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Abstract

We study the simulation of soft inclusive hadron collisions at high
energies. This topic is addressed in two projects: the analysis of colour
reconnections in the presence of multiple parton interactions (MPI) and
the joint description of diffractive and MPI cross sections. We describe
a model for nonperturbative colour reconnections in the Monte Carlo
event generator Herwig++. This model redefines colour singlets in the
partonic final state after all perturbative parts of the event generation has
been completed. Its effects on hadronic final states at lepton and hadron
colliders are investigated. Little impact is found in lepton collisions.
However, the simulation of soft inclusive events and the underlying event
at hadron colliders is sensitive to colour reconnections. Using analyses
at parton level, we can attribute the effects seen at hadron level to
nonperturbative parts of the event generation. In tunes to hadron collider
data we find an improved description of diffraction-reduced minimum-
bias data and underlying-event data at several centre-of-mass energies.
We furthermore present a parametrization of the enhanced underlying-
event model that allows to assess the underlying-event activity at future
collider energies. To account for diffraction in the simulation of inclusive
hadron-collider event samples, we analytically study the description of
diffractive cross sections in a consistent unitarization model. To this
end, a two-channel eikonal formalism is employed. Moreover, enhanced
pomeron diagrams are taken into account. Using an implementation
of this model in Herwig++, we can validate its description of inclusive
hadronic cross sections over a wide range of centre-of-mass energies.
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Introduction

Although there has been tremendous progress in the theoretical descrip-
tion of high-energy hadron collisions in recent years, we are still far away
from understanding all of its aspects. Meanwhile, precise calculations for
many processes that can be probed at the Large Hadron Collider (LHC)
are available. These high-precision calculations are, however, limited
to regimes in which perturbation theory applies. In Quantum Chromo-
dynamics (QCD), this requires high energy scales in the process, which
imply a small gauge coupling.

In the absence of a high energy scale, perturbative QCD is not ap-
plicable. Hence we have to rely on nonperturbative models for parts of
the simulation of hadron collisions using Monte Carlo event generators.
One example concerns hadronization, i.e. the transition of quarks and
gluons to hadrons. Essentially, two different nonperturbative models are
used for this task in current general-purpose event generators for LHC
physics, namely the cluster model [1] and the string model [2]. Both
hadronization models are based on theoretical considerations. They
include, however, parameters that have to be determined from experi-
mental data.

Another example is the simulation of the underlying event. The
signature of hard subprocesses in hadron collisions is always accompa-
nied by additional hadronic activity in all phase space regions. This
additional activity, the underlying event, can be explained by means
of uncorrelated multiple parton interactions (MPI) [3]. Meanwhile, all
recent general-purpose Monte Carlo event generators for LHC physics,
Herwig++ [4], Pythia [5, 6] and Sherpa [7], use multiple parton in-
teractions in order to simulate the underlying event. The description
of multiple parton interactions within perturbative QCD is possible
by introducing a cutoff for the minimum transverse momentum of the
parton interactions. In order to describe interactions below this cutoff,
however, nonperturbative models have to be employed.
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2 Introduction

Multiple parton interactions seem to also be a necessary compo-
nent to describe inclusive data of inelastic events at hadron colliders
(minimum-bias data) [8]. Here we follow the convention of Ref. [9] by
using the term ‘soft inclusive’ in order to refer to theoretical models of
minimum-bias data. Soft inclusive models are required to assess the
impact of simultaneous pp collisions (pileup collisions), which can cause
additional hadronic activity in the detector. Compared to earlier hadron
colliders, the LHC suffers from a high pileup activity as it operates
at high instantaneous luminosities. Since pileup collisions resemble
hadron interactions that are studied in minimum-bias analyses, a good
modelling of soft inclusive physics is an important component of event
generators.

In the following we concentrate on the MPI model in Herwig++
since this thesis is focussed on developments in this event generator. The
perturbative component of the MPI model is implemented in terms of
uncorrelated QCD dijet processes at leading order. The model provides a
good description of the underlying event in sufficiently hard collisions at
the Tevatron [10]: it reproduces the average hadronic activity (the particle
multiplicity and the scalar sum of transverse momenta) in the azimuthal
region transverse to the jet with the highest transverse momentum. With
soft interactions included in the MPI model, the average underlying-
event activity can be described in inclusive samples from minimum-bias
runs as well [8]. Since soft-jet production is not accessible in perturbative
QCD, the free parameters in the soft MPI model are determined in fits
to hadronic-cross section data.

A wide range of minimum-bias and underlying-event measurements
at the LHC provide the possibility to study the MPI model in more
detail [11–21]. The data reveals deficiencies of the soft inclusive model
in Herwig++ in the description of the pseudorapidity distribution of
charged particles. Furthermore, the average transverse momentum as a
function of the number of charged particles is significantly underesti-
mated in the model. The latter observable is known to be sensitive to
nonperturbative colour reconnections [22].

Colour reconnection was originally studied in the context of hadronic
WW production at LEP, where the formation of jets in the two W sys-
tems was expected to be subject to interference effects [23–29]. Later
analyses at LEP could not find strong colour reconnection effects in WW
systems [30–32]. Significant effects of colour reconnection, however, can
be seen in the generation of soft inclusive hadron collider events using
the Pythia event generator [22, 33].
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In the first part of this thesis we study colour reconnections within
the MPI framework in Herwig++. The goal is to improve the agreement
of both the soft inclusive and the underlying-event model with hadron
collider data, particularly from the LHC. The colour reconnection model
that we establish and discuss in this work is thus motivated by phe-
nomenological aspects. Guided by colour preconfinement [34], however,
we also give a theoretical motivation for the need of colour reconnection
in hadron collisions. We illustrate the physical idea of the model in
various analyses of the modelled final state. Furthermore, we present
results of tuning this model to the currently available minimum-bias
and underlying-event data.

A substantial fraction of the inelastic pp cross section at LHC energies
is due to diffractive processes (see e.g. Ref. [35]). These processes are
experimentally characterized by a large region in pseudorapidity in
which no hadrons are detected. The incoming protons in these processes
either remain intact or dissociate into a set of particles with a (typically)
low invariant mass.

The soft inclusive model in Herwig++ does not include diffractive
processes. A comparison to minimum-bias data is thus only reasonable
if the measurement is restricted to phase space regions in which the
contribution of diffraction can be neglected, as for example in Ref. [13].
As we show in this thesis, colour reconnection and a dedicated tun-
ing of the MPI model make for a distinct progress in the description
of diffraction-reduced minimum-bias data. Including diffractive pro-
cesses would further increase the scope of the soft inclusive model in
Herwig++.

In the second part of this thesis we make a first step towards this goal:
we include the calculation of diffractive cross sections in the unitarization
model for multiple parton interactions. The formulation of this model is
inspired by the underlying models of the event generators Dtujet [36]
and Phojet [37, 38]. We determine the free parameters of the new model
in fits to cross section data from high-energy hadron collisions.

This thesis is outlined as follows: We start in Chapter 1 by review-
ing the main theoretical concepts used in later chapters. In particular,
we summarize the physical ideas of the so-called eikonal model. In
Chapter 2 we give a brief account of multiple parton interactions in
Herwig++. Chapter 3 covers the implementation and analysis of colour
reconnections in Herwig++. In Chapter 4 we discuss the calculation
of diffractive cross sections in the eikonal model. Finally, Chapter 5
summarizes the main findings of this work.





Chapter 1

Foundations

In this chapter we establish the basic formalism used in later chapters.
First, we summarize important results from a general approach to rel-
ativistic scattering, S-matrix theory. Furthermore we review relevant
aspects of Regge theory. The chapter ends with an introduction to eiko-
nal models. For comprehensive reviews of the topics discussed here we
refer to Refs. [39–41].

1.1 Relativistic scattering

The kinematics in two-body exclusive scattering, a + b → c + d, is
conveniently described in terms of the Lorentz invariant Mandelstam
variables

s = (pa + pb)
2 , t = (pa − pc)

2 , u = (pa − pd)
2 , (1.1)

and the masses of the external particles ma, mb, mc and md. Since these
variables satisfy the identity

s + t + u = ∑
k

m2
k , (1.2)

only two of them are independent.
A special case of two-body scattering is elastic scattering, a + b →

a′ + b′, where in general only the momenta of the particles change in
the interaction. Lorentz invariant elastic scattering amplitudes can thus
be formulated in terms of two Mandelstam variables and the external
masses. In the high-energy limit the masses are often negligible. The
scattering amplitude is then a function of two independent variables,
for instance the square of the centre-of-mass energy s and the squared
momentum transfer t, and can be written as A(s, t).
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6 Chapter 1. Foundations

Unitarity of the S-matrix, SS† = S†S = 1, follows directly from
conservation of probability. As a consequence one finds the optical
theorem, which in the large-s limit reads

σtot =
1
s

ImAel(s, t = 0) . (1.3)

It states that the total cross section, i.e. the cross section for a + b →
anything, is directly proportional to the imaginary part of the forward
elastic scattering amplitude. Hence it is possible to calculate inelas-
tic cross sections from the elastic amplitude at vanishing momentum
transfer.

1.2 Impact parameter representation

At high energies geometrical models can be applied to describe elas-
tic scattering since the corresponding interaction length scale is small
compared to the transverse size of the colliding particles. The elastic
scattering amplitude in the very forward direction can then be written
as [42]

A
(
s, t = −q2) = 4s

∫
A(s, b) eiq·b d2b . (1.4)

where b denotes the impact parameter in the two-dimensional plane
perpendicular to the direction of motion of the incoming particles. Here
we introduce the (dimensionless) impact parameter amplitude A(s, b).

As is evident from (1.4), the impact parameter amplitude is the
Fourier transform of the scattering amplitude in momentum space. By
analogy with geometrical optics, we can interpret A(s, b) thus as the
density in impact parameter space for the production of outgoing waves.
The Fourier transform may be inverted,

A(s, b) =
1

16π2s

∫
A(s, t) e−iq·b d2q , (1.5)

which clarifies the azimuthal symmetry assumed initially for A(s, b).
In the geometrical model, the total and elastic cross sections are

simple functions of the source density in impact parameter space,

σtot(s) = 4
∫

d2b ImA(s, b) and σel(s) = 4
∫

d2b |A(s, b)|2 . (1.6)

The expression for the total cross section follows directly from the optical
theorem, (1.3). To obtain the elastic cross section in (1.6), however, it was
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assumed that spin effects can be neglected and hence (1.4) is valid also
in non-forward directions.

At small momentum transfers the hadronic elastic scattering cross
section can effectively be parametrized as

dσel(t)
dt

≈
[

dσel

dt

]
t=0

e−Bel|t| , (1.7)

where Bel is called the elastic slope. This quantity is closely connected to
the size of the scattering particles: assuming a constant complex phase
of A

(
s, b2), the slope of the elastic cross section is a simple function of

the impact parameter amplitude [42],

Bel(s, t = 0) =

∫
d2b b2A(s, b2)

2
∫

d2bA(s, b2)
. (1.8)

The elastic slope is thus proportional to the squared impact parameter
weighted by A(s, b),

Bel(s, t = 0) =
1
2

〈
b2
〉

. (1.9)

In a recent measurement of the elastic cross section in proton-proton
collisions at 8 TeV, a slope of (19.9± 0.3) GeV−2 was found [43]. In fact,
this value corresponds to 〈b2〉1/2 ≈ 1.2 fm, which is of the order of the
proton charge radius, 0.9 fm [44].

1.3 Regge poles

Regge theory was originally formulated in the framework of nonrelati-
vistic potential scattering [45] and later extended to higher energies [46].
It describes the asymptotic behaviour of two-body scattering amplitudes
in the Regge limit, where s� |t|.

The scattering amplitude for a process a + b→ c + d can be expanded
in partial waves,

A(s, t) =
∞

∑
`=0

(2`+ 1) a`(t) P`(1 + 2s/t) , (1.10)

where a` are the partial wave amplitudes and P` are the Legendre
polynomials. Equation (1.10) can be obtained from crossing symmetry
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starting with a conventional partial wave expansion of the crossed
process, a + c̄ → b̄ + d. Here the external masses are assumed to be
small compared to the centre-of-mass energy. The index ` denotes the
orbital angular momentum exchanged in the t-channel. Equation (1.10)
can be written as a contour integral in the complex `-plane. For that
purpose two analytic functions, a(τ)(`, t) with τ = ±1, are introduced,
the analytic continuations of the even and odd partial wave amplitudes
to complex values of `. They have to be treated separately to ensure the
continuation to be unique. The parameter τ is called signature.

In the limit s � |t| this contour integral can be expressed in terms
of the residues of a(τ)(`, t) at possible poles located at ` = αn

(τ)(t), the
Regge poles. Provided there are only simple poles, the dominant con-
tribution to the amplitude is due to the rightmost Regge pole in the
complex `-plane, i.e. the one with the highest real part. We denote the lo-
cation, residue and signature of this pole by α(t), β(t) and τ, respectively.
One finds a power-like asymptotic s-dependence of the amplitude,

A(s, t) s→∞−−−→ β(t) η(t)
(

s
s0

)α(t)

, s0 = 1 GeV2, (1.11)

with the signature factor

η(t) = −1 + τ e−iπα(t)

sinπα(t)
. (1.12)

Positive values of t are unphysical in an s-channel process, a + b→
c + d. The amplitude of the respective process crossed to the t-channel,
a + c̄ → b̄ + d, however, should have poles corresponding to physical
particles or resonances. From a particle with mass m and spin j one
expects a pole in the amplitude at α

(
t = m2) = j. The function α(t),

which interpolates the resonances, is called Regge trajectory or reggeon.
Regge trajectories corresponding to mesons with identical quantum
numbers (apart from spin) were found to be linear [47],

α(t) = α(0) + α′t , (1.13)

where α(0) is called the intercept and α′ the slope of the reggeon. It can
be shown that (1.13) holds for negative t as well.

Hence the asymptotic s-channel behaviour (1.11) is due to the ex-
change of families of resonances, collectively denoted as reggeons in the
crossed channel. The residue function β(t) in (1.11) can be factorized
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R

gAR

gBR

A A

B B

Figure 1.1: Diagram representation of the single-reggeon exchange approxima-
tion (1.14) of the elastic amplitude in high-energy AB scattering.

to coupling constants of the reggeon R to the two scattering particles A
and B (Fig. 1.1),

A(s, t) = s0 gAR(t) gBR(t) η(t)
(

s
s0

)α(t)

. (1.14)

1.4 The pomeron

The asymptotic behaviour of the total cross section due to reggeon
exchange,

σR

tot ∝
(

s
s0

)α(0)−1

for s→ ∞ , (1.15)

is easily derived from (1.3) and (1.11). The intercepts α(0) of mesonic
Regge trajectories do not exceed about 0.5, thus resulting in asymp-
totically vanishing total cross sections. In experiments, however, total
cross sections have been seen to rise slowly as centre-of-mass energy
increases. This rise implies the existence of a Regge trajectory with
intercept greater than one. This trajectory, the pomeron, dominates the
scattering amplitude at high energies.

The original Donnachie-Landshoff parametrization [48] describes the
s-dependence of the total proton-proton and proton-antiproton cross sec-
tions by means of a pomeron and an effective reggeon term; the pomeron
intercept takes the value αP(0) = 1.0808. Another, more recent fit [49],
where the leading meson trajectories are treated separately [50], indi-
cates a somewhat higher value, αP ≈ 1.096. Current LHC measurements
at 8 TeV agree well with the latter parametrization [43].

In this work we make use of an important property of the pomeron:
it couples with the same strength to particles and their antiparticles.



10 Chapter 1. Foundations

This equality is due to the pomeron carrying quantum numbers of the
vacuum, for instance even parity and vanishing isospin. Furthermore it
can be shown that the pomeron has even signature, τ = +1. Thus the
signature factor (1.12) at zero momentum transfer is η(0) = i, where
we approximate the pomeron intercept by 1. Hence the single-pomeron
exchange amplitude for proton-proton scattering coincides with the
respective proton-antiproton amplitude. At t = 0 it is purely imaginary
and reads

AP(s, 0) = is0 g2
pP(0)

(
s
s0

)αP(0)

. (1.16)

As the theory of strong interactions, Quantum Chromodynamics is
supposed to explain all aspects of hadron interactions at high energies
where electroweak effects are irrelevant. Particularly, we can expect the
high-energy behaviour of the total hadronic cross section and hence the
pomeron to be subject to QCD.

The Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [51–54] deter-
mines the properties of the pomeron in perturbative Quantum Chromo-
dynamics (pQCD). The BFKL pomeron is constructed of t-channel lad-
ders consisting partly of so-called reggeized gluons [39]. In this connec-
tion, a particle is said to reggeize if its exchange in the t-channel results
in an asymptotic s-dependence as in (1.11) and if the particle itself lies
on the corresponding trajectory α(t).

However, pQCD applies only in a regime where high energy scales
appear and the strong coupling constant vanishes asymptotically. Hence,
elastic scattering at small momentum transfer cannot completely be
understood within this framework. The BFKL approach to the pomeron
is still an active field of research and is reviewed for instance in Ref. [39].
In this work, however, we are not concerned with the field theoretical
description of the pomeron.

1.5 Multi-reggeon amplitudes

The exchange of multiple reggeons in the t-channel is an important
contribution to scattering amplitudes at high energies. Multi-reggeon
exchange results in branch cuts in the complex angular momentum
plane. A general method to evaluate diagrams containing Regge cuts is
the reggeon calculus proposed by Gribov [55]. This method allows to
obtain multi-reggeon diagrams in the Regge limit by means of Feynman
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1 2 . . . n

(a)

1 2 . . . n

(b)

Figure 1.2: Diagrams of n-pomeron exchange amplitudes. (a) Full amplitude.
The blobs represent all possible interactions of n pomerons with the scattering
particles. (b) Elastic-rescattering approximation with on-shell intermediate
states.

diagrams, using

η
(
k2) ( s

s0

)α(k2)

(1.17)

as reggeon propagator [41].
To motivate the eikonal model, a closer look at the n-pomeron ampli-

tude is helpful. Applying reggeon calculus and taking into account only
elastic intermediate states (Fig. 1.2), this amplitude can be written in the
eikonal form [56]

A(n)(s, t) =
in−1

n!
1

(2s)n−1 (2π)
2
∫ d2k1⊥

(2π)2 . . .
∫ d2kn⊥

(2π)2

×A(1)(s, k2
1⊥) . . .A(1)(s, k2

n⊥) δ(2)

(
q⊥ −

n

∑
i=1

ki⊥

)
,

(1.18)

where ki⊥ denote the two-dimensional transverse momenta of the po-
merons. The amplitude for several exchanged pomerons can thus be
expressed in terms of the single-pomeron amplitude. As we will see
below in Sec. 1.7, this relation simplifies further in impact parameter
space.

1.6 AGK cutting rules

The optical theorem (1.3) relates the total cross section to the imaginary
part of the forward scattering amplitude. Assuming the pomeron can be
interpreted as ladders of particles in a more fundamental field theory,
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the imaginary part of a single-pomeron diagram can then be taken as the
unitarity cut through the particle ladders, hence forcing the cut “rungs”
to be on their mass shell. In particular, final-state particles corresponding
to a cut pomeron obey multi-peripheral kinematics [57], i.e. they are
strongly ordered in rapidity.

The Abramovsky-Gribov-Kancheli (AGK) cutting rules [58] allow to
obtain cross sections for final states corresponding to diagrams with
several pomerons. These rules assign weights for asymptotically non-
vanishing contributions to the imaginary part of the amplitude. These
enhanced contributions are due to unitarity cuts passing completely
through k pomerons in an n-pomeron diagram, where 0 ≤ k ≤ n. For
large s, only completely cut pomerons contribute to the total cross sec-
tion. A cut through k pomerons contributes to the cross section σk for
k multi-peripheral particle production subprocesses.

