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Abstract. Data-flow errors in BPMN 2.0 process models, such as miss-
ing or unused data, lead to undesired process executions. The BPMN
2.0 execution semantics and certain features of the data make it difficult
to detect data-flow errors. In particular, BPMN 2.0 allows to specify al-
ternatives for data as well as optional data. In this paper, we propose
an approach for detecting data-flow errors in BPMN 2.0 process mod-
els. We formalize BPMN process models by mapping them to Petri Nets
and unfolding the execution semantics regarding data. We define a set of
anti-patterns representing data-flow errors of BPMN 2.0 process models.
By employing the anti-patterns, our tool performs model checking for the
unfolded Petri Nets. The evaluation shows that it detects all data-flow
errors identified by hand, and so improves process quality.

1 Introduction

The language BPMN (Business Process Model and Notation), now an ISO stan-
dard, is widely accepted in research and practice. One important trait of BPMN
2.0 is the possibility to specify executable processes. Further, the data aspect of
processes gets more attention with BPMN 2.0 [13]. Process designers can now
model, for example, the data needs and data results of a task. The data needs
describe the data elements a task requires for its execution, data results the ones
available afterwards. This does not only hold for tasks, but - with restrictions -
also for other flow elements, such as events or conditional sequence flows. Finally,
one can specify alternatives for data as well as optional data.

Process designers model the data flow, i.e., how data traverses a process, by
specifying the data needs and data results for individual flow elements. Typically,
a designer starts to define data associations in the graphical process diagram and
then refines the model with non graphical specifications for execution, adding
information such as alternatives for data or the optional use of data. Ideally, a
BPMN 2.0 modelling tool supports these steps.

The problem studied here is to decide whether the data-flow specifications
in executable BPMN process models are correct. In line with other research
[10,16,20], a data flow is correct if there are no anomalies regarding processed
data. Such anomalies occur if data needed by flow elements is not available, if
flow elements do not use data produced before, or if they use data inconsistently.
Data-flow correctness is crucial. To illustrate, a missing data element (e.g., a
non-initialized element) may lead to blocking due to starvation, or to incorrect



gateway decisions [3,16]. In executable BPMN models, specifications for optional
data and alternatives for data can contain errors as well.

Example 1. Think of a process withdrawing money from an ATM with two al-
ternative authentication methods. In this process, a task authentication needs
for its execution either the data elements cash card and PIN, or the elements
cash card and fingerprint. The error missing data occurs if one of the alternative
data sets cannot be available at task execution time.

In consequence, an approach for detecting data-flow errors in BPMN 2.0 process
models has to take alternatives for data and optional data into account. It is
advantageous to check the correctness of a data flow already at design time
(correctness at design). Existing approaches, e.g., Meda et al. [10], Sadiq et
al. [16], Trcka et al. [20], do not take the specifics of BPMN 2.0 into account,
namely the execution semantics when using mandatory and optional data as well
as alternatives for data.

Detecting data-flow errors in executable BPMN gives way to the following
challenges: (1) The BPMN 2.0 specification does not define any formal semantics
regarding the execution of flow elements and their data needs and data results.
Hence, a transformation of BPMN process models into a formal representation
needs to be specified. The transformation has to consider the execution semantics
with respect to data elements. (2) Data-flow errors in executable BPMN may
have to do with the fact that some data elements are optional, whereas others
are mandatory. This leads to additional complexity, compared to the case where
everything is mandatory. The definitions of data-flow errors must take all possible
combinations into account. (3) A task may read or write data elements out of
alternative sets. Detecting errors must take this into account as well. As data
elements may be optional at the same time, things become even more complex.
(4) There is a lack of publicly available process models conform to BPMN 2.0,
which could be used in an evaluation.

This paper proposes an approach to detect data-flow errors in BPMN 2.0
process models. More specifically, we make the following contributions:

Definition of anti-patterns. Starting with classifications of anti-patterns from
the literature [10,19,20], we define a set of data-flow anti-patterns tailored to the
specifics of data in BPMN 2.0. Our anti-patterns describe anomalies of the data
flow. Their definitions consider the execution semantics for data needs and data
results of flow elements. In particular, they allow for combinations of alternatives
for data elements and distinguish between mandatory and optional data.

Transformation. We specify a transformation of process models into unfolded
Petri Nets. The transformation consists of two steps with particular rules. In the
first step, the transformation maps a sequence flow with its flow elements to a
Petri Net. The second step is an unfolding of data needs and data results into
subnets, expressing the execution semantics of flow elements in a formal way.
These Petri Nets do so by taking alternatives for data as well as optionality of
data into account.



Tool support. We have implemented a tool to detect data-flow errors in BPMN
2.0 process models automatically at design time. It realizes the transformation
just mentioned and finds data-flow errors in the Petri Net using a model checker.

Evaluation. We have asked a BPMN expert to develop a set of process mod-
els, which we then have used in our evaluation. Our tool detects all data-flow
errors systematically generated by him as well as errors occurring in another
user experiment.

Using this approach, process designers can now increase the quality of their
models by analyzing the data flow of BPMN 2.0 processes at design time. This
does away costly process executions with errors. Our approach allows to detect
data-flow errors such as missing and redundant optional data.

Report structure: Section 2 analyzes and explains the data perspective and
describes data-flow errors in BPMN 2.0 process models. Section 3 introduces
our approach to check data-flow correctness in executable BPMN process models
and its implementation. We describe the evaluation of our approach in Section 4.
Section 5 discusses Related Work, and Section 6 concludes.

2 Data in BPMN

The BPMN 2.0 standard [13] distinguishes several representations for process
models. They differ regarding expressiveness: The executable subclass contains
the complete execution information. The graphical process diagrams in turn
cover only a subset of this. Data elements play different roles in these represen-
tations: Data associations to flow elements in graphical process diagrams mean
potential data needs and potential data results of flow objects. The specifications
for mandatory data, alternatives for data, and optional data in the executable
sub-class give precise information on data needs and data results. So-called In-

putSets and OutputSets, containing DataInputs and DataOutputs, represent
this information, which is not visible in the graphical process diagram.

