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A series of five conducting salts in a liquid electrolyte mixture based on propylene carbonate and N,N-

diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)azanide is studied with 

respect to the usability in Li-ion cells. Namely, LiBF4, LiOSO2CF3, LiClO4, LiPF6, and lithium 

bis(trifluoromethanesulfonyl)azanide are compared regarding electrochemical properties and lithium 

ion cell performance with respect to latest commercially available high voltage material. It is shown 

that an essential effect to the electrochemical performance of Li-ion based cells arises from the 

selection of the conducting salt. Further it is proven that reversible cycling of commercially available 

active materials is realizable. It is shown that coin cells work highly effective with up to date graphite 

anode and lithium nickel manganese cobalt oxide (NMC) cathode material using not optimized 

electrolyte mixtures achieving >80% of the initial discharge capacity after 400 cycles at C/10 at room 

temperature with ~100% cycling efficiency. 
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1. INTRODUCTION 

A lithium ion accumulator directly converts electrical energy and chemical energy reversibly 

by use of lithium ions in a chemical redox reaction. However, with respect to the high energy density 

in lithium ion cells, there are still challenges regarding safety, high voltage applications, and long-term 

stability. Therefore, a broad research on electrolytes, cathode, and anode materials is performed from 

numerous scientific groups and companies. Major interest lies in the study of additives to the 
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electrolytes which are applied for a specific and selective purpose. Numerous classes of different 

compounds are already identified which result in highly selective effects in a Li-ion based cell [1, 2].  

Currently, ionic liquids (IL) are described as an alternative class of electrolyte solvent 

compounds compared to standard carbonate based systems [3]. Generally, room temperature ionic 

liquids (RTIL) can be considered as molten salts and be characterized by a considerably low melting 

point (less than 100 °C) and an almost negligible vapor pressure [4]. On the basis of these properties, 

ionic liquid based electrolytes are promising for safety issues in lithium accumulators [3, 5-7]. 

Recently, Guerfi et al. demonstrated the non-flammability of IL-carbonate-mixtures of pyrrolidinium 

based ILs with a content of the IL > 30% [8]. One disadvantage of pure ionic liquids is their reduced 

lithium ion conductivity compared to organic carbonates. However, this drawback can be overcome by 

the addition of selected carbonates to the ionic liquids which results in the formation of mixtures with 

reduced viscosity and higher conductivity retaining mainly the positive influence of the IL on safety 

issues [8-14].  

 

Table 1. Conducting salts and their properties taken from Ref. [15, 16]. Anodic limit of Et4N-X 

compounds in propylene carbonate (0.65 mol dm
-3

), potential referred to Li
+
/Li with a scan rate 

of 5 mV/s; the working electrode is glassy carbon. It should be noted that the limiting oxidation 

potential is here arbitrarily defined as the potential at which the current density reached 1 mA 

cm
-2

 at a sweep rate of 5 mV s
-1

. 

 

conducting 

salt 

Eox [V] 

vs. 

Li/Li
+
 

advantages disadvantages 

LiPF6 6.8 standard conducting salt, most 

balanced properties [15] 

thermally unstable, forms highly 

toxic HF with moisture 

LiOSO2CF3      

(= LiOTf) 

6.0 thermally stable, nontoxic, 

insensitive to moisture 

poor ion conductivity, highly 

corrosive to Al [15] 

LiClO4 6.1 economical, high anodic stability explosive, impractical for industry 

purpose [17] 

LiTFSA 6.3 thermally stable, safe, highly 

conducting 

corrosive to Al (forming of 

Al(TFSA)3) [18] 

LiBF4 6.6 less toxic, good electrochemical 

properties 

hydrolysis, moderate ion 

conductivity, thermally unstable 

[15] 

  

As mentioned by Lane et al., the organic carbonates ethylene carbonate and vinylene carbonate 

can significantly enhance the properties of ionic liquids for applications in lithium ion batteries [19]. 

Sato et al. described in 2004 that the ionic liquid N,N-diethyl-N-methyl-N-(2-

methoxyethyl)ammonium bis(trifluoromethanesulfonyl)azanide (DMMA-TFSA) could be applied in a 

lithium ion based cell [12]. In this case, a high anodic stability is combined with a relatively high ionic 

conductivity of the pure DMMA-TFSA. However, binary mixtures of DMMA-TFSA and lithium 

bis(trifluoromethanesulfonyl)azanide (LiTFSA), also known as lithium bis(trifluoromethanesulfonyl)-

imide (LiTFSI) [22], exhibit only a moderate reductive decomposition on the negative electrode’s 
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active material. In a cell, the graphite surface has to be protected by a suitable additive like vinylene 

carbonate [12]. Recently, Le et al. studied binary LiTFSA – ammonium based ionic liquid mixtures 

systematically [20]. In case of using propylene carbonate (PC) in Li-ion based cells with graphite as 

anode material, additives have to be applied to prevent the exfoliation of graphite [21].   

An essential component in a Li-ion battery is the conducting salt with respect to an accurate Li
+
 

transfer. Up to date, LiPF6 is commonly used in Li-ion cells because of its most balanced properties 

regarding lithium mobility, ionic conductivity, electrochemical stability, and positive features 

regarding the SEI formation onto the graphite electrode. Nevertheless, LiPF6 is highly toxic, moisture 

sensitive, decomposes to toxic products and is thermally unstable. For example it should be noted, that 

LiPF6 shows a remarkable decomposition if the temperature exceeds 60 °C which limits the 

application area of Li-Ion-Batteries. Thus, alternatives are extensively investigated by academic and 

industrial researchers. In Table 1, selected conducting salts based on commercial availability and with 

good prospects for Li-ion batteries are compared. LiTFSA is described as promising material instead 

of LiPF6. However, there are still challenges by replacing LiPF6 in a Li-ion cell [23-26]. The use of 

lithium bis(oxalato)borate [27] is restricted in the electrolytes investigated because of its poor 

solubility [15, 28]. 