The n-pomeron forward elastic scattering amplitude contributes with
a term Bn

k ImA(n)(s, t = 0) (in the sense of the optical theorem) to σk,
where the AGK factors read [59]

Bn
k =

(−1)k−1 2n−1
(

n
k

)
if 1 ≤ k ≤ n ,

1− 2n−1 if k = 0 .
(1.19)

These factors can be derived by analysing the aforementioned nonvan-
ishing unitarity cuts of the n-pomeron amplitude (1.18), where counting
factors are included in order to account for all possibilities to cut a subset
of all pomerons. The AGK factors (1.19) resolve the partial contribution
of the n-pomeron amplitude to the cross sections for k cut pomerons.
The total absorptive part of the amplitude, however, is retained,

n

∑
k=0

Bn
k = 1 . (1.20)

1.7 Eikonal model

In impact parameter space the n-pomeron amplitude in the elastic-
rescattering approximation (1.18) can be written compactly in terms of
the Born amplitude [56],

A(n)(s, b) =
1
2i

(
− χ(s, b)

)n

n!
, (1.21)

with the eikonal function

χ(s, b) = −2iA(1)(s, b) , (1.22)
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which is real-valued due to (1.16). The absorptive parts of all multi-
pomeron amplitudes with exactly k cut pomerons add up to

∞

∑
n=k

Bn
k ImA(n)(s, b) =

(2χ)k

4k!
exp (−2χ) , (1.23)

where we use the AGK rules (1.19) for k > 0. In (1.23) and throughout
we implicitly understand χ as a function of s and b. Using (1.3) and (1.4)
one obtains finally the cross section for k cut pomerons in the eikonal
model,

σk(s) =
∫

d2b
(2χ)k

k!
exp(−2χ) . (1.24)

The integrand in (1.24) is the Poisson probability for k, given 2χ on
average. Hence we can interpret 2χ(s, b) as the average subprocess mul-
tiplicity density in impact parameter space if we assume uncorrelated
scatters. Adding up all cross sections with at least one cut pomeron, one
finds the inelastic cross section,

σinel(s) =
∞

∑
k=1

σk(s) =
∫

d2b
(

1− e−2χ
)

. (1.25)

The sum of all impact parameter amplitudes with one or more
exchanged pomerons is the total elastic amplitude,

A(s, b) =
i
2
(
1− e−χ

)
. (1.26)

Accordingly, the total cross section (1.6) reads

σtot(s) = 2
∫

d2b
(
1− e−χ

)
. (1.27)

All unitarity cuts passing through no pomeron contribute to the cross
section for elastic scattering,

σel(s) = 4
∫

d2b
∞

∑
n=1

Bn
0 ImA(n)(s, b)

=
∫

d2b
(
1− e−χ

)2 ,
(1.28)

in accordance with (1.6) and (1.26). In the eikonal model the slope of the
elastic cross section (1.8) reads

Bel(s, t = 0) =
1

σtot(s)

∫
d2b b2 (1− e−χ

)
, (1.29)

with the eikonalized total cross section σtot from (1.27).





Chapter 2

Multiple parton interactions

A wide range of soft inclusive observables in high-energy hadron col-
lisions can be described by multiple parton interactions (MPI), as first
studied in Ref. [3]. There is also direct evidence for the production of
multiple uncorrelated scatters in hadron collisions [60]. All major Monte
Carlo event generators—Herwig++ [4], Pythia [5, 6] and Sherpa [7]—
feature MPI models to simulate soft inclusive events and the underlying
event in the presence of a hard process. For a recent review of Monte
Carlo event generators we refer to Ref. [9].

In this chapter we review the physics of the multiple-parton interac-
tion model in Herwig++ [4, 10, 61] and relate it to the eikonal formalism
established in the previous chapter. We discuss the implementation of
soft and hard parton subprocesses with focus on hadronization.

2.1 Multiple hard interactions

The inclusive jet production cross section above a fixed transverse mo-
mentum is calculated within perturbative QCD according to

σinc
H (s, pmin

T ) =
∫

dx1 dx2 dt̂ Θ
(

pT − pmin
T

)
∑

i,j,k,l

1
1 + δkl

×
(

fi|h1

(
x1, µ2) f j|h2

(
x2, µ2)dσ̂ij→kl

dt̂
(
x1x2s, t̂

) )
,

(2.1)

where the sums run over all partons and fp|h denotes the parton distri-
bution function (PDF) of a parton p in a hadron h. Due to high values
of the PDFs at small momentum fractions x, the hadronic cross section
σinc

H rises with the centre-of-mass energy s.
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Figure 2.1: Inclusive jet production cross section above 2 GeV, compared to the
total pp scattering cross section. Taken from Ref. [63].

The inclusive cross section (2.1) exceeds the measured total cross
section at moderate centre-of-mass energies, see Fig. 2.1. This alleged
contradiction is resolved by understanding σinc

H as the jet production
cross section in respect of the luminosity of incoming partons [62]. Multi-
ple parton interactions thus unitarize the jet cross section.

MPI cross sections are calculated within an eikonal model as intro-
duced in Sec. 1.7, thus taking advantage of the phenomenologically
successful description of cross sections in Regge theory. To embed multi-
ple QCD interactions in the eikonal framework, the parton luminosity is
assumed to factorize into an impact parameter-dependent factor and the
usual PDFs. Furthermore, uncorrelated multiple parton interactions are
assumed. With these assumptions the average multiplicity at fixed im-
pact parameter factorizes into the hard inclusive cross section, as defined
in (2.1), and a factor describing the impact parameter dependence [10],

〈n〉(s, b) = A(b) σinc
H (s, pmin

T ) , (2.2)

where the overlap function A(b) must satisfy [62]∫
d2b A(b) = 1 . (2.3)

The overlap function is parametrized in the Herwig++ MPI model as

A(b, µ) =
µ2

96π
(µb)3 K3(µb) , (2.4)

where K3 is the modified Bessel function of the third kind and µ a free
parameter.
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The cross section for jet production due to k uncorrelated interactions
is the Poisson probability for k interactions with an average multiplicity
given by (2.2), integrated over all impact parameter space,

σk(s) =
∫

d2b
(A σinc

H )k

k!
exp(A σinc

H ) . (2.5)

This expression coincides with its equivalent in the eikonal formalism,
(1.24), if the eikonal function is identified as

χH(s, b) =
1
2

A(b, µ) σinc
H (s, pmin

T ) . (2.6)

The bare hard MPI model has therefore two main parameters directly
impacting the MPI multiplicity (2.2), pmin

T and µ.
Multiple hard subprocesses, which correspond to cut pomerons in the

eikonal formalism, are implemented as independent dijet processes with
transverse momentum greater than pmin

T . To that end, parton scatters
are generated according to QCD matrix elements and parton showers
are generated.

2.2 Soft interactions

The hard MPI model allows a good description [10] of the underlying
event in pp events where the leading jet has a transverse momentum
greater than 20 GeV [64]. This model, however, cannot describe low-pT

jet production. The extension of the hard model to a soft inclusive model
introduces multiple independent soft scatters with pT < pmin

T [8, 61].
As proposed in Ref. [65], the eikonal function is then taken as the

sum of the hard eikonal function (2.6) and a soft eikonal function,

χ(s, b) = χH(s, b) + χS(s, b)

=
1
2

[
A(b, µ) σinc

H (s, pmin
T ) + A(b, µS) σinc

S

]
,

(2.7)

where (2.5) is generalized to the cross section for j soft and k hard
uncorrelated interactions,

σjk(s) =
∫

d2b
(2χS)j

j!
(2χH)k

k!
exp[−2 (χS + χH)] . (2.8)

The soft cross section, σinc
S , is assumed to be a bare nonperturbative

cross section and hence not calculable in perturbation theory. Instead,
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σinc
S and the other new parameter, µS, are determined in a fit to experi-

mental data: the eikonal approximations of the total cross section (1.27)
and the elastic slope (1.29), obtained with the total eikonal function (2.7),
are required to be compatible with experimental data [61]. This fit is
performed in the beginning of each run once the hard eikonal function
is determined by the model parameters µ, pmin

T and the PDF choice.
For the Monte Carlo implementation of soft interactions, matrix

element calculations cannot be used since perturbative QCD does not
apply in the soft regime. Instead, generic gluon-gluon interactions with
pT < pmin

T are generated. The differential pT distribution of the soft cross
section is chosen in such a way as to match the perturbative distribution
dσinc

H / dp2
T at pT = pmin

T [8].

2.3 Monte-Carlo implementation

2.3.1 Large-NC limit

Quantum Chromodynamics is an SU(3) gauge theory. Some parts of the
event generation, however, simplify if formulated in an SU(NC) gauge
group, where NC is considered large [9]. In this limit, the dominant part
of the full colour index structure of QCD diagrams in the perturbation
expansion in 1/NC can be represented in planar form using colour
lines [66]. Most notably this implies that the adjoint colour of the gluon
is compound of a fundamental and an antifundamental colour.

There are implementations of final-state parton showers based on
full SU(3) colour correlations [67]. The corrections due to subleading
contributions, however, were found to be small in event shapes and jet
shape observables at LEP.

2.3.2 Cluster hadronization

The evolution of jets in perturbative interactions via parton showers
results in a preconfined stage, where the invariant mass of pairs of
partons connected by colour lines in the large-NC limit is low [34]. The
cluster hadronization model [1], which is with some variations also used
in Herwig++ [4], acts on events at the preconfined stage.

The transition from parton jets to hadron jets is performed in several
steps. First, gluons are split up nonperturbatively into light qq pairs.
The splitting happens isotropically in the gluon rest frame, where the
partons are taken as nonperturbative objects with constituent mass [9].
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After the gluon splitting, any particle has exactly one colour partner in
the large-NC approximation. These colour-connected particle pairs are
called (primary) clusters.

The universality of the cluster hadronization model becomes ap-
parent in the invariant-mass distribution of primary clusters. In e+e−

annihilation at different centre-of-mass energies this distribution is inde-
pendent of the hard energy scale [1, 68]. With model parameters tuned to
LEP data, the primary-cluster mass distribution in e+e− runs is strongly
populated at values close to the parton shower cutoff, O(1 GeV). These
clusters are decayed into hadrons, where flavours and other quantum
numbers are selected according to well-motivated models. Clusters too
light to decay into two hadrons are converted in single hadrons. Heavy
clusters with masses more than a few GeV are not decayed into hadrons
directly since that would result in unreasonably highly boosted particles.
Instead, these clusters are fissioned into lighter ones, which in turn are
either fissioned further or decayed to hadrons.

2.3.3 Hadronization in hadron collisions

The colour structure in hadron collisions is more complicated. Parton
interactions with high momentum transfer are governed by perturbative
QCD, where colour preconfinement can be assumed to be valid. How-
ever, hadrons are compound of colour-charged constituents, which may
contribute to particle production also at nonperturbative energy scales.

The diagram in Fig. 2.2 shows the colour topology in an exemplary
event with multiple hard subprocesses. At short length scales, these
subprocesses are assumed to be uncorrelated. As indicated, the imple-
mentation makes use of colour lines also in the nonperturbative phase
prior to initial-state parton showers. These colour lines entail clusters
that connect different parton subprocesses, giving rise to joint particle
production by multiple parton interactions. Furthermore, the beam
remnants are colour-charged as well and hence subject to hadronization.

The MPI model allows for two possibilities to create colour connec-
tions in soft subprocesses: soft scatters can either be disrupted from the
rest of the event (as far as formation of clusters is concerned) or they are
colour-connected to the hadron remnants. The model parameter pdisrupt
steers the probability for disruption of colour lines in soft scatters. The
example diagram in Fig. 2.3 shows disrupted colour lines between the
beam remnants and the emitted gluons.
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Figure 2.2: Colour structure in a hadron collision with multiple hard interac-
tions. Taken from Ref. [10].
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Figure 2.3: Colour structure in soft scatters. Taken from Ref. [4].



Chapter 3

Colour reconnections

This chapter covers the first part of the present work, the implementation
and analysis of colour reconnections in the event generator Herwig++.
We start with a discussion of the limitations of the bare MPI model and
motivate the need for colour reconnections from a phenomenological
point of view. Then we describe the implementation details of two colour
reconnection models that have been developed in this thesis. Here we
focus also on a theoretical motivation for the model ideas. Furthermore,
we discuss the effects of colour reconnections on observables at parton
level and continue with the validation of the models against LEP data.
In comparisons to minimum-bias and underlying-event data from the
Tevatron and the LHC, we finally show that colour reconnections im-
prove the nondiffractive soft inclusive and underlying-event models in
Herwig++.

Parts of the work described in this chapter are published in Eur.Phys.J.
C72 (2012), p. 2225 [69] and in a number of proceedings, [70–74].

3.1 Limitations of the bare MPI model

The bare multiple-parton interaction model was validated in Ref. [63]
against underlying-event data from the Tevatron from Ref. [64]. The
considered observables were

• the average charged-particle multiplicity and

• the average scalar pT sum of charged particles,

both as function of the transverse momentum of the leading charged-
particle jet, plead

T . To increase the sensitivity to the underlying event,
these observables were measured in kinematic regions that are defined

21
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by the azimuthal angle relative to the leading jet [64]. After tuning of
the model parameters, good agreement with the data was found: the
MPI model describes the aforementioned observables in all kinematic
regions, also in events with only rather soft jets, plead

T < 20 GeV [63].
The bare MPI model, however, is incompatible (Fig. 3.1) with early

minimum-bias data at
√

s = 900 GeV from ATLAS, published in Ref. [11].
This measurement includes observables the MPI model has not been
tested with before, e.g. the pseudorapidity distribution of charged par-
ticles. Using the default tune of the MPI model in Herwig++ 2.4.2,
i.e. the Tevatron tune mentioned above, we see a notable dependence
on the parameter pdisrupt. This parameter steers the choice of colour
connections in soft parton scatters (see Sec. 2.3.3). Particularly the pseu-
dorapidity distribution of charged particles is sensitive to soft colour
connections. With the default value, pdisrupt = 1, the colour lines in
soft scatters are disrupted from the rest of the event. This disruption
leads to a depletion of particle production at central rapidities, |η| < 1.5,
which is in contrast do ATLAS data (Fig. 3.1(a)). All settings, however,
give a good description of underlying-event data from the Tevatron.
Also a dedicated tuning of the MPI model parameters does not improve
the description of minimum-bias data from the LHC [70, 76, 77]. This
dependence on the soft colour disruption hints at the importance of
colour correlations in a more complete model.

3.2 Implementation

As discussed in Sec. 2.3.3, the multiple-parton interaction model intro-
duces colour lines that connect parton subprocesses to each other and
to the hadron remnants. As a result, clusters emerge that link different
parts of the hadron collision. Since preconfinement applies only to per-
turbative jet production, these clusters cannot be expected to feature the
same invariant-mass distribution as clusters in dijet production in e+e−.

The colour reconnection models studied in this work intervene into
the event generation at the stage immediately before hadrons are gener-
ated from clusters. The models provide the possibility to create clusters
in a way that does not strictly follow the actual colour topology: the ends
of colour lines can be reconnected, hence resulting in a different cluster
configuration (Fig. 3.2). Motivated by the successful role of preconfine-
ment in e+e− collisions, we designed the colour reconnection procedure
to create clusters with invariant masses lower than the masses of the
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Figure 3.1: Comparison of Herwig++ 2.4.2 to ATLAS minimum-bias distribu-
tions at

√
s = 0.9 TeV with Nch ≥ 2, pT > 500 MeV and |η| < 2.5 from Ref. [11].

The Herwig++ results are obtained with a Tevatron tune of the MPI model
(see text). The results differ in the parameter pdisrupt, the probability for colour
disruption of soft scatters. (a) Charged-particle pseudorapidity distribution.
(b) Charged-particle transverse momentum distribution. (c) Charged-particle
multiplicity distribution. (d) Average transverse momentum of charged parti-
cles as a function of the number of charged particles, Nch.

Rivet [75] analysis ID: ATLAS_2010_S8591806
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A

B

C

D

Figure 3.2: Formation of clusters from partons. Colour lines are dashed. The
left diagram shows colour-singlet clusters formed according to the dominating
colour structure in the 1/NC expansion. The right diagram shows a possible
colour-reconnected state: the partons of the clusters A and B are combined in
new clusters, C and D.

original clusters. The colour reconnection models studied in this thesis
differ only in the algorithm to find alternative cluster configurations.

In the description of the colour reconnection algorithms and the
subsequent discussion we often encounter the sum of the invariant
masses of all clusters,

λ =
Ncl

∑
i=1

m2
i , (3.1)

where Ncl denotes the number of clusters in the event. We refer to this
quantity as colour length in this work.

3.2.1 Plain colour reconnection model

The first model studied in this thesis uses a simple procedure to select
the clusters that are to be reconnected. We refer to it as the plain colour
reconnection model (PCR) in this thesis. An implementation of the PCR
model is publicly available in Herwig++ as of version 2.5 [78]. The
PCR model applies the following algorithm to each event at the stage at
which clusters have just been created:

0. Create a randomly ordered list of all colour triplets (quarks and
anti-diquarks) in the event.1 Perform the remaining steps once for
every particle in this list.

1. The current quark is part of a cluster. Label this cluster A.
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2. Consider a colour reconnection with all other clusters that exist
at that stage. Label the possible reconnection partner B. For
the possible new clusters C and D, which would emerge from a
reconnection of A and B (cf. Fig. 3.2), the following conditions
must be fulfilled:

• The new clusters are lighter,

mC + mD < mA + mB , (3.2)

where mk denotes the invariant mass of cluster k.

• C and D are no colour octets, i.e. do not consist of qq pairs
produced in gluon splittings.

3. If at least one reconnection possibility was found in step 2, select
the one that results in the lowest sum of cluster masses, mC + mD.
Accept this colour reconnection with probability preco. If accepted,
replace the clusters A and B by the new clusters C and D.

The parameter preco steers the strength of colour reconnection and is
the only parameter in the PCR model. The iteration in the zeroth step
is performed over quarks instead of clusters since the list of clusters
changes if a reconnection is accepted in the third step. Because of the
selection rule in step 3, the PCR model tends to replace the heaviest
clusters by lighter ones.

The algorithm described above is, however, non-deterministic: a dif-
ferent order of the quarks in step 0 leads to different reconnection pos-
sibilities being tested. Furthermore, quarks and antiquarks are treated
differently in this algorithm because of the iteration over colour triplets
in the step 0.

3.2.2 Statistical colour reconnection model

The simple iteration over all colour triplets in the PCR model might
bias the selection of cluster pairs for colour reconnection in one way or
another. In order to understand whether Monte Carlo results depend
on the actual algorithm according to which cluster pairs are selected,
we study another model in this thesis. We construct this alternative

1For simplicity, we use the terms quark and antiquark here to refer to colour-charged
particles (quarks and anti-diquarks, e.g. antiproton remnants [4]) and anticolour-
charged particles (antiquarks and diquarks).
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colour reconnection model in such a way that it overcomes the afore-
mentioned conceptual shortcomings of the PCR model. We refer to
this model as statistical colour reconnection (SCR) throughout this work.
An implementation of the SCR model is available in Herwig++ as of
version 2.6 [79].

This algorithm is designed to find a cluster configuration with a
preferably low colour length λ, defined in (3.1). In general, it is clearly
impossible to locate the global minimum of λ: an event with 100 parton
pairs, for instance, implies about 100! ≈ 10158 possible cluster configura-
tions to be tested. Hence we use the simulated-annealing algorithm [80]
to solve this minimization problem approximately. The SCR model is an
application of this algorithm with the colour length λ as the objective
function to be minimized.

The SCR algorithm selects random pairs of clusters and suggests
them for colour reconnection. Like in the PCR model, clusters consisting
of splitting products of a colour-octet state are vetoed. A reconnection
step that reduces λ is always accepted. If a reconnection step, however,
would raise the colour length, this step is accepted with the probability

exp
(
−λ2 − λ1

T

)
, (3.3)

where λ1 and λ2 denote the colour lengths before and after the reconnec-
tion, respectively. These λ-increasing steps allow the system to escape
local minima in the colour length. The “temperature” T, which has the
dimension of a mass squared, is a control parameter of the annealing
algorithm. It is gradually reduced during the optimization procedure.
At high temperatures, T ≥ O(λ2 − λ1), the algorithm is likely to accept
steps that raise λ. Low temperatures, on the other hand, imply a small
probability for colour length-increasing reconnection steps.

The annealing schedule determines the transition from high to low
temperatures. The starting temperature is determined from the typical
change in the colour length, ∆λ = λ2 − λ1. To this end, a few random
dry-run colour reconnection steps S are performed, all starting with the
default cluster configuration. The initial temperature is then set to

Tinit ≡ t0 ·median
i∈ S

{|∆λ|i} , (3.4)

where t0 is a dimensionless free parameter of the model. Using the
median instead of the mean value makes this definition less prone to
outliers.
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The algorithm proceeds in steps at fixed temperature. The annealing
schedule was designed to flexibly adapt to the number of clusters Ncl in
an event: The temperature T is held constant for fisotherm · Ncl reconnec-
tion attempts, where fisotherm is another free parameter. At the end of
each temperature step, T is decreased to fanneal · T, where fanneal ∈ (0, 1)
is another free model parameter. The algorithm stops as soon as no
successful colour reconnections happen in a temperature step, but at
most Nsteps temperature steps are processed.

