
Da
vi

d
 B

er
m

b
a

ch
B

en
ch

m
a

r
k

in
g 

Ev
en

tu
a

ll
y 

Co
n

si
st

en
t 

Di
st

r
ib

u
te

d
 S

to
r

a
ge

 S
ys

te
m

s

David Bermbach

Benchmarking  
Eventually Consistent 

Distributed Storage Systems





David Bermbach

Benchmarking Eventually Consistent  
Distributed Storage Systems





Benchmarking Eventually Consistent 
Distributed Storage Systems

by
David Bermbach



Dissertation, Karlsruher Institut für Technologie (KIT)
Fakultät für Wirtschaftswissenschaften
Tag der mündlichen Prüfung: 10. Februar 2014 
Referent: Prof. Dr.-Ing. Stefan Tai 
Korreferent: Prof. Dr. rer. pol. Hans-Arno Jacobsen

Print on Demand 2014

ISBN 978-3-7315-0186-2
DOI: 10.5445/KSP/1000039389

This document – excluding the cover – is licensed under the 
Creative Commons Attribution-Share Alike 3.0 DE License  

(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

The cover page is licensed under the Creative Commons  
Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE): 

http://creativecommons.org/licenses/by-nd/3.0/de/

Impressum

Karlsruher Institut für Technologie (KIT)  
KIT Scientific Publishing 
Straße am Forum 2 
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark of Karlsruhe  
Institute of Technology. Reprint using the book cover is not allowed. 

www.ksp.kit.edu







Benchmarking Eventually Consistent
Distributed Storage Systems

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

(Dr.-Ing.)
von der Fakultät für

Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte
DISSERTATION

von

Dipl.-Wi.-Ing. David Bermbach

Tag der mündlichen Prüfung: 10. Februar 2014
Referent: Prof. Dr.-Ing. Stefan Tai

Korreferent: Prof. Dr. rer. pol. Hans-Arno Jacobsen
Karlsruhe, 2014





Abstract

Cloud storage services and NoSQL systems, which have recently found widespread adop-
tion, typically offer only "Eventual Consistency", a rather weak guarantee covering a broad
range of potential data consistency behavior. The degree of actual (in-)consistency as a ser-
vice quality, however, is always unknown. To avoid cost of opportunity or actual costs,
resulting data inconsistencies have to be resolved within the application layer. Without de-
tailed knowledge on consistency behavior, though, inconsistency handling is inefficient and
for some kinds of inconsistency outright impossible.

Furthermore, due to the way consistency behavior impacts applications, consistency as
a system quality should also be considered during the selection and deployment optimiza-
tion of cloud storage offerings and NoSQL systems. This as well as studying the impact
of system design decisions on consistency behavior requires the necessary means to analyze
consistency behavior of eventually consistent storage systems.

In this work, we present four main contributions to address the problems outlined above:
First, we develop novel consistency metrics which describe consistency behavior for all kinds
of consistency, in a precise way, without needless aggregation, and in way that is meaningful
to application or storage system developers as well as systems researchers.

Second, we identify key influence factors on consistency behavior and combine them into
a model of a storage system. We then present two distinct approaches, which predict consis-
tency behavior based on simulations on top of this model.

Third, we also present a set of system benchmarking approaches to accurately determine
consistency behavior of eventually consistent distributed storage systems via experiments
with actually deployed systems. Results of both simulation and system benchmarking are
expressed using our novel set of consistency metrics.

Fourth, building on 15 extensive experiments with actual systems and a multitude of sim-
ulation runs, we demonstrate how inconsistencies can be handled more efficiently leveraging
these results. For this purpose, we describe based on a use case how inconsistencies can
be resolved in application engineering. We also develop a new middleware-based approach
which adds additional consistency guarantees externally to the eventually consistent storage
system, thus, alleviating complexity for application developers.





Acknowledgements

A dissertation is never a product of solitary work but builds on the work of others and is
heavily influenced by fellow researchers. As such, this thesis is, therefore, also a team effort
and I would like to use this space for thanking everyone who helped and influenced me while
creating this work.

My foremost thanks go to my PhD advisor, Professor Dr. Stefan Tai, who always supported
my ideas and continuously offered valuable advice. He was also the person who inspired me
to explore the area of distributed systems in the first place. Without him, I would probably
never have started working in this field.

I would also like to extend my sincerest thanks to my co-advisor, Professor Dr. Hans-Arno
Jacobsen, who offered a lot of much appreciated feedback for my thesis. His advice certainly
helped to improve the quality of this work.

The remaining members of my thesis committee, Professor Dr. Andreas Oberweis and
Professor Dr. Frank Schultmann, also deserve my gratitude: Thank you for a professional
and fair thesis defense. I actually enjoyed the challenge of defending and discussing my work
with you and my two advisors.

Beyond these four, I would also like to thank my colleagues who offered valuable feed-
back for my work during discussions over coffee breaks or during our group retreats and who
also participated as co-authors of my papers: Bugra Derre, Robin Fischer, Dr. Christian Ja-
niesch, Dr. Gregory Katsaros, Markus Klems, Tilmann Kopp, Jörn Kuhlenkamp, Alexander
Lenk, Michael Menzel, David Müller, Steffen Müller, Professor Dr. Frank Pallas, Dr. Nelly
Schuster, Dr. Ulrich Scholten, Raphael Stein, Dr. Erik Wittern and Dr. Christian Zirpins.
Thank you also for a good time over the last three years! Further thanks go to Rita Schmidt
for professionally and patiently managing all the administrative hassle for our group.

I also want to express my gratitude to the co-authors of the papers this dissertation is based
on: Working with you has certainly helped me develop the ideas of this thesis. Beyond the
people already named, these are Dr. Sherif Sakr and Dr. Liang Zhao.

Furthermore, I would like to thank my family and friends who have supported me and who
have been patient when I did not have enough time for them. I would also like to express



iv

particular gratitude to my father, Professor Dr. Rainer Bermbach, for proofreading this thesis
– of course, any mistakes left are still mine.

Finally, I would like to thank anyone who in some way or another helped me with finishing
this dissertation - may they be conference participants, anonymous reviewers or someone I
have forgotten to mention.

Karlsruhe, 2014
David Bermbach



Contents

I Foundations 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Meaningful Consistency Metrics . . . . . . . . . . . . . . . . . . 6
1.2.2 Modeling and Simulation of Consistency Behavior . . . . . . . . 7
1.2.3 System Benchmarking of Consistency Behavior . . . . . . . . . . 7
1.2.4 Inconsistency Handling . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Consistency Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Database Systems and Transactions . . . . . . . . . . . . . . . . 12
2.1.2 Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Consistency Perspectives, Dimensions and Models . . . . . . . . . . . . 16
2.2.1 Consistency Perspectives . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Consistency Dimensions . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Consistency Models and Implementations . . . . . . . . . . . . . 18

2.3 Consistency Trade-offs . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 CAP Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 PACELC Model . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Indirect Trade-offs . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.4 BASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Exemplary Storage Systems . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Google File System . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2 Google Bigtable . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 Amazon Dynamo . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.4 Yahoo! PNUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.5 Google Megastore and Spanner . . . . . . . . . . . . . . . . . . 34



vi Contents

2.4.6 Further NoSQL Systems . . . . . . . . . . . . . . . . . . . . . . 35
2.5 Failures and Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Failure Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.2 Failures and Consistency . . . . . . . . . . . . . . . . . . . . . . 38
2.5.3 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 Modeling and Simulation of Software Quality . . . . . . . . . . . . . . . 41
3.2 System Benchmarking of Distributed Storage Systems . . . . . . . . . . 42
3.3 Management of Consistency Guarantees . . . . . . . . . . . . . . . . . . 43

II Consistency Benchmarking 45

4 Consistency Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1 Requirements for Consistency Metrics . . . . . . . . . . . . . . . . . . . 49
4.2 Data-centric Consistency Metrics . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Consistency Anomalies . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Atomicity, Regularity, Safeness . . . . . . . . . . . . . . . . . . 51
4.2.3 Data-centric t-Visibility, k-Staleness . . . . . . . . . . . . . . . . 52
4.2.4 Ordering Violations . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Client-centric Consistency Metrics . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Client-centric t-Visibility, k-Staleness . . . . . . . . . . . . . . . 54
4.3.2 Ordering Violations . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Modeling and Simulation of Consistency Behavior . . . . . . . . . . . 59
5.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Basic System Model . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.2 Interaction Model . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.3 Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.1 Calculating Convolutions . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . 64
5.3.3 Simulation Input Data . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



Contents vii

6 System Benchmarking for Consistency Behavior . . . . . . . . . . . . 69
6.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Data-centric Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Client-centric Consistency . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3.1 t-Visibility and k-Staleness . . . . . . . . . . . . . . . . . . . . . 73
6.3.2 Violations of Monotonic Read Consistency . . . . . . . . . . . . 75
6.3.3 Violations of Read Your Writes Consistency . . . . . . . . . . . . 76
6.3.4 Violations of Monotonic Write Consistency . . . . . . . . . . . . 76
6.3.5 Violations of Write Follows Read Consistency . . . . . . . . . . 76

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

III Application 79

7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.1 Modeling and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.1.1 Data Gathering Tools . . . . . . . . . . . . . . . . . . . . . . . . 83
7.1.2 Simulation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2 System Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2.1 RYWC Measurements . . . . . . . . . . . . . . . . . . . . . . . 90
7.2.2 MWC Measurements . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2.3 Staleness and MRC Measurements . . . . . . . . . . . . . . . . . 91
7.2.4 Comprehensive System Benchmarking . . . . . . . . . . . . . . 95

7.3 Running Consistency Benchmarks . . . . . . . . . . . . . . . . . . . . . 96
7.3.1 Modeling and Simulation . . . . . . . . . . . . . . . . . . . . . . 96
7.3.2 System Benchmarking . . . . . . . . . . . . . . . . . . . . . . . 97

7.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 97

8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.1 Modeling and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.1.1 MiniStorage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.1.2 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.2 System Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2.1 Data-centric and Client-centric Staleness . . . . . . . . . . . . . 112
8.2.2 Long-term Study with Amazon S3 . . . . . . . . . . . . . . . . . 113
8.2.3 Geo-replication and Parallel Workloads . . . . . . . . . . . . . . 122

8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



viii Contents

9 Application Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.1 Handling Inconsistencies in a Webshop Scenario . . . . . . . . . . . . . 130

9.1.1 Scenario Description . . . . . . . . . . . . . . . . . . . . . . . . 131
9.1.2 Potential Conflicts and Resolution Mechanisms . . . . . . . . . . 131

9.2 A Middleware Guaranteeing Client-centric Consistency . . . . . . . . . . 135
9.2.1 Overhead and Intended Use Case . . . . . . . . . . . . . . . . . 139
9.2.2 Handling Sessions . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.2.3 Consistency Guarantees . . . . . . . . . . . . . . . . . . . . . . 140
9.2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.3 Efficient Inconsistency Handling . . . . . . . . . . . . . . . . . . . . . . 148
9.3.1 Modifications to Increase Efficiency . . . . . . . . . . . . . . . . 148
9.3.2 Extensions for Additional Guarantees . . . . . . . . . . . . . . . 149

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

IV Conclusions 151

10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

11 Discussion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



Part I.

Foundations





1. Introduction

High availability and resilience to failures are of paramount importance for many applica-
tions. Typically, this is achieved by replication, i.e., running several loosely coupled ma-
chines with the same application logic concurrently, to assert that at least a subset of the
system is available. Replicating stateless machines, i.e., from application and web tier, can
be considered a largely solved problem [39, 70]. For stateful machines, on the other hand,
replication introduces a new set of problems since state management in distributed storage
systems is non-trivial: For instance, consistency trade-offs, as defined by the CAP theo-
rem [45] or the PACELC model [2], have to be considered by developers of distributed stor-
age systems.

This has led to a situation where storage systems from many domains relax consistency
guarantees since these weaker – usually eventual – consistency guarantees enable them to
run even in large scale deployments with little or no impact on performance and availability.
Early examples were distributed file systems [4, 83, 85] focusing on fault-tolerance; more
recently, systems for e-commerce applications [37], social media and web search [32, 44, 25,
65], as well as mobile applications [75, 93] have been developed. Today, there are also major
cloud storage offerings with relaxed consistency guarantees, e.g., Amazon’s S31, SimpleDB2

or DynamoDB3. Further examples include big data analytics based on MapReduce [36] and
the Hadoop ecosystem’s4 eventually consistent datastores, as well as storage systems for log
data and time series analysis from application performance management [80, 3] – relaxed
consistency guarantees are omnipresent. Ongoing projects5 also consider such systems as
storage back end for critical infrastructure tasks, e.g., to persist sensor data produced by
smart meters or renewable energy plants.

Still, weaker consistency guarantees introduce problems. For example, data is persisted on
multiple replicas which are updated asynchronously so that conflicts will occur frequently.
Various kinds of failures further aggravate this situation by increasing the severity and fre-
quency of conflicts. Since these conflicts are not handled within the storage system, they
are pushed to the application layer where they increase the complexity for application de-

1aws.amazon.com/s3
2aws.amazon.com/simpledb
3aws.amazon.com/dynamodb
4hadoop.apache.org
5peerenergycloud.de



4 1. Introduction

velopers. Imagine the scenario of an e-commerce webshop running on top of an eventually
consistent datastore with unknown consistency behavior in the following example:

When a customer selects a product and adds it to his shopping cart, then a later read –
either by the same customer or by the webshop application during the check-out process
– is not guaranteed to return a shopping cart version that contains this product. Similarly,
removing a product from the shopping cart is also not guaranteed to execute on all replicas
right away so that later reads may still return the old version including the product. While the
first case will potentially cause cost of opportunity due to customer irritation, the second case
will cause actual costs when the webshop provider erroneously sends the undesired product
to the customer who will then ask for a refund – including the shipping costs from and to the
webshop.

So, if the webshop provider wants to avoid this cost but still use an eventually consistent
datastore, he has to handle these inconsistencies within the application logic which is difficult
if the degree of inconsistency is not known:

The provider needs to verify that the actual order processed is identical to the one seen by
the customer. For this purpose, he might check whether the version stored in the eventually
consistent storage system is identical to the one submitted by the customer during the check-
out process. Due to asynchronous update propagation in Eventual Consistency (EC), it is
unknown how long it takes to synchronize all replicas within the storage system and failures
may further extend this time interval. Therefore, the webshop provider cannot know when
it is safe to process the persisted order. Alternatively, the provider could query all replicas
individually before further processing the order – an approach which would lead the concept
of storage abstraction and replication transparency ad absurdum.

1.1. Problem Statement

EC is a very popular consistency model which has found widespread adoption in cloud stor-
age services and Not only SQL (NoSQL) systems since it is relatively simple to implement,
easy to scale, and does neither impact performance nor availability. Still, EC is a rather fuzzy
consistency term covering a broad range of actual consistency behavior so that two eventu-
ally consistent storage systems, or even the same system in two different configurations, may
behave entirely different consistency-wise. Therefore, the actual degree of (in-)consistency
of an eventually consistent storage system is unknown. Combined with the fact that EC also
burdens application developers with the complex handling of conflicts and inconsistencies,
this unknown behavior significantly aggravates the handling of inconsistencies within the
application layer and, therefore, application development. In contrast, a known consistency
behavior would enable application developers to more efficiently handle conflicts.



1.1. Problem Statement 5

Due to the way consistency behavior impacts applications, it is also desirable to consider
consistency as a system quality beyond performance and availability during the selection of a
storage system or the optimization of its deployment configuration. Without detailed knowl-
edge on consistency behavior of eventually consistent storage systems, this is not possible.
We, therefore, believe it necessary to elevate consistency as a system quality to a level of
concern comparable to performance, availability, and cost.

Finally, as EC covers a broad range of consistency behavior, we see room for improve-
ments of consistency behavior without compromising performance or availability by main-
taining the same eventually consistent guarantees but changing small aspects of the imple-
mentation. Such an approach would lead to a pareto-efficient situation [76] but requires the
necessary means to enable systems researchers to study the impact of various system design
decisions on consistency behavior.

As such behavior, in contrast to well-studied Quality of Service (QoS) dimensions like
latency or throughput, is not directly visible to either storage or application providers, the
problem of benchmarking consistency guarantees is non-trivial; there are complex interde-
pendencies of system design, deployment, environmental influence factors and the workloads
of client applications which each affect the actual consistency behavior of eventually consis-
tent distributed storage systems.

Due to these issues, currently existing approaches in the area of consistency modeling and
simulation [11] have many assumptions which limit them to a small subset of eventually
consistent storage systems as well as the prediction of only a few kinds of inconsistencies. A
generally applicable approach is still missing. Existing approaches for system benchmarking
of consistency6 will not detect all inconsistencies due to the way experiments are set up [98],
or use consistency metrics which make their results inapplicable to the problems outlined
above [46, 6, 81]. Regarding the efficient handling of inconsistencies there is little work
targeting only very specific problem areas [10, 9].

All in all, benchmarking consistency behavior of eventually consistent storage systems is
difficult and not even the combination of all current state-of-the-art approaches enables us

• to help application developers handle inconsistencies in an efficient way based on de-
tailed knowledge of the consistency behavior of the eventually consistent storage sys-
tem used,

6The term “benchmarking” is a homonym. Within this thesis, we will use the term benchmarking to describe the
analysis and assessment of consistency behavior using various methods. In contrast, we will use the term sys-
tem benchmarking when referring to the specific analysis method of running experiments with deployed storage
systems to determine system quality levels.



6 1. Introduction

• to select eventually consistent storage systems and optimize their configurations and
deployments by also considering consistency behavior as a full system quality and,
thus, awarding it the appropriate level of attention,

• to study the impact of various system design decisions on consistency behavior with
the goal of pareto-efficient system implementations.

1.2. Contributions

We believe that the problems outlined above are best addressed by Consistency Benchmark-
ing, i.e., the analysis and prediction of consistency behavior via both modeling and simula-
tion as well as system benchmarking, which can deliver the required information. Suitable
approaches can then make use of this information. For this purpose, we present four main
contributions within this thesis as detailed in the following sections 1.2.1 to 1.2.4:

1.2.1. Meaningful Consistency Metrics

Benchmarking consistency behavior can deliver information which is useful for the handling
of inconsistencies, selection and optimization of storage systems, as well as analysis of the
impact of system design decisions on consistency behavior. This, though, requires meaning-
ful consistency metrics that are able to express subtle differences in behavior. Furthermore,
there are different consistency perspectives, dimensions and models which we discuss in de-
tail in chapter 2 – consistency metrics need to be able to address all these different kinds
of (in-)consistency. Finally, the output of consistency metrics should be meaningful to ap-
plication developers, storage system developers, and systems researchers, i.e., these metrics
should describe consistency behavior in a way that helps them tackle their system problems.

For this purpose, we discuss consistency metrics identified from literature, select appro-
priate ones and develop new consistency metrics which describe consistency behavior

• for all consistency perspectives, dimensions and models,

• in a precise way,

• without needless aggregation,

• in a way that is meaningful to application developers, storage system developers, and
systems researchers.

The identified consistency metrics can be used to express both results of consistency model-
ing and simulation as well as consistency benchmarking.



1.2. Contributions 7

1.2.2. Modeling and Simulation of Consistency Behavior

Using a novel set of consistency metrics, we identify key influence factors on consistency
behavior of eventually consistent storage systems and combine them into a model of a storage
system. We then present two distinct approaches which predict consistency behavior based
on simulations running on top of this model.

The presented approach provides the necessary means to run fast and inexpensive sim-
ulations to accurately predict data-centric staleness for various deployment configurations.
Furthermore, the approach also considers failures and offers at least qualitative predictions
for client-centric ordering and staleness. Referring to the example above, our modeling and
simulation approach could directly answer the question of how long it takes all replicas of an
eventually consistent storage system to synchronize.

1.2.3. System Benchmarking of Consistency Behavior

As a simulation approach is inherently limited in its accuracy to the influence factors covered
within the model, we also present system benchmarking approaches to accurately determine
consistency behavior of eventually consistent storage systems via experiments. Where our
simulation approach requires a certain degree of insight into the storage system, our system
benchmarking approaches comprise variants for consistency measurements from both the
perspective of the provider and user of an eventually consistent storage system. We also
present system benchmarking approaches for different consistency dimensions and models.

To demonstrate the applicability of our system benchmarking approach, we also present
the results of 15 experiments with real-world storage systems – ranging from cloud storage
services to open-source NoSQL systems.

1.2.4. Inconsistency Handling

To demonstrate how detailed insight into consistency behavior of eventually consistent stor-
age systems can help application developers handle inconsistencies more efficiently, we ex-
tend our example from above to comprise typical webshop business operations, and then
sketch out how inconsistencies for such a concrete use case can be handled in application
engineering.

Some kinds of inconsistencies, especially those caused by concurrent updates, can only
be handled in primitive ways outside of the application layer, e.g., by dropping updates or
by using simplistic Last Write Wins strategies. Application-specific knowledge on the mean-
ing of the conflicting versions, in contrast, allows to resolve these conflicts without loss of
information.



8 1. Introduction

All other inconsistencies, i.e., inconsistencies not requiring application-specific knowl-
edge, can be resolved without loss of information outside of the application layer. These
inconsistencies could, therefore, also be managed within a middleware layer which would
then reduce the complexity for application developers. For this purpose, we also present a
middleware-based approach which implements client-centric consistency on top of an even-
tually consistent storage system. In our example above, this middleware component would
be useful for the webshop provider by alleviating parts of the complexity of handling incon-
sistencies.

We also describe possible extensions to this middleware to further increase consistency
guarantees externally to the storage system as well as to handle these inconsistencies in a
much more efficient way with less overhead.

These four contributions combined increase the transparency and comparability of consis-
tency behavior of eventually consistent storage systems. Thus, they allow system researchers
to study the effects on consistency resulting from system design decisions; they also allow
application developers to make conscious decisions on the selection and configuration of
an eventually consistent storage system, and they remove parts of the complexity of incon-
sistency handling within the application from the application developer and demonstrate to
him, based on an example, how the remaining inconsistencies can be handled by co-design
of application and datastore.

1.3. Organization of this Thesis

This thesis contains four parts. Part I, Foundations, starts with this chapter and continues with
the presentation and discussion of consistency definitions, perspectives and models, trade-
offs in distributed state management, select storage systems, and failure types in distributed
systems in chapter 2. This Part also contains a discussion of related work in chapter 3.

Part II, Consistency Benchmarking, contains the first three main contributions of this work.
Building on the initial considerations and related work from Part I, we identify and discuss
consistency metrics which can be used to accurately quantify the consistency behavior of
eventually consistent storage systems (chapter 4). In chapter 5, we present an approach
which abstracts a storage system into a model. This model is then used as a basis for simu-
lations which approximate the consistency behavior of the modeled storage system using the
metrics from chapter 4. We also present approaches for system benchmarking of consistency
behavior in chapter 6 which use our metrics from chapter 4 to accurately measure consistency
behavior on actual system deployments both from a provider and a consumer perspective.

Part III, Application, shows that the approaches we presented in Part II both work correctly
and are useful in application engineering. For this purpose, we start with the presentation of



1.3. Organization of this Thesis 9

their proof-of-concept implementations in chapter 7 and demonstrate how to use them in
practice. We, then, continue with an evaluation using experiments and simulations in chap-
ter 8. Afterwards, in chapter 9, we describe, based on the use case of a webshop scenario,
how inconsistency handling can be done in applications with the help of consistency bench-
marking results. Next, we present our middleware approach which guarantees client-centric
consistency externally to the eventually consistent storage system and also present extensions
for additional guarantees or increased efficiency of inconsistency handling.

Finally, Part IV, Conclusion, recapitulates the main points of this dissertation in chapter 10,
as well as critically discusses our results and presents an outlook towards potential future
research directions in chapter 11.





2. Background

Different research communities have different definitions for the term “consistency”. In the
communities concerned with (distributed) state management, these are the database and the
distributed systems community. In this chapter, we start with discussing the two definitions of
these communities and also point out differences, similarities and how those two definitions
relate to each other in section 2.1. We also analyze how the concept of transactions relates to
those two areas.

Afterwards, we take the distributed systems perspective for the remainder of this work and
describe different consistency perspectives (section 2.2.1), dimensions (section 2.2.2) and
models (section 2.2.3) which we later on (chapter 4) use to identify relevant and meaningful
consistency metrics.

Obviously, there is a reason why not every system offers strict consistency guarantees even
though this is the most convenient guarantee for application developers. This reason lies in
the consistency trade-offs already mentioned in chapter 1: consistency versus availability
and consistency versus latency. We discuss these trade-offs in section 2.3 and also give an
outlook on how other quality dimensions might affect consistency directly or indirectly.

Finally, to conclude this chapter, we give a brief overview of Google File System (GFS)
(section 2.4.1), Bigtable (section 2.4.2), Dynamo (section 2.4.3), and PNUTS (section 2.4.4),
whose design ideas were the basis for most NoSQL systems so that elements of it can be
found frequently, as well as discuss different kinds of failures which can occur in distributed
systems (section 2.5).

Sections 2.1 and 2.2 of this chapter are based on material previously published in NETYS
2013 [15].

2.1. Consistency Definitions

The term consistency is derived from the Latin word consistere which means “standing to-
gether” or also “stopping together”. Hence, consistency generally describes relationships
between items that are somehow connected. When considering consistency of data in a com-
puter science context, a consistent state requires that all relationships between data items and
their replicas are as they should be, i.e., that the data representation is correct. This focus on
correctness of data representation can be seen in both the database as well as the distributed
systems community – but on different levels.



12 2. Background

The distributed systems community stresses the aspect of distributed state management,
i.e., whether replicas of a data item are identical and in which order updates will be realized.
The database community on the other hand comes from an originally non-distributed world.
They emphasize the relationship between different data items and often include the implicit
assumption that replicas are always identical.

The second difference is the way these communities perceive interaction with the data-
store. While the distributed systems community typically analyzes independent operations
(abstracted as writes and reads on a single key), database researchers use the concept of trans-
actions comprising several operations that are executed atomically (under defined integrity
constraints).

In practice however, these two perspectives are often muddled and concepts are used in-
termingledly so that a clear separation is not possible [22, p.5]. Often this is also a cause
of confusion in scientific discussions [78]. We will, however, in the following discuss both
perspectives in their original meaning.

2.1.1. Database Systems and Transactions

Within the database research community, consistency is inseparably tied to the notion of
transactions. A typical datastore interaction pattern is, for example, a sequence of reads
followed by a sequence of updates or inserts.

For instance, the check-out procedure of an online book store could start with checking
whether the requested number of books is on stock. Next, it might assert that the customer’s
data is already persisted in the database or create a new database entry for him. In the third
step, the system will probably create a new order entry, issue the credit card charge, and
update the number of books on stock accordingly before terminating the check-out procedure.

Here, problems could arise if another customer starts its check-out process for the same
books at a later time but completes faster than the first customer. In this case, a book could
be sold several times. Also, if the credit card payment fails, the order should be canceled.

Instead of implementing failure handling for every single database interaction, a trans-
action is an abstraction that effectively handles these problems as described by the ACID
properties:

Atomicity A transaction comprises a group of operations. This group of operations is exe-
cuted atomically, i.e., all operations execute successfully or the transaction is aborted.
Transactions that are aborted appear as if they never happened in that they do not make
any changes to the database.



2.1. Consistency Definitions 13

Consistency When a transaction commits, starting from an initial consistent state, it always
leaves the database in a consistent state. This means that all integrity constraints (see
below) are observed and that the global schema of the database is not violated.

Isolation Isolation describes the degree to which concurrent transactions are aware of each
other, e.g., by accessing the same data items. See below for a detailed description of
different isolation levels.

Durability A transaction that commits is always durable, i.e., all the changes that the trans-
action has made become permanently visible to other transactions. Furthermore, the
changes are persisted and will never be undone aside of catastrophic system failures
where the entire database is compromised.

Hence, the consistency focus of database systems is on the relationships between data
items and the overall correctness of the entire database. They can be guaranteed in a dis-
tributed setting but it is expensive to do so as consistency and isolation are typically guaran-
teed via locking mechanisms, e.g., 2-phase locking, which create an extensive communica-
tion overhead in a distributed setting. Here, it can be seen that transactions were intended as
“a simple programming abstraction to cope with concurrent executions, rather than to address
the challenges of a distributed setting.” [82].

An in-depth introduction to relational databases is beyond the scope of this dissertation,
we refer the interested reader to, e.g., [50].

Integrity Constraints

As originally proposed by Codd [31], consistency means compliance with integrity con-
straints, i.e., a (relational) database is consistent when all integrity constraints are preserved
and transactions are required to always leave a database in a consistent state. Four different
kinds of integrity constraints can be distinguished:

Entity Integrity Rows in a relational database are identified by a unique primary key. En-
tity Integrity specifies that a primary key may never be null, i.e., that there is no row
without a key.

Referential Integrity Rows may contain foreign keys that refer to other rows in the same or
another table. This is done to represent relationships between data items. Referential
Integrity specifies that a foreign key may either be null (implying that no relationship
exists or at least that no relationship is known) or the primary key value of some row.
There must be a row with that primary key, i.e., a transaction that either deletes a row or
changes its primary key need to assert that all references to the old key (or the deleted
row) are updated accordingly.



14 2. Background

Domain Integrity Items are of a certain type. Domain Integrity mandates that all values
contained within a database are of the correct type. This might also include information
on whether a value may be null or not. For instance, if within the database schema an
item is declared as an integer, then all characters apart from numbers are forbidden.

Column Integrity Column Integrity allows to further restrict constraints specified in the
respective Domain Integrity rules, i.e., this is useful to specify subtypes of existing
domain types.

User-de�ned Integrity User-defined Integrity adds additional rules to reflect business re-
quirements of database users. An example could be that the age value of an employee
record must not exceed 67.

While all these integrity constraints are preserved, a database is seen as consistent. For
the remainder of this work, we will use the term ACID consistency for this understanding of
consistency.

Isolation Levels

In theory, an ideal database would process transactions sequentially. To increase perfor-
mance, though, several transactions may run concurrently while using suitable mechanisms
to show the same behavior as if all transactions were executed according to some global se-
rializable order. Effectively, their individual operations will be interleaved by a transaction
scheduler.

In this context, isolation describes the degree to which concurrent transactions are aware of
each other, i.e., which interleaving of operations are acceptable and which are not. There are
several isolation levels ranging from the weakest level, Read Uncommitted, to the strictest
level, Serializable (which is rarely offered in actual products [8]). The ANSI Structured
Query Language (SQL) standard knows four levels of isolation:

Read Uncommitted At this isolation level, there is virtually no isolation, i.e., concurrent
transactions may see each other’s uncommitted updates even though both transactions
might still be rolled back at a later point in time. This phenomenon is called dirty read.

Read Committed Here, a lock-based Relational Database Management System (RDBMS)
releases all its read locks right after reading. Hence, a value read is always committed
but it might not be up-to-date at the time the transaction commits. For instance, a trans-
action T1 might read a value of 1 for a key k and release its read lock on k afterwards.
Next, a transaction T2 might set the value of k to 2 and commit. If T1 now commits,
it does so based on the knowledge of of k = 1 even though the value has already been
changed to k = 2. This problem is called non-repeatable read.



2.1. Consistency Definitions 15

Repeatable Read This isolation level mandates that for lock-based implementations all
locks are kept until commit time (i.e., in contrast to Read Committed read locks are not
released prematurely). This does not preclude, though, that two reads over the course
of the same transaction return a different set of values as a concurrent transaction might
change rows previously not selected – so that they match the selection criteria for the
second read – or insert additional rows that also match the selection criteria. This
phenomenon is called phantom reads.

Serializable A database running at an isolation level of Serializable guarantees that its trans-
action scheduler will interleave concurrent transactions in a way that asserts that the
final state of the database is identical to a state where all transactions were executed in
some sequential order.

Practical implementations, though, also offer non-standardized isolation levels, e.g., Snap-
shot Isolation [14].

2.1.2. Distributed Systems

While database researchers see consistency as one of four ACID properties describing in-
tegrity constraints in the context of transactions, researchers from the distributed systems
community investigate state shared by multiple replicas, i.e., several copies of a datum exist
which may or may not be identical. Executions of operations on these replicas may read or
change the state at one or more replicas but are typically not transactional. Essentially, “a
consistency criterion [or consistency model] defines which executions of a distributed system
are considered correct” [48], i.e. which order of operations leaves the data in a correct state.
This translates to the issue of “which updates will be visible to which client in which order”.
I.e., consistency is, from a distributed systems perspective, more comparable to the ACID
property isolation which describes when updates will be visible to which concurrent trans-
action. Both ACID consistency and isolation, on the other hand typically require equality of
replicas and chronologically correct operation ordering as a necessary precondition since it is
hard to maintain integrity constraints or to guarantee the invisibility of uncommitted updates
in the presence of differing replicas.

From a distributed systems perspective, consistency is, hence, about equality of replicas
and the ordering of operations1. Depending on a concrete Consistency Model requiring a
particular way of operation ordering, e.g., “execute all operations on all replicas in the same
order”, an actual execution order of requests may or may not lead to a consistent state. To
emphasize, a specific order in which requests are executed may satisfy consistency model A

1Ordering guarantees in this context describe how requests may be reordered on different replicas.



16 2. Background

while violating the guarantees of consistency model B. Therefore, a system can only be in a
consistent state with respect to a specific consistency model.

Based on this, we define the distributed systems perspective on consistency as follows:

A system is in a consistent state, if all replicas are identical and the ordering
guarantees of the specific consistency model are not violated.

We will use this definition of consistency for the remainder of this work.

2.2. Consistency Perspectives, Dimensions and Models

For the distributed systems view on consistency, there are three aspects which need to be
considered carefully:

1. A storage system operated by some provider is used by a client, i.e., some applica-
tion. Here, Consistency Perspectives describe the angle from which the two actors or
roles2, client and provider, look at the system. Depending on the perspective, different
information is of interest.

2. There are different kinds of inconsistencies which can be abstracted into two basic
Consistency Dimensions.

3. For one of the dimensions, ordering, there are several Consistency Models (and, of
course, implementations) both from a client and a provider perspective that describe
guarantees of a storage system.

2.2.1. Consistency Perspectives

In a distributed storage system there are two perspectives on consistency [90]: the provider
(i.e., the entity responsible for the deployment and operation of a storage system) views the
internal state of the system. His focus is on the synchronization processes among replicas
and the ordering of operations. Hence, this perspective is called data-centric. The other
perspective is the one of a client of the storage system. Here, a client refers to the process that
interacts with the storage system which can be any kind of application, middleware or even
software running on the end user’s machine or mobile device. This client-centric perspective
views the system from the outside as a black box. Hence, its focus is on the guarantees of
the distributed storage system that could also be captured as part of a service level agreement
(SLA). Based on these two perspectives, there are various consistency models either taking

2The organizational entities running the application and the storage system might be identical, hence, roles is more
precise.



2.2. Consistency Perspectives, Dimensions and Models 17

Replica 

Replica 

Replica 

Load 
Balancer 

Client Client 
Client 

Data-centric Consistency 
Client-centric 
Consistency 

Requests Requests 

Provider 

Figure 2.1.: Focus of Data-centric and Client-centric Consistency

a client-centric or data-centric perspective. Still, there is a relation between those models so
that some models and combinations thereof mean exactly the same thing while still bearing
different names. Figure 2.1 shows the different areas of interest for both the data-centric and
the client-centric consistency perspective.

Both perspectives have advantages and disadvantages for the analysis of consistency guar-
antees – depending on the issue of interest. While data-centric consistency models do not
address concrete implementations or algorithms, they certainly describe ordering properties
that allow to develop a corresponding synchronization protocol. The downside is that data-
centric consistency models are not really helpful to application developers. Client-centric
consistency models describe the effects of such a synchronization protocol. While this is
very helpful to an application developer, it ignores completely how this could be imple-
mented, i.e., what internal synchronization protocols might deliver such a guarantee.

2.2.2. Consistency Dimensions

Both data-centric and client-centric consistency guarantees have two dimensions: ordering
and staleness3. Staleness describes how much a given replica is lagging behind, either ex-
pressed in terms of time (t-visibility) or versions (k-Staleness)[11]. Again, k-Staleness is

3Yu and Vahdat[102] propose an additional dimension numerical error to describe replica differences based on the
semantics of the respective data item. For example, in a warehouse stock management system a numerical error
of 10 could describe that replica A sees 10 items on stock while replica B believes this product to be sold out.
From our point of view, this is first not always applicable and second a numerical error is essentially a function of
ordering, staleness and application access patterns.



18 2. Background

a function of t-visibility and the update patterns of the application so that, for application-
independent information, t-visibility suffices to characterize the staleness behavior of a stor-
age system. Low, bounded staleness values can often be tolerated by applications as long as
the corresponding real-world events would have the same or higher staleness values without
an IT system. For example, when person A wires money to person B, the account of A will
be charged right away. Person B in contrast might not be credited for some time. In the EU
this time window is limited to three days which is far longer than any replica synchronization
protocol might take. Hence, small staleness values will often not be noticed.

Ordering on the other hand is more critical. In a setting with strict consistency, all requests
must be executed on all replicas in their chronological order which is hard to implement in
distributed databases due to clock synchronization issues as the replica servers might disagree
on the actual chronological order of events. The standard database mechanism of locking
which would solve this problem4 offers poor performance levels in a distributed setting5.
Based on this, data-centric consistency models exist that relax certain ordering requirements
while keeping those that are essential to applications. These models can be ordered by the
“strictness” of their guarantees. Client-centric consistency models take a different approach:
While there will almost certainly be cross-effects between the models, the guarantees itself
are disjunct in their promises and complement each other.

