
Behavior-based Control for Service Robots
inspired by Human Motion Patterns

A robotic shopping assistant

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)
Universität des Landes Baden-Württemberg

und nationales Forschungszentrum
in der Helmholtz-Gesellschaft

genehmigte

Dissertation

von

Michael Göller
aus Köln-Porz

Tag der mündlichen Prüfung: 21.Oktober 2013

Erster Gutachter: Prof. Dr.-Ing. Rüdiger Dillmann

Zweiter Gutachter: Univ.-Prof. Dr.-Ing. Horst-Michael Groß

Danksagung

Die vorliegende Arbeit ist während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Forschungszen-

trum Informatik in der Abteilung Interaktive Diagnose und Servicesystem entstanden. An dieser Stelle

möchte ich dem damaligen Abteilungsleiter und heutigen Direktor Marius Zöllner und seinem Nachfolger

Thilo Kerscher, der auch schon meine Diplomarbeit betreut hatte, dafür danken, dass sie mir diese große

Chance ermöglicht haben.

Mein besonderer Dank für die Betreuung meiner Arbeit gilt meinem Doktorvater Professor Dillmann und

sowie meinem Zweitgutachter Professor Großvon der TU Ilmenau, der mich schon als Reviewer in meinem

ersten Projekt mit seinem Feedback auf den richtigen Weg brachte und dessen Arbeiten am Einkaufs-

Assistenzroboter TOOMAS für mich immer ein großes Vorbild gewesen sind.

Danken möchte ich weiterhin einer Reihe von Personen, die wichtige Inspirationen für diese Arbeit

geliefert haben: Malco Blümel, ein Informatiker mit Begeisterung für Verkehrswissenschaften, der mich auf

die Simulation von Fußgängerströmen aufmerksam machte, Helge Hüttenrauch von der Kungliga Tekniska

Högskolan (KTH, Stockholm), der mich schon früh auf die Schnittmenge meiner Gedanken mit T.B. Sheri-

dans Veröffentlichungen hinwies, Cristian Bogdan (ebenfalls von der KTH) für die fruchtbaren Diskussio-

nen zum Thema human factors in der Robotik, sowie Jan Albiez, der mich mit seiner Vorlesung an der

Universität Karlsruhe für Biologisch motivierte Robotersysteme und verhaltensbasierte Steuerungen begeis-

tert hat.

Glücklicherweise konnte meine Arbeit außergewöhnlich viele Studenten begeistern. Ohne sie wäre die

Implementierung einer solch umfangreichen Steuerung niemals möglich gewesen.

Besonderer Dank gebührt zwei Studenten, die mich fast über die gesamte Zeit - als Studienarbeiter, dann

als wissenschaftliche Hilfskraft und schließlich mit ihrer Diplomarbeit - unterstützt haben: Fabian Stehle

und Florian Steinhardt, der schließlich auch zu einem Kollegen wurde.

Auch der Aufbau des Roboters InBOT wäre ohne die tatkräftige Unterstützung durch mehrere Praktikan-

ten und Hiwis, ganz besonders durch Chistian Billet und Anton Gorbunov, nicht möglich gewesen. Ganz

besonderen Dank an dieser Stelle auch an Rolf Stober, der unzählige Komponenten für InBOT sowie für

meine weiteren Projekte gefertigt hat.

Karlsruhe, Januar 2014 Michael Göller

Zusammenfassung

Ziel dieser Arbeit ist es zu zeigen, dass eine verhaltensbasierte Steuerung für Serviceroboter in komplexen

Anwendungen geeignet ist. Hierfür wurde, unter Verwendung menschenähnlicher Bewegungsmuster und

eines verhaltensbasierten Ansatzes, eine Steuerung für mobile Serviceroboter entwickelt, welche Aufgaben-

planung, globale und lokale Navigation in dynamischen Umgebungen sowie die gemeinsame Aufgabenaus-

führung mit einem Benutzer umfasst. Eine verhaltensbasierte Steuerung im Allgemeinen, und das hier ver-

wendete Verhaltensnetzwerk im Speziellen, besteht – im Gegensatz zu einem klassischen allumfassenden

Planer – aus einer Vielzahl von unabhängigen Modulen, die alle eine individuelle Aufgabe verfolgen. Das

Gesamtverhalten des Systems ergibt sich aus der Vereinigung der Einzelverhalten („Emergenz“).

Als roter Faden für die Entwicklung und Evaluation soll das Supermarkt-Szenario dienen. Daher wurde,

parallel zur Entwicklung der Steuerung, der Einkaufswagen-Roboter InBOT „Interactive Behavior-Operated

shopping Trolley“ aufgebaut. Im Zuge des Entwicklungsprozesses mussten drei Teilziele erarbeitet werden:

1. Die verhaltensbasierte Steuerung: Es wurde eine verhaltensbasierte Steuerung entworfen, die den

Anforderungen an einen Service Roboter in einer dynamischen Umgebung genügt, im Besonderen hin-

sichtlich der Navigation und der Benutzerinteraktion. Die Steuerung verfügt über die nötige Robustheit und

Berechenbarkeit, um Aufgaben erfüllen zu können, ohne dabei den Vorteil der Flexibilität und Modularität

einzubüßen. Es konnte gezeigt werden, dass sich gerade ein verhaltensbasierter Ansatz sehr gut eignet, um

die Herausforderungen des Szenarios zu meistern.

2. Das Navigationskonzept: Es wurde ein Navigationskonzept entworfen, das den Roboter in einem dy-

namischen Umfeld sicher navigieren lässt. Neben der lokalen und globalen Pfadplanung kann mit mobilen

Hindernissen sicher umgegangen werden. Das Navigationssystem kommt ohne globale metrische Karte aus,

und ist somit von Änderungen in der Umgebung unabhängig.

3. Die Anwendung: Die Steuerung ermöglicht es dem Roboter Aufgaben für – und mit – dem Men-

schen zu erledigen. Steuerung und Benutzer üben hierbei die tatsächliche Kontrolle über die Bewegung des

Roboters gemeinsam aus („control sharing“), anstatt – wie häufig vorgefunden – in einem Zyklus aus ab-

wechselndem Befehl und Ausführung zu arbeiten („control trading“). Um dem Benutzer die Fähigkeiten des

Roboters möglichst flexibel zur Verfügung zu stellen, wurden fünf Steuerungsmodi realisiert: autonomous,

guiding, following, servoing und manual control. Die Anforderungen der Anwender wurde im Entwick-

lungsprozess berücksichtigt: Einige der high-level Requirements resultieren aus einer Umfrage; außerdem

wurde das fertige System in Anwenderstudien evaluiert.

Die zentrale Inspiration für die Steuerung kommt von einem Modell des Bewegungsverhaltens von Fuß-

gängern, das in Form einer hybriden, hierarchichen Steuerungsarchitektur umgesetzt wurde. Die einzel-

nen funktionalen Module sind in drei Schichten zusammengefasst: in die strategische, die taktische und

die reaktive Schicht. Ergänzt werden diese drei funktionalen Schichten durch eine anwendungsspezifische

Kommunikationsschicht und eine plattformabhängige Hardware-Abstraktionsschicht. Da die globale Navi-

gation der strategischen Schicht auf einer topologischen Navigation aufbaut, kommt die Steuerung ohne

eine globale metrische Karte aus, die ständig aktualisiert werden müsste.

Kurzfassung

Bisher werden Serviceroboter meist getrennt von ungeschulten Menschen eingesetzt und dürfen nur von

speziell ausgebildetem Personal bedient werden. Der Einsatz erfolgt in einer möglichst statischen Umge-

bung, um dem Roboter die Navigation zu erleichtern und eine sonst notwendige, regelmäßige Anpassung

der gespeicherten Karte zu vermeiden.

Beispiele können etwa Flurförderfahrzeuge sein, die in Krankenhäusern in den Versorgungsgängen einge-

setzt werden und dort Lebensmittel und Wäsche liefern. In den Versorgungsgängen dürfen sich nur An-

gestellte aufhalten, jedoch keine Patienten. Auch bei Reinigungs- oder Inspektionsrobotern wird der Mensch

eher als Hindernis betrachtet statt als Partner.

Ziel dieser Dissertation ist es zu zeigen, dass eine verhaltensbasierte Steuerung geeignet ist, um Ser-

viceroboter in komplexe Anwendungen in öffentlichen Bereichen einzubringen. Hierfür wurde unter Ver-

wendung eines verhaltensbasierten Ansatzes, eine Steuerung für mobile Serviceroboter entwickelt, die Auf-

gabenplanung, globale und lokale Navigation in dynamischen Umgebungen sowie die gemeinsame Auf-

gabenausführung zusammen mit einem Benutzer umfasst. Die zentrale Inspiration kommt hierbei von einem

Modell des Bewegungsverhaltens von Fußgängern, das in Form einer hybriden, hierarchischen Steuerungsar-

chitektur umgesetzt wurde.

Aufgrund seiner Komplexität und Dynamik diente ein spezielles Szenario bei der Entwicklung der Steu-

erung als roter Faden: Einkaufen in einem Supermarkt, mit Unterstützung durch den im Rahmen dieser

Arbeit entwickelten Roboter InBOT („Interactive Behavior-Operated shopping Trolley“). Hierfür wurden,

ergänzend zur Kernsteuerung, exemplarisch anwendungsspezifische Fähigkeiten entwickelt, oder beste-

hende integriert, um die Steuerung im Kontext dieses Anwendungsszenarios testen zu können. Um bei

der Evaluation die nötige Tiefe zu erreichen, wurde für dieses Szenario ein im Labor nachgebildeter, kleiner

Supermarkt genutzt, in dem InBOT von nicht trainierten Benutzern als Einkaufshilfe verwendet wurde.

Das gewählte Szenario stellt viele Herausforderungen an den Roboter und an die Steuerung: Der Roboter

soll groß genug sein, um Waren transportieren zu können, dabei jedoch trotz seiner Größe und Form in

der Lage sein, in engen Gängen voller Hindernisse operieren zu können. Hierfür muss der Roboter, gleich

einem normalen Einkaufswagen, über ein holonomes Fahrwerk verfügen. Das bedeutet jedoch, dass der

Gefahrenbereich des Roboters nicht nur vorne und hinten ist, sondern volle 360 Grad umfasst. Hinzu kommt,

dass Supermärkte viele nicht-statische, sich zum Teil sogar selbst bewegende, Hindernisse beherbergen, die

sowohl die Navigation des Roboters wie auch die Kartierung der Umgebung behindern. Und schließlich

muss der Roboter, entsprechend seiner Rolle als Einkaufsassistent, alle Aktionen in Kooperation mit dem

Benutzer durchführen.

Um das Ziel dieser Arbeit zu erreichen wurden Lösungen in drei Themenfelder erarbeitet:

1. Die verhaltensbasierte Steuerung: Es wurde eine verhaltensbasierte Steuerung entworfen, die den

Anforderungen an einen Service Roboter in einer dynamischen Umgebung genügt, insbesondere hin-

sichtlich der Navigation und der Benutzerinteraktion. Die Steuerung weist die nötige Robustheit und

Berechenbarkeit auf, um Aufgaben erfüllen zu können, ohne dabei den Vorteil der Flexibilität und

Modularität einzubüßen. Es wurde gezeigt, dass sich gerade ein verhaltensbasierter Ansatz sehr gut

eignet um die Herausforderungen des Szenarios zu meistern.

2. Das Navigationskonzept: Es wurde ein Navigationskonzept entworfen, dass den Roboter in einem

dynamischen Umfeld sicher navigieren lässt. Neben der lokalen und globalen Pfadplanung kann

mit mobilen Hindernissen sicher umgegangen werden. Außerdem kommt das Navigationssystem

ohne globale metrische Karte aus, und ist somit von Änderungen in der Umgebung unabhängig. Das

Navigationssystem dieser Arbeit lehnt sich stark an das Bewegungs- und Navigationsverhalten von

Fußgängern an, da diese bekannter Weise in der Lage sind, alle Herausforderungen des Szenarios zu

meistern.

3. Die Anwendung: Die Steuerung ermöglicht es dem Roboter Aufgaben für – und mit – dem Menschen

zu erledigen. Daher waren Roboterverhalten im Gebiet der Mensch-Roboter-Interaktion ein Schwer-

punkt bei der Entwicklung der Steuerung. Dadurch sind Steuerung und Benutzer in der Lage, die

tatsächliche Kontrolle über die Bewegung des Roboters gemeinsam auszuüben („control sharing“).

Diese Art der Kontrolle unterscheidet sich grundsätzlich von der gänigen Vorgehensweise, bei der der

Mensch den Befehl vorgibt und der Roboter ihn danach autonom ausführt („control trading“).

Damit der Benutzer die Fähigkeiten des Roboters in verschiedenen Situationen optimal nutzen kann,

werden ihm über ein multimodales Benutzer-Interface fünf Kontroll-Modi zur Verfügung gestellt:

• Autonomous Mode: Der Roboter erledigt die Aufgabe unabhängig vom Benutzer.
• Guiding Mode: Der Roboter führt den Benutzer an ein Ziel und passt sich dabei an die Bewegung

des Benutzers an, das heißt, er hält immer Kontakt und wartet auf den Benutzer.
• Following Mode: Der Roboter folgt dem Benutzer, navigiert aber selbstständig um Hindernisse

herum.
• Servoing Mode: Der Roboter „imitiert“ die Bewegung des Benutzers.
• Manual Steering Mode: Der Benutzer steuert den Roboter direkt durch ein kraftsensitives Eingabe-

gerät. Auch hierbei navigiert der Roboter selbständig um Hindernisse herum.

Das Konzept für die Steuerung ist durch verschiedene Arbeiten inspiriert. Zunächst ist das Modell von

Fußgängerbewegungen zu nennen, das von S.P. Hoogendoorn im Kontext der Simulation von Evakuierungs-

szenarien aufgestellt wurde. Dieses Modell wurde mit klassischen Konzepten für hierarchische Steuerungs-

architekturen fusioniert. Die unteren beiden Ebene der Architektur wurden durch eine verhaltensbasierte

Steuerung realisiert, die von den Verhaltensnetzwerken, die J. Albiez zum Steuern von Laufmaschinen ent-

worfen hat, inspiriert ist. Orthogonal zur klassischen Top-Down-Konstruktion der in Ebenen organisierten

Architekturen wurde das Konzept des control sharing in der Architektur umgesetzt.

Die resultierende dreischichtige Architektur vereint reaktive und deliberative Verhalten in den unteren

sowie einen Aufgabenplaner mit integrierter topologischer Navigation in den oberen Schichten. Die unter-

schiedlichen Ebenen ermöglichen es, unterschiedliche Anforderungen an die Antwortzeiten zu berücksichti-

gen und einfache von komplexen Aufgaben zu trennen. Zwischen den Schichten befinden sich Schnittstellen,

um die Kapselung und somit die Modularisierung zu ermöglichen. In den unteren Schichten sorgen im

Framework MCA2 implementierte Verhalten der verhaltensbasierten Steuerung für die geforderte Reaktivi-

tät des Systems sowie für ein hohes Maß an Modularität, Rekombinierbarkeit und Erweiterbarkeit.

Die drei von Hoogendoorn inspirierten Schichten sind ergänzt um eine Kommunikationsschicht ober-

halb und eine Hardware-Abstraktionsschicht unterhalb der drei funktionalen Schichten. Passend zu den

Abstraktionsebenen der Befehlsverarbeitung stellt das ebenfalls hierarchische Umweltmodell Daten in ver-

schiedenen Abstraktiongraden zur Verfügung. Außerdem dient das Weltmodell als Schnittstelle zu anderen

Robotersystemen sowie zu in der Umgebung eingebetteten Sensoren.

Die fünf Schichten sind im Folgenden kurz zusammengefasst:

Kommunikationsschicht: Dies ist die anwendungsspezifische Schicht. Sie dient der Befehligung des

Roboters durch einen Benutzer. Im Falle das Einkaufsroboters InBOT findet sich hier ein Touchscreen-

basiertes graphisches Benutzerinterface mit Sprachausgabe, sowie ein Barcode-Reader. Eingaben

dieser Modalitäten werden mittels einer Applikationslogik und einer Produktdatenbank in Aufgaben

wie Fahrbefehle oder Moduswechsel umgewandelt. Über ein definiertes Interface gibt die Kommu-

nikationsschicht diese Aufgaben an die strategische Schicht weiter.

Strategische Schicht: Die strategische Schicht akzeptiert Aufgaben (z.B.: Fahraufträge, Moduswechsel,

etc.) von der Kommunikationsschicht über ein definiertes Protokoll auf TCP-Basis. Sie arbeitet mit

Hilfe einer flexiblen Baumstruktur für die Aufgabenverwaltung sowie einer topologischen Karte für

die globale Navigation. Letztere enthält metrische Annotationen in Form der relativen Koordinaten

der Übergänge zwischen benachbarten topologischen Gebieten. Aus einer durch das Interface von der

Kommunikationsschicht empfangenen Aufgabe – meist ein Fahrauftrag – wird das gewünschte Ziel

extrahiert. Die topologische Navigation plant sodann eine Sequenz von topologischen Gebieten, die

passiert werden müssen, um das Ziel zu erreichen. Daraufhin verfeinert die Routenplanung diesen

Plan, indem sie lokale Koordinaten berechnet, die der Roboter passieren muss, um sein aktuelles

topologisches Gebiet an der richtigen Stelle zu verlassen. Hierbei betritt der Roboter automatisch das

benachbarte topologische Gebiet, woraufhin der Verfeinerungsschritt wiederholt wird. Diese topo-

logischen Navigationspunkte werden in der Baumstruktur zusammen mit den Aufgaben gespeichert

und der jeweils aktuelle Punkt an die nächst tiefere Schicht weitergegeben.

Taktische Schicht: Die taktische Schicht akzeptiert lokale Koordinaten eines anzufahrenden Ziels von der

strategischen Schicht. Diese Koordinaten werden im Zuge einer geometrischen Szenen-Analyse durch

höhere Verhalten mit der Robotergeometrie und einer Liste von segmentierten Objekten, inklusive

deren Eigenschaften, verglichen. Basierend auf statischen Objekten (d.h. Hindernissen) werden Sub-

Ziele definiert, die den Roboter auf einem effizienten Pfad um diese herum steuern. Im Falle von sich

bewegenden Objekten wird deren wahrscheinlicher Pfad prediziert und es werden wiederum Sub-

Ziele berechnet, die den Roboter aus der Gefahrenzone steuern. Die Koordinaten des resultierenden

Sub-Ziels werden an die reaktive Schicht weitergereicht.

Reaktive Schicht: Die reaktive Schicht akzeptiert lokale Zielkoordinaten von der taktischen Schicht. Sie

erfüllt drei Hauptaufgaben, die durch reaktive Verhalten implementiert sind: Der Roboter bewegt sich

in Richtung des (Sub-)Ziels, er weicht Hindernissen wie auch sich bewegenden Objekten aus und im

Notfall stoppt er, um Kollisionen zu verhindern. Hierfür kann die reaktive Schicht auf die Objektliste

mit der Bewegungsprediktion, auf eine lokale Belegtheitskarte, sowie auf die Rohdaten von Entfer-

nungssensoren für eine besonders schnelle Reaktion zurückgreifen. All diese Funktionalitäten werden

von einzelnen Verhalten oder Verhaltensgruppen realisiert, die eine gemeinsame Sprache sprechen:

Sie erzeugen je einen 3D-Sollgeschwindigkeits-Vektor, bestehend aus Translation in X und Y Rich-

tung, sowie der Orientierung. Diese Vektoren werden in mehreren Schritten fusioniert. Der resul-

tierende Vektor wird an die Hardwareabstraktionsschicht weitergereicht, die ihn dann auf der Plat-

tform ausführt.

Hardware Abstraktionschicht: Dies ist die plattformabhängige Schicht. Im Falle des Roboters InBOT

kapselt sie einen holonomen Mecanum Antrieb, aber zum Beispiel im Falle des Roboters Odete einen

Differentialantrieb, so dass 3D Sollgeschwindigkeits-Vektoren (X ,Y,Q) ausgeführt werden können.

Außerdem kapselt sie die Sensoren für Odometrie und globale Positionskorrekturen sowie die jeweili-

gen Sensoren zur Hindernisdetektion. Letztere werden dann in einer Belegtheitskarte zusammenge-

führt.

Die vorliegende Arbeit ist wie folgt aufgebaut:

Das erste Kapitel beschreibt Motivation und Ziel der Arbeit und erarbeitet high-level Requirements. Kapi-

tel zwei untersucht den Stand der Technik im Bereich der Steuerungsarchitekturen, Navigationsmethoden

und der Serviceroboter.

Basierend auf den Ergebnissen der ersten beiden Kapitel wird in Kapitel drei der Entwurf der hierarch-

ischen Steuerungsarchitektur beschrieben, die auf dem Modell des menschlichen Bewegungsverhaltens,

dem control sharing sowie den Verhaltensnetzwerken beruht.

Kapitel vier beschreibt wie in den einzelnen Schichten der Steuerungsarchitektur das Navigationskonzept

umgesetzt wurde, angefangen bei den Sicherheitsverhalten über reaktive Verhalten und die geometrische

Szenenanalyse bis hin zur Aufgabenplanung.

Die Kapitel fünf, sechs und sieben beschreiben jeweils Konzepte, die mehrere Schichten überspannen: die

Handhabung sich bewegender Hindernisse, die Benutzerinteraktion und die Multi-Roboter-Koordination,

die auch mit Hilfe der verhaltensbasierten Architektur realisiert wurden.

Kapitel acht fasst die Arbeit zusammen und diskutiert die Ergebnisse und offene Punkte.

In den Anhängen werden ergänzenden Komponenten beschrieben, die den Rahmen der Arbeit sprengen

würden, wie zum Beispiel das Benutzerinterface, kamerabasiertes Objekttracking oder die Entwicklung des

Roboters InBOT selbst. Außerdem werden Robotersysteme beleuchtet, in denen Komponenten dieser Arbeit

integriert wurden oder werden.

Zusammenfassend kann festgehalten werden, dass erstmals eine verhaltensbasierte Steuerung entwickelt

wurde, die es einem Roboter ermöglicht, Aufgaben zusammen mit einem Benutzer in einer dynamischen,

von Menschen frequentierten Umgebung zu erfüllen. Hierzu wurden bei Menschen beobachtete Verhaltens-

muster mit Hilfe von sogenannten Verhaltensnetzwerken im Framework MCA2 realisiert. Die Leistungs-

fähigkeit der Steuerung wurde in Anwenderstudien unter Beweis gestellt.

Da die globale Navigation auf einer topologischen Navigation aufbaut, wird eine maßgebliche Heraus-

forderung dynamischer Umgebungen gelöst: die Steuerung kommt ohne globale metrische Karte aus, die

ständig aktualisiert werden müsste. Stattdessen übernimmt die topologische Navigation den globalen An-

teil der Navigation, während die verhaltensbasierte Steuerung, die nur auf dem aktuell einsehbaren Bereich

arbeitet, für den lokalen Teil zuständig ist.

Abstract

The goal of this thesis is to demonstrate that a service robot’s control system based on human motion patterns

implemented by Behavior Networks – a special case of a Behavior-Based Control – performs well in com-

plex scenarios involving dynamic environments and human robot interaction, while providing significant

benefits in orchestrating present abilities and integrating new functionalities into the system.

In contrast to conventional approaches based on monolithic trajectory planners, a Behavior-Based Control

consists of a large number of independent behavior modules with individual tasks – the system’s overall

behavior emerges from the individual behaviors.

Providing shopping assistance in supermarkets is the predominant theme of this thesis. Thus, the robotic

shopping cart InBOT (“Interactive Behavior-Operated shopping Trolley”) has been designed to apply the

developed control system.

During the development of the behavior-based control system, three major topics were addressed:

Firstly the behavior-based control system: A control architecture was designed based on Behavior Net-

works which fulfills the demands posed on a service robot in a dynamic environment, in particular naviga-

tion and interaction with a human user. While assuring the required robustness and predictability, the control

system has to preserve its modularity, flexibility, and extensibility.

Secondly the navigation system: As well as getting to the given target, the navigation system has to

be able to cope with a highly dynamic environment including moving obstacles. Additionally, it shall not

depend on a global metrical map in order to be independent from changes in the environment, which can be

expected to take place frequently.

And thirdly the application of the system: As the control system has to facilitate the cooperative task

execution of the robot and the user, both have to be able to simultaneously exert control on the robot’s

action (“control sharing”). This is in contrast to the traditional approach of giving orders to the robot and

then waiting while the robot executes the task autonomously (“control trading”). To facilitate the flexible

utilization of the robot’s abilities, five modes of operation have been implemented: autonomous, guiding,

following, servoing, and manual steering. The potential users were taken into consideration during the

development process: several high-level requirements have been derived from a survey and the complete

system has been evaluated in user studies at the end of this work.

Probably the most important source of inspiration for the design of the presented hierarchical and hybrid

control architecture is a model of pedestrian motion behaviors. The three functional layers (strategic, tactical

and reactive) of the architecture contain the various behavior modules. These three generalized layers are

augmented by an application-specific communication layer and a platform-specific hardware abstraction

layer. The global navigation of the strategic layer is based on topological maps and thus is independent of

local changes to the surroundings, local navigation being assured by the Behavior Network which works

based on current sensor readings, only.

Contents

Danksagung . iii

Zusammenfassung . v

Kurzfassung . vii

Abstract . xi

1 Introduction . 1
1.1 Motivation . 1
1.2 Goal of this thesis . 3
1.3 Recurring theme: scenario supermarket . 5

1.3.1 Infrastructure of the supermarket . 5
1.3.2 Challenges posed by the supermarket scenario 6
1.3.3 Survey with customers at the supermarkets . 8

1.4 High-level requirements for the control system . 12
1.4.1 R2 Human-Robot Interaction capability: user interaction 13
1.4.2 R8 Generalization . 15

1.5 Approach for the service robot ’s control system . 16
1.5.1 Concept of the control architecture . 16
1.5.2 Application-specific part of the control system 17
1.5.3 Evaluation of the control system . 17

1.6 Contribution . 18
1.7 Organization of this work . 18

2 State of the Art . 21
2.1 Brief introduction to pedestrian motion modeling and potential applications in robotics 21
2.2 Control architectures for mobile robots . 26

2.2.1 Deliberative or functional architectures . 26
2.2.2 Reactive architectures . 26
2.2.3 Behavior-based architectures . 27
2.2.4 Hybrid and hierarchical architectures . 34

2.3 Navigation, self-localisation and mapping . 37
2.3.1 RFID-based self-localization . 38
2.3.2 Maps and mapping . 39
2.3.3 Collision avoidance . 40
2.3.4 Path planning . 44

2.4 Service robots . 44
2.4.1 Functional service robots . 44
2.4.2 Social service robots . 46
2.4.3 Shopping assistants and shopping robots . 49

2.5 Discussion and resume . 54

3 The Hybrid Control Architecture . 57
3.1 Inspiration for the control architecture . 57

3.1.1 Model of pedestrian’s motion patterns as blueprint of the navigation system . 58
3.1.2 Hybrid and layered architecture as organizational paradigm 58
3.1.3 Behavior Networks for the implementation of reactive behaviors 59
3.1.4 The concept of control sharing and control trading to enhance user interaction 60

3.2 Design of the control architecture . 60
3.2.1 Design Criteria of the control architecture . 61
3.2.2 Fundamental concepts of the control architecture 61
3.2.3 Incorporation of the components . 63

3.3 The resulting control architecture . 65
3.3.1 The architecture of the infrastructure . 66
3.3.2 The local world model . 66
3.3.3 Interfaces . 68
3.3.4 Data flow . 70
3.3.5 Integration with the MCA2 framework using UComs 70

3.4 Exemplary system architectures . 70
3.5 Summary of the control architecture . 71

4 BBC: Navigation, Obstacle Avoidance and Safety . 73
4.1 Navigation system and control architecture . 73

4.1.1 The communication layer . 75
4.1.2 The strategic layer . 76
4.1.3 The tactical layer . 76
4.1.4 The reactive layer . 77
4.1.5 The Hardware Abstraction Layer . 79

4.2 Sumary of the self-localization concept . 80
4.2.1 Odometry for local self-localization . 80
4.2.2 Global self-localization by floor-mounted RFID barriers 81

4.3 The behavior-based control system implementing the tactical and reactive layers . . 81
4.3.1 Architecture of the Behavior-Based Control . 82

4.4 The reactive behaviors (RB) . 84
4.4.1 RB: Safety behavior . 85
4.4.2 RB: Behaviors for adapting the velocity to the task and the user 87
4.4.3 RB: Avoid Obstacles (AO) – behaviors for the reactive obstacle avoidance of

static obstacles . 88
4.4.4 RB: Look for gaps . 98

4.4.5 RB: Follow Wall . 99
4.4.6 RB: Break Tie . 99
4.4.7 RB: Orientation of the robot . 100
4.4.8 RB: Tasks-oriented input behaviors . 100

4.5 The tactical behaviors . 102
4.5.1 TB: Look for Corners – geometry-based obstacle avoidance and local navi-

gation . 102
4.5.2 TB: Follow Moving Object . 105
4.5.3 TB: Virtual Train . 105
4.5.4 TB: Force Commands . 106
4.5.5 TBG: Geometrical Scene Analysis – tactical behaviors focusing on adapting

to the dynamic environment . 106
4.6 The strategic layer – global navigation and planning 113

4.6.1 Topologic-metric map . 114
4.6.2 Global planning . 114
4.6.3 Evaluation of global planning . 116

4.7 Application logic and communication layer . 116
4.8 Experiments and evaluation . 117

4.8.1 First system test . 117
4.8.2 Second system test . 117
4.8.3 Third system test . 118

4.9 Discussion . 120

5 Avoiding Collisions with Moving Objects . 123
5.1 Reactive avoidance of moving objects . 125

5.1.1 RB: The Escape Behavior . 125
5.1.2 RB: The Evade Behavior . 126
5.1.3 Experimental results . 127

5.2 Proactive avoidance of moving objects using spatio-temporal plans 130
5.2.1 Baseline: Data and pre-processing . 130
5.2.2 Spatio-temporal calculation of safe path using an A⇤ algorithm 131
5.2.3 Optimization of path . 132
5.2.4 Utilization of the Behavior-Based Control . 133
5.2.5 Experimental results using the planner . 133

5.3 Experiments and tests . 134
5.3.1 Comparison of components . 134
5.3.2 Stress test . 134
5.3.3 Overall success rate . 136
5.3.4 System in application . 137

5.4 Discussion . 138

6 User Interaction . 141
6.1 Five modes of operation . 143

6.2 Modalities for interaction and the multimodal user interface 145
6.3 Mode transitions . 146
6.4 Interaction regarding modalities . 147

6.4.1 Interaction based on force input by the user . 147
6.4.2 Interaction based on the observation of the user 150
6.4.3 Interaction based on high level user interface 152

6.5 Tactical behaviors for adapting to and communicating with the user 153
6.6 Sharing and trading of control . 158

6.6.1 Force-based control sharing . 160
6.6.2 Observation-based control sharing . 160
6.6.3 Command-based control trading . 161
6.6.4 Impact of control sharing while operating in the individual modes 162

6.7 Experiments . 162
6.7.1 Experimental evaluation of control sharing and control trading 163
6.7.2 Evaluation of InBOT ’s behavior by potential users 166

7 Multi-Robot Coordination . 171
7.1 Sharing of the local world model . 172
7.2 Multi-robot path arranging behaviors (RB, TB) . 172
7.3 TB: Queueing up . 173
7.4 TB: Virtual train . 174

8 Conclusion, Discussion, and Open Issues . 177
8.1 Summary . 177
8.2 Implementation on multiple robots . 178

8.2.1 Implementation on InBOT . 179
8.2.2 Implementation on ETrolley . 179
8.2.3 Implementation on Odete . 180
8.2.4 Implementation on LAURON . 181
8.2.5 Implementation on CityPod . 181
8.2.6 Implementation on HoLLiE . 182

8.3 Discussion . 182
8.3.1 Behavior-based control system . 183
8.3.2 Dynamic environments . 184
8.3.3 User interaction and control sharing . 185

8.4 Open issues . 186
8.5 Roll out: from the lab to application . 187

A Interdependent Work, List of Publications, and Student’s Theses 189

List of Publications . 191

List of Students’ Theses . 193

B The Interactive Behavior-Operated Trolley (InBOT), InBOT-2, and ETrolley 195
B.1 The robot InBOT2 . 196
B.2 ETrolley . 198
B.3 Electronical layout . 200
B.4 Self-localization . 202

B.4.1 Odometry for local self-localization . 202
B.4.2 Global self-localization by landmarks . 203

B.5 2D Odometry wheels . 205
B.6 Force sensitive handlebar . 207

B.6.1 Sensor concept . 207
B.6.2 Three iterations of the force sensitive handle 209

C Complementary System Components . 213
C.1 Object tracking based on the occupancy grid and planar laser scanners 213

C.1.1 Pre-processing of the grid map . 214
C.1.2 Tracking objects . 214
C.1.3 Updating the tracking history . 214

C.2 Detecting and tracking the user using onboard sensors 215
C.3 The intelligent environment . 217
C.4 The InBOT-UI . 221
C.5 The CR-UI . 224
C.6 The TaPAC Client . 225
C.7 The IDS graph-based navigation system . 225

List of Figures . 226

Bibliography . 231

1. Introduction

1.1. Motivation

In the early 20th century science-fiction authors came up with the idea of robots – intelligent machines

designed to help the people. The first occurrence was in 1921 in Capek’s drama Rossum’s Universal Robots

R.U.R. where humanoid robots are used as a cheap labor force without rights – until they start a rebellion.

Later on, in the year 1927, the movie Metropolis (Fig. 1.1) showed, like its predecessor R.U.R., robots

resembling humans in appearance and abilities. In contrast, the first real robot Unimate (Fig. 1.2) which

was developed in 1954 was only able to perform simple tasks. It served as a programmable manipulator

for cutting and welding die castings in the assembly lines of General Motors. Since then industrial robots

have made major improvements in speed, control and precision and thus form the core of many factories,

especially in Japan, Germany and the USA. For example in Europe in 2007 alone 35000 new robots were

installed [173]. But still, compared to the science-fiction robots from almost 100 years ago, these modern

robots cannot compete in flexibility, intelligence and autonomy.

Fig. 1.1.: The movie Metropolis by Fritz
Lang (1927) (image source: [132])

Fig. 1.2.: Industrial robot Unimate developed by the company Unima-
tion (1961) (image source: [178])

Accompanying technological developments, the idea driving the science-fiction authors was taken up

again: the development of robots which should serve the general populace instead of only being used in

factories – the birth of the service robots. In 1994 the Fraunhofer institute defined:

“Ein Serviceroboter ist eine frei programmierbare Bewegungseinrichtung, die teil-

oder vollautomatisch Dienstleistungen verrichtet. Dienstleistungen sind dabei

Tatigkeiten, die nicht der direkten industriellen Erzeugung von Sachgütern, son-

dern der Verrichtung von Leistungen für Menschen und Einrichtungen dienen.”

(Fraunhofer-Institut, 1994)

1

1. Introduction

This means that service robots shall perform services for the people. These services shall not – in contrast

to robots in general – be aimed at producing goods.

But, up to today only specially trained people are allowed and able to operate the service robots. More-

over, service robots have to operate in special areas which are restricted to trained personnel. The environ-

ment is kept as static as possible as these robots lack a sufficiently high level of flexibility and intelligence.

The static and predictable environment eases the robot’s navigation and enables the robot to use a static map

of the surrounding. Otherwise this map would be outdated very quickly and thus would have to be updated

continuously, which is an extremely challenging task in its own – and subject of recent research.

An example of current commercial service robots are automated guided vehicles (AGV) like the Telelift

robot shown in Fig. 1.3. These operate in the service corridors of hospitals and deliver goods like clothes

and food. Only employees are allowed to enter these corridors and it is strictly forbidden to put anything

on the ground which could be an obstacle for the robots. Another example of a commercial service robot

is the automatic subway train deployed by Siemens in the city of Nürnberg (see Fig. 1.4). Here again the

robot operates in a static environment and even though it transports people there is no close interaction

between the people and the robot. The people don’t have any influence on the task execution or the robot’s

behavior. Another group of service robots are cleaning and inspection robots. Some of these operate in

public areas, even at residences like the well known vacuuming-robot ROMBA. If these robots meet people

during their task, these are usually perceived as obstacles rather than partners for interaction. Others operate

in areas where people cannot reach them anyway, like the window sweeping robot RACOON (Fig. 1.5).

Even most entertainment robots, whose central idea is entertaining people, usually offer no real interaction.

They posses a tailor made set of commands including all kinds of tricks. Once they received a command

they execute it autonomously.

All this allows the following conclusion: currently there are several commercial service robots which

are designed to perform tasks for people. But they are only able to operate properly when there is no

interference from people. Hence, the robots are used only in professional environments and in collaboration

with trained operators. In contrast, if the robots are to be able to carry out real services for the general

public, it is necessary for service robots to be able to operate in public places and to interact with people.

Here flexibility and adaptability are the most important keywords.

Fig. 1.3.: TransCar automatic
guided vehicle (AGV) by Swiss-
log, operating in hospitals (image
source: [157])

Fig. 1.4.: Automated subway train developed by
Siemens, operating in Nürnberg (the RUBIN project)
(image source: [150])

Fig. 1.5.: Window
cleaning robot
RACOON (image
source: [50])

Several groups of researchers have been – and currently are – working on more flexible and adaptive

2

1.2. Goal of this thesis

systems in order to extend the abilities of commercial service robots. In recent years, several field exper-

iments were performed where these originally laboratory systems have been tried in public environments.

The motivations for these complex and costly experiments range from demonstrating the developed abilities

to performing studies in human-robot interaction with large quantities of untrained users. In most cases,

the experimental service robots are used as guiding robots e.g. as tour guides in museums or as mobile

information kiosks in hardware stores. Early examples are the robots Rhino [30] and some years later MIN-

ERVA (Fig. 1.6) [163], both developed by S. Thrun in the years 1995 and 1999 respectively. Both robots

have served as tourguide robots in museums for several weeks. In 2002, R. Siegwart deployed a whole fleet

of robots of the type Robox ([163], Fig. 1.7) as tour guide robots during the Expo02. Later on, in 2008

and 2009, the robot TOOMAS (see Figure 1.8, [66]) assisted customers in a TOOM hardware store. It was

developed by H.M. Gross from the University of Ilmenau in collaboration with the company MetraLabs.

TOOMAS was based on the robot platform SCITOS which is also the basis for two successors of TOOMAS.

These two robots called ShopBot [67] are currently operating in the real.- future store where they present a

variety of innovations to the shop’s customers. More information on these robots can be found in the chapter

state of the art (Chapter 2).

Fig. 1.6.: Rhino (image source: [172]) and MIN-
ERVA (image source: [135])

Fig. 1.7.: Robox (image source:
[42])

Fig. 1.8.: TOOMAS
(image source:
[167])

1.2. Goal of this thesis

The goal of this thesis can be summarized as follows: It will be demonstrated that a service robot’s control

system based on the biologically motivated Behavior Networks performs well in complex scenarios involv-

ing dynamic environments and human robot interaction while providing significant benefits in orchestrating

present abilities and integrating new functionalities into the system.

According to the findings of the preceding section, the focus of this thesis is on the development of a

control software for service robots which is designed to cope with dynamic everyday environments and

continuous interaction with the robot’s user – even during task execution. The keywords used in the title

3

1. Introduction

Behavior-based Control for Service Robots inspired by Human Motion Patterns represent the most

prominent characteristics of the control system:

Service is the main goal of the control system: Enabling robots to perform services for – and in collab-

oration with – people. The architecture of the control system enables the user and the behavior modules of

the control system itself to simultaneously and with equal priority exert control on the robot’s motion. This

is in contrast the current norm where the user gives the robot a command and the robot then executes the

command ignoring the user until the task is finished (or cancelled).

Robots is used consciously: The control system is not tailor made for one specific robot but as inde-

pendent from the robotic platform and the application as possible. A Hardware Abstraction Layer (HAL)

renders the control system independent from the specific robotic platforms, and an application-specific layer

from the individual applications. This includes for example an application logic and sets of commands for

a communication or dialogue system. To enable the re-use of the central layers of the control architecture,

the individual layers have to have defined and invariant interfaces. Standardization and modularization play

an important role in the roll out of technology and the reduction of development costs.

Human Motion Patterns refers to the general application scenario: human everyday environments. The

control system enables the robot to operate in environments which are designed by humans for humans. As

a matter of course, the ability to operate in such environments does not depend on the control alone, but also

on the locomotion abilities of the individual robotic platform. From a control strand point, there are several

common challenges in these environments which have to be tackled by the control system, mostly arising

from dynamic and cluttered nature of the environment (details can be found in Section 1.3 and 1.4). As

these environments are successfully mastered by humans, the control system shall be inspired from motion

patterns which can be found when observing humans moving in their environment. These motion patterns

are the core component of the control architecture and the behavior-based control system which are used

to implement these motion patterns.

Behavior-Based Control This term stands for a special kind of robot control software which provides an

alternative to common monolithic and trajectory-based motion planners. A behavior-based control system

consists of many independent and self-governed modules following their own goals where the overall be-

havior of the robot emerges from the fusion of the individual behaviors. This concept supports implementing

a multitude of individual behavioral patterns, like those found when observing human behavior. In contrast,

forging these into one monolithic system would be extremely difficult. But the behavior coordination is a

challenging task and thus BBCs are usually only found in low-level applications, if at all.

To curb the scope of the work presented, it should be noted that the goal is the development of the control

architecture as well as the fundamental behaviors needed to operate in dynamic environments. These cover

amongst other things the collision avoidance with static and moving obstacles as well as the interaction with

a user. The special abilities needed for individual applications are not be part of the core control system.

In order to evaluate the control system, the additional hardware- and application specific layers were

developed for an exemplary scenario: shopping in a supermarket assisted by a shopping robot. This scenario

4

1.3. Recurring theme: scenario supermarket

was used as recurrent theme throughout the development of the control system. As part of this scenario the

robot InBOT (Interactive Behavior-Operated shopping Trolley) was developed.

1.3. Recurring theme: scenario supermarket

The shopping assistant robot in the supermarket scenario addresses several everyday problems which will

be analyzed more closely in a survey described later on in this chapter. These are, for example helping

the customer to find desired products without extensive search or relieving the customer from the constant

burden of pushing the shopping cart using his own force. The latter is especially beneficial when the cart is

heavily loaded or the customer is elderly or handicapped. It is mandatory that the robot can maneuver safely

in cluttered corridors and is able to find efficient paths to desired products.

Supermarkets are chosen as the main theme in this thesis because they pose a challenging scenario. They

are a very dynamic environment and usually have a cluttered and nested character (shown e.g. in Fig. 1.9).

This includes the presence of cluttered corridors, moving objects and the fact that the spatial arrangement of

the environment changes frequently: advertisements, special offers, or bargain bins are placed or removed

daily (see Figures 1.9 and 1.10). This is a great challenge to mobile robots as this results in not being able

to rely on a global metrical map unless is is updated constantly, even while the shop is open and customers

are around. As a result, a control architecture is needed which enables the robot to navigate without a global

map and to localize without relying on the very popular map-matching methods. The robot has to avoid

collisions with static obstacles and on top of this is confronted with moving obstacles. These could for

instance be customers with shopping carts who are hurrying down a corridor while being distracted by the

products in the shelves or talking with each other. The avoidance of accidental collisions with these moving

obstacles is essential as even physically harmless collisions could result in psychical damage: people could

become afraid of the robot – a worst-case scenario for service robots.

In the course of this thesis the supermarket scenario is used to implement the core control system in a

specific and demanding application where it can be evaluated. To enable the evaluation, the shopping robot

InBOT (Interactive Behavior-Operated shopping Trolley) was developed. Figure 1.11 shows InBOT and the

enhanced conventional shopping trolley ETrolley which represents a passive shopping assistant. The robot

InBOT, containing the developed control system, is finally used to perform a user study in a small simulated

shop in the laboratory.

The next section will elaborate on the challenges posed by the chosen scenario and on resulting require-

ments. More details on InBOT and ETrolley can be found in Appendix B “The Interactive Behavior-Operated

Trolley (InBOT), InBOT-2, and ETrolley”.

1.3.1. Infrastructure of the supermarket

The supermarket scenario offers a very wide range of possible infrastructures. As the infrastructure is not

part of the scientific concept of this thesis, this section will just name constraints and assumptions made for

the overall infrastructures without claiming completeness.

It is assumed that a mixture of different shopping carts is used, including full scale shopping robots but

also carts extended with displays and just ordinary shopping carts. The carts which include IT components

communicate both, with a central server which maintains the the overall system and de-centralized with

other carts or robots. The central server provides a topologic-metrical map of the store as well as a database

5

1. Introduction

Fig. 1.9.: Shops contain several objects which are moved
on a daily basis, outdating global maps

Fig. 1.10.: Removable special offer bin mounted on top of
a pallet

containing the products along with their location. Additionally, the server can be used to observe and steer

the traffic by modifying or annotating the map. The de-central communication is used for the coordination

of the robots among each other. This way multi-robot behavior is enabled such as avoiding collisions,

preventing deadlocks or following each other. In their vicinity they share their local world model primarily

including their location, goal and current driving direction and velocity.

The shop is outfitted with landmarks for the global self-localization. These may be sparsely distributed,

but have to enable the robot to identify transitions between topological areas. In this thesis barriers consist-

ing of ground mounted RFID transponders are used, but these can be substituted by any other system which

fulfills the requirements – mainly the robustness versus occlusion.

Environmental sensors as described in Appendix C.3 “The intelligent environment” are supported by the

concept, but optional. The control system depends on dependable information on the user and moving

obstacles, but the source of this information is not constrained. In this thesis two different possibilities are

presented, one with only on-board sensors and one using an intelligent environment.

Concepts for the continuous operation such as charging strategies and low-maintenance operation are not

covered here. They consist mainly of hardware components, task planning, and most important the robust-

ness of every single component and their integration. Including this topic would have posed an additional

major effort while not contributing to the scientific concept of this thesis – even though the topic of robust

continuous operation is very challenging and systems capable of this deserve highest respect.

1.3.2. Challenges posed by the supermarket scenario

The supermarket scenario poses several challenges which have to be solved by the robot’s control system.

Obviously, there are additional challenges when taking individual sensor or perception systems into ac-

count. For example a speech recognizer will have difficulty identifying the voice of the user amongst the

many background voices. Or very colorful shelves are a unfavorable background when considering optical

obstacle detection. The following challenges are described from the point of view of the control system:

Size and shape: The robot shall have the size needed to carry goods. In the chosen scenario this is the

volume as well as the mass of a large shopping. As a result, the robot cannot be built in the beneficial

slender and circular shape which is often found when looking at mobile robots (compare Fig. 1.11 with

6

1.3. Recurring theme: scenario supermarket

Fig. 1.11.: The shopping robot InBOT and the passive shopping assistant ETrolley

7

1. Introduction

Figures 1.6 to Fig. 1.8). Hence the control system has to be able to cope with the large and rectangular

shape of the robot, especially when maneuvering in narrow spaces. This includes the necessity of

additional safety behavior to supervise the robot when turning which would not be necessary with a

round shape.

Holonomic drive: In order to be able to operate in narrow and cluttered spaces a robot of the described

size and shape needs an holonomic drive system – just as ordinary shopping carts have a holonomic

chassis (see also Figures 1.12 and 1.13). Hence, . . .

• The system has to control one additional degree of freedom

• The hazard area of the robot is not only in front of and behind the robot as it would be when

using a differential drive. In the case of a holonomic drive the robot can simultaneously and

independently accelerate in the X- and Y-directions. Hence the hazard area is a full 360 degrees

which has to be taken into account when designing the safety behaviors.

• Calculating a precise odometry for an holonomic drive is much more difficult compared to dif-

ferential drives, even dedicated hardware might be necessary.

Navigation: Supermarkets usually contain large quantities of obstacles and mobile – or at least not neces-

sarily static – objects. Which means that . . .

• Several static obstacles impair the robot’s navigation. Especially large quantities of parked shop-

ping carts can construct large obstacles of various shapes.

• Several moving obstacles have to be taken into account: customers are walking around, some of

them pushing shopping carts. They will probably be distracted either by searching for goods or

by talking to other customers. These are the majority of moving obstacles. But there are also

smaller ones such as dogs or children as well as larger ones like staff operating forklifts.

Mapping and global self-localisation: The large amount of non-static objects, whether these are parked

shopping carts, advertisements or bargain bins, result in a continuous alteration of the local environ-

ment. In fact the amount of positively static structures is rather low and the individual structures look

very similar. Hence global maps will be outdated very quickly. This means:

• That these maps are only of limited use for global self-localisation.

• That these maps are only of limited use for navigation and route planning.

• That the maps would have to be updated continuously during the opening hours of the shop.

Interaction: All tasks in this scenario have to be performed together with an inexperienced user

1.3.3. Survey with customers at the supermarkets

After having identified the challenges posed by the environment in the scenario, the focus is shifted towards

the requirements of the potential users of the service robot. To be able to to assess the expectations of

potential users of the shopping robot, a survey was conducted ([Bre09]). There were 187 participants at two

supermarkets and 113 participants in an online-survey. Below, only the surveys at the supermarkets will

be taken into account as the online-survey shows a strong distortion in age- and gender-distribution. The

8

1.3. Recurring theme: scenario supermarket

Fig. 1.12.: Comparison: parking the robot between two
shopping carts with and without holonomic drive

Fig. 1.13.: Comparison: dodging an approaching shop-
ping cart with and without holonomic drive

surplus on young, male students would alter the results in favor of people who are not in need of assistance

and who are interested in technology.

In the survey at the supermarkets the age distribution roughly follows a normal distribution with an aver-

age age of round about 40 years. The participants were divided in six age-groups: <18, 18-31, 32-45, 46-59,

60-73, and above 73 years of age. The first and the last group are statistically of limited relevance due to the

small number of participants (3 in the first and 8 in the last group). The gender distribution slightly favors

male with 54%. A summary can be found in Table 1.1.

When interpreting the results, one should focus on an realistic goal for the application: in the foreseeable

future one will not see hundreds of shopping robots in supermarkets. It will most probably start with

only a few as a PR campaign and maybe reach a preliminary saddle point at round about a dozen robots,

dedicated for customers in need of assistance. Therefore the shopping robots should be designed for the few

people who really need assistance in their daily shopping or those who are not able to go shopping without

assistance any more. Thus the input of the age-group above 73 years is of interest even though it is of limited

statistical significance. Finally one should keep in mind that shop owners might follow a different opinion,

favoring a marketing campaign or enhancing the shopping experience instead of assisting those in need.

Shopping behavior: For the general understanding, it is important to know that most of the participants

seldom visit other shops than their favorite one (only 17% go to “foreign” shops on a regular basis) and thus

know their shop very well. About 70% stated that they usually know where to find their products. Only the

age-group of above 73 is an outlier with only 37%. But, even though knowing their shop very well only

52% denied having to search for items from time to time. In the two oldest age-groups more then one third

stated that they often have to search for products. Therefore, in these two groups 34% and 62% respectively

stated that they would like to have more assistance when searching for items. A phenomenon which should

be kept in mind are the technophile: in the younger half of the age-range a much higher rate of the people

stated that they would like to have a technical shopping assistant compared to the older half of the groups –

even though the younger ones wish less help in general.

Regarding the general shopping behavior about 35% of the participants stated that they use a shopping

list very often and about 65% that they use a list at least on a regular basis. In the older groups these figures

rise to 50% and 70% respectively.

9

1. Introduction

Tab. 1.1.: Survey: summary and general information

187 + 113 participants in the two surveys (interview + online)
About 40 is the average age; age distribution follows normal distribution

54% male – almost equal number of both genders
About 70% usually know where to find the desired products
About 50% spend time searching for products at least from time to time
About 30% of the elderly people have to search for their products often

34% to 62% would like assistance in searching products
65% use a shopping list at least from time to time

Having to search for products is a common annoyance.
Many people use shopping lists from time to time.

Tab. 1.2.: Survey: features wished by customers

62% Information about special offers
47% Information about prices
40% Information about nutrition facts
52% Cooking recipes available on demand
30% Not to have to push the cart themselves

No single feature is wished by all customers.
Hence, all features have only to be on-demand.

Tab. 1.3.: Survey: designs options

D 2,62
F 1,96
B 1,81
A 1,78
E 1,77
C 1,57

Rating of the design options
of Fig. 1.14: higher is better.

Individual Features: The participants were asked to directly evaluate a list of possible features of a

shopping robot. A summary can be found in Table 1.2. The most prominent rankings received: information

on special offers (liked by 62%), information on prices (47%) and information on nutrition facts (40%).

About 25% would like the robot to automatically provide cooking recipes, 52% would like to have them

available on demand. The feature that people do not have to push the cart using their own force provided for

a surprise: about 30% in the younger groups would like this at least from time to time and 15% often but

only 20% and 5% in the elderly groups. When asking the elderly customers about this feature afterwards,

many of them reacted almost insulted and said something in the line of “I am still able to do this myself!”.

It seems that questions regarding this feature have been perceived more as a question of honor rather then a

question of comfort.

All these figures illustrate one common fact: there is no individual feature which is wished for by a large

majority, but many people would like assistance features. This results in an important demand: one must be

able to personalize the robot and the features are only to be provided on demand, rather than automatically.

Qualitative Information: Besides these quantitative figures there has also been interesting qualitative

information from individual participants. Not enough people shared or mentioned these opinions to be

statistically significant but these are interesting for an assistance system nevertheless. For example some

women have been shopping with prams. Some of them complained that they cannot do a large shopping

because of the limited space in their pram. Some were even putting items on top of the child. Some of them

10

1.3. Recurring theme: scenario supermarket

mentioned that a shopping robot would be nice when it would just follow them so that they could dump their

goods into it while walking down the corridors.

Summarizing we have the following aspects which the shopping robot should fulfill from a customers

point of view:

1. Product information (price, special offers, nutrition facts)

2. Shopping list management

3. Guiding robot helps searching for products

4. Cooking recipes

5. Features only on demand

6. Following robot lets one have the hands free e.g. to push a pram

When trying to group these aspects one discovers that most of them are in the field of the user interface or

more precisely a graphical user interface on a screen. But also two general modes of operation are suggested.

7. Easy to use graphical user interface

8. Guiding Mode

9. Following Mode

Design of the shopping assistant: Finally, the participants were shown six drawings for possible

designs of a shopping robot. They had to rate them according to how much they liked each individual

design. The individual designs are shown in Figure 1.14. The results are summarized in Table 1.3. The

participants acted rather conservatively: the design resembling an ordinary shopping cart was preferred

compared to humanoid or fancy designs.

Fig. 1.14.: Design concepts for the robot shopping cart [Bre09] (see rating in Table 1.3).

11

1. Introduction

1.4. High-level requirements for the control system

By choosing supermarkets as the main theme we have a very complex and challenging scenario as was

described in the preceding sections. Presently most service robot systems force the human to adapt to

them. During the design of the control system the focus will shift back to the main idea of service robots:

adapting the robots to the people. The main topics to be addressed here are coping with the dynamic human

everyday environments as well as the multimodal interaction with the user. Here robustness, reliability,

and predictability are an important goal. While a trained operator who uses a robot to earn his living will

get used to little annoyances, a new user who wants to use the robot as assistant will be repelled. And of

course, collision avoidance has highest priority as there are people around the robot which could be hurt.

From the challenges described earlier a set of high-level requirements for the control system arise. These

are elaborated on below:

R1 Assistance features: The robot shall provide the nine assistance features identified in the survey.

R2 Human-Robot Interaction capability: As mentioned, the core control system shall enable the robot

not only to accept and execute commands in an sequential order but to take the user’s actions into

account at all times even while executing given tasks. Of course, in addition to this ability, the

application-specific layer of the control system needs an easy to use multimodal user interface. As

the topic of user interaction is a focus of this thesis the corresponding requirements will be further

elaborated in the sections following this summary.

R3 Abstract and reliable environmental representation: The environment is altered continuously.

The rate of these alterations can be too high to be able to maintain a global metrical map. Therefore,

the control system has either to be able to cope with an incorrect map or the global map has to be that

abstract that it is not effected by the alteration as for example a topological map could be.

R4 Self-localization: A robust self-localization concept for a holonomic drive has to be developed con-

sisting of both hard- and software which provides for a suitably precise odometry as well as the ability

to perform global positioning corrections based on landmarks. This system must be able to detected

the landmarks reliably even in highly frequented areas with many occlusions. As argued earlier, the

control system shall not rely on the popular map-matching methods as these rely on an accurate and

up-to-date global map, which cannot be guaranteed in this scenario.

R5 Robust navigation: The control system has to be able to avoid static and moving obstacles while

staying target oriented. It has to be able to generate a path to a given goal on a high level using an

abstract map as well as on a low level only relying on current sensor data. This way the robot can

on the one hand generate efficient long term paths and on the other hand has suitably low reaction

times to sudden environmental changes. Additionally, fail-save basic behaviors are needed which can

compensate failures of modules for environmental perception and at least render the robot in a stable

state.

R6 Safety: For operating with untrained users the safety of the system is crucial. The user (and other

people) must not be harmed. But, even if no danger for the people is apparent they might feel scared by

the robots movements or little (actually harmless) bumps and thus cease using the robot. Accordingly,

12

1.4. High-level requirements for the control system

the control system has to ensure that the robot will not (actively) run into any obstacle and it shall

try to avoid collisions resulting from moving obstacles which would otherwise run into the robot.

The second point cannot be made a hard requirement as the robot will have limited velocity and

acceleration capabilities and thus the control system cannot guarantee to always be able to evade

approaching objects.

R7 Multi-Robot-Interaction capability: Finally, thinking of a fleet of robots operating in one supermar-

ket these robots have to cooperate. Multi-robot collision avoidance is needed, the robots need to be

able to queue up, for example at self-service counters or check out counters. And it would be useful

if one user could operate several robots simultaneously, be it for maintenance or because a customer

wants to buy large amounts of products. Obviously, this requirement is less demanding compared

to multi-robot collaboration scenarios where for example several robots have to manipulate a large

object together.

R8 Generalization: It shall be possible to apply the control system on different service robots in different

applications. More details will be elaborated in one of the following sections.

1.4.1. R2 Human-Robot Interaction capability: user interaction

The requirements regarding the user-interaction capabilities can be divided into three groups or sub-

requirements, which will be defined below. T.B. Sheridan has published high impact work in the are of

human factors in robot control, thus, definitions made by him will be taken up here ([147], details will be

given in Chap. 3.1.4).

R2.1 User interface for commanding: This is the traditional approach. The user gives a command to

the robot and the robot executes the command afterwards. T.B. Sheridan named this control trading.

The requirements for this topic center around designing an intuitive user interface consisting of several

modalities. This clearly belongs to the application-specific layers of the control system. The robot

InBOT for example merges a touch screen-based GUI, a headset for speech in- and output and a bar

code scanner into one integrated user interface.

R2.2 Control sharing : Having a dedicated user with whom the robot has to cooperate, a focus is put on

a challenge commonly found in collaborative activities: sharing of the control. Using this approach

the robot shall be able to take the users actions into account while executing a task so that the user

does not have to consider all eventualities before giving a command. T.B. Sheridan named this control

sharing. As the potential tasks differ in complexity and hence control-layers of varying abstraction

are active, the control system has to be able to accept control input by the user in all abstraction layers

of the control system. Often the user exerts his control share unknowingly. Examples could be the

relative position of the user, the estimated goal, the motion or even the acceleration of the user, the

user’s gaze direction, but also a force which the user exerts on a force sensor.

R2.3 Modes of operation: This is a more abstract group which utilizes the abilities provided by applying

control trading and/or control sharing. The control system has to be able to operate the robot in

different ways, depending on the users wishes which he expresses using a set of commands. These

different ways of operation can be modeled by defining individual modes of operation. These are

described in the next section.

13

1. Introduction

Modes of operation for user interaction (R2.3)

The control system shall be designed in a way that the user can easily adapt the robot’s behavior to the

user’s specific desires. In the context of the supermarket scenario the survey described earlier identified two

fundamental ways in which potential users wish to operate the robot: The first group wishes to shop just

as normal but wants to get rid of pushing the shopping cart and the second group wants the robot to guide

them to products. These two fundamental ways of using the robot result in three modes of operation: (1)

The Following Mode for those who just want to get rid of pushing a shopping cart and a combination of (2)

the Guiding Mode and (3) the Servoing Mode for those who want to be guided to products. A third group

of users wants the robot just to be an information kiosk which provides directions or product information.

As this is not a way of operating the robot this is not mapped on a modes of operation – the user can use the

robot’s UI to get information in all modes. Here follows a list of the defined active modes:

1. Autonomous Mode: After receiving a command the robot executes it autonomously. This mode is

used for local interactions (e.g. “come here”), to temporarily get rid of the robot (e.g. “wait at

<location>”) or for maintenance tasks commanded by a central server or the shop’s personnel. This

mode uses the traditional control trading way.

2. Guiding Mode: The robot guides the user to a given target location e.g a product or the checkout

counter. The control system has to observe the user’s movements to be able to slow down or wait for

the user if he falls behind.

3. Following Mode: The robot follows the user in a defined distance and navigates around obstacles if

the user chooses a path which the robot cannot follow.

4. Servoing Mode: The robot imitates the movement of the user (as good as the environment allows).

This mode is the successor of the Guiding Mode. After guiding the user to a shelf the user starts

moving along it to analyse the offers. The robot will follow or will be virtually pushed along in front

of the user so that the robot will not impair the user. Again the robot navigates around obstacles

autonomously.

5. Manual Steering Mode: Here the user steers the robot directly using a force-sensitive input device.

The control system assists the user by avoiding obstacles on its own – as long as the user does not

overrule the control system. The user is even able to give local commands like “park on the left side”

to the robot by applying Force Commands therefore by exerting sharp forces on the device. The robot

then switches to Autonomous Mode and executes them.

These active modes are accompanied by two passive modes: the Idle Mode and the Waiting for Login

Mode. In both cases the robot just stands still and waits either for a user to login or for commands by its

user. While doing so the robot shall try to avoid collisions caused by moving obstacles by evading them.

Mode transitions: As illustrated in Table 1.4, all modes utilize a subset of the modalities available. If

the user gives a command via a modality that is not coupled with the mode the robot currently operates in,

a mode transition is performed. For example if the robot operates in the Manual Steering Mode and a voice

command is received the robot automatically switches to a mode which is coupled with voice commands.

14

1.4. High-level requirements for the control system

Tab. 1.4.: Dependencies of modes and modalities of interaction.

Mode Fo
rc

e
se

ns
iti

ve
de

v.

U
se

rp
os

iti
on

G
es

tu
re

re
co

gn
iti

on

Vo
ic

e
co

m
m

an
ds

To
uc

h
sc

re
en

cm
ds

.

Vo
ic

e
ou

t

Sc
re

en
ou

t

Manual Steering X - - - - X X
Servoing - X - - - X X
Following - X X X X X X
Guiding - X X X X X X
Autonomous X⇤ - X X X X X
Idle - X+ - - - X X

*: In the Autonomous Mode the handle is used to give
force-based commands only, not to steer the robot.
+: If the user is lost the robot switches to the Idle Mode.

This could for example be the Following Mode if the command was “follow me” or the Guiding Mode if the

command was “guide me to [name of product]”.

The transition from and into the Manual Steering Mode is also triggered by an explicit command – but

in contrast to the other modes by an non-verbal one: InBOT automatically switches to the Manual Steering

Mode as soon as a force is applied to the handle and switches to idle when the handle is released or to

autonomous when an Force Command is detected.

The user position tracking does not transmit direct commands from the user to the robot. It passively

commands the robot to accelerate or decelerate and therefore does usually not result in a mode transition.

An exception takes place if the user is lost. Then a transition to the Idle Mode is performed which lets the

robot wait for the user – after a defined amount of time an automatic switch to autonomous is possible to

enable the robot to search for the user, if wished and if it makes sense in the application. The usual way for

the robot to switch to the Idle Mode is the completion or the cancellation of the active task. The Servoing

Mode is also activated automatically: it is enables when the robot reaches a goal in the Guiding Mode. This

way the robot accompanies the user at the goal location. The common problem of oscillations between

modes does not appear here because mode transitions are always triggered by sparse events such as user

commands, reaching of a goal, grabbing the handle, etc.