In total, the SCR model has four parameters, all related to the anneal-
ing schedule: t0, fisotherm, fanneal and Nsteps.

3.3 Results at parton level

The colour reconnection models described above affect the creation of
clusters from partons. Hence the models can be expected to modify the
kinematics of clusters. In this section we study observables at parton
level (more precisely, the level at that the partons are combined in
clusters) that allow to understand colour reconnection from an event
generator-internal point of view.

The results in this section were obtained with realistic values for the
model parameters: the parameters were determined in tunes to LHC
data. The tuning procedure is described below in Sec. 3.5.

3.3.1 Colour length

To quantify the effect of colour reconnection at parton level, we define
the colour length drop

∆if = 1− λfinal

λinit
, (3.5)

where λinit and λfinal denote the colour length (3.1) in an event before and
after colour reconnection, respectively. The quantity ∆if approximately
vanishes in events with no or only minor changes in the colour length
due to colour reconnection, where λinit ≈ λfinal. The other extreme,
∆if ≈ 1, indicates a notable drop in the sum of squared cluster masses λ.

The distribution of ∆if in soft inclusive LHC events is strongly peaked
around the values 0 and 1 for both the plain and the statistical colour
reconnection models (Fig. 3.3(a)). Only a small fraction of events pop-
ulate the range between the peaks, 0.1 < ∆if < 0.9. Hence we find
two important classes of soft inclusive events. The first class consists
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Figure 3.3: Colour length drop distributions in pp collisions at
√

s = 7 TeV.
(a) Distribution in soft inclusive LHC events. One histogram for each colour
reconnection model is shown. (b) Distribution in LHC dijet events with trans-
verse momentum greater than 20, 100 and 500 GeV. The SCR model is used for
this plot.
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show the distribution in dijet events and in events with fully hadronically
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of events where there is no notable change in the colour length due
to colour reconnections. In another large fraction of events, however,
colour reconnections reduce the colour length λ extremely. An obvious
interpretation for this drop is that the colour reconnection procedure
replaces disproportionally heavy clusters by way lighter ones.

There is also a small fraction of events with negative ∆if, though.
In these events the colour length is low after colour reconnection, as
is apparent from (3.5). In the SCR algorithm, this can happen since λ-
raising steps are explicitly allowed with probability (3.3). However, also
the PCR algorithm can occasionally raise λ: in general, the condition (3.2)
does not imply the sum of squared cluster masses to be higher after
colour reconnection. As the fraction of events with negative ∆if is small,
however, we ignore this artefact.

Figure 3.3(b) shows the colour length drop distribution in hard dijet
events in pp collisions. Independent of the jet pT cut, large colour length
drops, ∆if ≈ 1, are more frequent in hard events than in soft inclusive
ones. However, the peak at ∆if ≈ 1 decreases with increasing cut on the
jet pT. The reason for this decrease is that higher momentum fractions
are required for the hard dijet subprocess, whereas in soft events the
remaining momentum fraction of the proton remnants is higher. Clusters
containing a proton remnant are thus less massive in hard events and
therefore less likely to be subject to colour reconnections.

The distribution of the colour length drop in e+e− annihilation events
looks different (Fig. 3.4). We find that the colour reconnection procedure
has little impact on the colour length in the bulk of dijet events. These re-
sults confirm that the parton shower ends in most cases at a preconfined
stage, at which colour singlets form light clusters. In hadronic WW pair
production, however, hadrons emerge from two separate colour singlets.
If the two parton jet pairs overlap in phase space, the production of
hadrons is expected to be sensitive to colour reconnections. We address
this question below in Sec. 3.4. Here we want to remark that the fraction
of WW events with nonvanishing colour length drop is slightly higher
than for the dijet case (Fig. 3.4). Nevertheless, also the majority of WW
events is not affected by colour reconnection.
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Figure 3.5: Invariant mass of primary clusters in soft inclusive LHC events at
7 TeV. The histograms are normalized to unity, where also invisible bins are
taken into account. The histograms in the right plot are binned logarithmically.
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Figure 3.6: Distributions of clusters in soft inclusive LHC events at 7 TeV.
(a) Invariant mass distribution of the heaviest cluster. (b) Transverse momentum
distribution of all clusters.
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Figure 3.7: Distribution of clusters in dijet production in e+e− collisions at
189 GeV. (a) Invariant-mass distribution. (b) Transverse-momentum distribu-
tion.

3.3.2 Differential distributions

The distribution of the invariant mass of clusters in soft inclusive LHC
events is significantly changed by colour reconnection (Figure 3.5). As
can be expected from the construction of the models, colour reconnec-
tions lead to an enhancement in the low-mass region, whereas higher
masses are suppressed. We also see that the cluster mass distribution
ranges to values of the order of the collider energy,

√
s = 7 TeV in the

given example. However, the relative fraction of clusters in that mass
region is small.

The invariant mass of only the heaviest cluster in the event is dis-
tributed as shown in Fig. 3.6(a). The distribution without reconnections
is strongly populated at O(10 GeV) and ranges to the TeV region. Colour
reconnection further enhances the region where the maximum cluster
mass is O(10 GeV).

The transverse momentum of the clusters is shifted to higher values
in the presence of colour reconnection (Fig. 3.6(b)). We can understand
this shift qualitatively: Consider two colour-connected partons with
transverse momenta in opposite directions. The momentum of the re-
sulting cluster is the vector sum of the parton momenta, so the transverse
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components cancel partially. The colour reconnection algorithm tries to
find parton pairs with lower invariant mass. The relative momentum of
these parton pairs thus tends to be low, which implies less cancellation
in the vector sum of the transverse momenta of the partons. Hence,
clusters with higher pT emerge.

The distributions of the invariant mass and transverse momentum
in e+e− collisions, do not change much in the presence of colour re-
connection (Fig. 3.7). Since colour reconnection barely affects the total
colour length (see Sec. 3.3.1), strong effects in these distributions would
even be surprising. From these observations we conclude that colour
reconnection should have also no significant effect in e+e− collisions for
observables at hadron level.

3.3.3 Classification of clusters

These results raise the question which mechanism in hadron event gen-
eration is responsible for heavy clusters. To gain access to this question,
we classify all clusters by their ancestors in the event history (Fig. 3.8).

• The first class are the clusters consisting of partons emitted pertur-
batively in the same partonic subprocess. We refer to these clusters
as hard clusters.

• The second class of clusters interconnect subprocesses. These
clusters consist of partons generated perturbatively in different
partonic subprocesses. We refer to them as interconnecting clusters.

• All remaining clusters contain at least one “nonperturbative con-
stituent”. We refer to these clusters as nonperturbative clusters
in this thesis. In this connection, we mean by “nonperturbative
constituent” either partons produced in soft scatters, or partons
produced in nonperturbative splittings during the extraction of
partons from remnants (for details see Ref. [10]), or the remnants
themselves.

A bin-by-bin breakdown of the contributions of the three cluster
classes to the total cluster mass distribution is shown in Fig. 3.9. We see
that the relative contribution of hard clusters, which originate in single
perturbative parton scatters, is high in the low-mass region. The high-
mass tail, M > O(100 GeV), on the other hand, is clearly dominated by
the contribution of nonperturbative clusters. Hence, colour reconnection
acts predominantly on clusters of nonperturbative origin.
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Figure 3.8: Classification of clusters in hadron collisions. The grey-shaded areas
indicate nonperturbative parts of the event generation. The three indicated
clusters represent the cluster classes that are defined in the text.
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3.3.4 Resulting physics implications

The observed properties of differential distributions at parton level
clearly confirm the physical picture we have started out with. The colour
reconnection model in fact reduces the invariant mass of clusters that
are mostly of nonperturbative origin. These nonperturbative clusters
arise as an artefact of the choice of nonperturbative colour connections
of multiple parton interactions with the rest of the event.

At the nonperturbative level we have no handle on the colour infor-
mation from theory. To account for a physical picture of the evolution of
multiple jets in hadron collisions, we introduce nonperturbative colour
reconnections, where we use colour preconfinement as a guiding princi-
ple.

3.4 Colour reconnections in e+e− collisions

We found in Sec. 3.3 that the colour length in e+e− events remains to a
great extent unchanged by colour reconnections. Furthermore, we found
only minor changes in the invariant-mass and transverse-momentum
distributions of clusters due to colour reconnections. Based on these
results we concluded that only little sensitivity to colour reconnection in
e+e− observables at hadron level is to be expected.

3.4.1 Hadronization tune

Although colour reconnection certainly affects hadronization, we can
expect that the default hadronization parameters are valid also in combi-
nation with colour reconnection. We confirm this expectation by compar-
ing results with and without colour reconnection against a wide range
of experimental data from LEP [81–89]. We find minor effects on event
shape observables (Fig. 3.10(a)). The average multiplicity of charged par-
ticles in LEP runs is affected by colour reconnection (Fig. 3.10(b)). Within
the experimental errors, however, the results with colour reconnection
are also compatible with the experimental data. We conclude that the
description of hadronization-related LEP data in Herwig++ with and
without colour reconnections is of the same quality.
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3.4.2 Hadronic W pair production

Colour reconnections were first studied in the context of W pair pro-
duction in e+e− collisions [23]. In cases where both W bosons decay
hadronically, the production of jets in the two W systems might be
affected by colour reconnection effects. Following the original proposal
from Ref. [90], colour reconnection in e+e− → WW → 4j events was
studied at LEP [30–32]. In these analyses the W bosons are reconstructed
via kinematic cuts on all possible jet pairs in four-jet events. The particle
flow between jets originating from different bosons was expected to be
enhanced in Monte Carlo models including colour reconnection. How-
ever, only moderate sensitivity to the tested colour reconnection models
could be found at that time.

We confirm these results with our implementations. Figure 3.11
shows the sensitivity of the particle flow between the identified jets to
the reconnection strength in the PCR model, compared to DELPHI data
from Ref. [32]. We observe a slight improvement in the description of the
data. A number of apparent outliers in the experimental data, however,
indicate possibly too optimistic systematic errors in the experimental
analysis. For that reason, no clear constraints on the model can be
deduced from the data.

In e+e− annihilation at
√

s = 189 GeV, W bosons are produced on
their mass shell and are significantly boosted. The finite W width can
thus cause the two W bosons to travel back to back over long distances
before decaying. In the limit of a small W width, large colour reconnec-
tion effects between the two W systems should thus be suppressed in
the model. The observed moderate sensitivity of the particle flow to
colour reconnections implies, however, that colour reconnection effects
are small in WW events. Also the largely vanishing colour length drop
in WW events (Fig. 3.4) supports this conclusion. Hence we retain the
described generic reconnection models also for WW events and do not
introduce any extra suppression.
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3.5 Tuning to data from hadron colliders

We found little sensitivity to colour reconnection in the description
of e+e− data. This result allows a factorized tuning procedure: The
final-state parton shower and hadronization parameters are tuned to
e+e− data from LEP. Here, we retain the well-tested default tune from
Ref. [4]. In subsequent tunes of colour reconnection and multiple-parton
interaction parameters we use only hadron collider data.

3.5.1 General tuning procedure

The tuning of the bare MPI model (without colour reconnections) to
underlying-event data from the Tevatron [64] included two tune param-
eters, µ2 and pmin

T [8, 10]. The tuning was performed by subdividing
the parameter space into a grid. The best parameter point was found by
calculating the total χ2 for each parameter point on this grid.

In combination with new parameters from the colour reconnection
models, a larger number N of tune parameters has to be determined. In
the case of the PCR model, we have N = 4 parameters (pdisrupt, preco,
pmin

T and µ2). For the SCR model there are even 7 parameters (pdisrupt,
pmin

T , µ2, fisotherm, t0, fanneal and Nsteps). Therefore a simple parameter
scan as described above is ineffective: for instance, a comprehensive
scan of 7 parameters with 10 divisions in each parameter would require
107 event samples to be generated.

Instead, we use a more efficient parametrization-based method. This
tuning procedure starts with the selection of a range [pmin

i , pmax
i ] for

each of the N tune parameters pi. Event samples are generated for
random points of this N-dimensional hypercube in the parameter space.
To achieve a well converging behaviour in the determination of the final
tune, we adapt the number of sampled parameter points to the number
of input parameters. The observables that construct the input for the
tuning process are obtained from the generated event samples, where
we use the Rivet analysis framework [91].

We achieve the main part of the tuning procedure using the Profes-
sor framework [75]. Professor parametrizes the generator response to
the probed parameter points. In that way it finds the set of parameters
that fits the selected observables best. The user is able to weight the
observables, hence specifying their impact on the tuning process.
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Figure 3.12: Comparison of Herwig++ 2.5 with the mb900-cteq6l1 tune and
Herwig++ 2.4.2 (without colour reconnection, µ2 = 1.0 GeV2, pmin

T = 3.0 GeV)
to diffraction-reduced minimum-bias data from ATLAS [13] at

√
s = 900 GeV.

(a) Charged-particle pseudorapidity distribution for Nch ≥ 6. (b) Transverse
momentum distribution for Nch ≥ 6. (c) Charged-particle multiplicity distri-
bution. (d) Average transverse momentum of charged particles as a function
of Nch.

Rivet [75] analysis ID: ATLAS_2010_S8918562
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3.5.2 Tuning to diffraction-reduced minimum-bias data

We first tune the PCR model to minimum-bias data by ATLAS at
√

s =
900 GeV. As the soft inclusive model in Herwig++ does not include
diffractive final states, we use the diffraction-reduced ATLAS minimum-
bias measurement from Ref. [13]. This data set contains events with at
least six charged particles with pT > 500 MeV and |η| < 2.5. We use four
observables for the tuning with equal weights,

1. the pseudorapidity distribution of the charged particles,

2. the charged-particle multiplicity distribution,

3. the charged-particle transverse momentum distribution and

4. the average transverse momentum measured as a function of the
number of charged particles.

We refer to the resulting tune as mb900-cteq6l1. As the name
indicates, this tune uses the CTEQ6L1 PDF set [92]. The multiple-parton
interaction model depends on the PDFs, e.g. in the calculation of the
hard inclusive cross section (2.1). Hence, we prepare tunes of the MPI
model in combination with several PDF sets. In the tune to minimum-
bias data at 900 GeV we find better results if we use CTEQ6L1 instead of
the default PDFs in Herwig++, MRST LO** [93].

The description of all minimum-bias observables improves in com-
parison to the Tevatron tune (Fig. 3.12). We conclude therefore that
colour reconnections are a necessary component of the multiple-parton
interaction model in Herwig++ in the description of nondiffractive soft
events.

3.5.3 Tuning to underlying-event data

Next we study whether the PCR model can improve the description of
the underlying event. For that purpose we tune the model parameters
to underlying-event data from ATLAS at

√
s = 7 TeV [12].

The observables in this analysis are defined as follows: In each event,
the azimuthal distance φ with respect to the leading track, i.e. the track
with the highest transverse momentum, defines three kinematic regions,

• the “toward” region, where |φ| < π/3,

• the “away” region, where |φ| > 2π/3, and
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• the remaining “transverse” region, where π/3 < |φ| < 2π/3.

The toward and away regions typically contain jets than can be accounted
to the hard parton interaction. In contrast, the region transverse to the
leading object contains little activity from the hard subprocess. Hence,
this region is most sensitive to the underlying event. The observables
for the tune are

1. the average number and

2. the average scalar pT sum

of charged particles per unit of ηφ, as a function of the transverse
momentum of the leading track, plead

T .
We refer to the resulting tune as ue7-2. In comparison to the Her-

wig++ 2.4.2 model without colour reconnections and with a tune to
Tevatron data, the ue7-2 tune achieves an improved description of the
average charged-particle multiplicity in all regions (Fig. 3.13). In general,
we find good agreement with experimental data in all considered ob-
servables for plead

T greater than approximately 3 GeV. Below this value,
the results for the average multiplicity and transverse momentum are
too low. However, since the soft inclusive model in Herwig++ includes
no diffractive final states, we cannot expect a proper description of
arbitrarily soft events.

3.5.4 Energy dependence of underlying-event tunes

The underlying-event tune ue7-2 applies for
√

s = 7 TeV, but is not guar-
anteed to describe the underlying event at other centre-of-mass energies.
It is, however, possible to tune the underlying event at each energy
separately. To enable predictions for other centre-of-mass energies, we
parametrize the energy dependence of the model parameters.

For that purpose, we examine a set of underlying-event observables
at different centre-of-mass energies. All data sets should be obtained
in similar phase-space regions and measured under not too different
trigger conditions. These requirements are met by the two observables
introduced in Sec. 3.5.3, the average charged-particle multiplicity and the
average scalar pT sum, both as a function of the transverse momentum
of the leading object.

We use measurements of these two observables by ATLAS for
√

s =
900 GeV and 7000 GeV from Ref. [12] and by CDF for

√
s = 1800 GeV

from Ref. [64]. The ATLAS analysis uses the hardest track as the leading
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Figure 3.13: Comparison of the ue7-2 tune and Herwig++ 2.4.2 (no colour
reconnection, default Tevatron tune) to underlying-event data from ATLAS [12]
at 7 TeV. (a), (c) and (e): Charged-particle multiplicity per unit of ηφ as a
function of plead

T in the transverse, toward and away regions. (b), (d) and (f):
Scalar pT sum per unit of ηφ as a function of plead

T in the transverse, toward and
away regions. Rivet [75] analysis ID: ATLAS_2010_S8894728
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object. In contrast, in the CDF analysis the hardest jet is taken as the
leading object. We denote the transverse momentum of the leading
object in both cases as plead

T .
First we focus on the PCR model, in which we have four free model

parameters, pdisrupt, preco, pmin
T and µ2. In the first step, we perform

separate tunings for each centre-of-mass energy. The tune results reveal
that the 7 TeV data constrains the parameters more than the data at
900 GeV (Fig. 3.14). In addition, we find that the data prefers different
values of pmin

T for the two centre-of-mass energies. Hence the same set
of parameters cannot describe the data at all energies. The preferred
tune values of the other parameters overlap for both analyses.

This result hints at the possibility to project the complete centre-
of-mass energy dependence of underlying-event tunes onto an energy-
dependent pmin

T parameter. We thus create tunes in which pmin
T varies

with the centre-of-mass energy, whereas all other parameters are fixed
(Tables 3.1 and 3.2). We refer to the resulting “energy extrapolation”
tunes for the MRST LO** and the CTEQ6L1 PDFs as ue-ee-3 and ue-ee-
3-cteq6l1, respectively.

We repeat this tuning procedure for the SCR model. One of the
model parameters, Nsteps, is an integer number. We carry out fifty sep-
arate tunes for different fixed values of Nsteps, starting from 1 to 50.
We identify regions in the parameter space in which predictions using
the parametrized generator response differ significantly from actual
generator results. Since increasing the order of the interpolation polyno-
mials to four does not solve this problem, we exclude the problematic
parameter space regions from the tuning procedure. We refer to the
resulting underlying-event tune for the SCR model (Tables 3.1 and 3.2)
as ue-ee-scr-cteq6l1.

The energy extrapolation tunes agree well with underlying-event
data at

√
s = 900 GeV, 1.8 TeV and 7 TeV (Figs. 3.16–3.18). We therefore

conclude that we can describe the centre-of-mass energy dependence of
the underlying-event model in fact with only an energy dependent pmin

T

parameter.
In the last step, we parametrize the dependence of pmin

T on the centre-
of-mass energy. This parametrization enables underlying-event tunes
for energies other than the three energies explicitly considered in the
tunes. We choose a power law ansatz for the s-dependence of pmin

T ,

pmin
T (s) = pmin

T,0

(√
s

E0

)b

, (3.6)
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Figure 3.14: Distribution of the ue-ee-3-cteq6l1 tuning results for the tune
parameters in the PCR model. The points are the minimization results based on
different subsets of generator runs (black crosses) or on all generator runs (red
circles). The generator response was interpolated with cubic polynomials. For
each parameter, the figures for 900 GeV and 7 TeV share a common horizontal
axis.
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Table 3.1: Tune values and parametrization of pmin
T .

pmin
T / GeV parametrization

√
s / GeV pmin

T,0 / GeV b
900 1800 7000

ue-ee-3 1.55 2.26 2.75 3.11 0.21
ue-ee-3-cteq6l1 1.86 2.55 3.06 2.81 0.24
ue-ee-scr-cteq6l1 1.58 2.14 2.60 2.64 0.21

Table 3.2: Tune values of the energy-independent parameters.

