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The syntheses of [650] hexakis[(bisoxazolinyl)methano]fullerenes are presented. Two derivatives could be
directly obtained using conditions developed by the Sun group. For the remaining products, a two stage
protocol had to be developed. All compounds we obtained in synthetically useful scales and were purified via
column chromatography with standard achiral phase. These new fullerene adducts bear six metal-chelation
sites which are aligned in the three orthogonal space directions and are disposed on a completely rigid
scaffold. First experiments indicate that the generation of six-fold metal-complexes is possible with these
structures. This makes them very appealing as ligands in asymmetric catalysis and as building blocks in
higher supra-molecular assemblies.

J
ust about two decades after the discovery of C60 Buckminster fullerene, carbon allotropes – fullerenes,
nanotubes and graphene – have become increasingly important in material sciences1–9. Fullerenes are widely
known and used as electron acceptors. Beside their electro-chemical properties, several fullerene adducts also

possess optical activity, which is often beneficial and sometimes essential for applications in asymmetric synthesis
or racemic resolution10–14.

Over the years, different methods for the functionalization of the fullerene core have appeared15–22. Chiral
fullerene adducts are either generated through an inherent chiral addition pattern, through chiral addends or a
combination of both10c. Hirsch was the first to prepare enantiomerically pure bis- and tris[bis(4-phenyl-2-
oxazoline)methano]fullerenes with inherent chiral addition arrangements23,24. Later, his group extended this
strategy to bis(4-phenyl-2-oxazoline) derivatives bearing an inherently chiral [353] hexaaddition pattern and
used these structures as auxiliaries in stereoselective cyclopropanation reactions25. Related systems have also been
published by Echegoyen26 and Rubin27.

Results
Herein, we report the syntheses of the first enantiomerically pure [650]hexakis[(bisoxazolinyl)methano]fuller-
enes 2 and the generation of several six-fold metal-complexes based on these compounds. These fullerene
structures are not only aesthetically appealing, but also the first purely organic structures offering six metal-
chelating sites disposed on a completely rigid scaffold and aligned according to the three orthogonal space
directions there are some other completely rigid organic compounds bearing six metal-chelation sites. These
do however possess a lower symmetry than the described fullerene adducts28. Potential applications should be
found in asymmetric catalysis and as tectons in enantiomerically pure self-assembled supra-molecular structures.

Discussion
Derivatives 2a–c were obtained via cyclopropanation of C60 with the corresponding C2-symmetrical enantio-
merically pure bis(oxazolines) 1a–c29 followed by simple silica column chromatography. The reaction conditions
initially used by Hirsch to prepare bis- and tris[bis(oxazolinyl)methano]fullerene derivatives were not suitable for
six-fold addition23,25, as they only yielded mixtures of lower oligo adducts. The latter could not be separated on
achiral stationary phases. However, using the conditions reported by Sun with a 100-fold excess of CBr4

(Conditions A)30, both enantiomers of the phenyl derivatives all-S-2a and all-R-2a were obtained in 32% and
31% yield respectively (Fig. 3 and Table 1, Entries 1,2).
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Conditions A proved however to be inadequate for the prepara-
tion of compounds 2b–c. In all cases, no hexakis derivatives bearing
the desired geometry could be found. One of the major products was
a pentakis adduct with an addition pattern not leading to the desired
octahedral hexakis adducts (results not shown)31. In order to circum-
vent this problem, we turned to the 9,10-dimethylanthracene (DMA)
template-directed activation developed by Hirsch, which is known to
generate exclusively the desired penta- and consequently hexakis-
regioisomers with an octahedral addition pattern31.

With this method hexakis adducts 2b–c could be obtained.
However, the [551] hexakis bis(oxazoline)/DMA adduct was in all
cases a major side product in these reactions and could not be com-
pletely separated from the [650] compound. These [551] adducts did
not further react under the Hirsch conditions, but yielded the cor-
responding [650] hexakis[bis(oxazolinyl)methano]fullerenes 2b–c
when first heated to 60uC for 30 min and then reacted with CBr4

(3 eq.), BOX (3 eq.) and DBU (6 eq.) in o-DCB (Conditions B)

(Table 1, Entries 3–5)30. Hence, applying either protocols A or B gave
access to a whole series of hexakis[bis(oxazoline)] adducts in good to
excellent overall yields.

