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Abstract

Understanding the physical processes which lead to microstructure for-
mation during fabrication and annealing of ceramic materials is a long
sought goal among material scientists. Using strontium titanate as a
model system for perovskite ceramics, the present work combines ad-
vanced non-destructive 3D characterization techniques and computational
modeling of microstructure evolution in order to link grain morphology,
interface anisotropy and microstructure evolution to macroscopic physical
properties.

The effects of orientation dependent interface properties on growth kinetics
are studied both experimentally and in parameter variations using a
front tracking model. The microstructure of a polycrystalline strontium
titanate specimen is characterized at two stages during microstructure
evolution by means of X-ray Diffraction Contrast Tomography. In between
the tomography scans, the specimen is annealed for 1h at 1600∘C. The
microstructure reconstruction of the specimen in the annealed state is
validated against electron backscatter diffraction investigations.

The individual and combined effects of anisotropy of both grain boundary
energy and mobility are investigated in simulations using a three dimen-
sional vertex dynamics model with systematically varied parameters. Both
growth kinetics and microstructure are found to be strongly influenced
by the orientation dependent grain boundary energy, while only a weak
impact of the grain boundary mobility was observed even for strong grain
boundary mobility anisotropy. A measurable effect on the microstruc-
ture is only detected, when mobility anisotropy is combined with grain
boundary energy effects. Then abnormal grain growth can be observed. A
mechanism for the nucleation of abnormal growth in candidate grains is
proposed.
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Kurzzusammenfassung

Die makrospkopischen Eigenschaften polykristalliner keramischer Werk-
stoffe werden maßgeblich durch die Mikrostrukturentwicklung beeinflusst.
Das bisherige Wissen über die während der Mikrostrukturentwicklung
ablaufenden Prozesse, insbesondere die Verknüpfung mikrostruktureller
und makroskopischer Materialparameter ist nach wie vor unvollständig.
Die vorliegende Arbeit kombiniert zerstörungsfreie 3D Charakterisierungs-
methoden und rechnergestützte Modellierung der Mikrostrukturentwick-
lung. Dabei wird Strontiumtitanat als Modellsystem für Perowskitk-
eramiken betrachtet. Ziel ist, die Zusammenhänge zwischen Morphologie,
anisotropen Grenzflächeneigenschaften und Mikrostrukturentwicklung zu
verstehen und so die Auswirkungen auf makroskopische Werkstoffkennwerte
beschreiben zu können.

Der Einfluss orientierungsabhängiger Grenzflächeneigenschaften auf die
Wachstumskinetik wird sowohl experimentell, als auch mittels system-
atischer Parametervariation eines Grenzflächenmodells untersucht. Die
Mikrostruktur einer polykristallinen Strontiumtitanat-Probe wird an zwei
definierten Zeitpunkten innerhalb eines Auslagerungsprozesses mittels
Röntgenbeugungs-Tomographie in 3D charakterisiert. Zwischen den bei-
den Aufnahmen findet eine Auslagerung für eine Stunde bei 1600∘C statt.
Für die Mikrostruktur-Rekonstruktion im augelagerten Zustand erfolgt
eine Validierung mittels Elektronen-Rückstreu-Diffraktion.

Parallel dazu werden Kornwachstumssimulationen unter systematischer
Variation der Grenzflächenenergie sowie -mobilität durchgeführt. Während
die Variation der Grenzflächenenergie einen großen Einfluss auf die Mikro-
struktur und die Wachstumsdynamik ausübt, findet sich nur ein schwach
ausgepägter Zusammenhang zwischen Mikrostrukturentwicklung und An-
isotropie der Grenzflächenmobilität. Diese hat nur in Kombination mit
Grenzflächenenergieffekten messbare Auswirkungen auf die Struktur. Ba-
sierend auf diesen Ergebnissen wird ein Nukleationsmechanismus für abnor-
mal wachsende Körner innerhalb einer isotropen Matrix vorgeschlagen.
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Symbols

(𝜑, 𝜃, 𝜓) Euler angles
n = (𝑛1, 𝑛2, 𝑛3) normal vector
t = (𝑡1, 𝑡2, 𝑡3) translation vector of neighbouring crystallites
Φ misorientation of neighbouring crystallites
𝐸𝐷 elastic energy of edge dislocation per unit length
𝜇 shear modulus
𝜈 Poissons ratio
𝑟0 radius of the dislocation core
b Burgers vector
𝑏 norm of the Burgers vector
𝑑 dislocation spacing
𝐸𝐶 energy of the dislocation core
𝛾(Φ) misorientation dependent

grain boundary energy per unit length
𝜃 inclination angle
𝜎(𝜃) orientation dependent surface energy
𝜎(n) normal dependent surface energy
𝑀 grain boundary mobility
𝑚(n) surface normal orientation dependent mobility
v boundary velocity
P driving force for grain boundary motion
𝑀𝐿 low angle grain boundary mobility
𝑀𝐻 high angle grain boundary mobility
𝑇 temperature
𝐷𝐿 lattice self-diffusion coefficient
Ω atomic volume
𝑘𝐵 Boltzmann constant
𝑄 activation energy
𝑅 universal gas constant
𝑁𝑃 number of polyhedra in observed volume
𝑁𝐹 number of faces
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𝑁𝐸 number of edges
𝑁𝑉 number of (quadruple) vertices
𝛾i interface tension
bi in-plane direction of the interface
𝑡 time
𝑃 polyhedron
𝐿(𝑃 ) mean width of polyhedron∑︀𝑛

𝑖=1 𝑒i total edge length of the polyhedron
𝛽𝑖 exterior turning angle
𝐺 total free energy
𝑅 mean grain radius
𝛼 proportionality factor

mean symbol
𝛽 local coefficient
𝜆 metrical scale factor
𝑑ℎ𝑘𝑙 spacing of ℎ𝑘𝑙-planes
Θ angle between incident ray and scattering plane
𝜆 X-ray wavelength
𝑛 reflection order
ℎ𝑘𝑙 lattice plane type
Δ𝜎 cusp depth
𝜑 opening angle of cusp
𝑉 total grain boundary energy
r vector of interface position
v vector of interface velocity
𝑅 energy dissipation
𝐿 sidelength of simulated cube
𝑙𝑐𝑟𝑖𝑡 critical reference length
𝑛𝑣𝑖𝑟𝑡 number of discretizational vertices along triple line
D𝐴, D𝐴𝐵𝐶 Lagrange coupling matrices
𝑓T

