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Abstract. We investigate the problem of minimizing a certainty equivalent of the total or
discounted cost over a finite and an infinite horizon which is generated by a Markov Decision
Process (MDP). The certainty equivalent is defined by U−1(EU(Y )) where U is an increasing
function. In contrast to a risk-neutral decision maker this optimization criterion takes the
variability of the cost into account. It contains as a special case the classical risk-sensitive
optimization criterion with an exponential utility. We show that this optimization problem
can be solved by an ordinary MDP with extended state space and give conditions under which
an optimal policy exists. In the case of an infinite time horizon we show that the minimal
discounted cost can be obtained by value iteration and can be characterized as the unique
solution of a fixed point equation using a ’sandwich’ argument. Interestingly, it turns out that
in case of a power utility, the problem simplifies and is of similar complexity than the exponential
utility case, however has not been treated in the literature so far. We also establish the validity
(and convergence) of the policy improvement method. A simple numerical example, namely the
classical repeated casino game is considered to illustrate the influence of the certainty equivalent
and its parameters. Finally also the average cost problem is investigated. Surprisingly it turns
out that under suitable recurrence conditions on the MDP for convex power utility U , the
minimal average cost does not depend on U and is equal to the risk neutral average cost. This
is in contrast to the classical risk sensitive criterion with exponential utility.
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1. Introduction

Since the seminal paper by Howard & Matheson (1972) the notion risk-sensitive Markov Decision
Process (MDP) seems to be reserved for the criterion 1

γ logE[eγY ] where Y is some cumulated

cost and γ represents the degree of risk aversion or risk attraction. However in the recent decade
a lot of alternative ways of measuring performance with a certain emphasis on risk arose. Among
them risk measures and the well-known certainty equivalents. Certainty equivalents have a long
tradition and its use can be traced back to the 1930ies (for a historic review see Muliere &
Parmigiani (1993)). They are defined by U−1(EU(Y )) where U is an increasing function. We
consider here a discrete-time MDP evolving on a Borel state space which accumulates cost over
a finite or an infinite time horizon. The one-stage cost are bounded. The aim is to minimize
the certainty equivalent of this accumulated cost. In case of an infinite time horizon, cost have
to be discounted. We will also consider an average cost criterion.

The problems we treat here are generalizations of the classical ’risk-sensitive’ case which is
obtained when we set U(y) = 1

γ e
γy. On the other hand they are more specialized than the

problems with expected utility considered for example in Kreps (1977a,b). There the author
considers a countable state, finite action MDP where the utility which has to be maximized may
depend on the complete history of the process. In such a setting it is already hard to obtain
some kind of stationarity. It is achieved by introducing what the author calls a summary space
- an idea which is natural and which will also appear in our analysis. A forward recursive utility
and its summary (which is there called forward recursive accumulation) are investigated for a
finite horizon problem in Iwamoto (2004).
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Somehow related studies can be found in Jaquette (1973, 1976) where finite state, finite
action MDPs are considered and moment optimality and the exponential utility of the infinite
horizon discounted reward is investigated. General optimization criteria can also be found in
Chung & Sobel (1987). There the authors first consider fixed point theorems for the complete
distribution of the infinite horizon discounted reward in a finite MDP and later also consider the
exponential utility. In Collins & McNamara (1998) the authors deal with a finite horizon problem
and maximize a strictly concave functional of the distribution of the terminal state. Another
non-standard optimality criterion is the target level criterion where the aim is to maximize
the probability that the total discounted reward exceeds a given target value. This is e.g.
investigated in Wu & Lin (1999); Boda et al. (2004). Other probabilistic criteria, mostly in
combination with long-run performance measures, can be found in the survey of White (1988).

Only recently some papers appeared where risk measures have been used for optimization
of MDPs. In Ruszczyński (2010) general space MDPs are considered in a finite horizon model
as well as in a discounted infinite horizon model. A dynamic Markov risk measure is used
as optimality criterion. In both cases value iteration procedures are established and for the
infinite horizon model the validity and convergence of the policy improvement method is shown.
The concrete risk measure Average-Value-at-Risk has been used in Bäuerle & Ott (2011) for
minimizing the discounted cost over a finite and an infinite horizon for a general state MDP. Value
iteration methods have been established and the optimality of Markov policies depending on a
certain ’summary’ has been shown. Some numerical examples have also been given, illustrating
the influence of the ’risk aversion parameter’. In Bäuerle & Mundt (2009) a Mean-Average-
Value-at-Risk problem has been solved for an investor in a binomial financial market.

Classical risk-sensitive MDPs have been intensively studied since Howard & Matheson (1972).
In particular the average cost criterion has attracted a lot of researchers since it behaves con-
siderable different to the classical risk neutral average cost problem (see e.g. Cavazos-Cadena
& Hernández-Hernández (2011); Cavazos-Cadena & Fernández-Gaucherand (2000); Jaśkiewicz
(2007); Di Masi & Stettner (1999)). The infinite horizon discounted classical risk-sensitive MDP
and its relation to the average cost problem is considered in Di Masi & Stettner (1999). As far
as applications are concerned, risk-sensitive problems can e.g. be found in Bielecki et al. (1999)
where portfolio management is considered, in Denardo et al. (2011, 2007) where multi-armed
bandits are investigated and in Barz & Waldmann (2007) where revenue problems are treated.

In this paper we investigate the problem of minimizing the certainty equivalent of the total and
discounted cost over a finite and an infinite horizon which is generated by a Markov Decision
Process. We consider both the risk averse and the risk seeking case. We show that these
problems can be solved by ordinary MDPs with extended state space and give continuity and
compactness conditions under which optimal policies exist. In the case of discounting we have
to enlarge the state space by another component since the discount factor implies some kind
of non-stationarity. The enlargement of the state space is partly dispensable for exponential or
power utility functions. Interestingly, the problem with power utility shows a similar complexity
than the classical exponential case, but to the best of our knowledge has not been considered in
the MDP literature so far. In the case of an infinite horizon we show that the minimal value can
be obtained by value iteration and can be characterized as the unique solution of a fixed point
equation using a ’sandwich’ argument. We also establish the validity (and convergence) of the
policy improvement method. A simple numerical example, namely a classical repeated casino
game, is considered to illustrate the influence of the function U and its parameters. Finally also
the average cost problem is investigated. Surprisingly it turns out that under suitable recurrence
conditions on the MDP for U(y) = 1

γ y
γ with γ ≥ 1, the minimal average cost does not depend

on γ and are equal to the risk neutral average cost. This is in contrast to the classical risk
sensitive criterion. The average cost case with γ < 1 remains an open problem.

The paper is organized as follows: In Section 2 we introduce the MDP model, our continuity
and compactness assumptions and the admissible policies. In Section 3 we solve the finite horizon
problem with certainty equivalent criterion. We consider the total cost problem as well as the



MORE RISK-SENSITIVE MARKOV DECISION PROCESSES 3

discounted cost problem. In the latter case we have to further extend the state space of the MDP.
One subsection deals with the repeated casino game which is solved explicitly. Next, in Section
4 we consider and solve the infinite horizon problem. We show that the minimal discounted
cost can be obtained by value iteration and can be characterized as the unique solution of a
fixed point equation. We also establish the validity (and convergence) of the policy improvement
method. Finally in Section 5 we investigate the average cost problem for power utility.

