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RESOLUTION-CONTROLLED CONDUCTIVITY DISCRETIZATION

IN ELECTRICAL IMPEDANCE TOMOGRAPHY

ROBERT WINKLER AND ANDREAS RIEDER

Abstract. This work contributes to the numerical solution of the inverse problem of deter-
mining an isotropic conductivity from boundary measurements, known as Electrical Impedance
Tomography. To this end, we first investigate the imaging resolution of the Complete Electrode
Model in a circular geometry using analytic solutions of the forward problem and conformal
maps. Based on this information we propose a discretization of the conductivity space. Roughly
speaking, the resulting conductivity meshes comply with the maximal resolution provided by
discrete data with a known noise level. We heuristically extend this approach to domains of
arbitrary shape and present its performance under a Newton-type inversion algorithm.

1. Background and motivation

Electrical impedance tomography (EIT) is an imaging method for determining the electrical
conductivity of an object from measurements on its surface. The underlying mathematical
model is an elliptic boundary value problem where the Dirichlet data represents the potential
on the object surface, the Neumann data represents the normal current flow through the surface
and an elliptic PDE models the flow of current inside the object. The coefficient of the PDE is
the searched-for conductivity. The evaluation of the Neumann-to-Dirichlet (ND) operator for
a given conductivity is called the forward problem of EIT. The task in EIT is usually to solve
the inverse conductivity problem (ICP) of determining the conductivity from the knowledge of
the ND operator.

Electrode models and inversion. The pioneering work of Calderón [Cal80] started the inves-
tigation of the continuum boundary model, where a complete knowledge of the continuum ND
operator is assumed. However in practice, one can only apply currents and measure potentials
through finitely many electrodes. As a consequence, the available boundary data is finite-
dimensional – the ND map of this discrete model is a matrix. Moreover, due to electrochemical
effects and the conducting nature of electrodes, it is impossible to prescribe Neumann data
or access Dirichlet data explicitly anywhere at the boundary. Instead, the accurate Complete
Electrode Model (CEM) [SCI92] described in section 2.2 uses Robin-type boundary conditions
to account for these effects.

Analytic properties of electrode models are rare. [LR08] show the injectivity of the Fréchet
derivative of the ND map for piecewise polynomial conductivities on a triangulation of the
domain for the CEM. The number of electrodes necessary for injectivity is finite, but unknown
for any fixed triangulation. [BDGVM12] use a model reduction approach to transform the
ICP into the problem of determining the resistors in a network, which is uniquely solvable
under certain conditions. However, the reduction approach is theoretically justified for radially
symmetric near-constant conductivities only and the boundary model is slightly different from
commonly used electrode models.

Stability of the reconstruction scheme is a critical matter for solving the ICP with measured
data. Due to Alessandrini’s logarithmic stability estimate [Ale88, Theorem 1] in the operator
norm of the Dirichlet-to-Neumann (DN) map, the ICP for the continuum model is usually
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said to be exponentially unstable. Later results (e.g. [Dob92], [Pal02], [MMM04]) show that
the stability decays rapidly away from the boundary in typical norms. The consequence of
all results is that regularization is necessary to achieve a stable inversion scheme for the ICP.
In the absence of a general analytic result, stability studies for electrode models are usually
done by investigating what can actually be detected in a fixed domain geometry and electrode
setting. Here the notion of sensitivity (or distinguishability [Isa86], detectability), i.e. the effect
of perturbations in conductivity to boundary measurements, is important.

Most algorithms for the computation of the ICP are either motivated by the continuum
model (for example complex geometrical optics solutions [Nac96], factorization method [BH00])
or regularized iterative methods for an electrode model. An overview can be found in [MS12].
In this work we consider the iterative Newton-type method REGINN for the CEM [LR06].
All numerical inversion methods require a discretization of the problem, in particular of the
underlying conductivity space.

Aim and structure of this work. We have pointed out that it is necessary to discretize the
conductivity space and to find a suitable regularization scheme when solving the ICP for an
electrode model and noisy measurements. While the former is traditionally done by a simple
triangulation of the domain, the choice of regularization is delicate as it imposes assumptions
on the searched-for conductivity – usually on its smoothness – to control noise amplification
during inversion. As a consequence, EIT images are typically heavily blurred.

Our tailored discretization scheme for the conductivity space is piecewise constant on a
partition of the domain with a locally adaptive, noise-dependent mesh size which we call an
optimal resolution mesh. It inherits the smallest possible details which are recoverable from
boundary data with a given noise level. Solving the ICP on these meshes with a Newton-type
algorithm can be done efficiently with the estimated noise level as the only free design parameter
for regularization.

In section 2, we introduce the relevant EIT models and notations. In section 3, we derive
an analytic solution for the CEM forward problem on a disk in the presence of a centered
circular perturbation in conductivity. Next, we use conformal maps to extend this result to
perturbations at arbitrary locations in section 4. We use these analytic solutions to get local
resolution information of the CEM. With this information, we design optimal resolution meshes
to discretize the conductivity space in section 5. We outline the connections between the CEM
and the continuum model and also compare our results to the results of [MMM04] and the
meshes arising from resistor networks in [BDGVM12]. We then heuristically extend our results
to domains of arbitrary shape. Finally, we demonstrate the performance of these discretizations
using the regularized inexact Newton scheme REGINN [Rie99] in section 6.

2. Preliminaries

A potential u ∈ H1(Ω) on a source-free, simply connected domain Ω ⊂ R2 with piecewise
Lipschitz boundary is a solution of the elliptic equation

−∇ · (σ∇u) = 0 on Ω,(1)

where σ∈L∞+ (Ω)={ϕ∈L∞(Ω)|ϕ > 0 a.e.} is the isotropic conductivity coefficient.

2.1. Continuum boundary model. For given Dirichlet boundary data

u|∂Ω = f ∈ H1/2(∂Ω),(2)

the problem (1),(2) has a unique solution. Denoting by ν the outer normal on ∂Ω, we call

σ
∂u

∂ν
=: iν ∈ H

−1/2
� (∂Ω) =

{
ϕ ∈ H−1/2(∂Ω) |〈ϕ, 1〉∂Ω = 0

}
(3)
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the corresponding Neumann data. Conversely, the problem (1),(3) has a solution which is
unique if we require the trace of u to have vanishing mean, that is

u|∂Ω ∈ H
1/2
� (∂Ω) =

{
ϕ ∈ H1/2(∂Ω) |〈ϕ, 1〉∂Ω = 0

}
.

Hence, the ND operator

Λσ : H
−1/2
� (∂Ω)→ H

1/2
� (∂Ω), iν 7→ f,

and its inverse are well-defined and one-to-one. The ICP in this setting is the inversion of the
operator σ 7→ Λσ. Uniqueness is shown in [AP06].