This design decision of the BPMN 2.0 standard leads on one hand to simple
understandable process diagrams for analysts, on the other hand the process di-
agrams hide information affecting the execution semantics. From the perspective
of data-flow correctness, graphical process diagrams are ambiguous.

In the following, we first describe concepts for specifying process diagrams
with data graphically and give an example of a BPMN 2.0 process diagram with
different data-flow errors. Then we analyze the execution semantics of process
flow elements handling data. In the following, we will use the term BPMN instead
of BPMN 2.0 if it is unambiguous.

2.1 Data in Graphical Process Diagrams

The BPMN standard [13] provides graphical notations for modeling flow ele-
ments in process diagrams. The most important concepts regarding data flow
in process diagrams are DataObjects and their DataAssociations to the flow
elements task and event. A DataObject, visualized as document, can be a single



instance or a collection of data elements of the same type, i.e., a DataObject

Collection. Process designers can define potential data needs and data results
by modeling DataAssociations to or from DataObjects, visualized as dotted
lines. They mean potential reads or writes on the DataObjects. All data specifi-
cations together determine the graphically visible data flow of a process. BPMN
describes DataObjects local to the process, so a DataObject does not require
an explicit deletion. DataStores, DataInput and DataOutput of processes allow
to specify data exchange between databases and processes, thus they do not
affect the data flow within the process. Sub-processes may have their own lo-
cal DataObjects, being accessible only within the sub-process. While tasks can
have DataAssociations to and from DataObjects, events have either Data-

Associations to or DataAssociations from DataObjects, dependent on their
type (catching or throwing).
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Fig. 1: Exam Correction Process Diagram with Data-Flow Errors

Example 2. Figure 1 displays a process diagram for correcting answer sheets of
a written exam. At the beginning, the DataInput Collection Answer sheets
of the process contains a set of answer sheets (i.e., filled out solutions of the
exam). Task Get answer sheet selects one element of a local copy of this col-
lection and writes it to the DataObject Answer sheet. A performer of task
Single Correction marks this Answer sheet using correction guidelines given
in DataObject Answer key. Task Check state of correction reviews whether
all Answer sheets have been corrected or not. The task writes its result in
DataObject State. It records the status of the correction process. Dependent
on this value, the process continues the correction and turns back to the first
gateway (Condition Correction not done), or it terminates (Condition Correc-
tion done). The performer of task Single correction may identify a solution in
an Answer sheet which is not part of the correction guidelines in DataObject

Answer key up to now. In this case, Single correction writes the status Answer
key incomplete to the DataObject State, and the process runs task Complement
answer key later on. Otherwise, the Answer key already contains the necessary
information, and the performer of task Single correction does not need to update
DataObject State. Because of this, DataObject State is optional output of this



task and is written on demand. As the graphical representation does not allow
to model optionality of output, this characteristic is not visible in Figure 1.

The process diagram displayed in Figure 1 contains four data-flow errors, which
we will describe in Section 2.3.

2.2 Data in Executable Processes

To analyze data flow in BPMN process models, one needs to consider the execu-
tion semantics of flow elements handling data. The execution semantics describes
the rules for running a process instance, e.g., the pre- and postconditions holding
for the availability of data for executing flow elements, such as tasks.

To get executable processes, BPMN requires to refine the potential data
needs and data results of a task or event, represented as DataAssociations in the
process diagram, by a more concrete specification [13]. This is important because
there exist several cases of non ambiguous representations in graphical diagrams.
For example, several input or output DataAssociations can mean that a task
reads or writes all data elements, only one of them, or some combination. Further,
process designers can combine specifications for alternatives and optional data.

Example (cont.). In Figure 1, it is unclear whether the data output State of
task Single correction is optional or mandatory.

We now focus on the execution semantics for tasks. The data elements a
task requires for its execution are its data needs. When a task is ready for
execution, the process engine checks the availability of its data needs. The con-
cepts InputSet and OutputSet describe the data needs and data results. Fig-
ure 2 shows an excerpt of our sample process of Figure 1. The boxes display
two expanded tasks Single Correction and Check state of correction, with their
InputSets and OutputSets. Each InputSet consists of references to DataInput,
which are associated with one or more DataObject. In Figure 2, the ovals
with dotted lines represent an InputSet and an OutputSet of a task (the first
ones with small, the latter ones with larger dots), containing DataInputs and
DataOutputs. For the visual representation of DataInputs and DataOutputs of
a task, we have harnessed the visual notation of DataInput (empty arrow) and
DataOutput of processes (filled arrow) and have marked it with ”T”.

An InputSet summarizes data needs of a task t, with a mandatory and an
optional subset. In Figure 2, the parts of the ovals with grey background denote
the optional subset, and those with white background the mandatory subset of
InputSets or OutputSets. An InputSet IS(t) is available if all DataObjects
referred to in the mandatory subset of the InputSet ISM (t) are available.
DataObjects referred to in the optional subset of the InputSet ISO(t) do not
affect its availability. The converse concept to data needs is data results. They
are the output of a task resulting from its execution. Analogously to the Input-

Sets, OutputSets may have mandatory OSM (t) and optional subsets OSO(t).
In Figure 2, do 1 is mandatory (white), and do 2 is optional (grey).

A task may have several InputSets, representing alternative data needs. If
so, the process engine takes the first available InputSet to execute the task
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Fig. 2: Data Specifications for two Executable Tasks

according to the order of specification. In other words, at least one InputSet

has to be available for execution. Analogously to the InputSets, a task may have
several OutputSets. When a task terminates, the process uses one OutputSet

for further execution.
A task is the only flow element which may have both data needs and data

results. With respect to events, throwing events may have data needs, and catch-
ing events may have data results. The execution semantics of events is slightly
simpler than the one of tasks, due to the restriction to only one InputSet and
one OutputSet. Conditional sequence flows can have data-dependent conditions,
which are comparable to data needs of tasks and events.

