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Abstract—A robust method to estimate tire forces for a
passenger vehicle with the Unscented Kalman Filter (UKF) is
provided. Only standard vehicle sensors were used and no a
priori knowledge of tire and road properties was required. The
estimator uses the bicycle model and a random walk tire force
model. The tire force estimates were compared to a CarSim
reference model for combined slip maneuvers. The results showed
a good overall tracking performance of the estimator. In addition,
the UKF-estimator demonstrated a high convergence rate and
good stability properties. The performed robustness studies
showed that the estimator performs well even in the presence of
disturbances such as changes in tire-road friction. This method
enables a cost-effective and robust implementation for future real
time vehicle applications.

I. INTRODUCTION

A. Motivation

The motion of a vehicle is primarily affected by the friction
forces transmitted from the road through four small contact
areas, the tire footprints. A lot of vehicle control systems rely
on the knowledge of these tire forces such as classical ABS
(Anti-lock Braking System) and ESP (Electronic Stability
Program) systems but also in more recent applications like
collision avoidance systems [1].

Tire forces depend on a lot of different variables such as slip
ratios and normal loads but also on road and tire properties
like the tire-road friction, road profile, tire pressure and wear.
When using physical or empirical tire force models all of these
influences must be known in advance. This requires extensive
testing and calibrating and has to be done for each different
vehicle equipped with a specific set of tires [2, p.40].

On the other hand, tire forces can be measured by using
special tire sensors. This approach requires a complicated
installment and these sensors are not cheap [3, p.1813].

As a consequence a practical solution is necessary which
does not rely on prior knowledge of road and tire properties
and uses cost-effective sensors. Some estimation algorithms
treat road and tires as a black box and do not require any prior
knowledge of these properties [4, p.117]. Nonlinear Kalman
Filters have shown high potential in estimating vehicle states
and tire forces with good accuracy even in the presence of
sensor noise.

An overview of State-of-the-Art methods in estimating tire
forces will be given in the following.

B. State-of-the-Art

RAY developed a method for nonlinear state and per-axle
tire force estimation with a five degree-of-freedom bicycle
model in the estimator and a third order random walk tire force
model using an Extended Kalman Filter (EKF) [4]. This results
in a 17th-order estimation model. It was assumed that the
steering angle at the wheel and the applied braking torque were
known inputs. The measurement vector consisted of yaw rate,
front and rear wheel angular velocities and longitudinal and
lateral accelerations. The tire force estimation results showed
a good accuracy. RAY developed a similar method in [5].
An EKF estimated lateral tire forces per-axle and longitudinal
forces for all four wheels but only during braking.

SAMADI developed a Square-Root EKF using a four wheel
vehicle model with seven degrees-of-freedom and a stochastic
Gauss-Markov tire force model [6]. Inputs were the braking
torques at each wheel, acceleration signals and wheel angular
velocities. Longitudinal forces were estimated per wheel and
lateral forces were estimated per-axle.

BAFFET developed an EKF with a bicycle model and
a Burckhardt/Kiencke adaptive lateral tire force model for
estimating per-axle tire forces [7]. Only commonly available
standard sensors were used and the knowledge of wheel
torques was not necessary. The rear longitudinal force was
neglected. The results showed a good tracking performance of
the EKF compared to simulations from the dynamic simulator
Callas with a Magic Formula tire model. BAFFET developed
a similar method which uses a sliding-mode observer instead
of an EKF. Appropriate observer gains were chosen with the
help of several tests. Chattering effects were avoided by using
a linear function [8]. The tire force estimation results showed
a good estimation accuracy compared to experimental data.

DAKHLALLAH developed an EKF for tire force estimation
at each wheel of a four wheel model with a Dugoff tire force
model [9]. Only commonly available sensors were used. Inputs
to the model were the steering angle signal, all four angular
wheel velocities as well as acceleration signals and yaw rate.
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DOUMIATI developed a method for the estimation of indi-
vidual lateral and per-axle longitudinal tire forces neglecting
rear longitudinal forces [10]. In a first block normal tire
forces were estimated with suspension deflection measure-
ments and acceleration signals. The resulting normal forces
were then used as inputs to the tire force estimator along
with measurements like yaw rate, accelerations, steering angle
and wheel angular velocities. A four wheel vehicle model
was used with a Dugoff tire force model and a relaxation
tire force model for the time derivative of the force. The
estimation process was conducted using an EKF as well as
an Unscented Kalman Filter (UKF). The estimates followed
the experimental data closely. The UKF showed superior
performance compared to the EKF in terms of convergence
rate and tracking performance.