In this work we report a comprehensive study of the effects of various conducting salts in ionic 

liquid based electrolytes with respect to physicochemical properties and performance of Li-ion based 

cells. Precisely, LiBF4, LiOSO2CF3, LiClO4, LiPF6, and LiTFSA are investigated in a DMMA-TFSA – 

propylene carbonate (PC) mixture from basic physico-chemical properties up to full cell studies. In 

order to study the properties of Li-ion cells we use graphite as anode material and NMC (lithium nickel 

manganese cobalt oxide, LiNi1/3Mn1/3Co1/3O2) as cathode material. NMC was chosen as a leading 

contender for automotive applications and PC was selected because of its significant low melting point 

of -49 °C in an IL-to-PC ratio of 50:50 to enhance the conductivity of the electrolyte while maintaining 

the safety properties of the mixtures [8]. The suitability of the mixtures regarding Li-ion based 

rechargeable cells is studied by measuring the specific capacity of the active material up to cell 

potential differences of 4.2 - 4.4 V. After presenting viscosity and conductivity data of the electrolyte  

mixtures, different electrode combinations, namely C|Li, NMC|Li, and NMC|C are investigated which 

prove the use of the electrolyte mixtures for up to date and future Li-ion battery applications.     

 

 

 

2. EXPERIMENTAL  

N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)azanide 

(DMMA-TFSA, IoLiTec, >99%), lithium bis(trifluoromethanesulfonyl)azanide (LiTFSA, IoLiTec, > 

99%), and propylene carbonate (PC, Sigma-Aldrich, anhydrous, 99.7%) were dried at 110°C by means 

of a continuous flow of dried air. The water content of the solvents was determined by coulombmetric 

Karl Fischer titration to be less than 10 ppm. Vinylene carbonate (Aldrich, 97%), lithium 

tetrafluoroborate (Aldrich, anhydrous, 99.998% trace metals basis), lithium triflate (LiOTf, Aldrich, 

99.995% trace metals basis), lithium hexafluorophosphate (ABCR, battery grade, 20 ppm H2O max), 

lithium perchlorate (Aldrich, 99.99% trace metals basis), lithium foil (Alfa Aesar, 0.75 mm thick), and 
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hexamethyldisilazane (Aldrich, >99%) were used as received. The preparation of the electrolytes was 

performed in an argon-filled glove box (MBraun GmbH) with oxygen and water levels below 0.5 ppm. 

Calandered electrodes based on graphite and NMC with a content of approximately 90% of active 

material were provided in cooperation. 

In this study common coin cells (type: CR 2032, Hohsen Corp.) were used with a coin cell 

crimper from BT Innovations. The cells were assembled in an argon-filled glove box according to 

standard procedures. Precisely, a graphite anode (Ø = 15 mm), a NMC cathode (Ø = 14 cm), and a 

glass fiber separator (Whatman
®
,
 
GF/B and QMA 450; Ø =16 mm) were used inside a coin type cell 

with one spring and one stainless steel spacer.  

The ionic conductivity of the electrolytes was measured by the standard complex impedance 

method, using a Zahner Zennium IM6 electrochemical workstation in the frequency range from 1 Hz to 

4 MHz. For the conductivity measurements, a Swagelok-type cell design was used by placing a PTFE 

ring (thickness ~ 0.35 cm) with a small hole between two stainless steel cylinders (diameter 12.7 mm). 

The cell assembly was done under protective atmosphere and sealed inside the glove box. The 

temperature dependence of the ionic conductivity was recorded by placing the test cells in a 

temperature and humidity chamber (ThermoTec Espec, SH-261). Before each measurement the cells 

were thermally equilibrated for at least 30 min. In the phase minimum (~ 0°) the impedance value | | 

was used for calculating the specific conductivity  according to  = d /(A·| |) with d = length between 

the stainless steel electrodes and A = area inside the PTFE ring. It was found that an accurate 

measurement of the conductivity with this setup is realizable within a temperature range of 0 – 50 °C. 

Each measurement was repeated at least 3 times. The error bars include error propagation from size 

and values measured.  

For the drying procedure and the verification of the water content a coulomb metric Karl-

Fischer titration was used. The titrator consists of a 831 KF Coulometer and a 860 KF Thermoprep 

oven from Metrohm.   

The cyclovoltammogramms were measured at a Zahner XPOT potentiostat (software: 

PPSeries, Potentiostat XPot Zahner elektrik 6.4). The potential range was 2.5 – 6 V vs. Li/Li
+ 

with 

platinum as working electrode. The cells were measured in 3-electrode configuration (EE-Cells 

manufactured by EL-Cell GmbH) with reference and working electrodes composed of lithium. The 

scan speed applied for all CV tests was 5 mV/s.  