Therefore the user does not explicitly order the robot to switch to a dedicated mode but the robot performs

a mode transition automatically based on the given command and on the modality the command was given

by.

1.4.2. R8 Generalization

This final group of requirements is not motivated by the specific scenario. In contrast, these shall allow the

transfer of the control system developed in the context of the supermarket scenario to other applications.

The collected requirements are relevant not only for the supermarket but also for several other indoor ap-

15

1. Introduction

plications like general guiding tasks, transportation or inspection and outdoor applications like exploration

or observation. For every application and every target environment a tailor-made robot is needed, outfitted

with a corresponding set of sensors, actors and control components. But when the core control system can

be separated from the application- and robot-specific requirements it can be re-used on several robots and

applications. To achieve this re-usability the core control system must provide a set of defined interfaces for

commands from an application logic “from top”, for the sensor processing chain “from the side” and finally

for instructing the platform “to the bottom”. Moreover, it would be beneficial when it would be possible

to use only certain components of the control system in individual applications when some functionalities

are not needed or provided otherwise. Hence, the interfaces have not only to be defined “around” the core

components of the control system but even between them. This way a modular and portable control system

can be created.

1.5. Approach for the service robot ’s control system

This section describes a rough concept of how the described challenges were tackled and the requirements

were fulfilled. Hence, this section provides a short preview of the topics addressed in the remaining chapters

of this thesis.

This concept is organized in four groups: the control architecture, the core control system, the application-

specific components and the evaluation on real robots including user-studies. These components will be

briefly introduced in the next sections. The interplay of the main components is sketched in Figure 1.15.

Fig. 1.15.: Interaction of task planner, behavior repertoires and modes of operation
in the control system.

Fig. 1.16.: The shopping robot
InBOT

1.5.1. Concept of the control architecture

As the navigation in human everyday environments is a very challenging task, an option for designing the

control architecture and the control system itself is to let one be inspired by subjects which are already able to

operate in such environments perfectly well. Thus, the control architecture is inspired by research on human

motion patterns performed by S.P. Hoogendoorn [73] in the context of Evacuation Dynamics. This research

suggests that the motions patterns of humans can be modeled using a tree-layered architecture ranging from

strategic over tactical to reactive / operational behaviors. This model is applied in the control architecture of

16

1.5. Approach for the service robot’s control system

this thesis. The control architecture integrates a topological navigation in the strategic layer, a deliberative

Behavior-Based Control (BBC) in the tactical layer and a reactive BBC in the reactive layer. The BBC

is inspired by previous work by J. Albiez [4] who designed Behavior Networks for the control of walking

machines. The individual layers have defined interfaces to enable two important feature: first attaching

platform- and application-specific layers and second feeding the orthogonal control input in between the

layers to enable control sharing.

1.5.2. Application-specific part of the control system

As the shopping scenario is used as the recurring theme of this thesis, a corresponding shopping robot was

designed: the Interactive Behavior-Operated shopping Trolley (InBOT, Fig. 1.16, see Annex B) which is

used for development and evaluation purposes. Additionally, the passive shopping assistant ETrolley was

constructed as an alternative application for the scenario as well as for user studies. ETrolley runs the

same control software as InBOT does, therefore ETrolley is capable of localizing itself and to perform route

planning whose results are displayed on the touch screen as navigation assistance.

Three groups of components had to be developed for this application: the user interface including the

product database and the force sensitive handle, the application logic, and finally a self-localization con-

cept in hard- and software for holonomic drives in highly frequented environments.

User interface, force sensitive handle and product database: First of all, a force sensitive input de-

vice was developed to enable the user to push the robot just as an ordinary shopping cart. Later on,

an user interface was developed for InBOT based on QT to fit on a dedicated touch screen PC. It con-

tains a product database with location and nutrition information, navigation assistance, shopping list

management, a recipe database and accepts the touch screen, a bar code scanner and speech output as

modalities.

Application logic: Beneath the user interface there is an application logic which organizes the high-level

behavior of the robot e.g. it interprets the commands given by the user, triggers output to the user

and activates task planning and execution. It communicates with the highest level of the core control

system – the strategic layer – using a defined TCP interface.

Self-localization concept: Here two challenges have to be considered: (a) the local odometry has to be

calculated even though the robot uses a Mecanum drive for holonomic movements. Therefore, passive

wheels which measures two dimensions of the robot’s movements were developed.

And (b), the global self-localization system has to be robust against crowded corridors where people

will continuously occlude landmarks and where parked shopping carts will alter the environment

compared to a stored map. In this thesis it was decided to place RFID Barriers – stripes consisting of

several RFID tags – across the corridors in the close vicinity of crossroads.

1.5.3. Evaluation of the control system

Two main aspects shall be proven right by the evaluation: the capability of the control system in the con-

text of the chosen lead-scenario as well as the hardware- and application-independence of the core control

components. For the first case, user studies have been performed with the robot InBOT in a mock-up super-

market in the laboratory in addition to the component-based evaluation of the control system. For the second

17

1. Introduction

case, the control system was implemented in several robots. In most of the cases only some components

or layers of the control system were used – depending of the target scenario of application – demonstrating

its modularity. To gain additional insights, for some components alternative solutions to the proprietary

ones were integrated. Two experiments with users have been conducted. The evaluation and the results are

described in the chapters 4 “BBC: Navigation, Obstacle Avoidance and Safety” and 6 “User Interaction”.

1.6. Contribution

In this section the main concepts and strategies are summarized which are meant to enable the robot to cope

with the challenges described previously – mainly the dynamic environment. The resulting abilities often

span several layers in – or are orthogonal to – the control architecture. Anticipating the main achievements

of this thesis we have:

• Development of an application-oriented robotic system which does not depend on a metrical map but

only on a topological map and sensor data from the current field of view.

• Design of a control architecture which is inspired by behavioral patterns of human beings.

• Development of a control system for a large, rectangular, and holonomic plattform that is able to cope

with a dynamic environment, including the proactive avoidance of moving objects, while simultane-

ously fulfilling given tasks and interacting with a user.

• Applying the concept of control sharing between robot and user by means of five modes of operation.

• Development of a behavior-based control system using “Behavior Networks”, which is application-

oriented, including closely connected human-robot interaction and multi-robot behaviors.

• Demonstration that Behavior Networks facilitate the easy integration and orchestration of functional-

ities and thus pose a great opportunity for developing service robots.

Definition of the scope of this thesis: The focus of this thesis is on the behavior-based control ar-

chitecture which is implemented by the Behavior Networks, the navigation system which is inspired by S.P.

Hoogendoorn’s model of pedestrian motion, and the human robot interaction (HRI) – all in the context of the

supermarket scenario. Especially the field of HRI will be limited to the components relevant for the applica-

tion, i.e. implementing the guiding and following behaviors: giving orders to the robot, receiving feedback

from the robot, and sharing control during task execution. Interpreting the humans’ intentions, learning and

actual collaboration or even human-robot teams will not be considered. Likewise, complementary concepts

such as multi-robot behaviors are only considered as far they are necessary to enable the operation of the

system in the scenario of application.

1.7. Organization of this work

The thesis is organized as follows (see Table 1.5 for a summary):

The present chapter – “Introduction” – introduces the goal of this thesis which is the development of

a service robot’s control system by utilizing Behavior Networks to facilitate the easy orchestration and

integration of capabilities. Then robot-assisted shopping is defined as an exemplary scenario for application.

18

1.7. Organization of this work

Tab. 1.5.: Organization of the thesis

1 Introduction

2 State of the Art

3 The Hybrid Control Architecture

4 BBC: Navigation, Obstacle Avoidance and Safety

5 Avoiding Collisions with Moving Objects

6 User Interaction

7 Multi-Robot Coordination

8 Conclusion, Discussion, and Open Issues

A Interdependent Work, List of Publications, and Student’s Theses

B The Interactive Behavior-Operated Trolley (InBOT), InBOT-2, and ETrolley

C Complementary System Components

Based on the scenario and a survey at supermarkets, requirements are defined which will be refined in the

subsequent chapters. Finally, the approach of this thesis for the control architecture is described and the

contribution is summarized.

The second chapter “State of the Art” introduces a model of pedestrian’s motion patterns which provides

an important inspiration for the control architecture, summarizes control architectures with a special focus

on behavior-based and hybrid architectures, and provides an overview on service robots in general and on

shopping robots in particular.

The third chapter “The Hybrid Control Architecture” starts by describing the main sources of inspiration

for the control architecture, namely a model of human motions patterns, Behavior Networks, and control

sharing. Afterwards, the design criteria for the control system are defined taking the requirements defined

in the introduction into account. This process of requirements engineering leads to the elaboration of the

control architecture with the three layers: strategic layer, tactical layer, and reactive layer. A description of

interfaces, behavior repertoires, the local world model, and of the data flows is also included.

The following chapters will focus on the developed behaviors and functionalities. As many functionalities

emerge from the interaction of two or even all three layers, there will not be one chapter describing each

layer. In contrast, there will be one chapter for each group of functionalities, describing the relevant impact

and interaction of the three layers. These four groups are: navigation, handling of moving obstacles, human

robot interaction, and multi-robot behaviors.

The fourth chapter “BBC: Navigation, Obstacle Avoidance and Safety” presents the navigation system:

it summarizes the functionalities implemented in the three layers and introduces the core navigation system

including self-localization and data acquisition for the local world model. The major part of the chapter

describes the individual behaviors, ranging from safety behaviors via obstacle avoidance up to the geomet-

rical scene analysis. The chapter is concluded by presenting tests performed with the navigation system

involving “real” users.

19

1. Introduction

Chapter five “Avoiding Collisions with Moving Objects” introduces the three-stage concept to avoid

collisions with obstacles which are moving themselves. Two reactive behaviors provide fast reaction times

and a spatio-temporal planner is in charge of solving complex situations.

The sixth chapter “User Interaction” presents the human-robot interaction capabilities of the control sys-

tem. The modes of operation (autonomous, guiding, following, servoing, and manual steering) are intro-

duced and the concept of control sharing, its implementation, and its effects on the robot’s behavior is

displayed. The HRI capabilities emerge from the interplay of all components, but there are still some be-

haviors dedicated to HRI which will be introduced here as well.

The seventh chapter “Multi-Robot Coordination” introduces the architecture and behaviors of in case of

a multi-robot application. There are several necessary functionalities when a fleet of robots – even small

one – has to share a common environment such as collision and deadlock avoidance, but also cooperative

behaviors like building virtual trains or queuing up.

And finally Chapter 8 “Conclusion, Discussion, and Open Issues” concludes this thesis. It summarizes

the developed control system and architecture, presents several robot systems on which parts of the control

were implemented and discusses open issues and steps needed to bring the system into a real supermarket.

Afterwards, Annex A “Interdependent Work, List of Publications, and Student’s Theses” discusses other

work which is linked to this thesis, such as a list of students’ theses which have been conducted in the course

of this thesis. Additionally, the list of publications lists parts of this thesis which were published ex ante.

Additional information on various topics relevant for this thesis is provided in the technical annexes.

Annex B “The Interactive Behavior-Operated Trolley (InBOT), InBOT-2, and ETrolley” shows the design

of the robot InBOT itself including the construction of hardware components used on InBOT, for example

the odometry wheels for the holonomic platform or the force sensitive handle. Furthermore, the current

status of the design of InBOT-2 – a smaller platform with a higher level of integration – is described. And

finally the passive test platform ETrolley is introduced.

Annex C “Complementary System Components” presents components used on InBOT which do not

belong to the main control system such as the user interfaces or the system for tracking moving objects or

the user. Often, two alternative versions are presented, one developed in the course of this thesis and one

by a third party to increase the possibilities for evaluation and to show the independence of the core control

system.

20

2. State of the Art

This chapter summarizes work related to the utilized or developed technologies of this thesis. It starts with

a brief introduction on the analysis of pedestrian’s motion patterns (Section 2.1) which provides the basic

concept of the control architecture developed in this thesis. Related work regarding control architectures in

general can be found in Section 2.2, regarding individual components of the navigation system in Section

2.3 and finally regarding integrated assistance systems and service robots in application can be found in

Section 2.4 and with special focus on the supermarket scenario in Section 2.4.3.

In order to keep this chapter slim, fundamental concepts from the fields of navigation, planning, or obsta-

cle avoidance will only be introduced here if required to understand the robot systems in Section 2.4 or the

control system developed in this thesis.

2.1. Brief introduction to pedestrian motion modeling and potential applications in
robotics

Analyzing pedestrian’s movements is not a new field of research: At the end of the 19th century several

disasters motivated the research. For example in December 1881 the theatre in Vienna burned down, killing

hundreds of attendees and enforcing the research in pedestrian’s dynamics [39]. The main focus was placed

upon evacuations to be able to save human lives [44]. Today, this is still an ongoing and relevant topic (e.g.

[138]) thinking of even worse firetraps like tunnels or subway stations.

Beginning in midst of the 20th century researchers began modeling and simulating traffic, first focused on

streams of cars, and later on streams of pedestrians as well (e.g. [58]). The economical benefit was driving

the research: by simulating the traffic the design of crossroads or subway stations could be outfitted with an

optimal tradeoff between size and the necessary capacity, saving the cities and companies from expensive

failures.

Up to today scientists have collected a huge amount of knowledge, tools and methods. What can robotic

engineers learn from them? Some time ago robots were developed mainly for industrial applications or as

research platforms to operate in labs, screened from the public. But today the robotic society pushes into

public spaces and designs service robots for specific public applications like museum guides or shopping

assistants. Here the robots have to operate in the same space like people without confusing or disturbing

them. The knowledge of human movements can be used either to enable the robot to guess the behavior

of nearby people or to behave in a human-like manner itself. To make the knowledge applicable, a cor-

responding model is needed. A popular model was developed by J.P. Hoogendoorn [73] to simulate the

motion of groups of pedestrians. It will be briefly introduced here. In the chapter discussing the design of

the control architecture (Chapter 3.1.1) its exploitation as source of inspiration for the control architecture

will be illustrated.

Hoogendoorn divided the behavior of simulated pedestrian agents in three hierarchical layers (as illus-

trated in Fig. 2.1).

21

2. State of the Art

Fig. 2.1.: Hoogendoorn’s Pedestrian Behavior Hierarchy [73]

1. Strategic behaviors: The topmost layer represents the human route selection based on landmarks. It

defines roughly the way that has to be taken to move from the starting point to the goal. A list of nodes

containing landmarks or areas that have to be passed/crossed is generated here instead of a continuous

path. In pedestrian movement simulation the set of possible nodes is defined by the scenario designer

manually.

2. Tactical behaviors: The middle layer refines the given (topological) route based on the local envi-

ronment’s geometry such as infrastructure like stairs, doors, walls or corners. Here again nodes are

generated instead of a continuous path. Connecting the individual nodes gives a edge-mesh of paths

in the local environment. Pedestrians are supposed to choose a shortest path in this mesh. Based

on the experiences with corner-oriented cell-based methods introduces by T.Kretz [97], M. Bluemel

modeled the mesh as corner-based visibility graph because it does not contain dispensable nodes and

always contains the shortest path [19]. When comparing this model to paths actually taken by people,

it seems to fit well while still matching Hoogendoorn’s description of the hierarchy. Figure 2.2 shows

some examples.

3. Operative behaviors: In the bottom part of the hierarchy the real movement behavior is generated.

Here the agent moves from node to node until it reaches the target destination. While doing so, it

adjusts the path to local disturbances like obstacles or other agents. In simulation this is often done

using local potential fields.

Within these three layers three groups of behaviors identified when observing pedestrians are incorpo-

rated:

Route selection of pedestrians: According to A. Millonig [115], the decision of a pedestrian for a

certain route depends on five criteria: attractiveness, availability, infrastructure, safety, complexity, and

22

2.1. Brief introduction to pedestrian motion modeling and potential applications in robotics

Fig. 2.2.: Introduction of edge-meshes as motion model of pedestrians. Top: Edge-mesh of a section of the FZI labs
in form of a visibility graph following the concept of M. Bluemel [19]. The light blue line shows the chosen path
through the mesh between two hot spots, the green curve an exemplary motion. Bottom: The edge mesh compared
to tracked pedestrians’ paths. The underlying figures and paths originate from E. Kruse [99] (left) and M. Bennewitz
[13] (right).

23

2. State of the Art

topography. The exact order of priority of these criteria differs for each individual but in general people

prefer short and fast routes (topography) and those which offer a varied environment (attractiveness). This

knowledge is of special interest for guiding robots. They can take these criteria into account when generating

a suitable route to a given target under the assumption that they can estimate their user’s preference. Or the

robot could at least be able to inform the user why it has taken a route the user would not expect.

Local movement of pedestrians: After the pedestrian has - intuitively - decided for one route, he starts

moving along it node by node or landmark by landmark, respectively. The local movements are influenced

by two main factors: the desire to reach the next way-point and the reluctance to come too close to any

objects, especially other people. Here the social distance becomes relevant which individuals try to keep

between each other as good as possible. People generally dislike any violation of this distance so service

robots should try to keep it as well. Keeping this in mind, the robot would know how fast and how close it

may approach people and that it must not move past them closely behind their back. If necessary, the robot

would at least know when to warn bystanders of its approach.

Movement velocity of pedestrians: Additional to the actual path, the velocity of the pedestrian’s move-

ment is a crucial characteristic. Therefore the fundamental diagram (Fig.2.3) is introduced by U. Weidman

in 1993 (see [177], and evaluations by A. Seyfried in 2005 [146]). It correlates the average velocity with the

amount of people per square meter, or the other way around: the rate of free room along the path. A service

robot, especially guiding robots, should adapt to this velocity. Otherwise, it would either scare or at least

annoy people.

Fig. 2.3.: Example: Fundamental Diagram (FD), in dependence on U.
Weidmann’s FD ([177])

Discussion The knowledge that can be gained from a model of pedestrians’ movement patterns can be

used either to adapt the robot’s movements accordingly or to implement a mixed-initiative communication

system: to enable the robot to take over the initiative and inform the robot’s user or bystanders about

the robot’s actions resulting from occurring problems if the robot can assume that these problems are not

apparent for the people. While analyzing the work of Hoogendoorn on the behavior hierarchy and the related

24

2.1. Brief introduction to pedestrian motion modeling and potential applications in robotics

research by Millonig, Weidmann, and others, one comes to the conclusion that there are three major cases

in which modeling of human movements can be beneficial for the behavior of service robots.

1. Movement of the user: Using a model of the estimated movement of the user, the robot is able to

predict the user’s movement. If the robot is guiding the user, the robot can estimate if the path it

intends to take differs from the path the user would prefer. Here the robot can either adapt to the

(probable) user preference or it can take the communicative initiative and inform the user about the

following unexpected movement.

2. Movements of bystanders: If the robot possesses a suitable model of human movements it can estimate

their future movements. This can improve the robots’ control by estimating the future movement of

individual humans nearby enabling the robot to plan a path which will not penetrate the humans’

social distance. Furthermore, the movements of whole groups of humans can be estimated which

would enable the robot to avoid future crowded areas.

3. Re-planning: For the robot there is some kind of fixed – maybe implicitly given – threshold which

defines if the robot interprets a situation as traffic jam and therefore re-plans its path. But for humans

the borderline is fuzzy and varying from person to person and even current temper. As result, the robot

might re-plan its path due to the traffic jam while the user does not recognize the jam at all. Here the

robot needs to estimate if the user has detected the traffic jam himself. If this is not sure the robot

has to inform the user about the reason for the re-planning. Figure 2.4 shows a matlab simulation of

a pedestrian with different crowd densities and Figure 2.5 sketches the estimated density of a crowd

and the tolerance of an exemplary human and an exemplary robot.

Fig. 2.4.: Simulation of traffic jams with crowds of peo-
ple with three different densities: (1) without crowd, (2)
with a sparse crowd where a pedestrian or robot could
pass through, and (3) a dense crowd which has to be
skirted (M. Bluemel [19]). Blue dots show the mem-
bers of the crowd, the triangles the path taken by the
simulated agent from the starting point on the left to the
goal on the right. The boxes illustrate three obstacles.

Fig. 2.5.: Density tolerance: the blue line shows the den-
sity of the crowd according to the figures on the left, the
two other lines the tolerance of human and robot. The
robot has to skirt less dense crowds as the human would
have to. (diagram based on density diagram from M.
Bluemel [19]

25

2. State of the Art

2.2. Control architectures for mobile robots

This second section of the state of the art shall introduce a variety of control architectures found when ana-

lyzing mobile robots. In 1997 M. Mataric [107] analyzed several control architectures. He defined that “an

architecture provides a set of principles for organizing control systems. In addition to supplying structure,

it imposes constraints on the way problems can be solved.” Thus, the control architecture of a robot is the

crucial design element and therefore has to be properly defined. Mataric distinguished control architec-

tures between being deliberative, reactive, behavior-based or hybrid. The next four sections will address

these four classes and explain their differences and similarities. As this thesis will propose a behavior-based

approach, the focus will be on behavior-based and hybrid architectures.

2.2.1. Deliberative or functional architectures

These architectures follow the classical planner-based approach. There is no definite term, Mataric [107] for

example called them deliberative architecture, Ishiguro [82] called them functional. Nowadays, the term de-

liberative does not perfectly fit as distinction to Behavior-Based Controls, as modern BBCs actually include

deliberative behaviors or even model planning processes using multiple behaviors [125] instead of using

dedicated planners. Accordingly, the term functional would be the batter match. But as the deliberativity is

the most intuitive characteristic compared to reactive systems, both terms coexist legitimately.

These architectures have in common that they strongly rely on a complete, up-to-date, and accurate world

model, including a model of the capabilities of the robot to change the world. Errors in sensing or changes in

the environment which did not happen on purpose force an review of the world model and in consequence a

re-planning. In complex real-world environments, especially in the presence of other actors like humans, this

can result in significant delays in task execution. And worse, this makes timely reactions in critical situations

hardly possible. But besides these drawbacks, these architectures generate plans which either guarantee a

correct task execution or at least detect that a task cannot be executed. Especially in complex interlaced tasks

the planner-based approach is superior. Consequently the hybrid and / or hierarchical control architectures

were developed which combine reactive components with the capabilities of planners (see Section 2.2.4).

The main task of the reactive components is to ensure timely reactions and to shield the planner from the

complex real world environment, letting it only operate on abstract information.

2.2.2. Reactive architectures

These architecture follow a strict “stimulus - reaction - scheme”. They do not use a world model nor do

they perform planning, the control strategy is programmed into a set of condition-action pairs. Thus a

given task is modeled implicitly into the control system. This task cannot be changed (the parameters,

e.g. certain coordinates, of the task can) without changing the control system itself. Consequently, reactive

systems are limited to tasks which are completely specified at design-time. As the individual algorithms are

small, they guarantee fast reaction times, a high degree of robustness and are very predictable. There are

several methods of designing the condition-action pairs of reactive systems: lookup tables, rules, circuits,

or vector fields. As no world model is kept, these methods rely on the paradigm that the real world is the

best model – as far as the used sensor systems are suitable. The reactive systems have proven to be efficient

in dynamic and complex environments, but lack the flexibility for more complex tasks which go beyond

26

2.2. Control architectures for mobile robots

direct and straightforward behavior. Here again the concept of the hybrid architectures has to be mentioned,

combining the advantages of plan-based and reactive systems (see Section 2.2.4).

Mataric [107] discusses where to draw the line between reactive and deliberative (functional) architec-

tures. He states the the main criterion is the amount of computation performed at run-time. Accordingly, a

planner which would calculate all possible plans offline and stores them to be looked up at run-time based on

current information would be a reactive architecture. Would the planner calculate the same plans based on

current information at runtime instead, it would be a deliberative architecture. This is taken to the extreme

by Schoppers [145] in 1987 who aimed at making reactive control systems more suitable for complex tasks.

He introduced the idea of automatically compiling a complete control system into a huge set of reactive

rules called “Universal Plan” instead of programming the control system manually. This concept would

make all currently deliberative control systems reactive and capable of real-time reactions, but it proved to

be too poorly scale-able for complex real-world applications.

2.2.3. Behavior-based architectures

Behavior-based architectures have their origin as (partially biologically inspired) branch of the reactive ar-

chitectures. But they diverged from their origin quickly. Behavior-Based Controls (BBCs) consist of several

modules called “behaviors”. These behaviors work independently from each other and all follow their own

task or goal. The overall behavior of the robot emerges from the sum of the individual behaviors. The

behaviors can be implemented using reactive methods, as has been done in the beginning. But they are not

limited to. Moreover, arbitration mechanisms were developed quickly to tackle the behavior coordination

problem. The arbiters have similarities to hybrid architectures, featuring a planner or reasoner which utilizes

skills or behaviors. There is one strong limiting requirement common for all BBCs: as a BBC consists of

several modules working in parallel, the tasks have to be decomposable. Where “decomposable” is meant

in the line of parallel, not sequential, components.

Modern Behavior-Based Controls try to address the drawbacks of both, the reactive and functional ap-

proaches while incorporating their advantages. The primary strength oft the BBCs is their flexibility achieved

by modularity: they actually can implement reactive as well as deliberative components. From a system-

theoretical point of view one could say that a behavior-based architecture essentially is a meta-architecture,

implementing reactive as well as deliberative (sub-)architectures in the individual groups or layers of mod-

ules.

An advantage of behavior-based systems over purely reactive systems is that Behavior-Based Controls

are able to store a world model inherently and distributed over the individual behaviors. Even if this world

model is only implicitly available, BBC are not limited to systems and applications of low complexity. The

modular character of the behavior-based approach simplifies the system’s design and makes the control

system more easily extendable – new behaviors can usually be added to the control system without effort to

adapt the system to new tasks or situations.

But with the modularity new problems arise, mainly the coordination of the behaviors and fusion of

the large number of individual data flows. These problems are analyzed in various works such as done by

Scheutz [140] and Althaus [6]. The primary problem identified is that a BBC is a self-governing system, with

all implications resulting from the absence of a central intelligence. Coordinating all individual behaviors is

very difficult, therefore BBCs have a tendency to indeterministic overall behaviors and oscillations between

individual behaviors. Even more difficult is it to ensure that the control stays always goal-oriented. Another

27

2. State of the Art

important drawback is the fact that it is often difficult to identify the root-cause of a problem. Errors,

especially oscillations, are forwarded throughout the system and are persistent over several control cycles.

The span of proposals for solving the identified problems ranges from special behavior selection mecha-

nism or arbiters (D.Langer) [102] to letting all behaviors run in parallel without action selection as proposed

by Brooks [28] or Steels [154]. More proposed solutions can be found at the end of the section focusing on

BBCs (2.2.3), after discussing the architectures in general in the following sections.

An extensive and very detailed summary on the fundamental concepts and methods of BBCs can be found

in a technical report written by P. Pirjanian: [123].

Classification of BBCs and behavior coordination

There are four major characteristics of the behavior coordination mechanism by which a Behavior-Based

Control can be classified. First of all (1) the coordination can be performed by a central arbiter behavior or

it can be done inherently by the structure of the BBC itself. (2) the BBC can be hierarchical or not. (3) the

fusion mechanism can be cooperative or competitive and finally (4) there are several means by which the

contribution of the individual behaviors is evaluated and fused, e.g. how important the contribution is for the

overall behavior. There are five basic methods: priority-based, activity-based, fuzzy-based, election-based,

and state-based. These four concepts are introduced below:

1 Behavior coordination

1.a) Central arbiter: A central arbiter is responsible for the coordination of the individual behaviors.

Popular arbiters are state machines or symbolic planners. The advantage is obvious: the overall be-

havior of the control is much more predictable and easier to control. Only one single module has to

be analyzed to identify the root cause of a problem. The drawback on the other hand is that a central

arbiter somehow contests the concept of a BBC, reducing an advantage of most BBCs: they do not

need one central, monolithic and omnipotent algorithm, making them expandable, robust and mod-

ular. The question is where to draw the line? There are architectures such as the 3T architecture or

the ones used by the robots Toomas[66] or Robovie[82] (see Section 2.4.3) where a set of “skills” or

“behaviors” is defined which are executed by higher level (partially even symbolic or logic) planners.

The individual behaviors have no influence if they are activated or not. But, again there are “evalua-

tion” modules which evaluate the contribution of the basic modules. The line is difficult to draw . . . a

definition is attempted below.

1.b) Self-governed: Here no central arbiter is present and the arbitration or coordination is done inher-

ently by the structure of the architecture, often in form of a Behavior Networks. The advantage is the

high degree of expandability and modularity as individual behaviors can be added or removed with-

out having to adapt a central intelligence module. But apparently the drawback is that the resulting

behavior of such networks is very difficult to predict or analyze precisely.

The author of this thesis proposes the definition that a control system is actually a Behavior-Based Con-

trol when the individual behaviors can try to contribute or to activate themselves autonomously and inde-

pendently. A central arbiter on the other hand should be able to reject the contribution of a behavior only if

other behaviors want to inhibit the former behavior. Meaning that a central arbiter in the line of a channeler

for the behaviors’ votes can be part of a BBC, but in contrast a central arbiter as ruling central intelligence

28

2.2. Control architectures for mobile robots

which independently selects behaviors can not be part of a BBC. Architectures featuring a BBC for a specific

application often need a high level planning instance. These can be called hybrid architectures, as long

as the central planner is restricted to enabling or disabling whole groups of behaviors, and the coordination

inside each individual group is done by the behaviors themselves. Appropriately, the creators of Robovie

(Ishiguro et al. [82]) distinguish their architecture from the BBCs because of this reason.

2 Structural organization

2.a) Hierarchical: A BBC can be organized in hierarchies, setting up some kind of processing pipeline

where the control data is refined stepwise. Often the abstraction level of the required information and

the generated commands rises in parallel with the hierarchy of the behavior. Additionally, this concept

inherently applies some kind of priority: lower behaviors react faster than higher ones. This approach

makes the BBC more predictable and easier to plan and to set-up.

2.b) Homogeneous: Here the BBC is made up of many modules which are all equally important and are

treated in exactly the same way, resulting in a simple control architecture. But the behavior of the

overall system is much more difficult to predict.

Often at least one of the two methods for reducing the level of self-organization of the behaviors is found.

Or the control system is hybrid, featuring a BBC for reactive tasks and a classical plan-based approach for

higher ones. Pure homogeneous BBCs are seldom found, at least in application-oriented systems where

tasks have to be fulfilled or interaction with operators is necessary.

3 Cooperative vs. competitive

3.b) Competitive fusion: In case of a conflict between behaviors, one single behavior is selected to con-

tribute its output, solely providing the control for the overall system.

3.a) Cooperative fusion: All behaviors contribute to the overall behavior. Obviously, some kind of

weighting mechanism is needed to determine which behavior shall have how much influence in the

current situation.

It is usually difficult to determine which method is the better one, as for both exist situations in which they

excel as well as fail. The design of the individual behaviors as well as the remaining components have to take

this into account. Figure 2.6 shows three exemplary situations where the robot shall drive past an obstacle.

The arrow indicates the path taken by the robot. The left pair of sketches shows that usually the cooperative

methods provides smoother trajectories. Using the competitive method only, one behavior is active at a

time, here resulting in the sequence ToTarget, AvoidObstacle, TraverseObstacle, ToTarget without smooth

transitions. The middle pair of the sketches shows that in the cooperative case behaviors can negate each

other, here the behaviors AvoidObstacleLeft and AvoidObstacleRight, resulting in a collision. The third

pair of sketches shows that in a competitive case the robot could take a wrong way when a wrong behavior

is too strong even if only for a short period of time. Here the AvoidObstacleLeft overruled ToTarget and

AvoidObstacleRight, so the robot moved left.

4 Fusion method

29

2. State of the Art

Fig. 2.6.: Fusion mechanism for BBCs: Exemplary results for cooperative and competitive BBCs at the example of
obstacle avoidance. Left: smoothness of path. Middle: behaviors negating each other. Right: behaviors overruling
each other.

4.a) Priority-based: Each behavior has defined priority. This priority can be fixed or can be allocated

dynamically by an arbiter, a state machine or similar.

Cooperative case: The contribution of each behaviors is weighted by its priority

Competitive case: The contribution of the behavior with the highest priority is taken, the remainder

is discarded.

4.b) Activity-based: Each behavior evaluates the worth of its own contribution or respectively how much

it “wants” to contribute.

Cooperative case: The contribution of each behaviors is weighted its activity

Competitive case: The contribution of the behavior with the highest activity is taken, the remainder

is discarded.

4.c) Election-based: This is a more complex scheme: a limited set of of possible actions is defined. Each

behavior votes for (or against) individual actions. There are several variants: voting for or against one

or many actions. Each behavior can have votes of the same value or a value defined by its activity

of depending on a fixed value (priority). Each activity can have an accumulator of votes which is

reduced by a fixed value each cycle, resulting in a more stable system, but with bad reaction times.

Cooperative case: All actions are executed, weighted by their (accumulated) votes (this case rarely

found)

Competitive case: The action with most (accumulated) votes is executed

4.d) Fuzzy-based: This is an alternative approach, skirting the problem of behavior coordination. Coming

at the cost of getting the problem of de-fuzzification later on. Each behavior represents a fuzzy rule,

contributing a set of (truth) values for the overall function. In the defuzzifaction step all these values

are combined by using either an AND or OR combination of the individual contributions, and finally

a “crisp” output value is generated. There are several approaches for the defuzzification. The most

popular are: center of gravity, center of largest area, and global maximum.

Cooperative / Center of gravity: The action lying in the center of gravity of the largest connected

fuzzy set is taken

30

2.2. Control architectures for mobile robots

Cooperative / Center of largest area: The action lying in the middle of the largest connected fuzzy

set is taken

Competitive / Global maximum: The action with the absolute highest value is executed

4.e) State-based: A state machine is used for coordination. This method is often used to adapt other

methods to the current state of the system by allocating weights or priorities, by (de-) activating

groups of behaviors, or even by switching between coordination methods. When this method is the

sole method of coordination, the architecture is on the verge of leaving the group of the BBCs, see the

discussion on the central arbiter above.

In the various existing control architectures these five methods are often mixed amongst each other or with

other concepts to tackle various drawbacks or to adept them to a specific application.

Popular approaches

After having discussed the characteristics of Behavior-Based Controls (BBC) in general, this section will

give a brief overview of popular approaches when actually implementing robot control systems. The Sub-

sumption architecture by R.Brooks from 1986 [27] is the most well-know approach in behavior-based

robotics, as it was the first architecture which enabled programming (relatively) complex robots using sim-

ple reactive behaviors. While the behaviors where only capable of performing local reaction to sensed

inputs, the architecture offered the mechanisms for coordinating behaviors and aggregating their possibly

conflicting responses. A robot can then cope with various configurations of the environment, by having

different groups of behaviors activated in different situations. Although the Subsumption architecture pro-

vided interesting results in making robots more efficient in real-world environments, a major limitation was

that managing the interactions and side effects between behaviors becomes too complicated even when few

behaviors are involved [57]. Additionally, this architecture is hardly scaleable or expandable – usually an

advantage of BBCs.

The coordination of the individual behaviors is the crucial point when designing a control system. Ac-

cordingly, authors have analyzed different methods to tackle this problem. Scheutz [140] for example dis-

tinguished between cooperative / competitive, explicit / implicit, and nonadaptive / adaptive coordination

methods. A large number of approaches was implemented over the time: some are using more static arbi-

tration mechanisms like priority-based (e.g. Subsumption architecture by Brooks [27]), state-based (Lang

[101], Arkin [9]), or winner-takes-all-based (Newell [119]) mechanisms. More dynamic approaches are

fusion methods like fuzzy fusion (Saotti [136]), voting (Rosenblatt’s DAMN[134]) or superposition based

fusion (e.g. potential fields [88]), and nonlinear dynamical systems (Althaus [6]). Rosenblatt presents an

approach using a central arbiter with a large amount of knowledge about all behaviors, which coordinates

all behaviors, the distributed architecture for mobile navigation (DAMN) [134]. Contrary to this approach

of a steered coordination, Steels [154] and Brooks [28] proposed control systems completely without co-

ordination mechanism, as it will be taken up by the Behavior Networks. The drawback here is that in both

approaches from the early 1990th in each behavior detailed knowledge on other behaviors had to be incor-

porated, resulting in significant overhead and complex behaviors. Saotti’s fuzzy-based ([136]) and Jaeger’s

differential equation-based ([83]) approaches both offer the advantage that a formal analysis of the con-

trol systems is possible. But they also limit the types of algorithms which can be implemented in form of

behaviors.

31

2. State of the Art

J.Bryson ([29]) introduces the behavior-oriented design (BOD): a development process for modular ar-

chitectures, with the requirement that control- and coordination data flow shall be separated. It proposes

an action selection mechanism driven by reactive plans. Defining such design processes is an important

step when developing a BBC to be able keep the control predictable. Accordingly, many authors have taken

similar approaches.

An approach to separate the control data flow from the coordination data flow was followed by using some

kind of signals (activity, target rating, motivation and inhibition values) for each behavior. The approach

also introduces simple fusion behaviors to merge different data flows. This approach is called Behavior

Networks and originates from work by J.Albiez for the behavior-based control of walking machines [4].

Further developed versions are used to control walking machines like LAURON or BISAM [2] or wheel

driven robots like RAVON [139]. On LAURON the BBC is used for controlling the motion only and higher

tasks are planned and executed by classical approaches as shown for example in [180] where a semantic

planner for LAURON is described. The architecture used on RAVON consists completely of behaviors,

even in the higher task-oriented levels of the control system. As the BBCs by J.Albiez and K.Berns are

related to this thesis, they are explained in more detail in the next section.

Behavior Networks by J. Albiez and the iB2C architecture

The Behavior Networks were developed by J. Albiez [3] here at the Research Center for Information Tech-

nology – Forschungszentrum Informatik (FZI) in Karlsruhe to control walking robots. They implement a

hierarchical behavior-based control system which strictly distinguishes between the control data flow for

commanding actors and the coordination data flow for coordinating the individual behaviors. The individual

behaviors are software modules which are implemented by modules of the Modular Controller Architecture

(MCA2)[143]. Each behavior is dedicated to an individual task. All behaviors of such a control system work

independently and parallel at all the time. Besides calculating the dedicated output (u) based on given input

(e), which represents the control data flow, each behavior has the possibility to interact with other behaviors

directly, which represents the coordination data flow. A behavior can be activated (i) by other behaviors, and

each one can inform others about how active (a) it is and how satisfied it is with the current situation (r) (see

Fig. 2.7). This information can be used by other behaviors to estimate how efficiently the first one is working

and to motivate or inhibit it accordingly. Using these capabilities, individual behaviors can be woven into

Behavior Networks. In such a network a whole set of behaviors combine their strictly dedicated abilities to

fulfil a higher task. Additionally, there is a special kind of very simple behavior module, the fusion behavior.

These unify several inputs of the same type to one output of the same type. This is necessary when several

modules provide input for one individual other module (see Fig. 2.8). The most prominent types are the

maximum fusion, where one input is selected based on the highest activity of the source modules as well

as the weighted fusion where all inputs are weighted by the individual activities and then merged for the

output.

The iB2C architecture The integrated Behavior-Based Control (iB2C) architecture is being developed

by K.Berns and his group at the University of Kaiserslautern (Germany)[125]. It is based on the Behavior

Networks developed by J.Albiez to control walking machines. They enhanced the Behavior Networks so

that they can also be used for more deliberate tasks. Finally, they even implemented the complete control

architecture including high-level planners by behaviors. A wide range of methods were implemented by

32

2.2. Control architectures for mobile robots

Fig. 2.7.: Behavior Module [3] Fig. 2.8.: Linking of behaviors by fusion-behaviors [3]

behaviors: classical behaviors for obstacle avoidance like done for the robot RAVON (see sketch in Fig. 2.9

and [10]) but also complete algorithms like A⇤ or elastic bands for the robot ARTOS[18], demonstrating the

flexibility of the Behavior Networks. (More details on the two robots can be found at the end of Section

2.4.1.)

The iB2C architecture inherits several features from Albiez’s Behavior Networks: the separation of

information- and control data flow, the coordination of the behaviors by special fusion behaviors as well

as the standardized inter-behvaior communication using defined signal such as activation (a), inhibiton (i)

or motivation (m). Just as the architectures of Albiez, iB2C does not use a central world model.

One of the primary concerns of the authors was to develop a Behavior-Based Control which behaves in a

truly predictable way. Therefore, they defined a set of design principles which shall in combination with the

characteristics of the Behavior Networks allow making assumptions about the network:

• The activity of behaviors is always smaller than the external activation

• Goal state activity: when r becomes 0 the activity is maintained (const) because behavior shall try to

hold the system in the goal state (prevents oszillation caused by external forces e.g. joint angle and

torque of an manipulator vs gravity)

• r is independent from s or i and from the activation

• Fusion behaviors do not inject or drain activation or rating from the system

• A behavior can only be stimulated or inhibited by a or r of other behaviors (or from defined sources),

there are no “hidden” sinks or sources of activity

• Each control signal shall always be accompanied by a corresponding a and r. These must not be

dropped until the control signal leaves the network.

• No stimulation or inhibition cycles

To reach the goal of a predictable Behavior Network the authors have not been content with defining the

design principles. They needed methods to analyze the developed networks. Accordingly, they introduce

four mechanisms for analyzing the Behavior Network online and / or offline:

1. Graph visualization: A graph can be extracted, stored using the boost graph library, and visualized

using graphviz. A static graph analysis possible.

33

2. State of the Art

2. Oscillation analysis: To detect and trace oscillations of activation signals in the network

• Oscillation detection: A ring buffer stores signals, a FFT transforms the data into the frequency

domain for the identification of peaks. Then the data is transferred back to time domain to iden-

tify the regularity of peaks. This method has too much computational effort to run continuously

on all signals, it is only used on-demand.

• Oscillation tracing: Some initial behaviors look for oscillations. If a behavior detects oscillations

it asks all successors and predecessors to also look for oscillations. The gathered information is

stored in a graph which can be analyzed. As no circles are allowed, the initial behavior can be

identified.

3. Formal verification: They performed a formal verification on safety critical behaviors. It should guar-

antee that the tested behaviors follow three specifications regarding the output set-point velocity. The

behaviors were modeled using the QUARZ language which can be transformed into a transition sys-

tem and then be verified with the AVEREST framework [142]. After verification, C-code can be

generated which again is is embedded into MCA-modules.

4. Online Tools: Two tools are used frequently when working with the MCA framework. These are the

MCA-Browser and the MCA-GUI. These allow looking into the inner state of the individual MCA-

modules and edged at runtime.

The authors state that their architecture supports all six methods of behaviors coordination seen in other

architectures by using a, r, i, s, fusion behaviors, and auxiliary behaviors which implement state machines

or similar.

Summarizing, the Behavior Networks as well as the iB2C architecture can be assigned the following

attributes (regarding their usual application): inherently they are architectures without central arbiter using

a cooperative and activity-based fusion approach. They can be, but do not have to be, implemented as

hierarchical and / or hybrid architectures, wheres iB2C usually is not of the hybrid type. But due to their

very flexible approach they can be used to implement other types of BBCs as well, mostly by using auxiliary

behaviors.

2.2.4. Hybrid and hierarchical architectures

The hybrid architecture approach emerged from the inherent limitations of reactive and / or behavior-based

architectures and the need to integrate higher-level, deliberative capabilities of functional architectures [57].

As all approaches, the reactive, the behavior-based and the plan-based one, have their strong advantages, it

stands to reason to combine them. The once monolithic architecture is broken up into independent layers,

and the individual layers are implemented using different control approaches. Usually a layer housing

reactive skills is combined with a layer housing a classical planner. Often an additional layer is placed in

between to integrate both. Sometimes behavior-based systems are used in the lower layer(s), but often there

are “just” skills which are sequentially utilized by the planner.

The most common realization of the hybrid approach use three layers. Three-layer architectures were

introduced with layers for reactive control, for reactive plan execution, and for deliberative computations

(Alami [1]), and with a functional level, an execution control level and a decision level (Gat [57]). Three

34

2.2. Control architectures for mobile robots

Fig. 2.9.: An exemplary implementation of ib2c from 2011 on the out-door robot RAVON [10].

35

2. State of the Art

layers are also proposed by Kim ([92]). Those layers are composed of deliberate, sequencing, and reactive

layers based on the hybrid approach. The purposes of the deliberate layer are to interface with a user and to

execute a planning process. The sequencing layer is classified into two groups, that is, the controlling part

that executes the process by managing the components in the reactive layer and the information part that

extracts highly advanced information from sensor data. The reactive layer controls the real-time command

and hardware-related modules for sensors and actuators. Kim also presented a robot architecture with the

intention for the rapid development of robot systems with different requirements with emphasis on reusabil-

ity and extensibility [90]. Their architecture is a hybrid architecture consisting of three layers: reactive layer

for real-time services, sequencing layer which supports primitive behavior, and deliberative layer for task

managing. While a lot of recent robotic architectures are inspired by the hybrid architecture approach, the

necessity of the three classical layers was questioned. For instance, some robots were built according to a

two-layer architecture (Nesnas [118]) with a functional and a decision layer (only). In this approach, the

decision layer integrates decision and plan execution more tightly to take into account the coupling between

their tasks. The next section exemplarily analyzes two well known instance of three-layered architectures

which have been used as an archetype for many robot control systems: the 3-Tier architecture, combining

reactive skills and a reasoner and the architecture proposed by R. Alami.

The 3T architecture

This hybrid architecture, incorporating a planner and reactive skills, shall be picked up here to be explained

in more detail, as it has been a source of inspiration for many hybrid and hierarchical architectures, including

the one presented in this thesis.

The 3T Architecture [22] – where “T” stands for “tier” – is an hierarchical control architecture which

incoroporates a classical reasoner in the upper tier and reactive skills in the lower tier (a sketch can be found

in Fig. 2.10). The sequencing Tier concatenates these two by breaking the plans produced by the reasoner

down into atomic actions and then activating skills accordingly. The environmental situation is observed

by dedicated monitors to identify the fulfillment of clauses representing certain conditions relevant for the

plans. The three tiers will be briefly introduced:

1. The deliberative Tier : This tier houses several action-sets called RAPs. Each of these is linked with

certain clauses for pre-conditions and effects. A reasoner generates a plan based on the available

RAPs, their clauses as well as the clauses describing the current and the target environmental situation.

2. The sequencing Tier : This tier decomposes the plan in sub-plans and actions and executes them se-

quentially. Execution means in detail that corresponding skills and monitors in the reactive Tier are

activated. Once the monitors communicate that the fulfilment-clause of the action is true the tier pro-

ceeds with the next action. Exceptions are handled in a similar way: for every exception there is a

corresponding monitor observing the situation.

3. The reactive Tier : This tier houses the skills and the monitors. Skills are software modules which

either process sensor information or generate motor commands. They represent the interface to the

specific robotic platform and have a defined command- and data-interface to ease the integration with

the RAPs.

36

2.3. Navigation, self-localisation and mapping

The 3T Architecture itself is platform- and application-independent. But the major components which are

implementing the architecture are not: the RAPs are application-specific and the skills are platform-specific.

The architecture has - sometimes only partially - been implemented in several robots.

“An Architecture for Autonomy” by R.Alami

Another well known hybrid architecture known as “An Architecture for Autonomy” was proposed in 1998

by R. Alami [1] along with a corresponding design approach. Most remarkably, the major characteristic

of this architecture is that the functionalities are modeled using description languages and the actual code

is then generated automatically. The architecture uses overall five levels while having the popular three-

leveled setup of the central functional part: operator, decision, execution control, functional, and logical

system level (see sketch in Fig. 2.11). The decision level houses the intelligence of the system, the lower

levels are used for task refinement and act as library of services.

1. The Operator Level : This layer provides the user interface and maps the queries to the available

missions.

2. The Decision Level : this level contains an supervisor which controls task execution and utilizeses

planners. The supervisor tracks the state of the world and provides this information for the planner.

The planner then generates a task-graph based on atomic plans chosen from a database corresponding

to actual or estimated world states. The used planner is the temporal constraint solver “IxTeT” which

resolves resource conflicts – the robot’s function are interpreted as the resources.

3. The Execution Control Level : this level actually manages the translation between the levels two and

four: it fills the gap between symbolic plans and numeric computations while itself being purely

reactive, it does not perform any planning itself. It receives the plans, actuates the functions based

on a database for mapping functions and action and finally reports to the decision level. The level

is implemented by an automaton which is generated automatically by “GenoM” descriptions and the

description language “Kheops”.

4. The Functional Level : This level embeds the libraries of functions which are implemented by mod-

ules. These are generated by the “generator of modules” – “GenoM”: it is used for formalizing the

instantiation of modules to reduce implementation errors using the dedicated description language

“Kheops”. The modules are based on a generic module, consisting of two functions: controller (ac-

tually a state machine) and the execution engine as well as of two databases for parameters and state

of activities. Each individual module is activated on request by the plan, but once activated they work

independently to increase robustness. They communicate using defined areas of shared memory.

5. The Logical System: This is essentially the hardware abstraction, containing interfaces for sensors

and effectors which are modeled into the modules.

2.3. Navigation, self-localisation and mapping

After having had a look at control architectures we now will have a closer look at the methods which provide

the functionalities inside the control architecture. This section summarizes work related to the individual

37

2. State of the Art

Fig. 2.10.: The three-layered 3T Architecture contain-
ing a symbolic planner and reactive skills [22]

Fig. 2.11.: The architecture proposed by R.Alami with five
layers containing symbolic planners and reactive func-
tions [1]

components utilized or developed in this thesis which correspond to the navigation system. It starts with a

summary on RFID-based self-localization, continues with mapping which again is followed by the avoid-

ance of static and moving obstacles. The section finally finishes with the topic of path planning methods.

Because of the number of topics the individual ones can only be briefly introduced as far as necessary for the

understanding of subsequent chapters, much more details can be found in standard literature as for example

in Probabilistic Robotics by S. Thrun, W.Burgard, and D.Fox ([164]).

2.3.1. RFID-based self-localization

RFID technology is very attractive when tackling robotic problems like object recognition, topological lo-

calization, or person tracking. Many problems can be made simpler assuming that RFID transponders are

incorporated into objects, are embedded on mobile agents (persons, robots, vehicles) or are distributed in

the environment. The tags can be detected robustly and they provide a unique ID along with the data which

is stored on them. Many robotics researchers tried to take advantage of this technology using either active

RFID tags (long range detection) or passive ones (short range) utilizing either omni-directional or direc-

tional antenna systems. The drawback is that the tags can not be located precisely – it is known only which

antenna detected them and maybe the distance, but not the angular position. Additionally, the tags can be

occluded by metallic or water-containing bodies, therefore by many devices as well as by human beings.

To tackle the drawback of poor localizability of the tags, a popular method is to place the tags on the

ground with a very short – and this way defined and invariant – distance between antenna and tag. Because

the distance is known, and the size and shape of the antennas FOV at this distance is know too, the position

of the tags can be estimated, especially when several tags of a densely tagged environment are seen at the

same time. Even more, by using small-sized antennas with a very narrow field of view, the tags can only be

38

2.3. Navigation, self-localisation and mapping

detected when the antenna’s center is exactly above the tags. Re-writeable lines of RFID tags were proposed

by Bosien [26] as substitute for optical lines or electric wires integrated in the ground that the robot could

easily follow. The lines could be modified by changing the data stored on the tags to gain flexibility. This

approach has been generalized with RFID-carpets on which the robot is always able to localize at least

roughly. Several authors have studied how to use classical probabilistic methods for self-localization in

combination with RF-technologies like S.Thrun [159] using EKF-based methods. Markovian- and Monte-

Carlo-based methods were proposed to estimate the robot’s position like done by Haehnel ([68]), Vorst

([175], [176]), or Mehmood ([110]).

An approach for densely tagged environments is presented by P. Vorst [174]. Often it is assumed that

RFID-based self-localization is too inaccurate, but P. Vorst has shown that using new methods based on

particle filtering [174] that an accuracy of less than 0.3m is possible. M. Devy has shown that precise self-

localization of mobile robots is possible using RFID-tags which are sparsely distributed in the environment

and a ring-shaped setup of long-range antennas ([128], [37]). In densely populated areas both methods run

the risk, that the robot is completely screened by humans and therefore no tags can be detected.

The sensor modeling step has an important impact on these methods. Vorst ([176]) developed simplified

procedures to estimate the antenna model based on previous collected data; they create a cartesian grid of

relative position-detection probability. In addition a more complex method considering the measurement

density is presented, taking into account correlations between the probabilities to acquire measurements in

every block. This approach is interesting because it is difficult to get a data set with all blocks having a

satisfactory number of measurements.

2.3.2. Maps and mapping

The automatic generation of environmental maps is a very wide field challenging many groups of re-

searchers. As mapping is not part of this thesis this topic will be omitted here mostly. A widespread

description was summarized for example by S. Thrun in the work “Robotic Mapping: A Survey” [161].

Usually three major types of maps are used: metrical, topological, and semantic maps, with rising level of

abstraction. Metrical maps often consist of occupancy maps but can also use geometrical representations of

obstacles or free space. topological maps represent the topological layout of an area, divided into subareas

without containing information on the sub-areas themselves. To enhance the applicability of topological

maps they are often used in hybrid versions (see Fig. 2.12): The topologic-metrical map contains rough

metrical information on the sub-areas such as size, relative positions, or hotspots. The topological map with

local metrical maps is a hierarchical structure where local metrical maps are stored for each topological

sub-area. Sematic maps contain abstract information. They are often used to annotate metric maps or

topological maps with semantic information, e.g. stating that a specific topological area is a “living room”.

The semantic information can then be used to trigger behaviors or to communicate with humans.

Metrical mapping

Usually the occupancy grid / certainty grid method are used for local map building [31]. There are numerous

ways of calculating the occupancy probability of a cell. The range is from the probabilistic modeling of the

sensor systems [160] to the learning the probabilistic distribution with neuronal networks demonstrated by

Burgard [31]. An alternative approach is to represent the geometry of obstacles as polyhedra [34] or to

39

2. State of the Art

Fig. 2.12.: Three variations of topological maps. Left: the basic topological map. Middle: the term topologic-metrical
map is used here for topological maps containing metrical information such as sizes or relative positions of the areas
but no detailed or dense data (these would be called “patchwork metric map”). Right: topological map with local
metrical maps .

construct objects by extracting wall segment from raw sensory data [158]. S.Thrun has shown in [165] a

statistical method that revises the robots pose forward and backwards in time. It was developed to build

maps of large areas where it is difficult to estimate the exact pose of the robot.

Recent research concentrates on 2D and 3D SLAM of various mobile agents in dynamic environments,

including approaches for life long mapping. Additionally, the mapping process is used to extract topological

or even semantic information as for example described by J. Oberlaender ([120]).

Topological mapping

Topological maps are very compact because they contain sparse information only, compared to metrical

maps. They represent large structures like corridors or rooms so they are (almost) time-invariant as shown

by P. Althaus ([5]). This makes them a very good choice for highly dynamic environments, where even parts

of the structures are altered (compared to environments with moving objects where the structures are static).

Additionally, they are easy to construct even for large places. When considering human robot interaction,

the facts stands out that topological maps are much easier understood by humans then large metrical ones.

A human asking for directions will expect something in the line of “go straight on and turn left at the third

corridor” instead of “go 11.34 m ahead and then turn -90 degree at the pointed feature”. Often topological

maps are combined with local metrical maps as described by B. Kuipers ([100]) . Sometimes topological

maps are constructed manually where they could be used to support an exploration process [116], but often

the robot learns them automatically [159] while exploring autonomously. J. Oberlaender ([120]) describes

a mapping process where topological and semantic information is extracted, which is even able to handle

topological or semantic features which are significantly larger the the robot’s sensor range. Based on seman-

tic maps, semantic navigation can be performed as described by K. Uhl in [169]. The advantage here again

is the robustness against environmental changes and the even more easy comprehensibility by humans.

2.3.3. Collision avoidance

This section summarizes current and past works on the topic of collision avoidance. It starts with static

obstacles and continues in the succeeding section scenarios with obstacles which are moving themselves.

For several methods it is hard to distinguish wether they fit into the section “collision avoidance” or “path-

40

2.3. Navigation, self-localisation and mapping

finding and navigation” as they combine direct reactions to obstacles and goal driven characteristics. In

these cases the methods shall be at least named in both sections.

Collision avoidance with static obstacles

A classical approach to collision avoidance, or navigation in general, are the class of potential field methods

where obstacles have a high potential and flat terrain and especially the goal has a low potential. The

robot the plans a path following the steepest gradient. Introduced by B. Krogh in 1984 ([98]) and taken

up by O. Khatib in 1986 to generate real-time obstacle avoidance control ([88]), these have become very

popular as they are easy to design and fast to implement. Due to limitation of the range of the field of

view, potential field methods are computational highly efficient. But they have limitations like trapping

situations or oscillations because of the purely reactive approach, the restrictions in the range of the FOV,

and the inability to use backtracking or similar approaches (e.g. Koren [96]). Hence, these methods are

often enhanced like done by O. Khatib in [89].

An alternative approach, which also operates directly based on the occupancy map, is the Virtual Force

Field (VFF), introduced by Borenstein ([24]). Some sketches of this and the succeeding methods can be

found in Figure 2.13. In the VFF approach, each cell in the “active area” of the grid exerts an repulsive

force vector on the robots with a force proportional to the distance to, and the occupancy certainty of, each

individual cell. The target exerts a attracting force vector. All these numerous vectors are summed up to

provide the resulting set-point vector for the robot’s drive system.

Due to drawbacks resulting from the harsh information reduction and the discretization of the robot’s

position, the VFF were developed further to the Vector Field Histograms (VFH) ([25], [170]). Here the

active area is divided into several narrow sectors defined in polar coordinates. For each sector the weighted

sum of the individual cells’ distance to the robot and the certainty of their occupancy is calculated. This way,

a 2D histogram is generated, containing for each discrete span of driving directions a value representing the

degree of danger of this direction. The “valleys” in this histogram, with a bottom below a defined threshold,

are the options for the robot to choose from. The robot selects the valley fitting best to the direction of the

target. In narrow valleys the robot chooses exactly the middle line, in wide valleys the robot can choose

between each of the two borders and the direct way to the target, if applicable.

This approach was further improved, resulting in the VFH+ [170]. Here the size of the robot is explicitly

taken into account by enlarging the obstacles. This is not done in the occupancy map but in the 2D histogram

to reduce the computational effort. An hysteresis is applied to prevent the robot from oscillating and finally

the histogram is masked to block valleys whose direction the robot cannot turn into due to its current velocity.

The methods from VFF to VFH+ are all purely local algorithms, resulting in not optimal paths due to a lack

of knowledge and planning.

By developing the VFH* [171] the VFH+ is extended with a forward planning step: for each possible

direction (valley) of the VFH+, a defined time-step is taken, virtually moving the robot forward. Then

the VFH+ step is performed again. This search is performed corresponding the parameters search depths,

branching factor, and step width. Obviously, this algorithm depends on an occupancy map which is signif-

icantly larger than the robot’s active area. Depending on the search depth and the known area of the map,

this algorithm can be used for local collision avoidance or for global path planning.

41

2. State of the Art

Fig. 2.13.: The function of VFF, VFH, and VFH+ illustrated by drawbacks.

A very intuitive method, which combines obstacle avoidance and path planning, are the visibility(-graph)-

based methods. Here the robot plans a path on a known (or learned) map via sub-goals on the visible corners

of obstacles, thus avoiding the obstacles (a comparison between different implementations can be found in

[105]). This method can be applied to a local map for collision avoidance or on a global map for path

planning.

The Dynamic Windows method ([47], [46]) for collision avoidance is special compared to the other meth-

ods as is directly works in the velocity space. It was designed to cope with higher velocities where the robots

dynamics must not be omitted and where the robot shall always drive as fast as possible. The methods gen-

erates a search space of possible 2D velocities for the robot. Velocities are considered only if the robot can

reach them in a short time window – the “dynamic window”. Areas of the search space are blocked if driving

this velocity would result in a collision with objects. Therefor the robot’s path as well as the estimated paths’

of moving obstacles are predicted. Finally a 2D set-point velocity for the robot is chosen corresponding to

three criteria: maximum value of the velocity, direction towards the target, and save from collision.

A completely different approach are the Elastic Bands ([127], [137]). These optimize a given path ac-

quired by other methods – often visibility graph or A⇤ methods – according to static or even dynamic obsta-

cles. Bubbles are placed on the given path – often with defined distances like pearls on a string, but there

are numerous other methods of distributing the bubbles. Then the bubbles are grown until they intersect

with an obstacle. When hitting an obstacle the bubble is forced aside while growing further, altering the

center point of the bubble. This procedure is performed until a bubble intersects with obstacles on opposing

sides or reaches a defined maximum size. The new line of center points of the grown bubbles gives the new

optimized path for the robot.

42

2.3. Navigation, self-localisation and mapping

Avoiding collisions with moving obstacles

After describing methods for the avoidance of static obstacles, the methods for avoiding obstacles which are

moving themselves are the next logical step. In the literature the term “dynamic obstacle” is often found –

but this term is not unambiguously: it is used to describe objects which can be moved (in the sense of the

reliability of a map) as well as for objects which currently move themselves. At first glance these two seem

very similar, but they have different implications: in the first case only the navigation and path finding is

affected because obstacles can appear which are not mapped, in the second case even a robot can be involved

in a collision which is actually standing still, requiring for proactive actions. In this thesis the term “dynamic

obstacle” will be omitted in favor of the term “moving object”. “Object” is preferred over “obstacles” as the

“moving object” can also be a person or even the robot’s operator which should not be devaluated to be just

an “obstacle”.

There are several different popular methods for avoiding moving objects so far. They can be grouped

in two main classes: the local or reactive approaches which are limited in their ability to solve complex

situations and the global or plan-based approaches which need more knowledge about the situation and

where the reaction time can become an issue.

1. The reactive approaches: An approach using a multisensor based environment prediction is de-

scribed by Song [151] where the predicted obstacle positions are used to calculate virtual forces to deceler-

ate the robot. Castro ([32]) presents a system which uses a laser range finder-based obstacle detection and

tracking and feeds this information in an extended Dynamic Window algorithm.

2. The plan-based approaches: Hu first plans a path considering only static obstacles, the dynamic

obstacles are considered only by controlling the robot’s velocity when driving along the planned trajectory

[76]. Fraichard [48] and Fujimura [51] add the time dimension to the search-space. However, the major

drawback of these solutions is that they assume a complete and deterministic knowledge of the environment.

In practical applications they are usually combined with reactive methods in order to avoid unexpected

obstacles as for example done by Stachniss [153]. Another very popular approach are Elastic Bands. First

a path considering the static obstacles is planned and later deformed with the elastic-bands-method to direct

the robot around the moving obstacles (Quinlan [127]). Hoeller uses a modified probabilistic path planner

to avoid predicted trajectories of a human. These predicted positions block the probabilistic planner from

adding a new waypoint near the estimated spatio-temporal positions of the human [71]. Large describes a

realtime dynamic obstacle avoidance system learning typical trajectories of moving obstacles and feeding

them into an iterative motion planner based on Velocity Obstacles [103]. Bennewitz uses learned motion

patterns of persons: Hidden Markov Models (HMM) are derived to estimate future movements of detected

objects. The probabilistic belief is incorporated into the path planning process [14].

Finally the problem can be tackled by planning directly in the velocity space, as [122] and [43] have

demonstrated. They model the dynamic environment into a map in the velocity space. As the Velocity

Obstacle approach relies on a perfect knowledge of the world, Fulgenzi ([55]) proposes a solution called

Discrete Probabilistic Velocity Obstacle (PVO) that combines the Linear Velocity Obstacle (LVO) and the

Bayesian Occupancy Filter (BOF).