2. General Risk-Sensitive Markov Decision Processes

We suppose that a controlled Markov state process (Xn) in discrete time is given with values in
a Borel set E. More precisely it is specified by:

• The Borel state space E, endowed with a Borel σ-algebra E .
• The Borel action space A, endowed with a Borel σ-algebra A.
• The set D ⊂ E × A, a nonempty Borel set and subsets D(x) := {a ∈ A : (x, a) ∈ D} of

admissible actions in state x.
• A regular conditional distribution Q from D to E, the transition law.
• A measurable cost function c : D → [c, c̄] with 0 < c < c̄.

Note that we assume here for simplicity that the cost are positive and bounded. Next we
introduce the sets of histories for k ∈ N by:

H0 := E, Hn := Dn × E

where hn = (x0, a0, x1, . . . , an−1, xn) ∈ Hn gives a history up to time n. A history-dependent
policy σ = (gn)n∈N0 is given by a sequence of measurable mappings gn : Hn → A such that
gn(hn) ∈ D(xn). We denote the set of all such policies by Π. Each policy σ ∈ Π induces
together with the initial state x a probability measure Pσx and a stochastic process (Xn, An) on
H∞ such that Xn is the random state at time n and An is the action at time n. (For details see
e.g. Bäuerle & Rieder (2011), Section 2).

There is a discount factor β ∈ (0, 1] and we will either consider a finite planning horizon
N ∈ N0 or an infinite planning horizon. Thus we will either consider the cost

CNβ :=
N−1∑
k=0

βkc(Xk, Ak) or C∞β :=
∞∑
k=0

βkc(Xk, Ak).

If β = 1 we will shortly write CN instead of CN1 . In the last section we will also consider average
cost problems. Instead of minimizing the expected cost we will now treat a general non-standard
risk-sensitive criterion. To this end let U be a continuous and strictly increasing function such
that the inverse U−1 exists. The aim now is to solve:

inf
σ∈Π

U−1
(
Eσx
[
U(CNβ )

])
, x ∈ E, (2.1)

inf
σ∈Π

U−1
(
Eσx
[
U(C∞β )

])
, x ∈ E (2.2)

where Eσx is the expectation w.r.t. Pσx. Note that the problems in (2.1) and (2.2) are well-defined.

If U is in addition strictly convex, then the quantity U−1
(
E
[
U(Y )

])
can be interpreted as the

mean-value premium of the risk Y as is done in actuarial sciences (see e.g. Kaas et al. (2009)).
If U is strictly concave, then U is a utility function and the quantity represents a certainty
equivalent also known as a quasi-linear mean. It may be written (assuming enough regularity of
U) using the Taylor rule as

U−1
(
E
[
U(Y )

])
≈ EY − 1

2
lU (EY )V ar[Y ]

where

lU (y) = −U
′′(y)

U ′(y)
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is the Arrow-Pratt function of absolute risk aversion. Hence the second term accounts for the
variability of X (for a discussion see Bielecki & Pliska (2003)). If U is concave, the variance
is subtracted and hence the decision maker is risk seeking in case cost are minimized, if U is
convex, then the variance is added and the decision maker is risk averse. A prominent special
case is the choice

U(y) =
1

γ
eγy, γ 6= 0

in which case lU (y) = −γ. When we speak of minimizing cost, the case γ > 0 corresponds to a
risk averse decision maker and the case γ < 0 to a risk-seeking decision maker. Note that this
interpretation changes when we maximize reward. The limiting case γ → 0 coincides with the
classical risk-neutral criterion.

Other interesting choices are U(y) = 1
γ y

γ with γ > 0. For γ < 1 the function U is strictly

concave and lU (y) = 1−γ
y . This is the risk-seeking case for the cost problem. If γ ≥ 1 we can

also write

U−1
(
E[U(Y )]

)
=
(
EY γ

) 1
γ

= ‖Y ‖γ

where ‖ · ‖γ is the usual Lγ-norm. Of course γ = 1 is again the risk neutral case.
In this paper we impose the following continuity and compactness assumptions (CC) on the

data of the problem:

(i) U : [0,∞)→ R is continuous and strictly increasing,
(ii) D(x) is compact for all x ∈ E,
(iii) x 7→ D(x) is upper semicontinuous, i.e. for all x ∈ E it holds: If xn → x and an ∈ D(xn)

for all n ∈ N, then (an) has an accumulation point in D(x),
(iv) (x, a) 7→ c(x, a) is lower semicontinuous,
(v) Q is weakly continuous, i.e. for a all v : E → R bounded and continuous

(x, a) 7→
∫
v(x′)Q(dx′|x, a)

is again continuous.

Note that assumptions (CC) will later imply the existence of optimal policies and the validity
of the value iteration. It is also possible to show these statements under other assumptions, in
particular under so-called structure assumptions. For a discussion see e.g. Bäuerle & Rieder
(2011), Section 2.4.

3. Finite Horizon Problems

3.1. Total Cost Problems. We start investigating the case of a finite time horizon N and
β = 1. Since U is strictly increasing, so is U−1 and we can obviously skip it from the optimization
problem. In what follows we denote by

JN (x) := inf
σ∈Π

Eσx
[
U
(N−1∑
k=0

c(Xk, Ak)
)]

= inf
σ∈Π

Eσx[U(CN )], x ∈ E. (3.1)

Though this problem is not directly separable, we will show that it can be solved by a bivariate
MDP as follows. For this purpose let us define for n = 0, 1, . . . , N

Vnσ(x, y) := Eσx
[
U
(
Cn + y

)]
, x ∈ E, y ∈ R+, σ ∈ Π,

Vn(x, y) := inf
σ∈Π

Vnσ(x, y), x ∈ E, y ∈ R+. (3.2)

Obviously VN (x, 0) = JN (x). The idea is that y summarizes the cost which has been accumulated
so far. This idea can already be found in Kreps (1977a,b). We consider now a Markov Decision

Model which is defined on the state space Ẽ := E × R+ with action space A and admissible
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actions given by the set D. The one-stage cost are zero and the terminal cost function is
V0(x, y) := U(y). The transition law is given by Q̃(·|x, y, a) defined by∫

v(x′, y′)Q̃(d(x′, y′)|x, y, a) =

∫
v(x′, c(x, a) + y)Q(dx′|x, a).

Decision rules are here given by measurable mappings f : Ẽ → A such that f(x, y) ∈ D(x). We
denote by F the set of decision rules and by ΠM the set of Markov policies π = (f0, f1, . . .) with
fn ∈ F . Note that ‘Markov’ refers to the fact that the decision at time n depends only on x
and y. Obviously in (3.2) only the first n decision rules of σ are relevant. Note that we have
ΠM ⊂ Π in the following sense: For every π = (f0, f1, . . .) ∈ ΠM we find a σ = (g0, g1, . . .) ∈ Π
such that

g0(x0) := f0(x0, 0),

gn(x0, a0, x1, . . . , xn) := fn
(
xn,

n−1∑
k=0

c(xk, ak)
)
, n ∈ N.

