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Abstract

Nowadays, organizations are facing an increasing need to quickly adapt their business pro-
cesses in order to react flexibly to changing markets and varying demands. This requires a
scalable provisioning and ”de-provisioning” of resources, especially in productive business
environments. For IT resources, the huge interest in cloud computing solutions underscores
this trend. However, for human resources, which are still the core of most organizational
endeavors, traditional modes of operation still prohibit a flexible adaption of workforce
capacity to changing needs. In this context, the notion of cloud labor services is posing a
promising concept for the scalable on-demand and per-request outsourcing of human tasks
to a large group of people. The success of commercial platforms like Amazon Mechanical
Turk demonstrates the potential of the concept. Such platforms act as brokers between
requesters who publish tasks and workers who perform the tasks in return for a monetary
compensation. However, because of limited control over the individual worker contribu-
tions, ensuring an adequate quality of the work results represents a major challenge. This
thesis argues that when leveraging cloud labor services in a business context, it is crucial
to have an efficient and scalable quality management process in place that is capable of
guaranteeing a certain well defined level of result quality. After introducing the general
concept of cloud labor services in detail and providing a comprehensive overview on the
existing quality management approaches, this thesis identifies a lack of approaches that
meet the latter requirements to their full extent. In order to close this gap, an integrated
approach for quality management of cloud labor services is developed, which combines
elements of statistical quality control with a newly developed dynamic voting mechanism.
The approach and a number of variations and extensions are quantitatively evaluated in
a model scenario as well as in three business scenarios. As its primary contribution, this
thesis represents the first application of statistical quality control to cloud labor services.
On top of that, it provides the first comprehensive study on cloud labor services and specif-
ically on quality management for cloud labor services. In doing so, this thesis does not
only contribute to the academic body of knowledge but can also be considered a useful
source for practitioners.
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1. Introduction

Driven by the advancements of information and communication technology and the accel-
eration of communication processes, market conditions and demands are changing more
and more rapidly today. A sudden increase in demand may cause resource shortages lead-
ing to delays and deterioration in quality. In contrast, a sudden collapse in demand may
result in over-capacities that can put the entire business at risk.

As a result, organizations can no longer afford to rely solely on dedicated resources. In-
stead, at least partially, a scalable provisioning and de-provisioning of resources is required.
For IT resources, appropriate mechanisms are provided by cloud computing technology.
However, even if the technological progress has led to a continuous reduction of manual
processes, humans are still at the heart of today’s organizations. For human resources,
current employment models do not support a flexible adaption of workforce capacity to
changing needs. When relying on internal employees, a large workforce has to be hired in
order to cover peak workloads, leading to cost overheads in times of reduced demand.

Cloud labor services are a specific form of crowdsourcing that address this issue by applying
the idea of cloud computing to human workforce. A coordination platform serves as an
interface between requesters who need to get work done and a large crowd of workers
who want to perform work in order to earn money. As it is the case in cloud computing,
the service requester typically only pays for the actual efforts. The work is performed
by a large and potentially distributed crowd of service workers through a Web interface
in form of small, formalized tasks. An early example of such a platform is Amazon’s
Web marketplace Mturk1, on which service requesters can publish open calls for so-called
Human Intelligence Tasks (HITs). Any Internet user who meets certain skill criteria may
act as a service worker and complete tasks in return for a monetary compensation while
Amazon receives a percentage of the service fee for each task.

According to a 2012 study conducted by crowdsourcing.org, the annual growth of the
overall crowdsourcing business accelerated from 50% in 2010 to 75% in 2011, while the
participating companies account for some $375m in revenue2 (Crowdsourcing LLC, 2012).
It can be assumed that a noteworthy portion of this revenue can be attributed to cloud

1 http://www.mturk.com/, last accessed on June 30, 2013.
2All dollar amounts referenced in this thesis represent US dollars.
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4 1. Introduction

labor services.3 Turian (2012) reports that cloud labor services are ”currently deflating
the traditional BPO4 market” which is estimated by IDC to reach $202.6bn in 2016 (In-
ternational Data Corporation, 2013).

On the one hand, the concept is a promising approach for addressing the increasing flexi-
bility needs of today’s businesses, on the other hand it also poses a multitude of social,
legal, technical and economic challenges. A fundamental social question is whether cloud
labor services at all represent a desired work model and whether the concept is capable
of providing a level of payment and job security that is comparable to traditional work
relationships. Legal challenges include contracting and privacy aspects while technical
and economical challenges are related to the overall design and the characteristics of the
marketplace and the interactions between the involved parties. However, as consistently
reported in the above studies, quality management is the by far most pressing challenge
(Crowdsourcing LLC, 2012; Turian, 2012). This thesis will contribute to resolving this
challenge and to removing the key obstacle for the further adoption of cloud labor ser-
vices.

The remainder of this chapter is structured as follows: Section 1.1 describes the problem
being addressed and subsumes it into a research question. Section 1.2 then describes how
the research question was approached before section 1.3 lays out the structure of the thesis.
Finally, section 1.4 summarizes the development of the research work over time and refers
to parts of the work that have been shared and tested with the academic community via
publications, conferences and workshops.

1.1. Problem

Given that there is much less knowledge about and control over the workforce than there
is in traditional work relationships, one of the most obvious challenges of the cloud labor
concept concerns the quality of the work results with regard to the accuracy of the infor-
mation provided by the worker. A manual validation of the work results by the requester
is usually not a good choice, as it would compromise the scalability of the concept, which
is supposed to be its primary advantage. Therefore, many existing quality management
(QM) approaches for cloud labor services are crowd-based themselves, i.e. they outsource
the QM effort back to the crowd by passing redundant tasks to the crowd or by having
other workers validate or refine the original contributions. That way, they sustain the
scalability of the concept, but at the same time, they may become inefficient because nu-
merous workers may need to get involved in order to generate reliable results. A viable
approach for QM of cloud labor should be both scalable and efficient. Moreover, it should
be capable of meeting the specific quality needs of the requester and it should be appli-
cable to a wide range of business scenarios. These considerations lead to the following
research question which concerns the feasibility of designing a QM mechanism for cloud
labor services:

Research question: How can a scalable and efficient quality management mechanism for
cloud labor services be designed in a way that it delivers results with a well defined level of
quality to the requester?

3About 20% of the companies who participated in the study are falling into the category of cloud labor
services.

4Business process outsourcing

4



1.2. Research approach 5

1.2. Research approach

The research question has been addressed in two steps: Starting with an in-depth literature
review, the research field was first analyzed and gaps were identified. In a second step,
an approach was identified for closing the gap and to this end, a novel QM approach
for cloud labor was developed. In order to ensure that the new approach would meet
the requirements of various use cases, those were taken into consideration already while
developing it. The approach as well as variations of it were then assessed in a model
scenario and in a number of case studies.

Crowdsourcing is a highly interdisciplinary research field that is being addressed by a
large number of disciplines including artificial intelligence, computer science, economics,
information systems, behavioral science, sociology, psychology and law. Therefore, the
literature review was not limited to certain conferences and journals, but a generic review
was performed based on relevant keywords and combinations of them.5 Additionally,
the publications of interdisciplinary workshops that specifically focus on crowdsourcing
and human computation have been used as a starting point for a cascading literature
review. An example is the annual Human Computation Workshop (AAAI, 2013). Also,
own workshops have been conducted in 2010, 2012 (Kern et al., 2012c) and 2013 (Cuel
et al., 2013). The literature was narrowed down step by step to the specific concept of cloud
labor services that is being investigated in this thesis. By investigating existing approaches
for QM of such cloud labor services, gaps were identified that served as a starting point
for the actual contribution.

During the analysis of existing QM approaches for cloud labor services, a lack of efficient
and goal-based approaches was identified which led to the formulation of the research
question. For elaborating on the research question, statistical quality control was chosen
as a foundation for developing a set of QM models that build the actual contribution of
this thesis. These models have been evaluated using a model scenario as well as three case
studies which have been performed in cooperation with a number of business partners and
which demonstrated the applicability in industry practice.

The research has been performed in close collaboration with several diploma, master and
bachelor students who have been supervised by the author. Results of the corresponding
diploma, master and bachelor theses have been leveraged in chapters 5 and 8 (Thies, 2010),
sections 6.1 and 9.1 (Wichmann, 2011), sections 6.2 and 9.2 (Bauer, 2010), as well as in
sections 5.6 and 8.2 (Meller, 2012).

1.3. Structure

Figure 1.1 illustrates the structure of the thesis. It consists of four parts: Foundations,
model, evaluation and conclusion.

Part I provides the foundations for the thesis and is organized as follows: This chapter 1
introduces the topic and the objectives of the thesis, defines the research question, describes
the research approach and states what parts of the thesis have already been published at
conferences and in journals. Chapter 2 provides the fundamentals of the concept of cloud
labor services and identifies its characteristics as well as the key challenges that evolve
from it. Chapter 3 investigates the existing approaches for QM of cloud labor services
and identifies its limitations in order to build the rationale for the actual contribution of

5The keywords are crowdsourcing, human computation, quality, and quality management.
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the thesis. Chapter 4 introduces relevant aspects of the field of statistical quality control
(SQC) which are being used as a basis for the QM mechanisms developed in the thesis.

Part I:
Foundations

Part II:
Model

Part III:
Evaluation

Part IV: 
Conclusion

5. Core model for statistical quality 
control of cloud labor services

6. Model variations

1. Introduction

2. Cloud labor services

3. Quality management for cloud labor services

4. Statistical quality control

8. Evaluation of core model 9. Evaluation of model variations

Core model

Model 
scenario: 

OCR

7. Toolkit development

10. Conclusion

Case study: 
Product 
research

Case study: 
Address 
research

Non-
deterministic 

tasks

Multi-
labeling 

scenarios

Case study: 
Medical 
coding

Multi-
labeling 

scenarios

Figure 1.1.: Structure of the thesis.

The model in part II is divided into two chapters: Chapter 5 describes a generic statis-
tical model for managing the accuracy of cloud labor services, which builds the primary
contribution of the thesis. Chapter 6 complements the model development by provid-
ing variations that make it applicable to a broader set of relevant cloud labor scenarios,
specifically multi-labeling scenarios and non-deterministic tasks.

The evaluation in part III consist of three chapters: Chapter 7 describes the architecture
of a generic toolkit providing the foundation for evaluating the new QM mechanisms.6

Chapter 8 then exploits the toolkit to evaluate the core model in a model scenario (optical
character recognition, OCR) as well as in a business scenario (address research). Chapter 9
assesses the model variations in two additional business scenarios. The model for multi-
labeling is applied to a medical coding scenario while the model for non-deterministic tasks
is applied to a product research scenario.

Part IV (chapter 10) finally summarizes the contributions of the thesis and addresses its
limitations as well as managerial implications.

6As suggested by the figure, the toolkit supports the evaluation of the model scenario and the first two case
studies.
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1.4. Research development

The major contributions of this thesis have already been tested and discussed with the aca-
demic community, presented at conferences and workshops and published in the respective
proceedings as well as in academic journals.

General considerations about QM of cloud labor services and respective tools were pre-
sented at various academic workshops, e.g. the 1st International Workshop on Enabling
Service Business Ecosystems at the 9th International Conference on Service Oriented Com-
puting (Kern et al., 2009a), the 18th Annual Frontiers in Service Conference (Kern et al.,
2009b), the 1st Enterprise Crowdsourcing Workshop at the 10th International Conference
on Web Engineering (Kern et al., 2010c) and the 3rd Human Computation Workshop at
the 25th Conference on Artificial Intelligence (Bermbach et al., 2011).

The primary parts of the core SQC model for cloud labor services described in chapter 5,
its evaluation in chapter 8 and its fundamentals in chapter 4 have been published in the
proceedings of the 8th International Conference on Service Oriented Computing (Kern
et al., 2010d), the 19th European Conference on Information Systems (Kern et al., 2011),
as well as in the International Journal of Cooperative Information Systems (Kern et al.,
2012b) and presented at the 19th Annual Frontiers in Service Conference (Kern et al.,
2010a). The model variation for non-deterministic tasks described in chapter 6 and its
evaluation in section 9.2 were presented at the 16th Americas Conference on Information
Systems (Kern et al., 2010e).

Parts of the case study results in section 9.1 were presented at the 16th International
Conference on Information Quality (Wichmann et al., 2011), at the 20th Annual Frontiers
in Service Conference (Satzger et al., 2011b), at two industry fairs, CeBIT 2011 (Kern
et al., 2010b) and IBM IMPACT 2011 (Pfau & Kern, 2011) and at several practitioner
events.
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2. Cloud labor services

Despite all endeavors of rationalizing their business processes, organizations still face many
types of tasks which cannot be fully automated but which require human intelligence or
action to be completed. Cloud labor services provide human workforce on demand as a
scalable service in order to meet the needs of organizations that deal with huge but varying
workloads of such tasks.

After introducing the concept of cloud labor, identifying its characteristics and deducing
key challenges in section 2.1, section 2.2 explores how cloud labor compares to related
concepts. Section 2.3 then raises a series of challenges and general research questions. As
the core contribution of the chapter, sections 2.4 to 2.6 provide an overview of the state
of the art, organized into three perspectives: The perspective of the application benefiting
from the cloud labor service, the perspective of the technical coordination platform and
the perspective of the workforce that is represented by the people performing the actual
work.

2.1. Overview

After putting the concept of cloud labor services into a historical context in section 2.1.1,
section 2.1.2 formally introduces the basic concept of cloud labor in general and of cloud
labor service specifically.

2.1.1. History

Cloud labor can be seen as a new form of outsourcing that has emerged driven by the
advances in information and communication technology. While in general, ”outsourcing is
simply the farming out of services to a third party” (Overby, n.d.), cloud labor ties in with
two trends regarding the granularity of what is being outsourced and whom it is outsourced
to. In its first wave in the late 1980s, the concept of outsourcing was merely applied on
a total business unit level, e.g. when Eastman Kodak outsourced its IT department to
IBM, DEC and others (Hermes & Schwarz, 2005, p. 17). Along with advances in business
process re-engineering and business process management, the granularity of the outsourced
services became finer, which resulted in the concept of business process outsourcing (BPO)
(Hermes & Schwarz, 2005, p. 30–31). Cloud labor services continue this development

9



10 2. Cloud labor services

by further reducing the granularity down to ”microtasks” which represent rather atomic
manual tasks with a typical execution time in the order of minutes.

A parallel development concerns the growing number of outsourcing providers being in-
volved. While traditionally large deals with only a small number of providers were closed,
the development of the Internet and the Web 2.0 era opened the doors for outsourcing
tasks to large groups of individual Internet users rather than to organizations. In his 2006
Wired–article, Howe (2006a) shaped the term crowdsourcing for this phenomenon which
he later defined as the ”act of a company or institution taking a function once performed
by employees and outsourcing it to an undefined (and generally large) network of peo-
ple in the form of an open call” (Howe, 2006b). Kleemann et al. (2008) point out that
crowdsourcing takes place ”over the Internet”.

From a computing perspective, passing work to a crowd of workers has already been a
common approach for dealing with complex and extensive calculations long before the
invention of electronic computers (Grier, 2010). The largest computing office before the
invention of the electronic computer has been the mathematical tables project started
in 1938 in New York with 450 people working on mathematical calculations; the most
renowned legacy of the project is the Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, which was released in 1964 and which quickly became
the ”most widely circulated scientific text ever published” (Grier, 2007, p. 314–317). Origi-
nally, the term computer referred to a human being. In fact, the first automatic computers
had the acronym ”AC” in their names to distinguish them from human computers (Grier,
2010). With the advances in computer technology, more and more tools have been deve-
loped that assisted humans in doing their work, as indicated by the emergence of terms
like computer aided design (CAD) and computer supported cooperative work (CSCW). The
degree of automation has increased step by step to a level where a large portion of business
processes is fully represented and executed electronically. Of course, within those processes
still a great number of tasks are performed by humans; nevertheless, to an ever-growing
extent, the computer is setting the pace. This can be seen as a fundamental shift from
computer assisted humans to human assisted computers.

2.1.2. Concept

Cloud labor is a specific form of crowdsourcing. The industry website Crowdsourcing.org
(2012a) defines cloud labor as the act of ”Leveraging of a distributed virtual labor pool,
available on-demand to fulfill a range of tasks from simple to complex. Crowdsourcing
is used to connect labor demand and supply. Virtual workers perform activities that
range from simple to specialized tasks”. A cloud labor platform is typically implemented
as an electronic marketplace in the Internet or in an Intranet, on which a requester can
submit work requests. Workers can browse work requests and choose according to their
capabilities and interests what they want to work on. Depending on the business model
of the platform, there may be a fixed compensation per task or a prize for submitting the
best response. Commercial examples include MTurk1 and oDesk2.

According to Frei (2009), existing cloud labor platforms can be divided into two categories:
Those that focus on well defined tasks and those that deal with rather complex projects.
For the first category, there is usually a high volume of similar tasks to be performed
that are issued in an automated manner. Because the execution time for those tasks is

1 http://www.mturk.com, last accessed on July 1, 2013.
2 https://www.odesk.com, last accessed on July 1, 2013.
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usually rather short, there is naturally a relatively low payment per task. In the second
category of platforms, requesters typically only submit a small number of similar work
requests using a manual process. Negotiation and task execution usually require a direct
interaction between the requester and the worker. As the execution effort is higher and
often more specific skills are needed, payment per tasks is usually much higher than on
task platforms. There is no agreed terminology yet for the two categories of cloud labor
in the scientific literature. For the tasks, often the term microtask is used which is rather
misleading because they do not necessarily have to be small. The primary difference
between tasks and projects is that tasks are formally described while this is not necessarily
the case for projects. Thus, tasks can be completed by the worker without inquiries to
the requester. Everything that is needed to complete the task is usually clearly stated in
the task description. This thesis proposes the term programmatically managed (or short
programmatic cloud labor) for this type of cloud labor. In contrast, the project type of
cloud labor is called manually managed cloud labor. The terms will be motivated in the
following. Table 2.1 provides an overview of the cloud labor platform landscape.

Table 2.1.: Cloud labor landscape addressing a range from well-defined microtasks to com-
plex projects; based on Frei (2009).

Platform type Platform examples Task examples

Task marketplace with
programmatic interfaces
(programmatically man-
aged cloud labor)

� Amazon Mechanical Turk

� Crowdflower

� Clickworker

� Find email addresses or company web-
sites

� Translate a product description to an-
other language

� Find prices for competitive products

� Choose a category from a new catalog
structure

� Write a product review

� Test this website and provide feedback

� Fill in the missing research citations in
this report

� Build a list of universities conducting
energy research

Project marketplace for
hiring and managing a
virtual workforce (man-
ually managed cloud la-
bor)

� oDesk

� Elance

� TopCoder

� Design a branded website

� Prepare an outline for a conference
presentation

� Contact all confirmed attendees for an
event

� Program a software module

� Design a new edible adhesive

� Develop a new security algorithm

� Develop an eCommerce website

� Inbound/outbound calls (sales, mar-
ket research, support)

The general objective of cloud labor is to deliver scalable workforce to organizations that
have to deal with a huge, but varying workload of manual efforts. However, scalability
is not only a characteristic of the cloud labor platform, but also must be supported by
the requester who must have enough bandwidth in order to publish requests, coordinate

11



12 2. Cloud labor services

work and handle responses quickly enough. On the second category of platforms, on
which projects are manually managed by the requester, the scalability with regard to
the number and complexity of projects that can be handled is limited to the requester’s
bandwidth. From that point of view, the scalability characteristic is more pronounced for
programmatically managed cloud labor, for which such a general limit does not exist.

This thesis focuses on programmatically managed cloud labor. However, to some extent
the considerations can also be applied to manually managed cloud labor. The concept of
programmatically managed cloud labor involves three roles:

1. A requester, ideally represented by an electronic business process that comprises
tasks which either cannot be automated today or for which automation would be
too expensive or too time consuming.

2. A large group of suitable internal or external remote workers (”people cloud”), acting
as a virtual workforce, available to work on the tasks.

3. A web-based coordination platform (cloud labor platform), acting as an interface
between the business process and the workers.

Figure 2.1 illustrates the basic concept of programmatically managed cloud labor. The
service requester can be seen as a customer while the coordination platform is providing
a service by means of the workers. The requester issues tasks as Web service calls via the
coordination platform on which they can be browsed and processed by workers using a
personal computer or mobile device. After completion of the task, the workers pass back
responses, which are consolidated by the platform and finally returned to the requester.
Even though the tasks are issued electronically, the actual work does not have to be
performed with the help of a computer and, therefore, may not only exploit the cognitive or
intellectual capabilities, but also physical capabilities of the worker. For example, a worker
may be asked to check the condition of a specific street lamp that had been reported to be
defective. A cloud labor platform may deliver any type of work or action that humans are
capable to perform. As the platform has only limited control over the remote workers, one

Business process

Platform

Coordinates workRequires human intelligence, 
perception or action

Work on tasks

Crowd workers

Figure 2.1.: Basic concept of programmatically managed cloud labor.

obvious challenge is quality management. From the perspective of the business process,
the cloud labor platform should deliver an automated service for which a well defined
level of quality is guaranteed. It does not have to be visible to the business process that
the service is actually provided by humans. Therefore, programmatically managed cloud
labor provides additional flexibility when designing electronic business processes and they
remove the need for a general distinction between automated and manual steps.

12
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The scalability of cloud labor is enabled by the fact that there is a large group (”crowd”)
of workers available. An open call among the workers is used in order to ensure that new
tasks are being promptly discovered by an adequate number of suitable workers and the
requested responses are delivered in time.

Considering its service characteristic and its scalability, this thesis introduces the term
cloud labor services for the services delivered by programmatically managed cloud labor.
Cloud labor services are defined as ”Web based services that deliver human intelligence,
perception, or action to customers as massively scalable resources”.

Because of the scalability characteristic, programmatically managed cloud labor addition-
ally requires a scalable implementation of the complete task invocation cycle comprising
task submission, worker allocation, progress monitoring, quality control, payment and re-
sult integration. This cycle is indicated by figure 2.2. Scalable basically means that all
the steps either need to be automated or recursively implemented as cloud labor services.
Manual steps performed by employees in a traditional way would compromise the scala-
bility of the whole approach, except if there is a sufficient number of employees available
to handle the steps even in times of high workload.

Task 
submission

Worker 
allocation Payment Result 

integration

Quality 
control

Progress 
monitoring

Figure 2.2.: Invocation cycle of a cloud labor service.

Obviously, there needs to be an incentive for the worker in order to spend time on cloud
labor services. This incentive may be monetary as on existing cloud labor platforms like
MTurk or non-monetary. An example for a non-monetary incentive are games with a
purpose (von Ahn & Dabbish, 2008), in which the tasks are designed as games and the
workers (or players) perform work just for fun.

2.2. Related concepts

This section describes, how the concepts of cloud labor and cloud labor services over-
lap with related concepts, namely crowdsourcing, human computation, social computing,
collective intelligence and also business process management (BPM), service oriented ar-
chitecture (SOA) and cloud computing.

While there is a direct overlap with the scope of crowdsourcing, human computation,
social computing and collective intelligence that is illustrated by figure 2.3, BPM and
SOA complement the concept of cloud labor by providing technical concepts for their
implementation. Cloud computing shares the basic objective of cloud labor to provide
resources as scalable services but focuses on IT resources rather than on human workforce.

13



14 2. Cloud labor services

Human 
Computation

Collective Intelligence

Cloud labor

Crowdsourcing

Social Computing

Figure 2.3.: Overlap of the cloud labor concept with similar concepts; based on Quinn &
Bederson (2011).

2.2.1. Crowdsourcing

As mentioned in section 2.1.1, crowdsourcing is defined as the ”act of a company or insti-
tution taking a function once performed by employees and outsourcing it to an undefined
(and generally large) network of people in the form of an open call” (Howe, 2006b). Cloud
labor represents a specific form of crowdsourcing. Apart from cloud labor, crowdsourc-
ing.org (Crowdsourcing.org, 2012a) segments crowdsourcing into the following concepts:

• Crowd creativity : ”Tapping of creative talent pools to design and develop original
art, media or content. Crowdsourcing is used to tap into online communities of thou-
sands of creatives to develop original products and concepts, including photography,
advertising, film, video production, graphic design, apparel, consumer goods, and
branding concepts”. Prominent examples include 99 designs3, a platform that hosts
public design contests, and Spreadshirt4, a platform for the crowdsourced design of
personalized apparel.

• Crowd knowledge: ”Development of knowledge assets or information resources from
a distributed pool of contributors. Crowdsourcing is used to develop, aggregate,
and share knowledge and information through open Q&A, user-generated knowledge
systems, news, citizen journalism, and forecasting”. This segment covers traditional
crowdsourcing applications like Wikipedia5 and also the concept of ”the wisdom
of crowds” introduced by Surowiecki (2004). According to him, when aggregating
imperfect intuitive judgements of a group of people in the right way, its collective
intelligence is often excellent. An example for commercial use of the concept is
Ask500People6, a website that gathers feedback from hundreds of independent voters
in minutes.

3 http://99designs.com/, last accessed on July 1, 2013.
4 http://www.spreadshirt.com/, last accessed on July 1, 2013.
5 http://www.wikipedia.org, last accessed on July 1, 2013.
6 http://www.ask500people.com/, last accessed on July 1, 2013.
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2.2. Related concepts 15

• Open innovation: ”Use of sources outside of the entity or group to generate, develop
and implement ideas. In a world of widely distributed knowledge, where the bound-
aries between a firm and its environment have become more permeable, companies
cannot afford to rely entirely on their own research and ideas to maintain a competi-
tive advantage”. The term open innovation was originally introduced by Chesbrough
(2003). An example application is InnoCentive7, a problem solving marketplace on
which organizations can publish challenging problems. Any Internet user can propose
solutions (Lakhani et al., 2007).

Crowd labor differs from the other segments regarding its scope and regarding the
way the quality of the work results is being managed. Crowd creativity, crowd know-
ledge and open innovation are represented by targeted applications implemented as
web-based communities which are led by shared goals. Members of the community
are contributing assets like texts, photographs, designs or ideas which are then eval-
uated or gradually improved by peers. The quality of an individual contribution may
be questionable, but because many community members are interacting, there is an
implicit quality control which sorts out inferior contributions or gradually improves
them. In contrast, cloud labor is represented by all-purpose platforms that can be
utilized for any type of remote work. The quality of the work results needs to be
managed explicitly depending on the type of the application and according to the re-
quester’s requirements. Crowd creativity, crowd knowledge and open innovation may
be applications of cloud labor, but they do not necessarily have to be. For example,
Wikipedia belongs to the segment of crowd knowledge but does not represent cloud
labor, whereas 99designs could be seen as both, cloud creativity and cloud labor. As
indicated by figure 2.3, cloud labor can be seen as a sub-concept of crowdsourcing.
Like crowdsourcing, cloud labor outsources work to a crowd of people and utilizes
an open call for allocating workers to tasks.

2.2.2. Paid crowdsourcing

The term paid crowdsourcing shaped by Frei (2009) addresses those forms of crowdsourcing
in which a monetary incentive is used. From that point of view it is orthogonal to the
segments defined in the previous section. Frei defines paid crowdsourcing as ”the act of out-
sourcing paid work of all kinds to a large, distributed group of workers using a technology
intermediary that helps oversee the definition, submission, coordination, acceptance and
payment for the work done”. Note that this definition is actually broader than crowdsourc-
ing because it does not necessarily require an open call. Therefore, it is rather inconsistent
with the definition of crowdsourcing. As the term is only rarely used in the scientific
literature, it is omitted from figure 2.3.

2.2.3. Human computation

Quinn & Bederson (2011) argue that the modern usage of the term human computation
was inspired by von Ahn’s 2005 dissertation of the same name. Von Ahn defines human
computation as ”a paradigm for utilizing human processing power to solve problems that
computers cannot yet solve” (von Ahn, 2005). By taking into account definitions from a
series of other papers, Quinn & Bederson (2011) come to the conclusion that there is a
consensus about the following characteristics of human computation:

7 http://www.innocentive.com, last accessed on July 1, 2013.
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16 2. Cloud labor services

• ”The problems fit the general paradigm of computation, and as such might someday
be solvable by computers.”

• ”The human participation is directed by the computational system or process.”

The authors explicitly point out that traditional crowdsourcing applications like Wikipedia
are excluded because Wikipedia was designed as a ”collaborative writing project” and not
to replace a machine.

It can be concluded that one major difference between human computation and cloud
labor is that human computation is about dealing with computational problems while
crowdsourcing and specifically cloud labor is dealing with work in general. Out of the
three human capabilities covered by the definition of programmatically managed cloud
labor in section 2.1.2 only ”intelligence”matches with the idea of human computation while
”perception” and ”action” do not because they do not represent computational problems.
There are several types of applications which satisfy the definition of programmatically
managed cloud labor but not the one of human computation: Filling in a survey or a poll
can be regarded as work, but it does not represent a computational problem. Another
example is any form of physical activity like asking a worker to take a picture of a specific
building and send it back to the requester. Therefore human computation is narrower
than cloud labor, but at the same time it is broader: While cloud labor is limited to the
field of crowdsourcing, human computation comprises any scenario in which one or more
humans are working on a computational problem and are directed by a computational
system or process. There is neither a crowd required nor an open call. Figure 2.3 indicates
the overlap between cloud labor and human computation.

Games with a purpose

For programmatic cloud labor there is another difference that concerns the incentives being
used to attract the workers. While programmatically managed cloud labor always relies on
a financial incentive, human computation does not necessarily do so. It explicitly comprises
the concept of human computation games or ”games with a purpose” (GWAP) (von Ahn
& Dabbish, 2008) that ”constructively channel human brainpower using computer games”
(von Ahn, 2005). In this concept, people are playing a game just for fun, but implicitly they
are actually performing work. Indeed, the early works on human computation have been
in the area of games. The most noted one is surely the ESP game developed by von Ahn
& Dabbish (2004). When Luis von Ahn originally shaped the term human computation,
it was entirely focusing on unpaid contributors (von Ahn, 2005).

In order to illustrate the idea of human computation games, the ESP game is described
here in more detail, following von Ahn & Dabbish’s (2004) original paper. It is played
by two players over the Internet, who are randomly paired by being picked from a pool
of available players. The same random picture is shown simultaneously to both players
and they are asked to guess what words come into the mind of the partner player and
type them in. As there is no way to communicate, the only commonality between the
players which they are aware of is that they are looking at the same picture. So naturally,
they type in words that describe what they see on the picture. For each match they both
earn a certain number of points. The actual objective of the game is to attach meaningful
labels to images, e.g. ”cat”, ”black”, ”sitting”. ESP stands for extra sensory perception
and reflects the idea that the players have to ”think like each other” (von Ahn & Dabbish,
2004).
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The concept had been licensed by Google and has been extremely successful as the Google
Image Labeler which was available in Google Labs for many years. As of July 2008, more
than 200,000 images had been labeled by some 50,000 players (von Ahn & Dabbish, 2008).
In 2011 the service was discontinued when Google decided to close down the test bed
Google Labs (Google Inc., 2011).

2.2.4. Social computing

Social computing applications comprise ”blogs, wikis, social bookmarking, peer-to-peer
networks, open source communities, photo and video sharing communities, and online
business networks” and can be characterized as ”applications and services that facilitate
collective action and social interaction online with rich exchange of multimedia information
and evolution of aggregate knowledge” (Parameswaran & Whinston, 2007).

According to Quinn & Bederson (2011), the ”key distinction between human computation
and social computing is that social computing facilitates relatively natural human behavior
that happens to be mediated by technology, whereas participation in a human computation
is directed primarily by the human computation system”. The same distinction can be
also made for cloud labor services because they are actively directed by a platform rather
than by natural human behavior. The idea of social computing can be combined with the
concept of cloud labor by building social networks of workers that share knowledge and
jointly work on tasks in order to build synergies, gain better results and have more fun
than when working alone.

2.2.5. Collective intelligence

While Lévy (2001) describes collective intelligence as ”intelligent communities, as open-
minded, cognitive subjects capable of initiative, imagination and rapid response”, a recent
definition by Malone et al. (2009) very broadly defines it as ”groups of individuals doing
things collectively that seem intelligent.”As illustrated by figure 2.3, collective intelligence
represents the basic principle and ”breeding ground”behind all three, crowdsourcing, social
computing and human computation. The latter one is only included as far as a group of
humans is involved, which is always the case for social computing and crowdsourcing. By
being a specific form of crowdsourcing, cloud labor also represents a subset of collective
intelligence.

2.2.6. Human tasks in business process management and SOA

Scheer & Brabänder (2010) define BPM as ”a structured approach employing methods,
policies, metrics, management practices, and software tools to coordinate and continuously
optimize an organization’s activities and processes”. From a technical perspective, BPM
is closely related to the concept of SOA that is defined as ”a paradigm for organizing
and utilizing distributed capabilities that may be under the control of different ownership
domains” (OASIS, 2006).

Within the fields of BPM and SOA, there are a series of IT concepts like Web Service
human task (WS-HumanTask) (Agrawal et al., 2007a) and business process execution lan-
guage for people (BPEL4People) (Agrawal et al., 2007b) that support the orchestration
of human activities as components of service oriented architectures or electronic business
processes. Like cloud labor services, these concepts allow for the provisioning of work
through electronic interfaces. By focusing on technical interfaces, language design and
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18 2. Cloud labor services

protocols, they complement the idea of cloud labor services as they offer a technological
framework for the implementation of human tasks.

The biggest difference lies in the variety of tasks, in the way they are assigned to people
and in the workforce they are assigned to. Cloud labor service tasks are made available
to a rather large and undefined crowd of people who choose from a large variety of tasks
based on their capabilities and desires. In contrast, WS-HumanTask and BPEL4People
uses a role based assignment of tasks to employees in an organizational environment. De-
pending on well defined responsibilities, tasks are assigned to specific employees or groups
of employees who complete them as part of their daily business. There is typically only a
small set of task types that may be processed by a specific person, i.e. there is a higher
degree of specialization than for cloud labor services. Because there is more control over
the workforce and there are fewer degrees of freedom, aspects like quality management,
motivation and incentives play a less important role than for cloud labor services. Nev-
ertheless, human tasks in BPM and SOA can likely profit from the considerations made
in this thesis while cloud labor services can benefit from the technological framework of
human tasks in BPM and SOA.

Human provided services (HPS) (Schall, 2011) go one step further than WS-HumanTask
and BPEL4People by providing a framework for modeling human expertise and suppor-
ting its discovery and provisioning in service-oriented environments. HPS can be seen
as a technical framework for implementing cloud labor services. Besides the definition
of protocols and interfaces, HPS also provides an interaction model for structuring and
delegating work.

2.2.7. Cloud computing

Cloud computing can be defined as ”a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction” (Mell & Grance,
2011).

According to Mell & Grance, the fundamental characteristics of cloud computing are:

• It provides ”on demand self-service”, i.e. there is no human interaction required with
the service provider.

• The service can be used through ”broad network access” using standard computing
devices like laptops or mobile phones.

• A ”resource pooling” mechanism serves multiple clients by dynamically assigning
resources to them depending on the demand.

• Capabilities are provided with ”rapid elasticity”, i.e. the resources are provisioned
and de-provisioned in a scalable way.

• It represents a ”measured service”, i.e. a metering capability monitors, controls and
reports the resource usage per client.

There is a fundamental symmetry between cloud labor services and cloud computing. Basi-
cally, cloud labor services are for human workforce what cloud computing is for IT services.
According to section 2.1.2, all the characteristics of cloud computing apply to cloud labor
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services as well: Cloud labor services are issued through a programmatic interface and de-
livered by a pool of workers who are dynamically allocated to the appropriate tasks. This
results in a highly scalable service. Efforts are tracked and billed per requester. The over-
lap between the two concepts will be further discussed in section 2.5.2 when considering
service models for cloud labor services.

2.3. Challenges

The concept of cloud labor poses a series of challenges that concern a wide variety of disci-
plines. In this chapter, the key challenges are identified and general research questions are
deduced. Because of the overlap with the fields of crowdsourcing and human computation,
the challenges can be derived from those research fields.

In order to structure requirements for crowdsourcing and human computation, Alonso
(2011) proposes a three role perspective similar to the roles of the basic cloud labor ser-
vice concept: The ”experimenter view” represents the perspective of the requester who is
designing the tasks, the ”engine view” represents the technical platform and the ”human
view” represents the perspective of the workers. In this thesis, more generic terms are used
that better match the terminology of the cloud labor services concept: Application view,
platform view and workforce view.

For each of the perspectives, the subsequent sections 2.3.1 to 2.3.3 describe the key chal-
lenges along with corresponding research questions. Table 2.2 serves as a chapter overview
by summarizing the challenges clustered by the three perspectives.

Table 2.2.: Challenges of the cloud labor service concept structured by the perspective of
the application, the platform and the workforce.

Perspective Challenge Source (selection)

Application Identification of relevant tasks (Shahaf & Amir, 2007)
Workflows and task granularity (Kittur et al., 2011)
Privacy, copyright and compliance (Felstiner, 2011)

Platform Deployment and service models
Worker to task matching and allocation (Ambati et al., 2011; Yuen et al., 2011)
Crowd management (Schall, 2011)
Quality management (Snow et al., 2008; Kittur et al., 2013)
Technical infrastructure and standards (Alonso, 2011; Schall, 2011)
Interfaces and usability

Workforce Motivation and incentives (Kaufmann et al., 2011)
Education and feedback (Mason & Watts, 2012)
Work model (Felstiner, 2011; Silberman et al., 2010)

Later in chapter 2, sections 2.4 to 2.6 will again take up the three perspectives and describe
to what extent the corresponding challenges have already been addressed by the state-of-
the-art.

2.3.1. Application challenges

The application view addresses the identification of relevant applications and tasks, the
decomposition into manageable work units and the recomposition of the work results as
well as privacy, copyright and compliance considerations.
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Identification of relevant tasks

For the requester, one of the initial challenges is to identify relevant tasks to which the
cloud labor concept can be applied and how the cloud labor services can be integrated into
existing business processes or combined with automated tasks. Often, at least a portion of
the task can be automated so the question is how to define the manual portions and their
interplay with the automated portion (Shahaf & Amir, 2007). Corresponding research
questions are:

1. What are suitable types of tasks ”that are easy for humans and hard for comput-
ers” (Shahaf & Amir, 2007; Alonso, 2011), i.e. what tasks can be performed by
humans in a better or cheaper way than by computers?

2. How can automatic tasks and manual tasks be combined in order to gain the optimal
synergies? (Alonso, 2011)

3. How can cloud labor services extend existing business processes? (Vukovic et al.,
2010)

4. What are suitable business cases for applying the cloud labor concept? How can it
be applied to the enterprise scenarios (Alonso, 2011; Vukovic et al., 2010)?

Workflows and task granularity

Once a task has been identified, the second challenge is to adjust the granularity of the
tasks to a level that can be handled by individual workers. Therefore, workflows need to
be defined which decompose complex tasks into smaller ones and recompose the responses
returned from the workers (Kittur et al., 2011). Relevant research questions are:

1. How can a complex task be decomposed into smaller entities that can be handled by
a human in an acceptable amount of time?

2. How can the results of the individual sub-tasks be reassembled in order to gain a
consolidated result?

3. What are the decision criteria for deciding whether to decompose a task or not?

Privacy, copyright and compliance

Another important challenge is to address potential privacy, copyright and compliance
needs. In general, all the tasks and responses exchanged on a cloud labor service platform
represent information that may be subject to data privacy protection or may represent
business secrets. Even if the requesters add appropriate privacy policies to their participa-
tion agreements ”it would be naive for firms to count on those agreements, or on vendors
in general, to protect intellectual property” (Felstiner, 2011). Also, data protection acts
may prohibit the disclosure of specific types of information either in general or restrict
the use of the data, for example with regard to the countries it may be transferred to. A
third challenge is that information generated or researched by workers within the scope
of a cloud labor service (e.g. in text authoring or image retrieval applications) may be
subject to copyright. Corresponding research questions are:

1. How can the privacy of the requesters and their customers be guaranteed even when
dealing with confidential information?
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2. How can the privacy of workers be guaranteed given that the cloud labor service
provider or requester might gather a lot of information about the individual workers
over time?

3. How can the platform or the requesters respect the copyright of texts and multimedia
data that workers research from the Internet?

2.3.2. Platform challenges

The platform view concerns the technical and economical challenges concerning the cloud
labor platform including deployment models, quality management mechanisms, the design
of the requester and worker interfaces, the technical architecture of the platform as well
as the underlying protocols and standards. Another aspect is the matching and allocation
of workers to tasks and tasks to workers.

Deployment and service models

Similar to cloud computing, various deployment and service models can be conceived for
cloud labor platforms with respect to the level of service they deliver and the type of
workforce they rely on. The platform may be operated by the requester or by an external
company. The definition and tailoring of the tasks and the management of the result
quality may be performed by the requester, by the platform owner or again by a third
party service provider. The workforce may be provided by the requester, by an external
organization or it may consist of freelancers or Internet users who want to earn some extra
money in their spare time. There may also be a combination of platforms and workforces
that are interconnected in some way. Corresponding research questions are:

1. What are viable deployment models for task market places and how do they relate
to the corresponding models of cloud computing?

2. What are viable service models of cloud labor service platforms with respect to the
workforce they rely on?

3. How can multiple cloud labor platforms and workforces be combined in an effective
way?

Worker to task matching and allocation

One of the key benefits of cloud labor is that it provides access to a huge pool of skills,
experiences, cultures, beliefs, opinions, habits and desires that makes it applicable to
almost any kind of human work one can think of, assuming that it can be performed or at
least initiated electronically. However, an effective worker to task matching and allocation
is needed in order to ensure that requesters find the right workers for their tasks and
workers find appropriate tasks to work on. Relevant research questions are:

1. How can tasks be effectively matched to workers while taking into account their
individual preferences, skills, experience, strengths and weaknesses? (Law & Ahn,
2011, p. 6)

2. How can task properties and worker characteristics be formally modeled in a com-
prehensive way that supports matching of tasks to workers?

3. How can a taxonomy of skills be designed that captures relationships and proximity
between skills?
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Crowd management

Especially if an organization relies on its own workforce for delivering cloud labor services,
it has to be carefully managed in order to ensure that the employees are fully utilized
but not overloaded, that their expertise is leveraged and that they are happy with the
work conditions. But also for marketplaces that rely on Internet users, a proper crowd
management is an important instrument for establishing and maintaining a powerful and
loyal workforce. Relevant research questions are:

1. What mechanisms allow for an effective workload and skill management on task
platforms? (Alonso, 2011)

2. What tools can facilitate an effective communication with the crowd workers?

Quality management

Quality management can be regarded as one of the key challenges of cloud labor services.
Kittur et al. (2013) report that it has ”arguably received the most attention so far”. Because
of the anonymity of the workforce, there is only little control over the quality of the work
results delivered by an individual worker (Suri et al., 2011). This becomes particularly
obvious when dealing with a workforce of Internet users. Relevant research questions are:

1. How can a crowd of remote workers be coordinated in a way that satisfying work
results can be achieved with minimal effort?

2. What factors are affecting the quality of work results and what are suitable quality
metrics?

3. How can reputation or trust be utilized in order to predict the quality of work results
delivered by a worker?

4. How can fraud be discovered or prohibited?

Technical infrastructure, protocols and standards

The concept of cloud labor is enabled by information technology and most of the charac-
teristics of the cloud labor platform are basically represented by IT. This applies to the
architecture and design of the cloud labor platform, the computing, storage and network
infrastructure as well as the underlying protocols and standards. Other important aspects
are the network bandwidth and the computing devices that can be expected on the worker
side. Related research questions are:

1. How can a reliable and highly scalable cloud labor platform be designed?

2. How can existing protocols and standards be enhanced in order to address the spe-
cific needs of cloud labor applications? What protocols and standards allow for
integration with other enterprise systems (Alonso, 2011)?

3. How can skill profiles and work descriptions be represented in a standardized way?

Interfaces and usability

The acceptance of cloud labor marketplaces will not at least depend on their interfaces and
usability. This is not limited to a beautiful design of the screens but primarily concerns
the requester and worker experience as a whole. Just because cloud labor is IT based,
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it does not mean that all activities have to be performed in front of a computer. Maybe
other devices can be introduced or workers can organize into teams who even cooperate
physically and just submit their results on a computer in the end. Relevant research
questions are:

1. How should the interfaces be designed in order to make the interaction with the cloud
labor service platform as easy, unambiguous, encouraging and efficient as possible
for all involved parties? (Alonso, 2011)

2. What interfaces could support the virtual or physical cooperation of workers? (Law
& Ahn, 2011, p. 6)

2.3.3. Workforce challenges

The workforce view comprises the motivation of the workers by means of appropriate in-
centives (e.g. payment), the importance of education and feedback, the overall acceptance
of the work model as well as contracting and fiscal considerations.