43

2. State of the Art

2.3.4. Path planning

There are vast numbers of methods used for path planning. As path planning in the thesis is performed only

on a topological level in combination with local methods for obstacle avoidance, in this section only the most

prominent ones will be introduced. For an complete overview the standard literature is a more resourceful

choice. Several A⇤-based methods like dynamic programming (Howard [75], Bellmann [12]) that minimize

some kind of cost for every crossed cell like the occupancy value are found in literature. There is a dynamic

extension to the A⇤ as well, the D⇤ [156]. It was developed to perform fast re-planning if the environment

suddenly changes without having to re-plan the complete tree. Another application for A⇤-based methods

are graph-based navigation concepts like the robot Robox uses. Here a basic path is computed based on a

web of nodes and edges that is placed in the free room of the environment.

Other methods are based on voronoi diagrams ([35],[36]) or on visibility graphs ([105], [84]). Voronoi

methods lead the robot through the free room in a central manner where visibility graph methods let the robot

move as close as possible to the obstacles to minimize the length of the path. Often a reduced visibility graph

is used due to high computational effort [124]. Another possibility to reduce the effort are dynamic visibility

graphs that look at a local or active region only [77].

Methods based on Partially Observable Markov Decision Processes (POMDP) ([104], [121], [152]) were

developed. These take the uncertainty of actions, the robots state and observations into account. Due to the

very high computational complexity these methods are bound to problems with small action- and state-

spaces. Elastic band methods do not actually perform path planning but path optimization ([127], [137]).

They rely on the path calculated by the methods mentioned above. The given path is modified according to

obstacles in or besides the path, including obstacles that are new and therefore not mapped but seen by the

robot’s sensors.

2.4. Service robots

The concept of service robots is – according the Fraunhofers definition (see Chapter 1.1) – focused on

performing tasks for the people. The main characteristic to distinguish these robots from industrial robots

is that the latter ones are built for producing goods. But when talking about service robots, we again find

a wide range of types of robots – in Figure 2.14) a more subtle classification is tried. First of all service

robots can be grouped in two major groups: The first group is here called fuctional service robots. These

are built to fulfill a dedicated function. According to Fraunhofer’s definition this function is not related to

producing goods. But the robots are performing thir tasks independently from humans which contrasts what

one might assume when hearing the term service robots: robots which are working for and in cooperation

with humans. This is the second major group identified here: the user-oriented or social service robots. For

each of the two groups some characteristic examples out of the wide range of systems will be presented in

one of the following sections. As they are of special relevance for this thesis, a subset of the social service

robots will highlighted in a dedicated section: the shopping assistants.

2.4.1. Functional service robots

The service robots which are here called “fuctional” have in common that they are service robots because

their services are not dedicated to producing goods. But still their service is not directly assisting a human.

The robot is performing a task instead of a human, hence it is fulfilling a dedicate function.

44

2.4. Service robots

Fig. 2.14.: Hierarchical arrangement of assistance devices and robot types

Many of these robots are cleaning robots like the well known iRobot roomba (Fig. 2.17) or the window

cleaning robot RACOON (see Fig. 1.5) which are rather small compared to the giant Skywash (Fig. 2.15)

– a robot for cleaning airplanes. Other examples are robots used for inspections like the robot MOSRO

(Fig. 2.16) developed by robowatch which is equipped with gas detection sensors. Yet another example

are transportation robots like the TransCar produced by the company SWISSLOG in cooperation with our

laboratory at FZI Karlsruhe (see Fig. 1.3). A special case here is the automatic subway train deployed by

Siemens in the city of Nürnberg (see Fig. 1.4) because here the service is provided directly for humans.

But just like in the other mentioned cases there is no interaction with the humans – they are not recognized

as users but either as obstacles or or as objects needed for task execution. The robots are commandeered

in different ways ranging from central logistic stations in the case of TransCar to just giving commands

through a control PC. Some can be used for tele-operation. They often drive on pre-defined paths, either

virtual ones like used by TransCar or marked ones like following color lines, metal lines or magnets. Others

again follow patterns – this is obviously used by cleaning robots. In most cases all their systems including

locomotion, localization and communication are tailor-made for their specific task and environment.

Fig. 2.15.: Airplane cleaning robot Skywash by
Putzmeister (image source: [126])

Fig. 2.16.: MOSRO in-
spection robot with gas
detector (image source:
[133]) developed by
robowatch

Fig. 2.17.: Cleaning robot roomba
(image source: [81])

45

2. State of the Art

Service robots using a BBC Usually service robots do not utilize Behavior-Based Controls, especially

not in commercial applications, due to the high challenges they pose to the developer in guaranteeing their

predictability and robustness. But there are some exceptions which are developed at the University of Kaiser-

slautern (Germany) by K. Berns and his team. As the recurrent term “autonomous” in their names suggests,

these robots fall in the category of functional service robots as they are used mainly for autonomous trans-

portation, observation or exploration tasks. They all utilize a Behavior-Based Control, the iB2C Architecture

described earlier in this chapter in Section 2.2.2.

• ARTOS: The Autonomous Robot for Transport and Service is under development since 2006 ([109],

Fig. 2.18 and webpage: [15]). It is used for the development of methods to integrate robots in Ambient

Assisted Living (AAL) environments. Possible applications are emergency detection, transportation

tasks or telepresence of nursing staff for which the robot is equipped with a camera, a microphone and

speakers. For the obstacle detection the robot uses a series of ultrasonic sensors, a laser scanner, and

the camera. Laser-based mapping, the popular A⇤ algorithm, and elastic bands are used for navigation

purposes. All components are implemented as behaviors in the iB2C architecture using the MCA-KL

framework.

• RAVON: The Robust Autonomous Vehicle for Off-road Navigation is under development since 2005

([10], Fig. 2.19 and webpage: [17]). Its main purpose is the evaluation of Behavior-Based Controls in

rough, uneven, and vegetated terrain. Applications could be disaster areas but also patrolling borders

or industrial complexes. The main tasks of the system are exploration and mapping as well as driving

along routes defined by waypoints. The robot is equipped with horizontal and vertical laser scanners as

well as a camera system for obstacle detection. The navigation system is implemented by hierarchical

layers using the iB2C architecture: upper layers generate drive commands i.e. driving towards a goal

or preferring areas of free space. Medium layer behaviors overwrite these commands and adept them

to the current situation. In the lowest layers there are safety behaviors which can trigger emergency

stops based on different events.

• MARVIN: The Mobile Autonomous Robotic Vehicle for Indoor Navigation is under development

since 2006 ([141], Fig. 2.20 and webpage: [16]). It is developed for the purpose of being a test

and evaluation platform for autonomous transport, observation, and entertainment tasks in home and

office scenarios. A camera system is used to observe the environment and to detect items of special

interest. The operator can control the robot using a touch screen interface as well as via WiFi. The

BBC, implemented in the iB2C architecture, enables the robot to navigate safely and to adapt to

environmental changes. It is able to explore and map its surroundings autonomously. For this purpose

a network of individual behaviors like, but not limited to, “Door Driving”, “Narrow Driving”, “Hold

Distance”, or “Random Cruise” arbitrated using inhibition and activation signals and is finally merged

by maximum fusion behaviors.

2.4.2. Social service robots

These are the “true” service robots where the term “service” has been taken literally. These robots aim at

directly assisting humans. These can be for example elderly people which are the target group of Care-O-Bot

or customers in hardware stores as in the case of Toomas. This section summarizes the most prominent past

46

2.4. Service robots

Fig. 2.18.: The autonomous transport robot AR-
TOS (image source: [109])

Fig. 2.19.: The autonomous off-road ex-
ploration robot RAVON (image source:
[17])

Fig. 2.20.: The au-
tonomous inspection
robot MARVIN
(image source: [16])

and present robot systems which are designed to assist their users. These systems have been used in public

environments at least for short term tests, while some have been operating several month. A special section,

following the present one, is dedicated to shopping robots as these are designed for the same scenario as this

thesis aims on.

Rhino and Minerva

Rhino (Fig. 2.21, [31], [162]), a robot developed in cooperation by the University of Bonn, the Aachen

University of Technology and the Carnegie Mellon University, was deployed for several weeks as museum

guide in the museum “Deutsches Museum” in Bonn in the year of 1997. The tasks involved approaching

people, interacting with them by replaying pre-recorded messages and displaying texts and images on on-

board displays. The goal of the experiment was to gather experiences in the field of navigation in crowded

dynamic environments. During daytime Rhino had a maximum velocity of 70cm/sec. It was equipped with a

laser range finder, sonar sensors and cameras. It did not require modifications in the environment to navigate

savely.

Rhino used two planners, a motion planner for moving from one exhibit to another, and a mission planner

for scheduling tours. The Rhino system uses GOLOG/GOLEX for mission planning and execution, which

essentially executes pre-programmed plans. The motion planner is a modified version of dynamic program-

ming: each cell of an occupancy grid map has a cost value according to its occupancy probability. Local

motion generation and collision avoidance is performed based on a dynamic window approach. The map

of the museum contained objects that are invisible to the robots sensor system and had to be fed in by a

set of virtual sensors to avoid collisions with the invisible obstacles. The main problem was the reliance

on an accurate map. According to the authors, the construction of the map took about a week. But a new

algorithm reduced the time by one order of magnitude.

The robot Minerva (Fig. 2.21, [162]) was developed based on the robot Rhino an deployed 1998 as

museum guide in the “National Museum of American History” for some days. The original robot was

especially enhanced to improve the abilities of human-robot interaction and telepresence.

47

2. State of the Art

Robox

The robot Robox (Fig. 2.22, [149]) was developed as an interactive tour guide at the Expo02. The challenge

to cope with was the robust and reliable navigation in highly populated areas without modifying the envi-

ronment. During the Expo a whole fleet of these robots was online for 5 month, 10 hours a day. Therefore

an crucial design criterion was to depend on a very low level of manual supervision and maintenance.

Robox does not navigate based on free-space models like occupancy maps. Instead, a weighted graph

consisting of landmarks and geometric primitives is used. Therefore the environmental representation is very

compact. The resulting graph contains station nodes, via nodes and ghost nodes. The ghost nodes are used

as virtual barriers near invisible obstacles. The resulting graph for the Expo consists of 17 station nodes and

44 via nodes. The self-localization is performed based on a global extension of an Extended Kalman Filter

(EKF). The navigation is divided into 3 layers. The first one plans the global path on the graph, the second

one plans a local path based on the NF1 navigation function which implements a gradient method. Because

it tends to generate un-smooth trajectories and graces obstacles, the generated trajectories are optimized

using elastic bands. The third layer manages the velocity control and is based on the Dynamic Window

approach for collision avoidance. The robot was able to escape U-shaped obstacles and to traverse through

narrow gaps, supported by Robox’s octagonal shape. Especially the division of the “obstacle avoidance into

a purely reactive part with high model fidelity and a planning part with local scope” is mentioned by the

authors as a “powerful conjunction”.

Care-O-Bot

The Fraunhofer Institute branch IPA develops the service robot family Care-O-Bot since 1998 (Fig. 2.23,

[49]). The latest robot, Care-O-Bot 3, is designed to assist elderly people in their everyday environments.

Therefore, it is equipped with an robotic manipulator arm and it is able to provide walking aid just like

rollators (also known as walkers or zimmers) do. The robot can lead the user to a designated location or

it can be steered by the user directly while avoiding obstacles and providing the walking aid. The current

version uses an omni-directional drive with four steerable wheels. Using its flexible navigation, the robot is

able to move safe and reliably in public areas. It can manipulate and grasp objects using a 7 DOF hand with

three fingers.

Communication with the robot is done via a multimodal user interface that includes a touch screen and

speech. A hybrid control architecture with a variety of reactive and deliberative components was developed

to provide the desired functionalities. These are gathered in the robotics toolbox. The highest layer houses a

symbolic planer; self-localization is performed by a combination of odometry and landmark-analysis. The

path planning can be performed with one out of a set of methods that include Rapidly-exploring Random

Trees (RRT), potential fields and visibility graphs. Path planning takes place based on a metrical exact map

of the environment that can be acquired by SLAM. Avoidance of obstacles that are not mapped and path

optimization is done by elastic bands.

Fujitsu Enon The robot system exciting nova on network – enon (Fig. 2.24, [52]) is developed and sold

since 2005 by the two companies Fujitsu Frontech and Fujitsu Laboratories. It is a multi purpose service

robot designed to fulfill several tasks in the peoples’ daily life such as providing guidance, transporting

objects, and security patrolling. enon houses an internal storage compartment which the robot can load and

48

2.4. Service robots

unload autonomously, thus being able to deliver goods without human assistance or supervision. Fujitsu lists

a wide range of features: 1. Autonomous navigation using camera-based obstacle detection and relying on a

pre-programmed map. For this purpose the robot is equipped with six cameras, three ultrasonic sensors, and

three proximity sensors; 2. Transportation of objects with a mass of up to 10 kg; 3. Handling of objects up

to 0.5 kg with a 5 DOF arm; 4. Communication with people using speech recognition and synthesis as well

as a touch screen GUI; 5. By connecting to a WiFi network the robot can acquire necessary information and

receive command; 6. Using a swivel head the the robot can either look at the operator while communicating

or in the driving direction while moving without turning the robot (and the mounted display); 7. enon uses

LED incorporated into the face to show facial expressins; an finally 8. “Fujitsu has placed utmost priority

on making enon safe, incorporating a variety of safety features including significantly reducing the weight

and width of the robot compared to its prototype”.

Fig. 2.21.: Rhino (image source: [172]) and MINERVA (image
source: [135])

Fig. 2.22.: Robox at Expo02 (image source:
[42])

2.4.3. Shopping assistants and shopping robots

As shopping in the supermarket is used as application scenario of this thesis a complete section is dedicated

to the various shopping assistants found in shops and laboratories. A variety of shopping assistant system,

ranging from small handheld devices via enhanced shopping carts to full-scale service robots will be intro-

duced. Many projects focus on handheld devices or even smartphone Apps (e.g. Metro, EDEKA) because

they are reasonably cheap and easy to roll out. These are the projects most commonly found in stores and

actually in commercial use. A more sophisticated version are enhanced shopping carts where more sensors

and computational power can be carried to enable for example self-localization. And finally systems like

Toomas and Robovie are full scale service robots.

Handheld devices:

The most basic type of shopping assistant are handheld devices. They are cheap and easy to integrate in the

shops’ infrastructure – often a WiFi network is sufficient. Due to their small size they cannot include many

sensors. For the users’ convenience, many of them can be attached to shopping carts, bridging to the second

49

2. State of the Art

Fig. 2.23.: Care-O-Bot of Fraunhofer IPA (im-
age source: [49])

Fig. 2.24.: enon, developed by Fujitsu Frontech [52]

category – the enhanced shopping carts. The continuos improvement of smart-phones is giving this area

additional drive: shopping assistant Apps are conquering the market. They are popular with shop owners

because no extra hardware is necessary and with customers as they can use their own device. The drawback

is that smartphones cannot be mounted on shopping carts and hence cannot connect to the shopping cart’s

sensors. Additionally, the shopper has to carry the phone in one hand during navigation.

Metro MEA App: The Mobiler Einkaufsassistent (MEA) smartphone App ([114], Fig. 2.25) is developed

by the Metro Group’s Future Store Initiative ([113]). It provides a mobile shopping list and offers

product information when scanning a bar code with the mobile phone’s camera. And finally, the App

can be used to pay the scanned products.

EDEKA App: The EDEKA App ([40], Fig. 2.26), developed by Burda Digital Systems GmbH for Edeka

Südwest, implements a shopping list and recipe management including the Food Shaker: customers

enter some products and shakes the smart-phone. The App then generates a matching recipe.

Giving Cart: A Handheld device developed by Klever Marketing and Timedomain which can be attached

to ordinary shopping carts ([94], Fig. 2.27). It uses WiFi localisation and provides a bar code scanner.

The customers can use it to to scan items in order to check the price. A store directory is available

to assist locating items. The App can automatically generate a shopping list based on individual

consumer’s prior history.

Enhanced shopping carts:

In between of the already introduced group of hand-held devices and the shopping robots, the enhanced

shopping carts are located. These combine the functionalities of the hand-held devices with more com-

putational power and extra sensors – often used for self localization – while still being cheap and easy

to incorporate. Hence, this is a popular group of systems. The enhanced shopping trolley applications

50

2.4. Service robots

Fig. 2.25.: The Mobiler
Einkaufsassistent (MEA)
smartphone App developed
by the Metro Group (image
source: [8])

Fig. 2.26.: The EDEKA App,
developed by Burda Digital
Systems GmbH for Edeka
Südwest (image source: [7])

Fig. 2.27.: The Giving Cart by Klever Marketing
(image source: [131])

introduced below have many similarities to the enhanced shopping trolley ETrolley (see Fig. 2.33 and Ap-

pendix B) constructed in the course of this thesis. But additionally, ETrolley is equipped with the complete

navigation and self-localisation system including sensor systems, embedded PC and a larger touch screen

interface.

Concierge for Cart: The Concierge for Cart (Fig. 2.28, [111]) developed by Mercatus (former known

as Springboard) incorporates a touch screen and a bar code scanner and acts as navigation system

and mobile cashier. All gathered information on the shopping trip is fed into the shop’s business

intelligence system to enable personalized and multi channel advertising as well as to generate a

better understanding of the customers’ behavior. Being able to address the customers’ need in a better

way shall lead to a higher degree of customer loyalty.

U-Scan: The U-Scan Shopper (Fig. 2.29, [53]) was designed by Fujitsu and Klever Marketing to reduce

checkout queues. A computer with WiFi network access is mounted on a cart that provides informa-

tion on products and enables the users to scan their products while shopping and to check themselves

out. The system can also be used to place in-shop orders i.e. to the deli or the pharmacy.

Smart Cart: DFKI and Globus are driving the Innovative Retail Lab (IRL), developing a variety of con-

cepts to ease shopping and related tasks. The Smart Cart (Fig. 2.30, [38]) incorporates a personalized

shopping list management and navigation functionalities. Using RFID tags on the products, the sys-

tem is able to detect the products which are place into the basket without scanning the bar code.

Precise self-localisation can be performed by different methods such as RFID tags embedded into the

floor.

KleverKart: The KleverKart (Fig. 2.31, [94]) developed also by Klever Marketing, the inventor of the

Giving Cart handheld device. The system features a self-service assistant with various functions like

product information, self-checkout, a recipe database, advertisements based on localization data, and

so forth. According to the authors “KleverKart has proven in trials to significantly increase the amount

of money spent in a store”.

51

2. State of the Art

IBM Personal Store Assistant: The Personal Store Assistant (Fig. 2.32, [79], webpage: [80]) was de-

veloped by IBM Retail Store Solutions and IBM Research Services. It is mounted on the handlebars

of shopping carts and is connected to the IBM Store Integration Framework by Wifi. The framework

incorporates a data management system which manages personal information like past shopping trips.

The system is able to localise itself using ceiling-mounted infrared beacons. The systems can addi-

tionally be used to place orders to the deli counter of the shop and as self-checkout device.

Fig. 2.28.: The Concierge for Cart, developed
by Mercatus [111]

Fig. 2.29.: The U-Scan Shopper, de-
veloped by fujitsu (image source:
[54])

Fig. 2.30.: The Smart Cart
by DFKI’s Innovative
Retail Lab [38]

Fig. 2.31.: The KleverKart, developed
by Klever Marketing (image source:
[93])

Fig. 2.32.: The IBM Personal Store Assis-
tant, developed by IBM Research Solu-
tions [79]

Fig. 2.33.: For comparison:
the Enhanced Trolley
(ETrolley) designed in the
course of this thesis

Shopping service robots:

The final group, the shopping robots, are the highest class of shopping assistants. Most of them incorporate

lots of sensors an they are designed to fulfill various tasks. But obviously, they are complex systems an

expensive to acquire, install and maintain. The most prominent ones will be introduces in this section along

with their technical characteristics and most prominent features.

Toomas and Shopbot The robot type Toomas (Fig. 2.34, [66], [117]) was developed by the group

of H.M. Gross at the University of Ilmenau (Germany) as an interactive shopping assistant and mobile

information kiosk. Toomas robots have been deployed in three “toom” hardware stores during the years

2007 to 2009. Toomas does not serve one dedicated user but assists everyone who approaches it. The robot

52

2.4. Service robots

provides three kinds of services: product information, video conferences with employees, and guiding to

products.

While Toomas patrols the corridors, it autonomously looks for customers who might be interested in

assistance. For this purpose the panorama picture is analyzed for skin color and motion, the high res picture

for faces, and the laser scans for legs. After detecting a customer with interest of assistance the robot

approaches the customers, and starts a verbal dialog. The customer is invited to give commands to the robot

using the touch screen interface. Voice input is not included due to the high level of background noise.

The authors point out that employees and customers are very satisfied with Toomas: the robot is able to

handle about 80% of the customer’s requests, being a great relive for the employees. More than 80% of the

customers have been “content” and would use the robot again.

Toomas is based on the SCITOS-G5 platform [112] which is of an advantageous slender and circular

shape and uses a differential drive. The robot was designed for a low need of maintenance and long times

of operation without recharge – up to 12 hours. For environmental perception the robot is equipped with

laser range finders, a ring of 24 ultrasonic sensors, a high resolution camera system and a panorama camera.

The data from this wide range of sensors is fused to overcome failures due to the high complexity of the

environment. The fused data is used for obstacle detection as well for detecting and tracking persons in the

vicinity of the robot.

Toomas uses a three-layered control architecture: (1) The Hardware Layer encloses the hardware, the

operation system and the low level interfaces; (2) In the Skill Layer the low-level sensor information is

processed and a set of skills is provided which again are executed by the lowest layer. These skills contain

the classical robotic functionalities like obstacle avoidance, localization, person tracing, and so forth. And

finally (3) the Application Layer where a central state machine controls the communication interface and

the high-level behaviors of the robot.

The core of the navigation system is the occupancy map of the store. It is built by a particle filter-based

SLAM algorithm while the robot is initially being steered through the shop by joystick. A set of good

particles is stored as global map for the global self-localization by Monte Carlo Localisation (MCL) later

on. The map is then semi-automatically annotated with the product location from the shops management

system based on CAD data. Path planning is done using a A⇤ algorithm and collision avoidance by the well

known Vector Field Histograms (VFH) based on distance and visual information.

Since the year 2008 two successors of the type Toomas, the ShopBots “Ally” and “Roger”, are deployed

by the company Metralabs in the real,- Future Store. Here they operate as guides showing the newest

inventions of the Metro Group to the customers.

RTS The Robotic Transportation System for Shopping Support Services (Fig. 2.35, [108], [166])) de-

veloped by the Toshiba Corporation is an exceptional case. To solve the problem of having an agile and

interactive service robot which also has to transport a significant amount of goods, the system consists of

two individual robots: a slender circular-shaped robot for interacting with, and guiding the user as well as

a larger robot for carrying the goods. Consequently, only the “Guidance Robot” is equipped with camera

systems, touch sensors and a touch screen interface. It uses an omnidirectional camera for self-localization

based on map-matching as well as laser range finders and ultrasonic sensors for navigation which again

is based on Vector Field Histograms (VFH). The “Guidance Robot” is able to guide or to follow the user

whom it observes with a stereo camera system. The “Cart Robot” just trails some distance behind the

53

2. State of the Art

“Guidance Robot”, following its trajectory. The self-localization is performed by measuring the relative

position towards the “Guidance Robot”. An environmental multi-camera setup supports the onboard sen-

sors by tracking the robots and the people in the shop. A three-layered control architecture was developed

consisting of a self-localization layer, a dynamic path planning layer, and a motion control layer, with the

latter one running at 1kHz.

Robovie The Robovie robot family, [85], [60]) is being developed by the Advanced Telecommunications

Research Institute International (ATR) (Japan) to do research in human robot interaction. Looking similar to

the enon robot – a robot with humanoid upper body on a mobile platform. A field trial has been conducted

with Robovie-II in a grocery store where the robot is carrying goods for a customer by carrying a shopping

basket in the crook of its arm. The robot is deliberatively designed to be small not to scare people: it is about

120cm high, has 40cm in diameter, and weights about 40kg. It is equipped with two 4 DOF arms, mainly for

performing gestures to support the vocal communication. To enable touch-based interaction ATR developed

a touch-sensitive skin for the robot. The mobile platform is differential driven and uses an omnidirectional

vision sensor as well as 24 ultrasonic sensors for obstacle detection. For the purpose of self-localization and

navigation a visual map based on topologically connected omnidirectional pictures is used.

The robots’ control architecture is based on situated modules. These modules represent basic actions

of the robot such as “Detect Door”, “Turn to door ”, “Look at”, “Go forward”, “Go to object”, and so

forth. Each module has a set of pre conditions and actions. The task planner of the architecture generates a

sequence of modules to be executed based on given start and goal conditions. According to the authors this

strictly plan-based approach distinguishes their architecture from the group of Behavior-Based Controls,

in which proper task planning is very difficult. Special sensory modules are connected to pictures in the

visual map. This way for example the “Go to” modules detect that they succeeded and thus are de-activated.

The architecture houses two error recovers modules: the first one is the “Module searcher”. This module

lets the robot wander randomly until some other module can be activated. The second one is the “Obstacle

Avoidance”: when approaching an obstacle this modules navigates the robot into another direction. Another

special module is the “Evaluator module”. If several modules can be activated, it evaluates the modules and

chooses the best fitting one.

2.5. Discussion and resume

This section provides a short overview of the introduced shopping robots and compares them to the robot

InBOT which is an exemplary implementation of this thesis’s concept. The focus in this section is on

abilities and characteristics regarding the supermarket scenario. And finally, the choice of approaches used

in this thesis will be motivated.

The robot Toomas developed by the group of H.M. Gross ([66]) is an interactive shopping guide robot

that patrols the corridors, looking for people which might need assistance. After identifying some in need,

it autonomously start an dialogue with the person, which might end up in the robot guiding the user to a

products of choice. The robot is primarily focused on interaction and guidance functionalities. In field trials

in an hardware store the robot has successfully guided 8600 customers to their chosen goods. Even though

the context of the robot is comparable to InBOT, the application of InBOT is wider: it shall transport goods

for customers, extending the amount of possible use cases, resulting in more modes of operation. When

having a closer look there can be found several differences between the robots. The most obvious one is

54

2.5. Discussion and resume

Fig. 2.34.: The mobile information kiosk
TOOMAS has been operating in a TOOM
hardware store. (image source: [167])

Fig. 2.35.: The Robotic Transportation System for Shopping Support
Services (RTS) [108] developed by the Toshiba Corporation

robot itself: The platform of Toomas (SCITOS-G5) is semi-humanoid with a slender circular base, whereas

InBOT is intended to carry goods in a basket and hence has a larger rectangular shape which demands more

skills from the control system when navigating in cluttered or narrow spaces. While Toomas relys on a global

occupancy map for navigation and Vector Field Histograms for obstacle avoidance, InBOT uses a topologic-

metrical map for the global and a local occupancy map for the local navigation. Like the navigation system

the obstacle avoidance is implemented in InBOT’s as Behavior-Based Control.

Kanda’s group ([86], [11]) works on an “affective guide robot” in a shopping mall. They already con-

ducted a field trial for 25 days in a shopping mall with 235 participants. The robot has three main function-

alities: (1) Guiding customers to products, (2) building up a relationship with customers and (3) advertising

products. For customization customer-assigned RFID-tags are used to recognize customers again. This al-

lows the robot to greet known customers and make tailor-made advertisements. In comparison, the robot In-

BOT has less social but additional functional abilities, like following or manual steering behaviors. Kanda’s

robot is like Toomas a semi-humanoid robot. It is based on a mobile platform with the advantageous slender

and circular shape. Additionally, it is equipped with arms which are used for pointing gestures, showing a

human user the direction to go while in guiding mode. It has speech input and output like the integrated CR-

UI (see Appx C.5) on InBOT, but in contrast it does not have a GUI where shopping lists can be managed.

Finally, the authors point out in their publication that they use a human operator for speech recognition and

decision making for the robot’s behavior. On InBOT all these components are integrated in the system and

no human operator performs remote control.

Tokura [166] develops the robotic transportation system for shopping support services. Unlike other

shopping robot projects, this system consists of a pair of robots: a guidance robot and a cart robot, which

increases the costs and the space required. The guidance robot has only a touch screen, in contrast to the

multimodal user interface integrated in InBOT like the CR-UI or the InBOT-UI (see Appx C.4). The system

has mainly the two functionalities: guiding and following the user.

All mentioned systems but Robox and Telelift navigate based on a detailed global metrical map. These two

exceptions move on a defined graph; Robox is able to temporarily leave the graph to move around blocking

55

2. State of the Art

obstacles. Telelift again uses a global geometric map for self-localization via map-matching. Sometimes the

map has to be generated manually, but in most cases it is learned by the robot semi or fully autonomous. The

concept presented in this thesis is designed to be independent of detailed global metrical map. It is sufficient

to only know a local metrical map in the sensor-range of the robot. This way the robot is independent

from changes in the environment such as placing or removing of special offer counters or larger numbers

of parking (ordinary) shopping carts. Not having a global map means that map matching algorithms for

self-localization can not be applied. But out of experience these algorithms are subject to disturbances

when the geometry of the environment is changed by placing or parking many objects (such as ordinary

shopping carts) at the sides of corridors. Here the corridor suddenly seems to be too narrow and cannot be

matched with the map correctly, resulting in a loss of accuracy. Instead, this thesis proposes using landmarks

which can be robustly detected and precisely localized: ground-mounted RFID barriers which are unique,

easy to identify and which cannot be occluded by any means (in comparison for example with vision-based

methods).

The collision avoidance is performed by a Behavior-Based Control in an hierarchical three-stage manner:

safety behaviors, reactive behaviors based on virtual force vectors, and predictive behaviors similar to local

visibility methods. The methods implemented inside the individual behavior have some similarities with

the well known VFF and VFH methods, but in detail there are major differences as will be explained in

the introduction of the next chapter. The challenge of avoiding moving obstacles will be again tackled in

a three-stage approach. Two levels of reactive behaviors again provide virtual force vectors. These are

supported by a spatio-temporal planner in the upper part of the system. Using this strictly hierarchical

approach throughout the architecture, the fast reaction time and robustness of the reactive methods can be

fused with the capabilities of the plan-based approaches. Actually, in each level a simple dedicated language

for all involved behaviors is defined to ease inter-behavior communication and coordination.

To the author’s knowledge there are no social service robots controlled by a behavior-based control sys-

tem in applications involving closely coupled user interaction like museum guides or intelligent shopping

carts. Robots using a Behavior-Based Control tend to be very application specific instead and don’t fol-

low the needed general-purpose approach needed for the real world application mentioned above. Up to

now, they are only found in laboratory or office environments (e.g. ARTOS) and sometimes in outdoor

environments (e.g. RAVON) with the main application of exploration.

InBOT did not make the final step into a real shop like for example Toomas did, but its development was

clearly aimed for this purpose including the needed wide range of functionalities and the needed predictabil-

ity and robustness of the system. These features and the closely coupled interaction with users – involving

even control sharing – implemented by a behavior-based control system is unique in the present combina-

tion on this thesis’s robot. To evaluate InBOT’s abilities as closely as possible to the scenario without having

a huge integration effort, user-tests in a small simulated shop in the laboratory have been performed with

untrained users recruited “from the street”.

56

3. The Hybrid Control Architecture

This chapter introduces the control architecture, which was developed in this thesis. The architecture shall

handle the challenges and requirements identified in Chapter 1 with a special focus on the interaction

between the robot and one dedicated user. The chapter starts with the introduction of the major inspirations

for the control system: J.P. Hoogendoorn’s model of pedestrians’ motion, the Behavior Networks, and

control sharing. Afterwards, design criteria will be defined and the fundamental concepts utilized in the

control architecture will be chosen. Finally, the resulting control architecture will be described, including

the local world model, interfaces, the data flows, and two exemplary implementations in the robots InBOT

and Odete. The navigation system implementing the architecture will be elaborated on in the subsequent

chapters.

The scenario chosen as the recurrent theme of this thesis, shopping in a supermarket, addresses several

everyday problems posed in supermarkets. The primary challenge posed to the robot is that it has to cope

with a highly dynamic environment while simultaneously interacting with a user. This includes the presence

of cluttered corridors, moving objects and the fact that the spatial arrangement of the environment changes

frequently making it very difficult to rely on a global metrical map.

This plenitude of challenges and the amount of required functionalities demand a capable and well-

structured architecture for the robot’s control system. Otherwise, one would take the risk of loosing a clear

view on the control system and would probably get in-deterministic reactions from the running system.

Another important aspect for this architecture is the idea of generalizability. Hence, it should be possible

to integrate a plenitude of components within the control system. Therefore the architecture has to ease the

integration of different components as well as make it easy to substitute temporarily unavailable components

for simulations to be able to test the remaining system. This is also the case for hardware components like

sensor systems.

3.1. Inspiration for the control architecture

The concept for the control architecture developed in this thesis is mainly inspired by four works: First of

all this is the model of pedestrian motion patterns that S.P. Hoogendoorn [73] developed to simulate crowd

movements and evacuation situations. This concept was transferred into a control paradigm which then has

been merged with the second inspiration: hybrid layered architectures such as the well-known 3-tier (3T)

architecture [22] for mobile robots developed at the Johnson Space Flight Center. The third inspiring work,

the Behavior Networks developed by J. Albiez [3], is used to implement the lower layers of the control

architecture. And finally the fourth inspiring work is the concept of control sharing and control trading

defined by T.B. Sheridan at the MIT which he describes in his book “Telerobotics, Automation and Human

supervisory control” [147]. These four works, and their contribution to the control architecture of this thesis,

will be presented in the next sections.

57

3. The Hybrid Control Architecture

3.1.1. Model of pedestrian’s motion patterns as blueprint of the navigation system

The navigation in human everyday environments is a very challenging task. When designing the control

system it seems logical to have a look at subjects which are already able to operate in such environments

perfectly well: human beings. Thus the control architecture developed here is inspired by research on

human motion patterns performed by S.P. Hoogendoorn [73] in the context of Evacuation Dynamics – a

short introduction can be found in Chapter 2.1.

Hoogendoorn divided the behavior of simulated pedestrian agents in three hierarchical layers. These are

illustrated in Fig. 3.1 (left) and the navigational purpose of each layer is sketched in Fig. 3.1 (right).

1. Strategic behaviors: The topmost layer represents the human route selection based on landmarks. It

roughly defines the way that has to be taken to move from the starting point to the goal. A list of nodes

containing landmarks or areas that have to be passed/crossed is generated here instead of a continuous

path. In pedestrian movement simulation the set of possible nodes is manually defined by the scenario

designer. On a robot the implementation could be based on topological maps.

2. Tactical behaviors: The middle layer refines the given route based on the local environment and

infrastructure like stairs, doors, walls or corners. Here again nodes are generated instead of a continu-

ous path. This concept can be directly transferred to a robot’s navigation by performing a geometrical

analysis of the local environment, placing sub-goals near prominent features like corners. To preserve

one of the main advantages – humans are able to operate with only sparse knowledge and local per-

ception – it would be necessary to restrict the robot’s scene analysis to the current sensor readings of

the robot.

3. Operative behaviors: In the bottom part of the hierarchy the real movement behavior is generated.

Here the agent moves from node to node until it reaches the target destination. While doing so it

adjusts the path to local disturbances like obstacles or other agents. These behaviors could be im-

plemented in a robot using one of the numerous reactive methods for collision avoidance and motion

control. Here again it would be important to only rely on local and current information.

The model suggests a three-layered architecture with deliberative components in the top layers and reac-

tive components in the bottom layer. An benefit which very well matches the identified requirements is the

fact that the global navigation of human beings is based on fuzzy experiences and the local navigation is

based on current sensor readings only. Therefore this source of inspiration supports the idea of a hybrid and

hierarchical control architecture as has been identified as favorable in the introduction of this thesis.

3.1.2. Hybrid and layered architecture as organizational paradigm

As described in the state of the art, hybrid architectures are very popular as they enable the designer to

utilize likewise planners or reasoners for global tasks and reactive components for time-critical actions. In

most cases these architectures are organized in form of hierarchical layers to provide structure and to distin-

guish between different demands on cycle-times and other constraints. Due to the obvious advantages, this

fundamental concept can be identified as most prominent organizational policy in the control architecture of

this thesis.

58

3.1. Inspiration for the control architecture

Fig. 3.1.: Left: pedestrian Behavior Hierarchy [73]. Right: again the edge mesh known from the SoA (see Fig. 2.2 for
a larger sketch), modeling the pedestrians’ motion according to the hierarchy. Strategic: cross the middle room from
south to north. Tactical: dark blue edge mesh along local geometry. Operational: actual motion generation (green
curve).

Two very prominent examples of such architectures illustrate the concept of creating a symbiosis of plan-

ners and reactive skills: the 3-Tier Architecture and the architecture by R. Alami. The 3T Architecture [22]

– where “T” stands for “tier” – has been taken up here as an well known example for hierarchical and hybrid

architectures. In the 3T Architecture a Sequencing Tier concatenates the deliberative and the reactive tier

by breaking the plans produced by the reasoner down into atomic actions and then activating skills accord-

ingly. Another important implementation of the layered architectures is “An Architecture for Autonomy” by

R. Alami [1]. Here a constraint-solver in the topmost layer generates plans to utilize the robot’s functions

which are interpreted as resources. The executions of the plans is supervised and orchestrated in the middle

layer which again utilizes reactive skills of the bottom layer. More details on these two architectures can be

found in the corresponding Sections 2.2.4 and 2.2.4 of the state of the art.

3.1.3. Behavior Networks for the implementation of reactive behaviors

The Behavior Networks developed by Albiez [3] for the low-level control of walking robots have been taken

up in this thesis (see also Chapter 2.2.3). They are integrated in the lower layers of the control architecture.

They were enhanced to be able to fulfill more deliberative tasks. K. Berns uses very similar approaches

for his iB2C architecture [125] where the Behavior Networks are used in all control levels. As the iB2C

architecture and the control architecture of this thesis were developed at the same time and both are based

on the Behavior Networks by Albiez, the lower layers of the control architecture of this thesis and iB2C

show similarities. But while iB2C uses the behavior-based approach throughout the whole architecture

for the motion control, navigation, and exploration the approach of this thesis is a hybrid architecture which

focuses additionally on dynamic environments and user-interaction. Additionally, the actual implementation

59

3. The Hybrid Control Architecture

of the Behavior Network and the individual behaviors by Berns have hardly any resemblance compared to

the human motion patterns inspired approach presented here. (More details on the BBCs by J.Albiez and

K.Berns can be found in Section 2.2.3 of the state of the art).

3.1.4. The concept of control sharing and control trading to enhance user interaction

The area of human factors in robot control is recognized by researcher for quite a long time. Four decades

ago, T.B. Sheridan from the MIT – probably one of the authors with the most significant impact – began

publishing works on human factors in teleoperation in manipulation tasks, for example on undersea vehicles

[148]. He described in the context of supervisory control the phenomenon of control sharing where an

operator (supervisor) exerts control on some control variables of an automaton while the automaton itself

has control over the remaining variables. This contrasts the control trading where the user gives a command

and the automaton executes the task autonomously having full control on all control variables [147]. P.

Griffiths and R.B. Gillespie [65] discovered that putting the human and the automaton in a collective control

loop improves the task performance: the human is able to concentrate on a given task while the automaton

takes care of routine tasks or disturbances which would otherwise draw the attention of the human away

from his task. The close coupling of user and robot in actually controlling the robot’s actions allows the user

to perceive these actions while allowing him to contribute his own intentions simultaneously.

Today this phenomenon becomes even more important as service robots have to perform tasks in close

cooperation with humans. Depending on the nature of the task simple control trading is not sufficient.

To be ready for full collaboration a service robot must be able to behave according to the user’s demands

while contributing own necessities – therefore to share the control with the human user. While Griffiths

and Gillespie chose the obstacle avoidance in a driving simulation as the human’s task, in the shopping

robot scenario the shopping process itself is the human’s task which should not be disturbed by trying to

manoeuvre the robot through a cluttered corridor. This control share is provided by the robot (based on the

chosen mode of operation).

Control sharing is not a control architecture itself but more an identified concept while observing human

beings. This concept has to be transformed into a control paradigm and merged with the other sources

of inspiration. It enables the user and the control system to control the robot simultaneously. The share

contributed by the user depends on the current mode of operation, the control system’s share is always the

input of the obstacle avoidance behaviors, and additionally – depending on the current mode of operation –

the global and/or local navigation. More details on this will be presented when describing the design of the

control architecture.

3.2. Design of the control architecture

After describing the sources of inspiration for the concept of the control architecture, general design criteria

were developed. Corresponding to the design criteria the fundamental methods to fulfill them were chosen

and merged with the concepts derived from the described sources of inspiration. This process is described

in the next few sections.

60

3.2. Design of the control architecture

3.2.1. Design Criteria of the control architecture

In the application of the interactive shopping trolley obviously the robot has to generate plans, to decide,

and to initiate actions online in certain time constrains. Making things worse, control systems in such

environments have to be complex, providing lots of functionalities. Nevertheless, the complexity must

not get out of hand to ensure deterministic and timely reactions. Different interests and inputs have to be

balanced. But, or hence, the robot’s control system has to react in a timely fashion and has to provide a

constant stream of valid output to always be in charge of the situation. Additionally, the essential parts of

the control system must not be affected when other components fail. In 1998, R. Alami defined six design

criteria for control systems of autonomous robots, which he applied when designing his “Architecture for

Autonomy” (see Chapter 2.2.4 and [1]). Following these proven criteria, the design criteria for the control

architecture of this thesis were defined:

1. Programmability : The robot shall be able to recombine given functionalities to fulfill new tasks.

2. Autonomy and Adaptivity : The robot shall be able to adapt the execution of a given task to the

current scene and environmental conditions

3. Reactivity : The robot shall be able to react to events within time-bounds while achieving the given

goal

4. Consistent behavior : The robot’s reactions shall always be guided by the objectives given by the task

and the control system has to continuously provide valid motor commands

5. Robustness : The control architecture shall be able to exploit redundancies in the functions. The

different functionalities shall be independent from each other so that a failure of one does not spread

through the whole system. It shall be possible to test and validate every function separately.

6. Extensibility and Modularity : Adding, adapting and modifying of functionalities shall be supported

by the control architecture. Especially recombining present functionalities is an issue that has to be

focused on.

In addition to these six criteria for inspired by Alami, a seventh criteria was defined to take the structures

needed for the control sharing into account:

7. Orthogonal control data flow : The control flow in traditional control trading applications it top-

down from receiving a command via planning to the generation of motor commands. In contrast,

to integrate the concept of control sharing into the control architecture it must be possible to feed

in control data flow orthogonal to the traditional top-down control data flow. The control share ex-

erted by the user during task execution must be fed-in directly into the control mechanisms of the

corresponding layers.

3.2.2. Fundamental concepts of the control architecture

To address the defined design criteria and the needs derived from the sources of inspiration five fundamental

concepts or components were chosen. These are introduced below:

61

3. The Hybrid Control Architecture

Hierarchical Architecture: A three-layered control architecture enables to distinguish between different

needs in reactivity and deliberativity ranging from the topological navigation down to the local navi-

gation and safety behaviors. By distributing modules among individual layers it is ensured that simple

and reactive modules are not impaired by slower and more abstract ones as the layers generally apply

different cycle times for their components. Additionally, using this separation a higher degree of mod-

ularity and robustness is achieved due to the stronger independence of the separated functionalities.

Defined interfaces between the layers enable their recombination and reuse as well as the integration

of other components and finally feeding in orthogonal control data flow.

Separated environmental representation: The local world model is kept separated from the remaining

control system to allow layer spanning access and data exchange. It is organized in different degrees

of abstraction from raw sensor readings up to a topological representation of the complete shopping

centre. Defined interfaces enable the integration of alternative methods of data acquisition or process-

ing.

Hybrid Architecture: The hybrid character enables the use of Behavior Networks in the lower layers and

planners in the higher layers of the architecture.

Behavior-based control system: The main advantage of the BBC used in the lower part of the archi-

tecture is the fact that many behavior modules try to achieve a given goal e.g. reaching a location,

avoiding obstacles, turn to the user, etc. independently. They are arranged in an hierarchical manner

and linked to generated a network of independent modules. Higher tasks are fulfilled by letting higher

behaviors control a group of lower behaviors. But even while being controlled by a higher and thus

less reactive behavior the lower behaviors do not loose their fast reaction times. This matches to all of

the design criteria perfectly well: The different behaviors can be motivated or inhibited to rearrange

them, the reactive behaviors provide a constant stream of valid control commands, a failure of one

behavior does not affect other behaviors. Due to the network character of the lower part of the control

system, new behaviors can easily be added by integrating new behavior modules.

MCA2-Framework: The C++-based Modular Controller Architecture ([143],[45]) framework is used to

implement the control software. It supports individual cycle times, modularity, encapsulation and

the development of hierarchies. It is completely network transparent, enabling different MCA pro-

grams which are running on different computers to communicate with each other just as if they where

running on the same computer. Additionally, MCA can run individual parts conforming to real-time

constraints. The individual behaviors are implemented in software by MCA-Modules which can be

organized in MCA-Groups. The MCA-modules and MCA-groups are executed in a control-sense-

loop with defined cycle times. The connections between the modules are called edges which transport

the control data flow corresponding to the control cycle. Besides the edges, MCA-blackboards offer

network transparent data storage protected by semaphores.

These five components have in common that they all raise the level of modularity of the resulting control

system. As result the modules can be recombined at runtime. This way, available functionalities can be

merged at the individual levels of the control system. For example the reactive obstacle avoidance developed

for the local navigation can easily be used as assistance functionality in the Manual Steering Mode as well,

even though the robot does not know the goal to which the user is heading.

62

3.2. Design of the control architecture

In the development process these components facilitate a stepwise implementation, integration, and test-

ing. This significantly eases the integration process and enables testing and evaluating with various individ-

ual subsystem components, generating a more agile development process.

3.2.3. Incorporation of the components

As described earlier, two of the sources of inspiration are not control systems themselves but concepts

discovered by observing human beings. These concepts were mapped to a control structure to integrate

them with the two remaining sources of inspiration and the fundamental methods derived from the design

criteria. The following two paragraphs show how a navigation system based on human motion patterns and

control sharing was incorporated in a hybrid and layered control architecture. This architecture has, just as

Alami’s architecture, five overall layers. The middle three layers house the navigation and control system,

while the outer two incorporate the platform- and application-specific functions.

Incorporation of the human motion model

As the human motion model shall provide the primary inspiration, it has to have major impact on the control

architecture. Luckily, the model of pedestrian’s movement patterns can be directly transferred into a layered

architecture concept as shown in Figure 3.2. Of special interest is preserving the ability of human beings to

navigate based on fuzzy memories and on current perception only. This matches the identified requirement

R3 for the control architecture to be independent from a global metrical map.

According to the layers in Hoogendoorn’s model, three layers of control are defined here: the strategic

layer plans a route based on a topologic-metrical map. The route is handed down by sending sub-goals in

a sequential order. The tactical layer receives the individual sub-goals sequentially and activates behaviors

for the geometrical scene analysis including the predictive obstacle avoidance. New sub-goals based on

the local geometry of the scene are generated and rated. The best rated sub-goal is then transferred to the

reactive layer. Here the reactive behaviors are activated which drive the robot towards the sub-goal and

ensure that no collision will occur on the path.

Fig. 3.2.: Transferring Hoogendoorn’s motion model of pedestrians into a layered architecture

63

3. The Hybrid Control Architecture

Incorporation of control sharing

This section describes how the concept of control sharing is considered in the design of the control archi-

tecture (details and results will be presented in the chapter focusing on human robot interaction: Chapter

6.6 “Sharing and trading of control”). As described before, control sharing is not a control architecture and

thus has to be mapped on a control system in order to be applied on a robot.

To implement the control trading, the control system has to accept commands through a command inter-

face above the strategic layer. Responsible for sending these commands is a communication layer which

belongs to the application-specific part of the control system. The communication layer manages the com-

munication with the user and transforms the results into commands which match the list of commands which

are defined by the strategic layer’s interface. At this point starts the classical top-down data flow.

To implement the control sharing the control architecture has to be able to accept control input orthog-

onally to the usual top-down data flow applied when implementing control trading. This input has to be

fed into the modules for decision or action generation. Examples for this data is the position, velocity or

acceleration of the user or forces the user exerts on a force-sensitive device. Here the most simple way is

to use the same interfaces which are used to link the layers to each other (Fig. 3.3). A fusion behavior will

then merge the input from the user with the input from the higher layer. This way adaptive behaviors can be

implemented which assist the user by taking control of individual components of the navigation system –

depending on the current mode of operation. Figure 3.4 illustrates this: the safety behaviors are always con-

trolled by the robot. In the Following Mode for example the user performs the global navigation while the

robot performs the local navigation. This can be used to implement adaptive guiding or following behaviors

as well as obstacle avoidance assistants for the Manual Steering Mode.

Fig. 3.3.: Inserting control data into the architecture
using interfaces between layers. Insertion of user in-
put between the safety behaviors and the Hardware
Abstraction Layer is not allowed to ensure that the
safety behaviors are always in charge.

Fig. 3.4.: Control sharing and modes of operation: Influence
of user and control system on the navigation components
depending on the current mode of operation.

64

3.3. The resulting control architecture

3.3. The resulting control architecture

This section describes the control architecture resulting from the derived requirements, the application of

the fundamental methods, and the introduced sources of inspiration. Three main fields of duty can be

identified in the demands posed on the robot by the environment and the needed features. These are (1) the

task and topological route planning, (2) the handling of the dynamic environment including the interaction

with humans, and finally (3) the safe and reliable local navigation. Therefore a three-layered navigation

concept was foreseen to cover the mentioned three identified fields. The first layer, called strategic layer, is

responsible for deliberative long-term planning. It houses the task planner and the topological navigation.

The tactical layer contains a behavior-based control system to deal with moving objects in a local area,

with the predictive avoidance of obstacles and with the interaction with nearby humans. The behaviors are

based on different modules for scene analysis like object and user tracking. And finally, at the bottom of

the hierarchy, the reactive layer’s goal is to fulfil movement tasks inside a local topological area using a

Behavior Network as its control mechanism. It is based on the dynamic calculation and fusion of several 3D

velocity set-point vectors.

These three layers of the navigation system plus the application-specific communication layer and the

platform-specific Hardware Abstraction Layer make up the layered control architecture as illustrated in Fig.

3.5. Details on these layers will be elaborated on in the next chapter when the navigation system is described.

Fig. 3.5.: The robot’s control architecture: it consists of the three layers of the navigation system, the
Hardware Abstraction Layer, the independent local world model and a command interface on top.

65

3. The Hybrid Control Architecture

3.3.1. The architecture of the infrastructure

To operate a fleet of robots, these have to be embedded into an infrastructure. The idea is to keep the

individual robot as autonomous as possible. Thus they can be introduced more easily and are able to operate

even when the infrastructure is temporarily unavailable. Thus the intelligence has to be kept within the

individual robots and a central server is only used as central information database.

Fig. 3.6.: When operating several robots, these are embedded into a infrastructure. Each robot communi-
cates via WiFi with a central server. The server collects status information such as position and target
from all robots and distributes it. Customers can control one robot using the user interface, or a group of
robots using the user interface of the master robot. And finally an operator is able to control robots too.

Figure 3.6 illustrates the overall system’s setup and infrastructure. When a WiFi connection is established

between a robot and the central server, the robot registers itself and continuously sends its current status

and updates of the map in case of severe changes. In return the server sends a aggregated collection of the

remaining robots’ data and map updates, e.g. increased traverse costs for certain topological areas due to

heavy traffic. If environmental sensors are integrated (like the intelligent environment (see Appendix C.3

“The intelligent environment”)) the server collects and aggregates and distributes the data, such as the users’

positions or the path of other moving objects). A user can control one robot via the user interface provided

by the robot’s communication layer. If the user wants to control more than one robot, the robots exchange

the control information via the central server which acts as broker. Finally, an operator logged on the the

server is to control any of the robots.

3.3.2. The local world model

According to the control architecture a three-leveled world representation was developed. The local world

model (LWM) is a layer-independent model of the robots surroundings and inner state. It is divided into

66

3.3. The resulting control architecture

Fig. 3.7.: The four levels of the local world model with the corresponding control components.

several levels corresponding to the degree of abstraction of the contained data (see Fig. 3.7). It provides a

general interface to pre-processed information accessible for all modules of the control system. It encapsu-

lates the actually used sensor systems and abstracts the information from them, making the control system

independent from the sensor hardware just as the Hardware Abstraction Layer makes the control system

independent from the robotic platform. The information is stored and then shared in a network transpar-

ent memory area to be accessible for all components via MCA blackboards to ensure high availability of

the data. The LWM is partially shared between the robots so that these know each other’s position, mo-

tion, current mode of operation and goals. Modifications of the annotated topological map are shared as

well to inform other robots about structural changes of the environment. The three level of abstraction are

introduced here:

1. Data acquisition level: The reactive behaviors responsible for the obstacle avoidance work based

on a binary occupancy grid map that is kept in the world model. These grid merges the information

67

3. The Hybrid Control Architecture

from various sources like laser range finders whose data is acquired in the Hardware Abstraction

Layer or information received from other robots or memorized at an earlier point in time. This level

additionally houses the inner state of the robot like its position and velocity, the actual task and target

or actual errors and so on. Comparable information is kept about the robot’s user.

2. Data interpretation level: The more deliberative behavior modules make use of an object database.

This database is generated by both identifying and tracking objects in the grids and estimating their

movement models. Additionally, other robots are added when these communicate their position,

intended goals, and movements. Finally, the user is identified and tracked. This can be either done

by an on-board stereo camera system or an external system – depending on the actually integrated

systems.

3. Abstract data level: The highest level of abstraction houses the topologic-metrical map of the super-

market with semantic annotations and online modifications: The environment is split up into several

areas. The areas are mapped in a topological map. Each node is enhanced with metric information

of its size and links as well as with semantic information about the node. The semantic information

can be used as an indication of whether a node should be used or avoided in a global plan. Addition-

ally, this information can imply restrictions to velocity or acceleration, certain dangers which wait in

this area like a grate in the floor which would render an optical motion sensor useless or “invisible

obstacles” like a mirror that could trick a camera system. Additional information like a blockage of a

corridor or the prohibition to enter a room or other warnings can be stored. The information can be

shared with other robots.

3.3.3. Interfaces

The interfaces between the individual layers and between the layers and the LWM are implemented using

the MCA framework. There are two types of members of interfaces: edges which transport one floating-

point value according to the control-sense-cycle of MCA and blackboards which represent areas of network

transparent shared memory protected by semaphores for the storage of large amount of data which can be

accessed from all parts of the control system. Figure 3.8 shows the application of these methods throughout

the control architecture.

From a data point of view the interfaces have a defined “language”: topmost these are command and event

messages, below we have 3D locations and then finally the velocity set point vectors. Each layer houses a

fusion module which collects all the individual tasks in the given language, transforms it to the language of

the bordering layer and hands it over.

The components for environmental perception are integrated likewise: the user tracker provides a 3D

location of the user and the force sensor provides a 3D force vector which is then interpreted as velocity set

point vector.

There is one exception to these MCA-based interfaces. The command interface between the strategic

layer and the communication layer is based on a classical TCP connection with a defined set of commands

and events. The command interface and the reasons for this exception are explained in the next section.

68

3.3. The resulting control architecture

Fig. 3.8.: In the control architecture two control cycles are implemented using the two types of interfaces pro-
vided by MCA: the first one connects the control data with the status information using MCA-edges and the
second one provides abstracted environmental data using the LWM and MCA-blackboards.

The command interface

The command interface is implemented by a classical TCP connection instead of the MCA-interfaces ap-

plied in the remaining control system. The reason is that MCA is, as the name states, a controller architec-

ture. Thus, it is good for modeling control applications which apply control-sense loops. Other concepts can

be implemented in MCA as well, but this is not what MCA was designed for. For the application-specific

communication layer one might want to use alternative methods and maybe other programming languages

instead of C++. As TCP connections are widely spread it was the method of choice. The two exemplary

communication layers for InBOT for example were implemented in QT or Java respectively as they are

much more favored in developing graphical high-level applications.

The command messages inform the control system about a task to fulfill (in most cases to move to a

certain location) or to switch into another mode of operation. Additional commands include the information

if a user is attached or if there is a location of interest nearby where the robot should slow down while

passing it.

The event messages inform the communication layer about started or finished actions, about problems and

if there is a special situation apparent or action planned which could be interesting for the user (“InformUser

event”). The information to generate these events is collected from all over the control system, especially

from the local world model, the target reaching behavior and the scene analysis group. The messages are

69

3. The Hybrid Control Architecture

Tab. 3.1.: Commands and Events used by the command interface
Commands Events
AttachUser PositionChange
DetachUser Error
MoveToPosition ArrivedAt
ChangeMode LostContactToUser
SetMaximumSpeed TooLargeDistanceToUser
ShowLocation UserStopsPushingTrolley
DriveToUser StartedShowLocation
Servoing StoppedShowLocation
SetTargetObject Parking

BumperPressed
SendGoal
InformUser

listed in table 3.1.

Each message is accompanied by a set of parameters, a defined start and end sequence as well as a check

sum to ensure that the messages have been received completely and correctly, especially when transmitting

via WiFi.

3.3.4. Data flow

Figure 3.8 shows the data flow throughout the control architecture. There are two main direction of data

flow: control data flows downwards while becoming more concrete and sensor data rises up while becoming

more abstract. There are two methods of transporting the information depending on their character: time

critical and sparse information are transported directly using MCA-edges, large amounts of information and

not time critical ones are exchanged using MCA-backboards via the LWM. The two main currents generate

several cycles: each layer has its own cycle with a defined cycle time and is connected to the neighboring

cycles by the main currents.

3.3.5. Integration with the MCA2 framework using UComs

The Modular Controller Architecture MCA ([143], [168]) was developed at the FZI to be able to set up

modular architectures efficiently. As described, the modules are integrated in a continuous sense-control

loop. To extend the control (software) system beyond the level of the embedded PCs, special microprocessor

boards were developed at the FZI. The UCOM-board ([130]) which contains a DSP with dedicated memory,

a FPGA, various A/D and D/A converters, and a CAN-bus interface is integrated seamlessly as the lowest

part of the architecture. So called Remote Parts can be executed on the PC which let the UCom appear to be

just an ordinary MCA program or module to the MCA framework.

3.4. Exemplary system architectures

Concluding this chapter, two applications of the control architecture will be demonstrated. Here the archi-

tectures of the robot InBOT which was developed in the course of this thesis and the robot Odete on which

the control architecture was implemented as well will be opposed to each other. These two robots have

70

3.5. Summary of the control architecture

significant differences in their hardware and their application, which again result in defferences in the archi-

tecture. For more details the reader is referred to the Appendix B where the design of InBOT is described in

more detail.

In Table 3.2 a short overview of the implementation of the control architecture on two robots – the trans-

port robot Odete and the shopping robot InBOT – is provided. As InBOT was developed in the course of this

thesis all components, including the application- and platform-specific ones are proprietary developments.

For the purpose of evaluation, additional components developed by other researchers were integrated in the

robot. In contrast, on Odete already present components were integrated with the core layers of the control

architecture.

3.5. Summary of the control architecture

The designed control architecture is aimed at tackling the challenges posed to a service robot operating in

a dynamic environment, involving user- and multi-robot interaction. Humans are able to behave in such

circumstances perfectly well, thus, the major source of inspiration chosen here is the model of pedestrians’

motion patterns by J.P. Hoogendoorn. It proposes a three layer approach using a strategic layer, a tactical

layer, and a reactive layer. As the general control system shall not be tailor-made for one specific robot in

one application, the three general layers are accompanied by the platform-specific Hardware Abstraction

Layer and the application-specific communication layer. For example on InBOT it contains the product

database, the multimodal user interface, and the shopping list management system.

The strategic layer consists of a task and route planner, which utilizes a topological navigation in order

for it to be independent from a global metrical map. The tactical and reactive layers are implemented by

Behavior Networks based on work by J. Albiez. These contain behavior modules performing a geometrical

scene analysis providing for reactive obstacle avoidance. The advantage of the Behavior Networks is that

a multitude of independent capabilities are fused, instead of developing one monolithic and “omnipotent”

path planner which has to consider all factors of influence from the dynamic environment. This way the

overall behavior can be adjusted much more easily by parameterizing the already present, or by “hooking

in” new behavior modules.

Orthogonal to the common top-down control data flow, user input can be fed into the control system at all

layers. This way the control system is able to share the actual control of the robot’s behavior with the robot’s

human user. The control system provides for five modes of operation with different levels of autonomy or

cooperation: manual steering, servoing, following, guiding, and autonomous operation.

Following the design of the control architecture in this chapter, the next chapters will now focus on the

implementation of the individual layers in general and on the behavior modules in particular.

71

3. The Hybrid Control Architecture

Tab. 3.2.: System architectures of the robots Odete and InBOT
Odete InBOT

Appl. Tele-operated transport Shopping assistance

T
he

ro
bo

t
C

on
tr

ol
ar

ch
ite

ct
ur

e

Application
specific
layer

GUI on PCs via WiFi⇤ Multimodal communication plattform incl.
speech and touch screen I/O, two differ-
ent versions integrated (Qt-based+, Java-
based⇤)

Strategic
layer

Graph-based navigation⇤ Topological navigation+

Tactical
and
reative
layer

Behavior networks+: geometrical scene
analysis, predictive obstacle avoidance,
based on occupancy map

Behavior networks+: geometrical scene
analysis, predictive obstacle avoidance,
based on occupancy map

Drive Differential⇤ Mecanum⇤

Global
self-loc.

Scan-map-matching⇤ Ground-mounted RFID barriers⇤

Local self-
loc.

Encoders on drive wheels⇤ Two 2D measurement wheels+

Manual
control

Joypad⇤ Force sensitive handle+

+: Proprietarily developed components
*: Other components which were integrated for evaluation purposes

72

4. BBC: Navigation, Obstacle Avoidance and Safety

This chapter presents the navigation system developed in this thesis. It mainly consists of the behavior-

based control system. The Behavior-Based Control (BBC) includes the individual behaviors implementing

the navigation system, such as the local navigation and the collision avoidance. To enhance readability, the

behaviors for the avoidance of moving obstacles and for multi-robot coordination will be presented in the

two dedicated chapters following the present one. Sticking to the concept of the human motion patterns, the

individual layers and behaviors developed here are – just as the overall control architecture itself – inspired

by the motion behaviors of human beings. Supporting the BBC with high-level planning and navigation

abilities, the topological navigation and the planning is also described.

Scope and organization of this chapter: The chapter starts with the first section describing the the

control architecture’s individual layers. This time the description focuses on how to implement these layers

with software modules which again follow the presented concept of the human motion patterns. To enhance

the understandability of this work, this is done in top-down order, following the control data flow. Later on,

the more detailed descriptions of individual components are presented in an bottom-up order.

Following this first introductory section, the next two sections focus on the main components of the nav-

igation system: Section 4.2 summarizes the concept used for the self-localization and Section 4.3 describes

the behavior-based control system and the Behavior Network. Afterwards, the next four sections describe

the main components of the four individual layers: Section 4.4 introduces the reactive behaviors for safety

and obstacle avoidance, Section 4.5 describes the tactical behaviors which perform the geometrical scene

analysis Section 4.6 introduces the topological navigation and planning, and finally Section 4.7 will give

a brief summary of the application-specific part of the control system, the communication layer. Each of

these sections contains a paragraph which presents experimental results for the most important components.

The chapter concludes in Section 4.8 with presenting tests conducted with “real users”, followed in Sec-

tion 4.9 by a discussion on the implemented methods including a brief comparison of the developed methods

with the state of the art.

4.1. Navigation system and control architecture

In the previous chapter the concept of the control architecture – and the reasons to choose this very concept –

was introduced. This section will continue by elaborating on the behaviors developed to flesh out the control

architecture – filling the control architecture with live. Just as the architecture is inspired by the observed

human motion patterns, the individual behaviors will also follow this concept.

In this section, the basic concepts of the individual methods and behaviors will be derived in an top-

down manner, following the control data flow starting at the communication layer down to the Hardware

Abstraction Layer. Functions and implementation details on the individual methods and behaviors can be

found in the dedicated sections following the current one.

73

4. BBC: Navigation, Obstacle Avoidance and Safety

Fig. 4.1.: Behavior hierarchy of the control system: The strategical behaviors of the global navigation
work based on a topological map. The tactical behaviors and the reactive behaviors of the local naviga-
tion use the object database, the occupancy grid, or raw sensor values, respectively.