2.2. Electrode boundary models. Electrode boundary models describe the injection of cur-
rents and the measurement of potentials through a finite number of electrodes. Assume we have
electrodes1

E1, . . . , EL ⊂ ∂Ω, L ∈ N≥2,

at which we can inject current patterns I ∈ RL� =
{
V ∈ RL |〈V, 1〉 = 0

}
and measure the resulting

potential vectors U ∈ RL� . We assume that normal current iν at the domain boundary only
occurs at electrodes and that the electrodes are perfect conductors, i.e. the potential is constant
on each electrode. Furthermore, we model contact impedances zl ≥ 0 that occur at each
electrode-domain interface and cause a potential drop zliν , cf. [SCI92]. This leads to Robin-
type boundary conditions

iν = 0 on ∂Ω \ E, E = E1 ∪ . . . ∪ EL,(4a)

u+ zliν = Ul on El, l = 1, . . . , L,(4b) ∫
El

iν dS = Il, l = 1, . . . , L.(4c)

For zl ≡ 0, (1),(4) is called the Shunt Model, for zl > 0 it is called Complete Electrode Model
(CEM). The CEM is usually defined weakly as the unique solution (u, U)∈H1

� (Ω)× RL� of

a( (u, U), (w,W ) ) =
L∑
l=1

IlWl for all (w,W ) ∈ H1(Ω)× RL� ,(5)

where a :
(
H1(Ω)× RL�

)
×
(
H1(Ω)× RL�

)
→ R,

a ( (v,W ), (w,W ) ) =

∫
Ω
σ∇v · ∇w dx+

L∑
l=1

1

zl

∫
El

(v − Vl)(w −Wl) dS,(6)

see [SCI92]. We denote the ND (or Current-to-Voltage) map of the CEM by

Λσ,L : RL� → RL� , I 7→ U.(7)

The ICP for the discrete setting is the inversion of the operator σ 7→ Λσ,L with σ restricted to
some subspace of L∞+ (Ω).

2.3. Sensitivity for detecting perturbations. A keystone in our analysis is the investigation
of the sensitivity of measurements to perturbations in conductivity. For σ, σ̃ ∈ L∞+ (Ω) and
considering Λσ as an operator on L2(∂Ω), we call

λσ,σ̃ =

∥∥Λσ,L − Λσ̃,L
∥∥

2∥∥Λσ̃,L
∥∥

2

and λ∗σ,σ̃ =
‖Λσ − Λσ̃‖2
‖Λσ̃‖2

(8)

1We identify electrodes with the surface they cover on the domain boundary.
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the (relative) sensitivities for distinguishing σ from σ̃ by electrode and continuum boundary
measurements, respectively. Of special interest is the sensitivity

λσ := λσ,1

for distinguishing a perturbed conductivity σ(x)=1+η(x) from the homogeneous case. Assume
that we have a measurement setting with the relative spectral error bound

‖Λmeas − Λ1,L‖2
‖Λ1,L‖2

≤ ε, ε > 0,(9)

where Λmeas is a noisy measured ND map of the CEM in the homogeneous case σ ≡ 1. Then,
it is natural to call a perturbation η detectable in this setting if λσ > ε. The size |supp(η)| of a
perturbation η reaching the resolution limit of the measurement setup, i.e. resulting in λσ =ε,
strongly depends on the contrast of the perturbation and its location inside the domain.

Remark: Our definition of sensitivity (8) and spectral error (9) is slightly different from [Isa86,
sec. III], where the absolute error ‖Λσ − Λσ̃‖2 is considered. This absolute error is strongly
dependent on the underlying background conductivity – and the contact impedance in a cor-
responding CEM version – and corresponds to an absolute spectral measurement noise level,
independent of the magnitude of the measured potentials. In contrast, our definition is normal-
ized by the maximum singular value of the ND map, which corresponds to a measurement error
relative to the magnitude of the measured potentials when applying normalized currents. It is
less sensitive to the underlying background conductivity and the contact impedances.

3. An analytic solution of the CEM forward problem for a centered circular
perturbation in conductivity

The forward problem in EIT is usually solved with numerical methods like finite elements.
For some basic geometries, analytic solutions exist in terms of Fourier series. We present an
analytic method to compute the operator Λσ,L of the CEM for a homogeneous disk containing a
single centered circular perturbation. That way, we can compute the sensitivity λσ for detecting
these circular perturbations explicitly. This is achieved by merging and generalizing the ansatz of
[SCI92, Appendix 3] for a single centered perturbation with the model of [Dem11]. By extending
the CEM to contact impedances that are varying along each electrode in Appendix B, we set
stage for exploiting conformal maps and considering perturbations at arbitrary locations in
section 4.

Let Ω ⊂ R2 be the unit disk2 and let, for some r0 ∈ (0, 1), the conductivity in polar coordinates
be given as

σ(r, θ) =

{
σ0, 0 ≤ r ≤ r0,

σ1, r0 < r ≤ 1.

For iν ∈ L2(∂Ω), the Fourier representations of a Dirichlet-Neumann pair on ∂Ω are derived in
Appendix A.1 as

f(θ) = u(1, θ) = u0 +

∞∑
k=1

ak cos(kθ) + bk sin(kθ),(10a)

iν(θ) = σ1
∂u

∂r
(1, θ) = σ1

∞∑
k=1

dk (ak cos(kθ) + bk sin(kθ)) ,(10b)

for some Fourier coefficients u0, ak, bk ∈ R and

dk = k
1− ck
1 + ck

, ck =
σ1/σ0 − 1

σ1/σ0 + 1
r2k

0 , k ∈ N.(11)

2All calculations can easily be extended to disks of arbitrary radius.
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This means that for centered perturbations, the trigonometric functions are eigenfunctions of
Λσ with eigenvalues τσ,k=(σ1dk)

−1.
To determine these coefficients for a given electrode potential vector U in the CEM, we

generalize the approach of [Dem11, Appendix]. For the CEM and σ smooth near ∂Ω, we

have u|∂Ω ∈H
3/2−α
� (∂Ω) and iν ∈H1/2−α

� (∂Ω) for all α > 0, see [DHH+12, Remark 1] and the
references therein. This guarantees a sufficiently fast decay of the coefficients and a convergence
of the above series. Once the Fourier coefficients are known, we compute the resulting current
vector I by (4c). These calculations are carried out in Appendix A.2. Note also the remark
therein regarding the truncation of the Fourier series for practical computation. Repeating this
process for L−1 basis vectors U (1), . . . , U (L−1) of RL� , we obtain the DN map Λ−1

σ,L and we can
determine the ND map Λσ,L for the perturbed conductivity σ and finally the sensitivity λσ by
(8).

Clearly, λσ depends (nonlinearly) on the conductivities σ0 and σ1 and on the radius r0 of the
perturbation. Moreover, the sensitivity is monotonous in the following sense: Let η > 0 and let

σB = σ1 + ηχB, σD = σ1 + ηχD, B ⊂ D ⊂ Ω.(12)

Then, λσD,σ1 ≥ λσB ,σ1 which is shown in Appendix C. It is a CEM version of [GIN90, Appen-
dix I]. By the same argument, a similar monotony holds for increasing values of η and fixed
perturbation size.

When studying the imaging resolution of EIT settings, it is insightful to know the smallest
radius r0 of a circular perturbation centered about the origin O inside the unit disk that can be
detected from measurements with spectral noise level ε. This can be achieved by determining
r0 such that λσ=ε for σ=1 + ηχBr0

(O). Due to the above monotonicity, the smallest radius r0

for conducting perturbations is reached for η →∞.3

4. The CEM under conformal mapping

Conformal maps are angle-preserving deformations of the plane. In particular, solutions
of the elliptic PDE (1) remain valid in a conformally transformed geometry (see standard
literature, e.g. [Neh52, SL91]). Conformal maps have been used for analyzing the continuum
boundary model of EIT e.g. in [SYB84]. Using conformal diffeomorphisms on the unit disk,
we will compute the ND map of the CEM analytically for circular perturbations at arbitrary
locations of the unit disk by reducing the non-centered situation to the centered case of the
previous section. This can be done by mapping the disk conformally onto itself such that the
non-centered perturbation is centered about the origin, then transforming the CEM boundary
description accordingly and solving the forward problem in this transformed setting.

We will show that due to the nature of conformal maps, the resulting ND map agrees with
the one of the initial geometry when the boundary settings are transformed accordingly. With
this technique, we can determine λσ for all circular perturbations inside a disk.