Motivation and incentives

One of the basic principles that cloud labor services inherit from crowdsourcing is that
work requests are published in an open call. It is up to the worker to decide what projects
or tasks to work on. Thus, appropriate incentives need to be in place that attract suitable
workers. Corresponding research questions are:

1. What are suitable incentives and incentive schemes that motivate workers to con-
tribute continuously and with high quality? (Law & Ahn, 2011, p. 6)

2. What combinations of incentives are feasible and can leverage additional advantages,
e.g. how can monetary incentives be mixed with non-monetary ones in order to save
costs?

3. What incentive schemes can be applied to a private workforce of employees that
anyway receive a more or less fixed salary? (Vukovic et al., 2010)

Education and feedback

The capabilities of the workers are obviously one of the most important prerequisites
for a successful application of the cloud labor concept. This involves fundamental skills
in relevant disciplines but may also comprise specific skills about the project. Relevant
research questions include:

1. How can education mechanisms be designed that seamlessly integrate into the con-
cept of cloud labor?

2. How can feedback mechanisms be designed that support a continuous improvement
of the worker skills?

3. What effect do feedback mechanisms have on the quality of the work results and on
the worker satisfaction?
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Work model

The concept of cloud labor differs significantly from traditional employment models. On
the one hand, it may lead to advantages as it may reduce the barriers to find a job and
increase the flexibility regarding the work schedule and work location; on the other hand,
there may also be the risk of jeopardizing traditional work models with regard to lay-
off protection, minimum wages and pension funds (Felstiner, 2011). Furthermore, legal
contracts and taxes are subject to national laws and regulations. In contrast, as it is based
on the worldwide Internet, the concept of cloud labor is not limited to specific countries.
That implies a need for research on the consolidation of national employment and fiscal
laws into a global perspective. Relevant research questions include:

1. Under what conditions can the cloud labor concept be a viable work model that
successfully complements traditional work models?

2. How can the social acceptance of the cloud labor concept be fostered? (Kittur et al.,
2013)

3. How may the existing national laws and tax models be adapted to the needs of the
globalized perspective of the cloud labor concept?

2.4. Application perspective

This section describes the state of the art of cloud labor services from the perspective of
the usage scenario. After providing an overview on the existing types of applications in sec-
tion 2.4.1, section 2.4.2 explains how relevant applications may be identified. Section 2.4.3
then covers concepts and tools for defining task workflows as well as for decomposing tasks
into smaller portions of work and recomposing the results. Finally, section 2.4.4 addresses
some considerations regarding privacy, copyright and compliance.

2.4.1. Existing applications

This section classifies existing cloud labor service applications in two ways. It examines
what applications public cloud labor platforms are actually used for as well as what ap-
plications have been investigated in the scientific literature.

Applications on public cloud labor platforms

In order to develop an understanding of the types of applications being implemented on
public cloud labor platforms a classification has been created within the scope of this thesis
based on a manual analysis of all available tasks on the Amazon Mechanical Turk (MTurk)
platform8 in August 2009. The tasks have been categorized by the action the worker is
asked to perform. Table 2.3 presents the resulting classification. The classification consists
of five main categories, with each one comprising two to five application types. The
category Create content comprises any applications in which workers are asked to create
textual or multimedia content or provide creative ideas. Category Revise content addresses
all applications in which workers are asked to classify, refine, summarize or transform
content. This includes the identification of pornographic or other undesired content. It
also applies to the recognition of objects on images or the transcription of recorded speech.
In Research information applications, workers are asked to locate and potentially retrieve

8See section 2.5.1 for a comprehensive description of the platform.
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Table 2.3.: Classification of cloud labor service applications by the activity to be performed
by the worker.

Activity Type of application

Create content Create texts
Create media
Creativity or idea generation

Revise content Check or classify content
Tag content
Audio or video transcription
Summarize content
Refine content

Research information Data or information research
Media research

Rate or sense information User opinion
User knowledge

Other activity Language services or translation
Programming
Software or Web application testing
Traffic augmentation
Location–specific services
Other

information or multimedia data from the Internet. In the applications of category Rate
and sense, users are asked to provide subjective feedback, for example by responding to
surveys or polls or by telling about their individual experiences with products or websites.
The last category covers all types of applications that do not fall into any of the other
categories. At the time of the analysis, the major portion of tasks in that category applied
to translation, software and Web application testing. The category also covers location
specific applications, in which the worker has to be at a specific location in order to provide
the service, for example by taking a picture of a specific event. A remarkable application
in this category is Traffic augmentation, in which workers are asked to generate traffic or
to provide positive feedback in the Web 2.0 environment (e.g. rating a YouTube9 video,
promote people on Facebook10, increase search rank of websites, etc.). The class Other
activity / other covers any applications that are not covered by the previous categories or
classes and for which no separate class was defined because there had only been a small
number of instances.

The analysis indicates, that creating, revising, researching, rating and sensing information
are the key categories of applications being performed on cloud labor platforms. This is
actually confirmed by the way the platform providers are advertising their services. For
example, MTurk focuses on the four categories ”clean your data”, ”categorize items”, ”get
feedback” and ”create or moderate content” (Amazon Inc., 2013a).

Interestingly, a number of companies has emerged whose business model would not work
without having access to the scalable workforce of cloud labor platforms. One of them is
the transcription service CastingWords11, which will be discussed in detail in section 3.3.5.

9 http://www.youtube.com/, last accessed on July 1, 2013.
10 http://www.facebook.com/, last accessed on July 1, 2013.
11 http://castingwords.com/, last accessed on July 1, 2013.
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Applications discussed in the scientific literature

Naturally, cloud labor services are primarily used for tasks that cannot be automated.
These tasks represent problems that cannot be satisfactorily solved by artificial intelligence
(AI) , ”the science and engineering of making intelligent machines”McCarthy (2007). The
vast majority of applications discussed in the scientific literature can be mapped to such
problems. Table 2.4 clusters a selection of research papers according to areas of artificial
intelligence.

Table 2.4.: Examples of cloud labor service applications clustered by typical problems of
artificial intelligence.

Area Application

Natural language processing Language translation, evaluation of machine translation qua-
lity (Callison-Burch, 2009), Word sense disambiguation (Par-
ent & Eskenazi, 2010), Textual entailment (Negri & Mehdad,
2010), Text creation based on abstract, modification of tense
(Little et al., 2009a), Creation of question-answer sentence pairs
(Kaisser & Lowe, 2008), Ranking of computer generated ques-
tions about provided texts (Heilman & Smith, 2010), Rating
Wikipedia articles (Kittur et al., 2008)

Relevance assessment Relevance of search results (Grady & Lease, 2010), Relevance
evaluation (Alonso et al., 2008)

Sentiment analysis Classifying sentiment in political blog snippets (Hsueh et al.,
2009), Obtain polarity scores for customer comments (Mellebeek
et al., 2010), Capturing the amount of action indicated by a
sentence (Madnani et al., 2010), Web site reviews and marketing
surveys (Barr & Cabrera, 2006)

Visual perception Validate hierarchy of images generated by an algorithm (Deng
et al., 2009), Describe a given image in one sentence (Rashtchian
et al., 2010), Geometric reasoning experiment: Fold protein
structures in a three-dimensional space (Corney et al., 2010),
Identify and locate objects in images (Yang et al., 2008), Vali-
date identity of a person (Gentry, 2009), Medical image segmen-
tation (Raykar et al., 2009)

Audio processing Transcription of voice recordings (Marge et al., 2010; Novotney
& Callison-Burch, 2010a; Liem et al., 2011), Elicit narrations
of Wikipedia articles as audio recordings (Novotney & Callison-
Burch, 2010b), Various applications (Parent & Eskenazi, 2011)

Knowledge provisioning Ontologies creation and matching (Eckert et al., 2010), Evalu-
ate common sense knowledge from news or Wikipedia (Gordon
et al., 2010)

In addition to extending the reach of AI, cloud labor services are also considered an
important tool for conducting behavioral research. According to Mason & Suri (2011),
surveys performed on task platforms have been observed to deliver results comparable to
online surveys. However, they provide access to a more diverse population than traditional
subject pools do. Also the wages tend to be lower.

2.4.2. Identification of relevant tasks

Although the classifications of existing usage scenarios provided in the previous section can
be used as a starting point when searching for additional use cases, they do not necessarily
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provide a complete picture. Especially within organizations there might be a large number
of promising use cases which are specific to certain industries or methodologies.

From the concept of cloud labor services described in section 2.1.2, a number of basic
requirements can be deduced that help identifying relevant applications. First, the task
must be issued (but not necessarily performed) through an electronic interface. Second, the
entire task invocation cycle is automated. In particular, there is no personal interaction
required with the requester. Additional considerations can be made from an economic
perspective: Because of the one time effort for setting up the task and developing the
worker interfaces, there should be a large number of equivalent tasks. In order to profit the
most from the cloud labor service (compared to using dedicated employees), this number
should ideally vary over time. And finally, cloud labor services obviously primarily make
sense if automating the task is not an option.

Altogether as a rule of thumb, cloud labor should be considered if the task

1. can be mapped to an electronic interface (Web, mobile device, etc.).

2. does not require personal interaction with the requester.

3. is subject to a large (and ideally varying) demand.

4. can either not be automated at all, or not well enough or automating it would be
too expensive or too time consuming.

Often, a task can be automated, but the results are actually not good enough. In such
situations, cloud labor can be used to accomplish the delta. For example, the recognition
of handwritten texts still cannot be perfectly automated12. If a high level of quality is
needed, such cases that are difficult to decide can be passed to a cloud labor platform in
order to increase the overall result quality.

Cloud labor services can also help to reduce the time to market because they can often
be set up in a few hours or even faster while automating the task may take much longer.
So, even if automation is possible, cloud labor may sometimes be the preferred choice.
This especially applies to the ramp-up phase of new services. Once the service is up and
running, the focus may be shifted towards automating the service in order to reduce the
overall cost. For temporary efforts, it may not be worth considering automation at all,
because it may be more expensive than to apply cloud labor services.

2.4.3. Workflows and task granularity

There are many situations in which a sequence of multiple cloud labor tasks needs to
be performed or a cloud labor task needs to be combined with automated tasks. Such
sequences are called workflows. Workflows may also be used to reduce the task granularity
by decomposing complex tasks into smaller, manageable units. Another specific objective
of workflows can be to improve the quality of work results by combining activities of
multiple workers, e.g. a response generated by a first user is validated by a second one.

There are situations in which it may be useful to pursue both objectives in parallel in order
to optimize the overall system. For example, by having one worker compose responses from
other workers into a final result, that worker could implicitly validate the responses of the
other workers. As the focus of this thesis is quality management, workflows are discussed

12Refer to section 8.1.
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in two separate chapters: The overall concepts of workflows and their use for reducing
the granularity is discussed here, while specific workflows for quality management will
be discussed in section 3.3. For example, TurKontrol (Dai et al., 2010), which is often
mentioned in the context of human computation workflows, is actually rather a quality
management concept and is therefore covered later.

Table 2.5 provides a list of the workflow concepts that have been proposed in the context
of cloud labor services in the last couple of years.

Table 2.5.: Workflow models and tools for cloud labor services.

Name Key features Source

TurKit Supports workflows created in JavaScript and pro-
vides a tracing and a ”crash-and-rerun” feature.

(Little et al., 2009b)

CrowdLang Supports predefined workflows as well as dynamic
creation of workflows at runtime.

(Minder & Bernstein, 2011)

CrowdWeaver Allows for visually creating and managing work-
flows with real time monitoring and notification.

(Kittur et al., 2012)

Crowdforge Implements MapReduce framework. (Kittur et al., 2011)
Turkomatic Allows for recoursively decomposing work into

smaller portions.
(Kulkarni et al., 2011)

Clowder Uses decision theory for deciding on task flow, cus-
tomizing interfaces and controlling quality.

(Weld et al., 2011)

TurKit (Little et al., 2009b, 2010b) is implemented as a Java program that can execute
Javascript files and provides an API to them through which they can communicate with
the MTurk platform in order to use ”MTurk workers as subroutines”. Additional functions
are available for writing information into a database and for writing trace messages that
can be used for tracking the execution flow. A recent crash-and-rerun feature ensures that
long running processes can be seamlessly continued after a crash. TurKit can be accessed
using a public Web GUI by entering the MTurk credentials.

TurKit has been used as a basis for a series of other research contributions. One example
is Soylent (Bernstein et al., 2010), ”a word processor with a crowd inside”, that allows for
crowdsourcing text editing tasks to MTurk workers out of a Microsoft WordTMdocument.

Rather than extending a state of the art programming language, Crowdlang (Minder
& Bernstein, 2011) represents a proprietary executable and model-based programming
language and framework that is specifically designed for creating workflows of human
tasks. Workflows can either be predefined or created by workers at runtime. The tool
comprises ready to use operators for managing task granularity, the actual control flow
and the aggregation of responses.

CrowdWeaver (Kittur et al., 2012) does not use a written programming language but is
designed as a visual system. Workflows of human tasks and machine tasks are represented
as a visual model and are created using a visual interface. At runtime, the workflow
graph is being updated in real-time with status information like the number of instances
being processed of each task, the quality and the costs. Templates allow for reuse of
workflows. A notification feature keeps the user informed about important events. The
tool is implemented by a JQuery-based Web visual and a Ruby controller and internally
uses a MySQL database. In contrast to the tools discussed previously, CrowdWeaver is not
based on MTurk but on the CrowdFlower13 platform. That way, it has access to a wider

13The CrowdFlower platform will be described in section 2.5.1.
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range of Cloud labor platforms, including MTurk. CrowdFlower functionality is used to
create and modify the underlying human tasks.

CrowdForge is a concept and prototypical system for managing task granularity. The
basic idea is to crowdsource not only the actual task execution but also the breakdown
of complex tasks into manageable units and the recombination of the individual results.
Inspired by Google’s MapReduce algorithm, the entire process consists of three steps: A
”partitioning task”, a ”map task” and a ”reduce task” are each being defined as a separate
human sub-task. A first set of workers recursively breaks down the work into smaller units,
which are then executed by other workers. Again other users are finally recombining the
work results on several stages until the overall result has been generated. In addition to
task de- and result re-composition, CrowdForge (Kittur et al., 2011) also supports a variety
of quality management mechanisms. The tool is implemented as a web-based prototype.

Turkomatic (Kulkarni et al., 2011, 2012) suggests a recursive approach similar to the one
used by CrowdForge. A collaborative approach is proposed for managing the quality of
the decomposition and recomposition tasks.

Weld et al. (2011) argue that ”artificial intelligence methods can greatly simplify the process
of creating and managing complex crowdsourced workflows”. Their Clowder framework
represents a vision of an all purpose cloud labor system that uses decision theory for
deciding on alternative workflows, for personalizing the appearance of interfaces and for
controlling the overall workflow. They expect that ”optimized workflows are significantly
more economical (and return higher quality output) than those generated by humans”. One
of the features they suggest is the personalization of interfaces based on implicit ”A-B”
testing performed by workers. They also recommend the use of a hierarchical task-network
(HTN) for modelling task decomposition.

2.4.4. Privacy, copyright and compliance

The cloud labor concept is based on the exchange of information. Information is being
passed to the workers through the cloud labor services platform as input for the task.
Based on this information, the worker processes the task, potentially by utilizing external
information from the Web or, especially in case of surveys, by using information about
personal preferences, desires etc. While working on the task, the worker may generate
new intellectual property. For example, a text authored by the worker will be subject to
copyright. There may be four major types of critical information involved in the cloud
labor service scenario, which are illustrated by figure 2.4:

1. Sensitive information of the requester’s organization. This could be business secrets
or any information that is subject to data protection acts or other rules and regula-
tions. An example is sensitive information about customers, employees or business
partners.

2. Personal sensitive information of the workers, e.g. details about their financial situ-
ation or their personal desires.

3. Intellectual property generated by the workers either during task execution or earlier.

4. Copyrighted information used by the workers during task execution, for example a
text or picture being retrieved from a website.

The potential exposure of sensitive information or use of protected intellectual property
causes a series of risks that need to be addressed accordingly. The most obvious risk is
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Platform
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of the worker

4. Copyrighted 
Web resources

Figure 2.4.: Critical information potentially being involved in the cloud labor service
scenario.

probably the disclosure of sensitive information by the requester. A common mitigation
strategy is the anonymization of the data by removing or replacing all irrelevant informa-
tion like names and phone numbers, or by splitting tasks into small units. For example, the
transcription service CastingWords14 breaks speech recordings down into small pieces be-
fore they are transcribed into text. Afterwards, the pieces are recomposed into a complete
transcript. As most workers see just small portions of the transcript, the risk of privacy
issues is reduced15. However, anonymization may not fully avoid the risk of disclosing
sensitive information. As Felstiner (2011) points out, a ”crowd worker may still be able
to glean knowledge of a valuable piece of intellectual property by completing even a small
task”. This risk increases with the number of closely related tasks a worker performs.

If the information cannot be anonymized, a private or hybrid people cloud can be used. The
most conservative approach would be to use a workforce from the requester’s organization.
For less critical privacy issues it might be sufficient to oblige service workers to maintain
confidentiality about the processed information by adding an appropriate clause to the
terms and conditions of the task or platform.

From the worker perspective, there is a risk of potential misuse of personal data. Even
though the workers’ identity is usually not disclosed to the requester, a unique ID is being
assigned to each worker which is attached to any responses returned by that worker. Over
time, the requester may gather a large amount of information about the worker based on
that ID. As long as the worker does not explicitly trust the requester, a basic mitigation
strategy is not to disclose any personal information. Platform providers should not disclose
the identity of the workers.

If the task involves the creation of intellectual property by the worker, the requester and /
or the platform provider should ask the workers to grant their IP rights to the requester.
In this context, an important risk is the misuse of copyrighted information, e.g. due to
plagiarism. This applies specifically to content generation applications. Instead of creating
new content, workers may search for appropriate content in the Web and represent it as
their own original work. If the requester then uses it publicly, he might get sued by the
actual originator. Even though penalties could be enforced against the worker for such
an offense, this would likely not remedy the damage, at least not in public people cloud
scenarios in which there is only a lose contract with the worker. Therefore, the requester

14CastingWords will be discussed in detail in section 3.3.5.
15 http://castingwords.com/support/transcription-faq.html, last accessed on March 11, 2012.
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should check for plagiarism by using services like Plagiarism-Detect16 or Copyscape17 or
by asking other workers to manually perform a check.

In information research applications, licensing issues are another possible threat. For
example in an image research application a requester might ask the workers to find pictures
of products that he wants to use for an online product catalog. The requester needs to
ensure that the licensing rules of those images allow for commercial use. Therefore, he
should always ask the worker to return the link for the image instead of the image itself.
This way, the licensing rules can be validated, for example by asking other workers to do
so.

2.5. Platform perspective

This section describes the state of the art of cloud labor services from the perspective of
the coordination platform. After providing an overview of the existing commercial cloud
labor platforms in section 2.5.1, section 2.5.2 introduces considerations about their service
models and technical infrastructure. Section 2.5.3 then addresses the matching of workers
to tasks and tasks to workers while section 2.5.4 finally refers to quality management for
cloud labor services.

2.5.1. Existing platforms

A large number of cloud labor platforms have emerged in the last few years. The industry
website Crowdsourcing.org (2012b) lists 164 entries in the category of cloud labor18. Com-
pared to that, Frei (2009) had listed only 46 sites in 2009. As most of the platforms do not
disclose any information about their task throughput, it is difficult to estimate the actual
relevance and ranking of the sites. In order to identify the key players, table 2.6 contains
those of them that have been sponsors or exhibitors on the 2010 CrowdConf (Crowdflower,
2010), which can be considered the primary commercial crowdsourcing event of the year.
As the only exception, the table also covers the MTurk platform which is used as the
workforce provider for several of the other platforms. The table only captures platforms
for programmatic cloud labor and does not cover platforms for manually managed cloud
labor like ODesk. The last two columns indicate the founding year and the number of
workers available to the platform followed by the type of workforce. ”Own” means that
the workforce is managed by the platform itself, ”MTurk” means that the workforce of
MTurk is used. ”Several” indicates that the platform relies on the workforces of several
other platforms.

One of the most popular cloud labor platforms is MTurk which has been started in late
2005. On MTurk, service requesters can publish open calls for human intelligence tasks
(HITs). Any Internet user that meets certain skill criteria may act as a service worker and
work on tasks to earn some money. Amazon keeps a fee of 10 percent of the task price with
a minimum of $0.005 per task19. MTurk provides a basic Web interface for interactively
defining tasks and designing the corresponding user interfaces. In addition, a command
line API as well as SOAP and REST based APIs support several programming languages

16 http://plagiarism-detect.com/, last accessed on July 1, 2013.
17 http://www.copyscape.com/, last accessed on July 1, 2013.
18The directory does not just comprise crowd labor platforms but also other sites that build there business
model on the concept of cloud labor.

19See FAQ section on the help page of (Amazon Inc., 2013a).
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Table 2.6.: Selection of commercial cloud labor service platforms.

Platform URL Focus Country Year Workers

Amazon
Mechanical
Turk

mturk.com All purpose platform with
self service only and lim-
ited quality contol; used as a
workforce provider by many
other platforms

USA 2005 500k (own)

Clickworker clickworker.com Processing of unstructured
data, such as text, pho-
tographs, and videos

Germany 2005 300k (own)

CrowdFlower crowdflower.com All purpose platform with
specific focus on quality
management

USA 2007 3M (several)

Microtask microtask.com Document processing and
data entry

Finland 2009 unknown

Microworkers microworkers.com Traffic augmentation USA 2009 unknown

CloudFactory cloudfactory.com All purpose platform with
focus on ongoing processes
as well as one-time tasks

Nepal 2011 500k (Mturk)

Crowdsource crowdsource.com All purpose platform USA 2010 500k (Mturk)

Serv.io serv.io Content creation, content
management, translation
services

USA 2009 150k (own)

UTest utest.com Application testing (Web,
mobile and desktop)

USA 2007 70k (own)

including Java, Ruby, Perl and .NET20. While workers from the US and from India can
transfer their earnings to a bank account, workers from all other countries can claim their
earnings only in form of Amazon gift certificates (Amazon Inc., 2013b).

According to Ipeirotis (2010a), MTurk is a ”heavy-tailed market” with regard to the re-
quester activity. A minority of one percent of the requesters account for half of the overall
dollar amount being paid to the workers. Furthermore, there is a focus on small tasks.
For 90 percent of the HITs a reward of $0.10 or less is being paid.

Another early player is the German platform Clickworker who first went live in 2006
under the name Humangrid, which is still the name of the company that operates the
platform. Clickworker has a workforce of about 300.000 own workers and mainly focuses
on processing unstructured information, such as text, photographs, and videos (Humangrid
GmbH, 2013).

The Crowdflower platform founded in 2007 positions itself as the market leader among
the platforms for cloud labor services. It is a Meta platform that leverages the workforce
of several other platforms and external workforce providers including MTurk. According
to an e-mail of the founder Lukas Biewald, they process about one million tasks on an
average day, corresponding to an effort of 4 person years (Biewald, 2012).

Microtask from Finland primarily concentrates on document processing and data entry

20See developer section of the MTurk requester website (Amazon Inc., 2013a).
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with a specific focus on digitizing handwritten forms. In cooperation with the National
Library of Finland, volunteer workers are leveraged to correct OCR errors in a historical
newspaper archive (Microtask Oy, n.d.).

The Microworkers platform launched in mid 2009 mainly focuses on traffic augmentation
applications like search engine optimization. Compared to MTurk, two additional im-
portant differences concern the way payments are being made to the workers as well as
the structure in which the tasks are being organized. While MTurk requires a US bank
account for monetary transactions, Microworkers supports online payment services like
PayPal21, which are better suited for international workers. Rather than putting all HITs
into a single list, Microworkers provides predefined job categories with individual minimum
payments starting from $0.10. (Hirth et al., 2011)

CloudFactory was founded in 2011 in Nepal in order to develop job opportunities for the
developing countries. The platform Crowdsource was acquired by ScalableWorkforce LLC
in 2011 and merged with their own platform into crowdsource.com (CrowdSource, n.d.).
Serv.io claims to be the market leader for e-commerce content services22. Through their
ClowdCrowd platform they have access to over 250k workers23.

UTest founded in 2007 is not a typical task platform but an application testing service
for Web, mobile and desktop applications that uses crowdsourcing in order to distribute
testing work to a pool of some 70k testing professionals around the world24. Because of
the formalization of those tasks and the limited need for personal interaction with the
requester, these tasks are also considered to match the definition of cloud labor services.

2.5.2. Technical infrastructure

Because of the analogies between cloud computing and cloud labor it can be assumed
that similar service models can be applied to both concepts. This section aims to provide
a sketch of a cloud labor stack by deriving a set of service models from those of cloud
computing, which are defined by Mell & Grance (2011) as:

• Infrastructure as a Service (IaaS) provides the actual IT infrastructure including
computing power, storage and networks on which the user can deploy operating
systems or other arbitrary software. The user only manages the operating system or
other software but has no control over the underlying infrastructure.

• Platform as a Service (PaaS) allows for deploying own applications or third party
applications on top of the cloud infrastructure by leveraging programming models
supported by the provider. The user only controls the ”application-hosting environ-
ment” but has no control over the underlying operating system or hardware.

• Software as a Service (SaaS) provides remote access to specific applications that are
running on a cloud infrastructure. The user only controls ”user-specific application
configuration settings” but has no control over the underlying hosting environment,
operating system or hardware.

Inspired by the definitions of Mell & Grance (2011), a similar stack could be described for
cloud labor which is illustrated by figure 2.5:

21 https://www.paypal.com/, last accessed on July 1, 2013.
22 http://www.serv.io/servio-announces-record-quarter-97-quarter-over-quarter-growth-average/,
last accessed on April 2, 2013.

23 http://www.cloudcrowd.com/company/about, last accessed on April 2, 2013.
24 http://www.utest.com/about, last accessed on April 2, 2013.
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Figure 2.5.: Concept of a cloud labor service (cloud labor) stack in comparison to the cloud
computing stack.

• Workforce as a Service (WaaS) delivers the workforce of a crowd of workers to a
requester as a scalable resource. The requester can define arbitrary tasks which are
completed by the workers remotely, typically through a Web application or mobile
application, and for which responses are delivered by the workers back to the re-
quester. The requester does not manage or control the availability of the individual
workers but can decide, which workers are allowed to work on specific types of tasks.

• Labor Platform as a Service (LPaaS) provides the ability for requesters to deploy
cloud labor solutions that have been created by using workflow languages and task
definition capabilities provided by the platform. The consumer does not manage the
assignment of workers tasks but has control over the quality of work results and the
skill profiles of the workers by utilizing facilities provided by the platform.

• Labor Solution as a Service (LSaaS) provides access to the cloud labor solutions
running on a labor platform. The cloud labor solutions are accessible from various
client devices such as a Web browser or API. The requester does neither manage or
control availability, assignment or the skill of the workers, nor defines the quality
of the work results, with the possible exception of solution specific configuration
settings.

Of course, there are many applications that require both cloud labor and computing re-
sources. Therefore, there should not be a sharp borderline between SaaS and LSaaS.
Instead, LSaaS should be merged with SaaS into a hybrid layer in order to be able to
effectively combine the capabilities of both worlds. The resulting hybrid solutions may
again be running on a hybrid platform which itself is a merger of PaaS and LPaaS. This
layer would have access to both IT infrastructure (IaaS) and human workforce (WaaS).

The above considerations have been developed based on a discussion with Stephen Dill
from the IBM Almaden Research Center in California, USA in March 2012. A similar stack
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was proposed independently by Panos Ipeirotis in July 2012 (Ipeirotis, 2012) which mainly
differs in two aspects: First, from a terminology perspective, the term Labor Infrastructure
as a service (LIaaS) is used instead of WaaS. In this thesis, WaaS is preferred in order to
emphasize the fact that the actual service being provided to the requester is the workforce
of the crowd. Second, LSaaS is defined by Labor Applications / Software as a service
and represents basically what is described as hybrid solution above. In order to clearly
distinguish from and illustrate the symmetry with the cloud labor stack, LSaaS is defined
independently of the cloud labor stack here.

The existing commercial cloud labor services platforms follow different service models.
MTurk can mainly be seen on the level of WaaS, but also cooperates with partners in
order to deliver hybrid solutions, e.g. for media tracking. MTurk actually names such
solutions ”Apps”.25 Crowdflower could be seen as LPaas because it leverages a multitude
of WaaS providers including MTurk. Crowdflower also offers a series of LSaaS or hybrid
solutions, e.g. for content moderation, lead data enhancement and sentiment analysis.26

However, as Turian (2012) points out, Crowdflower does not provide native support for
workflows. He sees MobileWorks close to the idea of LPaaS but mentions that they offer
only immature self-service capabilities. On the LSaaS level, he sees CastingWords, UTest,
Microtask and others, but he underlines that due to the lack of a robust LPaaS provider,
all labor solutions ”must be vertically integrated with the platform layer or implement
their own application-specific platform”.

These observations indicate that there is indeed an overlap between the concepts of cloud
computing and cloud labor. However, the option for deploying own solutions on cloud labor
platforms in the sense of PaaS or hybrid platforms is still limited to explicit cooperations
with the platform providers. The functionality is not yet available as a self service according
to the original idea of cloud computing.

From an architectural and implementation perspective, the considerations about BPM and
SOA mentioned in section 2.2.6 are highly relevant for cloud labor services as they provide
fundamental standards and tools for orchestrating human tasks.

2.5.3. Worker-to-task matching and allocation

In the context of cloud labor platforms, matching is the process to identify suitable tasks
to be performed by a worker or to identify suitable workers for a task. Allocation is the
actual assignment of a task to a worker. The following paragraphs describe how the two
concepts are being addressed.

Allocation

According to the definition of crowdsourcing, the allocation is always performed as an open
call, i.e. the worker browses tasks and decides what tasks to work on. In practice, this
open call is often not fully open, but the pool of workers who are eligible to work on a task
is restricted. This can be due to language, location or skill requirements or because a so
called certification test needs to be successfully completed before being allowed to work on
a task. It can be argued, ”how open” the call needs to be in order to satisfy the definition
of crowdsourcing. In any case, a directive assignment of a task to a worker would not be
considered crowdsourcing.

25See apps and case studies on (Amazon Inc., 2013a).
26See solution overview on http://crowdflower.com/products, last accessed on February 6, 2013.
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The actual assignment of a task could also be the result of an auction. Satzger et al.
(2011a) describe a concept in which a closed-bid auction mechanism assigns tasks to one
of multiple workers who have bid for it. Even though the actual assignment is being
performed by the platform, there is still an open call which in this case is a call for bids.

Apart from the possible use of auction mechanisms, the open call assumption leads to the
fact that the allocation of workers is rather straightforward. The actual challenge is the
matching step, which comes down to presenting the right options to the worker to choose
from.

Matching

There are three factors that constitute the list of tasks that is presented to the worker:

1. A search term and a sort order specified by the worker.

2. A qualification requirement or other restriction that prevents the worker from work-
ing on the task.

3. A recommender system that proposes suitable tasks to workers.

On current task platforms like MTurk, only options 1 and 2 are implemented. Workers
typically browse for the most recently posted tasks or the ones that have the largest number
of available instances and limit their scope to the first pages of the task list (Chilton et al.,
2010). For the requesters, this behavior limits the chance for getting access to workers
with a specific expertise. It also reduces the average result quality as many workers are
performing tasks for which they do not have the skills (Ambati et al., 2011).

For the workers, there can be an advantage to focus on tasks with qualification require-
ments as this will likely reduce the competition of workers. DiPalantino et al. (2011)
have observed that the revenue tends to be smaller if there are many competitors. Better
matching mechanisms also have the potential to reduce the costs and the resolution time.
Chilton et al. (2010) have observed that tasks which are easy to find for a worker are
”completed 30 times faster and for less money” than others. Therefore, recommending
suitable tasks to workers (option 3 mentioned above) can be assumed to be an important
ingredient for cloud labor platforms. However, recommender systems have only rarely
been described in the context of crowdsourcing and specifically cloud labor.

For Wikipedia, Cosley et al. (2007) have developed a Suggestbot that proposes articles to be
revised by editors. In a preprocessing step, the software creates a local mirror of Wikipedia
that contains the texts of all articles and identifies all editing needs based on tags provided
within the articles. At the same time, it models the interests of the Wikipedia editors by
identifying all editing activities they have previously performed and all the links they have
created between articles. By analyzing the text similarity to other articles that need work,
recommendations are made to the editors.

For cloud labor platforms, only a small number of papers have proposed initial ideas about
the use of recommender systems: Ambati et al. (2011) have sketched a recommendation
engine for suggesting tasks to users based on implicit modeling of skills and interests. The
system creates a preference model of the worker using a bag-of-words approach. The model
is based on three types of information:

• A profile created by the worker covering information about his location, education,
skills and experience,
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• explicit feedback about the worker’s rating of the tasks and the payment, and

• implicit feedback using search terms, tasks being selected, task description, reward,
number of instances and the requester’s feedback in form of rejection, bonuses or
comments.

Yuen et al. (2011) have proposed a system that assumes a platform with well defined
task categories. By keeping performance data per category like selection preference, task
acceptance rate and reward and time alloted, the system aims to rank the available tasks
according to the order of best matching.

Matching of workers may also be influenced by their locations. For example, Reddy et al.
(2010) have described a ”recruitment framework for participatory sensing data collection”
that utilizes the ability of modern mobile phones to identify their location and to be able
to perform in-situ data collection by taking pictures, audio or video recordings.

2.5.4. Quality management

As mentioned before, quality management has received most attention of all research foci
in the context of cloud labor services (Kittur et al., 2013) and is regarded as the by far most
pressing challenge in this space (Crowdsourcing LLC, 2012; Turian, 2012). Because of its
importance and because it represents the focus of this thesis, a separate chapter is devoted
to this topic. Chapter 3 will solely concentrate on quality management considerations for
cloud labor services.

2.6. Workforce perspective

The workforce perspective covers the aspects and concepts that are mainly influenced
by the workers. After illustrating the demographics of the workforce in section 2.6.1,
section 2.6.2 describes the primary motivators for people to perform work on cloud labor
platforms. Sections 2.6.3 and 2.6.4 then address the importance of worker education and
feedback mechanisms as well as considerations about the task design. Finally, section 2.6.5
discusses to what extent cloud labor can be considered a desirable work model.

2.6.1. Worker demographics

By far most studies on worker demographics have been performed on the MTurk platform,
which is therefore used as an example here. Over the years, the demographics have shifted
towards a more international population on that platform. In late 2008, the population
had still been US centric. Compared to 83% US workers there had been only a minority
of 5% of workers from India and 12% from other countries (Ipeirotis, 2008). At the end of
2009, the portion of Indian workers had already increased to 36%, while there had been
56% workers from the US and 8% from other countries; at the same time, ”the number
of lower-income workers has increased, along with the number of young workers and male
workers” (Ross et al., 2010).

According to Ipeirotis (2010b), the demographics differ considerably between the US and
India. In the US, the average age of the workers is some 34 years compared to 27.5 years
in India. While 35% of the US workers have at least a bachelor degree, that is the case
for 52% of the Indian workers. In the US, 75% of the workers have an annual household
income of at least $25,000 and only 13% have less than $10,000, whereas the picture is
almost the opposite in India: Only 16% of the workers have an annual household income
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of more than $25,000 and more than 55% declared to have less than $10,000. In both the
US and India, the majority of workers are singles and do not have children. Most of the
workers spend only a day or less per week on cloud labor and earn often less than $20
during that time. A portion of 12% of the US and 24% of the Indian workers state that
Mturk is their primary source of income, whereas 59% of the US workers and 70% of the
Indian workers consider MTurk as a ”fruitful way to spend free time and get some cash
(e.g., instead of watching TV)” (Ipeirotis, 2010b).

One reason why most of the workers are from the US and from India may be that on MTurk,
cash payment is only supported in US dollars and Indian Rupees (Mason & Suri, 2011).
And indeed, on the Microworkers platform, which allows for international cash payments
through payment services like Paypal, there are much more workers from other countries.
According to an analysis performed by Hirth et al. (2011) based on anonymized data
received from the platform provider, most workers are from Indonesia (18%), Bangladesh
(17%), India (14%), United States (11%).

2.6.2. Motivation and incentives

The factors motivating people to perform work on cloud labor platforms can be divided into
two groups, intrinsic and extrinsic motivation (Kaufmann et al., 2011; Rogstadius et al.,
2011).27 Kaufmann et al. (2011) state that ”intrinsic motivation exists if an individual is
activated because of its seeking for the fulfillment generated by the activity (e.g. acting
just for fun)” while ”in the case of extrinsic motivation the activity is just an instrument
for achieving a certain desired outcome (e.g. acting for money or to avoid sanctions)”.

According to Kaufmann et al.’s (2011) model for worker motivation in crowdsourcing pre-
sented in table 2.7, there is a set of motivating factors that can be classified to be extrinsic
or intrinsic. Each of the categories may be measured by a number of motivational con-
structs. The score value provided by the last column was determined by a survey performed
on the MTurk platform. A higher score means that the construct had been considered more
relevant by the workers. The minimum possible value is -0.78, the maximum is 3.99.

Table 2.7.: Model for worker motivation in crowdsourcing with empiric scores for motiva-
tional constructs; derived from (Kaufmann et al., 2011).

Type Category Construct Score

Intrinsic Enjoyment based Skill variety 2.4
Task identity 2.3
Task autonomy 2.4
Direct feedback from the job 2.0
Pastime 2.1

Community based Community identification 2.0
Social contact 1.3

Extrinsic Immediate payoffs Payment 3.0
Delayed payoffs Signaling 1.9

Human capital advancement 2.2
Social motivation Action significance by external values 1.7

Action significance by external obligations & norms 1.0
Indirect feedback from the job 1.7

With a score of 3.0, the extrinsic construct payment sticks out from all other constructs.
That reveals that payment is the primary motivation for people to do work on MTurk.

27This distinction was originally proposed in the self-determination theory by Deci & Ryan (1985).
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But also task related factors seem to be important. Those factors include the variety of
skills needed for performing the task, the autonomy to decide how to perform the work, the
direct feedback that workers may get by validating the quality of their work themselves28,
and also the opportunity to train their skills or gather new skills by working on a task
(human capital advancement).

Interestingly, even killing time (pastime) can be a reasonable motivation for using the plat-
form, a phenomenon already identified by Brabham (2008) and by Ipeirotis (2010b). In a
survey conducted by Ipeirotis (2010b), 32% of the US workers and 5% of the Indian work-
ers have reported that they participate on MTurk to kill time. However, (Kaufmann et al.,
2011) have determined that those workers are not using the MTurk platform frequently.

The authors also point out the ”high potential for community induced intrinsic motiva-
tion” and in fact, even though the MTurk platform does not provide any capabilities for
community building, a number of external communities like Turkernation29 or the MTurk
forum30 and tools like Turkopticon (Silberman et al., 2010) have emerged that provide a
forum for workers to discuss experiences and comment on requesters.

Social motivation like altruism (action significance by external values) or seeking for com-
mendation (indirect feedback from the job) seem to be less relevant for the workers. This
may be a specific characteristic of tasks platforms on which the workers are usually acting
anonymously. External obligations usually do not exist on Mturk because the workers are
freely choosing the tasks they are working on rather than being forced by an employer to
work on specific tasks. That can be assumed to be different in an enterprise crowdsourcing
scenario.

2.6.3. Education and feedback

Education and feedback obviously play an important role in the cloud labor service sce-
nario because the availability of adequately skilled workers is the primary requirement for
generating high quality results. For certain tasks types, a specific training may be required
in order to prepare the worker for successfully completing it. Such a training is usually
integrated into a qualification test that the worker has to complete before being allowed
to work on the tasks. On most platforms workers can contact the requester via e-mail
if they have questions regarding the task. Ambiguous task instructions may also be dis-
cussed in worker communities like TurkNation. However, in order to prevent fraud, only
the instructions themselves and not the responses to individual tasks may be discussed.31

Providing regular feedback to the workers can be seen as another important ingredient
for continuously improving their skills. Hattie & Timperley (2007) differentiate between
four general types of feedback, two of which can be assumed to be relevant for cloud labor
services: Feedback about the task and feedback about the processing of the task.

The most common form of feedback is feedback about the task which ”includes feedback
about how well a task is being accomplished or performed, such as distinguishing correct
from incorrect answers” (Hattie & Timperley, 2007). A major drawback is that feedback
about the task often cannot be easily generalized to other tasks and, therefore, does not

28For example, in a programming task, direct feedback could be received if the workers test the code that
they have developed.

29 http://turkernation.com, last accessed on July 1, 2013.
30 http://mturkforum.com, last accessed on July 1, 2013.
31 http://turkernation.com/faq.php?faq=vb3_board_faq, last accessed on February 17, 2013.

39

http://turkernation.com
http://mturkforum.com
http://turkernation.com/faq.php?faq=vb3_board_faq


40 2. Cloud labor services

encourage the receiver to develop strategies to attain a goal. Feedback about the processing
of the task addresses this limitation by enabling the receiver to detect potential errors
independently and to adjust the strategy accordingly, possibly by seeking help.

Platforms like MTurk support feedback about the task by allowing the requester to accept
or reject responses along with a comment about the rationale for the decision32. Feedback
about the processing of the task is partially supported by some quality management mech-
anisms. For example, Le et al. (2010) are using training tasks with predefined explanations
of potential errors. This will be explained in more detail in section 3.3.2.

Not just the type of the feedback matters but also its timing. In a study with high school
students, immediate feedback has been observed to be more effective for simple tasks
while delayed feedback is still effective for complex tasks. This suggests that difficult tasks
require more feedback regarding the processing of the task, which can be better provided
in form of delayed feedback. (Clariana et al., 2000)

2.6.4. Task design

This section summarizes a number of observations that may be used as a guideline when
designing cloud labor services and when deciding on the type and amount of the payment.

In an empirical study on the MTurk platform, Schulze et al. (2011) found out that in
general, workers prefer clear instructions, genuine requests and a task design which does
not require them to leave the Mturk site for completing the task: Everything they need
should be integrated into the task’s user interface. One reason the authors mention for
that is that many workers have suffered from malicious websites.

The study further suggests that workers can be categorized into three groups which are
outlined in the following:

• Quick profit jobbers prefer rather simple tasks with a short description that can be
completed in a short time and result in a relatively high reward per hour.

• Informed workers prefer well described tasks that have been submitted from well-
respected requesters who are willing to respond to questions if needed. The tasks
should be underpinned with comprehensive examples for correct and incorrect res-
ponses so the workers will understand under what conditions their work will be
rejected.

• Challenge seekers prefer challenging tasks that sound interesting and enjoyable and
for which background information is provided. There should be multiple tasks of the
same type available and bonuses should be payed for good performance.

Interestingly, the level of education does not seem to have an impact on the worker’s
preferences. Indian workers seem to be keen on bonuses being paid for good work while
US workers and also full-time workers from any region appreciate to work for well-respected
requesters (Schulze et al., 2011).

From these observations it can be deduced that the granularity of simple tasks should
rather be low, which, as will be discussed in more detail in section 3.1.2, can also have a
positive impact on the result quality. For more complex tasks, background information
and comprehensive examples should be provided, complemented by the ability to contact

32 http://aws.amazon.com/documentation/mturk/, last accessed on February 17, 2013.
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the requester. A good reputation of the requester matters for complex tasks and will for
several reasons also have a positive impact on the execution performance: It attracts full-
time workers and workers from different regions and, as further discussed in section 2.6.5
also reduces the risk from being put on a black list by worker communities which would
drastically slow down task execution. An important factor of the requester’s reputation is
the payment in terms of the average hourly rate determined by the workers. As described
in section 3.1.2, the payment also directly affects the overall execution performance but
not the accuracy of the result. However, no payment at all may lead to a higher accuracy
than a low payment.

In order to help requesters determining the actual payment, Horton & Chilton (2010)
have proposed a model that predicts how workers supply work to a cloud labor platform
depending on the available tasks and their expected hourly wage. The model is based on
the assumption that workers would not start working on any task as long as the expected
wage is lower than a certain minimum wage which the authors define as reservation wage.
Although their tests have confirmed their model only to a certain extent, the authors are
convinced that it still provides a useful approximation. A possible explanation they offer
for the mismatch is that a significant number of workers may act as target earners who try
to work towards a certain self-imposed target wage rather than responding to the actual
market, i.e. ”when wages are high, a target earner works less”.