With this interpretation Vnπ is also defined for π ∈ ΠM . For convenience we introduce the set

C(Ẽ) :=
{
v : Ẽ → R : v is lower semicontinuous, v(x, ·)is continuous

and increasing for x ∈ E and v(x, y) ≥ U(y)
}
.

Note that v ∈ C(Ẽ) is bounded from below. For v ∈ C(Ẽ) and f ∈ F we denote the operator

(Tfv)(x, y) :=

∫
v
(
x′, c(x, f(x, y)) + y

)
Q
(
dx′|x, f(x, y)

)
, (x, y) ∈ Ẽ.

The minimal cost operator of this Markov Decision Model is given by

(Tv)(x, y) = inf
a∈D(x)

∫
v
(
x′, c(x, a) + y

)
Q
(
dx′|x, a

)
, (x, y) ∈ Ẽ. (3.3)

If a decision rule f ∈ F is such that Tfv = Tv, then f is called a minimizer of v. In what follows
we will always assume that the empty sum is zero. Then we obtain:

Theorem 3.1. It holds that

a) For a policy π = (f0, f1, f2, . . .) ∈ ΠM we have the following cost iteration:
Vnπ = Tf0 . . . Tfn−1U for n = 1, . . . , N .

b) V0(x, y) := U(y) and Vn = TVn−1, for n = 1, . . . , N i.e.

Vn(x, y) = inf
a∈D(x)

∫
Vn−1

(
x′, c(x, a) + y

)
Q
(
dx′|x, a

)
.

Moreover, Vn ∈ C(Ẽ).
c) For every n = 1, . . . , N there exists a minimizer f∗n ∈ F of Vn−1 and (g∗0, . . . , g

∗
N−1) with

g∗n(hn) := f∗N−n
(
xn,

n−1∑
k=0

c(xk, ak)
)
, n = 0, . . . , N − 1

is an optimal policy for problem (3.1). Note that the optimal policy consists of decision
rules which depend on the current state and the accumulated cost so far.

Proof. We will first prove part a) by induction. By definition V0π(x, y) = U(y) and

V1π(x, y) = U
(
c(x, f0(x, y)) + y

)
= (Tf0U)(x, y).
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Now suppose the statement holds for Vn−1π and consider Vnπ. In order to ease notation we
denote for a policy π = (f0, f1, f2, . . .) ∈ ΠM by ~π = (f1, f2, . . .) the shifted policy. Hence

(Tf0 . . . Tfn−1U)(x, y) =

∫
Vn−1~π

(
x′, c(x, f0(x, y)) + y

)
Q(dx′|x, f0(x, y))

=

∫
E~πx′
[
U
( n−2∑
k=0

c(Xk, Ak) + c(x, f0(x, a)) + y
)]
Q(dx′|x, f0(x, a))

= Vnπ(x, y).

Next we prove part b) and c) together. From part a) it follows that for π ∈ ΠM , the value
functions in problem (3.2) indeed coincide with the value functions of the previously defined
MDP. From MDP theory it follows in particular that it is enough to consider Markov policies
ΠM , i.e. Vn = infσ∈Π Vnσ = infπ∈ΠM Vnπ (see e.g. Hinderer (1970) Theorem 18.4). Next

consider functions v ∈ C(Ẽ). We show that Tv ∈ C(Ẽ) and that there exists a minimizer for v.
Statements b) and c) then follow from Theorem 2.3.8 in Bäuerle & Rieder (2011).

Now suppose v ∈ C(Ẽ). Taking into account our standing assumptions (CC) (i),(iv) at the
end of section 2 it obviously follows that (x, y, a, x′) 7→ v

(
x′, c(x, a)+y

)
is lower semicontinuous.

Moreover y 7→ v
(
x′, c(x, a) + y

)
is increasing and continuous. We can now apply Theorem 17.11

in Hinderer (1970) to obtain that (x, y, a) 7→
∫
v(x, y, a, x′)Q(dx′|x, a) is lower semicontinuous.

By Proposition 2.4.3 in Bäuerle & Rieder (2011) it follows that (x, y) 7→ (Tv)(x, y) is lower
semicontinuous and there exists a minimizer of v.

Further it is clear that y 7→
∫
v
(
x′, c(x, a) + y

)
Q(dx′|x, a) is increasing and continuous (by

monotone convergence), i.e. in particular upper semicontinuous. Now since the infimum of
an arbitrary number of upper semicontinuous functions is upper semicontinuous, we obtain
y 7→ (Tv)(x, y) is continuous and also increasing. The inequality (Tv)(x, y) ≥ U(y) follows
directly. �

The last theorem shows that the optimal policy of (3.1) can be found in the smaller set ΠM

which makes the problem computationally tractable.
In the special case U(y) = 1

γ e
γy with γ 6= 0 the iteration simplifies and the second component

can be skipped.

Corollary 3.2 (Exponential Utility). In case U(y) = 1
γ e

γy with γ 6= 0, we obtain

a) Vn(x, y) = eγyhn(x), n = 0, . . . , N and JN (x) = hN (x).
b) The functions hn from part a) are given by h0 = 1

γ and

hn(x) = inf
a∈D(x)

{
eγc(x,a)

∫
hn−1(x′)Q(dx′|x, a)

}
.

Proof. We prove the statements a) and b) by induction. For n = 0 we obtain V0(x, y) = 1
γ e

γy =

eγy · 1
γ , hence h0 ≡ 1

γ . Now suppose part a) is true for n − 1. From the Bellman equation

(Theorem 3.1 b)) we obtain:

Vn(x, y) = inf
a∈D(x)

∫
Vn−1

(
x′, c(x, a) + y

)
Q
(
dx′|x, a

)
= inf

a∈D(x)

∫
eγ(y+c(x,a))hn−1(x′)Q

(
dx′|x, a

)
= eγy inf

a∈D(x)

{
eγc(x,a)

∫
hn−1(x′)Q

(
dx′|x, a

)}
.

Hence the statement follows by setting hn(x) = infa∈D(x)

{
eγc(x,a)

∫
hn−1(x′)Q(dx′|x, a)

}
. �
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Remark 3.3. Taking the logarithm in the equation of part b) we obtain the maybe more
familiar form

log hn(x) = inf
a∈D(x)

{
γc(x, a) + log

∫
hn−1(x′)Q(dx′|x, a)

}
see e.g. Bielecki et al. (1999).