In the introduction of this thesis it was mentioned that one of the goals is the application of service robots

in human everyday environments. This requires a safe and reliable navigation system. Further more, the

navigation has to be capable of coping with the highly dynamic environment while performing tasks and

interacting with a user. As we find a gap in the reaction times demanded for local and global (navigation-)

tasks, it makes sense to split the navigation system up into this two components: the global navigation part

with the task planner and topological navigation as well as the local navigation and interaction part with the

tactical and the reactive behaviors (see Fig. 4.1).

Figure 4.2 roughly sketches the control data flow through the navigation and control system. After re-

ceiving a command through the interface from the communication layer first off all the global planning,

topological navigation, and route planning takes place. Here the commands of the user are analyzed and

processed. The output of this process is a plan organized in a tree structure containing actions on a topolog-

ical level including topological navigation points extracted from the topologic-metrical map.

The second part of the navigation system, the local navigation, contains a Behavior Network that fulfills

the given tasks inside a local area. Here the two behavior repertoires are set up. First the actual scene is

observed and geometrically analyzed. Then sub-targets are calculated to generate a suitable route around

objects that block the direct line to the target and to avoid trapping situations. Finally, the Behavior Net-

work drives the robot along this route and is responsible for the micro-management of the reactive obstacle

avoidance and the velocity control.

A topologic-metrical map provides for the data needed by the global part and occupancy maps acquired

by laser range finders for the data needed by the local part of the navigation. The main idea here is –

74

4.1. Navigation system and control architecture

Fig. 4.2.: The control data flow: This figure shows the main components of the navigation system and their
integration. The left and right hand side column show sources for data input, the middle column the processing
tool-chain.

according to the goals and requirements – to make the navigation independent from a global metrical map

because it can be assumed that it would be outdated too fast to relay on it. In contrast, the topological model

of the environment should be as far as possible time-invariant. The local part of the navigation falls back to

Brook’s motto from 1991: “the world is its best model”.

Using a combination of reactive and deliberative behavior modules based on local online-data on the one

hand as well as classical planners and abstract global information on the other hand, a combination of very

fast reactions and intelligent path generation and task fulfillment can be achieved.

4.1.1. The communication layer

The communication layer is responsible for the conscious part of the interaction of robot and user, for the

high-level decisions, and for the application-specific task processing. As demanded by the requirement

R3 “Abstract and reliable environmental representation”, this layer only uses abstract and application spe-

cific information. In the supermarket scenario this is a database of the shop’s products, customer specific

information like shopping lists, and complementary information such as current special offers.

Technically speaking, this layer houses the application-specific components. It is used to communicate

with the user, which means that it receives commands from the user and communicates events to the user.

Depending on the actual application, various modalities for the act of communication can be provided,

75

4. BBC: Navigation, Obstacle Avoidance and Safety

ranging from speech in- and out-put to devices like bar code scanners. Input given to the robot is processed

using an application logic, resulting in commands for the robot’s control system like a movement command

or switching the current mode of operation. These commands are transferred to the strategic layer via

a defined TCP-based interface. As described in the previous chapter, the TCP-interface was chosen in

order to be independent of certain programming languages, therefore to ease the integration of alternative

communication layers with the core control components.

4.1.2. The strategic layer

The strategic layer performs the subconscious but still deliberative decision making of the system. As de-

manded by the requirement R3 “Abstract and reliable environmental representation”, this layer uses abstract

and mostly time-invariant information only: a topologic-metrical map where the metrical information are

strictly bound to static features of the environment, resembling abstract and learned fuzzy information.

From an technical point of view, this layer is responsible for tasks management and the global navigation

e.g. the route planning. It accepts commands through the command interface as was described in Chapter

3.3.3 “The command interface”. The received command is then planned based on the topological part of the

topologic-metrical map of the environment. The manually created topologic-metrical map used here can

easily be substituted by other global maps like the semantic map by K. Uhl [169] which can be generated

automatically as was demonstrated by J. Oberlaender [120].

The plan is refined step wise and stored a tree structure by the global route planner. The tree structure was

chosen as it enables the step wise refinement of the tasks as well as interruptions and even postponement

of complete sub-tasks i.e. branches of the tree. In the last step the currently relevant leaves of the planning

tree are extended with metrical information: the topological navigation points extracted from the metrical

extensions of the topologic-metrical map or product locations are extracted from the command originating

from the communication layer. The resulting plan is handed down to the tactical layer step wise in form of

local goal coordinates (X , Y) and an optional orientation q .

4.1.3. The tactical layer

According to Hoogendoorn’s tactical behaviors of pedestrians, the main task of the tactical layer is to

perform a geometrical scene analysis to identify objects which either impair the navigation or pose a threat

to the robot. Additionally, the user’s position and motion are tracked here.

This layer is implemented by the top half of the Behavior Network as is shown in Figure 4.2. The Behavior

Network is designed to fulfill a movement action commanded by the strategic layer. In the case of a target

location that is to reach, first a predictive obstacle handling takes place which generates new sub-goals.

Afterwards a goal-attraction behavior module takes the current sub-goal and generates a corresponding 3D

velocity set-point vector which moves the robot towards the sub-goal. This vector consist of two translatory

components (X,Y) and can contain a rotation velocity. Finally, the vector is handed down to the reactive

layer.

Predictive obstacle handling: If a target location location is known, therefore the task is a point-to-

point movement instead of for example the manual control of the robot, the predictive obstacle handling

takes place to prevent getting stuck in local minima and to generate more efficient paths.

76

4.1. Navigation system and control architecture

The introduced motion model of pedestrians suggests that pedestrians align themselves to a virtual mesh

which connects nodes placed in a comfortable distance to the corners of obstacles as sketched in Figure 4.3

(top). To take the requirements defined in the introduction into account, this layer is only allowed to operate

on local data. Thus, generating a global mesh as depicted is not feasible here. The global method has to be

transformed into a local one. The straight-forward approach is to only consider the corners which can be

currently seen by the robot’s sensors.

As benefit of inspiring the resulting trajectory by a visibility graph a more efficient and shorter path is

generated. This concept is sketched in Figure 4.3 (left) while Figure 4.3 (right) illustrates that this concept

enables the robot to avoid, or even to move out of, U-shaped obstacles. As only local data is available, no

path planning can be performed on the local visibility graph – the most beneficial node has to be chosen by

heuristics.

4.1.4. The reactive layer

In this layer the (sub-)goal-attracting vector received from the tactical layer is merged with attracting and

repelling vectors added by several dedicated behavior modules to adapt the robot’s behavior to the local

scene. As demanded by Hoogendoorn’s model of pedestrian movements, purely local and reactive methods

are applied here. Each individual behavior module generates one velocity set-point vector which represents

the behavior’s wish regarding the robot’s action. In the simulation of pedestrians, in this layer potential

fields are applied. But in the present control system much more factors of influence have to be taken into

account. Calculating a complete potential field would be rather computational expensive. In contrast, every

behavior module calculates one vector according to the specific current situation only – incorporating the

current position, orientation and velocity of the robot, of obstacles, and of the user, as well as input provided

by cameras, the force sensitive handle, and so forth.

The processing chain of the reactive layer starts with the task oriented input vectors which are for example

received from the tactical layer, generated by a module responsible for person following, or acquired by

the input of the robot trolley’s force sensitive handle. These attracting vectors are merged in a maximum

fusion behavior module, which means that one data source is selected. The resulting vector is handed to

the behavior modules for the reactive avoidance of obstacles. These are grouped in two sub-networks or

groups. The group for the avoidance of static obstacles and the group for the reactive handling of moving

objects. Each group provides one additional set-point vector which are merged with the task-oriented one in

a weighted fusion behavior module. The data basis for this level is provided by an occupancy map accessed

inside the LWM.

After altering the task-oriented velocity set-point vector in such a way that the robot moves around obsta-

cles, this altered vector again is handed down to the group of safety behaviors. These work on raw sensor

distance information and slow the robot down, or – in worst case – stop the robot just before a collision

occurs. These behaviors do not change the direction of the velocity set-point vector but they limit its length

– down to zero if necessary. After passing the safety behaviors the resulting vector is passed down to the

HAL.

77

4. BBC: Navigation, Obstacle Avoidance and Safety

Fig. 4.3.: Predictive obstacle avoidance based on a geometrical analysis of the scene:
Top: Navigation according to the tactical behaviors of the motion model of pedestrians (dark blue edge-mesh along
the local geometry). The mesh is calculated only locally one step ahead – not globally.
Left: A sequence of local sub-targets is generated at the obstacles’ corners, forming the path to the target location
(red X). The result is some kind of local dynamic visibility graph.
Right: The robot automatically avoids U-shaped obstacles or moves out of them by choosing the best suited corner
as sub-target which is usually located at the exit.

78

4.1. Navigation system and control architecture

4.1.5. The Hardware Abstraction Layer

The Hardware Abstraction Layer is the lowest layer of the control architecture. From an behavioral or

ethological point of view this layer provides the embodiment which is one of the characteristics and at the

same time a necessary condition of Behavior-Based Controls: this layer connects the BBC to the real world.

Information on the actual hardware setup of InBOT and ETrolley can be found in Annex B.

From an architecture point of view it is intended to make the remaining control system independent of the

actual robotic platform and the used sensor systems. Thus, it consists of two parts: the Platform Abstraction

and the Sensor Abstraction.

The platform abstraction (PA) receives a 3D velocity set-point vector (X , Y , q) from the upper control

system in defined time intervals. Depending on the actually available drive system, this vector is either

directly transformed into motor commands, such as in the Mecanum drive of InBOT which has full 3 DOF,

or the dimension is reduced by adding a time constraint. This is necessary for example when using a castor

drive or a differential drive. As information for the upper layers the PA provides a status variable and the

odometry values of the platform. Using a differential drive, these can be acquired from the driven wheels

itself, in the case of a Mecanum drive extra hardware is needed for precise values. Additionally, the PA

controls the (de-) acceleration restriction which is based on the motor power and the friction of the wheels.

The sensor abstraction (SA) provides various information and stores them in the local world model.

This includes for example an occupancy map of the local environment (Fig. 4.4 – left). In the current

version it is acquired on all platforms by planar laser range finders but the same grid could be generated by

3D sensors or stereo vision by projecting the obstacles on the ground plane. The size of the local map is

currently set to 100 cells edge length with a size of 10 cm for each cell. As the robot is centered in the map

it has a distance of view of approximately 4.5 meters.

In addition to the environment, the forces measured by a force sensitive device are transformed to a 3D

force vector (X, Y, q). Information on the transition of topological areas are gathered and handed over to the

control system to match them with the topological model of the environment. On InBOT and ETrolley these

information are acquired by a short-range RFID reader and the ground mounted RFID-barriers, but various

other possibilities like Bluetooth curtains or vision-based systems are also possible.

Data pre-processing: segmentation of obstacles and object database Based on the occupied cells

of the map individual obstacles are segmented and stored in an object list (Fig. 4.4 – right). The module

GridToObstacles of the data processing tool chain is responsible for identifying the static obstacles of the

object database – basically a list of all local obstacles, accompanied by characteristic data like position of

the start and end point, size, and in case of moving obstacles their velocity, the history of their positions,

and so forth.

The module segments continuous obstacles out of the local occupancy map of the local world model. The

map is scanned for occupied but not marked cells. If such a cell is found, it is marked and the cells belonging

to the same obstacle are marked as well by using a flood fill algorithm. The algorithm is modified to take a

larger neighborhood of each cell into account, to be able to skip over small gaps in the obstacle. This way,

all obstacles are merged between which the robot can not pass through. Finally, the characteristic data of

the segmented obstacle is extracted and added to the object database.

79

4. BBC: Navigation, Obstacle Avoidance and Safety

Fig. 4.4.: Left: Local occupancy map with a size of 100 x 100 cells. Each cell has a size of 10 x 10 cm.
Right: Extracted obstacles. The occupied cells of an occupancy map are segmented to define individual obstacles.
Each individual obstacle consisting of interconnected cells is marked here in another shade of blue. The green lines
indicate the starting cell of each obstacle and the black line connects the first with the last cell. Cells are counted as
connected as long as the gap between them is smaller than the minimum size of the robot. Each of the tiny blue and
red dots represent a single measurement of the laser range finders.

4.2. Sumary of the self-localization concept

Before starting with the details on the behavior-based control system, this section summarizes the system

implemented for the self-localization of the robot (see Chapter B.4 “Self-localization” and [Hei09] for a

more detailed description). As defined by requirement R3 in the introduction, no detailed global map is

available. Hence, popular scan-map-matching methods for the self-localization cannot be applied. Further-

more, it has to be expected that the robot is often surrounded by large numbers of people, impairing a con-

tinuous localization based on wall-mounted landmarks. Techniques would be needed which are independent

from crowded corridors, colorful or low-contrast background and changing light conditions. Additionally,

the landmarks would have to be sparsely distributed to keep the integration effort as low as possible.

4.2.1. Odometry for local self-localization

The local self-localization is responsible for tracking the local motion of the robot as precisely as possible. It

uses two components: The first one uses incremental encoders to track the robot’s relative pose and position

changes, the second one is an optional gyroscope to track the orientation changes more precisely.

• A gyroscope 1 is used on InBOT in order to track the orientation of the robot.

• A pair of 2D measurement wheels (see Fig. 4.5 and Appendix B for more details) was constructed to

measure the linear – therefore the lateral and longitudinal – movements of the holonomic robot.

Following the idea of the University of Michigan Benchmark Test (UMBmark [23]) the self-localization

of the system was tested. At the endpoint the average error was 0.8% with a variance of 0.00137. The

maximum error was 1.4% of the driven distance (again more details can be found in Chapter B.4).

1LITEF micro-force6

80

4.3. The behavior-based control system implementing the tactical and reactive layers

Fig. 4.5.: The 2D odometry wheel tracks the path its
centerpoint has travelled. It measures the distance
which it has rolled off and the direction of the rolling
motion relative to the robot using wheel encoders.
To smooth uneven floors it is mounted on a spring
mechanism.

Fig. 4.6.: Top: Placement of RFID barriers to divide a cor-
ridor in different areas. Picture of an RFID barrier (bot-
tom) with RFID transponders glued beneath a piece of PVC
flooring.

4.2.2. Global self-localization by floor-mounted RFID barriers

As commonly known, the accumulated position tracking has to be corrected due to also accumulating errors.

Ordinary landmarks for global self-localization can be easily occluded by people or objects located in the

line of sight. Wall-mounted long-range RFID-based systems can be blocked as well. To avoid these occlu-

sions and to get more precise position information the presented concept proposes the use ground-mounted

RFID transponders as landmarks as illustrated in Figure 4.6. This way an occlusion of the landmarks is

hardly possible. Additional information and results can be found Chapter B.4, and in particular in the

mid-study thesis by F. Steinhardt [Ste08].

The relative position of the barrier, the position of the tags inside the barrier, and the time stamp when the

first tag was read are known. The robot’s position along the barrier can be estimated by averaging over the

position of the read tags. The position orthogonal to the barrier is measured by comparing the time stamp

when the first tag was detected and the last tag was not detected any more with the diameter of the coupling

area of the reader and the current velocity.

4.3. The behavior-based control system implementing the tactical and reactive layers

After the fundamental information – namely drive system, sensors, maps, and self-localization – were briefly

introduced, the remaining part of this chapter will in detail present the Behavior-Based Control (BBC)

including the individual behaviors.

This section first describes the BBC itself, which was developed in the course of this thesis. As mentioned

earlier, the organizational concept of the BBC strongly refers to the work by J.Albiez. Afterwards, the

individual behaviors developed for the navigation system will be analyzed in a bottom-up order starting with

81

4. BBC: Navigation, Obstacle Avoidance and Safety

the safety behaviors and finishing with the geometric scene analysis. To enhance readability, the behaviors

for the avoidance of moving obstacles and for multi-robot coordination will be presented in two dedicated

chapters following the present one. Sticking to the concept of the human motion patterns, the individual

behaviors developed here are – just as the overall control architecture itself – inspired by the movement

behaviors of human beings, if applicable.

4.3.1. Architecture of the Behavior-Based Control

In the subsequent two paragraphs the concepts of the Behavior-Based Control of this thesis are described.

The BBC is implemented by Behavior Networks which again consist of several individual behavior modules,

or groups of behavior modules. Figure 4.7 illustrates how the individual behaviors are implemented by

MCA Modules of the utilized framework MCA2 (see Chapter 3.2.2 – “Fundamental concepts of the control

architecture” for a short introduction).

The behavior module: The behavior modules, known from works by J. Albiez from the walking ma-

chine domain ([3]), were modified and adapted to the needs of the shopping cart scenario (Fig. 4.8). They are

small software-modules that are dedicated to a single task. All behavior modules of such a behavior-based

control system work independently and in parallel at all the time. They range from reactive like turning

away from the wall to deliberative like freeing the way for another robot. Typically, the lowest level behav-

ior modules, the reflexes, generate the motor commands while the higher behavior modules orchestrate the

lower ones.

Fig. 4.7.: The behavior module is en-
capsulated and implemented by an
MCA Module. The behavior’s inter-
faces are mapped to the MCA inter-
faces: e, i, m ! CI, SI and u, r, a !
CO, SE

Fig. 4.8.: The behavior module is the basic unit of a behavior-based control
system. It fulfils a dedicated task. The control data flow with the interface
(e) and (u) is strictly discriminated from the coordination data flow with the
interface rating (r), motivation (m), activity (a) and inhibition (i).

Besides calculating the dedicated output (u) based on given input (e), which represents the control data

flow, behavior modules have the possibility to interact with each other directly, which represents the coor-

dination data flow. A behavior can be motivated (m) or inhibited (i) by other behaviors, and each one can

inform others about how active (a) it is and how satisfied it is with the actual situation (r). This information

can be used by other behaviors to estimate how efficiently the first one is working and accordingly motivate

or inhibit it.

The behavior modules used here accept an inhibition and a motivation value in contrast to Albiez’s “ac-

tivation” value (i). The two individual values offer more flexibility in fusing the coordination data flow,

82

4.3. The behavior-based control system implementing the tactical and reactive layers

especially when many modules are involved. The motivation (m) states how much other behaviors want a

special behavior to operate. Accordingly, it makes sense to fuse individual motivation values using their

maximum. Otherwise, behaviors which are idle or don’t have an opinion could down-rate a behavior. The

opposite counts for the inhibition (i). It states how much a behavior wants to suppress another one. Here

again it makes sense to follow the strongest input. To get a defined design paradigm, in case of conflict the

inhibition should overrule the motivation, meaning if one inhibition input equals zero the output (u) has to

be zero. This results in the following transfer function f () and functions for activity and rating, each for x

inhibition and y motivation inputs:

u = f (e, i,m) = B(e)(1−max
x

(ix))max
y

(my) (4.1)

a = k f (e, i,m)k (4.2)

r = kek (4.3)

(u,e) 2 Rn; (i,m,a,r) 2 R, [0, ...,1] (4.4)

Behavior Networks: Using these described capabilities, individual behavior modules can be woven into

Behavior Networks as introduced by J. Albiez in [3]. In such a network a whole set of behaviors combines

the individual abilities or functions to fulfill a higher task. The basic coordination of the Behavior Network

is done in two ways: task-specific behaviors are activated from the outside by setting their motivation

or the behaviors motivate and inhibit each other by connecting the signals a or r with i or m (see Fig.

4.9). Additionally, a special kind of very simple but powerful behavior module is used: the fusion behavior

modules (Fig. 4.10). These allow the manipulation of the control data flow by unifying several data inputs of

identical type to one data output of the corresponding type. This is necessary when several modules provide

input for one and the same other module. The most prominent types are the maximum fusion, where on

input is selected based on the activity of the source module and the weighted fusion where all inputs are

weighted by the activity and then merged for the output. Figure 4.11 sketches the Behavior Network which

implements the tactical and the reactive layer.

Fig. 4.9.: Coordination data flow: The two behaviors for
reactive obstacle avoidance uses their activity output a to
reduce the activity of the behavior “Goal Attraction” by
setting its inhibition input i.

Fig. 4.10.: The control data flow: The output of two be-
haviors is merged by a fusion behavior. To decide which
control data has priority the activity a of the two behav-
iors is provided.

Due to this loose coupling of the individual modules, the available functions can easily be recombined,

activated or deactivated to fulfill a new specific task. They even can be motivated halfway only, to support

83

4. BBC: Navigation, Obstacle Avoidance and Safety

Fig. 4.11.: Abstract view on the Behavior Network showing the various behavior groups (indicated by “G:”) of
both the tactical layer and the reactive layer. Each layer consists of four major steps: input, fusion of inputs,
processing, and output. While in the tactical layer goal coordinates are the common language, the velocity
set-point vectors play this role in the reactive layer. The behavior groups are only connected by the control
data flow, the connections used for the coordination data flow (a, r, i, m) are used inside the groups only. This
way the influence of the behaviors is limited.

some other functionality. This way for example a slight and discreet obstacle avoidance augmentation for

the Manual Steering Mode can be implemented without effort. Another advantage of the loose coupling

and the powerful fusion behavior modules is the easy expandability of the network. New functionalities can

simply be applied by hooking in their corresponding modules.

After introducing the architecture of the BBC in the subsequent section and paragraphs the individual

behaviors will be described, starting with the safety behaviors.

4.4. The reactive behaviors (RB)

This section elaborates on the behaviors which make up the Behavior Network of the reactive layer (see Fig.

4.11). The individual behaviors will be discussed in an bottom-up order. The most important behaviors are

for safety, adaptation to the local scene, and obstacle avoidance. The “RB:” in the sections’ titles indicate

the behaviors as being “reactive behaviors”.

84

4.4. The reactive behaviors (RB)

4.4.1. RB: Safety behavior

Ensuring safe motions is a crucial requirement for service robots. A lack of safety would result in hurt

people, damaged objects, or at least in a lost of confidence and acceptance by the users. This requirement

is tackled in this control system by applying dedicated safety behaviors. These are the last behaviors in the

hierarchy and therefore the last ones which can manipulate the velocity set-point vector before the motor

commands are generated.

The safety reflex is the lowest level behavior found in the presented control system. It restricts the max-

imum allowed velocity for the robot for each possible driving direction – discretized in one-degree steps to

reduce the demand of computational power. Having a holonomic platform this task is more complex than

on differential driven ones because the robot can freely accelerate in any direction without having to turn

first.

For each individual range scan by the sensors (in the case of InBOT two SICK S300 laser range finders,

scanning 360 degrees six times a second) the critical directions are calculated – therefore the two directions

in which the body of the robot is just able to pass an obstacle on the left and on the right side. The maximum

allowed velocity between these two directions is reduced.

The safety is mainly implemented by two modules: the module for data pre-processing “Scan to Safety”

which generates a lookup table in the local world model and the reflex “Safety” which uses the lookup table

to reduce the velocity of the robot.

Fig. 4.12.: Sketch illustrating the sectors defined
in polar coordinates. In each sector the sensor
reading with shortest distance to the robot’s hull
is stored. Beyond this value the complete sector
is interpreted as occupied. The area between the
robot and the value is interpreted as free.

Fig. 4.13.: Sketch showing an obstacle and the corresponding
critical directions (red lines). An obstacle (grey triangle) lies
within an exemplary sector. The two critical directions a and
b are calculated, in which the robot is just able to pass without
intersecting with the blocked part of the sector (red lines). Ac-
cordingly, the maximum allowed velocity is reduced between
these two directions as illustrated by the circle in the robot’s
middle.

Scan to Safety – data pre-processing: This is done by setting up a lookup table in polar coordinates,

representing the 360 degrees around the robot in an discretized manner. The individual distance values

of a scan (or readings from whatever other sensor used) are sorted into this lookup table, always storing

the minimum distance for each sector. After processing a scan, each sector contains the shortest (actually

measured) distance between robot and an object of this sector as illustrated in Figure 4.12. Afterwards, for

85

4. BBC: Navigation, Obstacle Avoidance and Safety

each occupied sector the two driving directions a and b are calculated, in which the robot could drive just

without intersecting with the sector beyond the occupied distance (see Fig. 4.13 for an illustration). These

two directions are kept unconstrained, for the directions in between (vSec j), the maximum allowed velocity

is limited according to the maximum possible de-acceleration of the robot, the current velocity, and the time

delays:

vSec j =
p

2(dO −dd)aMaxDec · fp (4.5)

dd = vc(td + tp) (4.6)

with dO = distance to obstacle, dd the distance traveled in the delay depending on the time between two

laser scans (td) plus the processing time (tp) and the current velocity (vc), aMaxDec = Maximum possible

deceleration and fp a proportional safety factor.

The velocity restriction is again written into a lookup table which uses one degree angular steps by com-

puting the minimum of the new and the already present value, if existing. The transition between differently

constrained sectors is smoothed by averaging less constrained sectors with the adjacent stronger constraint

ones (always rising the constraints). The value is accompanied by a time-stamp to be able to “forget” old

values, hence to reset sectors or slots when no new updates appear. This lookup table is illustrated in Figure

4.14 where a blue line is drawn for each sector with the length corresponding to the maximum allowed

velocity in the corresponding directions.

The same procedure is performed for the rotation velocity, here only for two individual directions: turning

left and right.

Safety Reflex When the upper navigation system wants to steer the robot in a certain direction j with a

certain velocity v0, a corresponding velocity set-point vector is handed down to the safety reflex. For the

desired driving direction the constraint is looked up in the LWM (vSec j) and the initial velocity set-point

is reduced to a new velocity set-point (vn). The safety for the rotation is calculated likewise with angular

velocity, angular deceleration and angular difference.

vn = min(v0,vSec j) (4.7)

Multiple instantiation To be more robust versus illegal memory operations of other modules or similar

critical errors – which cannot be totally ruled out in such an in-homogeneous system – the safety module

is instantiated three times. These are executed in a sequential order to tackle timing conditions. A module

“PassTrough” precedes the three safety modules (see Fig. 4.15). It passes the needed information to the tree

instances and ensures that all three instances work based on exactly the same data. Additionally, it houses

a watchdog to make sure the upper part of the control system is still alive. A module “MajorityDecider”

succeeding the three instances checks if all three instances provide the same velocity set-point as output. If

this is the case the new set-point is passed to the drive system. If the set-points differ a critical error occurred

somewhere and the robot is stopped immediately. The critical component is the data preprocessing as it is

only executed once due to the higher computational effort. But as minimum functions are used on multiple

sensor readings, the impact of external influences is less hazardous. To rise safety further the models would

86

4.4. The reactive behaviors (RB)

Fig. 4.14.: Screenshot showing the maximum allowed veloci-
ties in one-degree steps: to the left the velocities are uncon-
strained. At the bottom an obstacle is detected (blue dots rep-
resenting the laser range finder measurements) so the robot is
hardly allowed to drive in this direction.

Fig. 4.15.: MCA-Browser screenshots showing the
architecture of the safety group: The safety group
receives a velocity set-point vector from the “Veloc-
itySettingsManager”. The module “PassThrough”
passes this set point on and ensures that all three
instances of the “Safety” module receive the same
velocity set-point. The “MajorityDecider” module
collects the modified velocity set-points and checks
if all three have the same value.

have to be implemented in three different way instead of just using three instances of the same module. Also

running them on different computational units would bring major benefits.

4.4.2. RB: Behaviors for adapting the velocity to the task and the user

As input this group of behaviors receives the velocity set-point vector from the fusion stage below the Avoid

Obstacle behaviors. As shown in Figure 4.11, this group is the last but one group in the hierarchy. The

group is responsible for reducing the the length – not the direction – of the velocity vector according to the

individual field of duty of the behaviors. If no adaptation is necessary, they just hand the given vector down

to the safety behaviors. The group is made up by three behaviors:

1. Guide User: This behavior slows the robot down when guiding the user, thus operating in the Guiding

Mode. It implements a part of the control sharing. As additional input the behavior receives the

distance to the user. If the user falls back, the behavior reduces the length of the velocity vector

accordingly. The information on the user was acquired by two alternative systems: the user tracking

with onboard sensors (see Appendix C.2 “Detecting and tracking the user using onboard sensors” and

[63], [59]) as well as the intelligent environment (see Appendix C.3 “The intelligent environment”).

2. Adjust Velocity: This behavior is controlled by signals from the strategic or communication layer. It is

responsible for slowing down the robot when the highest components in the control hierarchy wish.

This usually happens when communicating to the user: the robot shall give the user time to react,

not stressing him. The behavior accepts either a time-span or coordinates together with a distance

as control input. This functionality has for example been used for studies with TU-Vienna and KTH

Stockholm where the robot slows down to give the user a hint on products which are currently passed

(for example [78]). Here the command was sent by the communication layer, implemented by the

87

4. BBC: Navigation, Obstacle Avoidance and Safety

CR-UI (see [87] and Appendix C.5). Another application is the advertisement of products like done

by the second alternative for the communication layer, the InBOT-UI (see Appendix C.4).

3. Velocity Settings Manager: This behavior adapts the velocity set-point vector given by the upper part

of the control system to general restrictions posed by the system’s configuration, the current mode of

operation or other sources. It ensures that the robot does not (de-)accelerate too fast regarding the

friction of the wheels and even more softly when operating with a user in the close vicinity.

4.4.3. RB: Avoid Obstacles (AO) – behaviors for the reactive obstacle avoidance of static
obstacles

This section presents the behaviors responsible for the reactive avoidance of static obstacles. They have an

important role in the execution of the plan which was generated by the global navigation in the first place

and then refined by the tactical behaviors. The output of the AO behaviors are merged with the output of

other behaviors, such as the target attracting one, by a fusion behavior. The result is handed down to the

adaptive behaviors described in the last section and finally to the safety behaviors. This group is the last one

in the hierarchy which manipulates the direction as well as the length of the velocity vector (see Fig. 4.11).

The lower groups are allowed only to reduce the length.

The AO behaviors are working based on the occupancy map from the local world model and therefore

have to consider a large number of individual cells. To tackle this, the idea is to merge all relevant obstacles

in the local environment to individual representative points by making some kind of a weighted sum of the

occupied cells – the weight depending on the cells’ relevance or danger it poses to the robot. In the next

step, all representative points contribute a repelling velocity set-point vector. These are finally merged with

the target attracting vectors to provide the final velocity set-point vector.

Two versions of the AO behavior modules were implemented. The first one is straight forward: it uses

repelling vectors pointing from the obstacles towards the robot’s center. But this concept proved to slow

the robot down too much. Therefore the second version uses repelling vectors which are orthogonal to the

robot’s driving direction, mainly altering the robot’s course, not the velocity. Both versions are introduced

following after the next paragraph which describes the calculation of the grid cells’ relevance which is

important for both versions.

Relevant obstacles and relevant directions: The reactive behavior modules responsible for the avoid-

ance of obstacles are – according to the data abstraction hierarchy – working on basic data only: the occu-

pancy grid map. As the grid contains a large number of cells, it is crucial for the behaviors to focus on the

most important cells and not to waste effort on cells which will hardly effect the robot. Of high importance

are such cells which lie within the driving direction of the robot and which are close to the robot. But

depending on the used drive system even such a simple rule can become complicated (see sketches in Fig.

4.16). When the robot is using a holonomic drive like a Mecanum drive instead of a differential one, there

are two direction to be considered: the one the robot is currently driving in as well as the direction in which

it would want to accelerate in. Usually this second direction is the direction of the goal, but it can result

from the input of other sources as well like the force sensitive handle.

To solve the situation for the general case it is defined that one module is only responsible for one relevant

direction. If more than one direction is relevant, the module has to be instantiated twice, or even more often.

88

4.4. The reactive behaviors (RB)

Fig. 4.16.: Sketch showing the area of attention (AoA) of the robot, hence the relevance of obstacles regarding the
robot’s position and heading: the darker the area, the more important are obstacles lying within it. Indicated with red
is the current driving direction, indicated in green is the direction of the target, therefore the direction in which the
robot wants to accelerate.
Left: the robot uses a differential, castor, or similar drive.
Right: the robot uses an holonomic drive.

To limit the number of cells a module has to take into account, an area of attention (AoA) is defined. All

cells outside have an importance value of zero. Those cells inside are weighted by the distance to the robot

and the angular distance compared to the corresponding relevant direction.

RB: Avoid Obstacles – Version 1

As introduced, these behavior modules are working based on the occupancy map and therefore have to

consider a large number of individual cells. The idea is to merge all relevant obstacles in the local environ-

ment to individual representative points by making some kind of a weighted sum of the occupied cells –

the weight depends on the cells’ position compared to the robot’s position, the robot’s velocity and intended

driving driving direction. After this, all representative points contribute a repelling vector: the vector points

from the representative point to the robot’s center and has a length corresponding to the weight function. In

the first version of the behavior modules, one instance is created for each, the left and the right hand side.

This way two repelling vectors are generated, one for each side. Thus the robot is able to move through

narrow gaps – if only one representative point would be created, this would be located right in the middle of

a gap, blocking the robot just as if the robot was approaching a wall. Figure 4.17 illustrates the concept: left

a photo of the scene is displayed and on the right the occupancy map containing the robot and the vectors is

sketched.

Relevance of grid cells: The cells of the occupancy grid (~Ci, j) inside the area of attention (AoA) are

weighted with the function Wrel() by their distance to the robot (drob()), their angular difference (qDrel ())

89

4. BBC: Navigation, Obstacle Avoidance and Safety

Fig. 4.17.: A scene illustrating the function of the Avoid Obstacle behaviors. The robot (here an early version of
InBOT) is guiding a user and passing through some obstacles. The repelling vectors (red) are merged with the target
attracting vector (green) to a final velocity set-point vector (blue) – which significantly smaller than the original green
vector.

Fig. 4.18.: Plots showing the relevance of the cells of the occupancy map in the X-Y plane. The black rectangle is the
robot, the relevant direction is horizontally to the right. The warmer the color the more relevant is the cell, in a range
from 0 to 1. Parameters of the AoA left: of 5m distance and ± 90 degree for fast turning vehicles; right: 7m and 30
degree for fast moving and slow turning vehicles.

compared to relevant direction (~Drel) and their occupancy value (O(~Ci)). Obstacles outside the area of

attention (AoA) (limited by dA and qA) are not taken into account. This reduces the influence of obstacles

that are not in the (intended) driving direction, causing less disturbances. For example driving along walls

or through narrow corridors becomes easier and oscillations can be avoided. Cells which are surely outside

the AoA are omitted altogether, saving precious computational power. The relevance of the grid’s cells is

plotted in Figure 4.18 according to the following functions:

Wrel(~Ci, j) =
max(dA −drob(~Ci, j);0)

dA
·

max(qA −qDrel (
~Ci, j);0)

qA
·O(~Ci, j) (4.8)

O(~Ci, j) = 1 if ~Ci, j occupied, = 0 if not occupied (4.9)

90

4.4. The reactive behaviors (RB)

Obstacles’ relevance – the center of disturbance (CoD): The position of the obstacles’ CoD (~PCoD)

is the center of gravity (GoG) of the obstacle, moved according to the relevance of the contained cells.

Accordingly, all positions of the cells (~PCi, j =
� i

j
�
) are weighted and then summed up to generate the CoD.

To respect the fact that two instances of the behavior modules shall be used giving two CoDs, one each for

the right and left side, the actual AoA is split along the relevant direction, giving two sub-AoAs.

~PCoD =
Âi, j

i, j2AoA
~PCi, j ·Wrel(~Ci, j)

Âi, j
i, j2AoAWrel(~Ci, j)

(4.10)

Fig. 4.19.: Matlab simulation of two instances of the Avoid Obstacle behavior when passing a door. It shows two
repelling vectors (green and red for left and right hand side obstacles), the target’s attracting vector in light blue and
the resulting velocity set-point vector in dark blue.
Left: the pair of repelling vectors is calculated for several exemplary positions.
Right: the vectors are calculated for a series of steps in time.

Output data – the vectors u, a, and r: The modules’ repelling output vector~uAO (part of the control

data flow) is calculated in three steps. Before describing the individual steps, it should be mentioned that

all calculations are performed in robot-coordinates, meaning the the robot’s center point has always the

coordinates (X = 0, Y = 0) and the corresponding relevant direction the direction q = 0.

In the first step, the direction of ~uAO is determined as the normalized vector bPC−R from the obstacles’

CoD towards the robots center. Then the length of the vector is calculated by using the weight of the CoD

itself and multiplying it with the robot’s current velocity |~v|. This enables the robot to slowly approach an

object but generates a strong deceleration if the robot approaches fast. Finally, the vector is adapted to the

parameters for the external coordination, thus the input from the coordination data flow: the motivation (m),

and the inhibition (i) as well as a proportional factor (fp) for the overall adjustment. Finally the two output

values for the coordination data flow are calculated. The activity a of the behavior modules is the length of

the repelling vector. The rating r is the total sum of the weights of the cells of the AoA and represents the

91

4. BBC: Navigation, Obstacle Avoidance and Safety

Fig. 4.20.: The implementation of the first version Avoid Obstacle behaviors in MCA: four instances were created
(each left and right for the heading as well as the target direction) which are merged using a fusion behavior.

difficulty of the local environment regarding the amount and the relevance of the local obstacles – thus the

“stress level” of the behavior.

~uAO = bPC−R ·Wrel(~PCoD) · |
~v

~vmax
| · fp ·m · (1− i) (4.11)

a = k~uAOk (4.12)

r =
i, j

Â
i, j2AoA

Wrel(~Ci, j) (4.13)

The concept was validated using a Matlab simulation. Figure 4.19 for example shows vectors which have

been calculated for a set of situations when approaching and then passing through a door. It can be clearly

seen that the large repelling vectors from booth sides of the door slow the robot down significantly.

Implementation in MCA: Figure 4.20 shows a screenshot from the MCA-Browser which displays the

four instances of the Avoid Obstacle behavior modules whose velocity set-point vectors are merged with the

vectors from other modules using a fusion behavior module.

RB: Avoid Obstacles – Version 2

The first version of the behaviors for obstacles avoidance performed well when looking at the number of

successful maneuvers. But the repulsive vectors slowed the robot down too much. When looking at human

movement behavior, one can see that humans obviously bypass obstacles without slowing down much, just

altering their course. Accordingly, the second version of these behaviors tries to generate repulsive virtual

force vectors, which are orthogonal to the driving direction. In the fusion step, they will accelerate the

robot sideways instead of slowing it down. A holonomic robot will drive diagonally while a robot using a

differential drive will start to turn.

In addition to the direction of the repulsive vectors some other adaptations of the behavior modules were

implemented:

1. Only one module for left and right hand obstacles: As the direction of the repulsive vector shall

be orthogonal to the driving direction, the vectors for the modules responsible for the left hand and

the right hand side are directly opposite and cancel each other out. This facilitates implementing

both behavior functions in one module, easing the fusion and simplifying the network. Moreover,

92

4.4. The reactive behaviors (RB)

both functions are always be motivated or inhibited with the same value, resulting in always balanced

behaving.

2. Three instances: As described in the previous paragraph, the functions for left and right hand obstacles

are combined in one module. This means that there are only two instances of the behavior module:

one for the current driving direction and one for the direction towards the target. A third instance

is introduced corresponding to the direction of a safety velocity restriction enforced by the safety

behaviors. This ensures that the robot is repelled from the direction in which it was driving when it

was stopped. Thus, the third instance ensures that the robot does not get stuck when a safety behavior

stops the motion.

3. Shape of the AoA: The area of attention is bordered by a polygon and all calculations are done versus

the individual lines of the polygon. This way the calculation of angular displacements for cells given

in Cartesian coordinates can be omitted. As the symmetry axis of the AoA is always identical with

the positive X-axis (Q = 0), and the borders of the AoA are parallel to the axes, the weight function

Wrel2 is cheap to compute.

The behavior module is instantiated for all three relevant directions of the robot, each contributes one

individual velocity set point vector:

Avoid Obstacle behavior Target (AOBT) for the intended movement direction corresponding to a

given target or a velocity set point vector given by other means (force sensitive handle, joystick, etc)

Avoid Obstacle behavior Heading (AOBH) for the current heading or the current movement direction

respectively

Avoid Obstacle behavior Safety (AOBS): AOBS predicts the direction in which the safety reflex fur-

ther down in the control hierarchy is apt to slow down/stop the robot and uses this direction as direction

of interest (but with a much smaller area of interest). The goal is to avoid being stuck due to the safety

reflex.

Output data – the vectors u, a, and r: To reduce the speed reduction caused by the behaviors, the

repelling vector ~uAO2 shall be as far as possible orthogonal to the relevant direction. As the function is

calculated in the coordinate system where the relevant direction is equal to the X-axis, the repelling vector

shall have a strong Y-component and a weak X-component. The weight function has proven well, so the

weight will be basically kept, and so will be the length of the repelling vector. But in contrast to the first

version where the direction of the vector was from the CoD to the robot, this time the direction will be

parallel to the Y-axis (see Fig. 4.21 for a sketch). As the repelling vectors of AO-Left and AO-Right are

exactly opposed to each other (Y and -Y direction), both are handled in one module, resulting in the repelling

force Frep which which is the difference of the length of both vectors. Frep provides the Y-component of the

final repelling vector~uAO2. The X-component is a decelerating force Fdec proportional to the strength of the

93

4. BBC: Navigation, Obstacle Avoidance and Safety

Fig. 4.21.: Comparison of the Avoid Obstacle behaviors (AOBH instance). Left: first version, right: second version.
The red arrows indicate the repelling vectors from the left and right hand side functions – this time orthogonal to the
relevant direction (here: direction to the target indicated by the green arrow). The dotted red arrows are the same
ones, projected to the robot’s center. By summing these two up, and adding an extra deceleration component we get
the orange arrow. The orange and the green arrow are input to the fusion behavior which generates the blue resulting
arrow. The resulting arrow – equal to the final velocity set-point vector – of the second version is significantly longer
than from the old version.

individual repelling forces with an proportional factor with an value of about fdec = 0.2. This changes the

functions as follows:

Frep = |Wrel2(~PCoD−le f t)|− |Wrel2(~PCoD−right)| (4.14)

Fdec = max(|Wrel2(~PCoD−le f t)|; |Wrel2(~PCoD−right)|) · fdec (4.15)

~uAO2 =

−1 ·Fdec

Frep

!
· | ~v
~vmax

| · fp ·m · (1− i) (4.16)

a = |~uAO2| (4.17)

r =
i, j

Â
i, j2AoA

Wrel2(~Ci, j) (4.18)

At first glance, merging the left and the right hand side CoD to one resulting CoD would ease the com-

putation, but in this case the robot would not be able to pass doors, as the resulting CoD would lie in the

middle of the free space. Using two CoDs, the two repelling vectors will cancel each other out when the

robot is in the middle of the door, letting the robot pass with only slightly reducing the velocity.

An interesting situations is encountered when the robot drives exactly straight ahead towards a wall. Here

the left and the right hand side vectors cancel each other out almost completely. When the target is exactly

straight ahead and the wall is perfectly orthogonal, both behaviors AOBH and AOBT would not initiate a

change of the course, just slowing down the robot. But this is an purely theoretical situation. In realty the

following interaction takes place: due to some slight fuzziness (discretization, sensor precision, friction,

uneven floor, and so forth) the actual driving direction varies a little bit. Thus the AOBH behavior starts to

change the course in favor of one side. Only a little at first, but once the course has been changed, the favor

for this side rises fast. To cover the theoretical possibility of a tie, the behavior Break Tie is introduced later,

but is has never been active.

94

4.4. The reactive behaviors (RB)

Fig. 4.22.: Left: Screenshot of the MCAGUI showing the behaviors AO – version 2 – in action. White arrow: current
velocity vector, grey arrow: target direction, blue arrow: repelling vector AOBH, yellow arrow: repelling vector
AOBT, black arrow: final velocity set-point vector – it counters the current velocity vector to prevent the robot
from colliding with the left obstacle and slightly accelerates in the target direction. The blue and the yellow frames
represent the areas of attention for obstacles, the small circles are occupied cells in the occupancy grid (the size of
the circle corresponds to the relevance of the cell) and the large circles are resulting representative obstacle points.
Right: Video snapshot showing the robot’s perspective of a similar scene. The green circle is the goal to reach (grey
arrow), but the path is obstructed by a shelf (yellow dots) so a repelling vector is generated (blue arrow). Finally all
vectors are merged to a resulting velocity set pint vector (white arrow).

Fig. 4.23.: MCA-Browser screenshot showing the implementation of the second
version Avoid Obstacle behaviors in MCA: here three instances were created
(heading , target, and safety) which are merged using a fusion behavior. The fu-
sion behavior module receives input from other reactive behaviors as well which
can not be seen here.

95

4. BBC: Navigation, Obstacle Avoidance and Safety

Fig. 4.24.: Annotated path generated by the Avoid Obstacle behaviors – version 2: starting on the left side
the robot was ordered to move to its goal pose (green robot shape on the right side). The colored coffin-
shapes indicate the corresponding areas of attention: the AoA of AOBT is marked in yellow, of AOBH in
blue, and of AOBS in red. The green arrow points towards the target and the blue one is the resulting ve-
locity vector. It shall be noted that the shown capabilities depend only on the current sensor information
and on a given direction to the target. If this target direction is provided by a target finding behavior (as
in this example) or by the force sensitive handle, a joystick, or by teleportation is not relevant. As long as
a target direction is given, the reactive behaviors are operational and work on finding a safe path in the
given direction. Six special situations will be commented here:
1) The robot approaches a door: the Avoid Obstacle behavior (AOB) regarding the target direction
(AOBT-yellow) pushes the robot up while the AOB regarding the current heading of the robot (AOBH –
blue) pushes the robot down. This way the robot is forced in the middle of the door.
2) Just after passing the door the robot encounters an obstacle on the front-right side, pushing the robot
upwards. This is not a suitable path but due to the limited field of view (FOV) of the AOBs the robot
cannot decide better. Usually the predictive obstacle handling of the scene analysis takes care of this.
3) As soon as the next obstacle enters the FOV of AOBT on the upper side, the robot detects the mistake
made in 2) and turns downward.
4) Various obstacles in the FOV of AOBT force the robot in the middle of the passage.
5) Shortly after passing the white box, the right side wall enters the FOV of AOBT. AOBT does not
know which way to move around the large obstacle so it favors the current direction. The robot keeps
moving roughly in the same direction while adapting to the wall until either the angular error compared
to the target direction becomes too large or until another obstacle is encountered. Usually this would be
a situation to be solved by the predictive obstacle handler.
6) After turning around, the robot follows the wall in the other direction: the AOBT, AOBH, and AOBS
(orange shape) and the target attracting behavior are in an equilibrium state which allows the robot to
follow the wall without the need of an explicit wall following behavior.

Incorporation of behavior modules and implementation in MCA: Just like in the first version,

here again all three repelling vectors are merged with the attracting vectors by a weighted fusion behavior

module to generate the final velocity set-point vector. This is illustrated in the MCAGUI screenshot in

Figure 4.22 on the left and from the robot’s point of view drawn into the picture of an on-board camera in

Figure 4.22 on the right hand side. Figure 4.23 shows a screenshot from the MCA-Browser which displays

the two instances of the Avoid Obstacle behavior modules whose velocity set-point vectors are merged with

the vectors from other modules using a fusion behavior module.

96

4.4. The reactive behaviors (RB)

Fig. 4.25.: Validation: 24 test runs of AO-v2 (in simulation due to limited space in the labs) are shown
in this figure. The robot was placed on the positions marked with the red “X”s distributed over the
place. Then the robot was ordered to move to a certain target position (green robot shape). In all cased
the simulated robot was able to reach the target position using the reactive navigation behaviors only –
and only relying on current (simulated) sensor readings. In some cases the path was not efficient – this
happens when the robot has to decide which way to move around an obstacle (compare to preceding
figure). But taking care of situations as these is the responsibility of the predictive obstacle handling of
the tactical behaviors discussed later in this chapter. No explicit wall following behavior was used – the
wall following results from an equilibrium state of the target finding and obstacle avoidance behaviors.

Evaluation

This paragraph provides test results for the second version of the Avoid Obstacle behaviors. Additional tests

with the complete navigation system are presented at the end of this chapter and even more will be implicitly

given in the subsequent chapters as the AO behaviors represent the baseline of the navigation system.

Figure 4.24 illustrates details on the behaviors’ functions during an exemplary path through a door and

around some obstacles. The figure shows the interplay of the behaviors as well as the resulting explicit and

implicit effects. The expected drawbacks of the limited field of view of the behaviors is visible as well –

which will be countered by the predictive obstacle handling behavior of the tactical behaviors.

Finally 4.25 shows a larger scale validation of the concept. This test has obviously been performed in

simulation because the necessary space is not available in the labs. The basis for the validation is a map of

the complete lab including offices and outside areas and a detailed simulation of the robot platform down

to each individual scan point of the laser scanners. Additionally, the simulation – for which large pieces

could be gratefully taken from other work – incorporates the (de-) acceleration capabilities, the drive system

and the S300 laser scanners including the corresponding precisions and variances. The simulated robot was

placed on 24 different positions inside and outside the lab (a major advantage of the simulation: the outdoor

space could be used as well) and commanded to move to a certain target location. Only the behaviors for

the reactive avoidance of obstacles (Avoid Obstacle and safety behaviors) were used, operating on current

sensor information only – no pre-knowledge has been available besides the starting and the goal coordinates.

As the figure shows, the robot was able to reach the goal even when having to pass cluttered and narrow

regions. The robot was able to cope with narrow spaces as well as with wider areas. Here again the effects

of the limited field of view can be seen, resulting in temporary movements into wrong directions when

97

4. BBC: Navigation, Obstacle Avoidance and Safety

for example passages have not been in the area of attention. This test run also illustrates the deterministic

behavior of Avoid Obstacles: the robot is always attracted to the same path, even when starting at different

locations.

Comparison to VFF and VFH As the concepts presented here and the VFF methods (see Chap. 2.3.3,

Fig. 2.13) both use virtual force vectors they look very similar, at first glace. But there are some major dif-

ferences: In this thesis’s concept, only one single representative point contributes a force vector, originating

from the most dangerous location. Thus, the size of the obstacle or its density is not relevant. The AO be-

haviors are able to pass through gaps which are radial to the robot as well as through narrow gaps: in v1 the

repelling vectors’ strength is reduced when the robot slows down in front of the gap, in v2 the forces hardly

push the robot back at all. The basic concept of the VFH – the polar histogram – is used only for reducing

the velocity by the safety behaviors. Actually, the VFH unifies two functionalities: moving around obstacles

and local navigation. In the concept presented here, these two functionalities are split into two behaviors:

the reactive behavior AO and the tactical behavior Look for Corners which performs a geometrical analysis

of the scene.

4.4.4. RB: Look for gaps

The behavior Look for Gaps improves the ability of the robot to drive through narrow gaps without slowing

down too much. Additionally, various situations are avoided in which the robot could get stuck when the

robot enters or leaves the gap in a direction which is more orthogonal than parallel to the gap’s middle line.

Fig. 4.26.: Sketch and screenshot from MCAGUI illustrating the concepts of the behavior Look for Gaps. The gap’s
area off attention is marked with the pink box, the gap itself with the pink line crossing the gap. The green arrow
points towards the target. Left: Without LFG the AO behaviors move the robot sideways along the wall. Middle/right:
The behavior LFG first generates a vector towards the baseline of the AoAt (yellow) and after reaching this location
a vector to the center of the baseline on the other side of the gap (red). The target attracting behavior is inhibited
simultaneously.

This behavior is activated when gaps are found in the local area and contributes a attracting vector once

the robot comes close to a selected gap’s defined area of attraction (AoAt). LFG provides a velocity set-

point vector as output and inhibits the target attracting behavior. First, the behavior module generates an

98

4.4. The reactive behaviors (RB)

output vector, which points to the center of the baseline of the area of attention, making sure the robot is

located sufficiently far away from the corners of the gap to pass safely. This can force the robot to drive

backwards a little, for example if the robot is located directly at a wall besides a door. After coming close to

the center of the AoAt’s baseline the module generates a new output vector which points towards the center

of the AoAt’s baseline one the other side of the gap and sets the robots orientation accordingly. This way

the robot is forced to drive straight through the gap until it has passed the gap completely (see Figure 4.26).

Quality of Gaps: A small area in direction of the robot’s (intended) movement is searched for gaps e.g.

for free room that is framed by objects’ corners (acquired from the object database of the LWM). The width

of the free area, e.g. the gap (wG), is compared with the minimum (wmin) and maximum (wmax) width a gap

must fulfill. Additionally the gap’s quality (QG) is influenced by the angular difference (q()) of the gap’s

center (~CG) compared to the relevant direction (~PT – most probably the direction towards the goal) of the

robot, up to a maximum angular displacement. The gap with the best quality is chosen to contribute an

attracting vector.

QG =
max(wG −wmin;0)

wG
· max(qmax − |q(~CG,~PT)|;0)

qmax
if wG < wmax, 0 otherwise (4.19)

Attracting vector: The attracting vector (~uG) points towards the middle line of the gap – first to the

starting point (bMS) then to the end (bME) – and has a length of 1 and is then weighted and adapted to the

parameters fp (a proportional factor) , m (motivation) and i (inhibition). The better the quality of the gap,

the stronger the urge exerted by the behavior to divert from the current course and drive through the gap. In

the second version of the behavior it will be added a second phase in which the attracting vector becomes

stronger when the gap becomes more narrow.

~uG = bMS or E · max(wG −wmin;0)
wG

· f ·m · (1− i) (4.20)

a = k~uGk (4.21)

r = k~QGk (4.22)

Activity and rating: The activity (a) of the behavior module is the normalized length of the attracting

vector. The rating (r) is proportional to quality of the gap.

4.4.5. RB: Follow Wall

This behavior is an auxiliary behavior and is not motivated in the usual case but can be motivated for example

if requested by the plan which is executed. It provides an additional velocity set-point vector that is useful

in corridors. For example a two directional traffic can be implemented this way. The vector points towards

a line which is in parallel to a long obstacle e.g. a wall.

4.4.6. RB: Break Tie

This behavior is activated if the ratings of the Avoid Obstacle have a high value and the activities a small

value for some time or the resulting vector is very small - thus, the robot is stuck. Break Tie generates

a velocity vector that points along the obstacle to get the robot moving again, strongly amplifying small

99

4. BBC: Navigation, Obstacle Avoidance and Safety

preferences. Since using the second version of the Avoid Obstacle behaviors the many tests performed have

shown that this behavior is not necessary any more.

4.4.7. RB: Orientation of the robot

There are a number of behaviors which control the orientation of the robot. Obviously, these are only

applicable when the robot utilizes a holonomic or at least omni-directional drive system or when the robot

finally reached the designated parking position. As the behavior modules are straight-forward (besides the

orientation part of Look for Gaps), they will be only summarized. They all provide a velocity set-point

vector in which only the third part (Q) is used. These vectors are finally merged using a maximum fusion

behavior module – thus selecting one – as it does not make sense to sum-up orientations.
Orientate along Corridor
Situation: Can be activated for example by the plan which is executed, usually not moti-

vated.

Data used: Occupancy map

Objective: This behavior tries to detect the direction of a corridor based on the occupancy

maps and orientates the robot in parallel with the corridor.

Output: Velocity vector (-,-,Q)

Orientate in Robot’s Driving Direction
Situation: Active when operating in the Autonomous Mode or Guiding Mode

Input: Current Velocity (x,y,-)

Objective: This behavior orientates the robot with the front in its movement direction.

Output: Velocity vector (-,-,Q)

Orientate to User
Situation: Active when operating in the Following Mode

Input: Position of the user

Objective: This behavior orientates the robot with the force sensitive handle and the touch

screen towards the user.

Output: Velocity vector (-,-,Q)

Orientate according to special orders
Situation: Motivated on demand

Input: Fixed orientation

Objective: This behavior orientates the robot according to a given orientation. This is for

example used at parking positions or the “Turn Around to Support Loading”

Force Commands as well as while operating in the Manual Steering Mode

Output: Velocity vector (-,-,Q)

4.4.8. RB: Tasks-oriented input behaviors

This group of behavior modules acts as the local source of the control data flow. The individual modules

each provide a velocity set-point vector. One of these vectors is selected by a maximum fusion behaviors

depending on the current mode of operation and task (see Fig. 4.27).

100

4.4. The reactive behaviors (RB)

Fig. 4.27.: MCA implementation of the task-oriented input behaviors of the reactive layer. The module
for manual control is outside this MCA-group and fed into the fusion behavior (the “ActionMultiplexer”)
via the “Controller Input” of the group.

RB/TB: Goal attracting Straight to Target

This behavior module transforms the output of the tactical layer which works based on coordinates into

velocity set-point vectors as they are used by the reactive layer. The output vector point directly towards the

goal’s location and usually has a length of 1. When reaching a defined distance to the goal, for example 1m,

the length of the vector is reduced proportionally to the remaining distance and a timer is set to a defined

value. The vector is reduced to zero when either the robot has reached the goal coordinates (with a small

safety margin of few centimeters) or when the timer equals zero. This way the robot always comes to a stop,

even when sensor or self-localization fuzziness prevents the robot from hitting the spot exactly – or from

knowing that the spot was hit exactly. This behavior is used during the Autonomous Mode or Guiding Mode.

In the Guiding Mode this behavior interacts with “RB: Behaviors for adapting the velocity to the task and

the user” (see Section 4.4.2) to provide the guiding functionality.

RB: Manual Control

While operating in the Manual Steering Mode this behavior module transforms input provided directly by

the user or an operator into a velocity set-point vector. The data source might be a joystick, teleoperation,

or the force sensitive handle (see Chapter B.6 “Force sensitive handlebar”). The transformation is straight-

forward and provides a 3D vector with a length between 0 and 1. This behavior plays a major part in the

control sharing as described in Chapter 6.6 “Sharing and trading of control”.

RB: Servoing

This behavior module lets the robot imitate the movements of a moving object as closely as possible. Again,

the data sources vary depending on the target object as was described in RB: Follow Moving Object. But

this time the object’s motion is taken out of the local world model instead of the position. The output of this

module is again a velocity set-point vector for the robot.

This behavior plays a major part in the control sharing as described in Chapter 6.6. It provides the main

part of the Servoing Mode and can for example be used succeeding the Guiding Mode making sure that the

robot does not impair the user after guiding him to a designated target.

101

4. BBC: Navigation, Obstacle Avoidance and Safety

4.5. The tactical behaviors

This section elaborates on the tactical behaviors which make up the Behavior Network of the tactical layer

(see Fig. 4.28), therefore the upper – or more deliberative – part of the local navigation. In general, these

behaviors accept task or a goal location from “above”, perform a geometrical scene analysis, and generate

corresponding sub-goals as output. They will be indicated as being “tactical behaviors” by including “TB:”

in the sections’ titles. The individual behaviors will again be discussed in an bottom-up order - see Fig. 4.29

for the MCA implementation. Coming along with the descriptions are several supplementing sketches and

video snapshot from an onboard camera, showing the robot’s perspective on the scene (courtesy of [Ö10]).

Fig. 4.28.: Abstract view on the Behavior Network showing the various behavior groups (indicated by “G:”) of
the tactical layer. The layer consists of four major steps: input, fusion of inputs, processing, and output. The
goal coordinates are the common language among the modules.

Due to the fact that the goal points received from the global navigation (strategic layer) are model-

based or abstracted from the real environment, the local navigation has to adapt these goal points to the

actual geometry of the scene. This is a major task of the scene analysis which is the topmost group of

the local navigation. The tactical behaviors dedicated to human robot interaction will be described in the

corresponding chapter: Chapter 6.5 “Tactical behaviors for adapting to and communicating with the user”.

4.5.1. TB: Look for Corners – geometry-based obstacle avoidance and local navigation

Situation: The next goal point is not reachable by the robot in a direct path

Input: Goal point

Data used: Robot position, robot shape, obstacles (object database)

Objective: Generation of sub-goal points that lead the robot around obstacles and enable the

robot to avoid U-shaped obstacles / dead-ends.

Output: First sub-goal point that leads the robot around the obstacle, trigger for speech

output if the robot cannot find a path
The behavior Look for Corners (LFC) is maybe the most important and surely the most frequently used be-

havior among the tactical behaviors. Compared to the reactive Avoid Obstacle behaviors which are limited

to their area of attention, LFC uses the complete area of the (local) occupancy map and is therefore less

prone to getting stuck or to suffer from other problems of local navigation methods. Additionally, it ensures

an efficient local path by analyzing the size and positions of obstacles as early as possible. LFC is always

used as long a target location is given by higher behaviors or the global navigation – therefore the robot is

not steered directly for example by the force sensitive handle.

102

4.5. The tactical behaviors

Fig. 4.29.: MCA implementation of the tool chain of the tactical layer. The input from several task-oriented
behaviors is fused (“OptimizeTaskSubgoals” collects the outcome of the scene analysis) and then processed by
the geometry-based obstacle avoidance and avoidance of moving objects (see Chap. 5).

Fig. 4.30.: Geometric construction of the vectors (~gn) towards
the sub-goal candidates (red circles), based on the vectors to-
wards the obstacle’s corners (~gc). They are placed in a certain
distance to the corners of the obstacles equal to the robot’s size
(plus a safety margin). The vector ~go points towards the origi-
nal goal (green X).

Fig. 4.31.: Sub-goals shown in the MCAGUI: The
path to the goal (red line) is blocked by an ob-
stacle (red box). Two candidates are generated at
the visible endpoints of the obstacle (white circles).
The (currently) best one is chosen as new sub-goal
(green circle around white circle).

While driving towards a goal, or when ordered to do so, the location of the goal is compared to the start

and end points of the local obstacles from the object database, in which all visible obstacles are stored

together with a set of characteristic information (see the dedicated paragraph at the end of the description

of this behavior). If there is no free direct path (see ~go in Fig. 4.30) of the needed width from the robot

to the goal point, all obstacles which block this path are analyzed. For all blocking obstacles first-iteration

sub-goals are generated: a vector (~gi
c) is calculated from the robot towards the obstacle’s end points. Then

a second vector orthogonal to the first one is calculated with a length equal to the width of the robot (plus

a 20% safety margin). These give the first-iteration goal points. the paths to these are again checked for

blocking obstacles (robot to sub-goal and sub-goal to original goal). Blocked sub-goal points are marked as

illegal and new sub-goals are generated. This procedure is continued in an recursive manner. In the next step

all non-illegal candidates are tested if their “own” obstacle blocks them. In this case they are moved along

the circle defining their distance to the obstacle’s end point until they are no longer blocked. Finally the new

candidates are ordered by quality (see paragraph below). The best point is chosen as new sub-goal. This

way the robot is driving on a local visibility graph. Fig. 4.31 and 4.33 show this concept in an MCAGUI

screenshot and in a video snapshot from the robot’s point of view.

103

4. BBC: Navigation, Obstacle Avoidance and Safety

Fig. 4.32.: Plot of the X-Y-plane illustrating the dependence of
the candidates’ quality regarding their individual position and
the position of the target. The robot is illustrated by the dark
blue rectangle, the target at the yellow spot with the highest
quality. The warmer the color, the higher the quality of a sub-
goal candidate located at this position.

Fig. 4.33.: Video snapshot from the robot’s per-
spective showing the concept of LFC: The goal
is the green circle on the left hand side behind the
shelf, the robot is diverted to the white circle on
the right hand side first.

Calculation of the candidates’ quality: The candidates for the new sub-goal are ordered by their

quality (QC) which depends on the corners’ distance (dT,C) and direction (QT,C) compared to the target (Fig.

4.32 shows a plot) as well as the width of the free room around it (wC), taking into account a minimum width

(wmin) the robot needs because of its physical dimension. Additional constant parameters are used to set a

minimum quality (qmin) and to limit the quality resulting from a large free space around the corner (wmax).

The best corner is chosen as new sub-target and temporarily replaces the original target.

QC = max2(qmin;(1− QT,C

2p
)) ·max(qmin;(1− min(dT,C;dT)

dT
)) (4.23)

·max(min(wC;wmax)−wmin;0)

The robot sticks to a chosen goal point until it was reached or until a new sub-goal point is of better

quality for one second to prevent oscillations between sub-goal points.

Fig. 4.34 shows that this way the robot is able to move around obstacles independent of shape or size

including dead-ends as long as the robot is able to perceive them as an continuous obstacle.