2.6.5. Work model

From the perspective of the workers, the concept of cloud labor provides exceptional op-
portunities but also severe risks. The concept offers an unprecedented freedom to decide
when, where, how much to work and what to work on. There is no need of commuting
to an office during rush hour but at the same time, working remotely does not necessarily
mean that people have to work in an isolated manner from home. Along with the success of
cloud labor platforms, a new type of flexible office space is emerging that can be booked on
an hourly basis. Liquidspace33 connects ”nomadic workers and property owners who have
underutilized space”. Office space may be booked and paid in seconds using a smartphone
application. The booking confirmation displayed on the screen represents the admission
ticket for the office. Interestingly, the service is not only used by crowd workers but also
by large companies who want to offer flexible offices to their remote workers. Available
space includes underutilized desks of large corporations, conference rooms in hotels and
even free space in public libraries. (Kolodny, 2012)

On the downside, employees are afraid that their jobs may be turned into freelance cloud
labor engagements with no job security or benefits plan. Felstiner (2011) mentions that
”many creative professionals and providers of skilled services (such as software develop-
ment) fear that their industries will go the way of stock photography”. In addition, he sees
a risk of continuously low wages because ”treating individual workers as sources of cheap
labor has hardly proven to be a recipe for failure in the past. If some are willing to work
for substandard wages and benefits without legal protection, by necessity or choice, there
is no reason to believe that their willingness will evaporate in cyberspace”. Felstiner points
out that existing protective statutes34 do not adequately cover the concept of cloud labor
because ”in the past, a worker could not physically perform a unit of piece-rate labor in

33 http://liquidspace.com, last accessed on February 16, 2013.
34 In his paper, he specifically focuses on the US and discusses to what extent the Fair Labor Standards Act
(FLSA) and the National Labor Relations Act (NLRA) are applicable to crowdsourcing.
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under a second. Parties did not make employment contracts from the other side of the
planet with the click of a mouse. Employees were unlikely to have twenty-five separate
employers in the course of a single workday.” Therefore, he believes that legal practice
”must revise the definition of ’employer’ and ’employee’ to recognize the economic realities
of online and virtual work”.

IG Metall, which is the largest35 labor union in Germany, is concerned about how to
represent the crowd workers in a global cloud labor scenario given that they are today
organized by industry and location (IG Metall, 2013). Specific challenges the labor union
foresees include the definition of agreed wages along with standardized labor conditions
and also the question, who would be the bargaining partners. Would it be the platform
providers or rather large enterprise requester companies? IG Metall also sees a chance that
self-organization of the communities may strengthen the position of the crowd workers with
regard to the requesters.

And in fact, as mentioned in section 2.6.2 with Turknation and Turkopticon, first shapes
of such communities are already emerging. Therefore, Felstiner (2011) summarized that
”in the end, crowdsourcing relies on the crowd for its very existence. Legal intervention
can only buttress and protect the organized efforts of crowd workers; it cannot replace
those efforts”.

Chapter 2 has shown that cloud labor services are still an evolving field of research. It
poses a variety of challenges that require additional research in a several disciplines. As
just discussed, this concerns a critical reflection of the effect cloud labor services will have
on the way we will perform work in the future. However, this also concerns their technical
and conceptual feasibility. The remainder of this thesis contributes to the latter by focusing
on quality management for cloud labor services.

35 http://www.dgb.de/uber-uns/dgb-heute/mitgliederzahlen/2010, last accessed on April 3, 2013.
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3. Quality management for cloud labor
services

According to a 2012 analyst report on cloud labor platforms, the quality of the work
results represents a ”key disruptive opportunity that crowd labor platforms can exploit and
improve” (Turian, 2012). This chapter provides a comprehensive overview of the state-of-
the-art of quality management for cloud labor services and provides a gap analysis with
regard to the objectives of the thesis.

After identifying relevant quality metrics and influencing factors for cloud labor services in
section 3.1, section 3.2 provides an overview on the core concepts for quality management
of cloud labor services. Section 3.3 then describes the most relevant approaches in detail.
Finally, the approaches are compared in section 3.4 and gaps are identified.

3.1. Quality of cloud labor services

Section 3.1.1 defines the term quality as used in the context of this thesis. Section 3.1.2
then identifies relevant quality metrics for cloud labor services. Afterwards, the factors
influencing the quality of cloud labor services are examined in section 3.1.3.

3.1.1. Quality

Quality is not an inherent attribute of a product or a service but can only be determined
by considering the expectations of the requester. Montgomery (2008, p. 5) expresses that
relation by stating: ”The traditional definition of quality is based on the viewpoint that
products and services must meet the requirements of those who use them”. De Feo &
Juran (2010, p. 5) reduce it to the simple formula: ”Quality is fitness for purpose”. In this
thesis, the term quality is defined according to the ISO standard 9000:2005 as ”the degree
to which a set of inherent characteristics fulfills requirements” (ISO - The International
Organization for Standardization, 2005). According to this definition, quality is optimal
if the requirements are perfectly met. This point of view anticipates that if quality is not
optimal, there must be a gap between the actual characteristics of the service and the
expectations of the user. According to the GAP model developed by Parasuraman et al.
(1985) ”the quality that a customer perceives in a service is a function of the magnitude
and direction of the gap between expected service and perceived service”.
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Obviously, setting the right expectations is one of the key ingredients for providing good
quality of service. For IT services, this is typically being done by using so called service level
agreements (SLAs). Sturm et al. (2000, p. 13) define the term SLA as ”a contract between
IT and its clients that specifies the parameters of system capacity, network performance,
and overall response time required to meet business objectives. The SLA also specifies a
process for measuring and reporting the quality of service provided by IT, and it describes
compensation due [for] the client if IT misses the mark”. Service quality is a key aspect
of an SLA. According to Berger (2012), the service quality is defined by the following
elements of the SLA:

• Service level parameters (SLPs) represent certain quality characteristics of a service
that are to be measured.

• Service level objectives (SLOs) are the target values of the SLPs that need to be met.

• Measurement methods are used to determine the way the SLOs are measured as well
as the frequency and the precision of measurement.

Because cloud labor is a service that is delivered via IT, the concept of the SLA can also
be applied to cloud labor.

3.1.2. Relevant quality dimensions

Parasuraman et al. (1985) have identified ten ”determinants of service quality” which are
summarized in table 3.1 and which are used as a starting point to further elaborate on
the relevant quality characteristics of cloud labor services. For cloud labor services, these

Table 3.1.: ”Determinants of service quality” adopted from Parasuraman et al. (1985).

Characteristic Description

Reliability Consistency, dependability, accuracy, correctness, timely delivery of results
Responsiveness Willingness or readiness of employees to provide service
Competence Skills and knowledge to perform the service
Access Approachability and ease of contact
Courtesy Politeness, respect, consideration, and friendliness of contact personnel
Communication Keeping customers informed in a language they can understand and listening

to them
Credibility Trustworthiness, believability, honesty
Security Freedom from danger, risk, or doubt
Understanding Making the effort to understand the customer’s needs
Tangibles Physical evidence of the service

quality characteristics are relevant in two ways, from a technical perspective and from a
workforce perspective.

Technical aspects of quality are covered in the characteristics reliability, access, security
and tangibles. They can be mapped to the common quality characteristics of IT services.

Examples for the characteristic tangibles would be the server infrastructure of the platform
as well as the technical infrastructure of the service workers. The platform infrastructure
needs to meet specific performance, scalability and availability requirements in order to
guarantee a continuous service with high performance. For the service worker, a certain
minimum network bandwidth, CPU speed and a high quality display might be required in
order to work on data intensive tasks with complex images or diagrams to be revised.
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From a workforce perspective, especially those characteristics that assume the presence
of humans (e.g. responsiveness, competence, courtesy, communication) can be considered
highly relevant for the service workers but also for the service personnel of the platform.

However, for the cloud labor service itself, which is provided through an abstract interface,
the requester is primarily interested in what is returned and when it is returned. The what
refers to the accuracy of the information being returned, the when refers to the response
time of the service and also to its availability and scalability. With regard to the quality
characteristics listed in table 3.1, accuracy and response time are covered by the reliability
characteristic while availability and scalability are covered by the access characteristic.
Accuracy, response time, availability and scalability are discussed in the following:

Accuracy

For cloud labor services, accuracy refers to the quality of the results with regard to the
information that the cloud labor platform delivers back to the requester. As mentioned
previously, among all quality dimensions, the by far largest amount of the quality related
research articles in the area of cloud labor services deal with accuracy. Often, the broader
term quality is used as a substitute for accuracy. The QM challenges mentioned in sec-
tion 2.3.2 predominantly refer to the aspect of accuracy. This is mainly because of the
anonymity of the workers and the limited control that the requesters and the platform
have over them. Other aspects of quality are usually much less relevant as long as the
requester cannot rely on the accuracy of the results.

The actual requirements with regard to accuracy may be manifold. They can be divided
into 16 dimensions of information quality that have been identified by Kahn et al. (2002):
Accessibility, appropriate amount of information, believability, completeness, concise repre-
sentation, consistent representation, ease of manipulation, free-of-error, interpretability,
objectivity, relevancy, reputation, security, timeliness, understandability and value-add.
When defining a work request, the requester needs to reflect which of the quality dimen-
sions are important to him and needs to explicitly specify the appropriate requirements.
The role of the QM mechanism is to ensure that the quality requirements are met. The ac-
curacy of a result is usually rated in a binary way: it is considered correct if the requester’s
requirements are met and is considered incorrect if they are not. Sometimes, results are
also graded according to a predefined scale (Hoffmann, 2009; Little et al., 2010a; Liem
et al., 2011).

Availability and scalability

Availability can generally be defined as the ”ability of a[n] ... IT Service to perform its
agreed function when required” (Lloyd & Rudd, 2007, p. 290). Correspondingly, the
availability of cloud labor services can be defined as the ability of delivering a cloud labor
service with an agreed scope and volume whenever required. This implies a contract in
which the scope and the volume are defined. While the technical availability requirements
can be addressed by means of IT service management, the workforce requirements pose
a challenge for the concept of cloud labor services. Especially in the case of a public
workforce, workers cannot be forced to work on specific tasks, but they must be motivated
to do so. Because many requesters and platforms are competing for the same workers, the
availability of the workers and their demand for a certain type of task may change over
time. In fact, during the research work on this thesis it was observed that tasks which
once had been well received by the workers were not picked up at all at another point in
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time. Moreover, workers may agree not to work on certain tasks because they dispute the
honesty of the requester or are unhappy with the payment. Increasing the compensation
may put those workers back to work. Cultivating a good relation to the workforce and
reacting to their inquiries is also important, as shown in section 2.6.2.

Scalability can be defined as the ”ability of an IT service, process, configuration item, etc.
to perform its agreed function when the workload or scope changes” (Lloyd & Rudd, 2007,
p. 308). Accordingly, the scalability of cloud labor services can be defined as the degree
to which a cloud labor service is able to perform its agreed function when the workload or
scope changes. The more scalable the service is, the smaller is the increase in cost if the
demand grows and the higher is the decrease in cost if the demand declines. Because of
the pay-as-you-go nature of cloud labor services, the requester normally has to pay only
for the work that is actually being performed, which results in a very good scalability.
However, there are recent experiments to reserve workers by paying them for remaining
stand-by waiting for tasks (Bernstein et al., 2011). Even though these approaches are
targeted to improve the response time of tasks rather than to manage the scalability,
similar approaches may emerge for the latter objective.

Because of the on-demand nature of cloud labor services, availability and scalability re-
present inherent strengths of the concept and can be seen as the most remarkable quality
characteristic of cloud labor services. Apparently, an active workforce management is
essential in order to ensure the availability and scalability of cloud labor services. The
progress of the task execution needs to be tracked continuously and corrective actions
need to be taken if the tasks are not picked up in time by appropriately skilled workers.

Response time

The response time of a cloud labor service is the period of time between submitting a task
to a cloud labor platform and receiving the result. The response time includes the time
workers need for finding and executing the task, the computing time for processing the
tasks and the responses, and the technical communication overhead. In anticipation of
section 3.3, multiple workers may be involved until a reliable result is delivered back to
the requester which may increase the overall response time of the task.

The execution time of an individual task is influenced by a series of factors including the
nature of the tasks and the design of the user interface. Compared to IT services, the
response time of cloud labor services is usually very high because of the humans being
involved. However, if there are many equivalent tasks that may be performed in parallel,
the overall response time can still be relatively small, provided that enough workers with
the required skills are available. A batch oriented task like validating a 40 page product
catalog or transcribing a 60 minute audio recording may be completed in minutes if enough
workers are working in parallel. Therefore, the overall completion time will not just depend
on the execution time of the individual tasks, but also on the scalability of the service.

From the workforce perspective, the overall response time may be reduced in three ways:

• Reducing the time workers need for finding the task.

• Reducing the time for executing the tasks.

• Parallelizing efforts.

There are recent approaches in the area of real time crowdsourcing that address these
aspects in different ways. They will be discussed in section 3.2.4.
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3.1.3. Influencing factors

This section describes what factors are influencing the quality of the results delivered by
the cloud labor platform. It is structured along the three perspectives of the basic cloud
labor concept: Application, platform and workforce.

Application perspective

Naturally, a proper description of the task objectives and the task specific capabilities of
the workers have a severe impact on the quality. Examples for correct responses should
be provided and the workers should have the option to contact the requester if they have
questions regarding the task (Kaufmann et al., 2011). This will not only help to avoid
misunderstandings regarding the task objectives, but also to anticipate and avoid similar
questions from other workers in the future as it allows for adjusting the task description.

Huang et al. (2010) have observed that a fine grained task granularity can improve the
effectiveness of a task by generating more high quality results. They have developed
a model that can predict the impact of the task granularity on the accuracy. In their
experiments, the task granularity is represented by the number of images to be labeled
and the number of labels to be returned. In general, as discussed in section 2.6.4, tasks
should be designed in a way that they target a suitable type of workers.

Platform perspective

The platform influences the quality of the cloud labor services in three ways: By its
technical characteristics, by its ergonomics and by the features it provides.

Like for any other IT based system, the reliability of the technical infrastructure is nat-
urally a fundamental prerequisite for providing high quality cloud labor services. If the
platform breaks down or if it cannot satisfy the workload in a timely manner, the remaining
considerations discussed in this chapter are becoming irrelevant.

The ergonomics of the platform is another crucial point. If the platform is not attractive
and easy to use, workers and requesters may choose a different platform, which reduces the
availability of skilled workers and the variety of available tasks. In addition, ambiguous
controls or faulty usage instructions may affect the accuracy of the work results and also
the response time.

The platform features can be seen as an enabler for other quality relevant factors. The
lack of a feature may make it impossible or at least difficult to use certain options. For
example, if there is no support for workers to get in touch with the requesters, it will be
difficult for them to provide feedback about blurry task instructions. Section 2.3.2 provides
a summary of key platform requirements. A particularly important feature is the existence
of appropriate QM mechanisms, which will be discussed in the remainder of this chapter.
However, such mechanisms do not necessarily have to be part of the platform itself but
can be implemented by the requester on the basis of fundamental platform capabilities.
An example for such capabilities can be found in section 5.2.1.

The service model of the platform is crucial because the size and the capabilities of the
available workforce will naturally have a key impact on all aspects of quality. If the required
skills are not available, the tasks may not be accurately completed or the response time
may increase because less skilled workers are likely to need more time to complete a task.
If there are too few adequately skilled workers, the availability and the scalability of the
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cloud labor service may suffer. For location based services, a geographically distributed
workforce is a key factor. Meta-platforms like crowdflower.com that merge workforces from
multiple platforms may establish access to a much larger and more uniformly distributed
workforce with a greater variety of skills than independent ones.

Workforce perspective

In the long run, the skill level as well as the number of available workers are both influenced
by the task design and by the way the workers are trained and motivated. This includes
effective and sustainable education and feedback mechanisms as well as an adequate com-
pensation of the workers.

While several studies consistently report that increasing the payment does not increase
the accuracy of the results, a finding that is consistent with the standard economic theory,
”higher payment leads to quicker results” because it ”attract[s] workers at higher rate”who
then also completed more tasks; simplifying the tasks had a similar effect (Mason & Watts,
2010; Rogstadius et al., 2011).

Faridani et al. (2011) have presented a model for predicting completion times depending
on the price. They point out that the form of payment can also have an impact. In their
experiment, workers had to find words in a word puzzle. Payment per completed puzzle
(”quota” system) turned out to be more effective than payment per word (”piece rate”
system). The quota system lead to ”better work for less pay” than the piece rate system.

Accuracy has been observed to be significantly increased though intrinsic motivators. In an
experiment performed by Rogstadius et al. (2011), workers were asked to identify pictures
that showed blood cells infected with malaria parasites. The exact same task was used
in two setups: Once as a charity task (with no compensation) under the name of a non-
profit organization and once as a paid task under the name of a major actor in private
pharmaceutical manufacturing. The accuracy turned out to be some 10% higher in the
non-profit setup. Furthermore, the non-profit setup has attracted more workers who each
completed a larger number of tasks.

3.2. Quality management approaches

A number of general QM approaches for cloud labor services have been described in the
scientific literature which are outlined in the following sections.

3.2.1. Qualification tests

Qualification tests are commonly used for assessing the qualification of workers before they
are allowed to work on a new type of task. In such a test, the worker is asked to respond
to a series of test questions which are representative of the real tasks that make up the
application. Depending on the type of application, the test is either evaluated manually
or it is assessed automatically by comparing the worker responses with the already known
optimal responses. Depending on the portion of test questions the worker has answered
correctly, a failure rate is assigned to the worker which can be used in several ways. On
the one hand, it can be used as an entry barrier to ban spammers and unskilled workers
from the task, i.e. workers who exceed a certain minimum error rate will not be allowed
to work on the tasks. On the other hand, the worker failure rates may be used to initialize
the parameters of advanced QM mechanisms. Qualification tests represent a fundamental
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feature of many cloud labor platforms including MTurk and CrowdFlower. A useful side-
effect of qualification tests is that they can also be used for training purposes. Given that
the workers have to complete the test before they start working, they also have to complete
the training.

3.2.2. Output-based quality management

Most existing approaches for managing the accuracy of cloud labor services are output-
based as they solely look at the responses received from the worker in order to assess their
quality. Among these approaches, again the vast majority are crowd-based as they are
outsourcing the QM effort back to the crowd. According to different patterns, contributions
of multiple workers are aggregated or iteratively transformed in order to deduce a reliable
result. Another important approach is gold-based quality management which relies on
tasks for which the optimal response is already available upfront. By randomly passing
such tasks to workers and comparing their responses with the optimal ones, the average
accuracy of the responses can be estimated. The most relevant patterns for output-based
QM will be introduced in section 3.3.

3.2.3. Execution process monitoring

Execution process monitoring does not measure the accuracy of worker responses but aims
to gather insights about the way a worker is performing a task by monitoring, tracking or
analyzing the actual execution process. Such approaches are primarily used for human-
directed cloud labor. The most prominent example is probably ODesk’s Work Diary that
screens the workers’ progress by taking regular screenshots on their computers and making
it available to the requesters.1 The tool is mainly supposed to support ODesk’s pay per
hour model by documenting that a worker is actually working on a specific project. That
way, unreliable workers can be detected.

Similar approaches have been recently applied to cloud labor services for collecting infor-
mation about the worker behavior and deriving predictions about the response quality.
Using a JavaScript library, Rzeszotarski & Kittur (2011) are monitoring the activities a
worker performs on the task interface while executing a task, including mouse movement,
mouse clicks and key strokes. Based on a ”task fingerprint” generated from that data, the
authors were able to estimate the accuracy of the worker’s responses. Their ”CrowdSwape”
tool combines this approach with complementary QM approaches like crowd-based and
gold-based QM (Rzeszotarski & Kittur, 2012). By merging the predictions and insights
gathered by the different approaches through machine learning and by visualizing them in
an interactive way, CrowdSwape aims to support requesters in better exploiting the crowd.

3.2.4. Response time management

There are many applications in which the response time of the cloud labor services mat-
ters. This is specifically the case for synchronous applications in which the requester is
waiting for a response or in which a dynamic process is supposed to be supported by cloud
labor services in real-time. An example for the first category is VizViz, a mobile phone ap-
plication for blind people that answers visual questions in nearly realtime (Bigham et al.,
2010). Using the application, a requester can take a picture and record a spoken question

1https://kb.odesk.com/categories/Clients/Managing+My+Team/Work+Diary/, last accessed on 2013-01-
07.
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regarding the picture, e.g. the request to read what is written on a sign. The picture and
the voice message are transferred to the server component of VizViz, which publishes a
corresponding task on the MTurk platform. A spoken response is provided by a worker
and returned to the requester within about 30 seconds. That way, VizViz provides a low
cost solution that helps blind people to interpret visual information. It is available on iOS
and Android. The price for answering questions is about 4-5 cents. The server component
is implemented using QuickTurkit2, an abstraction layer on top of Turkit.

AudioWiz provides a similar service for transcribing speech recordings into text in near
real-time (White, 2010). Another example for a near real-time application is Soylent
(Bernstein et al., 2010), which has already been mentioned in section 2.4.3 and will be
further discussed in section 3.3.6.

As outlined in section 3.1.2, the response time depends on the delay until a worker starts
working on a task, on the execution time as well as on the degree of parallelization.
Bernstein et al. (2011) introduce the term of synchronous crowds that support real-time
crowdsourcing. They propose a combination of two models in order to reduce the response
time: The retainer model reduces the time until a worker starts working on a task by
paying a small compensation for being on standby. That way, workers are at hand and
start working immediately once a task arrives. The rapid refinement model reduces the
execution time. It helps the workers to deliver a response more quickly by providing them
with real-time feedback about the progress of other workers who are working on the same
task in parallel. The underlying idea is based on the observation that many workers ”decide
on the gist of a solution quickly, but can take time to commit the final answer”. This gist
is being identified and used to narrow down the search space for all workers so they can
get to a solution more quickly. In their Adrenaline application, Bernstein et al. (2011)
use the rapid refinement model in order to identify the best frame out of a short video
sequence. They have shown that the approach can drastically reduce the execution time
while still achieving a reasonable result quality.

An example for a dynamic process supported by cloud labor services is Legion (Lasecki
et al., 2011), which allows for real-time control of GUI applications by the crowd. It
captures the screen of existing GUI applications and makes them available to crowd workers
using MTurk. In an example application the authors demonstrate how the system can be
used to collaboratively control a robot toy, a task that naturally needs to be performed in
real-time. Different mediation strategies are evaluated to aggregate feedback from multiple
workers. A promising strategy turned out to be the ”leader”strategy in which direct control
is temporarily passed to a single worker who did agree well with the others in the past. That
way, the latency is reduced because there is no need to wait for a consolidated decision
of multiple workers. At the same time, the risk of undesired operations is increased.
Therefore, the optimal mediation strategy will depend on the application.

The following section will tie in with section 3.2.2 by focusing on output-based QM in
more detail.

3.3. Patterns for output-based quality management

This chapter introduces the five most relevant approaches for output-based QM. They
are organized into five patterns in this thesis. While the first pattern uses gold standard

2 http://quikturkit.googlecode.com., last accessed 2013-05-01.
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tasks for estimating the performance of the workers, the remaining four patterns are crowd-
based, i.e. they leverage the crowd itself for managing the accuracy of the worker responses.

Section 3.3.1 firstly introduces a set of task characteristics that are needed when discussing
the reach of the individual patterns. Section 3.3.2 then describes the gold-based QM
pattern, while the crowd-based patterns are covered by sections 3.3.3 through 3.3.6.

3.3.1. Relevant task characteristics

Not all output-based QM patterns can be applied to all tasks. The following classification
aims to provide a structure for indicating the reach of the QM mechanisms described in
the subsequent sections. The decision tree in section 3.4 will build on this classification. It
consists of four binary dimensions which are outlined in table 3.2 and described in detail
in the following.

Table 3.2.: Classification of cloud labor tasks as a basis for choosing a suitable QM
approach.

Characteristic Value Description

Determinacy of task results
deterministic There is exactly one well defined optimal response.

non-deterministic There may be multiple responses which perfectly

meet the task requirements.

Validation effort
low Validating a response requires much less effort

than generating it.

high Validating a response requires at least similar ef-

fort as generating it.

Granularity
coarse-grained Task could be divided into smaller tasks.

fine-grained Task cannot be further divided into smaller ones.

Difficulty
simple A worker who met the qualification test can be

expected to complete the task successfully.

difficult Even a worker who met the qualification test can-

not be expected to complete the task successfully.

Note that the taxonomy naturally differentiates between distinct classes even though the
underlying characteristics may represent a continuum. The following descriptions advise
on how to determine the corresponding values:

• Determinacy of task results: Some quality management approaches use redundancy
for ensuring the accuracy of worker responses. The exact same task is passed to
independent workers and their responses are then aggregated. The first dimension
of the classification refers to the question whether an automatic aggregation of the
results is possible at all. This is the case if there is a well defined optimal response for
the task i.e. if two workers who independently work on the task and who perfectly
meet the task objectives return identical responses. In this thesis, such tasks are
defined as deterministic. An example is the transcription of a speech recording if
spelling and punctuation does not matter. For non-deterministic tasks, there may
be multiple optimal results that differ from each other even though they all perfectly
meet the task objectives. Examples include text authoring, language translation and
the creation of creative designs.
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• Validation effort: Another fundamental concept is the validation of worker responses
by other workers. Its suitability obviously depends on the validation effort, which
represents the second dimension of the classification. Depending on the type of task,
the effort may be much lower than the effort for producing the original response or it
may be of at least similar magnitude. For instance, in a text authoring application, it
is usually much simpler to decide whether a given text meets certain quality criteria
than to write the text. Another example are image research applications. It is much
harder to find a picture which shows exactly five bananas than to validate that there
are indeed five bananas on a given picture. Examples for a similar effort are basic
classification and research tasks for which a result validation is only possible by
performing the research again. The magnitude of the validation effort is assessed in
a binary way: It is considered to be low if it clearly falls below the execution effort
whereas it is considered high if it is of the same or higher magnitude.

• Granularity: Even small tasks may be split into even smaller parts. For example,
instead of asking one worker to transcribe a 100 word handwritten text, 100 workers
could be asked to transcribe just a single word. Obviously, such a decomposition
does not always make sense because it increases the overhead for claiming the tasks
and it hides context from the workers which may prevent them from delivering a
good result. If an average worker is able to complete the entire task in a reasonable
amount of time, a decomposition of the task is usually not recommended. However,
the granularity of the task can make a difference from a quality management point
of view. Therefore, it is used as the third dimension of the classification. A task is
defined to be fine-grained if it could (theoretically) be divided into several smaller
tasks, whereas it is coarse granular if this is not the case.

• Difficulty: The fourth dimension of the classification concerns the difficulty of the
task. A simple task is defined as one that can be expected to be successfully com-
pleted by an average worker. Average refers to the specific crowd that is permitted
to work on the task, i.e. even an expert may be considered an average worker if the
specific crowd consists of experts only. Therefore, diagnosing an X-ray photograph of
a common injury may be considered a simple task for a crowd of radiologists. How-
ever, diagnosing a very rare injury may be a difficult task even for an experienced
radiologist. Maybe, only a small portion of the crowd would be able to successfully
complete it. Breaking down the task into smaller parts would not work because
diagnosing an X-ray photography is a holistic task that is already coarse granular
according to the definition above. However, a task may also be difficult because it is
fine-grained. Consider for example a ten page language translation with extremely
high quality needs. If the requester is intolerant to mistakes, it will be very hard for
a single translator to deliver a satisfactory result. Therefore, a second or even third
worker should be assigned for proofreading which suggests that the difficulty of a
task may have an impact on the selection of a suitable QM approach.

3.3.2. Gold pattern

Gold standard tasks are such tasks for which the correct response is already available. By
comparing a worker’s response with this ground truth3, the accuracy of the response can
be determined. This only works for deterministic tasks as defined in the previous section
because for non-deterministic tasks a ground truth is not defined. Gold standard tasks are

3This term is sometimes used in the context of cloud labor services, e.g. by Sorokin & Forsyth (2008).
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widely used for estimating the initial failure rates of workers or for assessing the quality of
a stream of worker responses. Gold standard tasks are typically manually collected, which
causes an extensive effort (Le et al., 2010; Oleson et al., 2011).

A basic but effective way of determining the accuracy of responses that are returned by
a worker for a stream of tasks is to inject gold standard tasks into that stream (Sorokin
& Forsyth, 2008). By comparing the incoming responses with the gold standard, samples
may be taken from the stream of incoming results in order to determine the overall quality
of the stream. Workers who fall below a minimum quality limit may be banned from the
task in order to keep a high overall quality of the responses returned by all workers.

For non-deterministic tasks, the gold pattern can only be used indirectly by combining
them with deterministic tasks, i.e. by putting verifiable (deterministic) questions into the
non-deterministic task. Kittur et al. (2008) have shown that this approach can significantly
improve the quality of the results. Naturally, it also increases the completion time because
responding to the additional questions requires more time. However, apart from con-
sistency checks, for subjective tasks like surveys and polls it is often the only way to assess
the quality of the responses.

According to Le et al. (2010), an advantage of the gold pattern is that it may be used for
implicit training of the workers in a dynamic learning environment. Given the fact that
the correct responses are already available, instant feedback can be provided to the worker
right after the results have been submitted. In case of incorrect responses the feedback
may be complemented with predefined explanations regarding what has been wrong and
how the error may be avoided in the future. The process described by Le et al. starts with
an initial set of training tasks (”training period”) that is passed to workers who work on a
certain task type for the first time followed by a sporadic injection of additional training
tasks throughout the entire process. If the percentage of incorrect responses exceeds a
certain limit, the workers are considered to be spammers and will not be allowed to work
on the task any more. The authors point out that the distribution of the correct responses
in the training period should match the distribution of the correct responses in the actual
tasks because workers seem to develop a notion of that distribution. For example, if in a
binary task most of the training tasks had to be answered with ”yes”, the workers will also
answer most of the actual tasks with ”yes”.

A general challenge of the gold pattern is that workers may identify the gold standard
tasks when being assigned to the same one multiple times. Therefore, the number of gold
standard tasks must scale with the number of actual tasks. Oleson et al. (2011) use about
one percent of gold standard tasks. In order to reduce the effort for the manual creation
of gold standard tasks, they have developed a semi-manual approach for generating new
gold standard tasks. Based on a set of known correct responses that have been gathered
using the voting pattern to be described in section 3.3.3, their programmatic gold approach
mutates the correct responses into incorrect ones according to a set of typical worker errors
that they have manually identified upfront. Then, it merges correct responses with the
various types of worker errors according to the distribution of those errors in the actual set
of tasks. Because there is still a risk that in the voting phase all workers have agreed on an
incorrect response, Oleson et al. provide a way to ”contest” gold standard tasks if a worker
thinks that the gold standard task has been setup incorrectly. Once a certain amount of
workers have contested the task, it will not be used any more. Even though there is still
manual effort required, Oleson et al. report that their approach leads to significant time
savings.
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In general, it needs to be considered that the gold pattern cannot directly improve the
accuracy of individual results to be passed to the requester because the results of gold
standard tasks are already available before the worker performs a task. Instead, gold
standard tasks can only be used to indirectly improve the accuracy of a stream of results
by tracking the average performance of a worker. When a worker misses too many of the
gold standard responses, corrective actions need to be taken, e.g. by educating the worker
or in the worst case, by banning him from the task.

3.3.3. Voting pattern

In the voting or redundancy pattern, the exact same task is passed to a set of workers who
are assumed to complete it independently of each other. The worker responses are then
compared or aggregated in order to generate a reliable result. Figure 3.1 illustrates the
basic flow of the voting pattern.

Input Output
Create

and / or
Vote

Figure 3.1.: Basic flow of the voting pattern.

The voting pattern is grounded on Condorcet’s Jury Theorem (de Caritat marquis de
Condorcet, 1785), which states that if there are two possible outcomes for a task (correct
vs. incorrect) and each decision maker has the independent probability of more than fifty
percent to make the right decision, the probability for a correct group decision is higher
than the one of the individual worker. Variations of the voting pattern have been used in
other domains, e.g. in medicine (Zhou et al., 2002) and machine learning (Sheng et al.,
2008).

In the context of cloud labor services, various implementations of the voting pattern have
been proposed, for example by Sorokin & Forsyth (2008), Snow et al. (2008), von Ahn
& Dabbish (2008), Whitehill et al. (2009) and Ipeirotis et al. (2010). In its most basic
form, the majority vote, the response returned by the simple majority of the workers is
considered to be the correct one while all other responses are considered to be incorrect.
By tracking the individual failure rates of the workers, spammers can be identified and
banned from working on further tasks. Snow et al. (2008) have investigated how a group
of non-experts compares to a single expert. For different text analysis applications, they
have observed that depending on the concrete application a vote of two to ten non-experts
is required to exceed the accuracy of a single expert.

As a general restriction, like the gold pattern, the voting pattern is limited to deterministic
tasks. The create/vote step in figure 3.1 may represent either a multiple choice decision
between a number of predefined options or it can represent the creation of a free-form
response (for example a word being typed in) for which the worker implicitly votes by
submitting it. In any case, there must be a high probability that multiple workers propose
exactly the same response.

Furthermore, it has to be considered that agreement between the workers does not neces-
sarily indicate a correct response, but may also be caused by a cultural bias, by ambiguity
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of the task or by cheating and collusion (Le et al., 2010). Another reason may be a lack of
qualification. For example, two novices who do not understand the challenge of a task may
overrule an experienced worker by choosing the apparently correct but actually incorrect
response. Therefore, more sophisticated implementations of the voting pattern have been
developed that take into account the individual qualification of the participating workers.

Based on the expectation maximization (EM) algorithm developed by Dempster et al.
(1977) and inspired by the work of Dawid & Skene (1979), several authors (Raykar et al.,
2009; Whitehill et al., 2009; Raykar et al., 2010; Welinder & Perona, 2010) have proposed a
maximum likelihood estimation (MLE) that estimates both the worker failure rates as well
as the ground truth at the same time. The basic idea is to look at a matrix of responses
returned from multiple workers for multiple tasks at once and to find an estimate for the
ground truth that keeps the average error rate of the involved workers at a minimum. The
EM algorithm iteratively establishes a ground truth, calculates the corresponding worker
failure rates and refines the gold standard in order to find a better match. If there is
previous information available about the worker failure rates, it may be used as an input
to the EM algorithm. The EM algorithm will formally be described in section 6.2.2.

There are situations in which workers are actually returning good results, but the results
are biased in a certain direction. For example, in a website labeling application, Ipeirotis
et al. (2010) have observed that mothers of young children tend to be more restrictive
when deciding whether a website is suitable for children or not. In order to leverage the
results returned by such biased workers, Ipeirotis et al. have extended the EM approach
in order to separate the unrecoverable error rate from bias. Their experiments have shown
that the approach is capable of identifying even ”sophisticated” spammers and, therefore,
drastically reduces the execution cost.

The voting pattern may also be used for fine-grained tasks, provided that the individual
”grains” are not difficult to solve, i.e. that the task could be split into smaller ones which
can be expected to be successfully solved by an average worker. An example for such a
concept with only two participants is the ESP game described in section 2.2.3. Two players
are asked to assign labels to the same image. As soon as a certain number of identical
labels have been submitted by both workers, those labels are being accepted. Like the
simple majority vote, the ESP game does not track the worker performance.

Altogether, the voting pattern has proven to be an effective way of generating high qua-
lity crowdsourcing results for deterministic tasks. Cloud labor platforms like MTurk and
Crowdflower provide basic support for the voting pattern out of the box. However, in its
simplest form as the majority vote, it multiplies the execution effort and, therefore, leads
to high costs (Ipeirotis et al., 2010). Use of the EM algorithm can drastically reduce the
execution effort while increasing the accuracy of the results, but that advantage comes
with a burden because the EM algorithm turns the voting pattern into a batch process.
In order to be efficient, workers must submit responses for maybe at least 100 tasks before
the results can be identified and made available to the requesters and before any perfor-
mance feedback can be provided back to the workers. This has a number of disadvantages:
First, the approach is not suitable for real time applications in which a result needs to be
returned to a requester more or less immediately. Second, as mentioned in section 2.6.3,
delayed feedback will have less effect on the future worker performance. And even worse,
if there had been misunderstandings about the task requirements, a large amount of work
would have to be rejected which according to Oleson et al. (2011) may reduce the worker
satisfaction and lead to extensive discussions and e-mail exchange with the worker.
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3.3.4. Validation pattern

In the validation pattern, a task is passed to a single worker (producer) who returns
a response. This response is then being passed to one or multiple additional workers
(reviewers) who provide a binary rating whether to accept or reject the response. The
validation pattern does not improve the quality of a result, but only acts as a filter which
is supposed to filter out incorrect responses. When combining it with a feedback loop, the
approach can be used to improve the skills of the producer. Figure 3.2 depicts the basic
flow of the validation pattern.

Input Output

Validate
Create

Optional feedback

Figure 3.2.: Basic flow of the validation pattern.

The validation pattern is more generic than the gold or the voting pattern as it is not
limited to deterministic tasks, but also works for non-deterministic tasks. Moreover, there
is no need for a task specific aggregation or comparison of worker responses as it is the
case for the voting pattern. Therefore, the validation pattern can easily be implemented
for basically any type of task without setting up any task specific data processing apart
from the user interfaces for gathering the reviewers’ decisions and feedback and presenting
it to the producers. Little et al.’s (2010a) rating tasks are broader than validation tasks.
Instead of asking a binary question whether the task objectives are met or not, grading
tasks ask to what extent the objectives are met on a given scale, for example by a number
between 1 and 10.

Hirth et al. (2013) describe a control group approach in which the producer’s response
is passed to a fixed number of reviewers. If the majority of the reviewers confirm the
correctness of the response it is accepted otherwise it is rejected. The reviewers are always
paid, the producer is only paid if the response has been accepted. The authors have shown
on a theoretical basis that their approach identifies spammers as good as the majority vote
approach. Based on a model for calculating the expected costs of both approaches they
could show that for high priced tasks, the control group approach outperforms the majority
vote approach while it is the other way round for low priced tasks. The cost model can also
be used to calculate the optimal trade-off between quality and cost by taking the cost for
incorrect results into account. The authors have further observed that the control group
approach is much more cost-efficient when using better workers. This is not surprising, as
the approach does not take the performance of the individual workers into account and
thus does not provide any means for banning spammers or bad performers.

The validation pattern seems to be rather rarely used as it is only mentioned in a small
number of articles including the ones of Sorokin & Forsyth (2008) and Hirth et al. (2013).
Tools like TurKit (Little et al., 2010b), CrowdLang (Minder & Bernstein, 2011), Crowd-
Forge (Kittur et al., 2011) or Crowdweaver (Kittur et al., 2012) described in section 2.4.3
support the implementation of the validation pattern out of the box.
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3.3.5. Iteration pattern

The iteration pattern can be seen as an umbrella for such approaches in which a response
delivered by a producer is reviewed and possibly improved by a single reviewer or a chain
of reviewers until it meets the requester’s requirements.

In the implementation used by the speech-to-text transcription service CastingWords4,
there is an additional grading step that is performed by the reviewers before working
on the actual improvement. According to Hoffmann (2009) and Liem et al. (2011), the
process works as follows: Audio recordings are split into overlapping three to four minute
segments and are passed to the MTurk platform for transcription. Workers are asked
to listen to a segment of the recording and transcribe it from scratch or to grade and
improve a transcript created by another worker. That way, the segments are improved
step by step until they are reassembled to a full draft which is again graded and polished
by workers before it is finally sent back to the requester. Depending on the required
turnaround time, the requester has to pay between $0.70 and $2.50 per minute of the
audio. The grading steps are used to estimate the transcription effort of the workers
and to determine their compensation. In addition, they are used to track the gradual
improvement of the transcripts and to determine when it meets the requester’s needs. If
the grading step is performed by the same worker who improves the transcript, workers
may tend to underestimate the quality of the original transcript in order to let their own
contribution appear more valuable. Therefore, CastingWords is spending additional effort
on grading the graders (Hoffmann, 2009; Liem et al., 2011).

Little et al. (2009a) have proposed a generic form of an iteration pattern (TurKit5) in
which the improvement step is followed by a voting step. The process is illustrated by
figure 3.3. In the voting or ballot step, two voters independently compare the original
response of the producer with the one that has been improved by the reviewer and decide
which one better matches the task requirements. If they do not agree, an additional voter is
asked. The winning result is fed back into the iteration process. The iteration is continued
until some termination condition is met. The voting step is supposed to ensure that the
improvements added by the reviewers are not trivial and do not compromise the previous
iteration.

Vote

Input Output

Improved

Original
Improve

Figure 3.3.: Basic flow of the iteration pattern; adopted from Little et al. (2009a).

The iteration pattern has been observed to provide compelling results for writing, brain-
storming and also transcription tasks, but it has the disadvantage that the initial response

4 http://castingwords.com/, last accessed on October 11, 2013.
5Note that the authors have used the name TurKit for both the specific implementation of this iteration
pattern as well as for the generic workflow environment described in section 2.4.3
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may set the direction for the subsequent workers (Little et al., 2010a). Kulkarni et al.
(2011) has also observed that an incorrect initial contribution can ”derail” the task, i.e. it
may set subsequent workers on the wrong track. Therefore, the iteration pattern should
only be used if already the first worker has a realistic chance to deliver a reasonable re-
sponse which according to the definition in section 3.3.1 is not the case for difficult tasks.

An important limitation of Little et al.’s implementation of the iteration pattern is that it
does not take the worker performance into account. Dai et al. (2010, 2011) have addressed
this point by developing TurKontrol, a decision theoretical framework for the iteration
pattern that uses a partially-observable Markov decision process (POMDP) to model the
three decision points of the approach. Based on the expected utilities of the appropriate
actions, TurKontrol decides whether to add more voters to a voting step, which of the
two responses to use as an input for the next iteration and when to stop the iteration
process and to submit the final response. As input parameters, the model requires the
expected utility of a result depending on its quality as well as the costs for an iteration
and a ballot task. TurKontrol does not require any prior information about the worker
failure rates but starts with initial worker-independent estimates. Those estimates are
incrementally updated as the system gathers information about the performance of the
individual workers (Dai et al., 2010, 2011).

Dai et al. (2011) have compared their adaptive TurKontrol with Little et al.’s (2009a)
non-adaptive TurKit implementation of the iteration process. In an image description
application, 655 workers have been asked to describe the scene being shown on a given
picture. When spending the same amount of money, the quality of the results generated by
TurKontrol outperformed the quality generated by TurKit by 11% in average. The author’s
have further shown that in order to reach the same quality with TurKit, 28.7% more money
had to be spent. This is because the quality is not linear in the total cost, because the
higher the quality of an iteration, the more difficult it is to improve it. Remarkably, the
two mechanisms behaved differently in the ballot step of the experiment. While TurKit
naturally always uses two or three voters in the ballot phase depending on whether the
first two agree or not, TurKontrol did not assign any voters to the ballot for the first
two iterations of each image, because it expected the utility of moving directly to a new
iteration to be higher than to run a ballot step. The mechanism simply expected that
during the first iterations, most workers would be able to improve the previous iteration.
These observations also suggest that with TurKontrol, fewer voters are needed to achieve
the same accuracy in the voting step.

In a language translation application, Kittur (2010) has observed that ”seeding” a task
by providing an initial solution as a starting point may improve the acceptance and the
completion of the task. Therefore, it may be helpful to use a generated solution (e.g. a
computer translation) as a starting point for the iteration pattern.

The iteration pattern can be modeled with tools like TurKit (Little et al., 2010b), Crowd-
Lang (Minder & Bernstein, 2011), CrowdForge (Kittur et al., 2011) or Crowdweaver (Kit-
tur et al., 2012) that have been described in section 2.4.3.

3.3.6. Comparison pattern

As discussed in the previous sections, neither the validation nor the iteration pattern is
suitable for difficult tasks. In fact, Little et al. (2010a) have shown for a creative task that
a parallel pattern gains better results than the iteration pattern. When asking workers
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to brainstorm company names they have observed that ”the very best names seem to be
generated by workers working alone”. The voting pattern represents a parallel pattern
but does not support creative tasks as they are typically non-deterministic. The parallel
pattern proposed by Little et al. overcomes this limitation by adding a ”comparison” step
to the voting pattern that lets other workers identify the best response.

In this thesis, the pattern is called comparison. In a first step, a task is passed to a group
of producers who return responses. The responses are then presented to one or more voters
who decide which of the proposed solutions is the best. The voters may also decide that
there are multiple equivalent solutions. Obviously, the producers who proposed responses
in the redundancy step are not allowed to act as voters. The approach can be basically
seen as a combination of two voting steps, the second of which is used to consolidate the
responses of the first one. Figure 3.4 illustrates the basic flow of the voting pattern.

Compare

Input Output
Create

Option 1

Option 2

Option n

Figure 3.4.: Basic flow of the comparison pattern.