Remark 3.4. Of course instead of minimizing cost one could also consider the problem of
maximizing reward. Suppose that r : D → [r, r̄] (with 0 < r < r̄) is a one-stage reward function
and the problem is

JN (x) := sup
σ∈Π

Eσx
[
U
(N−1∑
k=0

r(Xk, Ak)
)]
, x ∈ E. (3.4)

It is possible to treat this problem in exactly the same way. The value iteration is given by
V0(x, y) := U(y) and

Vn(x, y) = sup
a∈D(x)

∫
Vn−1

(
x′, r(x, a) + y

)
Q
(
dx′|x, a

)
.

Remark 3.5. It is possible to state similar results for models where the cost does also depend
on the next state, i.e. c = c(Xk, Ak, Xk+1). In particular, the value iteration reads here

Vn(x, y) = inf
a∈D(x)

∫
Vn−1

(
x′, y + c(x, a, x′)

)
Q
(
dx′|x, a

)
.

Note however, that for exponential utility we have to modify the iteration in Corollary 3.2
accordingly.

3.2. Application: Casino Game. In this section, we are going to illustrate the results of the
previous section and the influence of the choice of the function U by means of a simple numerical
example. For the given horizon N ∈ N, we consider N independent identically distributed games.
The probability of winning one game is given by p ∈ (0, 1). We assume that the gambler starts
with initial capital x0 > 0. Further, let Xk−1, k = 1, . . . , N , be the capital of the gambler right
before the k-th game. The final capital is denoted by XN . Before each game, the gambler has
to decide how much capital she wants to bet in the following game in order to maximize her
risk-adjusted profit. The aim is to find

JN (x0) := sup
σ∈Π

Eσx
[
U(XN )

]
, x0 > 0. (3.5)

This is obviously a reward maximization problem, but can be treated by the same means (see
Remark 3.4). As one-stage reward we choose r(Xk, Ak, Xk+1) = Xk+1 − Xk. Note that here
the reward depends on the outcome of the next state (see Remark 3.5). In what follows we will
distinguish between two cases: In the first one we choose U(y) = yγ for γ > 0 and in the second
one U(y) = 1

γ e
γy for γ 6= 0. Let us denote by Z1, . . . , ZN independent and identically distributed

random variables which describe the outcome of the games. More precisely, Zk = 1 if the k-th
game is won and Zk = −1 if the k-th game is lost. Let us denote by QZ the distribution of Z.

Case 1: Let U(y) = yγ with γ > 0. Since the games are independent it is not difficult to
see that in this case we do not need the artificial state variable y or can identify x and y when
we choose x to be the current capital (=accumulated reward). Moreover, it is reasonable to
describe the action in terms of the fraction of money that the gambler bets. Hence E := R+ and
A = [0, 1] where D(x) = A. We obtain Xk+1 = Xk + XkAkZk+1 and hence r(Xk, Ak, Xk+1) =
Xk+1 −Xk = XkAkZk+1. The value iteration is given by

Vn(x) = sup
a∈[0,1]

∫
Vn−1

(
x+ xaz

)
QZ(dz).
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We have to start the iteration with V0(x) := xγ and are interested in obtaining VN (x0). It is
easy to see by induction that Vn(x) = xγdn for some constants dn and all one-stage optimization
problems reduce to

sup
a∈[0,1]

∫
(1 + az)γQZ(dz) = sup

a∈[0,1]

{
p(1 + a)γ + (1− p)(1− a)γ

}
. (3.6)

Hence the optimal fraction to bet does not depend on the time horizon nor on the current cap-
ital. Depending on γ the optimal policy can be discussed explicitly.

Case γ = 1: : This is the risk neutral case. The function in (3.6) reduces to the linear
function 1 + a(2p− 1). Obviously the optimal policy is f∗n(x) = 1 if p > 1

2 and f∗n(x) = 0

if p ≤ 1
2 . If p = 1

2 all policies are optimal.
Case γ > 1: : This is the risk-seeking case. The function which has to be maximized in

(3.6) is convex on [0, 1] hence the maximum points are on the boundary of the interval.
We obtain f∗(x) = 1 if p > 1

2γ and f∗(x) = 0 if p ≤ 1
2γ .

Case γ < 1: : This is the risk-averse case. We can find the maximum point of the function
in (3.6) by inspecting its derivative. We obtain (let us denote ρ = 1−p

p )

f∗(x) =
ρ

1
γ−1 − 1

1 + ρ
1

γ−1

if p > 1
2 and f∗(x) = 0 if p ≤ 1

2 .

An illustration of the optimal policy can be seen in figure 1. There, the optimal fraction of
the wealth which should be bet is plotted for different parameters γ. The red line is γ = 1

2
and belongs to the risk neutral gambler. The green line belongs to γ = 2 and represents a
risk seeking gambler. She will bet all her capital as soon as p > 1

4 . The other three non-linear

curves belong to risk averse gamblers with γ = 2
3 ,

1
2 ,

1
3 respectively. The smaller γ, the lower

the fraction which will be bet. The limiting case γ → 0 corresponds to the logarithmic utility
U(y) = log(y). In this case we have to maximize

sup
a∈[0,1]

{
p log(1 + a) + (1− p) log(1− a)

}
and the optimal policy is given by f∗n(x) = 0 if p ≤ 1

2 and f∗n(x) = 2p− 1 for p > 1
2 .

Case 2: Let U(y) = 1
γ e

γy with γ 6= 0. Here we describe the action in terms of the amount

of money that the gambler bets. Hence E := R+ and A = R+ where D(x) = [0, x]. We obtain
Xk+1 = Xk +AkZk+1. The value iteration is given by

Vn(x) = sup
a∈[0,x]

∫
Vn−1

(
x+ az

)
QZ(dz).

We have to start the iteration with V0(x) := 1
γ e

γx and are interested in obtaining VN (x0). The

solution is more complicated in this case. We distinguish between γ < 0 and γ > 0:

Case γ > 0: : This is the risk-seeking case. It follows from Proposition 2.4.21 in Bäuerle
& Rieder (2011) that the value functions are convex and hence a bang-bang policy is
optimal. We compute the optimal stake f∗1 (x) for one game. It is given by

f∗1 (x) =

{
0 if p ≤ 1−e−γx

eγx−e−γx =: p(x, γ),

x else.

Note that the critical level p(x, γ) has the following properties:

0 ≤ p(x, γ) ≤ 1

2

lim
x→∞

p(x, γ) = 0, and lim
x→0

p(x, γ) =
1

2
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Figure 1. Optimal fractions of wealth to bet in the case of power utility with
different γ.

which means that a gambler with low capital will behave approximately as a risk neutral
gambler and someone with a large capital will stake the complete capital even when the
probability of winning is quite small. Similarly

lim
γ→∞

p(x, γ) = 0, and lim
γ→0

p(x, γ) =
1

2

i.e. if the gambler is more risk-seeking (γ large), she will stake her whole capital even
for small success probabilities. The limiting case γ = 0 corresponds to the risk neutral
gambler. In figure 2 the areas below the lines show the combinations of success probability
and capital where it is optimal to bet nothing, depending on different values of γ. It can
be seen that this area gets smaller for larger γ, i.e. when the gambler is more risk-seeking.

