’);

model.result(’pg5’).set(’xmin’, ’1.52587890625E-5’);

model.result(’pg5’).set(’xmax’, ’310’);

model.result(’pg5’).feature(’glob1’).set(’expr’, {’aveop1(Ez)’});

model.result(’pg5’).feature(’glob1’).set(’xdatadescr’, ’intop1(Jz)’);

model.result(’pg5’).feature(’glob1’).set(’unit’, {’V/m’});

model.result(’pg5’).feature(’glob1’).set(’xdataexpr’, ’intop1(Jz)’);

model.result(’pg5’).feature(’glob1’).set(’xdataunit’, ’A’);

model.result(’pg5’).feature(’glob1’).set(’descr’, {’’});

model.result(’pg5’).feature(’glob1’).set(’xdata’, ’expr’);

model.result(’pg5’).feature(’glob2’).set(’expr’, {’aveop2(Ez)’});

model.result(’pg5’).feature(’glob2’).set(’xdatadescr’, ’intop2(Jz)’);
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model.result(’pg5’).feature(’glob2’).set(’unit’, {’V/m’});

model.result(’pg5’).feature(’glob2’).set(’xdataexpr’, ’intop2(Jz)’);

model.result(’pg5’).feature(’glob2’).set(’xdataunit’, ’A’);

model.result(’pg5’).feature(’glob2’).set(’descr’, {’SC2’});

model.result(’pg5’).feature(’glob2’).set(’xdata’, ’expr’);

model.result(’pg5’).feature(’glob3’).set(’expr’, {’aveop3(Ez)’});

model.result(’pg5’).feature(’glob3’).set(’xdatadescr’, ’intop3(Jz)’);

model.result(’pg5’).feature(’glob3’).set(’unit’, {’V/m’});

model.result(’pg5’).feature(’glob3’).set(’xdataexpr’, ’intop3(Jz)’);

model.result(’pg5’).feature(’glob3’).set(’xdataunit’, ’A’);

model.result(’pg5’).feature(’glob3’).set(’descr’, {’SC3’});

model.result(’pg5’).feature(’glob3’).set(’xdata’, ’expr’);

model.result(’pg5’).feature(’glob4’).set(’expr’, {’aveop4(Ez)’});

model.result(’pg5’).feature(’glob4’).set(’xdatadescr’, ’intop4(Jz)’);

model.result(’pg5’).feature(’glob4’).set(’unit’, {’V/m’});

model.result(’pg5’).feature(’glob4’).set(’xdataexpr’, ’intop4(Jz)’);

model.result(’pg5’).feature(’glob4’).set(’xdataunit’, ’A’);

model.result(’pg5’).feature(’glob4’).set(’descr’, {’SC4’});

model.result(’pg5’).feature(’glob4’).set(’xdata’, ’expr’);

model.result(’pg5’).feature(’glob5’).set(’expr’, {’aveop5(Ez)’});

model.result(’pg5’).feature(’glob5’).set(’xdatadescr’, ’intop5(Jz)’);

model.result(’pg5’).feature(’glob5’).set(’unit’, {’V/m’});

model.result(’pg5’).feature(’glob5’).set(’xdataexpr’, ’intop5(Jz)’);

model.result(’pg5’).feature(’glob5’).set(’xdataunit’, ’A’);

model.result(’pg5’).feature(’glob5’).set(’descr’, {’SC5’});

model.result(’pg5’).feature(’glob5’).set(’xdata’, ’expr’);
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A.2 Abbreviation Index

a half width of the superconducting strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

b field-dependence exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

β Ginzburg-Landau parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

c temporary constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

cf calibration factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

cp calibration constant of the pick-up coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

ct thermal constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

d sample thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

da damping coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

e− electron charge (=−160.2 zC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

ea mass coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ε positive infinitesimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

η transformed variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

f frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

fs source term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

γ magnetic field penetration depth position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

h Planck constant (=4.135 667516 feV s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ħh Dirac constant (ħh= h/2π) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

j electric current density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

jc critical current density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

jc0 intrinsic zero-field critical current density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

k parameter of anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

kB Boltzmann constant 1.3806488(13)E − 23 J K−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

κ Ginzburg–Landau parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

λL London penetration depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
~l infinitesimal length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

m charge mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

µ0 permeability constant (=4π · 10−7 H m−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

µr relative magnetic permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

np power-law exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

ns charge particle density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

n integer n ∈ N0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ω pulsatance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

φ phase of the macroscopic wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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ψ complex order parameter field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

q charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

ρ resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ρp pinning centre density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

σ interface surface energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

θ incident magnetic field angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

t variable of time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

t0 timestep zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

u state variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ve electron velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

wD Debye frequency of the phonon lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

x cartesian coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ξ coherence length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

y cartesian coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

z cartesian coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
~A magnetic vector potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
~B magnetic flux density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B scalar magnetic flux density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B local flux density amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

B0 characteristic flux density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Ba applied flux density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

B⊥ perpendicular flux density component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B‖ parallel flux density component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

BR remanence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

BS saturation flux density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C path integral contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
~D displacement current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Ea activation energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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