A special situation occurs if there is only one obstacle in the database with the distance between start and

endpoint smaller then the robot’s width or if no legal candidate is left in the end. Here the geometry-based

obstacle handling is considered as failed and the initial goal point is handed down to the reactive behaviors.

The robot will try to drive towards the original goal, while uttering a speech output to inform the user and

other bystanders, hoping that people will free a path for the robot. Additionally, a change of the current

perspective might reveal a passage which was not visible before.

Output data

~u: Position (X ,Y) of the best candidate

a: Quality QC of the best candidate

r: Average quality of the candidates

104

4.5. The tactical behaviors

Fig. 4.34.: Sketch illustrating the individual sub-goal points generated on the path lead-
ing from the start (green robot shape) to the target point (grey robot shape). It shows
how the robot is able to reach a target location even in complex situations (e.g. start-
ing inside a dead end and passing a misleading corridor) only relying on sensor data
(therefore without map knowledge).

4.5.2. TB: Follow Moving Object

This behavior module is the first one out of two to follow a moving object – this could be the robot’s user,

some other human, or another robot. Accordingly, the input data, namely the position of the object, is

provided by several different sources and taken from the local world model:

• The user tracking with onboard sensors (see Appendix C.2 “Detecting and tracking the user using

onboard sensors” and [63], [59])

• The user or person tracking of the intelligent environment (see Appendix C.3 “The intelligent envi-

ronment”)

• The shared local world model of other robots (see Chapter 7 “Multi-Robot Coordination”)

The behavior operates during the Following Mode and simply drives towards the target and stops in a

defined distance. For this purpose a velocity vector is generated as output which points directly towards the

goal’s location and usually has a length of 1. When reaching a defined distance to the goal, for example 1m,

the length of the vector is reduced proportionally to the remaining distance. The vector is reduced to zero

when either the robot has reached the goal coordinates (with a small safety margin of few centimeters) or

when the timer equals zero. In the Following Mode this behavior interacts with “RB: Behaviors for adapting

the velocity to the task and the user” (see Section 4.4.2) to provide the following functionality.

This behavior plays a major part in the control sharing as described in Chapter 6.6.

4.5.3. TB: Virtual Train

This behavior is the second behavior for following a moving object and obviously operates during the

Following Mode. In contrast to the first one which just follows the target object, this module tries to generate

105

4. BBC: Navigation, Obstacle Avoidance and Safety

a “virtual train”. Thus, this module lets the robot follow the exact path of the target object – as long as the

Avoid Obstacle behaviors do not intervene. Additionally, some intelligence is implemented for letting the

“train” drive backwards, for narrow spaces, and to use shortcuts. Again, the output is a velocity set-point

vector.

This behavior is usually used to attach a second (or more) robot to a given one and thus described in detail

in the chapter focusing on the multi-robot behaviors: Chapter 7.4 “TB: Virtual train”.

4.5.4. TB: Force Commands

This behavior executes the Force Commands given by the user via the force sensitive handle such as “Park

on the side” or “Turn around to support loading”. These will be presented in the chapter focusing on HRI:

Chapter 6.4.1 “Interaction based on force input by the user”.

4.5.5. TBG: Geometrical Scene Analysis – tactical behaviors focusing on adapting to the
dynamic environment

This group of tactical behaviors provides the source of the control data flow of the tactical layer for plan-

based tasks. The behaviors adapt the goals received from the strategic layer to the actual environment –

once the needed data is available, e.g. the goal comes within sensor range.

The goal locations received from the global navigation are based on models (e.g. product database,

topologic-metrical map) and apt to be inconsistent with the actual situation of the dynamic environment.

Examples of sources for such inconsistencies in the supermarket scenario are:

• Dynamic objects (e.g. a palette or a parked shopping cart) occupy the target

• Dynamic objects (e.g. a palette or a parked shopping cart) block the way to the target

• A self-localization inaccuracy “virtually” moves the model-based target into an obstacle

• Moving objects or people temporarily occupy or block a target

• Dynamically generated target points are illegal (e.g. pointing gestures, inaccuracy in the user position

estimation in combination with a “come here” command)

• Errors in the application specific database (e.g. illegal product locations)

• The topological plan is not executable because topological links or areas are blocked by dynamic

objects or by re-arrangements of the shop’s structures (which have not been updated in the topological

model)

Four major classes of situations of interest can be identified:

• Target points are occupied or are not reachable

• The user has the get access to the target location, not the robot

• The robot encounters obstacles when having to travel in a neighboring topological area

• The topological plan is not executable

106

4.5. The tactical behaviors

Fore these situations of interest several behavior modules were developed which check for the critical

situations using the object database (see also [Rit10a]). They either modify the goal location before handing

it down to the remaining behaviors or trigger feedback for the user, communicating the problem when it

cannot be solved in the tactical layer. The objective is to rely as less as possible on model data but on the

real environment instead.

TB: Goal Point Adaptation

This behavior module becomes active when the goal location comes within the robot’s sensor range. The

module checks if there is an sufficient amount free space around the goal location for the robot to park.

Otherwise the goal is altered according to the obstacles.
Situation: The area surrounding a goal point is occupied by an obstacle or the goal is too

close by the obstacle

Input: Goal point

Data used: Occupancy map, and object database, and shape of robot

Objective: Displacing the goal point so that it can be reached by the robot

Output: New goal point

Fig. 4.35.: Goal Point Displacement: In a dynamic environment goal points (green x or green circle) can be blocked.
If the space surrounding the goal location is occupied by an obstacle or that close by an obstacle that the robot can
not reach the goal, the goal point is displaced.
Sketch: The free room (light green area) in the close vicinity of the original goal is analyzed and a new goal (red
circle) is generated in a suitable distance to the obstacles. In cases of wall-shaped obstacles the goal is moved
orthogonally to the obstacle, in all other cases towards the robot.
Screenshot: MCAGUI screenshot showing an exemplary scene with the original goal (green circle) and the new goal
(red circle).

If it was identified that the goal point lies within an obstacle but closely to the surface, or the goal point

lies that close to an obstacle that the robot cannot reach the goal, the local occupancy grid map is analyzed

to find a new suitable position for the goal point. In the general case the goal point is moved away from the

obstacle towards the robot to a point where the smallest distance to the closest occupied grid cell is larger

than half the robot’s width (with a 20 % safety margin) (see Fig. 4.35 the left hand side sketch and the

MCAGUI screenshot). The right hand sketch of Figure 4.35 shows a special case: keeping in mind that the

control system was designed to operate a robot in a supermarket, most of the goal points will be product

positions at shelves. Therefore, if the goal point is located within (or too close by) an wall-shaped obstacle

107

4. BBC: Navigation, Obstacle Avoidance and Safety

(long straight line in the occupancy grid) the goal point is not moved towards the robot but away from the

obstacle orthogonally.

TB: Identifying Parking Positions

This behavior module was designed for reaching a target together with a user. If a user is involved, usually

not the robot shall reach the target, but the user. In the supermarket scenario the target might be the spot in

front of the shelf containing a desired product. To not impair the user, the robot shall drive past the goal a

little bit so that the user can easily reach it. This could be handled in the plan, but then the exact direction

of approaching the goal would have to be included in the plan as well, relying even more on model data.

Here the opposite strategy is taken: model data is replaced by real world data when approaching the goal.
Situation: The robot has to reach a product in Guiding Mode

Input: Target position (maybe already be moved by other behaviors)

Data used: Occupancy grid, object database, and shape of robot

Objective: Finding a suitable parking position which enables easy access to the goal for the

user

Output: New goal point

Fig. 4.36.: Left: Standard situation – the robot chooses a parking position a little more then half a robot length behind
the goal to enable easy access to the product located in the shelf. The brown line shows the target re-direction by the
Goal Point Adaptation described in the preceding section (because the target lies within the shelf). The yellow line
with the green circle indicates the re-direction to ease shopping for the user.
Middle: The position behind the product which the robot should have taken is blocked. So the target location is
redirected half a robot length in front of the product. The user has to move around the robot but still has free access
to the product.
Right: The target is occupied by an object. The target is moved to the free room and a parking position is found.

If the target position is a location to reach while guiding a user (e.g. a product in the supermarket) the

precise target location is adapted (Fig. 4.36): basically the robot will move to a target position so that the

user can easily reach the goal while not unnecessarily blocking the corridor. Therefore, the robot moves past

the goal instead of stopping in front of it. Special situations occur when the goal is at the end of an alley: this

is either a dead end and the robot cannot move past the product, or it is an intersection and the robot would

block the crossing alley. In these cases the robot stops before the product – the user has to go around the

robot but can still reach the goal easily. This behavior is usually combined with the Goal Point Adaptation

from the preceding section which makes sure that the target can actually be reached by the robot.

108

4.5. The tactical behaviors

TB: Generation of Topological Navigation Points

This behavior module enables the robot to pass into a neighboring topological area. The plan from the

strategic layer provides only the center point of the link between two topological areas. Where exactly to

pass this link is identified by this module, taking into account the robot’s position, the succeeding goal, and

local obstacles.
Situation: The robot shall move into an neighboring topological area

Input: Topological link to move past, succeeding goal (target location or next link)

Data used: Robot position, robot shape, obstacles (object database), free space (occupancy

grid)

Objective: Generation of sub-goals which lead the robot towards and past the topological

link. These sub-goals shall take the robot’s position and the succeeding goal into

account to generate an efficient path. Of course, these points have to have enough

distance to obstacles so that the robot is able to actually reach them.

Output: Two sub-goal points, one on each side of the link

Fig. 4.37.: Topological navigation points: Goal points (red circles) leading the robot into the next topological area,
past the topological link (green rectangles), are generated to enable the robot to execute the plan of the topological
navigation. In a dynamic environment the links between the topological areas can be (partially) blocked so the
topological navigation points have to be adapted to the free room in the close vicinity of the link.
Left: Sketch illustrating the geometrical construction. The line from robot to the goal is intersected with lines in
parallel with the link. The intersections give the first iteration goals – the represent the shortest path. Afterwards
circles with the radius equal to the robot’s width are drawn around the obstacles’ corners. The first iteration points
are moved along the lines until the are not located inside the circles.
Right: Screenshot from the MCAGUI showing the points leading the robot from area No. 16 to No. 14. The
navigation points are adapted to the succeeding goal (green circle at the left hand frame) and the obstacle behind the
link.

Geometrical methods are used to lead the robot past the link, to avoid obstacles close by the link and to

generate an efficient path regarding the robot’s position and the succeeding goal. The behavior Look for

Corners would be able to move the robot around the obstacles – but it would not enforce that the robot

passes the topological link. In contrast, the behavior presented here enforces the plan of the topological

navigation. For this purpose, two auxiliary goal points are generated, as depicted in Figure 4.37: one in

front of and one behind the link.

Each, before and after the link two parallel straight lines are generated in a defined distance in parallel

to the link. The intersections of these two lines with the line from the robot to the succeeding goal are

109

4. BBC: Navigation, Obstacle Avoidance and Safety

calculated. These are the first iteration sub-goal points. They meet the requirement of the efficient path.

Then for each obstacle a circle is calculated around the closest corner where the radius is half of the robot’s

width (plus 20% safety margin). The first iteration points are moved along the lines so that they are not

situated inside such a circle. If this is not possible, the median of the intersecting area between the circles is

taken. This gives the final (second iteration) sub-goal points.

If the link should not be passable at all this is handled by another behavior: Detection of Blocked Topolog-

ical Links and Areas. Figure 4.41 from the next section shows a video snapshot showing the robot’s view:

the light green circle on the left is the first iteration goal, the darker circle is the second iteration goal point.

TB: Detection of Blocked Topological Links and Areas

This behavior module analyzes if a topological link which is to be passed is actually passable, or not. The

result is given back upwards to the strategic layer which will update the topological map and start re-

planning, if necessary. Additionally, a corresponding speech output to the user is triggered. This behavior

cooperates with the behavior Generation of Topological Navigation Points as it is not able to move the robot

itself. The behavior for generating the navigation points will move the robot towards not visible areas of the

link.
Situation: A topological link has to be passed

Input: Topological link (ID, position, width)

Data used: Shape of the robot, object database, occupancy map

Objective: Identify if the link is passable or blocked

Output: State of the link, trigger for speech output

Fig. 4.38.: Detection of blocked topological links: The obstacle on the (H)igh side of the link (green
rectangle) blocks the link, the obstacle on the (L)ow side does not block the link.
Left: The robot cannot detect a passage from its current perspective. Therefore the link is marked as
partially blocked on the high side and as potentially blocked from a low side perspective.
Right: After moving forward the robot detects that there is a passage. If d2H or the distance between
O1Land O2H would have been smaller than dN the link would have been marked as blocked on the high
and low side therefore the topological map would have been updated resulting in a re-planning.

For the topological navigation it is necessary to be informed about impassable topological links to be

able to update the topological map and to re-plan the current task. A geometrical analyzis of the object

database is performed (see Fig. 4.38). It has to be taken into account that the local situation can differ based

on the perspective of the robot: While the link can seem to be blocked from a perspective from the (L)ow

110

4.5. The tactical behaviors

side of the corridor it can be obviously passable from a (H)igh side perspective. A video snapshot showing

the robot’s perspective can be seen in Figure 4.41 and some screenshots of the MCAGUI show results in

Figures 4.39 and 4.40.

Fig. 4.39.: Two links are marked as partially
blocked (red box on the link (green boxes)), the
left one is additionally marked as MBL (which is
not illustrated because the visualization uses the
red box for both flags).

Fig. 4.40.: The robot starts on the upper side of the left hand side
link and marks it with MBH. After traveling along the link the
MBL flag is set as well, completely blocking the link.

Fig. 4.41.: Video snapshot from the robot’s
perspective showing a partially blocked bar-
rier as indicated by the red line. The green
line overlaying the RFID barrier indicates the
free part of the link. The green circles indicate
the topological navigation points described in
the previous section.

Fig. 4.42.: Special Situation: the gap at the lower end of the link is
wide enough for the robot. An estimation is necessary if the robot
can move around the obstacle on the lower side. This is done based
on the position of the obstacles end point (O2C).

To be able to take care of links being partially blocked or seem to be blocked from a certain perspective

four flags are introduced, corresponding to the orientation of the link (which depends on the numbers of the

neighboring areas, but has no further effect here) :

• PBH: Link is partially blocked on the high side
• PBL: Link is partially blocked on low side
• MBH: Link maybe blocked seen form a high side perspective
• MBL: Link maybe blocked seen from a low side perspective

The link is marked as blocked if (see Fig. 4.38):

1. Both PBH and PBL are set and the distance betweenO1Land O2H is smaller than the distance needed

by the robot to pass (dN)

111

4. BBC: Navigation, Obstacle Avoidance and Safety

2. PBH is set and the distance from O1Lto the low side of the link is smaller than dN

3. PBL is set and the distance fromO2H to the high side of the link is smaller than dN

4. Both MBH and MBL are set.

The PBx flag is set when the link is obviously blocked on the corresponding side. If an obstacle is detected

on the high side, two points (O1H , O1L) are identified: the ones closest to the high and low side of the link

which are in front of or behind the link (not besides the link). The distances between these and the link are

measured: if d1H and d1L are smaller then the needed space of the robot (dN) the PBH flag is set (the same

for the low side accordingly – both d2H and d2Lare > dN so the PBL flag is not set).

The MBx flag is set when the robot cannot see a passage past the link from the corresponding perspective

bit it is not sure that the link is blocked: If an obstacle is detected on the low side, two additional points

(O2H , O2L) are identified: the ones closest to the high and low side of the link which are in front of or behind

the link (not besides the link). Both d2H and d2Lare > dN so the link is not partially blocked on the low side.

To determine if the robot can find a passage the field of view (FOV) is analyzed (red line): if the distance

between the intersection between the FOV-line and the link’s end (dlink) is > dN and the distance between

the first obstacle on this line and the link (d1V) is > dN there is a passage. If one is smaller no passage is

found (as in the sketch). But as d2H > dN there might be a gap which the robot cannot see. Therefore, the

MBL flag is set. (The same is done for the high perspective accordingly – d2H , dlink and d1V > dN from this

perspective (orange lines) so the MBH flag is not set – the links remains passable).

A special situation is sketched in Fig. 4.42: d2L > dN so the robot would be able to pass the barrier at the

low side. But can the robot actually reach this gap? Now we additionally take the end of the obstacle (O2C)

into account. If d2HL > d2LC we estimate that the robot cannot pass around the obstacle and therefore the

link is marked with the PBL flag.

TB: Generation of Virtual Topological Areas

This behavior module analyzes if a topological area is completely blocked. If this is the case the module

provides output for the strategic layer resulting in splitting the topological area into two virtual areas and

the re-planning of the current task. Additionally the user is informed.
Situation: The robot shall move to any kind of goal point in the current topological area.

Input: Goal point

Data used: Robot position, robot shape, obstacles (object database)

Objective: When the robot shall move to any kind of goal point in the current topological

area and the path is blocked the behavior searches for gaps in the local environ-

ment. If no gap of sufficient size is detectable the area is marked as blocked and

split along the obstacles into two topological areas.

Output: Position and size of cut between areas, signal for topological re-planning, trigger

for speech output to user
As this behavior does not include building a global map (which would be against the general concept), it

obviously operates robustly only if the areas are not too large: the two sides bordering the topological area

have to be inside the local occupancy map. The aim is to detect blocked corridors, not to detect blocked

wide spaces or halls. Basically, this module works in the same way like Detection of Blocked Topological

Links and Areas mentioned before, just taking lines across the area instead of topological links. Figure 4.43

shows an example in an MCAGUI screenshot.

112

4.6. The strategic layer – global navigation and planning

Fig. 4.43.: Virtual areas: The robot is stuck in area No. 12 (red box) while trying to traverse it from the
bottom part to the upper part. The reason is an obstacle that appeared there (dark grey box) which blocks
the area. As result, the area is split up into the initial area 12 and a virtual new area (yellow box). To
reach the upper half of area No. 12, the robot will have to re-plan and leave the virtual area using the
right hand side link. The other areas are marked with blue boxes, the topological links in green.

4.6. The strategic layer – global navigation and planning

After describing the reactive layer and the tactical layer making up the Behavior Network, this section

will describe the planning and the topological navigation. Commands are received through the command

interface (see Chapter 3.3.3 “The command interface”), processed, and handed down to the tactical layer as

goal location. There the majority of the control system’s capabilities is provided by the Behavior Network.

In parallel, events are collected and processed. Some events result in speech output to the user such as when

a target is reached or when re-planning is needed. As the focus of this thesis lies on the Behavior Network

and this layer applies standard methods only and keeping in mind that three more behavior-focused chapters

are following, the description is kept brief. Extensive information can be found in the mid-study thesis of F.

Stehle [Ste09a].

As motivated in the introduction of this work by human behavior, the planning and global navigation

should be very coarse and use highly abstract data only – the topologic-metrical map. The topologic-

metrical map is actually a topological map whose areas (or nodes) are enriched with metrical information of

the relative positions of the links to neighboring areas. Using flexible task trees to divide and refine tasks (in

the style of flexible programs by S. Knoop [95]), a given task is split into sub-tasks. For each sub-task, a plan

is generated based on the topological map. Finally metrical goals are generated which represent sub-targets

such as links between topological areas. These targets are handed down to the local navigation described in

the two preceding sections.

The main idea here is to abstract the task and the corresponding model-based plan from the environment to

be independent from ordinary-scale changes in the dynamic environment. The downward interface consists

of model-based goal points or topological navigation points according to the topological links between

areas. The obvious risk here is that abstracted goal points can be unreachable for the robot in a dynamic

113

4. BBC: Navigation, Obstacle Avoidance and Safety

environment. The goals are not meant to be reached exactly but are meant to be a fuzzy target. The local

navigation therefore threats the goal points as suggestions only and utilizes several behaviors to adept them

to the actual environment, which is the responsibility of the geometrical scene analysis.

In addition to planning and topological navigation, this layer manages the modes of operation. Mode

changes are requested by the communication layer through the command interface or result from events from

the behaviors such as reaching a goal. The strategic layer stores the current mode of operation, performs

the mode transitions and orchestrates the behaviors accordingly, in particular by (de-) activating the ones for

task- and user-adaptation.

4.6.1. Topologic-metric map

The environment – in the chosen lead scenario a shop (Fig. 4.44) – is split up into several areas. Figure 4.45

shows an examples for such a partitioning. The areas and their connections are mapped to a topological

map without local metrical maps (Fig.4.46). The only metrical information needed for a certain area are

the relative positions of the entry- and exit-points which link the individual areas to each other. These

metrical coordinates are defined relative to the coordinate systems of the individual areas and afterwards

stored as metrical annotation with the areas – giving a topologic-metrical map (see Chapter 2.3.2 “Maps and

mapping” for an distinction).

Fig. 4.44.: Geometric map of a shop. Fig. 4.45.: Map divided into areas Fig. 4.46.: Resulting topological map

In addition to the metrical annotations, special information can be stored for each node, including seman-

tic annotations (Fig.4.47). The semantic information can be used as an indication how an area should be

traversed (i.e. crossing a room or following the wall of a corridor). Additionally, these information can tell

whether a node should be preferred or avoided in a global plan, can include directions how to reach the next

node from the current entrance of the actual node, restrictions to velocity or acceleration, or certain dangers

which wait in this area like a grate in the floor which would render an optical motion sensor useless or a

mirror that could trick a camera system. Furthermore, temporal information like a blockage of a corridor

or the prohibition to enter a room or other warnings might be of interest. The information can be updated

online by the robot to inform other robots about knowledge it has acquired.

4.6.2. Global planning

Based on the topologic-metrical map with semantic annotations, the global route planning is performed.

Given a new task by the application specific component, the new task is inserted into the task tree on the first

114

4.6. The strategic layer – global navigation and planning

Fig. 4.47.: Topologic Metric Map: A topological map with metric and semantic annotations

Fig. 4.48.: A plan is generated in three levels: task, topological, and route. The leaves of the tree-like
structure are atomic commands which can be executed by the lower layers. The flexibility of the concept
allows interruptions of the plan and even postponing whole sub-trees. This is indicated by the blue
balloon representing sudden commands by the user.

level. For each navigation task the robot plans a route on the topological map from its current topological

node to the node that contains the target. An A⇤ algorithm is used for this planning step. The planning

algorithm is enhanced in a way that it is able to utilize the semantic information provided, for example to

generate constrains or weights out of them to influence the plan. Because the topological map is a very high

level of abstraction, the navigation takes place on a small state space. Therefore the processing costs are

very low and re-planning is fast and can be done often, if necessary. The chosen nodes make up the second

layer of nodes in the task tree, as illustrated in Figure 4.48. Based the topological nodes, a list is generated

that contains the relative coordinates of the links needed to leave or enter the individual nodes as well as

other auxiliary tasks such as “wait”. In the end the relative coordinates of the target in the last area are added

to the list. This list gives the bottom layer of the task tree – the leaves. The leaves of the task tree, containing

the metrical navigation sub-tasks, are then handed down to the tactical layer one by one. As shown in the

figure, the task tree can be altered at run time: new nodes can be inserted, obsolete ones can be deleted,

and nodes can even be expanded into new sub-trees. If for example the user gives the “stop” command,

which is received and handed down by the communication layer, this command is inserted into the there at

115

4. BBC: Navigation, Obstacle Avoidance and Safety

the current point of execution, postponing the current action. A complete sequence of tasks can be inserted

this way – in the illustrated example the user interrupts the robot and gives the command to move to a local

position. Afterwards, the robot will continue to travel towards the link to the next topological area.

4.6.3. Evaluation of global planning

The global navigation was indirectly tested alongside many other tests and experiments and proven suc-

cessful in hundreds of times. Additionally, a stress test with the real computation hardware of InBOT was

performed (see Fig. 4.49). The topological maps have been automatically generated because they did not

exist in the real world in the needed size. But as only the topological planning process should be tested, this

does not influence the result of the test. Maps with 10, 100, 1000, 4000, and 8000 square-shaped topologi-

cal areas have been generated with random links between adjacent areas. The planning process was always

successful. It took less then 200ms on maps with less than 1000 regions – keeping the intended size of 5m

to 10m for an area in mind this would be a square of 150x150m to 300x300m or 25k− 90k square meter.

On the map with 8000 regions the planning for a 16km topological path took 7 seconds, which is too long

regarding a waiting user. But a map of this size is very unlikely in the considered applications.

Fig. 4.49.: Stress test of the topological navigation: The table shows the maximum, minimum, and average results
from computing random routes (topological nodes and corresponding metrical sub-goals) on huge random maps with
random links between the areas. The figure on the left shows an exemplary map including the path the (simulated)
robot has taken. The computation of the routes has been performed on the real hardware of the robot.

4.7. Application logic and communication layer

As introduced in the beginning, this layer collates the application-specific functions of the control architec-

ture, facilitating a strict distinction of application and core of the control system. The communication layer

houses some kind of application logic and translates between the user and the robot’s control system. In the

supermarket scenario it has four main functionalities focusing on the user interface:

• Receiving commands from the user (speech and/or touch screen) and transforming them into com-

mands to the robot’s control system

• Receiving events from the robot’s control system and transforming them into output to the user

(speech and/or touch screen)

116

4.8. Experiments and evaluation

• Housing the product database of the shop including the products’ relative position in the topological

area they are contained in

• Supporting the shopping process by managing shopping lists, recipes, and so forth

More information on these modalities can be found in the corresponding section in the HRI-related chap-

ter (Chap. 6.2). The communication layer communicates with the strategic layer using the command

interface as described in Chapter 3.3.3 “The command interface”.

As the alternative implementations of the communication layer are not part of the core part of the control

system, they are introduced in the Appendix. Two implementations have used with InBOT: For this thesis

the InBOT-UI (see Appendix C.4) was developed, implementing speech output, a bar code scanner, as well

as a shopping list and recipe management via touch screen. In addition, a second communication layer was

integrated, namely the CR-UI (see [87] and Appendix C.5), developed at TU Vienna.

4.8. Experiments and evaluation

Following the description of the individual components of the navigation system (including the individual

components’ evaluation), this section presents three tests which have been conducted using the complete

system – the last two tests even involving users recruited “from the street”. The focus of this section will be

on the test results regarding the navigation system. In the chapter focusing on HRI (Chap. 6) the tests will

be picked up again with an human-factors point of view.

4.8.1. First system test

One example out of the tests performed with the complete system is presented here, supplementing the

results provided in the in individual sections dedicated to the individual behaviors or functionalities, re-

spectively. For the sake of reproducability, this test has been performed in a simulated environment – the

real world tests involving users are described in the subsequent sections. The simulation of the robot plat-

form is very detailed and accurate down to each individual scan point of the laser scanners. Additionally,

the simulation – for which large pieces could be gratefully taken from previous work – incorporates the

(de-) acceleration capabilities, the drive system and the S300 laser scanners including the corresponding

precisions and variances. The simulation does not interfere with the remaining control system, as it just

substitutes the Hardware Abstraction Layer, using exactly the same interface.

Figure 4.50 shows this test: The robot was given the tasks to visit a list of products and was impaired

by lots of obstacles. All components described in this chapter have been used, from the communication

layer down to the safety reflexes. The robot passed dead-ends, narrow passages, and evaded large and tiny

obstacles. The bottom part of the figure shows the robot’s knowledge of the experiment: the topologic-

metrical map, the local sensor readings, and the path the robot has taken.

4.8.2. Second system test

This first large-scale test performed with untrained users was a collaborative activity with KTH Stockholm

and TU Vienna. It aimed at gathering first impressions on the HRI system in general and the shopping list

assistant (commanded by the CR-UI) in particular, thus, the setup was reduced to short linear runs and the

117

4. BBC: Navigation, Obstacle Avoidance and Safety

Fig. 4.50.: This figure shows a test run performed with the robot using the MCA simulation environment.
The robot was given the task to visit a list of products (located at the places marked with the numbers 21,
19, 11, 2, and 5). The top figure shows the (simulated) real world including lots of obstacles. The bottom
figure shows the robot’s knowledge. According to the defined requirements, the robot’s knowledge is
limited to the current sensor readings (green dots) and the topologic-metrical map which is indicated by
the blue lines (borders of topological areas) and the green rectangles (locations of the RFID barriers).
Even tough relying only on this few information, the robot successfully reached all products and evaded
a large number of obstacles, including a dead-end.

available functionalities were reduced to a basic set. The results are briefly summarized in the Figure 4.51

(top).

4.8.3. Third system test

This third test was the second test with users – again a collaborative action with KTH and TUW. It was

performed with full complexity and functionality (omitting moving obstacles). In particular, this time the

geometrical scene analysis has been used.

The test was performed with 2+10 untrained users. Two pilot runs have been performed a priory to

adapt parameters of the navigation system to the environment. Otherwise, the system was identically in all

twelve runs. Initially, the users had to enter a scripted shopping list containing 12 products using the touch

screen user interface implemented by the CR-UI. Then they had to order the robot to guide them to the

first nine products. The last three products should be accessed by driving the robot in the Manual Steering

118

4.8. Experiments and evaluation

Fig. 4.51.: Facts on the second and third system test on InBOT conducted with users.

Mode. While maneuvering in a narrow corridor the user had to avoid a box which was dropped in his path

in cooperation with the obstacle avoidance assistant. A sketch of this setup is provided together with a

summary of the results in Figure 4.51 (bottom).

From a navigation and control system point of view, the test can be considered successful: all users were

able to finish all tasks and we observed no collisions at all and hardly any wrong movements. The success

rate of the navigation tasks was 97.2% with only 3 errors: one time the robot moved in an incorrect direction.

Most probably the corridor InBOT should drive into seemed to be blocked (by the user and a person from the

experimental staff steering a cart with a camera mounted on top). Hence, the predictive obstacle avoidance

tried to find another way. But this could not be verified without stopping the experiment, thus, it counts as

119

4. BBC: Navigation, Obstacle Avoidance and Safety

mistake. In the two other cases the robot did not start moving even though the speech output “I will guide

you to ...” was uttered. In all three cases the user could solve the problem by the canceling and repeating the

command. On the second try the robot executed the task correctly.

4.9. Discussion

When developing the navigation system, the ability focused on was the safe and reliable navigation, thus, the

avoidance of all kinds of static obstacles as well as finding efficient paths through cluttered scenes. Inspired

by motion behaviors identified when observing humans, a hierarchical approach was chosen. Besides an

abstract topologic-metrical map, the robot only needs information it is currently able to acquire with its own

sensors. Thus, in contrast to methods found on many “guiding robots”, but the graph-based method used by

Robox, the presented navigation system does not depend on a precise and up-to-date metric global map.

Summarizing, the navigation concept provided in this thesis proposes a three layer approach, inspired

by the motion behavior of human beings as described by S. P. Hoogendoorn: the bottom part is a reactive

layer containing a safety method, restricting the maximum allowed velocity. Also in the reactive layer a

method based on occupancy grids and virtual force vectors is found. The next part is a geometric scene

analysis, where the main component works comparable to local visibility-based methods: The obstacles are

scanned for corners and sub-targets are place at the corners in a save distance. And finally the global part is

provided by a topological navigation. Figure 4.52 shows that the concept defined by the control architecture

has actually been implemented by the navigation system, and Figure 4.53 shows a summary of the MCA

implementation of the individual groups and modules.

Fig. 4.52.: Comparison of the mesh-based model to the robot’s actual motion: The edge mesh (dark blue)
described in the SoA shall model the motion of pedestrians and provide a guideline for the development
of the navigation system’s behavior modules. The light blue line shows the selected path between two
hot spots according to the model and the green line illustrates the expected robots motion. Finally, the
red lines show paths actually taken by the robot InBOT when ordered to drive from positions around the
blue square to the blue circle.

Reactive safety: The reactive safety group splits the environment into several sectors just like done by the

VFH. In contrast to the VFH the polar histogram is not updated using the occupancy grid but based

120

4.9. Discussion

Fig. 4.53.: Summary of the control architecture as it was implemented in the MCA framework. Individual
groups of modules were shown in the previous sections and more will be shown in the subsequent chap-
ters. Groups of modules are indicated by “g”, threads encapsulating groups with “<>”. The red lines on
the right indicate top-down and the yellow lines on the left bottom-up data flow.

directly on (polar) sensor readings to reduce reaction time. Relevant is the closest sensor reading in

each sector, only. Based on the sectors and the robot’s shape (InBOT is not circular) a second polar

histogram is computed which defines the maximum allowed velocity for each possible direction –

down to zero in the worst case.

Reactive obstacle avoidance: In contrast to many vector field and potential field methods, the robot’s

velocity is taken into account. Furthermore, no “field” is actually computed, but one representative

repelling vector only, saving computational power and focusing on the most critical point of the

obstacle. Dynamic repulsive vectors are computed and merged with target attracting and other virtual

force vectors. A difference to the VFF methods is that one representative repelling vector is generated

for every object – not for each individual cell. This vector is proportional to the relevance of the

complete obstacle, therefore by its most critical cells compared to the robot’s current velocity vector

and target direction. The size and density of the obstacle (i.e. the amount of occupied cells) is not

relevant. In contrast, when using VFF all cells are considered but the cells’ weight is proportional

only to the cell’s distance to the robot.

121

4. BBC: Navigation, Obstacle Avoidance and Safety

Predictive obstacle avoidance: The first two purely reactive methods are supported by a more deliber-

ative method which is a local visibility-based approach. It enables the robot to perform a geometric

obstacle analysis prior to the application of the force vectors. Here sub-targets are generated at the

obstacles’ corners in order to move the robot along an efficient path through the obstacles and to avoid

for example moving into dead-ends. As this method does not depend on radial sectors like the VFH it

enables the robot to use all gaps found between obstacles, independent of their angle. For example it

is possible to move into gaps which are radial to the robot. This method could be applied recursively

like in VFH*, but it is not done here as the behavior module utilizes the complete local occupancy

grid and it does not have a global metrical map available.

Conclusion: Several specialized behaviors for a hierarchical Behavior-Based Control were developed for

a robot with an holonomic drive system. Another design feature was the extensibility of the control system.

New modules providing new features, like the avoidance of moving obstacles, shall be included easily.

In all tests the reactive components were able to avoid collisions with static obstacles reliably (the han-

dling of moving obstacles will be described in Chapter 5). The predictive obstacle handler generates efficient

paths that are comparable to those generated by visibility graph methods, avoiding driving into dead-ends.

It should be kept in mind that the robot has no global map knowledge and therefore is only able to plan

the path in visibility range of the sensors or within a small local memorized area. The network character of

the control system facilitates extending the system with new functionalities. This is done either by straight

forward hooking in new behavior modules using the fusion behavior modules or by recombining present

functionalities by activating the corresponding behavior modules. This way it is for example possible to use

the obstacle avoidance functionality to augment the steering functionality of the force sensitive handle so

that the intelligent trolley moves around obstacles while it is being steered manually by its user.

122

5. Avoiding Collisions with Moving Objects

After describing the control architecture and the navigation system in the previous chapters, this chapter

will introduce a hierarchical approach for avoiding collisions with moving objects. It describes the three

behaviors – two reactive and one plan-based one – which are situated in the reactive layer as well as in the

tactical layer.

Scope of this chapter: The focus is on the avoidance of accidental collisions with moving obstacles

such as customers with shopping carts who are hurrying down a corridor being distracted by the products in

the shelves or talking with each other. These behaviors do not aim at avoiding collisions with people who

actually try to hit the robot: as the maximum velocity and acceleration of the robot is limited, this would

not be possible. Even if the robot’s velocity would be sufficiently high, it would not be appropriate in a

populated environment having a robot making fast and (for bystanders) unpredictable evasive motions. The

reactive behaviors could be used this way, as their reaction time is very fast, but on the opinion of the author

this would not be appropriate.

In case of conflict between different behaviors, the safety behaviors are of highest priority: on the author’s

opinion it is more important that the robot does not run into people than that people cannot run into the robot.

Overview and organization of this chapter: The challenge of avoiding moving objects – they are not

called “dynamic obstacles” here (see Chap. 2.3.3 for an explanation) – is performed in a three-step approach:

the lowest behavior is a reflex which moves the robot directly away from moving obstacles, enabling the

robot to regain a safety distance. This is of importance when either an object came too close accidentally or

suddenly started moving. On top of the first one a second behavior lets the robot free the predicted (local)

path of an approaching object, combining an sufficiently intelligent behavior with a suitable reaction time.

These two reactive behaviors are elaborated on in Section 5.1. To solve complex trapping situations the

behavior-based components are topped by a tactical behavior (Sec. 5.2) which uses data provided by a

local spatio-temporal planner. This planner generates a safe and efficient mid-term path at the cost of less

fast reactions. Additionally, the planner can only be applied if the robot is operating in a mode where a

target location is given – for example it cannot be applied during Servoing Mode and only with limitations

in the Following Mode. Figure 5.1 illustrates the developed hierarchy and the integration into the remaining

control program. The chapter is concluded with a section providing test results (Sec. 5.3) and a discussion

of the achievements (Sec. 5.4).

This chapter does not include a description of the data sources for the behavior modules. The necessary

information, e.g. the position, velocity, and predicted path of moving objects, will be assumed to be pro-

vided by external components. An example can be found in the Annex of this work: the “The intelligent

environment” (Appendix C.3) developed to support this work for evaluation purposes. It uses cameras and

optional laser range finders distributed in the environments to detect and track moving objects. A alternative

123

5. Avoiding Collisions with Moving Objects

Fig. 5.1.: Hierarchy of the modules responsible for avoiding collisions with moving obstacles: Among the
tactical behaviors there is a proactive planner which can generate sub goals according to a generated
plan. Among the reactive behaviors there is one behavior that lets the robot move out of the path of the
object and one (emergency) behavior which tries to gain a safety distance by moving straight away from
the object. In contrast to the planner, the latter two are fully operable even if no goal point is given but a
target direction only, as for example when using manual control, tele-operation, or servoing.

Fig. 5.2.: Exemplary data on a tracked object.
Left: A: the robot, B: the object as seen by the laser range finders, C: the object’s center, D: past positions of the
object, E: (red X) predicted next position of the object, and F: most probable area of finding the objects center (current
time step).
Right: Two tracked objects in the robot’s occupancy map captured with the on-board laser range finders.

124

5.1. Reactive avoidance of moving objects

version using the on-board laser range finders has been used as well (tracking of moving objects with on-

board laser range finders (see Appendix C.1 “Object tracking based on the occupancy grid and planar laser

scanners”)). The result is a list of objects which are probably moving, their current position and velocity

including the current direction, and their track (past sets of data with corresponding time stamp (see Figure

5.2)). Additionally, a circle segment is matched to the track to determine if the motion is straight or a curve,

and in case of a curve to determine the radius. The data is provided via the local world model.

5.1. Reactive avoidance of moving objects

This behavior group is part of the reactive behaviors. It consists of two individual behavior modules that

both generate a repelling vector to be merged with the remaining vectors (such as goal attraction or avoid-

ance of static obstacles) which finally add up to the resulting velocity set-point vector (see Fig. 5.3 for the

MCA implementation). The first behavior of this group is a safety reflex that generates a vector that points

directly away from a nearby moving object to obtain a safety distance. This behavior can be applied even

if hardly any information on the object is available. The second behavior needs a movement model from

the local world model gained by mid-term observations of the object. Based on the movement model a

probabilistic temporal repelling vector is calculated – in the following figures a complete field is shown for

illustrative purposes, but in the control system actually only the vector relevant for the robot is calculated.

Both behavior modules work based on the object database containing the detected moving obstacles in

robot’s close vicinity along with their characteristics such as position and movement model. The concepts

were implemented in F. Steinhardt’s diploma thesis: [Ste09b].

Fig. 5.3.: MCA implementation of the group for avoiding collisions with moving
objects. The fusion behavior is the same one which accepts the input from the
static collision handling behaviors. Hence, one single output velocity set-point
vector is created for all reactive behaviors.

5.1.1. RB: The Escape Behavior

This behavior module lets the robot retreat directly away when in the the close vicinity of a moving object.

To calculate the repelling velocity vector (~uEscape), a repelling vector (~RO) for each visible moving object

(O) is calculated. The direction of the repelling vector is from the moving object towards the robot (ÔR) and

125

5. Avoiding Collisions with Moving Objects

its length depends on the distance between object and robot (| ~dOR|) as well as on the velocity of the object

(|~vO|). The area of influence is restricted by the maximum radius rmax.

~uEscape = ~FRO · fp ·m · (1− i) (5.1)

~FRO =

(
~SR if |~SR| 1

ŜR otherwise
(5.2)

~SR =
O

Â(~RO) (5.3)

~RO = ÔR · max(rmax − | ~dOR|;0)
rmax

· |~vO|
vmax

(5.4)

a = |~uEscape| (5.5)

r = |~FRO | (5.6)

The moving direction of the object is not relevant. The objective of this behavior module is to keep the

robot away from moving obstacles as they tend to be unpredictable. Furthermore, this module is able to

operate even when no prediction of the object’s motion is available. But obviously the parameter rmax has

to be set to an reasonable value to curb the area of attention. 0.5m have been proven to be a suitable value.

Fig. 5.4.: A moving object (red circle) passes by the robot (green). Two examples for distance vector (~dM
O = (dX ,dY))

are illustrated based on the object’s estimated motion. Left: the estimated movement is linear. Right: the estimated
movement of the object is a curve. In both cases two components are calculated: the first one along the movement
direction, the second one orthogonal.

5.1.2. RB: The Evade Behavior

This behavior module clears the way of approaching moving objects. A probabilistic estimation of the

object’s path is calculated based on the estimated movement model of the object. Based on the resulting

temporal estimation of the object’s location, the repelling velocity set-point vector is calculated, which lets

the robot move away from the potentially occupied space and therefore makes a collision improbable.

To calculate the resulting repelling velocity vector (~uEvade) for the behavior module a repelling vector

(~RO) for each visible moving object is calculated. The direction (v̂O?) of this object-dependent repelling

vector is orthogonal to the movement direction of the object (v̂O). The length of the vector depends on

the actual velocity of the object (|~vO|) and a force factor (f (~dM
O ,~VO)). The force factor is a function of the

distance vector between robot and the model-based movement estimation of the object (~dM
O , see Fig. 5.4) as

well as the variance (~VO) of the movement model. It consists of two components, one based on the distance

along the path of the object (the X-component) the other one based on the distance between the robot and the

path of the object (the Y-component). Both components are limited by corresponding distance restriction

126

5.1. Reactive avoidance of moving objects

Fig. 5.5.: The complete field of influence of one moving object for
three different Y-variances of the movement model. The width
of the area of influence in Y-direction depends on the Y-variance
(VY) of the movement model. The length depends on the velocity
of the object (the object moves along the X-axis).

Fig. 5.6.: Two moving objects (circle) approach
the robot (box). The various red lines illustrate
possible repelling vectors. The object moving in
a curve is harder to predict resulting in a raised
variance and thus in a larger area of influence.

functions (Dmax
X (),Dmax

Y (VY ,dX)). These mainly depend on the parameter for the maximum distance of

influence (dmax
X ,dmax

Y). Dmax
Y (VY ,dX) also takes the variance of the estimation and the distance along the path

(dX) into account. Therefore, the area of effect enlarges with the distance to the object and with the variance

(see the plot in Fig.5.5).

~uEvade = ~FRO · fp ·m · (1− i) (5.7)

~FRO =

(
~SR if |~SR| 1

ŜR otherwise
(5.8)

~SR =
O

Â(~RO) (5.9)

~RO = v̂O? · f (~dM
O , ~VO) ·

|~vO|
vmax

(5.10)

f (~dM
O ,~VO) =

✓
1− min(dX ;Dmax

X ())

Dmax
X ()

◆
(5.11)

·
✓

1− min(dY ;Dmax
Y (VY ,dX))

Dmax
Y (VY ,dX)

◆

a = |~uEvade| (5.12)

r = |~FRO | (5.13)

~dM
O =

dX

dY

!
,~VO =

VX

VY

!
,Dmax

X () = dmax
X (5.14)

Dmax
Y (VY ,dX) = dmax

Y · (VY +1) · ((VY ·dX)+1) (5.15)

5.1.3. Experimental results

This section presents some experimental results, showing the functions and the limitations of the reactive

behaviors. More extensive results on will be given at the end of this chapter when the complete system is

evaluated. Fig. 5.6 shows the area of influence – thus the amount of possible repelling vectors – generated

by the two behavior modules Escape (circular part) and Evade (oval part). Here one out of the two objects

127

5. Avoiding Collisions with Moving Objects

does not move straight ahead but in a curve. Additionally, the prediction of one object is bad, so the variance

of the movement model rises. Figure 5.7 shows a scene with an shopping cart approaching from the front

while Figure 5.8 presents the resulting evasive motion of the robot. The robot is repelled from the predicted

path of the objects and moves around the critical zones smoothly. This concept works well as long as only

few moving objects are in the close vicinity of the robot and the robot has sufficient space to avoid them.

But scenes can occur where the robot cannot escape the objects. For example if two objects move in parallel

and trap the robot in between them or too many objects are heading for the robot from different sides. To

avoid these situations, the predictive handler for moving obstacles will be introduced in the next section.

The combined concept is based on the division of duty between a predictive part for the mid-term control

and a part for the reactive micro management.

Fig. 5.7.: In a corridor the robot InBOT is confronted with a shopping cart approaching from the front. On the right
hand side the corresponding occupancy map with the velocity set point vectors from the individual behavior modules
is sketched. The next figure (Fig. 5.8) shows InBOT’s reaction.

Tests have proven the expected limitations of the local and reactive approaches. Two examples can be

seen in Figure 5.9. There are three major kinds of situations: (1) either the repelling vectors force the robot

into a trap, (2) the situation can only be solved by withdrawing, or (3) the situation is very confused due

to fuzzy information and/or a large number of objects. The first situation takes place for example when

a objects moves in parallel to a wall in some distance, and the robot is closer to the wall, or when two

objects move in parallel and the robot is in between. The second situation happens when the robot meets an

approaching object in a corridor which is to narrow to pass each other. Here one of the two has to withdraw.

This is be handled by the Escape behavior, but not in a satisfying manner. And in the third case with the

large number of objects and the fuzzy information it would be best to avoid the crowd of moving objects

altogether.

Obviously the reactive behaviors have to be supported by more anticipatory capabilities. This could be

done by more intelligent fusion strategies for the repelling vectors, by modifying the shape of the repelling

field depending on the environment and so forth. But this would still be local and reactive methods. Thus, in

this work it was decided to provide a plan-based approach to be able to solve situations of all complexities.

128

5.1. Reactive avoidance of moving objects

Fig. 5.8.: Resulting evasive motions (the robot is indicated by the green rectangle, the moving objects’s track by the
green line and the robot’s path by the red line).
Left: The standing robot frees the path of an approaching object. In the bottom scene the object was very hard to
track resulting in a jittery prediction and thus a not optimal movement of the robot.
Right: Here the robot is moving itself while confronted with an approaching object (top: head to head, bottom: object
is overtaking the robot).

Fig. 5.9.: Sketches showing the limitations of the reactive behaviors.
Top: Two objects (red circles) approach the robot along the indicated arrows. The robot is located in the middle
between the two objects. By adding the two virtual force vectors, the robot will be forced to stay between the two
objects.
Middle: As expected in the description of the top figure, a collision occurs. The red line illustrating the path of the
robot shows that the Escape behavior tried to solve the situation, but it was too late as it had to decelerate the robot
before accelerating in the opposite direction.
Bottom: Another example which cannot be handled by the reactive behaviors: a large object which fills the complete
corridor forces the robot to withdraw. The Escape behavior will try to keep a safety distance but the retreat will be in
an inefficient manner.

129

5. Avoiding Collisions with Moving Objects

5.2. Proactive avoidance of moving objects using spatio-temporal plans

The two presented reactive behaviors manage the short term collision avoidance with moving objects with

fast reaction times. But they do not perform a thorough analysis of the scene. This done by the planner

being introduced here (originating again from [Ste09b]). It generates a spatio-temporal sub-plan in the local

environment to reach a given target while taking the predicted movements of all detected moving objects into

account. The goal is to basically avoid critical situations which could not be solved by reactive behaviors

only (e.g. trapping situations between objects) or to avoid critical areas altogether. The plan consists –

according to the requirements of the tactical layer – of sparsely distributed sub-targets with time constrains,

it is not a trajectory for the robot.

TB: Plan execution The execution of the plan is performed by a associated plan execution behavior

module which hands new targets down to the reactive behaviors one by one – which again guarantee the

safe behavior of the robot even if the planning process should fail or provide illegitimate goals. Figure 5.10

shows the implementation of these two modules in MCA2.

Fig. 5.10.: MCA implementation of the proactive planner: one module generates the plan, a second module inserts the
sub-goals of of the plan into to goal-refinement chain of the tactical layer.

5.2.1. Baseline: Data and pre-processing

The environmental robot-centered 2D occupancy map of the LWM (in the case of the robot InBOT with

a size of 10x10m) is extended with a time-dimension generating a 3D occupancy map (Z-axis for time).

Static objects are assumed as time invariant and therefore span the complete Z-axis. The position of moving

objects is altered according to the movement estimation of the object (see Fig. 5.11). A new grid has to be

built for each plan: The time-distance t between two X-Y layers is set so that it matches the time interval

needed by the robot to move one cell along the x axis at default speed (t = cellsize
vde f

– with vde f usually 0.5

130

5.2. Proactive avoidance of moving objects using spatio-temporal plans

Fig. 5.11.: All three figures show the same scene: a moving object (red circle with arrow) moves in the close vicinity
of the robot (green rectangle) in a curved path (indicated by the black arrow).
Top left: The scene viewed in the MCAGUI. The tiny blue and red dots represent the measurements of the laser range
finders.
Bottom left: The corresponding occupancy map is shown (the robot is located at the blue rectangle (but larger), the
object is represented by the occupied cells (black) in the bottom right corner).
Right: predictive 3D occupancy map with enlarged obstacles (50⇥50⇥50 cells, cell size: 20cm⇥20cm⇥0.4sec).
The grey cubes represent the blocked cells – by the static (and thus time-invariant) wall in the background as well as
by the moving object indicated by the arc of cubes in the foreground. As the obstacles are enlarged, the illustration
of the robot is too large here – the robot actually has the size of one cell.

to 1 m/s). The height (time) of the 3D occupancy grid limits the length of the path that can be found. The

resolution of the basic occupancy grid is reduced and moving obstacles as well as special objects (the user,

other low-priority robots (see chapter on multi-robot behaviors: Chap. 7)) are deleted from this occupancy

grid. The static obstacles are enlarged (the size of the robot can now be assumed as point like) and added to

the 3D grid. Additionally, for each time-step an enlarged obstacle is entered at the predicted positions of the

moving obstacles. The resulting predictive 3D obstacle map is shown on the right-hand side of Fig. 5.11. It

was decided to generate a new plan each time instead of altering the old one, because of the drastic changes

in the local map due to the changing field of view and perspective when the robot moves, the dependency of

the robot’s actual velocity and finally the fuzzy prediction of the moving objects’ behavior which suddenly

can be subject to major changes.

5.2.2. Spatio-temporal calculation of safe path using an A⇤ algorithm

A starting cell and the goal coordinates have to be given to calculate a path around the moving obstacles

in the predictive 3D occupancy grid. The robot is positioned at the middle of the lowest time-layer of the

grid – the start cell. As it is not important at exactly which point in time the robot reaches the goal, all cells

that share the X-Y-coordinates of the goal point are possible goal cells for the A⇤ search. If the goal point is

131

5. Avoiding Collisions with Moving Objects

located outside of the occupancy map a substitute goal point located on the grid’s border is chosen. Figure

5.12 illustrates this setup.

The A⇤ algorithm is forced to take a time step for each X/Y movement, therefore a cell has 9 neighbors

which are located in the succeeding time layer t 0 = t+1. Occupied cells in the 3D obstacle grid are obviously

off-limits.

The heuristic function used for the A⇤ search is the straight-line distance to the goal in an X-Y layer

(
p

Dx2 +Dy2) multiplied with the factor
p

2 to estimate the needed time to get to the goal (this is equivalent

to the straight-line distance in the 3D occupancy grid). This factor is a correct estimation if the A⇤ search

can find a free way to the goal without having to wait or having to take a detour around an obstacle.

The search will be aborted if the current cell in the A⇤ search is located in the top X-Y layer t = tmax.

If the A⇤ search does not find a path to the goal there is no free path to the goal in the given time constraint

and the search has to be restarted on the next new occupancy grid data. In the meantime the robot relies on

the reactive behaviors to avoid collisions.

Fig. 5.12.: The robot plans a path to a location which will be crossed by a moving object. So the robot has to reach
the goal after the moving object has moved past it. The robot is located at the center of the grid (in the center of the
X-Y-Plane, at the bottom regarding the time dimension). The goal is marked with the read boxes on the left hand
side of the grid – obviously, it is suitable to reach the goal at any point of time, so the goal location is marked as goal
throughout the complete time span.
Left: The blue boxes show the path planned by the A⇤.
Right: The green line is the optimized path. It only consists of the few kinks of the green line (accompanied by a
time constraint).

5.2.3. Optimization of path

The path calculated by the A⇤ consists of a list of sub-goal points. If the sub-goals are located too close to

each other the flexibility of the Behavior-Based Control is impaired. If there are no obstacles, the path still

consists of many sub-goals in a straight line even if only the goal point itself would be sufficient to provide

a collision-free path.

Therefore, the path is simplified to contain only the needed points to drive around the obstacles by repeat-

edly removing sub-goals and then testing for collisions with occupied cells (see Fig. 5.12). If the resulting

path is collision-free the removed sub-goals are removed permanently.

132

5.2. Proactive avoidance of moving objects using spatio-temporal plans

5.2.4. Utilization of the Behavior-Based Control

Once a path is found and simplified, its sub-goals are given to the Behavior-Based Control as goal points.

The Behavior-Based Control moves the robot to these points successively while utilizing the full range of

reactive behaviors.

5.2.5. Experimental results using the planner

The described algorithm was tested thoroughly. An easy example is displayed in Fig.5.13. A moving object

approaches from the direction the robot intends to move in. After detecting the object, a plan is generated to

move around the object. A more challenging scene is depicted in Fig. 5.14. This time, there is not sufficient

space to move around the object. Therefore, the plan leads the robot back around a corner to let the object

pass before continuing with moving towards the target.

Fig. 5.13.: Top: The robot’s target is the green “X” at the right side of the scene. A moving object approaches from
this direction (red circle with arrow). Therefore a plan of sub-targets is generated that leads the robot around it.
Middle and bottom: The scene from Figure 5.9 is shown again. Here the reactive behaviors failed. As indicated by
the plan (green line with arrows) and the path taken by the robot (red line), the planner is able to solve this situation.

133

5. Avoiding Collisions with Moving Objects

Fig. 5.14.: Here again a scene is taken up from Figure 5.9 where the reactive behaviors failed. The robot’s target is at
the left hand side end of the corridor. A large moving object approaches from this direction (red circle with arrow).
Therefore, a plan of sub-targets is generated that leads the robot back around the corner, lets it wait there until the
object passed and finally leads to the target again. Top: plan in a cut open 3D view. Bottom/right: plan in 2D view in
MCAGUI. Bottom/left: actual path taken by the robot.

5.3. Experiments and tests

In this section some of the experiments performed to evaluate the concept will be presented. When not

stated otherwise, all experiments where performed with the real robot in the real environment.

5.3.1. Comparison of components

Figure 5.15 shows the effect of the different behaviors for obstacle avoidance. Using only the behaviors for

the avoidance of static obstacles a collision occurs as long as the robot is not significantly faster than the

object. The more specialized the behaviors used are the earlier the robot starts the evasive motion and the

more efficient and safe becomes the path.

5.3.2. Stress test

A stress test was performed in a partially simulated setup: Three objects are moving back and forth on

straight paths always crossing the robot’s target point. The robot’s tracker for moving objects was manip-

ulated to use the simulate objects to be able to test the collision avoidance system independently from the

134

5.3. Experiments and tests

Fig. 5.15.: The individual behaviors for the obstacle avoidance in comparison. The robot moves from the left to the
right, the red lines shows its path. (a): AvoidObstacles (static), (b): Escape behavior, (c): Evade behavior, (d):
Proactive planner. On path (a) most of the time a collision occurs (indicated by the flash symbol), depending on the
proportion of the robot’s velocity compared to the object’s velocity. The Escape behavior is most of the times able
to avoid a collision (again depending of the velocity difference of robot and object), but the path is not efficient. The
Evade behavior avoids the approaching object robustly and with a suitable path. The planner’s path is the best, but
there is a delay at the beginning due to the slower reaction time. This did not pose a problem here as the object was
clearly visible up front, but it could be a critical issue.

Fig. 5.16.: Stress test: The robot is ordered to move to the X in the center while three objects move back and forth
on paths crossing just this point (indicated by the red circles moving along the black arrows). During a two-minute
test run there were 50 possible collisions. On the right hand side an exemplary extract from the planner with the
calculated and optimized path is shown. The results are provided in Table 5.1.

135

5. Avoiding Collisions with Moving Objects

quality of the tracker. The (real) robot has to continuously dodge the objects. Figure 5.16 illustrates the

setup and the path the robot has actually taken during a two-minute test run.

Table 5.1 shows the results of the stress test for the individual behaviors. Using only the behaviors for

the avoidance of static obstacles 34 collisions occurred – which is less than expected. Using the reactive

behaviors Escape and Evade the number of collisions goes down to a single one. When additionally using

the planner the distance to the closest object is significantly higher meaning a safer path. The single colli-

sion that occurred in both cases was unavoidable because the (simulated) objects turn around – beyond the

laws of inertia – without having to (de-) accelerate. If the robot is located close to a turning point, the robot

cannot accelerate away quickly enough.

Tab. 5.1.: Results of stress test: 50 passes during two minutes (see Fig. 5.16)
Method used Collisions Average distance to closest object
Static avoidance 34 146 mm
Escape and Evade 1 665 mm
Above + Planner 1 1041 mm

A second stress test was performed in simulation to prove the deterministic manner of the behavior group

for avoiding moving objects: the robot was ordered to travel back and forth between two locations 50 times,

while being impaired by three moving objects. The overalls situation is always roughly the same. Figure

5.17 shows that the path taken by the robot is very similar in all cases.

Tab. 5.2.: Overall success rate: 100 trial runs each
Tracking information Collisions Risky Safe
Using tracker 13 26 61
Using exact position and velocity 3 10 87

5.3.3. Overall success rate

Table 5.2 shows the overall success rate over various experiments. The robot InBOT (the real robot) was

approached 100 times by (real) shopping carts while performing various tasks or just standing still (Figure

5.18 shows some pictures). The ordinary shopping carts were steered by people who moved to a given goal

chosen to provoke a collision while completely ignoring the robot, but some even rushed directly onto the

robot, trying to test it – which was not intended but provided valuable experiences.

In the first 100 tests the on-board object tracker based on two laser range finders was used, for the second

100 passes the exact positions of the shopping carts where provided by using the system ETrolley which has

its own self-localization equipment. The amount of safe runs shows that the collision avoidance concept

performs well but tracker has to be further improved or a better one has to be integrated. The majority of

collisions and risky runs (slight touching not hard enough to activate the robot’s bumper) was caused when

the cart was identified too late and the robot did not have sufficient time to accelerate away. There were

3 collisions and 10 risky situations in the run with the exact cart positions in which the drivers of the cart

did not let InBOT a chance to avoid them properly. The reason is the acceleration and velocity limitation of

1m/s set for the robot, which was significantly lower than the speed of some of the cart drivers. Additionally,

136

5.3. Experiments and tests

Fig. 5.17.: Second stress test to prove the deterministic manner of the behaviors: The robot is ordered to move back
and forth 50 times between two locations (top and bottom turning point) while being impaired by three crossing
moving objects. This setup gives always similar – but not exactly identical – scenes. This figure shows that the path
actually taken by the robot is always very similar, in most cases almost identical.

some cart drivers forced the robot against a wall were InBOT fell to a dead stop shortly before hitting the

wall due to the safety behaviors – and then was hit by the cart.

Keeping in mind that the intention is to avoid accidental collisions, the robot completely fulfilled the

expectations. Finally, it shall be noted here that in all cases of collisions InBOT was hit by the approaching

object due to insufficient dodging – InBOT itself did never run into any objects or into the path of an

approaching object. Therefore safety from the robot’s point of view was always granted.

5.3.4. System in application

The last test to be presented here includes some scenes from a shopping experiment – involving all available

functionalities – where the robot is hindered in executing given tasks by moving obstacles (e.g. other shop-

pers with shopping carts). Fig. 5.19 shows a single shopping run in a small laboratory supermarket setting.

The same experiment will be presented as well in the next two chapter focusing on the user interaction and

the multi-robot coordination.

137

5. Avoiding Collisions with Moving Objects

Fig. 5.18.: Photos showing some of the performed tests using a ordinary shopping cart and InBOT’s on-board object
tracker. Others have been done using ETrolley to gain precise and robust localization information on the moving
object.

The user is asked to pick up five products while other shoppers are moving around him with their carts.

First the robot guides the user to the first product and simultaneously avoids the moving obstacle (A), later

while operating in the Following Mode the robot keeps a safe distance from obstacles (B) and (C). In all

cases the robot did not move into other objects and did not collide with its user (as described in Chapter 3

the presented behaviors are merged with the behaviors for handling static obstacles and the safety module

counterchecks all movement commands in the end).

5.4. Discussion

Some methods for avoiding moving objects proposed in the literature only steer the velocity of the robot

on the path planned around the static obstacles, which is only sufficient for moving obstacles crossing the

path, not for ones moving along the same or a similar path. Others are directly coupled to the path finding

algorithm. This is not sufficient as well because in a dynamic environment the robot can also be hit by

moving objects while standing still. In general, the advantage of the deliberative planners compared to

the reactive methods is obvious – especially when state-of-the-art hardware renders the time delay for the

computation insignificant. But the scenario of this thesis lacks too much information (limited field of view,

no exact and reliable map, sometimes no target location is available e.g. in Visual Servoing Mode or Manual

Steering Mode) to be able to rely always on a planner-based approach only.

Therefore, in this thesis a combination of a planner with reactive behaviors is used. Again a three-leveled

approach is proposed: First, a reflex moves the robot directly away from mobile obstacles which came too

close or suddenly started moving, enabling the robot to regain a safety distance. This reflex is kept extremely

simple, this way it is able to dodge moving objects even before a prediction of the movement direction can

be made. Second, a reactive behavior lets the robot move out of the predicted path of an approaching object.

Third, to solve complex situations, the behavior-based components are topped by a spatio-temporal planner

which generates a safe and efficient long-term path.

138

5.4. Discussion

Fig. 5.19.: Final test for avoiding moving objects – a shopping run involving all available functionalities: the user
(tracked by the blue line) starts together with the robot (grey rectangle, red line) in the lower right corner. The robot
guides the user to the first product (1) while avoiding the moving shopping cart (A) (indicated by the yellow dotted
line): the strong bend to the left at the yellow flash symbol. After following the user to the next products (2) and (3),
the robot continues to product (4) and avoids the crossing cart (B) (orange rotted line) by slowing down and letting it
pass. The robot continues by aligning itself behind the cart (orange flashes). While following to the final product (5)
the robot is cut by cart (C) (red dotted line). Again, the robot lets the cart pass (red flash). (Robot’s path red, critical
areas: flash symbols, the user – who is continuously impairing the robot being another close-by moving obstacle – is
tracked by environmental cameras resulting in the chaotic blue line. The bad quality of the user’s track comes from
continuous occlusions by other objects (shelves, robot, carts, other shoppers, etc).

139

5. Avoiding Collisions with Moving Objects

In several tests the concept has proven its performance. The system was designed to avoid accidental col-

lisions and performs well under this assumption. If someone should really try to hit the robot he will succeed

due to the velocity and acceleration limitations applied on a robot operating in a populated environment.

A crucial challenge in avoiding moving objects is the robust and timely detection and tracking of the

objects. In this thesis two components were utilized to provide the necessary data: First this were two

planar laser scanners mounted on the robot at feet height. This is not sufficient for robustly tracking persons

as occlusions are frequent and the field of view is very limited. Additionally tracking a group of walking

persons is prone to errors because the persons lift the feet above the measurement plane of the sensor when

walking. Therefore the second component used two planar laser range finders mounted in the environment

at chest height whose data has been merged with the data from environmental cameras. The drawback on

this system has been the additional time delay resulting from the transfer of the data to the robot using WiFi.