Figure 2.2 shows an example of commit logs exposing staleness and order error: In the
scenario on the left, replica B has not yet received the last two updates that replica A has
already committed – it is therefore stale. On the right, both replicas have committed all
updates but the last two updates have been serialized in different order on each replica. While
this may be acceptable for some consistency models, it is obviously not correct for a strict
consistency scenario and shows an example of an order error. Furthermore, this figure can
also serve as another hint that ordering is often more critical than staleness: In the scenario
on the left, both replicas would return a valid (though possibly stale) version. In contrast, on
the right it is not even clear which version is the correct one.

2.2.3. Consistency Models and Implementations

We start by describing client-centric consistency models before continuing to data-centric
models and how those two are related. The four client-centric models were originally pro-
posed by Terry et al. [92].

4First, lock the data item on all replicas; second, update the value; third, release the locks.
5In some scenarios, the separation of data and control flow may help to address this problem.



2.2. Consistency Perspectives, Dimensions and Models 19

… 
set x:=1 
set x:=2 
set x:=3 
set x:=4 
set x:=5 
set x:=6 
set x:=7 
set x:=8 
set x:=9 

 

… 
set x:=1 
set x:=2 
set x:=3 
set x:=4 
set x:=5 
set x:=6 
set x:=7 
set x:=9 
set x:=8 

 

Replica A Replica B 

… 
set x:=1 
set y:=1 
set z:=1 
set x:=2 
set y:=2 
set z:=2 
set x:=3 
set y:=3 
set z:=3 

 

… 
set x:=1 
set y:=1 
set z:=1 
set x:=2 
set y:=2 
set z:=2 
set x:=3 

 
 

Replica A Replica B 

? 

? 

Staleness Order Error 

Figure 2.2.: Example for Commit Logs with Staleness (left) and Order Error (right)

Client-centric Consistency

The first model, Monotonic Read Consistency (MRC), guarantees that a client that has read
a version n will thereafter always read versions ≥ n [90, 97]. This is helpful as from an
application perspective data visibility might not be instantaneous but versions at least become
visible in chronological order, i.e., the system never “goes backward” in time. For example,
imagine person B from our bank scenario above. If this person first sees the credited amount
on his bank account statement and then tries to transfer the money to a person C which fails
due to “insufficient funds”, this will at least cause severe customer irritation if not more.

Read Your Writes Consistency (RYWC) guarantees that a client that has written a version n
will thereafter always be able to read a version that is at least as new as n, i.e., ≥ n [90, 97].
This helps, for example, to avoid user irritation when person A checks his bank account state-
ment, does not see the transaction and consequently wires the same amount of money again.
Generally, RYWC avoids situations where a user or application issues the same request sev-
eral times because it gets the impression that the request failed the first time. For idempotent
operations reissuing requests causes only additional load on the system, while reissuing other
requests will create severe inconsistencies.

Monotonic Write Consistency (MWC) guarantees that two updates by the same client will
be serialized in the order that they arrive at the storage system [90, 97]. This is useful to
avoid seemingly lost updates when an application first writes and then updates a datum but
the update is executed before the initial write and is, thus, overwritten. In the bank scenario
above, person A might have corrected the account number of person B before finalizing the
transfer. If MWC is not guaranteed, the money might end up in the wrong account. Accord-



20 2. Background

ing to Vogels [97] “Systems that do not guarantee this level of consistency are notoriously
hard to program.”.

Write Follows Read Consistency (WFRC) guarantees that an update following a read of
version n will only execute on replicas that are at least of version n [90]. This, also, helps
(in systems with last write wins strategy) against seemingly lost updates where the update is
overwritten by a delayed update request for versions ≤ n. In all other systems, it reduces the
number of version branches. Essentially, this model extends MWC guarantees to updates by
other clients that have at least been seen.

In NoSQL and Cloud storage systems, these client-centric properties are typically not
guaranteed explicitly but experimental measurements show that they are fulfilled for at least
parts of the requests [17, 98].

Data-centric Consistency

In this section, we present data-centric consistency models ordered by the strictness of their
guarantees and discuss for each model how it can be translated into a client-centric consis-
tency model. As already discussed, there are two consistency dimensions: staleness and
ordering. The following consistency models (apart from Linearizability) do not consider
staleness [90]. In fact, increasing strictness of ordering guarantees often leads to higher stal-
eness values as updates may not be applied directly but are required to fulfill dependencies
first (e.g.,[9]).

The lowest possible ordering guarantee is typically described as Weak Consistency [90,
97]. As the name states, guarantees are very weak in that they do not really exist. Essentially,
weak consistency translates to a colloquial “replicas might by chance become consistent”.
While an implementation may or may not have a protocol to synchronize replicas, a typical
use case can be found in the context of a browser cache: it is updated from time to time
but replicas will rarely (if ever) be consistent. As Weak Consistency does not provide any
ordering guarantees at all, there are no corresponding guaranteed client-centric consistency
models.

EC is a little stricter: It requires convergence of replicas, i.e., in the absence of updates and
failures the system converges towards a consistent state. Updates may be reordered in any
way possible and a consistent state is simply defined as all replicas being identical [90, 97].
EC is very vague in terms of concrete guarantees but is very popular for web-based services.
Most NoSQL systems implement EC [37, 25, 65, 44].

In terms of client-centric consistency guarantees, EC often fulfills these guarantees for
a majority of requests but does not guarantee to do so. As an example, Amazon S36 vio-

6aws.amazon.com/s3



2.2. Consistency Perspectives, Dimensions and Models 21

lated MRC in about 12% of all requests in 2011 [17] whereas it only violated MRC with a
probability of 5% just one year later.

While there are certainly some use cases where EC cannot be applied, it often suffices
as the real world itself is inherently eventually consistent and can often tolerate some in-
consistency [101, 91]. The difference is, that conflict resolution is shifted to the application
layer [37] requiring a higher skill set from application developers. Instead of pessimistically
locking data items “guesses and apologies” are used [49].

Causal Consistency (CC) is the strictest level of consistency that can be achieved in an
always available storage system [72] based on the tradeoffs of the CAP theorem (see sec-
tion 2.3.1). In a causally consistent storage system, all requests that have a causal relationship
to another request must be serialized (i.e., executed) in the same order on all replicas while
unrelated requests may be serialized in arbitrary order.

A request r2 causally depends on a request r1

• if both requests are issued by the same client and r1 was received at the storage system
before r2,

• if r2 is a read that returns the result of r1 which is an update or

• if there is a transitive relation between both requests [90, 97, 23].

Of course, CC captures potential causality so that systems like COPS [71] have to eval-
uate large dependency trees before applying an update. This both adds an overhead and
increases staleness as updates cannot become visible right away. Bailis et al. [9] propose to
minimize this impact by having the application explicitly define dependencies that need to
be considered. In their follow-up paper [10], Bailis et al. propose a client-side middleware
guaranteeing only application-defined dependencies as an alternative to CC. For full CC, a
typical implementation uses vector clocks to identify (potential) causal dependencies.

CC can also be defined via the client-centric guarantees discussed above: If all four are
fulfilled, the system is causally consistent [23]. It is also possible to create the client-side
illusion of CC with the combination of version caching and vector clocks [16].

As Guerraoui and Hari point out, CC does not require replica convergence [48]. Conver-
gence is only asserted when the latest update is causally dependent on all previous writes
since the last idempotent replace-update7 and staleness is bounded. This is also the direct
reason why no stronger guarantees can be achieved in an always available storage system:
convergence is not required for an update to be successful.

7i.e., some request like x := 5 which does not depend on any previous value.



22 2. Background

Sequential Consistency (SC) is a very strict consistency model and cannot be achieved in
always available systems8. It requires that all requests are serialized in the same order on all
replicas and that requests by the same client are executed in the order that they are received by
the storage system [90]. While this model does not guarantee anything about the recentness
of values read by clients, it mandates that all updates become visible to clients in the same
order. Often, SC is described as strict consistency which is not entirely true as staleness is
not addressed. But since real-world staleness values are often very small SC usually suffices
even for applications seemingly requiring strict consistency.

SC could, for example, be implemented using the Paxos algorithm [67, 68]. Generally,
vector clocks that define causal relationships can be in conflict (e.g., for unrelated concurrent
updates). If vector clocks are used for request ordering and an approach exists that defines
a transitive, global order for all conflicting vector clocks, then a causally consistent system
becomes sequentially consistent.

When focusing on client-centric consistency guarantees, the main difference between CC
and SC is that WFRC becomes global in so far as reads by all clients are considered. This
means that as soon as a client has seen a particular version n, all updates by other clients
will only be executed on replicas that have already processed the update to version n. This
guarantee can be provided as SC promises that all replicas execute all updates in the same
order. So, once a version n has been read, it is assured to have been finally serialized as that
version so that any updates will be processed with a higher version number.

Linearizability (LIN) describes what is typically meant with strict consistency. It does not
only consider ordering but also staleness, i.e., it requires that all non-concurrent requests are
ordered chronologically by their arrival time in the system and that all requests always see
the effects of strictly preceding requests. At the same time, all concurrent requests may be
reordered arbitrarily as long as SC is preserved. This can be visualized as all operations
happening instantaneously at a single point in time between the start and the end of the
operation instead of over the course of an interval of time [51].

LIN is hard to implement in distributed systems as there is always the issue of clock syn-
chronization (which is necessary to determine a chronological order of requests for lock-free
implementations). In practice, however, sufficiently high precision is achieved to guaran-
tee that violations are highly improbable to occur. Furthermore, in case of violations LIN
becomes SC between which applications will rarely notice a difference. While consensus
protocols like Paxos [67, 68] can guarantee that all replicas serialize requests in the same
order, they cannot guarantee that the order of execution chosen is identical to the actual

8In CC only requests with causal dependencies must be executed in the same order on all replicas. For SC, this
extends to all requests so that replicas need to agree on the ordering of requests for non-causally related requests.
This is not possible in the presence of failures so that the system either becomes unavailable or violates its
consistency model.



2.2. Consistency Perspectives, Dimensions and Models 23

Data-centric Model MRC RYWC MWC WFRC
Weak Consistency N/A N/A N/A N/A
Eventual Consistency Often Often Often Often
Causal Consistency Single Client Single Client Single Client Single Client
Sequential Consistency Single Client Single Client Single Client Global
Linearizability Global Global Global Global

Table 2.1.: Relationship Between Data-centric and Client-centric Consistency Models Ordered by the
Strictness of their Guarantees

chronological order of arrival in the system. An implementation using distributed locking, in
contrast, is likely to show poor performance.

Expressed in terms of client-centric consistency guarantees, the difference between SC
and LIN is that both RYWC and MWC become global properties. This means that a client
will always see all committed updates and that all writes will be executed in the (global)
chronological order. MRC then also becomes global as a side effect.

Beyond the data-centric consistency models discussed here, there are a few other models
(e.g., PRAM Consistency which requires that updates by the same client must be visible in
correct order, i.e., CC without the last two conditions [24]). We leave these out as, to our
knowledge, they have not been implemented in distributed storage systems so that they are
currently only of theoretical interest.

Table 2.1 gives an overview of the relationship between different client-centric and data-
centric consistency models. Entries “N/A” mean that the guarantee may be reached for single
requests from time to time but only based on chance. In contrast, “Often” specifies that such a
behavior is seen for a large number of requests. “Single Client” describes that the guarantees
as described above (see client-centric guarantees) are fulfilled, whereas we use “Global” to
describe when such a guarantee is extended to all clients at the same time.

Other Consistency Models

Beyond the models already discussed, there are also a few other consistency approaches that
do not quite fit the categorization used so far.

Multi-dimensional Consistency: In their work on Continuous Consistency, Yu and Vah-
dat [102] introduce the concept of a conit, a consistency unit, which is a three dimensional
vector that describes tolerable deviations from LIN along the dimensions staleness, order
error and numerical error.

As already mentioned, numerical error is often not applicable and semantically overlaps
with staleness and order error. When ignoring numerical error, their work becomes compara-



24 2. Background

ble to the work of Torres-Rojas et al., e.g., [95, 96], who coined the term Timed Consistency.
Timed consistency models are also sometimes known as Delta Consistency [88] and essen-
tially describe a combination of ordering and staleness in that the inconsistency window
(defined by the time period between the commit of an update and reaching a consistent state
according to the ordering model) is bound. This means that the guarantees of a particular
consistency model are not reached right away but rather after a fixed period of time ∆t. If
replicas fail to synchronize during that period of time, the item becomes unavailable until
consistency has been reached. This is particularly useful for describing and guaranteeing a
Service Level Agreement (SLA) and increases the transparency of the consistency availabil-
ity trade-off.

Sadly, to our knowledge no implementations of Timed Consistency models exist apart
from TACT [102] and the work of Krishnamurthy et al. [63] who guarantee bounds on k-
Staleness (based on version count). It is possible, though, to specify a timed version for
each of the data-centric consistency models where the guarantees become visible before the
specified time window is over. In that case, the models discussed above become a special
case of their timed equivalent (i.e., with a time window of infinity) which also affects the
timeliness of client-centric guarantees.

Coherence: In their original definition, data-centric consistency models provide ordering
guarantees for all data items, i.e., in CC, for example, two updates by the same client on two
different data items must be serialized in correct order. This also implies that an eventually
consistent datastore can only be in a consistent state if all replicas of all data items are iden-
tical. Depending on the size of the datastore deployment, this may never be the case and it is
also more difficult to coordinate updates on large numbers of servers than for just a few. So,
for reasons of scalability it often makes sense to provide the guarantees of the consistency
model only per key [32]. In the case of our example above, those two updates could then be
executed in arbitrary order, thus, granting more flexibility to the storage system. Guarantees
per key often suffice as it is then up to the application developer to persist all items, which
need guarantees amongst each other, under the same key.

Those models are named coherence, i.e., eventual coherence, causal coherence, sequential
coherence, etc. It is common practice, though, to use consistency for both coherence and
consistency models alike. To add some clarity, we propose to add a “per key” prefix if
coherence is meant, i.e., per key CC instead of causal coherence, and will do so for the
remainder of this work.

Ramakrishnan [82] argues that the “unit of consistency” should also be considered as a
continuum where guarantees are not only provided either for the entire data set or for just
one key but also for groups of keys like, e.g., the entity groups in Google’s Megastore [12].



2.2. Consistency Perspectives, Dimensions and Models 25

Adaptable Consistency: Kraska et al. [60] propose Consistency Rationing where data
items are in a first step clustered based on importance (e.g., for a web shop: credit card
numbers versus comments on reviews) into types A, B and C. While types A and C are always
handled at LIN or EC respectively, B data continuously changes its consistency requirements
based on an external cost function. This means that B data is handled at LIN whenever
the costs of inconsistencies exceed the cost of opportunity caused by unavailability or high
latencies. Consistency Rationing could, for example, be implemented via the much older
GARF library [47].

Chihoub et al. [27, 28] present approaches that allow the user to specify maximum stale
read rates or a consistency cost efficiency level as part of SLAs. The system then dynamically
uses different consistency levels in Apache Cassandra [65] while guaranteeing the SLAs.

Li et al. [69] propose the concept of RedBlue Consistency where operations are broken
down into very small commutative suboperations that are then categorized as either red or
blue meaning that they are either synchronously or asynchronously replicated while guar-
anteeing dependencies between suboperations. While Consistency Rationing uses different
consistency levels based on the data type, RedBlue Consistency adaptively tunes the consis-
tency level based on the kind of operation.

Consistency Models in Asynchronously Updated Views Jacobsen et al. [54] pro-
pose a consistency model with four different levels. This model targets view maintenance in
large-scale distributed storage systems where asynchronous, concurrent, out-of-order update
propagation for non-idempotent operations is the norm. In their work, the authors describe
how changes in a base table can be propagated to a materialized view table using version
counters, test-and-set primitives and other mechanisms to achieve the different consistency
levels defined within the paper.

In their model, all guarantees are per-key, thus, corresponding to the concept of coherence
discussed above. As a basic level, the authors define Convergence which requires that all
records of the final view table, after an undefined period of time, reflect the state of the final
base table. Since any arbitrary state of the base table may be defined as final base table,
Convergence is identical to EC and requires that all propagated updates will eventually be
applied on a per-record basis so that, in the end, the replica in the base table as well as
the replica in the view table are “identical”, i.e., the final view state is correct. Updates
comprising sub-operations that may not be commutative with other concurrent updates need
to be applied atomically.

Furthermore, there may be several valid intermediate states of a base table when applying a
set of updates, since they use timeline consistency as defined by [32], which is similar to per-
key CC. Based on this, they define Weak Consistency which requires beyond Convergence



26 2. Background

that for all records in all intermediate views, there must be a potential base table, the state of
which they reflect. If Convergence is preserved, this can only be violated if the view assumes
arbitrary random values before reaching its correct final state or if repeated non-idempotent
updates make the view table proceed beyond the final view state. Typically, one will expect
non-random behavior and means to detect repeated execution of non-idempotent updates in
eventually consistent storage systems, so that this level is, in practice, comparable to EC even
though the definition of EC does, strictly speaking, not include this guarantee.

The authors also define Strong Consistency which requires beyond Weak Consistency, that
the timeline consistency as defined by the base table also holds for the view table which can
only be violated by out-of-order update delivery if Weak Consistency is preserved. Under the
assumption that all updates originate from the same base table replica, this corresponds to
CC. Beyond these three models, the authors also define the concept of Complete Consistency
which requires that for every base table version, there must be a corresponding view table
version. This, the authors claim [54], “is not useful to achieve”.

2.3. Consistency Trade-offs

You can’t have everything, is a common theme in life. Often, different aspects are in conflict
and must be balanced until an equilibrium is reached where it is not possible to improve any
aspect without compromising another. Such an equilibrium is called pareto optimality or
pareto efficiency [76].

For distributed storage systems, several trade-offs exist – two of them affect consistency
directly: Eric Brewer’s CAP theorem describes the equilibrium of consistency and avail-
ability, while Daniel Abadi’s PACELC model extends it to also cover the aspect of latency.
Beyond these two trade-offs, which we describe in sections 2.3.1 and 2.3.2, there are also
some indirect trade-offs. These indirect trade-offs are caused by direct trade-offs between la-
tency or availability and the respective aspect, which is comparable to the concept of indirect
exchange within the theory of money. We describe indirect trade-offs in section 2.3.3 and the
concept of BASE in section 2.3.4.

2.3.1. CAP Theorem

In his keynote [22] at the Symposium on Principles of Distributed Computing 2000 (PODC),
Eric Brewer presented the CAP theorem, named after the three properties Consistency,
Availability and tolerance to network Partitions. The theorem says, that it is not possible
to have all three properties at the same time. Furthermore, partitions occur all the time so
that for distributed systems partitioning tolerance is set as a given which essentially leaves



2.3. Consistency Trade-offs 27

only the choice of consistency and availability9. This can be easily explained for both reads
and writes:

Imagine a situation with triple replication where one replica is unreachable either due to
server error or network connectivity issues. Next, an update arrives at one of the replicas.
The system, now, has exactly two options: it can either accept the update, execute it on only
two replicas and compromise consistency (i.e., the equality of replicas); or it can reject the
update, thus, maintaining consistency, and sacrifice availability.

During reads, the effect of the trade-off is comparable: In the same triple replication sce-
nario as above, a read arrives at one of the available nodes. The system can then either
respond with an error (as it cannot read the unavailable replica which might have a newer
value) or it may respond with a potentially stale answer reading only the available replicas.

Figure 2.3 shows an example where the replica on the right is unavailable while an update
arrives in the replica on the left. The system can then either choose the left path and reject
the request or opt for the right path and sacrifice consistency.

Of course, the consistency availability trade-off is a continuum for both reads and writes.
In a scenario with again three replicas, the system could respond to requests as long as zero,
one or two replicas cannot be reached. This continuum is often used in the context of quorum
systems [94] where configurable parameters N, R and W describe the number of replicas (N),
the number of replicas which must respond to a read request (R), and the number of replicas
which must respond to a successful write request (W ). While R+W > N and W/2 > N the
system is guaranteed to avoid concurrent updates and to always return the results of the latest
write during reads.

In 2002, Gilbert and Lynch [45] formally showed the correctness of the theorem under a
set of rigid assumptions.

2.3.2. PACELC Model

In his original 2010 blog post [1] and later on in his follow-up paper [2], Daniel Abadi
criticizes a certain asymmetry within the CAP theorem10. Furthermore, he points out that
the “[...] main problem with CAP is that it focuses everyone on a consistency/availability
tradeoff, resulting in a perception that the reason why NoSQL systems give up consistency
is to get availability. But this is far from the case.” [1].

In practice, systems often sacrifice consistency even while there is no network partitioning,
i.e., while they do not seem to need to. This is caused by the second consistency trade-off,
consistency versus latency, which can again be seen both during writes and reads.

9Partitioning tolerance can only be forfeited for non-replicated, single site systems where no partitions can occur.
10CP systems (consistent and partitioning-tolerant) and CA systems (consistent and available) are essentially iden-

tical, since a network partitioning shows itself typically in unavailability of the system.



28 2. Background

1 

1 

1 2 
Update 

1 

1 

1 2 

2 

1 

Choose 
Availability 

Choose 
Consistency 

Figure 2.3.: Consistency versus Availability Trade-off During Updates

For example in a scenario with three geographically distributed replicas, it takes some
time to propagate updates to all replicas and receive their acknowledgments. System design-
ers can either choose to update all replicas synchronously, and, thus, maintain consistency
while accepting high system latencies; or updates can be propagated asynchronously in the
background after the operation has already committed. In this case, consistency is sacrificed
in favor of low system latencies.

A read in the same scenario could again choose to either only read the closest replica
and, thus, opt for latency; or it could wait for responses from all replicas, thus, choosing
consistency over latency. Obviously, this is again a continuum, e.g., the request could also
terminate after reading two out of three replicas etc. This as well is often used in quorum
systems [94].

Figure 2.4 shows an example with two replicas during an update: The system can either
choose to have the update propagation delay between replicas 1 and 2 as part of the request
latency or as part of the inconsistency window.

The PACELC model is a superset of the CAP theorem: If there is a Partition, trade off
Availability for Consistency; Else trade off between Latency and Consistency [1, 2].



2.3. Consistency Trade-offs 29

time 

 
Update 
request 
arrives 

 

 
Replica 1 
updated 

 

 
Replica 2 
updated 

 

Latency 

Latency 

Inconsistency Window 

Figure 2.4.: Consistency versus Latency Trade-off During Updates

2.3.3. Indirect Trade-offs

Apart from the trade-offs of the previous two sections, there are other trade-offs that do not
affect consistency directly. Indirectly, though, they have an effect. For example, if there is a
trade-off between a quality Q and latency. Then it is possible to solve the consistency latency
trade-off in a way that favors consistency. Afterwards, Q is then compromised to reduce the
latency again, thus, indirectly granting the opportunity to seemingly have good latency and
consistency at the same time.

This mechanism is comparable to the economical concept of indirect exchange where two
goods are not exchanged directly (e.g., five apples against five bananas) but rather indirectly
using an auxiliary vehicle like money (e.g., sell five apples for five Euros and buy five bananas
for five Euros).

In the following, we describe some exemplary trade-offs that can be used to enhance la-
tency or availability after it was compromised in favor of consistency or the other way around.

Latency versus Durability Latency and Durability can be traded off, for example, by
keeping data either in memory (favoring latency) or writing it to disk (favoring dura-
bility). Other influence factors could be using Redundant Array of Independent Disks
(RAID) systems at different levels or different disk types.

Latency versus Cost Latency can also be influenced by the amount of money one is will-
ing to pay: Using more (scale out) and better machines as well as more network band-
width (scale up) increases cost but improves latency. Furthermore, the different storage
solutions from the durability trade-off also come with different price tags.



30 2. Background

Latency versus Con�dentiality Confidentiality typically requires encryption combined
with various authentication and authorization mechanisms. All these aspects add a
latency overhead so that confidentiality could be compromised to improve latencies
and vice versa. This is directly connected to a trade-off between confidentiality and
cost [26].

Availability versus Con�dentiality Authentication and authorization mechanisms are typ-
ically provided by a dedicated service or component which is often run at a centralized
system. When this component or service fails, the system can either choose to reject in-
coming requests or to serve them without authentication or authorization mechanisms,
thus, endangering confidentiality.

Availability versus Cost Just like in the case of the latency cost trade-off, availability can
also be increased using monetary means. For example, different server types may or
may not include redundancy at hardware level to decrease the Mean Time Between
Failures (MTBF).

Beyond these, there are also other factors that influence consistency, e.g., the number and
geographical distribution of replicas. As these influence factors do not quite fit what we
typically see as a “quality”11, we did not discuss them as trade-offs within this section. We
will, though, later in this work use our Consistency Benchmarking contributions to study
their effects on consistency.

2.3.4. BASE

While ACID guarantees focus on strict consistency, schema adherence, transactions, etc., the
opposite approach relaxes consistency in favor of performance and availability. Correspond-
ingly, applications have to be designed in a way that allows them to deal with the resulting
inconsistencies and uncertainty. For instance, reliable message queues can be used to assert
that updates arrive at remote replicas or to guarantee some degrees of ACID consistency af-
fecting more than one data item. Systems solving these trade-offs in favor of availability and
performance are often referred to as “BASE” – Basically Available, Soft state, Eventually
consistent [79].

2.4. Exemplary Storage Systems

In this section, we give a brief overview of the current NoSQL landscape, focusing on the
replication mechanisms. We start with four systems whose original design has heavily influ-
enced other systems. These are GFS in section 2.4.1, Bigtable in section 2.4.2, Dynamo in
11They are more of a tuning knob or a configuration parameter towards consistency.



2.4. Exemplary Storage Systems 31

section 2.4.3, and PNUTS in section 2.4.4. Afterwards, we describe how these design ideas
can be found in other existing systems.

2.4.1. Google File System

The Google File System (GFS), as originally presented by Ghemawat et al. [44], implements
a hierarchical keyspace similar to a standard file system where files are split into chunks and
distributed over so-called chunkservers which hold the actual replicas. A single dedicated
(though shadowed) master server manages the distribution of chunks to chunkservers, i.e.,
the mapping of the keyspace to actual servers.

To allow the system to scale, control flow and data flow are separated in that clients query
the master for chunk locations and afterwards interact with the chunkservers directly without
any further involvement of the master server. During updates, having obtained the location of
the primary chunkserver, the client sends the data to the primary chunkserver directly which
forwards them in a pipeline-like fashion to the other two replicas.

While updates with a byte offset as parameter are supported, the system is optimized for
record append operations. Interestingly, there is no concurrency control mechanism, i.e.,
concurrent updates may partially overwrite each other’s data. This also leads to several pos-
sible outcomes for an update operation: The results may be consistent/inconsistent and de-
fined/undefined. In this context, consistent means that “all clients will always see the same
data, regardless of which replicas they read from.” [44], whereas defined means that every
possible read will fully reflect the result of an update. Based on this, an update will only
be inconsistent as the result of a failure, may be consistent but undefined if two concurrent
updates manage to intermingle their fragments while all replicas are still identical, or it may
be consistent and defined whenever all replicas are identical and updates are not intermingled
with another update. Application developers are encouraged to write self-validating records
to solve this problem. Please, note, that this understanding of consistency is comparable but
not identical to the distributed systems definition which does, in contrast, not consider partial
updates or intermingled records.

2.4.2. Google Bigtable

Bigtable, as presented by Chang et al. [25], is implemented as an additional layer on top of
GFS. According to the nomenclature of Kraska and Trushkowsky [62] it offers the function-
ality of the “record manager”. While GFS is optimized for large streaming reads and record
appends, Bigtable targets applications that need small random reads, updates in place and
structured data storage. For this purpose, a “Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map [...] indexed by a row key, a column key, and a timestamp” [25].



32 2. Background

Bigtable itself does not replicate data, it just implements a structured data interface, shards
data horizontally, and allows atomic single row transactions. These transactions can execute
entirely local within the server responsible for the respective row. GFS is then used for
replication and redundancy. As each tablet server in Bigtable is the single writer for a set
of GFS files, the record appends will always be defined if they are consistent (i.e., no error
occured) which eases inconsistency handling.

2.4.3. Amazon Dynamo

Dynamo, as originally presented by DeCandia et al. [37], is in contrast to the Google ap-
proaches a quorum-based Peer-to-Peer (P2P) system where all nodes have the same respon-
sibilities. A Dynamo cluster is configured via the parameters N, R and W already mentioned
in section 2.3. Again, N specifies the replication level, while R (W ) describes the minimum
number of nodes which need to participate in a successful read (write). While updates in GFS
are forwarded in a pipeline-like fashion from the primary replica to the secondary replicas, in
Dynamo an update coordinator broadcasts the update to all other replicas; access is directly
via a key12.

Dynamo uses several other mechanisms that affect consistency and replication:

Sloppy Quorum and Hinted Hando�s In Dynamo, all nodes are part of a ring structure
which describes the logical distribution of responsibilities per key, i.e., for every key
there are N responsible replicas which are kept as part of a preference list. Beyond
these nodes, additional nodes on the ring are added to the end of the preference list
which will be used in the case of failures. For example, if replica N is not available
during an update, then replica N+1 will store the update instead and a Hinted Handoff
object, which contains the update and the IDs of nodes N and N + 1, will be created.
Once node N is available again, the Hinted Handoff is resolved and the update is stored
on the original node. Essentially, updates are stored on the first N healthy nodes instead
of the first N nodes within traditional quorum systems [94].

Vector Clocks Vector Clocks [40] can be used to describe the ordering of operations and
are frequently used to implement CC. In the case of Dynamo, though, they are used
to identify update conflicts where one version is a predecessor of another version and
which can, therefore, be resolved automatically. This is usually the case for all conflicts
not caused by concurrent updates.

Merkle Trees Each node keeps a Merkle Tree of the keyrange it is responsible for. A
Merkle Tree is built by using hashes of actual data as leaves and hashes of hashes for

12There is a flat keyspace with consistent hashing as partitioning mechanism.



2.4. Exemplary Storage Systems 33

all other vertices. In the case of Dynamo, this is used to efficiently compare the equality
of the entire keyrange (i.e., whether the root vertices of the Merkle Trees are identical)
and to quickly identify keys with conflicting values (i.e., traverse the tree branch with
the differing values until the responsible key is found). Based on the corresponding
vector clocks, the conflict will then be resolved either automatically by the storage
system or at application level (due to application datastore co-design) during the next
update by returning all existing versions during a read.

2.4.4. Yahoo! PNUTS

Yahoo! PNUTS, as originally presented by Cooper et al. [32], again takes a different ap-
proach than Google and Amazon. There are three key differences: First, PNUTS offers
stricter consistency guarantees than GFS, Bigtable and Dynamo, i.e., per-key CC; second,
based on its design for geo-replicated deployments, it uses a geo-distributed pub/sub system
for communication between replicas instead of implementing update propagation within the
storage system itself; third, the system offers different consistency options as well as added
value primitives like test-and-set to application developers and, thus, also eases client-side
handling of inconsistencies.

PNUTS, which is part of Sherpa, is deployed in geo-distributed clusters where each cluster
holds a full copy of the entire dataset. As updates in typical web applications tend to originate
in the same geographic region, it is no performance impact to assign a distinct master per
key. All updates are sent to the master which first writes them to the message broker before
committing them locally. The message broker then asserts in-order13, asynchronous delivery
of these updates to all other replicas. This asserts per-key CC, a guarantee termed “per-
record timeline consistency” in the original paper [32]. Using different read operations – for
instance, READ-LATEST and READ-ANY – enables application developers to make conscious
decisions on their consistency and latency requirements. Based on this choice, read requests
will be routed to the local PNUTS cluster only or if necessary to other replicas as well, thus,
increasing latency.

Within a cluster, storage units persist horizontal shards of an RDBMS-like table structure
assigned to them by a tablet controller. Beyond the tablet controller, routers hold a period-
ically updated copy of the tablet controller’s state to send incoming application requests to
the appropriate storage unit(s). Each storage unit offers range queries and single-row trans-
actions.

13Guarantees are only provided per message broker cluster. Since all updates to the same key are processed by the
same master replica, this master replica will write all these updates to the same message broker cluster. This in
turn guarantees in-order delivery for all updates affecting the same key.



34 2. Background

2.4.5. Google Megastore and Spanner

An interesting alternative to the two extremes of NoSQL systems and ACID-compliant
RDBMS was developed by Google in 2011 (Megastore [12]) and 2012 (Spanner [34]) re-
spectively.

Megastore implements geo-replication with Paxos [67] on top of Bigtable, i.e., several
geo-distributed datacenters each run Bigtable clusters and Megastore replicates over those
clusters by using Paxos as consensus protocol. Megastore also introduces the concept of an
entity group which is a subset of a table, e.g., the inbox of a single Gmail14 user. Within
this entity group, Megastore offers fully ACID-compliant transactions whereas transactions
spanning multiple entity groups are propagated asynchronously (or optionally via the two-
phase commit protocol). This can be achieved by mapping entire entity groups onto single
rows in Bigtable which offers atomic single row transactions.

Spanner, in contrast, uses high precision clock synchronization, exposed via a new “True-
Time API”, Paxos, and other mechanisms to implement LIN as well as ACID transactions
on top of Colossus, the successor to GFS [41]. The data structure used is similar to RDBMS
and even uses a schema but is still very similar to Bigtable.

Both systems can be seen as an example of a new trend trying to bring together the database
and distributed systems worlds. The motivation by this can be found in the Spanner pa-
per [34]: “We believe it is better to have application programmers deal with performance
problems due to overuse of transactions as bottlenecks arise, rather than always coding
around the lack of transactions.” – personally, we believe that the main problem in this
regard is not actually a need for transactions but rather the complexity of dealing with un-
certain degrees of inconsistency as well as the fact that most software developers tend to
think, thanks to their educational background, in terms of transactions. The “performance
problem” mentioned within the quote can also be found within the Megastore and Spanner
papers [12, 34] as these systems obviously solve the tradeoffs of the CAP theorem [45] and
the PACELC model [2] in favor of consistency:

• Megastore reports average read latencies of less than 100ms for only around 65% of
their production applications – for writes this value is around 600ms. Both kinds of
requests show maximum values of around 1000ms.

• Spanner reports average production latencies only for the F1 application: Reads take
around 9ms (with very high standard deviation values, though), write transactions have
latencies of around 70ms (single-site commit) or 100ms (multi-site commit) respec-
tively.

14gmail.com



2.4. Exemplary Storage Systems 35

In contrast, other systems clearly favoring low latency and availability report the following
performance numbers:

• Lakshman and Malik [65] report for Facebook’s Cassandra, running on 2010 hardware,
that production latencies in a geo-distributed deployment are between 7ms and 44ms.

• In 2011, Cockcroft and Shean [30] report for a distributed deployment of the (then
open-sourced) Cassandra average latencies around 11ms which they claim is compa-
rable to their actual production latencies.

• Cooper et al. [32] report latency values between 60ms and 100ms for PNUTS running
on 2008 hardware in a geo-distributed deployment.

• DeCandia et al. [37] report for distributed production deployments of Dynamo average
read and write latency values below 5ms. Maximum values are around 70ms. These
measurement values were obtained running on 2006 hardware.

While these performance measures are not strictly comparable, they clearly indicate the
different design decisions with regards to the CAP theorem and PACELC model. While
Megastore offers very poor performance, Spanner has much lower latency values. Never-
theless, average Spanner write latencies from 2012 still exceed maximum Dynamo latencies
from 2006.

2.4.6. Further NoSQL Systems

The design ideas of GFS, Bigtable, PNUTS and Dynamo have helped to spawn a plethora of
NoSQL systems. The entire Hadoop ecosystem, for example, is built on top of the Hadoop
Distributed File System (HDFS)15 and HBase16. HDFS started as an open source reimple-
mentation of GFS and HBase is originally based on the Bigtable design. Accumulo17 and
Hypertable18 are also based on the Bigtable design.

Riak19 and Voldemort20 originally started as open source reimplementations of Dynamo
even though they each have evolved into different directions.

Cassandra21 is also a very interesting development as it combines elements both from the
Google and the Amazon universe by essentially implementing a Bigtable interface on top
of a “Dynamo 2.0” architecture. One of the authors of the original Cassandra paper [65] is

15hadoop.apache.org
16hbase.apache.org
17accumulo.apacho.org
18hypertable.org
19basho.com/riak
20project-voldemort.com
21cassandra.apache.org



36 2. Background

also one of the co-authors of the original Dynamo paper [37]. Similarly, DynamoDB22, an
Amazon Web Services offering since January 2012, offers Bigtable-like interfaces on top of
the original Dynamo design.

Beyond these, another group of systems tries to reinvent the SQL world and is, therefore,
typically referred to as NewSQL [7]. Started by Michael Stonebraker’s 2007 paper [89] there
is now a new kind of database systems trying to implement classical RDBMS in a scalable
way. Examples include VoltDB23 or NuoDB24.

Finally, systems like MongoDB25 or CouchDB26 implement a new data model where all
data is treated as documents. These systems are typically designed as master-slave systems
with asynchronous update propagation.

To conclude, the existing NoSQL landscape can either be characterized by their data model
(key values store, column or table store, relational store, or document store) or by their repli-
cation schemes (GFS-like replication, P2P replication, master-slave replication, Paxos-based
replication).

2.5. Failures and Fault Tolerance

In large scale distributed storage systems, failures are unavoidable due to the sheer number
of involved machines. To quote a description of the situation at Amazon27: “Dealing with
failures in an infrastructure comprised of millions of components is our standard mode of
operation; there are always a small but significant number of server and network components
that are failing at any given time.” [37]

Since failures significantly aggravate the frequency and severity of inconsistencies, we
provide in this section a short overview of different types of failures (section 2.5.1), the
relationship between failures and consistency (section 2.5.2), as well as fault tolerance (sec-
tion 2.5.3).