4.1. Conformal mapping of the CEM on the unit disk. Let w be a conformal diffeo-
morphism on the unit disk that maps a point R= (R,ϕ)∈ [0, 1)×[0, 2π) to the origin O. For4

C ∼ R2, w and its inverse are given (up to rotation) by5

z 7→ w(z) =
e−iϕz −R
1−Re−iϕz

and y 7→ w−1(y) = eiϕ
y +R

1 +Ry
.(13)

3In our numerical calculations, we set η = 106−1.
4We switch between polar coordinate notation in R2 and complex notation, using whatever is more convenient.
5The arguments (R,ϕ) are omitted. They denote the geometric parameters of w and w−1 throughout this

work.
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In particular, a point on the boundary is again mapped to the boundary since∣∣∣w(eiθ)
∣∣∣ =

∣∣∣w−1(eiθ)
∣∣∣ = 1, θ ∈ [0, 2π).(14)

Our aim is to transform an EIT setting conformally such that a perturbation on a disk BrQ(Q),
Q=(Q,ϕ)∈ [0, 1)×[0, 2π) and 0 < rQ < 1−Q, is mapped by w to a disk Br0(O) centered about
the origin for some 0 < r0 < 1. The relations between the perturbation parameters Q and rQ,
the parameter R of the according conformal map w and the radius r0 are given by

Q = R
1− r2

0

1− r2
0R

2
and rQ = r0

1−R2

1− r2
0R

2
,(15)

that is

R =
1 +Q2 − r2

Q −
√

(1 +Q2 − r2
Q)2 − 4Q2

2Q
and

r0 =
1−Q2 + r2

Q −
√

(1−Q2 + r2
Q)2 − 4r2

Q

2rQ
,

which can be seen by plugging ±r0 into w−1, using the axis of symmetry in direction ϕ and
the fact that w−1 maps circles onto circles. Note that r0 > rQ and R > Q. The action of w is
depicted in Figure 1.

w

O r0

ϕ

Q
R
rQ

Figure 1. The conformal map w maps B1(O) onto itself, R to O and BrQ(Q)
onto Br0(O).

To parametrize the transformed boundary, let

ϑ := g(θ) := arg(w(eiθ)), θ = g−1(ϑ) = arg(w−1(eiϑ)) and set

wr := |w| , w−1
r :=

∣∣w−1
∣∣ , wθ := arg(w), w−1

ϑ := arg(w−1).

Being conformal maps, w and w−1 satisfy the Cauchy-Riemann equations. In particular,

g′(θ) =
∂wθ
∂θ

∣∣∣∣
r=1

=
∂wr
∂r

∣∣∣∣
r=1

=
1−R2

1 +R2 − 2R cos(θ − ϕ)
and

(g−1)′(ϑ) =
∂w−1

ϑ

∂ϑ

∣∣∣∣∣
r=1

=
∂w−1

r

∂r

∣∣∣∣
r=1

=
1−R2

1 +R2 + 2R cos(ϑ)
.

(16)

Moreover, it follows from (14) that

0 =
∂wr
∂θ

∣∣∣∣
r=1

=
∂w−1

r

∂ϑ

∣∣∣∣
r=1

= − ∂wθ
∂r

∣∣∣∣
r=1

= −
∂w−1

ϑ

∂r

∣∣∣∣∣
r=1

.
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When transforming a potential u defined on the unit disk conformally to uw by uw(w(z))=u(z),
i.e. uw(z)=u(w−1(z)), the w-transformed Dirichlet data on the unit circle reads

fw(ϑ) = uw(1, ϑ) = u(w−1(1, ϑ)) = f(g−1(ϑ)) = f(θ).

For σ ≡ σ1 near the boundary and using the chain-rule in polar coordinates, the transformed
Neumann data reads

iwν (ϑ)=σ1
∂uw

∂r
(1, ϑ)

= σ1
∂u

∂r
(w−1(r, ϑ))

∂w−1
r

∂r
(r, ϑ)

∣∣∣∣
r=1

+ σ1
∂u

∂θ
(w−1(r, ϑ))

w−1
ϑ

∂r
(r, ϑ)

∣∣∣∣∣
r=1︸ ︷︷ ︸

=0

=
1−R2

1 +R2 + 2R cos(ϑ)
iν(g−1(ϑ)) =

1−R2

1 +R2 + 2R cos(ϑ)
iν(θ).

(17)

We will now transform the boundary conditions (4) such that the ND map does not change
under conformal mapping which is crucial for our further analysis. In particular, the position,
width and contact impedance of each electrode change. Condition (4a) states that normal
current only occurs on electrode surfaces. For

Ewl := g(El),

it is obvious that (4a) holds in the transformed setting. Recalling (17), condition (4c) is readily
checked as

Il =

∫
El

iν(θ) dθ =

∫
g(El)

iν(g−1(ϑ))
(
g−1
)′

(ϑ) dϑ

=

∫
Ew

l

iwν (ϑ)

(
∂w−1

r

∂r
(r, ϑ)

∣∣∣∣
r=1

)−1 (
g−1
)′

(ϑ) dϑ = Iwl .

The last equality holds due to property (16). The transformation of condition (4b) requires a
transformation of the contact impedances. We have that

Ul =f(θ) + zliν(θ) = f(g−1(ϑ)) + zliν(g−1(ϑ))

=fw(ϑ) + zl
1 +R2 + 2R cos(ϑ)

1−R2
iwν (ϑ)

!
= fw(ϑ) + zwl (ϑ)iwν (ϑ) = Uwl ,

thus set

zwl (ϑ) :=
1 +R2 + 2R cos(ϑ)

1−R2
zl.(18)

The resulting contact impedances are functions of the angular variable ϑ, i.e. they are no longer
constant. The CEM in the w-transformed setting giving rise to the same ND map as (4) reads

iwν = 0 on ∂Ω \ Ew, Ew = Ew1 ∪ . . . ∪ EwL ,(19a)

fw(ϑ) + zwl (ϑ)iwν (ϑ) = Ul on Ewl , l = 1, . . . , L,(19b) ∫
Ew

l

iwν dS = Il, l = 1, . . . , L.(19c)

For centered circular perturbations, the ND map can again be computed analytically. This is
carried out in Appendix B.

Remark: The scaling of the complex plane z 7→ αz, α > 0, is a conformal map. The normal
current density resulting from a transformed potential is iν 7→ α−1iν . The corresponding
boundary settings for preserving the ND map are El 7→ αEl and zl 7→ αzl. Thus, we can
consider disks of arbitrary radii.
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5. Optimal resolution meshes and approximations

5.1. Optimal resolution meshes on the unit disk. With the conformal mapping technique,
we are able to determine the sensitivity for detecting circular perturbations anywhere in a disk.
With this information, we design a partition of the disk in which perturbations in each cell have
roughly the same impact on boundary measurements. To that end, we “fill” the disk with non-
overlapping circular cells of fixed sensitivity ε > 0 and apply a Voronoi tessellation afterwards
to get a partition of the entire disk. We call the resulting partition an optimal resolution mesh.

The generation of such a mesh with approximate sensitivity ε for perturbations of conductivity
σ0 in a background of conductivity σ1 thus goes in several steps (Algorithm 1):

First, choose a finite set of points T ⊂ B1(O) which are candidates for centers of circular
cells. Next, successively pick points Q from T and determine the radii rQ of perturbations
centered about Q and resulting in sensitivity λσ=ε for σ=σ1+(σ0−σ1)χBrQ

(Q). The radii can

be found by a line-search strategy in very few steps since rQ depends locally quadratic on λσ.
If BrQ(Q) lies inside Ω and does not intersect with the previously covered area C ⊂ Ω, add Q
to the set of valid points P and add BrQ(Q) to the covered area C. Otherwise, discard Q. The
result is a union of non-overlapping circles C with centers P, each resulting in sensitivity λσ=ε
for perturbations of conductivity σ0 in a homogeneous background medium of conductivity σ1.
Finally, apply a Voronoi tessellation to P and restrict it to B1(O) to get a partition of the
domain. Results for various values of ε are shown in Figure 2.