j torque contribution to nodal force
R rotation matrix
f𝐴 nodal force of node A
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v𝐴 nodal velocity of node A
Δ𝑡 time step, small time interval
𝜅 friction factor for virtual vertices on flat boundary
𝑙 subedge length
Δ𝑙𝑚𝑎𝑥 change of subedge length
𝑀(n) grain boundary mobility potential
𝑚(n)𝑙,𝑚(n)𝑟 normal dependent surface mobility
𝜒2 probability distribution
𝐸𝑖, 𝑂𝑖 expected and observed frequencies for event 𝑖
𝜎𝑆 standard deviation
𝜇𝑆 mean value
𝐹𝐺 average number of neighbors of a grain
𝐸𝐺 average number of edges per grain
Ψ sphericity
𝐴(𝑡) area
𝑉𝐺 grain volume
𝑂𝐺 grain surface area
𝑘 normalized growth rate
𝐾 relative growth rate
𝐴𝑡𝑜𝑡 total surface area of the pole sphere
𝐴𝐶 pole sphere surface area affected by energy cusp
𝑓𝐶 fraction of grain faces affected by energy cusp
𝑓𝑃 fraction of grain faces affected by mobility peak
𝑓𝐺𝐹 fraction of high mobility grain faces
𝑔𝐶 average characteristic grain size
f𝐺
𝑑𝑒𝑡 detachment force

f𝐺
𝑝𝑖𝑛 opposing force imposed by new grain boundaries
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1. Introduction

Tailoring material properties to specific application requirements is one of
the major challenges in materials science. Since most physical and mechan-
ical properties of polycrystals are controlled by size and composition of
the microstructure, it is crucial to understand the processes leading to mi-
crostructure formation. Grain boundary motion, forming the morphology
and topology of the grain boundary ensemble, is one of the dominant pro-
cesses during microstructure evolution. Hence a thorough comprehension
of grain growth and its underlying mechanisms is fundamental.

Due to their mechanical, thermal and chemical stability as well as their
unique electrical, optical and magnetic properties, ceramics are one of the
technologically most relevant material classes. Ceramic materials with
perovskite-type structure can easily be modified by appropriate changes in
composition. That way a large number of chemical compounds that are of
considerable technological importance can be produced. Metal oxides of
perovskite structure such as BaTiO3, PbTiO3 or Pb(ZrTi)O3 are used as
dielectric for manufacturing multi-layer capacitors, thermistors, transduc-
ers, temperature sensors, piezoelectric transducers and high temperature
superconductors.

Since the materials properties are strongly influenced by the processing
route, the major aim of this thesis is to contribute to the long term goal
of quantitative investigation of microstructure formation in perovskite
ceramics. Here, the correlation between grain boundary properties and
macroscopic materials properties is of particular interest. Throughout
this thesis, polycrystalline bulk strontium titanate (SrTiO3) serves as a
model material for functional ceramics with a perovskite (ABO3) structure.
Strontium titanate SrTiO3 was chosen as model system due to the absence
of phase transitions in the temperature regime of interest and the rather
extensive amount of experimental work focussing on the anisotropy of
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interface properties [1–5] and growth kinetics [6,7] in this material. Apart
from atomistic modeling of specific boundaries [8] there have been no
modeling approaches to assess this topic. Moreover, a recently discovered
deviation from Arrhenius type growth behavior in strontium titanate [7]
is still unexplained.

The investigation of the complex processes occuring during mirostruc-
ture evolution in any polycrystalline material poses several challenges to
material scientists: Annealing experiments giving insight into the real
microstructure are time, labor and cost intensive. The restriction to de-
structive two dimensional (2D) characterization methods rules out an
observation of the same structure at various stages during microstructure
evolution. And even if non-destructive 3D characterization is feasible, high
temperatures or long annealing times prohibit a continuous observation
of the evolving structure. Growth simulations on the other hand are
adaptable in time and space resolution of the characterization but they
rely to a large extent on simplification and generalization of both struc-
tural properties and migration mechanisms. Moreover they are dependent
on input parameters generated from experiments or more fundamental
simulations.

One major aim of this thesis is to integrate experimental and modeling
efforts in the characterization of microstructure evolution in strontium
titanate. By generating dedicated input data for the model approach of
choice and using the models efficiency for parameter variations, a better
understanding of the link between grain morphology, microstructure evolu-
tion and macroscopic materials properties shall be established. Therefore,
experimental and modeling investigations are combined in the present
work: Grain growth simulations are used to study the influence of indi-
vidual interface properties that are not easily controlled experimentally.
Eventually they allow to predict the properties for materials manufactured
under distinct conditions. Annealing experiments using three dimensional
x-ray imaging provide realistic microstructures and valuable insight in
orientation dependent grain boundary properties, serving both as vali-
dation and indispensable source for input parameters for grain growth
simulations.



2. Literature

This chapter gives an overview of the most relevant aspects required to
discuss grain boundary motion and its modeling in perovskite ceramics. A
brief introduction into grain boundaries and their properties is followed by a
review of the fundamental principles of grain boundary motion with special
regard to ceramic materials. Subsequent subchapters cover computational
growth models and a short overview over microstructure characterization
techniques.

2.1. Grain Boundaries

A grain boundary is defined as the interfacial transition region between
two crystals of the same phase and crystallographic structure but differ-
ent orientation with regard to a global coordinate system. Their nature
and behavior influences microstructure formation and thus the macro-
scopic physical and mechanical properties of any polycrystalline material
substantially.

2.1.1. Grain Boundary Properties

The overall geometry of a grain boundary requires eight parameters for
a full mathematical description in three dimensions: three Euler angles
(𝜑, 𝜃, 𝜓) to describe the orientation relationship between the two adjacent
crystallites, two components of the normal vector n = (𝑛1, 𝑛2, 𝑛3) defining
the spatial orientation of the interface with respect to one of the two
neighboring grains and three components of the translation vector t =
(𝑡1, 𝑡2, 𝑡3) that describes the displacement of the two crystallites. Equivalent
to using the three Euler angles describing the rotation of one lattice into
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the other is a description giving an axis and angle of rotation. The
minimal rotational angle Φ (using the crystal symmetry) needed to rotate
one set of crystal axes into coincidence with the other crystal is called
misorientation. Interfaces with a small misorientation (Φ < 15∘) are
considered low angle grain boundaries. Interfaces between crystallites with
a larger misorientation are referred to as high angle grain boundaries.

Each grain boundary is associated with specific kinetic and thermodynamic
grain boundary properties like mobility, energy and entropy, which depend
on crystallography and are in principle a function of the eight geometry
parameters [9]. Thereof, the microscopic parameters t = (𝑡1, 𝑡2, 𝑡3) that
describe the relative displacement of the two crystallites are assumed to
adjust themselves such that the total energy reaches a local minimum.
Accordingly, the number of controllable degrees of freedom of the boundary
reduces to five. The knowledge of these grain boundary properties is a
crucial prerequisite for the simulation of microstructure evolution.