140

6. User Interaction

After the navigation system has been described, this chapter approaches the second major challenge: the

human-robot interaction (HRI) capabilities of the control system. A special focus is on a challenge common

for cooperative actions of robot and user: sharing the control between robot and user smoothly. This way the

robot can assist the user with the implemented abilities without putting the user out of control. Preluding,

the interactive capabilities, modalities for the users’ input, and the modes of operation of InBOT will be

discussed.

As the shopping assistance robot shall serve its user, interaction with the user is an important topic.

Having a powerful navigation system alone may serve the robot well, but not the user. The user needs to

have access to the functionalities in an intuitive way – he wants to do shopping and not to control a robot –

and the robot must be able to fulfill tasks in cooperation with the user. Especially handicapped users could

benefit from the provided assistance functionalities: visually impaired customers can command the robot by

speech and let themselves be guided around obstacles and directly to the desired products. Weak or elderly

people do not have to push the robot themselves. But especially when cooperating with these groups of

people an robust HRI system is even more important.

Fig. 6.1.: InBOT is guiding a user Fig. 6.2.: InBOT is controlled by the force sensitive
handle

In contrast to tele-operated or autonomous robots, in the setting of this thesis the user is always present,

even impairing the robot’s motion. Thus, this chapter shall in particular focus on a challenge common for

141

6. User Interaction

Fig. 6.3.: Inserting control data into the architecture using interfaces between layers. Insertion
of user input between the safety behaviors and the Hardware Abstraction Layer is not allowed
to ensure that the safety behaviors are always in charge.

all cooperative actions of robot and user: the trading and smoothly sharing of control. As baseline for the

interaction the modalities available to the user for controlling the robot are identified. They inform the robot

about what the user actually wants to do. A second foundation for the interaction are the modes of operation

(two examples can be seen in Fig. 6.1 and Fig. 6.2) which define the current setting for the cooperative task

execution. The chapter will be concluded by showing the application of the concept of control sharing and

Trading in some experiments with the robot InBOT and human users.

As discussed in Chapter 3 “The Hybrid Control Architecture”, the concept of control sharing is not

implemented by associated behaviors. It emerges from a multitude of components and their interplay as

defined by the architecture, such as but not limited to the integrated multimodal communication layers,

the force sensitive handle, the user tracking, or finally the adaptive behaviors. The HRI system spans the

complete control architecture and thus is present on all levels of abstraction. Very important for control

sharing is the control data flow as it defines how the user can influence the robot’s behavior. The control

architecture defines user-input orthogonally to the usual control data flow by providing interfaces and fusion

behaviors on top of each of the layers (see again the sketch shown in Fig. 6.3).

Scope of this chapter: Due to the enormous wide range of the field of HRI, the content implemented

in the course of this thesis will be limited to the components and concepts relevant for the application of

shopping assistance in the supermarket, for example implementing the guiding and following behaviors,

giving orders to the robot, receiving feedback from the robot, and sharing the control during task execution.

The HRI shall focus on the human acting as the customer to whom the robot is attached, other humans

are regarded only as moving obstacles in most of the cases. Humans acting as operators or supermarket

staff will be omitted here completely. They can either control the robot using the same modalities as the

customers do or exert direct control using the MCAGUI. Further concepts like interpreting the humans’

142

6.1. Five modes of operation

intentions, learning, and actual collaboration or even human-robot teams will not be considered as these

fields are complete topics for research on their own.

Content and organization of the chapter: Following after this introduction, in Section 6.1 the

five modes of operation (autonomous, guiding, following, servoing, and manual steering) are introduced,

which enable the user to utilize the robot according to his wishes. In the subsequent section (Sec. 6.2) the

means and modalities are described by which the user is able to influence the robot such as the touch screen

interface or the force sensitive handle. The next section describes that mode transitions are performed based

on the modalities chosen by the user. Section 6.4 describes the interaction of robot and user regarding the

chosen modalities like the obstacle avoidance assistant or the Force Commands during Manual Steering

Mode. Additionally, tactical behaviors dedicated to HRI are introduced. The last but one section (Sec.

6.6) elaborates on the concept of control sharing, how it emerges from the components described in the

preceding sections, and its influence on the control. And finally the last section concludes the chapter by

describing experiments and the results from surveys conducted with the robot’s users after the experiments.

6.1. Five modes of operation

Different users prefer to use the shopping assistant robot in different ways. Some users want to be completely

in charge, others just want to be guided through the shop. These varying interest of the users are reflected

by introducing the modes of operation. Each mode represents a unique way of utilizing the robot. Even

though the basic components used by the robot’s control system (such as obstacle avoidance) are identical,

the experience of using the robot differs significantly.

As was defined as requirement in the introduction (Chapter 1.4.1 “Modes of operation for user interaction

(R2.3)”) the utilization of the robot’s capabilities are grouped into five modes of operation to suit the wishes

of the individual groups of users. Ordered by their degree of coupling between user an robot these are:

• Manual Steering Mode

• Servoing Mode

• Following Mode

• Guiding Mode

• Autonomous Mode

The first mode with the closest coupling between user and robot is the Manual Steering Mode. Here

InBOT can be steered just as an ordinary shopping cart by the force sensitive handle. The control system

supports the user with several assistance features such as an navigation and obstacle avoidance assistant,

local Force Commands (e.g. “Park on side”, “Turn to support loading”), and obviously the full motor power

of the robot.

The second mode is the Servoing Mode. In this mode the robot imitates the movements of the user (or

any other given target) while avoiding collisions. The purpose of this mode is to accompany the user during

local movements – e.g. looking for an individual product in a shelf – without impairing him. Obviously,

information on the users motion are necessary as data input. These are provided by the LWM and can be

acquired for example by the intelligent environment (see Appendix C.3 “The intelligent environment”) or

143

6. User Interaction

Tab. 6.1.: Dependencies of modes and data sources.

Data requested for Au
to

no
m

ou
s

M
od

e

G
ui

di
ng

M
od

e

Fo
llo

w
in

g
M

od
e

Se
rv

oi
ng

M
od

e

M
an

ua
lS

te
er

in
g

M
od

e

Command for CL from ————— high level UI ———— automatic handle
Task input to strategic layer communication layer / / /
Target input to tactical layer — strategic layer— user’s position / /
Velocity input to reactive layer ————— tactical layer————— UM handle
Velocity output to HAL AO —— AO and user’s position —— AO, UM AO, handle
Obstacle avoidance and safety X X X X X

CL: communication layer, UI: user interface, AO: Avoid Obstacles beh., UM: user’s motion, X: active

the user tracking with onboard sensors (see Appendix C.2 “Detecting and tracking the user using onboard

sensors” and [63], [59]) but other means can be utilized likewise.

The third mode is the Following Mode. Here the robot follows the user (or any other given target) wherever

he goes in a well-defined distance. Obviously, again information on the user’s position an motion are

necessary.

The fourth mode is the Guiding Mode. In this mode the robot guides the user (or again any other target

object) to a desired goal location or product or even along a whole shopping list step by step while con-

tinuously adapting to the user’s pace. When starting a motion in this mode the robot starts slowly: is uses

only half the usual acceleration and moves with 0.25m/s maximum velocity for the first meter of distance.

This way it shall avoid to startle the user with a sudden movement as well as giving the user enough time

to cancel the action, even by using the touch screen which is difficult to use during motion. Again for this

mode, information on the users motion is necessary.

The last mode is the Autonomous Mode with the weakest coupling between user and robot. Here InBOT

acts only if explicitly commanded by the user, and once commanded the robot performs the task indepen-

dently.

Influence of the modes: The active mode of operation has two kinds of influences on the control sys-

tem: firstly a mode transition triggers a module which sets the motivation or inhibition of certain behavior

modules such as the adaptive behaviors (see Chap. 4.4.2 “RB: Behaviors for adapting the velocity to the task

and the user”). And secondly the mode organizes the assignment of target locations. For example during

Guiding Mode the target location is taken from the strategic layer and the velocity adaptation behavior is

active while during Following Mode the target location is the user’s position and the distance adaptation

behavior is active. During Manual Steering Mode no target location is used at all, but the velocity set-point

vector used in the reactive layer is directly acquired from the force sensitive handle or any other force input

device – see Table 6.1 for an overview.

144

6.2. Modalities for interaction and the multimodal user interface

6.2. Modalities for interaction and the multimodal user interface

There are several ways to interact with or to command a service robot from which a user would like to chose.

The choice is often not made consciously – the user does not want to have to reason on how to command

the robot but simply pick the most convenient method. Thus, a service robot should offer a wide range of

methods and modalities and switching between them should be easy and intuitive. Hence, as many different

options as possible should be offered to the user, hoping that always the most convenient one is available.

In the following the various modalities are summarized which are available for the user to exert control

over the robot directly or to indirectly command the robot. The modalities are connected to different layers

of the control architecture and provide for different kinds of information. For some modalities alternative

implementations were integrated to improve the evaluation of the overall system.

• Multimodal user interface of the communication layer. It receives and pre-processes the user’s high-

level commands. Two versions were used: the CR-UI (see [87] and Appendix C.5) implemented by

TU Vienna and the InBOT-UI (see Appendix C.4) developed in the course of this thesis (see Figure

6.4). Both provide the same modalities:

– Touch screen based graphical user interface with shopping list management and buttons for the

individual commands.

– Speech recognizer for the individual commands such as “guide me to <product>”, “guide me to

next product” or just “follow me” or “come here” (CR-UI only).

– Bar code scanner for scanning products.

• User tracking: provides position and motion of the robot’s user. Two versions were used: the user

tracking with onboard sensors (see Appendix C.2 “Detecting and tracking the user using onboard

sensors” and [63], [59]) developed at LAAS CNRS and the intelligent environment (see Appendix C.3

“The intelligent environment”) developed in the course of this thesis. By this modality the user does

not exert control intentionally but passively by his mere presence or more precisely by his position

and motion in relation to the robot. This modality is crucial when operating in the Guiding Mode or

Following Mode.

• Gesture command recognition for commands such as “come here”, “go there” or “follow me” (only

in the integrated version of the user tracking developed at LAAS CNRS: user tracking with onboard

sensors)

• The force sensitive handle (see Fig. 6.4 and Appendix B.6) enables the user to directly provide a

velocity set-point vector the be processed by the reactive layer. The user can steer the robot manually

(including some assistance functionalities and Force Commands).

• Force Commands for local maneuvers such as “park on side” or “turn around to support loading”

(described in the Section 6.4.1)

Finally integrated the modalities provide “the eyes and ears” of the robot regarding the user to facilitate

the interaction with the user.

145

6. User Interaction

Fig. 6.4.: The user interface of InBOT: force sensitive handle, bar code scanner, headset, and the touch screen-based
GUI. Left the graphical user interface which was developed for InBOT – the InBOT-UI (see Appendix C.4), right the
alternatively integrated CR-UI (see [87] and Appendix C.5), both acting as the communication layer.

As indicated, some of the components implementing the modalities were developed by other groups. It

was aimed at having always two different methods at hand to improve the evaluation of the overall system

later on.

6.3. Mode transitions

Many users prefer one of the modes of operation, but different situations enforce changing the mode ap-

propriately. But for the user it would be inconvenient to have to think about the best suitable mode – or

about modes of operation in general. In contrast, the transition between the modes shall be performed

automatically based on the task given by the user and the modality used for giving that task.

All four modes utilize a subset of the described modalities. This is illustrated in Tab. 6.2. If the user gives

a command via a modality that is not coupled with the mode the robot currently operates in, a mode transition

is performed. For example if the robot operates in the Manual Steering Mode and a voice command is

received the robot automatically switches to a mode which is coupled with voice commands. This could

for example be the Following Mode if the command was “follow me” or the Guiding Mode if the command

was “guide me to <name of product>”. While usually an explicit command of the user is necessary, InBOT

automatically switches to the Manual Steering Mode as soon as a force is applied to the handle, to idle when

the handle is released, and to autonomous when a Force Command is detected. The Servoing Mode can also

be activated automatically after reaching a goal while guiding the user.

The user position tracking does not transmit direct commands to the robot. It passively commands the

robot to accelerate or decelerate and therefore does usually not result in a mode transition. An exception

takes place if the user is lost. Then a transition to the Idle Mode is performed. The usual way for the robot

to switch to the Idle Mode is the completion or the cancellation of the active task.

The problem of oscillating between modes does not appear here because mode transitions are always

triggered by sparse events such as user commands, reaching of a goal, grabbing the handle, etc.

146

6.4. Interaction regarding modalities

Tab. 6.2.: Dependencies of modes and modalities of interaction.

Mode Fo
rc

e
se

ns
.d

ev
ic

e

U
se

rp
os

iti
on

G
es

tu
re

re
co

gn
.

Vo
ic

e
co

m
m

an
d

To
uc

h
sc

re
en

cm
d.

Vo
ic

e
ou

t

Sc
re

en
ou

t

Manual Steering X - - - - X X
Following - X X X X X X
Guiding - X X X X X X
Autonomous X⇤ - X X X X X
Idle - X+ - - - X X

*: In the Autonomous Mode the handle is used to give
force-based commands only, not to steer the robot.
+: If the user is lost the robot switches to the Idle Mode.

6.4. Interaction regarding modalities

After having introduced the modes and modalities, this section presents the individual methods of interact-

ing with the robot, ordered by the modalities used for the interaction. The main groups are: force input,

observation of the user, touch screen input, and voice input.

6.4.1. Interaction based on force input by the user

The first and most intuitive method of controlling a service robot in a shopping scenario is probably the

interaction based on physical contact by using a force sensitive handle (see Fig. 6.5 and Appendix B.6 for

construction details), as implemented by the Manual Steering Mode. The user doesn’t have to learn voice

or gesture commands and to get used to the screen-based menu. Additionally, due to the close of coupling

between robot and user this kind of interaction has a high degree of reliability because its independent from

noise and light conditions. The user is able to apply experiences from a common, manual trolley to the robot

trolley and is additionally supported by several functionalities like motor power, obstacle avoidance or local

maneuvers triggered by Force Commands. For details on the construction of the final version of the force

sensitive handle please refer to Appendix B.6 “Force sensitive handlebar”.

Interpretation of measured forces on the force sensitive handle To achieve a high level of usability

the trolley’s handle must be able to generate movement commands out of the applied forces. The forces that

the user exerts on the bars of the force sensitive handle are measured by eight strain gauges. The values are

digitalized and transferred to an integrated DSP signal processing board. Here the eight measured forces are

transformed into two forces and one torque. Additional signals are provided by micro switches on the handle

that are used as dead man’s switches. When released, these trigger the classification of Force Commands.

Each identified command motivates some of the behaviors of the advanced behavior repertoire (Tab. 6.3).

While at least one of the buttons (or micro switches in the new version) is pressed the current command

is classified as manual steering and the processed forces are directly transformed into a velocity set-point

147

6. User Interaction

Fig. 6.5.: The force sensitive handle measures the forces applied by the user while the micro switches
around it are activated. In the picture the third version of the handle is shown (see App. B.6).

Tab. 6.3.: Classes of Force Commands, their characteristics and the advanced behaviors triggered when classified
accordingly.

Class name R FX FY T AB

STEER No - - - Steer
PULL Yes H(-) S S Stay here
WAIT Yes S S S Stay in area
ROTATE L/R Yes S S H(+/-) Support loading
PUSH L/R Yes S H(+/-) S Park
PUSH FRONT Yes H(+) S Sl Drive forward

R: Signal emitted when the handle is released
F: Value of force in [X,Y]-direction. Values: High(sign) or Small
T: Value of torque. Values: High(sign) or Small
AB: Corresponding advanced behavior which is triggered

vector to be executed by the robot’s Behavior Network. This procedure is described in Appendix B.6 “Force

sensitive handlebar” and in more detail in [61].

Force Commands: Force Commands are assistance functionalities to ease local maneuvering with the

robot. Figure 6.6 illustrates this at the example of loading a heavy crate into the basket: The robot is steered

to crate, then the command to turn around is given, so that the lowest side of the basket faces the crate. After

loading the crate the command to turn back is given.

The following list summarizes the developed commands and the resulting motion behavior.

Steer: The robot is basically controlled by the handle directly. This is the basic command that is active as

long as at least one of the dead man’s switches is pressed.

Stay here: Forces the robot to stay exactly on the spot. This command is indicated by a short and sharp

backward pull of the handle before releasing it.

148

6.4. Interaction regarding modalities

Stay in area: Tells the robot to wait at the current position. But the robot is temporarily allowed to leave

the position for example to avoid a collision with an approaching moving obstacle. This is the standard

command when releasing t he handle.

Turn to support loading: Commands to robot to turn its lower front side of the basket towards to user to

ease loading of heavy goods. This is a two part command: when indicated by a short sharp torque on

the handle before releasing it, the robot turns. When afterwards a dead man’s switch is shortly pressed

and released at once the robot turns back to its initial orientation.

Park on side: When indicated by a short sharp sideways force on the handle, the robot searches the corre-

sponding side for obstacles and calculates a parking position.

Drive forward: The robot moves few meters forward to free the way. The command is indicated by a short

sharp push of the handle just as if thrusting an ordinary shopping cart away.

Fig. 6.6.: Left: Forces which trigger the “turn to support loading” command indicated by the green arrows (top)
compared to forces for the “park on side” command (bottom). Right: The “turn to support loading” command in
action.

Obstacle Avoidance Assistant: The velocity set point vector derived from the force sensitive handle

is merged with the reactive behaviors for obstacle avoidance. This way, the robot is able to move around

obstacles when the user does not notice them because he is either distracted or visually impaired. As

always, the final velocity set point vector has to pass the safety behaviors so that collision-free movements

are granted. A photo from such a scene can be found in Fig. 6.7.

Shopping List Assistant: Another assistance functionality can be implemented using the communication

layer and the adaptive reactive behaviors, as was exemplary implemented using the CR-UI. When coming

into the vicinity of a product on the shopping list the communication layer informs the control system

about the product’s position and the desire to slow down temporarily. When actually passing the product

the control system slows down the robot and informs the communication layer that the robot is currently

passing the product. The communication layer then utters a speech output “We are passing <product> from

your shopping list”. A sketch of this behavior can be seen in Fig. 6.7.

149

6. User Interaction

Fig. 6.7.: Assistants in Manual Steering Mode. Top: Photo showing a scene where InBOT is pushed by a
distracted user with one hand only, so a collision with a parked shopping cart is imminent. Additionally,
a design sketch of the path assistant can be seen illustrated by the red u-turn arrow on the touch screen.
Bottom: Sketch of the functionality of the shopping list assistant (image source: [78]).

Path Assistant To inform the user about the path the robot is going to take, or to offer guidance during

Manual Steering Mode, the robot’s control system sends the next two representative goal points from the

current task from the task planner up to the communication layer. The communication layer then visualizes

this information with arrows on the touch screen. A design sketch illustrating the result can be seen in Fig.

6.7.

6.4.2. Interaction based on the observation of the user

The second group of methods to control the service robot is based on the observation of the user. This

way the robot gains knowledge on the user’s relative position and his motion and can behave accordingly.

This data is used to implement the Servoing Mode, the Following Mode, and the Guiding Mode. For this

thesis two systems were used to observe the user and to acquire the needed data: the intelligent environment

(see Appendix C.3 “The intelligent environment”) developed in the course of this thesis as well as the user

tracking with onboard sensors (see Appendix C.2 “Detecting and tracking the user using onboard sensors”

and [63], [59]) developed at LAAS CNRS which was integrated to provide a wider basis for evaluation. The

user’s data is distributed in the control system via the local world model – either by adding the data directly

150

6.4. Interaction regarding modalities

or by transferring it by WiFi to the robot first. This way, each behavior is able to chose the user’s data as

data input. Among others, this choice is triggered by the selected mode of operation.

Visual servoing regarding the user: For closely coupled local maneuvers of robot and user the visual

servoing or the Servoing Mode is used. Here the robot does not only try to move continuously to the user’s

position while adapting to distance and pace like in the Following Mode, but is controlled in a closed loop

by the user tracking system. The main purpose is to steer the robot in such a way that it always stays in the

close vicinity of the user without impairing or blocking him. In the supermarket scenario this behavior is

useful when the user is moving along local shelves while searching for a specific product. The robot here

travels alongside the user and gives room when the user approaches the robot.

For the case where the user data is acquired by the integrated on-board camera system mounted on a pan

tilt unit (PTU), control laws were integrated as well, aiming to control the PTU and the robot in unison as

described in work by T. Germa at LAAS [59].

To achieve this behavior, the user’s velocity is directly fed into the top fusion behavior of the reactive

layer as velocity set-point vector. This way the robot imitates the user’s motion while avoiding collisions

using the avoid obstacle and the safety behaviors. The behavior for orientating the robot in a fixed direction

is motivated and given to position of the user. Thus, the robot always turns the side with the touch screen

towards the user.

Following the user: The Following Mode is designed for users who want to be in charge themselves. In

the supermarket scenario these know where to find their product and want the robot just to follow. Accord-

ingly, the user precedes the robot and the robot has to keep a defined distance using a position-based control.

By activating the Following Mode the follow object behavior in the tactical layer is motivated and chosen in

the fusion behavior. Additionally, the behavior is instructed to chose the user’s position in the local world

model as reference position which is to be followed in a defined distance – 1.5m has proven to be preferred

by most users. The behavior reduces the distance only, it does not try to increase the distance if it should

become too short: when the user moves towards the robot, the robot just stops, thus, enabling the user to put

products into the basket. Again, the behavior for orientating the robot in a fixed direction is motivated and

given to position of the user. As can be seen in Figure 6.8 the robot always turns the side with the touch

screen towards the user, thus driving backwards.

Guiding the user: Here the robot is in charge and leads the user in Guiding Mode while adapting tho

his pace (Fig. 6.9). This is thought to be the standard mode of in the shopping scenario. The robot plans

and moves along the route just like when operating in the Autonomous Mode. But the adaptive behaviors

of the reactive layer reduce the current velocity of the robot if the distance to the user becomes too large

– 1.0m has proven to be a suitable threshold here. If the distance becomes larger then 2.5m the maximum

allowed velocity is set to zero – the robot stops and waits for the user. The behavior for orientating the robot

in driving direction is motivated. The robot is driving forwards and thus turning the touchscreen towards the

user.

Lost the user: When the user is lost, therefore the user cannot be detected anymore, the robot stops and

waits for a defined amount of time. After the time has passed, the robot switches to Autonomous Mode and

151

6. User Interaction

Fig. 6.8.: InBOT follows a user Fig. 6.9.: InBOT guides a user

plans a route to the last position where the user has been seen. This behavior is used only when operating

in Guiding Mode or Servoing Mode. When in Idle Mode the user most probably wants the robot to wait and

during Following Mode the robot will drive to the user’s last known position directly without waiting.

6.4.3. Interaction based on high level user interface

The two preceding ways of controlling the robot represent the indirect and often subconscious methods.

These are important for sharing control and interacting with the robot. The methods of interaction centered

around the high level user interface are actually methods of commanding the robot using mainly a touch

screen as well as speech recognition and synthesizing.

On the robot InBOT, two user interfaces were used to implement the communication layer: the InBOT-UI

(see Appendix C.4) developed in the course of this thesis as well as the CR-UI (see [87] and Appendix C.5)

integrated to provide a wider basis for the evaluation of the overall system. At first glance the user interface

provided by both is very similar. Both provide a touch screen interface which can be used to manage a

shopping list and to give commands to the robot such as “Guide me to ...”, “Follow me”, “Meet me at ...”,

and “Stop!”. Both provide a map with the highlighted position of the robot and the current target. In addition

to the touch screen both provide speech output via speakers or a headset and both accept a bar code scanner

as input. Figure 6.10 shows a scene where a user scans a product to add it to the list of shopped items

(InBOT-UI) and Figure 6.11 shows a user trying to hit the “Stop!” button on the touch screen while walking

– which has proven to be more difficult than had been imagined, even when using a large stop button.

But there are also some differences in the user interfaces. The CR-UI offers also speech command input

and is able to detect some gestures when used together with the user tracking with onboard sensors system of

LAAS. The InBOT-UI in contrast focuses more on the shopping experience and provides a personalization

with a login for frequent users, a management of old shopping lists, and a database of recipes which can

152

6.5. Tactical behaviors for adapting to and communicating with the user

Fig. 6.10.: User scanning a product using the bar code scanner at-
tached to the touch screen user interface

Fig. 6.11.: User using the touch screen while fol-
lowing the robot

automatically add products to the shopping list or which can find a recipe matching to the current list and

suggest additional items. Also, the work flow when following a shopping list is slightly different: The

InBOT-UI adds a product automatically to the list of shopped items after reaching the product (when the

user does not press “Cancel” in an corresponding dialogue), the bar code scanner is used to get information

on scanned products or to add additional products to the list of shopped items. The CR-UI adds products to

the list of shopped items when they have been scanned, only.

The various commands which can be given by the user are finally processed by an application logic and

then transformed into commands which can be sent to the strategic layer via the command interface. Events

received from the strategic layer are used to display information, to update the robot’s location on the map,

or to utter speech output.

6.5. Tactical behaviors for adapting to and communicating with the user

This section presents a set of explicit behaviors dedicated to HRI – in contrast to large parts of this chapter

where concepts and effects are described which emerge from a multitude of behaviors, the processing of

various data sources, and the overall architecture. The behaviors are analyzing the local situation and if

they generate actions, these are location-based. Thus, these behaviors extend the group of tactical behaviors

introduced in Chapter 4.5 “The tactical behaviors”. In addition to supporting the robot’s navigation the

scene analysis is also used to inform the robot’s user about certain circumstances relevant for him as well

as to generate social behaviors. Keeping the extent of this work in mind, the following behaviors are not

explained in all detail. There will only be a brief introduction on the functionality followed by an illustrating

sketch.

Three main classes of behaviors can be identified in the context of user interaction (UI):

• Informative UI-centered behaviors

• Adaptive UI-centered behaviors

• Hybrid UI-centered behaviors

The informative behaviors do not perform any motion action themselves but inform the user about certain

events (e.g. the robot’s path is blocked) or about the intentions of other behaviors which will result in

153

6. User Interaction

movements (e.g. re-planning due to a blocked topological link). The second class of behaviors generates

movement actions to adapt the robot’s behavior to the geometrical situation for user’s benefit, such as finding

a parking position at a product in a way that the robot is not blocking the product. Here no speech output

is uttered because these behaviors shall work subliminal without bothering the user. The hybrid behaviors

inform the user about certain events and explain the actions which are going to be performed. An example

could be a situation when the robot cannot detect the user anymore while moving together with him. Here

the robot will announce that it has lost the user and that it will start looking for him. Another quite frequent

example is a situation where the robot has to start driving towards and finally to drive past the user. In this

case the robot will utter a warning and wait a second for the user to react before starting to move.

TB: Look for Corners

Situation: The next goal point is not reachable by the robot in a direct path

Input: Goal point

Data used: Robot position, robot shape, obstacles (object database)

Objective: Generation of sub-goal points that lead the robot around obstacles and enable the

robot to avoid U-shaped obstacles / dead-ends.

Output: First sub-goal point that leads the robot around the obstacle, trigger for speech

output if the robot cannot find a path
This behavior was introduced when describing the navigation system in Chapter 4.5 “The tactical behav-

iors”. It triggers a speech output if the geometrical analysis of the area does not produce a suitable path.

TB: Inform about topological re-planning

Situation: It was detected that a topological area or link is blocked

Input: Information that the next area or link to pass is blocked from the corresponding

behavior (Chap. 4.5.5 “TB: Detection of Blocked Topological Links and Areas”

and 4.5.5 “TB: Generation of Virtual Topological Areas”)

Data used:
Objective: Informing the user about the re-planning of the route. If the user does not give

any command in the meantime, after five seconds the re-planning begins

Output: Event for the communication layer to trigger speech out: “Now way could be

found. Do you want to take over or shall I look for another one?”

154

6.5. Tactical behaviors for adapting to and communicating with the user

TB: Inform that the user is blocking the robot
Situation: The path is completely blocked and the user is part of the blockage

Input: Information that the area or link is blocked by the corresponding behaviors

(Chap. 4.5.5 “TB: Detection of Blocked Topological Links and Areas” and 4.5.5

“TB: Generation of Virtual Topological Areas”)), user’s position, target location

Data used: Object database

Objective: Stopping the robot and asking the user to free the path while showing the user

in which direction the robot intends to drive (by turning in the intended driving

direction). See Figure 6.12 for an illustration of the functionality.

Output: Event for the communication layer to trigger speech out: “You are blocking me!

Please stand aside.”

Temporary sub-goal with the current position of the robot and the orientation

towards the target.

Fig. 6.12.: The user (red circle with cross) is part of a blockage of the intended path of the robot (red line
towards green circle): the robot is not able to pass around the user without violating the social distance
(yellow circle). This is identified by the fact that the distance between the obstacles’ corners (blue circles)
to the yellow circle is smaller than the robot’s size.

TB: Inform that the that the robot will drive past the user

If the described situation is detected, the robot informs the user: “Watch out! I will drive around you” as

sketched in Figure 6.14 and shown in the video snapshots in Figure 6.15.

A new sub-goal is generated where the X/Y coordinates are on the robot’s current position and the ori-

entation points into the intended driving direction, which is acquired from the behavior for the geometric

obstacle avoidance (TB: LFC). This way the robot shows the user in which direction it intends to drive

around the user before starting to move. After few seconds this sub-goal is removed and the robot starts

moving to its intended target using the geometric obstacle avoidance to move around the user.

155

6. User Interaction

Situation: The user is located in the intended path of the robot, but there is still sufficient

free space to move around (see Fig. 6.13 in comparison to Fig. 6.12)

Input: User’s position, target location

Data used: Obejct database

Objective: Asking the user to free the path and showing the user in which direction the robot

intends to drive (around the user – by turning in the intended driving direction).

Starting to move after waiting a short period of time.

Output: Event for the communication layer to trigger speech out: “Watch out! I will drive

around you”.

Temporary sub-goal with the current position of the robot and the orientation

towards the next sub-goal point from the geometric obstacle handler (TB: LFC),

therefore, the next point on a path around the user.

Fig. 6.13.: Scene where the robot detects that the user is in
the intended path. The robot plans a path around the robot
ensuring a social distance (yellow circle).

Fig. 6.14.: Sketch of the concept: the robot informs the
user, waits for the user to make space, and then start
moving.

Fig. 6.15.: Video snapshots showing the social behavior: After being commanded to guide the user to a
product, the robot intends to move backwards. So the robot informs the user by uttering a warning and
pointing into the intended direction. While the robot is turning, the user moves to the side to let the
robot pass. Afterwards, the robot starts moving to the designated target and the user joins in. During the
experiments, the users were not told that the robot would behave like this but almost all participants acted
in a similar manner.

156

6.5. Tactical behaviors for adapting to and communicating with the user

TB: Take action because user is lost while guiding
Situation: The user is lost in Guiding Mode

Input: Last user position

Data used:
Objective: After few seconds move to the last position where the user has been seen

Output: Event for the communication layer to trigger speech out: “I have lost my user, I

will start searching for him”

Goal points identical to the last position of the user.

TB: Take action because user is lost while following
Situation: The user is lost in the Following Mode or Servoing Mode

Input: Last user positions

Data used: Occupancy grid, object database

Objective: Move to the last position where the user has been detected. If the current location

is (already) the last user position, identify occluded areas in which the user could

have disappeared and move to check these areas

Output: Event for the communication layer to trigger speech out: “I have lost my user, I

will start searching for him”

Goal points from which occluded areas can be seen

Fig. 6.16.: Left: Sketch of the behavior’s functionality: the user has been detected the last time at position one and has
therefore disappeared in one of the two areas the robot cannot see in (shaded in blue). The robot announces that it
has lost the user and starts moving to the positions 2 and 3 to look for the user.
Rigth: Screenshot of the MCAGUI showing the path of the user and his last position (blue zigzagged path with small
blue circles). The blue line indicates the estimated movement direction of the user and the large circle with the “+”
in the center is the actual user position which cannot be seen by the robot (the control system has been given the
on-board sensors’ information only). The dark green blobs mark the closest corners of the occluded areas and the
light green circles the resulting target points of the robot.

If the user is lost while operating in the Following Mode or Servoing Mode, the robot first moves to the

position where the user was seen last. If the user is not found again, the robot searches the object database

for obstacles in the close vicinity and identifies occluded areas in the occupancy grid (see Fig. 6.16 (left)

for a sketch and Fig. 6.16 (right) for the behavior in action as documented in the MCAGUI). The behavior

157

6. User Interaction

generates goal points from which the occluded areas can be seen. It starts moving towards the occluded

areas which fit to the estimated movement direction of the user best, while uttering a speech output.

6.6. Sharing and trading of control

After describing the individual components involved in HRI (e.g. modes, modalities, and behaviors), this

section will focus on the question how the user can control the robot in general – in the most convenient

way. The user does not want to bother keeping modes, modalities or path planning in mind. A very efficient

way of interaction between user and robot emerges from the combination of the individual components and

their organization in the control architecture: Control sharing – sharing instead of trading control.

A common way of controlling a robot is to give it a command and then to wait for the execution of the

task. Sometimes the robot gives feedback or asks for clarification or acknowledgement and the user answers.

This is performed in a clearly sequential manner.

But in complex situations this is not sufficient, especially when involving “first time” users or users

who have to concentrate on a task on their own. A customer in a supermarket will not be happy having

to explicitly control a robot all the time. One could think of examples like a user who is distracted by

some surprising event, stops and forgets ordering the guiding robot to wait: robot drives away. Or parents

shopping with a pram order the robot to follow. Someone moves in between them with his trolley, so the

robot is not able to follow anymore. The robot sometimes needs means to take initiative and even to ignore

or interrupt the last order to initiate necessary actions.

On the other hand, customers do not like the feeling of being driven by the robot (a statement heard by

participants who preferred the Following Mode over the Guiding Mode). There has to be a mutual giving

and taking of control to facilitate a convenient behavior which also prevails in complex situations.

A very important issue when talking about interacting with a service robot is the question of exerting

control simultaneously or only sequentially – the question of sharing or only trading the control as it was

named by T.B. Sheridan. When defining the requirements for the control system (Chap. 1.4.1 “R2 Human-

Robot Interaction capability: user interaction”) it was defined that the control system shall facilitate sharing

control between user and robot.

As discussed when motivating the control architecture, T.B. Sheridan described in the context of super-

visory control the phenomenon of control sharing where an operator (supervisor) exerts control on some

control variables of an automaton while the automaton itself has control over the remaining variables [147].

This contrasts the control trading where the user gives a command and the automaton executes the task

autonomously having full control on all control variables. As also has been discussed, P. Griffiths and R.B.

Gillespie discovered that putting the human and the automaton in a collective control loop improves the task

performance because the human is able to focus on his given task without exterior disturbances [65]. In

the shopping robot scenario the shopping process itself would be – according to the customers’ desire – the

human’s task which should not be disturbed by trying to maneuver the robot through a cluttered corridor or

finding the shortest way to a product. This control share is provided by the robot (based on the chosen mode

of operation).

158

6.6. Sharing and trading of control

When combined, all the described capabilities, behaviors, and modalities together generate a situation

where various environmental influences, including but not limited to the user (actively by tasks or commands

and passively by his presence), exercise control on the robot. Accordingly, all these influences such as the

robot’s task planning, the user’s behavior, and moving objects around the robot share control on the robot.

Fig. 6.17.: Sketch showing the control shares regarding modes and navigation components: The columns
indicate components of the navigation system (safety, local navigation, global navigation, and setting the
task). They are shaded in red when in the current mode the robot owns the control on this component,
in blue when the user is in charge. The less coupled the interaction in the mode of operation is the more
responsibility is with the robot, the more coupled the interaction, the more the user is in charge.

Depending on the individual modes of operation the interaction between robot and user is more or less

closely coupled. User and robot have to either share or trade the actual control. In the control sharing-case

the coupling of user and robot in the control allows the user to perceive the robot’s actions while allowing

him to contribute his own intentions simultaneously. This is most significant while operating in the Manual

Steering Mode or Servoing Mode but can also be recognized in the Following Mode and the Guiding Mode.

In the control trading case user and robot take turns in giving and executing commands without interaction

once a command is given. This can bee seen during Autonomous Mode for example after a “Meet me at”

command. Figure 6.17 shows which component of the navigation system is provided by the robot and the

user, respectively, depending of the current mode of operation. The basic safety behaviors are always active

and the Avoid Obstacle behaviors of the local navigation are almost always active (the only exception is

a special mode using joysticks or the MCAGUI available for operators, only). The higher and the more

abstract the navigation component, the more likely it is to be taken over by the human.

According to the classes of interaction depending on the available modalities, three major levels of control

sharing/trading can be recognized: force-based control sharing, observation-based control sharing, and

command-based control trading. Being able to include all modalities of user input is achieved by introducing

the user’s input into the top-down control data flow in an orthogonal manner: the corresponding data is fed

into the data flow on top of each layer of the control architecture – commands into the communication layer,

159

6. User Interaction

position-based data into the tactical layer, and force or velocity-based data into the reactive layer (see Figure

6.3 and Chapter 3.2.3 “Incorporation of control sharing” for further explanations).

The next sections are describing the control sharing for the three classes: force-based control sharing,

observation-based control sharing, and command-based control trading. These three sections are followed

by a description of the impact of the control sharing on the robot’s motion during the individual modes of

operation. The topic of control sharing is then concluded by the section describing experiments made with

the robot.

6.6.1. Force-based control sharing

While operating in Manual Steering Mode, the coupling between user and robot is the closest compared to

the other modes. The user exercises the highest degree of control on the robot. Usually the user has full

control, but in dangerous situations the obstacle avoidance assistant can generate repelling velocity set-point

vectors which are merged with the velocity set-point vector acquired from the force sensitive handle. If these

two vectors point in opposite directions they cancel each other out. The robot will stop before hitting the

obstacle. If they are orthogonal to each other they result in a combined movement: ahead in the direction the

user desires and to the side to avoid the obstacle (see Fig. 6.18). This way the obstacle is avoided in a curved

motion. The same mechanism counts for a gap finding assistant that eases the movement through narrow

gaps and for the path finding assistant that indicates the shortest path to a product by slight direction changes.

The user himself detects this self-control of the robot at once by feeling the feedback of the movement at

the handlebar of the robot. He can either give or override the robot.

Fig. 6.18.: The user is steering InBOT just as an ordinary shopping cart – casually with one hand only – using the
handle. Because steering with one hand only the user benefits from being supported by the reactive obstacle avoidance
behaviors. Left: picture of the scene from the user’s point of view. Right: Occupancy grid showing the robot’s view
on the scene. The influence on the robot’s actual motion is illustrated by the arrows. The green arrow is the velocity
set-point vector derived from the forces applied on the handle, the red one is the repelling vector from the obstacle
(AO v1), and finally the blue one is the resulting velocity set-point vector.

6.6.2. Observation-based control sharing

While operating in the Servoing Mode the coupling between user an robot is almost as close as in Manual

Steering Mode. The user’s movements are observed and fed into a closed loop control which generates the

motor commands. The user controls the direction and velocity of the robot indirectly. In both cases InBOT

has the opportunity to contribute the obstacle avoidance to be merged with the movement demands of the

user. Therefore, the robot can move around obstacles without forcing the user to control this action himself.

160

6.6. Sharing and trading of control

During the Following Mode the user is still dominant. He does not control the robot’s movements in detail

but he defines the general movement direction. The user walks normally and the robot follows the user in a

defined distance. The robot continuously observes the position changes of the user to be able to control this

distance autonomously. If the user is too far away it accelerates. But when the user comes closer, InBOT

stops and stands still until the user has a defined distance again to enabling the user to load articles into the

basket.

Even less coupled is the Guiding Mode. Here the robot performs a task such as moving to a given product

self-dependently. It chooses the shortest path and generates motor commands according to goal directness

and repelling influences from the obstacle avoidance. The user only controls the actual speed of the robot

indirectly by his movements: Due to the demand that InBOT shall guide the user, it again observes the

distance to the user. If the user comes too close the robot accelerates, if he gets too far away, the robot

decelerates. Another possibility for the robot to take a larger share of control in this mode is to decelerate

when trying to initiate a communication with the user, e.g. informing him about a product on the shopping

list or special offers. These robot body movements to assist communication are presented in the collaborative

work [78] together with TU Vienna and KTH Stockholm. In the context of initiating dialogues the field of

“mixed-initiative” should be kept in mind as well, which is also of high relevance when talking about human

robot interaction (see [21] for some own thoughts on mixed-initiative, human and robot responses, and time

constraints as well as [69] for a collection of articles).

6.6.3. Command-based control trading

The most decoupled interaction takes place in the Autonomous Mode. Here the robot performs a given task

completely autonomous. The user is restricted to give a command and to relay on the robot’s ability to

perform the task to his satisfaction. His only method of interfering is to cancel the task or to interrupt it with

a new one. The execution of a task is completely under the control of the robot. User and robot take turns

in giving and executing commands and therefore trade the actual control.

161

6. User Interaction

6.6.4. Impact of control sharing while operating in the individual modes

This final section on the concept of control sharing describes the impact on the motion of the robot for each

individual mode of operation. A sketch of the flow of control between robot and user is given in Fig. 6.19,

data from experiments will be given next section.

In the top left part of the figure, the path of the robot around an obstacle is sketched, beginning at the

left-hand side. The area shaded in red is the area where the robot will try to increase its control share, the

area shaded in blue where the robot will release some of the control. In the remaining five parts of the

figure, the individual flows of control are illustrated for the different modes of operation: the user’s share in

blue, the robot’s share in red. In the first case the user simply steers the robot around the box, the control

is totally with the user. In the second case the user steers the robot towards a target. When approaching the

box the robot partially takes over the control to assist the user in moving around the box. Third the user

orders the robot to follow him. The user moves to a target and the robot tries continuously to move to the

user, so implicitly the user controls the movement of the robot. When approaching the box the robot ceases

moving to the user only but takes the responsibility to move around the box autonomously. In the last two

cases the robot is ordered to move to a target location which is performed self-dependent, with and without

controlling the distance to the user.

This graphs illustrate how the control sharing is intended to work. In comparison, the subsequent section

discussing the experiments presents a similar figure, showing the actual exerted control shares during the

experiments.

Fig. 6.19.: Concept of control sharing in he individual modes. Top left part: The robot moves from the left
around an obstacle to a target position on the right. The control shares of robot and user are illustrated in
the remaining five parts of the figure for the individual modes of operation: the user’s share is marked in
blue, the robot’s share in red. The vertical axis is the amount of control the individual share contributes
in percent, the horizontal axis represents the time or the distance driven, respectively. The area shaded in
red highlights the situation when the robot will demand more control, the area shaded in blue the situation
when the robot will release some control. The distance to the user in the Guiding Mode is assumed to be
invariant.

6.7. Experiments

After introducing the individual components involved in HRI and the concept of control sharing which

emerges from the components in conjunction with the control architecture, this section presents the outcome

162

6.7. Experiments

of a series of experiments which was conducted involving users to put the HRI capabilities to trial. First, the

performance of the implementation of the control sharing will be illustrated by means of two experiments,

and afterwards general findings and the results from surveys will be presented.

6.7.1. Experimental evaluation of control sharing and control trading

This section demonstrates the implemented concept of control sharing in action. Two of the experiments

are referenced here in detail. The first one has been conducted with the robot InBOT and its user only, the

second much more complex one involved additional persons with shopping carts. Both experiments will be

accompanied by a sketch showing the individual control shares of robot and user changing over the time.

The control shares of robot and user are calculated as follows: The velocity set-point vectors of all motion

behaviors are summed up in the two classes: user and robot. The task-oriented ones count for the robot

(guiding) or for the user (following). The manual steering vector counts always for the user and the obstacle

avoidance behaviors always count for the robot.

163

6. User Interaction

Experiment with InBOT and user: This paragraph presents an extract from an experiment involving

the robot InBOT and its user. The following text describes the user’s and the robot’s actions. The text is

accompanied by two figures: figure 6.20 shows the map of the mock-up shop with obstacles, products, and

the paths taken by robot and user. The user was tracked using the intelligent environment (see Annex C.3).

Figure 6.21 shows the control shares of user and robot during the experiment for each mode of operation.

The user is asked to pick six products (indicated by the Arabic numerals) in a given order and using a

given mode of operation. The length of this shopping run adds up to 60m. The mode to be used is indicated

by the Roman numerals: I for guiding, II for following, and III for manual steering. Special areas of interest

– indicated by the letters – are highlighted as well. The user starts (A), ordering the robot to guide him to the

products (1) and (3). On the way to (3) he recognizes the second product (2). The user diverges and goes to

(2) while the (guiding) robot stops and waits at (B). The user takes the product and finally continues towards

(3). When the user is again close enough to the robot, the robot proceeds guiding the user to (3). After

taking product (3), the user orders the robot to follow him and heads for product (4) and (5). He crosses the

hall with the robot following him. At (D) the robot cannot follow the user due to obstacles and waits for the

user to return. When the user returns, they both move around a corner and a short time later around some

obstacles (E). Eventually, the user stops at product (5). After taking the product, the user grabs the force

sensitive handle and manually steers the robot back to to product (6), and then through a narrow door (F)

towards the check out counter (G). The user – by order – almost hits the corner in front of the counter and

then the counter itself, but the obstacle assistant clears the situation.

Looking at the control shares (Fig. 6.21) one notices that during the Guiding Mode part the robot is in

charge until the user stops at (B). The control shifts to the user and the robots slows down. After the user

proceeds, the control shifts back to the robot which proceeds as well. In the Following Mode part the control

is with the user leading the robot like having a virtual leash. At (D) and (E) the robot is confronted with

obstacles. Thus, it demands control to avoid them. In the last part (Manual Steering Mode), the control is

in general with the user until he tries to pass a narrow door (F) or steers the robot into the checkout counter

(G). Here again, the robot demands control to solve the situation.

Summarizing, it can be stated that the task was performed successfully and the control sharing enabled

the robot to cope with the challenges of the task.

164

6.7. Experiments

Fig. 6.20.: Map of the mock-up supermarket section with shelves marked in light blue, obstacles in grey,
and the products to be taken with Arabic numbers. The paths of the robot (red) and the user (blue) start at
(A) and end at the checkout counter (G). The modes used are indicated by I, II, III for guiding, following
and manual steering, respectively. In the Manual Steering Mode, the user is always directly behind the
robot, therefore no blue line is plotted here. Additionally, special areas of interest are marked with letters.
Top left a small section of the shelves can be seen.

Fig. 6.21.: Diagram showing the control shares of user (dark blue) and robot (red). The velocity of the
robot (yellow) and the distance between user and robot (black). In the first part (Guiding Mode) the
control is with the robot as long as the distance between robot and user is small enough. When the
distance rises (the user stops at (B)) the control shifts to the user, slowing down the robot (most of the
time control and velocity have the same value, hence, the yellow and red lines overlay each other). In
the second part (Following Mode) the control is with the user until the robot senses a threat by obstacles
((D), (E)). Here the robot takes control to avoid the imminent collisions, resulting in some variances of
the robots velocity and distance to the user. In the final part (Manual Steering Mode) it is quite similar:
the user has the majority of the control until approaching and finally passing a narrow door (F) or coming
too close to an obstacle (G). Here the robot again takes over a larger control share to slow down and to
change the direction of the motion.

165

6. User Interaction

Experiment with InBOT user, and other shoppers: An extract of the second experiment referenced

here is shown in Figure 6.22 – again accompanied by a corresponding graph of the control shares in Figure

6.23.

This experiment has been much more populated, and so the figure displaying it is much more chaotic,

too, showing the paths of several objects. Robot and user start at the bottom right corner. The user is

instructed to get the products (1) to (5) in the following modes: 1: (G)uiding, 2: (F)ollowing, 3: (F), 4: (G),

and 5: (F). During these tasks, three other – particularly reckless – shoppers (A), (B), and (C), operating

ordinary shopping carts, cross the path of InBOT, forcing an reaction. The other shopping carts had actually

been ETrolley and thus had an self-localization system on their own. This position information has been

used during this test as the focus was on the usability and on the navigation system (especially for avoiding

moving objects), not on the object tracking system. The user has been tracked using the user tracking with

onboard sensors of LAAS (see. Annex C.2).

Again, the robot succeeded in all situations, even when impaired by its user and threatened by approaching

shopping trolleys and imminent collisions. The control was shifted smoothly between robot and user so that

the user did not have to be bothered with saving the robot from collisions. When the situations were solved,

the robot – just as intended – automatically hands back the control to the user.

6.7.2. Evaluation of InBOT ’s behavior by potential users

The section starts with general findings and evaluations of components from an HRI point of view. After-

wards, the results of surveys conducted with the users after the tests will be summarized.

General and technological findings: A general finding is that it is convenient for the user to have

means of remotely commanding the robot – thus not having to walk to the touch screen all the time. Besides

the obvious fact, that a remote method will reduce the effort of the user, it turned out that a touch screen

interface is hard to use while the robot is driving – even if only driving slowly at a constant speed. Users

tend to misjudge to position of the buttons and have a tendency to stop walking while pressing the button

which increases the mentioned miss-judgment and makes them run after the robot in case of a failure. But

the remote methods have their drawbacks as well:

• A speech recognition system is subject to robustness issues in such a noisy environment and with

users which are not trained to pronounce the words “correctly” or even using local slang.

• Gesture recognition was at the time the tests have been conducted not sufficiently sophisticated to per-

form in a colorful environment with changing light conditions while robot and user are moving. From

the sensors’ perspective, recently there were very promising developments by the Kinect 3D sensor

and the corresponding algorithms, which nowadays might have changed the picture significantly.

• Another method for remotely controlling the robot is using actually a (radio) remote control – for

example a small GUI on a smartphone as was used in early tests (see Figure 6.24). The main drawback

here is that the user needs a free hand to operate the smartphone. This cannot be done by a user who

is carrying a bunch of products and wants to call the robot. Additionally, the usage of a smartphone

GUI is more time consuming (unlocking, etc.) than just verbally telling the robot what to do. And

finally, the WiFi-based localization of mobile devices can still be of bad quality.

166

6.7. Experiments

Fig. 6.22.: Shopping run with other shoppers: the robot’s path is marked in red, the user’s path in blue,
and the other carts’ path using the dotted lines with arrows showing the driving direction. Critical areas
are indicated by flash symbols. InBOT and user start in the lower right corner (grey rectangle and blue
dot). The user is guided to the first product (1) while avoiding the moving shopping cart (A) with a strong
evasive motion to the left at the yellow flash symbol. After following to the next two products (2) and
(3), the robot guides the user to product (4) and avoids the crossing cart B by slowing down and letting it
pass. The robot continues by aligning itself behind the cart (orange flashes). While following the user to
the final product (5), the robot’s path is cut by shopping cart (C). Again, the robot waits and lets the cart
pass (red flash).

Fig. 6.23.: Control shares for a short sequence at the end of the shopping run: while following the user
from (4) to (5) in Following Mode, the user exercises full control on the robot (control share of user:
blue), but when approached by the cart (C), the robot takes over a share of control to avoid the collision
(control share of robot: red) resulting in a direction change and temporarily stopping of the robot (velocity
of robot: yellow). Afterwards, the control is handed back and the robot starts moving again.

167

6. User Interaction

Fig. 6.24.: Commanding InBOT using a smartphone GUI. The smartphone is localized using the WiFi network. The
GUI is implemented by the MCAGUI and provides the basic functionalities such as “Stop”, “Come to me”, or
“Continue”.

From a technical point of view, a general result of the tests is that neither the intelligent environment nor

the user tracking with onboard sensors is an optimal concept for the acquisition of user information. The

intelligent environment provides much more robust and accurate information but it is subject to a time lag

when transferring the information via WiFi network, especially when the WiFi network is highly saturated.

The user tracking with onboard sensors in contrast provides almost real-time data but the field of view is

very limited, the user is occluded frequently and the distance estimation is less good for many reasons, such

as a changing perspective of the robot, own motion of the robot, changing light conditions, especially when

the robot is turning, and so forth. According to these findings a fusion of both methods would be desirable.

Survey following the user experiments: Two shopping experiments have been conducted with un-

trained participants recruited “from the street”. The experiments have been taken place at FZI in Karlsruhe

in collaboration with TU Vienna and KTH Stockholm, utilizing the integrated components CR-UI and user

tracking with onboard sensors. This section summarizes the outcome from a human factors’ point of view,

technical results have been summarized in Chapter 4 “BBC: Navigation, Obstacle Avoidance and Safety”.

The first experiment involved 20 users each with 10 meters to travel and 6 products to get with a special

focus to the shopping list assistant triggered by the CR-UI. The second experiment involved 12 participants

acting as the robot’s users, for each user a accumulated distance of approx. 60 meters to travel, and the

picking of 12 products (Fig.6.25). The participants have initially been given a brief introduction to the robot,

an explanation of their task, and a shopping list on a sheet of paper. Interestingly, most of the participants

never let go of the sheet of paper, even though they entered the shopping list into the management system

on the touch screen in the beginning.

The participants have been asked to answer a questionnaire in the end. The questions had to be answered

in a scale of 1(worst) to 5(best) points – the neutral rating is 3 points. The rating quoted in this section is the

average points (p) given by the participants.

The 32 randomly picked users were mostly students (77%) with mixed background. The others were

administrative employees. The gender mix was 70% male to 30% female. The most noticeably control-

related results are summarized:

• Most participants found it easy to get used to the robot (4.6p) proving that the goal to implement an

intuitive control system and user interface was successful.

168

6.7. Experiments

Fig. 6.25.: The user test: The top sketch shows the intended path of the robot and gives some general figures. The
MCAGUI screenshot (bottom left) shows the path of the robot during for one exemplary user and the picture shows
a user steering the robot InBOT.

• The overall rating for the robot’s controllability and usability got 3.4 points each and the “feeling of

being able to always control the robot” of 3.6p shows us that here is still room for improvements but

no major fault.

• Only 3 users found it “hard” (2p) or “very hard” (1p) to actually control the robot.

• The guiding functionality was found to be very useful by the participants (4.6p).

• Finally, only 3 users said they did not feel supported well (1p or 2p) and all but two users found the

robot to be a very interesting device.

169

7. Multi-Robot Coordination

This chapter completes the description of the developed control system. It shows that the designed behavior-

based architecture is able to implement behaviors for multi-robot coordination.

In the context of the supermarket scenario there can be found two types of multi-robot behaviors. The

implicit ones like solving deadlocks or traffic management are hardly recognized by the user. In contrast,

the explicit ones have to be performed in cooperation with the user or are commanded by the the user.

These are for example queuing up or following each other, building virtual trains. In this chapter some

exemplary behaviors for the two groups are introduced. It is assumed that only few robots will be operating

in a supermarket at the same time, hence, the focus will be on the explicit behaviors as the implicit ones

are mainly needed for coordinating large numbers of robots. But even with few robot operating at the same

time, these have to avoid colliding with each other and have to solve deadlocks at intersections. Therefore,

these behaviors will be introduced as well, but not to the extent as it has been done for example by R. Regele

[129] who developed a distributed algorithm for multi-robot path planning. The robots do not necessarily

have to be of the same type – in fact very different robots have been used here. In particular ETrolley (see

Appendix B.2) is not a real robot at all. It cannot take actions so the other robots have always to react to it,

which has to be considered when resolving deadlocks and avoiding collisions.

Scope of this chapter: This chapter aims at demonstrating that the designed behavior-based control

system is able to handle multi-robot situations, thus, the introduced behaviors are meant only as examples.

They are only designed to the extent necessary to coordinate few robots in one place which do not have to

actually cooperate. The behaviors are integrated into the Behavior Network by using the fusion behaviors

and can be substituted easily. In contrast to the behaviors of the navigation system which are inspired by

human motion patterns, the multi-robot coordination behaviors are directly focused on the application and

thus not biologically inspired (i.e. flocks of bird or fish). One computer is chosen as moderator of the multi-

robot system. It manages the data exchange and has some data processing capabilities, but the decisions are

taken by the individual robots in an de-central manner.

Organization of this chapter: The first section describes the data handling between the robots which

is a fundamental component for multi-robot coordination. The next three sections describe three types of

behaviors: Sec. 7.2 the obviously necessary behaviors for collision avoidance and path negotiations among

the robots, Sec. 7.3 an assistance behavior which enables the robots to build queues (e.g. at the check out

counter or self service counters) freeing the user from the burden to stay with the robot all the time, and Sec.

7.4 a behavior for building virtual trains of robots – a set of robots follows a leading robot (almost) on the

same path.

171

7. Multi-Robot Coordination

7.1. Sharing of the local world model

To enable multi-robot behaviors, the individual robots need to have access to the other robots’ data. One

robot (or any other PC in the same WiFi network) is selected as central moderator (the reader is kindly

reminded of Figure 3.6 in Chapter 3.3.1). All robots register themselves with some data on the type of the

robot when their control programs start up. In return, each robot receives an unique ID and a fixed basic

priority. This priority is anti-proportional to the robot’s degree of autonomy – i.e. giving a high priority

value to robots with a low degree of autonomy. After connecting to the moderator, each robot periodically

sends parts of its local world model to the moderator and downloads the same parts of the other robots’ local

world models and their corresponding IDs. Cycle times of 0.2 to 0.5 Seconds have given suitable results.

The transmitted parts are:

• Current position, orientation and velocity, sparse list of past poses

• Current goal

• Queue the robot is listed in as well current position in queue

• List of moving objects and corresponding characteristics

• Difference between the current topological model to the initial topological model of the environment

• Current mode of operation

The structures of the local world model containing large amounts of data are not shared (occupancy grid

map, laser scanner measurements, list of static obstacles, and so forth).

7.2. Multi-robot path arranging behaviors (RB, TB)

To avoid collisions between robots and to solve deadlock situations at intersections or bottlenecks, the robots

need to arrange their paths among each other. Basically, the same mechanism is used as for the handling of

moving objects described earlier: the robots transmit their position and velocity, thus, the robots can treat

each other as moving objects with a given movement model.

To avoid deadlocks, the question which robot has to avoid which one is solved as follows: For each robot

a individual and unique priority PRoboti is calculated:

PRoboti = MRoboti +BRoboti +
IDRoboti

IDMax
(7.1)

(7.2)
With MRoboti equal to the current mode of operation: (4: Manual Steering Mode, 3: Following Mode

and Servoing Mode, 2: Guiding Mode, 1: Autonomous Mode) and BRoboti the basic priority, expressing the

possibilities of mode changes. The robots’ ID is used only to generate unique values in case of two robots

operating in the same mode. Obviously, more sophisticated models involving the free room around the

robots can be applied here for better results, instead of using only the level of autonomy.

Always the robot with the lower priority value has to avoid the one with the higher value. In the shopping

scenario for example ETrolley as “non-robot” can only operate in the Manual Steering Mode and, thus, never

has to avoid other robots – simply because it is not able to.

172

7.3. TB: Queueing up

The implementation is straight-forward: the behaviors for avoiding collisions with moving objects de-

scribed earlier take those robots into account, which have a higher priority value than the robot they are

executed on.

7.3. TB: Queueing up

For the places in the shop where queuing up robots is desired like at the checkout counters, a queue data

structure is shared between the robots and the moderator which contains the IDs of all queued robots. This

structure is exchanged between the individual robots by WiFi. The structures are used to determine the

robots’ individual position in the queue. To request a position in the queue, a message “QUEUE” to the

moderator is defined, which adds the robot to the specific queue. When the robot leaves the queue it sends a

message “DEQUEUE” to the moderator, and then it is deleted from the queue. The queue position number

of the succeeding robots is decreased, accordingly. Besides sending the messages, the tactical behavior

generates a local goal point at the robot’s designated waiting position.

In Figure 7.1 the green robot wants to queue up at the checkout counter. It sends the “QUEUE” message

and receives its position in the queue. This position is used to calculate the goal point, where the robot

will drive to. When the robot reaches this goal position it waits until one of the robots in front of it leaves

the queue. When in this example the first robot leaves the queue, the following robots are assigned a new

position and they calculate new goal points.

Fig. 7.1.: Queuing up at the check out counter (in simulation, only, due to a lack of available robots): the
available queue positions are marked with blue circles (the line indicates the fixed orientation) and the
robots which are already part of the queue are numbered. From left to right: 1: two robots are waiting,
two positions are available, and one robot is approaching the queue; 2: the robot added itself to the
queue; 3: a fourth robot approaches the queue; 4: the first robot left the queue freeing its position. The
succeeding robot then leaves its position to move to the first one and so forth.

173

7. Multi-Robot Coordination

7.4. TB: Virtual train

In addition to following the user, the ordinary following behavior can also be used to follow other robots. It

gives the robot quite some freedom to decide how exactly to follow the target. But in multi-robot scenarios

is might be of interest to follow a target more precisely. The tactical behavior Virtual Train lets the robot

follow the target on the path it has taken (as long as the obstacle avoidance behaviors do not intervene). This

might be useful only in the ordinary shopping scenario for maintenance tasks. But in related applications it

can be indeed useful even for the customers: thinking for example of hardware stores which are not far from

the supermarket scenario where people tend to buy larger amounts of goods. An additional benefit of this

behavior is that in the future other devices can be coupled to the shopping robots: for example an automatic

wheel chair would be able to lead or follow the robot.

Fig. 7.2.: The virtual train concept.
Left: The Virtual Train concept: the (L)eading robot (blue) communicates a trail of past positions (red dots). The
following robot (green) generates target points on this trail to follow the first one on the same path. The target has
to have a distance of dLMin > rL from the leader and should be as far as possible in front of the (F)ollower, but not
farther away than rF .
Right: Screenshot showing a ordinary case of one robot following the other on the communicated trail (red dots).

In order to enable other robots to follow, each robot generates a sparse trail of past positions in a certain

interval and communicates this trail to the other robots. The following robot follows this trail. As the

behavior is a tactical behavior, it operates based on goal positions which are then executed by the reactive

behaviors.

When a robot is ordered to build a virtual train with the other one, the trail of the (L)eader is processed

by the (F)ollower. Two special points on the trail are identified (see Fig. 7.2, left): First this is the furthest

point on the trail which the F may moved to. It has to be further away from L than a defined safety distance

rL. The trail’s points within a distance from L smaller than rL are marked as invalid and can’t be chosen

174

7.4. TB: Virtual train

as goal points. So the following robot always keeps the distance to the leading robot. The second one is a

point on the trail close to F, which is used as interim goal point for F on its way to the final goal point. It is

as far towards L as possible, but has to be closer to F than a certain activation distance rF . Additionally, a

smoother orientation set-point can be generated by taking the average orientation from the next trail point

and a point on the trail further ahead. Fig. 7.2 (right) shows the concept in application.

Fig. 7.3.: Left: Special situation regarding the virtual train concept: the leader turns around and needs space to do so.
This way the goal for the follower is virtually pushed behind it, letting the follower retreat from the leader and freeing
the path.
Right: The green robot is taking a shortcut to the other side of the trail once the circle rF intersects with the trail.
This way the robot omits moving a misleading indirection.

When L decides to move back on (almost) the same path, it can deactivate trail points which F has already

reached. Due to the deactivated points near L, the candidates for F’s next goal are pushed backwards on

the trail and eventually they even move behind F. This way L is able to virtually push F back on the path

it came. Figure 7.3 (left) shows a sketch and 7.4 an example for “the backwards driving” of a virtual train

with ETrolley leading (the blue robot) and InBOT following (the green robot). Using this behavior, F cannot

block L or even trap L in a dead end.

The points on the trail are always prioritized by their age, meaning that newer points are favored. Thus,

the newest point inside the circle with the radius rF is selected as the next goal point. This comes in handy

when the target robot moves back close by the trail traveled earlier. The follower is able to take a shortcut as

depicted Figure 7.3 (right). This is of special importance when earlier L was virtually pushing F backwards.

Finally, Figure 7.5 shows an example from a simulation with a virtual train consisting of 5 robots.