PCR model SCR model

ue-ee-3 ue-ee-3-cteq6l1 ue-ee-scr-cteq6l1

µ2/GeV2 1.11 1.35 1.5
pdisrupt 0.80 0.75 0.8
preco 0.54 0.61
t0 0.01
fanneal 0.21
Nsteps 10
fisotherm 0.66
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Figure 3.15: Parametrization of pmin
T in the ue-ee-3-cteq6l1 tune.

with E0 = 7 TeV. This is the default parametrization of pmin
T in Herwig++

as of release 2.6 [79]. The parametric form of pmin
T (s) is determined in a

fit to the tune values at the three tune energies. We summarize the fit
results also in Table 3.1. The dependence of pmin

T on the centre-of-mass
energy in the ue-ee-3-cteq6l1 is shown in Fig. 3.15.

3.5.5 Minimum-bias data at 7 TeV

ATLAS provides minimum-bias measurements at 7 TeV in Ref. [13].
To reduce the fraction of diffractive events, they provide data from
measurements in a restricted phase space region, where at least six
charged particles in the kinematic range |η| < 2.5 and pT > 500 MeV are
required. ATLAS shows also results from a more inclusive measurement,
which requires only two charged particles with |η| < 2.5 and with
pT > 100 MeV.

In the preparation of the energy extrapolation tunes we used only
underlying-event data. Still we find a reasonable description of the
diffraction-reduced minimum-bias data using the ue-ee-3-cteq6l1 and
ue-ee-3-cteq6l1 tunes (Fig. 3.19). The tunes, however, fail to reproduce
the aforementioned more inclusive data set (Fig. 3.20). We expect better
results with a model that includes diffractive events. The discrepancy in
the average transverse momentum in high-multiplicity events may also
indicate missing physics in the model.
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Figure 3.16: Results of energy extrapolation tunes at different c.m. energies
in the transverse region. The data for 900 GeV and 7 TeV is from ATLAS [12],
the data for 1.8 TeV is from CDF [64]. (a), (c) and (e): Average charged-particle
multiplicity at 900 GeV, 1.8 TeV and 7 TeV. (b), (d) and (f): Average charged-
particle scalar pT sum at the aforementioned energies. The ATLAS observables
are normalized to one unit of ηφ. The η-φ area in the CDF data is ∆η∆φ = 4π/3.

Rivet [75] analysis IDs: ATLAS_2010_S8894728, CDF_2001_S4751469
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Figure 3.17: Observables from Fig. 3.16 in the toward region.
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Figure 3.18: Observables from Fig. 3.16 in the away region.
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3.6 Conclusions

We have introduced two models for nonperturbative colour reconnec-
tions in Herwig++. The models are of slightly different computational
complexity but give very similar results. The tuning results have shown
that the SCR is preferred to have parameters that force a quick “cooling”
of the system and therefore results in a very similar model evolution
as in the simpler PCR model. We therefore consider the PCR model as
a special case of the SCR model for quick cooling and keep the SCR
model as the more flexible one for future versions of Herwig++. As a
consequence, we understand that the data demands a final state that
does not obey a perfectly minimized colour length. We interpret this
as a model limitation. Colour lines approximate the colour structure
only up to leading order in the large-NC limit. Furthermore, the mecha-
nism addresses the nonperturbative regime. In this regime, the picture
of the colour triplet charges is already a model by itself and possibly
completely washed out.

We have studied the mechanism of colour reconnection at the level
where clusters are formed from partons. We found that in fact the
nonperturbative parts of the simulation demand the colour reconnection
mechanism to repair the lack of information on the colour flow. The
intuitive picture we have based our model on could be verified. Colour
preconfinement is meaningful in the context of the cluster hadronization
model. The implications of preconfinement, however, have to be rectified
when a model of multiple parton interactions is applied without further
information on the colour structure between the multiple scatters.

Furthermore, we have shown that the MPI model with colour recon-
nection can properly describe nondiffractive minimum-bias data from
ATLAS. Moreover, we could show that the model is in good agreement
with underlying-event data from CDF at the Tevatron and ATLAS at the
LHC. Finally, we have unified the underlying-event tunes at Tevatron
and LHC energies into a simple parametrization of a single model pa-
rameter in the centre-of-mass energy. This parametrization allows to
estimate the underlying-event activity at future LHC energies.



50 Chapter 3. Colour reconnections

b
b b b

b b b
b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b
b

ATLAS datab

UE-EE-3-CTEQ6L1
UE-EE-SCR-CTEQ6L1

0

0.5

1

1.5

2

2.5

3

3.5

4
1/

N
ev

d
N

ch
/

d
η

-2 -1 0 1 2
0.6
0.8

1
1.2
1.4

η

M
C

/D
at

a

(a)

b b b b b b b b b b b b b b b b b b b b b b b b b b b
b

b

b

b

b

b

b

10−6

10−5

10−4

10−3

10−2

10−1

1/
σ

d
σ

/
d

N
ch

20 40 60 80 100 120
0.40.60.81
1.21.41.6

Nch
M

C
/D

at
a

(b)

b b b b b b b b b b b b b b b b b b b b b b b b
b
b
b
b
b
b
b
b

b

b

b

b

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

1/
(N

ev
2π

∆
η

p ⊥
)

d
N

ch
/

d
p ⊥

| ∆
η
=

5
[G

eV
−

2 ]

1 10 1
0.4
0.6
0.8

1
1.2
1.4

p⊥ [GeV]

M
C

/D
at

a

(c)

b b
b b
b b
b b b
b b b b
b b b b b
b b b b b b

b b b b b b b
b b

b b b b b
b

0

0.2

0.4

0.6

0.8

1

1.2

〈p
⊥
〉

[G
eV

]

20 40 60 80 100 120
0.6
0.8

1
1.2
1.4

Nch

M
C

/D
at

a

(d)

Figure 3.19: Comparison of energy extrapolation tunes to minimum-bias
data by ATLAS from Ref. [13], where

√
s = 7 TeV and track pT > 500 MeV.

(a) Charged-particle pseudorapidity for Nch ≥ 6. (b) Charged-particle multi-
plicity. (c) Charged-particle transverse momentum for Nch ≥ 6. (d) Average
charged-particle transverse momentum.

Rivet [75] analysis ID: ATLAS_2010_S8918562
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Figure 3.20: Comparison of energy extrapolation tunes to minimum-bias data
by ATLAS from Ref. [13], where

√
s = 7 TeV and track pT > 100 MeV. (a) Aver-

age charged-particle transverse momentum. (b) Charged-particle multiplicity.
Rivet [75] analysis ID: ATLAS_2010_S8918562





Chapter 4

Diffractive cross sections in the
eikonal model

The second part of this thesis covers the implementation and analysis of
a model for diffractive cross sections in the event generator Herwig++.
We start with a detailed description of the formalism that is used for
the calculation of hadronic cross sections. We are able to connect many
parts of the model to the underlying formalism of the multiple-parton
interactions model in Herwig++. Finally, we report on the determination
of the model parameters in a fit to collider and cosmic-ray data.

4.1 Two-channel eikonal model

The eikonal model for multiple-parton interactions from Sec. 1.7 is based
on the elastic-rescattering approximation of the elastic multi-pomeron
amplitude (1.18). Physical quantities like the elastic (1.28), inelastic (1.25)
and total cross sections (1.27) are expressed in the eikonal model in
terms of the eikonal function

χ(s, b) = −2iA(1)(s, b) , (1.22 revisited)

where A(1)(s, b) denotes the elastic single-pomeron amplitude. We dis-
cussed in Chapter 2 how the standard eikonal model is used in Her-
wig++ as a model for multiple hard and soft interactions, where the
eikonal function is separated into a soft and a hard part,

χ(s, b) = χS(s, b) + χH(s, b) . (2.7 revisited)

In order to include low-mass diffraction in the existing eikonal frame-
work for multiple soft and hard parton interactions in Herwig++, we

53
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p p∗ p∗ p p

p p p∗ p p

Figure 4.1: Sample diagram with resonances p∗ in the intermediate state.

introduce a two-channel eikonal model [36, 37, 56]. This model distin-
guishes two states of the scattering protons:1 A ground state |p〉 and
a diffractive resonance |p∗〉, which approximates diffractive inelastic
states [56]. The process pp → pp∗ corresponds, for instance, to low-
mass single diffraction dissociation of one of the protons. Diffractive
resonances also occur in intermediate states in diagrams with several
pomerons (Fig. 4.1).

4.1.1 Matrix formalism

All contributions for the calculation of amplitudes and cross sections in
the two-channel eikonal model can conveniently be taken into account
using the matrix formalism from Ref. [56]. Therefore, we introduce a
matrix of eikonal functions with respect to all possible combinations of
external states |p〉 and |p∗〉 of two protons. This matrix is defined as

〈ij|χ̂(s, b)|kl〉 ≡ χij→kl(s, b) ≡ −2iA(1)
ij→kl(s, b) , (4.1)

where i, j, k, l ∈ {p, p∗} and A(1)
ij→kl(s, b) denotes the ij → kl amplitude

with one pomeron in the t-channel. We refer to χ̂(s, b) as the eikonal
matrix. For clarity, matrices are indicated with the symbol ˆ in this
discussion.

For the elastic eikonal function, χpp→pp(s, b), we retain the Herwig++
parametrization (2.7) and denote it shortly as χ(s, b). We parametrize the
eikonal functions χij→kl(s, b) for general i, j, k and l in terms of χ(s, b):
following Ref. [36], we define the real-valued enhancement factor λ as
the coupling of the pomeron P to a proton p and a resonance p∗ in units
of the ppP coupling,

gpp∗P = gp∗pP = λ gppP . (4.2)

1For simplicity, we restrict the discussion to pp scattering. The results, however,
apply to pp as well.
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The enhancement factor λ is a free parameter of the two-channel model.
For simplicity, we assume gp∗p∗P = gppP, similar to Refs. [36, 94].
A model without this simplification is described in Ref. [95]. The
parametrization (4.2) results, for example, in

χpp→pp∗(s, b) = λ χ(s, b) . (4.3)

The complete eikonal matrix (4.1) reads

χ̂(s, b) =


1 λ λ λ2

λ 1 λ2 λ
λ λ2 1 λ
λ2 λ λ 1

 χ(s, b) , (4.4)

where the rows and columns of the matrix correspond to the basis

|pp〉 =


1
0
0
0

, |p∗p〉 =


0
1
0
0

, |pp∗〉 =


0
0
1
0

 and |p∗p∗〉 =


0
0
0
1

 . (4.5)

The n-pomeron amplitude (1.21) is generalized in the two-channel
eikonal model to

Â(n)(s, b) =
1
2i

(
− χ̂(s, b)

)n

n!
. (4.6)

This expression adds up all possible intermediate states. For instance,
the two-pomeron contribution to the elastic amplitude is〈

pp
∣∣Â(2)(s, b)

∣∣pp
〉
=
〈

pp
∣∣∣ 1
2i

(
− χ̂(s, b)

)2

2!

∣∣∣pp
〉

=
(

1 + 2λ2 + λ4
) 1

2i

(
− χ(s, b)

)2

2!
=
(

1 + 2λ2 + λ4
)
A(2)(s, b) ,

(4.7)

taking into account (1.21) and (4.4). The last line coincides in fact with
the sum of all possible pp→ pp diagrams with two pomerons (Fig. 4.2).

Analogous to the elastic amplitude in the “single-channel” eikonal
model, (1.26), we obtain the amplitudes for elastic and low-mass diffrac-
tive scattering by adding up all n-pomeron amplitude matrices (4.6),
which results in

Â(s, b) =
i
2

(
1− e−χ̂(s,b)

)
. (4.8)

The elastic amplitude is the pp→ pp component,

Ael(s, b) =
〈

pp
∣∣∣ i

2

(
1− e−χ̂(s,b)

) ∣∣∣pp
〉

. (4.9)
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Figure 4.2: All two-pomeron diagrams contributing to the elastic scattering
amplitude in the two-channel eikonal model.

4.1.2 Cross sections in the two-channel eikonal model

With the elastic amplitude (4.9), the total cross section (1.6) reads

σtot(s) = 2
∫

d2b
〈
pp
∣∣1− e−χ̂(s,b)∣∣pp

〉
(4.10)

The cross section for nondiffractive exclusive production of j soft and
k hard interactions (2.8) is in the two-channel eikonal model

σjk(s) =
∫

d2b
〈

pp
∣∣∣ (2χ̂S)j

j!
(2χ̂H)k

k!
exp[−2 (χ̂S + χ̂H)]

∣∣∣pp
〉

, (4.11)

where χ̂S and χ̂H are the eikonal matrices (4.4) with the soft and hard
amplitudes separated (χ̂ = χ̂S + χ̂H). The nondiffractive inelastic cross
section (1.25), i.e. the sum of all nondiffractive exclusive cross sections σjk
with j + k ≥ 1, is

σnd
inel(s) =

∫
d2b

〈
pp
∣∣∣1− e−2χ̂(b,s)

∣∣∣pp
〉

. (4.12)

Finally, the cross sections for elastic scattering and, analogously, for
resonance production, i.e. low-mass diffraction, are obtained from (1.6),

σel(s) =
∫

d2b
∣∣∣〈pp

∣∣1− e−χ̂(s,b)∣∣pp
〉∣∣∣2 , (4.13)

σlm
sd,a(s) =

∫
d2b

∣∣∣〈p∗p∣∣1− e−χ̂(s,b)∣∣pp
〉∣∣∣2 , (4.14)

σlm
sd,b(s) =

∫
d2b

∣∣∣〈pp∗
∣∣1− e−χ̂(s,b)∣∣pp

〉∣∣∣2 , (4.15)

σlm
dd(s) =

∫
d2b

∣∣∣〈p∗p∗∣∣1− e−χ̂(s,b)∣∣pp
〉∣∣∣2 . (4.16)
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4.1.3 Eikonal matrix diagonalization

The cross sections (4.10)–(4.16) can be evaluated by diagonalizing the
eikonal matrix [36]. For the total cross sections one finds, for instance,

σtot(s) =
1
2

∫
d2b

4

∑
α=1

(
1− e−χ(α)(s,b)

)
, (4.17)

where χ(α)(s, b) are the eigenvalues of the eikonal matrix (4.4),

χ(1)(s, b) = (1− λ)2 χ(s, b) ,

χ(2)(s, b) = (1 + λ)2 χ(s, b) ,

χ(3)(s, b) = χ(4)(s, b) = (1− λ2) χ(s, b) .

(4.18)

We elaborate on the diagonalization of eikonal matrices in Appendix A.
The results for the cross sections (4.11)–(4.16) are summarized in Ap-
pendix B.1.

4.2 Impact parameter amplitudes

For the construction of the soft and hard eikonal functions we retain the
overlap function A(b, µ) from the MPI model, which is defined in (2.4).
The hard eikonal function is hence

χH(s, b) =
1
2

A(b, µH) σinc
H (s, pmin

T ) , (2.6 revisited)

with σinc
H calculated within perturbative QCD according to (2.1). We

keep µH as a free parameter, which specifies the width of the hard-
pomeron amplitude in impact parameter space.

The soft eikonal function is constructed analogously,

χS(s, b) =
1
2

A(b, µS) σinc
S (s) . (4.19)

As discussed in Sec. 2.2, the MPI model determines µS and σinc
S (s) in a

fit of the total cross section (1.27) and the elastic slope (1.29) with χ =
χS + χH to experimental data. Instead, we fix the s-dependence of the
soft cross section according to the single-pomeron amplitude (1.16) in
Regge theory,

σinc
S (s) = g2

pP

(
s
s0

)α(0)−1

, (4.20)
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where the proton-pomeron coupling gpP and the soft-pomeron inter-
cept α(0) are model parameters. Additionally, µS in (4.19) is treated as
a free parameter. For simplicity, we neglect reggeon contributions and
parametrize the soft cross section only with a pomeron term. We assume
this ansatz to be valid at high centre-of-mass energies, particularly at
LHC energies.

4.3 Enhanced pomeron diagrams

As customary, we include the description of high-mass diffraction by
means of enhanced pomeron diagrams [56]. The diagrams in Fig. 4.3
are considered as contributions to the elastic-scattering amplitude. Fol-
lowing Refs. [36, 38], we take contributions due to multiple enhanced
diagrams into account by including eikonal functions for enhanced
pomeron diagrams in the eikonal model.

The triple pomeron (TP) diagram accounts for diffractive dissociation
of one of the incoming particles into a high-mass state [56]. The loop
pomeron (LP) diagram corresponds to diffractive production of two high-
mass states [56]. Furthermore, we include the double pomeron (DP)
diagram [38]. This diagram is the dominant correction to the loop
and triple pomeron diagrams [94, 96]. The double pomeron diagram
accounts for the production of high-mass states via scattering of two
pomerons.

The aforementioned enhanced diagrams contain only triple pomeron
self couplings. A more general model with n pomerons coupling to
m pomerons, where n + m > 3, is discussed in Ref. [97]. As there is little
knowledge about quartic and higher-order pomeron couplings, further
modelling would be required here. To keep the model as simple as
possible, we do not include these contributions to the elastic scattering
amplitude.

4.3.1 Eikonal functions of enhanced processes

Analogous to the hard and soft eikonal functions (2.7) in the MPI model,
we construct the eikonal functions of the triple pomeron, loop pomeron
and double pomeron amplitudes as

χi(s, b) =
1
2

A(b, µi) σi(s) , with i = TPa, TPb, LP, DP . (4.21)

In order to account for the asymmetric shape of the triple pomeron
diagram, we distinguish two different eikonal functions in the formalism,
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(a) (b) (c)

Figure 4.3: Enhanced pomeron diagrams. (a) Triple pomeron diagram. (b) Loop
pomeron diagram. (c) Double pomeron diagram.

TPa and TPb. The forward elastic amplitudes of the considered enhanced
diagrams and, via the optical theorem, the cross sections σi can be
calculated using reggeon field theory [55]. The result for the triple
pomeron cross section is [94]

σTP(s) = −
g3

pP g3P

2α′ 16π(h̄c)2

(
s
s0

)∆P

exp
(
−bpP + b3P

2α′
∆P

)
×
{

Ei
[(

bpP + b3P

2α′
+ ln

s
ΣL

)
∆P

]
− Ei

[(
bpP + b3P

2α′
+ ln ΣU

)
∆P

]}
,

(4.22)

where Ei denotes the exponential integral and

∆P = α(0)− 1 . (4.23)

In the derivation of (4.22) the squared diffractive mass M2
D has been

integrated over the range

ΣL ≤ M2
D ≤

s
ΣU

, (4.24)

where we adopt the bounds from Ref. [94],

ΣL = 5 GeV2 and ΣU = 2.5 . (4.25)

For brevity, the expressions for σLP(s) and σDP(s) are given in Equa-
tions (C.1) and (C.3) in Appendix C.

4.3.2 Coupling matrices of enhanced processes

The triple pomeron and double pomeron diagrams contain several
proton-pomeron couplings. In order to obtain consistent rates for low-
mass resonance production in the two-channel eikonal model, we have
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to modify the parametrization of eikonal matrix elements (4.1) in terms
of enhancement factors (4.2). Hence the eikonal matrix (4.4) describes
resonance production only for diagrams in which a single pomeron
couples to both protons, i.e. for single-pomeron (χS and χH) and loop
pomeron diagrams.

The eikonal matrix of the triple pomeron amplitude, where two
pomerons couple to the second proton (in the sense of the numbering
in (4.5)), reads

χ̂TPa
(s, b)=


1 + λ2 2λ λ

(
1 + λ2) 2λ2

2λ 1 + λ2 2λ2 λ
(
1 + λ2)

λ
(
1 + λ2) 2λ2 1 + λ2 2λ
2λ2 λ

(
1 + λ2) 2λ 1 + λ2

χTPa
(s, b).