Case γ < 0: : This is the risk-averse case. In order to obtain a simple solution we allow the
gambler to take a credit, i.e. E = R and A = R+, but the stake must be non-negative.
In this setting we obtain an optimal policy where decisions are independent of the time
horizon and given by

f∗n(x) =

{
0 if p ≤ 1

2 ,
− 1

2γ log
(
p/(1− p)

)
else.

The optimal amount to bet for different γ can be seen in figure 3. The smaller γ, the
larger the risk aversion and the smaller the amount to bet.
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Figure 2. Function p(x, γ) for different γ and exponential function.

3.3. Strictly Discounted Problems. Here we consider a finite time horizon and CNβ with

β ∈ (0, 1), i.e.

JN (x) := inf
σ∈Π

Eσx
[
U
(N−1∑
k=0

βkc(Xk, Ak)
)]

= inf
σ∈Π

Eσx
[
U(CNβ )

]
, x ∈ E. (3.7)

The discount factor implies some kind of non-stationarity which makes the problem more diffi-
cult. In what follow we have to introduce another state variable z ∈ (0, 1] which keeps track of

the discounting. We denote now by Ê := E × R+ × (0, 1] the new state space. Decision rules f

are now measurable mappings from Ê to A respecting f(x, y, z) ∈ D(x). Policies are defined in
an obvious way. Let us denote for n = 0, 1, . . . , N

Vnσ(x, y, z) := Eσx
[
U
(
zCnβ + y

)]
, (x, y, z) ∈ Ê, σ ∈ Π,

Vn(x, y, z) := inf
σ∈Π

Vnσ(x, y, z), (x, y, z) ∈ Ê. (3.8)

Obviously we are interested in obtaining VN (x, 0, 1) = JN (x). Let

C(Ê) :=
{
v : Ê → R : v is lower semicontinuous, v(x, ·, ·) is continuous

and increasing for x ∈ E and v(x, y, z) ≥ U(y)
}
.
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Figure 3. Optimal amount to bet in the case of exponential utility for different γ.

We define for v ∈ C(Ê) and decision rule f ∈ F the operators

(Tfv)(x, y, z) =

∫
v
(
x′, zc

(
x, f(x, y, z)

)
+ y, zβ

)
Q
(
dx′|x, f(x, y, z)

)
, (x, y, z) ∈ Ê,

(Tv)(x, y, z) = inf
a∈D(x)

∫
v
(
x′, zc(x, a) + y, zβ

)
Q
(
dx′|x, a

)
, (x, y, z) ∈ Ê. (3.9)

Note that both operators are increasing in the sense that if v, w ∈ C(Ê) with v ≤ w, then
Tfv ≤ Tfw and Tv ≤ Tw.

Then we obtain the main result for discounted problems:

Theorem 3.6. It holds that

a) For a policy π = (f0, f1, f2, . . .) ∈ ΠM we have the following cost iteration:
Vnπ = Tf0 . . . Tfn−1U for n = 1, . . . , N .

b) V0(x, y, z) := U(y) and Vn = TVn−1, i.e.

Vn(x, y, z) = inf
a∈D(x)

∫
Vn−1

(
x′, zc(x, a) + y, zβ

)
Q
(
dx′|x, a

)
, n = 1, . . . , N.

Moreover, Vn ∈ C(Ê).
c) For every n = 1, . . . , N there exists a minimizer f∗n ∈ F of Vn−1 and (g∗0, . . . , g

∗
N−1) with

g∗0(x0) := f∗N (x0, 0, 1),

g∗n(hn) := f∗N−n

(
xn,

n−1∑
k=0

βkc(xk, ak), β
n
)

is an optimal policy for (3.7).

Proof. We prove part a) by induction on n.
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Note that V0π(x, y, z) = U(y) and let π = (f0, f1, f2, . . .) ∈ ΠM . We have

V1π(x, y, z) = U(zc(x, f0(x, y, z)) + y) = (Tf0U)(x, y, z).

Now suppose the statement holds for Vn−1π and consider Vnπ.

(Tf0 . . . Tfn−1U)(x, y, z) =

∫
Vn−1~π

(
x′, zc(x, f0(x, y, z)) + y, zβ

)
Q(dx′|x, f0(x, y, z))

=

∫
E~πx′
[
U
(
zβ

n−2∑
k=0

βkc(Xk, Ak) + zc(x, f0(x, y, z)) + y
)]
Q(dx′|x, f0(x, y, z))

=

∫
E~πx′
[
U
(
z

n−2∑
k=0

βk+1c(Xk, Ak) + zc(x, f0(x, y, z)) + y
)]
Q(dx′|x, f0(x, y, z))

= Eπx
[
U
(
z
n−1∑
k=0

βkc(Xk, Ak) + y
)]

= Vnπ(x, y, z).

The remaining statements follow similarly to the proof of Theorem 3.1. We show that whenever
v ∈ C(Ê) then Tv ∈ C(Ê) and there exists a minimizer for v. The proof is along the same lines
as in Theorem 3.1. For the inequality note that we obtain directly U(y) ≤ (Tv)(x, y, z) and the
statements follows. �

The next corollary can be shown by induction. It states that the value iteration not only
simplifies in the case of an exponential utility, but also in the case of a power or logarithmic
utility. Note that part b) and part a) with γ < 0 do not follow directly from the previous
theorem since U(0+) is not finite. However because c > 0 we can use similar arguments to prove
the statements.

Corollary 3.7. a) In case U(y) = 1
γ y

γ with γ 6= 0, we obtain Vn(x, y, z) = zγdn(x, yz ) and

JN (x) = dN (x, 0). The iteration for the dn(·) simplifies to d0(x, y) = U(y) and

dn(x, y) = βγ inf
a∈D(x)

∫
dn−1

(
x′,

c(x, a) + y

β

)
Q(dx′|x, a).

b) In case U(y) = log(y), we obtain Vn(x, y, z) = log(z) + dn(x, yz ) and JN (x) = dN (x, 0).
The iteration for the dn(·) simplifies to d0(x, y) = U(y) and

dn(x, y) = log(β) + inf
a∈D(x)

∫
dn−1

(
x′,

c(x, a) + y

β

)
Q(dx′|x, a).

c) In case U(y) = 1
γ e

γy with γ 6= 0, we obtain Vn(x, y, z) = eγyhn(x, z) and JN (x) =

hN (x, 1). The iteration for the hn(·) simplifies to h0(x, z) = 1
γ and

hn(x, z) = inf
a∈D(x)

ezγc(x,a)

∫
hn−1(x′, zβ)Q

(
dx′|x, a

)
. (3.10)

Remark 3.8. Note that the iteration in (3.10) already appears in Di Masi & Stettner (1999)
p.68. However, there the authors do not consider a finite horizon problem.

4. Infinite Horizon Discounted Problems

Here we consider an infinite time horizon and C∞β with β ∈ (0, 1), i.e. we are interested in

J∞(x) := inf
σ∈Π

Eσx
[
U
( ∞∑
k=0

βkc(Xk, Ak)
)]

= inf
σ∈Π

Eσx
[
U(C∞β )

]
, x ∈ E. (4.1)

We will consider concave and convex utility functions separately.
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4.1. Concave Utility Function. We first investigate the case of a concave utility function
U : R+ → R. This situation represents a risk seeking decision maker.