For many types of tasks, the voters will be able to identify the best solution, even if they
would not have been able to provide it. For example, identifying a person shown on a
picture is only possible if the worker at least has a guess, whereas verifying the result can
be simply done by looking for another picture of the same person and comparing it with
the given one.

A specific implementation of the comparison pattern is find-fix-verify (Bernstein et al.,
2010) that has originally been designed for shortening or proofreading paragraphs of a
given text. In find-fix-verify, there is an additional find step at the beginning in which
multiple workers are asked to identify passages of the given text that should be reworked. If
more than 20% of the workers agree that a specific passage needs rework, for each of those
passages the fix-and-verify steps are initiated which together basically represent the com-
parison pattern. In the fix step, multiple producers are asked to provide recommendations
on how to rework (shorten or revise depending on the actual application) the passage. In
the vote step, the best solution is then identified by a group of voters. An implementation
of the approach is available as a plugin for Microsoft WordTM. Under the cover it uses the
TurKit engine (Little et al., 2010b), which accesses Amazon’s MTurk cloud labor platform.
In a series of experiments, find-fix-verify has successfully been used to shorten texts by
85% and to identify and correct 82% of spelling and grammatical errors (Bernstein et al.,
2010).

In general, while the comparison pattern is specifically useful for difficult tasks, it is not
recommended for tasks that are fine-grained at the same time. For instance, when tran-
scribing a 5 min speech recording into text, even an expert will likely make a few mistakes.
Therefore, choosing between alternative transcripts from different experts would likely
not lead to a good result. The iteration pattern instead would provide the opportunity
to merge the expertise of multiple workers, i.e. transcription errors made by one worker
could be corrected by others.
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3.4. Comparison of output-based approaches

In this section, the relevance of the individual output-based QM patterns and the ratio-
nale for using each of them are discussed (section 3.4.1) and the gaps of the individual
approaches with regard to the objectives of the thesis are identified (section 3.4.2).

3.4.1. Decision matrix

This section summarizes the observations made when discussing the individual crowd-
based quality management patterns in section 3.3 and classifies them according to the
characteristics introduced in section 3.3.1.

Table 3.3 indicates which pattern can be applied to what category of tasks. The recom-
mended approaches are printed in bold. In general, validation can be used for any simple
task while iteration can be used for all fine grained tasks. The gold pattern can be applied
to all deterministic tasks, whereas voting can be only applied to those deterministic tasks
that are not also difficult and coarse grained at the same time. Finally, comparison can
be used for any task except if it is difficult and also fine grained.

Table 3.3.: Decision matrix for choosing an adequate quality management pattern for cloud
labor services.

Deterministic Non-deterministic

Simple

Coarse grained Fine grained Coarse grained Fine grained

Gold Gold Validation Validation
Validation Voting Voting Validation Comparison Iteration

effort Validation Validation effort Comparison
low Comparison Iteration low

Comparison

Gold Gold Validation Validation
Validation Voting Voting Validation Comparison Iteration

effort Validation Validation effort Comparison
high Comparison Iteration high

Comparison

Difficult

Coarse grained Fine grained Coarse grained Fine grained

Gold Gold Comparison Iteration
Validation Comparison Voting Validation

effort Iteration effort
low low

Gold Gold Comparison Iteration
Validation Comparison Voting Validation

effort Iteration effort
high high

For several combinations of task characteristics, multiple patterns are competing which
may differ in terms of efficiency. Figure 3.5 provides a decision tree that is intended
to help to identify the presumably most efficient crowd-based pattern. By reading the
diagram from top to bottom, the task characteristics can be assessed step by step and an
adequate QM pattern can be identified.

The following paragraphs discuss for each of the patterns, why it is assumed to be of
advantage compared to the possible alternatives:
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Start
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Deter-
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Figure 3.5.: Rule-of-thumb for choosing a suitable quality management pattern for cloud
labor services.

• The iteration pattern is considered to be most efficient for all fine-grained tasks. This
is because for fine-grained tasks there is a high probability that even experienced
workers return at least one incorrect ”grain”. Using the iteration pattern, mistakes
can be corrected by the subsequent workers without the need to perform the entire
task again. All other patterns require redundant work. The voting pattern may still
be a viable alternative as it allows for merging the results of several voters.

• The comparison pattern can be assumed to be most efficient for all coarse-grained,
difficult tasks for which it is anyway the only option. In addition, it should be consi-
dered for simple, non-deterministic and coarse-grained tasks for which the validation
effort is high. Depending on the application, the validation pattern could still be an
alternative.

• The validation pattern is assumed to be most efficient for coarse-grained, simple
tasks for which the validation effort is low. This is because the validation pattern
gets likely along with a single execution of the task while the voting and comparison
pattern would necessarily need multiple executions.

• The voting pattern should be considered for tasks that are coarse-grained, simple,
deterministic and that cause a high validation effort. Because the majority of res-
ponses can be assumed to be correct (”simple task”), they can be directly aggregated
in order to generate a reliable response. Additional validation or voting steps, as
they are part of the voting and comparison patterns would cause an overhead (”high
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review effort”). The voting pattern may also be used for fine-grained deterministic
tasks. This will result in additional implementation effort for aggregating the in-
dividual ”grains” but it can reduce the execution effort compared to the iteration
pattern. An example for such a task will be discussed in section 6.1.

• The gold pattern may be considered for any deterministic task, if there is a limited
number of tasks to be performed and a reasonable set of gold standard tasks is already
available. Otherwise, it may be taken into account as a complement to crowd-based
QM in order to reduce the risk for cheating.

The diagram in figure 3.5 should be considered as a rule-of-thumb and does not remove
the need for considering other QM patterns according to table 3.3.

3.4.2. Gap analysis

This section analyzes the existing QM approaches for cloud labor services with regard to
the research question to be addressed by this thesis. According to section 1, the objective
is to investigate how the accuracy of cloud labor services can be managed in an efficient,
scalable and goal-based way.

Table 3.4 summarizes the assessment of the existing QM approaches for each of those
characteristics and compares them to the CSP/DVM6 that will be introduced in chapter 5.
A filled circle means that a characteristic is well supported, a half-full circle means that
it is moderately supported, while an empty circle means that there is no or only weak
support. Accordingly, the ratings high, medium and low are used.

• The efficiency rating of a crowd-based approach depends on how well the QM effort
adjusts dynamically to the actual quality of the responses. This is currently only the
case for TurKontrol and to some extent for TurKit7. For the basic gold pattern the
efficiency rating depends on whether gold standard tasks are already available or have
to be manually generated with high effort. For the programmatic gold approach, the
crucial point is the efficiency of the crowd-based approach that is used to generate
the gold standard tasks. All other approaches listed in the table result in a fixed QM
effort because they always employ the same number of workers in order to come to
a decision.

• The scalability rating is considered to be high for all crowd-based approaches, i.e.
for all approaches except the ones belonging to the gold pattern. For the basic
gold pattern, the scalability is considered low because even if an initial set of gold
standard tasks is available, they will be exhausted at some point in time so manual
effort is needed for generating additional ones. The programmatic gold approach is
only partly crowd-based because it requires at least some manual effort. Therefore,
a medium rating was chosen for it.

• The ability to meet goals is considered high for approaches that automatically con-
trol the accuracy of the results according to predefined quality objectives. This is
actually not the case for any of the existing approaches. However, the gold-based
approaches, the EM-based approaches and TurKontrol are at least capable of esti-
mating worker failure rates which can be seen as a first step towards a goal-based

6The abbreviation stands for the combination of continuous sampling plan (CSP) and dynamic voting
mechanism (DVM).

7Because TurKit uses a variable number of voters for the ballot tasks (either 2 or 3).
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quality management. Therefore, the ability to meet goals is considered medium for
these approaches. For the remaining approaches it is considered low.

Table 3.4.: Comparison of the output-based QM patterns with regard to the objectives of
the thesis.

Pattern Approach Reference Efficiency Scalability
Ability
to meet
goals

Gold
Basic gold-based QM (Le et al., 2010) �/ ��/ � � ��
”Programmatic gold” (Oleson et al., 2011) �/ ��/ � �� ��

Voting

Basic majority vote (Snow et al., 2008) � � �
”Majority decision” (Hirth et al., 2013) � � �
EM (Raykar et al., 2009) � � ��
EM with bias detection (Ipeirotis et al., 2010) � � ��
CSP/DVM (This thesis) � � �

Validation ”Control group” (Hirth et al., 2013) � � �
Iteration

”TurKit” (Little et al., 2009a) �� � �
”TurKontrol” (Dai et al., 2011) � � ��

Comparison
”Parallel pattern” (Little et al., 2010a) � � �
”Find-fix-verify” (Bernstein et al., 2010) � � �

� ≡ high, �� ≡ medium, � ≡ low

The low rating for many of the approaches does not mean that they are not valuable. As
discussed in section 3.4, depending on the application only a subset of the patterns may be
applied anyway. In addition, it needs to be considered that all crowd-based QM patterns
implicitly make use of the voting pattern. By using an efficient and goal-based implemen-
tation of the voting pattern, the efficiency of the other patterns may be increased and
they may even be turned into goal-based approaches. However, such an implementation is
obviously missing. The CSP/DVM presented in section 5 is supposed to close this gap by
offering a QM approach that is efficient, scalable and goal-based at the same time. Before
introducing the CSP/DVM, the following chapter will provide fundamental considerations
of statistical quality control essential for the reader to understand the conceived value of
the new quality management approach.
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The general objective of statistical quality control (SQC) is to make a statement about
the quality of multiple items in an efficient way by only assessing a sample of them. This
chapter covers aspects of QM and SQC that are needed as a foundation for the actual
contribution of the thesis. In particular, the acceptance sampling plans and continuous
sampling plans will be used for developing the models in chapters 5 and 6. The des-
cription is limited to aspects relevant to understand the derivation of the newly proposed
methodology.

Sections 4.1 and 4.2 provide an overview of the basic concepts of QM and SQC, while
sections 4.3 and 4.4 introduce relevant aspects of acceptance sampling and continuous
sampling plans.

4.1. Overview

This section provides an overview on the field of QM. The general areas of QM are intro-
duced in section 4.1.1. Section 4.1.2 then focuses specifically on SQC.

4.1.1. Quality management

According to chapter 3, quality management (QM) is crucial for cloud labor services. In
the following, the general areas of QM are introduced. A project centric view was chosen
in order to put the concept into a managerial perspective. Following Rose (2005, p. 41),
QM spans the entire process from quality planning, quality assurance and SQC1 to quality
improvement:

Quality planning ”is the process necessary for identifying which quality standards are
relevant to the project and determining how to satisfy them”(PMI, 2004, p. 52). Following
Rose (2005, p. 42), a project management plan is created that addresses the specific project
needs. Starting from a general quality policy, which outlines what quality is supposed to
mean for the project, the plan defines the specific requirements and performance targets
for individual parts of the project. Detailed roles and responsibilities are defined including

1Rose (2005) and Montgomery (2008) primarily use the term quality control rather than SQC. For consis-
tency reasons, the term SQC is used throughout this thesis.
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the organizational infrastructure, reporting chains and participants. A set of standards,
processes and tools is identified that builds the basis for assuring the quality of the project.

Quality assurance is ”the combined set of activities that the project team will perform
to meet project objectives” (Rose, 2005, p. 61). The term quality assurance is often
mixed up with SQC, even though the terms identify different aspects of QM. Quality
assurance basically describes the implementation of the QM plan into systematic activities
and processes. For each aspect of the project, quality requirements are identified and
quality assurance activities are defined in combination with appropriate quality standards,
metrics and resources. (Rose, 2005, p. 61–62)

SQC addresses the outcomes of the quality assurance activities. ”It is monitoring perfor-
mance and doing something about the results” (Rose, 2005, p. 61). SQC provides a set of
statistical tools and methods that are being used to validate project results according to
the standards and metrics that have been defined in the quality assurance plan. Corrective
actions are taken if there is a gap between actual and desired quality. (Rose, 2005, p. 67)

Quality improvement is basically the application of the methods of SQC in order to achieve
a continuous improvement of processes, products and services. Montgomery (2008, p. 7,
17) simply defines quality improvement as the ”reduction of variability in processes and
products”, but mainly uses the term in combination with SQC by stating that together
they ”involve the set of activities used to ensure that the products and services meet
requirements and are improved on a continuous basis”. While SQC is a framework of
statistical methods and tools, quality improvement is primarily an implementation and
management strategy. Important contributors have been W. Edwards Deming with his
Deming’s 14 points (Deming, 2000) and Joseph M. Juran with his so called Juran’s trilogy
(De Feo & Juran, 2010, p. 30), who provided the ground for the Total quality management
(TQM) strategy that began in the early 1980s, but has been only of moderate success
(Montgomery, 2008).

Successful implementations of quality improvement strategies are the Toyota Production
System (Ohno, 1988) and Motorola’s Six Sigma (Pande et al., 2000). Interestingly, in a
2002 interview, Juran on the one hand pointed out the benefit of Six Sigma (”the concept
is perfectly good”) but on the other hand expressed his doubts regarding the originality of
the underlying concepts (Paton, 2002):

”It’s a basic version of quality improvement. There is nothing new there. . . One of the
things that is inherent in tools used to achieve improvement under the label of Six Sigma is
the concept of process capability. Now, to my knowledge, that concept of process capability
goes back to 1926, when I was a young engineer at Western Electric. . . I am the inventor,
if not the reinventor, of that concept.”

So basically, the underlying statistical concepts had been available long before, but a
management strategy was needed in order to apply it end to end on an organization wide
basis. This is what quality improvement is about.

Among the areas of QM, the most relevant one for this thesis is SQC. The following section
will illustrate the role of SQC in more detail.

4.1.2. Statistical quality control

SQC is at the heart of QM. It provides the operational tools that are identified in the
quality planning phase and that are used for quality assurance and as a basis for quality

66



4.2. Areas of statistical quality control 67

improvement. Therefore, SQC represents the key concept when applying QM to cloud
labor services.

The role of SQC can be illustrated based on figure 4.1 taken from Montgomery (2008,
p. 13): A production process that is controlled by various input parameters is turning
raw materials or components into output products. An SQC mechanism is evaluating the
quality of the output products and may be taking actions on the input parameters in order
to guarantee the desired level of output quality. There are two types of input parameters,
those that can be controlled (controllable inputs) and those that cannot (uncontrollable
inputs). Examples for controllable inputs are temperature, pressure etc., uncontrollable
inputs include environmental factors and specific characteristics of the raw materials.

Production 
process

Uncontrollable 
inputs

Output 
products

Evaluation, 
monitoring and 

SQCFeedback loop

Input raw 
materials

Controllable 
inputs

Figure 4.1.: Production process with statistical quality control; derived from Montgomery
(2008, p. 13).

In any production process2 there will always be small, unavoidable variations in the in-
put parameters, the raw materials and the production process itself (Montgomery, 2008,
p. 181). These so-called chance causes of variation essentially lead to an unavoidable
variation of the output quality. In addition, there may be so called assignable variations
which are being caused by avoidable variations in the input parameters, the raw materials
or the production process. If a process is affected by assignable variations it is said to be
out-of-control, if it is not, it is said to be in statistical control.

4.2. Areas of statistical quality control

SQC comprises three major complementary areas which are outlined in the following sec-
tion: Acceptance sampling, statistical process control and design of experiments.

4.2.1. Acceptance sampling

Acceptance sampling is the process to decide based on a sample whether a lot of units
meets certain quality requirements or not. If it does, the entire lot is accepted, otherwise it
is rejected. Acceptance sampling does not estimate the quality of the lot or of its units but
just determines whether it should be accepted or not (Montgomery, 2008, p. 632–633).

Acceptance sampling had been one of the first developments in the area of SQC. Its root
goes back to Harold French Dodge’s contributions in the late 1920s (Montgomery, 2008, p.

2The concept described in this section can be applied not only to production, but also to service processes.
In that case, the raw materials may be represented by information. Section 5.1 will elaborate on that. This
point of view corresponds to the modern perspective of service science, e.g. to the service dominant logic
proposed by (Vargo & Lusch, 2004).
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12). It is usually performed at the interface between a provider and a consumer in order to
make sure that either the quality of units delivered to the consumer or the quality of units
received from the provider meets certain requirements (outgoing vs. incoming inspection).

Today, acceptance sampling is mainly used in the early stages of QM efforts, when there is
still limited understanding of the processes and a less intense relationship to the suppliers
(Montgomery, 2008, p. 632). Over time, the SQC efforts are shifted more and more
towards statistical process control and design of experiments introduced in the following.
Acceptance sampling will be further elaborated on in section 4.3.

4.2.2. Statistical process control

The basic objective of statistical process control (SPC) is to recognize as quickly as possible
if a process gets out of control and take corrective actions before the impact becomes too
severe.

The most prominent tool for process monitoring is the control chart, which consists of a
horizontal time axis, the so called center line, and two additional lines above and below
the center line that represent the upper control limit (UCL) and the lower control limit
(LCL). The vertical axis represents the value of a certain quality characteristic, which
is determined in regular time intervals by an inspection process. The values, which are
recorded on the chart over time, are naturally scattered around the center line because of
chance causes of variation. The upper and the lower control limit are defined in such a
way, that as long as the process is under statistical control, most of the points are plotted
between them. If there are assignable root causes that cause the process to get out of
control, points will be plotted outside the limits and indicate that corrective actions need
to be taken. (Montgomery, 2008, p. 182–183)

SPC can be seen as the primary tool of today’s quality improvement efforts (Montgomery,
2008, p. 637). Compared to acceptance sampling, the huge advantage of SPC is that
it results in fewer non-conforming items at the end of the process because ”in-process
inspection may reveal deficiencies that can be corrected before they cause costly scrap and
rework” (Rose, 2005, p. 68).

A specific SPC tool that will be used in chapter 5 is the continuous sampling plan. It will
be introduced in section 4.4.

4.2.3. Design of experiments

The idea of design of experiments is to intentionally modify the input parameters of a
process in order to see what impact that will have on the output product. The insights
may be used to identify patterns of root causes that affect the output quality in a specific
way. The approach may also be used to develop a production process that is insensitive
to certain root causes.

The primary approaches used in this thesis are acceptance sampling and continuous sam-
pling plans which are discussed in detail in the following.

4.3. Acceptance sampling

This section introduces the area of acceptance sampling (section 4.3.1) and specifically
single-sampling plans for attributes (section 4.3.2). If not indicated otherwise, the infor-
mation is based on Montgomery (2008) and Rinne & Mittag (1995).
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4.3.1. Introduction

The objective of acceptance sampling is to determine whether a lot of units is within
certain quality limits without having to inspect the entire lot. Instead, only a sample
of units is randomly selected from the set and is inspected according to the specified
criteria. Depending on the outcome of the inspection, the entire lot is sentenced, i.e. it is
either accepted or rejected. Compared to the 100% inspection, acceptance sampling has
the advantage of reduced inspection effort and cost. A major disadvantage is the risk of
accepting bad lots or rejecting good ones.

An important requirement for using acceptance sampling is that the lots need to be homo-
geneous, i.e. they should consist of equivalent units that have been produced by the same
production process using the same machines and personnel. Processing large lots is more
efficient than processing small ones because the inspection effort does not grow linearly
with the lot size. In order to avoid bias, the sampling process needs to be random and
representative for the entire lot.

The lot size, the sample size as well as the acceptance and rejection criteria are defined by
a so-called sampling plan. The type of sampling plan depends on the nature of the qua-
lity characteristics that are being inspected. For continuous or countable characteristics,
sampling plans for variables are used, while for a binary assessment sampling plans for
attributes are used that only differentiate between good and defective units.

Another characteristic of sampling plans concerns the number of samples that are taken.
When using a single-sampling plan, the decision between accepting and rejecting the lot is
based on a single sample. With a double-sampling plan, the decision may already be taken
based on a first sample, or depending on the outcome of the inspection, a second sample
may be requested before accepting or rejecting the lot. In multiple-sample plans, there may
even be more than two iterations. Compared to a single-inspection plan, double- or multi-
sampling plans may reduce the inspection effort because the lot may be sentenced with
fewer units being inspected. Sequential-sampling plans bring the idea to the perfection as
they reduce the granularity of the samples to a minimum: They start with the inspection of
an individual unit; depending on the outcome, the lot is either sentenced or an additional
unit is being inspected and the process starts from scratch. This loop continues until
enough information has been gathered to come to a decision. If, for example, only good
or only defective items are found, there are obviously less units to be inspected than if a
mix of good and defective items is found. For this thesis, the most relevant sampling plan
is the single-inspection plan for attributes which is described in the following section.

4.3.2. Single-sampling plans for attributes

A single-sampling plan for attributes is a procedure where a sample of n units is drawn
from a lot of size N . If the number of defects in the sample is higher than the acceptance
number c, the lot is rejected. Otherwise, it is accepted.

Because each unit can only be drawn from the lot once, the probability for accepting
or rejecting the lot can be modeled using the hypergeometric distribution. For large lot
sizesN , the hypergeometric distribution can be approximated by the binomial distribution,
which in turn can be approximated by a Poisson distribution.

The following sections will introduce important characteristics and types of single-sampling-
plans:
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Operating characteristic

The operating characteristic (OC) curve plots the probability L for accepting a lot depend-
ing on the actual (unknown) fraction defective p of the lot. For the binomial distribution,
the graph can be calculated with

L(p|n; c) =
c∑

i=0

(
n

i

)
pi(1− p)n−i . (4.1)

Figure 4.2 illustrates the OC curve for different sample sizes n and acceptance numbers c.
Independent of the values of n and c, the probability for accepting a perfect lot (p = 0)
is always 1 while the probability of rejecting the worst possible lot (p = 1) is always
0. The higher n and the lower c, the greater is the slope between those two points and
the greater is the discriminatory power. The ideal OC curve would perfectly differentiate
between good and bad lots, i.e. when increasing the fraction defective p the probability of
acceptance would abruptly fall from L = 1 to L = 0 at a certain p = p0. The ideal OC
curve can only be realized by 100% inspection.
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Figure 4.2.: Examples for OC curves for different combinations of sample sizes n and ac-
ceptance numbers c.

Acceptance sampling as a parameter test

Given a scenario in which the fraction defective of a lot should not exceed a critical fraction
defective p0, the decision whether to accept or to reject a lot can be seen as a parameter
test on the following hypothesis:

• H0 : p ≤ p0

• H1 : p > p0

According to statistical convention, the null hypothesis H0 needs to be rejected in order
to have statistical evidence for accepting the alternative hypothesis H1. If this evidence
is not found, that does not mean that there is statistical evidence for accepting the null
hypothesis. The result of the parameter test does just not conflict with it.
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However, even if there is statistical evidence for accepting H1, the actual fraction defective
may still exceed the critical fraction defective p0. The two ways of arriving at wrong
decisions are called type I and type II error:

• A type I error happens if hypothesis H0 is rejected although it is actually true.

• A type II error happens if hypothesis H0 is accepted although it is actually wrong.

Figure 4.3 illustrates the probabilities of the type I and type II errors in the above example
for arbitrary fractions defective p1 and p2 with p1 ≤ p0 < p2. A type I error occurs if H0 is
rejected although p1 ≤ p0. Its probability is α. A type II error happens if H0 is accepted
although p2 > p0. Its probability is β.
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Figure 4.3.: OC curve with illustration of type I and II errors.

The acceptable and rejectable quality levels introduced in the following section are defined
in a similar way.

Acceptable and rejectable quality level

The poorest quality level that the consumer would be willing to accept is called rejectable
quality level (RQL) or lot tolerance percent defective (LTPD). The risk of accepting a
lot with a quality level of RQL is denoted with β and is often called consumer risk. In
order to protect the consumer, β should be low. For the producer, it is important that
not too many lots are rejected. The risk of a lot being rejected is therefore often called
producer risk. It is usually denoted with α. In order to keep it low, the quality level of the
lots delivered by the producer needs to match at least the acceptable quality level (AQL).
Figure 4.4 illustrates the points (AQL; 1− α) and (RQL;β) on the OC curve.

A common approach for constructing a sampling plan is to specify the points (AQL, 1−α)
and (RQL, β) which uniquely define the shape of the OC curve. If AQL, RQL, α and
β are given, the sample size n and the acceptance number c can be calculated using the
algorithm proposed by Guenther (Rinne & Mittag, 1995, p. 197), which is illustrated in
form of a BPMN process in figure 4.5.

Another option is to define a limit for the average quality of the lots and to minimize the
overall inspection effort, which will be described in the following paragraphs.
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Figure 4.4.: Illustration of AQL, RQL, α and β.
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Figure 4.5.: Guenther algorithm for determining a sampling plan for given values of AQL,
RQL, α and β, adopted from Rinne & Mittag (1995, p. 197).

Rectifying inspection

Two general decisions that need to be taken when applying acceptance sampling are what
to do with the sample when the inspection process is completed and how to handle rejected
lots. The entire sample may be discarded or only the defective units may be either removed
or replaced by good ones. For rejected lots, the options are equivalent: The entire lot may
be discarded or only the defective items may be removed or replaced after performing a
100% inspection of all units in the lot.

A common approach is to replace defective units in both the samples and the rejected
lots. In that case, the outgoing units are a mixture of two quality levels: Rectified lots
are free of defectives while accepted lots contain n good items of the corrected sample and
(N − n) · p defective units where p is the lot’s actual fraction defective. Over a longer
period of time, the average outgoing quality (AOQ) is

AOQ(p) =
N − n

N
· p · L(p) . (4.2)

Figure 4.6 illustrates the course of AQL(p) versus the fraction defective p. Naturally, AQL
initially increases with a growing fraction defective. However, after reaching a maximum
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at pm it drops off again. This is because the worse the incoming quality of the units, the
more lots are being rejected which results in a 100% inspection and a replacement of the
defective units. The quality level at pm is called average outgoing quality limit (AOQL).
It is the worst average level of quality that can result from the rectifying sampling process.
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Figure 4.6.: AOQ vs. fraction defective for n = 5 and c = 2.

The overall inspection effort per lot is given by the average total inspection (ATI) in
equation 4.3. It comprises the effort for the regular sample inspection, for the 100%
inspection of rejected lots and for the screening of units that is needed to replace defective
units by good ones. For a perfect lot, it equals the sample size n. If the fraction defective
is close to 1, ATI dramatically increases, mainly because of the screening effort.

ATI(p) =
n+ (N − n) · (1− L(p))

1− p
(4.3)

The average fraction inspected (AFI) is defined as the inspection effort per unit:

AFI(p) =
ATI(p)

N
(4.4)

The Dodge-Romig AOQL sampling plan

Defining AOQL is not sufficient for constructing a sampling plan, but an additional con-
straint is required. A common approach is to choose the sampling plan in a way that the
inspection effort is minimized by minimizing ATI. The Dodge-Romig AOQL plan (Dodge
& Romig, 1959) addresses that objective. It relies on an estimate for the process average p
which is the expected fraction defective of the incoming units. The parameters of the
sampling plan cannot be calculated by a simple formula but can be looked up in Dodge
& Romig (1959) or Montgomery (2008). Examples for an AOQL = 10.0% and a process
average of 8.01% to 10.00% can be found in table 4.1. The table provides the sample size n
and the acceptance number c for different lot sizes N . If the process average is estimated
incorrectly, the quality objective can still be assumed to be met but the process may result
in a higher ATI.

For instance, for a lot size of N = 40, a sample of n = 7 items would be drawn. If more
than c = 1 items are found defective, the entire lot is rejected. Otherwise it is accepted.
This process would guarantee an AOQL of 10% at most.
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Table 4.1.: Dodge-Romig example inspection plans for an AOQL of 10.0% and a process
average of 8.01% ≤ p ≤ 10.00% at different ranges of the lot size N ; excerpt of
Dodge & Romig (1959, p. 204).

Nmin Nmax n c

1 3 all 0
4 50 7 1

51 100 12 2
101 200 18 3
201 300 23 4
301 400 29 5
401 500 30 5

4.4. Continuous sampling plans

Acceptance sampling plans are subject to an important restriction: If the units do not
occur in batches, but in a continuous production process, such as in line assembly or in a
service scenario, the process has to be decomposed into artificial batches. Before a whole
batch has been handled, quality levels for this batch cannot be guaranteed and the results
of this batch cannot be further processed. However, the batches cannot be arbitrarily
small, because the smaller the batches, the less efficient is the sampling process.

The concept of a continuous sampling plan (CSP) has been developed in order to over-
come the restriction that acceptance sampling cannot be applied to continuous production
processes. CSPs can guarantee the average quality of a continuous stream of items at any
point in time. As the items are coming in, a simple process decides for each individual
item, whether it has to be inspected or not in order to guarantee the average quality of
the entire stream.

4.4.1. The continuous sampling plan 1 (CSP-1)

The CSP-1 (Dodge, 1943) is the very first version of a CSP that has been developed.
Although it was later on refined by Dodge himself and others (Dodge & Torrey, 1951;
Lieberman & Solomon, 1955; Gosh, 1996), the CSP-1 can be assumed to be still the most
widespread implementation of a CSP.

The CSP-1 is designed for attributes, i.e. each individual item is categorized as either good
or defective. The defect probability p is assumed to follow a Bernoulli distribution and
the process of incoming items is assumed to be under statistical control, which means that
the incoming fraction defective p does not change over time. Furthermore, it is assumed
that the sample inspection is perfect and defective units are replaced by good ones.

As illustrated by figure 4.7, the sampling plan starts with 100% inspection. If i consecutive
units have been identified to be free of defects, the process turns into fractional inspection
mode with an inspection probability f , i.e. only a portion f of the items is inspected.
Once, a defective item is found during the fractional inspection mode, the process switches
back to 100% inspection mode and the process starts from scratch. The parameter i is
called the clearance number and f is called the sampling fraction. The most important
characteristic of the CSP-1 is the average outgoing quality limit (AOQL). It is the highest
average amount of defective units capable of passing through without being inspected that
can be reached depending on the incoming fraction defective p.
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Inspect fraction f of the units
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Figure 4.7.: Procedure of the CSP-1, taken from Montgomery (2008, p. 684).

There are multiple combinations of the parameters i and f which result in the same value
of AOQL. For a given AOQL, one of the parameters i and f can be chosen depending
on the needs of the scenario and the corresponding parameter can then be calculated
according to (4.5):

f =

(
1 +

(
1 + 1

i

)i+1 · i ·AOQL

(1−AOQL)i+1

)−1
(4.5)

4.4.2. Determination of clearance number and sampling fraction

This section describes two ways of choosing the clearance number i and the sampling
fraction f which will be needed for the model in section 5.

Imperfect sample inspection

In many scenarios, the inspection of the samples is not perfect, but an inspection error
applies to the sampling process. In case of imperfect inspection, two types of inspection
errors can be made:

• E1: a good item is classified as defective (type 1 inspection error).

• E2: a defective item is classified as good (type 2 inspection error).

According to Wang & Chen (1997), under the assumption of imperfect inspection, (4.5) is
replaced by (4.6):

f =
(1− (1− e2)p̂− (1− p̂)e1)

i · (1− AOQL
p̂ )

((1− (1− e2)p̂− (1− p̂)e1)i − 1) · (1− AOQL
p̂ ) + (1− e2)

(4.6)

The parameters e1 = P (E1) and e2 = P (E2) are the probabilities of a type 1 and type 2
inspection error. AOQL is the average outgoing quality limit and p̂ is the expected average
incoming fraction defective, i.e. the probability of processing a defective item.
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Short sequences of low quality

One possible objective of choosing i is to make the CSP-1 resistant to short sequences
of low quality (Rinne & Mittag, 1995): Let P ∗ ∈ ]0, 1] be the (low) quality level of a
(short) series of l items within the continuous stream of items. In order to ensure that the
probability of accepting such a series is not higher than w̃, the sampling fraction f must
be

f =
1

P ∗
(
1− w̃

1
l

)
. (4.7)

The corresponding clearance number i can be identified with (4.5) or (4.6) by inserting
different values of i until an f close to the desired one has been found. As i must be an
integer, only discrete values of f are possible.
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5. Core model for statistical quality
control of cloud labor services

This chapter1 describes a new model for crowd-based QM for cloud labor services that
represents the primary contribution of this thesis. The objective of the model is to over-
come the restrictions of the existing QM approaches for cloud labor services described in
chapter 3 by guaranteeing a certain well-defined long-run average quality for a continuous
stream of results, while minimizing the costs in terms of labor work. An additional ob-
jective of the model is to provide means for influencing the completion time for a given
number of tasks. The new model combines statistical quality control with a newly deve-
loped dynamic voting mechanism (DVM).

After motivating the approach in section 5.1, the actual model is introduced in section 5.2.
Section 5.3 then specifically focuses on the DVM while section 5.4 addresses the objective
of influencing the completion time. Finally, section 5.5 explains how the approach can be
applied to specific scenarios and section 5.6 provides additional considerations for operating
the model with a small number of workers.

5.1. Motivation

The analysis in section 3.4.2 has revealed that there is a lack of efficient, scalable and
goal-based QM mechanisms for cloud labor services. SQC represents a promising metho-
dology for closing this gap because, according to chapter 4.1.2, efficiency and the ability
of supporting well-defined quality objectives are key characteristics of SQC. Beyond that,
the general setup is similar: Like in production processes for which SQC was originally
designed, there is typically a large number of similar items (results) being produced by
cloud labor services. The model introduced in this chapter applies the concept of SQC to
cloud labor services in order to guarantee a well-defined result quality at minimum worker
effort.

Section 5.1.1 illustrates, how SQC can be adopted to cloud labor services while section 5.1.2
specifically addresses the challenge of sample inspection in cloud labor scenarios.

1Considerable parts of this chapter have already been exposed to and tested with the academic community,
having been published in the International Journal of Cooperative Information Systems (Kern et al., 2012b).
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5.1.1. Application of statistical quality control

As a starting point for applying quality control to cloud labor services, the generic produc-
tion process illustrated by figure 4.1 in section 4.1.2 is used. In the cloud labor scenario, the
production can be represented by a worker who performs tasks on a cloud labor platform
and returns responses. The characteristics of the worker, his availability as well as the
variability and individual difficulty of the tasks can be regarded as uncontrollable inputs.
The task design and instructions, the payment as well as the admission of a worker can
be seen as controllable inputs. The raw materials are represented by the task data, which
is the portion of information that differs from task to task in a stream of similar tasks.
In an image recognition scenario it could be the actual image to be processed. Finally,
the quality control component inspects the worker’s responses and ensures that only such
responses are delivered as results that adhere to certain quality objectives. The results
can be regarded as the output products of the process. Figure 5.1 illustrates the scenario.

Production process
Worker performing 
tasks on cloud labor 

platform

Uncontrollable inputs
• Worker characteristics  

and availability
• Task variability

Output products
Results with quality 

characteristics

Quality 
monitoring and 
control based 

on samplesFeedback loop

Input raw materials
• Task data

Controllable inputs
• Task instructions
• Worker pool 

selection

Figure 5.1.: Production process of SQC applied to the cloud labor scenario.

In the optical character recognition (OCR) scenario that is to be used in the evaluation in
chapter 8, the raw materials are pictures of handwritten words which are passed to workers
along with the instruction to read them and type them into an input field presented on
the computer screen. The output products are the digital representations of the words
returned by the workers.

So far, applying the concept of quality control to cloud labor services appears to be straight
forward. However, a remaining challenge concerns the inspection of the worker results. In
the OCR scenario, the requester would usually not know the digital representation of the
handwritten word, otherwise there would be no need to apply crowdsourcing. For the same
reason, it is usually not possible to assess the accuracy of a response in an automated way
(Hirth et al., 2013) and a manual inspection by the requester would not scale either.

The approach taken in this thesis is to perform the sample inspection by applying one of
the QM patterns for cloud labor services introduced in section 3.3. In order to explore
different combinations, two SQC mechanisms are investigated along with two different QM
patterns. They are depicted by table 5.1. Two basic SQC mechanisms have been chosen
out of the primary areas of SQC: The CSP-1 out of the area of statistical process control,
and the Dodge-Romig AOQL sampling plan out of the area of acceptance sampling. The
QM patterns to be investigated are voting and validation. In this chapter, the combination
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Table 5.1.: Combinations of SQC mechanisms and QM patterns for cloud labor services
to be investigated in this thesis.

Quality management patterns (chapter 3)

Voting pattern Validation pattern

Statistical
process CSP/DVM (chapter 5)

SQC mechanism control

(chapter 4) Acceptance Group validation
sampling approach (section 6.2)

of the CSP-1 and the voting pattern will be investigated while the combination of the
Dodge-Romig AOQL sampling plan and the validation pattern will be investigated when
developing the group validation approach in section 6.2. The rationale for choosing the
SQC mechanisms will be discussed when introducing the respective models. The choice of
the QM patterns will be motivated in the following section.

5.1.2. Quality management patterns for sample inspection

According to the task characteristics defined in section 3.3.1, sample inspection can be seen
as a simple, deterministic and fine-grained task. Following the decision matrix in table 3.3
on page 60, the two recommended QM patterns for this type of tasks are validation and
voting. Those are the two patterns to be applied in this thesis. This decision will be
further motivated by looking at each of the five available patterns:

The iteration and the comparison patterns are obviously not suitable because their actual
strength is to produce responses rather than to validate them. For QM purposes both
patterns internally rely on a voting step.

The gold pattern appears to meet the requirements of the sample inspection process well.
By systematically interspersing gold standard tasks into the stream of tasks, samples
could be inspected by comparing the appropriate worker responses with the ground truth
of those tasks. However, according to section 3.3.2, the gold standard tasks would need to
be expensively created with reasonable manual effort. Therefore, the gold pattern would
limit the scalability of the QM mechanism.

The validation pattern probably represents the most obvious match because validation
is close to the idea of inspection. However, a single worker out of the crowd cannot be
assumed to meet the requirements of the inspection process with regard to the accuracy of
the validation decision. Therefore, the pattern will be used along with the voting pattern
when developing the group validation approach in chapter 6.2.

For the voting pattern, it may not be obvious how it can be applied to SQC at all.
According to figure 5.1, each worker represents a separate production process for which
a sample inspection mechanism needs to be established. The basic approach being used
here is exploiting the fact that with the voting pattern, a consolidated reliable response
can be generated from the contributions of multiple workers which in turn can be used
to inspect these individual contributions. While SQC is used on a per worker basis, the
voting mechanism is used across a set of workers. Figure 5.2 illustrates this principle:
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Assignments of the same task are passed to multiple workers in step 1 and their responses
are aggregated into a single consolidated response in step 2. Finally, the consolidated
response is used as a reference for inspecting the individual worker contributions in step 3.

Task data & 
instructions

2. Aggregate 
responses

Response

Response

Response

3. Inspect responses

Consolidated result

Reject
Accept

Accept

Accept
Reject

Reject

1. Pass task 
assignments to 

workers

Responses  to be inspected

Figure 5.2.: Basic schema of task inspection based on the voting pattern.

5.2. Model

This section describes the construction of the core QMmodel of this thesis as a combination
of the continuous sampling plan CSP-1 and the dynamic voting mechanism (DVM).

After introducing the underlying assumptions in section 5.2.1, section 5.2.2 illustrates the
process flow of the model. Section 5.2.3 then describes the rationale for choosing the CSP-1
as the SQC component to be used in the model.

5.2.1. Assumptions

Referring to section 2.1.2, the basic scenario of cloud labor services comprises three roles:
the service requester, the cloud labor platform and the workers. The platform acts as an
intermediary between the requester who publishes tasks and workers who pick tasks and
work on them in return for a compensation per task. There is assumed to be a large number
of equivalent tasks of the same task type that consist of the same task instructions but
different task data. The model makes some additional assumptions about the underlying
platform, the tasks as well as the workers which are described in the following.

Platform

In accordance with existing cloud labor platforms like MTurk it is assumed that the plat-
form allows for tracking individual workers based on an individual worker ID which is
returned to the requester for each response delivered by the worker. The platform also
supports multiple redundant assignments of the same task and ensures that they are com-
pleted by different workers in order to use the responses for voting steps. There are also
means for defining worker pools i.e. for making specific tasks only available to a subset of
the workers. MTurk implements this by offering qualification tests which also ensure that
the workers at least initially fall below a certain failure rate when working on a specific
type of tasks.

82



5.2. Model 83

Tasks

Because the QM approach presented here is a form of the voting pattern, it is restricted
to deterministic2 tasks. Therefore, redundant responses delivered by multiple workers for
assignments of the same task can be compared to each other or be aggregated into a single
consolidated result. It is further assumed that a large number of similar tasks are available
that require similar skills and that a fixed compensation is paid to the workers per task
independent of the quality of the work results.

Workers

From a statistical perspective it is important that the workers are working independently
of each other. Most importantly, a worker who is working on a specific task must not
collaborate (e.g. agree on a response) with other workers working on assignments of the
same task. Therefore, there should be a large crowd of workers who do not know each
other. Another assumption is that a failure rate can be attached to each worker which is
the same for all tasks of a given task type and which only slowly changes over time, for
example because workers are improving their skills or because they are getting tired after
performing a large number of tasks.

5.2.2. Process flow

The CSP/DVM can be seen as a QM component on top of the basic cloud labor platform
outlined in section 5.2.1. It consists of two functional modules: A state-of-the-art quality
control mechanism and a newly developed dynamic voting mechanism (DVM). The quality
control module uses the CSP-1 which has been described in section 4.4. A separate CSP-1
is used for each worker. The dynamic voting module will be described in section 5.3.
The overall scenario is illustrated by figure 5.3: A requester submits a task to the QM
component which immediately publishes a first assignment of it to the cloud labor platform.
A worker grabs the task assignment, works on it and returns a response which is fed back
to the QM component in combination with the worker’s ID. Depending on the CSP status
of the worker a sample inspection is being initiated or not. If not, the worker’s response is
accepted as the final result and is passed back to the requester without further validation.
If an inspection is required, the DVM is initiated.

The DVM publishes another assignment of the same task and an additional response is
returned by a different worker via the cloud labor platform. Based on the two available
responses and the historical failure rates of the two workers, the response with the highest
probability of correctness is identified. If this probability equals or exceeds the predefined
minimum inspection quality, the corresponding response is accepted as the final result
and returned to the requester. In addition, the failure rates and the CSP status of the
participating workers are updated depending on whether they had returned the correct
response or not. If the predefined minimum inspection quality has not been reached yet,
the redundancy is increased by publishing another assignment of the same task, receiving
a response from another worker and again identifying the response with the highest proba-
bility of correctness. This process is continued until either the minimum inspection quality
is met or it becomes too unlikely for the involved workers to come only to the observed
level of agreement given their historical failure rates. In the latter case, it can be assumed
that there is something wrong with the task or with the task instructions. Therefore, the
task is escalated back to the requester so he can validate it or improve the instructions.

2Refer to section 3.3.1.
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Figure 5.3.: Process flow of the CSP/DVM in the context of the service requester, the
cloud labor platform and the crowd workers.

Figure 5.4 illustrates the matrix of worker contributions per task. The horizontal axis
represents the id of the tasks as they are picked up by the workers while the vertical axis
represents the workers in the order they have joined the process. Each circle represents a
single task assignment. A full circle indicates the initial assignment of a task while empty
circles indicate redundant assignments issued by the DVM. In the example, only a single
worker is contributing to tasks 1, 4, 5, 7, 10 and 11 respectively, which indicates that the
CSP-1 of the corresponding workers did not trigger an inspection. Apparently, the CSP-1
of those workers is in fractional inspection mode. For tasks 2, 3, 6, 8 and 9, an inspection
was triggered by the CSP-1 of the workers who processed the initial assignment. Therefore,
the DVM was issued and responses for additional assignments were requested (see tasks 3,
6 and 9). For instance, three additional workers contributed to task 9 after worker 3 had
returned the initial assignment. It seems that the CSP-1 of worker 3 is in full inspection
mode because all of his initial assignments are inspected.

It is essential to understand that even though they are presented in one column, the
assignments of a given task are not performed simultaneously but sequentially. Figure 5.5
illustrates the processing timeline of the example in figure 5.4. The vertical axis again
represents the worker ids whereas the horizontal axis now represents time. The width
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Figure 5.4.: Illustration of worker contributions to a set of tasks.

of the rectangles illustrates the duration a worker has worked on the assignment of a
given task. Full rectangles indicate initial assignments while empty rectangles indicate
redundant assignments. Workers 1 and 2 seem to be rather slow while worker 3 seems to
be extraordinarily fast. According to the process flow in figure 5.3, redundant assignments
are only triggered after previous assignments of a task have been completed. A DVM is
started every time a redundant assignment is completed by a worker, which is indicated
by a thin vertical line in the timeline. A result is returned to the requester whenever an
assignment is finished and no additional redundancy is needed (indicated by an asterisk in
the task bar). This happens when either the CSP-1 does not trigger an inspection of the
corresponding worker or when the DVM decides that no more assignments are needed.