Grain Boundary Energy

Low angle grain boundaries can be regarded as formed of dislocations.
Their interface free energy can be calculated following Read and Shock-
ley [10] as the energy of an array of edge dislocations. The energy of an
edge dislocation per unit length is given by

𝐸𝐷 = 𝜇𝑏2

4𝜋(1 − 𝜈) ln 𝑑
𝑟0

+ 𝐸𝐶 , (2.1)

where 𝜇 and 𝜈 are the shear modulus and Poissons ratio, 𝑟0 ≈ 𝑏 is the
radius of the dislocation core (𝑏 is the norm of the Burgers vector b), 𝑑
is the dislocation spacing. The elastic contribution is given by the first
term in equation 2.1 while the second term 𝐸𝐶 gives the energy of the
dislocation core.

When the boundary is considered as an array of parallel edge dislocations,
the dislocation spacing 𝑑 defines the angular rotation Φ

𝑠𝑖𝑛(Φ/2) = 𝑏

2𝑑 , (2.2)
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which for small angles is

Φ ≈ 𝑏

𝑑
. (2.3)

Accordingly, the misorientation dependent grain boundary energy per unit
area can be expressed as [11]

𝛾(Φ) = Φ
𝑏

[︂
𝜇𝑏2

4𝜋(1 − 𝜈) ln 1
Φ + 𝐸𝐶

]︂
. (2.4)

For high angle grain boundaries, the dislocation model fails to predict the
grain boundary energy correctly, because there is no unique dislocation
arrangement and the dislocation cores tend to overlap beyond a rotation
angle of 10 − 15∘. The energy of high angle grain boundaries is found to
be higher than that of low angle boundaries and approximately constant
except for some particular orientations for which the atomic fit is better
than in general and the corresponding grain boundary energy is low.
Typically, these special boundaries are described in terms of the so called
coincidence site lattice (CSL) concept [12].

To more precisely assess the energy of high angle grain boundaries atomic
scale computer simulations can be employed for distinct oriented interfaces.
Other methods, like capillarity vector reconstruction [13] or inverse Wulff
construction [14] from pore shapes aim at identifying orientation dependent
relative surface energies and make the transition to interface energies
by assuming that anisotropic surface energies and interface energies are
closely related. Interface energies are then assumed proportional to surface
energies reduced by an interface binding term [15,16].

Often, it is sufficient, to describe the energy 𝛾 of a grain boundary with
fixed crystal misorientation as a function of its inclination angle 𝜃, as
it is done in the Wulff plot [14], see figure 2.1. Here, a polar plot of
the orientation dependent surface energy 𝜎(𝜃) of the crystal for each
inclination is represented by a vector in the direction of the surface normal.
The Wulff plot may show distinct energy minima, so called cusps, at
energetically favorable inclinations. Using energy minimization arguments,
the equilibrium shape of a crystal can then be determined by the Wulff
construction [14]. Therefor planes perpendicular to each 𝜎(𝜃) vector are
drawn at the point, where the vector intersects the Wulff plot. Then the
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Figure 2.1.: Cross section of a 3D Wulff plot showing the energy 𝜎 of a
surface with fixed crystal misorientation as a function of its inclination
angle 𝜃 [17].

shape of the crystal in the equilibrium state is represented as the inner
envelope of these planes.

Grain Boundary Mobility

Grain boundary mobility 𝑀 is commonly defined as the proportionality
constant between the boundary velocity v and the driving force for grain
boundary motion P:

v = 𝑀P. (2.5)

Here, the driving force P can be of various nature e.g. stored energy
differences, plastic deformation or temperature gradients. Since grain
boundary motion is a thermally activated process, 𝑀 generally exhibits an
Arrhenius-like temperature dependency. It has been shown in experiments,
that the grain boundary mobility is also a function of composition and
crystallographic type of the material [18]. Pronounced anisotropy with
respect to misorientation and boundary plane orientation was observed
for the grain boundary mobility in metals [9, 19].
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On a basic level and to keep the analogy to the description of grain
boundary energy, it is possible to distinguish between the mobility of low
angle and high angle grain boundaries: Since low angle grain boundaries
migrate by a combination of dislocation glide and dislocation climb, their
mobility 𝑀𝐿 is a function of the grain boundary structure. Assuming,
that the rate of dislocation climb is diffusion limited [11] the mobility of
low angle grain boundaries can be approximated as [20]

𝑀𝐿 ≈ 8𝐷𝐿Ω𝑑
𝑘𝐵𝑇𝑐𝑏2 , (2.6)

where 𝑑 denotes the spacing between the dislocations, 𝑇 the temperature
and 𝑐 is the correlation factor for atomic jumps in diffusion. 𝐷𝐿 is the
self-diffusivity which follows an Arrhenius temperature dependence and Ω
is the atomic volume associated with the grain boundary when a constant
boundary thickness is assumed. The mobility of high angle grain boundaries
𝑀𝐻 is based on thermally activated atomic transfer across the interface
and is often found to obey an Arrhenius type relationship of the form

𝑀𝐻 = 𝑀0 exp
(︂

− 𝑄

𝑅𝑇

)︂
, (2.7)

where 𝑄 is the activation energy and 𝑅 the universal gas constant.

Topology

In addition to the structure and properties of individual grain boundaries
some attention must be drawn to their arrangement inside the material.
Influencing factors on the formation of a metastable configuration are the
topological requirement of a space filling grain boundary network on one
side and boundary tension balance on the other side.

In three dimensions, space filling polyhedra fulfill the Euler relation

𝑁𝑉 −𝑁𝐸 +𝑁𝐹 −𝑁𝑃 = 1, (2.8)

where 𝑁𝑃 is the number of polyhedra contained in the observed volume,
𝑁𝐹 is the total number of faces, 𝑁𝐸 the total number of edges and 𝑁𝑉

the number of (quadruple) vertices.
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Figure 2.2.: Equilibrium of boundary tensions at a triple line.

Moreover, the grain boundaries seek to arrange in a way such that the
equilibrium equation for boundary tension, the so called Herring relation
[21]

3∑︁
𝑖=1

[︂
𝛾𝑖b𝑖 +

(︂
𝜕𝛾𝑖

𝜕Φ𝑖

)︂
n𝑖

]︂
= 0, (2.9)

is fulfilled. Here, 𝛾𝑖 marks the boundary tension, b𝑖 the in-plane direction
of the boundary and n𝑖 its normal direction, while the inclination of the
boundary with respect to the crystal coordinate system is denoted with
Φ𝑖, see figure 2.2. There is however no formation of three dimensional (3D)
plane-faced polyhedra that fulfills equation 2.9 and is space filling at the
same time [22]. In order to fulfill these two requirements simultaneously
grain boundaries must be curved.