2.5.1. Failure Types

Failures in distributed systems can have two main causes: faulty hardware and faulty soft-
ware. Both types of faults can result in two basic failure types; either the system component
is unavailable (crash failures) or does not behave as intended (byzantine failures) [35, p.463].
Coulouris et al. also name “Timing Failures” which are caused by delayed requests. These

22aws.amazon.com/dynamodb
23voltdb.com
24nuodb.com
25mongodb.org
26couchdb.apache.com
27amazon.com



2.5. Failures and Fault Tolerance 37

failures can, at our level of abstraction, be described as temporary crash failures of the net-
work links. This leaves us with byzantine and crash failures. Beyond these, Özsu and Val-
duriez [74, p.325] categorize failures regarding a time horizon. According to them, failures
can either be “permanent” or “intermittent and transient”, i.e., failures can be both tempo-
rary or permanent. Based on these two categorizations, this thesis considers three different
failures:

Crash-stop Failures During a crash-stop failure, a system component (either parts of the
network or a server) is no longer available. Requests are typically lost or queued some-
where else until the component is available again. In the case of crash-stop failures,
though, the unavailability is permanent regarding a near time horizon. Hence, a typical
action upon this kind of failure will be to replace the failed component.

Crash-recover Failures A crash-recover failure is a transient, non-permanent version of
the crash-stop failure. Both failures are often difficult to distinguish at first sight; e.g.,
a crashed server may have crashed due to a loose power chord (which can be fixed
rather quickly) or it may have crashed due to a short-circuit fault somewhere within the
machine (which can usually not be fixed right away). Only manual inspection or inter-
vention will typically be able to distinguish both kinds of failures both of which occur
frequently in large networks. Some crash-recover failures, e.g., temporary unavailabil-
ity of network connectivity, will “repair” itself and will, hence, often go completely
unnoticed. While this may seem desirable at first sight, it is not as servers may be in an
error state without even knowing about it. Additional fault tolerance mechanisms will
further mask the failure. This potentially leads to situations where the failures quickly
add up until they are finally noticed by the people operating the system. An outage
with similar root causes was recently reported by Amazon Web Services [87].

Byzantine Failures A byzantine failure can be caused by either software faults due to bugs,
hardware faults (e.g., faulty memory where a single bit has turned), or by security
breaches. In either case, the result is the same: The system component does not behave
as intended. For instance, a server may respond to requests using either gibberish
(which is not as dangerous as it can easily be detected) or using the wrong response,
thus, creating an erroneous view of the server’s state for the client. Especially the
latter case, often caused by a malicious attacker is hard to detect. Many algorithms
in distributed systems also have byzantine fault-tolerant equivalents where a number
of byzantine faults can be tolerated. These algorithms, though, typically come at high
cost as they require interaction with several servers instead of one.

All these failures can occur both isolated or correlated. An extreme example of correlated
failures could be a natural disaster wiping out an entire datacenter. In the remainder of this



38 2. Background

work, we do not consider byzantine failures and exclusively refer to crash failures when
discussing failures and behavior caused by failures.

2.5.2. Failures and Consistency

As already discussed in sections 2.3.1 and 2.3.2, there is a direct trade-off between con-
sistency and availability. When systems choose consistency over availability, crash failures
typically cause unavailability. But if systems opt for availability instead of consistency, fail-
ures typically cause inconsistencies of various types.

For instance, in a scenario with three replicas where replica A is crashed for a period T ,
replica A will miss all n updates during this period. If the failure were permanent, consistency
would not be affected, but if the replica becomes available after the period T , then it depends
on whether A communicates with another replica or with a client first. All clients, which
read from this replica (assuming just one replica is read) before resynchronization of A with
another replica, will observe t-Visibility of about T and k-Staleness of at least n. Depending
on the clients’ requests before contacting A, MRC, WFRC and RYWC might be violated.
If the system does not use mechanisms like vector clocks or other version counters, MWC
might be violated as well if a client issued a write to A right before the replica failed and
issued another write to replica B during the unavailability. In that case, A might propagate
the first update which then would replace the second one, thus, violating MWC.

Generally, crash failures typically cause inconsistencies of all kinds depending on the ac-
tual client requests during the period that the problem persists. As soon as the failure is
resolved, these inconsistencies become visible to clients if the system does not resynchro-
nize fast enough. Sufficiently fast resynchronization is often difficult as failure detection is a
non-trivial issue so that a temporary failed replica might not even realize that it had a failure,
hence, requiring resynchronization. Similarly, inconsistencies also become visible if clients
interact with different parts of the system during network partitions but still maintain external
means of communication, i.e., client A sends an update to system part 1 and tells client B
about it. If client B then accesses system part 2, he will not be able to read A’s update.

Especially crash-failures of network links (i.e., network partitions) but also of replicas tend
to create version branches which are impossible to synchronize within a storage system28

without information loss.

2.5.3. Fault Tolerance

Özsu and Valduriez [74, p.331] define fault tolerance as follows: “Fault tolerance refers to a
system design approach which recognizes that faults will occur; it tries to build mechanisms

28At least, without application-specific information like within the Ficus File System [83]



2.6. Conclusion 39

into the system so that the faults can be detected and removed or compensated for before
they can result in a system failure.”. Most mechanisms fall in the areas of redundancy and/or
modularization [74, p.331], i.e., having several identical instances with well-defined input
and output interfaces that are implemented as independent of each other (and other modules
as well) as possible.

A good example for modularization and redundancy is the Paxos algorithm [67, 68]: Each
participating role (proposer, acceptor, learner) can be assumed by more than one machine (re-
dundancy) which communicate via well-defined interfaces (modularization). For decisions,
only a majority of acceptors is required, i.e., ideally only one machine beyond a 50% quo-
rum must be available. Using asynchronous messaging for communication further increases
the modularization and independence of machines. There is also a Paxos variant which can
tolerate byzantine failures.

2.6. Conclusion

In this chapter, we started by describing different definitions of consistency from a database
or distributed systems view. We then focused on the distributed systems view and discussed
consistency perspectives (client-centric and data-centric), consistency dimensions (staleness
and ordering), as well as different consistency models both from a client (MRC, RYWC,
MWC, WFRC) and provider perspective (LIN, SC, CC, EC, Weak Consistency).

In the third part of this chapter, we discussed consistency trade-offs, namely consistency
versus latency and availability, as described by the CAP theorem and the PACELC model.
We also covered the concept of indirect consistency trade-offs.

Finally, we presented four influential NoSQL systems (GFS, Bigtable, Dynamo, and
PNUTS) and briefly discussed the NoSQL landscape as well as typical failure and fault
tolerance scenarios in distributed storage systems.





3. Related Work

Our work proposes a set of novel ideas and approaches that for the first time cover the field
of Consistency Benchmarking and the use of its results as a whole. In this chapter, we,
therefore, discuss related approaches for each main contribution in separate sections, starting
with work on modeling and simulation of arbitrary QoS attributes in section 3.1. Next, in
section 3.2 we describe existing approaches for system benchmarking of distributed storage
systems. Finally, before coming to a conclusion, we discuss approaches which are concerned
with the management of consistency in distributed storage systems in section 3.3.

More basic literature which our approaches build upon can also be found in chapter 2
which we do not fully recap within this chapter. We also do not discuss related work on
consistency metrics here as we use chapter 4 to identify requirements for consistency metrics
first before discussing metrics from related work with regards to these requirements.

This chapter reuses material previously published in MW4SOC 2011 [17], TPCTC 2013 [19],
IC2E 2013 [16], NETYS 2013 [15], and IC2E 2014 [18].

3.1. Modeling and Simulation of Software Quality

There is a lot of work on performance prediction mainly from the software engineering com-
munity [13, 100, 52, 59, 38], to name just a few examples. To our knowledge, however, none
of these address consistency of distributed storage systems – either because the focus is more
on non-distributed systems or on distributed queuing system. This is probably due to the fact
that strict consistency was considered a given in classical database systems, where only a few
research prototypes dared to relax consistency, e.g., [85, 83, 93, 64, 4]. Only with the advent
of large scale web applications and the success of Cloud Computing, has EC found more
widespread adoption [25, 32, 37, 44, 65, 12]. This is because the CAP theorem [45] and
the PACELC model [2] call for relaxed consistency guarantees for those systems or rather in
those use cases where neither reduced availability nor high latencies can be afforded.

Bailis et al. [11] also propose to simulate consistency behavior in distributed storage sys-
tems. They present a model called WARS coupled with Monte Carlo simulations. In contrast
to our model, as we will see in chapter 5, their approach is limited to Dynamo-style [37]
quorum systems using Last Write Wins as a conflict resolution strategy while our approach
allows for arbitrary replication schemes – in that regard their model is essentially a subset
of ours. To our understanding, their model assumes identical distributions of network link



42 3. Related Work

latencies between all replicas, i.e., their approach can only work for replicas in single site,
non-geo-distributed deployments which will show similar (low) latencies between all repli-
cas. Furthermore, they consider neither failures nor ordering or client-centric consistency
behavior. So, while, at a first glance, their approach seems similar to our contribution from
chapter 5, there are a few key differences.

3.2. System Benchmarking of Distributed Storage Systems

There is a lot of work on system benchmarking of distributed storage systems, e.g., [33, 104,
58, 20, 43, 80, 73]. Some of those even call for system benchmarking of consistency behavior
in their future work section but neither of them addresses the issue itself.

Wada et al. [98] propose an approach to experimentally determine client-centric consis-
tency behavior of distributed storage systems with only black box access (i.e., a get and put
interface and no further knowledge on the system internals). As this approach uses only a
single machine for reading and writing, many inconsistencies will go unnoticed by their ap-
proach. Essentially, it is more comparable to our approach for RYWC measurements than
to our staleness measurements which we will both present in chapter 6. This can also be
seen in the fact that in their experiments they are not able to observe the (at that time) really
surprising staleness patterns in Amazon S3. Still, we see their work as a basis for our system
benchmarking approach. We have later extended and modified it in joint work with Stefan
Tai [17], as well as with Liang Zhao and Sherif Sakr [19].

Anderson et al. [6], Golab et al. [46], and Rahman et al. [81] of HP Labs present an
alternative approach using metrics based on Lamport’s definitions of safeness, regularity,
and atomicity [66]. These definitions stem from the synchronization of processes in multi-
core systems. As access times to the main memory are very low, staleness values are, in
the original scenario, negligible which is entirely different in distributed storage systems.
Furthermore, each of these metrics aggregates the staleness and ordering dimensions so that
we believe that they cannot provide meaningful results for any of the problems which we
identified in chapter 1. In chapter 4, we will discuss several key requirements for consistency
metrics based on literature and IEEE standards – due to the aggregations used, their metrics
violate several of these requirements. Additionally, their metrics capture only maximum
deviations so that they are best used for systems showing very low variance in consistency
behavior which, as we have seen in our experiments, is rarely if ever the case in eventually
consistent storage systems. In their experiments, they measure inconsistencies observable in
actual application workloads. While this may seem desirable at a first glance, this mainly
detects inconsistencies caused by the application workload instead of inconsistencies caused
by the storage system implementation. In our discussion section of chapter 7, we will explain
in detail why this is the case.



3.3. Management of Consistency Guarantees 43

Zellag and Kemme [103] also present an alternative approach counting consistency anoma-
lies for arbitrary cloud-based applications in transactional and non-transactional datastores.
At runtime, their approach builds a dependency graph to detect cycles, i.e., consistency vio-
lations. To our knowledge, their approach is currently limited to storage systems offering at
least CC which is typically not supported by cloud storage services or NoSQL system.

Patil et al. [77] also measure staleness in terms of time within their implementation of
YCSB++ extending the original YCSB [33] system benchmark. Their approach, though, can
only measure rough approximations of actual consistency behavior due to the way values are
measured.

Klems et al. [57] also propose consistency system benchmarks but their approach using
Fox and Brewer’s harvest and yield metrics [42] does not consider staleness of results, rather
measuring availability and completeness of answers of a distributed queueing system. Their
results are, hence, not directly applicable to distributed storage systems.

3.3. Management of Consistency Guarantees

There is very little work on handling inconsistencies of storage systems outside said storage
system: MDCC [61] uses a client-side middleware component, implemented as a library,
to increase the consistency guarantees of an eventually consistent storage systen. For this
purpose, they use Generalized Paxos which comes with a price, though: As the middleware
components need to communicate, this directly affects latency and under adverse conditions
availability. Megastore [12] is implemented on top of Google BigTable [25] to increase its
consistency guarantees via 2PC and Paxos. Both approaches end up being storage systems
itself instead of just a middleware layer running in a decentralized way. Both systems opt for
SC guarantees which have a much higher impact on performance and availability than CC
guarantees, which we will later propose in our approach, but might be an alternative if even
stronger consistency guarantees are required.

Consistency Rationing [84, 60] is concerned with the adaption of consistency guaran-
tees based on application requirements at runtime. This can either be done by running ap-
proaches like our middleware (chapter 9), or using Consistency Benchmarking results (chap-
ters 5 and 6) together with a storage system that offers various consistency settings, e.g.,
Cassandra [65], or by using storage systems that offer bounds on different consistency di-
mensions. In the latter category, Krishnamurty et al. [63] propose an approach which allows
clients to specify consistency requirements for operations but focuses on staleness. Yu and
Vahdat [102] introduce the notion of a Conit, a consistency unit, with the three dimensions
staleness, order error and numerical error. Their prototype allows clients to specify bounds
on each of the dimensions.



44 3. Related Work

Brantner et al.’s implementation of a database on top of Amazon S3 [21] adds database
features on top of the key-value store S3. They address consistency only as a sidenote: If
MRC and RYWC are desired additional metadata is used to identify inconsistencies and to
refetch data in case of violations. This cannot guarantee client-centric consistency but can at
least identify violations.

Bailis et al.’s Bolt-on CC [10] can be seen as an alternative approach to what we will
present in chapter 9: While our approach can only provide per-key guarantees, their ap-
proach offers multi-key guarantees. In contrast to our approach, though, they only capture
dependencies explicitly specified by applications which is not identical to CC so that the
publication title seems misleading. They also “maximize” staleness by reading only locally
from the cache and incur high performance overheads. Furthermore, their approach requires
detailed knowledge on the conflict resolution strategy of the datastore which makes it inap-
plicable for use with most cloud storage services.



Part II.

Consistency Benchmarking





Under “Consistency Benchmarking”, we understand the analysis of distributed storage
systems in terms of their consistency guarantees and actual behavior. This can be done either
analytically by identifying key influence factors in a model and running simulations, or we
can use system benchmarking to actually measure behavior of a deployed storage system.

Both approaches have advantages and disadvantages. While system benchmarking deliv-
ers accurate results, it requires time-consuming and expensive experimental measurements.
Depending on the number of configurations that are of interest, system benchmarking may,
hence, not be an option. Simulations, in contrast, require only very little input data which
can be reused for a large number of configuration options. Based on an input model, a sim-
ulation then delivers approximations or estimates of actual consistency behavior; it does not
even require to set up an actual storage system. But while simulations provide results for a
fraction of the cost of actual system benchmarks, these results can only be approximations
and need to be verified experimentally.

We, therefore, propose to combine the strengths of both approaches by simulating in a
first step all relevant configurations and systems. In a second step, we propose to verify the
simulated findings for only a few selected configuration options. This approach minimizes
cost as irrelevant configurations are not experimentally benchmarked in the first place. To
avoid missing promising candidates, though, this requires a sufficiently precise simulation
approach. In chapter 5 we present such a consistency simulation approach which works well
in concert with the system benchmarking approach for consistency which we show directly
afterwards in chapter 6.

This part, therefore, starts with the presentation of consistency metrics in chapter 4 before
continuing to, first, consistency modeling and simulation and, second, approaches for system
benchmarking of consistency behavior.





4. Consistency Metrics

In this chapter, we discuss different metrics which can be used to quantify consistency be-
havior of distributed storage systems. We start by describing general aspects of metrics and
develop requirements for consistency metrics in section 4.1. Afterwards, in sections 4.2
and 4.3, we describe existing and new metrics for measuring data-centric and client-centric
consistency. We also discuss to which degree each of these metrics fulfills the requirements
from section 4.1 and identify the consistency metrics which we use for the remainder of this
work.

This chapter is based on material previously published in NETYS 2013 [15]. It also in-
cludes ideas which were published in MW4SOC 2011 [17] and TPCTC 2013 [19].

4.1. Requirements for Consistency Metrics

Kaner and Bond [55] define, based on the IEEE Standard 1061 [53], an attribute as “a mea-
surable property [...] of an entity”, i.e., of a quality, while a metric is “the function that
assigns a value to the attribute”. This function also includes a unit. So, when measuring a
certain aspect, a measurement always comprises a value and a corresponding unit (e.g., for
the height of a building this could be the value “50” and the unit “meter”). If it is for a partic-
ular metric not possible to find two values which do not have any value in between them, the
metric is continuous. Otherwise the metric is discrete. An example for a continuous metric
would be the height of a person, whereas clothing sizes are an example for a discrete metric.

The overall goal of a metric is to provide a meaningful and accurate representation of the
quality under consideration. Based on this, consistency metrics need to be meaningful to
either or both providers and clients of a storage system and need to be able to adequately
discriminate between different consistency levels. Kaner and Bond [55] further specify ac-
curacy and require the following aspects (we only report the ones applicable to consistency
metrics):

Correlation According to Kaner and Bond [55], there should be a linear correlation between
the observed attribute and the metric output. As consistency cannot be grasped or mea-
sured directly, we propose for our purposes to demand some (not necessarily linear)
correlation between consistency and the metric output, i.e., changes in the consistency
behavior should be visible in the metric output.



50 4. Consistency Metrics

Tracking If the quality changes over time, the metric output should change as well and do
so quickly.

Monotonicity The metric function M : q→M(q), which maps quality levels q to measure-
ment values M(q), should be a monotonic function, i.e., if q increases M(q) may not
decrease1.

Discriminative Power The metric should be able to clearly differentiate between low and
high quality levels.

Reliability “The metric shall demonstrate [...(these)] properties for at least P% of the appli-
cation of the metric.” [55]

All of this leads us to the following requirements:

1. Reliability obviously requires reproducibility, i.e., measuring the exact same situation
more than once should yield approximately the same measurement result every time.

2. A metric should preferably be either continuous or at least have a large, expressive set
of potential output values, i.e., the resolution of the metric should be sufficiently high
and should not contain unnecessary aggregation – otherwise Correlation, Tracking,
Monotonicity and Discriminative Power might be compromised. Specifically, if ag-
gregation is necessary, it should use short time windows for aggregation (e.g., moving
averages instead of average) so as not to violate Tracking.

3. A metric should be fine-grained (instead of coarse-grained), i.e., it should only measure
one attribute at a time. Otherwise, two attributes might offset each others effect on the
metric output. [53] also calls this a “direct metric”.

4. A metric may have a target audience but there must be at least one target audience for
which the results are meaningful in that they can actually use them for their purposes.

4.2. Data-centric Consistency Metrics

We now use the requirements from the previous section to discuss the suitability of data-
centric consistency metrics.

1Kaner and Bond name this requirement “consistency”. We use the term “monotonicity” instead, which both does
not create another wording conflict as well as serves better to describe the requirement.



4.2. Data-centric Consistency Metrics 51

4.2.1. Consistency Anomalies

Zellag and Kemme [103] extend their previous work on transactional data stores to non-
transactional data stores. They propose to build a global dependency graph based on oper-
ation logs and count cycles in the graph as a metric for “consistency anomalies”. This is a
discrete, coarse-grained metric and one of their main assumptions is that the storage system
guarantees at least CC which is very restrictive and does not allow to analyze consistency
guarantees of most NoSQL systems which only offer EC. Measurements should be repro-
ducible if the measurement setup can be reproduced but we are unsure who the intended
target audience may be. We, therefore, believe that this metric is only applicable for a small
range of systems.

4.2.2. Atomicity, Regularity, Safeness

Rahman et al. [81], Golab et al. [46] and Anderson et al. [6] at Hewlett Packard Labs also
propose to build dependency graphs based on operation logs and to count cycles in the graph
as a metric for consistency behavior. They distinguish the three properties safeness, regularity
and atomicity, based on Lamport [66], for which they each count violations. A storage system
that has no cycles in its atomicity graph fulfills LIN. The other two properties, though, also
consider staleness as well as ordering. Regularity is, thus, stricter than SC whereas Safeness
cannot be compared to existing consistency models. Regularity mandates that “a read not
concurrent with any writes returns the value of the most recent write, and a read concurrent
with some writes returns either the value of the most recent write, or the value of one of
the concurrent writes” [6]. Safeness in contrast relaxes the last requirement so that reads
concurrent with writes may return arbitrary values. Essentially, safeness requires LIN for
non-concurrent requests and Weak Consistency for concurrent requests. Thus, the practical
use of this is doubtful as a real-world systems may or may not return the value of the most
recent write but, to our knowledge, no system exists that actually returns values that have
never been written.

Golab et al. [46] extend these definitions to k-Atomicity, ∆-Atomicity, k-Regularity, ∆-
Regularity, k-Safeness and ∆-Safeness. Over an entire set of executions, k-Atomicity reports
the maximum version lag encountered during an atomicity violation while ∆-Atomicity mea-
sures the maximum time staleness encountered during a violation (likewise for the other four
metrics).

The definitions of safeness, regularity and atomicity originally stem from the area of mul-
tiprocessor systems [66] where atomicity can easily be achieved as staleness is close to zero
since all processes run on the same host. We believe, though, that these three definitions are
not very useful in the context of distributed systems. Chockler et al. [29] seem to share that



52 4. Consistency Metrics

opinion. Still, the theoretical computer science community usually uses these definitions to
express consistency in distributed state management.

For all these metrics, reproducibility should be fulfilled if the exact same situation can be
reproduced. The measurement resolution, though, is very poor as only the single maximum
inconsistency value is reported. Additionally, all six metrics are rather coarse-grained as
they measure staleness and ordering at the same time. A practical use beyond theoretical
considerations, due to the limitations outlined above, is doubtful: What does it mean to a
storage provider or an application developer if a system is, e.g., 5-atomic? The authors yet
have to proof a practical use of their results beyond the ranking of systems. Specifically,
these measurements are orthogonal to the consistency models presented in chapter 2.

4.2.3. Data-centric t-Visibility, k-Staleness

We propose to measure staleness both in terms of time and operation count/missed versions2.
t-Visibility describes staleness in terms of time and reports the distribution function of incon-
sistency windows, i.e., for a large number of executions it outputs the likelihood of a specific
inconsistency window length. We define the data-centric inconsistency window as the time
interval between the end of a write on the first replica and the end of a write on the last
replica.

Measurements of t-Visibility are reproducible as they rely not on a single measurement but
instead report a distribution function of staleness values. As arbitrary distribution functions
are possible, t-Visibility is a continuous metric and it is also fine-grained as it only measures
staleness without ordering. Therefore, it is also completely workload-independent as long
as the system is not overloaded. t-Visibility is of interest for storage providers as it gives
detailed insight into how long replicas take to synchronize after an update.

k-Staleness, on the other hand, measures how many versions a specific read was lagging
behind (also reported as a distribution function). Hence, it also depends on the actual sys-
tem workload, e.g., in a situation where t-Visibility is at a constant level of five seconds
k-Staleness may be between two and three if updates are issued every two seconds. If up-
dates are issued only every ten seconds, though, k-Staleness will be between zero and one.
As it can easily be measured as a side product of t-Visibility measurements without additional
effort, it can still be useful, though.

For measurements of k-Staleness the same limitations (as for the metrics from sections 4.2.1
and 4.2.2) hold regarding reproducibility: Measurements can only be reproduced if it is pos-
sible to reproduce the exact same workload again. As in the case of t-Visibility the metric
is continuous and relatively fine-grained even though it depends on the client workload. k-

2We use the names proposed by Bailis et al. [11] after our original paper [17] had been published.



4.3. Client-centric Consistency Metrics 53

Staleness is meaningful to storage providers interested, for example, in offering bounds on
version-based staleness as part of an SLA.

Bailis et al. [11] also use the metrics t-Visibility and k-Staleness to provide bounds on
consistency.

Depending on the storage system’s guarantees towards dirty reads3, the definition of t-
Visibility may differ. If a system guarantees no dirty reads, we define t-Visibility without
Dirty Reads as the time window between the commit of an update and the end of a write on
the last replica. This is identical to t-Visibility with Dirty Reads minus the request latency.
In eventually consistent systems, dirty reads are the default case; we will, hence, for the
remainder of this work use the term t-Visibility exclusively to refer to t-Visibility with Dirty
Reads and will indicate it where not.

4.2.4. Ordering Violations

We propose to measure ordering violations by analyzing the replicas’ operation logs to deter-
mine the number of violations for the next stronger consistency model; i.e., in a SC system
violations of LIN will be counted, in a CC system those of SC and in an EC system viola-
tions of CC. Ordering can then be reported as number of violations of consistency model
X per unit of time or as a likelihood of violation by calculating the percentage of violating
operations.

This metric, obviously, highly depends on the distribution of requests regarding time, tar-
get key, originator and kind (read, insert, update, delete). Hence, for reproducibility, it is a
hard requirement to replay exactly the same client workload which will often be problem-
atic4. Ordering Violations is a continuous metric which is as fine-grained as possible5; its
measurements are meaningful as they allow to reason, based on a particular workload and
certain consistency model requirements, which storage system is able to fulfill these require-
ments. For instance, if CC is required and the measurements show only a few Ordering
Violations of CC in an EC system, then this system might also be an option instead of CC
systems which potentially have poorer latency values while being more expensive.

4.3. Client-centric Consistency Metrics

Most researchers so far tend to take the data-centric provider view on consistency, very little
work exists on client-centric metrics even though those are highly relevant to application de-

3Reading yet uncommitted data
4This is a common problem for consistency metrics: Ordering cannot be considered without analysis of the request
workload.

5The dependency on actual workloads is problematic in this context and violations of LIN obviously also consider
staleness.



54 4. Consistency Metrics

velopers. We now use the requirements from section 4.1 to discuss the suitability of existing
client-centric consistency metrics and also propose new ones.

4.3.1. Client-centric t-Visibility, k-Staleness

Wada et al. [98] propose to take a client-centric perspective for measuring consistency. They
implicitly define a metric for staleness in terms of time. This metric measures the client-
observable inconsistency window as the probability of reading fresh versus stale data over
time. Client-centric t-Visibility6, on the other hand, is defined similar to its data-centric
equivalent as the distribution function of inconsistency windows. From a client perspective,
we define an inconsistency window as the time between the commit timestamp and the latest
possible read of the previous version for systems that do not expose dirty reads. For all other
systems, where dirty reads are possible, the inconsistency window already starts with the
beginning of the update request, i.e., the request latency is treated as part of the inconsistency
window. Again, we will refer to t-Visibility with Dirty Reads when using the term t-Visibiliy
as the default case in eventually consistent storage systems. In all other cases we will use
the term t-Visibility without Dirty Reads, see figure 4.1 for an overview of the four client-
centric and data-centric t-Visibility metrics using the example of a (3,2,1) quorum system7.
The probability of reading fresh versus stale data over time is a different representation of
t-Visibility; transformation is possible in either direction.

Patil et al. [77] also use a staleness metric similar to our definition of t-Visibility [17].
Client-centric t-Visibility generates reproducible results as it relies on a large number of

single measurements to create a distribution function. As its data-centric counterpart, it is a
continuous metric and it is meaningful for application developers who can, for example, use
the knowledge on t-Visibility to determine the time for which the results of issued update
requests need to be cached.

As in the case of data-centric k-Staleness, client-centric k-Staleness measures the staleness
in terms of versions. The difference is that the client-centric version only analyzes the client-
visible version lags. Hence, the metric is not workload-independent but can be measured as
a side product of t-Visibility. So, measurements can only be reproduced if it is possible to
reproduce the exact same workload again and the metric is continuous and relatively fine-
grained. The results are meaningful for application developers, e.g., when trying to prove
bounds on how many versions a read might lag behind.

6We again use the names proposed by Bailis et al. [11] after our original paper [17] had been published.
7There are three replicas out of which two will be read during a read. During updates, the operation commits after
writing one replica, afterwards the update is propagated asynchronously to the remaining two replicas.



4.3. Client-centric Consistency Metrics 55

Update 
start 

replica 1 

Update 
end 

replica 1 

Update 
start 

replica 2 

Update 
end 

replica 2 

Update 
start 

replica 3 

Update 
end 

replica 3 
time 

Data-centric t-Visibility with Dirty Reads 
 

Data-centric t-Visibility without Dirty Reads 
 

Client-centric t-Visibility with Dirty Reads 
 

Client-centric t-Visibility 
without Dirty Reads 

Figure 4.1.: Different Definitions of t-Visibility in Comparison in a (3,2,1) Quorum System

4.3.2. Ordering Violations

Wada et al. [98] propose to measure ordering via the client-centric ordering models MRC,
RYWC and MWC. In their work, though, these metrics are binary – either fulfilled or not.
We propose to extend this by using the likelihood of a violation of MRC, RYWC and MWC
as ordering metrics8.

The probability of violations for each ordering model is reproducible if the exact same
workload can be recreated. Depending on the implementation, though, it may also be re-
producible in a workload-independent measurement: For instance, in the case of MRC the
probability of violation can be 0% if sticky sessions and suitable mechanisms for failure han-
dling are used9. All three metrics are continuous and as fine-grained as possible for ordering
metrics. They are meaningful to application developers who can use the information to ef-
ficiently handle inconsistencies at the application level. Storage providers might use these
metrics to express consistency guarantees within a SLA.

Instead of the probability of violations, it would be even more precise if said probability
was reported as a function of the duration since the last update. This becomes intuitive when

8The same can be done for WFRC, but actual measurements from a client perspective can be difficult as some
insight into the storage system is required.

9In sticky sessions, all requests by a client are routed to the same replica. If this replica fails, the system needs to
wait until all other replicas are up-to-date before routing the respective clients to a new replica. This is also often
implemented as session consistency, where the guarantees only hold for the duration of a session. In that case,
the failure handling need not be considered as a new session is started if a replica fails.



56 4. Consistency Metrics

considering MRC in two extreme situations: In the first scenario, the last update was just one
nanosecond ago. So, when reading any replica but the replica where the update originated,
chances are that MRC will be violated. In a second scenario, the last update occurred several
weeks ago. Now, the probability of violating MRC is zero. The probability values of an
ordering violation obviously depend on the duration since the last update. Still, from an
application developer’s perspective, it will typically not be known when the last update was
issued. So, while reporting the probability as a function of time may be more precise, it is
also less meaningful to application developers. We, therefore, choose to report the aggregated
value without a reference to the time interval since the last update.

4.4. Conclusion and Discussion

In this chapter, we started by defining criteria and requirements for consistency metrics –
namely reproducibility (repeating a measurement should yield the same results), high reso-
lution (measurements should be able to detect small as well as large consistency deviations),
fine granularity (measurements should only analyze one attribute at a time), meaningfulness
(measurement results should be meaningful to either or both storage providers and users).

Next, we discussed different data-centric metrics based on these criteria and identified t-
Visibility, k-Staleness and Ordering Violations as “good” metrics, while Consistency Anoma-
lies as well as Atomicicity, Regularity and Safeness each violate at least one requirement.
Finally, we did the same from a client perspective and identified client-centric t-Visibility
and k-Staleness as well as client-centric Ordering Violations as valid metrics. Table 4.1 gives
an overview of all valid metrics which we will use for the remainder of this thesis.

There is a general problem with all kinds of ordering metrics: While staleness can be
measured entirely workload-independent10, ordering highly depends on the workload. For
instance, from a client perspective a workload could be such that the interval between re-
quests is larger than the maximum client-centric t-Visibility. In that case, no violations of
MRC or RYWC will ever be seen by the client. On the other hand, in a scenario where a
client always first issues a write request followed by a read on the same key, the probabil-
ity of RYWC violations mainly depends on the length of time between those operations. If
t-Visibility is a constant of five seconds and this interval is four seconds, there will be 100%
RYWC violations. If this interval is six seconds, there will be 0% RYWC violations.

It gets even more complicated in the face of failures: If, for example, a read request fails,
there are two possible outcomes. Either the client will receive an error message and read

10Unless the system is overloaded with resource saturation levels close to 100%, staleness mainly depends on the
time necessary to forward updates between replicas and the time needed to process these requests. If the system
is overloaded, no general statement is possible as the system behavior then entirely depends on prioritization of
processes. The same system configuration may even behave differently when deployed on different hardware or
operating systems.



4.4. Conclusion and Discussion 57

Metric Staleness Ordering Perspective Description
t-Visibility X - Provider Distribution function of

data-centric inconsistency
windows

k-Staleness X - Provider Distribution function of
data-centric version lag

Ordering Violations (X) X Provider Violations per time or
likelihood of violation of
next stronger consistency
model

t-Visibility X - Client Distribution function of
client-centric inconsis-
tency windows

k-Staleness X - Client Distribution function of
client-observable version
lag

Violations of MRC - X Client Probability of violation of
MRC during reads

Violations of MWC - X Client Probability of violation of
MWC for two consecutive
writes

Violations of RYWC - X Client Probability of violation of
RYWC during reads fol-
lowing a write

Table 4.1.: Overview of Consistency Metrics Fulfilling all Requirements

again right away or he will encounter a timeout much later. In the first case, the rate of
requests during failures will actually increase while in the second case the rate of requests
will in fact decrease. Both cases can have a large impact on consistency measurements in
the presence of failures. Generally speaking, we can, hence, say that ordering cannot be
measured workload-independent and that measurements for one workload may have little
meaning or implication for another workload.





5. Modeling and Simulation of Consistency Behavior

Our objective for this chapter is a model to assess and compare the consistency behavior
of arbitrary eventually consistent storage systems and their configurations, which does not
require expensive experimental setup costs, but uses well-defined metrics and simulations to
predict consistency behavior.

We start in section 5.1 by defining assumptions our modeling and simulation approach
needs to make. Next, we present our model, comprising the following sub-models: The ba-
sic system model (section 5.2.1), the interaction model (section 5.2.2) and the failure model
(section 5.2.3). Based on this model, two distinct simulation approaches are possible: either
calculating convolutions which guarantee high precision results with limited output metrics
and high computational effort (section 5.3.1) or Monte Carlo simulations (section 5.3.2),
which offer approximations with less computational effort and which support all consistency
metrics from chapter 4. We also show how the necessary simulation input data can be ob-
tained, see section 5.3.3. Finally, we present a conclusion (section 5.4).

5.1. Assumptions

Our model assumes replication to be the main method for ensuring availability and scalability
of the data store. To this end, the following additional assumptions are made.

1. No byzantine failures: We focus on modeling and simulating the result of the particular
storage system’s trade-off decision on the issue of latency versus consistency as well as
availability versus consistency [45, 2], assuming that replicas will behave as intended
(e.g., return the latest locally known version and not some random value). Crash-stop
failures and crash-recover failures are supported (see section 5.2.3).

2. No side effects: Machines running the storage system in question or machines respon-
sible for collecting our model’s input data will not be affected in their performance by
external effects, e.g., other software running on that machine. The same is true for the
network connection between any two machines. Of course, the same holds for every
kind of system benchmark. Hence, this assumption can be reduced to the requirement
that collected simulation input data accurately reflects reality. For example, if we mea-
sure round trip times between two servers and always see a delay of 500ms in our



60 5. Modeling and Simulation of Consistency Behavior

results, we assume that this is representative, i.e., that 500ms delay is accurate most
of the time. This assumption is important as companies like Google are well known
to run several different systems on the same machine. For obvious reasons, a storage
system will show different behavior when, e.g., a MapReduce job is running on the
same machine compared to when there is no other system running. This assumption
does not preclude the simulation of storage systems running on a shared host (e.g., on
a virtual machine in the cloud). Still, it requires that the parallel workload during the
measurement of the input data is comparable to the parallel workload in the situation
which shall be simulated.

3. Only deterministic protocols for update propagations: A request originating in a par-
ticular node will always be propagated in a deterministic way, i.e., at deploy time it is
known which node will send its updates to which other node. It is acceptable that a
particular node may have more than one node to which it will send its updates with a
certain probability as long as this set of nodes and the corresponding probabilities are
known at deploy time. This will usually be the case, e.g., for typical update propaga-
tion schemes like quorum or master-slave systems.

4. Updates only execute based on update requests: Systems often include specific mech-
anisms that change state during reads (e.g., read repair) or during periodic reconcil-
iation. These mechanisms affect consistency behavior but are hard to include in a
general model as it is not easily possible to determine when and where they are trig-
gered. Furthermore, they are very system-specific. Therefore, we do not consider these
mechanisms now and leave them to future extensions of our approach.

Apart from these assumptions our model is applicable to any kind of system which handles
distributed state.

5.2. Model

Our model comprises three distinct parts which we describe in the following. The basic
system model (section 5.2.1) can be used independently, while both the interaction model
(section 5.2.2) and the failure model (section 5.2.3) are built on top of it.

5.2.1. Basic System Model

A network of interconnected replica servers can be described as a graph G= (V,E) where the
vertices V (G) correspond to servers and the edges E(G) describe the physical connections
between those servers.



5.2. Model 61

Sending data along a particular edge takes different amounts of time depending among
others on the amount of data and the available bandwidth between the two vertices. We add
these time differences as weights on the edges. In contrast to typical graph theory examples,
though, our weights may vary over time and depend on a number of parameters. To reflect
this, we use a family of probability density functions as edge weights. Li j(s) describes the
probability distribution for one One-Way Data Transfer Time (ODTT) when sending data
size s from vertex i to j. Specifically, Li j(s) is not required to be identical to L ji(s), though
it is often likely to be so. Note, that ODTT is the time necessary to send data from A to B
without any acknowledgments or response messages above the TCP layer.

Comparable to the edge weights, there is also something similar for the vertices: Requests
are not only delayed when traveling over the network but also within a node as it takes
some time to flush data to disk and to handle internal application logic. In geo-distributed
deployments, these values will often be very small compared to Li j(s) values and can in those
cases be neglected. We still include them in our model as they can have a large influence in
single site deployments. Reads and updates both incur processing time overheads which
depend on the available physical resources per node as well as the data size. We denote the
respective families of probability density functions as Ri(s) for reads and Wi(s) for writes.