175

7. Multi-Robot Coordination

Fig. 7.4.: Forming a virtual train: In this sequence the blue robot is controlled manually (in fact it is
ETrolley) and the green one is ordered to follow it shortly after it is passed by the blue one (A). After
receiving the order the green robot moves on the path taken by the blue robot previously (red marks).
In (B) the blue robot drives into a narrow passage, followed by the green robot. Later in (C) it drives
backwards out of the passage virtually “pushing” the green robot back on the path it came. Finally (D)
shows again the green robot following the path of the blue one. The blue line marks the path of the green
robot. It shows how the robot was pushed back and that it later on follows the blue robot again without
making the indirection of driving into the narrow corridor (even though the path of the blue one leads
there).

Fig. 7.5.: Forming a virtual train: 5 robots are starting tightly packed with the order to build a virtual train.
As they start moving they each wait for their preceding robot to gain a defined distance before starting
themselves.

176

8. Conclusion, Discussion, and Open Issues

This chapter concludes this thesis. First of all, the work presented in the preceding chapters is briefly

summarized. Then it is described how the control architecture has been implemented on several robot

systems in addition to the implementation on InBOT, demonstrating the generalized character of the control.

In Section 8.3 several aspects of the control system and its achievements are discussed. The section is

followed by a summary of open scientific issues (Sec. 8.4) and finally by a list of general thoughts to be

addressed when rolling out the system for the public (Sec. 8.5).

8.1. Summary

This thesis demonstrates that a service robot’s control system based on the biologically motivated Behavior

Networks performs well in complex scenarios involving a dynamic environment and human robot interac-

tion, while providing significant benefits in orchestrating existing abilities and integrating new functional-

ities. The control system is aimed at scenarios where a robot is able to – and has to – navigate freely and

where only basic environmental knowledge, i.e. no up-to-date global metric map, is available.

During the development of the behavior-based control system, three major issues were addressed:

• A hierarchical control architecture has been developed which combines the biologically inspired Be-

havior Networks in the lower layers with planners in the upper one. The main inspiration for the

architecture as well as for the navigation system is derived from human motion patterns.

• A navigation system has been developed which is able to cope with highly dynamic environments.

It consists of reactive behaviors for safety and collision avoidance, a geometrical scene analysis, be-

haviors dedicated to handling moving obstacles, and finally a topological navigation which facilitates

navigating without relying on a global metric map.

• To tackle the chosen application – shopping assistance in a supermarket – the three core layers of the

general control system are framed by the two application- and platform-specific layers, respectively.

These manage the interaction with the robot’s user on the one hand and control the robot platform

InBOT on the other hand which was designed in the course of this thesis. Orthogonal to the usual

top-down control data flow, the concept of control sharing has been incorporated into the architecture

to facilitate cooperative task execution of robot and user.

As a first step, high-level requirement for the control system were defined, partially based on a survey

as described in Chapter 1.3.3. These span the field of human-robot interaction as well as the core topics

of navigation and localization. The high-level requirements define the main characteristics of the control

system and the abilities of the robot e.g. the available modes of operation, the user interface, the necessity

of control sharing, as well as the need to be independent from a global metric map.

177

8. Conclusion, Discussion, and Open Issues

The next step was to define the control architecture (Chap. 3). It is inspired by human motion behaviors

as modeled by J.P. Hoogendoorn, the biologically inspired Behavior Networks by J. Albiez, and the concept

of control sharing described by T.B. Sheridan. Based on these three sources of influence and the eight high-

level requirements a hierarchical architecture was designed that provides a generalized control system in

the three middle layers (strategic, tactical, and reactive layer). These are framed by the application-specific

communication layer on top and the platform-specific Hardware Abstraction Layer below. Interfaces have

been defined to facilitate substituting individual layers depending on the application’s needs. Each of the

three core layers uses a common “language” shared by all behavior modules contained. This shall ease

hooking in new modules as well as incorporating input orthogonally to the usual top-down control data flow

– a requirement defined for the implementation of control sharing.

The navigation system has been designed following the definition of the architecture (Chapters 4, 5, and

7). It consists of two parts: firstly the global navigation in the strategic layer based on a topological navi-

gation and secondly the local navigation in the tactical and reactive layer based on the Behavior Networks.

Again inspired by human motion patterns, the behaviors making up the more deliberative tactical layer per-

form a geometrical scene analysis and adapt the commands from the upper layer to the real environment.

Additionally, the multi-robot coordination mostly takes place here and a spatio-temporal planner provides

mid-term paths to avoid collisions with moving obstacles. The behaviors of the reactive layer are responsi-

ble for avoiding collisions with static and moving obstacles as well as adapting the robot’s behavior to the

user, thus, for instance enabling following and guiding behaviors. These behavior modules are only working

on a limited amount of data to grant fast reaction times. This in particular counts for the safety behaviors at

the very bottom of the hierarchy.

The human-robot interaction capabilities of the system result from a combination of some dedicated

behaviors and the multimodal user interface, as well as from the design of the control architecture itself.

The available levels of autonomy range from full manual control to full autonomy and are provided by

the modes of operation: the Autonomous, Guiding, Following, Servoing, and finally the Manual Steering

Mode. While operating in all but the Autonomous Mode, user and control system are able to exert control

simultaneously and with equal priority, facilitating true control sharing. During the Autonomous Mode

only the traditional control trading via the communication layer’s user interface is available. In addition to

the human-robot interaction, the system possesses basic features in multi-robot coordination like collision

avoidance, building queues and virtual trains.

The control system has been evaluated in several tests. These were performed for each individual com-

ponent, as well as for the complete system even involving users recruited “from the street”.

8.2. Implementation on multiple robots

As discussed in the previous chapters, the control system and its individual behaviors have been tested and

evaluated on the robot InBOT.

In parallel, parts of the control system are being, or have been, integrated in other robots to offer their

specific functionality to the robot or their specific application. The robot systems and the individual contri-

bution to their control will be summarized in the next sections, an introduction to a selection of the robots

themselves can be found in Annex B. At this point I want to take the opportunity to thank each development

team for being allowed to present their systems here.

178

8.2. Implementation on multiple robots

8.2.1. Implementation on InBOT

The complete control system as it has been described in this thesis was implemented on the robot InBOT.

The software implemented in the MCA2 framework includes 18 groups and 94 modules including 32 be-

havior modules, the remaining modules are auxiliary modules aimed at coordination, data processing, and

so forth. Additional Hardware Abstraction Layers have been implemented for ETrolley and the CommRob

Demonstrator (CoRoD). Two alternative versions of communication layers (including the multimodal user

interfaces) have been integrated, one developed in the course of this thesis and the other one by TU Vienna

[87]. Furthermore, two alternative systems for tracking the robot’s user have been integrated, one developed

in the course of this thesis using environmental cameras and optional laser range finders and the other one

by LAAS CNRS using on-board cameras [59]. Figure 8.1 gives a brief overview of the main components.

Fig. 8.1.: The control system as it has been discussed throughout this thesis has been implemented on the robot
InBOT. In addition to the components developed, several alternative “third party” components have been inte-
grated [59][87][144].

8.2.2. Implementation on ETrolley

The system ETrolley (Fig. 8.2) is not actually a robot as it lacks the motors to act. It is a shopping assistance

device which is based on an ordinary shopping cart and implements the passive components of InBOT such

as, but not limited to, the self-localization, user interface, shopping list management, and so forth. More

information on the system can be found in Annex B.2. Obviously, the higher layers have a larger contribution

here, the reactive layer has been omitted completely.

179

8. Conclusion, Discussion, and Open Issues

Fig. 8.2.: The system ETrolley incorporates all components of InBOT which do not depend on the drive system, for
example the shopping list management and navigation assistance. It is equipped with a touch screen, a PC hidden in
a crate, the measurement wheels for odometry, and the RFID reader. Two versions have been set up: one for tests in
the FZI labs (left) and one reduced version for tests in a ICA Maxi supermarket in Stockholm (right, thanks to Helge
Hüttenrauch for this opportunity).

8.2.3. Implementation on Odete

The robot Odete (Fig. 8.3) performs transportation tasks. It is based on a differential drive and uses a planar

laser range finder in the front. Before the robot InBOT was finished, Odete was used as the development

platform for the Behavior-Based Control. For example the first version of the Avoid Obstacle behavior was

first developed on Odete and later ported to the holonomic InBOT.

Fig. 8.3.: The robot Odete. Left: Passing a narrow and bent corridor. Right: the control architecture showing the
tactical and reactive components of this thesis and the integrated application-specific components which have been
present already at IDS [144] (see Annex C.6 and C.7 for a description).

As the main method of instructing the robot is network-based, and the transportation tasks are performed

based on a graph, only the tactical and reactive layers have been applied – the already present programs for

the (global) graph-based navigation and the logistics task management [144] were kept (see Annex C.6 and

180

8.2. Implementation on multiple robots

C.7). The application-specific part is therefore extended to the global navigation.

Odete shows that the control system is able to operate with different programs contributing the global

navigation and can work with different drive systems (but still a module is needed that transforms the 3D

vector into a 2D one, consisting of the forward velocity and a circle’s radius), and does not depend on a

complete occupancy map – Odete’s FOV is to the front, only.

8.2.4. Implementation on LAURON

The walking robot LAURON1 (Fig. 8.4) – or more precisely the robots – have a long history at FZI, reaching

back to 1992. The gait is inspired by the stick insect and implemented by the Behavior Networks of J. Albiez

[3]. For the navigation and the task planning of the system several approaches were used (e.g. [56], [179]).

Fig. 8.4.: On the walking robot LAURON the components for detecting and executing Force Commands have been
integrated (left). The whole robot acts as a force sensitive device here, measuring the forces applied to the body in
three planes and around torques relative to three axis [62] (right).

Currently, only the components for classifying and executing the Force Commands have been imple-

mented on LAURON to provide local HRI capabilities – see [62] for more details. Here the whole robot

acts as a force sensitive device by measuring the force applied on its body based on the motor current of the

joints. One could think of applications like letting the robot explore the environment, searching for specific

objects, and then leading a human to the target object. Then the human has to interact with the robot (Fig.

8.4(left)).

As the FZI team has been selected to participate in the DLR SpaceBot Cup with LAURON (or LAUROPE

as it is called in this context), there is the strong possibility that components of the presented control system

will also be applied here. Currently, the design of the architecture is still in an early stage.

8.2.5. Implementation on CityPod

The robot CityPod2 is based on a Segway platform (Fig. 8.5 (left)). It can be steered by its driver while being

assisted with collision avoidance functionalities. Additionally, it can navigate autonomously to a user who

called it using a mobile device. The reactive and tactical parts of the control system utilize the same modules

1Developed at FZI/IDS by A. Rönnau and G. Heppner
2Developed at FZI/TKS by F.Steinhardt

181

8. Conclusion, Discussion, and Open Issues

as presented in this thesis (Fig. 8.5 (right)): The behaviors for avoiding static and moving obstacles as well

as the predictive obstacle handling (LookForCorners). The Behavior Network is extended by a behavior to

enable the robot to flow within groups of people, the behavior Flock [155], which would also be beneficial

in crowded situations on InBOT.

Fig. 8.5.: The differential driven robot CityPod is built based on a Segway platform (left). The driver can call the robot
and is assisted with obstacle avoidance and navigation functionalities while driving. The control system incorporates
reactive and tactical behaviors for avoiding collisions with static and moving obstacles. A highlight is the ability
to move in dense crowds using the Flock behavior (right). Figures by courtesy of CityPod’s lead developer, Florian
Steinhardt.

8.2.6. Implementation on HoLLiE

HoLLiE3 (Fig. 8.6 (left)) is a semi-humanoid robot: an upper body with a head and two arms mounted

on a wheeled platform with a holonomic drive system (a Segway Omni, Fig. 8.6 (middle)). It is aimed at

mobile manipulation such as services close to home and – according to its full name House of Living Labs

Intelligent Escort – at guiding services in FZI’s House of Living Labs (HoLL) 4. Currently, HoLLiE uses

reactive behaviors for collision avoidance with static obstacles and safety (8.6 (right)), HoLLiE’s predecessor

IMP also utilized behaviors for the avoidance of moving obstacles (described in [70]).

8.3. Discussion

In the course of this thesis a hierarchical hybrid control architecture was developed which incorporates

reactive as well as deliberative behaviors and classical planners. All components work independently from

each other. This combination is a main advantage of the concept: while the reactive behaviors grant suitable

reaction times and are robust versus insufficient environmental information, the plan-based components can

solve complex situations.
3Developed at FZI/IDS by A. Hermann (overall system) and J. Oberländer (navigation system)
4
http://www.fzi.de/index.php/en/research/fzi-house-of-living-labs

182

8.3. Discussion

Fig. 8.6.: The semi-humanoid robot HoLLiE (left) is aimed at mobile manipulation tasks in the contect of services close
to home as well as on guiding visitors of FZI’s HoLL. It uses reactive behaviors for collision avoidance and safety
(right). Figures by courtesy of HoLLiE’s lead developers, Andreas Hermann (overall system) and Jan Oberländer
(navigation).

The primary focus was on coping with the dynamic environment as well as cooperating with a user. There

are lots of influences on the robot’s actual behavior which have to be taken into account. The modularity of

the Behavior Networks has proven valuable: integrating new behavior modules or recombining behaviors

by activating or inhibiting them has been easy compared to calculating one trajectory which considers the

same amount of influences.

Parts of the control system have been implemented in other robots, showing an other advantage of the

modularity: as the individual layers and behaviors operate independently and have defined interfaces, they

can be substituted easily, depending on the target application.

In the course of this thesis several topics have been addressed, they will be discussed individually in the

next few sections.

8.3.1. Behavior-based control system

The control architecture developed here follows a hybrid approach, merging a behavior-based control sys-

tem in the two lower layers and planners in the upper layer. The behavior-based part is responsible for

safety, collision avoidance, navigation, and interaction with humans and other robots – which goes beyond

common applications of BBCs. The Behavior Network which implements the BBC allows a quick and seam-

less integration of advanced, social and interactive behavior modules. This way advanced robot behaviors

such as social behavior, guiding and following, cooperative behaviors like several assistants, and interac-

tion/communication with humans and other robots were achieved – which again significantly extends the

scope commonly found in BBCs.

The utilized implementation of the Behavior-Based Control – the Behavior Network, thus, a network of

independent behavior modules – has one characteristic which turned out to provide simultaneously major

benefits and a major drawback. The robot’s overall behavior emerges from a large number behavior modules

combining their share of the control self-dependent and hardly supervised.

183

8. Conclusion, Discussion, and Open Issues

The main benefit is the ease of integrating new functionalities compared to monolithic path or motion

planners. If a new functionality is needed, the new one is implemented and encapsulated in a module.

This adds its new control share to the existing ones depending on the corresponding layers’ “language” (for

example a velocity set-point vector). This could even be performed online (even though the current version

of the MCA2 framework does not support this – the third version will) with hardly any restriction as long

as steadiness is granted. This way, a significant number of functional robot behaviors can be achieved by

combining the individual modules: following the user while keeping a social distance while finding a path

around several obstacles in parallel to avoiding an approaching moving object. In contrast, a trajectory

planner would have to calculate a common path considering all threats and influences based on a very

complex and all-embracing environmental representation. From a system developers point of view, the

Behavior Network encourages trying alternative or even new innovative behaviors, as it is not a lot of effort

to integrate them.

A second benefit of the BBC – or more precisely the reactive behaviors which do not calculate a path but

solely a virtual force – is that it can be applied in situations in which a trajectory planner or target-oriented

methods can hardly be used at all: the user steers the robot using the force sensitive handle. Even in this

situation, all reactive behaviors can still be used, including avoiding collisions with static and even moving

obstacles. If the latter makes sense is questionable though - but it illustrates the possibilities offered by the

concept.

And finally a third benefit is that the Behavior Network is redundant. If modules of the BBC fail they

withdraw their control share but the remaining modules continue providing directions. The geometrical and

the reactive obstacle avoidance modules do not depend on each other, and even the individual instances of

the reactive ones are completely independent. The same also applies to for instance the adaptive behaviors:

if the distance keeping module for the following behavior fails for some reason, the robot will not run into

the user, because there are still the obstacle avoidance behaviors. And so forth.

The drawback of the concept is that the high degree of self-dependence of the modules makes it more

difficult to predict the overall behavior – the robot behaves less machine-like and more “natural”. If the

BBC is paramterized properly, meaning the individual parameters for each module are set adequate, this

does not pose a problem: even though some actions might seem strange at first glance, most of the time they

make perfectly sense under closer examination. The real issue is that the origin of an action is not obvious

and difficult to track as it results from a combination of various sources. If there is a problem or an error

in one of the modules, it is laborious to even identify the responsible module because in a live system the

feedback through the real world makes the individual modules interact with each other, searching for a state

of equilibrium. Therefore, it is difficult to distinguish cause and effect of an observed action.

From a system designer’s point of view, the presented Behavior Network eases integration and recombi-

nation of functionalities (even online) but from an implementation point of view optimizing and identifying

errors is difficult. The BBC facilitates the fast integration of new fuctionalities, but bringing the overall

behavior to perfection is cumbersome.

8.3.2. Dynamic environments

The primary focus of the navigation system has been on handling a dynamic environment including inaccu-

racies in the world model, structural changes in the environment, and moving objects.

184

8.3. Discussion

To tackle this challenge, the control system implements a layered navigation system consisting of delib-

erative and reactive behaviors topped by a topological navigation. On its own, each layer is able to find a

suitable path on the level of data abstraction corresponding to the layer. Combined, they generate a pow-

erful navigation system able to find a path over long distances which can be nested and cluttered in detail.

Moreover, this combination enables navigating without a global metric map – a topological map and sensor

information from the robot’s current field of view are sufficient. In contrast, many methods found on “guid-

ing robots” (except the graph-based method used by the robot Robox) depend on a metrically accurate and

up-to-date map. This is an important characteristic as global metric maps can be outdated quickly. Espe-

cially in the shopping scenario, parked conventional shopping carts can alter the environment significantly.

Suddenly a corridor seems to be a dead end or 1m less wide an cannot be matched to the map anymore. An-

other source of confusion are semi-static objects which are moved on a day-to-day basis like special offer

bins or advertisements.

Inaccuracies of the world model, the self-localization, or the task-specific databases (in the shopping

scenario for example the product locations or the exact position of the topological links) are addressed by

the geometrical scene analysis of the tactical layer. The target locations commanded by the communication

layer or the strategic layer are interpreted as “suggestions”, only. The tactical layer adapts them to the

actual geometry of the local environment.

Moving obstacles

A major challenge of dynamic environments is avoiding collisions with other moving objects or humans. In

a supermarket these could be customers with shopping carts who are hurrying down a corridor while being

distracted. The control system unifies reactive behaviors and a plan-based approach to benefit from fast

reaction times as well as from predictive mid-term planning. It embodies three main components: Firstly,

a reflex moves the robot directly away from mobile obstacles which came too close or suddenly started

moving, enabling InBOT to regain a safety distance. Secondly, a reactive behavior lets the robot move out

of the predicted path of an approaching object. Thirdly, to solve complex situations, the behavior-based

components are topped by a spatio-temporal planner which generates a safe and efficient mid-term path.

The advantage of the deliberativity of the purely planner-based solutions over reactive ones is obvious.

But keeping the overall system in mind, there can be a lack of information (limited field of view, no precise

and reliable map, no target location given e.g. in Servoing Mode or Manual Steering Mode) impairing a

purely planner-based approach. Therefore, a combination of a planner and reactive components is used in

this thesis. All components have to fit into the hierarchical concept of the control architecture. Thus, the

planner does not generate a continuous trajectory but a sequence of sparse sub-goals.

Using this approach, the advantages of the planner-based approaches have been combined with the ro-

bustness regarding insufficient information of the reactive approaches.

8.3.3. User interaction and control sharing

In a dynamic environment all kinds of sources exert control on the robot’s behavior. This can be parts of

the control system based on sensor readings, task execution components, other robots, and so forth. As the

control system is to control a service robot, the user himself will also want to exert control. An important

challenge is to design user interfaces and interaction capabilities that can be used intuitively, enabling the

185

8. Conclusion, Discussion, and Open Issues

potential users to benefit from the robot’s functionalities and to allow effective cooperative task execution.

The two major sources of control shares have to be fused: the user and the control system itself. Within

the Behavior Network the user’s control input is actually considered to be just another behavior and, thus,

incorporated by a fusion behavior module.

Several input modalities (force sensitive handlebar, speech, touch screen, bar code scanner, and vision-

based techniques) are provided via a multimodal user interface to receive the user’s control input. Five modes

of operation (the Autonomous, Guiding, Following, Servoing, and the Manual Steering Mode) have been

developed to orchestrate the individual behaviors and user inputs. The control on the robot is – depending

on the current mode and the used modality – shared or traded between control system and user, ranging from

closely coupled interaction based on physical contact up to autonomous command-based interaction. For

example in the Manual Steering Mode the user steers the robot by exerting forces on the handlebar, having

full control on the robot. In certain situations the robot can take over a share of control for itself to support

the user with obstacle avoidance or other assistance features. In the vision-based case guiding or following

behaviors are present with a rising degree of control that is permanently assigned to the control system.

The tests performed with users have shown that they are able to utilize the methods of controlling the

robot, needing only a very brief introduction. The quantitative results of the survey performed along with

the experiments show that the users have been content with the robot’s abilities – even though the qualitative

results show areas needing improvement, which was no real surprise as we are talking about a prototype

system.

8.4. Open issues

In this section, some of the most prominent open issues of the current control system are summarized from

a scientific point of view. Topics regarding a public roll out can be found in the next section.

Parameter optimization of the BBC : As the parameterization of the Behavior Network is cumber-

some, this could be performed by an optimization algorithm. It is most likely not possible to express

the network using a closed formula, not speaking of differentiability or even continuous differentia-

bility. Hence, many common optimization methods aside from the evolutionary or genetic algorithms

cannot be applied. These algorithms have the drawback that they need a large number of evaluations

of the optimization function – which in this case can probably only be done by conducting at least

simulated test runs with the system. But with strong computing hardware at hand, this still might be

possible. The opposite approach would be a formal analysis of small sections of the network which

can be expressed by a closed formula.

Multi-robot path planning: The multi-robot behaviors developed here do not perform a full-scale multi-

robot path planning like for example done by R. Regele [129]. As long as only a few robots meet

each other in one location the current exemplary behaviors are sufficient, but for larger fleets of robots

the behaviors will not be efficient, thus, a full-scale planning process would be appropriate. If this

planning would be done in a de-central manner it would be implemented in a tactical behavior module,

if the planning is performed centralized a plan execution behavior would be added.

Classification of obstacles: Currently, the robot cannot distinguish between static obstacles which are

blocking an alley, obstacles which could be removed by the robot’s user, and people blocking the way

186

8.5. Roll out: from the lab to application

only for a very short period of time. The people could be asked to let the robot pass. The current

environmental perception does not permit making this differentiation. All obstacles are treated in

the same manner which can cause problems: if for example the predictive obstacle handler does not

find a way in the correct direction because someone is blocking the alley, the robot will try to find a

completely different way using another corridor.

Handling of traffic jams: Groups of people standing in an alley pose a challenge for HRI. The robot’s

user is able to move – or even squeeze – through a crowd, which is not possible for the larger robot.

Especially while operating in the Following Mode the robot should be able to proactively inform the

user, that it will not be able to follow if he should proceed.

Priority of moving obstacles: Currently the behavior modules for avoiding collisions with moving ob-

stacles try to evade every approaching object. In crowded environments this approach quickly reaches

its limits as there is not sufficient “safe” space. Thus, a assessment is needed to determine which

out of the objects must be avoided at all costs and which objects will probably make evasive motions

themselves. Sizes, type, and velocity of the objects might be indicators here, but also information like

the direction of gaze of people – provided this information is available.

Floating in groups of people: When the crowds become even more dense a complete new set of motion

behaviors is needed. Or at least the current ones have to be adapted to work based on velocity dif-

ferences instead of distances. This way the robot would be able to float in crowds, not running into

people and not making people run into it. F. Steinhardt works on extending the Behavior Networks

with this kind of behaviors [155].

8.5. Roll out: from the lab to application

This section summarizes some general thoughts on issues to be addressed when rolling out this system for

the public. Obviously, one could write books about this topic (and taking it literally, it surely has been done),

so here only a selection of the most prominent issues will be listed.

Peer group and purpose: First of all, the system would have to be adapted to the purpose of the applica-

tion. Shall it be used to assist elderly people? Driving slowly would be OK here. Or shall it be used

mainly by impaired people – they might have completely other needs. Shall the system be used in

a hardware store with wide allays but large and heavy goods or in a small and nested grocery store?

The needs of these options can be very different, if not even contrary. Without a proper definition of

the purpose of the system, it can hardly be applied.

Conflict of interests: The application might produce a conflict between the shop owner who wants the

customer to stay as long as possible in the shop and the customer himself who might just want to get

over with his shopping trip – not every customer is interested in witnessing a “shopping experience”.

This conflict mainly concerns the application-specific communication layer – but nevertheless has to

be solved in advance.

IT security: Nowadays there is almost no day without news about hacked websites or other systems. The

shopping assistant robot might handle sensitive data on the customers’ shopping behavior which shall

187

8. Conclusion, Discussion, and Open Issues

not become public, thus, the network connections would have to be secured. Furthermore, the robot

itself must not be hacked. The violator might not only get confidential information, but could sabotage

the system, resulting in a lot of potential, even physical, damage. All means of access to the robot’s

IT hardware have to be hardened against unauthorized access.

Safety: Besides collision avoidance there are other safety-related issues: the system must not impair people

in critical situations such as evacuations or in cases of injuries. It would be favorable if the robots

would be able to assist in such situations, but at least they must be able to recognize the danger and

move out of the way, especially if the central server or the WiFi were down already.

Legal issues: When applying such a complex system in the public, lots of legal issues arise. For example

the system is equipped with sensors, and in particular cameras, rising a legal issue regarding process-

ing and storing images of people. Furthermore, responsibilities have to be defined, in case something

– or even someone – gets damaged by the robot (actively or passively).

Engineering: Finally, there are still several engineering issues to be tackled. Most prominently, the current

system for detecting obstacles only uses planar laser range finders, thus, a extension to 3D sensors is

necessary. To reduce maintenance effort, the robustness of the robotic platform has to be improved,

the endurance of the accumulators increased (or the current consumption reduced), and an automatic

charging station has to be set up, as had been done for the Odete platform in the lab. The robotic

platform itself should be re-engineered, as it is too large (as can be seen on some of the pictures from

user tests), and at least the height of the touch screen must be adjustable. The robot InBOT-2 (see

Sec. B.1) which is currently under development by the author will be a step in this direction.

188

A. Interdependent Work, List of Publications, and Student’s Theses

During the development of the control system described in this thesis, several scientific contributions on

already finished components have – according to the professors’ and faculty’s wishes – been published prior

to the publication of the completed thesis itself in order to facilitate the evaluation by the community. These

are listed below.

This thesis is considered to be the mainline of the scientific work. For the sake of readability self-

references and self-quotations are mostly omitted. Thus, information taken from other texts by the author

are not explicitly highlighted as far as the work has been done in the course of this thesis. Self-references

are given to refer to further information which did not fit into this thesis, only.

Assembling the robots and writing the thousands of lines of code which implement the designed archi-

tecture, behavior modules, and the auxiliary components would not have been possible without assistance.

Thus, complementary student theses have been supervised in the course of the presented work, based on the

concepts of this thesis. Accordingly, there are are strong interdependencies in the contents. A complete list

can be found below.

While working on this thesis, the author has taken part in the project “CommRob” (EC FP6 STREP – IST-

045441) which partially focused on similar topics. When delays with the CommRob Demonstrator (CoRoD)

rendered the project without a robotic platform for development, test, and demonstration, the robot InBOT

was placed at the disposal of the CommRob project. As result, the work done by the author in the course of

“CommRob”, and in particular the reports written by him for the work packages “Advanced Robot Behavior

and Navigation” and “Robot Integration and Test” which have been his responsibility, and some chapters of

this thesis are interdependent.

During CommRob, several components of the software developed by other groups have been integrated

in the course of this thesis to allow for evaluation setups. This counts especially for M. Devy’s group at

LAAS CNRS and H. Kaindl’s group at TU Vienna. With the latter, especially with D. Ertl, as well as with

H. Hüttenrauch, A. Green, and C. Bogdan from KTH Stockholm, several collaborative activities like user

experiments and integration sessions have been conducted, which resulted in collaborative publications on

Human Robot Interaction. Accordingly, when describing the components in this thesis, it is indicated if the

particular component was developed by persons other than the author of this thesis himself.

189

List of Publications
[GRG+11] Michael Goeller, Arne Roennau, Anton Gorbunov, Georg Heppner, and Rüdiger Dillmann. Pushing

Around a Robot: Force-Based Manual Control of the Six-Legged Walking Robot LAURON. In: Proc.
IEEE International Conference on Robotics and Biomimetics (RoBio11), Phuket, Thailand, 2011.

[GSK+10a] Michael Goeller, Florian Steinhardt, Thilo Kerscher, Rüdiger Dillmann, Michel Devy, Thierry Germa,
and Frederic Lerasle. Sharing of control between an interactive shopping robot and it’s user in
collaborative tasks. In: Proc. 19th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), Viareggio, Italy, pages 626–631, September 2010.

[GSK+10b] Michael Goeller, Florian Steinhardt, Thilo Kerscher, J.Marius Zoellner, and Rüdiger Dillmann. Proac-
tive avoidance of moving obstacles for a service robot utilizing a behavior-based control. In: Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, Oct.,
pages 5984–5989, 2010.

[GSK+09] Michael Goeller, Florian Steinhardt, Thilo Kerscher, J.Marius Zoellner, and Rüdiger Dillmann. Robust
navigation system based on RFID transponder barriers for the interactive behavior-operated shopping
trolley (InBOT). Industrial Robot, Emerald Group Publishing Limited, 36(4):377–388, 2009.

[GBK+09] Michael Goeller, Malco Bluemel, Thilo Kerscher, J.Marius Zoellner, and Rüdiger Dillmann. Can the
Modeling of Pedestrian Movements Improve Robot Behaviors? In: Proc. Workshop on Improving
Human-Robot Communication with Mixed-Initiative and Context-Awareness, 18th IEEE International
Symposium on Robot and Human Interactive Communication (RoMan),Toyama, Japan, Oct., 2009.

[GKZ+09a] Michael Goeller, Thilo Kerscher, Marco Ziegenmeyer, Arne Roennau, J.Marius Zoellner, and Rüdiger
Dillmann. Haptic control for the interactive behavior operated shopping trolley InBOT. In: Proc. New
Frontiers in Human-Robot Interaction, Convention Artificial Intelligence and Simulation of Behaviour
(AISB), Edinburgh (UK), 2009.

[GKZ+09b] Michael Goeller, Thilo Kerscher, J.Marius Zoellner, Rüdiger Dillmann, Michel Devy, Thierry Germa,
and Frederic Lerasle. Setup and control architecture for an interactive Shopping Cart in human all day
environments. In: Proc. International Conference on Advanced Robotics (ICAR), 2009.

[GKZD09] Michael Goeller, Thilo Kerscher, J.Marius Zoellner, and Rüdiger Dillmann. Obstacle Handling of
the Holonomic-driven Interactive Behavior-operated Shopping Trolley InBOT. In: Proc. IEEE 7th
International Workshop on Robot Motion and Control (RoMoCo09), Czerniejewo, Poland, 2009.

[GSKZ09] Michael Goeller, Florian Steinhardt, Thilo Kerscher, and J.Marius Zoellner. Reactive Avoidance of
Dynamic Obstacles using the Behavior Network of the Interactive Behavior-Operated Shopping Trolley
InBOT. In: Proc. International Conference on Climbing and Walking Robots (CLAWAR), Istanbul,
Turkey, September 2009.

[GKZD08] Michael Goeller, Thilo Kerscher, J.Marius Zoellner, and Rüdiger Dillmann. Behavior Network Control
for a Holonomic Mobile Robot in Realistic Environments. In: Proc. International Conference on
Climbing and Walking Robots (CLAWAR), Coimbra, Portugal, September 2008.

[GSK+08] Michael Goeller, Florian Steinhardt, Thilo Kerscher, J.Marius Zoellner, and Rüdiger Dillmann. RFID
Transponder Barriers as Artificial Landmarks for the Semantic Navigation of Autonomous Robots. In:
Proc. 11th International Conference on Climbing and Walking Robots and the Support Technologies for
Mobile Machines (CLAWAR), Coimbra, Portugal, September 2008.

[BEH+11] Cristian Bogdan, Dominik Ertl, Helge Huettenrauch, Michael Goeller, Anders Green, Kerstin S Eklundh,
Jürgen Falb, and Herman Kaindl. Evaluation of Robot Body Movements Supporting Communication:
Towards HRI on the Move. New Frontiers in Human-Robot Interaction, pages 185–210, 2011.

[BEG+10] Cristian Bogdan, Dominik Ertl, Michael Goeller, Anders Green, and Kerstin S Eklundh. Towards
HRI on the Move with Mixed Initiative. In: Proc. 2nd International Symposium on New Frontiers
in Human-Robot Interaction, Convention for the Study of Artificial Intelligence and Simulation of
Behaviour (AISB), Leicester (UK), March, 2010.

[HCG+10] Helge Huettenrauch, Bogdan Cristian, Anders Green, Kerstin S Eklundh, Dominik Ertl, Jürgen Falb,
Herman Kaindl, and Michael Goeller. Evaluation of Robot Body Movements Supporting Communi-
cation. In: Proc. 2010 Convention Artificial Intelligence and Simulation of Behaviour (AISB2010),
Leicester, UK, pages 1–8, 2010.

[BG09] Cristian Bogdan and Michael Goeller. Towards a Framework for Design and Evaluation of Mixed Ini-
tiative Systems: Considering Movement as a Modality. In: Proc. Workshop on Improving Human-Robot
Communication with Mixed-Initiative and Context-Awareness, 18th IEEE International Symposium on
Robot and Human Interactive Communication (RoMan), Toyama, Japan, Oct., 2009.

[KGZ+09] Thilo Kerscher, Michael Goeller, Marco Ziegenmeyer, J.Marius Zoellner, and Rüdiger Dillmann.
Intuitive control for the mobile Service Robot InBOT using haptic interaction. In: Proc. International
Conference on Advanced Robotics (ICAR), Munich, Germany, 2009.

[RGD+09] Younes Raoui, Michael Goeller, Michel Devy, Thilo Kerscher, J.Marius Zoellner, Rüdiger Dillmann,
and A Coustou. RFID-based topological and metrical self-localization in a structured environment. In:
Proc. International Conference on Advanced Robotics (ICAR), Munich, Germany, 2009.

191

List of Students’ Theses
[Bil10] Christian Billet, Internship Semester Report Winter Term 2009/2010, Internship report, Advisor: M. Goeller,

Supervisor: Norbert Skricka, Faculty for Mechanical Engineering and Mechatronics, University of Applied
Sciences Karlsruhe, 2010.

[Boe10] Daniel Boettinger, Internship Semester Report Winter Term 2009/2010, Internship report, Advisor: M.
Goeller, Supervisor: Norbert Skricka, Faculty for Mechanical Engineering and Mechatronics, University of
Applied Sciences Karlsruhe, 2010.

[Bre09] Kathrin Breiner, Analyse des Marktpotentials für Einsatz und Entwicklung technischer Einkaufshilfen, Bach-
elor thesis, Advisor: M. Goeller, Supervisor: R. Dillmann, Faculty for Information Engineering and Manage-
ment, University of Karslruhe (TH), 2009.

[Gab09] Stefan Gabriel, Technische Einkaufshilfen - Herausforderungen, Erwartungen der Kunden und bisherige
Entwicklungen, Seminal thesis, Advisor: M. Goeller, Supervisor: R. Dillmann, Faculty for Information Engi-
neering and Management, University of Karlsruhe (TH), 2009.

[Gob07] Vadim Gobulev, Positionskorrektur mittels künstlicher Infrarot-Landmarken am Beispiel des North Star Sys-
tems, Studienarbeit (mid-study thesis), Advisor: M. Goeller, Supervisor: R. Dillmann, Faculty for Computer
Science, University of Karlsruhe (TH), 2007.

[Gor12] Anton Gorbunov, Intelligent Shopping Assistant: The Next Shopping Experience, Studienarbeit (mid-study
thesis), Advisor: M. Goeller, Supervisor: R. Dillmann, Faculty for Computer Science, Karlsruhe Institut for
Technology (KIT), 2012.

[Hei09] Thomas Heinkel, Entwicklung eines Lokalisierungskonzeptes für beliebige mobile Plattformen basierend auf
spärlich verteilten RFID Landmarken, Studienarbeit (mid-study thesis), Advisor: M. Goeller, Supervisor: R.
Dillmann, Faculty for Computer Science, University of Karlsruhe (TH), 2009.

[Ö10] Burc Özüpek, Erweiterte Realität zur Visualisierung von Roboterverhalten basierend auf MCA, Studienarbeit
(mid-study thesis), Advisor: M. Goeller, Supervisor: R. Dillmann, Faculty for Computer Science, University
of Karlsruhe (TH), 2010.

[Ost10] Roland Ostrowski, Praxissemesterbericht (Internship Semester Report), Internship report, Advisor: M.
Goeller, Supervisor: Norbert Skricka, Faculty for Mechanical Engineering and Mechatronics, University of
Applied Sciences Karlsruhe, 2010.

[Rit10a] Hugo Ritzkowski, Entwicklung von Algorithmen zur Bewältigung spezieller Situationen bei der Navigation
mobiler Roboter, Bachelor thesis, Advisor: M. Goeller, Supervision: Klaus Wüst, Peter Löffler, Faculty for
Computer Science Fachhochschule Giessen Friedberg, 2010.

[Rit10b] Hugo Ritzkowski, Praktikumsbericht (Internship Report), Internship report, Advisor: M. Goeller, Supervi-
sor: Klaus Wüst, Faculty for Computer Science, Fachhochschule Giessen Friedberg, 2010.

[Ste08] Florian Steinhardt, RFID-Transponder als künstliche Landmarken für die topologische Navigation einer mo-
bilen Plattform, Studienarbeit (mid-study thesis), Advisor: M. Goeller, Supervisor: R. Dillmann, Faculty for
Computer Science, University of Karlsruhe (TH), 2008.

[Ste09a] Fabian Stehle, Entwicklung eines flexiblen hierarchischen Planers für Aufgabenkoordination und topologis-
che Navigation, Studienarbeit (mid-study thesis), Advisor: M. Goeller, Supervisor: R. Dillmann, Faculty for
Computer Science, University of Karlsruhe (TH), 2009.

[Ste09b] Florian Steinhardt, Entwicklung einer proaktiven verhaltensbasierten Kollisionsvermeidung mit dynamis-
chen Hindernissen, Diploma thesis, Advisor: M. Goeller, Supervision: R. Dillmann and U. Hanebeck, Faculty
for Computer Science, University of Karslruhe (TH), 2009.

[Ste11] Fabian Stehle, Fusion verteilter Sensoren zur Personenverfolgung für adaptive Verhalten von Service-
Robotern, Diploma thesis, Advisor: M. Goeller, Supervision: R. Dillmann and U. Hanebeck, Faculty for
Computer Science, Karlsruhe Institut of Technology (KIT), 2011.

[Zie08] Artur Zientara, Simulation der Kinematik und Odometrie für omnidirektionale Fahrzeuge, Studienarbeit (mid-
study thesis), Advisor: M. Goeller, Supervisor: R. Dillmann, Faculty for Computer Science, University of
Karlsruhe (TH), 2008.

193

B. The Interactive Behavior-Operated Trolley (InBOT), InBOT-2, and
ETrolley

This chapter introduces three robotic platforms: InBOT, InBOT-2, and ETrolley, along with several hardware

components used on these systems: the concept for self-localization based on a pair of 2D measurement

wheels and RFID barriers as well as the force sensitive handle.

The robot system InBOT has been designed as development platform for the control system and to facili-

tate testing the results in the context of the chosen scenario of application: shopping in a supermarket.

The enhanced conventional trolley ETrolley has been designed as a system to support user studies and

to be tested in a real store in an early stage. It consists of an ordinary shopping trolley with the passive

components of InBOT, thus, the system for self localization, the PCs, and the touch screen interface.

Fig. B.1.: InBOT’s equipment.

Several challenges arise from the implications of the supermarket scenario for the design of the robot or

the choice of equipment for the robot. Figure B.1 given an overview on InBOT’s equipment and Figure B.2

sketches the integration of the hardware components.

195

B. The Interactive Behavior-Operated Trolley (InBOT), InBOT-2, and ETrolley

Fig. B.2.: Hardware architecture of InBOT.

The root challenge regarding the hardware posed by the scenarios is the need to combine a high degree of

maneuverability of the drive system with the ability to transport goods in a similar amount as a conventional

shopping cart. This results in a causal chain of implications: first of all a small circular robot platform with a

differential drive cannot be used. Instead, a larger rectangular platform has to be used to support a shopping

basket of a suitable size. The motors have to provide for the power to accelerate 50kg of goods, resulting

in a high power consumption and larger accumulators. To ensure the needed maneuverability in narrow and

cluttered corridors, an omni-directional drive is needed. On InBOT a holonomic Mecanum Drive is used.

The drawback is that the drive system is subject to a significant amount of slipping which decreases the

quality of the odometry information from the driven wheels. Therefore special passive measurement wheels

had to be designed to acquire precise odometry data. When being used with an holonomic drive, these

have to have at least 2 mechanical degrees of freedom (DOF) and an overall 3 DOF have to be measured.

Additionally, the use of omni-directional drive systems means a full 360deg environmental perception with

a suitable precision is needed to be able to avoid obstacles while driving sideways or turning on the spot

with a non-circular robot. Here two SICK S300 laser range finder, each with a 270-degree field of view have

been used at opposite corners of the robot, providing for a full 360 degree field of view.

One of the requirement demanded the presence of a force sensitive input device for the Manual Steering

Mode. Thus, according to the scenario, a force sensitive handlebar has been designed.

B.1. The robot InBOT2

InBOT is a prototype, thus, a large system with a low degree of integration. Currently, the robot InBOT2 is

being designed with two major requirements:

196

B.1. The robot InBOT2

Fig. B.3.: InBOT2: Design sketch of the robot from different points of view, alongside with a human
silhouette (image source: [33]) for comparison.

Fig. B.4.: InBOT2 – Left: CAD data. The minimal footprint of the robot is dominated by the size of the two S300
(yellow) and the motors including their gearboxes. The upper levels of the robot’s body are designed in a drawer
concept, reducing the unused space between the components while providing for easy access to the components.
The two major components to be taken into account are the embedded PCs – the green boxes illustrate the bounding
boxes including plugs. Right: Current status of the system.

197

B. The Interactive Behavior-Operated Trolley (InBOT), InBOT-2, and ETrolley

• Smaller size: The robot shall be usable in smaller supermarkets, hence, the robot’s footprint shall

be reduced to half the current size. This can be achieved by rising the level of integration while a

drawer-concept improves the accessibility of the individual components. The size of the basket has to

be reduced significantly too, as it is a major factor in the robots footprint. The height of the robot is

fixed: the height of the basket shall still be same same like on ordinary shopping carts.

• Better maintainability: Learning from the issues of the first InBOT, the robustness of the robot shall

be increased. This refers mostly to the electronics system. As the setup is more or less finalized the

cabling can be fixed, plugs can be removed, and so forth.

Figure B.3 shows a design sketch of the system from different points of view. For a comparison of the

robot’s size, a human silhouette is added. Almost all externally visible components but the S300 have been

reduced in size. Figure B.4 (left) shows a CAD drawing of the interior of the robot. The size of the basis

is defined by the two S300 as well as by the motors and gearboxes. The remaining components fit into the

drawer-system on top. Finally, B.4 (right) shows the current status of the system. The most time consuming

steps have been taken and first driving tests have been successful.

B.2. ETrolley

The system ETrolley was designed to facilitate early tests, user studies, and test runs in a real store. ETrolley

is actually not a full-scale robot as it lacks the active components. Nevertheless, it runs the complete navi-

gation system of InBOT for the purpose of providing navigation assistance for the user. For this purpose it

is equipped with the complete system for local and global self-localization and with the communication PC

housing the user interface. Figure B.5 (top) shows the individual hardware components of the system and

Figure B.5 (bottom) sketches the hardware architecture.

As there have been several purposes for the system, several instances have been set up. There is a version

using the force sensitive handle for analyzing how humans actually steer a shopping cart (Fig. B.6 (left)). It

has no screen-based user interface as the users shall not be distracted. Another version has been designed to

act as (passive) shopping assistant, offering shopping list management and navigation assistance (Fig. B.5).

And finally there has been a version which focused on easy and modular assembly which has been used in a

real supermarket. According to the wishes of the shops owner, the robotic functionalies should be disguised

as far as possible (Fig. B.6 (right)).

198

B.2. ETrolley

Fig. B.5.: Hardware architecture of ETrolley: The system ETrolley incorporates all the components of InBOT which
do not depend on the drive system, e.g. the shopping list management and navigation assistance. It is equipped with
a touch screen, a PC hidden in a crate, the measurement wheels for odometry, and the RFID scanner.

199

B. The Interactive Behavior-Operated Trolley (InBOT), InBOT-2, and ETrolley

Fig. B.6.: Several versions of ETrolley have been set up: the one shown in Figure B.5, one for tests in the FZI labs
including the force sensitive handle (left) and one reduced version for tests in a ICA Maxi supermarket in Stockholm
(right, thanks to Helge Hüttenrauch for this opportunity).

B.3. Electronical layout

The electronic layout of InBOT consists of a large number of circuits and components which can not be

presented here in detail. Figure B.7 shows the top level of the layout. The main components are listed

below:

• Accumulators (24V (2x12V), 105Ah, 35kg each)

• DC/DC converter to 12V and 5V

• 4 Motor driver Metronix DIS-2 48/10 (24-48V, 10A continuous), level converter circuits for the mo-

tors’ Hall sensors

• 4 Motors Beldrive AEC 140/36 (24V, 315 U/min, 36Nm, 14A, 8kg – obviously, these motors are

overpowered for the specific robot)

• 2 UCOM boards (handle, odometry sensors)

• Force sensitive handle (strain gauges, ACAM boards)

• Safety circuit (emergency stop buttons, bumpers)

• Several protection circuits (over voltage, under voltage, over current)

• Break control circuit (off, on, automatic)

• Gyroscope with circuit for time delay on switch-on

200

B.3. Electronical layout

Fig. B.7.: Electronic layout of InBOT

201

B. The Interactive Behavior-Operated Trolley (InBOT), InBOT-2, and ETrolley

B.4. Self-localization

This section introduces the system implemented for the self-localization of the robot (see [Hei09] for a

detailed description). As defined by requirement R3 in the introduction, no detailed global map is available.

Hence, popular scan-map-matching methods for the self-localization cannot be applied. Furthermore, it

has to be expected that the robot is often surrounded by large numbers of people, impairing a continuous

localization based on wall-mounted landmarks. Techniques would be needed which are independent from

crowded corridors, colorful or low-contrast background and changing light conditions. Additionally, the

landmarks would have to be sparsely distributed to keep the integration effort as low as possible.

Resulting from these challenges, a two level approach has been used in this concept: a local compo-

nent tracking the motion of the robot and a global component based on sparse landmarks to correct the

incremental error of the local component. The global component is also used to perform the topological

self-localization.

B.4.1. Odometry for local self-localization

The local self-localization is responsible for tracking the local motion of the robot as precisely as possible. It

uses two components: The first one uses incremental encoders to track the robot’s relative pose and position

changes, the second one is an optional gyroscope to track the orientation changes more precisely.

Gyroscope: A gyroscope 1 is used on InBOT in order to track the orientation of the robot. After calcu-

lating and subtracting the drift resulting from the degree of latitude of the FZI labs it has a drift of about 3

degree/hour and an error of lower then 0.15 degree per revolution, therefore lower than 0.04%.

Measurement Wheels A pair of 2D measurement wheels (see Fig. B.8 and Section B.5 for construction

details) has been constructed to measure the linear – therefore the lateral and longitudinal – movements of the

holonomic robot. The orientation of the robot is measured too, even if more prone to errors. If a gyroscope

is present for more accurate orientation measurements, this term can be used to perform corrections, if

no gyroscope is present it provides the orientation value. The wheels each measure the driven distance

by accumulating the covered angle as well as the orientation of the wheel orthogonal to the vertical axis.

The orientation of the two wheels (1 DOF each) is correlated, but the remaining 3 DOF are sufficient to

calculate the 3D planar movement of the robot. The encoders utilized have a resolution of 0.09 degree.

The resolution of the rolling wheel on the ground is based on its diameter and is about 0.06mm. The final

longitudinal error of the rolling wheel has a value of about 2mm per meter, therefore 0.2%. The error of the

complete system of two wheels with four encoders after performing movements in 3 DOF is in X-direction

2.3mm/m, Y-direction 4.6mm/m, therefore overall 5.1mm/m or 0.5%.

Evaluation Following the ideas of the University of Michigan Benchmark Test (UMBmark [23]) the self-

localization of the system was tested: a rectangle was driven clockwise and counter-clockwise and measured

separately to identify systematic errors. The evaluation was performed on two systems: on the robot InBOT

using two measurement wheels and a gyroscope and on ETrolley using two measurement wheels only.

Figure B.9 shows one example out of the performed tests. The results summarize as follows:

1LITEF micro-force6

202

B.4. Self-localization

Fig. B.8.: The pair 2D odometry wheels mounted
between the front and the back wheels of the
mecanum drive track the path of the robot (see Fig.
B.14 for a larger picture).

Fig. B.9.: This figure shows an exemplary test run for the mea-
surement wheels and the gyroscope: two wheels were used in
combination with the gyroscope (blue and green line). In one
case the wheel was on purpose calibrated badly (red line).

InBOT – measurement wheels plus gyroscope: A rectangle of 3.6 x 2.0 m was driven 10 times in

both directions. At the endpoint the average error was 0.09 m (0.8%) with a variance of 0.00137. The

maximum error was 0.16 m or 1.4%.

ETrolley – measurement wheels only: The same test was performed with the same measurement wheels

but without the gyroscope. A rectangle of 3.6 x 2.0 m was driven 10 times in both directions. At the

endpoint the average error was 0.14 m (1.2%) with a variance of 0.0026. The maximum error was

0.31 m or 3.47%.

B.4.2. Global self-localization by landmarks

As commonly known, the accumulated position tracking has to be corrected due to also accumulating errors.

Therefore some kind of global position correction is needed. In outdoor scenarios usually GPS is applied,

in indoor scenarios either WiFi localization for rough estimations or landmark-based concepts for precise

calculations are used. The concept presented here utilizes precise global position corrections by detecting

RFID tags mounted on the floor. Additional information and results can be found in [64], [128] and in

particular in the mid-study thesis by F. Steinhardt [Ste08].

RFID barriers as artificial landmarks: Many landmark-based systems for self-localization share a com-

mon disadvantage compared to a ground-mounted short-range Radio Frequency Identification (RFID) sys-

tem. The landmarks can be easily occluded by people or objects located in the line of sight. Wall-mounted

long-range RFID-based systems can be blocked as well, for example if too many humans or metallic objects

are located between transponder and reader. To avoid these occlusions and to get more precise position

203

B. The Interactive Behavior-Operated Trolley (InBOT), InBOT-2, and ETrolley

information the presented concept proposes to use ground-mounted RFID transponders as landmarks as

illustrated in Figure B.10. This way an occlusion of the landmarks is hardly possible.

Fig. B.10.: Top: Placement of RFID barriers to divide a cor-
ridor in areas. Bottom: Picture of an RFID barrier with
pairs of RFID transponders glued beneath a piece of PVC
flooring.

Fig. B.11.: The largest diameter of the coupling area is
found in a distance of 2 cm from the reader (top). If
using double-tags in the barriers the barriers are de-
tected very reliably up to velocities of 2m/s (bottom).

The RFID transponders are organized in groups that form barriers. The tags shall be placed densely along

the borders of the topological areas (Fig. B.10). This way the precision of densely distributed tags can be

achieved without having to lay out complete carpets of tags. The robot knows all IDs of the tags contained

in a barrier as well as the relative positions of tags within the barriers. At the moment of driving past a

barrier the robot recognizes that it just entered a new area. By doubling the tags, as depicted, it even knows

in which direction it has moved past the barrier. Due to the well-defined assignment of tags, barriers, and

areas, this information is redundant but can be used to solve errors or hijacking problems.

To identify a proper height for assembling the RFID reader on the robot, the reader’s coupling area was

measured under the condition of parallel transponder and reader. As shown in Figure B.11 (top), a distance

of 2cm between reader and barrier has proven optimal. Here the coupling area, consisting of a combination

of the main and a side area, has approx. 35cm in diameter. The larger the coupling area in diameter the

faster the robot can move past the barrier without missing it and the sparse can the tags be placed. The

distance between each pair of double tags can measure up to 20cm. Additionally, the low distance of 2cm

makes disturbances between reader and barrier very unlikely. Using this setup the robot was able to detect

all barriers in the tests up to velocities of approx. 2m/s when double tags have been used. The reading

performance with a single tag is significantly inferior (Fig. B.11 – bottom).

204

B.5. 2D Odometry wheels

Global self-localization using RFID barriers: The relative position of the barrier, the position of the

tags inside the barrier, and the time stamp when the first tag was read are known. Then the two components

of the robot’s location can be measured by two different methods (Fig. B.12):

• The position of the robot along the barrier: The robot’s position along the barrier can be estimated

by averaging over the position of the read tags. The measured transponders are compared with their

position in the barrier. Because their position is known, the position of the reader can be estimated

with an accuracy of plus/minus 10cm (equal to the distance between the tags).

• The position orthogonal to the barrier is measured by comparing the time stamp when the first tag

was detected and the last tag was not detected any more with the diameter of the coupling area of the

reader and the current velocity. This way the position can be estimated with an accuracy of not worse

than plus/minus 10cm.

Figure B.13 shows a path driven by the robot. Shortly after passing the RFID barriers the position of the

robot is corrected slightly.

Fig. B.12.: Global self-localization using barriers of
RFID tags: The tags are placed at the borders of the
topological areas in form of lines. Double lines are
used to be able to identify the driving direction. The
position of the barriers’ “low” side (tag No. 0 (T0))
relative to the area is known. Additionally, the posi-
tion of each tag in a barrier is known relative to T0. At
the very moment when the robot’s RFID reader (white
box) crosses the barrier, it reads a set of tags. Know-
ing the characteristic of the reader, the robot’s exact
position can be estimated.

Fig. B.13.: This figure shows a screenshot from the
MCAGUI after driving InBOT manually about 20 meters.
The blue line is the path taken by the robot, the green rect-
angles represent the borders of the topological areas outfit-
ted with RIFD barriers. The small green arrows indicate
the absolute position correction of InBOT after passing a
barrier.

B.5. 2D Odometry wheels

As has been mentioned in the preceding section, a pair of 2D wheels for measuring the robot’s odomtery has

been designed (Fig. B.14). The holonomic drive has three degrees of freedom (DOF), so at least accumulated

205

B. The Interactive Behavior-Operated Trolley (InBOT), InBOT-2, and ETrolley

3 DOF have to be measured by the odometry wheels – as long as the individual DOF are not correlated.

Furthermore, each of the odometry wheels has to be able to follow 3 DOF motions to avoid slipping.

The designed odometry wheels each have two mechanical DOF: the wheel rolling on the floor and the

rotary feedthrough connecting the wheel to the robot’s body (see Figure B.15 (left), indicated by the green

arrows). These two DOF are outfitted with incremental encoders to allow for measuring the distance driven

on the floor and the direction change. The third DOF is given by the fact that (in an ideal case) the wheel

touches the ground in one point, only. The data of the four encoders (two for each of the two odometry

wheels) is handed over to the UCOM board via digital I/Os. The wheels use a spring-mounted suspension

to provide for continuous ground contact in case of uneven floor (and to protect the wheels from damage

when driving over bumps).

Fig. B.14.: The 2D odometry wheel tracks the path its center point has traveled. It measures the distance which it has
rolled off and the direction of the rolling motion relative to the robot using wheel encoders. To smooth uneven floors
it is mounted on a spring mechanism.
Left: first version with sleeve bearing and 2cm wide running surface.
Right: second version with alternative suspension and torus-shaped running surface.

Two versions have been designed. The main requirement for the first version has been a quick develop-

ment process as the first prototypes have been needed for software tests. The second version fixed mainly

two issues identified (Fig. B.15, see the internship report of C. Billet [Bil10] for a thorough description):

• The suspension mechanism could jam because the force applied when driving past a bump in the

floor is not applied in parallel to the direction of the linear sleeve bearing’s DOF. The reason is that

a castor is used for the wheel and thus the point of contact between wheel and floor in located on a

circumference around the axis of the bearing. The design of the second suspension is free of such

jams.

206

B.6. Force sensitive handlebar

Fig. B.15.: Issues of the first version of the odometry wheel [Bil10]. Left: the force vector (red arrow) points from the
ground contact point towards the suspension and, thus, is not parallel to the DOF of the suspension. The result is the
possibility of high friction and jams (middle) when a linear sleeve bearing is used. Right: the running surface of the
first version’s wheels is wide and flat – actually it has even been slightly concave. The new running surface uses an
O-ring, providing for a well defined point of contact.

• The main source of inaccuracy of the first version has been the wide and flat running surface of the

wheel, thus, a distinct point of contact between floor and wheel is not granted. The second design

uses a torus-shaped running surface, providing for a distinct point of contact.

B.6. Force sensitive handlebar

The most intuitive method of using a robot trolley is probably the interaction based on physical contact by

using a force sensitive handle. The user doesn’t need extensive training and doesn’t have to learn voice

or gesture commands. The close coupling of user and robot in the control task allows the user to perceive

the robot’s actions while allowing him to contribute his own intentions simultaneously. The user is able to

apply experiences from a common, manual trolley to the robot trolley but is supported by several additional

functionalities like motor power, obstacle avoidance or local maneuvers controlled by Force Commands.

The force sensitive handle (see Figure B.16) is part of the robot’s multimodal user interface. It is used to

manually steer the robot while operating in the Manual Steering Mode as well as to give Force Commands

to the robot which are then executed autonomously.

B.6.1. Sensor concept

The basic concept of the force sensitive handle is to design a system to detect the applied forces and torques,

gather them and transfer them to a classification mechanism. Following the classification, motion commands

are generated and transferred to the behavior network which is responsible for the motion generation.

To sense and detect the user’s intention via the trolley’s handle a physical contact of user and trolley is

necessary. The user grabs the handle at least with one hand. The possible area for the physical contact of

the user is illustrated in Figure B.17 (left) by the yellow rectangle. The most typical areas for the contact are

207

B. The Interactive Behavior-Operated Trolley (InBOT), InBOT-2, and ETrolley

Fig. B.16.: The force sensitive handle (thrid version) for manually steering the robot

illustrated by the orange circles. The arrows demonstrate the most typical direction of the forces applied by

the user.

The user is able to apply forces as well as torques on the trolley’s handle using either one or both hands.

During contact of the hands, the rigid body of the handle combines the individual forces and torques to a

single 3D force vector (see Fig. B.17 (middle)). For steering the robot, but also for the classification of the

intention, only the projection of the force on the horizontal plan (Fig. B.17 (right)) as well as the torque

around an axis parallel to the normal vector of the horizontal plan is used.

Fig. B.17.: Forces relevant for the Manual Steering Mode. Left: Forces typically applied by human users
on the handlebar of a shopping cart. Middle: Forces (red arrows) and torque (orange circle) that are finally
provided by the handle. For steering the robot these have to be transformed into the robot coordinate
system (grey) – a Y-force on the handle results in a torque on the shopping cart. Right: Horizontal plane
and normal vector for the decomposition of forces and torques.

In detail the process is as follows (see Fig.B.18): The forces that the user exerts on the bars of the handle

are transferred into the sensor. Here they again exert a strain on strain gauges (strain sensitive resistors)

mounted on thin metal beams. The strain is measured by ICs 2 connected to the strain gauges. The values

2Picostrain PS021, Acam-Messelektronik GmbH

208

B.6. Force sensitive handlebar

Fig. B.18.: Processing tool chain of the Manual Steering Mode: handle with strain gauges - ACAM-Board
- UCOM-Board - MCA2 Remote part - Module Manual Control - Module Force Command Classification
- Advanced Behaviors - Basic Behaviors

are transferred to a UCOM-board [130] via SPI. Here the several measured forces are transformed into

two forces and one torque, which is the most significant information used in the Manual Steering Mode.

Additional signals are provided by two buttons (or arrays of micro switches) on the handle that are used as

dead man’s switches. The UCOM-board transfers the resulting forces to the navigation system if at least

one of the buttons is pressed, only. The second functionality of the buttons is to trigger the classification of

Force Commands. At the moment when both buttons are released the responsible classification mechanism

processes the forces measured in the last second and classifies the given command. While at least one of the

buttons is pressed the actual command is classified as manual steering and the forces are transformed into

movement commands. Details on the data processing in the Behavior-Based Control have been described

in Chapter 6.4.1.

B.6.2. Three iterations of the force sensitive handle

Three iterations of the handle have been developed until reaching the final design (see Figure B.19 for

an overview). The first version was intended to be quickly available as it was needed as basis for the

development of the control software. Thus, the design has been simplistic. The second version was designed

to perform first experiments and thus had to be more robust and precise. It was outfitted with two H-shaped

force sensors instead of the single beams of the first version. This version tended towards having internal

stress on temperature changes and lost its calibration too frequently. On the gathered experiences the last

and final version has been designed. This time, a single circular force receptor made out of one piece was

used to prevent inner stress. Several finite element simulations have been run to get the best shape for the

sensor and the best position for mounting the strain gauges. Intending to make the third version the final

one, robustness in processing the acquired data was put into the focus. The number of strain gauges as well

as the number of measurement boards was doubled. Additionally, shielded cables and electronic boxes have

been used to ensure the quality of the very sensitive signals. The thorough analysis of the issues of the

second version of the handle and the design of the third version is described extensively in the internship

report of D. Böttinger [Boe10], the the calibration process of the handle in the internship report [Rit10b],

and the design of the first handle in [Ost10].

209

B. The Interactive Behavior-Operated Trolley (InBOT), InBOT-2, and ETrolley

Fig. B.19.: The three versions of the force sensitive handle. Left: the complete handle. Right: closeup of
the sensor. V1: early prototype for a quick start with the development of software components. V2: first
experimental version of the handle. V3: final improved version of the handle using a double amount of
strain gauges, an inlaying board and arrays of micro switches to substitute the dead man’s switches.

210

B.6. Force sensitive handlebar

Fig. B.20.: Construction of the third version of the force sensitive handle. Top: mechanical construction
sketch. Bottom left: placement of the strain gauges. Bottom right: finite element simulation showing the
strain on the sensor when applying forces and torques as indicated by the red arrows.

Development of the final version of the force sensitive handle While conducting tests, the second

version of the force sensitive handle showed four kinds of issues which had to be tackled when designing

the third version (see Fig. B.19 and B.20):

• Decomposition of applied forces: The handlebar was located above the sensor, thus, there was always

a strong torque, even when the user tried to exert forces in the X-Y-plane only. In the third version,

the sensor has been mounted in the center of the handlebar.

• Torque: The torque around the Z-axis was difficult to measure due to the positioning of the strain

gauges. In the third version, they have been applied on radial beams as well.

• Inner stress: The sensor was not made out of one piece but first mounted by screws and later by bolts

of the same material as the sensor. Nevertheless, changes in the environmental temperature resulted in

significant stress in the sensor which was measured by the strain gauges. This forced a re-calibration

of the sensor after significant temperature changes – in the summertime often two times a day. In the

third version, the sensor has been made out of one piece.

• Sensitivity of analogue signals: The strain gauges are actually strain-sensitive resistors. The difference

in the specific resistance depending on the strain is rather small. Thus, noise generated by external

influences can overpower the actual signal. In some cases the impact of just holding the hand closely

to the wires caused a signal of five times the strength of the force applied. In the third version, the

first board has been integrated into the housing of the sensor and shielded cables have been used.

Additionally, the number of strain gauges has been doubled and an additional strain gauge has been

installed to measure the strain caused by the temperature changes themselves.