The battery tests were performed on a lithium cell cycler (LICCY, development of KIT, 

Institute of Data Processing and Electronics) with a maximum current of 10 mA and a voltage range of 

0 – 10 V. The cut-off voltage is given in the text. The potentials reported in this paper are that of the 

positive electrode with respect to the counter electrode. The charging and discharging cycles were 

conducted with constant current based on the C-rate of the material used. Here, the calculation of the 

C-rate was performed in the following way: (a) [C|Li]-cells: The Cu/graphite electrode disk was 

weighed and the active material was calculated according to [m(overall)-m(Cu)] x 0.90. No additional 

correction factor for the C-rate was used. The theoretical specific capacity of the graphite used in this 

study is 350 mAh g
-1

. (b) [NMC|Li]-cells: The C-rate and the cell performance were calculated based 

on the NMC electrode disk. In that case, the active mass of a NMC disk was calculated according to 

[m(overall) – m(Al)] x (active material content). The theoretical specific capacity of NMC is 278 mAh 



Int. J. Electrochem. Sci., Vol. 8, 2013 

  

10174 

g
-1

, and the C-rate was calculated by using a correction factor of 0.667. This factor is justified based on 

the structure of NMC because a reversible insertion of Li-ions without a structural damage of NMC is 

only possible for some of the total Li-ions in the lattice [29]. Further, the theoretical capacity can only 

be obtained far beyond 4.2 V [29]. For the calculation of the [NMC|Li] performance, the active mass 

was used without any correction factor [29, 30]. (c) [NMC|C]-cells: The C-rates were calculated as 

described in (b) on the basis of NMC calculation.    

Dynamic viscosity was measured using a Malvern Gemini HR Nano rotational rheometer with 

40/1° cone geometry and a gap of 30 m. These experiments were performed by using a solvent 

evaporation protecting cover in air. All solvents were dried carefully before the measurements and the 

water content was determined to be less than 10 – 20 ppm by coulomb-metric Karl Fischer titration 

(see above). After the measurements it was not possible to determine the water uptake because of the 

low solvent amount during the measurements.  

The density of the electrolyte mixtures was obtained by repeated measurement of the mass of 

75.0 ± 0.2 l of an electrolyte mixture at room temperature.  

Differential Scanning Calorimetry (DSC) measurements were performed at DSC 204 F1 

Phoenix from Netzsch. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1 Variety of the conducting salt 

The chemical structures of the conducting salts, which are used in this study, are listed in 

Figure 1. Precisely, LiBF4, LiOTf, LiClO4, LiPF6, and LiTFSA are investigated in battery grade 

quality in a mixture of PC and DMMA-TFSA. PC was used to enhance the conductivity of the 

mixtures with respect to an optimized cell performance while maintaining the safety issue (see also 

supporting information) [8]. The composition and selected properties of the mixtures are listed in 

Table 2.  

 

 
 

Figure 1. Structures of the conducting salts and the cation of the ionic liquid cation DMMA. 
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The mixtures which are used in cell studies, additionally contained selected additives, namely 

vinylene carbonate (VC) and hexamethyldisilazane (HMDS) (section 3.5 and 3.6). HMDS was used to 

remove residual traces of water and VC serves as SEI forming agent [31-36]. In mixture L-6, LiPF6 

serves as an additive as well because of its well-known property to protect the aluminum surface from 

corrosion in carbonate based electrolytes [37]. It should be mentioned that a concentration of 1 mol 

conducting salt in one kg of electrolyte mixture is approximately equivalent to a concentration of ~1.4 

mol dm
-3

.  

 

Table 2. Composition and properties (ionic conductivity , viscosity , and density d) at 298.15 K of 

the mixtures investigated. 

 
sample conducting salt

[a,b]
 solvent

[b]
 / mS cm

-1
  / mPa s

[c]
      d / g cm

-3
 

L-0 - PC + IL 9.8 ± 0.9 7.9 ± 0.2 1.29 ± 0.02 

L-1 LiBF4 PC + IL 3.1 ± 0.2 39.6 ± 0.6 1.35 ± 0.02 

L-2 LiOTf PC + IL 2.3 ± 0.2 55.1 ± 0.5 1.39 ± 0.03 

L-3 LiClO4 PC + IL 2.2 ± 0.2 69.7 ± 1.8 1.37 ± 0.02 

L-4 LiPF6 PC + IL 1.9 ± 0.1 78.9 ± 4.1 1.38 ± 0.02 

L-5 LiTFSA PC + IL 1.9 ± 0.1 70.7 ± 2.2 1.44 ± 0.03 

L-6 LiTFSA+LiPF6 PC + IL 1.9 ± 0.1 75.9 ± 3.2 1.42 ± 0.03 

[a] 1 mol conducting salt in 1 kg electrolyte mixture (L-6: 0.95 mol kg
-1

 LiTFSA + 0.05 mol LiPF6). 

[b] IL (ionic liquid) = DMMA-TFSA; DMMA = N,N-diethyl-N-methyl-N-(2-

methoxyethyl)ammonium;  PC = propylene carbonate; TFSA = 

bis(trifluoromethanesulfonyl)azanide. Mixtures of (PC + IL) in 1:1 wt%. [c] The standard deviation 

signifies the distribution of the viscosity at 298.15 K within a shear rate of 10 – 200 s
-1

.  

 

3.2 Viscosity measurements 

 
 

Figure 2. Viscosities of the ionic liquid based electrolyte mixtures L-n (n = 0 – 5). 

 

The viscosity measurements of the electrolyte mixtures are depicted in Figure 2 in a 

temperature range of 15 – 100 °C. Mixture L-6 is not shown here because of the small difference 
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compared to sample L-5. The electrolytes L-3, L-4, and L-5 are quite comparable exhibiting a 

viscosity of ~ 73±5 mPa s at 25 °C (for comparison: pure DMMA-TFSA: 1.16 Pa·s at 25 °C, pure PC: 

2.3 mPa s at 15 °C).  