2.3 Data-Flow Errors in BPMN 2.0

A common understanding is that a data flow of a process is correct if there are
no anomalies regarding data processed [19]. To capture these anomalies, existing
approaches [10,19,20] specify a set of data-flow errors for any data element of a
process: missing data, redundant data, lost data, inconsistent data, and wrongly
or not destroyed data. A missing data error occurs if a task needs a DataObject,
but it is not available, because it has not been initialized yet. A redundant data
error holds if a task writes a DataObject which is not read by any task in
the subsequent process execution. A lost data error happens if a task writes a
DataObject, and no upcoming task reads it until another task overwrites it. An
inconsistent data error occurs if one task writes a DataObject and another task
reads or writes it in parallel. BPMN does not foresee the possibility to delete
DataObjects explicitly, so wrongly or not destroyed data is not relevant in our
context. [20] further differentiate between weak and strong variants of redundant
and lost data. In other words, it may be some or all execution paths containing
the error. Regarding the data aspects of BPMN, these general classifications of
errors are relevant as well. However, those publications do not cover the specifics
of optionality of data as well as of alternatives for data in BPMN.

Optionality of data. In BPMN a task reads or writes a DataObject mandato-
rily or optionally. This affects the data flow and its correctness. For example,



optional DataInputs and optional DataOutputs can cause lost data, but with
partly different effects as in the mandatory case. An optional lost data error
occurs if a task writes a DataObject optionally or mandatorily but it is not read
by any task before it is optionally overwritten. This may be problematic, but
does not have to be, in contrast to the mandatory case. Furthermore, optional
outputs are not sufficient to avoid a missing data error.

Example 3. Our example in Figure 1 contains four data-flow errors: (1 & 2)
two Missing Data errors, (3) Weakly Lost Data, (4) Strongly Redundant Data.
(1) In the first run of Single correction, Answer key is uninitialized. (2) Task
Single Correction initializes State only optionally, but Check state of correction
needs it mandatorily. (3) Weakly Lost Data refers to Answer sheet. In two
execution paths (correction not done, answer key incomplete) there is no task
reading Answer sheet until Single Correction writes it again. (4) There is no
task using Answer sheet that has been updated by Single correction.

Alternatives for data. The data flow of a BPMN process depends on the Input-

Sets and OutputSets chosen during process execution. This asks for analyzing
data flow with respect to these alternatives for data at design time. In each
InputSet the missing data error depends on the alternatives for OutputSets
chosen previously. To detect all potentially incorrect data alternatives, we have
to consider all possible combinations of InputSets and OutputSets for each
DataObject involved. By doing so, we do not have to take the order of Input-
Sets and OutputSets into account.

Our anti-patterns for BPMN processes reflect both alternatives for data as
well as optionality, see Table 1.

3 Detecting Data-Flow Errors

To achieve data-flow correctness in BPMN 2.0 process models, we formalize the
execution semantics regarding data elements in BPMN by using a transforma-
tion algorithm, see Section 3.1. In Section 3.2 we formalize generic data-flow
anti-patterns and say how to generate process-specific anti-patterns for model
checking. The final step is proving the possible existence of data-flow errors
in the process model with model checking; Figure 3 gives an overview of our
approach [14].

Anti-patterns
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I/O places

BPMN 2 Petri Net 
transformationBPMN 2.0 Model 

checking
Correctness
information

Petri
Net

BPMN 2.0 
anti-patterns

Mapping & 
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Fig. 3: Overview of Our Approach on Detecting Data-Flow Errors



Algorithm 1: The BPMN2PetriNet Transformation Algorithm

Algorithm BPMN2PetriNet()

for each flow element fi do
Map(fi) // Step (1)

if fi is a data-dependent flow element then
Unfold(fi) // Step (2)

Procedure Map(Flow element f)
Map f to Petri Net // Step (1a)

Connect f with predecessors & successors // Step (1b)

Procedure Unfold(Flow element f)
if |IS(f)| ≥ 2 ∨ |OS(f)| ≥ 2 then

Unfold InputSets/OutputSets of f // Step (2a)

for each InputSet/OutputSet IOSi(f) do
for each data element dj ∈ IOSi(f) do

Unfold input & output subsets of dj in IOSi(f) // Step (2b)

Record I/O places of dj // Step (2c)

if dj ∈ OM (IOSi(f)) ∧ ∃ pred(dj) then
Generate predicate subnet of dj // Step (2d)

3.1 The BPMN2PetriNets Transformation Algorithm

To analyze process models, many approaches employ Petri Nets to represent the
models; see [22] or Appendix A for the definition. For example, [6] uses Petri Nets
for representing BPMN 1.0 and [7] for BPEL processes; [8] gives an overview. In
a nutshell, we follow the approach in [6] which transforms BPMN 1.0 to Petri
Nets. However, [6] does not capture the data characteristics of BPMN 2.0. [2]
transforms data objects but in BPMN 1.2. Their way to represent data with
Petri Nets including the limited data perspective of BPMN 1.2 is not sufficient
for our purposes, and their proprietary interpretation of the execution semantics
of data objects and related states is not compatible with BPMN 2.0.

Our BPMN2PetriNet algorithm transforms a BPMN process model into a
Petri Net representation in two steps, see Algorithm 1: Step (1) Mapping the
sequence flow to Petri Nets; Step (2) Unfolding the data needs and data results
of mapped flow elements.

Mapping. The procedure Map() in Algorithm 1 starts with Step (1a) mapping
the flow elements, including data elements, to a Petri Net using mapping rules. In
Step (1b) it connects the mapped flow element with its successor and predecessor
flow elements according to the sequence flow.

The mapping rules distinguish between data elements and other flow ele-
ments. To map the sequence flow and data-independent flow elements, e.g., par-
allel gateways, we use an existing BPMN 1.0 to Petri Nets transformation [6],
which requires some preconditions, e.g., for split or join gateways. For all data
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elements and data-dependent flow elements, i.e., tasks, events, and conditional
sequence flows, we need new mapping rules to Petri Net representations. We now
describe the mapping rules for data elements and data-dependent flow elements,
cf. Figure 4:

Data Elements. The mapping rules for data elements are straight-forward
(see Figs. 4a and 4b): The two places p.d id and p.¬d id, with m(p.d id) +
m(p.¬d id) = 1 number of tokens, represent the initialization status of a Data-

Object or a DataInput or DataOutput of a process. We distinguish two cases: A
DataObject or DataOutput of a process is uninitialized, see Fig. 4a. A DataInput

of a process is already initialized, see Fig. 4b.