NUTHONG developed an EKF and an UKF including adap-
tive versions for tire force estimation with a stochastic first-
order Gauss-Markov tire force model [11]. The estimation
results were compared to the behavior of a reference vehicle
model with a LuGre friction model whereas this friction
model was validated with the Magic Formula tire model. The
input signals steering angle and torques at each wheel were
assumed to be known. NUTHONG finally validated the tire
force estimates with experimental data and tire force sensors.
His results showed a very good tire force estimation accuracy
especially with the UKF.

C. Contributions of this work

The main contribution of this work is to estimate tire
forces with the UKF with an acceptable accuracy using only
commonly available standard sensors. Most of the researchers
have focussed on tire force estimation with an EKF as stated
in Section I-B. The UKF has a better estimation accuracy at
similar computation times and has therefore been chosen by
the author.

For future implementation in a real vehicle the computation
time plays also an important role. That is why the vehicle
model in the estimator shall have a reduced complexity. The
stochastic tire force model used in this paper has a reduced
complexity and is more efficient in simulation compared to
higher order tire force models chosen in I-B.

In addition, a stochastic tire force model which does not
rely on road or tire properties is chosen in contrast to some of
the analytic tire models in I-B which require tire parameters.

Most of the tire force estimators mentioned in I-B work
only when the vehicle is braking. The approach presented here
works also when the vehicle is accelerating because the engine
torque is measured and a driveline model is used.

Instead of assuming the torque at the wheel to be directly
available, the author not only uses a driveline model for
estimating accelerating forces but also a simple model of the
braking system of the vehicle.

Several studies in I-B compare the tire force estimates to
higher degree-of-freedom reference models. These models still
have serious modeling uncertainties which puts the quality of
reference tire forces into question. The author in this paper

compares the tire force estimation results to a sophisticated
vehicle model from the vehicle dynamics simulator CarSim
which includes also effects such as ABS braking. The resulting
reference tire forces are therefore more realistic.

Sensor noise is added to the virtual measurements and inputs
in order to get more realistic conditions. The scaling of the
sensor noise terms is based on data sheets of commercially
available sensors [12]. Zero-mean, white Gaussian noise is
added to the virtual measurements and inputs.

Finally, the author focusses not only on estimation accuracy
but also on robustness properties of the estimator when the
vehicle is subject to disturbances such as changes in tire-road
friction or a different vehicle mass.

A sophisticated CarSim vehicle model in conjunction with
a Magic Formula Tire Model is introduced in Section II-A
for generating reference tire forces. Section II-B gives an
overview about the estimation process and will show the
inputs, virtual measurements and outputs. The UKF-estimator
model consisting of an bicycle vehicle model and a simple
random walk tire force model is introduced in Section II-C.
The simulation setup is described in Section III-A. Tire force
estimation results are shown for a combined slip maneuver in
Section III-B.

II. TIRE FORCE ESTIMATION METHOD WITH THE UKF

A. Reference Model

The CarSim commercial simulation suite [13] models and
simulates the dynamic behavior of vehicles. There is a big
database available and a lot of different vehicle maneuvers
to choose from. The implemented vehicle models in CarSim
are sophisticated. They include wind and aerodynamic effects,
3D road geometries, nonlinear suspension systems, steering
systems, braking systems with ABS, different powertrains, and
so on. The behavior of these vehicle models will be much
more alike a real vehicle. In this paper a mid-sized sedan was
chosen with a nonlinear Magic Formula tire model, suspension
system, powertrain with automatic transmission and torque
converter, a braking system with ABS and several other
functionalities. The Magic Formula tire model was chosen
because it generates horizontal tire forces with high accuracy
and is efficient in simulation.