5.2.2. Interaction Model

While the basic system model from section 5.2.1 describes a system deployment, a storage
system typically serves the purpose to be accessible from the outside. Depending on load
balancer strategies or general policies, requests are routed to different replicas. Often, con-
current requests to the same key will originally be handled by different nodes. We categorize
requests as either an update or a read operation as both may be handled entirely different. For
example, in Yahoo’s storage system PNUTS (Sherpa) [32] all update requests are processed
at a master replica and then forwarded to the slaves using a system called Yahoo! Messaging
Bus. Reads in contrast can be sent to any replica depending on whether the client allows
eventually consistent reads or not.

To reflect these kinds of interaction in our basic system model, there is an arbitrary number
of directed subgraphs Gi = (V,E) for each vertex xi which describe the update propagation
path for the required set of replicas, i.e., who forwards updates to whom for all update re-
quests originating in vertex xi. We call those replication graphs. Furthermore, there may be
an arbitrary number of directed subgraphs per vertex describing which replicas will be read
by whom in which order upon a read request. We call those read graphs. Neither replication
graphs nor read graphs need to reach all vertices (while replication graphs typically will and
should reach all vertices, read graphs usually will only access a small subset). Figure 5.1



62 5. Modeling and Simulation of Consistency Behavior

A 

C 

B 
D 

A 

C 

B 
D 

A 

C 

B 
D 

Figure 5.1.: Example for Replication and Read Graphs: The Set of Interconnected Replicas on the
Left, a Possible Replication Graph for A (in the Middle), a Possible Read Graph for B (on the Right).

shows an example of a system graph and what its replication and read graphs might look
like.

Each replication or read graph has not only a start vertex but also a probability value de-
scribing the likelihood of a write (or read respectively) request using that particular graph. We
call those values pW

i for replication graphs and pR
i for read graphs. Probability values depend

on load balancing strategies as well as geographical distribution of application workload and
replicas.

Since update propagation and reads may happen synchronously, asynchronously or as part
of a quorum, this needs to be considered within the interaction model. For this purpose, an
edge of a replication or read graph is always part of a synchronicity group which belongs
to the start vertex of that particular edge and has one of the three types named above: syn-
chronous, asynchronous and quorum. In the latter case, it also includes information on the
number of edges necessary to return success within that synchronicity group. As the name
states, synchronicity groups may contain arbitrary numbers of edges. Based on this, it is pos-
sible to model all kinds of replication schemes ranging from master-slave setups to quorum
systems and any possible combinations of those two.

5.2.3. Failure Model

There are two types of non-byzantine failures (see section 2.5): Crash-stop failures where
a component becomes permanently unavailable (at least regarding a near time horizon) and
crash-recover failures where a component becomes unavailable for a limited period of time.

We consider both types of failures in our model by assigning a set of unavailability inter-
vals to each vertex and edge as additional weights. Sets may be empty and crash-stop failures
can be modeled by setting the end value of the specific interval to infinity.

Correlated and/or catastrophic failures can be modeled by assigning appropriately corre-
lated failure intervals to the respective components.



5.3. Simulation 63

5.3. Simulation

There are two possible ways to simulate consistency behavior using our model, either via cal-
culating convolutions or via a Monte Carlo simulation. The first approach offers the highest
precision but is very compute-intensive, cannot consider failures and is limited to simulating
data-centric t-Visibility. Monte Carlo simulations, in contrast, also allow to simulate failures
as well as client-centric behavior and the compute effort is directly proportional to the level
of precision required.

In the following, we first describe the simulation approach of using convolutions before
continuing with Monte Carlo simulations.

5.3.1. Calculating Convolutions

When calculating convolutions, only data-centric t-Visibility can be calculated. Hence, the
question of “how soon is eventual” essentially translates directly to “how long does it take to
traverse the entire replication graph” for data-centric consistency.

For simulation purposes, we need to consider a replication graph as a tree with the originat-
ing vertex as the root node. The distribution of inconsistency windows can then be calculated
as the convolution of all Li j(s) and Wi(s) using different operators. The easiest to implement,
though not very efficient, algorithm is to calculate the convolutions using the add operator
along every path from root node to all leaves, first. In a second step, we can then calculate the
convolution of all these results from step 1 using the max operator. In a third step, the results
of step two for all replication paths are aggregated with the respective pW

i of the root node as
weights. The result of step three, then describes the distribution of data-centric t-Visibility
for the analyzed configuration of the distributed storage system.

For systems without dirty reads, the result needs some additional calculation: The latency
distribution can be calculated just like we did for the inconsistency window above. The
difference is that not all paths from root to leaves are used, instead all synchronous paths from
the root towards the leaves are considered. A synchronous path is a path where all edges are
synchronous (to consider quorums is difficult if not impossible in this simple algorithm). It
ends with a leaf or the vertex before an asynchronous edge – depending on which comes first.
Finally, we can determine the difference between the observed inconsistency window and
the latency distribution by calculating the convolution of both distributions using a subtract
operator.



64 5. Modeling and Simulation of Consistency Behavior

A C 

B 

D 

Figure 5.2.: Sample Replication Graph

For example, figure 5.2 shows a replication graph for write requests originating in vertex
B. In the first step, we would then calculate the convolution of

1. WB(s), LBC(s), WC(s), LCA(s) and WA(s) using the add operator for every data size s.

2. WB(s), LBD(s) and WD(s) using the add operator for every data size s.

In the second step, we calculate the convolution of the two results from the first step using
the max operator.

For reasons of legibility, we omit the formulas for calculating convolutions using different
operators and present this approach in a more informal manner. Necessary formulas can be
found in any statistics book or even on the Internet (e.g., [86]).

5.3.2. Monte Carlo Simulation

A Monte Carlo simulation requires a small extension of the model described above which
then also allows client-centric consistency simulation. One or more entities external to the
system graph, the clients, issue requests of a specific type (read or write) at a specific start
time. Furthermore, as concurrent updates can be simulated, it is necessary to specify a con-
flict resolution strategy. Possible strategies are

• Last write wins: Updates are applied strictly in the order that they arrive at the respec-
tive replica. Hence, replicas may have different values and may only converge upon
another isolated write1.

• Write set: This approach is similar to the understanding of consistency in GFS [44]
where a replica is consistent if it contains all updates independent of their order. Es-
sentially, writes are added to a set or appended to a log.

1Apache Cassandra (cassandra.apache.org) uses a slightly different last write wins strategy where clients timestamp
their requests and these timestamps are used by Cassandra to determine which update was “last”.



5.3. Simulation 65

• Return competing writes: The system uses mechanisms like vector clocks to identify
concurrent updates and returns all conflicting values upon a read. The next write by the
same client is expected to resolve the conflict if no further writes occurred in between.
This approach is, e.g., taken in Amazon’s Dynamo [37].

We propose to simulate the consistency behavior in three phases, the first two are identical
for all strategies. The benefit of separating simulation data generation and evaluation is that a
simulated request log could, at least theoretically, be analyzed for several conflict resolution
strategies. Furthermore, no limitations need to be made on the creation order of requests.

As a side effect, the Monte Carlo simulation can also produce latency and availability
predictions2.

Phase 1 A large number of simulated requests is created. For each request, a replication
or read graph is chosen based on the request type (read/write) and the appropriate values pW

i
and pR

i . The graph is then traversed to identify when processing starts and ends in which
node. For each start or end timestamp, an event is created.

During event generation, failures are considered by failing all requests that would incur
an error somewhere along their synchronous subgraph and delaying all asynchronous parts
until all respective components are available again. The difficult part is here, that delays due
to temporary failures influence the evaluation of quorum synchronicity groups. We do not
include a detailed algorithm listing here for reasons of legibility but we intend to publish our
simulation tool as open source. More details can also be found in chapter 7

Finally, events are written into a simulated log containing start and end events for individ-
ual writes and reads in vertices, operation starts, ends or fails as well as the list of vertices
participating in a read graph result.

Phase 2 This phase checks for data-centric consistency by first grouping all events within
the log by their (unique) operation id and then calculating the difference in time between the
first and the last timestamp as data-centric inconsistency window (t-Visibility3). The output
of this phase is, hence, the distribution of data-centric inconsistency windows, latencies and
the error rate. Results are reported both per replication graph and global (i.e., the aggregation
of all replication graphs).

2This is implemented in our simulation tool but we will not evaluate it as the focus of this work is the consistency
assessment. Simulating response times and availability levels is beyond the scope of this thesis.

3For t-Visibility without Dirty Reads, the algorithm does not need to change. Only different start events need to be
used. In our implementation this is supported without changes to the code.



66 5. Modeling and Simulation of Consistency Behavior

Phase 3 The third phase checks for client-centric consistency. For this purpose, every
simulated read request has to be analyzed: Based on the strategy specified above4, the list
of vertices participating in the results and the respective read start timestamps as well as the
respective write end timestamps in these vertices, our simulation tool identifies the writes
contained in the response of that read request (or the result of the operation depending on the
strategy). Comparing this information to the operation end timestamps of all writes (commit
timestamps) yields whether the read was stale.

Furthermore, when we set this result in relation to a) all write operation end timestamps by
the same client and b) all previous reads by the same client, we can easily determine whether
MRC or RYWC were violated.

Using the list of reads and the respectively contained writes, we can then calculate client-
centric t-Visibility (in this case: timestamp of the last read without a specific write minus the
timestamp of the operation end or start).

Currently, this phase logs for each read operation whether results were stale and whether
MRC or RYWC were violated. It also reports for each write the commit timestamp and the
last time a client saw a read results not containing this specific write. Additional evalua-
tion could be added if necessary5. Based on this information, a simple spreadsheet analysis
can determine the probability of MRC and RYWC violations as well as the client-centric
t-Visibility.

5.3.3. Simulation Input Data

Running a simulation requires knowledge of all parameters described in sections 5.2.1, 5.2.2
and 5.2.3. We now discuss briefly how these values can be measured in a real-world dis-
tributed storage system.

One-way Data Transfer Times ODTT values are hard to determine accurately due to
clock synchronisation issues. Essentially, there are two different ways: either measuring
ODTT values directly, thus, relying on the precision of the underlying clock synchronisation
protocol or accurately measuring Round Trip Time (RTT). For our purposes an RTT value
comprises the establishment of a connection, the transfer of data from A to B as well as,
after the first transfer completes, the data transfer from B to A using the same connection. In
contrast, an ODTT value comprises the time necessary for creating a connection and the data
transfer from A to B or only the data transfer if connections are reused. In a perfect world,

4Last write wins, Write set or Return competing writes. We have currently only implemented the Write set strategy
as this is the most generic strategy which the other two strategies build upon. Furthermore, the other two strategies
are actually groups of strategies and often system-dependent.

5Based on the output of phase 1, the algorithms of Anderson et al. [6] and Golab et al. [46] could be used to also
calculate consistency results in terms of their proposed consistency metrics if desired.



5.3. Simulation 67

ODTT values would be exactly half the RTT. But since there is an overhead to establish the
connection, fill the first TCP buffer etc., half the RTT is a lower bound for our desired ODTT
values. On the other end, there is always some time necessary to return the message to the
sender. So, ODTT will always be less than RTT. This leads to something like ODTT =

k ∗ RT T with k ∈ (0.5;1). We believe, that concrete values for k mainly depend on the
number of concurrent connections, something we have also seen in experiments. It should be
mentioned, though, that we have never seen k values of 0.5 in actual measurements. In future
work we want to address the question of choosing correct values for k, using both work from
the clock synchronisation community as well as network protocol research as input. For this
reason, we currently measure ODTT values directly, accepting NTP 6 accuracy.

ODTT values are not only affected by the available bandwidth between two nodes but also
by the communication middleware used. It is, therefor, necessary to use the same commu-
nication middleware for the measurement of ODTT values that the simulated storage system
uses. For example, in the case of Apache Cassandra this would be Thrift7. As we have seen
when using our own simple communication middleware system (which was specifically not
designed for performance), ODTT values may be in entirely different dimensions (in this
case a factor of 10 compared to ping).

Processing Times In theory, Wi(s) and Ri(s) should be relatively easy to determine, e.g.,
by mining server-side logs. If access to the source code is not possible, external tools like
Wireshark8 could be used to determine the distribution of durations between receiving a
request and responding (in that case, though, it is necessary to somehow correlate inbound
and outbound communication). These values are likely to be affected by other programs
running on the same machine. In practice, though, we have encountered inaccuracies as
processing times heavily vary with the system load and, thus, have slightly different values
also depending on replication schemes (if node A forwards requests to a higher number of
nodes than node B, then A will typically have a slightly higher system load and larger Wi(s)
values).

For geo-distributed replication, values are typically very small in relation to ODTT so
that inaccuracies can be neglected. It is even possible to use a constant value instead of a
distribution family to reduce calculation effort during simulations.

For single site deployments, processing times have a higher impact. We believe that the
results for S3 of [17] are mainly caused by artificially induced processing overheads. Here,
processing times limit the precision of the simulation results.

6ntp.org
7thrift.apache.org
8wireshark.org



68 5. Modeling and Simulation of Consistency Behavior

We currently use logging to identify an approximate distribution. Still, there is a lot of
room for improvements in obtaining processing time values.

Request Probabilities pW
i and pR

i can again be determined using server-side operation
logs. It is, for example, possible to count read and write requests per replica and divide
them by the sum of all read or write requests in the system, respectively. Another alternative
is prior knowledge on system setup (e.g., for master-slave systems or globally distributed
deployments) or direct access to the load balancer which is used. In the latter case, the
respective load balancing strategy can be identified.

5.4. Conclusion

In this part, we started with a general discussion of our Consistency Benchmarking approach
using both simulation and system benchmarking. After discussing consistency metrics in
chapter 4, we introduced within this chapter a new approach for modeling and simulating the
consistency behavior of distributed storage systems. Based on graph theory, our modeling
and simulation approach comprises the basic system model (section 5.2.1), the interaction
model (section 5.2.2) and the failure model (section 5.2.3). Building on this model, our ap-
proach includes two simulation modes: either calculating convolutions which guarantee high
precision results with limited output metrics and high computational effort (section 5.3.1)
or Monte Carlo simulations (section 5.3.2), which offer approximations with less compu-
tational effort and which support all consistency metrics from chapter 4. Afterwards, we
discussed how the necessary simulation input data can be obtained and which problems can
occur (section 5.3.3).

Our approach does not require expensive setups, and can be applied to diverse storage
systems. The flexibility of our model, though, comes with a set of assumptions (section 5.1).
Some of these could be relaxed or even completely avoided in future work.



6. System Benchmarking for Consistency Behavior

In this chapter, we present system benchmarking approaches which can be used to deter-
mine consistency behavior of distributed storage systems experimentally. This can either be
done from a provider perspective for data-centric consistency behavior or from a client per-
spective – via black box testing – for client-centric consistency behavior. All these system
benchmarking approaches can be used independently or as a second phase to verify findings
obtained via simulation (see chapter 5).

We start with the discussion of challenges in section 6.1. Based on the metrics from
chapter 4, we then describe how data-centric (section 6.2) and client-centric (section 6.3)
consistency metrics can be measured in experiments.

This chapter includes and is based on material previously published in MW4SOC 2011 [17],
NETYS 2013 [15], TPCTC 2013 [19] and IC2E 2014 [18].

6.1. Challenges

Apart from choosing appropriate metrics fulfilling the requirements outlined in chapter 4, a
system benchmarking approach should in general, but specifically for consistency behavior,
consider the following challenges:

Resolution A system benchmarking and measurement approach should not only use a
metric with sufficiently high resolution (see chapter 4), but also needs to be able to make
“use” of that resolution. This means that measurements should be done in a way that even
close-by output values can be distinguished. For instance, in the case of a time-based metric,
the sample rate in measurements per time should be as high as possible1.

Wide Applicability A measurement approach should not be limited to a specific system.
Instead, in the interest of comparability of results, it should be able to cover a broad range
of systems. Hence, such a system benchmarking approach should use as little features of the
storage system under examination as possible since the applicability of the system benchmark
will be limited to all storage systems offering the respective set of features.

1For reasons of efficiency, though, it should be only as high as necessary.



70 6. System Benchmarking for Consistency Behavior

Reproducibility When repeating a system benchmark, the measurement component should
produce similar results under the assumption that the storage system behaves comparably.

Accuracy Measurements always include measurement errors – these should be small in
relation to the values measured.

Ability to Analyze In�uence Factors Consistency is not an isolated property; it depends,
among others, on the consistency versus latency and consistency versus availability trade-offs
(see section 2.3), as well as on factors like replica placement and replication strategies. Sys-
tem benchmarks for consistency should, hence, be able to study the effects of those influence
factors; system benchmarks should make as little assumptions as possible on system setup so
as not to preclude the study of certain influence factors.

While there are obviously limitations regarding the degree to which these challenges are
addressed, a comprehensive system benchmark for consistency behavior should strive to con-
sider them as far as possible.

6.2. Data-centric Consistency

Running system benchmarks for data-centric consistency behavior requires access to either
sufficiently detailed operation and commit logs or to the storage system’s code to implement
adequate logging functionality. A log should for each operation contain information on the
operation identifier, the issuing client, the type of operation and its parameter and result list,
as well as the timestamps describing when this operation was executed in which replica.
This is necessary to determine among others the commit order of operations. Furthermore, a
workload needs to be run against the storage system.

Data-centric t-Visibility can then be calculated as the difference in time between writing
the last replica and either the start of the operation (t-Visibility with Dirty Reads) or the
commit timestamp (t-Visibility without Dirty Reads).

Ordering violations can be determined by first analyzing the commit order per replica:

• If this order is identical for all replicas, then the system either fulfills LIN (if all reads
also returned the result of the latest commited write) or SC (in all other cases). If only
SC is fulfilled, then the number of violating reads needs to be counted. Afterwards,
it can either be divided by the total number of reads (resulting in the likelihood of
violation) or by the test duration as the violation rate.

• If not, the causal order of operations needs to be determined to check whether the
system shows CC or EC behavior. If the individual replicas’s operation logs have
a causal order, then CC is fulfilled and the number of write requests where SC was



6.3. Client-centric Consistency 71

violated needs to be counted. This number of violations can then again be divided
by either the test duration or the total number of writes. If SC was not fulfilled, the
number of violations needs to be counted and then divided by either the total number
of all requests or the test duration.

This simple algorithm determines the data-centric ordering2 behavior of a storage system.

6.3. Client-centric Consistency

System benchmarking for client-centric consistency is, in contrast to measurements of data-
centric consistency, possible for every kind of storage system or service as it requires only
black box access to the storage system; no additional logging functionality is required since
only the access operations offered by the storage system (read and write operations) are used.
In the absence of detailed logs, system benchmarking for client-centric consistency can even
be used to approximate data-centric consistency behavior.

For system benchmarking of client-centric consistency, there are two competing effects:
Accuracy requires having measurement clients close to the replicas as latencies increase the
uncertainty level of the measurement results. Hence, an optimal solution would be to use as
many measurement clients as possible, preferably co-located with the replica servers.

On the other hand, having more than one measurement client results in clock synchroniza-
tion issues as physical clocks are always skewed. While clock synchronization algorithms
like the Network Time Protocol (NTP)3 help to reduce the skew in clocks, they still can-
not prevent that single clocks may deviate faster from the correct time than the algorithm
can offset the error. The chance of this happening obviously increases with the number of
measurement clients used and skewed clocks clearly affect the accuracy of client-centric con-
sistency measurement results. Hence, from a clock synchronization perspective, accuracy is
maximized when using just one measurement client only.

In practice, using an adequate number of measurement clients while carefully observing
results of individual clients is a dominant strategy. This way, measurement clients with heav-
ily skewed clocks can be detected and their output be excluded from the aggregated results.
What an “adequate” number of measurement clients is, depends on the consistency metric
of interest, the replication factor, and the load balancing strategy. In the following, we dis-
cuss how each of the client-centric consistency metrics from section 4.3 can be measured
experimentally.



72 6. System Benchmarking for Consistency Behavior

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90 100Number of Readers 

Figure 6.1.: Probabilities of Reaching all Replicas for Different Replication Factors as a Function of
the Number of Readers

Replica 

Replica 
Replica 

Writer 

Reader 

Reader Reader 

Reader Reader 

Reader Reader 

Figure 6.2.: System Benchmarking Setup for Staleness Measurements of Storage Systems with Load
Balancer



6.3. Client-centric Consistency 73

Replica 

Replica 
Replica 

Writer 

Reader 

Reader Reader 

Reader Reader 

Reader Reader 

Figure 6.3.: System Benchmarking Setup for Staleness Measurements of Storage Systems with Direct
Replica Access

6.3.1. t-Visibility and k-Staleness

As already discussed, staleness measurements require a number of geographically distributed
measurement clients which are located as close as possible to the replica servers; these in-
clude at least one writer and a number of readers4. We have to distinguish two classes of
systems: In the first category, requests are always directed to the load balancer which in turn
forwards them to one or more replicas. So, access to the replicas is only via the load balancer;
this is typically the case for cloud storage services. In the second category, there will usually
be a load balancer, too. Still, the individual endpoints of the replica servers are known so that
requests cannot only be directed to the load balancer but also to a specific replica. Self-hosted
NoSQL systems normally fall in this category. Often, systems from the first group, especially
cloud storage services, tend to show even higher degrees of transparency or uncertainty in
that they do not even promote the replication factor used.

For staleness measurements, the test setup for both classes of systems is different:

Load Balancer-based Access Load Balancers often use strategies where requests are ei-
ther routed to the geographically closest replica (especially in the case of geographi-
cally distributed storage systems) or using round-robin routing. Based on this strategy

2Violations of LIN obviously considers also staleness.
3ntp.org
4We discuss their precise roles later.



74 6. System Benchmarking for Consistency Behavior

and the (potentially estimated) replication factor, we can calculate the probability of
reading all replicas if n readers issue a read request at the same time. For example,
in a scenario with round-robin routing and triple replication, there is a probability of
83% of reaching all replicas when using seven readers. For eight readers, this is about
88%, for nine readers 93% and so on. Based on the accuracy requirements of the mea-
surements, an adequate number of readers should be chosen. To be on the safe side,
we propose to use twelve readers for the scenario in our example. Figure 6.1 shows
the probabilities of reaching all replicas as a function of the number of readers. Each
curve represents a different replication factor, starting with two on the left up to 10 on
the right. Figure 6.2 shows an exemplary setup.

Direct Replica Access If replicas can be accessed directly, the test setup is less proba-
bilistic. Here, we just need one reader per replica which suffices to achieve a 100%
probability of reaching all replicas when all readers issue their read request at the same
time. Obviously, the replication factor is also known. If direct access to replicas is
available, it should be used as it both reduces cost as well as increases accuracy of
staleness measurements. Figure 6.3 shows in an exemplary setup how the number of
readers can be reduced compared to the setup in figure 6.2.

When the adequate number of readers has been identified, these have to be deployed as
close as possible to the replica servers. So, if the data store uses geographic replication, then
the readers also need to be distributed.

During a system benchmark, the two roles – reader and writer – have different responsi-
bilities: The writer periodically issues an update request containing a version number and
the current timestamp to the distributed storage system. The interval between writes should
be larger than the expected maximum t-Visibility. If not the system benchmark has to be re-
peated. At the same time, each reader continuously issues read requests to the storage system
and logs which version and timestamp combination was read at which local timestamp.

Based on the logs of all readers, t-Visibility values can easily be determined – either as
a probability density function showing the probability of a particular inconsistency window
length, or as a function showing the probability of reading fresh versus stale values over
time, thus, considering the results of all read operations instead of only those with maximum
staleness values.

As already mentioned in chapter 4, k-Staleness values can be measured as a byproduct
of t-Visibility measurements. In our case, the logs also include the version number so that
k-Staleness can be calculated – either as a function showing k-Staleness development over
time, or as the probability of reading a datum which is a number of n versions lagging behind.



6.3. Client-centric Consistency 75

6.3.2. Violations of Monotonic Read Consistency

Violations of MRC can often be measured as a byproduct of the staleness measurements. This
is possible when the storage system was only accessed via the load balancer, because MRC
guarantees heavily depend on the load balancer strategy used. E.g., using sticky sessions
guarantees MRC and routing requests to the closest replica also tends to assure that MRC is
preserved for most requests. Alternatively, it is possible to use a more complex workload with
several writers or to run an actual application workload where each machine is both a reader
and a writer. Afterwards, an offline analysis can determine (based on logs) the likelihood of
MRC violations.

When using more than one writer, the application needs to assert that a total order of
updates can still be established as the definition of MRC requires reading versions that are
at least as new as all versions that have already been seen. This is necessary to determine
whether a value that was read violates MRC or not. In a setup with more than one writer,
there are several possible outcomes of two subsequent reads which return values A (first read)
and B (second read):

• A and B are identical. Reading the same version twice does not violate MRC.

• A and B are not identical. Reading a different version can be caused by three effects:

– A is newer than B, hence, MRC is violated.

– A and B are parallel branches so that neither is newer than the other. In this case,
it depends on the exact definition of MRC. If A was – in the replica that we
read from – overwritten by B even though it was a parallel branch, then MRC
is – strictly spoken – not violated. In all other cases, the replica that we read
from did apparently not know about version A, so that MRC was violated. For
a system like Dynamo [37], where differing versions and the respective vector
clocks will be returned during reads, these two cases can be distinguished easily.
In all other systems, we propose to consider both cases as a violation of MRC
since the content, that we had seen previously, was obviously not contained in
the result due to the missing causal relationship.

– A is older than B, hence, MRC is not violated.

In contrast to staleness measurements, clock synchronization is not an issue as only the
causal relationships of operations are of interest. Only if global MRC guarantees shall be
considered, is it necessary to synchronize the clocks of the measurement clients.



76 6. System Benchmarking for Consistency Behavior

6.3.3. Violations of Read Your Writes Consistency

Like MRC measurements, RYWC measurements also depend on the load balancing strat-
egy used. Depending on the likelihood of routing requests by the same client to the same
replica for every request, the probability of RYWC violations changes. RYWC measure-
ments, hence, need to access the storage system via the load balancer, too.

For measurements, a single machine writes a value into the storage system (via the load
balancer) and directly starts to continuously read it afterwards and logs the time difference
to the end of the update as well as whether it was possible to read the new value or not. If
this is repeated a statistically significant number of times, then it is possible to calculate the
probability distributions for violations of RYWC as a function of the duration since the last
update during an offline analysis after the system benchmarking run. Of course, it is also
possible to calculate the probability of violating RYWC independent of time.

Furthermore, it is also possible to run a more complex workload with several machines
reading and writing from and to the data store at the same time. This can easily be done
in parallel to MRC measurements. Still, the same limitations regarding causal relationships
hold as in the case of MRC. The only difference to the discussion above is that value A was
not read but instead written by the measurement client.

Clock synchronization again only matters if global RYWC shall be measured.

6.3.4. Violations of Monotonic Write Consistency

For MWC guarantees, time does not matter, e.g., it does not matter which value is returned
right after two subsequent writes. Only the final serialization order is important. Therefore,
we propose to have a single machine insert a value into the storage system and directly
update it afterwards. After waiting for a sufficiently long period of time (all replicas need
to synchronize), the same key is read again and the result is compared to the updated value.
If this is repeated for a large number of keys, the probability distribution for violations of
MWC can be calculated.

In practice, we propose to wait for at least the maximum t-Visibility value plus a safety
margin. If time is not an issue, it will probably be safe to check the results a day later. If the
time window chosen is too small, then MWC measurements will not report MWC behavior
but rather staleness and/or RYWC levels.

6.3.5. Violations of Write Follows Read Consistency

So far, no system benchmarking approach exists for WFRC violations. This can be explained
by the fact that a violation cannot be directly observed by a client. One approach could be
to use the replica logs of the storage system to identify if and how often WFRC has been



6.4. Conclusion 77

violated. This is, obviously, no longer compatible with the black box access which is one of
the strengths of client-centric consistency measurements. Using that approach, WFRC could,
for instance, not be measured for cloud storage services.

Another approach could rely on the fact that WFRC violations mainly cause the effect that
a delayed update message of an older version replaces the update that was executed on an
older replica. If, for example, a client reads version n+10 and then issues an update which
executes on a replica still at version n, then (depending on the storage system’s implemen-
tation) either a delayed update message for version n+ 10 may replace the client’s update
(which leads to a lost update) or a conflicting version will be created which needs to be rec-
onciled at a later point in time. If neither effect becomes visible, it still does not imply that
WFRC is guaranteed.

Finally, a third approach only works for storage systems which offer update operations
beyond a Create-Read-Update-Delete (CRUD) interface. For example, a record append op-
eration like in the Google File System [44] could be used, followed by an analysis of the
update order within the file.

All in all, we believe that no standard mechanism for measuring WFRC violations can
exist.

6.4. Conclusion

In this chapter, we have presented system benchmarking approaches for consistency behavior.
We started with a discussion of challenges in system benchmarking of consistency behavior
and continued with data-centric consistency measurements which can be done via mining of
replica logs. For client-centric consistency measurements, we have presented an approach
which can be used to measure t-Visibility, k-Staleness and MRC violations. We have also
discussed how violations of the other three client-centric ordering models could be measured.
All of the presented approaches should be able to address the challenges from section 6.1 as
much as possible, when used sensibly.

Generally, there is a direct relationship between data-centric and client-centric consistency
guarantees. This can be seen in the fact, that data-centric consistency measurements can be
used to estimate client-centric behavior and vice versa.





Part III.

Application





This Part shall demonstrate the applicability of our approaches from Part II. For us, appli-
cability covers three points of importance:

1. Proof of Concept

2. Correctness

3. Relevance

We believe that an approach is only helpful if it can actually be implemented in practice – we
try to prove this point by describing our proof of concept implementations in chapter 7.

A new approach should also demonstrate that it is in some way “better” than existing
ones (if there are any) and that it shows correct behavior, i.e., in our case measures or pre-
dicts correct results. As there are no or few comparable approaches, correctness can for our
approaches either be shown by formal proof or in experiments. We chose to evaluate our
approaches experimentally – see chapter 8.

Finally, we believe that any new approach should solve a relevant problem and clearly
demonstrate what it is good for. For this purpose, we demonstrate, using an example, in
chapter 9, how actual applications can handle inconsistencies leveraging knowledge on con-
sistency behavior. We, then, describe how MRC and RYWC can be guaranteed within a
middleware component running on the same machine(s) as the application logic. Finally, we
show how the results of Consistency Benchmarking can help to both increase the efficiency
of such an approach as well as to offer additional guarantees beyond MRC and RYWC.





7. Implementation

As a proof of concept, we have implemented each of our approaches presented in chapters 5
and 6. In this chapter, we introduce these proof of concept implementations starting with our
modeling and simulation approach (section 7.1) before continuing with our system bench-
marking approach (section 7.2).

This chapter contains material previously published in MW4SOC 2011 [17], TPCTC
2013 [19], and IC2E 2014 [18].

7.1. Modeling and Simulation

The prototype of our modeling and simulation approach as well as a data gathering tools for
ODTT and RTT values have been implemented in Java 7. In this section, we briefly sketch
out how our data gathering tools work before continuing to our simulation tools.

7.1.1. Data Gathering Tools

As already discussed in section 5.3.3, RTT can be measured without any negative influence
from inaccuracies in clock synchronization. At the same time, RTT values cannot be directly
used for simulations as ODTT values are necessary. To check the ratio between RTT and
ODTT values, we implemented data gathering tools for both and used it to compare the
respective results; RTT values were subject to NTP accuracy. Both tools are deployed on
several distributed servers and communicate via a configurable communication middleware
system.

For RTT measurements, the tool is started with the addresses of all servers as well as
the desired data packet size as parameters. Each server then proceeds to randomly choose
another server, create a new random data packet and send it to the target server. At the same
time, each target server echoes any request it receives so that the original sender can measure
the time necessary for sending a data packet over the network and reading it back. This
happens until the tool is terminated; at that time, each server locally logs the observed RTT
values grouped by the respective target servers. Each server is running both a sender and
target thread.

For ODTT measurements, the RTT tool is changed in that the servers do not wait for an
echo message but instead close the connection right after completing the transmission. Each



84 7. Implementation

data packet is assigned a unique ID and while the sender logs the start time for that ID, the
receiving server logs the end time for the respective ID. Afterwards, an analysis tool merges
the individual log files and outputs the measured ODTT values grouped by the combination
of sender and target.

Calculated distributions of ODTT values (either directly measured or calculated as a frac-
tion of RTT values) are then used as input for our simulation tools.

7.1.2. Simulation Tools

As already discussed in sections 5.3.1 and 5.3.2, there are two ways for simulating consis-
tency: Either by calculating convolutions or by running a Monte Carlo simulation.

Calculating Convolutions

For calculating convolutions, we implemented a tool in Java 6 which takes two or three
random distributions (based on discrete input values) and a configurable and arbitrarily ex-
tensible operator as parameters and outputs the convolution of those two distributions based
on the respective operator. Output and input formats are identical so that the output of one
calculation can be used as the input for the next one. This way, arbitrary replication paths
can be calculated. Currently, we have implemented the following operators: add, subtract,
multiply, maximum and minimum.

Our tool for calculating convolutions is extensible and easy to use. On the other hand, it
underlies the general limitations of calculating convolutions which we already mentioned in
section 5.3.1 and is not optimized for performance.

Monte Carlo Simulation

Our Java 7 implementation of Monte Carlo simulations is a rather complex tool. For ease
of implementation, our tool deviates slightly from the general modeling and simulation ap-
proach presented in sections 5.2 and 5.3.2:

• We assume that distributions Li j(s) and L ji(s) are identical, i.e., sending data from A to
B is as fast as sending data the other way around. This is frequently the case, especially
for deployment in data centers. For situations, where one replica is running at an end
user’s home this is not feasible as in that case the available bandwidth for upstream
and downstream will be different.

• Our implementation currently uses a single probability density function instead of a
family of probability density functions depending on the parameter s for data size.
This functionality could be added with very little effort but is currently not supported.



7.1. Modeling and Simulation 85

Simulation Runner 

Client Simulation 

Data Generators 

Graph Model 

Access Graphs 

Evaluator 

Logging & Utils 

Offers random values for 
vertex and edge weights 

Offers system graph 
with weights 

Offers events 
for simulated requests 

Offers client model and 
generates simulated 
requests 

Offers logging 
functionality 

Offers utility functions 

Triggers analysis of 
event data 

Figure 7.1.: Overview of Software Modules in the Monte Carlo Simulation Tool

• Our analysis module currently uses only the Write Set mechanism for conflict resolu-
tion in concurrent updates. Other mechanisms can be used by adding another analysis
module or by extending the current one.

• In chapter 4, we discussed different staleness metrics for systems with or without dirty
reads. Our current implementation uses the one with dirty reads in a hard-coded way.
Changing this requires to switch the order of a few lines of code.

Our tool comprises seven main modules which are depicted in figure 7.1. In the following,
we describe each of these modules.

Data Generators The Data Generators module includes two extensible groups of classes:
Delay generators implement a method getRandomDelay() which is used to draw random
values for edge weights (ODTT values Li j(s)) and vertex weights (processing times Wi(s) and
Ri(s)). Error generators, in contrast, implement a method getUnavailablePeriods(long



86 7. Implementation

start, long end) which randomly selects times of unavailability within the simulated
time interval [start;end] and returns this set of intervals. Currently, there are three generators
each but additional ones can be added by extending an abstract class:

• Delay Generators:

– ConstantDelayGenerator is parameterized with a fixed value and always re-
turns this very same value as delay. This is useful when only a mean value but
not variance is known.

– ExponentialDelayGenerator is parameterized with a mean value and returns
random values drawn from the corresponding exponential distribution.

– DiscreteDistributionDelayGenerator is parameterized with a list of delay
values typically measured experimentally. Upon request it randomly selects one
of those values and returns it.

• Error Generators:

– NoErrorGenerator returns an empty set of unavailability intervals and is used
for simulations where no error shall occur.

– MTBFandMTTRErrorGenerator is parameterized with MTBF and Mean Time
To Repair (MTTR) values (including the corresponding variances) and randomly
selects values according to the parameters.

– DiscretePeriodErrorGenerator is parameterized with a set of intervals and
returns this very same set. This is useful when either running simulations based
on historic data or when rerunning simulations.

Graph Model The Graph Model module has exactly four classes which build the basic
system graph, i.e., hold information which is shared by all replication and read paths.

The abstract class AbstractComponent holds information on a component identifier, a
screen name as well as a reference to the respective error generator used. Its two extending
classes Vertex and Edge hold references to the respective delay generators as well as to the
edges of the vertex (class Vertex) and the two vertices of an edge (class Edge). Hence,
our implementation uses doubly linked object references as in-memory graph representation
which is useful for iterating over the graph.

Finally, the singleton ComponentRegistry references the graph itself and offers func-
tionality to query and to manipulate it. It is, thus, the point of entry for all other modules.

Access Graphs The Access Graphs module comprises both a model to describe replica-
tion and read paths as well as the functionality to simulate a request using such a path, i.e., to



7.1. Modeling and Simulation 87

SyncProperty

SimpleSyncProperty

QuorumSync Async

Figure 7.2.: UML Class Diagram of the Synchronicity Group Implementation

create all events. This is implemented by an abstract class AccessGraph and its two extend-
ing classes ReadGraph and ReplicationGraph. Most functionality for graph iteration is
identical for both read and replication paths and is, therefore, already implemented within the
abstract super class. The singleton AccessGraphRegistry holds references to all existing
replication and read paths and serves as access point for other modules.