In this subsection we use the following notations:

V∞σ(x, y, z) := Eσx
[
U(zC∞β + y)

]
,

V∞(x, y, z) := inf
σ∈Π

V∞σ(x, y, z), (x, y, z) ∈ Ê. (4.2)

We are interested in obtaining V∞(x, 0, 1) = J∞(x). For a stationary policy π = (f, f, . . .) ∈ ΠM

we write V∞π = Vf and denote b̄(y, z) := U(zc̄/(1− β) + y) and b(y, z) := U(zc/(1− β) + y).

Theorem 4.1. The following statements hold true:

a) V∞ is the unique solution of v = Tv in C(Ê) with b(y, z) ≤ v(x, y, z) ≤ b̄(y, z) for T
defined in (3.9). Moreover, TnU ↑ V∞ and Tnb̄ ↓ V∞ for n→∞.

b) There exists a minimizer f∗ of V∞ and (g∗0, g
∗
1, . . .) with

g∗n(hn) = f∗
(
xn,

n−1∑
k=0

βkc(xk, ak), β
n
)

is an optimal policy for (4.1).

Proof. a) We first show that Vn = TnU ↑ V∞ for n → ∞. To this end note that for
U : R+ → R increasing and concave we obtain the inequality

U(y1 + y2) ≤ U(y1) + U ′−(y1)y2, y1, y2 ≥ 0

where U ′− is the left-hand side derivative of U which exists since U in concave. Moreover,

U ′−(y) ≥ 0 and U ′ is decreasing. For (x, y, z) ∈ Ê and σ ∈ Π it holds

Vn(x, y, z) ≤ Vnσ(x, y, z) ≤ V∞σ(x, y, z) = Eσx[U(zC∞β + y)]

= Eσx
[
U
(
zCnβ + y + βnz

∞∑
k=n

βk−nc(Xk, Ak)
)]

≤ Eσx[U(zCnβ + y)] + Eσx[U ′−(zCnβ + y)]βn
zc̄

1− β

≤ Vnσ(x, y, z) + U ′−(zc+ y)βn
zc̄

1− β
= Vnσ(x, y, z) + εn(y, z),

where εn(y, z) := U ′−(zc+ y)βn zc̄
1−β .

Obviously limn→∞ εn(y, z) = 0. Taking the infimum over all policies in the preceding
inequality yields:

Vn(x, y, z) ≤ V∞(x, y, z) ≤ Vn(x, y, z) + εn(y, z).

Letting n→∞ yields Vn = TnU ↑ V∞ for n→∞.
Obviously b ≤ V∞ ≤ b̄. We next show that V∞ = TV∞. Note that Vn ≤ V∞ for all

n. Since T is increasing we have Vn+1 = TVn ≤ TV∞ for all n. Letting n → ∞ implies
V∞ ≤ TV∞. For the reverse inequality recall Vn + εn ≥ V∞. Applying the T -operator
yields Vn+1 + εn+1 ≥ T (Vn + εn) ≥ TV∞ and letting n → ∞ we obtain V∞ ≥ TV∞.
Hence it follows V∞ = TV∞.

Next, we obtain

T b̄(y, z) = inf
a∈D(x)

U
( zβc̄

1− β
+ zc(x, a) + y

)
≤ U

(
z
( βc̄

1− β
+ c̄
)

+ y
)

= U
( zc̄

1− β
+ y
)

= b̄(y, z).
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Analogously Tb ≥ b. Thus we get that Tnb̄ ↓ and Tnb ↑ and the limits exist. Moreover,
we obtain by iteration:

(TnU)(x, y, z) = inf
π∈ΠM

Eπx
[
U
(
z

n−1∑
k=0

βkc(Xk, Ak) + y
)]

(Tnb̄)(x, y, z) = inf
π∈ΠM

Eπx
[
U
( zc̄βn

1− β
+ z

n−1∑
k=0

βkc(Xk, Ak) + y
)]

Using U(y1 + y2)− U(y1) ≤ U ′−(y1)y2 we obtain:

0 ≤ (Tnb̄)(y, z, x)− (Tnb)(x, y, z) ≤ (Tnb̄)(y, z, x)− (TnU)(x, y, z)

≤ sup
π∈Π

Eπx
[
U
( zc̄βn

1− β
+ z

n−1∑
k=0

βkc(Xk, Ak) + y
)
− U

(
z
n−1∑
k=0

βkc(Xk, Ak) + y
)]

≤ εn(y, z)

and the right-hand side converges to zero for n→∞. As a result Tnb̄ ↓ V∞ and Tnb ↑ V∞
for n→∞.

Since Vn is lower semicontinuous, this yields immediately that V∞ is again lower semi-
continuous. Moreover, (y, z) 7→ (Tnb̄)(x, y, z) is upper semicontinuous which yields to-
gether with Tnb̄ ↓ V∞ that (y, z) 7→ V∞(x, y, z) is upper semicontinuous. Altogether

V∞ ∈ C(Ê).

For the uniqueness suppose that v ∈ C(Ê) is another solution of v = Tv with
b ≤ v ≤ b̄. Then Tnb ≤ v ≤ Tnb̄ for all n ∈ N and since the limit n → ∞ of the
right and left-hand side are equal to V∞ the statement follows.

b) The existence of a minimizer follows from (CC) as in the proof of Theorem 3.1. From
our assumption and the fact that V∞(x, y, z) ≥ U(y) we obtain

V∞ = lim
n→∞

Tnf∗V∞ ≥ lim
n→∞

Tnf∗U = lim
n→∞

Vn(f∗,f∗,...) = Vf∗ ≥ V∞

where the last equation follows with dominated convergence. Hence (g∗0, g
∗
1, . . .) is optimal

for (4.1).
�

Obviously it can be shown that for a policy π = (f0, f1, f2, . . .) ∈ ΠM we have the following cost
iteration: V∞π(x, y, z) = limn→∞(Tf0 . . . TfnU)(x, y, z). For a stationary policy (f, f, . . .) ∈ ΠM

the cost iteration reads Vf = TfVf .

Remark 4.2. Consider now the reward maximization problem of Remark 3.4 with discounting
and an infinite time horizon, i.e.

J∞(x) := sup
σ∈Π

Eσx
[
U
( ∞∑
k=0

βkr(Xk, Ak)
)]
, x ∈ E. (4.3)

Define

V∞(x, y, z) := sup
σ∈Π

Eσx
[
U
(
z

∞∑
k=0

βkr(Xk, Ak) + y
)]
, (x, y, z) ∈ Ê.