Algorithm 1: Generation of an optimal resolution mesh on Ω=B1(O)

Input: ε, σ0, σ1;
Choose a finite set of test points T ⊂ B1(O);
Set C = ∅, P = ∅;
repeat

Pick a point Q from T and set T := T \ Q;
Find rQ > 0 such that λσ = ε for σ = σ1 + (σ0 − σ1)χBrQ

(Q);

if BrQ(Q) ⊂ B1(0) and BrQ(Q) ∩ C = ∅ then
Set P := P ∪Q, C := C ∪BrQ(Q), T := T \BrQ(Q);

end
until T = ∅ ;
Output: Voronoi tessellation of P, truncated to B1(O);

Remark: The set T should be chosen finer than the maximum expected resolution to achieve
good results. To avoid big gaps between the circles, it is advisable to pick the innermost point
from the set T first and then successively pick points with the biggest distance to the boundary.
A possible choice for T are points on concentric circles.

5.2. Comparison with the continuum boundary model. To compare the resolution achieved
by the CEM with the continuum model, we now derive upper bounds for the sizes of perturba-
tions resulting in sensitivity λ∗σ ≥ ε in the continuum model.

For a centered circular perturbation inside the unit disk, i.e. σ= σ1 +(σ1 − σ0)χBr0 (O), the

eigenvalues τσ,k of Λσ for the normalized eigenfunctions cos(k·)/
√
π, sin(k·)/

√
π, k ∈ N, are

derived in section 3. In the homogeneous case σ0 =σ1, we have ‖Λσ1‖2 =σ−1
1 . For conducting

perturbations σ0 > σ1, we have −1<c1<c2<. . .<0 in the definition of τσ,k, thus

‖(Λσ − Λσ1)fk‖2 = |τσ,k − τσ1,k| ‖fk‖ =

∣∣∣∣ 1 + ck
σ1k(1− ck)

− 1

σ1k

∣∣∣∣ =
−2ck

σ1k(1− ck)

is decreasing in k for eigenfunctions fk.
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Figure 2. Circular perturbations and according Voronoi tessellations for
ε=0.02 (left, 182 cells) and ε=0.01 (right, 445 cells) generated by Algorithm 1.
Setting: CEM with 16 equally spaced electrodes that cover 50% of the boundary,
σ1 =1, σ0 =106 (conducting perturbation) and contact impedances zl ≡ 0.01.

The sensitivity for detecting a centered perturbation is given by

λ∗σ,σ1 =
−2c1

(1− c1)
, c1 =

σ1/σ0 − 1

σ1/σ0 + 1
r2

0.

By formally letting σ0→∞ for a perfectly conducting inclusion, the radius r0 resulting in a
sensitivity λ∗σ,σ1 =ε is given as

r0 =

√
ε

2− ε
for ε < 1.

To investigate the resolution at a point Q∈B1(Ω), we use the conformal map w−1 that maps
Br0(O) onto BrQ(Q) for some rQ > 0. The parameters are given by (15) as

R = R(Q, r0) =
r2

0 − 1 +
√

(1− r2
0)2 + 4Q2r2

0

2Qr2
0

and rQ = r0
1−R(Q, r0)2

1− r2
0R(Q, r0)2

.(20)

By (16), the Dirichlet data fk and the corresponding normal current iν,k are transformed to

fw
−1

k (θ) = fk(g(θ)) and iw
−1

ν,k (θ) =
1−R(Q, r0)2

1 +R(Q, r0)2 − 2R(Q, r0) cos(θ − ϑ)
iν,k(g(θ)).

Denote by σw the w−1-transformed conductivity. Although we do not know the singular system
of Λσw explicitly, we can get a lower bound for λ∗σw,σ1 by setting k = 1, using the conformal

mapping properties Λσw i
w−1

ν,1 =τσ,1f
w−1

1 and Λσ1i
w−1

ν,1 =τσ1,1f
w−1

1 and using the functions fw
−1

1

and iw
−1

ν,1 in (8). This leads to

λ∗σw,σ1 ≥

∥∥∥(Λσw − Λσ1)iw
−1

ν,1

∥∥∥
2

‖Λσ1‖2
∥∥∥iw−1

ν,1

∥∥∥
2

=
|τσ,1 − τσ1,1|

σ1

∥∥∥fw−1

1

∥∥∥
2∥∥∥iw−1

ν,1

∥∥∥
2

= αwλ
∗
σ,σ1 , where αw =

∥∥∥fw−1

1

∥∥∥
2∥∥∥iw−1

ν,1

∥∥∥
2

.

Thus to find the radius rQ resulting in λ∗σw,σ1 ≥ ε=αwλ
∗
σ,σ1 in the perfectly conducting case,

we need to solve the implicit equation

r0 =

√
α−1
w ε

2− α−1
w ε

.

It is implicit because the parameter R of the conformal map w−1 and thus αw depend on r0.
However for α−1

w ε � 1, r2
0 depends almost linearly on ε and the solution can be found quickly

by the fixed-point iteration

r0,k+1 =

√
α−1
wkε

2− α−1
wkε

, r0,0 =

√
ε

2− ε
,
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where w−1
k is the conformal map with parameter R = R(Q, r0,k). Once r0 is found, we can

explicitly compute AQ=πr2
Q, an upper bound for the size of a perfectly conducting perturbation

centered aboutQ and resulting in sensitivity λ∗σw,σ1 ≥ ε. In particular for f1 =cos(·)/
√
π, AQ→0

as Q→1 which is shown in Figure 3.
Figures 3a–d show AQ as a function of Q for a fixed sensitivity in the continuum model

(λ∗σ=0.015) and in various CEM settings6 (λσ=0.015) with background conductivity σ1 =1.
While the perturbation size AQ gets arbitrarily small near the boundary for the continuum
model, it is bounded away from 0 for the CEM because the concentration of Neumann data
near a point is limited by the distance and size of the electrodes. We observe that increasing the
number of electrodes does not necessarily increase the resolution inside the disk (a). A decrease
of the contact impedances increases the resolution at the center (b). A decrease of the electrode
sizes increases the resolution near an electrode, but decreases the resolution at the center (c).
A comparison of different types of resistive and conducting perturbations, along with the the
results of [MMM04] (see section 5.3), is shown in (d).

It is worth mentioning that perfectly conducting (� in 3d) and isolating (H) perturbations
result in roughly the same resolution. The resolution of low-contrast conducting perturbations
(•) is significantly worse, but it is roughly proportional to the high-contrast case throughout
the domain7. This means that optimal resolution meshes designed for perfectly conducting
or resistive perturbations remain proper choices for reconstructing perturbations with lower
contrast since the sensitivity of each perturbation to boundary measurements remains roughly
constant. We will make use of this observation by performing all reconstructions on meshes
designed for perfectly conducting perturbations in section 6.

Figure 4 shows AQ as a function of the sensitivities λσ (CEM) and λ∗σ (continuum model)
at two locations: the center of the unit disk (Q=0) and a point near the boundary (Q=0.95),
centered about an electrode in the CEM. In both cases, AQ depends almost linearly on the
sensitivity. This means that AQ for unknown sensitivities in the CEM can be approximated
very well by linear interpolation/extrapolation of known values.