(4.26)

The matrix elements can be derived by counting the number of couplings
of the pomeron to the proton or resonance and summing over all possible
diagrams. For instance, the elastic-scattering element〈

pp
∣∣χ̂TPa

∣∣pp
〉
= (1 + λ2)χTPa

(4.27)

contains a term proportional to λ2. This term corresponds to production
of a resonance between the two pomeron couplings (similar to the second
or third diagram in Fig. 4.2). We derive (4.26) and the other eikonal
matrices in Appendix A.1.

4.3.3 Inclusive cross sections

The expressions (4.10) and (4.13)–(4.16) for the total, elastic and low-mass
diffraction cross sections in the two-channel eikonal model apply in the
presence of enhanced diagrams as well, where the total eikonal matrix
is defined as

χ̂ = χ̂S + χ̂H + χ̂TPa
+ χ̂TPb

+ χ̂LP + χ̂DP . (4.28)

For the evaluation of the cross sections we can use the fact that all
eikonal matrices commute pairwise, as described in Appendix A.2. The
resulting expressions are summarized in Appendix B.2.

4.3.4 Unitarity cuts of enhanced amplitudes

The imaginary parts of enhanced pomeron amplitudes at vanishing
momentum transfer arise from unitarity cuts that can be assigned to
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(a) (b) (c)

Figure 4.4: Unitarity cuts of the triple pomeron diagram. (a) Diffractive cut.
(b) One-pomeron cut. (c) Two-pomeron cut.

several final states [58]. For the calculation of inelastic cross sections we
thus have to distribute the cross sections due to enhanced amplitudes to
these final states.

In order to illustrate the distribution of the absorptive parts of en-
hanced amplitudes according to the respective final-state configuration,
we first focus on the elastic triple-pomeron amplitude. Figure 4.4 shows
the unitarity cuts of this diagram that do not vanish at large centre-of-
mass energies. The diffractive cut in Fig. 4.4(a) corresponds to high-mass
diffractive dissociation of one proton, i.e. single diffraction. The other
two relevant unitarity cuts, namely the one-pomeron cut (Fig. 4.4(b))
and the two-pomeron cut (Fig. 4.4(c)), correspond to multi-peripheral
hadron production. The contributions of these three unitarity cuts to
the total cross section are proportional to the total absorptive part of the
amplitude [58]. Using the optical theorem (1.3), these contributions can
be expressed in terms of the triple-pomeron cross section (4.22),

σ
(a)
TP = B2

0 σTP = (−1) σTP ,

σ
(b)
TP = B2

1 σTP = 4 σTP ,

σ
(c)
TP = B2

2 σTP = (−2) σTP ,

(4.29)

where the superscripts (a), (b) and (c) refer to the labels in Fig. 4.4 and
Bn

k are the AGK factors introduced in (1.19). Note that this division into
several inelastic final states retains unitarity,

σ
(a)
TP + σ

(b)
TP + σ

(c)
TP = σTP , (4.30)

which directly follows from (1.20).
For simplicity, we identify both the one-pomeron and the two-

pomeron cut with the production of a single soft subprocess. Alter-
natively, one could contribute the two-pomeron cut to the production



62 Chapter 4. Diffractive cross sections in the eikonal model

of two soft subprocesses [94] or even introduce a new subprocess. Our
treatment of the two-pomeron cut simplifies the summation of all final-
state contributions in amplitudes with multiple enhanced diagrams
(see Sec. 4.3.5 below). The correction to the cross section for one soft
interaction due to a cut triple pomeron diagram is thus

σsoft
TP = σ

(b)
TP + σ

(c)
TP = 2 σTP . (4.31)

This correction is absorptive since the triple pomeron cross section (4.22)
is a negative quantity. The TP contribution to the single diffraction cross
section is

σsd
TP = σ

(a)
TP = −σTP . (4.32)

We can treat the loop pomeron diagram equivalently [36]. In this
case, the diffractive cut, proportional to B2

0, contributes to the cross
section for high-mass double diffraction.

The AGK factors for the double pomeron diagram (Fig. 4.3(c)) can be
derived by considering it as a triple pomeron diagram in another triple
pomeron diagram [94]. This way one finds AGK factors for nine classes
of final states,

B2
i B2

j with i, j = 0, 1, 2. (4.33)

Again, we simplify the model by distinguishing only four classes of
final states. We consider contributions of the DP diagram to the cross
sections for single diffractive excitation. We define these contributions
as the sum of cuts passing diffractively through one triple pomeron
“subdiagram” (as in Fig. 4.4(a)) and nondiffractively through the other
one (as in Figs. 4.4(b) and 4.4(c)),

σsd,a
DP =

(
B2

1 + B2
2

)
B2

0 σDP = −2 σDP ,

σsd,b
DP = −2 σDP .

(4.34)

Nondiffractive cuts in both subdiagrams are taken as contribution to
single soft interactions,

σsoft
DP =

(
2B2

1B2
2 + B2

1B2
1 + B2

2B2
2

)
σDP = 4 σDP . (4.35)

Finally, the cut passing nondiffractively through both subdiagrams cor-
responds to central diffraction,

σcd
DP = B2

0B2
0 σDP = σDP . (4.36)
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Table 4.1: Notation for unresolved and resolved cross sections.

Index σ̃jklmno σjklmno

j soft pomerons soft interactions
k hard pomerons hard interactions
l TPa diagrams single-diffractive excitations of particle a
m TPb diagrams single-diffractive excitations of particle b
n LP diagrams double-diffractive excitations
o DP diagrams double pomeron interactions

4.3.5 AGK weights for multiple enhanced diagrams

The cross section corresponding to the imaginary part of the elastic
scattering amplitude arising from j soft pomerons, k hard pomerons,
l TPa diagrams, m TPb diagrams, n loop pomeron diagrams and o double
pomeron diagrams can be expressed as

σ̃jklmno(s) =
1
4

4

∑
α=1

∫
d2b I(α)jklmno(s, b), (4.37)

with

I(α)jklmno(s, b) =
(2χ(α)

S )j

j!
(2χ(α)

H )k

k!
(2χ(α)

TPa
)l

l!
(2χ(α)

TPb
)m

m!
(2χ(α)

LP )
n

n!
(2χ(α)

DP)
o

o!
e−2χ(α)

.

(4.38)

In general, the cross sections in (4.37) correspond to several final states.
For instance, σ̃001000 denotes the cross section due to single cut TPa dia-
gram. However, as discussed in Sec. 4.3.4, a cut TPa diagram contributes
to different final states. We refer to the cross sections in (4.37) thus as
unresolved cross sections and reserve the notation σjklmno (without the
tilde superscript) for inelastic cross sections with identified final states.

Similar to Ref. [36], we obtain the resolved inelastic cross section
for the jklmno final state (see Table 4.1) by adding up all contributing
unresolved cross sections (4.37) weighted with counting factors and
AGK weights as derived in Sec. 4.3.4. Collecting all partial cross sections
that contribute to the jklmno final state , we find

σjklmno(s) =
j

∑
α=0

j−α

∑
β=0

j−α−β

∑
γ=0

j−α−β−γ

∑
δ=0

l

∑
ε=0

m

∑
ζ=0

× Aα
l+α−ε Aβ

m+β−ζ Aγ
n+γ Cδεζ

o+δ+ε+ζ

× σ̃j−α−β−γ−δ,k,l+α−ε,m+β−ζ,n+γ,o+δ+ε+ζ(s) ,

(4.39)
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where we define the factors Aα
l and Cαβγ

o below in (4.40) and (4.41). The
summation indices α, β, γ and δ denote the number of soft interactions
due to nondiffractive cuts of TPa, TPb, LP and DP diagrams, respectively.
Hence, the number of cuts soft pomerons, which is given by the first
index (j− α− β− γ− δ) in the unresolved cross section σ̃ (cf. Table 4.1),
plus the number of soft interactions due to enhanced diagrams yields
exactly j. The indices ε and ζ denote the number of single-diffractive
excitations of particles a and b.

The factors Aα
l in (4.39) denote the AGK weight for the production of

α soft interactions due to a total of k TPa, TPb or LP diagrams. From (4.31)
and (4.32) we can derive

Aα
k =

(
k
α

)
2α(−1)k−α , (4.40)

where the factor
(

k
α

)
is the number of possibilities to choose α from k.

By analogy, we derive the AGK weight factor for the production of
α soft interactions and β (γ) single-diffractive excitations of particle a
(particle b) due to a total of k double pomeron diagrams from Equa-
tions (4.34)–(4.36),

Cαβγ
k =

(
k
α

)(
k− α

β

)(
k− α− β

γ

)
4α(−2)β+γ . (4.41)

To illustrate the AGK summation in (4.39), we consider the cross
section for the production of a single soft interaction. The sum expands
to

σ100000 =
(

A0
0

)3
C000

0 σ̃100000 +
(

A0
0

)3
C100

1 σ̃000001

+ A1
1

(
A0

0

)2
C000

0
(
σ̃001000 + σ̃000100 + σ̃000010

)
= σ̃100000 + 4

(
σ̃001000 + σ̃000100 + σ̃000010 + σ̃000001

)
,

(4.42)

which is made up of the soft-pomeron cross section σ̃100000 and one cor-
rection term per enhanced diagram. The terms σ̃001000, σ̃000100 and σ̃000010
are negative corrections to the first term since they contain an odd num-
ber of (negative) triple and loop pomeron cross sections. However, the
last term in (4.42), which results from nondiffractive cuts of a double
pomeron diagram, is a positive correction. In total, the corrections from
enhanced diagrams are thus reduced by the double pomeron diagram
in this example. Generally, we find better convergence of the AGK
series (4.39), i.e. positive and decreasing cross sections (for large enough
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multiplicities j, . . . , o), if we include the double pomeron diagram in the
eikonal model.

We are now ready to define the cross sections for high-mass single
diffraction, double diffraction and central diffraction as

σhm
sd,a(s) = σ001000(s) ,

σhm
sd,b(s) = σ000100(s) ,

σhm
dd (s) = σ000010(s) ,
σcd(s) = σ000001(s) .

(4.43)

4.4 Fit to hadron collider and cosmic-ray data

We determine the model parameters in a global fit to hadronic cross
sections of proton-proton and proton-antiproton collisions. Since the
model contains no reggeon contributions, we restrict the fit to high-
energy data. The total pp and pp cross sections are almost identical for√

s > 250 GeV [48]. Hence we choose this centre-of-mass energy as a
lower limit on the input data for the fit (Table 4.2). We add all errors in
quadrature if systematic and statistical uncertainties are specified for the
measurements. In case of asymmetric errors the higher one is taken.

4.4.1 Definition of observables for comparison with data

We fit the model parameters to the data listed in Table 4.2, which includes
the total, elastic, inelastic, single- and double-diffractive cross sections
and the elastic slope, measured in proton-proton and proton-antiproton
collisions at different centre-of-mass energies. In this connection, the
inelastic cross section is calculated as the difference between the total
and elastic cross sections, (4.10) and (4.13), which explicitly includes
diffractive cross sections. The elastic slope, which also enters the fit, is
calculated according to (B.11).

For comparisons of the model to experimental data in the description
of single- and double-diffractive cross sections we combine the low-mass
and high-mass cross sections, (4.14)–(4.16) and (4.43),

σsd(s) = σlm
sd,a(s) + σlm

sd,b(s) + σhm
sd,a(s) + σhm

sd,b(s) ,

σdd(s) = σlm
dd(s) + σhm

dd (s) .
(4.44)



66 Chapter 4. Diffractive cross sections in the eikonal model

Table 4.2: Hadronic cross section and elastic slope data used as fit input. Data
points marked with an asterisk (*) are taken from Ref. [44].

Total cross section
√

s/GeV σtot/mb ref.

pp 273.3 56.0 ± 13.6 [98] *
pp 386.1 54.0 ± 15.5 [98] *
pp 540.0 66.0 ± 8.6 [99] *
pp 540.0 66.8 ± 7.1 [100] *
pp 541.0 63.0 ± 2.1 [101] *
pp 546.0 61.26 ± 0.93 [102] *
pp 547.0 61.9 ± 1.8 [103] *
pp 900.0 65.3 ± 2.4 [104] *
pp 1800.0 72.8 ± 3.1 [105] *
pp 1800.0 80.03 ± 2.24 [102] *
pp 6164.1 93.0 ± 14.0 [106] *
pp 7000.0 98.0 ± 2.5 [107]
pp 7000.0 98.6 ± 2.2 [108]
pp 8000.0 101.7 ± 2.9 [43]
pp 8125.8 101.0 ± 16.0 [106] *
pp 10 712.0 117.0 ± 18.0 [106] *
pp 14 121.0 104.0 ± 26.0 [106] *
pp 18 615.0 100.0 ± 27.0 [106] *
pp 24 539.4 124.0 ± 34.0 [106] *
pp 30 000.0 120.0 ± 15.0 [109] *
pp 57 000.0 133.0 ± 29.0 [110]

Single diffraction cross section
√

s/GeV σsd/mb ref.

pp 546.0 7.89 ± 0.33 [111]
pp 546.0 9.4 ± 0.7 [112]
pp 900.0 7.8 ± 1.2 [113]
pp 900.0 11.2 ± 2.1 [35]
pp 1800.0 11.7 ± 2.3 [114]
pp 1800.0 8.1 ± 1.7 [115]
pp 1800.0 9.46 ± 0.44 [111]
pp 2760.0 12.2 ± 5.3 [35]
pp 7000.0 14.9 ± 5.9 [35]

Inelastic cross section
√

s/GeV σinel/mb ref.

pp 2760.0 62.8 ± 4.2 [35]
pp 7000.0 73.2 ± 5.3 [35]
pp 7000.0 69.4 ± 7.3 [116]
pp 7000.0 68.0 ± 5.1 [117]

Elastic cross section
√

s/GeV σel/mb ref.

pp 546.0 12.87 ± 0.30 [118] *
pp 547.0 13.3 ± 1.2 [103] *
pp 1800.0 15.79 ± 0.87 [119] *
pp 1800.0 16.6 ± 1.6 [114] *
pp 1800.0 19.70 ± 0.85 [118] *
pp 7000.0 25.1 ± 1.1 [107]
pp 7000.0 25.4 ± 1.1 [108]
pp 8000.0 27.1 ± 1.4 [43]

Elastic slope
√

s/GeV Bel/GeV−2 ref.

pp 540.0 17.2 ± 1.0 [120]
pp 546.0 15.28 ± 0.58 [118]
pp 1020.0 16.2 ± 0.7 [121]
pp 1800.0 16.98 ± 0.25 [118]
pp 1800.0 16.99 ± 0.47 [105]
pp 7000.0 19.9 ± 0.3 [108]
pp 8000.0 19.9 ± 0.3 [43]

Double diffraction cross section
√

s/GeV σdd/mb ref.

pp 900.0 5.6 ± 2.0 [35]
pp 2760.0 7.8 ± 3.2 [35]
pp 7000.0 9.0 ± 2.6 [35]
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4.4.2 Model parameters

The two-channel eikonal model including enhanced pomeron contribu-
tions involves a number of model parameters. The expressions for the
soft, triple, loop and double pomeron cross sections in reggeon field
theory depend on

• the proton-pomeron coupling gpP and the slope describing its
t-dependence, bpP;

• the triple pomeron coupling g3P and the slope describing its t-
dependence, b3P; and

• the soft-pomeron intercept α(0) and the soft-pomeron trajectory
slope α′.

In order to simplify the fitting procedure, we fix some parameters by
making further model assumptions. Following Ref. [94], we fix the
soft-pomeron slope to the value from Ref. [48], α′ = 0.25 GeV2. For the
slope of the triple pomeron coupling we use b3P = 0.5 GeV−2 [37]. The
two-channel formalism brings in a further parameter, the enhancement
factor λ.

Another set of parameters is connected with the shape of the impact
parameter amplitudes. The widths of the soft, hard and enhanced
eikonal functions (2.6), (4.19) and (4.21) in impact parameter space are
determined by one parameter each,

µi with i = S, H, TPa, TPb, LP, DP . (4.45)

We retain µH and µS as free parameters in the model. For simplicity, we
assume a common impact parameter shape for all soft processes,

µS = µTPa
= µTPb

= µLP = µDP . (4.46)

Finally, the hard cross section σinc
H has been defined in (2.1) as the

cross section for jet production with transverse momentum greater
than pmin

T . With a constant value of pmin
T the inclusive cross section rises

with the centre-of-mass energy. In order to study the dependence of
the results on the perturbative parts of the model, we create fits for
several choices of pmin

T (s). Firstly, we create two fits using constant
values of pmin

T (2.5 GeV and 5.0 GeV). Furthermore, we fit the model for
an energy dependence of the cutoff as proposed in Ref. [122],

pmin
T (s) = 2.5 GeV + 0.12 GeV

(
log10

√
s

50 GeV

)3

. (4.47)
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Figure 4.5: Hard inclusive dijet cross section in pp collisions for several energy
dependences in the transverse-momentum cutoff, pmin

T (s). All results were
obtained using the CTEQ6L1 PDF set [92]. The logarithmic energy dependence
of pmin

T (solid line) is defined in (4.47). The energy dependence of pmin
T in the ue-

ee-5-cteq6l1 tune [123] is given by (3.6), where pmin
T,0 = 3.92 GeV and b = 0.33.

The transverse-momentum cutoff in this formula ranges from pmin
T =

2.5 GeV at
√

s = 50 GeV to approximately 5.9 GeV at the highest energy
considered in the fit,

√
s = 57 TeV.

Finally, we adopt a further possibility to vary pmin
T with the centre-

of-mass energy from our analysis of the underlying event at several
energies (see Sec. 3.5.4). Using the multiple-parton interactions model
without diffractive components, we found that underlying-event data
prefers a rise of the pT cutoff with the centre-of-mass energy that can be
parametrized by a power law,

pmin
T (s) = pmin

T,0

(√
s

E0

)b

. (3.6 revisited)

For the fit we use the parameters of the ue-ee-5-cteq6l1 tune [123],
pmin

T,0 = 3.92 GeV and b = 0.33.
In Fig. 4.5 we can see the jet cross section as a function of the centre-

of-mass energy obtained with the mentioned choices of pmin
T (s). In

comparison to the results with constant pmin
T , the logarithmic rise ac-

cording to (4.47) slightly reduces the growth of the cross section. The
power-law parametrization of pmin

T in the underlying-event tune yields
an almost constant hard inclusive cross section.
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Table 4.3: Fit results. (a) pmin
T = 2.5 GeV. (b) pmin

T = 5.0 GeV. (c) Energy
dependence of pmin

T as in (4.47). (d) Energy dependence of pmin
T from the

ue-ee-5-cteq6l1 tune [123], which is given by (3.6), where pmin
T,0 = 3.92 GeV

and b = 0.33.

α(0) gpP bpP g3P λ µ2
H µ2

S χ2/d.o.f.√
mb GeV−2

√
mb GeV2 GeV2

(a) 1.12 7.22 5.07 0.05 0.83 0.78 0.97 1.21
(b) 1.23 4.10 4.62 0.03 0.84 0.50 0.98 1.89
(c) 1.10 5.51 5.79 0.21 0.07 0.50 0.62 1.14
(d) 1.29 4.08 4.97 0.00 0.95 1.89 1.40 1.18

4.4.3 Fitting procedure and results

All data points enter the chi-square fit with equal weights. The model
allows a good fit to the data (χ2/d.o.f. < 2) for all considered energy
dependences of pmin

T (Table 4.3). The dependence of the eikonalized
cross sections and the elastic slope on pmin

T is thus effectively balanced
by the fit parameters.

Figures 4.6–4.9 show the fit results of the considered observables
in comparison to experimental data. The total, the inelastic and the
elastic cross sections can be well reproduced by the model in the entire
energy range. Furthermore, the elastic slope and the single-diffractive
cross section are well described by the model. The double-diffractive
cross section, however, is underestimated by all fits. We attribute this
underestimation to too low values of g3P or λ (Table 4.3).

Compared to fits using a constant pmin
T or the ue-ee-5-cteq6l1

parametrization, the fit using the logarithmic pmin
T dependence (labelled

as (c) in Table 4.3) yields a large triple pomeron coupling and a small
enhancement factor. However, in all fits the results for the triple po-
meron coupling are in tension with the estimation g3P ≈ 0.2 gpP from
Ref. [124]. In the fit based on the ue-ee-5-cteq6l1 parametrization the
coupling even vanishes effectively. In this case, the diffractive cross
sections completely result from the low-mass parts.