The addition of the conducting salt causes an increased viscosity as expected [38]. Often the 

empirically found Vogel-Fulcher-Tammann-Hesse [39-41] (VFTH) Equation (1) is applied for 

describing and characterizing the molecular motion within a liquid phase and also in battery 

electrolytes.  

                                        (1)  

0 is the limiting viscosity, B is a fitting parameter, D is the Angell strength parameter (see 

below), T0 is the ideal glass transition temperature, and T is the absolute temperature [42, 43]. The 

temperature dependence of the viscosity can be discussed based on the fragility concept 

according to Angell [44]. For discussing this concept, the glass-transition temperature Tg of a particular 

mixture has to be taken into account. The electrolytes investigated are mixtures consisting of an ionic 

liquid, propylene carbonate and a conducting salt and are far away being uniform pure and ideal 

solvents. This has to be taken into account by discussing fragility concepts which are based on a 

consideration of molecules in a defined phase.  However, the fitting procedure according to VFTH 

could be applied to the electrolytes in this study with very good correlation. Usually it is recommended 

for an accurate data fit,[45] especially for obtaining reproducible T0 values, to introduce an additional 

data point for (Tg) being at 10
12 

Pa·s [42, 46] or 10
10 

Pa·s [43] for more fragile compounds like ionic 

liquids with Tg values below room temperature. However, for the mixtures investigated, a fitting 

procedure is only accurate, if no additional data point at T = Tg (e.g. (Tg) ≡ 10
10 

Pa·s) is applied and if 

the ideal glass transition temperature T0 is fixed at Tg – T0 ≡ 30 K [42, 45, 47, 48]. Hereby, the 

parameters listed in Table 3 are received from the fitting procedure with accurate R
2
 values. By 

applying an additional data point according to literature [45], the fitting results are heavily dependent 

on the initializing parameters and no reliable values are received. This can be ascribed to the 

complexity of the electrolyte mixtures, the highly disordered solvent and salt molecules and the 

molecular interaction of the ionic liquid and the conducting salt. Generally it should be noted, that the 

fitting parameters are strongly dependent on small variations in the viscosity measurements. Therefore 

attention should be paid to the fact that the values obtained can only be seen as estimation. It is 

concluded that the liquid mixtures can be classified as fragile which is supported by an Angell strength 

parameter D of 3.3 < D < 7.4 (fragile for D < 30 [44]) and the fragility factor m (steepness index [46, 

49]) of 58 < m < 106 which is in the same order of magnitude compared to the literature for ionic 

liquid based systems [42, 48]. Generally, the parameter D describes the “strength” of a liquid with 

regards to the coordination of a molecule in the liquid phase [42]. As a consequence it can be 

concluded based on D how closely the electrolytes obey the Arrhenius law (ideal for D = ∞) [44]. The 

values of the quotient Tg/T0 are comparable to results described in literature for ionic liquid based 

systems which are in the range of 1.1 – 1.3 [42, 45, 47, 48]. Further it is concluded that the 

contribution of the conducting salt to the flow properties of the electrolyte mixtures is in the same 

order of magnitude for the investigated mixtures which is shown in the Tg scaled Arrhenius plots of the 

viscosities in Figure 3.  
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Table 3. VFTH fitting parameters for the mixtures L-n (n = 0 - 6). The glass transition Temperature Tg 

was obtained by DSC measurements (-150 °C – 200 °C) with a standard deviation of ± 2 K. 

Origin Pro 8.0 was used for the fitting procedure of the temperature dependent viscosity 

measurements (15 – 180 °C) and the R
2
 value was better than 0.993 for all data fittings. 

 

sample R
2
 0 / Pa s B / K T0 / K Tg / K

 
Tg/T0 D 

PC 0.993 68 ± 2 512.4 ± 9.7 154 184 1,19 3.32 ± 0.02 

DMMA-TFSA 0.999 29 ± 1 1064.4 ± 10.2 161 191 1,17 6.52 ± 0.02 

L-0 0.998 88 ± 7 647.6 ± 11.3 154 184 1,19 4.20 ± 0.07 

L-1 0.998 38 ± 5  996.0 ± 17.8 156 186 1,19 6.40 ± 0.11 

L-2 0.999 26 ± 4  1044.8 ± 15.9 156 186 1,19 6.70 ± 0.10 

L-3 0.998 17 ± 3  1165.1 ± 21.5 158 188 1,19 7.36 ± 0.14 

L-4 0.999 17 ± 2  1115.5 ± 16.8 166 196 1,18 6.71 ± 0.10  

L-5 0.999 23 ± 4  1085.9 ± 19.3  163 193 1,18 6.64 ± 0.12 

 

Sometimes, the Arrhenius equation (2) is applied for calculating the activation energy Ea of the 

flow process (viscous flow) with the universal gas constant R and the limiting viscosity 0 [50]. 

However, an Arrhenius plot of the viscosity can only be analyzed and compared in small temperature 

ranges of some ten Kelvin.  

         (2) 

 

 
 

Figure 3. Tg scaled Arrhenius plots of viscosities of the ionic liquid based electrolyte mixtures L-n (n 

= 0 – 5). The classification is based on the Angell strength parameter D and the fragility factor 

m.  