Using again the fact that Vn is increasing and bounded we obtain that limn→∞ Vn exists. More-
over, we obtain for all σ ∈ Π that V∞σ ≤ Vnσ + εn with the same εn as in Theorem 4.1. This
implies Vn ≤ V∞ ≤ Vn + εn which in turn yields limn→∞ Vn = V∞. The fact that V∞ = TV∞
can be shown as in Theorem 4.1. Also it holds that if f∗ is a maximizer of V∞, then (g∗0, g

∗
1, . . .)

defined in Theorem 4.1, is an optimal policy. This follows since

V∞ = lim
n→∞

Tnf∗V∞ ≤ lim
n→∞

Tnf∗(U + ε0) ≤ lim
n→∞

(Tnf∗U + εn) = Vf∗

which implies the result.
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For computational reasons it is interesting to know that the optimal policy can be found
among stationary policies in ΠM and that the value of the infinite horizon problem can be
approximated arbitrarily close by the ’sandwich method’ TnU ≤ V∞ ≤ Tnb. Moreover, also the
policy improvement works in this setting. This is formulated in the next theorem. For a decision
rule f ∈ F and (x, y, z) ∈ Ê denote D(x, y, z, f) := {a ∈ D(x) : LVf (x, y, z, a) < Vf (x, y, z)}.

Theorem 4.3 (Policy improvement). Suppose f ∈ F is an arbitrary decision rule.

a) Define a decision rule h ∈ F by h(·) ∈ D(·, f) if the set D(·, f) is not empty and by
h = f else. Then Vh ≤ Vf and the improvement is strict in states with D(·, f) 6= ∅.

b) If D(·, f) = ∅ for all states, then Vf = V∞ and f defines an optimal policy as in Theorem
4.1.

c) Suppose fk+1 is a minimizer of Vfk for k ∈ N0 where f0 = f . Then Vfk+1
≤ Vfk and

limk→∞ Vfk = V∞.

Proof. a) By definition of h we obtain ThVf (x, y, z) < Vf (x, y, z) in those states where
D(x, y, z, f) 6= ∅, else we have ThVf (x, y, z) = Vf (x, y, z). Thus, by induction we obtain

Vf ≥ ThVf ≥ Tnh Vf ≥ Tnh U.

Since the right hand side converges to Vh, the statement follows. Note that the first
inequality is strict for states with D(x, y, z, f) 6= ∅.

b) Our assumption implies that TVf ≥ Vf . Since we always have TVf ≤ TfVf = Vf we
obtain TVf = Vf . Moreover V∞ ≤ Vf ≤ b which implies that Vf = V∞ since Tnb ↓ V∞
for n→∞.

c) Since by construction the sequence (Vfk) is decreasing we obtain limk→∞ Vfk =: V exists
and V ≥ V∞. We show now that limk→∞ TVfk = TV . Since Vfk ≥ V it follows
immediately that limk→∞ TVfk ≥ TV . Now for the reverse inequality note that TVfk ≤
LVfk(·, a) for all admissible actions a. Taking the limit k →∞ on both sides yields with
monotone convergence that limk→∞ TVfk ≤ LV (·, a) for all admissible actions a. Taking
the infimum over all admissible a yields limk→∞ TVfk ≤ TV . Next by construction of
the sequence (fk) we obtain

Vfk+1
= Tfk+1

Vfk+1
≤ Tfk+1

Vfk = TVfk ≤ Vfk .

Taking the limit k →∞ on both sides and applying our previous findings yields V = TV .
Since V ≤ b we obtain V ≤ Tnb and with n→∞: V ≤ V∞. Altogether we have V = V∞
and the statement is shown.

�

4.2. Convex Utility Function. Here we consider the problem with convex utility U . This
situation represents a risk averse decision maker. The value functions Vnσ, Vn, V∞σ, V∞ are
defined as in the previous section.

Theorem 4.4. Theorem 4.1 also holds for convex U .

Proof. The proof follows along the same lines as in Theorem 4.1. The only difference is that we
have to use another inequality: Note that for U : R+ → R increasing and convex we obtain the
inequality

U(y1 + y2) ≤ U(y1) + U ′+(y1 + y2)y2, y1, y2 ≥ 0
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where U ′+ is the right-hand side derivative of U which exists since U in convex. Moreover,

U ′+(y) ≥ 0 and U ′ is increasing. Thus, we obtain for (x, y, z) ∈ Ê and σ ∈ Π:

Vn(x, y, z) ≤ Vnσ(x, y, z) ≤ V∞σ(x, y, z) = Eσx[U(zC∞β + y)]

= Eσx
[
U
(
zCnβ + y + z

∞∑
k=n

βkc(Xk, Ak)
)]

≤ Eσx[U(zCnβ + y)] + Eσx
[
U ′+
(
zC∞β + y

)
z
∞∑
k=n

βkc(Xk, Ak)
]

≤ Eσx[U(zCnβ + y)] + U ′+

( zc̄

1− β
+ y
) zc̄βn

1− β
Note that the last inequality follows from the fact that c is bounded from above by c̄. Now

denote δn(y, z) := U ′+

(
zc̄

1−β + y
)
zc̄βn

1−β . Obviously limn→∞ δn(y, z) = 0. Taking the infimum over

all policies in the above inequality yields:

Vn(x, y, z) ≤ V∞(x, y, z) ≤ Vn(x, y, z) + δn(y, z).

Letting n→∞ yields TnU → V∞.
Further we have to use the inequality

0 ≤ (Tnb̄)(y, z, x)− (Tnb)(x, y, z) ≤ (Tnb̄)(x, y, z)− (TnU)(x, y, z)

≤ sup
π∈Π

Eπx
[
U
( zc̄βn

1− β
+ z

n−1∑
k=0

βkc(Xk, Ak) + y
)
− U

(
z

n−1∑
k=0

βkc(Xk, Ak) + y
)]

≤ U ′+

( zc̄

1− β
+ y
) zc̄βn

1− β
= δn(y, z)

and the right-hand side converges to zero for n→∞. �

The policy improvement for convex utility functions works in exactly the same way as for the
concave case and we do not repeat it here.

From Theorem 4.1 and Theorem 4.4 we obtain (again part b) and part a) with γ < 0 can be
shown by similar arguments):

Corollary 4.5. a) In case U(y) = 1
γ y

γ with γ 6= 0, we obtain V∞(x, y, z) = zγd∞(x, yz ) and

J∞(x) = d∞(x, 0). The function d∞(·) is the unique fixed point of

d∞(x, y) = βγ inf
a∈D(x)

∫
d∞

(
x′,

c(x, a) + y

β

)
Q(dx′|x, a)

with U( c
1−β + y) ≤ d∞(x, y) ≤ U( c̄

1−β + y).

b) In case U(y) = log(y), we obtain V∞(x, y, z) = log(z) + d∞(x, yz ) and J∞(x) = d∞(x, 0).
The function d∞(·) is the unique fixed point of

d∞(x, y) = log(β) + inf
a∈D(x)

∫
d∞

(
x′,

c(x, a) + y

β

)
Q(dx′|x, a)

with U( c
1−β + y) ≤ d∞(x, y) ≤ U( c̄

1−β + y).

c) In case U(y) = 1
γ e

γy with γ 6= 0, we obtain V∞(x, y, z) = eγyh∞(x, z) and J∞(x) =

h∞(x, 1). The function h∞(·) is the unique fixed point of

h∞(x, z) = inf
a∈D(x)

ezγc(x,a)

∫
h∞(x′, zβ)Q

(
dx′|x, a

)
with U( zc

1−β ) ≤ h∞(x, z) ≤ U( zc̄
1−β ).
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5. Risk-sensitive Average Cost

Let us now consider the case of average cost, i.e. for σ ∈ Π consider

Jσ(x) := lim sup
n→∞

1

n
U−1

(
Eσx
[
U
( n−1∑
k=0

c(Xk, Ak)
)])

, x ∈ E

J(x) = inf
σ∈Π

Jσ(x), x ∈ E. (5.1)

Note that we have Jπ(x) ∈ [c, c̄] for all x ∈ E.