Including additional low-energy data in the fit could help resolving
these ambiguities. This would, however, require the inclusion of reggeon
contributions in the model. An additional reggeon term in the soft cross
section (4.20) brings in further parameters like the reggeon intercept
and the coupling of the reggeon to the proton or antiproton. Because of
the larger number of parameters, the fitting procedure would be more
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elaborate. On the other hand, much low-energy data on the considered
observables is available, which could further constrain the parameter
space.

4.5 Conclusions

We have studied a model for diffractive cross sections. The model ex-
tends the framework that underlies the calculation of hadronic cross
sections in the multiple-parton interactions (MPI) model in Herwig++.
After relating the MPI model to basic results from scattering theory, we
formulated a two-channel eikonal model of production cross sections of
diffractive resonances. In this connection, we have cast the results into
analytic expressions in terms of the soft and hard eikonal functions from
the MPI model. In order to account for processes with higher diffrac-
tive masses, we have furthermore included contributions of enhanced
pomeron amplitudes in the eikonal model. In preparation for a future
Monte Carlo implementation of final states on the basis of this model,
we have formulated analytic expressions for exclusive inelastic cross
sections. The types of subprocesses to be generated in the final state can
be sampled from these cross sections.

The model presented in this chapter has been implemented in Her-
wig++ in the course of this thesis. The implementation features the
possibility to realize arbitrary single-channel or two-channel eikonal
models. This way little effort is required to add further enhanced dia-
grams to the eikonalization. We have determined the model parameters
in a global fit to experimental cross section data. With this implemen-
tation Herwig++ is ready to calculate cross sections for the proposed
single-diffractive, double-diffractive and central-diffractive subprocesses.
In particular, the model allows for hadron collisions containing diffrac-
tive and nondiffractive subprocesses. Since the additional nondiffractive
interactions will generally fill the rapidity gap, the presence of these
new subprocesses can be expected to affect properties of nondiffractive
soft inclusive event samples as well.
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Figure 4.6: Fit results for the total, elastic and inelastic pp cross sections in
comparison to experimental data listed in Table 4.2. Total, elastic and inelastic
cross section data are indicated with circles, squares and triangles, respectively.
Full symbols represent pp data, open ones pp data.
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Figure 4.7: Fit results for the elastic slope in pp collisions compared to pp
data (full circles) and pp data (open circles) listed in Table 4.2.
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Figure 4.8: Fit results for the single-diffractive pp cross section in comparison
to pp data (full circles) and pp data (open circles) listed in Table 4.2.
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Figure 4.9: Fit results for the double-diffractive pp cross section results in
comparison to pp data listed in Table 4.2.



Chapter 5

Summary

In this thesis the simulation of soft inclusive hadron collisions at high
energies has been studied. We have addressed this topic in two projects:
the analysis of colour reconnections in the presence of multiple parton
interactions (MPI) and the joint description of diffractive and MPI cross
sections.

The effect of nonperturbative colour reconnections has been investi-
gated in lepton and hadron collider environments. An implementation
has been developed in the course of this thesis, which is available in
public versions of the event generator Herwig++ [78, 79]. The model
redefines colour singlets in the partonic final state after all perturbative
modelling has been completed. We find little impact of this algorithm
on LEP final states and conclude from this result that the parameters of
the hadronization model, which have originally been determined in a fit
to LEP data, may remain unchanged.

Regarding soft inclusive hadron collisions, however, we find high
sensitivity of the simulation results to colour reconnections. In tunes of
the parameters of the colour reconnection and MPI models to diffraction-
reduced minimum-bias data from LHC measurements good agreement
with the experimental data can be achieved. Moreover, we find an
improved description of the underlying event at the Tevatron and the
LHC after having adapted the model parameters in further dedicated
tunes. In this connection, we find that the model allows for a simple
parametrization of its dependence on the centre-of-mass energy. This
parametrization is particularly useful for estimating the underlying-
event activity at higher collider energies.

In analyses of parton-level final states in lepton and hadron collisions
we have shown that the colour reconnection model acts mainly on clus-
ters of nonperturbative origin. These clusters occur in the hadronization

73
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of hadron remnants or of partons that emerge in nonperturbative parts
of the event generation. In conclusion, colour reconnection improves the
applicability of the MPI model in the simulation of soft inclusive events
and of the underlying event in hadron collisions. However, we stress the
need for separate tunes for the simulation of soft inclusive events and
the underlying event in hard collisions.

The MPI model in Herwig++ accounts for hadron production in
hadron collisions without large rapidity gaps. Diffraction is thus neg-
lected in the simulation of soft inclusive events. We have studied a
model for diffractive cross sections in this thesis. This model has been
implemented in the event generator Herwig++ as a special case of a
framework for general eikonal models. It extends the existing MPI model
with soft and hard nondiffractive parton interactions by modelling cross
sections for further “diffractive subprocesses”, i.e. for subprocesses that
make for hadron production with large rapidity gaps. In fits of the
model parameters to experimental data on hadronic cross sections we
find a weak dependence of the model predictions on the hard cross
section, which is calculated within perturbative QCD. We assess this
model as the basis for a future Monte Carlo implementation of diffractive
events in soft inclusive event samples.

In order to exploit the full potential of the LHC within the next
years and decades, an accurate description of both the hard and the
soft aspects of high-energy hadron collisions is inevitable. On the one
hand, precise calculations at the perturbative frontier must enter the
simulation of LHC final states using Monte Carlo event generators.
Given the busy environment in hadron collisions, on the other hand,
event generators also should provide reliable results in regimes that
are driven by nonperturbative effects. In this thesis we have taken a
step forward in the latter direction by studying models that improve
the simulation of soft inclusive events and the underlying event in high-
energy hadron collisions. The insights we have gained open the door for
further event generator developments in this challenging field, which
will be necessary to continue the successful LHC programme.



Appendix A

Eikonal matrices

Parts of the calculation presented in this chapter (the discussion in
Appendix A.2) are similarly described in Sec. A.2 of Ref. [94]. However,
we use different conventions here.

A.1 Derivation of eikonal matrices

With the coupling matrix

ĝ =

(
1 λ
λ 1

)
(A.1)

we can write the parametrized pomeron couplings (4.2) in the two-
channel eikonal model compactly as

gijP = gppP〈i|ĝ|j〉, with i, j ∈ {p, p∗} , (A.2)

where

|p〉 =
(

1
0

)
and |p∗〉 =

(
0
1

)
. (A.3)

We defined the eikonal matrices in Sec. 4.1 with respect to the two-
particle basis,

|pp〉 =


1
0
0
0

, |p∗p〉 =


0
1
0
0

, |pp∗〉 =


0
0
1
0

, |p∗p∗〉 =


0
0
0
1

 ,

(4.5 revisited)
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which we can understand as the direct product of the one-particle
basis (A.3) with itself. The couplings in diagrams with one pomeron
coupling appearing on either proton line, i.e. the soft, hard and loop
pomeron diagrams, are thus given by the Kronecker product of two
coupling matrices (A.1),

χ̂S(s, b) = (ĝ⊗ ĝ) χS(s, b) , (A.4)
χ̂H(s, b) = (ĝ⊗ ĝ) χH(s, b) , (A.5)
χ̂LP(s, b) = (ĝ⊗ ĝ) χLP(s, b) . (A.6)

In a triple-pomeron diagram two pomerons couple to one proton and
one to the other one. The respective eikonal matrices are thus

χ̂TPa
(s, b) = (ĝ⊗ ĝ2) χTP,a(s, b) , (A.7)

and
χ̂TP,b(s, b) = (ĝ2 ⊗ ĝ) χTP,b(s, b) . (A.8)

Finally, the double-pomeron diagram, which has two pomeron couplings
on both protons, has an eikonal matrix proportional to ĝ2 ⊗ ĝ2,

χ̂DP(s, b) = (ĝ2 ⊗ ĝ2) χDP(s, b) . (A.9)

The expanded Kronecker products in (A.4)–(A.9) are

ĝ⊗ ĝ =


1 λ λ λ2

λ 1 λ2 λ
λ λ2 1 λ
λ2 λ λ 1

 , (A.10)

ĝ⊗ ĝ2 =


1 + λ2 2λ λ

(
1 + λ2) 2λ2

2λ 1 + λ2 2λ2 λ
(
1 + λ2)

λ
(
1 + λ2) 2λ2 1 + λ2 2λ
2λ2 λ

(
1 + λ2) 2λ 1 + λ2

 , (A.11)

ĝ2⊗ ĝ =


1 + λ2 λ

(
1 + λ2) 2λ 2λ2

λ
(
1 + λ2) 1 + λ2 2λ2 2λ
2λ 2λ2 1 + λ2 λ

(
1 + λ2)

2λ2 2λ λ
(
1 + λ2) 1 + λ2

 , (A.12)

ĝ2⊗ ĝ2 =


(
1 + λ2)2 2λ

(
1 + λ2) 2λ

(
1 + λ2) 4λ2

2λ
(
1 + λ2) (

1 + λ2)2 4λ2 2λ
(
1 + λ2)

2λ
(
1 + λ2) 4λ2 (

1 + λ2)2 2λ
(
1 + λ2)

4λ2 2λ
(
1 + λ2) 2λ

(
1 + λ2) (

1 + λ2)2

 .

(A.13)
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A.2 Eikonal matrix diagonalization

The matrices in (A.10)–(A.13) commute pairwise, e.g.[
ĝ⊗ ĝ, ĝ⊗ ĝ2

]
= 0, (A.14)

and hence can be diagonalized simultaneously. The unitary transforma-
tion matrix

S =
1
2


1 1 −1 1
−1 1 −1 −1
−1 1 1 1

1 1 1 −1

 (A.15)

diagonalizes the eikonal matrices,

S†(ĝ⊗ ĝ)S =

diag
[
(1− λ)2, (1 + λ)2, 1− λ2, 1− λ2

]
,

S†(ĝ⊗ ĝ2)S =

diag
[
(1− λ)3, (1 + λ)3, (1− λ)(1 + λ)2, (1− λ)2(1 + λ)

]
,

S†(ĝ2 ⊗ ĝ)S =

diag
[
(1− λ)3, (1 + λ)3, (1− λ)2(1 + λ), (1− λ)(1 + λ)2

]
,

S†(ĝ2 ⊗ ĝ2)S =

diag
[
(1− λ)4, (1 + λ)4, (1− λ)2(1 + λ)2, (1− λ)2(1 + λ)2

]
.

(A.16)

The eigenvalues of the eikonal matrices (A.4)–(A.9), corresponding to
soft pomeron (S), hard pomeron (H) and loop pomeron exchange (LP),
as well as to triple-pomeron (TP) and double pomeron exchange (DP),
are thus

χ(1)
κ = (1− λ)2 χκ ,

χ(2)
κ = (1 + λ)2 χκ ,

χ(3)
κ = χ(4)

κ = (1− λ2) χκ ,

 for κ = S, H, LP ; (A.17)

χ(1)
TP,a = (1− λ)3 χTP,a ,

χ(2)
TP,a = (1 + λ)3 χTP,a ,

χ(3)
TP,a = (1− λ)(1 + λ)2 χTP,a ,

χ(4)
TP,a = (1− λ)2(1 + λ) χTP,a ;

(A.18)
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χ(1)
TP,b = (1− λ)3 χTP,b ,

χ(2)
TP,b = (1 + λ)3 χTP,b ,

χ(3)
TP,b = (1− λ)2(1 + λ) χTP,b ,

χ(4)
TP,b = (1− λ)(1 + λ)2 χTP,b ;

(A.19)

χ(1)
DP = (1− λ)4 χDP ,

χ(2)
DP = (1 + λ)4 χDP ,

χ(3)
DP = χ(4)

DP = (1− λ)2(1 + λ)2 χDP .

(A.20)

By virtue of (A.16), S diagonalizes any polynomial p(χ̂i) of eikonal
matrices,

S† p(χ̂i) S = p(S†χ̂iS) , (A.21)

and the exponential function of eikonal matrices,

S† exp(cχ̂i) S = diag
[
exp cχ(1)

i , exp cχ(2)
i , exp cχ(3)

i , exp cχ(4)
i

]
, (A.22)

with c ∈ R. The matrix elements

〈ij| f (χ̂i)|pp〉 =
〈

ij
∣∣∣SS† f (χ̂i)SS†

∣∣∣pp
〉

, (A.23)

with i, j ∈ {p, p∗} and f (χ̂i) being a product of polynomials and expo-
nential functions, can then be evaluated with

S diag(a, b, c, d) S† |pp〉 = 1
4


a + b + c + d
−a + b + c− d
−a + b− c + d

a + b− c− d

 . (A.24)



Appendix B

Cross sections in the
two-channel eikonal model

B.1 Only single-pomeron amplitudes

The cross sections (4.10)–(4.16) can be evaluated using the relations
(A.21)–(A.24). In a model containing only single-pomeron amplitudes
the total eikonal matrix reads

χ̂ = χ̂S + χ̂H , (B.1)

with the eigenvalues

χ(α) = χ(α)
S + χ(α)

H . (B.2)

The resulting total, nondiffractive inelastic and elastic cross sections, and
the low-mass single-diffractive and double-diffractive cross sections are

σtot(s) =
1
2

∫
d2b

4

∑
α=1

(
1− e−χ(α)

)
, (B.3)

σnd
inel(s) =

1
4

∫
d2b

4

∑
α=1

(
1− e−2χ(α)

)
, (B.4)

σel(s) =
1

16

∫
d2b

∣∣∣∣∣ 4

∑
α=1

(
1− e−χ(α)

)∣∣∣∣∣
2

, (B.5)

σlm
sd,a(s) =

1
16

∫
d2b

∣∣∣e−χ(1) − e−χ(2) − e−χ(3)
+ e−χ(4)

∣∣∣2 , (B.6)

σlm
sd,b(s) =

1
16

∫
d2b

∣∣∣e−χ(1) − e−χ(2)
+ e−χ(3) − e−χ(4)

∣∣∣2 , (B.7)

σlm
dd(s) =

1
16

∫
d2b

∣∣∣e−χ(1)
+ e−χ(2) − e−χ(3) − e−χ(4)

∣∣∣2 . (B.8)
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For the cross section for exclusive production of j soft and k hard
interactions (4.11), we find

σjk(s) =
1
4

4

∑
α=1

∫
d2b

(2χ(α)
S )j

j!
(2χ(α)

H )k

k!
e−2χ(α)

. (B.9)

B.2 Full model including enhanced diagrams

In the two-channel eikonal model including enhanced pomeron dia-
grams the eikonal matrix is composed like

χ̂ = χ̂S + χ̂H + χ̂TPa
+ χ̂TPb

+ χ̂LP + χ̂DP . (4.28 revisited)

The eigenvalues of this matrix are

χ(α) = χ(α)
S + χ(α)

H + χ(α)
TPa

+ χ(α)
TPb

+ χ(α)
LP + χ(α)

DP , (B.10)

with χ(α)

i from (A.17)–(A.20).
The formulae for the total, elastic and low-mass diffraction cross sec-

tions, (B.3) and (B.5)–(B.8), apply also for the model including enhanced
diagrams, where the eigenvalues (B.2) are to be replaced by (B.10).

We calculate the elastic slope (1.29) in the two-channel model accord-
ing to

Bel(s, t = 0) σtot(s) =
1
4

∫
d2b b2

4

∑
α=1

(
1− e−χ(α)

)
. (B.11)



Appendix C

Enhanced pomeron amplitudes

As discussed above in Sec. 4.3.1, the triple pomeron cross section in
reggeon field theory reads [94]

σTP(s) = −
g3

pP g3P

2α′ 16π(h̄c)2

(
s
s0

)∆P

exp
(
−bpP + b3P

2α′
∆P

)
×
{

Ei
[(

bpP + b3P

2α′
+ ln

s
ΣL

)
∆P

]
− Ei

[(
bpP + b3P

2α′
+ ln ΣU

)
∆P

]}
,

(4.22 revisited)

with ∆P = α(0)− 1, which we repeat here for completeness. Here, Ei
denotes the exponential integral. The loop pomeron cross section is [94]

σLP(s) = −
g2

pP g2
3P

2α′ 16π(h̄c)2

(
s
s0

)∆P

exp
(
−b3P

α′
∆P

)
×
[

C1 Ei(C1∆P)− C1 Ei(C2∆P)

+
1

∆P

exp(C2∆P)−
1

∆P

exp(C1∆P)

]
,

(C.1)

with

C1 =
b3P

α′
+ ln

ss0

Σ2
L

,

C2 =
b3P

α′
+ ln ΣU .

(C.2)
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where we use the integration bounds ΣL = 5 GeV2 and ΣU = 2.5. Finally,
we calculate the double pomeron cross section according to [94]

dσDP

dM2
CD

=
g4

pP

512π2(h̄c)4 α′ M2
CD

σPP

(
M2

CD

) ( s
M2

CD

)2∆P

×
(

bpP + b3P + α′ ln
(
s/M2

CD

))−1

× ln

(
bpP + b3P + 2α′ ln

(
(1− xmin

F )s/M2
CD

)
bpP + b3P − 2α′ ln(1− xmin

F )

)
,

(C.3)

with

σPP(ŝ) = g2
3P

(
ŝ
s0

)∆P

. (C.4)

The integration over the squared invariant mass of the central diffractive
system, M2

CD, is performed numerically over the range

M2
min < M2

CD <
(

1− xmin
F

)2
s . (C.5)

Following Ref. [94], we use use Mmin = 2 GeV as the minimum mass of
the diffractive system, and xmin

F = 0.9 as the minimum Feynman-x of
the scattered protons in the central diffractive process.



Bibliography

[1] B. R. Webber. “A QCD Model for Jet Fragmentation Including Soft
Gluon Interference”. Nucl. Phys. B238 (1984), p. 492.

[2] B. Andersson et al. “Parton Fragmentation and String Dynamics”. Phys.
Rept. 97 (1983), pp. 31–145. doi: 10.1016/0370-1573(83)90080-7.

[3] T. Sjöstrand and M. van Zijl. “A Multiple Interaction Model for the
Event Structure in Hadron Collisions”. Phys. Rev. D36 (1987), p. 2019.
doi: 10.1103/PhysRevD.36.2019.

[4] M. Bähr et al. “Herwig++ Physics and Manual”. Eur. Phys. J. C58 (2008),
pp. 639–707. doi: 10.1140/epjc/s10052-008-0798-9. arXiv: 0803.0883
[hep-ph].

[5] T. Sjöstrand, S. Mrenna, and P. Z. Skands. “PYTHIA 6.4 Physics and
Manual”. JHEP 05 (2006), p. 026. arXiv: hep-ph/0603175.

[6] T. Sjöstrand, S. Mrenna, and P. Z. Skands. “A Brief Introduction to
PYTHIA 8.1”. Comput. Phys. Commun. 178 (2008), pp. 852–867. doi:
10.1016/j.cpc.2008.01.036. arXiv: 0710.3820 [hep-ph].

[7] T. Gleisberg et al. “Event generation with SHERPA 1.1”. JHEP 02 (2009),
p. 007. doi: 10.1088/1126- 6708/2009/02/007. arXiv: 0811.4622
[hep-ph].

[8] M. Bähr et al. “Soft interactions in Herwig++”. (2009). arXiv: 0905.4671
[hep-ph].

[9] A. Buckley et al. “General-purpose event generators for LHC physics”.
Phys. Rept. 504 (2011), pp. 145–233. doi: 10.1016/j.physrep.2011.03.
005. arXiv: 1101.2599 [hep-ph].

[10] M. Bähr, S. Gieseke, and M. H. Seymour. “Simulation of multiple
partonic interactions in Herwig++”. JHEP 07 (2008), p. 076. doi: 10.
1088/1126-6708/2008/07/076. arXiv: 0803.3633 [hep-ph].

[11] G. Aad et al. “Charged-particle multiplicities in pp interactions at
√

s =
900 GeV measured with the ATLAS detector at the LHC”. Phys. Lett.
B688 (2010), pp. 21–42. doi: 10.1016/j.physletb.2010.03.064. arXiv:
1003.3124 [hep-ex].