 

The Arrhenius plot and the linear fittings of the electrolytes are depicted in Figure 4 and the 

fitting parameters and flow activation energies are listed in Table 4 in a temperature range of 15 – 55 

°C. As expected, the activation energy highly depends on the temperature range. 
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Figure 4. Arrhenius-Plot of the viscosity data of samples L-n (n = 0 – 5) with linear fittings in the 

range 15 – 55 °C. 

 

Table 4. Parameters of the Arrhenius plots
[a]

   

 

sample slope
 

EA / kJ mol
-1

 R
2
 

L-0 2.48 ± 0.15 20.6 ± 0.02 0.986 

L-1 3.98 ± 0.21 33.1 ± 0.01 0.989 

L-2 4.21 ± 0.21 35.0 ± 0.01 0.990 

L-3 4.77 ± 0.26 39.7 ± 0.03 0.988 

L-4 5.09 ± 0.26 42.3 ± 0.02 0.989 

L-5 4.77 ± 0.25 39.7 ± 0.02 0.988 

[a] The fit procedure was done according to Equation 2. 

 

Comparable activation energies of 33.0 kJ mol
-1

 < Ea < 42 kJ mol
-1

 at 15 – 55 °C are obtained 

for the electrolyte mixtures containing conducting salt with accuracies of R
2
 > 0.986 for all individual 

plots. Zarrougui et al. [50] have shown that the activation energy of a 1 = 0.47 mixture of N-butyl-N-

methylpyrrolidinium TFSA and PC in a temperature range of 21 – 44 °C is 25.05 kJ mol
-1

 which fits 

well in the range of the data obtained for the ammonium based IL. The values indicate that an increase 

in the temperature causes a decrease of the energy which is necessary for the molecular motion in the 

electrolytes.  

 

3.3 Conductivity of the electrolytes 

The electrolyte conductivity plays a crucial role in understanding the electrochemical properties 

of the solvents. Therefore, the temperature dependence of the conductivity is studied and depicted in 

Figure 5 for the samples L-n (n = 0 – 5) in a temperature range of 5 – 45 °C. The highest conductivity 

exhibits the pure solvent mixture L-0. Incorporating conducting salt to liquid IL-PC mixtures reduces 
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the conductivity significantly by a factor of 3-5 (Figure 5). The slopes of the specific conductivities are 

in the same order of magnitude. A small, but significant effect of the conducting salt anion can be 

observed by comparing the samples L-n (n = 1 – 5). In detail, the value of the conductivity of sample 

L-1 is significantly higher than the values of the others. Samples L-4 and L-5 exhibit the lowest 

conductivity value. Nevertheless, the influence of the anion of the conducting salt to the ionic 

conductivity is rather small. This is quite notable since the dissociation of the conducting salt in the 

DMMA-TFSA/PC mixture is expected to differ. We assume that the main fractional part of the anions 

is delivered by the ionic liquid DMMA-TFSA (TFSA
-
; see also Table 5) thus the conducting salt 

anions are presumably highly complexed by Li
+
.  

With increasing temperature, a rise in ionic conductivity is observed. The ionic liquid DMMA-

TFSA is present in all electrolyte mixtures thus the TFSA-anion exists in all samples and is able to 

complex both the lithium and the DMMA cation. Additionally it is known that the Li
+
 contribution to 

the conductivity is only a low fractional part of the total conductivity value [51]. Zarrougui et al. 

investigated an IL:PC (1 = 0.47) mixture with the ionic liquid N-butyl-N-methylpyrrolidinium 

resulting in a specific conductivity of 7.84 mS/cm (at 298.15 K), which is in the same order of 

magnitude compared to the presented ammonium-IL:PC mixture L-0 (9.8±0.8 mS/cm at 298.15 K)  

[50].  

 

 
 

Figure 5. Ionic conductivity of the mixtures L-n (n = 0 – 5) at different temperatures. Each sample is 

measured at least three times independently. 

 

It is investigated whether the mixtures obey the Walden rule [52] (Equation 3) with the limiting 

molar conductivity Λm
0
 of an electrolyte and the pure solvent’s viscosity η. Zarrougui et al. have shown 

that the viscosity and conductivity of a mixture with 1 > 0.22 in a PC – pyrrolidinium IL mixture are 

closely linked thus the Walden rule could be applied [50]. A fractional Walden rule can be obtained by 

introducing an additional parameter a to the viscosity (Equation 4) which results in the linearized 

Equation 5 [42, 47].   
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                  (3) 

              (4) 

             (5) 

In this study, the limiting molar conductivity Λm
0
 is replaced by the molar conductivity Λm

cs+IL
, 

which consists of the amount of substance of the conducting salt (cs) ncs and the contribution of the 

ionic liquid (IL) nIL to the total molar conductivity. Thus, the ionic molar conductivity Λm
cs+IL

 is 

composed of the specific conductivity , the density d of the mixture and the total mass m (Equation 

6).  

          (6) 

It is found that the modified Walden rule can be applied to the highly concentrated mixtures 

with ccs+IL  2.7 ± 0.1 mol dm
-3

 resulting in almost linear fits according to Equation (5) with a 

coefficient of determination R
2
 better than 0.996. The Walden plots are depicted in Figure 6 and the 

parameters of the fits are listed in Table 5.  