5.3. Comparison with results of MacMillan et al. [MMM04] investigate the detectability
of perturbations in conductivity from a finite set of Neumann data for the continuum boundary
model. The central result of [MMM04] (cf. Corollary 2.5 and section 2.3.2. therein) is an
estimate of the form

‖Λσiν − f‖H1/2(∂Ω) + ε ≥ sup
i1,i2 6=0

C
∣∣∫

Ω(σ − σ̃)∇u1 · ∇u2 dx
∣∣

‖i1‖H−1/2(∂Ω) ‖i2‖H−1/2(∂Ω)

, iν ∈ I, C = max
z∈Ω

σ(z)

σ̃(z)
,(21)

where I ⊂ H
−1/2
� (∂Ω) is a given finite set of Neumann data, f = Λσ̃iν + εn is noisy Dirichlet

data, u1 and u2 are solutions of (1),(3) for conductivity σ and Neumann data i1, i2∈H−1/2
� (∂Ω)

and ε=ε(εn, iν) is an error term depending on the measurement error εn and the non-optimality
of iν for distinguishing σ from σ̃. Given a fixed ε > 0, they generate meshes in [MMM04, sec-
tion 2.3.2.] (called graded grids therein) by finding the sizes Aη= |supp(η)| of local perturbations
η = σ − σ̃ such that

sup
i1,i2 6=0

C

∣∣∣∣∣
∫

supp(η)
η∇u1 · ∇u2 dx

∣∣∣∣∣‖i1‖−1
H−1/2(∂Ω)

‖i2‖−1
H−1/2(∂Ω)

= ε.(22)

To compare the radial resolution of the graded grids with our results, we plot Aη versus the
location of the center of supp(η) in Figure 3a (marked with asterisks). Lacking an explicit
formula, the information was obtained from the left grid of [MMM04, Fig. 3.1], where ε = 0.1

6The angle ϕ of the point Q=(Q,ϕ) is fixed such that Q approaches the center of an electrode as Q→ 1 in
the CEM.

7In our computations shown in Figure 3d, the ratios between the areas resolved for σ0 =106 and σ0 =2 range
from 0.331 to 0.345 throughout the domain.
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(a) Q 7→ AQ plot for λ∗σ = 0.015 (solid line) and
for λσ=0.015 in the CEM with 8 (H), 16 (�) and
24 (•) electrodes.
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(b) Q 7→AQ plot for λ∗σ=0.015 (solid line) and for
λσ=0.015 and for 16 electrodes with zl ≡ 10−1 (H),
zl ≡ 10−2 (�) and zl ≡ 10−3 (•).
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(c) Q 7→ AQ plot for λ∗σ=0.015 (solid line) and
for λσ=0.015 and 16 electrodes covering 25% (H),
50% (�) and 75% (•) of the boundary.
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0.020

0.040

0.060

0.080

(d) Q 7→AQ plot for λσ=0.015 in the CEM for iso-
lating (σ0 =10−6, H), conducting (σ0 =2, �) and
perfectly conducting (σ0 =106, •) perturbations.
The asterisks mark segment sizes of [MMM04,
Fig. 3.1] satisfying (22) for ε=0.1 and max |η|=1.

Figure 3. Resolved details of the continuum boundary model and the CEM for
various settings. CEM parameters as in Figure 2 if not stated otherwise.
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Figure 4. λ∗σ 7→AQ plot (solid lines) and λσ 7→AQ plot for 8 (H,H) and 16 (�,�)
electrodes for a conducting (σ0 =106) perturbation at the center of a disk (Q=0,
black, left ordinate) and near the boundary (Q=0.95, gray, right ordinate).

and max |η| = 1 are considered. The perturbation sizes for a fixed ε, although not identical to
our solutions of section 5.2, show similar characteristics towards the boundary.
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5.4. Comparison with results of a resistor network approach. The conductivity dis-
cretizations in [BDGVM12] arise from a model reduction approach of EIT to the problem of
determining the resistors in a linear network [CM00]. The geometry of the discretization is
derived from the geometry of the resistor network which has a spiderweb structure with radial
beams and concentric rings. This geometry, while theoretically justified for near-constant radi-
ally symmetric conductivities, has the disadvantage that the number of cells in each concentric
ring is constant. Thus, even though the ring segments get longer towards the center, the res-
olution in angular direction gets very high at the center as the number of electrodes increases.
This is not in accordance with the loss of resolution away from the boundary. Hence the model
gets unstable and sensitive to noise when increasing the number of electrodes. Figure 5 shows
conductivity discretizations resulting from resistor networks with 13 and 25 electrodes.

Figure 5. Voronoi tessellations resulting from resistor networks with 13 (left)
and 25 (right) boundary nodes. The resistor locations (marked with dots) were
obtained from the data in [BDGVM12, Fig. 8 and Fig. 3]. The radial resolution
near the center is coarse, however the angular resolution is fine due to the fixed
number of resistors in each layer.

5.5. Approximations for domains with arbitrary boundary. Most EIT applications in-
volve non-circular object geometries. Even in medical applications, where e.g. the cross-section
of a human torso is close to an ellipse, using a circular geometry for inversion introduces heavy
artifacts which make it impossible to reconstruct anything meaningful if the geometry is not
adjusted properly (cf. [DHSS13]). Unfortunately, analytic expressions of conformal maps and
their normal derivatives from arbitrary simply connected domains to the unit disk are usually
not available. Moreover, the computation of optimal resolution meshes is impractical8 as it
involves the solution of many linear systems of equations with large dense coefficient matrices.
Thus, we aim to derive a scheme for quickly generating approximations to optimal resolution
meshes on arbitrary domains, motivated by the analytic results of section 5.2. There we ob-
served that the sensitivities for detecting perturbations in the continuum model and the CEM
are similar, but the resolution of details in the CEM is limited near the boundary (cf. Figure 3).

The idea is now to use the continuum solution rQ from (20) as an approximation for the
CEM on arbitrary domains, replacing the radial coordinate Q of a point z therein by

Qz = 1− d(z), z ∈ Ω, where d(z) =

min
l=1,...,L

dist(z, El)

max
ζ∈Ω

min
l=1,...,L

dist(ζ, El)

is the relative distance of z to the closest electrode.
Inspecting Figures 3a–c, we note that the resolution of the continuum model and the CEM

have a similar characteristic, but the CEM curve is offset by the model differences and by the
limited resolution near the boundary. To account for these differences in our approximation,

8The computation of the meshes shown in Figure 2 involved several thousand LU decompositions with up to
30 000 unknowns each and took several days (ε=0.02) to several weeks (ε=0.01) in our MATLAB implementation
on a 2.2 GHz workstation with 16 CPU cores and 128 GB RAM.
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we add a linear correction to the continuum solution rQz which “shifts” the resolution curve to
match the CEM results at the center and near the boundary. The linearly corrected resolution
ρ should satisfy ρ(z1) = p1 and ρ(z2) = p2, where z1 and z2 are two points at which the radii
p1 and p2 of resolved details of a given setting are known or can be estimated. The corrected
formula reads

ρ(z) := rQz +
∆p2 −∆p1

Qz2 −Qz1
(Qz −Qz1) + ∆p1,(23)

where ∆p1 =p1−rQz1
and ∆p2 =p2−rQz2

are the differences between the given setting and the
continuum model at z1 and z2, respectively.

By (23), adaptive approximations of the optimal resolution meshes can be created with
Algorithm 1, replacing B1(O) by Ω therein and setting r= ρ(z) for each test point z ∈T . We
will refer to these adaptive approximations as adaptive meshes. Generating an adaptive mesh
that way usually takes less than one second in MATLAB on an Intel i7 notebook. For our
implementations, we use the data from the circular case at z1 =O and z2 =(0.95, 0) marked
with � and � in Figure 4, i.e. Qz1 =0 and Qz2 =0.95, and interpolate/extrapolate accordingly
for a given sensitivity ε to obtain the values p1 and p2. Figure 6 shows resulting adaptive meshes
for ε=0.02 and different geometries.