As discussed in section 5.2.2, synchronicity groups describe how edges are used – either
synchronously or asynchronously. To also support quorums [94], our implementation uses
a separate object hierarchy to determine which edges will actually be used synchronously
or asynchronously. An abstract class SyncProperty defines a method simulateAccess()

which takes an array of latency values as parameter (one for each edge within the group) and
returns an array of SimpleSyncProperty instances one each correspoding to the respective
edge (i.e., in the same order as the parameter values).
SyncProperty has two child classes Quorum and SimpleSyncProperty; the latter is

abstract and extended by the classes Sync and Async. The classes Sync, Async and Quorum

each implement the method originally defined in SyncProperty, so that Sync returns an
array of Sync objects, Async returns an array of Async objects and Quorum returns a mixture
of both depending on the parameters and the quorum setting for the respective synchronicity
group.

Figure 7.2 shows a UML class diagram of this part of the Access Graphs module.

Client Simulation The Client Simulation module creates simulated requests according
to predefined client behavior. For this purpose, there is an abstract class AbstractClient



88 7. Implementation

which defines abstract methods generateReadStarts() and generateWriteStarts().
Both methods take the start and end timestamp of the simulation period as parameters and
return a list of start timestamps for simulated read and write requests respectively. Arbitrary
implementations can be added beyond the two child classes which currently exist:

• OperationLogClient is parameterized with start timestamps from an actual opera-
tion log. This is useful for replaying a workload scenario with different configurations.

• RandomizedClient is a probabilistic implementation which is parameterized with the
information on the desired number of reads and writes per second and randomly selects
timestamps within the test interval to fulfill these requirements. Timestamp selection
is based on a uniform distribution.

The RequestScheduler then randomly selects a replication/read path according to the
preferences specified in the Access Graphs module and, during the actual Monte Carlo sim-
ulation, serves as an iterator over the set of simulated requests.

Simulation Runner The Simulation Runner module is the core component of the Monte
Carlo simulation phase: Based on an existing configuration from the modules Graph Model
and Access Graphs, it triggers the request generation from the Client Simulation module and
submits each of the simulated requests to the Access Graphs module which then determines
the start and end timestamps for each vertex as well as the operation outcome. Finally, the
Simulation Runner module triggers event analysis within the Evaluator module.

Evaluator The Evaluator module is called with the list of all simulated events (operation
start, end, or fail, as well as request start or end for all replicas) and analyses these events to
determine the simulated consistency behavior. For this purpose, the current implementation1

executes the following steps:

1. Group events by their operation ID and kind (read or write) and determine whether
these requests were successful or failed.

2. Calculate the data-centric t-Visibility based on all write operations that were success-
ful.

3. Calculate the distribution of read and write latencies for all successful requests.

4. Calculate aggregations of data-centric t-Visibility grouped by replication path.

5. For each replica, create an ordered list of write timestamps in this replica.

1The module could easily be replaced by changing just one line of code.



7.1. Modeling and Simulation 89

6. Create an ordered list of operation end timestamps of all writes.

7. Create the same list for each client using only his writes.

8. For each read request, consider the replicas which were part of the operation result and
determine the set of updates which each replica had already committed at the time the
read started in the respective replica (based on the results from step 5). Calculate the
union of these sets.

9. Use the results from step 6 to look up what the set from step 8 should have looked like.
Based on this, flag the request either as stale or fresh.

10. Iterate over the results of step 9 and determine for each write operation W the last
read operation L which did not contain the respective write as well as the first read
operation F which did contain it. The end timestamp defining client-centric t-Visibility
for operation W is within the interval [tL

end ; tF
end ]. Based on this, calculate upper and

lower bounds for client-centric t-Visibility.

11. Group the results from step 9 by client, order them by operation end timestamp, and
iterate over them. Identify if the union of the results of all operations < n is a subset
of the results of operation n. If not flag operation n as being in violation of MRC.
Also check whether the results of each operation n with operation end timestamp tn

end
contained all writes from step 7 where the respective end timestamp t i

end was smaller
than tn

end , i.e., t i
end < tn

end . If this is not the case, flag operation n as being in violation
of RYWC.

12. Export all analysis results using the Logging & Utils module.

Logging & Utils The Logging & Utils module offers support functions for the other mod-
ules. Mainly, these are the data structures used for information storage within the Evaluator
module and several data structures (e.g., custom tree and skip list implementations) to accel-
erate both the actual Monte Carlo simulation as well as the final analysis of the events.

Apart from these, there is an extensible logging module which saves the simulated events
in arbitrary data structures either in memory or on disk. This can be used to analyze event
traces generated with our implementation within other tools, e.g., potentially with [81].

Finally, the Logging & Utils module comprises several utility classes which can be used to
read input data (e.g., values Li j(s)) in various input formats and transform it into the format
internally used by our simulation tool.



90 7. Implementation

7.2. System Benchmarking

We have also implemented tools to support system benchmarking of client-centric consis-
tency behavior. These tools comprise two simple programs for RYWC and MWC checks as
well as a more complex tool for client-centric staleness and MRC measurements which have
all been implemented in Java 6. In the following, we describe the implementations of these
tools as well as their use within a larger framework for comprehensive system benchmarking
of consistency behavior.

7.2.1. RYWC Measurements

RYWC measurements are implemented via the abstract class AbstractReadYourWrites-
ConsistencyChecker which requires child classes to implement methods for read and write
access to the storage system. The abstract class already implements all application logic for
the measurement itself so that child classes only have to implement the connector to the
storage system.

For measurements, the class is parameterized with the number of tests as well as the mini-
mum number of reads per test. In this case, the number of tests refers to the number of writes
whereas the minimum number of reads describes the number of reads without a violation of
RYWC before the next test is triggered. Algorithm listing 1 shows the algorithm which we
have implemented – it logs the difference in time between write and the respective read plus
a 0 for RYWC or a 1 for RYWC violations.

For accurate results, this measurement client should be deployed in a way so that read and
write access both have very low latency values.

7.2.2. MWC Measurements

MWC measurements are implemented via the abstract class AbstractMonotonicWrites-
ConsistencyChecker which requires child classes to implement methods for read and write
access to the storage system. The abstract class already implements all application logic for
the measurement itself so that child classes only have to implement the connector to the
storage system.

For measurements, the class is parameterized with the number of tests (i.e., the number of
keys which shall be written) as well as a flag signaling whether the values shall be written or
checked. If the flag is not set, the class simply issues two sequential updates to the storage
system specified by the child class. In constrast, if the flag is set, the class reads all respective
keys and checks whether the returned value is identical to the value of the second write.
Finally, results are logged to the console.



7.2. System Benchmarking 91

input: Number of tests noTest, minimum number of reads minRead
for i← 1 to noTest do

writevalue← i;
timestampW← getTime();
writeData(writevalue);
for j← 1 to minRead do

timestampR← getTime();
readvalue← readData();
if readvalue ≥ writevalue then

// RYWC is not violated

log(timestampR − timestampW,0);
else

// RYWC is violated, restart counter

log(timestampR − timestampW,1);
j← 1;

end
end

end
Algorithm 1: Measuring RYWC

7.2.3. Staleness and MRC Measurements

As already described in section 6.3, client-centric staleness measurements for both t-Visibility
and k-Staleness require a single writer as well as a number of distributed reader machines
whereas data-centric staleness measurements require direct access to the storage system. In
this section, we describe our implementation of a system benchmarking tool for client-centric
staleness measurements which also supports an analysis for MRC violations.

Figure 7.3, which we already introduced in chapter 6, shows the basic test setup for client-
centric staleness measurements. Beyond the two presented roles, reader and writer, we also
implemented a collector which is deployed on one additional machine. In the following, we
start by describing how our system benchmarking tool is started before providing a more
detailed overview of each of these roles.

Our system benchmarking tool is parameterized with a URL and a unique ID. The program
then proceeds to download a properties file from the specified URL and extracts all necessary
information from the generic part of the properties file (e.g., public and private keys for
Amazon Web Services2, the URL of the collector service, the target key etc.).

The specific part of the properties file, in contrast, contains one subsection for every in-
stance, each starting with an ID. Hence, the tool next searches within the properties file for

2aws.amazon.com



92 7. Implementation

Replica 

Replica 
Replica 

Writer 

Reader 

Reader Reader 

Reader Reader 

Reader Reader 

Figure 7.3.: Measurement Setup for Staleness Measurements of Storage Systems with Load Balancer

the ID provided as a parameter and parses the specific configuration information for the re-
spective ID.

There are two mandatory property entries for each ID: role and start. The role value
determines which role the instance will assume (e.g., collector), while the start property
is an integer value. This integer describes the delay value artificially injected before starting
the class corresponding to the specified role. This is useful to control the start order of the
different machines and, thus, removes the need for a synchronization barrier like Zookeeper3.
For instance, it is necessary to start the collector first as all other roles will terminate with
an error if they cannot reach it. Finally, the respective class is started with all necessary
parameters.

Collector The collector exposes a simple web service interface which accepts a String

value and two long values as parameters. The String value corresponds to the ID provided
as parameter for each instance, the long values to the test number and the observed maximum
inconcistency window for that test number. The collector appends these results to a CSV file
which can afterwards easily be analyzed using any spreadsheet program.

The results exported by the collector already provide sufficient information to determine
client-centric t-Visibility. Beyond these, we have implemented another tool which takes the
(typically multi-gigabyte) log files of the reader instances as input and calculates error rates,

3zookeeper.apache.org



7.2. System Benchmarking 93

the probability of MRC violations per reader instance, the distribution of read latencies, and
the development of fresh versus stale reads (and the corresponding average read latencies) as
a function of the time since the last update.

Writer The writer implements all application logic within an abstract class Abstract-

Writer which requires child classes to implement the methods configure(String [ ]

params) and write(String key, String value). The write() method has to imple-
ment the connector functionality to translate such a method call into an actual request to
the respective storage system. For the configure() method, the class AbstractWriter

forwards all parameters beyond the parameters required by the class itself so that arbitrary
parameters can be passed to the concrete implementations. Algorithm 2 shows the function-
ality implemented within class AbstractWriter.

input: Target key key, delay between writes delay, additional parameters params
configure(params);
counter← 0;
while not terminated externally do

timestampStart← getTime();
writevalue← counter + ’:’ + timestampStart;
write(key,writevalue);
timestampEnd← getTime();
log(counter,timestampEnd − timestampStart);
counter← counter +1;
sleep(delay);

end
Algorithm 2: Algorithm in Class AbstractWriter

Reader Comparable to the writer, the reader functionality is again implemented within
an abstract class (AbstractReader) which requires child classes to implement methods
configure(String [ ] params) and read(String key). Comparable to the write()
method, read() again has to implement the connector functionality to translate such a
method call into an actual request to the respective storage system. For the configure()

method, surplus parameters are again forwarded so that arbitrary parameters can be passed
to the concrete implementations. Algorithm 3 shows the functionality implemented within
class AbstractReader.



94 7. Implementation

input: Instance ID id, target key key, delay between reads delay, buffer size bu f ,
additional parameters params

configure(params);
while not terminated externally do

timestampStart← getTime();
readvalue← read(key);
timestampEnd← getTime();
log(readvalue,timestampStart,timestampEnd);
// Put the read result into a map to calculate aggregations for

the collector

testnumber← getTestNumber(readvalue);
writeTimestamp← getWriteTimestamp(readvalue);
writeMap.put(testnumber,writeTimestamp);
readMap.put(testnumber,timestampStart);
counter← counter +1;
if counter ≥ bu f then

// When the buffer is full (default: 10 entries) calculate

the maximum staleness for the oldest entry and send it to

the collector

testnumber← readMap.getLowestTestnumber();
writeTimestamp← writeMap.get(testnumber +1);
timestampStart← readMap.get(testnumber);
sendToCollector(id,testnumber,timestampStart − writeTimestamp);
// Remove old values to avoid memory issues but keep a few

older write timestamps to be on the safe side

readMap.remove(testnumber);
writeMap.remove(testnumber −5);
counter← counter −1;

end
sleep(delay);

end
Algorithm 3: Algorithm in Class AbstractReader



7.2. System Benchmarking 95

7.2.4. Comprehensive System Benchmarking

We have also developed an architecture and a (partial) implementation of a comprehensive
system benchmarking framework for consistency behavior. Such a framework should be
able to analyze how parallel workloads (i.e., varying resource saturation), geo-replication
(i.e., varying latency values for inter-replica communication), node failures (i.e., temporary
outages of replicas), and multi-tenancy (i.e., cross-effects between tenants of a cloud storage
system) affect the consistency behavior of a storage system.

For this purpose, we propose an architecture offering the following components (see also
figure 7.4 for a high-level overview of the proposed architecture):

• Workload Generator: This component is used to create different workloads on the
system to allow the quantification of consistency effects during phases of resource
saturation. It should also report results for standard performance metrics like latency
or throughput to quantify tradeoffs between consistency and performance.

• Tenant Simulator: The Tenant Simulator is used to create a specific kind of behavior
for individually simulated tenants of a storage system. While the Workload Generator
just creates load on the system, this component might create a more detailed behavior
of a single tenant so that multi-tenant cross-effects on consistency can be studied.

• Consistency Measurement Component (CMC): This is the component which is re-
sponsible for measuring the consistency behavior of the underlying system. Its output
should use meaningful and fine-grained consistency metrics from a client perspective.

• Failure Injector: The Failure Injector is a component which can be used with self-
hosted storage systems and can cause a variety of failures.

It could also be reasonable to include a scheduling and deployment component, e.g., [56], to
ease measurements of various configurations and systems.

For the actual implementation, we have reused existing, proven tools and patched them
together using shell scripts. Our system benchmarking tool presented above is used as the
CMC.

The Yahoo! Cloud Serving Benchmark (YCSB) [33] is the most well known system bench-
marking framework for performance measurements of NoSQL databases. The tool supports
different NoSQL databases and various kinds of workloads and has been designed to be ex-
tensible in both dimensions. We use it as our Workload Generator.

So far, we have not included implementations for a Tenant Simulator. We have also not
used a Failure Injector but Simian Army4, which was published as open source by Netflix5, is

4github.com/Netflix/SimianArmy
5netflix.com



96 7. Implementation

1 

2 

… 

n 

Co
ns

ist
en

cy
 M

ea
su

re
m

en
t 

Co
m

po
ne

nt
 

Workload Generator 

Tenant Simulator 

Failure Injector 

… 

Figure 7.4.: High-level Architecture of our Comprehensive System Benchmarking Framework

a promising candidate for future experiments. Since the loose bundling approach via scripting
offers full flexibility and extensibility, this architecture and the implementations which we
currently use can be seen as a starting point where each individual component can easily be
replaced.

Both our system benchmarking tool and YCSB use an abstract connector architecture so
that they can easily be extended for use with different storage systems. We propose to use
the same kind of architecture for all other components.

7.3. Running Consistency Benchmarks

This section is intended as a starting point for application developers, researchers or storage
developers interested in using one of our Consistency Benchmarking approaches. In the
following, we describe the steps necessary if we want to run Consistency Benchmarking. We
start with the modeling and simulation approach before describing the setup for our system
benchmarking tool.

7.3.1. Modeling and Simulation

After we have identified all interesting systems and their configurations, we have to determine
the communication middleware used for communication among the replicas and adapt the
ODTT tool from above (cf. section 7.1.1) to use said middleware. We, then, need servers in
all datacenters where replicas would be deployed in any of the configurations – this is trivial
for cloud-based deployments but can be more difficult for other deployment options. Next,
we deploy the ODTT tool on these servers and start it. The tool then collects the data all by
itself. After a while, depending on the parameters as well as desired measurement accuracy,
we can terminate the tool and download the ODTT results from the servers.



7.4. Discussion and Conclusion 97

In parallel, we have to obtain estimates for failure rates of servers and network links as well
as measurements or estimates for distributions of processing times. Using the information
on failures, processing times and the ODTT results, we can then model all systems and
configurations in the modeling and simulation tool. Currently, this is done in Java code but
implementing a model editor should be straightforward if desired. Afterwards, we can start
the simulation run(s) and analyze the resulting CSV output files either programmatically or
manually via spreadsheet programs.

7.3.2. System Benchmarking

For system benchmarking, we first have to identify the approximate number and location of
replicas – this is trivial for self-deployed NoSQL systems while it may be a bit challenging
for cloud storage services. Based on this, we can calculate the necessary number and location
of readers. If no adapters for the storage system exist, yet, we have to extend the Abstract-
Writer and AbstractReader classes. Adding new adapters either requires small extensions
to the start class or another way to pass necessary input parameters.

After this has been done, we again need access to servers where we deploy our readers,
one writer, and one collector – these should be as close as possible to the replicas and also
be distributed in a similar way. On these servers, we then start the system benchmark via the
enclosed start script and keep it running for a sufficiently long period of time. Afterwards, we
can terminate all system benchmarking processes and download the individual output from
the servers.

These result files then need to be analyzed – for the output of the collector, we can use any
spreadsheet program; for the individual reader results, our framework comes with a command
line tool which analyzes the reader files in streaming mode and outputs aggregations which
can directly be copied into a spreadsheet.

The procedure for RYWC and MWC measurements is comparable; the only difference is
that only one server is needed for those tests and a different main class is used. With regards
to the comprehensive system benchmarking, all components beyond the CMC are optional.
If, e.g., a Failure Injector is desired, it must be installed on an additional server and started
during the system benchmark.

7.4. Discussion and Conclusion

In this chapter, we have provided an overview of our proof of concept implementations. We
started by describing our modeling and simulation framework with tools for data gathering,
calculating convolutions, and the Monte Carlo simulation approach. Afterwards, we pre-
sented our system benchmarking tools for RYWC, MWC, MRC, and client-centric staleness



98 7. Implementation

measurements as well as a framework for comprehensive system benchmarking of consis-
tency behavior. We also described, how application or storage developers, researchers or
anyone else interested in Consistency Benchmarking results should proceed when using our
proof-of-concept implementations.

While each of our tool shows significant progress beyond related work, there are also a
few shortcomings due to the their current implementation. As already outlined above, our
modeling and simulation tool so far only implements a subset of our approach from chapter 5.

Beyond this, we also use a rather simplistic client implementation in simulations: Before
the actual simulation phase starts, this client implementation in class RandomizedClient

randomly selects start timestamps for all requests based on a uniform distribution. Specif-
ically, this timestamp generation process does not consider interdependencies between op-
erations. In actual applications, though, the start timestamps of requests highly depend on
both the result as well as the end timestamp of the last request. For instance, if a failure
occurs this may either cause the request to abort quickly or to time-out much later – depend-
ing on the reason behind the failure as well as the implementation of the application. If the
average request latency is lower than the time-out but higher than the latency of the quick
abort option, then the latter will actually increase the request rate during failures whereas the
first one will decrease the request rate. Our RandomizedClient in fact does neither – the
request rate stays constant, subject only to small random fluctuations. This as well as other
effects heavily affects, as we will see in chapter 8, the accuracy of client-centric consistency
simulation.

Regarding our system benchmarking approach, the accuracy of measurement results is ob-
viously limited by the accuracy of NTP or any other clock synchronization protocol used.
Furthermore, one might argue that a more complex workload with several concurrent writers
and no strict separation between reader and writer roles would be better suited to determine
consistency behavior. Still, even strictly consistent storage systems show consistency viola-
tions when no isolation mechanisms like locking or transactions are used. At a first glance,
this may seem surprising; at a second glance, though, it should be clear that concurrent re-
quests will always lead to consistency violations whenever latency values are larger than
zero.

For example, client A reads a data item at time t0 and writes it back at t2. In the meantime,
client B also writes that data item at time t1 and later, at time t3, reads it back. If t0 < t1 <
t2 < t3, then the update of client B will be lost even when using a strictly consistent storage
system, i.e., during the read at time t3 and all reads thereafter, RYWC will be violated for
client B.

Some inconsistencies are obviously caused by the distributed application workload itself –
an effect everyone, who has worked on a document with several other people at the same time,



7.4. Discussion and Conclusion 99

has probably already seen in practice. We, therefore, believe that the measurement workload
should rather not try to imitate application workloads. Instead, its goal should be to measure
all inconsistencies caused by the storage system, explicitly excluding the ones caused by an
application workload. Based on this, we conclude that a more complex workload would not
be better for system benchmarking of client-centric consistency behavior.

Furthermore, it is easily possible to have more than one writer as long as there is a syn-
chronization process which asserts that only one write is issued at the same time. This does
not affect anything else in the test setup since only the collector communicates with other
measurement clients – all other machines are entirely decoupled and work independently.
We do not see a different workload in having more than one writer but this could be used
to analyze effects of write locality on consistency behavior. Since the collector outputs time
series, consistency behavior could then easily be matched with the respective writer location
to check for correlation.





8. Evaluation

In this chapter, we present the evaluation results for our contributions from Part II. For this
purpose, we start with the evaluation of our modeling and simulation approach in section 8.1
before continuing with our system benchmarking approach in section 8.2. Finally, we close
this chapter with a conclusion in section 8.3

This chapter contains material previously published at MW4SOC 2011 [17], TCPTC
2013 [19], and IC2E 2014 [18].

8.1. Modeling and Simulation

For the evaluation of our modeling and simulation approach, we have implemented a custom
storage system called Ministorage which we briefly introduce in section 8.1.1. We then
deployed Ministorage in various configurations and deployment setups and compared actual
consistency behavior to our simulation output for the same configuration and deployment.
We specifically decided not to use an existing NoSQL system for several reasons:

1. We can guarantee that Ministorage does not violate any of our assumptions.

2. Ministorage allows to easily inject failures of all kinds and already implements the nec-
essary logging functionality so that a comparison between real and simulated results is
possible.

3. Our model allows to mix synchronous and asynchronous update propagation with quo-
rums. To our knowledge, no other storage system exists today where this is possible.
We, therefor, need Ministorage to evaluate the entire model.

4. Our simulation tool currently only implements the Write Set conflict resolution strat-
egy. We, therefor, also needed a storage system which implements this strategy.

5. Our data collection tool for ODTT values currently uses only our own simple commu-
nication middleware. We are working on extending this but meanwhile Ministorage
also uses this middleware.

For the evaluation of our data-centric staleness results, we directly compare values ob-
tained via replica logging to our simulation output. We also studied how crash-stop failures



102 8. Evaluation

SP EU 

SI 

US 

SP EU SI US 

SP 

EU 

SI 

US 

Test 1 Test 3 

Test 2 

Figure 8.1.: MiniStorage’s Replication Graphs during Tests 1, 2 and 3

B2 A2 

A1 B1 

Test 4/6 

C1 

C2 

async 

async 

sync sync sync 

B2 A2 

A1 B1 

Test 5/7 

C1 

C2 

sync 

sync 

async async async 

Figure 8.2.: MiniStorage’s Replication Graphs during Tests 4, 5, 6 and 7 for replica A1

of replicas affect data-centric staleness. As, for several reasons, our simulation implemen-
tation can only provide qualitative but not quantitative predictions for all other metrics, we
have analyzed how the replication factor affects MRC and RYWC and how geo-replication
affects both data-centric and client-centric staleness.

8.1.1. MiniStorage

MiniStorage has been implemented as a system benchmarking testbed for consistency be-
havior. In its original version it was a simple quorum system and was used to measure the
accuracy of our system benchmarking approach [17]. Since then it has evolved to a key-
value store that typically keeps data in memory and offers both Write Set and Last Write
Wins conflict resolution strategies. Arbitrary numbers of replication graphs can be specified,
though, read graphs may currently contain only one replica. Beyond a CRUD interface it also
supports record append operations inspired by the Google File System [44] which we need
for the Write Set conflict resolution strategy. Failed requests on asynchronous connections
are retried until they complete, on synchronous connections the operation fails. The system
allows to inject all kinds of failures and implements the staged event-driven architecture [99].
Users can specify whether the system shall expose dirty reads or not.



8.1. Modeling and Simulation 103

Table 8.1.: Basic Test Setup Parameters in Comparison
Test Distribution Setup # Replication Update MTBF MTTR
No. Graphs Operation
1 WAN MS 1 put - -
2 WAN MS 1 put - -
3 WAN MS 1 put - -
4 LAN P2P 6 record append - -
5 LAN P2P 6 record append - -
6 LAN P2P 6 record append 3min 10s
7 LAN P2P 6 record append 30s 10s
8 LAN P2P 1-6 record append - -

8.1.2. Test Setup

We evaluated our approach using both single site and geo-distributed deployments running
on top of EC2 small instances1. We used the data gathering tool described in section 7.1.1 to
measure ODTT values for both test setups before actually running the tests.

Tests 1, 2 and 3 (WAN) For the geo-distributed deployment we started one instance
each in the regions us-east (US), eu-west (EU), sao-paulo (SP) and singapore (SI). We then
added only one replication graph, i.e., used a master-slave setup, with the master running in
the singapore region. Figure 8.1 shows the respective replication graph we used for tests 1,
2 and 3. All updates were propagated asynchronously. Our client was running in Karlsruhe,
Germany and issued 1000 write requests per test run. Each test was repeated several times
with the same outcome.

Tests 4, 5, 6 and 7 (LAN) For the single site deployment we started two instances
each in all three availability zones in the region eu-west. We use the names A1 and A2 to
refer to the instances running in availability zone A etc. We configured MiniStorage in a
P2P setting, i.e., added one replication graph per instance. For tests 4 and 6, the start replica
forwarded its updates synchronously to the other replica in the same zone and asynchronously
forwarded the request to one replica in each of the other two availability zones. This instance,
in turn, forwarded the request synchronously to the other replica in the same zone. So,
essentially, update propagation within the availability zone was synchronous while traffic to
other availability zones was asynchronous. For tests 5 and 7, this was configured exactly the
other way around. Figure 8.2 shows the replication graphs for replica A1 as an example. All

1aws.amazon.com/ec2



104 8. Evaluation

other replication graphs were configured likewise. For the LAN tests, MiniStorage was set
to avoid dirty reads.

During tests 5 and 7, we repeatedly failed node B1, resulting in MTBF of about 3 minutes
for test 5 and of about 30 seconds for test 7. The MTTR in both cases was 10 seconds.

To create load on the system, we implemented a sample application mimicking an Internet
forum. The application continuously triggers either a read (randomly) or uses the record
append operation to add a post. We deployed this application on one instance each in all
three availability zones, issuing between 500 and 5000 record appends per client2.

Test 8 (LAN) We ran an additional set of tests to evaluate our client-centric ordering
simulations. For this purpose, we deployed Ministorage on six EC2 small instances in the
region eu-west (two instances per availability zone) and configured our instances to forward
updates to all other nodes asynchronously (this corresponds to a (N,R,W) configuration of
(N,1,1)). As load generator, we used the same sample application as in tests 4 to 7 running
on three small instances. Requests were routed to a randomly chosen replica and were exe-
cuted sequentially per client (i.e., a new operation would only start after the end of the last
operation). For the actual test, we first used only one Ministorage instance in zone A. Next,
we added a replica in zone B, then zone C and so on. The purpose of this test was to analyze
the influence of the replication factor on MRC and RYWC via both system benchmarking
and simulation.

Table 8.1 gives an overview of the different setups for tests 1 to 8.

8.1.3. Results

Figures 8.3 to 8.9 give an overview of our evaluation results for tests 1 to 7, all plotted curves
are moving averages over 50ms intervals. Figures 8.11 and 8.12 show the results of test 8.

As already mentioned in section 5.3.3, we encountered some difficulties in accurately de-
termining the distribution of processing times as those values seem to depend on the structure
of replication graphs used. Therefore, we used only the average value in simulations instead
of a distribution function (i.e., we ignored the variance) as we preferred to use no variance
compared to a wrong variance value. This allows us to make an educated guess in advance
regarding the deviation of system benchmarking and simulation results which is useful for
showing that the approach actually works. When using our simulation approach to determine
actual consistency behavior for application engineering, it, of course, makes sense to estimate
a variance value.

2The actual number was chosen randomly. In the beginning, each of our tests issued 1000 requests per client; later,
each client issued 10,000 requests.



8.1. Modeling and Simulation 105

0.0%

0.1%

0.2%

0.3%

0.4%

1700 1900 2100 2300 2500 2700 2900

Simulation
Experiment

Staleness [ms] 

Figure 8.3.: Density Functions of Measured and Simulated Data-centric Staleness in Test 1

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

2000 2200 2400 2600 2800 3000 3200 3400 3600

Simulation

Experiment

Staleness [ms] 

Figure 8.4.: Density Functions of Measured and Simulated Data-centric Staleness in Test 2



106 8. Evaluation

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

1200 1300 1400 1500 1600 1700 1800 1900

Simulation
Experiment

Staleness [ms] 

Figure 8.5.: Density Functions of Measured and Simulated Data-centric Staleness in Test 3

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0 500 1000 1500 2000 2500 3000

Experiment

Simulation

Staleness [ms] 

Figure 8.6.: Density Functions of Measured and Simulated Data-centric Staleness in Test 4



8.1. Modeling and Simulation 107

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

250 500 750 1000 1250 1500

Experiment
Simulation

Staleness [ms] 

Figure 8.7.: Density Functions of Measured and Simulated Data-centric Staleness in Test 5

This can also be seen in the results: While figures 8.3, 8.4 and 8.5 show almost identical
curves for both simulation and experiment, figures 8.6 and 8.8 show a simulated distribution
with less variance compared to the experiment. This is due to the fact, that during tests 1,
2 and 3 the relative error caused by inaccurate processing times is low due to wide area
replication with high ODTT values. For tests 5 and 7 in contrast (different setup than tests
4 and 6) the processing times distribution actually has a low variance value. This is caused
by the the fact that asynchronous update propagation across data centers (tests 4 and 6) is
more likely to encounter an error, thus, causing a retry which increases the processing time
overhead. For synchronous replication the request just fails and is no longer considered in
the curve which asserts a lower variance level for tests 5 and 7. It will be an interesting issue
to study in future work, how processing times are influenced by replication graphs. Still,
median and average values are fairly close (see figure 8.10).

Another influence on the variance of those tests are failures: While not considered in
the model (i.e., we simulated a situation without failures) we cannot rule out that failures
occurred during our experiment causing a retry or a delayed request. A lesson learned from
this is that it is important to include accurate failure modeling for all components.

Regarding tests with artificially induced failures, both simulation and experiment show
the expected results: A failure duration of ten seconds causes a “long tail” with a length of
ten seconds beyond the median value. The “thickness” of the tail depends on the number of



108 8. Evaluation

requests processed during the failure situation. Here, our average values deviate for simula-
tion and experiment as (which we discovered after the test runs) the test application and the
simulation tool handle requests differently: While the simulation tool continuously creates
requests independent of failures, a real application client may block briefly during failure
situations and, thus, create less requests while failures persist. Or a real application client
may fail quickly (faster than the average operation latency) and actually create more requests
during failure situations.

This can be seen in figure 8.10: the setup of test 6 causes most requests to reach the failed
node asynchronously so that the application client can continue to issue requests, whereas in
the setup of test 7 the application contacts B1 mainly synchronously so that the client blocks
briefly before the operation fails. This causes the experiment client to issue more requests
than the simulation client in test 6 and less requests in test 7 which causes the discrepancy of
the average values.

This is a flaw in the implementation of the client model in our simulation tool (and not a
flaw in the model itself), we are not yet sure how best to consider this fact in simulations.

For the sake of completeness, we also repeated tests 1, 2 and 3 using not our Monte Carlo
simulation approach but instead calculating convolutions. The results showed no recogniz-
able deviation from the Monte Carlo results presented above.

Just as with failures, client-centric behavior heavily depend on the client workload. As
a detailed workload model is not part of our consistency model (and to our knowledge no
sufficiently precise model exists yet) so that our implementation also includes a rather sim-
plistic client simulation, we can only provide qualitative results. Still, we believe that the
simulation approach itself produces accurate quantitative results for the simulated workload,
i.e., if a client model accurately reflects the behavior of a real client, then the simulation
output will also provide quantitatively correct results. Still, at the moment we cannot prove
this. As we have also seen in many system benchmarks, the client-observable consistency
behavior is highly volatile with respect to changes in the client workload pattern so that small
deviations in the implementation details of real and simulated clients cause severe deviations
for the simulation and measurement outputs. To further highlight this, figures 8.11 and 8.12
show two different simulated workloads: Simulation 1 had three clients which each issued 15
read and 15 write requests per second (i.e., a total of 90 operations per second); simulation
2 also had three clients but each of those clients issued 20 read and 20 write requests per
second (i.e., a total of 120 operations per second). As expected, both simulation and system
benchmark show that increasing the replication factor also increases the probability of MRC
and RYWC violations.

We also studied how geo-replication (manifested in higher ODTT values) affects client-
centric and data-centric t-Visibility levels. From past experiments, we know (see also the



8.2. System Benchmarking 109

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0 2000 4000 6000 8000 10000

Experiment
Simulation

Staleness [ms] 

Figure 8.8.: Density Functions of Measured and Simulated Data-centric Staleness in Test 6

experiments in section 8.2) that this leads to higher t-Visibility values – both from a client
and a provider perspective. In large numbers of simulation runs in various configurations,
we have seen that to be true for each simulation output without any doubt. When calculating
convolutions, this could even be shown mathematically. We, therefore, do not report detailed
results of these simulation runs here.

8.2. System Benchmarking

This section is divided into three parts: We start with a comparison of data-centric staleness
behavior obtained via replica logging in Ministorage and client-centric staleness values mea-
sured using our system benchmarking approach. In that test, we varied the number of readers
to actually show our numeric simulation results from figure 6.1 (chapter 6) in practice. As a
second evaluation part, we have conducted a long-term experimental study of Amazon S33.
Finally, the third part is an analysis of how parallel workloads and geo-replication affect
consistency behavior in MongoDB4 and Apache Cassandra5.

3aws.amazon.com/s3
4mongodb.org
5cassandra.apache.org



110 8. Evaluation

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

200 2200 4200 6200 8200 10200

Experiment
Simulation

Staleness [ms] 

Figure 8.9.: Density Functions of Measured and Simulated Data-centric Staleness in Test 7

Avg
0

500

1,000

1,500

2,000

2,500

3,000

1 2 3 4 5 6 7

Experiment
Simulation

0

500

1,000

1,500

2,000

2,500

3.000

1 2 3 4 5 6 7

Experiment
Simulation

Staleness [ms] 

Test No. 

Figure 8.10.: Median (Left) and Average (Right) Results of System Benchmark and Simulation



8.2. System Benchmarking 111

MRC

0%

20%

40%

60%

80%

100%

6 5 4 3 2 1

Benchmark 

Simulation 1 

Simulation 2

# Replicas 

Figure 8.11.: Average Percentage of MRC Violations in Test 8

Simulation 2
93,53% 6
89,55% 5
88,50% 4
83,37% 3
73,38% 2

0,00% 1

RYWC

0%

20%

40%

60%

80%

100%

6 5 4 3 2 1

Benchmark

Simulation 1

Simulation 2

# Replicas 

Figure 8.12.: Average Percentage of RYWC Violations in Test 8



112 8. Evaluation

8.2.1. Data-centric and Client-centric Staleness

As already discussed in chapter 6, the accuracy of our system benchmarking approach highly
depends on the number of readers used. This becomes clear when looking at the probability
of reaching all replicas: For example, in a scenario with three replicas where a load balancer
routes requests to a randomly chosen replica (uniformly distributed) we assume that all read-
ers read only once at the same time. In that case, there is a probability of less than 4% of
reaching all replicas when using the minimum number of three readers. When using more
readers, this value increases to 83% (for seven readers) or 93% (for nine readers). This in
turn implies that data-centric staleness is an upper bound for client-observable inconsistency
windows since there is always a chance of missing one replica, i.e., the probability of reading
all replica will always be less than 100%. It is possible to calculate these probability val-
ues mathematically, still the set of assumptions above leaves a level of uncertainty whether
the number of readers used suffices for a particular usecase. In this section, we study this
experimentally.

To address this question, we again used Ministorage (section 8.1.1), this time in a quorum
configuration with a replication level of three. Each read request was served by just one
replica. Write requests also terminated after committing the update locally. After this, we
injected an artificial one second delay6 before forwarding the write request to the other two
replicas. This corresponds to an (N,R,W) configuration of (3,1,1) [97]. We used replica
logging to determine the data-centric staleness behavior.

For our evaluation, we deployed Ministorage on three Amazon EC2 small instances within
the region us-east, each running in different availability zones. Next, we deployed our system
benchmarking tool on EC2. The writer, the collector and the first readers were deployed in
the same availability zone as the first replica. For our test, we used an update interval of five
seconds and a read interval of ten milliseconds. Afterwards, we added another reader every
10 minutes. While the first reader was in availability zone A, the second was in B, the third
in C, the fourth in A again, and so on. We did this until we had twelve readers running. At
that point we stopped adding readers but kept the system running for another two hours.

The test results show a fairly stable data-centric t-Visibility of slightly above one second.
At the same time, our consistency measurements slowly approach that curve asymptotically.
This proves the validity of our considerations regarding both the number of readers necessary
to reach all replicas with a certain probability as well as regarding the upper bounds for client-
centric staleness.

Figure 8.13 shows our measurement results; the grey bar stands for data-centric staleness
while the black bar shows our measured results gained by adding more and more readers.

6Originally, observed system latencies and inconsistency windows were close to the accuracy range of NTP which
we use for clock synchronization so that no meaningful results could be achieved.



8.2. System Benchmarking 113

900

920

940

960

980

1,000

1,020

1.040

1 2 3 4 5 6 7 8 9 10 11 12

Client-centric Staleness Data-centric Staleness  [ms] 

[# Readers] 

Figure 8.13.: Data-centric versus Client-observable Inconsistency Windows with Varying Number of
Readers

To remove small random fluctuations the figure only shows the mean values for each period
between changing the number of readers. The actual values nevertheless contained not even
one outlier which exceeded the data-centric staleness. From this experiment, we can also
see that beyond a certain number of readers it becomes highly inefficient to achieve higher
accuracy.