 

Table 5. Parameters of the Walden plots
[a]

   

 

sample ccs+IL / mol l
-1 

slope R
2
 

L-0 1.58 ± 0.05 0.71 ± 0.02 0.997 

L-1 2.70 ± 0.05 0.65 ± 0.01 0.999 

L-2 2.69 ± 0.05 0.66 ± 0.01 0.999 

L-3 2.72 ± 0.05 0.68 ± 0.03 0.996 

L-4 2.70 ± 0.05 0.62 ± 0.02 0.999 

L-5 2.53 ± 0.05 0.78 ± 0.02 0.998 

[a] The fit procedure was done according to Equation 5. 

 

 
 

Figure 6. Walden plots of the samples L-n (n = 0 – 5). For a better comparison the plots are shifted 

vertically against each other. 
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The temperature range of the viscosity – conductivity relationship is 15 – 45 °C. This result 

exhibits that the empirically found Walden rule is applicable even in highly concentrated electrolytes 

consisting of strongly aggregated ionic liquids and conducting salts.  

Closely related to the conductivity is the Li
+
 transference number. Preliminary results based on 

pulsed field gradient NMR suggest that the Li
+ 

diffusion constants of the mixtures studied are in the 

same order of magnitude (no significant difference). Further, the Li
+
 diffusion constant of the mixtures 

studied is lowered by a factor of ~10-20 compared to EC-DMC (1:1 wt.%) with 1 M LiPF6.  

 

3.4 Electrochemical stability 

The oxidation stability of the electrolytes is tested in linear sweep voltammetry studies in Pt|Li 

cell configuration (three electrode configuration) and the relevant data are depicted in Figure 7. The 

data suggest that the mixtures exhibit an anodic stability up to a potential of 4.5 – 5.5 V vs. Li/Li
+
. A 

significant raise in the current density arises > 5.5 V vs. Li/Li
+
 only. However, it should be noted that 

platinum which was used as working electrode, is much more inert than aluminum or the electrode 

paste. Thus, it is expected that the oxidation stability is reduced in real cell configurations. It is 

observed that mixture L-2 exhibits a decreased stability of 4 – 4.5 V vs. Li/Li
+
, which might be caused 

by the anion OTf
-
. In contrast, mixtures L-3, L-4, and L-5 exhibit an improved anodic stability of ~5.5 

V vs. Li/Li
+
 compared to sample L-0. 

 

 
 

Figure 7. Linear sweep voltammetry of samples L-n (n = 0-5) with Pt as working electrode and 

lithium as counter and reference electrode (three electrode configuration; 5 mV s
-1

; E vs. Li/Li
+
 

= 2.5 – 6.0 V). 

 

3.5 C|Li and NMC|Li cell tests 

The electrolyte mixtures are tested in half cell tests against lithium metal to study the 

performance of the samples in the presence of NMC as well as graphite. Vinylene carbonate (VC) is 
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used as surface electrolyte interface (SEI) forming additive for graphite in all cases in 2 wt.-% and 

HMDS is used as water protecting agent (0.5 wt.-%). VC plays a crucial role in forming a 

comprehensive layer which hampers the propylene carbonate to exfoliate the graphite in the 

PC/DMMA-TFSA mixtures.[12, 21] Both of the electrodes are coated and calandered in cooperation 

resulting in electrodes, which are proven to exhibit stable cycling in pouch cell tests for some hundreds 

of cycles with standard electrolyte like LP-30


 (Merck, 1 M LiPF6 in EC/DMC). The cells are cycled 

with different C-rates to enable an insight in the Li
+
 transport even by applying higher charge rates. 

More precisely, a current rate (C-rate) of 1 C is equivalent to the current when the cell is completely 

charged or discharged in 1 h. The results are depicted in Figure 8. For NMC|Li cells (Figure 8a), a 

specific discharge capacity of 160 mAh g
-1

 is received in case of electrolyte L-1, L-3, L-4, and L-5 at 

C/20 reversibly, while mixture L-2 exhibits only 140 mAh g
-1

 at the beginning of the cycling.  

 

 
 

Figure 8. 8a: Discharge capacity of NMC|Li cells. Voltage range: 3 – 4.3 V. 8b: Discharge capacity of 

C|Li cells. Voltage range: 0 – 2 V. The electrode area is 1.267 cm
2
. 

 

Electrolyte L-2 exhibits a fast reduction of the specific capacity even in repeated 

measurements. In contrast, the drop of the specific capacity of the remaining mixtures with an 

increased charge rate is less pronounced. Nevertheless, a strong decrease of the storable energy is 

observed in every mixture at C/2 to a level of about 30 – 60 mAh/g. On the other hand, up to C/4, 

almost 135 mAh g
-1

 are obtained for the best electrolyte mixture L-1 in this test and 120 mAh g
-1

 for 

the LiTFSA-mixture. As a result, a conductive salt dependent behavior is observed starting from 

poorly working cells (LiOTf) to highly reversible cycling performance (LiBF4, LiClO4, LiPF6, and 

LiTFSA). This is remarkable inasmuch as preliminary pulsed field gradient NMR (pfg-NMR) 

measurements reveal a comparable order of magnitude for Li-ion diffusion constants. Currently the 

correlation of Li-ion diffusion constants and Li
+
 conductivity in IL based mixtures is systematically 

investigated by the authors. It is suggested that the Li
+
 migration and the affinity of Li

+ 
to NMC is 

strongly dependent on the complexation of Li
+
. One reason for the reduced cell performance of LiOTf 

a b 
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could be Al corrosion, which is known to be extraordinary strong in LiOTf mixtures [15] and which 

can reduce the storable energy by Al decomposition of the electrode surfaces (especially of the 

negative pole). 