Figure 6. Adaptive approximations of optimal resolution meshes in different
geometries with 16 electrodes for ε=0.02.

5.6. Dynamic mesh size for iterative inversion algorithms. Iterative Newton-type al-
gorithms successively solve forward problems and apply Newton updates to the searched-for
conductivity. This means that after the kth iteration, the relative spectral error

ε(k) =

∥∥Λ(k) − Λmeas

∥∥
2

‖Λmeas‖2
can be calculated, where Λmeas is the measured ND map and Λ(k) is the computed ND map of
the kth iteration for the CEM. For the k+1st iteration, we can thus generate an adaptive mesh
of approximate sensitivity

λσ = min
{
α · ε(k), β

}
, α ∈ (0, 1), β > 0,

to account for the successive refinement of reconstructed details. Then we interpolate the
conductivity of the current iteration on the new mesh for the next iteration. This dynamic
refinement is particularly helpful for generating meshes when the spectral error level of the
measured data is unknown.

In our tests, we choose α=0.8, β=0.05 and only generate a new mesh in the klth iteration
if the relative spectral error decreased sufficiently, i.e. if ε(kl) ≤ α · ε(kl−1), where kl−1 is the
last iteration where an adaptive mesh was generated. The dynamic refinement during the
reconstruction of a conducting inclusion is shown in Figure 7.
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Figure 7. Adaptive meshes generated during inversion, see Figure 8d.

6. Numerical results

In this section we present the performance of optimal resolution meshes and its adaptive
approximations for the reconstruction of EIT images. The algorithm used is the regularized
inexact Newton method REGINN described in [Rie99] and applied to EIT in [LR06]. In the
conjugate gradient iteration of REGINN, we use the Euclidean inner product on Rn for the
discrete conductivity space instead of the area-dependent L2 inner product used in [LR06].
This is because by design, the impact of each conductivity segment to measured data is roughly
the same, independent of its area.

When adding artificial noise of level δ > 0 to potential vectors U ∈RL from simulated data,
we mean component-wise relative noise

Unoisy = U + γ
(
n1U1, . . . , nLUL

)>
,

where n∈ [−1, 1]L is uniformly distributed noise and γ > 0 is chosen such that

‖Unoisy − U‖2 = δ.

Note that this does not necessarily result in a relative spectral error ε of the ND map of the same
value. The relative error between the reconstructed conductivity σrec and the exact solution σ
is computed as

e =
‖P∆σrec − P∆σ‖L2(∆)

‖P∆σ‖L2(∆)

,

where P∆ is an interpolation on a very fine triangulation ∆ of the domain Ω. Throughout
all numerical simulations, we use L= 16 equally distributed electrodes that cover 50% of the
boundary with contact impedances zl=0.01 2π

|∂Ω| , l=1, . . . , L.

The REGINN parameters are µ0 = 0.6, R = 1.02 and ζ = 0.95 in the notation of [LR06,
section 6] which we found to be robust throughout all our experiments. Thus, the noise level is
the only regularization parameter that needs to be specified when reconstructing from measured
data.

We observed that the number of iterations until convergence, denoted by nit in the following,
significantly depends on the error level δ and the type of inclusions. For conducting inclusions
and δ = 1%, we have nit ≈ 5–15. For resistive inclusions and δ = 0.2%, nit ≈ 50–100. Each
iteration takes less than one second in MATLAB on an Intel i7 notebook.
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6.1. Reconstructions on the unit disk. First, we reconstruct circular inclusions of conduc-
tivity σ0 =0.5 and radius rQ=0.4 inside the unit disk with background conductivity σ1 =0.25.
As we assume the background conductivity to be unknown, the initial guess is σinit ≡ 0.4 on
Ω. To avoid inverse crime, the data Λσ are generated with the analytic forward solver of sec-
tion 4. Figure 8 shows reconstructions with uniformly spaced meshes, optimal resolution meshes
and adaptive meshes. The resolution-controlled meshes result in faster convergence and better
reconstructions with significantly fewer artifacts than the uniformly spaced meshes.

 

 

0

0.1

0.2

0.3

0.4

0.5

 

 

0

0.1

0.2

0.3

0.4

0.5

(a) True
conductivity

 

 

0

0.1

0.2

0.3

0.4

0.5

nit =24, e=25.0%

 

 

0

0.1

0.2

0.3

0.4

0.5

nit =43, e=19.0%

(b) Uniform mesh,
δ=1% noise

 

 

0

0.1

0.2

0.3

0.4

0.5

nit =8, e=21.8%

 

 

0

0.1

0.2

0.3

0.4

0.5

nit =12, e=17.0%

(c) Opt. res. mesh,
δ=1% noise

 

 

0

0.1

0.2

0.3

0.4

0.5

nit =35, e=15.2%

 

 

0

0.1

0.2

0.3

0.4

0.5

nit =45, e=13.3%

(d) Adaptive mesh,
δ=0.2% noise

Figure 8. Settings with conducting inclusions and reconstructions from noisy
data. The adaptive mesh was used for the very low noise level as the computation
of an according optimal resolution mesh would be too computationally costly.

6.2. Reconstructions on polygonal domains. Next, we demonstrate the performance of
adaptive meshes on non-circular domains. The simulated data are generated by finite elements
on very fine triangle meshes. The initial guess for all settings is σinit ≡ 0.3. The results are
shown in Figure 9.

The first setting is a square with conductivity σ=0.25, a conducting segment (σ=0.5), a
resistive segment (σ=0.1) and δ=1% noise. The challenge of this setting are the jumps of
conductivity in the interior and along the boundary.

The second setting is a chest-shaped domain with σ=0.25, highly resistive inclusions (σ=0.05),
a conducting inclusion (σ=0.5) and δ=0.5% noise. The small conductivity coefficient in large
parts of the domain means a small ellipticity constant of the variational formulation, leading to
slower convergence.

The third setting is an L-shaped domain with σ=0.25, a conducting circular inclusion
(σ=0.5), a resistive annulus (σ=0.1) and δ=0.25% noise.

6.3. Reconstructions from measured data. The measured data from a tank experiment
were kindly provided by Aku Seppänen (University of Eastern Finland) and Stratos Staboulis
(Aalto University). The tank has a circumference of 0.88m and a height of 7cm, each of the
16 electrodes has a width of 2.5cm. It is filled with saline (0.016 Ω−1m−1) and two conducting
(metal) objects. The estimated measurement tolerance of the EIT equipment is δ ≈ 0.1–0.2%,
but to account for the imperfections of the model and the contact impedances (we assume
zl=0.01 2π

|∂Ω|), we set δ=0.3% as the estimated measurement error for the REGINN algorithm.
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Figure 9. Reconstructions from noisy simulated data with adaptive meshes.

The algorithm converges after nit =35 iterations for σinit =0.3. The resulting reconstruction is
shown in Figure 10.
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Figure 10. Measurement setting, reconstruction from measured tank data and
the according adaptive mesh.

7. Conclusions

Using conformal maps, we introduced an analytic method to determine the sensitivity of
boundary measurements to perturbations in conductivity for the CEM on circular domains.
With this information, we determined the spatial resolution of various CEM settings and dis-
cretized the conductivity space accordingly, resulting in improved robustness and faster conver-
gence when solving the ICP with Newton-type algorithms and noisy data.

Moreover, we pointed out the connections and differences of the CEM and the continuum
boundary model in terms of imaging resolution.