Real polycrystalline microstructures consist of grains of different shapes
and sizes. Still, for materials with uniform grain boundary energy, the
dihedral angles are found to be close to 120∘.

For materials with anisotropic grain boundary energy a torque contribu-
tion resulting from the second part of the Herring relation 2.9, increases
the dihedral angle opposite to the boundaries with comparatively lower
energy.
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2.1.2. Grain Boundary Motion

Grain boundary motion can be described as the motion of a grain boundary
relative to the crystal lattices sharing the boundary. In the absence of
long range diffusional fluxes, grain boundary motion can be imagined as
one crystallite growing at the expense of another one. Most often, this
is described as atoms being transferred locally across the interface [11]
or a generation of lattice sites at the surface of the growing grain and
conversely a destruction of lattice sites at the surface of the shrinking
grain [9]. Effectively, grain boundary motion comprises the non-zero net
exchange of lattice sites across the boundary.

While there is no unified theory of grain boundary migration in literature,
it is generally agreed upon that motion occurs as response to a driving
force

P = − ▽𝐺 (2.10)

that exists, whenever the grain boundary motion causes the system total
free energy 𝐺 to decrease.

There are a number of sources leading to driving forces for grain boundary
motion. These range from applied stress, over bulk free energy differences
during phase transformations in heterophase boundaries to average stored
energy of plastic deformation during recrystallization. The most relevant
driving force for boundary motion however is the reduction of the total
grain boundary area. This driving force controls temperature activated
grain growth processes like annealing and is the only driving force regarded
in this work.

2.2. Growth Kinetics of Polycrystals

Grain growth in polycrystals can be regarded as the collective behavior of
the grain boundaries during isothermal annealing. Typically, two types of
growth behavior are distinguished: “normal grain growth” during which
the normalized grain size distribution remains uniform, and “abnormal
grain growth” resulting in a bimodal grain size distribution.



10 2. Literature

2.2.1. Normal Growth

The curvature driven growth kinetics of a system of crystallites during
normal growth is well described by the simple kinetic equation

𝑑𝐴

𝑑𝑡
= 𝛼𝛾𝑀 (2.11)

proposed by Hillert [23]. Integrating this differential equation gives the
parabolic growth law

𝐴(𝑡) = 𝐴(0) + 𝛼𝛾𝑀𝑡, (2.12)

where 𝐴(𝑡) is the mean grain size evaluated as cross section at any given
time 𝑡 and 𝐴(0) is the mean grain size for 𝑡 = 0, 𝛼 is a geometrical
factor taking into account the grain boundary network. This factor is
found to be of the order of unity [23, 24]. During normal grain growth
grain structures are of uniform appearance and the normalized grain size
distribution remains uniform. Often, a linear growth behavior can be
assumed [25]. Then, the normalized area evolution

𝐴(𝑡)
𝐴(0) = 1 + 𝛼𝛾𝑀

𝐴(0) 𝑡 (2.13)

allows to extract a linear growth rate 𝑘

𝑘 = 𝛼𝛾𝑀

𝐴(0) . (2.14)

Two alternate expressions for grain size distributions have been proposed
based on grain growth theory. Hillert derived an expression for the size
distribution from the mean field model [23]:

𝑓𝐻(𝑢) = 𝐶
𝑢

(2 − 𝑢)2+𝛿
exp

(︂
2𝛿

(2 − 𝑢)

)︂
. (2.15)

Here, 𝐶 is a constant, 𝛿 is a dimensionality factor being 2 for 2D growth
and 3 for 3D grain growth and 𝑢 is defined as 𝑢 = 𝑅

𝑅𝑐𝑟
with at cut off at

𝑢 = 2. 𝑅 is the grain radius and 𝑅𝑐𝑟 is the critical grain radius needed
for growth. Louat on the other hand assumed that grain growth can be
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regarded as random diffusion-like process and expressed the grain size
distribution function [26] as

𝑓𝐿(𝑅) = 𝜋

2𝑅 exp
(︁

−𝜋

4𝑅
2
)︁
. (2.16)

Feltham used a log-normal function to describe experimentally observed
grain size distributions in metals [27]:

𝑓𝑙𝑛(𝑅) = 𝑍√
𝜋𝑅

exp
(︃

−𝑍2
(︂

ln
(︂
𝑅

𝑅

)︂)︂2
)︃
. (2.17)

Here, 𝑍 denotes a constant and 𝑅 is the median grain radius. Despite the
fact that there is no physical reasoning for the log-normal distribution,
this function is widely used to describe experimentally observed grain size
distributions of dense single phase polycrystals [28–30].

Since the curvature needed to fulfill the Herring relation and the space
filling restrictions of a realistic material contribute to the driving force for
migration of grain boundaries, grain growth can be considered a topological
process. In 2D and for isotropic conditions, the von Neumann-Mullins
relation [31,32] gives the area change rate of an 𝑠-sided grain as

𝑑𝐴

𝑑𝑡
= 𝜋

3𝑀𝛾(𝑠− 6). (2.18)

More recently, this relation has been generalized to three dimensions [33].
MacPherson and Srolovitz showed that the volume change rate of any
given discretized polyhedron 𝑃 can be expressed as a function of its
topology [33]

𝑑𝑉

𝑑𝑡
= −2𝑀𝜋𝛾

(︃
𝐿(𝑃 ) − 1

6

𝑛∑︁
𝑖=1

𝑒𝑖(𝑃 )
)︃
, (2.19)

where
∑︀𝑛

𝑖=1 𝑒𝑖(𝑃 ) is the total edge length of the polyhedron. 𝐿(𝑃 ) is
denoted as mean width. For a triangulated polyhedron it is given by

𝐿(𝑃 ) = 1
2𝜋

𝑚∑︁
𝑖=1

𝜖𝑖𝛽𝑖 (2.20)

where 𝜖𝑖 is the length of an edge shared by two triangles and 𝛽𝑖 is the
exterior turning angle these triangles enclose. The mean width can be
interpreted as mean curvature of the polyhedron.
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2.2.2. Abnormal Growth

During abnormal grain growth a small number of grains grow at an above-
average growth rate at the expense of the remaining (so called matrix)
grains. The resulting bimodal grain size distribution is only eliminated
when, after a certain time, all the matrix grains have been consumed.