In Figure 8b, the cell configuration graphite|Li is depicted. Mixture L-1, which was one of the 

best electrolyte mixtures in NMC|Li cell configuration, exhibits a moderate specific capacity of 300 

mAh g
-1

 at C/20. Mixture L-2 (LiOTf) reveals a reversible capacity which is ~ 200 mAh g
-1

 and thus 

inferior to the remaining mixtures as well.  In contrast, much better results are received by using 

LiTFSA (L-5) and LiPF6 (L-4). However, also in these cases, a rapid decrease of the specific 

conductivity to ~ 30 mAh g
-1

 at C/2 is obtained. Insofar it is unlikely to obtain much better specific 

capacities in full NMC|C cells (see below) at high C-rates. Furthermore, it is quite difficult to fully 

charge the graphite electrodes galvanostatically because of change in the potential towards lithium 

deposition [53]. If slow cycles are applied after fast cycling most of the initial capacity is retained thus 

an effective protection of the graphite electrodes via a solid electrolyte interface is assumed. The 

charge and discharge profiles of the C|Li cells are depicted in Figure 9 for a better understanding of the 

processes during the formation of the SEI in the first and the second cycle. No PC intercalation is 

observed in the range of 0.8 – 1.1 V in the potential profiles in Figure 9a [54]. Electrolyte mixtures L-4 

and L-5 exhibit a fast drop of the potential down to 0.2 V with forming of the SEI in the range of 0.90 

– 0.20 V.  

 

 
 

Figure 9. 9a: First charge and discharge cycle of the electrolyte mixtures at C/25 (room temperature). 

9b: Second charge and discharge cycle of the electrolyte mixtures L-1 to L-5 at C/25 (room 

temperature) in C|Li cells. t1 indicates the time at the end of the first cycle thus the time t at 

beginning of the second cycle is set to zero for a better comparison. The electrode area is 1.267 

cm
2
. 

 

Below 0.2 V, a reversible Li intercalation (e.g. in L-5) can be observed clearly with a retention 

of 85.8% of the energy in the first cycle (U = 0.17 V at t = 4 h to U = 0.26 V at t = 63.8 h) and 99.2% 

in the second cycle (full cycle). In general, the different stages of LixC intercalation are forming below 

a b 
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0.25 V vs Li/Li
+
 [53]. Not optimized electrolyte mixtures can be one reason for observing relatively 

large irreversible capacities during the first cycle. Additionally, the irreversible capacity loss in the 

first cycle can be attributed to SEI formation processes. Broader peaks during the SEI formation are 

observed for electrolyte L-2 and L-3. The shifts in the ∼0.6–0.8 V range can be attributed to solvent 

reduction (PC and ammonium IL cation) which are only present in the first lithiation step of the 

graphite based on the SEI formation [55]. It is suggested that different potential curves of the 

electrolyte mixtures L-1 to L-5 can be observed due to different SEI formation processes. By 

comparing the data for the first and the second cycle (Figure 9a and 9b), it is obvious that most of the 

formation processes of the SEI are already completed after the first cycle. This can be attributed to the 

abrupt potential drop up to U = 0.18 V in the second cycles. In this study, only 2 wt% of VC is applied 

to the electrolytes. As a result, a content of 2 wt% of VC should be sufficient in the studied electrolyte 

mixtures for forming a stable SEI layer and enabling a reversible cell cycling. 

 

3.6 NMC|C cell tests 

Full cell studies in NMC|C cell configuration are performed for evaluating the electrolyte 

mixtures in combined electrode systems (Figure 10). The specific capacities of NMC at various C-rates 

during the cycling of the cells are shown in Figure 10a. Only mixtures L-3, L-4, and L-5 exhibit a cell 

performance which is suitable for reversible cycling. From Figure 10a and 10b it can be seen, that 

mixture L-1 results in only poor working NMC|C cells in contrast to X|Li cells (Figure 8). One reason 

might be that a large irreversible loss of Li hampers the use of LiBF4 effectively. Strong corrosion 

effects (aluminum corrosion) of mixture L-2 can be an explanation of the poor working mixture L-2, 

which result in Al layer decomposition and the deposition of Al onto the C electrode [15]. At constant 

rates of C/20 (Figure 10b) the mixtures L-3 (LiClO4), L-4 (LiPF6), and L-5 (LiTFSA) exhibit the best 

performance. The slight decrease of the capacity after the initial cycles can be ascribed to the 

Swagelok like cell design and an elimination of lithium into the SEI layer (irreversible capacity) due to 

a not-optimized additive mixture.  

 

 

a b 
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Figure 10. Figure 10a: Discharge capacity of NMC|C (C/20 – C/2; room temperature; E = 3 – 4.2 vs. 

Li/Li
+
). Figure 10b: Discharge capacity of NMC|C cells (C/20; room temperature; E = 3 – 4.2 

V vs. Li/Li
+
). Figure 10c: Specific capacity of NMC|C cells (C/25-C/20; room temperature; E 

= 3 – 4.4 V vs. Li/Li
+
). Figure 10d: Charge and discharge cycle of the electrolyte mixture L-5 

at C/20 (room temperature). 

 

By comparing C|Li- (Figure 8, right) and NMC|Li-cells (Figure 8, left) a slight decrease in the 

specific capacity is observed. Thus, the drop of the capacity is likely related to the graphite electrode. 