B. Estimation Process Overview

The inputs, virtual measurements and outputs for the esti-
mation process of the UKF are shown in Fig. 1. The inputs
to the reference model are the steering wheel angle δ, engine
torque Teng and braking pressures of the brake cylinders at
the front pbrf and rear pbrr. According to the motion of the
reference vehicle some virtual measurements are made. These
include the longitudinal velocity vx, longitudinal acceleration
ax, lateral acceleration ay , yaw rate ψ̇ and the angular wheel
velocities wf at the front and at the rear wr.

A prediction is made based on the dynamic model equations
implemented in the filter (bicycle model and random walk tire
force model). This prediction is then corrected by the innova-
tion available through the virtual measurements. The outputs
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Fig. 1. Estimation process block diagram - Inputs, Virtual Measurements,
Outputs

are the state estimates. The state vector includes longitudinal
and lateral velocities vx and vy, the yaw rate ψ̇, the angular
wheel velocities wf and wr and of course the unknown per-
axle tire forces: namely the longitudinal tire forces at the front
and rear axle Fxf , Fxr and the lateral per-axle forces Fyf , Fyr.
Please note that some vehicle parameters were assumed to be
constant: the vehicle mass mv, the dynamic tire radius r, the
moment of inertia about the yaw axis Iz , the moment of inertia
about the wheel axis Iw and finally the lengths between axles
and center of gravity lf and lr.

C. UKF-Estimator Model

A vehicle model was defined also in the estimator. Due to
reasons of computation time for a future real-time application
of the tire force estimator in a real vehicle and due to reasons
of simplicity a bicycle model was implemented in the esti-
mator. Therefore, only tire forces per axle and not per wheel
were estimated. The bicycle model considers longitudinal (x),
lateral (y) and yaw (ψ) motion neglecting roll while traveling
on a smooth road. The wheels at the front and rear are
lumped together, respectively. The assumption was that only
the front wheel is steerable. Please note that grade resistance
and aerodynamic drag were neglected. The complexity of this
model is low.

Fig. 2 shows the configuration of the bicycle model with
all relevant parameters and states. The dynamic equations are

δ
β
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Ψ
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Fig. 2. Bicycle model with parameters and states

shown in state-space form:
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where wxf , wxr, wyf , wyr are Gaussian white noise terms
which drive the tire force estimation process. Taf , Tar, Tbf ,
Tbr are accelerating and braking torques at the axles. y is the
measurement vector and dt describes a constant time step.

The following gives an overview of the powertrain, braking
and steering system models.

Powertrain
The dynamic equations for the bicycle model require the

torques at the wheel. The engine torque is transmitted via
the transmission to the front axle (front wheel drive). The
following equation shows the simplified model:

Taxle,acc = Teng igear idiff ηdiff ηgear (3)

where Taxle,acc is the accelerating torque at the front axle,
Teng is the engine torque, igear is the actual gear ratio, idiff
is a fixed ratio of the differential, ηdiff is the efficiency of the
differential and ηgear is the efficiency of the actual gear. The
actual gear ratio is selected with the help of a sensor which
gives the actual gear and a look-up table for the gear ratio.

Braking System
The model for the braking system is described as follows:

Taxle,br,f = pbr,f Kbr,f (4)

where Taxle,br,f is the braking torque at the front axle, pbr,f
is the sum of the pressure values of the braking cylinders
at the front wheels and Kbr,f is a braking constant for the



front axle. This constant has the unit Nm/MPa. The braking
constant can be calculated by using the braking piston area,
brake disc radius, friction coefficient of the brake and the
number of friction contacts [14, p. 32]. Similarly, the braking
torque at the rear axle was calculated.

Steering System
For the steering system only a steering ratio was used:

δf = δsw isteer (5)

where δf is the steering angle of the front wheel, δsw is the
steering wheel angle and isteer is the ratio of the steering
system.

Integration scheme
The vehicle model is advanced one step via an explicit Euler

integration scheme:

xk+1 = xk+∆tf(t,xk) (6)

where the next state xk+1 is calculated based on the current
state xk and the vehicle model f(t,xk) using a constant time
step ∆t.