Conditions for the onset of abnormal grain growth have been discussed
for decades. While earlier works [23,34] assuming uniform grain boundary
energies focus on the stability of cellular structures in order to explain the
nucleation of abnormal growth, more recent publications consider abnor-
mal grain growth as being attributed to anisotropies in grain boundary
properties [35,36]. Both analytical and simulation studies following this
approach typically consider idealized cellular microstructures comprised of
two types of grains: matrix grains with mean properties (radius 𝑅, grain
boundary mobility and energy 𝑀 , 𝛾 and misorientation 𝜃) and candidate
grains for abnormal growth, which may deviate significantly from the
matrix grains in one or more of these properties. Assuming that no grain
rotation or grain sliding takes place, the driving force for the growth of
such a candidate grain in an otherwise homogeneous matrix can be derived
as

𝑃 = 1.5𝛽𝛾
𝑅

− 2𝛼𝛾
𝑅

, (2.21)

assuming a reduction in energy through growth. Since the net driving
force for the special case 𝑅 = 𝑅 is zero, the relation between the constants
𝛼 and 𝛽 is found to be 𝛽 = 4

3𝛼. Equation 2.21 can be rewritten to

𝑃 = 2𝛼
(︂
𝛾

𝑅
− 𝛾

𝑅

)︂
. (2.22)

Typically, 𝛼 is of the order of unity. Keeping this in mind and following
the generally accepted approach for the calculation of grain boundary
motion, the growth rate 𝑑𝑅

𝑑𝑡 for the candidate grain is written as

𝑑𝑅

𝑑𝑡
= 𝑀𝑃 = 𝑀

(︂
𝛾

𝑅
− 𝛾

𝑅

)︂
(2.23)



2.2. Growth Kinetics of Polycrystals 13

using the driving force as derived in equation 2.21. Likewise, the growth
rate of any given matrix grain is given as [23]

𝑑𝑅

𝑑𝑡
= 𝑀𝛾

4𝑅
. (2.24)

Thompson et al. [34] suggested that the condition for abnormal growth of
the candidate grain can be written as

𝑑
(︁

𝑅

𝑅

)︁
𝑑𝑡

> 0. (2.25)

With
𝑑
(︁

𝑅

𝑅

)︁
𝑑𝑡

= 1
𝑅

2

(︂
𝑅
𝑑𝑅

𝑑𝑡
−𝑅

𝑑𝑅

𝑑𝑡

)︂
> 0 (2.26)

and equation 2.23 for the growth rate 𝑑𝑅
𝑑𝑡 of the candidate grain and 2.24

for the growth rate 𝑑𝑅
𝑑𝑡 of a matrix grain, equation 2.25 can be rewritten

to

𝑀𝛾 − 𝑅𝑀𝛾

𝑅
− 𝑅𝑀𝛾

4𝑅
> 0. (2.27)

Therefore, according to these approaches, the nucleation of abnormal
growth is dependent on relative grain size as well as relative grain boundary
energy and mobility of the candidate grains.

Topological approaches to abnormal grain growth [37–40] explicitly examine
the number of faces or the boundary curvature of candidate grains in
order to identify a topological analogon to inequality 2.27. Dealing with
3D structures composed of irregular polyhedra however makes this task
challenging and necessitates several simplifying assumptions. The most
recent results [39] present a criterion for abnormal grain growth solely
depending on the number of faces 𝑁𝐹 a candidate grain contains. This
work is based on the method of representing irregular 3D networks using
infinite sets of regular polyhedra [41,42]. For these regular polyhedra, it
was shown, that their volume 𝑉 is proportional to the number of faces 𝑁𝐹

they contain
𝑉

1
3 ∝ 𝑁

1
2

𝐹 𝜆, (2.28)
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with 𝜆 as a metrical scale factor. Then, the obvious deduction, that
the basic criterion for abnormal growth stated in equation 2.25 can be
expressed in terms of grain volumes can be extended to

𝑑
(︀
𝑅/𝑅

)︀
𝑑𝑡

=
𝑑
(︀
𝑉/𝑉

)︀ 1
3

𝑑𝑡
=
𝑑
(︀
𝑁𝐹 /𝑁𝐹

)︀ 1
2

𝑑𝑡
> 0. (2.29)

2.3. Computational Growth Models

Aiming at the quantitative investigation and prediction of microstructure
evolution, grain growth models are a powerful tool for the investigation of
properties that are not easily controlled experimentally. Typically operat-
ing on the mesoscopic scale, the classical approaches for the simulation of
grain growth can be categorized as either stochastic or deterministic. The
most commonly applied approaches are Monte Carlo (stochastic), Phase
Field and Vertex Dynamics (both deterministic) models. All models apply
a discretization of the grain structure on a planar or volumetric basis,
treating the grain boundaries as dividing interfaces between regions of
different orientations.

Monte Carlo

In Monte Carlo models [43–47] the microstructure is represented as equally
sized voxels associated with orientation information. Accordingly, grain
boundaries occur between pairs of voxels having different orientations and
grain boundary properties can be assigned as a function of misorientation.
The time evolution of these models is driven by energy minimization and
the evolution is performed voxel-wise. Starting from a randomly selected
voxel, the change in the systems total energy induced by the change of
state of the particular voxel is calculated and accepted according to a
Metropolis Scheme [48].
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Phase Field

Phase Field models for the simulation of grain growth [49–52] typically
apply a regular volumetric discretization. In these models, crystallographic
orientations are expressed through order parameters. In contrast to the
sharp interface models, these models show a continuous transition of
the order parameters. Groups of voxels of similar orientation make up
grains, a finite interface width is achieved by a gradient penalty for the
order parameters of a grain. The microstructure evolution is controlled
through the variation of a free-energy potential with respect to the order
parameters. Interface normal dependent grain boundary properties can be
implemented [52].

Vertex Dynamics

Vertex Dynamics models [24,53] are sharp interface models. Discretizing
the interfaces only allows to attribute grain boundary properties as a
function of all five degrees of freedom to every basic discretizational unit.
Typically the grain boundary mesh is represented by a triangulation. A
detailed description of the Vertex Dynamics Model applied in the present
work is provided in section 4.1.

All above mentioned models have been applied to the simulation of grain
growth in ideal systems. Due to their different approaches each of the
models is suited to serve different purposes:
Vertex models show good agreement with theory in terms of scaling and
growth laws. Therefore they are applied to simulate ideal normal grain
growth [24, 54, 55] and triple line/quadruple point drag [56, 57]. More
recently, systems with inclination and misorientation dependent grain
boundary properties [58] and the nucleation of abnormal grain growth [59]
have been modeled as well. Phase field models are computationally de-
manding but the only class of models that allow to simulate phenomena
in which diffusion or long-range stresses are coupled to the grain growth
process. Examples include simulations studying the effect of porosity on
grain growth kinetics in polycrystalline ceramics [60], plastic flow [61] or
creep deformation phenomena [62]. Monte Carlo models have been used
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for large systems with complex textures and second phase particles such
as Zener pinning [63]. This type of model has also been applied to the
simulation of recrystallization during annealing of deformed metals [64].
Still, the applicability of all models to real materials is limited by the
lack of experimental data i.e. input structures as well as grain boundary
properties.