5.1. Power Utility Function. In the case of a positive homogeneous utility function U(y) = yγ

with γ > 0 we obtain:

Jσ(x) = lim sup
n→∞

1

n
U−1

(
Eσx
[
U(Cn)

])
= lim sup

n→∞
U−1

(
Eσx
[
U
(Cn
n

)])
.

Hence we obtain the following result:

Theorem 5.1. Suppose that π = (f, f, . . .) ∈ ΠM is a stationary policy such that the corre-
sponding controlled Markov chain (Xn) is positive Harris recurrent. Then Jπ(x) exists and is
independent of x ∈ E and γ. In particular, it coincides with the average cost of a risk neutral
decision maker.

Proof. Theorem 17.0.1 in Meyn & Tweedie (2009) implies that

lim
n→∞

Cn

n
=

∫
c(x, f(x))µf (dx) Pπ −a.s.

where µf is the invariant distribution of (Xn) under Pπ. By dominated convergence and since
U is increasing, we obtain

U−1
(
Eπx
[
U
(

lim
n→∞

Cn

n

)])
= lim

n→∞
U−1

(
Eπx
[
U
(Cn
n

)])
= Jπ(x).

Note in particular, the limit is a real number and we can skip the expectation on the left hand
side which yields the result. �

In the following theorem we assume that the MDP is positive Harris recurrent, i.e. for every
stationary policy the corresponding state process is positive Harris recurrent.

Theorem 5.2. Let γ ≥ 1 and suppose that the MDP is positive Harris recurrent. Let π∗ =
(f∗, f∗; . . .) be an optimal stationary policy for the risk neutral average cost problem. Then π∗

is optimal for problem (5.1). Note that the optimal policy does not depend on γ.

Proof. Suppose π∗ = (f∗, f∗; . . .) is an optimal policy for the risk neutral expected average cost
problem and let

g := lim
n→∞

Eπ
∗
x

[Cn
n

]
=

∫
c(x, f∗(x))µ∗(dx)

where µ∗ is the invariant distribution of (Xn) under Pπ∗ . For an arbitrary policy σ ∈ Π we
obtain with the Jensen inequality and the convexity of U :

Jπ∗(x) = g ≤ lim sup
n→∞

Eσx
[Cn
n

]
≤ lim sup

n→∞
U−1

(
Eσx
[
U
(Cn
n

)])
= Jσ(x)

which implies the statement. �

For the following corollary we assume that state and action space are finite and that the MDP
is unichain, i.e. for every stationary policy the corresponding state process consists of exactly
one class of recurrent states and additionally of a class of transient states which could be empty.

Corollary 5.3. Let γ ≥ 1 and E and A be finite and suppose the MDP is unichain. Then there
exists an optimal stationary policy for (5.1) which is independent of γ.
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Proof. Note that under these conditions it is a classical result (see e.g. Sennott (1999), Chapter
6.2) that there exists an optimal stationary policy for the risk-neutral decision maker. �

Finally we obtain the following connection to the discounted problem.

Theorem 5.4. Let π ∈ ΠM and suppose that gπ := limn→∞
Cn

n exists Pπ-a.s. Then it holds

gπ = Jπ(x) = lim
n→∞

1

n
U−1

(
Eπx
[
U(Cn)

])
= lim

β↑1
(1− β)U−1

(
Eπx U

(
C∞β

))
Proof. From a well-known Tauberian theorem (see e.g. Sennott (1999) Theorem A.4.2) we obtain

lim
n→∞

1

n
Cn ≤ lim inf

β↑1
(1− β)C∞β ≤ lim sup

β↑1
(1− β)C∞β ≤ lim

n→∞

1

n
Cn

Pπ-a.s. and hence gπ = limβ↑1(1 − β)C∞β Pπ-a.s. Because of the fact that U is increasing and
continuous we obtain

lim
n→∞

U
(Cn
n

)
≤ lim inf

β↑1
(1− β)γU

(
C∞β

)
≤ lim sup

β↑1
(1− β)γU

(
C∞β

)
≤ lim

n→∞
U
(Cn
n

)
.

Dominated convergence and the Lemma of Fatou yields:

lim
n→∞

Eπx U
(Cn
n

)
≤ Eπx

[
lim inf
β↑1

(1− β)γU
(
C∞β

)]
≤ lim inf

β↑1
(1− β)γ Eπx U

(
C∞β

)
≤ lim sup

β↑1
(1− β)γ Eπx U

(
C∞β

)
≤ Eπx

[
lim sup
β↑1

(1− β)γU
(
C∞β

)]
≤ lim

n→∞
Eπx U

(Cn
n

)
which implies the statement. �

Obviously Theorem 5.4 shows that the so-called vanishing discount approach works in this
setting in contrast to the classical risk sensitive case.

5.2. Relation to risk measures. Another reasonable optimization problem would be to con-
sider lim supn→∞

1
nρ(Cn) for a risk measure ρ. In case ρ is homogeneous, i.e. ρ(αX) = αρ(X)

for all α ≥ 0 and continuous, i.e. limn→∞ ρ(Xn) = ρ(X) for all bounded sequences Xn → X
we obtain in the case of Harris recurrent Markov chain (Xn) under a stationary policy π =
(f, f, . . .) ∈ ΠM that

lim
n→∞

1

n
ρ
( n−1∑
k=0

c(Xk, f(Xk))
)

= lim
n→∞

ρ
( 1

n
Cnf
)

= ρ
(

lim
n→∞

1

n
Cnf
)

= ρ
( ∫

c(x, f(x))µf (dx)
)

= ρ(1)

∫
c(x, f(x))µf (dx).

Thus, when we minimize over all stationary policies, the minimal average cost does not depend
on the precise risk measure and coincides with the value in the risk neutral case (if ρ(1) = 1).

Note that a certainty equivalent is in general not a convex risk measure (see e.g. Müller (2007),
Ben-Tal & Teboulle (2007)), the only exception is the classical risk sensitive case with U(y) =
1
γ exp(γy), however both share a certain kind of representation. The problem of minimizing the

Average-Value-at-Risk of the average cost has been investigated in Ott (2010).
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