1

2

3

4

5

Task 2

Task 3

Task 4

Task 5

Task 8Task 1

Task 7

Task 6

Task 2

Task 3

Task 11

Task 6 

Task 3

Task 10

Task 6

Time

Task 14 

Task 8 

Task 99 

Task 15 

Task 13 

Task 

Task 9 

W
or

ke
r I

D

Task 9

Task 12

Task 15 

Task 16 

Task 

Task 13

Redundant assignmentInitial assignment

Task 

*

*

* *

**

*

*

*

*

*

*

*

*

Figure 5.5.: Processing timeline of the example in figure 5.4.

Before section 5.5.3 will explain the process flow in more detail, the following section will
motivate the use of the CSP-1.

5.2.3. Rationale for using the CSP-1

The CSP-1 was chosen for a number of reasons: First, it is not limited to batch scenarios
but supports real-time cloud labor scenarios in which a continuous stream of tasks needs
to be completed and for which the response time matters. Second, it works well with the
DVM: The CSP-1 assumes that defective items are replaced. So if an incorrect worker
response is detected, it will be replaced by the correct one. The DVM supports that
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requirement as it implicitly identifies the (most probable) correct result during the sample
inspection process. Finally, extensions for imperfect sample inspection are available for
the CSP-1, which is an important requirement of the DVM as it only supports a limited
inspection quality level.

The assumption of the CSP-1 that the quality of the incoming worker results is under
statistical control is addressed in three ways: First, it is assumed that all tasks are similar
and require similar skills. Second, an escalation mechanism is provided that identifies
outliers. Finally, if sequences of exceptionally bad worker results are expected, the CSP-1
parameters may be specified in a way that protects it against them.

5.3. Dynamic voting mechanism (DVM)

This section provides the statistical foundation for the DVM. After defining a set of terms
in section 5.3.1, the model is developed in section 5.3.2 and the results are presented in
section 5.3.3.

5.3.1. Definitions

Let A = {a1, a2, .., av} be the set of all v possible responses to a task. According to the
assumptions described in section 5.2.1, exactly one of the possible responses a ∈ A is the
expected correct response for the task. Let

R̂ = Aw (5.1)

be the set of all possible response tuples that might be returned by a group of w different
workers who have worked on assignments of the same task. Let R ∈ R̂ be a concrete
response tuple with R = (r1, r2, .., rw) and let the set D = {r1, r2, .., rw} consist of the
distinct responses in R. Furthermore, let the tuple E = (p1, p2, .., pw) ∈ ]0; 1[w represent
the individual historical failure rates p1, p2, .., pw of the contributing workers.

Let Ĉ = {0, 1}w and C ∈ Ĉ be the correctness profile of the task. The tuple C = (c1, c2, .., cw)
indicates, which worker has returned a correct versus an incorrect response, i.e.

∀j=1..w : cj =

{
0 if worker j has returned an incorrect response
1 if worker j has returned the correct response .

(5.2)

As an example, the correctness profile (1, 0) represents the case that the first of two workers
returns a correct response, while the second worker returns an incorrect response.

5.3.2. Statistical considerations

The set S = R̂ × Ĉ spans the sample space of all possible response tuples R ∈ R̂ and
correctness profiles C ∈ Ĉ. An exemplary sample space for 2 workers is provided by
table 5.2, an example for 3 workers by table A.1 in appendix A. The joint probabilities
PE(C ∩ R) in each row sum up to the overall probabilities PE(R) of the response tuples
R and the joint probabilities in each column sum up to the overall probabilities PE(C) of
the correctness profiles. The index E indicates that all probabilities are conditional given
the failure rates E of the contributing workers. The following paragraphs describe how
the individual probabilities can be calculated.

Depending on their failure rates, an arbitrary subset of the workers might return a correct
response. As the probability for worker j to deliver a correct vs. incorrect response is
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Table 5.2.: Sample space of a scenario with 2 workers and 3 possible responses assuming
a historical failure rate of p = 0.1 for both workers.

PE(C ∩R) for correctness profile C
Response tuple R (0, 0) (0, 1) (1, 0) (1, 1) PE(R)

(a1, a1) 0.0011 0 0 0.2700 0.2711
(a1, a2) 0.0011 0.0150 0.0150 0 0.0311
(a1, a3) 0.0011 0.0150 0.0150 0 0.0311
(a2, a1) 0.0011 0.0150 0.0150 0 0.0311
(a2, a2) 0.0011 0 0 0.2700 0.2711
(a2, a3) 0.0011 0.0150 0.0150 0 0.0311
(a3, a1) 0.0011 0.0150 0.0150 0 0.0311
(a3, a2) 0.0011 0.0150 0.0150 0 0.0311
(a3, a3) 0.0011 0 0 0.2700 0.2711

PE(C) 0.0100 0.0900 0.0900 0.8100 1.0000

qj = (1 − pj) vs. pj , the a priori probability PE(C) for observing a correctness profile C
can be estimated as

PE(C) =
∏

∀j|cj=1

qj
∏

∀j|cj=0

pj . (5.3)

In order to define the most probable response, the conditional probabilities PE(C | R) of
all possible correctness profiles given a specific response tuple R and the tuple of failure
rates E are calculated and then the correctness profile C̃ with the highest probability is
identified. The estimation is being performed with Bayesian inference using the a priori
information about the failure rates of the involved workers and about the distribution of
the possible response tuples. PE(C | R) can be calculated as the conditional probability
for C given R and E:

PE(C | R) =
PE(C ∩R)

PE(R)
=

PE(R | C)PE(C)

PE(R)
(5.4)

Within (5.4), the conditional probability PE(R | C) can be calculated as

PE(R | C) =

{ 1
mC

if ∃k ∈ D | ∀j : (cj = 1) ⇒ (rj = k), (cj = 0) ⇒ (rj �= k)

0 otherwise
(5.5)

with mC being the number of response tuples R that may be observed given a specific
correctness profile C. The underlying assumption is that the a priori probability of all
response tuples is equal. For example in table 5.2, if there are three possible responses a1,
a2 and a3, there are three response tuples in R̂, that apply to the correctness profile (1, 1):
(a1, a1), (a2, a2) and (a3, a3). Other response tuples like (a2, a3) have a probability of zero
because a2 and a3 cannot be correct at the same time as there is only a single correct
response a ∈ A.

The number mC is determined by

mC =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v · ∏

∀l|cl=0

(v − 1) if ∃j | cj �= 0

vw if (∀j | cj = 0) ∧ (v > w)

vw −
v∑

l=0

(
v
l

)
(v − l)w(−1)l if (∀j | cj = 0) ∧ (v ≤ w) .

(5.6)
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In the upper branch of (5.6), the response tuple contains the (unknown) correct response
a ∈ A at least once, so there are v options to choose it and (v−1) options for choosing each
of the incorrect responses. In the middle and lower branch, all responses of the response
tuple are incorrect. If there are more possible responses v than workers w, any of the vw

response tuples in R̂ might be incorrect. If the number of possible responses is lower than
or equal to the number of workers, Stirling numbers of the second kind (Graham et al.,
1994) are used to exclude those response tuples that contain all possible responses out
of A. They cannot occur with the correctness profile C = (0, 0, .., 0) because one of the
responses a ∈ A must be correct.

The marginal probabilities PE(R) are determined by

PE(R) =
∑
∀C∈Ĉ

PE(R | C)PE(C) . (5.7)

5.3.3. Calculation of the conditional probabilities

Depending on the number of possible responses v and the number of workers w, the
matrix in table 5.2 can become rather big. However, in order to determine the conditional
probability PE(C | R), it is not required to calculate the entire matrix because according
to (5.5), PE(R | C) and therefore PE(C | R) is different from zero only for such Ck,R ∈ Ĉ
for which all correct responses can be mapped to a specific distinct response k ∈ D and
none of the incorrect responses is equal to k. Therefore, (5.4) can be written as:

ϕk := PE(Ck,R | R) =
PE(Ck,R)

mCk,R
· PE(R)

(5.8)

with

PE(Ck,R) =
∏

∀j|rj=k

qj
∏

∀j|rj �=k

pj . (5.9)

Using (5.5) through (5.9), this turns into the following two equations:

1. If there are more possible responses than workers, i.e. v > w, that results in

ϕk =

∏
∀j|rj=k

qj
∏

∀j|rj �=k

pj

v · ∏
∀j|rj �=k

(v − 1) ·
⎛⎝ ∑

k∈D

∏

∀j|rj=k

qj
∏

∀j|rj �=k

pj

v· ∏

∀j|rj �=k

(v−1) +

∏

∀j
pj

vw

⎞⎠ . (5.10)

2. If the number of possible responses is less than or equal to the number of workers,
i.e. v ≤ w, it turns into

ϕk =

∏
∀j|rj=k

qj
∏

∀j|rj �=k

pj

v · ∏
∀j|rj �=k

(v − 1) ·
⎛⎝ ∑

k∈D

∏

∀j|rj=k

qj
∏

∀j|rj �=k

pj

v· ∏

∀j|rj �=k

(v−1) +

∏

∀j
pj

vw−
v∑

l=0
(vl)(v−l)w(−1)l

⎞⎠ . (5.11)
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An example calculation of ϕk = PE(Ck,R | R) for the sample space of 2 workers is provided
in table 5.3 and for the sample space of 3 workers in table A.2 in appendix A. Table 5.3 can
be derived from table 5.2 according to (5.4) by dividing the values PE(C∩R) in each table
cell by the corresponding value PE(R) in the last column. For example, for the response
tuple R = (a1, a1) and the correctness profile C = (1, 1), the conditional probability is

PE(C | R) =
PE(C ∩R)

PE(R)
=

0.2700

0.2711
= 0.9959 . (5.12)

In the scenario of two workers with a failure rate of p = 0.1 each and three possible response
options, the number 0.9959 represents the probability that both workers return the correct
response. The three response options could be answers A, B and C in a multiple choice
test where only one of them can be correct.

Table 5.3.: Conditional probability PE(C | R) for observing a certain correctness profile C
given a specific response tuple R in a scenario with 2 workers and 3 possible
responses assuming a historical failure rate of p = 0.1 for both workers.

PE(C | R) for correctness profile C
Response tuple R (0, 0) (0, 1) (1, 0) (1, 1)

(a1, a1) 0.0041 0 0 0.9959
(a1, a2) 0.0357 0.4821 0.4821 0
(a1, a3) 0.0357 0.4821 0.4821 0
(a2, a1) 0.0357 0.4821 0.4821 0
(a2, a2) 0.0041 0 0 0.9959
(a2, a3) 0.0357 0.4821 0.4821 0
(a3, a1) 0.0357 0.4821 0.4821 0
(a3, a2) 0.0357 0.4821 0.4821 0
(a3, a3) 0.0041 0 0 0.9959

The response d ∈ D with the highest probability of correctness can be calculated as

d ∈ D | ∀k ∈ D : ϕd ≥ ϕk . (5.13)

If the probability ϕd equals or exceeds ϕmin, the response d is accepted as the correct
response. The escalation limit is defined as the probability for observing the correctness
profile Cd,R given the failure rates E of the involved workers

εd := PE(Cd,R) =
∏

∀j|rj=d

qj
∏

∀j|rj �=d

pj . (5.14)

Once the probability εd underruns εmin, the task is escalated back to the requester. The
rationale of this definition of the escalation limit is the following: In general, the QM
mechanism relies on the assumption that the historical failure rates of the workers are good
estimates for their future performance. However, there may be some tasks which require
higher or different skills or which are not solvable at all. For those tasks, the historical
worker failure rates are no good estimates and, therefore, the probability PE(Cd,R) of the
correctness profile can be much lower than for typical tasks.
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5.4. Completion time management

This section provides considerations about influencing the completion time of a given batch
of tasks by controlling the number of workers who are eligible to work on the tasks. It is
shown that applying a deadline can further increase the efficiency of the model.

After motivating the considerations in section 5.4.1, sections 5.4.2 and 5.4.3 outline al-
ternative options for influencing the completion time. While the first option focuses on
a short completion time, the second option supports a deadline within which a batch of
tasks is supposed to be completed.

5.4.1. Motivation

The objective of the CSP/DVM is to guarantee a well-defined result quality at minimum
worker effort. For each task type, there is a pool of workers who are eligible to work
on assignments of the appropriate tasks. All workers who pass a certification test are
added to that worker pool. Even though there is no assumption about the concrete size
of the worker pool or the distribution of the worker failure rates, it can be stated that
a higher minimum failure rate would result in a lower QM effort: The CSP-1 process of
good workers will run less frequently in full inspection mode so fewer inspections will be
required. Moreover, votes of good workers will result in fewer iterations of the DVM.
Therefore, in order to really minimize the QM effort, only the very best workers should be
allowed to work on the tasks.

This, however, would come with a drawback as it would compromise the scalability of
the service because it would almost serialize the task execution. For a batch of tasks,
the completion time would drastically grow. Yet, increasing performance by adding less
qualified workers to the pool comes at the price of additional redundant submissions that
are needed to compensate for the less reliable results. Most use cases, though, will likely
require both: A minimum level of result quality and a maximum completion time, i.e. a
deadline by which all tasks must be completed.

5.4.2. Maximum throughput

The maximum throughput option basically uses all available workers who have successfully
completed the qualification test. As the failure rates of the workers may change over time,
even those who met the test may fall below the limit at a later point in time. Therefore, the
failure rates should be tracked over time and low performing workers should be removed
from the worker pool. In order to do so, a maximum failure rate pmax can be introduced.
If a worker’s failure pj rate exceeds the maximum failure rate, i.e. pj > pmax, he will not
be allowed to work on assignments of the specific task type any more. As described in the
following section, this decision does not necessarily have to be irreversible, but the worker
might be added back to the worker pool in times of high workload.

5.4.3. Fixed deadline

This section proposes a completion time management mechanism for the CSP/DVM that
dynamically adjusts the size of the worker pool in order to finish a batch of tasks within
a given deadline. The mechanism is only outlined here and will not be assessed in the
evaluation in chapter 8.

The mechanism starts with a low value of the maximum failure rate pmax in order to
start with the top performers only. By monitoring the execution progress, the expected

90



5.5. Model application 91

completion time is being constantly projected. If the process is expected to finish too late,
pmax is increased step by step in order to add more and more (less qualified) workers to
the pool.

The completion time management process is intended to ensure that in the order of as-
cending failure rates, only the best workers are added to the worker pool which keeps the
QM overhead minimal. At the same time, enough workers are being added in order to
meet the deadline.

The basic idea is to check the progress in regular time intervals and forecast future pro-
ductivity based on progress during the past intervals. If the projected completion time
exceeds the deadline, the size of the active worker pool is increased. Example: if after half
of the time only one quarter of the tasks have been completed, the size of the worker pool
is tripled.

5.5. Model application

This section describes the individual activities that are required in order to apply the
CSP/DVM model. As a first step, a number of parameters need to be configured for the
CSP-1 and the DVM (section 5.5.1). Second, a mechanism needs to be setup to identify
the initial failure rates of the contributing workers (section 5.5.2). Third, the CSP/DVM
process flow described in figure 5.3 needs to be implemented (section 5.5.3). In a fourth
step, a completion time management option should be selected (section 5.5.4).

5.5.1. Configuration of the CSP-1 and the DVM

As indicated in section 5.2.3, the CSP-1 is used with the extension of imperfect inspection.
Because the workers are acting independently of each other, the sampling process is per-
formed at worker level. The same AOQL is applied to all workers who work on the same
type of task, i.e. the same response quality is requested from all participating workers.
The CSP-1 and DVM parameters need to be calculated according to the following steps:

1. Choose a value for AOQL: set it to the highest average amount of incorrect results
that is acceptable for the requester, e.g. a value of AOQL = 0.05 means that there
is supposed to be a maximum average of 5 percent incorrect results in the result
stream.

2. Define an inspection quality level e1 = e2 = ϕmin > AOQL. Note that it will
influence both the calculation of the CSP-1 parameters as well as the behavior of the
DVM. As a conservative configuration, the recommendation is to set both the type 1
and the type 2 inspection error to the minimum inspection quality ϕmin delivered
by the DVM. The inspection quality level should be rather high in order to allow for
a fair assessment of the workers.

3. Specify the expected incoming level of response quality p̂ of the workers. This value
refers to the average failure rate of the contributing workers. The initial worker
failure rates discussed in section 5.5.2 can be used to calculate this average.

4. Determine the clearance number i according to section 4.4.1 or select i depending
on the typical number of tasks that a worker is expected to complete in a row. For
example, it does not make sense to have a clearance number of i = 20 if a worker
only completes 20 tasks in a row because the worker would be always in the 100%
inspection phase.
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5. Calculate the corresponding sampling fraction f using (4.6) by inserting the values
of AOQL, e1, e2, p̂ and i identified above.

6. Define an initial value for the escalation limit εmin. It should be set to the approx-
imate portion of tasks that are supposed to be escalated. If the complexity of the
tasks does not change over time, a value of εmin = 0.01 would result in about 1%
of the tasks being escalated. The actual percentage may differ as the complexity of
tasks varies. Over time, the escalated tasks and the corresponding worker responses
should be analyzed in order to decide whether a corrective action should be taken,
e.g. to improve the task instructions or to increase the qualification requirements.
If it turns out that a large portion of tasks gets escalated by mistake, the escala-
tion limit should be decreased. If no or just few tasks are escalated, the escalation
limit should be increased, because the analysis of escalated tasks provides a good
opportunity for a continuous improvement of the overall process.

5.5.2. Initialization of worker failure rates

For applying the QM model, initial values for the failure rates pj of all workers are required.
They can be determined by performing a qualification test based on a series of tasks for
which the expected results are already known. There is no need to have workers assigned
to the worker pool before starting the actual process because the qualification test can
also be requested on the fly when the worker first decides to work on a specific task type.
Only such workers that initially meet a correctness level close to AOQL should be allowed
to work on the task by adding them to the worker pool. Workers that do not meet the
quality needs would continuously stay in full inspection mode and, therefore, would lead
to high costs.

Note that according to 5.3.1, the worker error rates must not be exactly 0 or 1 even if a
worker completes all tasks of the qualification test or does not complete any of them suc-
cessfully. An initial failure rate of 0 or 1 would compromise the calculation of ϕk. Because
of the nature of human work it is obvious that failure rates of 0 and 1 are no realistic
estimates for the future performance of a worker. Therefore, if a worker successfully com-
pletes all tasks of the test at least one of the test results should be counted as a defect.
For example, in a test with 20 tasks, the minimum possible failure rate to achieve would
be p = 1

20 = 0.05. If a worker does not complete any of the tasks successfully, he should
anyway not be allowed to work on tasks (refer to section 5.5.4).

5.5.3. Detailed process flow

After calculating the CSP-1 and DVM parameters and setting up a mechanism for de-
termining the initial worker failure rates, the QM process illustrated by figure 5.3 can be
applied. The following steps describe the process flow of the QM component in detail:

1. Receive task from requester and pass a first assignment of it to the cloud labor
platform.

2. Receive response along with the anonymous ID of the worker who has performed the
task.

3. Based on the ID, check status of the worker’s CSP-1. If the CSP-1 is in full in-
spection mode, the worker’s response needs to be inspected, otherwise decide based
on sampling fraction f whether to inspect the response. If no inspection is needed,
continue with step 9.
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4. Pass an additional assignment of the task to the platform.

5. Receive response along with worker ID.

6. Based on all available responses and the historical failure rates of the involved work-
ers, calculate the probability ϕk with (5.10) or (5.11) for all available responses and
identify the response d with the highest probability of correctness ϕd along with the
appropriate escalation limit εd (5.14).

7. If the probability ϕd equals or exceeds the predefined minimum inspection quality
ϕmin, perform the following activities:

• Update the failure rates and the CSP status of all involved workers depending
on whether their response matches d or not.

• If a response matches d and the worker is in full inspection mode, increase the
corresponding worker’s defect-free-counter ij by one. If it reaches the clearance
number i, i.e. ij ≥ i, switch the CSP status of the worker to fractional inspection
mode.

• If a response does not match d, switch the CSP status of the corresponding
worker to full inspection mode.

• Finally, continue with step 9.

8. If the current escalation limit εd is falling below the specified escalation limit εmin,
escalate the task back to the requester and proceed with the next task in step 1.

9. Accept response d as the final result and return it to the requester. Then proceed
with the next task in step 1.

5.5.4. Selection of completion time management option

Finally, one of the completion time management options described in section 5.4 needs to
be selected. As a starting point, the maximum throughput option is recommended in order
to limit the implementation overhead. The maximum failure rate pmax may be set to the
same limit as when setting up the initial worker pool in section 5.5.2. If there is a large
number of workers available and there is plenty of time for completing the tasks, the fixed
deadline option may be considered.

5.6. Small worker pools

When there are only few workers available, the CSP/DVM can run into situations in which
voting steps are delayed due to a lack of workers. After elaborating on this challenge in
section 5.6.1, section 5.6.2 introduces approaches for addressing it.

5.6.1. Motivation

An important reason for employing QM to cloud labor services is that the worker per-
formance may change over time. Even if a worker has delivered good results for a long
period of time, his performance may suddenly decline. The CSP/DVM addresses this
objective by continuously tracking and updating each worker’s failure rate. An update is
initiated when the CSP-1 requests an inspection of a worker’s response, which will issue a
dynamic voting process. Once the DVM finishes, the failure rates of the involved workers
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are updated. However, as long as the DVM has not finished, the entire QM mechanism
continues to use the original failure rates even if the actual worker performance may have
declined. This delayed completion of the DVM compromises the CSP: If the result of the
inspection does not become promptly available, the CSP may not react quickly enough to
increasing worker error rates by switching to full inspection mode. Therefore, incorrect
responses may slip through and may compromise the average response quality.

The problem does not appear if there are enough workers available to work on the tasks.
Given that the iterations of the DVM are performed sequentially and assuming that all
workers need a similar amount of time for completing a task, the maximum number of
tasks that a worker may be ahead approximately matches the number of iterations until
the DVM comes to a decision. This can typically be assumed to be a single digit number.

If, however, the pool of available workers is small, the delay can be much longer. In the
worst case, a single available worker may perform assignments of all available tasks without
any of the inspection requests being completed and without the CSP status of the worker
being updated ever. In order to avoid that, additional measures have to be taken.

5.6.2. Prevention of delayed task inspection

As discussed, the timing of the inspection process is essential in the CSP/DVM scenario.
In this section, three options are presented that reduce or avoid the effect of delayed task
inspection.

Finish incomplete tasks first

Incomplete tasks are defined to be such tasks for which the DVM is in process but did
not finish yet. A general best practice is to prioritize the assignments of such tasks higher
than the ones of new tasks: If the CSP-1 has identified that inspection is required for a
task, the assignments generated in the course of the inspection should be put at the top of
the queue so that workers will grab them first before working on so far untouched tasks.
As long as enough workers are available, this procedure ensures that incomplete tasks are
finished before new ones. MTurk implicitly supports this behavior.

Of course, each worker anyway only sees assignments of such tasks that he is eligible to
work on. In particular the worker will not see assignments of tasks he has already worked
on even if they are positioned at the top of the queue. Therefore, in order to complete
all inspections in a timely manner, the number of different workers must match at least
the maximum number of iterations in the DVM. If there are fewer workers, at least some
inspection processes will get stuck.

Limit number of incomplete tasks

In order to avoid situations in which too many inspections are getting stuck, the number of
incomplete tasks may be limited either per worker or in general. By limiting it per worker,
such workers who have already contributed to a certain number of incomplete tasks are
prevented from working on new tasks until at least one of the incomplete ones has been
completed. Other workers may still continue to do work. When applying a general limit,
all workers are prevented from doing work once a certain number of undecided inspections
has been reached.

Naturally, if there is a lack of workers, both approaches sooner or later lead to an inter-
ruption of the task execution process. The general limit will typically be reached earlier
but will therefore be easier to implement and to monitor.
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Full inspection

A simple but very effective approach to avoid the issues is to run the CSP-1 in full inspection
mode which is equivalent to not using it at all. If the CSP-1 is not used, a timely inspection
is not needed.

The full inspection mode has been discussed in section 5.6.1. It can be turned on by simply
setting the clearance number i to a value that exceeds the number of expected tasks or by
setting the sample fraction f to 1. As a consequence, the DVM is issued for each individual
task. The desired output quality is then defined by the minimum inspection quality level
ϕmin of the DVM rather than by AOQL.

The full inspection mode can be assumed to increase the inspection costs because each
task is performed at least by two workers while a portion of tasks is only performed by a
single worker when using the CSP-1. In return, because of the lower value of the minimum
inspection quality ϕmin, the average number of iterations of the DVM is reduced.

Like the incomplete task limit, full inspection will not avoid the process from getting stuck
if there are too few workers. However, with full inspection only those tasks will be left
over that need more workers for completion.
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6. Model variations

The model variations introduced by this chapter complement the core model presented in
the previous chapter by addressing a broader set of relevant cloud labor scenarios. The
considerations provide the basis for two of the case studies presented in chapter 9.

While in section 6.1, the dynamic voting mechanism (DVM) is adapted to the important
class of multi-labeling scenarios, section 6.2 introduces a complementary model that makes
SQC applicable to non-deterministic tasks which are not supported by the DVM.

6.1. Multi–labeling scenarios

Besides the generation of content, the collection of data and the transcription of recorded
speech, one of the most popular types of cloud labor tasks is the classification or catego-
rization of items (Ipeirotis, 2010a). In many of such scenarios, multiple labels must be
assigned to each item at the same time. Such multi-labeling scenarios are highly relevant in
research and practice. Basic examples comprise the tagging of texts and multimedia con-
tent according to specific characteristics and the classification of medical symptoms and
diseases. The most prominent application of multi-labeling is probably the ESP Game
that was introduced in section 2.2.

In its generic form, the DVM is not suited to manage the quality of multi-labeling tasks.
The aim of this section is to develop a variation of the approach which closes this gap.

After providing an overview on the general types of classification scenarios in section 6.1.1
and introducing the scenario assumptions in section 6.1.2, section 6.1.3 explains how the
DVM has been applied to the multi-labeling scenario. The basic process flow of the model
is then described in section 6.1.4. Sections 6.1.5 to 6.1.7 cover the actual statistical model.

6.1.1. Types of classification scenarios

This section provides an overview on the general types of classification scenarios following
the terminology used by Tsoumakas & Katakis (2007).

In basic classification scenarios, items are classified by a single label which is taken from a
set of disjoint labels. If the set comprises just two different labels, one speaks of a binary
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classification. The inspection mechanism of sampling plans for attributes represents such
a classification as it just differentiates between good and bad items. If an item is supposed
to be classified according to a set of more than two disjoint labels, this would be a multi-
class classification. An example would be to categorize pictures according to the countries
where they were taken. More complex classification scenarios require more than one label
to be assigned to the item at the same time, still taken from the same disjoint set of labels.
For instance, when classifying pictures according to the objects they show, there may
obviously be more than one label assigned to an image. Such tasks are called multi-label
classifications.

Table 6.1 summarizes the classification types introduced above. The second column indi-
cates the number of labels that are available, the third column indicates the number of
labels that are assigned to an item. The specific characteristic of multi-labeling classifi-
cations is that multiple labels are available and any number of them can be assigned to
each item. If the available labels represent a hierarchy such that one or more nodes of the
hierarchy are assigned to an item, the corresponding task is called hierarchical multi-label
classification, otherwise it is a flat multi-label classification. The model introduced in the
following focuses on the latter type.

Table 6.1.: Important types of classification scenarios.

Type of classification Number Labels Example scenario
of labels assigned

Binary classification l = 2 1 Classify samples into good and bad
items.

Multi-class classification l > 2 1 Categorize pictures according to the
countries where they were taken.

Multi-label classifications l > 1 0, 1, 2, .., l Classify pictures according to the
objects they show.

6.1.2. Assumptions and definitions

In addition to the assumptions of the generic DVM described in section 5.2.1, specific
assumptions about the multi-labeling scenario are made. It consists of a series of labeling
tasks, in each of which a predefined set of binary labels is assigned to an item.

The set B = {b1, b2, .., bv} represents the available labels. While in the generic DVM in
section 5.3.1 each worker y = 1, .., w is assumed to return a single x ∈ A, in the multi-
labeling scenario discussed here, a worker can assign multiple labels to an item. A decision
needs to be made for every label in the set B. All labels that a worker does not explicitly
assign to an item are considered to be denied. This corresponds to the ”closed topic
assumption” defined by Sasaki et al. (2007). The labels are assumed to be statistically
independent of each other. In particular, they do not have a hierarchical relationship and
are not composed of multiple sub-labels but represent a flat multi-label classification.

The labels are also not ranked or scored and the decisions of the workers are independent.
Furthermore, a fixed cost per worker and labeling-task is assumed. Another important
assumption is that the challenge of assigning a correct label is similar for all labels, i.e.
there are assumed to be no labels which are extraordinarily difficult to adjudicate upon.
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The responses from the workers y = 1, .., w regarding the labeling decisions for labels
x = 1, .., v are represented by a response matrix R̃ = (rxy):

R̃vw = (rxy) =

⎡⎢⎣ r11 · · · r1w
... rxy

...
rv1 · · · rvw

⎤⎥⎦ (6.1)

The elements rxy ∈ {0, 1} of the matrix indicate if label x has been assigned (rxy = 1) or has
not been assigned (rxy = 0) by worker y. The ground truth is unknown. The (unknown)

true binary value, for each label x is represented by an indicator vector
−→
t = (t1, .., tv)

with tx ∈ {0, 1}. The value tx = 1 indicates that label x should be assigned; tx = 0
in turn indicates that label x should not be assigned. Table 6.2 illustrates the possible
combinations between the worker’s labeling decision rxy and the true value of the label
tx = 1. The true positives (TP) define the number of positive labels rightly assigned by a
worker while the true negatives (TN) define the number of negative labels rightly omitted
by the worker. The negative labels wrongly assigned by a worker are called false positives
(FP) while the number of positive labels wrongly omitted by a worker are called false
negatives (FN).

Table 6.2.: Confusion matrix indicating the possible combinations of worker decisions and
true labels.

True label tx
1 0

Worker decision rxy
1 True positive (TP) False positive (FP)

0 False negative (FN) True negative (TN)

The sensitivity αy ∈ [0, 1] is defined as the proportion of correctly identified positive labels
(also called true positive rate) and can be understood as the conditional probability that
a worker assigns a label (rxy = 1) given it should be assigned according to its true value
(tx = 1). In can be calculated based on the number of TPs and FNs:

α =
TP

TP + FN
(6.2)

The specificity βy ∈ [0, 1] is defined as the proportion of correctly identified negative labels
(also known as true negative rate) and can be understood as the conditional probability
that a worker does not assign a label (rxy = 0) given that the label should not be assigned
according to its true value (tx = 0). It can be calculated based on the number of TNs and
FPs:

β =
TN

TN + FP
(6.3)

6.1.3. Application of the DVM

According to the taxonomy introduced in section 3.3.1, mutli-labeling is a fine-grained
task because it could be split into smaller ones, e.g. one task per label.1 The assumption
of a ground truth

−→
t representing the true labels implies that the multi-labeling task is also

1 If there is a large number of tasks b ∈ B, this would obviously not be efficient.
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deterministic. For managing the quality of fine-grained deterministic tasks, the decision
matrix in section 3.4.1 recommends to apply the iteration pattern but also mentions that
the voting pattern may be a viable alternative for specific tasks. This section illustrates
why the general DVM is only of limited use for multi-labeling scenarios and how it can be
adjusted in order to close the gap.

A basic way to apply the DVM would be to treat any combination of possible labels b ∈ B
as a separate response a ∈ A in section 5.3.1. By taking into account the historic failure
rates of the workers, the DVM would then identify the response with the highest probability
of correctness and would return it to the requester if it meets the quality needs. However,
this only works if multiple users can be expected to return exactly the right combination
of labels, in other words, if the entire labeling task is simple according to the definition in
section 3.3.1.

If there is a large number of labels, getting all of them right will be difficult even for
experienced workers. Therefore, just selecting one of the combinations returned by a
specific user will not work. Instead, the objective of the DVM for multi-labeling is to merge
labeling decisions from multiple workers in a way that they best match the requester’s
quality objectives. The final labeling decision may be a mixture of labels identified by
different workers.

This variation of the DVM does not apply acceptance sampling as for merging respon-
ses from multiple workers, at least two responses are needed. Furthermore, no escalation
mechanism is provided which is rather a limitation of the current model than a general
restriction introduced by the multi-labeling scenario. Another significant difference com-
pared to the general DVM concerns the way the requester’s quality objectives as well as
the historical worker performance are represented. A single failure rate is not an adequate
measure for the multi-labeling scenario. Instead, the sensitivity and specificity measures
defined in section 6.1.2 are used. The quality objectives are defined by the minimum sen-
sitivity αmin and specitivity βmin. The historical performance of worker y is defined by
his sensitivity αy and specificity βy.

In the following section, the process flow of the DVM for multi-labeling will be described.

6.1.4. Process flow

The basic process flow of the DVM for multi-labeling is illustrated by figure 6.1. While
the platform layer and the worker pool at the bottom of the diagram are identical to the
general DVM process flow in figure 5.3, the QM component and the requester layers differ
in the following points which have been motivated in the previous section:

1. No acceptance sampling is used (no CSP-1).

2. There is no escalation mechanism.

3. Worker performance is measured by sensitivity and specificity rather than by a single
failure rate.

The process flow is as follows: After receiving a labeling task from the service requester
along with the quality objectives, two assignments of the task are immediately published
to the cloud labor platform.2 After receiving the worker’s labeling decisions along with

2 In favor of a simplified diagram, the process flow suggests that the second assignment of the task is only
published after having received the response of the first one. However, both assignments are actually
published immediately.
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Figure 6.1.: Process flow of the DVM for multi-labeling.

their worker IDs, the posterior probability of the individual labels is calculated on behalf
of the sensitivity and specificity values of the contributing workers. In a next step, the
best suitable labeling decision is identified. If the latter one already meets the requester’s
quality objectives, the sensitivity and specificity of the contributing workers are updated
and the consolidated labeling decision is returned to the requester. If the quality objectives
are not yet met, another instance of the same task is published to the cloud labor platform
and the loop continues.

The crucial steps are explained in the following sections: Section 6.1.5 describes how the
posterior probability per label is calculated, 6.1.6 covers the identification of the best
suitable labeling decision and 6.1.7 addresses the update of the worker’s sensitivity and
specificity values.

6.1.5. Posterior probability per label

This section explains how the posterior probabilities for assigning each individual label are
estimated based on the labeling decisions of the workers. Following Warfield et al. (2004),
he posterior probability P (tx = 1|r1, .., rw) of a label x having the true value tx = 1 given
the observed labeling decisions of w workers can be calculated using Bayes’ theorem: The
posterior probability after observing the labeling decisions rx ∈ {0, 1} can be computed
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as:

LPx ≡ P (tx = 1|rx1, .., rxw) = P (tx = 1, rx1, .., rxw)

P (rx1, .., rxw)
(6.4)

=
P (tx = 1) · P (rx1, .., rxw|tx = 1)

(P (tx = 1) · P (rx1, .., rxw|tx = 1) + (1− P (tx = 1)) · P (rx1, .., rxw|tx = 0))
(6.5)

Because the labels are assumed to be binary, the probability for a label being assigned
must be one minus the probability for the label being unassigned, i.e.

P (tx = 0) ≡ 1− P (tx = 1). (6.6)

Furthermore, because of the assumption of independent labels and workers, the following
transformations can be performed:

P (rx1, .., rxw|tx = 1) ≡
∏
y

P (rxy|tx = 1) (6.7)

P (rx1, .., rxw|tx = 0) ≡
∏
y

P (rxy|tx = 0) (6.8)

With (6.6) through (6.8), (6.4) turns into

LPx =

P (tx = 1) ·∏
y
P (rxy|tx = 1)

P (tx = 1) ·∏
y
P (rxy|tx = 1) + (1− P (tx = 1)) ·∏

y
P (rxy|tx = 0)

. (6.9)

With the definitions of α and β from (6.2) and (6.3) and with the definition of the prior
probability for a label being true.

p̃ ≡ P (tx = 1) (6.10)

this finally leads to:

LPx =

P (tx = 1) · ∏
y|rxy=1

αy
∏

y|rxy=0

(1− αy)

p̃ · ∏
y|rxy=1

αy
∏

y|rxy=0

(1− αy) + (1− p̃) · ∏
y|rxy=0

βy
∏

y|rxy=1

(1− βy)
(6.11)

The prior probability p̃ typically has to be estimated. The initial sensitivity and specificity
of the workers can be calculated with (6.2) and (6.3) based on the results of a qualification
test. However, as mentioned by Warfield et al. (2004) and others, the initial values for
sensitivity and specificity should never be 1 as this would not be a realistic estimate for
the future performance of a worker. Therefore, it is recommended to assume that at least
one FP and one FN was returned even if a worker actually passes the qualification test
without errors.3

6.1.6. Identification of best suitable labeling decision

In order to check whether the requested correctness goal in terms of the minimum sensi-
tivity αmin and specitivity βmin is met, the following aggregation mechanism is used: For
each relevant combination of true and false labels, the projected sensitivity and specitivity

3Compare to the section 5.5.2.
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is calculated using the posterior probabilities determined in (6.11). The combination that
best meets the objectives is returned to the requester. If there is no such combination, the
redundancy is increased by requesting feedback from another worker.

It is actually not necessary to calculate the expected sensitivity and specitivity for all
permutations of true and false labels because it is obvious that most permutations are
irrelevant. For example, if there is only one label in the final result, it will certainly be
the one with the highest probability of correctness LPj |∀l ≤ v : LPj ≥ LPl. If there is
a second one, it will be the one with the second highest probability and so on. This will
become clear based on the following considerations.

Let the tuple H contain the indices of all labels sorted by their probability of correctness
LP :

H = (h1, h2, .., hv) with LPh1 ≥ LPh2 ≥ · · · ≥ LPhv (6.12)

The relevant combinations of labels only differ in the number k ≤ v of labels assigned. Let
further TP k, FNk, FP k and TNk represent the projected average number of TPs, FNs,
FPs and TNs when returning the k labels with the highest probability of correctness. TP k

and FNk can be calculated as

TP k =

⎧⎨⎩
0 if k = 0
k∑

y=1
LPhy if k > 0

(6.13)

FNk =

⎧⎨⎩
0 if k = 0
k∑

y=1
(1− LPhy) if k > 0

. (6.14)

The remaining v − k labels are not returned even though there is a non-zero probability
that they are correct. Therefore, FNk and TNk can be calculated as

FP k =

⎧⎨⎩
0 if k = v

v∑
y=k+1

LPhy if k < v (6.15)

TNk =

⎧⎨⎩
0 if k = v

v∑
y=k+1

(1− LPhy) if k < v . (6.16)

Using (6.13) through (6.15), the projected sensitivity αk and specitivity βk can be calcu-
lated according to (6.2) and (6.3) with k > 0 being the projected number of labels to be
assigned and v − k > 0 being the projected number of labels not to be assigned:

αk =
TP k

TP k + FNk

=

k∑
x=1

LPwx

k∑
x=1

LPwx +
v∑

y=k+1

(1− LPhy)

(6.17)

βk =
TNk

TNk + FP k

=

v∑
x=k+1

(1− LPwx)

v∑
x=k+1

(1− LPwx) +
v∑

y=k+1

LPhy

(6.18)
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Figure 6.2 illustrates the calculation of TP , FN , FP and TN for the case v = 5 and
k = 3, i.e. the three labels with the highest values of LP are assumed correct. Each bar
is representing a label. The lower (dark grey) portion of the bar indicates its labeling
probability LP , while the upper (light grey) portion indicates (1 − LP ). Assuming that
the first three labels are correct, the projected average number of TPs is equivalent to
the combined dark grey areas of the bars 1 to 3. The combined light grey areas of these
bars are equivalent to the projected average number of FNs. Accordingly, the combined
dark grey areas of the remaining two bars 4 and 5 represent the projected average number
of FPs while the combined light grey areas of these bars represent the projected average
number of TNs.
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Figure 6.2.: Illustration of the calculation of TP , FN , FP and TN based on the labeling
probability LP .

The parameter k is increased step by step until both the sensitivity and specificity goals are
met, i.e. until the projected sensitivity and specificity are at least equal to the requested
ones, i.e. αk ≥ αmin and βk ≥ βmin. As αk is not defined for k = 0 it is assumed that
the sensitivity objective is met. Accordingly, for k = v, it is assumed that the specificity
objective is met. As a consequence, if no label is returned by any of the workers, the DVM
for multi-labeling accepts this as the consolidated worker decision and does not return any
label to the requester.

6.1.7. Updating the worker’s sensitivity and specificity

After successfully completing a task, the performance indicators of all w participating
workers are being updated. In (6.19) and (6.20), the sensitivity αy is calculated as the
sum of the posterior probability of all labels the worker submitted divided by the sum
of posterior probabilities of all labels with x = 1, .., v denoting all possible labels and
P (tx = 1|rx1, .., rxw) denoting the posterior probability of label x being correct given the
observed labeling decisions of w workers:

αy =

v∑
x|rxy=1

P (tx = 1|rx1, .., rxw)
v∑

x=1
P (tx = 1|rx1, .., rxw)

(6.19)

104



6.2. Non-deterministic tasks 105

The individual worker’s specificity βy is calculated accordingly:

βy =

v∑
x|rxy=0

(1− P (tx = 1|rx1, .., rxw))
v∑

x=1
(1− P (tx = 1|rx1, .., rxw))

(6.20)

The DVM for multi-labeling will be further discussed in section 9.1 where it will be applied
to a medical coding scenario.

6.2. Non-deterministic tasks

As anticipated in section 5.1, the group validation approach introduced in this section4

is not an enhancement of the DVM but represents a complementary approach that relies
on a different QM pattern, a different SQC mechanism and a different method for sample
inspection. The objective of the group validation approach is to approach the research
question of this thesis in an alternative way in order to gain a broader view on SQC for
cloud labor services. At the same time, it aims to overcome the restriction of the DVM to
be limited to deterministic tasks.

After motivating the group validation approach in section 6.2.1 and providing its statistical
foundation in section 6.2.2, section 6.2.3 introduces the process flow of the approach.
Section 6.2.4 and 6.2.5 then describe the sampling mechanism and the sample inspection
mechanism in detail. Finally, section 6.2.6 discusses how to determine the number of
reviewers to be used for the sample inspection.

6.2.1. Introduction

According to the discussion in section 5.1, the validation pattern represents another
promising approach to be used in combination with SQC. The comparison of QM pat-
terns in section 3.4.1 has revealed that it is an extremely flexible approach that can be
applied with little effort to a wide range of scenarios. Moreover, it intuitively fits well into
SQC because the concept of validation is close to that of inspection which can be seen as
the core constituent of SQC. However, feedback from multiple reviewers may need to be
combined in order to come to a reliable review decision. Therefore, the group validation
approach presented here relies on a vote of multiple reviewers.

As opposed to the DVM approach, the number of reviewers is not iteratively increased,
but a fixed number of validation decisions is allocated per task. For a batch of tasks,
the validation decisions are then consolidated using a maximum likelihood estimation,
which has been successfully applied to a series of cloud labor scenarios, e.g. Raykar et al.
(2009) and Ipeirotis et al. (2010), but not yet in the context of the validation pattern.
An important characteristic of the approach is that it is batch oriented, therefore it can
be seen as the perfect counterpart to the concept of acceptance sampling, which is batch
oriented as well. By combining the group validation approach with the Dodge-Romig
AOQL sampling plan, a sample-based group validation approach is designed. While the
EM algorithm and the Dodge-Romig AOQL sampling plan are state-of-the-art approaches,

4Considerable parts of this section have already been exposed to and tested with the academic commu-
nity, having been presented at the 16th Americas Conference on Information Systems (AMCIS 2010) and
published in the respective proceedings (Kern et al., 2010e).
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their specific combination into a QM mechanism for cloud labor services represents a
contribution of this thesis. In fact, the group validation approach is the first application
of acceptance sampling for cloud labor services.

The underlying assumptions are consistent with the ones presented in section 5.2.1, except
that the approach is no longer limited to deterministic tasks but also applies to non-
deterministic ones.