2.4. Microstructure Characterization

The characterization and quantitative analysis of microstructures in poly-
crystals is of great importance to materials scientists, since structure
defining quantities such as grain size or homogeneity have a strong impact
on the physical properties of the material.

For decades, microstructure characterization was restricted to destructive
two dimensional (2D) metallography applying optical microscopy, electron
microscopy or X-ray microscopy to manually polished cross-sections of the
material. In the early 1990ies, albeit tedious, serial sectioning [65] allowed
first steps towards a 3D microstructure characterization. Today roboted
serial sectioning [66], focused ion beam (FIB) milling in dual beam instru-
ments [67,68] and femtosecond-laser based ablation techniques [69] allow
for destructive access to full 3D crystallographic information. Additionally,
non-destructive, 3D X-ray characterization techniques were proposed at
the beginning of the current century. Among these, 3D X-ray diffraction
microscopy (3DXRD) [70–72] and X-ray diffraction contrast tomography
(DCT) [73,74] as well as differential aperture X-ray microscopy [75] allow
for non-destructive acquisition and reconstruction of 3D grain microstruc-
tures of several millimeters cubed. These non-destructive techniques give
access to time-resolved 3D microstructure characterization.



3. Experimental Methods and
Materials

One major aim of this thesis is to integrate experimental and modeling
efforts in the characterization of microstructure evolution in strontium
titanate. The tomography experiments that yield 3D interface networks
of real structures and the vertex dynamics model chosen for the growth
simulations will be explained in detail in this chapter.

3.1. X-ray Diffraction Contrast Tomography

X-ray Diffraction Contrast Tomography (DCT) imaging is used to char-
acterize the microstructure evolution in strontium titanate in 3D. In this
section, the applied technique is described briefly. Detailed descriptions of
the experimental setup and the reconstruction procedure are published
in [73] and [74].

3.1.1. Principle

DCT is a synchrotron based non-destructive characterization method for
polycrystalline materials allowing to investigate their morphology and
crystallography in 3D. Using monochromatic coherent high energy X-rays,
the technique is a variant of conventional micro tomography [76] recon-
structing individual grain shapes from extinction contrast data collected
during tomographic scans. During DCT scans, the extinction contrast data
is complemented by the simultaneous collection of diffraction information.
This additional data is used for the identification of the crystallographic
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orientation of every single grain with respect to the global reference system
as well as the shape reconstruction.

For a given wavelength 𝜆, diffraction information is directly accessible
from the constraint that only crystallites fulfilling Bragg’s condition

2𝑑ℎ𝑘𝑙 = sinΘ = 𝑛𝜆 (3.1)

will cause constructive interference of the X-rays and therefore a diffraction
spot on the detector. Here, 𝑑ℎ𝑘𝑙 denotes the lattice plane spacing for the set
of ℎ𝑘𝑙 lattice planes, 𝑛 is an integer representing the order of reflection and
𝜆 marks the wavelength of the X-rays and Θ denotes the angle between the
incident ray and the scattering lattice plane. Knowing several projections
allows to calculate the ℎ𝑘𝑙 lattice plane type for the diffraction event giving
access to the crystallography of the particular grain.

3.1.2. Specimen Preparation

The experimental setup of the DCT technique imposes several restrictions
on shape and microstructure of the investigated strontium titanate speci-
mens: Rotating tomography specimens should preferably be of a rotational
symmetry, minimizing intensity variations arising from sharp edges. Due
to the acquisition geometry (presented in chapter 3.1.3) and the limited
penetration depth of the achievable X-ray energy, the diameter of the
specimen must be below 350 µm. With an effective detector pixel size of
1.4µm and 0.7µm respectively (depending on the applied X-ray optics),
grain diameters of 20-30µm are needed to achieve a reasonable resolution
at the grain boundaries.

The strontium titanate specimen presented throughout this thesis is cylin-
drical with a diameter of 250µm, see figure 3.1. It is prepared from raw
material processed as described in section 3.3.2. In order to obtain the de-
sired shape the raw material is cut into disks with a thickness of 1mm and
a diameter of 3mm using a diamond wire saw. These disks are glued onto
tungsten wires of decreasing diameters from 2mm to 0.5mm and ground
down to the diameter of the wire using a turning lathe and abrasive paper.
During excavation of the last 200-250µm necessary to reach the desired
diameter, the specimens rest on the ∅ 0.5mm tungsten wire.
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Figure 3.1.: Raw material disk, intermediate shape during abrasion and
tomography specimen in its final shape.

3.1.3. DCT Data Acquisition

All presented DCT experiments are performed at the materials research
beam line ID11 at the European Synchrotron Radiation Facility (ESRF)
in Grenoble, France.

The experimental setup is depicted in figure 3.2: The cylindrical strontium
titanate specimen is mounted on a rotating specimen holder and illuminated
by high energy X-rays. During 360∘ scans absorption and diffraction
information is collected in 0.05∘ increments using a FReLon CCD camera
with 1024x1024 pixel and 2048x2048 pixel chip, respectively. A total of
7200 images are acquired per scan. The resulting effective pixel sizes are
1.4 µm and 0.7µm. The beam energy for the experiments presented in
this thesis is 36keV and the sample detector distance 3.3 mm.

For some samples, separate phase contrast tomography (PCT) datasets are
acquired using the same set-up, but a larger specimen detector distance.
The resulting edge enhancement due to free space propagation (Fresnel
diffraction) increases the visibility of small pores.
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Figure 3.2.: Experimental setup during acquisition of diffraction and ab-
sorption information by means of DCT [74].

3.1.4. Microstructure Reconstruction

The applied reconstruction of position and grain shape is primarily based on
the exploitation of the diffraction spots gathered during the scans. For the
investigated bulk strontium titanate, primarily diffraction spots originating
from {110}, {111}, {200} and {220} lattice planes were considered for
segmentation. A schematic overview of the reconstruction procedure is
shown in figure 3.3. Apart from the algebraic reconstruction, which is
carried out using an algebraic tomographic reconstruction algorithm [77],
all data and image processing operations were performed using MATLAB
2012a (The MathWorks Inc., Natick, MA, USA).