Finally, we derived a heuristic approximation of sensitivity based discretizations of the con-
ductivity space for non-circular domains and verified its performance with simulated and mea-
sured data.
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Appendix A. Computing the analytic solution

Here we derive the formulas for the analytic forward solution of the CEM.

A.1. Fourier representation of the potential for a centered perturbation. We will
express the potential u = u(r, θ) on Ω as a Fourier series in polar coordinates. The potential u
can be split in even and odd parts in θ and each part can be treated separately, hence assume
first that u is even in θ. According to [SCI92, (A3.4)], u is of the form

u(r, θ) = u0 +



∞∑
k=1

(
r

r0

)k
a

(1)
k cos(kθ), r ≤ r0,

∞∑
k=1

(
r−ka

(2)
k + rka

(3)
k

)
cos(kθ), r0 ≤ r < 1,

for some coefficients a
(1,2,3)
k ∈ R. By matching u and σ∂u/∂r at r = r0, we find from the

orthogonality of the Fourier basis that

a
(1)
k = a

(3)
k rk0 + a

(2)
k r−k0 (condition on u) and

σ0a
(1)
k = σ1

(
a

(3)
k rk0 − a

(2)
k r−k0

)
(condition on σ∂u/∂r) .

Substituting the first into the second equation, we get

a
(2)
k = cka

(3)
k with ck :=

σ1/σ0 − 1

σ1/σ0 + 1
r2k

0 ,

thus outside the perturbation, u has the representation

u(r, θ) = u0 +
∞∑
k=1

(
rk + r−kck

)
a

(3)
k cos(kθ),

∂u

∂r
(r, θ) =

∞∑
k=1

k
(
rk−1 − r−k−1ck

)
a

(3)
k cos(kθ).

By evaluating u at r=1 and letting ak := (1 + ck) a
(3)
k , we can express the potential and normal

current at the boundary as

u(1, θ) = u0 +

∞∑
k=1

ak cos(kθ),

σ1
∂u

∂r
(1, θ) = σ1

∞∑
k=1

dk ak cos(kθ), where dk := k
1− ck
1 + ck

.

For the odd part of u in θ we can do the same calculations, replacing the cosine terms by sine
terms and introducing coefficients bk. Combining both, we get the desired representations (10).

A.2. Computation of the Fourier coefficients for given electrode potentials. We now
apply the approach of [Dem11, Appendix] to (10) to determine the Fourier coefficients u0 and
ak, bk, k ∈N, therein for a given voltage pattern U = (U1, . . . , UL)> in the CEM. To that end,
we rewrite (4b) as iν = 1

zl
(Ul − u) and plug in the representations (10) for u and iν which yields

σ1

∞∑
k=1

dk (ak cos(kθ) + bk sin(kθ))

=

{
1
zl

(Ul − u0 −
∑∞

k=1 ak cos(kθ) + bk sin(kθ)) on El, l = 1, . . . , L,

0, otherwise.
(24)
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Following the idea of [Dem11, Appendix], we multiply (24) with

cos(nθ), n ∈ N0, and sin(nθ), n ∈ N,

respectively and integrate in θ over [0, 2π] which leads to the set of equations

0 =
L∑
l=1

Ul − u0

zl
2ωl

−
∞∑
k=1

ak
zl

∫ θl+ωl

θl−ωl

cos(kθ) dθ +
bk
zl

∫ θl+ωl

θl−ωl

sin(kθ) dθ for n = 0,

σ1πdnan =

L∑
l=1

Ul − u0

zl

∫ θl+ωl

θl−ωl

cos(nθ) dθ

−
∞∑
k=1

ak
zl

∫ θl+ωl

θl−ωl

cos(nθ) cos(kθ) dθ +
bk
zl

∫ θl+ωl

θl−ωl

cos(nθ) sin(kθ) dθ, n ∈ N,

σ1πdnbn =
L∑
l=1

Ul − u0

zl

∫ θl+ωl

θl−ωl

sin(nθ) dθ

−
∞∑
k=1

ak
zl

∫ θl+ωl

θl−ωl

sin(nθ) cos(kθ) dθ +
bk
zl

∫ θl+ωl

θl−ωl

sin(nθ) sin(kθ) dθ, n ∈ N,

(25)

where θl ∈ [0, 2π) is the angular coordinate of the lth electrode center and ωl > 0 is its angular
half-width. These equations can be rewritten as an infinite system of linear equations for
u0, ak, bk as (

rU

sU

)
=

(
A B

B> C

)(
u0, a1, a2, . . . , b1, b2, . . .

)>
,(26)

with the (infinite dimensional) vectors

rU =
(
rU0 , r

U
1 , . . .

)>
, sU =

(
sU1 , s

U
2 , . . .

)>
and matrices

A =

A00 A01 . . .
A10 A11 . . .

...
...

. . .

 , B =

B01 B02 . . .
B11 B12 . . .

...
...

. . .

 , C =

C11 C12 . . .
C21 C22 . . .

...
...

. . .


with entries

Ank =
L∑
l=1

1

zl

∫ θl+ωl

θl−ωl

cos(nθ) cos(kθ) dθ︸ ︷︷ ︸
= 1

2
[sl(k−n)+sl(k+n)]

+δnkσ1πdk, n ∈ N0, k ∈ N0,(27)

Bnk =

L∑
l=1

1

zl

∫ θl+ωl

θl−ωl

cos(nθ) sin(kθ) dθ︸ ︷︷ ︸
=− 1

2
[cl(k−n)+cl(k+n)]

, n ∈ N0, k ∈ N,

Cnk =
L∑
l=1

1

zl

∫ θl+ωl

θl−ωl

sin(nθ) sin(kθ) dθ︸ ︷︷ ︸
= 1

2
[sl(k−n)−sl(k+n)]

+δnkσ1πdk, n ∈ N, k ∈ N,
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rUn =

L∑
l=1

Ul
zl

∫ θl+ωl

θl−ωl

cos(nθ) dθ︸ ︷︷ ︸
=sl(n)

, n ∈ N0,

sUn =
L∑
l=1

Ul
zl

∫ θl+ωl

θl−ωl

sin(nθ) dθ︸ ︷︷ ︸
=−cl(n)

, n ∈ N,

where δnk is the Kronecker delta. Above integrals have analytic solutions given by the expres-
sions sl and cl, where sl(0)=2ωl, cl(0)=0 and

sl(n) = sin(n(θl+ωl))−sin(n(θl−ωl))
n , cl(n) = cos(n(θl+ωl))−cos(n(θl−ωl))

n , n ∈ Z \ {0} .

Once the Fourier coefficients are known, we can compute the lth entry of the resulting current
vector I by (4c), integrating the left-hand side of (24) over the lth electrode:

Il =

∫
El

iν dS = σ1

∞∑
k=1

dk (aksl(k)− bkcl(k)) .

However, it is advisable to integrate over the faster converging Fourier series on the right-hand
side of (24) which yields

Il =
1

zl

(
2ωl(Ul − u0)−

∞∑
k=1

aksl(k)− bkcl(k)

)
.

Remark : In practice, we truncate the Fourier series to get a finite system of linear equations.
The truncation index N should be chosen with respect to the electrode widths such that the
potential and normal current along all electrodes are approximated well by the truncated Fourier
series. For example, if 2ωmin is the smallest electrode angular width, the truncation index should
be chosen well above the “critical” index d2π/(2ωmin)e of a Fourier sum that can resolve details
of size 2ωmin. In our implementations, we found N=max {d32π/ωmine , 1000} to give results of
very high accuracy.