III. SIMULATION RESULTS

A. Setup

The vehicle parameters are shown in Table I.

TABLE I
VEHICLE PARAMETERS

Parameter Value Parameter Value
mv 1530 kg Kbr,f 250 Nm/MPa
ms 1370 kg Kbr,r 100 Nm/MPa
Iz 2315 kg m2 hcg 0.52 m
Iw 4.07 kg m2 lf 1.11 m
r 0.298 m lr 1.67 m
isteer 19.35 i4 1.00

i1 3.538 i5 0.713

i2 2.06 i6 0.582

i3 1.404 idiff 4.1

ms is the sprung mass, i1 to i6 are the gear ratios of the six
speed transmission and Kbr,f , Kbr,r are the braking constants
for the front and rear axle, respectively.

The sampling rate was 100 Hz. The simulation studies have
been performed in MATLAB R2013a 8.1.0.604 (64bit) and
CarSim 8.2.1 on a 2.6 GHz Intel Core i5 with 8 GB 1600
MHz DDR3 and OS X 10.8.5.

Sensor noise can be added to the virtual measurements
and inputs in order to get more realistic conditions. The
scaling of the sensor noise terms was based on data sheets
of commercially available sensors [12]. Zero-mean, white
Gaussian noise was added to the virtual measurements and
inputs as shown in Table II.

The chosen UKF parameters are shown in Table III. α
determines the spread of sigma points around the mean, β

TABLE II
SCALING OF SENSOR NOISE

Sensor Variable Std of noise Sensor Variable Std of noise
ax 0.2266 m/s2 δ 0.0014 rad
ay 0.2266 m/s2 Teng 1 Nm
ψ̇ 0.0035 rad/s pbr 0.05 MPa
wf 0.0834 rad/s vx 0.2528 m/s
wr 0.0834 rad/s

incorporates prior knowledge of the distribution of the state
[15, p. 228f]. Higher-order moments of the sigma points can be
tuned with κ in order to reduce the error in these terms [16, p.
1631]. The author’s experience was that higher values for κ led
to significant improvements in the estimation accuracy when
following the recommendation for α in the range between
10−4 and 1.

TABLE III
UKF PARAMETERS

UKF parameter Value
α 0.5

β 2

κ 100000

The chosen initial covariance, the process noise covariance
and the measurement noise covariance are shown in the
following. For clarity the state and measurement vector
configuration is shown as well.

x=
[
vx vy ψ̇ wf wr Fxf Fxr Fyf Fyr

]T
(7)

P0=



1e+0 0 0 0 0 0 0 0 0
0 1e+3 0 0 0 0 0 0 0
0 0 1e+3 0 0 0 0 0 0
0 0 0 1e+3 0 0 0 0 0
0 0 0 0 1e+3 0 0 0 0
0 0 0 0 0 1e+2 0 0 0
0 0 0 0 0 0 1e+2 0 0
0 0 0 0 0 0 0 1e+3 0
0 0 0 0 0 0 0 0 1e+3


(8)

Rv=



1e-6 0 0 0 0 0 0 0 0
0 1e-8 0 0 0 0 0 0 0
0 0 1e-6 0 0 0 0 0 0
0 0 0 3.2e-1 0 0 0 0 0
0 0 0 0 2.6e-1 0 0 0 0
0 0 0 0 0 5.5e+3 0 0 0
0 0 0 0 0 0 5.5e+3 0 0
0 0 0 0 0 0 0 9e+2 0
0 0 0 0 0 0 0 0 9e+2


(9)



y =
[
vx ax ay ψ̇ wf wr

]T
(10)

Rn=


1e-3 0 0 0 0 0
0 0.0514 0 0 0 0
0 0 0.0514e-1 0 0 0
0 0 0 1.0890e-6 0 0
0 0 0 0 0.0070e-2 0
0 0 0 0 0 0.0070e-2


(11)

B. Results

In the following the reference values are shown in blue
color whereas estimation values are shown in green.