In a first step, diffraction spots are segmented from the raw images. Due
to contrast differences of several orders of magnitude, a double threshold
segmentation method is applied: A first threshold is used to identify bright
regions in the raw image as possible diffraction spot. The brightest pixel
(seed) of each of these regions is stored in a database. A second threshold
value is calculated depending on the seed intensity. The region around the
seed is then segmented using this value. Different thresholds are thereby
used for different diffraction spots depending on the brightness of the
individual spot.
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Figure 3.3.: Flow chart of the applied reconstruction procedure.
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Information on size, location, shape and intensity of each diffraction spot
is stored in a database. Diffraction spot pairs separated by 180∘ specimen
rotation (so called Friedel pairs) are identified. Based on the set-up
geometry and the crystallography of the material, the centroid of the
diffraction spots and their intensity can be used to calculate the location
of the matching spot. If several candidate spots are found, size and shape
of the spot are used to identify the correct Friedel pair.

Diffraction angles and the diffraction path through the specimen are calcu-
lated for each pair, giving direct access to the crystallographic orientation
of the grain which the diffraction spots arise from. Friedel pairs originating
from the same grain are collected in an iterative indexing step using spatial
and crystallographic criteria [74]. Once at least two Friedel pairs are
identified to belong to the same grain, its position inside the specimen is
evaluated as intersection point of connecting lines between the diffraction
spots forming the pairs.

A standard algebraic reconstruction procedure [78] is applied to these sets
of projections, yielding a 3D reconstruction of the particular grain. These
reconstructed individual grains are then placed at their correct positions
in the specimen resulting in a first reconstructed voxelated grain map that
still contains regions of grain overlap and/or unassigned voxels. At this
stage, the collective pore ensemble, reconstructed by means of filtered back
projection from the PCT data set of the specimen, is subtracted. During
post processing ambiguously assigned voxels are zeroed and a uniform
dilation procedure that deals with the unassigned voxels is applied. In
order to ensure a space filling microstructure reconstruction, grains are
not allowed to grow inside other grains or pores nor beyond the specimens
volume as obtained from absorption tomography.

3.2. Electron Backscatter Diffraction

2D Electron Backscatter Diffraction (EBSD) measurements on cross sec-
tions of the specimen provide a suitable validation of 3D microstructure
reconstructions obtained by means of DCT. A quantitative comparison
of both techniques requires EBSD measurements on one or more cross
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Figure 3.4.: Optical micrograph of specimen and silicon wafers embedded
in epoxy resin.

sections of the specimen as well as the identification of corresponding
cutting planes in the reconstructed DCT microstructure.

3.2.1. EBSD Measurements

For the EBSD measurements, the specimen is prepared by mechanical
grinding and polishing. The surface of the specimen is polished by low
angle Argon ion beam sputtering and covered with a thin carbon film to
improve electrical conductivity. Subsequently, the specimen is embedded
in epoxy resin and surrounded by silicon wafers to improve the electrical
conductivity and the mechanical stability, see figure 3.4. One of these
silicon wafers is mounted edge on and used for depth measurement and
alignment of the specimen. The measurements are performed using a
scanning electron microscope (Zeiss; Supra 55 VP) at 15kV equipped with
an EBSD system (EDAX TSL). The specimen is mounted with 70∘ tilt to
the EBSD detector in a working distance of 11mm. Data acquisition is
performed on the entire cross section in a hexagonal grid with 1 µm step
size.

The lateral resolution of the EBSD technique is higher than the chosen
step size. It depends on the energy of the primary electrons, the pattern
quality [79], the material and the orientation of the specimen [80, 81].
Diffraction patterns are indexed and groups of three or more pixels with



24 3. Experimental Methods and Materials

Figure 3.5.: 3D reconstruction and cutting plane that is identified as best
match for the EBSD scan. Grains are colored randomly.

a misorientation of less than 3∘ are identified as grains. Grain boundary
networks are generated using the 𝑂𝐼𝑀 software package (EDAX Inc.,
Mahwah, NJ, USA). Post-processing involves scaling of the total image
and unidirectional stretching to correct for tilt.

3.2.2. Identification of Corresponding Cross Sections

Due to the manual sectioning process that is performed during the EBSD
measurements, the slices through the specimen might be slightly tilted
with respect to the cylinder axis. Moreover, the prepared sections might
be uneven, so that the resulting images originate from at first unknown
cutting planes. Therefore, cross sections through the reconstructed DCT
structure that match the EBSD sections need to be identified.

The identification is done using a plane fitting approach based on the spatial
distribution of the porosities. Centers of mass of spherical intragranular
pores which extend over a few voxels in the DCT reconstruction are
especially suited for this technique. Their coordinates are extracted from
the EBSD cross sections and manually identified in the reconstructed
structure using distinct patterns of neighboring pores. Then, a plane is
fitted using the least squares approach. The obtained plane parameters are
used to visualize the final slices. Figure 3.5 shows the 3D microstructure
reconstruction and one of the identified cutting planes.
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Figure 3.6.: Change in mean grain size of strontium titanate during an-
nealing at various temperatures.

3.3. Strontium Titanate

3.3.1. Properties

Strontium titanate (SrTiO3), an oxide of strontium and titanium, is chosen
as the model system for perovskite ceramics because it is stable in the
cubic crystal system above −168∘C. Previous investigations of the material
reveal several properties that motivate a further investigation of the link
between morphology and grain boundary properties: The material exhibits
a strong anisotropy in interface energy [82] and mobility [4] as well as in
elastic and plastic behavior. The anisotropy ratio for the elastic constants
is 3.5 [83]. Annealing experiments with varied heating conditions [84]
reveal a non-Arrhenius temperature dependency of the effective grain
boundary mobility, see figures 3.6 and 3.7. For compositions with Sr/Ti
ratios of 0.996 and 1.02 and sintering temperature of 1450∘C, bimodal
grain size distributions are obtained revealing abnormal grain growth [85].
Figure 3.8 shows a SEM image of an abnormally growing grain in SrTiO3.
This phenomenon is linked to faceting on {100} planes [86,87] in strontium
titanate.
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Figure 3.7.: Effective grain boundary mobility as a function of inverse
temperature for material with various Sr/Ti ratios [84]. Drops in effective
mobility occurring at distinct temperatures are highlighted in red.

Figure 3.8.: SEM micrograph showing an abnormal grain in SrTiO3 [84].
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3.3.2. Processing

The material considered in this thesis is prepared by Michael Bäurer and
Wolfgang Rheinheimer at the Institute for Applied Materials Ceramics in
Mechanical Engineering [84]. SrTiO3 powders are processed via the mixed
oxide route from SrCO3 and TiO2. Both powders are purchased from
Sigma Aldrich Chemie, Taufkirchen, Germany and are 99.9% chemically
pure. After undergoing attritor milling for 4h at 1000min−1, the powders
are dried and calcined for 6h at 975∘𝐶 undergoing the solid state reaction

𝑆𝑟𝐶𝑂3 + 𝑇𝑖𝑂2 → 𝑆𝑟𝑇 𝑖𝑂3 + 𝐶𝑂2. (3.2)

The powder is uniaxially compacted in a 15mm shaping die at a pressure
of 8MPa. The resulting green bodies are then subjected to cold isostatic
pressing at 400MPa to reach the final green density. The specimens are
sintered and annealed at temperatures in the range of 1300∘C to 1600∘C
in oxygen atmosphere. To conserve the high temperature status of the
microstructure, the specimens are quenched by removing them from the
hot zone of the oven after sintering. During this process the specimens
remain in oxygen atmosphere.