Tasks. Figure 4c shows the mapping rule for a task. The so-called reading
and writing parts serve as interfaces for the subnets generated in the unfolding
step and represent one ’empty’ InputSet and one ’empty’ OutputSet. But they
do not contain their DataInput and DataOutput elements yet. The unfolding



step will add them to the reading and writing parts. Additionally, the Petri
Net representing a mapped task has two connecting places p.x.t id and p.t id.y
(dashed lines) for connecting the mapped task with its predecessor flow element x
and successor flow element y. Each reading part contains an input place p.I 1.t id
and each writing part an output place p.O 1.t id (filled in grey). The input and
output places, in short I/O places, in the reading and writing parts are essential
for checking the data-flow correctness.

Definition 1 (Input and output places.) An input place p.I i.t id is a pla-
ce of the reading part of the i-th InputSet of a task t id with the following char-
acteristics: If it has a token, all DataInputs of the i-th InputSet have been read
successfully. The firing of transition t.rs i.t id indicates the successful reading.
An output place is the analogous place of a writing part.

Events. Due to the restrictions of data needs and data results of events to at
most one InputSet and one OutputSet, the mapping rules for events are less
complex than those for tasks (see Figure 4d). A mapped throwing event e id has
only a reading part, a mapped catching event has only a writing part.

Conditional sequence flows. Conditional sequence flows determine which ex-
ecution path to take after a data-dependent split gateway g id. We map a data-
dependent gateway with outgoing conditional sequence flows as shown in Figure
4e. A mapped data-dependent split gateway g id consists of one connecting place
p.x.g id to connect the predecessor of g id with n outgoing conditional sequence
flows. Each of these conditional sequence flows are mapped to a reading part
t.cs c, p.I c.g id and t.ce c and a connecting place p.g id.y c to its successor
flow element y c. Each mapped conditional sequence flow is connected to the
mapped gateway, because place p.x.g id is input place of t.cs c.g id. Each of
these transitions t.cs c.g id has an additional input place, a so-called predicate
place p.pred c.d id with

∑n
c=1m(p.pred c.d id) = 1. These predicates reflect, ac-

cording to predicates in [20], the different values a DataObject d id can hold and
determine the execution paths. In the following unfolding step the DataObject

used in this condition is added, according to the rule for a mandatory input
subnet (see Figure 6a).

Unfolding. Procedure Unfold() of Algorithm 1 adds Petri Net representations
of the data needs and data results to an already mapped data-dependent flow
element f . It comprises the following steps: Step (2a): The mapped flow element
contains one reading part or one writing part, representing one InputSet or one
OutputSet. If the mapped flow element f has several InputSets or OutputSets,
we unfold each further InputSet ISi(f) by adding an additional reading part as
alternative path to already existing reading parts, i.e., t.rs i.f id, p.I i.f id and
t.re i.f id. For each further OutputSet OSi(f) we add an additional writing part
as alternative path to already existing writing parts, i.e., t.ws i.f id, p.O i.f id
and t.we i.f id. Figure 5 shows the resulting Petri Net of a task after unfolding a
second InputSet and a second OutputSet. Further InputSets and OutputSets
follow the same scheme.
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By doing so, we represent alternative InputSets and OutputSets of tasks,
leaving aside their ordering. Step (2b): Each InputSet/OutputSet has a manda-
tory and an optional subset of DataInput/DataOutput elements. Figure 6 repre-
sents the subnets for these four different cases (input/output, mandatory/optional)
for unfolding an element of an InputSet/OutputSet IOSi(t id) of a flow element
t id. For each DataObject in an InputSet/OutputSet we add the appropriate
subnet. Next, we connect each unfolded subnet with the reading/writing part of
the flow element mapped illustrated by dashed lines in Fig. 6. Step (2c) records
all I/O places for the DataObject dj , which we use for the following process-
specific anti-pattern formula generation. Regarding Step (2d): If OSi refers the
DataObject mandatorily, and if any condition of a conditional sequence flow
refers the DataObject, we generate a so-called predicate subnet [20]. [20] intro-



duced ’unfolding’ of predicate subnets to express that a DataObject may hold
several values which influence the process execution by data-dependent gateways.

Subnets. Figure 6 summarizes unfolding rules, i.e., the input and output sub-
nets. Our idea behind the subnets is to specify the execution semantics regarding
data in BPMN. E.g., the subnet in Fig. 6d covers all three execution scenarios
of an optional output d id of an OutputSet OS(t id) of a flow element t id: (a)
d id has no value before start of t id, and t id initializes d id, (b) d id has no
value before start of t id and t id does not write to d id, and (c) t id writes d id.
The resulting optional output subnet fires as follows: When p1 gets a token by
transition t.ws j.t id, either p.d id or p.¬d id has a token. With it, the subnet
may fire as follows: t1 fires if places p.¬d id and p1 have a token (Cases (a) and
(b)). As a consequence, either t2 (Case (a)) or t3 (Case (b)) can fire. Otherwise,
the tokens of places p1 and d id enable transition t4 to fire (Case (c)). With p3
the outgoing place of all three ’writing transitions’ t2, t3, and t4, it synchronizes
the execution flow of the three paths.

3.2 Formalization of BPMN 2.0 Data-Flow Anti-Patterns

In this section we formalize the data-flow errors as anti-patterns, which we have
identified as relevant for a BPMN process model, see Section 2.3. The result is a
set of so-called generic anti-patterns that are independent of a concrete process
model. Then, we say how to generate process-specific anti-patterns.