8.2.2. Long-term Study with Amazon S3

In this section, we present the results of our long-term experimental study using Amazon
S3 as an example. We start by describing the results our staleness measurements over time
before continuing to other measurement results.

Staleness and MRC Results

For each of our experiments, we deployed twelve readers on EC2 small instances in the AWS
region eu-west, four each in every availability zone; we also deployed a writer instance in
zone A. In our experiments, we varied both the test duration (24 hours or 7 days) and the
interval between updates (10 or 20 seconds), see table 8.2.



114 8. Evaluation

Table 8.2.: Experiment Setups

Experiment Start Date Duration Write Interval Commment

1 Aug 29, 2011 7d 10s -

2 Nov 10, 2011 24h 20s one reader crashed

3 Nov 16, 2011 24h 20s -

4 Nov 17, 2011 24h 10s -

5 Oct 2, 2012 24h 10s -

6 Oct 3, 2012 7d 10s -

7 Sept 4, 2013 24h 10s -

8 Sept 6, 2013 7d 10s -

In experiment 17, we observed the two periodicities already reported in our original pa-
per [17]: Alternating LOW and SAW phases which we later determined to be correlated
to working hours since the experiment started at Monday morning, 10.30h local time. Fig-
ure 8.14 shows how the maximum observable t-Visibility values change over time. During
the SAW phases (“black areas” in figure 8.14) staleness values changed in a sawtooth pattern
with a wavelength of slightly below two minutes. Figure 8.15 shows a randomly selected
excerpt from a SAW phase. The rest of the time, i.e., during the LOW phases, values were
as expected distributed randomly. We believe, also based on experiments where multiple
files were targeted with system benchmarks at the same time, that the S3 implementation at
that time initiated update propagation either periodically or upon a second write to the same
bucket.

On October 20, 2011, we contacted Amazon regarding this behavior. While they would
not comment on the root source of this effect, they quickly made changes to their implemen-
tation which we were able to observe in experiments 2, 3 and 4: While the daily patterns were
still clearly visible (see figure 8.16, the chart has been clipped at about 15 seconds) and the
LOW phase had not changed, the SAW phase showed an “obscurified” but still recognizable
sawtooth pattern, see figure 8.17 for a randomly selected excerpt from the SAW phase8. In-
terestingly, the median of the staleness values increased so that the update actually decreased
the consistency behavior in that dimension.

Almost one year later, we again benchmarked S3 – a 24 hour experiment and another
7 day experiment to verify our findings. Amazon must have made additional changes to
their system as the daily/weekly patterns of SAW and LOW phases did not exist any longer.

7We actually repeated this experiment several times with the same behavior.
8Experiments 2,3 and 4 showed almost identical results.



8.2. System Benchmarking 115

0

2.000

4.000

6.000

8.000

10.000

12.000

0 10 20 30 40 50 60 70

Staleness
in ms 

Test No. 

0

5,000

10,000

15,000

20,000

25,000

30,000

35.000

0 100,000 200,000 300,000 400.000 500.000 600.000Seconds since 
experiment start 

Staleness 
in ms 

,

Figure 8.14.: SAW and LOW Phases in Experiment 1

0

2,000

4,000

6,000

8,000

10,000

12.000

0 10 20 30 40 50 60 70

Staleness 
in ms 

 Test No. 

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

0 100.000 200.000 300.000 400.000 500.000 600.000Seconds since 
experiment start 

Staleness
in ms 

Figure 8.15.: Excerpt from a SAW Phase in Experiment 1



116 8. Evaluation

0

2,000

4,000

6,000

8,000

10,000

12,000

14.000

0 20,000 40,000 60,000 80.000

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

0 20 40 60 80 100 120 140 160 180 200

Staleness 
in ms 

 Test No. 

Seconds since 
experiment start 

Staleness 
in ms 

Figure 8.16.: SAW and LOW Phases in Experiment 4

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

0 20.000 40.000 60.000 80.000

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16.000

0 20 40 60 80 100 120 140 160 180 200

Staleness 
in ms 

 Test No. 

Seconds since 
experiment start 

Staleness
in ms 

Figure 8.17.: Excerpt from a SAW Phase in Experiment 4



8.2. System Benchmarking 117

0

100

200

300

400

500

0 100,000 200,000 300,000 400.000 500.000 600.000Seconds since 
experiment start 

Staleness 
in ms 

,

Figure 8.18.: Staleness Results of Experiment 6

Furthermore, even maximum peak values did not exceed 10 seconds any more; in fact, most
peaks were below one second. Figure 8.18 shows the results of experiment 69; the chart has
been clipped at 500ms – still, we could count less than 50 peaks of more than one second
out of 60,000 measurements. This was actually the behavior we would have expected for our
original experiments in 2011.

Another year later, in September 2013, we repeated experiments 5 and 6. During these
experiments we observed that the number of peaks had increased dramatically. Furthermore,
even though these peaks were typically between 6 and 10 seconds, there were also quite a
few peaks still exceeding 10 seconds of staleness. Average values increased by about 100ms,
median values doubled and standard deviation values increased between 300% and 600%
compared to experiments 5 and 6. While results are still far better than in 2011, they are now,
in 2013, effectively worse than in 2012. Especially, the increase in variance has caused the
consistency behavior to become much more unpredictable. Figure 8.19 shows the results of
staleness measurements in experiment 710.

Figure 8.20 and table 8.3 show how the aggregated results have evolved over time.

9Experiment 5 showed almost identical behavior.
10When comparing figures 8.18 and 8.19, note that figure 8.19 uses a logarithmic scale.



118 8. Evaluation

10

100

1,000

10.000

0 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000Seconds since 
experiment start 

Staleness 
in ms 

, , , , , ,

Figure 8.19.: Staleness Results of Experiment 7

While analyzing the results of experiment 8, we also discovered a curious “bump” in the
chart showing the probability of reading non-stale data as a function of time since the last
update (see figure 8.21). When we went back to also recheck the results of the other seven
experiments, we realized that they all had the same “bump” in the very same time interval.
Further analysis revealed that there is also a temporary increase in average read latency values
right before the “bump” (see figure 8.22 which shows the read throughput as well as the
average read latency over time). As this behavior keeps reoccurring in all eight experiments
of which experiment 8 alone is based on more than half a billion reads, we believe that this
is not random behavior.

Obviously, the increased read latency affects only fresh reads while stale reads continue
unaffectedly. The only explanation that we can come up with, is that about 30ms after an
update started (we have single digit update latencies), the only existing fresh replica blocks
briefly to update another replica, while a third (still stale) replica continues to serve requests.

Recently, we also extended our system benchmarking approach to measure the inconsis-
tency window of delete operations, i.e., how long a value is still readable after having been
deleted. In the results of several experiments, we noted that there is no effect on staleness
of deletes caused by the workload executed before the delete operation. This indicates that
Amazon uses a constant number of replicas independent of the actual workload on a specific



8.2. System Benchmarking 119

Kontakt mit Amazon: 20.10.11

norm. % MRC Violations % Error Start Date Duration Write interval comment
12,0461% 0,00000028% 11-08-29 7d 10s -

9,7205% 0,00007172% 11-11-10 24h 20s 1 reader mi
10,1268% 0,0036% 11-11-16 24h 20s -
10,6982% 0,0068% 11-11-17 24h 10s -

0,0013% 0,00003102% 12-10-02 24h 10s -
0,0005% 0,00001042% 12-10-03 7d 10s -
0,0359% 0,0000050% 13-09-04 24h 10s -
0,0364% 0,0000073% 13-09-05 7d 10s -

0

1,000

2,000

3,000

4,000

5000

1

10

100

1,000

10,000

100000

1 2 3 4 5 6 7 8

Average

Max

Min

Median

Standard
Deviation

Experiment 

Standard 
Deviation 

Staleness 
in ms 

Figure 8.20.: Overview of Results in Experiments 1-8

Table 8.3.: Results of Experiments 1-8

Experiment Min. [ms] Avg. [ms] Median [ms] Max. [ms] Std. Dev. [ms]

1 1 3,029.48 31 32,716 4,276.60

2 8 6,072.17 7,969 21,439 4,431.88

3 9 6,220.37 8,603 48,281 4,731.92

4 7 6,277.14 8,648.5 42,922 4,553.42

5 6 36.65 21 9,854 183.62

6 6 48.81 23 8,663 132.10

7 7 147.77 37 10,594 767.56

8 5 223.14 47 15,165 908.35

key. It is, therefore, also unlikely that Amazon uses caching layers in S3. The results of our
delete experiments were comparable to the results of experiments 7 and 8 so that it seems
likely that delete and update operations are implemented in a similar way.

As already mentioned, our approach for staleness measurements also logs the results of
MRC violations and read error rates. Table 8.4 gives an overview of the results. Note, that
the MRC results of experiments 2 and 3 have to be normalized as most updates complete
below 10 seconds so that during the second half of the update interval MRC guarantees can



120 8. Evaluation

Table 8.4.: MRC and Error Results of Experiments 1-8

Experiment % Prob. of MRC Violations Prob. of Read Errors

1 12.0461% 2.8∗10−9

2 4.8603% 7.2∗10−7

3 5.0634% 3−6∗10−5

4 10.6982% 6.8∗10−5

5 0.0013% 3.1∗10−7

6 0.0005% 10−7

7 0.0359% 5∗10−8

8 0.0364% 7.3∗10−8

only be violated if there is a peak value with a staleness value beyond 10 seconds. A rough
approximation of the normalized results is to multiply the measured values with a factor of
two, thus, simply excluding all staleness values beyond 10 seconds.

Based on these results, we can see that the original Amazon update slightly improved
MRC behavior before really driving the rate of MRC violations down in 2012 where we also
had the best staleness results. In our 2013 experiments, we then again saw an increase in
MRC violations – while the values continue to be low, they still increased by a factor of
approximately 30 between 2012 and 2013.

Further Results

We also measureed MWC and RYWC violations. For this purpose, we deployed a single EC2
small instance in the Amazon region eu-west. For the MWC measurements, this instance
issued an update and directly afterwards issued another update to the same key. We did this
for 1000 keys. Afterwards, we periodically checked over the course of 24 hours whether the
value that could be read was identical to the value of the second update. Neither of these
checks returned the value of the first update so that the result of our experiment was, hence,
that MWC seems guaranteed by S3. We ran this system benchmark on March 19, 2012 and
September 4, 2013.

On the same dates we also ran our RYWC system benchmark where we first issued a write
and then read this value back 100 times. This was repeated for 1000 writes and never read
any value older than the one our client had just written. We, therefore, conclude that S3 also
seems to guarantees RYWC.



8.2. System Benchmarking 121

10

11

12

13

14

15

16

0

50.000

100.000

150.000

200.000

250.000

300.000

350.000

400.000

5 25 45 65 85 105 125 145 165 185

Total Reads Fresh Reads

Stale Reads Avg. Latency

Reads 
per 5ms 

Latency 
[ms] 

ms since write 

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300ms since 
write 

Figure 8.21.: Prob. of Reading Fresh Data as a Function of the Time since the Last Update (Exp. 8)

10

11

12

13

14

15

16

0

50,000

100,000

150,000

200,000

250,000

300,000

350.000

400.000

5 25 45 65 85 105 125 145 165 185

Total Reads Fresh Reads

Stale Reads Avg. Latency

Reads 
per 5ms 

Latency 
[ms] 

ms since write 

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300ms since 
write 

Figure 8.22.: Influence of the Time since the Last Update on Latency and Read Rates (Experiment 8)



122 8. Evaluation

Setup Workload
System Replica Type idle CMC only read-heavy update-heavy

Cassandra Update Coordinator <5% ca. 20% 70-80% 70-80%
Other Replica <5% 15-20% ca. 25% 25-40%

MongoDB Master <5% 20% ca. 25% 35-40%
Slave <5% 5-10% ca. 25% 35-40%

Table 8.5.: CPU Utilization During System Benchmarks for Consistency Behavior

8.2.3. Geo-replication and Parallel Workloads

To show the applicability of our framework for comprehensive system benchmarking of con-
sistency behavior which we presented in section 7.2.4, we studied how geo-distribution of
replicas combined with two different workloads affects the consistency behavior of Cas-
sandra and MongoDB. We chose these NoSQL systems as Cassandra is a popular example
of P2P systems whereas MongoDB is typically (and was during our tests) configured in a
master-slave setup.

Experiment Setup

In our experiments, we ran the following three system benchmarks on Amazon EC211, each
with Cassandra and MongoDB:

• Single-AZ: All replicas were deployed in the region eu-west within the same availabil-
ity zone12.

• Multi-AZ: One replica was deployed in each of the three availability zones of the
region eu-west.

• Multi-Region: One replica was deployed in three different regions: eu-west, us-west
(northern California) and asia-pacific (Singapore).

All replicas were deployed on m1.medium instances, whereas our writer and readers were
running on m1.small instances distributed according to the respective test. YCSB was de-
ployed on an m1.xlarge instance. Both YCSB and the writer machine of the Consistency
Measurement Component (CMC) as well as the MongoDB master were deployed in the
eu-west-1a availability zone. We used a simple load balancer strategy for all tests, where

11aws.amazon.com/ec2
12On AWS, availability zones describe completely independent data centers located next to each other within the

same geographical region. AWS regions each have at least two availability zones and are geographically dis-
tributed.



8.2. System Benchmarking 123
Cassandra Test 3 Zusatzchart

MongoDB50

70

90

110

130

150

170

190

0 500 1000 1500 2000 2500 3000 3500 4000 4500

  [ms] 

Test No. 

Figure 8.23.: Change of Staleness over Time (Cassandra, Multi-Region Setup)

requests were always routed to the closest replica. Cassandra clients were configured to use
consistency level ONE for all requests13.

During each test, we left the storage system at idle for at least 30 minutes before we
started the actual consistency measurements. After another 30 minutes we then started YCSB
running workload 1. When YCSB was done, we again waited for the storage system to
stabilize before running workload 2. Finally, after completing workload 2, we asserted that
the system stabilized again at the levels before each workload. This resulted in about 1000 to
1300 writes of the CMC per system benchmark run for which we measured our consistency
metrics.

There were no cross effects between the three different tests as we started each storage
system cluster from scratch. Both workloads comprised one million operations on 1000
records. Workload 1 had 80% reads and 20% writes, while workload 2 was configured
exactly the other way around.

Results

E�ects of Workload Surprisingly, the workloads barely affected the inconsistency win-
dow (t-visibility) of both systems. We used Amazon CloudWatch14 to also measure the CPU

13A request terminates successfully after having written or read a single replica.
14aws.amazon.com/cloudwatch



124 8. Evaluation

utilization and network IO of the replicas and the YCSB instance. In all cases, network IO of
the “master” replica15 seemed to be the bottleneck. During one system benchmark, while we
were still testing the setup of our scripts, we managed to overload the CPU of Cassandra’s
“master” replica. During that period we observed very high staleness values. Obviously,
when the CPU is saturated, the consistency behavior becomes completely unpredictable. Ta-
ble 8.5 shows the CPU utilization that we encountered during our experiments.

During one of the tests (Cassandra in the multi-region setup), we were able to see an ef-
fect of the workloads on the inconsistency window. Figure 8.23 shows how staleness values
changed over time during that experiment (the graph shows a moving average to remove ex-
treme values). The boxes indicate the periods during which the two workloads were running.

E�ects of Geo-Distribution For Cassandra, about 98% of all requests created an incon-
sistency window between zero and one millisecond when deployed within a single availabil-
ity zone. As there was only a single maximum value of 38ms, we do not show a chart for
this. For the setups where replicas were distributed over three availability zones or regions re-
spectively, Figures 8.24 and 8.25 show the observed density functions for the inconsistency
windows. We have excluded extreme values from our results to increase legibility of the
chart. As expected, it is fairly obvious that increasing the level of geo-distribution increases
staleness. We did not encounter any violations of MRC, MWC or RYWC which is caused
by both the load balancing strategy that we chose (routing requests to the closest replica) as
well as the fact that our system benchmarks did not encounter any obvious failures.

For MongoDB, the results were slightly different. As expected, the setup with replicas
distributed over different regions showed the longest inconsistency window. We would have
expected to see again a value of close to zero for the single availability zone setup and a
slightly larger value for the setup in multiple availability zones. Interestingly though, this
was exactly the other way around. See Figure 8.26 for the density functions of observed
inconsistency windows on MongoDB.

When looking at the detailed results for the individual replicas16, it becomes obvious that
it was always the same replica that was lagging behind. When we excluded this replica,
results are again as expected: More than 96% of all requests show an inconsistency window
of 5ms or less in the single availability zone setup. We believe that this could be caused by
one of two effects which are both related to problems with the respective virtual machine.
Either the third replica had a problem (possibly due to a resource-greedy tenant on the same
physical machine) and was really lagging behind or the reader for this replica had a clock
synchronization issue which caused its clock to lag by around 10ms behind. Normally, this

15The load balancing strategy that we chose effectively asserted that all updates originated on the same replica.
16We do not report those detailed results here for reasons of legibility, but the CMC logs the result of every single

datastore interaction as well as the corresponding timestamp and latency.



8.2. System Benchmarking 125
Cassandra Test 2

0%

5%

10%

15%

20%

25%

30%

35%

0 1 2 3 4 5 6 [ms]  

Figure 8.24.: Distribution of Staleness Values in Cassandra (Multi-AZ)
Cassandra Test 3

0%

5%

10%

15%

20%

80 90 100 110 120 130 140  [ms]     

Figure 8.25.: Distribution of Staleness Values in Cassandra (Multi-Region)



126 8. Evaluation

Single-AZ
Multi-AZ
Multi-Region

0%

10%

20%

30%

40%

50%

0 10 20 30 40 50 60 70 80 90

Single-AZ Multi-AZ Multi-Region

        [ms]  

Figure 8.26.: Distribution of Staleness Values in MongoDB

should not be an issue as our CMC component was started about 24 hours in advance to allow
for a slow clock synchronization process17. In this case, one possible reason for causing this
effect is a problem with the virtual machine of the reader. However, further investigation is
required to verify if other reasons could be behind this effect.

Again, we did not see any violations of MRC, MWC or RYWC due to the reasons outlined
above.

During our multi-region tests with both Cassandra and MongoDB, we could observe that
the Singapore region usually added another 15 to 20ms to the inconsistency window already
caused by the us-west replica. Obviously, the connection to the Singapore replica was the
limiting factor in our setup.

Additional Observations For Cassandra, we also repeated a multi-region setup with a
fourth replica in the region sao-paulo and varied the write consistency level of Cassandra
which describes the number of replicas that need to acknowledge a write request so that it
terminates successfully. In all of our tests, we could not see any variance in the staleness
levels due to the write consistency level chosen. Obviously, the write consistency level is
rather a durability level than a consistency level as the system does not block dirty reads.
This implies that in a geo-distributed setting the updates might be visible on some replicas

17ntp.org recommends about 4 hours, so we really played it safe here.



8.3. Conclusion 127

before the request commits at the coordinator of the write which, in essence, corresponds to
something like “negative staleness” according to our definitions from chapter 4. Apart from
increased request latency there was no effect on the system.

8.3. Conclusion

In this chapter, we started with the evaluation of our consistency modeling and simulation
approach and showed that our approach allows accurate predictions for data-centric staleness
values. We also showed that for our other consistency metrics at least qualitatively correct
predictions can be simulated.

Afterwards, we presented the results of a large number of experimental studies using our
system benchmarking approach from chapter 6. First, we demonstrated that our client-centric
system benchmarks in fact are a good approximation for actual behavior under the assump-
tion that a sufficient number of readers is used. Our experiment also indicated that data-
centric staleness is indeed an upper bound for client-centric staleness. Second, we conducted
a long term experimental study of Amazon S3’s consistency guarantees and revealed surpris-
ing changes in behavior. This, of course, also demonstrates the necessity of system bench-
marks for client-centric consistency as a user of cloud storage services. Third, we studied
how geo-replication and parallel workloads (i.e., changes in resource saturation) affect the
consistency behavior of Apache Cassandra and MongoDB.





9. Application Engineering

Consistency Benchmarking not only serves the purpose of increasing comparability of stor-
age systems or of allowing researchers to study consistency behavior for the identification of
new mechanisms for improved future systems. It is also necessary for application developers
who have to deal with inconsistencies of the storage system within their application. This is
achieved by providing concrete insight into the frequency and severity of consistency viola-
tions – a necessity for efficient inconsistency handling. Without this information, handling
conflicts is impossible for some kinds of inconsistency and highly inefficient for others.

Generally, consistency violations can be categorized in two groups: The first group com-
prises violations that can be handled independent of an actual application whereas the second
group requires application-specific knowledge (e.g., when merging version branches). Mid-
dleware systems as both a programming abstraction and application infrastructure can be
used to implement inconsistency handling for the first group, parts of which we presented
at IC2E 2013 [16]. Doing this in an efficient way requires detailed knowledge on actual
consistency behavior of an eventually consistent storage system.

Therefore, this chapter is divided into three sections:

• Section 9.1 describes for the example of a simple webshop how inconsistencies could
generally be handled based on Consistency Benchmarking results. Since not all in-
consistencies can be handled without application-specific knowledge, describing basic
concepts and methods for inconsistency handling becomes much more comprehensible
when done based on a use case instead of in terms of abstract concepts. For this reason,
we describe such methods based on an exemplary use case and leave the development
of abstract application engineering methods to future work.

• As already pointed out, some inconsistencies can be handled without application-
specific knowledge, thus, reducing the complexity for application developers, e.g., the
webshop provider, when implemented within a middleware layer. Section 9.2, there-
fore, generally describes how a middleware component running on the same machine
as an application server can extend the eventually consistent guarantees of a storage
system to also cover MRC and RYWC without making any changes to the storage
system. This effectively guarantees that the storage system will appear to the appli-
cation server as if it were offering CC, i.e., it creates the client-side illusion of CC by



130 9. Application Engineering

alleviating and hiding the effects of causal violations from the application server. This
material is based on our IC2E 2013 publication [16].

• Section 9.3 describes how Consistency Benchmarking results can increase the effi-
ciency of such a middleware system but also how applications can generally handle
inconsistencies not requiring application-specific knowledge. Some of these inconsis-
tency handling approaches would not be possible without our Consistency Benchmark-
ing results – others can, this way, be used much more efficiently. We also describe
potential extensions further increasing consistency guarantees which, though, partly
interfere with other QoS levels like availability or latency.

Generally, applications running on top of NoSQL systems or cloud storage services always
require a co-design of data store and application. Even apart from potential inconsistencies
which, when not dealt with, will lead to unforeseeable, undesirable application behavior,
applications need to be designed with the storage system in mind as there are no standard
data structures and interfaces. Frequently, this is also works bidirectionally in that the data
store is also designed for a specific application, e.g., Facebook’s Cassandra [65]. While
there are approaches working towards data store interoperability, e.g., DataNucleus1, dealing
with varying degrees of inconsistency is a complex problem which we aim to address in this
chapter.

All in all, this chapter shall not only show how inconsistencies can be handled but also
demonstrate how important Consistency Benchmarking is for application engineering on top
of eventually consistent storage systems. Finally, we conclude this chapter with a conclusion
in section 9.4.

9.1. Handling Inconsistencies in a Webshop Scenario

In the following, we use the example of a webshop to describe how inconsistencies can be
handled in applications using application-specific information as well as Consistency Bench-
marking results. Most effects from running an application on top of an only eventually con-
sistent datastore can be mitigated by designing the application with the consistency behavior
in mind instead of implementing it as if for running on top of an RDBMS. We describe this
application design within this section.

Please note, that this example shall only illustrate how Consistency Benchmarking results
can be used in inconsistency handling. Future work might develop an abstract application
engineering method which, though, is beyond the scope of this work.

1datanucleus.org



9.1. Handling Inconsistencies in a Webshop Scenario 131

We start with a scenario description in section 9.1.1 before discussing how inconsistencies
can be handled for the various operations that interact with the eventually consistent storage
system (section 9.1.2).

9.1.1. Scenario Description

Our scenario comprises two roles: a provider running a webshop on top of an eventually con-
sistent storage system (i.e., multiple app servers which access the datastore2), and a number
of customers who access the webshop, i.e., the app servers, via their browser. Employees of
the provider also access the datastore for administrative tasks via their browser and an app
server. For our purposes, we will assume that each of the roles has the following business
operations which run on one ore more app servers at the provider and access the datastore
directly:

• Provider operations

– Changing product information or adding a new product.

– Removing undesirable customer reviews.

• Customer operations

– Searching for products.

– Reading product details.

– Writing product reviews.

– Adding products to the shopping cart.

– Check-out using the shopping cart.

– Changing personal information of the customer (address, billing information, cre-
dentials, etc.).

9.1.2. Potential Conflicts and Resolution Mechanisms

In this section, we describe for each business operation how it might behave in the presence
of inconsistencies as well as how it might affect other operations. Based on this, we then
describe how the operation could be implemented to minimize the impact of inconsistencies
visible to the customer. We start with the provider operations before continuing with the
customer operations.

2We discuss a more abstract use case in section 9.2.



132 9. Application Engineering

Provider Operations

Changing Product Information or Adding a New Product For this operation, there
are five potential effects which can be caused by inconsistencies.

First, the employee changing information of a product or adding a new product might
not be able to see his own changes. This can be addressed by caching the updated value in
the employee’s browser combined with vector clocks3 or via employee education: why not
simply tell the employees that changes will not be visible everywhere right away?

Second, the amount on stock visible to a client may be wrong: Typically, a shop offers
only quantities for regular private households (for instance, a private household will rarely
buy more than one copy of the same book at the same time). So, while the amount on stock
is by comparison to these quantities large, inconsistencies are entirely uncritical as it does
not matter to a customer whether there are ten or a hundred copies left afterwards as long as
he is able to buy the desired quantity. For low values, the website could just show a warning
message that there are only a few items left. During the check-out process the system then
actually checks whether the item is available by using locking, by interacting with a larger
number of replicas or by communicating with a master replica only. This corresponds to the
approach also proposed as Consistency Rationing [60].

Third, the price changes during the check-out process which will lead to customer irrita-
tion. A cookie stored within the browser of the customer simply stores the version number of
the website and check-out always uses the version number which is specified by the cookie.
Whenever the price is changed, the old version is not overwritten but instead persisted under
a new version number. This way, customers will always get the price which they did see
when first accessing the product during the session. Values within the cookie expire, e.g.,
after a day, so that customers will not for eternity be able to buy the product for the old price.
If the expiration time is set to a day, it is also safe to delete the old version after a day plus a
safety margin for incorrect app server clocks.

Fourth, when a new product is added, the customer might not be able to find the product
information after selecting it from the search results when the search index is updated before
all replicas have been written4. Typically, no harm will be done if the new product is not
visible in searches right away. So, if the maximum staleness duration T is known, then the
search index could be updated T after inserting the new product into the storage system.

Fifth, the description of the product changes during the check-out process so that a cus-
tomer in the end receives something different than what he ordered. This can be avoided by
treating all product description updates like the insertion of a new product into the database:
The new description is persisted under a different key so that even a reload of the website

3This corresponds to the approach also taken in our middleware component, cf. section 9.2.
4In PNUTS[32], this is called “timeline consistency” which is actually CC.



9.1. Handling Inconsistencies in a Webshop Scenario 133

will return the old description. The amount on stock can then be set to zero so that, during
the check-out process, the customer can be notified that the product is no longer available but
that there is a similar product or a new version of his selection.

Removing Undesirable Content Deleting data like customer reviews or comments usu-
ally happens for a reason, hence, an undesirable effect would be that the review can be seen
by parts of the customer after deletion has been triggered. If time is not critical, this is un-
problematic, but frequently the reputation of the provider is endangered if this effect takes
too long. Still, if there are multiple replicas and potentially even additional copies in caching
layers, then there is no way around removing all these copies as fast as possible, i.e., to
minimize the time during which the respective data is still visible to the customer. For this
reason, we propose to just broadcast the delete request to all replicas (i.e., not to rely on
update propagation of the storage system) and to issue explicit cache invalidations as well.
This, of course, requires implementing such a delete operation in an idempotent way.

As we have seen in our experiments, actual staleness values tend to be well below one
minute, i.e., the time necessary for an employee to be notified of such a review, to read it
and to decide whether to delete it or not far exceeds the potential staleness in the absence
of failures. The only problematic case will, thus, be if a replica which stores the data fails
before receiving the delete request, comes online again much later and continues to return
the data. This could, for instance, be addressed by sending some kind of warning to the
load balancer(s) between the app servers and the storage system not to accept responses from
the respective replica unless told that this is safe again. The machine originating the delete
requests would then be responsible to notify the failed machine as well as the load balancers
when the failed replica is up-to-date again. Other machines might help with this task in case
the original machines fails at well.

Customer Operations

Searching for Products If the search index is replicated and customers read from differ-
ent replicas, then MRC might be violated, i.e., when repeating a search, products from the
last result set might suddenly vanish or new ones might appear. The easiest way to address
this is to use sticky sessions both for the connection between app servers and replicas as well
as for the connection between clients and app servers – at least for subsequent searches for
the same search terms. In the few cases where this does not work due to failed replicas or
app servers, the consequences will not be severe as customers will likely expect the webshop
to continuously update its product portfolio.



134 9. Application Engineering

Reading Product Details We already outlined several potential problems in our provider
operations above (e.g., not being able to access an item found via search). Beyond these, we
recommend to persist the entire product information and reviews under the same key so that
they are replicated as one entity. This helps to remove problems where, for instance, a product
review refers to another product review which is not included in the returned version. If such
a problem occurs, vector clocks could be used as metadata to identify a version history. As
conflicts are unlikely to be noticed by the customer right away, AJAX might be used to refetch
the missing items in the background so that the temporary conflict is hidden.

Writing Product Reviews For the writing of product reviews, there are two potential
problems: Edits of a customer might be lost completely due to violations of MWC or a
customer will not be able to see his own review during a subsequent access. The first issue,
in case MWC is not guaranteed – which is rare, can be addressed by never overwriting
existing reviews but instead persisting it under a separate key or in a separate column for
table-oriented datastores. By adding vector clocks or simple version numbers, app servers
can then exclude the old version if the new one can be found as well within the returned
data set. When all replicas have acknowledged writing the new version, the old version can
simply be deleted to save disk space or be left behind if a version history is of interest. Of
course, if MWC is guaranteed, this issue will not occur.

The second issue, where a customer is not able to see his own review during a subsequent
read, can be addressed by notifying the customer after submitting his review that “it will
shortly be visible” or that “it has been recorded”. Potentially, such a message might even
hint at a (fictional) content moderation by employees depending on the maximum staleness
values as well as probability of RYWC violations. This mechanism falls in the category of
user education.

Adding Items to the Shopping Cart In this operation, potential issues involve lost
updates by the client or the client not being able to see his own updates and the results of
previous reads. If MWC, MRC and RYWC are guaranteed, this cannot occur. If not, the
easiest approach is to keep a master copy of the shopping cart in a cookie at the client and
to use the storage system as backup only. This way, the client will always see changes right
away, updates are unlikely to be lost and the response time for user interaction is very low
as well. The shopping cart could then just be sent with every request (ID and quantity of
products are not too much data – especially when using compact encodings or compression).
Optionally, the app server might also verify and, if necessary, reissue an update after the
observed maximum staleness value plus a safety margin.

An alternative approach for this is taken in Amazon’s Dynamo [37].



9.2. A Middleware Guaranteeing Client-centric Consistency 135

Check-out Using the Shopping Cart For the check-out operation, several issues are
possible: First, the order recorded in the storage system might not reflect what the customer
perceives to be his order. Second, a product might not longer be available. Third, the price
might have changed.

For the last two issues, we have already described how they can be addressed. The first is-
sue, though, is already partly addressed by our “add to shopping cart” operation: By keeping
a master copy at the client and using this master copy (instead of a version from the storage
system) to create an order object under a new key, it is asserted that both perspectives will
be identical. If, afterwards, access to the order object is read-only, then no discrepancies can
occur.

Changing Personal Information Changing personal information is often critical, for in-
stance, when changing the shipping address, the billing information or the user credentials.
The first two cases can be addressed by caching that information at the client as well and us-
ing it within a potential new order object (same approach as with the shopping cart: keeping
the master copy at the client). A background process can then verify later that all replicas
have been written correctly.

User credentials are not as critical: Updates may not be lost but there is typically no time
limitation until when the update needs to be applied since a customer is unlikely to log off
and then log in again directly afterwards. Furthermore, user education could again help in
this case: By telling a user that it might take a little while until his changes have been applied
the customer will not be as irritated if he cannot re-login directly afterwards. Furthermore,
staleness values are typically very small so that the time interval where problems might occur
is rather small as well.

If MWC is not guaranteed, i.e., there is a chance that the update is lost, then mechanisms
which we outline in section 9.3.2 can be used to address this problem. Alternatively, if
stronger consistency levels are supported as well, changing personal information is a good
candidate for using them. See also [60], who argue in the same direction.

9.2. A Middleware Guaranteeing Client-centric Consistency

As already discussed, handling inconsistencies within applications is possible but burdens
application developers with additional complexity. For this purpose, it is desirable to handle
all inconsistencies not requiring application-specific knowledge within a middleware layer.
For instance, some of the approaches described in our use case above are only necessary if
MRC and RYWC are not guaranteed by a storage system. If a middleware running between
application and storage system can add those two guarantees, then complexity is shifted from
the application developer to the middleware. In this section, we, therefore, describe how a



136 9. Application Engineering

middleware component running on the same machine as an application server can guarantee
MRC and RYWC for said application server.

Before we can describe our approach, though, we have to clarify the definitions of both
guarantees first: Both guarantees require that the result of a read operation reflects the results
of all previous read (MRC) respectively write (RYWC) operations by the same application
server. This is obviously fulfilled if the returned version is identical or newer to the last one
seen respectively written. In cases where multiple competing versions are returned this is
not as clear, as the requirement could be that the condition is fulfilled either for at least one
returned value (existential quantor, ∃) or for all returned values (universal quantor, ∀). For
our purposes, we believe that the existential quantor suffices since all necessary information
is captured, i.e.,

• MRC is fulfilled if the result set of a read following a read of version n contains at least
one version ≥ n;

• RYWC is fulfilled if the result set of a read following a write of version n contains at
least one version ≥ n.

This way, even version branches having occurred before the last datastore interaction may
be seen in a read operation. Otherwise, such an entirely valid version would have to be
excluded from the results or automatically merged. We, therefore, believe that our definition
using the existential quantor is the most pragmatic definition.

Beyond this definition, our approach includes several roles apart from the storage system
(see figure 9.1 for a high level overview of the scenario we want to address):

1. App server: An application with consistency requirements beyond those guaranteed
by the storage system is running on one or more machines. A single server running
application code is called an app server. App servers do not need to interact directly
but may of course do so.

2. Middleware: The middleware service which we propose is currently implemented as a
Java library which can be used directly within an application. Each app server uses its
own middleware instance running on the same machine. Middleware instances do not
need to communicate with other middleware instances. All app server requests to the
storage system are routed via the middleware.

3. End user: An end user usually uses a software client (e.g., a browser) to interact with
one app server instance. This software client is running on a different machine than all
app servers or the storage system. To avoid confusion, we use the term end user for
the combination of the software client and the underlying physical device the software
client is running on.



9.2. A Middleware Guaranteeing Client-centric Consistency 137

Storage System 

App Server App Server App Server 

End 
User 

End 
User 

End 
User 

Middleware Middleware Middleware 

Machine 1 Machine 2 Machine n 

Figure 9.1.: Intended Use Case

As an example setup, Amazon S35 could be used as the storage system. The app servers
could be distributed over multiple compute services and on-premises servers running a stan-
dard web application (e.g., an internet forum or a webshop). End users of said web appli-
cation might access the web application via browsers on their desktop computers or mobile
devices.

Vector clocks [40] are a well known mechanism to capture causality. In the context of
eventually consistent distributed storage systems, they can be used to describe a version his-
tory like, e.g., in Amazon Dynamo [37]. Whenever conflicting versions exist on some replica,
it is then possible to resolve all conflicts automatically that were not caused by concurrent
updates (e.g., conflicts caused by update propagation delays or fail-recover errors).

Our approach uses vector clocks to identify (a) which version was last seen by a particular
app server and (b) which version was last written by a particular app server. This allows to
create a total order for all writes by the same app server (a prerequisite for MWC and WFRC)
and for writes that update another app server’s write upon reading it (a prerequisite for CC).
It also allows to check whether MRC and RYWC are violated or not. The data itself and the
corresponding vector clock metadata are persisted under the same key.

5aws.amazon.com/s3



138 9. Application Engineering

Now, as some inconsistencies can be identified, the app server at least knows about them.
This leaves the issue of dealing with them which we propose to do via client-side caching,
i.e., on the app server.

• Whenever an app server requests a datum from the storage system, the middleware
reads from the storage system and adds a copy of that datum to its local cache if
the cache does not already contain that datum in that exact version (identified by its
vector clock). Older versions superseded by the data read from the storage system are
replaced in the cache and all conflicting versions are returned to the app server. The
app server is then expected to merge conflicting versions (this could even be dropping
all but one version) at application level considering the semantics of the data. This
conflict resolution scheme is similar to the approach taken in Amazon Dynamo [37].

• Whenever an app server requests a write following a read, the middleware assigns a
vector clock value that supersedes all cached values of that datum and writes it to the
storage system. Afterwards, the middleware replaces all cached versions with the value
and vector clock it just wrote to the storage system.

• Whenever an app server spontaneously writes a value, the middleware assigns a vector
clock that is in conflict with all cached values to guarantee that no versions are lost due
to this concurrent update. It then adds the data to the local cache and writes it to the
storage system.