Appendix B. Analytic solution for the CEM forward problem under conformal
mapping

By the Riemann mapping theorem, any simply connected smooth domain can be mapped to
the unit circle conformally, that is, angle-preserving [Neh52, SL91]. We use conformal maps to
reduce non-concentric EIT geometries to the concentric circular case. In this simpler geometry,
we can solve the forward problem in EIT analytically. We now derive the analytic solution for
the transformed CEM forward problem, incorporating the non-constant contact impedances in
the formulas of Appendix A.2. Since the reciprocal of the transformed conductivity given in
(18) is unsuitable for analytic (closed form) integration when multiplied by cosine or sine terms,
we rewrite equation (19b) to avoid a term of the form 1

cos(ϑ) on either side of the equation. To

achieve this, we use the representation

1 +R2

1−R2
iwν (ϑ) =


1

zl
(Ul − fw(ϑ))− 2R cos(ϑ)

1−R2
iwν (ϑ) on Ewl ,

0 otherwise.
(28)

As in the centered case, we multiply the Fourier representation of (28) with the test functions
cos(nϑ), n ∈ N0, and sin(nϑ), n ∈ N, respectively and integrate in ϑ over [0, 2π]. For better



20 ROBERT WINKLER AND ANDREAS RIEDER

readability, we write t (nϑ) for any of these test functions. On the left-hand side, we get

∫ 2π

0
t (nϑ)

1 +R2

1−R2
iwν (ϑ) dϑ =


0 for n = 0,

πσ1
1 +R2

1−R2
dnan for the cosine terms,

πσ1
1 +R2

1−R2
dnbn for the sine terms.

(29)

On the right-hand side, we get

L∑
l=1

Ul
zl

∫ ϑl+vl

ϑl−vl
t (nϑ) dϑ− u0

L∑
l=1

1

zl

∫ ϑl+vl

ϑl−vl
t (nϑ) dϑ

−
∞∑
k=1

ak

L∑
l=1

[
1

zl

∫ ϑl+vl

ϑl−vl
t (nϑ) cos(kϑ) dϑ +

2Rσ1dk
1−R2

∫ ϑl+vl

ϑl−vl
t (nϑ) cos(ϑ) cos(kϑ) dϑ

]

−
∞∑
k=1

bk

L∑
l=1

[
1

zl

∫ ϑl+vl

ϑl−vl
t (nϑ) sin(kϑ) dϑ +

2Rσ1dk
1−R2

∫ ϑl+vl

ϑl−vl
t (nϑ) cos(ϑ) sin(kϑ) dϑ

]
.

Now we rearrange each equation to be used as one row of a linear system of equations for u0

and ak, bk, k∈N, and return to the notation of (26). In the conformally mapped case, we get(
rU

sU

)
=

(
A B1

B2 C

)(
u0, a1, a2, . . . b1, b2, . . .

)>
.(30)

The matrix coefficients are

Ank =
L∑
l=1

1

zl

∫ ϑl+vl

ϑl−vl
cos(nϑ) cos(kϑ) dϑ+ δnkπσ1

1 +R2

1−R2
dk

+
2Rσ1dk
1−R2

L∑
l=1

∫ ϑl+vl

ϑl−vl
cos(nϑ) cos(ϑ) cos(kϑ) dϑ, n ∈ N0, k ∈ N0,

B1
nk =

L∑
l=1

1

zl

∫ ϑl+vl

ϑl−vl
cos(nϑ) sin(kϑ) dϑ

+
2Rσ1dk
1−R2

L∑
l=1

∫ ϑl+vl

ϑl−vl
cos(nϑ) cos(ϑ) sin(kϑ) dϑ, n ∈ N0, k ∈ N,

B2
nk =

L∑
l=1

1

zl

∫ ϑl+vl

ϑl−vl
sin(nϑ) cos(kϑ) dϑ

+
2Rσ1dk
1−R2

L∑
l=1

∫ ϑl+vl

ϑl−vl
sin(nϑ) cos(ϑ) cos(kϑ) dϑ, n ∈ N, k ∈ N0,

Cnk =

L∑
l=1

1

zl

∫ ϑl+vl

ϑl−vl
sin(nϑ) sin(kϑ) dϑ+ δnkπσ1

1 +R2

1−R2
dk

+
2Rσ1dk
1−R2

L∑
l=1

∫ ϑl+vl

ϑl−vl
sin(nϑ) cos(ϑ) sin(kϑ) dϑ, n ∈ N, k ∈ N,

rn =
L∑
l=1

Ul
zl

∫ ϑl+vl

ϑl−vl
cos(nϑ) dϑ, n ∈ N0,
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sn =

L∑
l=1

Ul
zl

∫ ϑl+vl

ϑl−vl
sin(nϑ) dϑ. n ∈ N.

Note in particular that B1
nk 6= B2

kn in general for R > 0 due to the influence of the coefficients
dk. In this representation, all integrals are given analytically by trigonometric identities. The
integrals without the cos(ϑ) factor match those of (27). The analytic solutions of the other
integrals read

1

4

[
sl(αn,k)+sl(βn,k)+sl(γn,k) + sl(κn,k)

]
in Ank,

1

4

[
cl(αn,k)+cl(βn,k)−cl(γn,k)−cl(κn,k)

]
in B1

nk and B2
kn,

1

4

[
−sl(αn,k)+sl(βn,k)+sl(γn,k)−sl(κn,k)

]
in Cnk,

where

αn,k=−k − n+ 1, βn,k=−k + n+ 1, γn,k=k − n+ 1, κn,k=k + n+ 1.

The solution of this system is the set of Fourier coefficients of the transformed Dirichlet data
fw. For the truncation and the computation of the current vector, the same comments apply
as in Appendix A.2. In particular, it is advisable to integrate over the right-hand side of (28)
which yields

Il =
1−R2

(1 +R2)zl

(
2ωl(Ul − u0)−

∞∑
k=1

aksl(k)− bkcl(k)

)

+
Rσ1

1 +R2

∞∑
k=1

dk [ak (sl(k − 1) + sl(k + 1))− bk (cl(k − 1) + cl(k + 1))] .

Appendix C. Monotony of the sensitivity

This is a CEM version of [GIN90, Appendix I]. The energy functional

J(u, U) =
1

2
a ((u, U), (u, U))−

L∑
l=1

IlUl

for the bilinear operator a from (6) has the minimizing property

J(u∗, U∗) = min
(u,U)∈H1(Ω)×RL

J(u, U),

where (u∗, U∗) is the solution of the CEM for current vector I. Denote by aB and aD the
bilinear operators, by JB and JD the energy functionals and by (uB, UB) and (uD, UD) the
CEM solutions for conductivities σB and σD from (12), respectively. Using (5), we immediately
get

JB(uB, UB) = −1

2
I>UB and JD(uD, UD) = −1

2
I>UD.

From σD ≥ σB on Ω, it follows that

JD(uD, UD)− JB(uD, UD) =
1

2

∫
Ω

(σD − σB) |∇uD|2 dx ≥ 0.

Using the minimizing property for JB, we get

−I>UD = 2JD(uD, UD) ≥ 2JB(uD, UD) ≥ 2JB(uB, UB) = −I>UB.
In terms of ND maps, we have that UB = ΛσBI and UD = ΛσDI, thus

〈I, (ΛσD − ΛσB )I〉 ≤ 0
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for all 0 6= I ∈ RL� . Similarly, we get

〈I, (ΛσD − Λσ1)I〉 ≤ 0 and 〈I, (ΛσB − Λσ1)I〉 ≤ 0

and finally 〈I, (ΛσD − Λσ1)I〉 ≤ 〈I, (ΛσB − Λσ1)I〉 ≤ 0, hence λσD,σ1 ≥ λσB ,σ1 .
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