83

http://dx.doi.org/10.1016/0370-1573(83)90080-7
http://dx.doi.org/10.1103/PhysRevD.36.2019
http://dx.doi.org/10.1140/epjc/s10052-008-0798-9
http://arxiv.org/abs/0803.0883
http://arxiv.org/abs/0803.0883
http://arxiv.org/abs/hep-ph/0603175
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://arxiv.org/abs/0710.3820
http://dx.doi.org/10.1088/1126-6708/2009/02/007
http://arxiv.org/abs/0811.4622
http://arxiv.org/abs/0811.4622
http://arxiv.org/abs/0905.4671
http://arxiv.org/abs/0905.4671
http://dx.doi.org/10.1016/j.physrep.2011.03.005
http://dx.doi.org/10.1016/j.physrep.2011.03.005
http://arxiv.org/abs/1101.2599
http://dx.doi.org/10.1088/1126-6708/2008/07/076
http://dx.doi.org/10.1088/1126-6708/2008/07/076
http://arxiv.org/abs/0803.3633
http://dx.doi.org/10.1016/j.physletb.2010.03.064
http://arxiv.org/abs/1003.3124


84 Bibliography

[12] G. Aad et al. “Measurement of underlying event characteristics using
charged particles in pp collisions at

√
s = 900 GeV and 7 TeV with

the ATLAS detector”. Phys. Rev. D 83 (2011), p. 112001. doi: 10.1103/
PhysRevD.83.112001. arXiv: 1012.0791 [hep-ex].

[13] G. Aad et al. “Charged-particle multiplicities in pp interactions mea-
sured with the ATLAS detector at the LHC”. New J. Phys. 13 (2011),
p. 053033. doi: 10.1088/1367-2630/13/5/053033. arXiv: 1012.5104
[hep-ex].

[14] G. Aad et al. “Measurements of underlying-event properties using
neutral and charged particles in pp collisions at 900 GeV and 7 TeV with
the ATLAS detector at the LHC”. Eur. Phys. J. C71 (2011), p. 1636. doi:
10.1140/epjc/s10052-011-1636-z. arXiv: 1103.1816 [hep-ex].

[15] V. Khachatryan et al. “Transverse momentum and pseudorapidity distri-
butions of charged hadrons in pp collisions at

√
s = 0.9 and 2.36 TeV”.

JHEP 1002 (2010), p. 041. doi: 10.1007/JHEP02(2010)041. arXiv: 1002.
0621 [hep-ex].

[16] V. Khachatryan et al. “Transverse-momentum and pseudorapidity dis-
tributions of charged hadrons in pp collisions at

√
s = 7 TeV”. Phys.

Rev. Lett. 105 (2010), p. 022002. doi: 10.1103/PhysRevLett.105.022002.
arXiv: 1005.3299 [hep-ex].

[17] V. Khachatryan et al. “First Measurement of Hadronic Event Shapes
in pp Collisions at

√
s = 7 TeV”. Phys. Lett. B699 (2011), pp. 48–67. doi:

10.1016/j.physletb.2011.03.060. arXiv: 1102.0068 [hep-ex].

[18] S. Chatrchyan et al. “Measurement of the Underlying Event Activity at
the LHC with

√
s = 7 TeV and Comparison with

√
s = 0.9 TeV”. JHEP

1109 (2011), p. 109. doi: 10.1007/JHEP09(2011)109. arXiv: 1107.0330
[hep-ex].

[19] K. Aamodt et al. “Charged-particle multiplicity measurement in proton-
proton collisions at

√
s = 0.9 and 2.36 TeV with ALICE at LHC”. Eur.

Phys. J. C68 (2010), pp. 89–108. doi: 10.1140/epjc/s10052-010-1339-x.
arXiv: 1004.3034 [hep-ex].

[20] K. Aamodt et al. “Charged-particle multiplicity measurement in proton-
proton collisions at

√
s = 7 TeV with ALICE at LHC”. Eur. Phys. J. C68

(2010), pp. 345–354. doi: 10.1140/epjc/s10052-010-1350-2. arXiv:
1004.3514 [hep-ex].

[21] K. Aamodt et al. “Transverse momentum spectra of charged particles in
proton-proton collisions at

√
s = 900 GeV with ALICE at the LHC”. Phys.

Lett. B693 (2010), pp. 53–68. doi: 10.1016/j.physletb.2010.08.026.
arXiv: 1007.0719 [hep-ex].

http://dx.doi.org/10.1103/PhysRevD.83.112001
http://dx.doi.org/10.1103/PhysRevD.83.112001
http://arxiv.org/abs/1012.0791
http://dx.doi.org/10.1088/1367-2630/13/5/053033
http://arxiv.org/abs/1012.5104
http://arxiv.org/abs/1012.5104
http://dx.doi.org/10.1140/epjc/s10052-011-1636-z
http://arxiv.org/abs/1103.1816
http://dx.doi.org/10.1007/JHEP02(2010)041
http://arxiv.org/abs/1002.0621
http://arxiv.org/abs/1002.0621
http://dx.doi.org/10.1103/PhysRevLett.105.022002
http://arxiv.org/abs/1005.3299
http://dx.doi.org/10.1016/j.physletb.2011.03.060
http://arxiv.org/abs/1102.0068
http://dx.doi.org/10.1007/JHEP09(2011)109
http://arxiv.org/abs/1107.0330
http://arxiv.org/abs/1107.0330
http://dx.doi.org/10.1140/epjc/s10052-010-1339-x
http://arxiv.org/abs/1004.3034
http://dx.doi.org/10.1140/epjc/s10052-010-1350-2
http://arxiv.org/abs/1004.3514
http://dx.doi.org/10.1016/j.physletb.2010.08.026
http://arxiv.org/abs/1007.0719


Bibliography 85

[22] P. Z. Skands and D. Wicke. “Non-perturbative QCD effects and the
top mass at the Tevatron”. Eur. Phys. J. C52 (2007), pp. 133–140. doi:
10.1140/epjc/s10052-007-0352-1. arXiv: hep-ph/0703081.

[23] G. Gustafson, U. Pettersson, and P. M. Zerwas. “Jet Final States in WW
Pair Production and Color Screening in the QCD Vacuum”. Phys. Lett.
B209 (1988), p. 90. doi: 10.1016/0370-2693(88)91836-9.

[24] T. Sjöstrand and V. A. Khoze. “Does the W mass reconstruction sur-
vive QCD effects?” Phys. Rev. Lett. 72 (1994), pp. 28–31. doi: 10.1103/
PhysRevLett.72.28. arXiv: hep-ph/9310276 [hep-ph].

[25] T. Sjöstrand and V. A. Khoze. “On Color rearrangement in hadro-
nic W+W− events”. Z. Phys. C62 (1994), pp. 281–310. doi: 10.1007/
BF01560244. arXiv: hep-ph/9310242.

[26] G. Gustafson and J. Häkkinen. “Color interference and confinement
effects in W pair production”. Z. Phys. C64 (1994), pp. 659–664. doi:
10.1007/BF01957774.

[27] L. Lönnblad. “Reconnecting colored dipoles”. Z. Phys. C70 (1996),
pp. 107–114. doi: 10.1007/s002880050087.

[28] C. Friberg, G. Gustafson, and J. Häkkinen. “Color connections in e+ e-
annihilation”. Nucl. Phys. B490 (1997), pp. 289–305. doi: 10.1016/S0550-
3213(97)00064-3. arXiv: hep-ph/9604347 [hep-ph].

[29] B. R. Webber. “Colour reconnection and Bose-Einstein effects”. J. Phys.
G24 (1998), pp. 287–296. doi: 10.1088/0954-3899/24/2/003. arXiv:
hep-ph/9708463.

[30] P. Achard et al. “Search for color reconnection effects in e+e−→W+W−

→ hadrons through particle flow studies at LEP”. Phys. Lett. B561
(2003), pp. 202–212. doi: 10.1016/S0370- 2693(03)00490- 8. arXiv:
hep-ex/0303042.

[31] G. Abbiendi et al. “Colour reconnection in e+e− → W+W− at
√

s =
189–209 GeV”. Eur. Phys. J. C45 (2006), pp. 291–305. doi: 10.1140/epjc/
s2005-02439-x. arXiv: hep-ex/0508062.

[32] J. Abdallah et al. “Investigation of Colour Reconnection in WW Events
with the DELPHI detector at LEP-2”. Eur. Phys. J. C51 (2007), pp. 249–269.
doi: 10.1140/epjc/s10052-007-0304-9. arXiv: 0704.0597 [hep-ex].

[33] P. Z. Skands. “Tuning Monte Carlo Generators: The Perugia Tunes”.
Phys. Rev. D82 (2010), p. 074018. doi: 10.1103/PhysRevD.82.074018.
arXiv: 1005.3457 [hep-ph].

[34] D. Amati and G. Veneziano. “Preconfinement as a Property of Per-
turbative QCD”. Phys. Lett. B83 (1979), p. 87. doi: 10 . 1016 / 0370 -
2693(79)90896-7.

http://dx.doi.org/10.1140/epjc/s10052-007-0352-1
http://arxiv.org/abs/hep-ph/0703081
http://dx.doi.org/10.1016/0370-2693(88)91836-9
http://dx.doi.org/10.1103/PhysRevLett.72.28
http://dx.doi.org/10.1103/PhysRevLett.72.28
http://arxiv.org/abs/hep-ph/9310276
http://dx.doi.org/10.1007/BF01560244
http://dx.doi.org/10.1007/BF01560244
http://arxiv.org/abs/hep-ph/9310242
http://dx.doi.org/10.1007/BF01957774
http://dx.doi.org/10.1007/s002880050087
http://dx.doi.org/10.1016/S0550-3213(97)00064-3
http://dx.doi.org/10.1016/S0550-3213(97)00064-3
http://arxiv.org/abs/hep-ph/9604347
http://dx.doi.org/10.1088/0954-3899/24/2/003
http://arxiv.org/abs/hep-ph/9708463
http://dx.doi.org/10.1016/S0370-2693(03)00490-8
http://arxiv.org/abs/hep-ex/0303042
http://dx.doi.org/10.1140/epjc/s2005-02439-x
http://dx.doi.org/10.1140/epjc/s2005-02439-x
http://arxiv.org/abs/hep-ex/0508062
http://dx.doi.org/10.1140/epjc/s10052-007-0304-9
http://arxiv.org/abs/0704.0597
http://dx.doi.org/10.1103/PhysRevD.82.074018
http://arxiv.org/abs/1005.3457
http://dx.doi.org/10.1016/0370-2693(79)90896-7
http://dx.doi.org/10.1016/0370-2693(79)90896-7


86 Bibliography

[35] B. Abelev et al. “Measurement of inelastic, single- and double-diffraction
cross sections in proton-proton collisions at the LHC with ALICE”. Eur.
Phys. J. C73 (2013), p. 2456. doi: 10.1140/epjc/s10052-013-2456-0.
arXiv: 1208.4968 [hep-ex].

[36] P. Aurenche et al. “Multiparticle production in a two-component dual
parton model”. Phys.Rev. D45 (1992), pp. 92–105. doi: 10.1103/PhysRevD.
45.92.

[37] R. Engel. “Photoproduction within the two component dual parton
model. 1. Amplitudes and cross-sections”. Z. Phys. C66 (1995), pp. 203–
214. doi: 10.1007/BF01496594.

[38] R. Engel and J. Ranft. “Hadronic photon-photon interactions at high-
energies”. Phys. Rev. D54 (1996), pp. 4244–4262. doi: 10.1103/PhysRevD.
54.4244. arXiv: hep-ph/9509373 [hep-ph].

[39] J. R. Forshaw and D. Ross. “Quantum Chromodynamics and the Pome-
ron”. Camb. Lect. Notes Phys. 9 (1997), pp. 1–248.

[40] S. Donnachie et al. “Pomeron physics and QCD”. Camb. Monogr. Part.
Phys. Nucl. Phys. Cosmol. 19 (2002), pp. 1–347.

[41] V. Barone and E. Predazzi. High-Energy Particle Diffraction. Springer,
2002. isbn: 9783540421078.

[42] M. Block and R. Cahn. “High-Energy pp and pp Forward Elastic Scat-
tering and Total Cross-Sections”. Rev. Mod. Phys. 57 (1985), p. 563. doi:
10.1103/RevModPhys.57.563.

[43] G. Antchev et al. “Luminosity-Independent Measurement of the Proton-
Proton Total Cross Section at

√
s = 8 TeV”. Phys. Rev. Lett. 111.1 (2013),

p. 012001. doi: 10.1103/PhysRevLett.111.012001.

[44] J. Beringer et al. “Review of Particle Physics (RPP)”. Phys. Rev. D86
(2012), p. 010001. doi: 10.1103/PhysRevD.86.010001.

[45] T. Regge. “Introduction to complex orbital momenta”. Nuovo Cim. 14
(1959), p. 951. doi: 10.1007/BF02728177.

[46] G. Chew and S. C. Frautschi. “Principle of Equivalence for All Strongly
Interacting Particles Within the S Matrix Framework”. Phys. Rev. Lett. 7
(1961), pp. 394–397. doi: 10.1103/PhysRevLett.7.394.

[47] G. Chew and S. C. Frautschi. “Regge Trajectories and the Principle of
Maximum Strength for Strong Interactions”. Phys. Rev. Lett. 8 (1962),
pp. 41–44. doi: 10.1103/PhysRevLett.8.41.

[48] A. Donnachie and P. V. Landshoff. “Total cross-sections”. Phys. Lett.
B296 (1992), pp. 227–232. doi: 10.1016/0370-2693(92)90832-O. arXiv:
hep-ph/9209205.

http://dx.doi.org/10.1140/epjc/s10052-013-2456-0
http://arxiv.org/abs/1208.4968
http://dx.doi.org/10.1103/PhysRevD.45.92
http://dx.doi.org/10.1103/PhysRevD.45.92
http://dx.doi.org/10.1007/BF01496594
http://dx.doi.org/10.1103/PhysRevD.54.4244
http://dx.doi.org/10.1103/PhysRevD.54.4244
http://arxiv.org/abs/hep-ph/9509373
http://dx.doi.org/10.1103/RevModPhys.57.563
http://dx.doi.org/10.1103/PhysRevLett.111.012001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1007/BF02728177
http://dx.doi.org/10.1103/PhysRevLett.7.394
http://dx.doi.org/10.1103/PhysRevLett.8.41
http://dx.doi.org/10.1016/0370-2693(92)90832-O
http://arxiv.org/abs/hep-ph/9209205


Bibliography 87

[49] J.-R. Cudell, K. Kang, and S. K. Kim. “Bounds on the soft pomeron
intercept”. Phys. Lett. B395 (1997), pp. 311–317. arXiv: hep-ph/9601336.

[50] J.-R. Cudell et al. “Benchmarks for the forward observables at RHIC,
the Tevatron Run II and the LHC”. Phys. Rev. Lett. 89 (2002), p. 201801.
doi: 10.1103/PhysRevLett.89.201801. arXiv: hep-ph/0206172.

[51] L. Lipatov. “Reggeization of the Vector Meson and the Vacuum Sin-
gularity in Nonabelian Gauge Theories”. Sov. J. Nucl. Phys. 23 (1976),
pp. 338–345.

[52] V. S. Fadin, E. Kuraev, and L. Lipatov. “On the Pomeranchuk Singularity
in Asymptotically Free Theories”. Phys. Lett. B60 (1975), pp. 50–52. doi:
10.1016/0370-2693(75)90524-9.

[53] E. Kuraev, L. Lipatov, and V. S. Fadin. “The Pomeranchuk Singularity
in Nonabelian Gauge Theories”. Sov. Phys. JETP 45 (1977), pp. 199–204.

[54] I. Balitsky and L. Lipatov. “The Pomeranchuk Singularity in Quantum
Chromodynamics”. Sov. J. Nucl. Phys. 28 (1978), pp. 822–829.

[55] V. Gribov. “A Reggeon Diagram Technique”. Sov. Phys. JETP 26 (1968),
pp. 414–422.

[56] A. Kaidalov. “Diffractive Production Mechanisms”. Phys. Rept. 50 (1979),
pp. 157–226. doi: 10.1016/0370-1573(79)90043-7.

[57] D. Amati, A. Stanghellini, and S. Fubini. “Theory of high-energy scatter-
ing and multiple production”. Nuovo Cim. 26 (1962), pp. 896–954. doi:
10.1007/BF02781901.

[58] V. Abramovsky, V. Gribov, and O. Kancheli. “Character of Inclusive
Spectra and Fluctuations Produced in Inelastic Processes by Multi-
Pomeron Exchange”. Yad. Fiz. 18 (1973), pp. 595–616.

[59] M. Baker and K. Ter-Martirosian. “Gribov’s Reggeon Calculus: Its Phys-
ical Basis and Implications”. Phys. Rept. 28 (1976), pp. 1–143. doi: 10.
1016/0370-1573(76)90002-8.

[60] F. Abe et al. “Double parton scattering in pp collisions at
√

s = 1.8 TeV”.
Phys. Rev. D56 (1997), pp. 3811–3832. doi: 10.1103/PhysRevD.56.3811.

[61] M. Bähr, J. M. Butterworth, and M. H. Seymour. “The Underlying
Event and the Total Cross Section from Tevatron to the LHC”. JHEP 01
(2009), p. 065. doi: 10.1088/1126-6708/2009/01/065. arXiv: 0806.2949
[hep-ph].

[62] J. Butterworth, J. R. Forshaw, and M. Seymour. “Multiparton interactions
in photoproduction at HERA”. Z. Phys. C72 (1996), pp. 637–646. doi:
10.1007/s002880050286. arXiv: hep-ph/9601371.

http://arxiv.org/abs/hep-ph/9601336
http://dx.doi.org/10.1103/PhysRevLett.89.201801
http://arxiv.org/abs/hep-ph/0206172
http://dx.doi.org/10.1016/0370-2693(75)90524-9
http://dx.doi.org/10.1016/0370-1573(79)90043-7
http://dx.doi.org/10.1007/BF02781901
http://dx.doi.org/10.1016/0370-1573(76)90002-8
http://dx.doi.org/10.1016/0370-1573(76)90002-8
http://dx.doi.org/10.1103/PhysRevD.56.3811
http://dx.doi.org/10.1088/1126-6708/2009/01/065
http://arxiv.org/abs/0806.2949
http://arxiv.org/abs/0806.2949
http://dx.doi.org/10.1007/s002880050286
http://arxiv.org/abs/hep-ph/9601371


88 Bibliography

[63] M. Bähr. “Underlying Event Simulation in the Herwig++ Event Genera-
tor”. PhD thesis. 2008. url: http://digbib.ubka.uni-karlsruhe.de/
volltexte/1000010075.

[64] A. A. Affolder et al. “Charged jet evolution and the underlying event in
pp collisions at 1.8 TeV”. Phys. Rev. D65 (2002), p. 092002. doi: 10.1103/
PhysRevD.65.092002.

[65] I. Borozan and M. H. Seymour. “An eikonal model for multiparticle
production in hadron hadron interactions”. JHEP 09 (2002), p. 015. arXiv:
hep-ph/0207283.

[66] G. ’t Hooft. “A planar diagram theory for strong interactions”. Nucl.
Phys. B72 (1974), p. 461. doi: 10.1016/0550-3213(74)90154-0.

[67] S. Plätzer and M. Sjödahl. “Subleading Nc improved Parton Showers”.
JHEP 1207 (2012), p. 042. doi: 10.1007/JHEP07(2012)042. arXiv: 1201.
0260 [hep-ph].

[68] S. Gieseke et al. “Herwig++ 1.0: An Event Generator for e+e− Annihila-
tion”. JHEP 02 (2004), p. 005. arXiv: hep-ph/0311208.

[69] S. Gieseke, C. Röhr, and A. Siódmok. “Colour reconnections in Her-
wig++”. Eur. Phys. J. C72 (2012), p. 2225. doi: 10.1140/epjc/s10052-
012-2225-5. arXiv: 1206.0041 [hep-ph].

[70] S. Gieseke et al. “Minimum bias and underlying event developments
in Herwig++”. (2010), pp. 194–198. doi: 10.3204/DESY-PROC-2010-
01/236.

[71] S. Gieseke, C. A. Röhr, and A. Siódmok. “Tuning of the multiple parton
interaction model in Herwig++ using early LHC data”. (2012), pp. 67–74.
doi: 10.3204/DESY-PROC-2012-03/48.

[72] S. Gieseke, C. Röhr, and A. Siódmok. “The Underlying Event in Her-
wig++”. (2012), pp. 785–788. doi: 10.3204/DESY-PROC-2012-02/367.
arXiv: 1206.2205 [hep-ph].

[73] S. Gieseke, C. Röhr, and A. Siódmok. “Multiparton interactions in
Herwig++”. (2012), pp. 51–56. doi: 10.3204/DESY-PROC-2012-03/45.