1H and 13C NMR analyses confirm the octahedral addition pattern
of compounds 2. The four observed 13C signals at 142.0, 142.1, 145.5,
and 145.9 ppm are in agreement with the chiral tetrahedral (T) point
group symmetry (Figure 1). These BOX-fullerene adducts are actu-
ally less symmetric than most [650] hexakis adducts bearing pyrito-
hedral symmetry (Th)32.

Hirsch proved that a fullerene multi-adduct is obtained as diaster-
eomers if C60 is reacted with enantiomerically pure addends, which
arrange in an inherently chiral addition pattern23b. Hexakis adducts
with an octahedral [650] addition pattern have achiral tetrahedral
symmetry. Such adducts can consequently only exhibit axial chirality
generated through their chiral addends. Thus, all [650] hexakis[(bi-
soxazolinyl)methano]fullerenes generated from enantiomerically
pure BOX 1 were obtained as single enantiomer. Optical rotation

Figure 1 | 13C NMR spectra of compound 2a.

Figure 2 | CD spectra of all-S-2a (red) and all-R-2a (blue). Concentrations in trifluoroethanol (TFE): all-R-2a: 0.058 mg/mL, all-S-2a: 0.060 mg/mL.
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and CD spectra show the enantiomeric relationship of (all-S-2a/all-
R-2a) and (all-S-2b/all-R-2b) (see Figure 2 and SI).

With compounds 2 in hand, we investigated their capacity to build
six-fold metal-complexes. Compounds all-S-2a and all-S-2b were
treated with [(PhCN)2PdCl2] (10 eq.) and in a third test all-S-2a
was reacted with [CuI] (10 eq.). In all three cases, the recovered
precipitate proved to be insoluble in conventional solvents. The
six-fold complexes could however be detected by mass spectrometry
(see SI). In each case, several fragments containing six metal-ions and
(6–n) chloride ions were detected (n 5 1 to 6). This strongly indicates
the formation of six-fold metal-complexes. Due to the weakly bound
chloride ions it was not possible to detect the [2Pd6Cl12] species.

We have presented the first synthetic access to [650] hexakis[(bi-
soxazolinyl)methano]fullerenes. These compounds provide an all
organic rigid scaffold bearing six metal-chelation sites, which are
orthogonally directed. Preliminary experiments indicate that the
generation of six-fold metal-complexes is possible. We are currently
working to improve the solubility of such metal-complexes in order
to purify and completely characterize them.

Methods
Synthesis of all-(R)-2a. BOX derivative (R,R)-1a (1.28 g, 4.16 mmol, 10.0 eq.), CBr4

(13.8 g, 41.6 mmol, 100 eq.), C60 (300 mg, 416 mmol, 1.00 eq.) and DBU (1.25 g,
8.32 mmol, 20.0 eq.) were reacted in dry o-DCB (90.0 mL) as described above. After
72 h of stirring at ambient temperature, the reaction mixture was poured into 300 mL
of cyclohexane to remove the o-DCB. The precipitate was filtered off and abundantly
washed with cyclohexane. After column chromatography (toluene/ethyl acetate
(951) 1 5% EtOH 1 0.2% NEt3) the hexakis fullerene adduct all-(R)-2a was obtained
as a brown solid in 31% yield. – Mp: decomposition at T . 286uC. – IR (KBr): ~v 5

2896 (vw), 2161 (vw), 2043 (vw), 1657 (vw), 1493 (vw), 1452 (vw), 1355 (vw), 1188
(vw), 1082 (vw), 980 (vw), 928(vw), 749 (vw), 698 (w), 594 (vw), 526 (vw), 420 (vw)

cm21. 2 UV/VIS (CHCl3): lmax (log e) 5 181 (7.7), 186 (7.7), 211 (7.4), 272 (6.9) nm.
– a½ �20