6.2.2. Fundamentals

This chapter describes the EM algorithm that was outlined in section 3.3.3. It was origi-
nally developed by Dempster et al. (1977) who introduced it as a generalized method to
compute maximum likelihood estimates from incomplete data. Dawid & Skene (1979) first
applied it to a scenario in which a subject is classified into one of multiple categories based
on the judgments of multiple observers. In addition to an estimate for the true category
of the subject, the method also derives error rates for the observers. The basic idea of the
algorithm is to infer the posterior probability of the subject’s true category by integrating
its a priori probability, the observers’ judgments and the observers’ error rates via the
Bayes Theorem. This is done in an iterative way until the posterior probabilities converge.
The approach proposed by Dawid & Skene is outlined in the following:

In an experiment, w independent observers y = 1, .., w are asked to assign one or multiple
of x possible categories x = 1, .., v to a set of z = 1, .., s items. The same category can be
assigned multiple times, but not every observer needs to assign a category to every item.

Let n
(y)
zx represent the number of times that observer y states that subject z belongs to

category x. The observers may perform errors which are described by the error rates π
(y)
xl ,

defined by

π
(y)
xl =

(number of cases observer y records category l when x is correct)

(number of cases assessed by observer y where category x is correct)
. (6.21)

Let Tzx represent the probability that subject z belongs to category x. If the true category
x = t of subject z was known, the probability would be Tzt = 1 for the true label x = t
and Tzx = 0 for x �= t. However, the true categories are unknown and can therefore only
be estimated. The estimates can take any value Tzx ∈ [0; 1].

The maximum likelihood estimates of the observer error rates can be calculated by

π̂
(y)
xl =

s∑
z=0

Tzx

v∑
l=0

s∑
z=0

(Tzx · ny
zl)

(6.22)

Note that (6.22) is semantically equal to (6.21). The probabilities of the categories
px(x = 1, .., v) can be estimated via

p̂x =

s∑
z=0

Tzx

s
(6.23)

The objective of the approach is to provide estimates (Tzx) for the true categories along

with estimates for the observer error rates
(
π̂
(y)
xl

)
.
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If the probabilities (px) and the error rates
(
π
(y)
xl

)
were known, Bayes’ Theorem could be

used to obtain estimates for (Tzx) using

P (Tzx = 1 | data) = P (data | Tzx = 1) · P (Tzx = 1) (6.24)

which in numerical terms is

P (Tzx = 1 | data) =

w∏
y=1

v∏
l=1

(π
(y)
xl )

n
(y)
zl · px

v∑
t=1

w∏
y=1

v∏
l=1

(π
(y)
ql )n

(y)
zl · pt

. (6.25)

If the probabilities (px) and the error rates
(
π
(y)
xl

)
are not known but estimated, the calcu-

lation can still be used and provides a maximum likelihood estimation for the probabilities
(Tzx).

Dawid & Skene propose the following iterative procedure:

1. Obtain initial estimates for the probabilities Tzx.

2. Use (6.22) and (6.23) to estimate the probabilities px and the error rates π
(y)
xl .

3. Use (6.25) and the estimates of the probabilities px and the error rates π
(y)
xl to get

new estimates of the probabilities Tzx.

4. Repeat steps (2) and (3) until the probabilities Tzx converge.

If there are no good initial estimates available for the probabilities Tzx, the algorithm may

not deliver a satisfactory result. Dawid & Skene propose to use the numbers n
(y)
zx as a

starting point:

T̂zx =

w∑
y=1

n
(y)
zx

w∑
y=1

v∑
l=1

n
(y)
zl

(6.26)

6.2.3. Process flow

The actual QM process can be split into three phases: task execution, response validation
and rework. Figure 6.3 illustrates the basic schema5 of the group validation approach.
The following sections will describe each of the phases in detail.

Execution Validation Rework

Figure 6.3.: Basic schema of the group validation approach.

5The complete process of the sample-based group validation is depicted in figure A.1 in appendix A.
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Execution phase

The execution phase manages the generation of the responses which are then validated in
the subsequent step. Figure 6.4 illustrates the steps performed in the execution phase: The
batch of tasks is received from the requester (1) and passed to the cloud labor platform (2).
As the responses are coming back, they are collected (3) and finally returned to the QM
component along with the IDs of the workers who have performed the tasks (4).

(2) Pass
batch to

cloud labor
platform

(3) Receive
and collect
responses

and worker
IDs

(1) Receive
batch of

tasks from
requester

(4) Pass
data to

validat ion
phase

Figure 6.4.: Execution phase of the group validation approach.

Validation phase

Once all responses have been executed, the validation phase is initiated which is based on
a combination of the Dodge-Romig acceptance sampling plan described in section 4.3.2
and the EM algorithm introduced in section 6.2.2. Figure 6.5 illustrates the validation
phase.

(4) Apply
sampling

plans

(1) Receive
responses

from
execut ion

phase

(3)
Determine re

quired
number of
reviewers

(5) Generate
and publish

batch of
validat ion

tasks

(6) Receive
validat ion
responses

and worker
IDs

(9) Re-
inspect lot

(full
inspect ion)

(7) Run EM
algorithm

(2) Split  into
one lot  per

worker
(8) Assess

lots

(10) Collect
all data and

pass it  to
rework phase

Lot rejected

Lot accepted or
full inspected

Figure 6.5.: Validation phase of the group validation approach.

First, the responses to be validated are received from the execution phase (1). Then, for
the sample-based inspection, all responses received from a single worker are split into a
separate lot (2). After identifying the required number of reviewers for the inspection (3),
a sampling plan is applied to each lot by generating the appropriate number of validation
tasks for a sample of responses from each lot (4). Afterwards the batch of validation tasks
is passed to the cloud labor platform (5) where they are made available to the reviewers,
who are asked to rate the responses in a binary way, i.e. to decide whether a response
meets the task objectives or not. If it does not, the reviewer is asked to explain in a free
text field what the issue has been with the response and how it could be corrected. After
receiving the review decision along with the feedback and the reviewer’s worker IDs (6),
the reviewer decisions are consolidated by applying the EM algorithm to the entire batch
of validation decisions for all workers (7). Then, the individual lots are assessed using the
consolidated reviewer decisions (8). If a lot is rejected, a re-inspection in full-inspection
mode is initiated (9) and the process continues with step (5). For such lots that have been
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accepted or have already been re-inspected in full-inspection mode, the reviewer decisions,
the reviewer feedback and the original responses are collected and finally passed to the
rework phase of the process (10).

Rework phase

The rework phase is described by figure 6.6. After the entire batch of worker responses
and review decisions has arrived (1), the original worker responses are split into two parti-
tions (2): Those that have not been inspected at all or have been inspected as ”good” are
collected for return to the requester without further processing (5). Those that have been
inspected ”defective” are passed back to the original workers for rework along with the
reviewer’s feedback about what has been the issue with the response (3). After receiving
the reworked responses (4), those are also collected (5). In a last step, the final responses
are returned to the requester (6).

(3) Generate
and publish

batch of
rework tasks

(4) Receive
rework

responses

(6) Return
final results
to requester

(5) Collect
original /
rework

responses

(2) Split  by
review

decision

(1) Receive
responses
and review
decisions

No rework
required

Rework
required

Figure 6.6.: Rework phase of the group validation approach.

Given the fact that there is feedback available from multiple reviewers, it is assumed that
the workers are able to successfully correct the issue and return an acceptable result. This
assumption is even made for type I errors, i.e. if the original response had been correct
and the worker is asked to rework it because of an incorrect reviewer decision, the original
worker is assumed to realize the situation and keep the original response unchanged. The
rationale for the assumption is that in such a situation, the reviewers would likely provide
conflicting feedback which would not provide enough justification for a rework anyway. In
fact, the workers should be asked to ignore the feedback as long as it is incomprehensible
or there is no consistency among multiple reviewers.

The advantage of having the rework done by the original worker rather than by a different
one is threefold: First, the approach will result in a learning effect for the original worker.
According to section 2.6.3, feedback is a key ingredient to sustainable worker performance.
Second, it will likely reduce the rework effort because the original worker is already familiar
with the task. Thirdly, the approach gives the worker the chance to finally successfully
complete the tasks and get paid for it. However, if the original worker is not available, the
rework task is assigned to a different worker who is also assumed to provide the correct
response.

After the actual rework has been finished, the two partitions of responses are merged and
returned to the requester.

6.2.4. Sampling process

There are two arguments for applying acceptance sampling to the group validation process.
On the one hand, acceptance sampling can reduce the inspection effort and therefore
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increase the efficiency, on the other hand it supports goal-based quality control according
to specific quality targets. Like in the CSP/DVM model, the aim of the group validation
approach is to guarantee a certain AOQL while minimizing the inspection effort. In order
to achieve that, the Dodge-Romig AOQL sampling plan is used. As a rectifying sampling
plan it requires an error-free rework of defectives which is mentioned in the assumptions
discussed in section 6.2.3. Furthermore, an error-free inspection of samples is assumed
which will be discussed in section 6.2.6.

In order to meet the general requirement of a homogeneous batch of units, lots are con-
structed per worker. If the results need to be returned to the requester within a certain
deadline, a sequence of lots may be constructed, each covering a limited time interval. In
combination with the fact that a single worker may only return a small number of respon-
ses, the assumption of large lots will not always be met, which may reduce the efficiency
of the approach because the inspection effort does not drop proportional to the lot size. A
benefit of lot sequences is that the estimators for the EM algorithm can be continuously
updated.

The actual sampling plan is being constructed according to table 4.1. Lots are accepted
or rejected depending on the estimations of the EM algorithm. If the estimated number
of incorrect responses exceeds the acceptance number c, the lot is rejected, otherwise it is
accepted. Rejected lots will be re-inspected in 100 percent inspection mode. ATI will be
minimal, if the incoming fraction defective has been estimated appropriately.

6.2.5. Inspection process

This section describes the response inspection step of the group validation approach illus-
trated in figure 6.5. It is based on the EM algorithm described in section 6.2.2. The cloud
labor scenario meets the needs of the EM algorithm as it assumes independent workers.
Furthermore, a review decision represents a judgment according to categories which is
supported by Dawid & Skene (1979)’s approach.

Definitions

The following representation of the scenario assumes that there is a sample S = {1, .., s}
of worker responses z ∈ S, each being reviewed by a subset of r reviewers y ∈ W , W =

{1, .., w}, who return the judgment R
(y)
z about the correctness of the response z. R

(y)
z is

either 0 if the reviewer states that the response is correct or 1 if he states that it was
incorrect. The consolidated estimate for the actual quality of response z is denoted with
Tzε {0; 1} and the estimate for the fraction defective of the sample with p̂.

When leveraging reviewers out of the crowd and taking the service requesters’ quality ex-
pectations as a benchmark it is obvious that the reviewers may perform errors. According
to the definition in section 4.3.2, two types of errors can occur: A type I error happens if
a reviewer considers a response incorrect even though it is actually correct. Respectively,
a type II error happens if the reviewer considers an incorrect response correct. Corre-
sponding error rates are introduced that represent the portion of type I and type II errors

performed by each reviewer. A reviewer’s type I error is denoted as e
(y)
1 and a type II

error respectively as e
(y)
2 . The challenge is to estimate the error rates e

(y)
1 and e

(y)
2 as well

as the task quality Tz and the fraction defective p̂ in each sample.

To summarize, the given parameters are:
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• S = {1, .., s} is the sample of responses to be rated.

• r is the number of reviews per task.

• W = {1, .., w} is a set of reviewers.

• R
(y)
z is the judgment of reviewer y regarding the quality of task z. As not all reviewers

are involved in the reviews for all tasks, R
(y)
z is only defined for z ∈ Ky with

Ky = {z | reviewer y gave a judgment on the result of task z} . (6.27)

The following parameters are to be determined by leveraging the maximum likelihood
method:

• e
(y)
1 is the estimated type I error rate of reviewer y.

• e
(y)
2 is the estimated type II error rate of reviewer y.

• Tzε {0; 1} is the estimate for the true result rating regarding task z.

• p̂ is the estimated fraction defective.

Applying the maximum likelihood method

The primary challenge to be addressed by the maximum likelihood method is to find
estimates for the type I and type II error rates and for the fraction defective of the responses
which are good enough to meet the quality requirements of the requester. TheW observers
in Dawid & Skene’s approach correspond to the reviewers. The v categories correspond
to two possible ratings regarding the response quality: correct or incorrect. The items z
correspond to the sample S of responses to be rated. The number of times observer y

states that subject z belongs to category x, namely n
(y)
zx , corresponds to judgments of the

reviewers R
(y)
z .

A difference here is that in the group validation model, the values are binary and not

enumerative. Thus, if reviewer y thinks that task z belongs to category x, then n
(y)
zx = 1,

otherwise n
(y)
zx = 0. As there are only two categories, n

(y)
z0 and n

(y)
z1 always sum up to 1

because one of the categories has to be chosen. Therefore, only R
(y)
z := n

(y)
z1 needs to be

defined. As not all reviewers judge each task, R
(y)
z is only defined if reviewer y gives a

judgment about the quality of response z.

It remains to apply the concept of the probability that subject z belongs to class x which
was denoted as Tzx. In this model Tz1 is the probability that the response is correct,

P (R
(y)
z = 1), and Tz0 the probability that it is not, P (R

(y)
z = 0). Since Tz1 = 1−Tz0, only

one value Tz = Tz1 is needed.

The estimated fraction defective is the probability of category ”incorrect” (x = 1). It can
be calculated with

p̂ =
∑
z∈S

Tz

|S| . (6.28)

Accordingly, the probability of category ”correct” is

1− p̂ =
∑
z∈S

1− Tz

|S| . (6.29)
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For all reviewers that have been involved in at least one review, the type I error is calculated
with

e
(y)
1 = π

(y)
01 =

∑
z∈Ky

(1− Tz) ·R(y)
z∑

z∈Ky

(1− Tz) · (1−R
(y)
z ) +

∑
z∈Ky

(1− Tz) ·R(y)
z

. (6.30)

Respectively reviewer y’s type II error rate is obtained with

e
(y)
2 = π

(y)
10 =

∑
z∈Ky

Tz ·R(y)
z∑

z∈Ky

Tz · (1−R
(y)
z ) +

∑
z∈Ky

Tz ·R(y)
z

. (6.31)

The calculation of π
(y)
00 and π

(y)
11 as reviewer y’s success rates is performed analogously.

The posterior probabilities of an error with regard to task z can be calculated as

P (Tz = 1 | data) = P (data | Tz = 1) · P (Tz = 1) . (6.32)

what in numerical terms is:

P (Tz = 1 | data) =

∏
y∈W

(π
(y)
10 )

1−R(y)
z · (π(y)

11 )
R

(y)
z · p̂∏

y∈W
(π

(y)
00 )

1−R(y)
z · (π(y)

01 )
Rz

(y) · (1− p̂) +
∏

y∈W
(π

(y)
10 )

1−R(y)
z · (π(y)

11 )
Rz

(y) · p̂
(6.33)

The iterative procedure remains unchanged.

Unless estimates are available from the inspection of previous samples, the averages of the

reviewer judgments R
(y)
z are used as initial estimates for the probabilities Tz:

T̂z =

∑
z∈Ky

R
(y)
z

r
(6.34)

6.2.6. Number of reviewers to be used

The Dodge-Romig acceptance sampling plan assumes that sample inspection is perfect.
However, when using the maximum likelihood estimation for sample inspection, there is
no hint about the statistical significance of the inspection decisions. It just returns the
most likely configuration.

It is obvious that the significance is increasing with a growing number of reviewers. From
an economic perspective however, the number of reviewers should be minimized in order to
make the approach efficient. This section aims to provide a tradeoff decision by estimating
the minimal number of reviewers needed while reaching a specific significance of the review
decision.

The approach does not take the maximum likelihood estimation into consideration but uses
a simplified inspection mechanism as a model that is based on an analogy to acceptance
sampling. The basic objective is to determine how many reviewers need to be asked and
how many of them need to accept or reject the worker’s response in order to come to a
reliable joint review decision. For simplification it is assumed that there is a large number
of reviewers available to whom the same type I and type II errors e1 and e2 can be assigned.
The analogy to acceptance sampling is described in the following:
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• The lot is represented by a hypothetical pool of review decisions performed by a
large number of reviewers, each item representing the decision of a single reviewer.
A good item means that the reviewer accepts the worker’s response and a bad item
means that the reviewer rejects the response.

• The actual quality level (fraction defective) of the lot is represented by the average
review decision of all reviewers. Because the same type I and type II errors are
assumed for all workers, this average is either approximately e1 or approximately
(1 − e2), depending on whether the response to be reviewed is actually correct or
not. If it is correct, an average of e1 workers will state that it was not (type I error).
If the response is incorrect, an average of (1 − e2) workers will state that it was
actually correct (type II error).

• The sample is represented by the review responses of a number of n concrete reviewers
who each decide whether to accept or to reject the response.

The objective is to accept (or reject) the worker’s response if there is a high probability
β = (1− α) that the sample of reviewer decisions reflects the opinion of the hypothetical
pool of reviewers. The idea is basically to ask enough reviewers to find out with sufficient
significance β = (1 − α), whether the average reviewer decision is to accept or to reject
the response.

The required sample size n (number if reviewers) can be determined by the Guenther
algorithm described in figure 4.5 of section 4.3.2. The algorithm can be used to design a
sampling plan for the problem by specifying the parameters AQL, RQL and the signifi-
cance levels α and β. AQL and RQL are associated with type I and type II error rates e1
and e2, β = (1− α) is associated with the desired significance of the actual joint reviewer
decision.

The error rates e1 and e2 are determined by an initial run of the EM algorithm:

e1 =
1

r · n ·
∑
y∈W

e
(y)
1 · l(y) (6.35)

e2 =
1

r · n ·
∑
y∈W

e
(y)
2 · l(y) (6.36)

The following example illustrates the considerations: Calculating an example plan with
the Guenther algorithm for the parameters e1 = 0.1, e2 = 0.2, and β = 1 − α = 0.05
results in a sample size n = 6 and acceptance number c = 2. This means, if the average
type I and type II error rates of the reviewers can be expected to be 0.1 and 0.2, a group
of 6 reviewers needs to be asked in order to decide with a significance of 0.05 whether to
accept or to reject a worker response.

The acceptance number c which is calculated along with the sample size is only needed
when using the sampling plan as an alternative to the MLE. Then, the process would be
the following: For each response to be validated, n reviewers would be asked to accept or
reject it. If less than c rejected it, it would be still accepted, otherwise it would be actually
rejected.

However, if pursuing that direction, the sequential sampling plan mentioned in section 4.3.2
should be considered as an alternative in order to increase the efficiency.
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7. Toolkit development

This chapter introduces a software toolkit that has been developed within the scope of
this thesis as a technical foundation for evaluating the QM mechanisms described in the
previous chapters.1 The toolkit allows for performing experiments on top of commercial
cloud labor platforms, either based on live experiments or simulations. The toolkit specif-
ically supports the CSP/DVM model introduced in chapter 5 as well as the DVM for
multi-labelling introduced in chapter 6. The chapter is structured as follows: Section 7.1
describes the toolkit architecture. Afterwards, section 7.2 explains how real-time experi-
ments can be conducted with the tool whereas section 7.3 addresses the concept of the
simulation mode.

7.1. Architecture

From a software engineering point of view, the toolkit can be utilized to implement a
variety of usage scenarios. For instance, the toolkit might act as a software framework to
implement third party quality management services that mediate between requesters and a
cloud labor platform. It could also be used to complement existing client components with
QM capabilities. Finally, the toolkit can directly be used as a software client for commercial
cloud labor service platforms. A browser based progress monitor allows for tracking the
execution progress during task execution. The built-in simulation platform allows for
comparing the performance of different QM approaches or different configurations of the
same QM approach.

Figure 7.1 illustrates the general architecture of the toolkit, which comprises the following
core services:

• The configuration manager governs the different cloud labor scenarios to be per-
formed by the toolkit. All scenario specific configurations, sources and results are
wrapped into separate resource pools, so switching between different scenarios or
different versions of the same scenario is seamlessly possible.

1Considerable parts of this chapter have already been published at the 3rd Human Computation Workshop
of the 25th Conference on Artificial Intelligence (Bermbach et al., 2011).
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Figure 7.1.: Architectural overview of the CSP/DVM toolkit.

• The task result collector stores worker submissions internally and persists them on
the file system. This component also groups submissions for assignments of the
same task. The individual plugins may store worker submissions or retrieve them as
complete sets.

• The task result fetcher periodically polls the cloud labor platform for worker sub-
missions and ensures that a single submission is only processed once. Furthermore,
it provides an internal queuing system to the plugins.

• The platform wrapper represents the interface to commercial cloud labor platforms
as well as to the internal simulation platform. So far, a wrapper for the MTurk
platform is available that uses its SOAP-based Web service interface. The toolkit
can be easily extended with additional platform wrappers.

• The worker pool manager is responsible for registering qualification tests and assess-
ing candidates on the fly. Workers are then assigned to different worker pools in
order to control which worker may access certain tasks and which may not. This
component also provides import and export functionality for worker data and triggers
synchronization with the underlying cloud labor platform.

Individual QM features are implemented as plugins. Within the scope of the thesis, plugins
for accuracy management and time constraints have been developed:

• The CSP/DVM plugin implements the CSP/DVM model. It monitors incoming
responses and dynamically decides whether additional assignments for a task need
to be published before coming to a conclusion. Finally, the result is returned to the
result collector or the task is escalated. Custom accuracy management plugins may
be developed that process incoming responses in a different way.

• The multi-labeling plugin implements the DVM for multi-labeling developed in sec-
tion 6.1. It provides features for merging responses from multiple workers, i.e. to
assemble a final result from labels returned by different workers.
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• The time constraints plugin dynamically adjusts the size of the worker pool according
to the considerations in section 5.4.3. The current capabilities are only rudimentary
and could be used as a starting point for further developments.

The toolkit was developed using Java SE 6 and is currently maintained as an Eclipse 3.6
project. All components described above are either implemented as separate classes or
as a set of classes. Extensibility is generally achieved through usage of abstract classes
and interfaces combined with reflections. Regarding the physical design, the toolkit is
primarily realized as a library which can be used for multiple purposes, e.g. within a Web
application or a standalone tool. Initializer classes can easily be added by adapting the
existing standalone initialization class. The current implementation focuses on the MTurk
platform and, hence, includes an implementation of the platform wrapper component for
this provider. The toolkit is available as open source under MIT license (Kern et al.,
2012a). A user’s guide provided with the source code explains how to customize and use
the tool. The following two sections illustrate the two general modes of operation, the live
and the simulation mode.

7.2. Live mode

In the live mode, the user may provide a batch of tasks which are published to a commercial
cloud labor platform where they can be picked up and completed by real workers. The
responses are dynamically fetched from the platform and evaluated by the correctness
plugin. According to the configuration of the QM plugin, additional task assignments may
be automatically published as needed.

A certification test can be associated to the task type that needs to be successfully com-
pleted by new workers before they will be allowed to work on tasks. The CSP/DVM
toolkit will automatically assess the responses in real-time by comparing them with the
gold standard provided for the test. Only such workers who provide correct answers to a
certain minimum number of the test questions will be allowed to contribute.

A browser based progress monitor allows for tracking the actual task execution. The
screen is automatically updated in regular time intervals. Figure 7.2 shows an example
screenshot of the process monitor from an experiment with 10 handwritten words. Column
”Task” displays the words to be recognized while columns ”Raw 1” to ”Raw 6” represent
the individual responses from different workers which are finally consolidated by the QM
plugin in column ”Result”. Column ”Status” shows that for most of the words, a final
result could be identified while one task (task 2) had been escalated back to the requester.
Task 4 had still been in progress when the screenshot was taken. The experiment has
been performed in full inspection2 mode. One of the first responses of task 1 contained
a leading space which is invisible on the screenshot. However, even additional spaces
have been interpreted as discrepancies in this example, thus additional responses had been
requested. Task 3 indicates that capitalization also matters. All the results identified by
the DVM adhere to the gold standard.

The live mode has two drawbacks. First, performing experiments can be expensive and
time consuming. Especially when investigating the effect of configuration parameters like
AOQL, the clearance number i and the sample fraction f , an extensive number of ex-
periments may be needed. Even for simple tasks, this could quickly generate costs in

2Refer to section 5.6.2.
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# Task Result Status Raw 1 Raw 2 Raw 3 Raw 4 Raw 5 Raw 6 

1 
 

marriage Final marriage marriage marriage marriage   

2 
 

 Escalated unwound unwonnd unwannd unwound   

3 
 

soul Final Soul soul soul Soul soul soul 

4 

 

 Ongoing sanat jannt jannt    

5 
 

Richmond Final Richmond Richmond     

6 

 

forty Final forty forty     

7 
 

circumstances Final circumstances circumstances     

8 
 

similarly Final similarly similarly     

9 
 

three Final three three     

10 
 

another Final another another     

Figure 7.2.: Example process monitor output of the CSP/DVM toolkit.

the amount of thousands of dollars. Second, it can be challenging to perform a series of
tests under comparable conditions, because the actual availability of workers varies. The
simulation mode described in the following section is intended to address the two issues.

7.3. Simulation mode

Compared to the live mode, the simulation mode drastically reduces the cost and the du-
ration of test series because workforce costs are only incurred once when worker responses
are initially recorded. The pre-recorded responses can then be used again and again for
various simulations. The simulated tests will also allow for controlled experiments be-
cause multiple experiments can be performed based on the same contributions of the same
workers in order to balance the impact of worker availability.

The simulation mode differentiates between two phases: The input phase and the execution
phase. In the input phase, a set of responses is gathered from the cloud labor platform
which is then used in the execution phase as a basis for the actual simulation of the QM
approach.

For the input phase, a batch of tasks is processed by passing a well defined number of
assignments of each task to the cloud labor platform. For a given task, each assignment
must be performed by a separate worker. The incoming responses are stored in an internal
data store on the local file system. Like in the live mode, a certification requirement can
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be applied, which must be met by new workers before they are allowed to contribute. The
test responses will be automatically assessed by the tool in real-time.

In the execution phase, the pre-recorded responses are retrieved by the simulation platform
as they are needed. The platform wrapper provides the exact same interfaces for the
simulation platform as for a real cloud labor platform. There are functions to create tasks
as well as task assignments and to retrieve the incoming responses. However, as opposed
to a real cloud labor platform, the responses are not generated by the workers in real-time
but they are taken from the internal pool of available responses that had been acquired
during the input phase. Nevertheless, they are real responses that have been provided by
real workers. For each simulation run, only the required number of responses is retrieved
from the pool, i.e. not necessarily all of the prerecorded responses are used. That way,
the dynamic nature of the DVM is simulated. Depending on the configuration of the QM
plugin, more assignments may be needed for the simulation than had been pre-recorded
previously. Such situations are logged and reported in the output of the tool. In order to
support a realistic simulation, the tasks and also the task assignments are being returned
by the simulation platform in random order.

In chapters 8 and 9, the two modes of the toolkit will be leveraged for assessing the
CSP/DVM in a model scenario and in two case studies.
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8. Evaluation of core model

The evaluation of the core model has been performed in two complementary ways. First,
it has been applied to a model scenario in order to validate its effectiveness and efficiency.
Second, the applicability of the model has been proven in a business scenario in cooperation
with industry partners.

Section 8.1 introduces the model scenario and describes the results of the corresponding
experiments. Section 8.2 then covers the business scenario which represents the first of
three case studies being discussed in this thesis.

8.1. Model scenario: Optical character recognition

Data revision represents a class of applications that is widely used on commercial cloud
labor platforms like MTurk. It includes applications such as classifying, tagging, sum-
marizing and revising content, and transcribing audio and video data. A specific form
or data revision is the recognition of written texts, also called optical character recogni-
tion (OCR). Like many data revision tasks, OCR of handwritten texts cannot be fully
automated yet (Lopresti, 2009). Even sophisticated technologies need human assistance
in order to achieve satisfactory results. OCR has been chosen as a model scenario mainly
because of three reasons. First, because it represents a realistic use case. Second, be-
cause it does not require specific skills. And thirdly, because only little effort is needed for
recognizing words. Thus, the duration and the costs of experiments can be kept low.

The structure of this section1 is as follows: After introducing the experimental setup in
section 8.1.1, the results of the experiments are divided into two parts. Section 8.1.2
elaborates on the simulations while section 8.1.3 elaborates on the real-time experiments.
Sections 8.1.4 and 8.1.5 then compare and discuss the results of the two types of experi-
ments.

8.1.1. Experimental setup

The experiments have been performed on top of MTurk with the help of the CSP/DVM
toolkit presented in chapter 7. The simulation mode of the tool was used to simulate

1Considerable parts of this chapter have already been published in the International Journal of Cooperative
Information Systems (Kern et al., 2012b).
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experiments based on pre-recorded worker responses while the live mode was used to
conduct real-time experiments. For both types of experiments, the same data set consisting
of 1176 handwritten words was used. In each of the tasks, a worker was asked to read and
type in a single handwritten word which was displayed as an image file (JPEG) in the task
interface. The gold standard was specified by the author of the handwriting himself as he
should know best what his writing is supposed to mean. In order to increase the difficulty of
the tasks, capitalization had to be considered by the workers and no additional characters
(e.g. spaces or newline characters) were supposed to be entered. Figure 8.1 provides a
screenshot of the OCR task interface on the MTurk platform. The task instructions and
the image file are shown in the lower half of the screen. In the rounded box above, the
task parameters like requester name, qualification requirements, reward per task2, number
of available tasks and maximum working time are presented. Workers earned a wage of
$0.01 per completed task. The maximum time allotted to work on a task (duration) was
10 minutes, even though a task can usually be completed in a few seconds. Using the
button ”Accept HIT” workers can claim a task in order to start working on it, with the
”Skip HIT” button they can start over and jump to the next task.

Figure 8.1.: Worker interface of an OCR task on the MTurk platform.

All workers had to pass an unpaid qualification test before being allowed to participate
in the actual experiment. The test consisted of a series of 10 OCR tasks (i.e. 10 words).
Nine of the words had to be typed in correctly in order to achieve a failure rate of p = 0.1.

8.1.2. Simulations

As a basis for the simulations, a batch of 11,760 assignments (10 assignments for each of
the 1,176 tasks) was uploaded to the MTurk platform on February 1st, 2010. A single

2Amazon uses the term human intelligence task (HIT).
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8.1. Model scenario: Optical character recognition 125

worker was not allowed to handle more than one assignment of the same task. Given
a payment of $0.01 per task, a service charge of $0.005 per task and a total number of
1, 176 × 10 = 11, 760 assignments, the total expenses for the experiment summed up to
11, 760× ($0.01+$0.005) =$176.40.

Execution performance

One of the first visible and most astonishing results of the experiment was certainly the
speed at which the worker responses were submitted. In the first pretests, a batch of 3,528
tasks was completed by 112 workers in less than 15 minutes at an execution rate of 14,088
tasks per hour. The first response arrived after 22 seconds. During other experiments a
total execution speed of up to 3 times as fast had been observed because more workers
participated. It can be assumed that the execution speed depends on the time of day,
since most workers are located in the U.S. or in India (Ross et al., 2010).

Figure 8.2 illustrates the processing of the tasks on the MTurk platform during the input
phase of the simulation experiments: 11,760 tasks have been performed by 38 workers in
about 2:40 hours. The horizontal axis represents the time, starting with 0 at the beginning
of the experiment. The vertical axis shows a consecutive number for each worker that joins
the experiment. Each dot stands for a single worker response arriving at the platform while
each line of dots represents the contributions of a single worker. The first worker started
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Figure 8.2.: Incoming worker responses when processing a batch of OCR tasks on MTurk.

after about 1 minute and stopped after about 20 minutes. Over time, more and more
workers joined so that after a while, more than 20 workers have been working in parallel
when suddenly, after 2:24 hours, there have been no tasks available any more. A small
number of responses were delayed because they have been claimed and passed back after a
while, when the workers realized that they cannot identify the handwritten word. After a
series of workers had tried their luck, the final response eventually arrived after 2:40 hours.

Based on the 11,760 responses, two types of experiments have been performed: Full in-
spection and random inspection experiments. They are described in the following.
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126 8. Evaluation of core model

Full inspection

In the first simulation experiment, the efficiency of the DVM has been evaluated indepen-
dently of the CSP-1. Full inspection is a term of SQC that indicates that all items of a
sample are inspected. For the experiment this means that the DVM is issued for all tasks
and the CSP-1 is actually not used at all. Instead of full inspection one could also say
DVM only. However, in order to be consistent with the process flow of the overall model
in figure 5.3, the term full inspection is preferred here. The process flow is still valid, but
the CSP-1 is switched off by setting the sample fraction f to 1 or alternatively, by setting
the clearance number i to a value higher than the number of tasks to be processed. In
both cases, all responses submitted by the workers will be inspected.

Table 8.1 shows the parameters used for the full inspection experiment along with the
results achieved. A quality goal of ϕmin = 0.95 was applied along with an escalation limit
of εmin = 0.01. The initial number of possible responses was set to v = 3. This value
had been determined in pre-experiments which indicated that for a given word, a group of
workers would come up with an average of 3 distinct responses. If in a specific task, the
actual number of distinct responses exceeded 3, v was increased dynamically. An accuracy
of 98.3% was achieved with an average redundancy of 2.16. A fraction of 2.47% of the
tasks were escalated, e.g. due to bad handwriting.

Table 8.1.: Results of the CSP/DVM simulation experiment in full inspection mode.

Parameters Quality goal ϕmin 0.950
Escalation limit εmax 0.010
Response categories v 3

Results Accuracy 98.3%
AFI 100.0%
Avg. redundancy 2.157
Max. redundancy 4
Escalated 2.5%

Random inspection with CSP-1

For the random inspection experiments, SQC was now enabled by switching on the CSP-1.
In a series of tests, the CSP/DVM was evaluated for 3 different values of AOQL. Table 8.2
depicts the parameters along with the results. For AOQL = 0.05 (experiment 1), an
average redundancy of 1.510 was observed, which is a significant improvement compared
to the full inspection with a value of 2.16. This confirms that adding the CSP-1 actually
reduces the QM effort and makes the approach more efficient. Only 41% of all tasks have
been inspected and 1.8% of the tasks were escalated.

For AOQL = 0.075 (experiment 3) and even with AOQL = 0.025 (experiment 2), the
quality objectives are again exceeded. However, there are situations where the model
does not manage to achieve the desired level anymore. The reason for that lies in the
gap between the gold standard and the majority decision of the workers: in several cases,
the majority of the workers identified a certain word (e.g. ”five”) even if the writer (who
represented the gold standard) had written a different word (e.g. ”fine”).

Figure 8.3 illustrates the efficiency of the CSP/DVM compared to the traditional majority
vote approach. The vertical axis represents the accuracy of the results while the horizontal
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8.1. Model scenario: Optical character recognition 127

Table 8.2.: Results of the CSP/DVM simulation experiments in random inspection mode.

Experiment 1 2 3

Parameters AOQL 0.050 0.025 0.075
Clearance number i 6 5 1
Sample fraction f 0.249 0.582 0.036
Quality goal ϕmin 0.990 0.990 0.990
Escalation limit εmax 0.010 0.010 0.010
Response categories v 3 3 3

Results Accuracy 96.3% 98.2% 96.5%
AFI 41.0% 66.4% 5.4%
Avg. redundancy 1.510 1.800 1.250
Max. redundancy 5 5 4
Escalated 1.8% 2.6% 1.6%
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Figure 8.3.: Efficiency of the CSP/DVM approach in simulation mode compared to the
traditional majority vote approach.

axis stands for the average redundancy, i.e. for the number of assignments per task needed
by the DVM. The performance of the traditional majority vote is indicated by dark dia-
monds. It was simulated by drawing a fixed number out of the 10 assignments available
in the data set for each task. For the two-fold majority vote, 2 assignments were used,
three for the three-fold, and so on. Then, the response that occurred most frequently was
chosen. If several responses occurred equally often (tie), a random choice between them
was made, as suggested by (Snow et al., 2008). In order to balance statistical effects,
the results of multiple drawings were averaged. In fact, all possible permutations were
used. As an example, there are 10 ways to choose 9 of the 10 available assignments. The
majority decision for each of them was calculated and the results were averaged in order
to simulate the 9-fold majority vote.

The dark grey triangle indicates the result of the full inspection simulation experiment,
in which the DVM even outperforms the accuracy of a ninefold traditional majority vote
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128 8. Evaluation of core model

(98.34% vs. 97.76%). This is a remarkable result given that the DVM is 4 times more
efficient as it requires only 2.16 workers per task compared to 9 workers per task for the
basic ninefold majority vote approach. In other words: the DVM approach has reduced the
quality management effort by 76% compared to the traditional majority vote. This result
is even exceeded by the results of the random inspection simulation experiments, which
are indicated by the light grey squares in the figure. At AOQL = 0.025, the CSP/DVM
outperforms the traditional 9-fold majority vote by 80% by only requiring an average of
1.8 workers per task.

8.1.3. Live experiments

For the live experiments, the same tasks were used as for the simulations. However,
according to the concept of the CSP/DVM, initially only one assignment was published
for each task. Depending on the CSP-1 status, the worker’s historical failure rates and the
actual responses, the QM approach dynamically decided in real-time whether additional
assignments had to be published.

In September 2011, two live experiments have been performed on the MTurk platform
using the complete data set of 1176 OCR tasks. For the first experiment, the parameters
have been same as for simulation 1 in section 8.1.2, and for the second experiment same
as in the simulation 2.

Execution performance

Figure 8.4 shows the execution performance of the full inspection live experiment, which
took 47 minutes and to which 15 workers have contributed. For the first 27 minutes, the
progress is similar as when gathering the responses for the simulations in figure 8.2. The
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Figure 8.4.: Incoming worker responses when applying the CSP/DVM in full inspection
mode to OCR tasks on MTurk.

number of participating workers grows even faster in the live experiment. However, after
27 minutes, several workers suddenly stop working or only sporadically submit responses.
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8.1. Model scenario: Optical character recognition 129

This behavior can be explained by the dynamic behavior of the DVM. Towards the end,
the continuous stream of tasks is interrupted because there are temporarily no assignments
available any more. Therefore, the workers consider the process to be completed and go
to find another task type to work on. However, as the DVM increases the redundancy
sequentially, new assignments might be published dynamically depending on the responses
provided for the previous ones. This applies in particular to complex tasks for which there
is less agreement among the workers and thus a higher level of redundancy is required.

Figure 8.5 confirms this interpretation. The solid line represents the number of tasks being
completed over time. Completion of a task means that all assignments of the tasks have
been completed and based on these assignments, either a response has been returned to
the requester or the task has been escalated. The dashed line represents the number of
tasks that have been started, i.e. of which at least one assignment has been completed.
According to the experimental setup, the first assignment of all tasks was made available
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Figure 8.5.: Started and completed tasks during an experiment on MTurk.

at the beginning of the experiment. For the first 27 minutes, the task completion rate
grows exponentially. Then, it suddenly slows down dramatically and slowly approaches
the target of 1176 tasks. Comparing the two lines reveals that the solid line bends pretty
much exactly when the initial assignments of all tasks have been completed. This point in
time is indicated by a vertical line. From that moment on, there are obviously simply not
enough new assignments generated by the DVM to keep all workers busy.

As illustrated by figure 8.6, the slowdown is even stronger in the random inspection ex-
periment. The experiment took 2:52 hours and 13 workers participated. After 78 minutes,
1156 of the 1176 tasks had been completed. Then it took 94 more minutes to complete the
remaining 20 tasks. The overall lower execution performance can be explained with the
smaller number of contributing workers, which in return may be caused by the different
time of the day the experiment was started.
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Figure 8.6.: Incoming worker responses when applying the CSP/DVM in random inspec-
tion mode to OCR tasks on MTurk.

Full inspection

Table 8.3 shows the parameters and the results of the full inspection live experiment.
The quality level of 97.8% considerably overachieved the quality objective of 0.950. The
redundancy had been 2.201 in average and 5 at maximum. A percentage of 3.7% of the
tasks had been escalated.

Table 8.3.: Results of the CSP/DVM live experiment in full inspection mode.

Parameters Sample fraction f 1.000
Quality goal ϕmin 0.950
Escalation limit εmax 0.010
Response categories v 3

Results Accuracy 97.8%
AFI 100.0%
Avg. redundancy 2.206
Max. redundancy 5
Escalated 3.7%

Random inspection with CSP-1

In the random inspection experiment depicted in table 8.4, the quality objective of 0.950
was again overachieved by reaching a quality level of 96.2%. With 1.734 assignments per
task, the average redundancy had been considerably lower than in the full inspection mode.
This again confirms that the CSP-1 has the capability of increasing the efficiency of the
DVM. A percentage of 61.6% of the tasks have been inspected. The maximum redundancy
has reached the same value as for the full inspection mode while with 8.0% of the tasks, the
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8.1. Model scenario: Optical character recognition 131

Table 8.4.: Results of the CSP/DVM live experiment in random inspection mode.

Parameters AOQL 0.05
Clearance number i 6
Sample fraction f 0.233
Quality goal ϕmin 0.990
Escalation limit εmax 0.010
Response categories v 3

Results Accuracy 96.2%
AFI 61.6%
Avg. redundancy 1.734
Max. redundancy 5
Escalated 8.0%

amount of escalated tasks had been more than twice as high. This effect will be discussed
when comparing the results of the live experiments with those of the simulations in the
subsequent section.

8.1.4. Comparison of simulation and live experiments

Comparing the execution performance of the data acquisition step in figure 8.2 to the one
of the full inspection live experiment in figure 8.4 reveals that the execution progress can
be similar in both situations as long as enough assignments are available to be claimed by
the workers. In the live experiments, the execution progress significantly drops once there
are temporarily no assignments available any more.

When comparing the results of the simulations to the live experiments in table 8.5, an
important finding is that the actual quality objectives have been met in both types of
experiments. Major differences concern the average redundancy, the AFI and the number
of escalated tasks.

Table 8.5.: Performance of the CSP/DVM for different types of experiments (simulation
versus live) and different quality objectives.

Simulations Live tests

Parameters Inspection full random random random full random
AOQL - 0.025 0.050 0.075 - 0.05
Clearance number i - 5 6 1 - 6
Sample fraction f 1.000 0.582 0.233 0.036 1.000 0.233
Quality goal ϕmin 0.950 0.990 0.990 0.990 0.950 0.990
Escalation limit εmax 0.010 0.010 0.010 0.010 0.010 0.010
Response categories v 3 3 3 3 3 3

Results Accuracy 0.983 0.982 0.963 0.965 0.978 0.962
AFI 1.000 0.664 0.410 0.054 1.000 0.616
Avg. redundancy 2.157 1.800 1.510 1.250 2.206 1.734
Max. redundancy 4 5 5 4 5 5
Escalated tasks 29 30 21 19 44 94

According to the definition of the escalation limit, a task should be escalated if an ex-
ceptionally difficult task causes a disagreement among the workers, i.e. if the workers
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should have come to a higher level of agreement given their historical failure rates. How-
ever, knowing that the same tasks have been used for both experiments, the reason for
the higher AFI in the live experiment must be caused by something else: According to
equation (5.14), the value of the escalation limit solely depends on the responses and the
estimated failure rates of the contributing workers. Thus, the higher AFI indicates that
there had been a mismatch between the actual worker failure rates and their estimations
calculated by the DVM. But how should the mismatch be introduced given that exactly
the same parameters have been used for both experiments?

The estimations of the worker failure rates are updated each time when an inspection
process is finished. Depending on the agreement among the workers, their failure rates
are either increased or decreased. An important prerequisite for attaining good estimates
is to have a good mix of difficult and simple tasks. If there is a majority of simple tasks,
this will result in too optimistic estimations while a majority of difficult tasks will result
in too pessimistic estimates. Both the simulation as well as the live experiment aim to
achieve that requirement by processing the tasks in a random order. However, in the
live experiments, workers have the (undesired) option to cherry-pick the simple tasks by
skipping the difficult ones. Figure 8.7 compares the outcome of the CSP/DVM inspection
processes for the simulated vs. the live experiments with an AOQL of 0.05. The horizontal
axis indicates the percentage of completed inspections. A percentage is used because the
actual number of inspections differs in the two experiments according to the different values
of the AFI. The vertical axis represents the percentage of inspections having resulted in
disagreement. Disagreement means that at least one of the responses provided by the
workers differs from the other ones. Only the final decisions of the DVM are considered,
which result either in an escalation or in a final result being delivered to the requester.
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Figure 8.7.: Worker disagreement in the inspection process of the CSP/DVM.

In the early phase of the simulation experiment, a higher portion of inspections ended
up in disagreement. Then, the rise of the disagreement slowly declines because more and
more inspections can be finished with only two workers. This is because the failure rates
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of the good workers begin to distinguish from the ones of the bad workers, so two good
workers are sufficient for successfully completing an inspection. In contrast, the curve of
the live experiments is initially flat and then rises disproportionately. By skipping the
difficult tasks, there is not any disagreement among the workers for the first 20% of the
inspections resulting in equally low failure rates for all workers. Once the workers have to
content themselves with the more difficult tasks, the disagreement rate increases. At this
point in time, the estimated failure rates do not provide a realistic picture anymore and a
large percentage of tasks is getting escalated. Due to the escalations, the failure rates are
not updated, which even reinforces the effect. Thus, there is a high risk for the subsequent
tasks to be escalated as well.