[74] S. Gieseke, C. Röhr, and A. Siódmok. “Multiple Partonic Interactions in
Herwig++”. Acta Phys. Polon. Supp. 6 (2013), pp. 613–620. doi: 10.5506/
APhysPolBSupp.6.613. arXiv: 1302.4892 [hep-ph].

[75] A. Buckley et al. “Systematic event generator tuning for the LHC”. Eur.
Phys. J. C65 (2010), pp. 331–357. doi: 10.1140/epjc/s10052-009-1196-7.
arXiv: 0907.2973 [hep-ph].

[76] S. Gieseke, C. Röhr, and A. Siódmok. “Multiple Partonic Interaction
Developments in Herwig++”. 2011.

[77] P. Bartalini et al. “Multi-Parton Interactions at the LHC”. 2011.

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000010075
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000010075
http://dx.doi.org/10.1103/PhysRevD.65.092002
http://dx.doi.org/10.1103/PhysRevD.65.092002
http://arxiv.org/abs/hep-ph/0207283
http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://dx.doi.org/10.1007/JHEP07(2012)042
http://arxiv.org/abs/1201.0260
http://arxiv.org/abs/1201.0260
http://arxiv.org/abs/hep-ph/0311208
http://dx.doi.org/10.1140/epjc/s10052-012-2225-5
http://dx.doi.org/10.1140/epjc/s10052-012-2225-5
http://arxiv.org/abs/1206.0041
http://dx.doi.org/10.3204/DESY-PROC-2010-01/236
http://dx.doi.org/10.3204/DESY-PROC-2010-01/236
http://dx.doi.org/10.3204/DESY-PROC-2012-03/48
http://dx.doi.org/10.3204/DESY-PROC-2012-02/367
http://arxiv.org/abs/1206.2205
http://dx.doi.org/10.3204/DESY-PROC-2012-03/45
http://dx.doi.org/10.5506/APhysPolBSupp.6.613
http://dx.doi.org/10.5506/APhysPolBSupp.6.613
http://arxiv.org/abs/1302.4892
http://dx.doi.org/10.1140/epjc/s10052-009-1196-7
http://arxiv.org/abs/0907.2973


Bibliography 89

[78] S. Gieseke et al. “Herwig++ 2.5 Release Note”. (2011). arXiv: 1102.1672
[hep-ph].

[79] K. Arnold et al. “Herwig++ 2.6 Release Note”. (2012). arXiv: 1205.4902
[hep-ph].

[80] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by simu-
lated annealing”. Science 220 (1983), pp. 671–680.

[81] G. Abbiendi et al. “Measurement of event shape distributions and
moments in e+e−→ hadrons at 91 GeV – 209 GeV and a determination
of αs”. Eur. Phys. J. C40 (2005), pp. 287–316. doi: 10.1140/epjc/s2005-
02120-6. arXiv: hep-ex/0503051.

[82] G. Abbiendi et al. “A simultaneous measurement of the QCD colour
factors and the strong coupling”. Eur. Phys. J. C20 (2001), pp. 601–615.
doi: 10.1007/s100520100699. arXiv: hep-ex/0101044.

[83] K. Ackerstaff et al. “Measurements of flavour dependent fragmentation
functions in Z0 → qq̄ events”. Eur. Phys. J. C7 (1999), pp. 369–381. doi:
10.1007/s100529901067. arXiv: hep-ex/9807004.

[84] P. Pfeifenschneider et al. “QCD analyses and determinations of αS
in e+e− annihilation at energies between 35 GeV and 189 GeV”. Eur.
Phys. J. C17 (2000), pp. 19–51. doi: 10.1007/s100520000432. arXiv:
hep-ex/0001055.

[85] P. Abreu et al. “Strange baryon production in Z hadronic decays”. Z.
Phys. C67 (1995), pp. 543–554. doi: 10.1007/BF01553980.

[86] P. Abreu et al. “Tuning and test of fragmentation models based on
identified particles and precision event shape data”. Z. Phys. C73 (1996),
pp. 11–60. doi: 10.1007/s002880050295.

[87] R. Barate et al. “Studies of quantum chromodynamics with the ALEPH
detector”. Phys. Rept. 294 (1998), pp. 1–165. doi: 10 . 1016 / S0370 -
1573(97)00045-8.

[88] D. Decamp et al. “Measurement of the charged particle multiplicity
distribution in hadronic Z decays”. Phys. Lett. B273 (1991), pp. 181–192.
doi: 10.1016/0370-2693(91)90575-B.

[89] A. Heister et al. “Studies of QCD at e+e− centre-of-mass energies be-
tween 91 GeV and 209 GeV”. Eur. Phys. J. C35 (2004), pp. 457–486. doi:
10.1140/epjc/s2004-01891-4.

[90] D. Duchesneau. “New method based on energy and particle flow in
e+e− → W+W− → hadron events for color reconnection studies”.
(2000).

[91] A. Buckley et al. “Rivet user manual”. (2010). arXiv: 1003.0694 [hep-ph].

http://arxiv.org/abs/1102.1672
http://arxiv.org/abs/1102.1672
http://arxiv.org/abs/1205.4902
http://arxiv.org/abs/1205.4902
http://dx.doi.org/10.1140/epjc/s2005-02120-6
http://dx.doi.org/10.1140/epjc/s2005-02120-6
http://arxiv.org/abs/hep-ex/0503051
http://dx.doi.org/10.1007/s100520100699
http://arxiv.org/abs/hep-ex/0101044
http://dx.doi.org/10.1007/s100529901067
http://arxiv.org/abs/hep-ex/9807004
http://dx.doi.org/10.1007/s100520000432
http://arxiv.org/abs/hep-ex/0001055
http://dx.doi.org/10.1007/BF01553980
http://dx.doi.org/10.1007/s002880050295
http://dx.doi.org/10.1016/S0370-1573(97)00045-8
http://dx.doi.org/10.1016/S0370-1573(97)00045-8
http://dx.doi.org/10.1016/0370-2693(91)90575-B
http://dx.doi.org/10.1140/epjc/s2004-01891-4
http://arxiv.org/abs/1003.0694


90 Bibliography

[92] J. Pumplin et al. “New generation of parton distributions with un-
certainties from global QCD analysis”. JHEP 07 (2002), p. 012. arXiv:
hep-ph/0201195.

[93] A. Sherstnev and R. S. Thorne. “Parton Distributions for LO Generators”.
Eur. Phys. J. C55 (2008), pp. 553–575. doi: 10.1140/epjc/s10052-008-
0610-x. arXiv: 0711.2473 [hep-ph].

[94] R. Engel. “Hadronic interactions of photons at high energies”. PhD
thesis. 1997.

[95] E.-J. Ahn et al. “Cosmic ray interaction event generator SIBYLL 2.1”.
Phys. Rev. D80 (2009), p. 094003. doi: 10.1103/PhysRevD.80.094003.
arXiv: 0906.4113 [hep-ph].

[96] C. Pajares, A. Varias, and P. Yepes. “Reggeon Calculus at Collider
Energies”. Z. Phys. C19 (1983), pp. 89–93. doi: 10.1007/BF01572342.

[97] M. Ryskin, A. Martin, and V. Khoze. “High-energy strong interactions:
from ‘hard’ to ‘soft’”. Eur. Phys. J. C71 (2011), p. 1617. doi: 10.1140/
epjc/s10052-011-1617-2. arXiv: 1102.2844 [hep-ph].

[98] G. Aielli et al. “Proton-air cross section measurement with the ARGO-
YBJ cosmic ray experiment”. Phys. Rev. D80 (2009), p. 092004. doi:
10.1103/PhysRevD.80.092004. arXiv: 0904.4198 [hep-ex].

[99] R. Battiston et al. “Measurement of the Proton-Antiproton Elastic and
Total Cross-section at a Center-of-mass Energy of 540 GeV”. Phys. Lett.
B117 (1982), p. 126. doi: 10.1016/0370-2693(82)90888-7.

[100] G. Arnison et al. “Elastic and Total Cross-section Measurement at the
CERN Proton - Antiproton Collider”. Phys. Lett. B128 (1983), p. 336. doi:
10.1016/0370-2693(83)90271-X.

[101] C. Augier et al. “Measurement of the proton-antiproton total cross-
section at the SppS collider by a luminosity dependent method”. Phys.
Lett. B344 (1995), pp. 451–454. doi: 10.1016/0370-2693(94)01485-U.

[102] F. Abe et al. “Measurement of the pp total cross-section at
√

s = 546 GeV
and 1800 GeV”. Phys. Rev. D50 (1994), pp. 5550–5561. doi: 10.1103/
PhysRevD.50.5550.

[103] M. Bozzo et al. “Measurement of the Proton-Antiproton Total and Elastic
Cross-Sections at the CERN SPS Collider”. Phys. Lett. B147 (1984), p. 392.
doi: 10.1016/0370-2693(84)90139-4.

[104] G. Alner et al. “Antiproton-proton cross sections at 200 and 900 GeV
c.m. energy”. Z. Phys. C32 (1986), pp. 153–161. doi: 10.1007/BF01552491.

http://arxiv.org/abs/hep-ph/0201195
http://dx.doi.org/10.1140/epjc/s10052-008-0610-x
http://dx.doi.org/10.1140/epjc/s10052-008-0610-x
http://arxiv.org/abs/0711.2473
http://dx.doi.org/10.1103/PhysRevD.80.094003
http://arxiv.org/abs/0906.4113
http://dx.doi.org/10.1007/BF01572342
http://dx.doi.org/10.1140/epjc/s10052-011-1617-2
http://dx.doi.org/10.1140/epjc/s10052-011-1617-2
http://arxiv.org/abs/1102.2844
http://dx.doi.org/10.1103/PhysRevD.80.092004
http://arxiv.org/abs/0904.4198
http://dx.doi.org/10.1016/0370-2693(82)90888-7
http://dx.doi.org/10.1016/0370-2693(83)90271-X
http://dx.doi.org/10.1016/0370-2693(94)01485-U
http://dx.doi.org/10.1103/PhysRevD.50.5550
http://dx.doi.org/10.1103/PhysRevD.50.5550
http://dx.doi.org/10.1016/0370-2693(84)90139-4
http://dx.doi.org/10.1007/BF01552491


Bibliography 91

[105] N. A. Amos et al. “Measurement of ρ, the ratio of the real to imaginary
part of the pp forward elastic scattering amplitude, at

√
s = 1.8 TeV”.

Phys. Rev. Lett. 68 (1992), pp. 2433–2436. doi: 10.1103/PhysRevLett.68.
2433.

[106] M. Honda et al. “Inelastic cross-section for p-air collisions from air
shower experiment and total cross-section for pp collisions at SSC en-
ergy”. Phys. Rev. Lett. 70 (1993), pp. 525–528. doi: 10.1103/PhysRevLett.
70.525.

[107] G. Antchev et al. “Luminosity-independent measurements of total,
elastic and inelastic cross-sections at

√
s = 7 TeV”. Europhys. Lett. 101

(2013), p. 21004. doi: 10.1209/0295-5075/101/21004.

[108] G. Antchev et al. “Measurement of proton-proton elastic scattering and
total cross-section at

√
s = 7 TeV”. Europhys. Lett. 101 (2013), p. 21002.

doi: 10.1209/0295-5075/101/21002.

[109] R. Baltrusaitis et al. “Total Proton Proton Cross-Section at
√

s = 30 TeV”.
Phys. Rev. Lett. 52 (1984), pp. 1380–1383. doi: 10.1103/PhysRevLett.52.
1380.

[110] P. Abreu et al. “Measurement of the proton-air cross-section at
√

s =
57 TeV with the Pierre Auger Observatory”. Phys. Rev. Lett. 109 (2012),
p. 062002. doi: 10.1103/PhysRevLett.109.062002. arXiv: 1208.1520
[hep-ex].

[111] F. Abe et al. “Measurement of pp single diffraction dissociation at√
s = 546 GeV and 1800 GeV”. Phys. Rev. D50 (1994), pp. 5535–5549. doi:

10.1103/PhysRevD.50.5535.

[112] D. Bernard et al. “The Cross-section of Diffraction Dissociation at the
CERN SPS Collider”. Phys. Lett. B186 (1987), p. 227. doi: 10.1016/0370-
2693(87)90285-1.

[113] R. Ansorge et al. “Diffraction Dissociation at the CERN Pulsed Collider
at CM Energies of 900 GeV and 200 GeV”. Z. Phys. C33 (1986), p. 175.
doi: 10.1007/BF01411134.

[114] N. A. Amos et al. “A Luminosity-independent Measurement of the pp
Total Cross-section at

√
s = 1.8 TeV”. Phys. Lett. B243 (1990), pp. 158–164.

doi: 10.1016/0370-2693(90)90973-A.

[115] N. A. Amos et al. “Diffraction dissociation in pp collisions at
√

s =
1.8 TeV”. Phys. Lett. B301 (1993), pp. 313–316. doi: 10 . 1016 / 0370 -
2693(93)90707-O.

[116] G. Aad et al. “Measurement of the Inelastic Proton-Proton Cross-Section
at
√

s = 7 TeV with the ATLAS Detector”. Nature Commun. 2 (2011),
p. 463. doi: 10.1038/ncomms1472. arXiv: 1104.0326 [hep-ex].

http://dx.doi.org/10.1103/PhysRevLett.68.2433
http://dx.doi.org/10.1103/PhysRevLett.68.2433
http://dx.doi.org/10.1103/PhysRevLett.70.525
http://dx.doi.org/10.1103/PhysRevLett.70.525
http://dx.doi.org/10.1209/0295-5075/101/21004
http://dx.doi.org/10.1209/0295-5075/101/21002
http://dx.doi.org/10.1103/PhysRevLett.52.1380
http://dx.doi.org/10.1103/PhysRevLett.52.1380
http://dx.doi.org/10.1103/PhysRevLett.109.062002
http://arxiv.org/abs/1208.1520
http://arxiv.org/abs/1208.1520
http://dx.doi.org/10.1103/PhysRevD.50.5535
http://dx.doi.org/10.1016/0370-2693(87)90285-1
http://dx.doi.org/10.1016/0370-2693(87)90285-1
http://dx.doi.org/10.1007/BF01411134
http://dx.doi.org/10.1016/0370-2693(90)90973-A
http://dx.doi.org/10.1016/0370-2693(93)90707-O
http://dx.doi.org/10.1016/0370-2693(93)90707-O
http://dx.doi.org/10.1038/ncomms1472
http://arxiv.org/abs/1104.0326


92 Bibliography

[117] Inelastic pp cross section at 7 TeV. Tech. rep. CMS-PAS-FWD-11-001. Gene-
va: CERN, 2011.

[118] F. Abe et al. “Measurement of small angle pp elastic scattering at√
s = 546 GeV and 1800 GeV”. Phys. Rev. D50 (1994), pp. 5518–5534. doi:

10.1103/PhysRevD.50.5518.

[119] C. Avila et al. “A Measurement of the proton-antiproton total cross-
section at

√
s = 1.8 TeV”. Phys. Lett. B445 (1999), pp. 419–422. doi:

10.1016/S0370-2693(98)01421-X.

[120] R. Battiston et al. “First Results on Low Momentum Transfer Elastic
Scattering at the CERN Proton-Antiproton Collider”. Phys. Lett. B115
(1982), p. 333. doi: 10.1016/0370-2693(82)90382-3.

[121] N. A. Amos et al. “pp elastic scattering at
√

s = 1020 GeV”. Nuovo Cim.
A106 (1993), pp. 123–132. doi: 10.1007/BF02771512.

[122] F. W. Bopp et al. “New parton structure functions and mini-jets in the
two component dual parton model”. Phys. Rev. D49 (1994), pp. 3236–
3247. doi: 10.1103/PhysRevD.49.3236.

[123] M. H. Seymour and A. Siódmok. “Constraining MPI models using
σeffective and recent Tevatron and LHC Underlying Event data”. (2013).
arXiv: 1307.5015 [hep-ph].

[124] E. Luna et al. “Diffractive dissociation re-visited for predictions at the
LHC”. Eur. Phys. J. C59 (2009), pp. 1–12. doi: 10.1140/epjc/s10052-
008-0793-1. arXiv: 0807.4115 [hep-ph].

http://dx.doi.org/10.1103/PhysRevD.50.5518
http://dx.doi.org/10.1016/S0370-2693(98)01421-X
http://dx.doi.org/10.1016/0370-2693(82)90382-3
http://dx.doi.org/10.1007/BF02771512
http://dx.doi.org/10.1103/PhysRevD.49.3236
http://arxiv.org/abs/1307.5015
http://dx.doi.org/10.1140/epjc/s10052-008-0793-1
http://dx.doi.org/10.1140/epjc/s10052-008-0793-1
http://arxiv.org/abs/0807.4115


Acknowledgements

In the first place, I would like to thank Stefan Gieseke for his inspiring
supervision throughout my PhD. I learned a lot from him during the
last years. I would like to thank him particularly for always making time
for me when I had questions. I would like to thank Dieter Zeppenfeld
for agreeing to be my second supervisor. I am particularly thankful for
his valuable feedback on my work. I am grateful to both my supervisors
for giving me the possibility to attend numerous workshops, schools
and conferences, from which I could gain insight into various aspects of
elementary particle physics and related topics.

Further thanks go to all members of the Herwig collaboration for
critical discussions and support. In this context, I would particularly
like to thank Andrzej Síodmok for the very pleasant collaboration.

Many thanks go to Adam Davison and Jon Butterworth, from whom
I learned a lot about experimental aspects of collider physics during my
stay at UCL in London. Furthermore, I would like to thank Ralph Engel
and Anatoli Fedynitch for inspiring discussions about the diffraction
model in Phojet. I would also like to thank Markus Diehl, Jeff Forshaw,
Simon Plätzer and Mike Seymour for fruitful discussions on diffraction.

I would like to thank the members of the Institut für Theoretische
Physik for always creating a nice atmosphere. Special thanks go to
Bastian Feigl, Ramona Gröber, Christian Hangst and Franziska Schissler
for supporting me by proofreading this thesis. It was a pleasure for
me to work with Johannes Bellm, Bastian Feigl, Thomas Hermann, Jens
Hoff, Peter Marquard and Robin Roth on the system administration for
the ITP and TTP institutes. I would like to thank them for their work
and pleasant collaboration.

This work was in part supported by the Helmholtz Alliance “Physics
at the Terascale”, the Bundesministerium für Bildung und Forschung
and the EU Marie Curie Research Training Network MCnet.

Finally, I would like to thank Jorinne Sturm and my family for their
support and patience.


	Introduction
	Foundations
	Relativistic scattering
	Impact parameter representation
	Regge poles
	The pomeron
	Multi-reggeon amplitudes
	AGK cutting rules
	Eikonal model

	Multiple parton interactions
	Multiple hard interactions
	Soft interactions
	Monte-Carlo implementation
	Large-NC limit
	Cluster hadronization
	Hadronization in hadron collisions


	Colour reconnections
	Limitations of the bare MPI model
	Implementation
	Plain colour reconnection model
	Statistical colour reconnection model

	Results at parton level
	Colour length
	Differential distributions
	Classification of clusters
	Resulting physics implications

	Colour reconnections in epluseminus collisions
	Hadronization tune
	Hadronic W pair production

	Tuning to data from hadron colliders
	General tuning procedure
	Tuning to diffraction-reduced minimum-bias data
	Tuning to underlying-event data
	Energy dependence of underlying-event tunes
	Minimum-bias data at 7 TeV

	Conclusions

	Diffractive cross sections in the eikonal model
	Two-channel eikonal model
	Matrix formalism
	Cross sections in the two-channel eikonal model
	Eikonal matrix diagonalization

	Impact parameter amplitudes
	Enhanced pomeron diagrams
	Eikonal functions of enhanced processes
	Coupling matrices of enhanced processes
	Inclusive cross sections
	Unitarity cuts of enhanced amplitudes
	AGK weights for multiple enhanced diagrams

	Fit to hadron collider and cosmic-ray data
	Definition of observables for comparison with data
	Model parameters
	Fitting procedure and results

	Conclusions

	Summary
	Eikonal matrices
	Derivation of eikonal matrices
	Eikonal matrix diagonalization

	Cross sections in the two-channel eikonal model
	Only single-pomeron amplitudes
	Full model including enhanced diagrams

	Enhanced pomeron amplitudes
	Bibliography