D (c 5 0.038, THF): 2101u?mL?dm21?g21. –1H-NMR (500 MHz, CDCl3): d 5

4.29 (dd, 3J 5 8.3 Hz, 12 H, 5-H), 4.80 (dd, 2J 5 10.0 Hz, 3J 5 8.7 Hz, 12 H, 5-H), 5.44
(dd, 2J 5 10.0 Hz, 3J 5 8.3 Hz, 12 H, 4-H), 7.3227.35 (m, 60 H, Ph-H) ppm. – 13C-
NMR (125 MHz, CDCl3): d 5 34.9 (Cp-Cap), 69.8 (C-5), 70.2 (C60-Csp3), 75.1 (C-4),
127.0 (Ph-Cm), 127.6 (Ph-Cp), 128.7 (Ph-Co), 141.7 (Ph-Ci), 142.0 (C60-Csp2), 142.1
(C60-Csp2), 145.6 (C60-Csp2), 145.8 (C60-Csp2), 161.1 (C 5 N) ppm. – MS (FAB, 3-
NBA) m/z (%): 2544 (55) [M]1, 2412 (9), 2240 (4), 769 (28), 719 (100).

Synthesis of all-R-2b. C60 (360 mg, 500 mmol, 1.00 eq.) and DMA (1.03 g,
5.00 mmol, 10.0 eq.) were stirred for 1 h in dry toluene (210 mL). Then bisoxazoline
(R,R)-1b (911 mg, 5.00 mmol, 10.0 eq.) and CBr4 (1.66 g, 5.00 mmol, 10.0 eq.) were
added and during 20 min DBU (1.52 g, 10.0 mmol, 20.0 eq.) was dropped into the
solution. After 72 h of stirring under argon, the solvent was evaporated and the crude
product was subjected to column chromatography (toluene/ethyl acetate (951) 1

20% EtOH 1 0.2% NEt3). The product obtained that way was dissolved in
dichloromethane (3 mL) and precipitated by dropping the solution into diethyl ether
(100 mL) to remove the silica that was dissolved by the EtOH. That way, besides the
pure product, a mixture consisting of the hexakis derivative and some lower adducts
was isolated. In a further reaction under conditions c), the latter was converted into
the hexakis adduct vide supra. The purification of the crude product was carried out
as for the first product batch by chromatography and precipitation. Finally the
hexakis BOX methanofullerene all-(R)-2b was isolated in 19% (168 mg, 90.0 mmol)
overall yield. – Mp: decomposition at T . 235uC.– IR (KBr): ~v 5 3272 (br, vw), 2965
(w), 2895 (vw), 1657 (w), 1447 (vw), 1354 (w), 1288 (w), 1195 (w), 1103 (w), 1064 (w),
1022 (w), 976 (w), 942 (w), 844 (vw), 709 (w), 665 (vw), 539 (w), 523 (w) cm21. – UV/
VIS (CHCl3): lmax (log e) 5 213 (7.0) nm. –1H-NMR (400 MHz, CDCl3): d5 1.29 (d,
3J 5 6.5 Hz, 36 H, CH3), 3.94 (dd, 3J 5 7.4 Hz, 12 H, 5-H), 4.3224.37 (m, 12 H, 4-H),
4.43 (dd, 2J 5 9.2 Hz, 3J 5 8.0 Hz, 12 H, 5-H) ppm. – 13C-NMR (100 MHz, CDCl3): d
5 21.3 (CH3), 34.4 (Cp-Cap), 62.0 (C-5), 69.7 (C60-Csp3), 74.7 (C-4), 141.9 (C60-Csp2),
142.1 (C60-Csp2), 145.1 (C60-Csp2), 145.3 (C60-Csp2), 160.0 (C60-Csp2) ppm. 2 MS
(FAB, 3-NBA) m/z (%): 1801 (13) [M]1, 1621 (8) [M2C9H12N2O2]1, 745 (13), 720
(29), 154 (100) [3-NBA].
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