• Storage systems guaranteeing CC, typically capture only internal causality but not ex-
ternal causality [90] where a client of the storage system gets to know a new version
not via the storage system but rather using external means of communication with an-
other client. To also capture external causality, the middleware offers a notification
feature which allows the app server to update the cache directly. As long as the app
server uses this feature whenever he gets knowledge of an update using external means
of communication, the middleware guarantees to capture external causality as well.

Our approach guarantees MRC and RYWC and creates the client-side (i.e., at the app
server) illusion of per key CC6 as so-called session consistency, i.e., guarantees exist for
the duration of a session but not beyond. A session is initiated by an app server and ends
either if the app server terminates the session, if the app server fails or if the cache fails.
Furthermore, while a middleware outside of the storage system cannot guarantee MWC7 it
certainly helps towards that goal by reissuing “all” writes in correct order with every update,

6We cannot actually guarantee CC without having control over the storage system itself, but to the app server our
middleware guarantees the same behavior as the storage system would do if it offered CC.

7It cannot affect the behavior of the storage system which may just decide to drop arbitrary updates.



9.2. A Middleware Guaranteeing Client-centric Consistency 139

thus, increasing the probability of correct serialization within the storage system. The same
holds true for WFRC.

Commercial cloud storage offerings typically return only one version, using a last write
wins strategy internally. This can result in potentially many lost updates based on the rate of
concurrent updates. Our approach avoids this completely as long as there is for every update
at least one session which holds that update within its local cache.

9.2.1. Overhead and Intended Use Case

Our approach adds some overheads: First, there is a storage overhead for persisting the vector
clocks within the storage system (which will typically create additional cost for cloud storage
systems). Second, there is a compute overhead involved for every read as at least two vector
clocks need to be compared. Third, there is another (local) storage overhead for keeping a
persistent local cache.

The first overhead for persisting the vector clocks is negligible for most scenarios. A vector
clock containing 100 entries, for example, requires less than 500 Bytes in its current (not very
efficient) implementation. The size could be further reduced using, e.g., compression.

The second overhead for comparing vector clocks directly depends on the number of en-
tries in the respective vector clocks. Therefore, it is desirable to keep the number of app
servers relatively small – since a typical app server should be able to handle hundreds or
thousands of end users in parallel, the number of app servers is small compared to the num-
ber of end users served. With today’s server’s computing power, the second overhead should,
hence, not become an issue. Furthermore, the size of the vector clock does not directly de-
pend on the number of app servers involved but on the number of app servers issuing writes.
Hence, read-heavy workloads should not create any problem at all while for write-heavy
workloads there could be mechanisms like routing updates for a certain key always via the
same app server to further reduce the number of vector clock entries.

In our intended use case, the third overhead (storage cost of the local cache) does not
really matter: A set of independent app servers interacts with a storage system using our
middleware. As app servers typically do not persist data locally (apart from log files), the
local hard disk drive should be more or less unused and can, hence, be used for a local
cache without or with little side effects. Furthermore, there is a relation between the update
frequency and the size of a datum: Small files are usually updated frequently while very large
files are mostly write-once data. Thus, the third overhead of keeping a persistent local cache
should become negligible as well as only small files need to be cached.

Even though the decision might be different for different applications, we believe that
typically the consistency benefits far outweigh the overheads incurred. Our approach is es-
pecially helpful, if there is a huge number of concurrent requests to only a few keys with



140 9. Application Engineering

small data items. The smaller the size and number of the data items, the more feasible is our
approach. If there are only a few concurrent updates, the feasibility of using our approach
depends on whether the data store guarantees MRC. To our knowledge, no cloud storage
service or production-ready open source system exists that can give these guarantees. So,
we believe it is safe to say that any scenario where data items are updated from time to time
(instead of being written only once), can benefit from using our approach.

9.2.2. Handling Sessions

From a QoS perspective, the consistency guarantees of the middleware should be extended to
the end user as he is the one who will be irritated if unread emails vanish, he cannot read the
blog comment he just posted and so on. At the same time, the local cache might grow over
time as more and more data items from the storage system are accessed by the end users.
Also, conflicting versions need additional space. To limit the size of the local cache, we
propose the following approach to session handling:

1. Start a middleware session on the app server.

2. Accept end user requests and hold sessions with them using standard session manage-
ment features of the app server.

3. When the local cache has grown too much, restart from step 1 and accept new end user
sessions only within the scope of the new session.

4. Terminate the old middleware session as soon as all end user sessions of the old app
server session have completed.

When the main goal is avoiding lost updates, then another strategy would be to drop items
from the cache as soon as an update to the respective app server’s write has been read by that
same app server. This works because reading an update guarantees that another app server
has included the own value in its cache. Of course, while this avoids lost updates and keeps
the cache small, it does not address MRC or RYWC.

9.2.3. Consistency Guarantees

We show that the usage of the provided middleware guarantees the same client-centric con-
sistency levels as a storage system that implements CC. In the following, Ci stands for app
server number i. This is without loss of generality as the same guarantees hold for any client
of a storage system using our middleware.

Definition: Operations. Let OLi denote the set of operations of a middleware Li. We refer
to the operations themselves as:



9.2. A Middleware Guaranteeing Client-centric Consistency 141

• wi(x)v - request of Ci to perform a write operation under key x and value v.

• ri(x)v - request of Ci to perform a read operation under key x and value v.

• oi(x)v request of Ci to perform any operation under key x and value v.

Definition: Vector Clocks. We refer to the vector clock of an operation oi(x)v as vc(oi(x)v)∈
VC where VC denotes the set of vector clocks visible to a single middleware instance. The
binary relation < imposes a linear order on the set VC. We call < the data-centric view
order.

Definition: App server’s View Order. The binary relation
Ci7→ orders the views on results of

write operation for an app server Ci. We refer to 7→ as app server’s view order.

THEOREM 1. The middleware shows exactly the same behavior as a storage system that
guarantees CC.

Proof. Causal consistency requires that the view order of a client (in our case of an app
server) on operations follows the causal order of operations [23]. An operation o1 causally
precedes an operation o2 (o1 ; o2) if one of the following conditions hold [23, 5]:

∃C j(o1
C j
⇁ o2) (9.1)

o1 = w(x)v∧o2 = r(x)v (9.2)

∃o∈O (o1 ; o∧o ; o2) (9.3)

I.e., either both operations were issued by the same client, or o2 was a read operation
which returned the value of the write operation o1, or there was an other operation o which
created a transitive relation between o1 and o2 using one of the first two conditions.

We use the notation oa ; ob|(9.1) to denote that operation oa causally precedes operation
ob according to conditions (9.1) - (9.3). At the client-side, a storage system guarantees CC if
the following condition is preserved [23]:

∀Ci∀o1,o2∈OW∪OCi

(
o1 ; o2⇒ o1

Ci7→ o2

)
(9.4)

It is necessary to show that the middleware provides a causally consistent view on oper-
ations for all app servers according to (9.4). Consequently, we consider the different condi-
tions for causal ordering (9.1) - (9.3).

1. We show that a causally consistent view is preserved if two operations are of causal
order according to (9.1).



142 9. Application Engineering

Proof. We assume that an app server C j requests two consecutive write operations

w(x)a and w(x)b for key x: w(x)a
C j
⇁ w(x)b. By contradiction, we assume that an app

server Ci exists that views the result of w(x)a after the result of w(x)b: w(x)b
Ci7→w(x)a.

We consider the two cases that the middleware reads w(x)a from the cache and remote
storage after reading w(x)b.

a) We assume the cache returns the result of w(x)a. In order for the local cache to
return the result of w(x)a after the result of w(x)b, the following condition must

hold: vc(w(x)b) < vc(w(x)a) which leads to contradiction because of w(x)a
C j
⇁

w(x)b which implies vc(w(x)a)< vc(w(x)b).

b) We assume the remote storage returns the result of w(x)a. The assumption that
the cache returns the result of w(x)a leads to contradiction according to 1a). We
assume that the cache returns the result of w(x)b while the middleware returns the
result of w(x)a. This implies vc(w(x)b)< vc(w(x)a) which leads to contradiction
according to 1a).

2. A causally consistent view is preserved for Ci if o1 ; o2 according to (9.2).

Proof. As the read does not change the state, the results of both o1 and o2 are identical.
Hence, the app server’s view order can never be violated.

3. A causally consistent view is preserved for Ci if o1 ; o2 according to (9.3).

Proof. Transitivity of the causally precedes relation ; is generally guaranteed by the
linear ordering of the ordering relation < over the set of vector clocks VC. For the sake
of completeness, we conduct the proof as follows:

We assume that an operation o1 precedes an operation o according to condition (9.1)
or (9.2). Furthermore, we assume operation o precedes operation o2 according to con-

dition (9.1) or (9.2). By contradiction we assume: o2
Ci7→ o1. Therefore, four different

cases should satisfy the condition (9.3) based on the assumptions made.

a) o1 ; o|(9.1)∧o; o2|(9.1), i.e., all operations are writes by the same app server:
This case leads to contradiction according to the proof of (1) as the < relation on
the vector clocks is transitive itself.



9.2. A Middleware Guaranteeing Client-centric Consistency 143

b) o1 ; o|(9.1)∧o ; o2|(9.2), i.e., o1 and o are writes by the same app server, o2

is a read by another app server: According to the proof of (2), o and o2 have the
same result which leads to contradiction according to the proof of (1).

c) o1 ; o|(9.2)∧o ; o2|(9.1), i.e. o1 is a write and o and o2 are a read and a write
by another app server:

We assume C j orders a write operation w(x)a and any app server Ck views the
result of the write operation w(x)a before updating the value with w(x)b, i.e.,

∃C j w(x)a∧∃Ck r(x)a
Ck⇁ w(x)b. We assume by contradiction that an app server Cn

exists that views the result of w(x)a after the result of w(x)b: w(x)b Cn7→ w(x)a.

We consider the two cases that the middleware views the result of w(x)a from the
cache and remote storage after returning the result of w(x)b to any client Cn.

i. We assume the cache returns the result of w(x)a. Since Cn has already seen
the result of w(x)b (either because he issued w(x)b or because he read the
result of w(x)b), the cache contains the result of w(x)b and must return w(x)b
as vc(w(x)a)< vc(w(x)b). This leads to contradiction.

ii. We assume the remote storage returns the result of w(x)a: According to 3c)i,
the cache returns w(x)b. Because vc(w(x)a) < vc(w(x)b), the middleware

always returns w(x)b which contradicts the original assumption of w(x)b Cn7→
w(x)a.

d) o1 ; o|(9.2)∧ o ; o2|(9.2): This case leads to contradiction according to the
proof of (2) as o would have to be a write and a read at the same time which is
not possible.

9.2.4. Implementation

Our middleware has been prototypically implemented as a Java 6 library. Users can start
one or more sessions with the same or different storage systems, each using its own local
cache which is persistently written to disk. This is done via the ConsistencyManager

singleton. Within the scope of a session, it is then possible to interact with cache and data
stores using an adapter framework which offers operations to read, write and delete data
items. Currently, adapters exist for the Amazon services S38, DynamoDB9 and SimpleDB10

8aws.amzon.com/s3
9aws.amzon.com/dynamodb

10aws.amzon.com/simpledb



144 9. Application Engineering

Consistency 
Manager 

Session 2 Session 2 Session 
manages 

Local HDD Storage System 

Adapter 
Interface 

Adapter 
Interface 

abstract CRUD 
interface 

Figure 9.2.: Basic Middleware Architecture

– additional adapters just have to implement an interface and specify a mapping of multi-
dimensional keys to the underlying data store. Figure 9.2 shows a high-level overview of the
library’s architecture.

Whenever a session is terminated (either directly by the user or indirectly via a crash of
one or more components), the cache on the local disk is removed.

9.2.5. Evaluation

While we have formally shown that our approach is correct, we also wanted to test our mid-
dleware. We, therefore, first implemented and used a simulation environment to verify that
our approach works under adverse conditions. Afterwards, we switched to experiments with
a sample application running on top of several cloud storage offerings to also demonstrate
the importance of using our middleware approach.

Simulation

A special storage adapter (see section 9.2.4) randomly drops updates and returns arbitrary
values. We used it in a configuration where it created violations of MRC and RYWC for
about 50% of all requests to really strain our middleware implementation (commercial cloud
storage offerings usually offer lower rates of violations, e.g., see the results from chapter 8).



9.2. A Middleware Guaranteeing Client-centric Consistency 145

Next, we implemented a test application, which just reads and writes random values and
checks each time for MRC and RYWC violations, and used it with this adapter.

During several billion simulated requests each, we never encountered any consistency vi-
olations as long as our middleware was used. When running the same setup without our
middleware, we could observe the expected number of inconsistencies.

Sample Application

As our sample application, we chose an internet forum as this allows to easily check for
inconsistencies. We believe, though, that any other application would show the same or
comparable results. Our internet forum implementation had ten conversation threads. During
every test run clients would randomly choose one, read it completely, add a response and
write it back as well as check for violations of MRC or RYWC. Each system benchmark was
repeated several times and used 30 clients which were deployed on 30 EC211 micro instances
in the region eu-west, ten per availability zone. Each client executed 1,000 test runs, thus,
totalling a number of 30,000 reads and writes each per system benchmark. We ran system
benchmarks with and without our middleware for S3, DynamoDB (consistent and eventually
consistent reads) and SimpleDB (also consistent and eventually consistent reads). Whenever
we incurred an availability error, the system benchmark just repeated the respective test run
until it completed successfully. Each test configuration (e.g., DynamoDB with middleware
and consistent reads) was repeated several times.

Results

As expected, all test runs using our middleware showed no violations of MRC and RYWC.
When not using the middleware, i.e., accessing the data store directly, we could see enor-
mous numbers of consistency violations. Figures 9.3 and 9.4 show box plots of the number
of consistency violations incurred by our 30 clients (CR stands for consistent read, ER stands
for eventually consistent read). A value of 500 means that out of 1,000 reads half were con-
sistency violations. Results for each test configuration were relatively stable when rerunning
our system benchmarks, i.e., the standard deviation values of repeated tests within one test
configuration were close to zero.

Apart from counting inconsistencies, we also measured latencies for reads and writes to
determine whether there is any relevant latency overhead caused by our middleware. During
several S3 system benchmarks, we did not see any deviations – neither between different
system benchmarks nor depending on using the middleware or not. Based on that, we believe

11aws.amazon.com/ec2



146 9. Application Engineering

0

100

200

300

400

500

600

700

S3 DynamoDB CR DynamoDB ER SimpleDB CR SimpleDB ER

Figure 9.3.: Violations of MRC without Middleware

it is feasible to say that the latency overhead caused by our middleware is negligible. In fact,
values with middleware were often a little less than without middleware.

In our DynamoDB and SimpleDB system benchmarks we saw extensive variability (be-
tween a few hundred and several thousand milliseconds) in the latency values as well as a
large number of availability issues – both for test runs with and without middleware. This
could either be due to general problems of the service at the time of our test run or due to
creating too much load12. We could neither see arguments in favor of or against a latency
overhead of our middleware during those tests as it was just not possible to identify a statis-
tically relevant result.

Discussion

When comparing our results to the system benchmarking results from chapter 8, it seems
that the number of violations of RYWC depends on the number of concurrent updates as
well as the update propagation speed of the data store which often implements a last write
wins strategy: If the update propagation is too slow, the value will be overwritten by the
next update. If there are only a few concurrent updates, there is more time to propagate the

12In [58], Kossmann et al. discovered that several cloud storage systems, including SimpleDB, scale very poorly.
For S3, in contrast, they could not find any scalability limitations.



9.2. A Middleware Guaranteeing Client-centric Consistency 147

0

100

200

300

400

500

600

700

S3 DynamoDB CR DynamoDB ER SimpleDB CR SimpleDB ER

Figure 9.4.: Violations of RYWC without Middleware

update. The number of MRC violations, in contrast, depends more on the rate of updates
than its origin plus the degree of session stickiness offered by a system.

Both the MRC and RYWC results for SimpleDB are interesting in that matter as they hint
that a consistent read contains the newest value written which just might be a concurrent
update. The eventually consistent read, in contrast, is likely to read the same replica which
the client interacted with before, i.e., a high degree of session stickiness. This can also be
seen in the MRC results for DynamoDB, though, definitely less pronounced.

Our evaluation clearly shows that especially applications with large numbers of concurrent
updates benefit from using our approach. Our system benchmarking results from chapter 8
show that even when this is not the case, consistency violations occur at least from time to
time and applications must be able to cope with it. Often this will mean implementing some
variant of our approach at application level, e.g., by reloading data whenever a violation is
detected [21].

Based on our results, we believe it is a better idea to handle such violations at the middle-
ware level, i.e., in our case by using our middleware, than at either application level or within
the storage system.

A downside of our approach is an overhead both in terms of cost and time for persistence,
network transfer and comparison of the vector clocks. For our test application, this overhead
was negligible. It would be interesting to see, though, how this changes for different appli-



148 9. Application Engineering

cations and workload – especially, when considering worst case applications with very large
numbers of app servers issuing a very high write load and, thus, creating vector clocks with
many entries as well as many conflicting versions. A detailed analysis of this is beyond the
scope of this work.

9.3. Efficient Inconsistency Handling

As we have seen in section 9.2, client-side caching combined with vector clocks as metadata
can create the client-side illusion of CC, i.e., guarantee MRC and RYWC. This approach,
though, adds an overhead which makes it not feasible for all use cases. For instance, data is
cached for the duration of a session. If over the course of a session a large number of keys
is accessed by the respective client, then our middleware component will essentially create
a local copy of the data for all these keys – potentially even for all keys. Depending on the
available disk space on a an app server this limits the maximum duration of sessions and,
thus, indirectly the applicability as guarantees can only be provided within a session.

In this section, we, therefore, both introduce extensions which provide additional guaran-
tees beyond MRC and RYWC, as well as show up modifications which provide almost the
same guarantees in a much more efficient way accepting only very low levels of uncertainty.

9.3.1. Modifications to Increase Efficiency

If Consistency Benchmarking has identified the distribution of t-Visibility values, i.e., the
probability of each (maximum) staleness value is known, then there is trade-off between the
caching duration and the probability of violations after a value has been purged from the
cache. For instance, if there is an 80% chance of t-Visibility being lower than 5 seconds
and an 80% chance of not violating MRC suffices, then results of previous reads need only
be cached for 5 seconds. Almost the same guarantees as our original middleware approach
can, obviously, be achieved if data is cached for the duration of the maximum t-Visibility
value and if an additional read has verified that the value is actually returned after that time.
Still, there is a small degree of uncertainty left that a random staleness peak, e.g., caused by
failures, violates these guarantees. Based on the business use case on top of the middleware
component, it can be decided if this risk is acceptable or not. Using mechanisms like Consis-
tency Rationing [60], it might also make sense to use different strategies for different kinds
of data.

Another approach for scenarios where the knowledge whether MRC and RYWC are ful-
filled suffices would be to cache vector clocks only as proposed by [21]. This will typically
reduce the storage overhead for caching significantly and still guarantee that all violations
will be noticed. Also, depending on the concrete requirements of the use case it might be ac-



9.3. Efficient Inconsistency Handling 149

ceptable to remove our middleware altogether for small staleness values or low probabilities
of MRC and RYWC violations.

Generally, Consistency Benchmarking results provide the necessary input for an informed
decision regarding the use of mechanisms for inconsistency handling based on fact instead
of speculation.

9.3.2. Extensions for Additional Guarantees

MWC can be guaranteed in combination with our caching approach by periodically reading
a value to assert that the serialization order is correct and (if necessary) reissuing the second
update. As we have seen in system benchmarks, MWC is often guaranteed without being
specified as part of an SLA. In those cases, the overhead for the MWC verification can
be omitted if Consistency Benchmarking has identified that MWC is guaranteed. A more
efficient implementation could set the periodicity for verification as slightly larger than the
maximum observed staleness value so that both updates should have reached all replicas. In
the absence of byzantine failures, this should guarantee MWC if the verification read returns
the value of the second update.

If there are several clients, each running our middleware component and the application
requires lower staleness values than the storage system offers (as determined by Consistency
Benchmarking), then one possible solution is to “CC” the other app server’s middleware
component comparable to within an email, i.e., notify the other middleware component of
the update and its value. The lowest achievable staleness value in that case is the one-way
latency for sending the update to the other app server. This also explicitly captures external
causality as described in section 9.2.

This could even be continued further: If our middleware components either run some
kind of agreement algorithm, e.g., Paxos [67, 68], or distribute the responsibility for key
ranges among the middleware instances by routing requests for a certain key always via the
respective app server’s middleware instance, then our approach could even guarantee SC.
Since this affects latency and availability of the storage system (or rather blocks requests
within the middleware layer), a fallback solution coupled with timeouts could be to use the
existing approach, i.e., try to achieve SC but fall back to CC if this is not possible. This would
also expose the trade-offs of the CAP theorem and PACELC model in a very transparent way:
response times and availability of the storage system versus the frequency of only causally
consistent datastore access.

An alternative approach which still keeps the positive properties of CC13 while providing
the illusion of SC to the client would be to specify a rule according to which all conflicting

13CC is the strongest consistency level which can be achieved when all replicas shall always be able to accept
updates [72].



150 9. Application Engineering

vector clocks of version branches will be merged in the very same deterministic way as well
as a set of rules for merging arbitrary conflicting versions in a deterministic way as well.
Since this guarantees that all middleware components would order all writes deterministi-
cally in the same total order, the middleware system alone would then guarantee SC. If an
eventually consistent storage system is used for durability at least the client-side illusion of
SC can be achieved while maintaining the availability properties of CC since all conflicts can
be resolved locally and in a decentralized way. Obviously, the rule set for merging of ver-
sion branches requires application-specific knowledge – an approach taken with the conflict
resolvers in the Ficus File System [83].

9.4. Conclusion

In this chapter, we have discussed how applications can generally handle inconsistencies,
preferably based on Consistency Benchmarking results. We also demonstrated how middle-
ware components can increase the consistency guarantees of an eventually consistent storage
system as well as how Consistency Benchmarking results can be used to increase the effi-
ciency such a solution.

For this purpose, we started with the presentation of an application use case in section 9.1 –
we chose the webshop scenario already introduced in chapter 1. In this use case, we identified
several business operations which interact with the datastore and described in detail how an
implementation might look like that keeps the aspect of consistency issues in mind in contrast
to more conventional implementations running on top of strictly consistent databases. We
also pointed out how the implementation might differ depending on client-centric consistency
guarantees of the datastore.

Some inconsistencies can be resolved without application-specific knowledge and can,
therefore, be implemented in a middleware layer. Such a middleware layer could be used to
reduce the complexity for application developers which we have seen in section 9.1. For this
purpose, we presented a middleware solution running on the same machines as the applica-
tion servers accessing the datastore. Such a middleware solution can create the client-side
illusion of Causal Consistency (section 9.2).

Finally, we discussed how Consistency Benchmarking results can be used to both increase
the efficiency of such a middleware solution and to offer further guarantees beyond MRC
and RYWC, possibly resulting in a very transparent decision on the trade-offs of consistency
versus latency and consistency versus availability (section 9.3).



Part IV.

Conclusions





This Part shall conclude this thesis by recapitulating and discussing the main contribu-
tions of our work and future research directions. For this purpose, we start in chapter 10
with a summary of the original problem statement from chapter 1 before revisiting our main
contributions and summarizing this thesis.

Finally, in chapter 11, we discuss strengths and limitations of our contributions. We also
point out directions for future research and describe ongoing research endeavors.





10. Summary

Today, EC has found widespread adoption in cloud storage services and NoSQL systems.
Still, EC is also a very weak consistency guarantee which only promises convergence of
replicas after an undefined period of time. Due to this, EC also covers a very broad range of
consistency behavior so that the precise degree of (in-)consistency of eventually consistent
storage systems is unknown.

Based on this situation, we have identified three main problems in section 1.1 of chapter 1:

• Since EC also shifts the burden of conflict resolution and inconsistency handling from
the storage system to the application developer, this unknown behavior significantly
increases the complexity of inconsistency handling and, therefore, aggravates applica-
tion development. Concise knowledge on consistency behavior, in contrast, enables
application developers to handle inconsistencies much more efficiently.

• Due to the way consistency behavior impacts application design, awarding consis-
tency as a system quality a level of concern comparable to performance, availabaility,
and cost is of paramount importance. Application developers should, therefore, also
consider consistency behavior during the selection and deployment optimization of
eventually consistent distributed storage systems. This, obviously, requires detailed
knowledge on consistency behavior of eventually consistent distributed storage sys-
tems deployed in a variety of configurations.

• Finally, different design decisions of storage developers and systems researchers affect
consistency behavior in different ways. For some implementation variants, thus, im-
provements of consistency behavior could be possible without affecting performance
or availability. Such an improvement would lead to a pareto-efficient [76] situation
but requires the necessary means to study how different system design decisions affect
consistency behavior of eventually consistent distributed storage systems.

To address these three problems, we have introduced the concept of Consistency Benchmark-
ing, i.e., the analysis of consistency behavior via both modeling and simulation, as well as
system benchmarking experiments. We have also presented approaches for the handling of
inconsistencies based on Consistency Benchmarking results. This leads to the following four
main contributions:



156 10. Summary

• Concise and Meaningful Consistency Metrics: We have identified and discussed con-
sistency metrics from literature, selected appropriate ones, and developed new con-
sistency metrics which express consistency behavior of eventually consistent storage
systems for all consistency perspectives, dimensions and models, in a precise way,
without needless aggregations, and in a way that is meaningful to application develop-
ers, storage system developers, and systems researchers. This novel set of consistency
metrics can be used to describe consistency behavior when studying the impact of de-
sign decisions on consistency behavior, when selecting and optimizing storage systems
and their deployment configurations, and when communicating concise information on
consistency behavior to application developers. Existing related work has so far not ad-
dressed the concept of consistency metrics explicitly but rather uses implicitly defined
consistency metrics [98, 46, 81, 6, 103].

• Modeling and Simulation of Consistency Behavior: We have identified key influence
factors on consistency behavior of eventually consistent distributed storage systems
and combined them into a model. In a next step, we have presented two distinct ap-
proaches which predict consistency behavior based on simulations running on top of
this model. These simulation-based approaches can be used to provide fast and in-
expensive approximations for consistency behavior, especially when comparing large
numbers of storage systems and their deployment configurations or when studying the
impact of system design decisions. Existing related work is, due to implicit assump-
tions, applicable to only a few storage systems and essentially a small subset of our
contributions [11].

• System Benchmarking of Consistency Behavior: As simulations are inherently lim-
ited in their accuracy, we have also presented system benchmarking approaches to
accurately measure consistency behavior of eventually consistent distributed storage
systems via experiments. These approaches comprise system benchmarks for differ-
ent consistency perspectives, dimensions, and models as well as for studying different
influence factors so that they can be used to verify findings from simulations or to
measure unknown behavior. We, therefore, believe that these system benchmarks pro-
vide the necessary means: first, to systems researchers or storage system developers
who want to determine the precise impact of system design decisions on consistency
behavior of eventually consistency distributed storage systems; second, to application
developers who want to compare and select different deployment and configuration
options of various storage systems; third, to application developers who want to iden-
tify the precise consistency behavior of the eventually consistent storage system they
are using so that they can handle inconsistencies in a much more efficient way. Exist-
ing related work can only detect a few kinds of inconsistency [98] or uses consistency



157

metrics which make the approach inapplicable to the problems which we have identi-
fied [46, 81, 6].

• Inconsistency Handling: We have also demonstrated how inconsistencies can be han-
dled outside of the storage system leveraging detailed knowledge on consistency be-
havior of eventually consistent distributed storage systems. For this purpose, we have
discussed – based on an exemplary use case – how applications can handle inconsisten-
cies while making use of information on consistency behavior and guarantees. Based
on the concept that the resolution of some inconsistencies does not require application-
specific knowledge, we have then (for this specific group of inconsistencies) presented
a middleware-based approach which guarantees client-centric consistency externally to
the storage system. We have also demonstrated how extensions to such a middleware
can increase the efficiency of inconsistency handling or offer additional consistency
guarantees based on Consistency Benchmarking results. When using these approaches,
parts of the complexity of inconsistency handling could then be shifted from the ap-
plication developer to a middleware component, thus, alleviating application develop-
ment. Existing related work does so far not use Consistency Benchmarking results and
can only guarantee causality which is explicitly defined by applications instead of an
existing consistency model [10].

In this thesis, we started with an introduction and background information in Part I, cov-
ering different consistency definitions, perspectives, dimensions and models, as well as con-
sistency trade-offs, select storage systems and different kinds of failures which can occur in
distributed (storage) systems. In chapter 3, we then discussed related work to demonstrate
for each of our contributions their novelty and their progress beyond the state-of-the-art.

Afterwards, in Part II, we introduced the concept of Consistency Benchmarking. We,
first, identified requirements for consistency metrics as well as discussed potential metric
candidates before selecting and developing appropriate consistency metrics according to the
requirements. Next, in chapter 5 we proposed a novel modeling approach to describe the
replication strategies and deployment of eventually consistent distributed storage systems.
Based on this model, we demonstrated how both calculating convolutions as well as Monte
Carlo simulations can be used to predict consistency behavior of such a storage system.
Then, in chapter 6, we presented approaches to accurately measure consistency behavior
using experiments with distributed storage systems provisioned both as a black-box service
or as self-hosted storage system.

In Part III, we have then demonstrated that our Consistency Benchmarking approaches can
be implemented and work correctly as well as that their results are helpful and can be used
in the handling of inconsistencies. For this purpose, we, first, presented our proof of concept



158 10. Summary

implementations for all approaches from Part II in chapter 7 and discussed their features and
limitations.

Next, in our experimental evaluation (chapter 8), we introduced Ministorage as a testbed
for our simulations and showed that data-centric consistency behavior can be predicted ac-
curately and that client-centric behavior can be analyzed at least qualitatively – limited by
our rather simple client implementation within the modeling tool which is not sufficiently
precise for correct quantitative predictions. Next, we experimentally studied the relationship
between data-centric and client-centric staleness in Ministorage via system benchmarking,
reported the results of a long-term study with Amazon S3, and described how geo-replication
and system workload affect the consistency behavior of Apache Cassandra and MongoDB.

Finally, in chapter 9, we described how the example application of an e-commerce web-
shop can handle inconsistencies based on application-specific knowledge, application design
with the datastore in mind, as well as Consistency Benchmarking results. Afterwards, we
demonstrated how middleware systems external to the storage system can guarantee MRC
and RYWC, i.e., the client-side illusion of CC, discussed how such an implementation could
become more efficient based on Consistency Assessment results and what future extensions
might look like.



11. Discussion and Outlook

As we have already seen in the last chapter, this thesis is the first work that holistically
addresses Consistency Benchmarking of eventually consistent distributed storage systems as
well as the use of the knowledge gained by this. While we have presented major contributions
in this area, we still see many possibilities for future work in each of our three main directions
due to current limitations of our contributions. In the following we discuss limitations of our
contributions and directions for future work to resolve them. We also describe ongoing work
in this area.

Modeling and Simulation of Consistency Behavior: Our modeling and simulation
approach can so far provide quantitative results for data-centric staleness as well as qualitative
results for client-centric staleness, MRC and RYWC. As already discussed in chapter 7, this is
due to the fact that, for our implementation, we have used a rather simplistic client workload
model which severely limits the precision of our client-centric predictions as these heavily
depend on client behavior. Here, future work should develop a much more detailed workload
model which can be used to accurately model actual application workloads so that client-
centric predictions can become much more accurate.

An additional analysis module might also calculate what worst-case client-centric stale-
ness behavior looks like based on a parameterized model and known data-centric staleness
results from simulation. We believe that this problem could be solved by combining our
Monte Carlo simulation results with the approach of calculating convolutions. Another anal-
ysis module might calculate output for the metrics used by the system benchmarking ap-
proach of HP Labs [6, 46, 81].

We also see room for improvement in our data gathering tools presented in chapter 7: It is
yet unclear how best to measure a distribution of processing times in replicas. Since we have
already seen effects from varying processing times depending on the replication strategy and
deployment chosen, future work should also analyze whether using distributions of process-
ing times is a good abstraction level or whether there are additional influence factors which
should be included in our model.

System Benchmarking of Consistency Behavior: We believe that our system bench-
marking approach for consistency measurements is relatively complete and mature. Still,



160 11. Discussion and Outlook

we see much future work in the integration within a tool suite. For instance, as already
outlined in chapter 7, our framework for comprehensive system benchmarking is still miss-
ing important components, e.g., a failure generator, which can then be used to further study
experimentally how the objectives of these components (in our example: failures) affect con-
sistency behavior. Therefore, there are also many open research questions which require
running experiments to better understand influence factors on consistency behavior.

Furthermore, our proof of concept implementation could benefit from being firmly inte-
grated into well-established system benchmarking tools like YCSB [33] instead of the loosely
coupled integration the other way around. This way, consistency would be measured as well
whenever someone runs a system benchmark of a storage system, leading to more main-
stream adoption of system benchmarking of consistency behavior.

Handling Inconsistencies: While our middleware implementation guaranteeing MRC
and RYWC has been implemented and tested, our prototype does not yet include any of
the extensions which we presented in chapter 9. More work is needed to actually use Con-
sistency Benchmarking results in that prototype to increase the efficiency of the solution. It
would also be interesting to merge it with the alternative approach by Bailis et al. [10] with
the ultimate goal of actually guaranteeing CC not only per key but also for multiple keys.

Furthermore, while we have presented – based on the use case of a webshop – how in-
consistencies can be handled within applications, this is a single example only. We believe
that future work might be able to decouple this from the concrete use case by identifying a
use case-independent application engineering approach for the handling of inconsistencies
within arbitrary applications or at least classes of applications. In this direction, much more
research is needed.

We also see potential directions in the co-design of middleware and storage systems: Prim-
itives like test-and-set can be provided with little or no overhead within the storage system
but greatly ease the handling of inconsistencies within a middleware layer. Systems like
PNUTS [32] already implement some primitives – additional ones should be identified and
implemented in existing and future storage systems. We are planning to work in this direc-
tion.

Ongoing Work: Motivated by the extensive changes in consistency behavior of Amazon
S3 (see chapter 8) as well as the fact that an application developer is unlikely to note these
changes directly, we have recently published [18] first steps towards continuous monitoring
of consistency behavior in a cost-efficient way.

Continuously running system benchmarks is expensive since these system benchmarks are
at least time-consuming but typically also expensive in terms of monetary cost. So, instead



161

of continuously running system benchmarks, we have proposed to monitor business key per-
formance indicators (KPI) which are directly affected by changes in consistency behavior
– a concept which we call Indirect Consistency Monitoring (ICM). ICM will not detect all
(especially minor) changes in consistency behavior, instead only business-relevant changes
will be noted. While this could be seen as a weakness of the approach, we actually see it as a
strength since changes that do not matter to the application developer or provider will just be
filtered out. Whenever one or more (depending on the configuration of ICM) KPIs change,
a system benchmark of the storage system is automatically triggered to analyze whether the
root cause behind the KPI is actually a change in consistency behavior or whether it was a
false positive. An example for such a KPI in our webshop scenario from chapter 9 would be
the rate of overselling, i.e., the frequency of selling more products than the ones on stock.

We are currently working on ICM to also add tool support, to identify a standard set of
potential KPIs which can be reused in many scenarios, to identify sensitivity thresholds for
such a set of KPIs, to automate system benchmark deployment, etc.

Closing Remarks: All in all, we have developed and presented major contributions both
for the benchmarking of consistency behavior in eventually consistent distributed storage
systems as well as the handling of inconsistencies outside of the storage system in contrast
to the more traditional approach of handling them within the storage system.





Bibliography

[1] D. Abadi. Problems with cap, and yahoo’s little known nosql system. http:
//dbmsmusings.blogspot.de/2010/04/problems-with-cap-and-yahoos-little.html (ac-
cessed Jun 27,2013), 2010.

[2] D. Abadi. Consistency tradeoffs in modern distributed database system design: Cap
is only part of the story. IEEE Computer, 45(2):37–42, Feb. 2012.

[3] L. Abraham, J. Allen, O. Barykin, V. Borkar, B. Chopra, C. Gerea, D. Merl, J. Metzler,
D. Reiss, S. Subramanian, J. L. Wiener, and O. Zed. Scuba: Diving into data at
facebook. Proceedings of the VLDB Endowment, 6(11):1057–1067, Aug. 2013.

[4] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. How-
ell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer. Farsite: Federated, available,
and reliable storage for an incompletely trusted environment. In Proceedings of the
5th Symposium on Operating Systems Design and Implementation (OSDI), OSDI ’02,
pages 1–14, New York, NY, USA, 2002. ACM.

[5] M. Ahmad, G. Neiger, P. Kohli, J. Burns, and P. Hutto. Causal memory: Definitions,
implementation and programming. Technical report, Georgia Institute of Technology,
Georgia, Atlanta, 1994.

[6] E. Anderson, X. Li, M. A. Shah, J. Tucek, and J. J. Wylie. What consistency does
your key-value store actually provide? In Proceedings of the 6th Workshop on Hot
Topics in System Dependability (HOTDEP), HotDep’10, pages 1–16, Berkeley, CA,
USA, 2010. USENIX Association.

[7] M. Aslett. What we talk about when we talk about newsql.
http://blogs.the451group.com/ information_management/2011/04/06/
what-we-talk-about-when-we-talk-about-newsql/ (accessed Jul 3,2013), 2011.

[8] P. Bailis. When is “acid” acid? rarely. http://www.bailis.org/blog/
when-is-acid-acid-rarely (accessed Jun 15,2013), 2013.