Formalizing Generic Anti-Patterns. The rationale of the formalization is as
follows. BPMN allows to specify the data needs and data results of flow elements.
This results in a data flow from the perspective of an individual DataObject.
Thus, we examine data-flow errors for each DataObject d. To consider alter-
natives of data modelled as several Input- and OutputSets, we analyze the
data flow regarding the combinations of these alternatives. Further, supporting
mandatory or optional use of data gives way to several data-flow errors we de-
fine anti-patterns for. We aim to achieve correctness at design time, however,
the availability of data is only known during execution. This is why we have to
analyze all possible execution variants that contain execution paths determined
by the control flow as well as by the choice of alternative data needs and data
results. These variants are contained in the state space of the unfolded Petri Net
model which we use for error detection.

We illustrate how to formalize the data-flow errors with anti-patterns, using
the example of a Missing Data flow error of a DataObject d. This error occurs if
the process contains a flow element f which needs d mandatorily, and the process
has no flow element f ′ which initializes d mandatorily before the execution of f .
f and f ′ might have several alternative data needs in combination with several
alternative data results. Hence, we consider all possible combinations of input
and output alternatives where d is used to analyze its data flow.

As a basis for our formalization, for each DataObject d we need informa-
tion on where in the process d is processed (as input or output, optionally or
mandatorily). To this end, we now define these sets of BPMN flow elements for a
certain DataObject. We will make use of these sets to specify the anti-patterns.



For the definitions that follow we assume a process model containing a number
of tasks |tasks|, a number of events |events|, and a number of conditional se-
quence flows |conds|, and label f = {tasks} ∪ {events} the set of all tasks and
events of the process model. A task or event fm has a number of InputSets and
OutputSets that we denote with |IS(fm)| and |OS(fm)|. Note that these sets
contain DataObjects as data needs and data results. Further, we assume that
the process model contains conditional sequence flows s and respective conditions
cond(s) with a number of |cond|. A conditional sequence flow has no alterna-
tive data uses, i.e., there is only one InputSet with mandatory data elements for
each cond(s). Let ISO

i (fm) be the optional subset of the i-th InputSet ISi of the
m-th task or event, and OSO

i (fm) the optional subset of the i-th OutputSet OSi

of the m-th task or event; an event has at most one InputSet or one OutputSet.

In the following definition, we summarize all InputSets Set IO(d) resp.
OutputSets Set OO(d) d is an optional element of. Using these sets, IO(d) spec-
ifies if d has been read successfully in one of the InputSets of Set IO(d); cor-
respondingly, OO(d) specifies if d has been written successfully in one of the
OutputSets of Set OO(d).

Definition 2 (Optional InputSets/OutputSets containing DataObject d)

Set IO(d) =
⋃

m∈{1..|f |}

{ISi(fm) : d ∈ ISO
i (fm) | i ∈ {1..|IS(fm)|}}

Set OO(d) =
⋃

m∈{1..|f |}

{OSi(fm) : d ∈ OSO
i (fm) | i ∈ {1..|OS(fm)|}}

read(x) = all DataInputs in InputSet x have been read successfully

written(x) = all DataOutputs in OutputSet x have been written successfully

IO(d) =
∨

x∈Set IO(d)

(
read(x)

)
OO(d) =

∨
x∈Set OO(d)

(
written(x)

)

For the mandatory use of d, we specify IM (d) and OM (d) analogously to
Definition 2. In addition to tasks and events, a conditional sequence flow s can
use a DataObject within a condition cond(s) mandatorily as well. The definitions
of IM (d) and OM (d) are according to the optional case.

In the following definition, we summarize all InputSets Set IM (d) resp.
OutputSets Set OM (d) d is a mandatory element of. Using these sets, IM (d)
specifies if d has been read successfully in one of the InputSets of Set IM (d);
correspondingly, OM (d) specifies if d has been written successfully in one of the
OutputSets of Set OM (d).



Definition 3 (Mandatory InputSets/OutputSets containing DataObject d)

Set IM (d) = {sl : d ∈ cond(sl) | l ∈ {1..|cond|}} ∪( ⋃
m∈{1..|f |}

{ISi(fm) : d ∈ ISM
i (fm) | i ∈ {1..|IS(fm)|}}

)
Set OM (d) =

⋃
m∈{1..|f |}

{OSi(fm) : d ∈ OSM
i (fm) | i ∈ {1..|OS(fm)|}}

read(x) = all DataInputs in InputSet x have been read successfully

written(x) = all DataOutputs in OutputSet x have been written successfully

IM (d) =
∨

x∈Set IM (d)

(
read(x)

)
OM (d) =

∨
x∈Set OM (d)

(
written(x)

)

We now formalize the anti-patterns for BPMN using a temporal logic formal-
ism, namely CTL (Computation Tree Logic). See [5], Appendix A for a descrip-
tion of CTL. [5] introduces an effective algorithm to verify properties specified in
CTL on Petri Net models. To achieve data-flow correctness, our approach aims
to identify errors which occur during reading or writing of a DataObject in the
context of a certain choice of alternatives. Next, the specification of data needs
and results in BPMN allows for optional or mandatory use of data. This gives
way to a distinction between optional and mandatory errors, as described in Sec-
tion 2.3. Further, we differentiate between weak and strong variants of redundant
and lost data, see Section 2.3. The result is a set of generic anti-patterns for a
DataObject d. Table 1 lists our generic anti-patterns tailored to the execution
semantics of BPMN.