211

C. Complementary System Components

This chapter gives an overview on complementary system components which have been developed in the

course of this thesis in order to have – seen from an application-oriented point of view – a complete system at

hand. These components shall facilitate testing the core of the control system in the context of the scenario

of application in general and conducting user studies in particular. Furthermore, for some components

additional third-party alternatives have been integrated, preventing overspecialization of the control system

and demonstrating the system’s modularity and extensibility.

The components summarized here are located in the application-specific part of the control hierarchy

or used for data acquisition. They are considered being auxiliary components, only, and will have to be

substituted with more specialized and sophisticated ones, once the system should actually be applied.

Organization of this chapter: To successfully perform complex assistance tasks such as following and

guiding in the store, the robot must be able determine the current position of its user. Furthermore, other

moving objects have to be taken into account, too. The first three section will focus on systems for tracking

objects or persons: Section C.1: “Object tracking based on the occupancy grid and planar laser scanners”,

C.2: “Detecting and tracking the user using onboard sensors”, and C.3: “The intelligent environment” which

tracks objects with cameras and/or laser scanners distributed in the environment.

The second part of this chapter will focus on means to control the service robot namely the user interfaces

and the application-specific communication layer: Section C.4: “The InBOT-UI”, C.5: “The CR-UI”, and

C.6: “The TaPAC Client”.

The chapter will be concluded by introducing a graph-based navigation system in Section C.7.

C.1. Object tracking based on the occupancy grid and planar laser scanners

For a service robot operating in a dynamic environment it is crucial to be able to identify moving objects

and to track their motions. The first approach uses the local occupancy map of the robot’s local world

model which is built based on the sensor reading of the two planar on-board laser scanners 1. In contrast

to the intelligent environment introduced in the next section, using only on-board sensors has the advantage

of having no installation effort, especially in large-scale environments. But it comes at the costs of sensor

readings with less quality and a disadvantageous perspective, resulting in frequent occlusions.

In the following, the algorithm for detecting, matching, and tracking moving objects is introduced. This

algorithm is based on the coordinates of the objects’ positions extracted from the occupancy grid. First the

grid maps are pre-processed. Then the map is segmented to distinguish objects from free space. Finally, the

center of gravity (COG) of the objects is determined and matched with a predicted COG, generated from

the previous frames. The successfully matched objects are updated in the local world model.

1Two SICK S300 or LMS100, respectively, each with a planar 270◦ field of view

213

C. Complementary System Components

C.1.1. Pre-processing of the grid map

First of all, a copy of the local world model’s local occupancy grid map is acquired. By first dilating the map

– which is interpreted as binary image – all the objects whose distance is smaller than two cells are merged.

Afterwards, by eroding the map small objects only consisting of few cells like legs of a table or a chair

are deleted from the map because they are most likely not moving. Taking them into account would mean

having to match vast amounts of tiny obstacle which actually might even seem to be moving due to the

fuzziness of the robot’s self-localization and the discretization of the environment into cells. Therefore, all

objects are eroded and all objects which have less than three cells are deleted. Depending on the actual

scenario of application, particularly this step has to be re-factored, depending on the expected size and type

of obstacles.

Finally, the grid is segmented and all objects are extracted. For each object the Center of Gravity (CoG)

is calculated using the center of the bounding box of all occupied grid cells.

C.1.2. Tracking objects

To calculate the motion of the objects the association of the individual objects is determined by comparing

the objects with predictions corresponding to the objects of the preceding frame. The objects are tracked

and finally velocity and heading of the objects is computed using their displacement over several frames.

Some objects partly overlap regarding their position in the current and the preceding frame. Actually, this

is highly probable as the algorithm has a cycle time of three runs per second. Therefore, an object with a

size of 30cm traveling slower than 1m/s will probably overlap in two succeeding frames. Objects with an

overlap of at least 90% or an average displacement of the COG of less than 10cm are considered as (almost)

static objects and, thus, discarded.

If there is a unambiguous overlapping between two frames, these objects are matched. For the remaining

objects a prediction based on their past motion is calculated and a gate is defined to reduce the number of

possible matching candidates. From all the candidates the best fitting one is chosen, using the actual distance

between COG and the predicted position as well as the size of the bounding box as measure.

In a post-processing step objects are split or merged, if necessary. Furthermore, a inertia value is calcu-

lated for each object. Because of inaccuracy and discretization, a moving object might look like a static

object in several frames and afterwards move again. On the other hand, a static object could also look like a

moving object. When an object has performed a significant motion, its inertia is raised, else it is decreased.

As long as the inertia of an object is above a threshold, the object is considered as moving object. If the

inertia of an object is zero or it could not be matched anymore it becomes a virtual object. The virtual object

continues its motion with constant velocity and heading for few seconds, continuing its tracking history.

This way, temporarily occluded objects will not be lost – rather, they remain in the robot’s memory. This

enables the robot to avoid collisions with moving objects which are occluded for some seconds.

C.1.3. Updating the tracking history

The tracking history contains the last positions of an object and is stored in the local world model to be used

by the individual behaviors. After going through the described process, the history is extended either by

the new position of the successfully matched object or by continuing the movement of a virtual object. If

214

C.2. Detecting and tracking the user using onboard sensors

an object stays ’virtual’ for a defined amount of time it is discarded completely and the tracking history is

deleted. Two examples are depicted in Figure C.1:

Fig. C.1.: Left: Example of a tracked object, accompanied by a prediction for the succeeding frame. A: robot InBOT,
B: laser scanner readings of an object (current frame), C: the object’s gravity center (preceding frame), D: the object’s
track-line, E: the object’s predicted position (shape/size of X: uncertainty), and F: the circular gate around the new
COG of an object in the succeeding frame. All prediction points (center of X) in the circle will be considered as
potential position in the succeeding frame.
Right: Occupancy map with two moving objects (colored) moving around the robot in our labs. The lab is filled with
lots of chairs, tables, PCs, bags, etc. Several obstacles are not dense, so the laser range finder is able to see through
them.

C.2. Detecting and tracking the user using onboard sensors

When performing assistance tasks such as following and guiding in the store, the current position of its user

is of crucial importance. Accordingly, the robot’s user is a moving object of special interest, thus, identifying

the position of moving objects is not sufficient, the identification of the user is necessary.

In this section, a system to track the robot’s user is introduced, which has been developed by T. Germa

at LAAS CNRS and has been integrated on InBOT. In [59] more details are provided for the problems of

detection and tracking the user using on-board sensors, more precisely a mono-camera and a long-range

RFID system.

The robot is equipped with a long-range RFID reader connected to eight directional antennas and with a

camera mounted overhead on a pan/tilt unit (PTU) to track the user. The user carries an RFID transponder,

the user identification is performed based on the transponder ID. This makes the identification of the user

more robust, especially when the user has been occluded for some time. For the identification of the user

based on visual data, a user appearance model using color templates of the face and the clothes is initially

learned (see Fig. C.2). The image is searched for regions of the learned color and a particle filter is used to

find the best fitting position of the user in the image. Figure C.4 shows the individual components used for

the calculation.

The relative human/robot pose can be determined by tracking the detected user. First, the user’s RFID

transponder is detected. Figure C.3 presents the calibrated reception fields: the antennas receive signals in

a 120deg cone with an effective range of 4.5 meters. A tag can be identified to be inside the red, blue, or

green regions according to which antennas actually received the signal. This gives a rough estimation of

the users current position by which the PTU can be adjusted if the user is not currently tracked. In parallel,

the visual data is analyzed. The relative angular position is given by the current orientation of the PTU and

the camera model. The relative distance is coarsely estimated from the face width and height in the image

215

C. Complementary System Components

Fig. C.2.: The color template used to mem-
orize the color and size of the user’s face
and clothing (image source: [63]).

Fig. C.3.: Arrangement of the eight directional RFID antennas on the
robot (image source: [59]). The RFID tag carried by the user can be
located to be either inside the blue, green, or red area.

Fig. C.4.: User tracking by on-board camera (image source: [59]). From left to right: original image, skin
probability image, face detection, azymuthal angle from RFID detections, accepted particles (yellow
dots) after rejection sampling.

216

C.3. The intelligent environment

compared to the one learned a priori. Finally, Figure C.5 shows the robot InBOT following a user by the

described means.

Fig. C.5.: InBOT is following a user who is carrying an RFID tag in his hands by
means of RFID localization and color templates of skin and clothes.The white
boxes mounted on the basket house the RFID antennas.

C.3. The intelligent environment

In contrast to the methods using on-board sensors only, this section focuses on sensors distributed in the

environment. The advantage is that the sensors can be placed with favorable fields of view (e.g. making

occlusions less probable), the sensors do not move themselves resulting in sensor readings of better quality

and enabling background subtraction techniques, and finally the complete environment can be monitored,

not only the close vicinity of the robot or robots, respectively.

There are two main components which contribute to the system (see Figure C.6). The first one are laser

scanners mounted on the wall at chest-height. The tracking algorithm is the same as described in Section

C.1 “Object tracking based on the occupancy grid and planar laser scanners”, but has been extended with

a background subtraction algorithm. And the second component is a vision-based approach using cameras

mounted at the ceiling. These have a even better field of view and could additionally be used to classify the

tracked objects or to identify the robots’ users by applying classifiers based on the person’s clothes or face.

For the FZI labs two laser scanners 2 and four cameras 3 have been installed along with a PC responsible

2SICK LMS100, each with a planar 270◦ field of view
3Vivotek IP8151

217

C. Complementary System Components

Fig. C.6.: Architecture of the vision- and laser scanner-based system for tracking moving objects using
sensors installed in the environment.

Fig. C.7.: Data processing pipeline for the vision-based part of the person tracking: background subtrac-
tion, generation and processing of blobs, feature extraction, kalman filter prediction step, data association,
kalman filter update step, and management of tracks.

218

C.3. The intelligent environment

for the data processing and the communication with the robots. Extensive information can be found in the

diploma thesis of F. Stehle [Ste11].

The processing pipeline for camera data and person tracking is depicted in Figure C.7 along with examples

for some steps in Figure C.8.

Fig. C.8.: Examples of the individual steps of the person tracking. The same scene shown in four different
steps: (1) image from one of the cameras, (2) foreground blobs with bounding boxes and convexity defect
check, (3) MCAGUI view (top view) of 5 persons, each seen from several sensors (blue lines: bounding
boxes seen from top, dots: laser readings), and (4) track lines for 5 persons.

Processing pipeline for camera data: As the environmental sensors are fixed, first of all the a back-

ground subtraction is performed to identify foreground objects in the image. Here the codebook algorithm

219

C. Complementary System Components

[91] is used, which is robust versus shadows cast by objects. Initially, it memorizes the scene which should

contain background objects, only. Afterwards, an online learning component slowly adapts the memorized

scene to changes.

In the next step continuous blobs are segmented. Clusters of foreground pixels are merged by morpho-

logical operations (open, close) and then connected to continuous blobs by connected component labeling

[74]. These blobs are evaluated regarding their size and estimated distance to the camera – assumed that all

objects are actually touching the floor. This way false positives can be discarded. Finally, the convexity of

the objects is analyzed [72] like done when analyzing the pose of a human hand [106]. Blobs which are too

wide and have two strong convexity defects regarding the vertical axis which are opposing each other are

considered to be actually two persons and, thus, split into two objects (Fig. C.9 (left)).

The final step of the vision data processing is the extraction of various features which can later be used for

the data association like height and width of the object but also its color, or more precisely its color pattern.

Tracking multiple objects For each individual tracked object one kalman filter is kept which is con-

tinuously updated in a cyclic manner. The first step in tracking the objects for each cycle is to perform the

prediction step for each of the filters, assuming a linear motion model of the objects.

In the second step a joint probabilistic data association filter (JPDA) is used to correlate the detected

objects of the individual sensors with the predictions of the already tracked objects. A gate of 2m is used to

reduce the amount of possible candidates. Based on a candidate correspondence matrix the n best hypotheses

for sets of matches are calculated. The probability for each pair to be a match is calculated by summing up

Fig. C.9.: Special measure are taken to handle specific situations.
Left: By identifying convexity defects regarding the vertical axis (red versus white line), objects which have a merged
blob (left) can be separated (green bounding boxes).
Right: By assuming that every object touches the floor and by merging the information from several sensors, even
partially occluded objects can be tracked with a correct X-Y-position.

220

C.4. The InBOT-UI

the number and confidence of the occurrence of this match in the individual hypotheses and by favoring the

best matches to avoid the track coalescence problem of objects with parallel paths. Merging several sensors

facilitates tracking even partially occluded objects with correct coordinates (Fig. C.9 (right)).

Afterwards, the resulting set of matches is used for the update step of the kalman filters.

Finally, the track management takes place. Here new tracks are initialized when a object could not be

matched, old tracks are deleted, or virtual objects are created and tracked for a defined amount of time when

the objects could not get a new match because they are probably occluded.

C.4. The InBOT-UI

A central component for human robot interaction is the user interface (UI). Especially for managing complex

content like shopping lists or a recipe database, a graphical interface is crucial. The UI designed for the

robot InBOT (see Figure C.10) implements the architecture’s application-specific part – the communication

layer – and provides for the application logic. It is meant to be run on a touchscreen PC to ease its use.

Additionally, a bar code scanner can be used to get information on products and a speech output informs the

user on special events. Extensive information can be found in the mid-study thesis of A. Gorbunov [Gor12]

Fig. C.10.: A customer using the InBOT-UI

The work flow for using the GUI is designed to be as follows (but the user can divert if he wishes to): The

user logs into the system by scanning his ID card and entering a PIN (Fig. C.11 (left)). He is then asked if

he wishes to load an old shopping list or to start a new one. Afterwards he can enter new products. When

entering a product, a list of choices for the product is presented (e.g. different kinds of milk available) and

the user can enter the number of pieces he wants to shop. While entering products he is advised to what

other customers have bought with a similar choice of products. Additionally, the user can access a database

of recipes, either by browsing the list or by asking the system which recipe fits best to the products currently

221

C. Complementary System Components

Fig. C.11.: Left: the user logs into the system by scanning his ID card and then entering a PIN. Right: dialogue
informing the user that tuna is needed for the selected recipe, that some kind of tuna is already in the shopping list
and asking if another piece of tuna shall be added along with the choices of tuna available in the shop.

on the shopping list. After selecting a recipe and entering the number of persons for the meal, further goods

are added to the shopping list (Fig. C.11 (right)). Finally, the system presents the main navigation screen

(Fig. C.12) and guides the user to the products. When reaching a product a speech output is uttered and a

pop up window informs the user on the screen. Here the user can increase or reduce the number of pieces he

puts into the basket. The product is added to the “done” list when either the user presses the done button in

the dialogue, scans the product or after a couple of seconds when neither the bar code scanner nor the touch

screen are used. When scanning any product in the meantime, the GUI displays information on the product.

After finishing the shopping trip, the user commands the robot to queue up at the checkout counter.

Figure C.13 shows the architecture of the interface system. All top-level screens are available from the

main screen and the user is guided through the sub-screens by defined work flows. Based on sparse events,

the system can jump to specific sub-screens directly, for example when a product’s bar code has been

scanned. Additional events are received via the command interface (see Chapter 3.3.3) which connects the

InBOT-UI – which is actually a implementation of the communication layer – with the main control system.

The speech output is implemented by the open source package Espeak4 and informs the user about events

received from the main control system.

The InBOT-UI uses a database which contains all products along with their location in the shop as well as

a topologic-metrical map of the shop. When the user finishes editing the shopping list, a graph is generated.

This graph contains the center of all topological areas, a navigation point in front of the links between the

areas and the products in the shopping list. Starting from the robot’s current location, a greedy algorithm is

then used to arrange the selected products based on their distance along the graph, favoring products located

nearby and on the same side of the alley. When the user starts the navigation, the corresponding change

of the mode of operation and the target location is handed down to the control system using the command

interface.

4
http://espeak.sourceforge.net/

222

C.4. The InBOT-UI

Fig. C.12.: The main navigation screen showing a zoom-able map, the shopping list, and a set of controls.

Fig. C.13.: Architecture of the InBOT-UI.

223

C. Complementary System Components

C.5. The CR-UI

An alternative user interface (UI) is the multimodal CR-UI (Fig. C.14). It has been integrated on InBOT

implementing the communication layer while the robot was placed at the disposal of the project “Comm-

Rob” until the CommRob demonstrator was available. The interface was developed by Prof. H. Kaindel’s

group at TU Vienna based on Java and is attached to InBOT’s control system via the command interface

(see Chapter 3.3.3). What distinguishes this user interface is the claim that the content is generated (semi-)

automatically based on UI and discourse models defined in UML [41] [87]. The UI accepts several methods

for interaction: a touch screen interface, bar code scanner, speech output, and even speech input using the

grammar-based speech recognizer Julius 5.

Fig. C.14.: Kaindl’s CR-UI on InBOT. Left: Main navigation screen with the lists for products to be bought, which
have not been taken yet, and which have already been taken. Coming along with the list is the map in the top-right
corner – here of the FZI labs – showing the current location and the location of the target product. Right: Foto
showing a customer using the UI on InBOT in a small simulated shop set up here in the FZI labs.

The work flow is as follows: The user logs into the system by pressing the corresponding button on the

touch screen interface. Then he enters his shopping list in the order in which he wants to visit the products.

After finishing the shopping list he can give the command to be guided to the first product, either by pressing

the corresponding button or by saying “Guide me to the next product”. He can also select a specific product

instead of the next one. When reaching the product the user is informed by a speech output. The product is

marked as “in the basket” when it is scanned with the bar code scanner. The user can increase the number of

pieces by scanning it several times. When user an robot pass a product which is on the shopping list while

going to another product the UI commands the control system to slow down and informs the user via speech

output ([20] and [78] show some results form an human factors’ perspective). After finishing the shopping

trip, the user commands the robot to queue up at the checkout counter. The UI then starts a dialogue with

the checkout system and transfers the information on the shopped products.

5
http://julius.sourceforge.jp/en_index.php

224

C.6. The TaPAC Client

C.6. The TaPAC Client

The TaPAC (Transports and Peripherals Administrative Centre) [144] has been developed at FZI (IDS)

to manage transportation tasks for fleets of automated guided vehicles (AGV). Regarding the architecture

presented in this thesis, the TaPAC client represents the application specific component – the communication

layer and particularly the application logic. Usually it is used in combination with a HTFM graph-based

navigation which is introduced in the succeeding section. The TaPAC client has been integrated with the

control system of this thesis to be applied on the transportation robot Odete. The client can be commanded

directly using a network-based GUI or – as done in larger installations – via the TaPAC server which manages

the fleet of AGV and controls automated doors and lifts.

C.7. The IDS graph-based navigation system

The graph-based navigation system (Fig. C.15) has been developed at FZI (department IDS) to enable au-

tomated guided vehicles (AGV) to operate without physical additives such as optical or magnetic guidance

lines [144]. The robots traverses the graph node by node, directed by a server which is responsible for the

fleet organization, if necessary. The graph is for example used to implement two-way traffic in corridors or to

define the robots’ paths in larger halls. The edges of the graph can be annotated with additional information

like the maximum allowed velocity. The graph itself is implemented by a so-called HTFM (Hierarchical

Topological Finite State Machine). Regarding the architecture presented in this thesis, this navigation sys-

tem represents the strategic layer. In combination with the TaPAC Client it has been integrated with the

tactical and reactive layer of this thesis on the transportation robot Odete.

Fig. C.15.: The IDS graph-based Navigation system for AGVs.

225

List of Figures

1.1 Movie Metropolis 1
1.2 Industrial robot Unimate 1
1.3 TransCar automatic guided vehicle

(AGV) by Swisslog 2
1.4 Automated subway train by Siemens . . 2
1.5 Window cleaning robot RACOON 2
1.6 Rhino and MINERVA 3
1.7 Robox 3
1.8 TOOMAS 3
1.9 Supermarket with non-static objects . . . 6
1.10 Supermarket: removable special offer . . 6
1.11 InBOT and ETrolley 7
1.12 Sketch: Holonomic drive parking 9
1.13 Sketch: Holonomic drive dodging 9
1.14 Design concepts 11
1.15 Interplay of main components 16
1.16 The robot InBOT 16

2.1 Pedestrian Behavior Hierarchy 22
2.2 Introduction of edge-meshes as motion

model of pedestrians 23
2.3 Example: Fundamental Diagram 24
2.4 Simulation of traffic jams 25
2.5 Density tolerance 25
2.6 BBC Fusion Mechanism 30
2.7 Behavior Module 33
2.8 Fusion Behavior 33
2.9 Example for ib2c 35
2.10 3T Architecture 38
2.11 Architecture by Alami 38
2.12 Types of topological maps 40
2.13 VFF, VFH, and VFH+ 42
2.14 Robots Hierarchy 45
2.15 Airplane cleaning robot 45
2.16 MOSRO inspection Robot 45
2.17 Cleaning robot roomba 45
2.18 The robot ARTOS 47
2.19 The robot RAVON 47
2.20 The robot MARVIN 47
2.21 Rhino and MINERVA 49
2.22 Robox 49

2.23 Care-O-Bot 50
2.24 enon 50
2.25 Real MEA App 51
2.26 EDEKA App 51
2.27 Giving Cart 51
2.28 Concierge for Cart 52
2.29 U-Scan Shopper 52
2.30 Smart Cart 52
2.31 KleverKart 52
2.32 IBM Personal Store Assistant 52
2.33 ETrolley 52
2.34 TOOMAS 55
2.35 RTS . 55

3.1 Pedestrian Behavior Hierarchy 59
3.2 Architecture from Pedestrian Model . . . 63
3.3 Orthogonal control flow 64
3.4 control sharing and modes of operation . 64
3.5 The robot’s control architecture 65
3.6 The infrastructure 66
3.7 local world model 67
3.8 control architecturewith interfaces and

data flow 69

4.1 Behavior hierarchy of the control system 74
4.2 Concept of the control system 75
4.3 Predictive obstacle avoidance 78
4.4 Grid map and extracted obstacles 80
4.5 2D measurement wheel 81
4.6 Sketch of RFID barriers 81
4.7 MCA module implementing behavior . . 82
4.8 The behavior module 82
4.9 Behavior coordination 83
4.10 Behavior fusion 83
4.11 The Behavior Network 84
4.12 Sketch: Safety sectors 85
4.13 Sketch: Safety calculation 85
4.14 Screenshot: Safety velocities 87
4.15 Architecture of the safety group 87
4.16 Relevance of obstacles 89
4.17 Scene using Avoid Obstacle behaviors . . 90
4.18 Plot of the relevant area 90
4.19 Matlab simulation of Avoid Obstacle be-

havior 91
4.20 MCA implementation of AO behaviors v1 92
4.21 Comparison of Avoid Obstacle behaviors 94
4.22 Avoid Obstacles behavior: Example . . . 95
4.23 MCA implementation of AO behaviors v2 95

227

List of Figures

4.24 Evaluation No1 of the reactive part of the
BBC 96

4.25 Evaluation No2 of the reactive part of the
BBC 97

4.26 Sketch and MCAGUI for Look for Gaps 98
4.27 MCA: Reactive task-oriented input be-

haviors 101
4.28 The Behavior Network 102
4.29 MCA: Tool chain of the tactical layer . . 103
4.30 Sketch: Geometric construction for the

predictive obstacle avoidance 103
4.31 GUI: Predictive Obstacle Avoidance . . . 103
4.32 Plot of the candidates’ quality 104
4.33 Video: Predictive Obstacle Avoidance . . 104
4.34 Sketch of LFC subgoal generation 105
4.35 Scene Analysis: Sketch of Goal Point

Displacement 107
4.36 Parking positions at Goal 108
4.37 Scene Analysis: Topological navigation

points 109
4.38 Sketch: Detection of blocked topological

links 110
4.39 GUI: Detection of blocked topological

links 111
4.40 GUI: Detection of blocked topological

links 111
4.41 Video: Detection of blocked topological

links 111
4.42 Sketch: Detection of blocked topological

links 111
4.43 Virtual topological area 113
4.44 Geometric map of a shop. 114
4.45 Map divided into areas 114
4.46 Resulting topological map 114
4.47 Topologic Metric Map: A topological

map with metric and semantic annotations 115
4.48 Flexible plan 115
4.49 Stress test of the topological navigation . 116
4.50 Evaluation of navigation system 118
4.51 Facts on the second and third system test

on InBOT 119
4.52 Comparison of the mesh-based model to

the robot’s motion 120
4.53 control architecture implemented in MCA 121

5.1 Hierarchy of the modules responsible for
the avoidance of moving obstacles 124

5.2 Example of tracked object 124

5.3 MCA implementation of the reactive
avoidance of moving obstacles 125

5.4 Sketch of the distance calculation of the
Evade Behavior 126

5.5 Plot of the Evade Behavior 127
5.6 MCAGUI showing the virtual force

fields of the Evade Behavior 127
5.7 InBOT avoids shopping cart: Sketch and

photo 128
5.8 InBOT avoids shopping cart: MCAGUI

screen shots 129
5.9 Limitations of reactive behaviors 129
5.10 MCA implementation of the planner . . . 130
5.11 Construction of the 3d map 131
5.12 Path planning and optimization in 3D grid 132
5.13 Example of the spatio-temporal planner . 133
5.14 Solved limitation by planner 134
5.15 comparison of methods for avoiding

moving objects 135
5.16 Stress test regarding moving objects . . . 135
5.17 Stress test to prove the deterministic

manner of the behaviors 137
5.18 Photos from tests 138
5.19 Final test for avoiding moving objects: a

shopping run 139

6.1 InBOT is guiding a user 141
6.2 InBOT is controlled by the force sensi-

tive handle 141
6.3 Orthogonal control flow 142
6.4 The user interface 146
6.5 Force sensitive handle 148
6.6 Examples of Force Commands 149
6.7 Assistants in Manual Steering Mode . . . 150
6.8 InBOT follows a user 152
6.9 InBOT guides a user 152
6.10 User scanning a product 153
6.11 Using touch screen while walking 153
6.12 GUI: User is blocking the robot 155
6.13 GUI: user hinders robot 156
6.14 Sketch: Robot switches position with user 156
6.15 Video snapshot: Robot switches position

with user 156
6.16 Searching for user 157
6.17 Sketch showing control shares regarding

modes and navigation system 159
6.18 Occupancy grid from the obstacle assis-

tant in Manual Steering Mode 160

228

List of Figures

6.19 Concept of control sharing vs. modes . . 162
6.20 Example of control sharing: paths 165
6.21 Example of control sharing: shares . . . 165
6.22 Shopping run with other shoppers 167
6.23 Control shares during shopping run . . . 167
6.24 Commanding InBOT using a smartphone 168
6.25 Sketch of the user test: The intended path

of the robot 169

7.1 Queuing up at the check out counter . . . 173
7.2 The Virtual Train concept 174
7.3 The Virtual Train concept 175
7.4 The Virtual Train concept: Example 2 . . 176
7.5 The Virtual Train concept: 5 simulated

robots in one train 176

8.1 The robot InBOT 179
8.2 The system ETrolley 180
8.3 The robot Odete 180
8.4 The walking robot LAURON 181
8.5 The robot CityPod 182
8.6 The robot HoLLiE 183

B.1 InBOT’s equipment 195
B.2 Hardware architecture of InBOT 196
B.3 InBOT2 design sketches 197
B.4 InBOT2 construction 197
B.5 Hardware architecture of ETrolley 199
B.6 Alternative ETrolleys 200
B.7 Electronic layout of InBOT 201
B.8 2D measurement wheel 203
B.9 Evaluation of odometry 203
B.10 Sketch of RFID barriers 204
B.11 Sketch of RFID reader 204
B.12 Sketch of RFID localisation 205

B.13 Evaluation of odometry 205
B.14 2D measurement wheel 206
B.15 Issues of the first version of the odometry

wheel 207
B.16 The force sensitive handle 208
B.17 Forces relevant for the Manual Steering

Mode 208
B.18 Control chain of the Manual Steering Mode209
B.19 The three versions of the force sensitive

handle 210
B.20 Construction of the third version of the

force sensitive handle 211

C.1 Example of a tracked object 215
C.2 User tracking by on-board camera: the

color template 216
C.3 User tracking by onboard camera: ar-

rangement of the directional antennas . . 216
C.4 User tracking by on-board camera: pro-

cessing steps 216
C.5 InBOT Following a user by RFID and vi-

sion . 217
C.6 System architecture of the vision-based

tracker 218
C.7 Person tracking pipeline 218
C.8 Examples of the person tracker 219
C.9 Vision based person tracking: special sit-

uations 220
C.10 The InBOT-UI 221
C.11 InBOT-UI login and recipes 222
C.12 InBOT-UI main navigation screen 223
C.13 Architecture of the InBOT-UI 223
C.14 The CR-UI 224
C.15 IDS graph-based Navigation system . . . 225

229

Bibliography
[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An architecture for autonomy. International

Journal of Robotics Research on Integrated Architectures for Robot Control and Programming, 17:315–337,
1998.

[2] J. Albiez. Verhaltensnetzwerke zur adaptiven Steuerung biologisch motivierter Laufmaschinen. PhD Thesis,
University of Karlsruhe (TH), 2006.

[3] J. Albiez, T. Luksch, K. Berns, and R. Dillmann. A Behaviour Network Concept for Controlling Walking
Machines. In: Proc. 2nd International Symposium on Adaptive Motion of Animals and Machines, 2003.

[4] J. Albiez, T. Luksch, K. Berns, and R. Dillmann. An activation-based behavior control architecture for walking
machines. The International Journal on Robotics Research, 22:203–211, 2003.

[5] P. Althaus. Indoor Navigation for Mobile Robots: Control and Representations. PhD Thesis, KTH Stockholm,
2003.

[6] P. Althaus and H. Christensen. Behaviour coordination for navigation in office environments. In: Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3:2298–2304, 2002.

[7] Apple-iTunes and EDEKA-Suedwest. Picture source: EDEKA App. http://itunes.apple.com/de/app/edeka-
sudwest/id391351382?mt=8, 2012.

[8] Apple-iTunes and Metro-Group. Picture source: real App MEA.
http://itunes.apple.com/de/app/real/id343799347?mt=8, 2012.

[9] R. C. Arkin and D. MacKenzie. Temporal Coordination of Perceptual Algorithms for Mobile Robot Navigation.
IEEE Transactions on Robotics and Automation, 10(3):276 – 286, 1994.

[10] C. Armbrust, M. Proetzsch, and K. Berns. Behaviour-Based Off-Road Robot Navigation. KI - Künstliche
Intelligenz, Springer Berlin / Heidelberg, pages 155–160, 2011.

[11] ATR, Technabob.com, and T. Kanda. Robovie-II. Press Article, Online:
http://technabob.com/blog/2009/12/16/robovie-ii-grocery-shopping-robot/, 2012.

[12] R. E. Bellmann. Dynamic Programming. Princeton University Press, 1957.

[13] M. Bennewitz. Mobile Robot Navigation in Dynamic Environments. PhD Thesis, Fakultät für Angewandte
Wissenschaften, Albert-Ludwigs-Universität Freiburg im Breisgau, 2004.

[14] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun. Learning motion patterns of people for compliant robot
motion. The International Journal of Robotics Research, 24(1):31–48, 2005.

[15] K. Berns. Webpage of ARTOS. http://agrosy.informatik.uni-kl.de/roboter/artos/, 2012.

[16] K. Berns. Webpage of Marvin. http://agrosy.informatik.uni-kl.de/roboter/marvin/, 2012.

[17] K. Berns. Webpage of RAVON. http://agrosy.informatik.uni-kl.de/roboter/ravon/, 2012.

[18] K. Berns and S. A. Mehdi. Use of an Autonomous Mobile Robot for Elderly Care. IEEE Computer Society -
Advanced Technologies for Enhancing Quality of Life (AT-EQUAL), pages 121–126, 2010.

[19] M. Bluemel. Optimierung des taktischen Verhaltens in Simulationen von Fußgängern. 2008.

[20] C. Bogdan, D. Ertl, H. Huettenrauch, M. Goeller, A. Green, K. S. Eklundh, J. Falb, and H. Kaindl. Evaluation
of Robot Body Movements Supporting Communication: Towards HRI on the Move. New Frontiers in Human-
Robot Interaction, pages 185–210, 2011.

[21] C. Bogdan and M. Goeller. Towards a Framework for Design and Evaluation of Mixed Initiative Systems:
Considering Movement as a Modality. In: Proc. Workshop on Improving Human-Robot Communication with
Mixed-Initiative and Context-Awareness of the 18th IEEE International Symposium on Robot and Human In-
teractive Communication (RoMan), Toyama, Japan, Oct., 2009.

[22] R. Bonasso, D. Kortenkamp, D. Miller, R. J. Firby, E. Gat, and M. G. Slack. Experiences with an architecture
for intelligent, reactive agents. Journal of experimental and Theoretical Artificial Intelligence, 9:237–256,
1996.

[23] J. Borenstein and L. Feng. UMBmark : A Benchmark Test for Measuring Odometry Errors in Mobile Robots.
In: Proc. SPIE Conference on Mobile Robots, 1995.

[24] J. Borenstein and Y. Koren. Real-time Obstacle Avoidance for Fast Mobile Robots in Cluttered Environments.
In: Proc. IEEE International Conference on Robotics and Automation (ICRA), Cincinnati, Ohio (USA), pages
572–577, 1990.

[25] J. Borenstein and Y. Koren. The vector field histogram - fast obstacle avoidance for mobile robots. IEEE
Journal of Robotics and Automation, 7(3):278–288, 1991.

231

Bibliography

[26] A. Bosien, M. Venzke, and V. Turau. A rewritable RFID environment for AGV navigation. In: Proc. 5th Int.
Workshop on Intelligent Transportation (WIT’08). Hamburg, Germany, 2008.

[27] R. A. Brooks. A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automa-
tion, 2(1):14 – 23, 1986.

[28] R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139–159, 1991.

[29] J. J. Bryson. The Behavior-Oriented Design of Modular Agent Intelligence. Agent Technologies, Infrastruc-
tures, Tools, and Applications for e-Services, Springer, pages 61–76, 2003.

[30] J. Buhmann, W. Burgard, A. B. Cremers, D. Fox, T. Hofmann, F. Schneider, J. Strikos, and S. Thrun. The
Mobile Robot Rhino. The AI Magazine, 16, 1996.

[31] W. Burgard, A. B. Cremers, D. Fox, D. Haehnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun. Experi-
ences With An Interactive Museum Tour-Guide Robot. Artificial Intelligence - Special issue on applications of
artificial intelligence, 114(1-2):3–55, 1998.

[32] D. Castro, U. Nunes, and A. Ruano. Reactive local navigation. In: Proc. IEEE 28th Annual Conference of the
Industrial Electronics Society (IECON), 3:2427–2432, 2002.

[33] D. G. Çakir and A. Çakir. Neufassung DIN 33402 Aktualisierte Körpermaße - Auswirkungen auf die Pro-
duktgestaltung von Büromöbeln und die Arbeitsplatzgestaltung im Büro- und Verwaltungsbereich. Report,
ERGONOMIC Institut für Arbeits- und Sozialforschung Forschungsgesellschaft mbH, 2006.

[34] R. Chatila and J. Laumond. Position referencing and consistent world modeling for mobile robots. In: Proc.
IEEE International Conference on Robotics and Automation (ICRA), 2:138–145, 1985.

[35] H. Choset and J. Burdick. Sensor based planning. I. The generalized Voronoi graph. Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2:1649–1655, 1995.

[36] H. Choset and J. Burdick. Sensor-Based Exploration: The Hierarchical Generalized Voronoi Graph. The
international journal of robotics research, 2(19):96–125, 2000.

[37] A. Codas and M. Devy. RFID-based robot localization and object mapping in a changing environment. LAAS
Report, 2010.

[38] DFKI. Webpage of Innovative retail laboratory project. http://www.innovative-retail.de, 2012.

[39] D. Dieckmann. Die Feuersicherheit in Theatern. PhD Thesis, Technische Hochschule Hannover, 1911.

[40] EDEKA-Suedwest and Burda-Digital-Systems. Webpage: EDEKA Suedwest App.
https://www.edeka.de/SUEDWEST/Content/de/SuedwestApp.html, 2013.

[41] D. Ertl, J. Falb, and H. Kaindl. Semi-automatically Configured Fission for Multimodal User Interfaces. Third
International Conference on Advances in Computer-Human Interactions (ACHI ’10), pages 85–90, 2010.

[42] ETHZ. Online picture gallery of Robox. http://projects.asl.ethz.ch/robox/, 2011.

[43] P. Fiorini and Z. Shillert. Motion Planning in Dynamic Environments using Velocity Obstacles. International
Journal of Robotics Research, 17, 1998.

[44] H. Fischer. Die Leistungsfähigkeit von Türen, Gängen und Treppen bei ruhigem, dichtem Verkehr. Ph.D.
Thesis, Technische Hochschule Dresden, 1933.

[45] Forschungszentrum Informatik (FZI). Webpage: Modular Controller Architecture Version 2 (MCA2).
http://www.mca2.org/, 2011.

[46] D. Fox, W. Burgard, and S. Thrun. Controlling synchro-drive robots with the dynamic window approach to
collision avoidance. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-
96), 3:1280–1287, 1996.

[47] D. Fox, W. Burgard, and S. Thrun. The Dynamic Window Approach to Collision Avoidance. IEEE Robotics
and Automation Magazine, 4(1):23 – 33, 1997.

[48] T. Fraichard. Trajectory Planning in Dynamic Workspace: a State-Time Space Approach. Advanced Robotics,
13(6), 1998.

[49] Fraunhofer-IPA. Webpage: Care-O-Bot. http://www.care-o-bot.de/, 2010.

[50] Fraunhofer-IPA. Picture source: RACOON. Webpage: Serviceroboter Anwendungen, www.ipa.fraunhofer.de,
2011.

[51] K. Fujimura and H. Samet. A hierarchical strategy for path planning among moving obstacles. IEEE Transac-
tion on Robotics and Automation, 5(1), 1989.

[52] Fujitsu. Fujitsu Begins Limited Sales of Service Robot "enon" for Task Support in Offices and Commercial
Establishments. Press release, http://www.fujitsu.com/global/news/pr/archives/month/2005/20050913-01.html,
2005.

[53] Fujitsu. Fujitsu Introduces Wireless Mobile Attendant for U-Scan Self-checkout. Press release,
http://www.fujitsu.com/us/news/pr/ftxs_20050213-05.html, 2005.

232

Bibliography

[54] Fujitsu and Gizmag. U-Scan shopper. Article, http://www.gizmag.com/go/4345/, 2012.

[55] C. Fulgenzi, A. Spalanzani, and C. Laugier. Dynamic Obstacle Avoidance in uncertain environment combining
PVOs and Occupancy Grid. In: Proc. IEEE International Conference on Robotics and Automation (ICRA),
2007.

[56] B. Gassmann. Modellbasierte, sensorgestützte Navigation von Laufmaschinen im Gelände. PhD Thesis,
Fakultät für Informatik, Universität Karlsruhe (TH), 2007.

[57] E. Gat. On three-layer architectures. Artificial Intelligence and Mobile Robots: Case Studies of Successful
Robot Systems, AAAI Press, 1998.

[58] L. Gemzoe. Are Pedestrians Invisible in the Planning Process? Copenhagen as a Case Study. In: Proc. Walk21
Conference, Perth, Australien, 2001.

[59] T. Germa, F. Lerasle, N. Ouadah, V. Cadenat, and M. Devy. Vision and RFID-based person tracking in crowds
from a mobile robot. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 5591–5596, 2009.

[60] D. F. Glas, T. Kanda, H. Ishiguro, and N. Hagita. Field Trial for Simultaneous Teleoperation of Mobile Social
Robots. In: Proc. 4th ACM/IEEE international conference on Human robot interaction (HRI), pages 149–156,
2009.

[61] M. Goeller, T. Kerscher, M. Ziegenmeyer, A. Roennau, J. Zoellner, and R. Dillmann. Haptic control for the
interactive behavior operated shopping trolley InBOT. In: Proc. New Frontiers in Human-Robot Interaction
Workshop, Convention Artificial Intelligence and Simulation of Behaviour (AISB), Edinburgh (UK), 2009.

[62] M. Goeller, A. Roennau, A. Gorbunov, G. Heppner, and R. Dillmann. Pushing Around a Robot: Force-Based
Manual Control of the Six-Legged Walking Robot LAURON. In: Proc. IEEE International Conference on
Robotics and Biomimetics (RoBio), Phuket, Thailand, 2011.

[63] M. Goeller, F. Steinhardt, T. Kerscher, R. Dillmann, M. Devy, T. Germa, and F. Lerasle. Sharing of control
between an interactive shopping robot and it’s user in collaborative tasks. In: Proc. 19th IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN), Viareggio, Italy, pages 626–631,
Sept. 2010.

[64] M. Goeller, F. Steinhardt, T. Kerscher, J. Zoellner, and R. Dillmann. RFID Transponder Barriers as Artificial
Landmarks for the Semantic Navigation of Autonomous Robots. In: Proc. 11th International Conference
on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR), Coimbra,
Portugal, Sept. 2008.

[65] P. G. Griffiths and R. B. Gillespie. Sharing control between humans and automation using haptic interface:
Primary and secondary task performance benefits. Human Factors, the Journal of the Human Factors and
Ergonomics Society, 47(3):574–590, 2005.

[66] H. M. Gross, H.-J. Boehme, C. Schroeter, S. Mueller, A. Koenig, E. Einhorn, C. Martin, M. Merten, and
A. Bley. TOOMAS: Interactive Shopping Guide robots in everyday use - final implementation and experiences
from long-term field trials. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2005–2012, 2009.

[67] H. M. Gross, H.-J. Boehme, C. Schroeter, S. Mueller, A. Koenig, C. Martin, M. Merten, and A. Bley. Shop-
Bot: Progress in developing an interactive mobile shopping assistant for everyday use. IEEE International
Conference on Systems, Man and Cybernetics (SMC), pages 3471–3478, 2008.

[68] D. Haehnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose. Mapping and localization with RFID technol-
ogy. In: Proc. IEEE International Conference on Robotics and Automation (ICRA), New Orleans, LA (USA),
pages 1015–1020, Apr. 2004.

[69] M. A. Hearst, J. Allen, C. Guinn, and E. Horvtz. Mixed-initiative interaction. Trends and Controversies, IEEE
Intelligent Systems, 14(5):14–23, Sept. 1999.

[70] A. Hermann, Z. Xue, S. W. Ruhl, and R. Dillmann. Hardware and software architecture of a bimanual mobile
manipulator for industrial application. In: Proc. IEEE International Conference on Robotics and Biomimetics
(ROBIO), pages 2282–2288, Dec. 2011.

[71] F. Hoeller, D. Schulz, M. Moors, and F. Schneider. Accompanying persons with a mobile robot using motion
prediction and probabilistic roadmaps. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1260–1265, 2007.

[72] K. Homma and E. Takenaka. An image processing method for feature extraction of space-occupying lesions.
Journal of nuclear medicine, Society of Nuclear Medicine, 26(12):1472–1477, Dec. 1985.

[73] S. P. Hoogendoorn, P. H. L. Bovie, and W. Daamen. Microscopic pedestrian wayfinding and dynamics mod-
elling. Pedestrian and Evacuation Dynamics, Springer, Berlin, pages 123–154, 2002.

[74] B. K. P. Horn. Robot Vision. The MIT Press, 1986.

[75] R. A. Howard. Dynamic Programming and Markov Processes. MIT Press, Cambridge, 1960.

233

Bibliography

[76] H. Hu, M. Brady, and P. Probert. Navigation and control of a mobile robot among moving obstacles. In: Proc.
30th IEEE Conference on Decision and Control, Brighton ,UK, pages 698–703, 1991.

[77] H.-P. Huang and S.-Y. Chung. Dynamic visibility graph for path planning. In: Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 3:2813–2818, 2004.

[78] H. Huettenrauch, B. Cristian, A. Green, K. S. Eklundh, D. Ertl, J. Falb, H. Kaindl, and M. Goeller. Evaluation
of Robot Body Movements Supporting Communication. In: Proc. 2010 Convention Artificial Intelligence and
Simulation of Behaviour (AISB2010), Leicester, UK, 2010.

[79] IBM-Research-Solutions. IBM Personal Shopping Assistant. Solution-Sheet, available online:
http://www.xr23.com/studies/PSA_solution_sheet.pdf, 2012.

[80] IBM-Research-Solutions. Personal Shoping Assistant. Webpage, http://domino.research.ibm.com/odis/odis.nsf/
pages/solution.10.html, 2012.

[81] IRobot. Picture Source: Roomba. http://www.irobot.com, 2012.

[82] H. Ishiguro, T. Kanda, K. Kimoto, and T. Ishida. A Robot Architecture Based on Situated Modules. In: Proc.
International Conference on Intelligent Robots and Systems (IROS), 3:1617–1624, 1999.

[83] H. Jaeger and T. Christaller. Dual Dynamics: Designing Behavior Systems for Autonomous Robots. Artifcial
Life and Robotics, 2:76–79, 1998.

[84] J. Janet, R. Luo, and M. Kay. The essential visibility graph: an approach to global motion planning for
autonomous mobile robots. In: Proc. IEEE International Conference on Robotics and Automation (ICRA),
2:1958–1963, 1995.

[85] T. Kanda, H. Ishiguro, T. Ono, M. Imai, and R. Nakatsu. Development and Evaluation of an Interactive Hu-
manoid Robot "Robovie". In: Proc. IEEE International Conference on Robotics and Automation (ICRA),
2:1848–1855, 2002.

[86] T. Kanda, M. Shiomi, Z. Miyashita, H. Ishiguro, and N. Hagita. An Affective Guide Robot in a Shopping Mall.
In: Proc. International Conference in Human-Robot Interaction (HRI), 2009.

[87] S. Kavaldjian, D. Raneburger, and J. Falb. Semi-automatic user interface generation considering pointing
granularity. IEEE International Conference on Systems, Man and Cybernetics (SMC), pages 2052–2058, 2009.

[88] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. The international journal of
robotics research, 1(5):90–98, 1986.

[89] O. Khatib and R. Chatila. An extended potential field approach for mobile robot sensor-based motions. In:
Proc. International Conference on Intelligent Autonomous Systems (IAS-4), 1995.

[90] J. Kim, M.-T. Choi, M. Kim, S. Kim, M. Kim, S. Park, J. Lee, and B. Kim. Intelligent Robot Software
Architecture. Recent Progress in Robotics: Viable Robotic Service to Human, Springer, pages 385–397, 2008.

[91] K. Kim and L. S. Davis. Multi-camera Tracking and Segmentation of Occluded People on Ground Plane Using
Search-Guided Particle Filtering. In: Proc. European Conference on Computer Vision (ECCV), pages 98–109,
2006.

[92] M. Kim, S. Kim, S. Park, M.-T. Choi, M. Kim, and H. Gomaa. UML-based service robot software development:
a case study. In: Proc. 28th international conference on software engineering, 2006.

[93] Klever-Marketing and Gizmag. Klever Cart. Article, http://www.gizmag.com/go/3751/, 2012.

[94] Klever-Marketing and Time-Domain. Giving Cart. Press Release, http://www.timedomain.com/news/giving-
cart.php, 2012.

[95] S. Knoop, S. R. Schmidt-Rohr, and R. Dillmann. A Flexible Task Knowledge Representation for Service Robot.
In: Proc. 9th International Conference on Intelligent Autonomous Systems (IAS-9), 2006.

[96] Y. Koren and J. Borenstein. Potential field methods and their inherent limitations for mobile robot navigation.
In: Proc. IEEE International Conference on Robotics and Automation (ICRA), pages 1398–1404, 1991.

[97] T. Kretz. Pedestrian Traffic - Simulation and Experiments. PhD Thesis, Fachbereich Physik, Universität
Duisburg-Essen, 2007.

[98] B. Krogh. A generalized potential field approach to obstacle avoidance control. SME Conference Proceedings
on Robotics Research: The Next five Years and Beyond, 1984.

[99] E. Kruse and F. Wahl. Camera-Based Monitoring System for Mobile Robot Guidance. In: Proc. IEEE Inter-
national Conference on Intelligent Robots and Systems (IROS), (October), 1998.

[100] B. J. Kuipers, J. Modayil, P. Beeson, M. MacMahon, and F. Savelli. Local metrical and global topological maps
in the hybrid spatial semantic hierarchy. In: Proc. IEEE International Conference on Robotics and Automation
(ICRA), 5:4845–4851, 2004.

[101] S. Y. T. Lang and B. Y. Chee. Coordination of behaviours for mobile robot floor cleaning. In: Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2:1236–1241, 1998.

234

Bibliography

[102] D. Langer, J. K. Rosenblatt, and M. Hebert. A behavior-based system for off-road navigation. IEEE Transac-
tions on Robotics and Automation, 10(6):776–783, 1994.

[103] F. Large, D. Vasquez, T. Fraichard, and C. Laugier. Avoiding cars and pedestrians using velocity obstacles and
motion prediction. In: Proc. IEEE Intelligent Vehicles Symposium, pages 375–379, 2004.

[104] M. Littman, A. Cassandra, and L. P. Kaelbling. Learning policies for partially observable environments: Scaling
up. In: Proc. 12th International Conference on Machine Learning, 1995.

[105] L. Lulu and A. Elnagar. A comparative study between visibility-based roadmap path planning algorithms. In:
Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3263–3268, 2005.

[106] C. Manresa-yee, J. Varona, R. Mas, and F. J. Perales. Hand Tracking and Gesture Recognition for Human-
Computer Interaction. Electronic Letters on Computer Vision and Image Analysis, 5(3):96–104, 2005.

[107] M. Mataric. Behaviour-based control: Examples from navigation, learning, and group behaviour. Journal of
Experimental and Theoretical Artificial Intelligence, 9(2-3):323–336, 1997.

[108] N. Matsuhira, F. Ozaki, S. Tokura, T. Sonoura, and T. Tasaki. Development of robotic transportation system
- Shopping support system collaborating with environmental cameras and mobile robots -. In: Proc. 41st
International Symposium on Robotics (ISR) and 6th German Conference on Robotics (ROBOTIK), 2010.

[109] S. A. Mehdi and K. Berns. Ordering of Robotic Navigational Tasks in Home Environment. Trends in Intelligent
Robotics, Springer Berlin Heidelberg, pages 242–249, 2010.

[110] M. Mehmood, L. Kulik, and E. Tanin. Autonomous navigation of mobile agents using RFID-enabled space
partitions. In: Proc. 16th ACM SIGSPATIAL international conference on advances in geographic information
systems, 2008.

[111] Mercatus Solutions. Springbord cart. Webpage, http://www.mercatustechnologies.com/solutions/cart-solution/,
2012.

[112] Metralabs. SCITOS A5 - autonomous mobile robot system for interaction and guidance. Product Flyer, 2012.

[113] Metro-Group. Future Store Project. Webpage, http://www.future-store.org/fsi-
internet/html/en/20118/index.html, 2013.

[114] Metro-Group. Real App MEA. Webpage, http://www.future-store.org/fsi-internet/html/de/25891/index.html,
2013.

[115] A. Millonig and K. Schechter. Decision Loads and Route Qualities for Pedestrians - Key Requirements for
Design of Pedestrian Navigation Series. Pedestrian and Evacuation Dynamics, Springer, 1:109–118, 2006.

[116] J. Modayil, P. Beeson, and B. J. Kuipers. Using the topological skeleton for scalable global metrical map-
building. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2:1530–
1536, 2004.

[117] S. Mueller, E. Schaffernicht, A. Scheidig, H.-J. Boehme, and H. M. Gross. Are you still following me? In:
Proc. of the 3rd European Conference on Mobile Robots (ECMR), pages 211–216, 2007.

[118] I. A. D. Nesnas, R. Simmons, D. Gaines, C. Kunz, A. Diaz-Calderon, T. Estlin, R. Madison, J. Guineau,
M. McHenry, I.-H. Shu, and D. Apfelbaum. CLARAty: Challenges and Steps toward Reusable Robotic Soft-
ware. International Journal of Advanced Robotic Systems, 3(1), 2006.

[119] A. Newell and H. Simon. GPS: A program that simulates human thought. AAI Press / MIT Press, 1995.

[120] J. Oberlaender, K. Uhl, J. Zoellner, and R. Dillmann. A Region-based SLAM Algorithm Capturing Metric,
Topological, and Semantic Properties. In: Proc. IEEE International Conference of Robotics and Automation
(ICRA), 2008.

[121] M. Ocana, L. Bergasa, and M. Sotelo. Indoor robot navigation using a POMDP based on WiFi and ultrasound
observations. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
2592–2597, 2005.

[122] E. Owen, U. Valle, and L. Montano. A robocentric motion planner for dynamic environments using the velocity
space. In: Proc. IEEE International Conference on Intelligent Robots and Systems (IROS), 2006.

[123] P. Pirjanian. Behavior Coordination Mechanisms - State-of-the-art. Tech Report, University of Southern Cali-
fornia, 1999.

[124] T. Priya and K. Sridharan. An efficient algorithm to construct reduced visibility graph and its FPGA implemen-
tation. In: Proc. 17th International Conference on VLSI Design, pages 1057–1062, 2004.

[125] M. Proetzsch, T. Luksch, and K. Berns. Development of complex robotic systems using the behavior-based
control architecture iB2C. Journal Robotics and Autonomous Systems, 58(1), 2010.

[126] Putzmeister. Picture Source: Skywash. http://pmw.de, 2012.

[127] S. Quinlan and O. Khatib. Elastic bands: connecting path planning and control. In: Proc. IEEE International
Conference on Robotics and Automation, 2:802–807, 1993.

235

Bibliography

[128] Y. Raoui, M. Goeller, M. Devy, T. Kerscher, J. Zoellner, R. Dillmann, and A. Coustou. RFID-based topological
and metrical self-localization in a structured environment. In: Proc. International Conference on Advanced
Robotics (ICAR), Munich, Germany, 2009.

[129] R. Regele. Kooperative Multi-Roboter-Wegplanung durch heuristische Prioritätsanpassung. PhD Thesis,
Fakultät für Informatik, Elektrotechnik und Informationstechnik, Universität Stuttgart, 2007.

[130] K. Regenstein, T. Kerscher, C. Birkenhofer, T. Asfour, J. Zoellner, and R. Dillmann. Universal Controller Mod-
ule (UCoM) - component of a modular concept in robotic systems. In: Proc. IEEE International Symposium
on Industrial Electronics (ISIE), 2007.

[131] RFID Journal, Klever-Marketing, and Time-Domain. Picture source: Giving Cart.
http://www.rfidjournal.com/article/print/5248, 2012.

[132] Robostore. Picture source: Metropolis - Die Geschichte der Roboter in Literatur und Film.
http://www.robotstore.de/roboter_in_filmen.htm, 2010.

[133] Robowatch. Picture Source: MOSRO. http://www.robowatch.de, 2012.

[134] J. K. Rosenblatt. DAMN: A Distributed Architecture for Mobile Navigation. AAAI Spring Symposium on
Lessons Learned from Implemented Software Architectures for Physical Agents, Stanford, CA. AAAI Press,
1995.

[135] R. Rothenberg and CMU. Real Estate Robots. Press release,
http://www.cs.cmu.edu/˜minerva/press/realprogress/index.html, 2011.

[136] A. Saotti. The Uses of Fuzzy Logic in Autonomous Robot Navigation: a catalogue raisonne. Technical Report
v2.1, IRIDIA, Universite Libre de Bruxelles, Brussels, Belgium, 1997.

[137] T. Sattel and T. Brandt. Ground vehicle guidance along collision-free trajectories using elastic bands. In: Proc.
American Control Conference, 7:4991–4996, 2005.

[138] A. Schadschneider, W. Klingsch, H. Kluepfel, T. Kretz, C. Rogsch, and A. Seyfried. Evacuation Dynamics:
Empirical Results, Modeling and Applications. Encyclopedia of Complexity and System Science, 5(57):3142–
3176, 2008.

[139] B. H. Schaefer and K. Berns. Ravon - an autonomous vehicle for risky intervention and surveillance. In: Proc.
International Workshop on Robotics for risky intervention and environmental surveillance (RISE), 2006.

[140] M. Scheutz and V. Andronache. Architectural mechanisms for dynamic changes of behavior selection strate-
gies in behavior-based systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
34(6):2377–2395, 2004.

[141] D. Schmidt, T. Luksch, J. Wettach, and K. Berns. Autonomous Behavior-Based Exploration of Office Environ-
ments. In: Proc. 3rd International Conference on Informatics in Control, Automation and Robotics (ICINCO),
Portugal, pages 235–240, 2006.

[142] K. Schneider and T. Schuele. Averest: Specification, Verification, and Implementation of Reactive Systems.
In: Proc. Conference on Application of Concurrency to System Design (A CSD), St. Malo, France, 2005.

[143] K. U. Scholl, J. Albiez, and B. Gassmann. MCA - An Expandable Modular Controller Architecture. In: Proc.
3rd Real-Time Linux Workshop, 2001.

[144] K. U. Scholl, M. Klein, and B. Gassmann. Zentrale Aufgabenverteilung in einem fahrerlosen Transportsystem.
In: Proc. Autonome Intelligente Systeme (AMS), Springer, pages 253–259, 2005.

[145] M. J. Schoppers. Universal Plans for Reactive Robots in Unpredictable Environments. In: Proc. 10th interna-
tional joint conference on Artificial intelligence (IJCAI), 2, 1987.

[146] A. Seyfried, B. Steffen, W. Klingsch, and M. Boltes. The Fundamental Diagram of Pedestrian Movement
Revisited. Journal of Statistical Mechanics, (10), 2005.

[147] T. B. Sheridan. Telerobotics, automation, and human supervisory control. MIT Press, 1992.

[148] T. B. Sheridan and W. L. Verplank. Human and Computer Control of Undersee Teleoperation. Report, Man-
Machine Systems Lab, MIT, 1978.

[149] R. Siegwart, K. Arras, S. Bouabdallah, D. Burnier, G. Froidevaux, X. Greppin, B. Jensen, A. Lorotte, L. Mayor,
M. Meisser, R. Philippsem, R. Piguet, G. Ramel, G. Terrien, and N. Tomatis. Robox at Expo.02: A large-scale
installation of personal robots. Robotics and Autonomous Systems, Elsevier, 42(3-4):203–222, 2003.

[150] Siemens. Picture source: Die vollautomatische fahrerlose U-Bahn. Rubrik Verkehr, www.siemens.de, 2011.

[151] K.-T. Song and C. Chang. Reactive navigation in dynamic environment using a multisensor predictor. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 29(6):870–880, 1999.

[152] M. Spaan and N. Vlassis. A point-based POMDP algorithm for robot planning. In: Proc. IEEE International
Conference on Robotics and Automation (ICRA), 3:2399–2404, 2004.

236

Bibliography

[153] C. Stachniss and W. Burgard. An Integrated Approach to Goal-directed Obstacle Avoidance under Dynamic
Constraints for Dynamic Environments. In: Proc. of IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2002.

[154] L. Steels. A case study in the behaviour-oriented design of autonomous agents. In: Proc. 3rd international
conference on Simulation of adaptive behavior: from animals to animats (SAB94), pages 445–452, 1994.

[155] F. Steinhardt, M. Strand, and J. Zoellner. Autonomous Navigation of a Personal Transporter within Moving
Human Groups using Reactive Control. In: Proc. 12th International Conference on Intelligent Autonomous
Systems (IAS 12), 2012.

[156] A. Stentz. The focussed D* algorithm for real-time replanning. In: Proc. International Joint Conference on
Artificial Intelligence (IJCAI-95), Montreal, Quebec, 1995.

[157] Swisslog Healthcare Solutions. Telelift (Image source). Swisslog Accessories, Automated Guided Vehicle
(AGV) Bulk Material Carts, 2011.

[158] S. Thrun. To Know or Not To Know: On the Utility of Models in Mobile Robotics. AI Magazine, 18:47–54,
1997.

[159] S. Thrun. Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence,
99(1):21–71, 1998.

[160] S. Thrun. Learning Occupancy Grids With Forward Sensor Models. Article, Carnegie Mellon University, 2002.

[161] S. Thrun. Robotic Mapping: A Survey. Exploring Artificial Intelligence in the New Millenium, Morgan
Kaufmann, 2002.

[162] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dallaert, D. Fox, D. Haehnel, G. Lakemeyer, C. Rosen-
berg, N. Roy, N. Schulte, J. Schulte, and W. Steiner. Experiences with two Deployed Interactive Tour-Guide
Robots. In: Proc. International Conference on Field and Service Robotics, 1999.

[163] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert, D. Fox, D. Haehnel, C. Rosenberg, N. Roy,
J. Schulte, and D. Schulz. MINERVA: a second-generation museum tour-guide robot. In: Proc. IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 3:1999–2005, 1999.

[164] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). MIT
Press, 2005.

[165] S. Thrun, J. Gutmann, D. Fox, W. Burgard, and B. J. Kuipers. Integrating topological and metric maps for
mobile robot navigation: A statistical approach. In: Proc. AAAI 15th National Conference on Artificial Intelli-
gence, 1998.

[166] S. Tokura, T. Sonoura, T. Tasaki, N. Matsuhira, M. Sano, and K. Komoriya. Robotic transportation system for
shopping support services. In: Proc. 18th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), page 320, 2009.

[167] TU Ilmenau. Picture source: TOOMAS. Robotergalerie, http://www.tu-
ilmenau.de/fakia/2203+M52087573ab0.0.html, 2011.

[168] K. Uhl, B. Gassmann, and J. Oberlaender. Modular Controller Architecture Version 2. www.mca2.org, 2010.

[169] K. Uhl, A. Roennau, and R. Dillmann. From Structure to Actions: Semantic Navigation Planning in Office
Environments. In: Proc. IROS Workshop on Perception and Navigation for Autonomous Vehicles in Human
Environment, 2011.

[170] I. Ulrich and J. Borenstein. VFH+: reliable obstacle avoidance for fast mobile robots. In: Proc. IEEE Interna-
tional Conference on Robotics and Automation (ICRA), Leuven, Belgium, 2:1572–1577, 1998.

[171] I. Ulrich and J. Borenstein. VFH *: Local Obstacle Avoidance with Look-Ahead Verification. In: Proc. IEEE
International Conference on Robotics and Automation (ICRA), (April):2505–2511, 2000.

[172] University of Bonn. Picture source: Rhino. Image gallery, http://www.iai.uni-
bonn.de/˜rhino/tourguide/html/gallery.html, 2011.

[173] VDMA. World Robotics 2008. Report, IFR Statistical Department, VDMA Robotics + Automation association,
2008.

[174] P. Vorst, S. Schneegans, B. Yang, and A. Zell. Self-Localization with RFID snapshots in densely tagged
environments. In: Proc. the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1353–1358, 2008.

[175] P. Vorst, J. Sommer, C. Hoene, P. Schneider, C. Weiss, T. Schairer, W. Rosenstiel, A. Zell, and G. Carle.
Indoor positioning via three different RF technologies. In: Proc. 4th European Workshop on RFID Systems and
Technologies (RFID SysTech 08), Freiburg, Germany, 2008.

[176] P. Vorst and A. Zell. Semi-autonomous learning of an RFID sensor model for mobile robot self-localization.
European Robotics Symposium, Springer Tracts in Advanced Robotics, 44:273–282, 2008.

237

Bibliography

[177] U. Weidmann. Transporttechnik der Fußgänger - Transporttechnische Eigenschaften des Fußgängerverkehrs.
Schriftreihe des Institut für Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau der ETH Zürich,
(90), 1993.

[178] Wikimedia Commons. Picture source: Unimate. http://commons.wikimedia.org/wiki/File:Unimate.jpg, 2010.

[179] M. Ziegenmeyer. Entwicklung einer semantischen Missionssteuerung für autonome Inspektionsroboter. PhD
Thesis, Fakultät für Informatik, Karlsruhe Institut für Technologie (KIT), 2011.

[180] M. Ziegenmeyer, K. Uhl, S. Sayler, J. Zoellner, and R. Dillmann. A Semantic Approach for the Inspection
of Complex Environments with Autonomous Service Robots. In: Proc. IARP Workshop on Environmental
Maintenance & Protection, Baden-Baden, Germany, 2008.

238

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