Combined Slip: Double Lane Change with Braking
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Fig. 3. Lateral tire forces Fyf , Fyr , longitudinal tire forces Fxf , Fxr and
other states over time t

Fig. 3 shows that the longitudinal, lateral tire forces and
other states are estimated with high accuracy. The lateral force
at the front axle shows a small phase delay which the author
could not avoid. At t=6.5..8.5s a strong braking maneuver is
applied during cornering. This leads to an estimation error in
the lateral force. This error is not expected to be higher than
shown in the plot because a strong combined slip condition
was simulated. The longitudinal tire forces are estimated

with good accuracy although the braking force estimates at
the rear axle are slightly too high. Please note that the ABS
system is active in the reference model. The longitudinal
tire force estimates show that the UKF-estimator can capture
this effect at least qualitatively although no ABS model was
implemented in the estimator.

Disturbance 1: Changes in Vehicle Mass
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Fig. 4. Lateral tire forces Fyf , Fyr , longitudinal tire forces Fxf , Fxr and
other states over time t for a change in vehicle mass

In the following the vehicle mass in the reference vehicle
model will be increased from 1530kg to 1660kg. That is an
increase of 8.5% in mass. Please note that the vehicle model
mass in the estimator remains unchanged! Fig. 4 shows
that the tracking performance of the UKF regarding tire
forces during a double lane change with braking decreases.
Especially for the lateral tire forces, the estimator tire force
values are mostly below the reference values. This effect
increases if the mass increase is even higher.

Disturbance 2: Sudden Changes in Tire-Road Friction
Sudden changes in tire-road friction are introduced. The

friction coefficient is initially 0.3, jumps to 0.5 at t=5.5s and
to 0.85 at t=8s. Although the estimator has no knowledge of
the tire-road friction available, Fig. 5 shows that the tire force
estimates remain good. This shows how powerful the UKF-
estimator is. Even in the presence of such disturbances in the
form of extreme friction changes the estimation results remain



good. Also other state estimates remain good.
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Fig. 5. Lateral tire forces Fyf , Fyr , longitudinal tire forces Fxf , Fxr and
other states over time t for changes in tire-road friction

Quantitative Tire Force Estimation Error
The normalized error in % can be defined as follows

according to [17, p. 6941]:

ϵF = 100 · |Fukf−Fref |
max(|Fref |)

(12)

where Fukf is the force estimate and Fref is the force
reference value at each time instant. Table IV shows the
quantitative error for the performed combined slip maneuvers
for all three cases. The error expressed in mean and standard
deviation keeps very small.

IV. CONCLUSION

The tire force estimation results with the UKF showed a
good overall accuracy for a combined slip maneuver. The es-
timator is robust against changes in tire-road friction although
no tire or road parameters are included in the estimator model.
For some unknown parameter changes such as an unknown
change in vehicle mass, the estimator leads to higher errors in
tracking performance. Therefore, future works must consider
possible changes of certain vehicle parameters. This can be
achieved with a parameter estimation parallel to the state
estimation process. Finally, the tire force estimator could be
implemented in real time on a test vehicle due to the low
computation times. Therefore, the MATLAB algorithm has to
be converted into C-code.

TABLE IV
QUANTITATIVE TIRE FORCE ESTIMATION ERROR

Case 1 Case 2 Case 3

max
(∣∣Fref

∣∣) Fxf=8200 N
Fxr=4600 N
Fyf=5700 N
Fyr=4700 N

Fxf=8200 N
Fxr=4500 N
Fyf=5600 N
Fyr=4700 N

Fxf=7400 N
Fxr=4800 N
Fyf=3900 N
Fyr=2900 N

mean(ϵF ) Fxf=4.2%
Fxr=4.9%
Fyf=6.5%
Fyr=3.8%

Fxf=4.3%
Fxr=3.2%
Fyf=6.6%
Fyr=4.5%

Fxf=4.3%
Fxr=3.8%
Fyf=6.5%
Fyr=5.8%

Std(ϵF ) Fxf=6.2%
Fxr=5.8%
Fyf=8.8%
Fyr=5.0%

Fxf=6.1%
Fxr=4.1%
Fyf=8.9%
Fyr=5.3%

Fxf=7.0%
Fxr=5.0%
Fyf=10.0%
Fyr=7.9%
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