Anti-Patterns - DAP Formalization

1 Missing Data E
(
¬OM (d) U IM (d)

)
2 Missing Optional Data E

(
¬(OO(d) ∨OM (d)) U IO(d))

)
3 Strongly Redundant Data EF

(
OM (d) ∧AX(A[¬(IM (d) ∨ IO(d)) U term])

)
4 Weakly Redundant Data EF

(
OM (d) ∧ EX(E[¬(IM (d) ∨ IO(d) U term]

)
5 Redundant Optional Data EF

(
OO(d) ∧ EX(E[¬(IM (d) ∨ IO(d)) U term])

)
6 Strongly Lost Data EF

(
OM (d) ∧AX(A[¬(IM (d) ∨ IO(d)) U OM (d)])

)
7 Weakly Lost Data EF

(
OM (d) ∧ EX

(
E[¬(IM (d) ∨ IO(d)) U OM (d)]

))
8 Lost Optional Data EF

(
OO(d) ∧ EX

(
E[¬(IM (d) ∨ IO(d)) U OM (d)]

))
9 Optional Lost Data EF

((
OM (d) ∧ EX(E[¬(IM (d) ∨ IO(d)) U OO(d)]

)
∨
(
OO(d) ∧ EX(E[¬(IM (d) ∨ IO(d)) U OO(d)]

))
10 Inconsistent Data

∨
f∈{E∪T}:d∈OS(f) EF

[
exec(f)∧

∨
f ′ 6=f :d∈OS(f) exec(f

′)
]

Legend (for CTL formulas):
A path operator (A or E) occurs together with a state operator (X, F, U).
A/E: the formula needs to hold in all/at least one of the succeeding execution paths,
X/F: the formula holds in the next/at least in one succeeding state,
[φ1 U φ2]: φ1 holds until φ2 is reached.

Table 1: BPMN 2.0 Generic Anti-Patterns for a DataObject d



In the following, we describe our formalized anti-patterns.

DAP 1: Missing Data occurs if a DataObject d is mandatory input IM (d),
but not a mandatory output OM (d) before, i.e., d is not initialized.

DAP 2: Missing Optional Data means that a DataObject d is optional input
IO(d), and d is not initialized before by a mandatory output OM (d) or by an
optional output OO(d).

DAP 3: Strongly Redundant Data is given if a DataObject d is a mandatory
output OM (d), but no flow element uses this DataObject as mandatory input
IM (d) or as an optional input IO(d) in all following execution paths.

DAP 4: Weakly Redundant Data happens if there exist at least one execution
path of the process, in which a DataObject d is neither a mandatory input IM (d)
nor an optional input IO(d), but DataObject d is a mandatory output OM (d)
before.

DAP 5: Redundant Optional Data holds for a DataObject d, if an optional
output OO(d) is not used in the future, namely DataObject d is no mandatory
input IM (d) or optional input IO(d) in one of the succeeding execution paths.

DAP 6: Strongly Lost Data occurs if a DataObject d is several times manda-
tory output OM (d), but before the later mandatory outputs happen, there is no
mandatory input IM (d) in between. This situation holds for all execution paths
and means that earlier data results (e.g., initializations, updates) for d get lost.

DAP 7: Weakly Lost Data means that a DataObject d is mandatory output
OM (d), and there exists at least one execution path where it is mandatory output
OM (d), but not mandatory input IM (d) before.

DAP 8: Optional DataOutput does not lead to an error in every case. Lost
Optional Data are DataObjects d which are optional (OO(d)) or mandatory
output (OM (d)). However, no upcoming flow elements exist that read d (IM (d)∨
IO(d)) until a flow element again writes d optionally, i.e., U OO(d).

DAP 9: Optionally Lost Data includes all DataObjects d which are manda-
tory (OM (d)) or optional output (OO(d)). Additionally, there is a flow element
that optionally writes d subsequently without a flow element reading d in be-
tween (optionally or mandatorily).

DAP 10: Inconsistent Data Two elements are in conflict if both want to read
d, and one element also writes d, i.e. d belongs to its data results. f must write
d optionally or mandatorily, i.e., f ∈ OO(d) ∪ OM (d). d is inconsistent if two
elements in conflict regarding d can be executed in parallel.

Figure 7 shows process models which illustrate the ten different anti-patterns
of Table 1. The models are small examples for the undesired behavior of data-
flow for each anti-pattern. Some of these models include more than one data-
flow error, e.g., the process model in Figure 7f illustrates strongly lost data but
in addition it includes a strongly redundant data-flow error, because the Data
Object is not read by any task before the process terminates. Furthermore, each
strong data-flow error is also a weak one.

Generating and Checking Process-Specific Anti-Patterns. Using our generic
BPMN data-flow anti-patterns, the Step Anti-patterns formula generation of



our algorithm in Figure 3 delivers process-specific formulas of the generic anti-
patterns for each DataObject. To this end, we use the results of the trans-
formation from BPMN to Petri Nets with its Input and Output Places, see
Definition 1. The generation step of process-specific anti-patterns instantiates
the generic anti-patterns by means of the optional and mandatory usages of a
DataObject d according to Definition 2. To check if d is an optional/mandatory
data input, we have to prove that an IS ∈ Set IO(d)/∈ Set IM (d) is available.
To do so, we have to check if the input place of IS contains a token, see Def-
inition 1. This means that read(IS) (an InputSet of a flow element t id) is
replaced with m(p.I i.t id) = 1. Accordingly for the OutputSets, written(t id)
is replaced using the output place, i.e., with m(p.O i.t id) = 1.

For the final step, we employ a representation of the possible states of the
process model to find the states with errors. A model checker, namely LoLA [17],
analyzes the process-specific formulas of the anti-patterns for each DataObject

on the unfolded Petri Net model in question. If a formula is satisfied, the data-
flow error is detected.

3.3 Tool Support

We have implemented a tool for automatically analyzing data-flow errors in
process models specified with BPMN, see Figure 3. In more detail, it maps all
flow elements of the process model and unfolds the InputSets and OutputSets
applying our transformation rules, see Figure 4 and Figure 6. The current im-
plementation supports one InputSet and one OutputSet of a flow element using
the anti-patterns defined. Then, for each DataObject d of the process model our
algorithm generates process-specific anti-pattern formulas considering the actual
I/O places of d. The transformed process model, i.e., the resulting unfolded Petri
Net, and the process-specific anti-pattern formulas are input to a model check-
ing tool, namely LoLA [17]. LoLA is used to create the state space of the Petri
Net generated and to verify the process-specific anti-patterns formulas for each
DataObject of the process model on this state space.

Our focus is on the data-flow perspective of BPMN; therefore, our tool an-
alyzes all data-flow errors. Checking the control flow, e.g., soundness, is left to
existing tools, e.g., ([22]). Common approaches to check control flow often require
a Petri Net representation of the process, so that a coupling with our approach
is straightforward.