[9] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. The potential dangers
of causal consistency and an explicit solution. In Proceedings of the 3rd Symposium on
Cloud Computing (SOCC), SOCC ’12, pages 22:1–22:7, New York, NY, USA, 2012.
ACM.

http://dbmsmusings.blogspot.de/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.de/2010/04/problems-with-cap-and-yahoos-little.html
http://blogs.the451group.com/information_management/2011/04/06/what-we-talk-about-when-we-talk-about-newsql/
http://blogs.the451group.com/information_management/2011/04/06/what-we-talk-about-when-we-talk-about-newsql/
http://www.bailis.org/blog/when-is-acid-acid-rarely
http://www.bailis.org/blog/when-is-acid-acid-rarely


164 Bibliography

[10] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on causal consistency.
In Proceedings of the 33rd International Conference on Management of Data (SIG-
MOD), SIGMOD ’13, pages 761–772, New York, NY, USA, 2013. ACM.

[11] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and I. Stoica. Proba-
bilistically bounded staleness for practical partial quorums. Proceedings of the VLDB
Endowment, 5(8):776–787, Apr. 2012.

[12] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M. Leon, Y. Li,
A. Lloyd, and V. Yushprakh. Megastore: Providing scalable, highly available storage
for interactive services. In Proceedings of the 5th Conference on Innovative Data
system Research (CIDR), pages 223–234, 2011.

[13] S. Becker, H. Koziolek, and R. Reussner. The palladio component model for model-
driven performance prediction. Elsevier Journal of Systems and Software, 82(1):3–22,
Jan. 2009.

[14] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique
of ansi sql isolation levels. In Proceedings of the 15th International Conference on
Management of Data (SIGMOD), SIGMOD ’95, pages 1–10, New York, NY, USA,
1995. ACM.

[15] D. Bermbach and J. Kuhlenkamp. Consistency in distributed storage systems: An
overview of models, metrics and measurement approaches. In V. Gramoli and R. Guer-
raoui, editors, Networked Systems, volume 7853 of Lecture Notes in Computer Sci-
ence, pages 175–189. Springer Berlin Heidelberg, 2013.

[16] D. Bermbach, J. Kuhlenkamp, B. Derre, M. Klems, and S. Tai. A middleware guar-
anteeing client-centric consistency on top of eventually consistent datastores. In Pro-
ceedings of the 1st International Conference on Cloud Engineering (IC2E), IC2E ’13,
pages 114–123, Washington, DC, USA, 2013. IEEE Computer Society.

[17] D. Bermbach and S. Tai. Eventual consistency: How soon is eventual? an evaluation
of amazon s3’s consistency behavior. In Proceedings of the 6th Workshop on Mid-
dleware for Service Oriented Computing (MW4SOC), MW4SOC ’11, pages 1:1–1:6,
New York, NY, USA, 2011. ACM.

[18] D. Bermbach and S. Tai. Benchmarking eventual consistency: Lessons learned from
long-term experimental studies. In Proceedings of the 2nd International Conference
on Cloud Engineering (IC2E), to appear. IEEE, 2014.



Bibliography 165

[19] D. Bermbach, L. Zhao, and S. Sakr. Towards comprehensive measurement of consis-
tency guarantees for cloud-hosted data storage services. In R. Nambiar and M. Poess,
editors, Performance Characterization and Benchmarking, volume 8391 of Lecture
Notes in Computer Science, pages 32–47. Springer International Publishing, 2014.

[20] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing. How is the weather tomorrow?:
Towards a benchmark for the cloud. In Proceedings of the 2nd International Workshop
on Testing Database Systems (DBTEST), DBTest ’09, pages 9:1–9:6, New York, NY,
USA, 2009. ACM.

[21] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska. Building a database
on s3. In Proceedings of the 28th International Conference on Management of Data
(SIGMOD), SIGMOD ’08, pages 251–264, New York, NY, USA, 2008. ACM.

[22] E. Brewer. Podc keynote. http://www.cs.berkeley.edu/~brewer/cs262b-2004/
PODC-keynote.pdf (accessed Jun 27,2013), 2000.

[23] J. Brzezinski, C. Sobaniec, and D. Wawrzyniak. From session causality to causal
consistency. In Proceedings of the 12th Euromicro Conference on Parallel, Distributed
and Network-Based Processing (PDP), pages 152–158, Feb 2004.

[24] J. Brzezinski, C. Sobaniec, and D. Wawrzyniak. Session guarantees to achieve pram
consistency of replicated shared objects. In R. Wyrzykowski, J. Dongarra, M. Paprzy-
cki, and J. Wasniewski, editors, Parallel Processing and Applied Mathematics, volume
3019 of Lecture Notes in Computer Science, pages 1–8. Springer Berlin Heidelberg,
2004.

[25] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chan-
dra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system for structured
data. In Proceedings of the 7th Symposium on Operating Systems Design and Imple-
mentation (OSDI), OSDI ’06, pages 205–218, Berkeley, CA, USA, 2006. USENIX
Association.

[26] Y. Chen and R. Sion. On securing untrusted clouds with cryptography. In Proceedings
of the 9th Workshop on Privacy in the electronic society (WPES), pages 109–114.
ACM, 2010.

[27] H. Chihoub, S. Ibrahim, G. Antoniu, M. Pérez, et al. Consistency in the cloud: When
money does matter! Technical report, INRIA, 2012.

[28] H.-E. Chihoub, S. Ibrahim, G. Antoniu, and M. S. Perez. Harmony: Towards auto-
mated self-adaptive consistency in cloud storage. In Proceedings of the 13th Inter-
national Conference on Cluster Computing (CLUSTER), CLUSTER ’12, pages 293–
301, Washington, DC, USA, 2012. IEEE Computer Society.

http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf


166 Bibliography

[29] G. Chockler, R. Guerraoui, I. Keidar, and M. Vukolić. Reliable distributed storage.
IEEE Computer, 42(4):60–67, Apr. 2009.

[30] A. Cockcroft and D. Sheahan. Benchmarking cassandra scalability on aws
- over a million writes per second. http:// techblog.netflix.com/2011/11/
benchmarking-cassandra-scalability-on.html (accessed Dec 10,2013), 2011.

[31] E. F. Codd. The relational model for database management: Version 2. Addison-
Wesley, Reading, Mass., 1990.

[32] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A.
Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted data serving
platform. Proceedings of the VLDB Endowment, 1(2):1277–1288, Aug. 2008.

[33] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
cloud serving systems with ycsb. In Proceedings of the 1st Symposium on Cloud
Computing (SOCC), SOCC ’10, pages 143–154, New York, NY, USA, 2010. ACM.

[34] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s globally-
distributed database. In Proceedings of the 10th Symposium on Operating Systems
Design and Implementation (OSDI), OSDI’12, pages 251–264, Berkeley, CA, USA,
2012. USENIX Association.

[35] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems : Concepts and
Design. Addison-Wesley, 2nd edition, 1994.

[36] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In
Proceedings of the 6th Symposium on Operating Systems Design and Implementation
(OSDI), OSDI’04, pages 10–10, Berkeley, CA, USA, 2004. USENIX Association.

[37] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available
key-value store. In Proceedings of 21st Symposium on Operating Systems Principles
(SOSP), SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM.

[38] P. J. Denning and J. P. Buzen. The operational analysis of queueing network models.
ACM Computing Surveys, 10(3):225–261, Sept. 1978.

[39] J. Elson and J. Howell. Handling flash crowds from your garage. In Proceedings of
the USENIX Annual Technical Conference (ATC), ATC’08, pages 171–184, Berkeley,
CA, USA, 2008. USENIX Association.

http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html


Bibliography 167

[40] C. J. Fidge. Timestamps in message-passing systems that preserve the partial order-
ing. In Proceedings of the 11th Australian Computer Science Conference (ACSC),
volume 10, pages 56–66, 1988.

[41] A. Fikes. Storage architecture and challenges. https:// static.googleusercontent.
com/external_content/untrusted_dlcp/research.google.com/en/ /university/ relations/
facultysummit2010/storage_architecture_and_challenges.pdf (accessed Jul 3,2013),
2010.

[42] A. Fox and E. A. Brewer. Harvest, yield, and scalable tolerant systems. In Proceedings
of the The 7th Workshop on Hot Topics in Operating Systems (HOTOS), HOTOS ’99,
pages 174–, Washington, DC, USA, 1999. IEEE Computer Society.

[43] S. L. Garfinkel. An evaluation of amazon’s grid computing services: Ec2, s3, and sqs.
Technical report, Harvard University, 2007.

[44] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In Proceedings
of the 19th Symposium on Operating Systems Principles (SOSP), SOSP ’03, pages
29–43, New York, NY, USA, 2003. ACM.

[45] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. ACM SIGACT News, 33(2):51–59, June 2002.

[46] W. Golab, X. Li, and M. A. Shah. Analyzing consistency properties for fun and
profit. In Proceedings of the 30th Symposium on Principles of Distributed Computing
(PODC), PODC ’11, pages 197–206, New York, NY, USA, 2011. ACM.

[47] R. Guerraoui, B. Garbinato, and K. R. Mazouni. The garf library of dsm consistency
models. In Proceedings of the 6th European SIGOPS Workshop: Matching Operating
Systems to Application Needs (EW), EW 6, pages 51–56, New York, NY, USA, 1994.
ACM.

[48] R. Guerraoui and C. Hari. On the consistency problem in mobile distributed com-
puting. In Proceedings of the 2nd International Workshop on Principles of Mobile
Computing (POMC), POMC ’02, pages 51–57, New York, NY, USA, 2002. ACM.

[49] P. Helland and D. Campbell. Building on quicksand. Proceedings of the 4th Confer-
ence on Innovative Data Research (CIDR), 2009.

[50] J. M. Hellerstein, M. Stonebraker, and J. Hamilton. Architecture of a database system,
volume 1. Now Publishers Inc, 2007.

[51] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463–492,
July 1990.

https://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//university/relations/facultysummit2010/storage_architecture_and_challenges.pdf
https://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//university/relations/facultysummit2010/storage_architecture_and_challenges.pdf
https://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//university/relations/facultysummit2010/storage_architecture_and_challenges.pdf


168 Bibliography

[52] H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance evalua-
tion. Theoretical Computer Science, 274(1-2):43–87, 2002.

[53] IEEE. Standard 1061-1998, standard for a software quality metrics methodology.
1998.

[54] H.-A. Jacobsen, P. Lee, and R. Yerneni. View maintenance in web data platforms.
Technical report, CSRG No.599, University of Toronto, 2009.

[55] C. Kaner and W. P. Bond. Software engineering metrics: What do they measure
and how do we know? In Proceedings of the 10th International Software Metrics
Symposium (METRICS), 2004.

[56] M. Klems, D. Bermbach, and R. Weinert. A runtime quality measurement framework
for cloud database service systems. In Proceedings of the 8th International Conference
on the Quality of Information and Communications Technology (QUATIC), pages 38–
46, Sept 2012.

[57] M. Klems, M. Menzel, and R. Fischer. Consistency benchmarking: Evaluating the
consistency behavior of middleware services in the cloud. In P. Maglio, M. Weske,
J. Yang, and M. Fantinato, editors, Service-Oriented Computing, volume 6470 of Lec-
ture Notes in Computer Science, pages 627–634. Springer Berlin Heidelberg, 2010.

[58] D. Kossmann, T. Kraska, and S. Loesing. An evaluation of alternative architectures for
transaction processing in the cloud. In Proceedings of the 30th International Confer-
ence on Management of Data (SIGMOD), SIGMOD ’10, pages 579–590, New York,
NY, USA, 2010. ACM.

[59] S. Kounev. Performance modeling and evaluation of distributed component-based
systems using queueing petri nets. IEEE Transactions on Software Engineering,
32(7):486–502, July 2006.

[60] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann. Consistency rationing in the
cloud: Pay only when it matters. Proceedings of the VLDB Endowment, 2(1):253–264,
Aug. 2009.

[61] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete. Mdcc: Multi-data center
consistency. In Proceedings of the 8th European Conference on Computer Systems
(EUROSYS), EuroSys ’13, pages 113–126, New York, NY, USA, 2013. ACM.

[62] T. Kraska and B. Trushkowsky. The new database architectures. IEEE Internet Com-
puting, 17(3):72–75, May 2013.



Bibliography 169

[63] S. Krishnamurthy, W. H. Sanders, and M. Cukier. An adaptive framework for tunable
consistency and timeliness using replication. In Proceedings of the 32nd International
Conference on Dependable Systems and Networks (DSN), DSN ’02, pages 17–26,
Washington, DC, USA, 2002. IEEE Computer Society.

[64] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An archi-
tecture for global-scale persistent storage. ACM SIGPLAN Notices, 35(11):190–201,
Nov. 2000.

[65] A. Lakshman and P. Malik. Cassandra: A decentralized structured storage system.
SIGOPS Operating Systems Review, 44(2):35–40, Apr. 2010.

[66] L. Lamport. On interprocess communication. Springer Distributed Computing,
1(2):86–101, 1986.

[67] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems,
16(2):133–169, May 1998.

[68] L. Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25, 2001.

[69] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues. Making
geo-replicated systems fast as possible, consistent when necessary. Technical report,
MPI-SWS, 2012.

[70] H. Li and S. Venugopal. Using reinforcement learning for controlling an elastic web
application hosting platform. In Proceedings of the 8th International Conference on
Autonomic Computing (ICAC), ICAC ’11, pages 205–208, New York, NY, USA, 2011.
ACM.

[71] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t settle for even-
tual: Scalable causal consistency for wide-area storage with cops. In Proceedings
of the 23rd Symposium on Operating Systems Principles (SOSP), SOSP ’11, pages
401–416, New York, NY, USA, 2011. ACM.

[72] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, availability, and convergence.
Technical report, TR-11-22, Computer Science Department, University of Texas at
Austin, 2011.

[73] S. Müller, D. Bermbach, S. Tai, and F. Pallas. Benchmarking the performance im-
pact of transport layer security in cloud database systems. In Proceedings of the 2nd
International Conference on Cloud Engineering (IC2E), to appear. IEEE, 2014.

[74] T. M. Özsu and P. Valduriez. Principles of Distributed Database Systems. Prentice
Hall, Inc., Englewood Cliffs, NJ, 1991.



170 Bibliography

[75] J. Paluska, D. Saff, T. Yeh, and K. Chen. Footloose: a case for physical eventual
consistency and selective conflict resolution. In Proceedings of the 5th Workshop
on Mobile Computing Systems and Applications (HOTMOBILE), pages 170–179, Oct
2003.

[76] V. Pareto. Manuale di economia politica, volume 13. Societa Editrice, 1906.

[77] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López, G. Gibson, A. Fuchs, and
B. Rinaldi. Ycsb++: Benchmarking and performance debugging advanced features
in scalable table stores. In Proceedings of the 2nd Symposium on Cloud Computing
(SOCC), SOCC ’11, pages 9:1–9:14, New York, NY, USA, 2011. ACM.

[78] A. Popescu. Consistency in the acid and cap perspectives. http://nosql.mypopescu.
com/post/4373459618/consistency-in-the-acid-and-cap-perspectives (accessed Aug
1,2013), 2011.

[79] D. Pritchett. Base: An acid alternative. Queue, 6(3):48–55, May 2008.

[80] T. Rabl, S. Gómez-Villamor, M. Sadoghi, V. Muntés-Mulero, H.-A. Jacobsen, and
S. Mankovskii. Solving big data challenges for enterprise application performance
management. Proceedings of the VLDB Endowment, 5(12):1724–1735, Aug. 2012.

[81] M. R. Rahman, W. Golab, A. AuYoung, K. Keeton, and J. J. Wylie. Toward a princi-
pled framework for benchmarking consistency. In Proceedings of the 8th Conference
on Hot Topics in System Dependability (HOTDEP), HotDep’12, pages 8–8, Berkeley,
CA, USA, 2012. USENIX Association.

[82] R. Ramakrishnan. Cap and cloud data management. IEEE Computer, 45(2):43–49,
Feb. 2012.

[83] P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and G. Popek. Resolving file conflicts
in the ficus file system. In Proceedings of the USENIX Summer Technical Conference
(USTC), USTC’94, pages 12–12, Berkeley, CA, USA, 1994. USENIX Association.

[84] S. Sakr, L. Zhao, H. Wada, and A. Liu. Clouddb autoadmin: Towards a truly elas-
tic cloud-based data store. In Proceedings of the 9th International Conference on
Web Services (ICWS), ICWS ’11, pages 732–733, Washington, DC, USA, 2011. IEEE
Computer Society.

[85] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and D. C.
Steere. Coda: A highly available file system for a distributed workstation environment.
IEEE Transactions on Computers, 39(4):447–459, Apr. 1990.

[86] V. Schmidt. Wahrscheinlichkeitstheorie. http://www.mathematik.uni-ulm.de/
stochastik/ lehre/ws03%5F04/wr/skript/node38.html (accessed Jul 12,2013), 2003.

http://nosql.mypopescu.com/post/4373459618/consistency-in-the-acid-and-cap-perspectives
http://nosql.mypopescu.com/post/4373459618/consistency-in-the-acid-and-cap-perspectives
http://www.mathematik.uni-ulm.de/stochastik/lehre/ws03%5F04/wr/skript/node38.html
http://www.mathematik.uni-ulm.de/stochastik/lehre/ws03%5F04/wr/skript/node38.html


Bibliography 171

[87] A. W. Services. Summary of the amazon ec2 and amazon rds service disruption in the
us east region. https://aws.amazon.com/de/message/65648/ (accessed Aug 16,2013),
2011.

[88] A. Singla, U. Ramachandran, and J. Hodgins. Temporal notions of synchronization
and consistency in beehive. In Proceedings of the 9th Symposium on Parallel Algo-
rithms and Architectures (SPAA), SPAA ’97, pages 211–220, New York, NY, USA,
1997. ACM.

[89] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland.
The end of an architectural era: (it’s time for a complete rewrite). In Proceedings of the
33rd International Conference on Very Large Data Bases (VLDB), VLDB ’07, pages
1150–1160. VLDB Endowment, 2007.

[90] A. S. Tanenbaum and M. v. Steen. Distributed Systems : Principles and Paradigms.
Pearson, Prentice Hall, Upper Saddle River, NJ, 2nd edition, 2007.

[91] D. Terry. The impact of eventual consistency on application de-
velopers. http:// littlemindslargeclouds.wordpress.com/2013/09/27/
the-impact-of-eventual-consistency-on-application-developers/ (accessed Jan
13,2014), 2013.

[92] D. Terry, A. Demers, K. Petersen, M. Spreitzer, M. Theimer, and B. Welch. Session
guarantees for weakly consistent replicated data. In Proceedings of the 3rd Interna-
tional Conference on Parallel and Distributed Information Systems (PDGC), pages
140–149, Sep 1994.

[93] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H.
Hauser. Managing update conflicts in bayou, a weakly connected replicated storage
system. ACM SIGOPS Operating Systems Review, 29(5):172–182, Dec. 1995.

[94] R. H. Thomas. A majority consensus approach to concurrency control for multiple
copy databases. ACM Transactions on Database Systems, 4(2):180–209, June 1979.

[95] F. Torres-Rojas and E. Meneses. Convergence through a weak consistency model:
Timed causal consistency. Clei Electronic Journal, 8(2), 2005.

[96] F. J. Torres-Rojas, M. Ahamad, and M. Raynal. Timed consistency for shared dis-
tributed objects. In Proceedings of the 18th Symposium on Principles of Distributed
Computing (PODC), PODC ’99, pages 163–172, New York, NY, USA, 1999. ACM.

[97] W. Vogels. Eventually consistent. ACM Queue, 6(6):14–19, Oct. 2008.

https://aws.amazon.com/de/message/65648/
http://littlemindslargeclouds.wordpress.com/2013/09/27/the-impact-of-eventual-consistency-on-application-developers/
http://littlemindslargeclouds.wordpress.com/2013/09/27/the-impact-of-eventual-consistency-on-application-developers/


172 Bibliography

[98] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu. Data consistency properties and the
trade-offs in commercial cloud storages: the consumers’ perspective. In Proceedings
of the 5th Conference on Innovative Data Systems Research (CIDR), pages 134–143,
January 2011.

[99] M. Welsh, D. Culler, and E. Brewer. Seda: An architecture for well-conditioned,
scalable internet services. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP), SOSP ’01, pages 230–243, New York, NY, USA, 2001.
ACM.

[100] C. M. Woodside, J. E. Neilson, D. C. Petriu, and S. Majumdar. The stochastic ren-
dezvous network model for performance of synchronous client-server-like distributed
software. IEEE Transactions on Computers, 44(1):20–34, Jan. 1995.

[101] G. Young. Quick thoughts on eventual consistency. http://codebetter.com/gregyoung/
2010/04/14/quick-thoughts-on-eventual-consistency (accessed Jun 21,2013), 2010.

[102] H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous consistency
model for replicated services. ACM Transactions on Computer Systems, 20(3):239–
282, Aug. 2002.

[103] K. Zellag and B. Kemme. How consistent is your cloud application? In Proceedings
of the 3rd Symposium on Cloud Computing (SOCC), SOCC ’12, pages 6:1–6:14, New
York, NY, USA, 2012. ACM.

[104] L. Zhao, A. Liu, and J. Keung. Evaluating cloud platform architecture with the care
framework. In Proceedings of the 17th Asia Pacific Software Engineering Conference
(APSEC), pages 60–69, Nov 2010.

http://codebetter.com/gregyoung/2010/04/14/quick-thoughts-on-eventual-consistency
http://codebetter.com/gregyoung/2010/04/14/quick-thoughts-on-eventual-consistency


List of Abbreviations

CC Causal Consistency
CRUD Create-Read-Update-Delete
EC Eventual Consistency
GFS Google File System
HDFS Hadoop Distributed File System
LIN Linearizability
MRC Monotonic Read Consistency
MTBF Mean Time Between Failures
MTTR Mean Time To Repair
MWC Monotonic Write Consistency
NoSQL Not only SQL
NTP Network Time Protocol
ODTT One-Way Data Transfer Time
P2P Peer-to-Peer
QoS Quality of Service
RAID Redundant Array of Independent Disks
RDBMS Relational Database Management System
RTT Round Trip Time
RYWC Read Your Writes Consistency
SC Sequential Consistency
SLA Service Level Agreement
SQL Structured Query Language
WFRC Write Follows Read Consistency
YCSB Yahoo! Cloud Serving Benchmark





List of Figures

2.1 Focus of Data-centric and Client-centric Consistency . . . . . . . . . . . 17
2.2 Example for Commit Logs with Staleness (left) and Order Error (right) . . 19
2.3 Consistency versus Availability Trade-off During Updates . . . . . . . . 28
2.4 Consistency versus Latency Trade-off During Updates . . . . . . . . . . 29

4.1 Different Definitions of t-Visibility in Comparison in a (3,2,1) Quorum Sys-
tem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Examples for Replication and Read Graphs . . . . . . . . . . . . . . . . 62
5.2 Sample Replication Graph . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Probabilities of Reaching all Replicas for Different Replication Factors as a
Function of the Number of Readers . . . . . . . . . . . . . . . . . . . . . 72

6.2 System Benchmarking Setup for Staleness Measurements of Storage Sys-
tems with Load Balancer . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 System Benchmarking Setup for Staleness Measurements of Storage Sys-
tems with Direct Replica Access . . . . . . . . . . . . . . . . . . . . . . 73

7.1 Overview of Software Modules in the Monte Carlo Simulation Tool . . . 85
7.2 UML Class Diagram of the Synchronicity Group Implementation . . . . . 87
7.3 Measurement Setup for Staleness Measurements of Storage Systems with

Load Balancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4 High-level Architecture of our Comprehensive System Benchmarking Frame-

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.1 MiniStorage’s Replication Graphs during Tests 1, 2 and 3 . . . . . . . . . 102
8.2 MiniStorage’s Replication Graphs during Tests 4, 5, 6 and 7 for replica A1 102
8.3 Density Functions of Measured and Simulated Data-centric Staleness in Test

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.4 Density Functions of Measured and Simulated Data-centric Staleness in Test

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.5 Density Functions of Measured and Simulated Data-centric Staleness in Test

3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



176 List of Figures

8.6 Density Functions of Measured and Simulated Data-centric Staleness in Test
4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.7 Density Functions of Measured and Simulated Data-centric Staleness in Test
5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.8 Density Functions of Measured and Simulated Data-centric Staleness in Test
6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.9 Density Functions of Measured and Simulated Data-centric Staleness in Test
7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.10 Median (Left) and Average (Right) Results of System Benchmark and Sim-
ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.11 Average Percentage of MRC Violations in Test 8 . . . . . . . . . . . . . 111
8.12 Average Percentage of RYWC Violations in Test 8 . . . . . . . . . . . . 111
8.13 Data-centric versus Client-observable Inconsistency Windows with Varying

Number of Readers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.14 SAW and LOW Phases in Experiment 1 . . . . . . . . . . . . . . . . . . 115
8.15 Excerpt from a SAW Phase in Experiment 1 . . . . . . . . . . . . . . . . 115
8.16 SAW and LOW Phases in Experiment 4 . . . . . . . . . . . . . . . . . . 116
8.17 Excerpt from a SAW Phase in Experiment 4 . . . . . . . . . . . . . . . . 116
8.18 Staleness Results of Experiment 6 . . . . . . . . . . . . . . . . . . . . . 117
8.19 Staleness Results of Experiment 7 . . . . . . . . . . . . . . . . . . . . . 118
8.20 Overview of Results in Experiments 1-8 . . . . . . . . . . . . . . . . . . 119
8.21 Prob. of Reading Fresh Data as a Function of the Time since the Last Update

(Exp. 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.22 Influence of the Time since the Last Update on Latency and Read Rates (Ex-

periment 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.23 Change of Staleness over Time (Cassandra, Multi-Region Setup) . . . . . 123
8.24 Distribution of Staleness Values in Cassandra (Multi-AZ) . . . . . . . . . 125
8.25 Distribution of Staleness Values in Cassandra (Multi-Region) . . . . . . . 125
8.26 Distribution of Staleness Values in MongoDB . . . . . . . . . . . . . . . 126

9.1 Intended Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.2 Basic Middleware Architecture . . . . . . . . . . . . . . . . . . . . . . . 144
9.3 Violations of MRC without Middleware . . . . . . . . . . . . . . . . . . 146
9.4 Violations of RYWC without Middleware . . . . . . . . . . . . . . . . . 147



List of Tables

2.1 Relationship Between Data-centric and Client-centric Consistency Models
Ordered by the Strictness of their Guarantees . . . . . . . . . . . . . . . 23

4.1 Overview of Consistency Metrics Fulfilling all Requirements . . . . . . . 57

8.1 Basic Test Setup Parameters in Comparison . . . . . . . . . . . . . . . . 103
8.2 Experiment Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.3 Results of Experiments 1-8 . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.4 MRC and Error Results of Experiments 1-8 . . . . . . . . . . . . . . . . 120
8.5 CPU Utilization During System Benchmarks for Consistency Behavior . . 122





Index

Accumulo, 35
ACID, 12, 34
ACID Consistency, 12
Adaptable Consistency, 25
Amazon

Dynamo, 32, 35, 134
DynamoDB, 35

Apache
Accumulo, 35
Cassandra, 35, 64, 66, 122
CouchDB, 35
Hadoop, 35
HBase, 35
HDFS, 35

Atomicity, 12, 51

Bigtable, 31, 34, 35

CAP Theorem, 26
Cassandra, 35, 64, 66, 122
Causal Consistency, 21, 135, 148
Client-centric Consistency, 16, 19

Monotonic Read Consistency, 19, 55, 66, 75, 91, 104, 113, 133–135
Monotonic Write Consistency, 19, 55, 76, 90, 113, 134, 135, 149
Read Your Writes Consistency, 19, 55, 66, 76, 90, 104, 113, 134, 135
Write Follows Read Consistency, 20, 55, 76

Client-centric Consistency Metrics, 53
Client-centric k-Staleness, 54, 73, 91
Client-centric Ordering Violations, 55, 66, 104
Client-centric t-Visibility, 54, 66, 73, 91, 112, 113, 122
Coherence, 24
Colossus, 34
Conit, 23



180 Index

Consistency Anomalies, 51
Consistency Benchmarking, 47
Consistency Cost Efficiency, 25
Consistency Dimensions, 17
Consistency Metrics, 49

Atomicity, 51
Client-centric Consistency Metrics, 53
Client-centric k-Staleness, 54, 73, 91
Client-centric Ordering Violations, 55, 66, 104
Client-centric t-Visibility, 54, 66, 73, 91, 112, 113, 122
Consistency Anomalies, 51
Data-centric Consistency Metrics, 50
Data-centric k-Staleness, 52, 70, 101
Data-centric Ordering Violations, 53
Data-centric t-Visibility, 52, 65, 70, 101, 112
Metric Requirements, 49
Regularity, 51
Safeness, 51

Consistency Modeling, 60, 83
Consistency Models, 18
Consistency Perspectives, 16
Consistency Rationing, 25
Consistency Simulation, 63, 83
Continuous Consistency, 23
Convolutions, 63, 84
CouchDB, 35

Data-centric Consistency, 16, 20
Causal Consistency, 21, 135, 148
Eventual Consistency, 20
Linearizability, 22
Sequential Consistency, 22, 149
Weak Consistency, 20

Data-centric Consistency Metrics, 50
Data-centric k-Staleness, 52, 70, 101
Data-centric Ordering Violations, 53
Data-centric t-Visibility, 52, 65, 70, 101, 112
Delta Consistency, 23
Dirty Reads, 14, 52, 54, 70



Index 181

Durability, 12
Dynamo, 32, 35, 134
DynamoDB, 35

Eventual Consistency, 20

Failures, 36, 59, 62, 95, 101
Byzantine Failures, 36, 59, 62
Crash-recover Failures, 36, 59, 62, 101
Crash-stop Failures, 36, 59, 62, 101
Fault Tolerance, 36

Fault Tolerance, 36

Geo-Replication, 104, 122
GFS, 31, 35, 76, 101
Google

Bigtable, 31, 34, 35
Colossus, 34
Google File System, 31, 35, 76, 101
Megastore, 34
Spanner, 34

Google File System, 31, 35, 76, 101

Hadoop, 35
HBase, 35
HDFS, 35
Hypertable, 35

Integrity Constraints, 13
Isolation, 12, 14

k-Staleness, 17

Linearizability, 22

Megastore, 34
MongoDB, 35, 122
Monotonic Read Consistency, 19, 55, 66, 75, 91, 104, 113, 133–135
Monotonic Write Consistency, 19, 55, 76, 90, 113, 134, 135, 149
Monte Carlo Simulation, 64, 84
Multi-dimensional Consistency, 23



182 Index

NewSQL, 35
Non-repeatable Read, 14
NoSQL, 35, 122
NuoDB, 35

Ordering, 17, 70, 113

PACELC Model, 27
Phantom Read, 14
PNUTS, 33, 61, 132

Read Committed, 14
Read Uncommitted, 14
Read Your Writes Consistency, 19, 55, 66, 76, 90, 104, 113, 134, 135
RedBlue Consistency, 25
Regularity, 51
Relational Database Management System, 12, 34, 35
Repeatable Read, 14
Riak, 35

Safeness, 51
Sequential Consistency, 22, 149
Serializable, 14
Sherpa, 61
Spanner, 34
Staleness, 17, 52, 54, 65, 66, 70, 73, 91, 112, 113, 122
System Benchmarking

Accuracy, 69
Applicability, 69
Challenges, 69
Client-centric Consistency, 71, 90, 112, 113, 122
Data-centric Consistency, 70, 101, 112
Influence Factors, 69
Reproducibility, 69
Resolution, 69

t-visibility, 17
Timed Consistency, 23
Trade-offs, 26
Transactions, 12



Index 183

Voldemort, 35
VoltDB, 35

Weak Consistency, 20
Write Follows Read Consistency, 20, 55, 76

Yahoo
PNUTS, 33, 61, 132
Sherpa, 33, 61
YCSB, 95, 122

YCSB, 95



Da
vi

d
 B

er
m

b
a

ch
B

en
ch

m
a

r
k

in
g 

Ev
en

tu
a

ll
y 

Co
n

si
st

en
t 

Di
st

r
ib

u
te

d
 S

to
r

a
ge

 S
ys

te
m

s

Cloud storage services and NoSQL systems, which have recently found widespread adop-

tion, typically offer only "Eventual Consistency", a rather weak guarantee covering a broad 

range of potential data consistency behavior. The degree of actual (in-)consistency as a 

service quality, however, is always unknown. To avoid cost of opportunity or actual costs, 

resulting data inconsistencies have to be resolved within the application layer. Without 

detailed knowledge on consistency behavior, though, inconsistency handling is inefficient 

and for some kinds of inconsistency outright impossible.

Furthermore, due to the way consistency behavior impacts applications, consistency as a 

system quality should also be considered during the selection and deployment optimiza-

tion of cloud storage offerings and NoSQL systems. This as well as studying the impact 

of system design decisions on consistency behavior requires the necessary means to 

analyze consistency behavior of eventually consistent storage systems.

In this work, we start with an introduction to consistency in distributed storage systems. 

Next, we develop a set of metrics for quantifying consistency behavior in a precise and 

meaningful way. Building on this, we present our novel consistency benchmarking method 

leveraging both simulation and experimentation approaches.

Finally, building on 15 extensive experiments with actual systems and a multitude of simu-

lation runs, we demonstrate how inconsistencies can be handled more efficiently leverag-

ing these results. For this purpose, we describe based on a use case how inconsistencies 

can be resolved in application engineering. We also develop a new middleware-based 

approach which adds additional consistency guarantees externally to the eventually con-

sistent storage system, thus, alleviating complexity for application developers.

9 783731 501862

ISBN 978-3-7315-0186-2


	I Foundations
	1 Introduction
	1.1 Problem Statement
	1.2 Contributions
	1.2.1 Meaningful Consistency Metrics
	1.2.2 Modeling and Simulation of Consistency Behavior
	1.2.3 System Benchmarking of Consistency Behavior
	1.2.4 Inconsistency Handling

	1.3 Organization of this Thesis

	2 Background
	2.1 Consistency Definitions
	2.1.1 Database Systems and Transactions
	2.1.2 Distributed Systems

	2.2 Consistency Perspectives, Dimensions and Models
	2.2.1 Consistency Perspectives
	2.2.2 Consistency Dimensions
	2.2.3 Consistency Models and Implementations

	2.3 Consistency Trade-offs
	2.3.1 CAP Theorem
	2.3.2 PACELC Model
	2.3.3 Indirect Trade-offs
	2.3.4 BASE

	2.4 Exemplary Storage Systems
	2.4.1 Google File System
	2.4.2 Google Bigtable
	2.4.3 Amazon Dynamo
	2.4.4 Yahoo! PNUTS
	2.4.5 Google Megastore and Spanner
	2.4.6 Further NoSQL Systems

	2.5 Failures and Fault Tolerance
	2.5.1 Failure Types
	2.5.2 Failures and Consistency
	2.5.3 Fault Tolerance

	2.6 Conclusion

	3 Related Work
	3.1 Modeling and Simulation of Software Quality
	3.2 System Benchmarking of Distributed Storage Systems
	3.3 Management of Consistency Guarantees


	II Consistency Benchmarking
	4 Consistency Metrics
	4.1 Requirements for Consistency Metrics
	4.2 Data-centric Consistency Metrics
	4.2.1 Consistency Anomalies
	4.2.2 Atomicity, Regularity, Safeness
	4.2.3 Data-centric t-Visibility, k-Staleness
	4.2.4 Ordering Violations

	4.3 Client-centric Consistency Metrics
	4.3.1 Client-centric t-Visibility, k-Staleness
	4.3.2 Ordering Violations

	4.4 Conclusion and Discussion

	5 Modeling and Simulation of Consistency Behavior
	5.1 Assumptions
	5.2 Model
	5.2.1 Basic System Model
	5.2.2 Interaction Model
	5.2.3 Failure Model

	5.3 Simulation
	5.3.1 Calculating Convolutions
	5.3.2 Monte Carlo Simulation
	5.3.3 Simulation Input Data

	5.4 Conclusion

	6 System Benchmarking for Consistency Behavior
	6.1 Challenges
	6.2 Data-centric Consistency
	6.3 Client-centric Consistency
	6.3.1 t-Visibility and k-Staleness
	6.3.2 Violations of Monotonic Read Consistency
	6.3.3 Violations of Read Your Writes Consistency
	6.3.4 Violations of Monotonic Write Consistency
	6.3.5 Violations of Write Follows Read Consistency

	6.4 Conclusion


	III Application
	7 Implementation
	7.1 Modeling and Simulation
	7.1.1 Data Gathering Tools
	7.1.2 Simulation Tools

	7.2 System Benchmarking
	7.2.1 RYWC Measurements
	7.2.2 MWC Measurements
	7.2.3 Staleness and MRC Measurements
	7.2.4 Comprehensive System Benchmarking

	7.3 Running Consistency Benchmarks
	7.3.1 Modeling and Simulation
	7.3.2 System Benchmarking

	7.4 Discussion and Conclusion

	8 Evaluation
	8.1 Modeling and Simulation
	8.1.1 MiniStorage
	8.1.2 Test Setup
	8.1.3 Results

	8.2 System Benchmarking
	8.2.1 Data-centric and Client-centric Staleness
	8.2.2 Long-term Study with Amazon S3
	8.2.3 Geo-replication and Parallel Workloads

	8.3 Conclusion

	9 Application Engineering
	9.1 Handling Inconsistencies in a Webshop Scenario
	9.1.1 Scenario Description
	9.1.2 Potential Conflicts and Resolution Mechanisms

	9.2 A Middleware Guaranteeing Client-centric Consistency
	9.2.1 Overhead and Intended Use Case
	9.2.2 Handling Sessions
	9.2.3 Consistency Guarantees
	9.2.4 Implementation
	9.2.5 Evaluation

	9.3 Efficient Inconsistency Handling
	9.3.1 Modifications to Increase Efficiency
	9.3.2 Extensions for Additional Guarantees

	9.4 Conclusion


	IV Conclusions
	10 Summary
	11 Discussion and Outlook
	References
	List of Abbreviations
	List of Figures
	List of Tables
	Index