Based on Figure 8 it is not clear why the electrolyte mixtures L-1 and L-2 result in not-working 

NMC|C-cell systems even at low current rates because the current is calculated based on the specific 

capacity of NMC. This means that enough graphite should be present in the cell for a working cell 

system. However, the low specific capacity of mixture L-1 and L-2 is reproducible and can be also 

seen in Figure 10.  

The differences between L-4 (LiPF6) and L-5 (LiTFSA) are particularly evident in Figure 10c. 

Here, the cut off voltage is set to be 4.4 V, thus a higher potential is seen by the electrolyte in the cell. 

It is remarkable that mixture L-5 retains the capacity quite well (88% based on the third cycle, 35 

cycles), whereas mixture L-4 exhibits a relatively strong decrease of the specific capacity (48% based 

on the third cycle, 35 cycles). This is likely due to a better electrochemical stability of the TFSA
-
 ion 

compared to the PF6
-
 ion in the 4.2 – 4.4 potential range. In Fig 10d the charge and discharge profiles 

of mixture L-5 is depicted in detail. It is seen that no plateau like in LiFePO4 cathode material [56] is 

observed but rather a gentle decrease of the specific capacity takes place with a medium discharge 

plateau around 3.6 ± 0.2 V. This behavior is typical for NMC material [29]. As a consequence, it 

cannot be deduced that electrolyte compositions that exhibit outstanding properties in X|Li half cells 

(compare Figure 8) perform in a similar way in full cells with graphite. It is concluded that mixture L-5 

(LiTFSA in DMMA-TFSA + PC) exhibits the best cell performance in NMC|C cells. Further it 

indicates that the development of new electrodes requires a careful design of the electrolyte mixtures 

because of the interaction between both materials in a working battery cell.  

d 
c 
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To demonstrate the use of the ionic liquid based electrolyte, mixture L-6 is used in a coin cell 

type CR 2032 configuration. Here, LiPF6 is used as additive in 1 wt% concentration in addition to VC 

and HMDS as a fluorine source to increase the corrosion stability against the Al current collector. The 

cycling profile is depicted in Figure 11a for 400 cycles and the cycling efficiency, namely the quotient 

of the discharge capacity and the charge capacity, is illustrated in Figure 11b.  

 

 
 

Figure 11. 11a: Charge (C) and discharge (DC) capacities of a NMC|C cell at room temperature (U = 

3 – 4.2 V). The cell is performed as coin cell. Repeated measurements reveal a similar 

behavior. 11b: Efficiency of the NMC|C cell with electrolyte L-6 (compare Fig 6) at defined C-

rates. At a constant C-rate of C/10 100% efficiency (discharge capacity / charge capacity) are 

obtained. 

 

After the initial forming steps at low C-rates of C/20 and C/15, a short performance test up to 

C/2 is performed. A significant decrease in the specific capacity of the active material is observed 

while increasing the C-rate as expected from the previous measurements. However, the NMC|C-cell 

exhibits retention of the specific capacity of ~95% (C/10) after 120 cycles based on the fifth discharge 

cycle (also at C/10). After approximately 400 cycles (C/10, room temperature, coin cell), ~80% 

retention of the specific capacity based on the fifth discharge cycle was obtained. The cycling 

efficiency exhibits a retention of nearly 100% at C/10 for 400 cycles. In this context it should be noted, 

that the mixture L-6 is still not a fully optimized electrolyte mixture. Figure 12 highlights the 

temperature dependence of the mixture L-6 at 0.4 C. It is remarkable that a temperature shift of 20 K 

up to 313.15 K (40 °C) results in an increase of the specific capacity from 36 mAh g
-1

 to 102 mAh g
-1

 

(increase of 183%). On the other hand, a further temperature increase of 20 K results only in a small 

additional increase of the specific capacity to ~116 mAh g
-1

. Additionally, a slow damage of the cell is 

observed, especially if the temperature is enhanced further. Thus, an optimal temperature of the 

mixtures should be around ~40 °C. Then, even at higher C-rates acceptable capacities are obtained. 

a b 
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Figure 12. Temperature dependence of the cycling at 0.4 C (= C/2.5). Before the temperature study, 

the cell was cycled according to Fig 8. 

 

 

 

4. CONCLUSION 

In this study, selected conducting salts are investigated in a binary electrolyte liquid mixture 

based on propylene carbonate (PC) and N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium 

bis(trifluoromethanesulfonyl)azanide (DMMA-TFSA). It is shown that the usability of the electrolytes 

in Li-ion based cells with latest commercially available electrode materials is strongly dependent on 

the conducting salt. Further it is demonstrated that the ionic liquid DMMA-TFSA which exhibits 

outstanding properties regarding safety issues and high temperature stability can successfully be used 

as electrolyte solvent for Li-ion based cells. It is shown that lithium 

bis(trifluoromethanesulfonyl)azanide (LiTFSA) can be applied in LiCo1/3Mn1/3Ni1/3O2 (NMC)|graphite 

Li-ion cells for some hundred cycles with an excellent cell performance. Besides the conducting salt, 

additives play a crucial role in a working cell system. It is found that in mixtures of PC and DMMA-

TFSA 2 wt% of vinylene carbonate hampers the PC effectively to exfoliate the graphite layer and 

enabling a long-term working cell based on graphite and NMC. Further it is proven, that full cell tests 

are a prerequisite to evaluate the potential of electrolyte mixtures and cell testings against lithium 

metal are not accurate to conclude electrolyte performances. The results obtained are of broad interest 

for researchers in different fields of electrochemistry because of the high anodic stability of the 

electrolytes studied.   
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