Our evaluation makes use of this tool, see Section 4. The model checking
step has run effectively, i.e., in few seconds, for all process models analyzed.
A problem could arise if the number of states in the state space becomes too
large. This can result from having multiple parallel writings of data objects. For
capturing this problem see [12] for a possible reduction technique of the state
space.



4 Evaluation

The evaluation of our approach consists of several steps from designing a collec-
tion of process models with intensive use of data needs and data results, explicitly
adding data-flow errors into some of the process models to a user experiment for
modeling data in process models given.

Step 1 is auxiliary, to prepare the evaluation of Steps 2 and 3. To eval-
uate process models of realistic complexity, we have faced the problem that
such a set of processes we could use as benchmark was not yet available pub-
licly. To deal with this problem, we asked an expert to design process mod-
els for 11 scenarios [24]. These scenarios use data intensively. Some examples
are adapted from literature, others we have developed ourselves. The scenar-
ios comprise, say, order handling (S1) and job interview (S7) and are available
online, see http://dbis.ipd.kit.edu/2134.php. These process models do not have
any data-flow errors according to our definition. We also checked these process
models (namely the Processes Sx.1 in Table 1) with our data-flow analysis tool,
which confirmed their error-freeness. Sx.n stands for the n-th variant of a pro-
cess model of Scenario x. With our tool we have also successfully analyzed the
motivating example process, see Section 2.1.

In Step 2, our expert has added data-flow errors to some of the error-free
process models. These process models cover all types of data-flow errors (see
S3.2, S5.2, S8.2, S9.2 and S10.2 in Table 1). Our data-flow analysis tool has
correctly detected all of them.

In Step 3, we have run a user experiment to understand the difficulties of
modeling an error-free data flow, and also to obtain process models with data-
flow errors for further evaluation of our tool. We have organized this experiment
as an exercise of a lecture with seven students with knowledge in BPMN model-
ing, including the data aspect. These experienced individuals have started with
two process models given, namely S1.1 and S2.1 (from Step 1 of our evaluation).
We had removed the data elements from the models before. The task has been
to enhance the process models with data needs and results. Modifying them has
also been allowed if necessary. We textually described the use of data, so that
the participants were able to model the data perspective of the processes. We
have obtained several process models for the two scenarios. They differ in the
number of DataObjects and data-dependent flow elements, see Scenarios S1 &
S2 in Table 2. With our tool, we then have checked the models. Our tool has
detected all data-flow errors contained in the models, 40 errors altogether.

Table 2 gives an overview of the results of our evaluation, i.e., detecting data-
flow errors and confirming the correctness of process models without data-flow
errors. Sx.n denotes the n-th process of Scenario x. We list the size of the BPMN
process models analyzed, the size of the Petri Nets generated and the number of
data-flow errors identifed. The number of the BPMN elements determines the
size of the corresponding Petri Net, defined by the number of transitions and
places. The input and output subnets in particular, added in the unfolding step
of our transformation, increase the size of the Petri Net.
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S1.1 6 4 1 2 8 12 62 43 4 1 0 0
S1.2 6 4 1 2 5 10 56 43 1 0 0 0
S1.3 6 4 1 2 3 6 56 41 1 2 0 0
S1.4 6 4 1 2 4 9 54 41 1 1 0 0
S1.5 6 4 1 2 4 11 62 43 2 0 0 0
S1.6 6 4 1 2 4 5 49 40 4 1 0 0
S1.7 6 4 1 2 4 7 58 41 3 4 0 0
S1.8 6 4 1 2 8 16 72 50 0 0 0 0

S2.1 8 2 1 2 10 21 79 55 1 0 0 0
S2.2 8 2 1 2 6 13 71 51 1 0 0 0
S2.3 8 2 1 2 5 12 63 47 1 2 0 0
S2.4 8 2 1 2 4 13 63 51 3 3 0 0
S2.5 8 2 1 2 9 21 84 58 0 0 0 0
S2.6 7 2 1 2 9 14 75 49 2 3 1 0

S3.1 8 2 3 6 5 17 85 74 0 0 0 0
S3.2 8 2 2 4 5 15 80 70 0 2 1 0

S4.1 14 2 0 0 12 24 107 82 0 0 0 0

S5.1 7 2 1 2 5 15 64 52 0 0 0 0
S5.2 7 2 1 2 6 16 64 52 0 0 2 0

S6.1 8 2 2 4 7 17 90 70 0 0 0 0

S7.1 6 2 1 2 5 10 58 33 0 0 0 0

S8.1 13 3 2 5 8 22 110 94 0 0 0 0
S8.2 14 3 2 5 9 16 121 104 1 5 5 2

S9.1 8 2 1 2 3 21 72 58 0 0 0 0
S9.2 8 2 1 2 5 24 79 62 0 2 2 0

S10.1 8 2 2 4 5 12 75 60 0 0 0 0
S10.2 8 2 2 5 6 13 91 81 0 1 0 0

S11.1 19 3 2 5 6 13 91 81 0 0 0 0

Table 2: Evaluation of the Correctness Tool



For one, the experiment of Step 3 (user experiment) shows that our tool has
detected all data-flow errors in the process models created. Further, Missing Data
is a frequent error in process modeling. The numbers of Redundant Data errors
and of Lost Data errors reflect that we count both strong as well as weak variants
of data-flow errors. Inconsistent Data errors occur when different tasks read or
write a DataObject in parallel. This only happens with parallel execution paths.
Only one of our scenarios (S8.2) has this characteristic. All in all, the evaluation
shows that in process modeling all types of data-flow errors are relevant and can
occur, and our tool has detected all of them.