The high escalation rate also affects the average redundancy. While it has been comparable
in the full inspection experiments (2.206 in the live experiment vs. 2.157 in the simulation),
it differs by 14.8% when using the CSP-1 (1.734 vs. 1.510). This is not surprising because
escalations typically result in a higher redundancy than successfully completed tasks. The
increase of the AFI from 0.410 to 0.616 can be seen as another consequence of the cherry-
picking. Because of the high escalation rate, many workers cannot reach the random
inspection phase of the CSP-1.

8.1.5. Discussion

The experiments have demonstrated that for both the simulated and the live experiments
the predefined quality objectives could be met. By dynamically adjusting to the actual
quality of the incoming responses, the QM effort could be reduced by up to 80% compared
to the traditional majority vote. The overall results are illustrated by figure 8.8.
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Figure 8.8.: Efficiency of the CSP/DVM approach compared to the traditional majority
vote approach.

The execution performance of the experiments confirms the scalability of the CSP/DVM.
From that point of view, it fulfills the general needs of an efficient, scalable and goal-based
QM approach for cloud labor services as requested in section 3.4.2.

The experiments have also revealed a number of constraints that need to be considered
when using the CSP/DVM. This refers to the decline of the execution progress after the
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initial assignments have been processed and the cherry-picking of simple tasks. First, there
are several ways to avoid a discontinuity and speed up the finalization of the process: In
full inspection mode, the execution process can be accelerated by leveraging the fact that
always at least two assignments of each task need to be published. These assignments
should be published immediately instead of waiting for the response of the first one before
publishing the second one. In addition, for both the full and the random inspection, a
discontinuity should be avoided by proactively publishing new assignments even before
they are due. One option would be to switch the CSP/DVM to a fixed level of redundancy
at the very end of the process. For example, the completion time for the live experiment 2
presented in figure 8.6 could have been split in half by turning the CSP/DVM switching
to a higher redundancy for just the last 20 tasks.

Cherry-picking of simple tasks should ideally be completely avoided or at least reduced.
Workers could still be given the option to skip a limited number of tasks but they should
not have the freedom to pick and choose. While the built-in task interface of the MTurk
allows for skipping tasks, a proprietary task interface may be plugged in by the requester
in order to avoid that.

Even though OCR is a realistic use case for cloud labor services and it has been investigated
on a commercial cloud labor platform with ”real” workers, it is still a model scenario that
has been chosen merely for academic reasons. As a complement, the QM approach will be
applied to a business scenario in the next section.

8.2. Case study: Address research

In the address research case study, the CSP/DVM approach has been tested under the
conditions of a concrete business scenario in cooperation with two business partners. The
scenario was provided by the German directory assistance provider Telegate AG and in-
vestigated on the commercial cloud labor platform clickworker.com.

The structure of the section is similar to the previous one: After introducing the address
research scenario in section 8.2.1, section 8.2.2 illustrates the experimental setup. Then,
sections 8.2.3 and 8.2.4 present the results of simulations and real-time experiments, which
are eventually discussed in section 8.2.5.

8.2.1. Scenario

The cloud labor platform clickworker.com has already been introduced in section 2.5.1.
It is operated by Humangrid GmbH in Essen, Germany, and went live in 2006. The
platform has access to a workforce of about 300.000 workers and mainly focuses on text
creation, search engine optimization, Web research, translation, tagging and categorization
scenarios. Clickworker provides a growing number of self-service capabilities but also
positions itself as a full-service crowdsourcing provider that is able to provide individual
and customized solutions.3

The service cycle used by Clickworker is illustrated by figure 8.9. After an order has
been placed by a requester along with the corresponding SLAs, projects are broken down
into manageable tasks which are published to the workers. Once a worker has passed the
qualification test being assigned to the specific type of task, he can begin working on the

3 http://www.clickworker.com/wp-content/uploads/2012/10/brochure_web_en.pdf, last accessed on
July 9, 2013.
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8.2. Case study: Address research 135

tasks. In the quality assurance phase, the worker responses are validated in multiple ways,
for example, texts created by workers are proofread and checked for plagiarism. The task
results are then reassembled and made available for download to the requester.4

Order 
placement

Conversion 
into tasks

Worker 
qualification

Task 
processing

Quality 
assurance

Merging 
completed 

tasks

Download 
order

clickworker.com

Figure 8.9.: Concept of the service provided by clickworker.com.

The scenario for this case study has been provided by Telegate AG which provides Web
and phone based directory assistance across multiple channels. The company was founded
in 1996 and has about 2,900 employees. In 2010, the annual revenue has been e124.6m.5

A key prerequisite for providing directory assistance is the availability of precise address
and contact information of individuals and firms. A common application of cloud labor
services is to research such address information from the Internet. The objective of the
task outsourced to Clickworker has been to validate given addresses of restaurants, identify
their URLs and their opening hours and classify them according to given categories. The
specific research task performed in this case study is to identify the correct homepages
of given restaurants. A subset of 1,000 addresses of restaurants had been provided for
the experiment, consisting of the name, zip code, city, and street address. Most of the
restaurants resided in hotels and many of them did not have a separate homepage. If they
had, the link to that page was supposed to be retrieved rather than the one of the hotel.
A unique ID was provided for each address in order to map the responses to the original
requests.

4Derived from http://www.clickworker.com/en/das-clickworker-prinzip/, last accessed on July 9,
2013.

5 http://www.telegate.com/htm/en/Company/1039.htm, last accessed on July 9, 2013.
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The task instructions were designed in a way that allow for a unique identification of the
homepage. Thus, the task can be seen as a deterministic task according to the definition
in section 3.3.1. If the homepage could not be identified, the worker could indicate that
by selecting an appropriate checkbox. Among the possible task responses, ”no url found”
was handled as a separate unique response.

8.2.2. Experimental setup

On the clickworker.com platform, each project is represented by a so called workflow
controller which is implemented using the open source Web development framework Ruby
on Rails6. The individual tasks and assignments are supplied in form of task input data
items, which are represented by XML documents. So called nodes define the actual task
interfaces to be presented to the workers.7

For the case study, a new workflow controller was developed that implements the scenario
as well as the CSP/DVM. The setup was used in two ways: First, for generating a batch
of worker responses to be used for simulating the CSP/DVM using the toolkit introduced
in chapter 7. Second, for conducting live tests by running the CSP/DVM directly on the
clickworker.com platform.

Like other cloud labor platforms, the Clickworker platform provides a concept of qualifica-
tion tests. As an entry criterion for contributing to the address research tasks, the workers
had to have an address research rating of at least 75%. Given that this qualification type
comprises not just URL research but also the identification of names, addresses, contact
information and office opening hours, a success rate of 75% was assumed to correspond to
a success rate of 80% for just the URL research task. Therefore, the failure rates of all
contributing workers were initialized with a value of 0.2.

8.2.3. Simulation experiments

In November 2011, a number of 1001 URL research tasks was submitted to the Clickworker
platform. For each of the tasks, 15 assignments were requested resulting in altogether
15,015 worker responses.

Gold standard

Telegate did have a large amount of data records available for the scenario but they did
not know how reliable the data was. Therefore, it could not be used as a gold standard for
the experiments. As discussed in chapter 3, defining a gold standard can be challenging.
Even experts may come to different conclusions regarding what is the optimal response
for a task.

The agreed approach for the case study was to generate a gold standard based on the
feedback from multiple skilled workers. For each task, the 15 available responses were split
into two partitions in the order they were submitted by the workers. The first 8 responses
were used for generating the gold standard while the remaining 7 responses were used
to perform the actual simulations. A response was accepted as the gold standard if it
appeared at least 5 times among the first 8 responses. This had been the case for 904 of
the 1001 tasks. For 97 tasks no gold standard could be defined. Nevertheless, the complete
set of 1001 tasks was used for the simulations because it should be investigated how the
CSP/DVM would handle the no-gold-standard tasks.

6 http://rubyonrails.org/, last accessed on July 22, 2013.
7The platform is described in more detail in Meller (2012)
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Execution performance

Figure 8.10 shows the execution performance when recording the 15,015 responses for the
simulation experiments. Like in the equivalent charts in section 8.1, each dot stands for
a response being submitted by a worker. The horizontal axis represents the submission
time while the vertical axis represents the number of the worker in the order of their first
submission. As opposed to the previous charts, zero on the time axis is not the start time
of the experiment but midnight of day 1. The experiment was started at about 9 am and
took about 2.5 days. Altogether, 409 workers have participated. Interestingly, there are
two gaps during which there was almost no work performed at all. The first gap is between
12 and 15 hours from the starting point which corresponds to 12 p.m. and 3 p.m. on day 1.
The second gap is between 24 and 36 hours which corresponds to midnight and noon on
day 2. Presumably, the gaps occurred because workers went to lunch (day 1) or to bed
(day 2), and they ended because the workers were informed by email that there are still
tasks available. This explains the sudden worker increase after 15 and 36 hours. On day 3
there is also a period of reduced worker activity between midnight and 6 a.m. This maps
to nighttime in Germany and indicates that the scenario was limited to German speakers,
who are primarily located in Germany.

Figure 8.10.: Incoming worker responses during an experiment on the clickworker.com
platform.

Full inspection

For the full inspection simulations, a quality goal ϕmin, an escalation limit εmax and the
initial number of categories v need to be specified. The parameters have been set as
follows: The initial number of categories was set to 2 because an average of 1.85 unique
responses were provided per task in the gold standard data set. This indicates that there
are typically about two different responses considered by the workers.

Quality goals of 0.95 and 0.99 have been tested. The escalation limit was initially set
to 0.01 as recommended in section 5.5, for a second experiment it was increased to 0.09.
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Table 8.6 summarizes the results. Each of the experiments represents an average of three
simulations.

Table 8.6.: Performance of the CSP/DVM in the address research scenario (simulations).

Experiment 1 2 3 4

Parameters Type sim. sim. sim. sim.
Inspection full full full random
AOQL - - - 0.050
Clearance number i - - - 2
Sample fraction f 1.000 1.000 1.000 0.612
Quality goal ϕmin 0.950 0.950 0.990 0.990
Escalation limit εmax 0.010 0.090 0.010 0.010
Response categories v 2 2 2 2
No gold standard 9.7% 9.7% 9.7% 9.7%

Results Accuracy 96.7% 96.8% 98.2% 96.4%
AFI 100.0% 100.0% 100.0% 80.6%
Average redundancy 2.826 2.510 3.755 3.284
Maximum redundancy 6 5 7 7
Escalated 5.7% 14.9% 11.3% 9.6%
No gold standard escalated 19.2% 41.2% 38.5% 34.0%

First, the results of the two full inspection experiments with a quality goal of 0.950 are
discussed (experiment 1 and 2), which only differ in the escalation limit εmax. With an
accuracy of 96.7% and 96.8%, both experiments clearly exceed the quality goal. Experi-
ment 1 (εmax = 0.010) reaches an average redundancy of 2.826 and a maximum redundancy
of 6 assignments per task. A fraction of 5.7% tasks was escalated. By increasing the esca-
lation limit to 0.09, the redundancy decreases to 2.510 in average and to 5 at maximum
because the escalation mechanism is reacting more sensitively. As a consequence, almost
three times as many tasks are escalated (14.9%).

As discussed above, no gold standard was defined for 97 of the 1001 tasks because there
had been no strong agreement among the workers contributing to the gold standard data
set. The objective of the escalation mechanism is to identify such ambiguous tasks so the
requester becomes aware of the issue and can take corrective actions. The last table row
indicates which portion of the no-gold-standard tasks have been correctly identified by the
escalation mechanism. This portion had been 19.2% for the escalation limit of 0.010 and
it increased to 41.2% when switching to the more sensitive escalation limit of 0.090.

In the third full inspection experiment (experiment 3) which had a higher quality goal
than the experiments 1 and 2, the DVM only just missed the quality goal by reaching a
quality level of 0.982 instead of 0.990. This is actually not surprising when considering the
way the gold standard was constructed, on which the assessment is based. Section 8.1.2
has revealed, that the DVM may lead even to a higher accuracy than a massive majority
vote. Thus, for high quality goals, majority vote may not be an adequate benchmark for
the DVM because the DVM outperforms the traditional majority vote.

Naturally, the higher quality goal resulted in a higher redundancy of 3.755 on average and
7 at maximum. A portion of 11.3% tasks was escalated, comprising 34.0% of no-gold-
standard tasks.
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Random inspection with CSP-1

For the random inspection experiment (experiment 4 in table 8.6), the DVM was comple-
mented by the CSP-1. An AOQL or 0.050 was chosen which corresponds to the quality
goal of 0.95 in the full inspection experiments. The appropriate clearance number i and
sample fraction f have been calculated according to section 5.5.1 by assuming an average
incoming quality level p of 0.2, an inspection error e1 and e2 of 0.1 each, and an average
run length of 16 tasks. According to the recommendations in section 5.5, the inspection
quality ϕmin was set to 0.99 and the escalation limit εmax to 0.010.

First of all, with 96.4%, the quality goal of 0.950 was again clearly met. By adding
acceptance sampling, the efficiency was supposed to increase in contrast to using the DVM
only. However, compared to the corresponding full inspection experiment (experiment 1),
the CSP-1 instead decreased the efficiency by increasing the average redundancy from 2.826
to 3.283. The increase is obviously caused by the very high AFI of 80.6%, because to all
the inspected tasks, the inspection quality goal ϕmin of 0.99 applies. Thus, more than 80%
of the full inspection effort in experiment 3 is needed, in which the same parameters for
ϕmin and εmax are used. Considering this inspection effort, the use of acceptance sampling
is counterproductive for such a high AFI, i.e. in situations in which a large fraction of
the tasks needs inspection.

But why is the AFI so much higher than it had been in the OCR scenario in section 8.1,
where it only reached 41.0%? It is the number of contributing workers, that makes the
difference here. There had been only 38 workers contributing to the OCR scenario while
there had been 1918 workers contributing to experiment 4 in table 8.6. Therefore, the
average run length of the CSP-1 is only 16 tasks per worker. According to the clearance
number i, the first 4 tasks are fully inspected for all workers. Then, the CSP-1 switches
to random inspection and in the best case, if all workers provide correct responses, 61.2%
of the remaining tasks will be inspected. This leads to a minimum AFI of 4 × 100% +
12 × 61.2%)/16 = 70.9%. Each time an incorrect response is identified by the inspection
mechanism, the CSP-1 status of the corresponding worker will switch back to full inspection
mode which further increases the redundancy. Thus, for a short experiment with a large
number of workers, applying the CSP-1 does not make sense. Yet, the problem is to some
extent an artifact of the simulation, because much more workers have contributed to the
data set on which the simulation is performed than would contribute to a live experiment.
Therefore, the random inspection mode will also be investigated in live mode.

8.2.4. Live experiment

The live experiments have been performed directly on the Clickworker platform using
the QM plugin specifically developed for this case. After a number of pre-tests, a ran-
dom inspection experiment was performed which is described here. Because of temporal
limitations, no full inspection experiment was performed.

For the sake of comparability, the live experiment was conducted with the same parameters
as the simulation experiment 4: The clearance number i was set to 2, the sample fraction
f to 0.612, the inspection quality goal ϕmin to 0.990 and the escalation limit εmax to 0.010.
Like for all address research experiments, the initial number of categories v was set to 2.
A general difference of the live experiment compared to the simulations is that it is based

8This number reflects that not all available assignments have been needed for the simulations. Thus, not
all the 409 workers who contributed to the simulation data sets also contributed to the simulations.
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on such tasks only for which a gold standard had been defined. This decision was driven
by the aim to reduce the execution effort and costs. The gold standard is a prerequisite
for assessing the results returned by the QM mechanism. Therefore, no advantage was
seen in generating results that cannot be evaluated. Later on, that decision was revoked
for the simulations in order to determine the benefit of the escalation mechanism. Yet, the
live experiment could not be simply be repeated because it had been implemented in the
Clickworker environment. As a consequence, fewer tasks have been performed in the live
experiment and as opposed to the simulation experiments, the analysis does not provide
any feedback about the effectiveness of the escalation mechanisms.

Execution performance

As illustrated in figure 8.11, the experiment shows the typical execution progress that was
already observed in the OCR live experiment in section 8.1.3. The number of workers
increases almost linearly until 83 workers are contributing. After most of the assignments
have been completed, the progress suddenly declines and the remaining responses slowly
trickle in. In the last 1:20 hours, only 40 responses are arriving. For a productive use of
the CSP/DVM, the slow down should be avoided according to the recommendations in
section 8.1.3.

Figure 8.11.: Incoming worker responses during a live experiment with the CSP/DVM on
the clickworker.com platform.

Random inspection with CSP-1

Table 8.7 provides the results of the live experiment. Most importantly, with an accuracy
level of 96.2%, the target accuracy of 95% (AOQL = 0.05) is again clearly met. As
expected, the AFI is much lower than for the corresponding simulation experiment 4
(64.8% compared to 80.6%). Likewise, the average redundancy per task was reduced
from 3.284 to 2.166, which also considerably increases the efficiency compared to the full
inspection experiments. Obviously, as opposed to the simulation, the live experiment did
benefit from complementing the DVM with acceptance sampling.
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Table 8.7.: Performance of the CSP/DVM in the address research scenario (live
experiment).

Experiment 5

Parameters Type live
Inspection random
AOQL 0.050
Clearance number i 2
Sample fraction f 0.612
Quality goal ϕmin 0.990
Escalation limit εmax 0.010
Response categories v 2

Results Accuracy 96.2%
AFI 64.8%
Average redundancy 2.166
Maximum redundancy 7
Escalated 6.1%

8.2.5. Discussion

The case study has shown that the CSP/DVM can be successfully applied to a business
scenario and that it is capable of achieving predefined quality objectives in an efficient
way. In doing so, the case study also revealed a series of important insights regarding the
gold standard, the simulation mode of the CSP/DVM tool and the escalation process.

One specific challenge had been that no gold standard could be made available by Telegate.
There had been no examples for good quality results and no experience regarding what
level of quality can actually be achieved at all with a reasonable effort. Thus, it had been
important to agree on a simple and intuitive process for generating a gold standard that
could be utilized as a baseline for the experiments. The traditional majority vote turned
out to be a good instrument for that. Telegate was convinced that if a large number of
skilled workers agree on a specific response, there is a great chance that the response must
be reasonable. This effect is certainly much more comprehensible than the CSP-1/DVM
with all its formulas and parameters. However, the traditional majority vote suffers from
inefficiency and therefore does not represent a desirable QM tool. The experiments of this
section and in section 8.1 have demonstrated that the CSP/DVM can provide a response
quality that is comparable to a massive majority vote or even outperforms it at a much
lower execution effort. While each task was performed by 8 workers when generating the
gold standard, an average of only 2.166 workers was needed per task by the CSP/DVM,
which corresponds to a reduction of 73%. This insight provides a valuable argument for
using the CSP/DVM.

The simulation mode of the CSP/DVM tool provided an effective way of investigating the
effect of different CSP/DVM parameters without spending too much time and money on
live experiments. When implementing the CSP/DVM in the Clickworker environment, the
tool also served as a guideline and reference for validating the implementation. However,
as the case study has shown, the simulation of random inspection experiments may lead
to a higher AFI than live experiments. This happens if a large number of workers have
contributed to the simulation data set and the average run length of the CSP-1 per worker
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becomes low. Therefore, it rather represents a deficiency of the simulation mode than of
the CSP/DVM itself.

The case study has also demonstrated the effectiveness of the escalation mechanism. De-
pending on the parameters, a large portion of the ambiguous tasks are getting escalated
and serve as a starting point for process improvements by the requester.

Altogether, the address research case study and the OCR model scenario have shown
that the CSP/DVM can provide a reasonable QM tool for cloud labor services in both
academic and business scenarios. In the following chapter, two additional case studies will
be discussed.
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The model variations developed in chapter 6 have been evaluated in two separate case
studies. While the DVM for multi-labeling was applied to a medical coding business
scenario, the model extension for non-deterministic tasks was applied to a product research
scenario. In order to investigate the managerial implications of the models from the
different perspectives of the basic cloud labor scenario, industry partners from all three
sides have been included: A requester, a cloud labor platform and a workforce provider.
Section 9.1 covers the medical coding case study while section 9.2 addresses the product
research scenario.

9.1. Case study: Medical coding

Medical treatments can cause substantial costs for patients. Therefore, health insurance
providers play an important role in healthcare systems as they cover at least a portion of
the costs. The actual scope of benefits will depend on the type of insurance provider and
on the contract. In Germany, there are two general types of health insurance providers,
statutory and private ones. Private health insurance providers usually provide more ben-
efits, but they are limited to customers whose monthly wage exceeds a certain minimum.
While statutory health insurances are directly charged by the physicians, private health
insurances are charged by the patients who receive the invoice from their physicians. Be-
sides the name and address of the patient and the physician, the invoice comprises one
or more medical diagnoses, the treatment that has been performed by the physician and
the amount invoiced. When charging statutory health insurances though, diagnoses must
be standardized according to the International Classification of Diseases (ICD) provided
by the World Health Organization(WHO, 2013). When charging the patients of private
health insurances, free-text diagnoses can be provided instead because the insurance can-
not demand standardized codes to be provided. The lack of standardized diagnoses makes
it difficult for the insurance company to validate the bills and to compile statistics. Thus,
private health insurances aim to perform the coding step themselves which is expensive
and error-prone because a huge number of invoices need to be processed and the coding
step cannot be fully automated. Moreover, the number of invoices is fluctuating so a
variable workforce is required for the manual coding effort.
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Together with IBM and a private health insurance company, the medical coding problem
has been identified as a promising use case for cloud labor services because it meets all
the criteria listed in section 2.4.2: First, the medical coding task can be mapped to an
electronic interface, by displaying the diagnoses on a screen. Second, there is no personal
interaction needed with the requester because all required information can be provided
along with the diagnoses. Thirdly, it is subject to a large and varying workload and
finally, it cannot be fully automated.

This case study maps the medical coding problem to a cloud labor service scenario and
applies the DVM for multi-labeling to manage the quality of the resulting ICD-10 codes.
After illustrating the experimental setup in section 9.1.1, section 9.1.2 explains how the
DVM for multi-labeling was applied. Section 9.1.3 then describes the actual experiments
and sections 9.1.4 and 9.1.5 present and discuss the results. Finally, section 9.1.6 introduces
an example application of the medical coding solution.

9.1.1. Experimental setup

Figure 9.1 illustrates how the problem was mapped to a cloud labor service task. The
health insurance provider feeds the diagnoses taken from the physicians’ invoices into a
cloud labor service platform. The platform then turns them into tasks, which are made
available to the workforce of a call center. The call center agents grab the tasks and turn
the free text diagnosis into standardized ICD-10 codes with the help of an interactive
tool supporting the coding step. The platform ensures the quality of the work results by
applying the DVM for multi-labeling and finally returns the ICD-10 codes back to the
health insurance company.

Call center 
agents

Free text
medical 

diagnosis

ICD-10 
codes

Medical 
coding

Cloud 
labor 

service 
platform

Health 
insurance 
provider

Coding tools

Figure 9.1.: Cloud labor service scenario for coding of free text medical diagnoses.

The case study was performed in cooperation with a number of industry partners:

• A medium-sized private health insurance provider (HIP1) located in Germany. As
insurance services are rather a commodity business, providers are naturally looking
for opportunities to differentiate from their competition. Therefore, the partner
has seen the study mainly as an opportunity to develop a starting point for new
innovative services. Another objective was to reduce costs.

• buw Group2 (BUW), the largest owner-managed call center business in Germany,
provides customer care solutions across multiple channels ranging from traditional

1As the name of the company cannot be disclosed, the abbreviation HIP for health insurance provider is
used here.

2 http://www.buw.de/en/startseite.html
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call center operations to complex business process outsourcing, complemented by
consultancy services. More than 4,400 employees are working at eight locations
in Germany, Hungary and Romania. BUW is proud of repeatedly having been
awarded the prize for the most favored employer in its area (Buw Group, 2013).
BUW’s primary intention in evaluating the cloud labor concept has been the hope
for an opportunity of achieving a more uniform utilization of their workforce and of
advancing their traditional business model.

• Semfinder AG3, a small-scale Swiss company located in Kreuzlingen, develops solu-
tions for the semantic interpretation of free text information with a specific focus
on the classification of medical diagnoses according to the International Classifica-
tion of Diseases (ICD). Semfinder’s services are used by more than 400 hospitals in
Germany, Austria and Switzerland (Semfinder AG, 2013). The company has seen
the study as a potential opportunity for extending their scope to new applications
of their coding software.

• The IBM Global Business Services4 insurance team in Germany combines industry
specific skills with IT oriented expertise by offering consulting and implementation
services, insurance specific components and architectures, as well as complete solu-
tions (IBM, 2008). The IBM team is continuously seeking opportunities to deliver
new, innovative solutions to their customers.

• IBM Research and Development GmbH in Germany is one of the largest IBM re-
search and development centers located outside the US. About 2,000 engineers and
natural scientists are working on more than 70 projects, ranging from hardware,
firmware and operating system development to cloud computing, analytics, BPM,
data center optimization and web technologies (IBM, 2012). The study was sup-
ported by the BPM team, who sees cloud labor services as an opportunity for ex-
tending the reach of their technology.

For performing the actual coding task, a Web interface was offered to the call center agents,
displaying the free text diagnoses and a feedback form along with the specialized interactive
web-based tool Semfinder5. The Semfinder tool was integrated into the Web interface and
provided the medical expertise for an accurate coding of the medical diagnoses while the
service agents had to operate the tool properly and to feed it with the right information.
Especially in case of misspelled or colloquial diagnoses the agents had to perform additional
research in order to transform the diagnosis text into a form that the tool was capable of
understanding. For this purpose, additional research tools like Lumrix6 and Google were
made available within the Web application. No specific medical expertise was required of
the service agents.

In order to speed up operation, drag and drop functionality could be used to move the
output of the Semfinder tool into the response form of the Web application. Figure 9.2
shows a screenshot of the Web application used by the call center agents. On the left, the
three research tools (Semfinder, Lumrix and Google) are available as tabs, while on the
right, the response form is provided, into which the worker enters the ICD-10 codes, along
with the portions of the free text that represent an individual code. Additional flags can be
set that indicate that a symptom applies to the right or left side of the patient, whether a

3 http://www.semfinder.com/en/home.html
4 http://www-935.ibm.com/services/de/gbs/consulting/ (German), last accessed on April 2, 2013.
5 www.semfinder.com/en
6 http://www.lumrix.de/
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diagnosis is just suspected (German: ”Verdacht auf” (V.a.)) or whether a specific diagnosis
can be excluded (German: ”Ausschluss von” (A.v.)). Although feedback about the flags
had been requested from the workers, the actual experiment did not regard the flags, but
focused on the actual ICD-10 codes only.

Figure 9.2.: Screenshot of the product research scenario data acquisition task interface
(German).

9.1.2. ICD-10 coding as a multi-labeling task

ICD stands for the International Classification of Diseases, a classification of the World
Health Organization (WHO, 2013) which represents ”the standard diagnostic tool for epi-
demiology, health management and clinical purposes” that is used to classify diseases and
other health problems. The version that was used for the use case is the 10th revision of
the ICD, the so-called ICD-10 (WHO, 2010). An example for a diagnosis text is ”fracture
of the metatarsal bone”, which corresponds to the ICD-10 code ”S92.3”.

ICD-10 coding is a multi-labeling task because one or more codes (labels) are assigned to
each diagnosis text. However, as opposed to the assumptions of the DVM for multi-labeling
made in section 6.1.2, the ICD-10 represents a hierarchical rather than a flat structure and
only has a limited binary relevance. Therefore, some codes are not required, but they also
do not hurt.

Because of the hierarchical structure, the coding task is not a fully deterministic task,
as there may be multiple sets of codes that represent a correct result. Also, there may
be dependencies between labels. The Semfinder coding tool helped to overcome these
challenges by returning reproducible results, even if there are multiple correct sets of
codes. This also satisfied the needs of the voting mechanism. The limited binary relevance
was compensated by considering only required codes.

An additional challenge of the ICD-10 coding scenario is that there is a huge number of
about 14,000 codes, of which only about 10 are typically associated to a diagnosis text.
Therefore, a bad worker who returns a large number of incorrect responses would still
achieve a specificity of close to 1. In order to avoid this issue, only the labels actually
returned by any of the workers were considered to exist, i.e. only those labels are regarded
in the response matrix (6.1).
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9.1.3. Task execution

The experiments have been performed on a sample of 104 free text diagnoses extracted from
physicians’ invoices that customers had submitted to the private health insurance company
for reimbursement in August 2010 (59 diagnoses) and February 2011 (45 diagnoses). Using
the prototypical cloud labor service platform, seven redundant labeling decisions were
collected for each of the diagnosis texts from a group of 10 participating call center agents.
The gold standard was identified by an ICD-10 coding expert of the insurance company
by manually validating all responses of the call center agents. The labeling decisions for
the first 59 diagnosis texts were used for determining the initial sensitivity and specificity
of the agents. The labeling decisions for the remaining 45 diagnosis texts were used
for validating the DVM for multi-labeling. For this purpose, the toolkit introduced in
chapter 7 was extended. The tool was used in simulation mode, i.e. the worker’s feedback
was retrieved from the pool of available labeling decisions whenever the mechanism decided
that redundancy should be increased.

9.1.4. Results

Based on the first 59 diagnosis texts and the gold standards defined by the coding expert
of the health insurance company, an average initial sensitivity of 0.74 and a specificity of
0.89 were determined for the participating call center agents, i.e. in average, the agents
correctly identified 74% of the required ICD-10 codes and they omitted 89% of the codes
that should not be returned. The good performance of the agents confirms that the setup is
capable of generating considerably good coding results, even though the call center agents
didn’t have any specific medical background.7

In order to check whether the DVM for multi-labeling is capable of achieving a well-defined
correctness goal, a sensitivity and specificity goal of 0.90 was assumed. The minimum
level of redundancy was set to 2. As the labeling performance of the individual workers is
updated after every successful task, the order of tasks and workers may affect the quality
of the obtained final results. Therefore, five experiments with a random order of tasks
and workers have been performed. The averaged results are presented in the last row of
table 9.1. An average of 42.4 out of the 45 tasks were completed while 2.6 tasks were not

Table 9.1.: Performance of the DVM for multi-labeling with a sensitivity and specificity
goal of 0.90 each applied to a medical coding scenario.

Experiment Average Average Number of Average Unfinished
number sensitivity specificity results redundancy tasks

1 0.904 0.906 43 2.400 2
2 0.912 0.941 41 2.467 4
3 0.902 0.904 43 2.489 2
4 0.906 0.904 43 2.467 2
5 0.912 0.937 42 2.467 3

Average 0.907 0.918 42.4 2.458 2.6

7Preliminary experiments have been conducted that indicate that a comparable worker performance can be
achieved on the MTurk platform. However, it had been challenging to find enough German speaking par-
ticipants who are willing to work on the diagnosis scenario. Even after increasing the payment drastically,
only about a dozen workers contributed to the experiment.
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completed due to an insufficient number of responses available for the simulation. These
results were not included in the assessment of the quality but in the assessment of the
average redundancy.

The DVM for multi-labeling resulted in an average of 2.458 workers being involved in each
of the labeling tasks. With an average sensitivity of 0.907 and an average specificity of
0.918, the sensitivity and specificity objective of 0.90 could be achieved.

9.1.5. Discussion

The results indicate that the DVM for multi-labeling is capable of meeting certain pre-
defined sensitivity and specificity objectives. Even more importantly, the scenario shows
that cloud labor services can be a valid instrument for enabling a new business model. The
cooperation of the health insurance provider, the call center and the technology providers
generates an ecosystem in which value is generated for each of the contributors:

The health insurance provider benefits from correct and complete coding of medical diag-
noses in multiple ways. Most importantly, understanding the patient’s diseases allows for
developing a holistic view on them. Specific treatments, physicians and hospitals can be
recommended and their success can be assessed. That way, recovery can be accelerated
and costs can be reduced. Furthermore, tailored services can be designed for individual
customers. For example, flexible benefits can be provided even to customers who be-
long to a high-risk group. This can be achieved by recognizing consequences of previous
diseases based on the ICD-10 codes and by explicitly excluding them from the contract.
Another important use case is the detection of fraud, e.g. the prescription of unnecessary
treatments. This problem is enforced by the coexistence of private and statutory health
insurances in Germany. While private health insurances are rather generous regarding the
expenses they reimburse, the statutory health insurances are continuously reducing their
coverage. If in a family, one partner’s statutory health insurance doesn’t cover a treatment
any more, physicians sometimes put it on the invoice of the other partner’s private health
insurance. Thanks to the ICD-10 codes, situations like that can be identified because the
treatments do not match the person’s actual symptoms, i.e. by comparing the treatments
prescribed by the physicians with the patient’s actual diagnoses, unnecessary treatments
can be identified.

For the call center the primary advantage is an increased utilization of the workforce.
Especially at noon time there is a period of two hours from 12 pm to 2 pm during which
the call center agents are highly under-utilized because there are only few incoming calls
and customers don’t want to be called. Complementing the synchronous phone business
with asynchronous cloud labor services can close this gap. Because the call center agents
are paid anyway, the service can be provided at competitive rates. Working with call center
agents can even be less expensive than working with Internet users. The approach can
also increase the employee satisfaction. The call center agents who are used to speaking on
the phone all day appreciated the job variation generated by the cloud labor services. The
maybe most important, strategic benefit of the concept is that it enhances the traditional
business model of the call center given that the revenue made with the traditional phone
business can be expected to decrease over time.

For the technology providers IBM and Semfinder, the ICD-10 coding solution represents
an opportunity to establish new technology and services. In fact, by partnering with
Semfinder, IBM has turned the solution into a commercial service which is used by several
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private health insurance providers in order to process millions of medical diagnoses per
year. The service extends the existing Insurance Service Hub offered by IBM which is
introduced in the following section.

9.1.6. IBM Insurance Service Hub

Building on the success of the case study, IBM has commercialized the medical coding
solution by adding it to their so called Insurance Service Hub (ISH) offering. This section
introduces the ISH and describes how it has been complemented by the medical coding
service.

As mentioned in the introduction of this chapter, private health insurances are not charged
directly by the physicians, but by the patients who receive the invoices from the physicians
and submit it to the insurance company for refund. This process results in a high effort for
the insurance company, given that the invoices are still on paper and need to be scanned
and processed with OCR software. The process is also prone to errors and fraud because
the amount numbers can be manually changed on the paper.

The ISH exploits the fact that most of the invoices are actually not sent by the physicians
but by a relatively small number of so called national associations of statutory health in-
surance physicians (NASHIP) who are providing billing services to the physicians (Gräfen,
2012). On behalf of IBM, the associations print dot-matrix codes on the invoices that re-
present the patient information and provide a reference to the actual invoice data. When
receiving the invoices from the patients, the insurance company does no longer have to
process the document by OCR but just needs to scan the dot-matrix codes which is much
less error-prone. Based on the invoice ID, the actual invoice data can then be retrieved
from the ISH, which in turn receives it from the corresponding NASHIP. The risk of fraud
is reduced because manual changes on the invoice do not affect the process. Figure 9.3
illustrates the basic schema of the ISH.

Doctor
Health 

insurance 
provider

IBM Insurance Service Hub

Printed 
invoice

Printed 
invoice

Patient

Invoice
data Service 

provider

Invoice ID Invoice IDInvoice
data

Invoice
data

Figure 9.3.: Basic schema of the IBM Insurance Service Hub, adopted from Gräfen (2012).

An optional ”people cloud” feature of the ISH allows for implicit coding of medical diag-
noses, i.e. free text diagnoses on the invoices are turned into ICD-10 codes by the ISH
using a combination of automatic coding with the Semfinder tool and manual coding with
cloud labor services. The solution ties in with the scenario and the QM approach deve-
loped in the case study. The successful application of cloud labor services in the case study
and in the IBM ISH solution confirms the viability of the approach.
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9.2. Case study: Product research

In the product research case study, the model variation for non-deterministic tasks is
applied, which was introduced in section 6.2. It is represented by the group validation
approach. As opposed to the DVM it is not based on the voting but on the validation
pattern. From an SQC perspective, the approach does not use continuous sampling plans
but acceptance sampling.

The case study has been evaluated in a business scenario together with the German cloud
labor platform provider Bitworxx8. Bitworxx corporation was founded at the end of 2008
in Düsseldorf, Germany. Rather than on private Internet users, the platform relies on
the workforce of a worldwide network of partners, mainly call centers and business process
outsourcers, who naturally struggle with overcapacities in times of low utilization. This has
multiple advantages: On the one hand it lowers the costs, on the other hand, because such
partners are prepared to assure high privacy and security standards, it enables Bitworxx
to deal with confidential customer data. (Bitworxx GmbH, 2013)

In the case study scenario, the service requester was represented by an online shopping
platform on which traders can sell products with minimal overhead. Rather than taking
pictures of their products and creating product descriptions with high effort, the traders
only need to specify the product’s so called Global Trade Item Number (GTIN).

GTIN is a worldwide standard for uniquely identifying trade items like products and
services, which is released by the GS1 non-profit association that has member organizations
in more than 100 countries. GTIN is represented by an up to 14 digit number, which is used
as a bar code on product packages or tags, and which refers to item related information
stored in databases. GTIN comprises former regional standards like the European Article
Number (EAN)9 or the US American Universal Product Codes (UPC). (GS1, 2006)

Even though GTIN uniquely identifies a product, there is no central directory that keeps
the product information. GS1 only maintains a catalog of the company prefixes while the
companies themselves are responsible for allocating the remaining digits of the GTIN. One
way to identify the product information is to perform a GTIN research on the Internet.
The shopping platform achieved this aim by outsourcing the task to the Bitworxx platform.
The expectation was to receive the task results at the latest after one working day.

9.2.1. Experimental setup

The initial task interface presented to the user contains the task description, the EAN
to be researched as well as a number of radio buttons for selecting a product category.
Once a category is selected, corresponding input fields are displayed for entering the actual
product details. For example, if the category music is selected, the name of the album and
the interpreter may be entered in the next step. If no information is found for the EAN,
this may be indicated by a checkbox. Figure A.2 in appendix A provides a screenshot of
the original German data acquisition task interface.

The EAN research scenario represents a non-deterministic task according to the definition
in section 3.1.2, because there may be multiple correct ways to specify the product category
and the product name. For example, the exact same product is called ”InLine R©USB 2.0
Hub, 4 Port, LED Hub, black” by one dealer and ”InLine 33294L USB 2.0 Hub (4-Port,

8 http://www.bitworxx.com/
9The term EAN is still commonly used and has therefore been used for the case study as well.
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LED Hub) black” by another. Both names can be considered correct because even the
manufacturer’s website10 does not provide an official name. Therefore, the core model
introduced in chapter 5 cannot easily be applied here. For this reason, the validation
pattern is used in which the responses returned by a worker are validated by other workers
in a separate validation task.

The user interface of the validation task is identical to the filled-in research screen, except
that there are additional fields for entering the actual review. For indicating one of three
error types one of three check boxes can be selected. The scenario differentiates between
the following three types of errors that a worker may perform: Error ”no information
found” means that the worker did not find the requested EAN even though it could be
found by the reviewer. Error ”non-conforming product category selected” means that the
worker did not specify the correct category for the product, and ”incorrect product details
specified”means that not the correct product details have been provided. Additional input
fields allow for passing back feedback to the original worker. As mentioned in section 6.2.3,
it is assumed that the worker can correct the problem based on the feedback provided by
the reviewers. Figure A.3 in appendix A shows a screenshot of the original German review
task interface. Combining the error rates of all three error types, the maximum error rate
was expected to be in the area of 10-15%.

Bitworxx already had a quality management procedure in place before the case study was
started. It simply consisted of a 100% inspection performed by a Bitworxx employee.
In case of incorrect responses, individual feedback was passed to the workers to help
them getting better over time. The review is also regarded as a way to communicate the
requirements to the workers. Despite the high review effort and costs, Bitworxx had made
positive experience with this procedure, as the customers’ quality requirements always had
been met. Because of that, it was used as the baseline and reference for the case study.
The result of the Bitworxx review was used as the gold standard for assessing the QM
mechanism.

9.2.2. Task execution

The data for the experiment was collected within the real EAN research project from
January 20 to 28, 2010. Initially, a batch of 2002 research tasks was processed as usually
and was reviewed by a Bitworxx employee. For each research task, six additional validation
tasks were processed by the crowd on seven working days, which resulted in a total of 12,012
validation tasks. The workforce consisted of ten German call center agents who had been
experienced with the EAN scenario. Nine of them acted as workers and eight as reviewers.
They have not been aware that they supported a scientific experiment, nor that the same
validation tasks were performed by multiple reviewers. Worker error rates were around
10-15%.

Table 9.2 shows the number of research tasks that have been performed per worker and
per day. The worker ID refers to the internal id used at Bitworxx. The tasks per day are
summed up in the last column while the tasks per worker are summed up in the last row.
While more than one third of the research tasks have been performed by a single worker
(worker 102), there is a more balanced picture for the validation tasks as most of the
participating reviewers have completed a similar number of them. Table 9.3 summarizes
the validation tasks per day and worker. As the table reveals, three of the workers have

10 http://www.inline-info.de/index.php?lang=en, last accessed on November 1, 2013.

151

http://www.inline-info.de/index.php?lang=en


152 9. Evaluation of model variations

Table 9.2.: Number of research tasks submitted in the product research scenario per day
and per worker.

Worker ID 101 102 103 104 105 106 107 180 206 Total

Day 1 59 - - 15 - - 25 7 - 106
Day 2 13 151 4 - - 22 24 18 - 232
Day 3 - 165 24 151 29 - 1 85 - 455
Day 4 206 41 16 35 85 30 120 48 13 594
Day 5 8 199 23 - 36 - 1 52 2 321
Day 6 2 235 - - - - - 1 - 238
Day 7 1 54 - - - 1 - - - 56

Total 289 845 67 201 150 53 171 211 15 2002

Table 9.3.: Number of validation tasks submitted in the product research scenario per day
and per worker.

Worker ID 101 103 104 105 106 107 180 191 Total

Day 1 106 106 106 106 - 106 106 - 636
Day 2 232 89 232 232 184 232 191 - 1392
Day 3 455 251 455 444 323 455 347 - 2730
Day 4 594 377 594 477 528 594 395 5 3564
Day 5 321 169 321 314 319 321 161 - 1926
Day 6 238 191 238 209 238 238 76 - 1428
Day 7 56 54 56 29 56 56 29 - 336

Total 2002 1237 2002 1811 1648 2002 1305 5 12012

reviewed all 2,002 tasks, which means that they have also reviewed the ones that have
been completed by themselves. Because of technical limitations, this could not be easily
avoided in the Bitworxx environment. However, it can be argued that even reviewing one’s
own contributions may lead to an improvement. Sometimes, it is helpful to follow-up on a
piece of work with a fresh mind. And indeed, in some cases reviewers have rejected their
own responses. Apart from that, they had not been aware of the fact that they would
review their own contributions.

The actual quality management experiments have been performed as a simulation on the
results of the validation tasks, including the ones performed by the Bitworxx employee.
As long as less than six validations were needed for a response, the ones performed by the
original worker were not included.

The simulations have been performed with a Java tool that had been developed specifically
for that purpose. The individual components of the model are represented by separate
Java classes. A file-based data store provides access to the raw data from the experiments
at Bitworxx. The run-time parameters of the tool are provided as constants within the
source code. Output reports are automatically generated as comma separated files that
can be viewed and processed with spreadsheet tools like Microsoft Excel.
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9.2.3. Full inspection

Initially, the group validation approach has been evaluated in full inspection mode based
on the data described in the previous section. The objective of the experiment is to test
the effect of the inspection mechanism.

Full inspection mode means that 100% of the responses are validated using the EM al-
gorithm. For the group validation model, the primary output of the EM algorithm is an
estimate Tz for the true response quality of each task z that decides whether a response is
considered to be correct or incorrect. If an incorrect response is found, the task is assumed
to be successfully reworked. Therefore, in the outgoing batch of responses, only those
are incorrect that have not been detected by the inspection process, i.e. if the inspection
process has made a type II error. Because the results had to be delivered within one day,
a separate batch was created for each day. That way, the estimations generated by the
EM algorithm on one day could be passed to it as an initial estimate for the next day.