5 Related Work

Behavioural analysis of process models without the data aspect has been studied
extensively, see [9] for an overview. In what follows, we focus on the correctness
of the data flow. [16] is one of the first approaches illustrating the importance
of data-flow correctness in process modeling. The authors have thoroughly ana-
lyzed problems which can occur with a data flow but do not provide a solution
for error detection. [3] defines data-flow errors as patterns, but focuses on vi-
sually specifying compliance rules in order to explain the violations. There, key
requirements are, say, availability of data input and data output of an activity,
and consistent flow of data between activities. We in turn use the patterns to
express the execution semantics of process models with data elements and thus
to analyze the correctness of the data flow. [21] proposes using patterns for the
analysis of general compliance violations. In particular, order and occurrence
patterns support the users when specifying constraints on a process model with
data. However, they do not support BPMN but use BPEL with its specific data
semantics for process modeling.

[20] introduces a method based on CTL* that combines the detection of
control-flow and data-flow errors. They use anti-patterns for missing data, in-
consistent data, redundant data, and lost data for Workflow-Net process models.
In contrast to our approach, they do not cover the BPMN 2.0 semantics of data
during process execution, including the specific ways to use data, i.e., alterna-
tives for data and mandatory as well as optional data. [19] regards data-flow
analysis in processes based on UML activity diagrams. The authors provide sep-
arate procedural correctness proofs for each of the three basic types of data-flow
errors, namely missing data, conflicting data, and redundant data. [10] extends
the results of [19] for UML activity diagrams, by discussing additional data-flow
errors such as inconsistent data. For error detection they also use separate check-
ing procedures for each error type. To do so, they explicitly generate and store
all possible paths of the process model (particularly due to XOR-Nodes). Next,
they do not use a state-based approach to represent the dynamic behaviour of
processes (e.g., with a state space of a Petri Net). Further approaches exist us-
ing UML data-flow analysis on UML activity models, e.g., [18], and [23], with
another focus than ours. [15] deals with data-flow correctness of BPMN 2.0.
They use the work of [19] adding optional reading and writing access. To this



end, they add behavioral profiles consisting of information on conflicts between
a pair of nodes of a process model. In contrast to our method, their modeling of
errors with behavioral profiles handles data separately from the process model
and they do not take alternatives into account.

Considering more intricate dependencies of data objects in data-aware pro-
cess models is subject of further approaches. For instance, some deal with data
dependencies like inclusion, referential dependencies [11], semantically defined
constraints [4] or with information leaks [1]. These approaches focus on depen-
dencies which are not part of the BPMN data perspective and would require to
enhance its specification concepts. In other words, the problem is different from
the one studied here.

6 Conclusions

In this paper, we have proposed a new method for detecting data-flows errors
in BPMN 2.0 process models at design time. This approach takes alternatives
for data as well as optional data into account. An automatic detection scheme
requires a formal representation of the execution semantics of BPMN 2.0 flow
elements with data associations. To achieve this, we have developed transfor-
mation rules and a set of anti-patterns representing data-flow errors in BPMN
2.0 process models. On this basis, we transform data-dependent flow elements
of a process model into unfolded Petri Nets to detect data-flow errors by using
an existing model checker. Experiments with users have shown that our tool
identifies the data-flow errors present.
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A Basic Concepts for Process Analysis

In this appendix, we review fundamental concepts for data-flow analysis in pro-
cesses, namely Petri Nets with its state space formalism and the temporal logic
CTL.

Petri Nets and State Space Formalism. Petri Nets are a representative of
formal graph-based process languages. The definition of a Petri Net used here
is the one from [22]. A Petri Net is a directed bipartite graph with two types of
nodes called places and transitions.

Definition 4 (Petri Net) A Petri Net is a triple (P, T, F ) with P a set of
places, T a set of transitions (P ∩ T = ∅) and F ⊆ (P × T ) ∪ (T × P ) a set of
arcs (flow relation).

p ∈ P is an input place of t ∈ T if (p, t) ∈ F and an output place if (t, p) ∈ F . •t
denotes the set of input places of t and t• the set of output places. A mapping
M : P → N0 maps every p ∈ P to a positive number of tokens, i.e., at any time
a place contains zero or more tokens. The distribution of tokens over places (M)
represents a state of the Petri Net, often referred to as its marking. A transition
t ∈ T is activated in a state M if ∀p ∈ •t : M(p) ≥ 1. A transition t ∈ T in
M can fire, leading to a new state M ′ which reduces the value of M(p) by 1
if p ∈ •t, adds 1 to M(p) if p ∈ t• and does not change otherwise. The set of
reachable states from a start state M0 of a Petri Net build the state space. To
check properties of a BPMN process, we need this state space, for which we use
the Kripke structure [20] of the Petri Net corresponding to the original BPMN
model.

CTL. Computation Tree Logic CTL is a temporal logic formalism often used
to specify properties for model checking. In our case, those properties are data-
flow anti-patterns. E.g., [5] describes CTL and an effective algorithm to verify
properties specified in CTL.

The formal syntax of CTL is as follows:

Definition 5 (Computation Tree Logic) Every atomic proposition ap is a
CTL formula. If φ1 and φ2 are CTL formulas then ¬φ1, φ1∨φ2, φ1∧φ2, AXφ1,
EXφ1, AGφ1, EGφ1, AFφ1, EFφ1, A[φ1 U φ2], E[φ1 U φ2] are CTL formulas.

In our context, ap is a state of a Petri Net which represents the status of a data
element in the BPMN process.

The logical operators always occur in pairs: A path operator (A or E) together
with a state operator (X,G, F or U). A means that the formula needs to hold in
all succeeding execution paths. E means that at least one execution path exists
where the formula holds. X means that the formula holds in the next state,
G means the formula holds in all succeeding states, F means that the formula
holds at least in one succeeding state, [φ1 U φ2] means that φ1 holds until φ2 is
reached.



(a) DAP 1 - Missing Data (b) DAP 2 - Missing Optional Data

(c) DAP 3 - Strongly Redundant Data (d) DAP 4 - Weakly Redundant Data

(e) DAP 5 - Redundant Optional Data (f) DAP 6 - Strongly Lost Data

(g) DAP 7 - Weakly Lost Data (h) DAP 8 - Lost Optional Data

(i) DAP 9 - Optionally Lost Data (j) DAP 10 - Inconsistent Data

Fig. 7: Examples of Process Models Illustrating all Anti-Patterns of Table 1
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