Table 9.4 summarizes the performance of the full inspection mode for the seven days of
the experiment. The last column represents the totals for the entire time period. The
rows actual correct and actual incorrect refer to the assessment of the Bitworxx employee,
which was used as the gold standard. Found by inspection represent the number of tasks
correctly identified to be correct or incorrect by the inspection process. The type I and
type II errors are calculated based on the deviations between the actual and the estimated
values. The number or reworked responses comprises those that have been successfully
identified to be incorrect plus the correct ones that have been found to be incorrect due to
a type I error, e.g. on day 1 a number of 45 = (84−54)+15 responses had to be reworked.
Finally, the fraction defective is the portion of actual incorrect tasks while the outgoing
quality represents the portion of incorrect responses being delivered to the requester.

Table 9.4.: Performance of the group validation approach in full inspection mode.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Total

Total tasks 106 232 455 594 321 238 56 2002

Actual correct 84 176 408 559 296 237 38 1798
Found by inspection 54 164 376 514 276 229 36 1649
Type I error 35.7% 6.8% 7.8% 8.1% 6.8% 3.4% 5.3% 8.3%

Actual incorrect 22 56 47 35 25 1 18 204
Found by inspection 15 41 40 28 16 0 7 147
Type II error 31.8% 26.8% 14.9% 20.0% 36.0% 100.0% 61.1% 27.9%

Reworked 45 53 72 73 36 8 9 296
Percentage reworked 42.5% 22.8% 15.8% 12.3% 11.2% 3.4% 16.1% 14.8%

Fraction defective 20.8% 24.1% 10.3% 5.9% 7.8% 0.4% 32.1% 10.2%
Outgoing quality 6.6% 6.5% 1.5% 1.2% 2.8% 0.4% 19.6% 2.8%

Even though the type II error rate is high, the outgoing quality of 2.8% clearly falls below
the requested quality level of 10-15% because the fraction defective is already at a low
level.

One thing that catches one’s eye is that the type I error is extraordinary high on day 1. This
can be assumed to be caused by the fact that there had been no estimates available from
previous runs of the EM algorithm which naturally affects its output. That is consistent
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with the other estimates made by the EM algorithm, the fraction defective and the type
I and type II error rates of the reviewers.

Figure 9.4 compares the estimated fraction defective p with the actual values determined
based on the gold standard which have already been provided by table 9.4. Interestingly,
on day 1, the EM algorithm drastically overestimated the actual fraction defective. More
than every second response considered incorrect had actually been correct. On day seven,
p was underestimated, which may simply because there had been relatively few responses
to be validated.
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Figure 9.4.: Estimated vs. actual fraction defective in the full inspection mode of the group
validation approach.

Figure 9.5 gives a similar picture for the weighted averages of the estimated type I and
type II reviewer error rates e1 and e2 which are compared with the actual error rates
determined based on the gold standard. On day 1, e1 is highly overestimated, which
is again consistent with the outlier of the overall type I error on day 1. However, it is
important to understand that the individual error rates of the reviewers might be much
higher than the overall error rates because the EM algorithm weights the judgments of
bad workers lower. This becomes obvious when looking at the actual average type II error
of the workers: With about 0.51 compared to 0.28 (see table 9.4) it is much higher than
the average type II error of the EM algorithm.

The error rates of the reviewers are being investigated in more detail. Table 9.5 shows the
distribution of the individual type I and type II according to the number of reviewers that
have performed the same error. For example, there were seven situations in which five
reviewers11 voted for rejecting a response even though it was accepted by the Bitworxx
reviewer. For some 21% of the responses, the majority of the reviewers decided differently
than he did. This shows that there is a general gap between the perception of the Bitworxx
reviewer compared to the other reviewers. There had even been situations in which the
former one rejected a response, while all others accepted it. Possibly, the task requirements
have not been communicated properly or have not been internalized by the reviewers to
the same extent as by the Bitworxx employee, who knows the customer requirements at
first hand. This is not surprising as for him, processing the validation responses is the
daily business, while it had been a new experience for the others.

11That results in 7 · 5 = 35 individual votes.
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Figure 9.5.: Estimated vs. actual type I and type II error rates in the full inspection mode
of the group validation approach.

Table 9.5.: Distributions of the actual type I and type II reviewer errors with regard to
the agreement between the reviewers.

Votes 1 2 3 4 5 6 Total

Type I errors 19 35 46 32 29 26 656
Type II errors 227 65 55 27 7 0 665

However, the opposite case has been observed as well. Table 9.6 provides an example of
the decisions and the feedback from six reviewers, five of them recommended to reject a
response whereas the Bitworxx reviewer decided to accept it. From the feedback and by
manually validating the task it becomes obvious that the latter one made a mistake. While
the worker claimed that no information on EAN 21165105287 can be found, the reviewers
identified a number of common websites that point to the respective product. Note that

Table 9.6.: Reviewer rating for task id 77176 (translated from German).

Reviewer Rating Comment

Bitworxx correct
101 incorrect ##1##http://www99.shopping.com/xPO-Saitek-Saitek-

Mini-Color-UFO-Hub-Metallic-Blue##1##
107 incorrect ##1##http://www1.shopping.com/xPO-Saitek-Saitek-

Mini-Color-UFO-Hub-Metallic-Blue##1##
104 incorrect ##1## Please also use Google for data research ##1##
105 correct
180 incorrect ##1##http://www.shopping.com/xPO-Saitek-Saitek-

Mini-Color-UFO-Hub-Metallic-Blue ##1##
106 incorrect ##1## Infos found with Google ##1##

the total number of votes is about the same for both error types even though the type II
error happened much more often. This is because there are much more correct responses
than there are incorrect ones. Therefore, the type II errors relate to a much lower number
of responses, which results in a higher error rate.
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9.2.4. Sample-based inspection

The sample-based inspection was performed according to section 6.2.4. The basic objective
is to reduce the review effort by only inspecting a subset of the responses delivered by the
workers. The experiments have been performed on the complete set of 2002 tasks that were
formed into 38 lots, one per worker and per day, i.e. each lot consisted of the responses
delivered by a single worker on a single day. According to table 9.2 this results in 38 lots.

For each lot, a separate sampling plan had been defined by looking up the sampling size and
the acceptance number in table 4.1 for the appropriate lot sizeN . The AOQL was set to 0.1
in accordance with the requester expectations. Based on Bitworxx’ previous experience
with the workers, the process average pt was assumed to be 10%. While the sampling
process must be performed per worker, the EM algorithm for the actual inspection process
can be performed per day by mixing the samples taken from different workers. The number
of reviewers was dynamically determined according to section 6.2.6 using the estimated
type I and II error rates of the reviewers from the previous day. On day 1, the maximum
available number of 6 reviews was used for all lots because no estimations were available.
The reviewers were randomly picked from the available data in order to simulate the
crowdsourcing scenario in which reviewers would pick autonomously from available tasks.
To average out the random effects, the actual evaluation is being performed on an average
of 5 experiments. A summary of the results is presented in table 9.7.

Table 9.7.: Overall performance of the group validation approach (average of 5
experiments).

Total tasks 2002
Lots 38
AOQL 0.1

Avg. fraction inspected 48.2%
Inspected by samples 335
Rejected lots 20
Inspected by full inspection 630

Reviews 5439
Avg reviews per inspection 5.64
Avg reviews per task 2.72

Considered incorrect / reworked 211
Percentage reworked 10.5%

Actual incorrect 204
Found by inspection 122
Not found by inspection 82
Incoming fraction defective 10.2%
Outgoing fraction defective 4.10%

Observations

Out of the 38 samples, 20 have been rejected. Because many of them only consist of a
few tasks, the portion of corresponding tasks is much lower, but still represents 32.5%
of the overall tasks. The average fraction inspected (AFI) was 48.2%, which means that
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almost every second response has been validated. Out of this, 335 inspections have been
part of the regular sampling process while 630 were needed for the full inspection of the
rejected lots. As each of the inspections was performed by an average of 5.6 reviewers,
the overall number of reviews sums up to 5439, which corresponds to an average of 2.7
reviews per task. A number of 211 responses (10.5%) was considered to be incorrect by
the inspection process so the responses had to be reworked. Out of them, 122 are indeed
incorrect according to the gold standard. The remaining 82 incorrect responses have not
been identified, which results in an outgoing fraction defective of 4.2%. A number of 89
responses are supposed be reworked even though they are correct according to the gold
standard.

9.2.5. Discussion

The results confirm that the sample-based inspection can drastically reduce the review
effort while still clearly meeting the quality objectives. Compared to the full inspection,
the review effort was cut into less than half (48.2%) whereas the outgoing fraction defective
increased from 2.8% to 4.1%. An AFI of 48.2% is certainly still large, the biggest part
of it, however, is caused by the full-inspection of the rejected lots. Interestingly, the
process turned out to be reproducible with regard to the decision whether to accept or
reject a lot. The vast majority of the lots (19 out of a maximum of 21) was rejected
by all 5 experiments. Table 9.8 illustrates the relation between the actual worker error
rates determined by the gold standard and the rejected lots, for which the error rates
are printed in bold. The averages per worker and per day are weighted according to the
number of tasks that the worker has performed on the day (see table 9.2). For most lots,

Table 9.8.: Actual worker error rates per day according to the gold standard.

Worker ID 101 102 103 104 105 106 107 180 206 Avg.

Day 1 0.20 - - 0.20 - - 0.28 0.00 - 0.21
Day 2 0.69 0.17 0.50 - - 0.32 0.42 0.11 - 0.24
Day 3 - 0.22 0.04 0.01 0.07 - 1.00 0.06 - 0.10
Day 4 0.01 0.20 0.06 0.03 0.09 0.03 0.09 0.04 0.00 0.06
Day 5 1.00 0.03 0.09 - 0.11 - 1.00 0.04 1.00 0.08
Day 6 0.00 0.00 - - - - - 1.00 - 0.00
Day 7 0.00 0.31 - - - 1.00 - - - 0.32

Avg. 0.11 0.11 0.09 0.03 0.09 0.17 0.18 0.06 0.13 0.10

there is an obvious correlation between error rate and rejection, but for some there is not.
For instance, the contributions from worker 180 on day 6 were accepted even though the
actual fraction defective had been 100%. Although, this is less surprising when realizing
that the lot consisted of a single task only, but it may still appear strange that a completely
corrupted lot is accepted. Another example is worker 106 who has performed 30 tasks on
day 4 with an error rate of only 0.03. Anyway, the lot was rejected in all experiments. The
explanation for both cases is simple: The crucial factor for the decision of the sampling
process is not the gold standard but the feedback of the reviewers, which is consolidated
by the EM algorithm. Table 9.9 illustrates that characteristic by attaching fictitious error
rates to the lots that have been determined by the full inspection experiment described
in the previous section. From the reviewer perspective, worker 180 did a good job on day
6, while worker 106 on day 4 did not. The averages are again weighted according to the
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number of tasks performed and numbers printed in bold represent rejected lots. Depending

Table 9.9.: Fictive worker error rates defined according to the reviewer decision in the full
inspection mode of the group validation approach.

Worker ID 101 102 103 104 105 106 107 180 206 Avg.

Day 1 0.44 0.00 0.00 0.27 0.00 0.00 0.64 0.00 0.00 0.43
Day 2 0.54 0.15 0.50 0.00 0.00 0.27 0.54 0.17 0.00 0.23
Day 3 0.00 0.27 0.17 0.03 0.07 0.00 1.00 0.20 0.00 0.16
Day 4 0.07 0.20 0.13 0.00 0.24 0.13 0.18 0.13 0.08 0.13
Day 5 0.63 0.06 0.09 0.00 0.36 0.00 1.00 0.00 1.00 0.11
Day 6 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
Day 7 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16

Avg. 0.18 0.13 0.15 0.04 0.23 0.19 0.30 0.12 0.20 0.15

on the scenario and on the experience of the crowd one can argue whether a gold standard
generated by a single expert is necessarily more valuable than the group decision of the
6 reviewers. Therefore, one can raise the question whether the response quality is always
”black or white”.

A similar perspective can be taken on the rework process. As mentioned in section 6.1.4,
a perfect rework is assumed even for the 89 tasks that were rejected by the sampling plan
although they had been answered correctly by the workers according to the gold standard.
Although the rework step has not been tested in the scope of this case study, it becomes
clear that the rejections are not necessarily an issue. The gold standard does not represent
the absolute truth, but is only used as a baseline for the experiments. In practice, there is
usually no gold standard available or, if there is, it is subject to the same restrictions. If
multiple reviewers agree that there is an issue with a response it might be worth to revise
it. Even if it may not be indeed entirely incorrect, taking into account the reviewer’s
considerations may at least help improve the quality. Altogether, the product research
case study confirms that the group validation approach provides a viable mechanisms for
managing the quality of non-deterministic cloud labor services.

Given that the majority review approach is an instance of the validation pattern, it is not
limited to non-deterministic tasks. According to the decision matrix in section 3.4.1 it can
also be applied to deterministic tasks. However, compared to the core model described
in chapter 5 the majority review approach can be assumed to be less efficient because it
uses a fixed level of redundancy for the inspection steps while the core model dynamically
adjusts their redundancy. Apart from that it requires additional rework steps.

As an outlook, the efficiency of the majority review approach could be increased by com-
bining it with the core model for performing the actual reviews. Since the review tasks
represent binary decisions, the core model could be applied to them to reduce their re-
dundancy. In a similar way the core model could also be applied to the iteration and the
comparison pattern introduced in section 3.3. These considerations further emphasize the
strength and the flexibility of the core model.
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10. Conclusion

This chapter provides a summary of the thesis, its contributions and limitations and pro-
vides recommendations for further research.

After subsuming the thesis and its objectives in section 10.1, section 10.2 summarizes the
core contributions being made. Section 10.3 finally addresses limitations of the thesis and
provides a number of recommendations for further research.

10.1. Summary

Cloud labor services apply the cloud computing paradigm to human workforce in order
to provide work as a highly scalable service that can be utilized by organizations to react
more flexibly to peak workloads and varying market demands. A coordination platform
acts as an interface between requesters who need to get work done and workers who want
to perform work in order to earn money. Because of the lose relation between requesters
and workers the primary conceptual challenge of the concept is to deliver high quality work
results. This thesis argues that a scalable, efficient and also goal-based quality management
(QM) is needed to benefit from the concept to its full extent.

The actual objective has been to investigate how such a QM can be realized. This objec-
tive has been approached in multiple steps. As a foundation, the concept of cloud labor
services is defined and a comprehensive overview on the state of the art is provided that
examines the concept from different perspectives. In a next step, existing QM approaches
are discussed and compared to each other and the gaps with regard to the objectives of the
thesis are identified. While scalability is not an issue for most of the existing approaches,
it turns out that there is actually a lack of efficient and goal-based approaches. In order to
close the gap, a new model for QM of cloud labor services is introduced that in particular
leverages statistical quality control (SQC). Along with a number of model extensions and
variations it was adapted to different types of usage scenarios. The following paragraphs
outline the model and its extensions and how they have been validated:

• The core model uses the continuous sampling plan CSP-1 to track the contributions
of each worker separately based on samples taken from a stream of work results. A
dynamic voting mechanism (DVM) is introduced for inspecting the samples. The
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DVM requests responses from additional workers and aggregates them by taking into
consideration the individual failure rates of the workers. The number of additional
responses is dynamically increased until the required inspection quality is reached.
Thus, the inspection effort is kept minimal. By also inspecting only a fraction of the
tasks, the model is capable of guaranteeing a certain predefined level of result quality
at minimum costs. In order to apply the model to research and real world scenarios,
an extendable software toolkit has been developed. An evaluation based on Amazon’s
Mechanical Turk platform has shown a reduction of the QM effort of up to 75%
compared to the traditional approaches. A case study performed in cooperation with
the commercial cloud labor service platform provider Clickworker.com has proven the
robustness of the CSP/DVM and its applicability to business scenarios.

• The DVM for multi-labeling represents an extension that makes the DVM applicable
to the important class of multi-labeling scenarios. The DVM for multi-labeling was
validated in a healthcare business scenario in which a crowd of service center agents
is delivering a coding service for medical diagnosis to a private insurance provider.
Rather than performing all work manually, the idea is to complement the algorithmic
coding solution provided by the Semfinder AG with the manual efforts of the crowd.
The concept has been turned into a commercial service offering by IBM that is being
used in production by multiple German health insurance providers.

• The group validation approach follows a model complementary to the CSP/DVM. It
implements the validation rather than the voting pattern which represents another
fundamental QM pattern for cloud labor services. Furthermore it does not operate
on a continuous stream but on batches of worker responses to which an acceptance
sampling plan is applied. Samples are inspected using feedback from multiple re-
viewers which is consolidated using a maximum likelihood estimation. The approach
was successfully evaluated in a third case study in cooperation with the commercial
cloud labor platform provider Bitworxx.

10.2. Contribution

The thesis makes contributions on several levels: On the level of the actual research
question, on the level of QM for cloud labor services and on the level of the concept
of cloud labor services as a whole. The contributions are not limited to the academic body
but also entail manifold managerial implications. For each of the levels, the contributions
are outlined in the following paragraphs:

Actual research question

This thesis represents the first comprehensive application of SQC to cloud labor services.
When applying SQC to cloud labor services, a major challenge is to provide a scalable
sample inspection mechanism. The newly developed DVM meets this challenge by pro-
viding a well-founded model for dynamic inspection of worker responses. Its combination
with the CSP-1 into the CSP/DVM represents the core contribution of the thesis. A
profound evaluation based on a model system confirms that the CSP/DVM allows for an
efficient, scalable and goal-based QM for cloud labor services. However, even when used
standalone, the DVM still delivers a high level of efficiency. As a result, the desired level
of complexity can be decided based on the scenario needs. For long running high volume
scenarios, the more complex combination with the CSP-1 may be chosen in order to gain

162



10.2. Contribution 163

higher efficiency while for smaller volumes of tasks, the simpler standalone implementation
may be preferred. Both options are supported by the CSP/DVM toolkit. Thanks to a
built-in simulation platform which operates on real life results, it allows for repeatable and
realistic experiments. Since it is based on the voting pattern which represents the most
fundamental pattern for crowd-based QM, the DVM can generally be exploited in practi-
cally any type of scenarios. Concrete model extensions and variations are provided for the
important category of multi-labeling scenarios as well as for non-deterministic tasks.

The QM approaches developed in this thesis are proven by and adjusted to a number of
business scenarios. These scenarios did not only confirm the efficiency, robustness and
the reach of the approaches but also helped to identify and to address their limitations.
For example, the need for a specific extension for small worker pools (section 5.6) only
became clear when applying the mechanism to the Clickworker.com use case. Clear step-
by-step instructions facilitate an straightforward implementation of the approaches in real
life scenarios for the desired level of complexity. The CSP/DVM toolkit which is available
as open source can serve as a template and starting point. Altogether, the thesis confirms
that with the DVM and its variations, an efficient, scalable and goal-based QM for cloud
labor services can be realized. The case studies further confirm that a goal-based QM is an
important tool for enforcing specific quality objectives at the interface between the cloud
labor platform and the requester.

QM of cloud labor services

Besides the concrete QM approaches, this thesis contributes to an understanding of the
general concept of QM of cloud labor services. Chapter 3 represents the first extensive
analysis of QM approaches for cloud labor services. While existing publications typically
use the term quality as a synonym for accuracy, a clear and fine granular definition of
relevant quality dimensions is provided in this thesis and the factors influencing the qua-
lity are identified. Initial considerations about scalability, availability and response time
are provided which have not been covered by literature so far. As an important contribu-
tion, the existing QM approaches are structured into a systematic classification and the
strengths and weaknesses of each approach are identified.

These considerations and specifically the classification of QM approaches are not just of
academic interest but also can be considered a useful tool for practitioners. Based on a
comprehensible set of task characteristics, a decision matrix and a simplified rule-of-thumb
allow for choosing an adequate QM approach for any given scenario.

General concept of cloud labor services

The contributions made by this thesis are not limited to QM. There are only few extensive
studies available on cloud labor services. In fact, apart from (Law & Ahn, 2011) which is
focusing on the overlapping topic of human computation and (Kittur et al., 2013) which is
focusing on the broader topic of crowd work, chapter 2 represents the first comprehensive
scientific analysis of the phenomenon of cloud labor services. Besides a definition and
an extensive analysis of the research challenges it contributes a detailed and structured
presentation of the state of the art covering multiple disciplines, complemented by own
contributions. e.g. regarding the relation to cloud computing and the risk of disclosing
sensitive data.

This thesis does not only contribute to the academic body of research but it has also
gained reasonable awareness in the non-academic world. It exemplifies, how business
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can benefit from the cloud labor service concept from different perspectives, the requester
perspective (Online shopping platform, Telegate, health insurance company), the platform
perspective (Bitworxx, Clickworker, IBM), and the workforce perspective (Buw). The
thesis also demonstrates how the concept can be utilized to develop new innovative types
of business scenarios that open up possibly huge business potentials. The contributions of
the thesis have been advertised in a full week demo booth at the German CeBit computer
fair (Kern et al., 2010b) and at multiple IBM customer conferences, the IBM IMPACT
in Las Vegas (Pfau & Kern, 2011) and the Versicherungsbetrieb der Zukunft (VBZ) in
Cologne in 2010. Furthermore, non-academic publications about the contributions have
been published in multiple non-academic journals (Rademacher, 2011; Satzger & Kern,
2011) and in radio broadcasts on the German radio stations SWR21 and Campus Radio.
Around the research work, a community of academics and practitioners was built who met
at several informal workshops. The CrowdNet 2012 workshop (Kern et al., 2012c) was
attended by 25 academics and 10 practitioners. The CrowdWork 2013 workshop had been
co-located with the 3rd International Conference on Social Computing and its Applications
(SCA) and attracted some 20 participants2. One of the focus topics had been ethics in
crowdsourcing.

10.3. Recommended further research

The QM approaches introduced in this thesis are subject to a number of specific restrictions
which should be further investigated. They are again structured by the three levels used
above.

On the level of the research question, it has been made plausible that the DVM can
be exploited in other QM patterns like validation, iteration or comparison, but it is not
concretely shown how that can be achieved. Specifically, it should be investigated how
the efficiency of a dynamic validation approach based on the DVM compares to the group
validation approach. Also, while currently being limited to categorical data, the DVM
should be extended to non-categorical data in the future.

On the general level of QM for cloud labor services, most of the existing QM approaches are
output-based. Alternative ways of QM should be investigated. One possible direction is to
further pursue on the recent work regarding execution process monitoring which had been
illustrated in section 3.2.3. Another option would be to further investigate the concept of
reputation which is mainly used for human-managed cloud labor so far. For cloud labor
services, the qualification of workers is typically identified separately for each scenario but
no implications are being made between the scenarios. It should be examined whether the
capabilities of a worker could be described by a defined set of parameters from which the
worker’s qualification for a specific scenario could be deduced.

As demonstrated by the medical coding scenario on chapter 9, cloud labor services can be
used to complement algorithmic approaches. It should be investigated how an algorithmic
worker would affect the outcome of the QM patterns. Could one even think of multiple
algorithmic workers that together deliver a better result than each of them individually?

While this thesis as well as most of the existing research are examining the accuracy of
work results delivered by cloud labor services, future research should also address other

1 http://mp3-download.swr.de/swr2/impuls/beitraege/2012/04/swr2impuls_20120424_kit_testet_

die_people_cloud.6444m.mp3, last accessed 2013-04-18.
2 http://socialcloud.aifb.uni-karlsruhe.de/workshops/CrowdWork/, last accessed 2013-10-28.
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dimensions of quality which have only been briefly discussed in chapter 3. Moreover, the
QM mechanisms developed in this thesis have the objective to meet well-defined quality
goals in terms of a specific minimum accuracy of the information returned by the cloud
labor services no matter what the QM effort in terms of redundancy (and costs) would be.
In many business scenarios however, there may rather be a trade-off between quality and
costs. As an outlook, appendix B provides preliminary considerations about cost-benefit-
objectives for QM.

On the level of cloud labor services in general, the probably most severe limitation of this
thesis is that it merely focuses on the conceptual feasibility of cloud labor services and
widely neglects their socio-economical implications. One should always remember that at
the center of cloud labor services there are humans who are performing the work. Even
the best technical platform or the most efficient QM approach is useless if it does not
allow for a sustainable work model! Therefore, the socio-economical facets of cloud labor
services need to be carefully investigated and discussed, comprising the legal status of the
crowd workers and the viability of the work model in general. A broad public discussion
is needed to understand and actively shape the role cloud labor services will play in our
future working environment.
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and Banchs, Rafael. 2010. Opinion mining of spanish customer comments with non-
expert annotations on Mechanical Turk. Pages 114–121 of: Proceedings of the NAACL
HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical
Turk. CSLDAMT ’10. Association for Computational Linguistics, Stroudsburg, PA,
USA.

Meller, Jan. 2012. Robust, efficient and scalable quality management for paid crowdsourcing
platforms. Bachelor thesis, Karlsruhe Institute of Technology.

Microtask Oy. About Microtask: Our work so far. http://www.microtask.com/cases,
last accessed on February 6, 2013.

Minder, Patrick, and Bernstein, Abraham. 2011. CrowdLang: First steps towards pro-
grammable human computers for general computation. In: Workshops at the Twenty-
Fifth AAAI Conference on Artificial Intelligence.

Montgomery, Douglas C. 2008. Introduction to statistical quality control. 6th edn. New
York, NY, USA: John Wiley and Sons.

Negri, Matteo, and Mehdad, Yashar. 2010. Creating a bi-lingual entailment corpus through
translations with Mechanical Turk: $100 for a 10-day rush. Pages 212–216 of: Proceed-
ings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with
Amazon’s Mechanical Turk. Association for Computational Linguistics, Stroudsburg,
PA, USA.

Novotney, Scott, and Callison-Burch, Chris. 2010a. Cheap, fast and good enough: au-
tomatic speech recognition with non-expert transcription. Pages 207–215 of: Human
Language Technologies: The 2010 Annual Conference of the North American Chapter
of the Association for Computational Linguistics. HLT ’10. Stroudsburg, PA, USA:
Association for Computational Linguistics.

Novotney, Scott, and Callison-Burch, Chris. 2010b. Shared task: Crowdsourced accessi-
bility elicitation of Wikipedia articles. Pages 41–44 of: Proceedings of the NAACL HLT
2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk.
CSLDAMT ’10. Stroudsburg, PA, USA: Association for Computational Linguistics.

176

http://www-formal.stanford.edu/jmc/whatisai/whatisai.html
http://www-formal.stanford.edu/jmc/whatisai/whatisai.html
http://www.microtask.com/cases


Bibliography 177

OASIS. 2006. Reference model for service oriented architecture 1.0. http://docs.

oasis-open.org/soa-rm/v1.0/soa-rm.pdf, last accessed on January 18, 2013.

Ohno, Taiichi. 1988. Toyota production system: Beyond large-scale production. 1st edn.
New York, NY, USA: Productivity Press.

Oleson, David, Sorokin, Alexander, Laughlin, Greg, Hester, Vaughn, Le, John, and
Biewald, Lukas. 2011. Programmatic gold: Targeted and scalable quality assurance
in crowdsourcing. In: Workshops at the Twenty-Fifth AAAI Conference on Artificial
Intelligence.

Overby, Stephanie. Outsourcing Definition and Solutions. http://www.cio.com/

article/40380/Outsourcing_Definition_and_Solutions, last accessed on January
18, 2013.

Pande, Peter S., Neuman, Robert P., and Cavanagh, Roland R. 2000. The six sigma way.
1st edn. New York, NY, USA: McGraw-Hill.

Parameswaran, Manoj, and Whinston, Andrew B. 2007. Social computing: An overview.
Communications of the Association for Information Systems, 19(37), 762–780.

Parasuraman, A., Zeithaml, Valarie A., and Berry, Leonard L. 1985. A conceptual model
of service quality and its implications for future research. The Journal of Marketing,
49, 41–50.

Parent, Gabriel, and Eskenazi, Maxine. 2010. Clustering dictionary definitions using Ama-
zon Mechanical Turk. Pages 21–29 of: Proceedings of the NAACL HLT 2010 Workshop
on Creating Speech and Language Data with Amazon’s Mechanical Turk. Association for
Computational Linguistics, Stroudsburg, PA, USA.

Parent, Gabriel, and Eskenazi, Maxine. 2011. Speaking to the Crowd: looking at past
achievements in using crowdsourcing for speech and predicting future challenges. Pages
3037–3040 of: Proceedings of Interspeech.

Paton, Scott M. 2002. Juran: A lifetime of quality. http://www.qualitydigest.com/

aug02/articles/01_article.shtml, last accessed on November 1, 2012.

Pfau, Gerhard, and Kern, Robert. 2011. People Services: Efficient work processes leve-
raging the power of the crowd. Las Vegas, NV, USA: Presentation at IBM IMPACT
global conference.

PMI. 2004. A Guide to the Project Management Body of Knowledge (Pmbok Guide). 3rd
edn. Newtown Square, PA, USA: Project Management Institute.

Quinn, Alexander J., and Bederson, Benjamin B. 2011. Human computation: A survey
and taxonomy of a growing field. Pages 1403–1412 of: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’11. ACM, New York, NY,
USA.

Rademacher, Rochus. 2011. Arbeitskraft in der Wolke. Digital - Die Zeitschrift für die
Informationsgesellschaft, July, 26–27.

177

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://www.cio.com/article/40380/Outsourcing_Definition_and_Solutions
http://www.cio.com/article/40380/Outsourcing_Definition_and_Solutions
http://www.qualitydigest.com/aug02/articles/01_article.shtml
http://www.qualitydigest.com/aug02/articles/01_article.shtml


178 Bibliography

Rashtchian, Cyrus, Young, Peter, Hodosh, Micah, and Hockenmaier, Julia. 2010. Collect-
ing image annotations using Amazon’s Mechanical Turk. Pages 139–147 of: Proceed-
ings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with
Amazon’s Mechanical Turk. CSLDAMT ’10. Stroudsburg, PA, USA: Association for
Computational Linguistics.

Raykar, Vikas C., Yu, Shipeng, Zhao, Linda H., Jerebko, Anna, Florin, Charles, Valadez,
Gerardo Hermosillo, Bogoni, Luca, and Moy, Linda. 2009. Supervised learning from
multiple experts: Whom to trust when everyone lies a bit. Pages 889–896 of: Proceedings
of the 26th Annual International Conference on Machine Learning. ICML ’09. New York,
NY, USA: ACM.

Raykar, Vikas C., Yu, Shipeng, Zhao, Linda H., Valadez, Gerardo Hermosillo, Florin,
Charles, Bogoni, Luca, and Moy, Linda. 2010. Learning from crowds. Journal of Machine
Learning Research, 99, 1297–1322.

Reddy, Sasank, Estrin, Deborah, and Srivastava, Mani. 2010. Recruitment framework for
participatory sensing data collections. Pages 138–155 of: Floreen, Patrik, Krüger, An-
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B. Complementary research

As an alternative to the goal-based QM for cloud labor services presented in the thesis,
this appendix provides initial considerations for applying cost-benefit objectives which have
been motivated in section 10. As a starting point, the multi-labeling scenario introduced
in section 6.1 is being used.

The approach presented here uses the concept of value of information (Marschak & Rad-
ner, 1958) as the decision-theoretical foundation to decide whether in the process of the
DVM for multi-labeling, further redundancy is required or not. Instead of a well-defined
correctness goal, the requester specifies a cost-benefit objective which is basically a com-
promise between cost and quality.

Utility function

The cost-benefit objective is represented by a utility function that addresses the potential
benefit of getting a label right combined with the potential costs of mislabeling. It is
defined as a basic 2× 2 matrix that assigns a constant value to each combination of true
label tx ∈ {0, 1} and overall labelling decision rx ∈ {0, 1}:

u(tx, rx) =

(
u00 u01
u10 u11

)
=

(
utility of TN utility of FP
utility of FN utility of TP

)
(10.1)

The utility matrix consists of four values that capture the utilities of TPs, TNs, FPs
and FNs. The meaning of the first two utilities is obvious: They represent the economic
benefit that the requesters gain when obtaining correct information about a label tx. The
latter two values represent the typically lower or even negative utilities of type I and type
II errors (FPs and FNs). The difference between the obtained utility of an FP and the
utility of the TN that could have been obtained can be seen as a penalty for the FP .
Same applies to the FNs versus TPs. Even in cases in which a labeling error does not
result in direct costs, the opportunity costs caused by the lost profit due to an incorrectly
identified label are considered. Both direct as well as indirect costs of incorrect labeling
should be regarded.

Labeling decision

As defined by (6.4), for a specific label x the probability that it has the true value LPx given
the observed evidence is P (tx = 1|rx1, .., rxw). The decision threshold, the so-called equi-
librium probability(EP ), is the posterior probability for which assigning or non-assigning
a label results in the same expected utility Ux:

EP = LPx ⇔ Ux(rx = 0) = Ux(rx = 1) (10.2)

with
Ux(rx) = (1− LPx) · u(tx = 0, rx) + LPx · u(tx = 1, rx). (10.3)

With (10.1), this leads to:

EP =
u00 − u01

u00 + u11 − u10 − u01
(10.4)

EP solely depends on the values in the utility matrix. As the utility values for the TPs
and TNs will be higher than the ones for the FPs and FNs, the denominator will not be
zero.
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The above equation is the minimum probability LPx that must have been reached be-
fore a label is assigned in order to obtain the maximum expected utility. Therefore, the
consolidated labeling decision for label x is:

rx =

{
0 if LPx < EP

1 if LPx ≥ EP
(10.5)

The probability EP represents the discrimination threshold that translates the continuous
posterior probability for each label into a binary decision on whether to accept or reject a
label.

Value-of-information

The idea of the VoI concept is to decide whether the cost for acquiring additional infor-
mation justifies the value of the information provided by an additional worker.

The evidence that has been observed up to the point of decision is captured by the decisions
of the w workers represented by the matrix R in (10.1). For a specific label x, the evidence
is LPx. It can be seen as the subjective belief we have with respect to a label prior
to observing the labeling decision of an additional worker. The labeling decision this
additional worker may make is denoted by the vector Gv = (g1, .., gv) ∈ {0, 1}v. For each
label x, the value gx ∈ {0, 1} represents the worker’s (yet unknown) labeling decision.

The value V of observing additional information (before considering cost of information)
is defined as the difference between the expected utility with that information U(R,G)
and the expected utility without that information U(R). For the labeling scenario that is:

VR(G) = U(R,G)− U(R) (10.6)

Because of the independence of the labels, the overall utilities are calculated as the sum
over the utilities for each label x:

VR(G) =
v∑

x=1

Vrx1,..,rxw(gx) =
v∑

x=1

(Ux(rx1, .., rxw, gx)− Ux(rx1, .., rxw)) (10.7)

The expected utility without additional information Ux(rx) is defined by (10.3) and (10.5):

Ux(rx1, .., rxw) =

{
(1− LPx) · u(tx = 0, rx = 0) + LPx · u(tx = 1, rx = 0) if LPx < EP

(1− LPx) · u(tx = 0, rx = 1) + LPx · u(tx = 1, rx = 1) if LPx ≥ EP

(10.8)

In order to calculate the expected utility Ux(rx1, .., rxw, gx) with additional information,
estimates of the labeling performance parameters α(w+1) and β(w+1) of the additional
worker w + 1 are required. If the worker performing the next assignment is not known in
advance, these parameters have to be estimated. Because the value that gx will take is
uncertain, both cases have to be considered with respect to the overall decision for label
x denoted by rx ∈ {0, 1}:

Ux(rx1, .., rxw, gx) =P (gx = 0) · Ux(rx1, .., rxw, rx,w+1 = 0)+

P (gx = 1) · Ux(rx1, .., rxw, rx,w+1 = 1)
(10.9)
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The value of Ux(rx1, .., rxw, rx,w+1) is calculated with (10.8) assuming that there are w+1
workers. The marginal likelihood P (gx) is computed as:

P (gx) = P (gx = 0|tx = 0) · P (tx = 0) + P (gx = 1|tx = 1) · P (tx = 1)

= α(w + 1) · (1− p̃) + β(w + 1) · p̃ (10.10)

with α(w+1) and β(w+1) being the (estimated) sensitivity and specificity of the additional
worker. The probabilities p̃ and ((1 − p̃) are the prior probabilities for a label to be true
or false according to (6.10).

Decision on additional redundancy

In order to decide whether feedback should be requested from another worker, the expected
value VR(G) of that information needs to be compared to the costs C(G) associated with
an additional labeling task. If the expected value exceeds the costs, i.e. VR(G) > C(G),
redundancy is being increased, otherwise the supposedly true labels identified so far are
being returned to the requester. The value VR(G) is being calculated according to (10.6),
the costs C(G) are determined depending on the scenario and the setup of the human
computation task.

Results

In order to validate the WMV-ML mechanism with a cost-benefit objective, a fraud de-
tection scenario was assumed in which costs are associated to missing codes (FNs) or
incorrect codes (FPs). The average costs for an FP was assumed to be 0.70 EUR based
on considerations about the associated average risk of fraud and the expected loss. The
cost for an FN was assumed to be 0.40 EUR covering the additional effort for manually
revising the suspicion. The resulting utility matrix is:

u(tx, rx) =

(
u00 u01
u10 u11

)
=

(
0.00 −0.70
−0.40 0.00

)
(10.11)

For the labeling effort, a cost of 0.055 EUR was assumed per ICD-10 code. As the tasks
are allocated to the workers in form of an open call, the performance of the projected
additional worker is not known in advance. Hence, it has been estimated by the average
performance of all available workers that have not submitted a result for this task yet. The
averaged results of 10 experiments are presented in the last row of Table 3. The average
redundancy per HIT was 2.3. On average 2.7 out of 45 tasks were not completed due to an
insufficient number of results. An average sensitivity of 0.912 and an average specificity of
0.942 were achieved. Compared to the evaluation of the DVM for multi-labeling presented
in section 9.1, the sensitivity and specificity are even higher at a slightly lower degree of
redundancy i.e. at lower cost.

Discussion

Although, a cost-benefit scenario may appear to be a great approach for the medical
coding scenario, it turned out that it did not provide a reasonable solution in practice.
The reasons are twofold: First, the ICD-10 codes resulting from the coding process are
considered to be a general asset for the health insurance provider that can serve various
use cases. Not all future use cases may be obvious at present and a consistent coding
quality over a period of several years may be needed as a basis for them. However, the
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Table B.1.: Results of the DVM for multi-labeling with a cost-benefit objective being ap-
plied to a medical coding scenario.

Experiment Average Average Number of Average
number Sensitivity Specificity Results Redundancy Unfinished

1 0.869 0.956 103 2.289 3
2 0.923 0.953 104 2.311 2
3 0.919 0.905 105 2.333 4
4 0.895 0.947 102 2.267 3
5 0.927 0.944 109 2.422 2
6 0.925 0.956 108 2.4 3
7 0.921 0.943 102 2.267 3
8 0.913 0.952 104 2.311 3
9 0.932 0.919 101 2.244 2
10 0.893 0.94 99 2.2 2

Average 0.912 0.942 103.7 2.304 2.7

utilities of the ICD-10 codes heavily depend on the use case. Therefore, it is difficult to
define all-purpose utilities that also foresee future scenarios.

Another challenge is that a non-traditional mindset is required in order to agree on a cost-
benefit objective in a service-consumer service-provider scenario because the benefit of the
service is rather perceived by the consumer while its costs are mainly perceived by the
provider. To come to an agreement, both the provider and the consumer would likely need
to disclose their cost structure. The challenge of defining cost-optimal SLAs has recently
being addressed by several research papers, e.g. by (Kieninger et al., 2012). However, for
cloud labor services it appeared to be a more fundamental need to address well-defined
quality goals first.

192


	Abstract
	Acknowledgements
	Contents
	I Foundations
	1 Introduction
	1.1 Problem
	1.2 Research approach
	1.3 Structure
	1.4 Research development

	2 Cloud labor services
	2.1 Overview
	2.1.1 History
	2.1.2 Concept

	2.2 Related concepts
	2.2.1 Crowdsourcing
	2.2.2 Paid crowdsourcing
	2.2.3 Human computation
	2.2.4 Social computing
	2.2.5 Collective intelligence
	2.2.6 Human tasks in business process management and SOA
	2.2.7 Cloud computing

	2.3 Challenges
	2.3.1 Application challenges
	2.3.2 Platform challenges
	2.3.3 Workforce challenges

	2.4 Application perspective
	2.4.1 Existing applications
	2.4.2 Identification of relevant tasks
	2.4.3 Workflows and task granularity
	2.4.4 Privacy, copyright and compliance

	2.5 Platform perspective
	2.5.1 Existing platforms
	2.5.2 Technical infrastructure
	2.5.3 Worker-to-task matching and allocation
	2.5.4 Quality management

	2.6 Workforce perspective
	2.6.1 Worker demographics
	2.6.2 Motivation and incentives
	2.6.3 Education and feedback
	2.6.4 Task design
	2.6.5 Work model


	3 Quality management for cloud labor services
	3.1 Quality of cloud labor services
	3.1.1 Quality
	3.1.2 Relevant quality dimensions
	3.1.3 Influencing factors

	3.2 Quality management approaches
	3.2.1 Qualification tests
	3.2.2 Output-based quality management
	3.2.3 Execution process monitoring
	3.2.4 Response time management

	3.3 Patterns for output-based quality management
	3.3.1 Relevant task characteristics
	3.3.2 Gold pattern
	3.3.3 Voting pattern
	3.3.4 Validation pattern
	3.3.5 Iteration pattern
	3.3.6 Comparison pattern

	3.4 Comparison of output-based approaches
	3.4.1 Decision matrix
	3.4.2 Gap analysis


	4 Statistical quality control
	4.1 Overview
	4.1.1 Quality management
	4.1.2 Statistical quality control

	4.2 Areas of statistical quality control
	4.2.1 Acceptance sampling
	4.2.2 Statistical process control
	4.2.3 Design of experiments

	4.3 Acceptance sampling
	4.3.1 Introduction
	4.3.2 Single-sampling plans for attributes

	4.4 Continuous sampling plans
	4.4.1 The continuous sampling plan 1 (CSP-1)
	4.4.2 Determination of clearance number and sampling fraction



	II Model
	5 Core model for statistical quality control of cloud labor services
	5.1 Motivation
	5.1.1 Application of statistical quality control
	5.1.2 Quality management patterns for sample inspection

	5.2 Model
	5.2.1 Assumptions
	5.2.2 Process flow
	5.2.3 Rationale for using the CSP-1

	5.3 Dynamic voting mechanism (DVM)
	5.3.1 Definitions
	5.3.2 Statistical considerations
	5.3.3 Calculation of the conditional probabilities

	5.4 Completion time management
	5.4.1 Motivation
	5.4.2 Maximum throughput
	5.4.3 Fixed deadline

	5.5 Model application
	5.5.1 Configuration of the CSP-1 and the DVM
	5.5.2 Initialization of worker failure rates
	5.5.3 Detailed process flow
	5.5.4 Selection of completion time management option

	5.6 Small worker pools
	5.6.1 Motivation
	5.6.2 Prevention of delayed task inspection


	6 Model variations
	6.1 Multi–labeling scenarios
	6.1.1 Types of classification scenarios
	6.1.2 Assumptions and definitions
	6.1.3 Application of the DVM
	6.1.4 Process flow
	6.1.5 Posterior probability per label
	6.1.6 Identification of best suitable labeling decision
	6.1.7 Updating the worker's sensitivity and specificity

	6.2 Non-deterministic tasks
	6.2.1 Introduction
	6.2.2 Fundamentals
	6.2.3 Process flow
	6.2.4 Sampling process
	6.2.5 Inspection process
	6.2.6 Number of reviewers to be used



	III Evaluation
	7 Toolkit development
	7.1 Architecture
	7.2 Live mode
	7.3 Simulation mode

	8 Evaluation of core model
	8.1 Model scenario: Optical character recognition
	8.1.1 Experimental setup
	8.1.2 Simulations
	8.1.3 Live experiments
	8.1.4 Comparison of simulation and live experiments
	8.1.5 Discussion

	8.2 Case study: Address research
	8.2.1 Scenario
	8.2.2 Experimental setup
	8.2.3 Simulation experiments
	8.2.4 Live experiment
	8.2.5 Discussion


	9 Evaluation of model variations
	9.1 Case study: Medical coding
	9.1.1 Experimental setup
	9.1.2 ICD-10 coding as a multi-labeling task
	9.1.3 Task execution
	9.1.4 Results
	9.1.5 Discussion
	9.1.6 IBM Insurance Service Hub

	9.2 Case study: Product research
	9.2.1 Experimental setup
	9.2.2 Task execution
	9.2.3 Full inspection
	9.2.4 Sample-based inspection
	9.2.5 Discussion



	IV Conclusion
	10 Conclusion
	10.1 Summary
	10.2 Contribution
	10.3 Recommended further research

	Bibliography
	Appendix
	A Complementary figures
	B Complementary research