The results presented in this thesis will focus on the DCT investigation of
a high temperature regime specimen that was sintered for 1h at 1600∘C.
After the first DCT scan, this specimen is annealed for an additional hour
at 1600∘C.

3.3.3. Modeling Parameters

The orientation dependent grain boundary energy for the simulation of
normal grain growth in SrTiO3 is assumed to be given by the average of the
surface energies of the neighboring grains, see equation 4.11. The surface
orientation dependent energy functional for SrTiO3 as obtained by means
of capillarity vector reconstruction [82] is employed. Figure 3.9(a) shows
the experimentally obtained surface energy values as well as the continuous
2D Fourier series fit employed by Sano et al. [82] around the perimeter of
the standard stereographic triangle, 3.9(b) shows a stereographic projection
of the fitted energy potential.
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(a) (b)

Figure 3.9.: Normal dependent surface energies in SrTiO3 [82]: (a) ex-
perimentally obtained and Fourier fitted relative surface energies around
the perimeter of the standard stereographic triangle; (b) stereographic
projection.

Since the evaluation of the grain boundary energy and its derivative is
realized in an angular stepping in the vertex dynamics model, the complex
shape of the cusps of the energy functional shown in figure 3.9(b) and
the resulting abrupt changes in energy may lead to numerical problems.
Hence the simplified and probably more realistic potential displayed in
figure 3.10 is developed. This potential contains only one smooth cusp
located at the minimum energy orientation of the original surface energy
potential. The elimination of local minima and discontinuities leads to
smoother energy transitions. Showing a sharper <100> cusp than the
Fourier series fit given by Sano et al., the smoothed functional is also
closer to the experimentally obtained energy values for the lowest energy
orientation.

In the context of the present work, variations of this simplified surface
energy functional are employed. All applied energy functionals can be
characterized by number and shape of the low energy cusps, affecting the
overall attraction zone and the energy gradient for orientation variation.
Here, the term attraction zone refers to the area of the stereographic
projection of the surface energy functional with 𝜎(n) < 1. Cusp shape
variations are performed by altering the maximum depth Δ𝜎 and the
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(a) (b)

Figure 3.10.: As figure 3.9 for smooth one cusp surface energy potential
with opening angle 𝜑 = 30∘ and cusp depth Δ𝜎 = 0.2.

opening angle 𝜑 of the cusp. Cusp depth Δ𝜎 and opening angle 𝜑 are
marked in the energy potential displayed in figure 3.10(a). The (100) cusp
in this energy potential is build according to

𝜎(n) = 1 − Δ𝜎
(︂
𝜃

𝜑

)︂2
(3.3)

with 𝜃 = 𝑎𝑐𝑜𝑠(n3) and cusp opening angle 𝜑 = 30∘ and a cusp depth
Δ𝜎 = 0.2.

Reliable data on orientation dependent relative grain boundary mobility
in SrTiO3 is lacking in literature. Experiments investigating a single
crystalline front growing into a polycrystalline matrix are reported in [2].
These experiments yield inclination dependent and temperature dependent
relative interface mobilities. However, these results are restricted to
a handful of distinct orientations and distinct annealing temperatures.
Therefore, all simulations including orientation dependent grain boundary
mobility anisotropy are performed using artificially designed mobility
functionals.





4. Simulation Method

This chapter presents detailed information on the 3D Vertex Dynamics
Model used to study the growth kinetics of polycrystalline materials.
A brief introduction into the underlying physical principles is followed
by a detailed description of the implementation with special emphasis
on the model topology, discretization and timestepping. Finally, the
extension of the model towards the simulation of systems with orientation
dependent grain boundary properties is addressed. Detailed information
on rediscretization and topological events during the time evolution of the
modeled microstructure can be found in the appendix.

4.1. Vertex Dynamics Model

4.1.1. Physical Principles

The Vertex Dynamics Model applied in this work represents the grain
boundaries in a polycrystal as a nodal network. It is based on the assump-
tion, that grain boundary motion can be derived from a minimization of
the system’s total grain boundary energy

𝑉 ({r}) =
∫︁

𝐺𝐵

𝛾(n(𝑎))𝑑𝑎, (4.1)

where 𝛾(n(𝑎)) denotes the grain boundary energy and 𝑎 is the parametrized
grain boundary coordinate.

The energy dissipation arising from grain boundary motion can be derived
as [53]

𝑅 ({r} , {v}) = 1
2

∫︁
𝐺𝐵

𝑣 (𝑎)2

𝑀(𝑎)𝑑𝑎, (4.2)
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Figure 4.1.: The six elementary geometrical objects described in table 4.1
illustrated on a sample grain.

where r and v are the positions and velocities of the grain boundary, 𝑣(𝑎)
is the velocity component normal to the boundary plane and 𝑀(𝑎) is the
mobility of the grain boundary at position 𝑎.
Then, the equations of motion for the nodes can be derived from the
Lagrange equation

𝜕𝑅

𝜕v = −𝜕𝑉

𝜕r . (4.3)

4.1.2. Implementation

The implementation of the model is based on the 3D Vertex Dynamics
Model published by Weygand [24] with the addition of [54]. The topology
of the grain boundary ensemble is composed of six elementary geometrical
objects: vertices, subedges, triangles, edges, faces and grains, see table 4.1
and figure 4.1. Vertices and subedges can be classified according to their
role in the model that can either be physical (type 1) or discretizational
(type 2 and 3, respectively). Discretizational vertices can be divided into
vertices discretizing a triple line (type 2) and vertices on a face (type 3).
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Vertex Point in space with distinct position and velocity.
Type 1: Physical object. Endpoint of triple lines

(quadruple point).
Type 2: Discretizational object located on triple line.
Type 3: Discretizational object located on face.

Subedge Straight line connecting two vertices.
Type 1: Subedge located along a triple line.

Connecting vertices of type 1 or 2.
Type 2: Subedge located within a face.

At least one of its vertices is of type 3.
Triangle Basic discretization unit for grain boundaries.

Triangles are formed by three subedges.
Edge Line that is shared by three grains (triple line).

Discretized by subedges.
Face Plane representing a grain boundary.

Bounded by edges and discretized by triangles.
Grain Polyhedron containing at least two faces.

Table 4.1.: Six elementary geometrical objects describing the grain bound-
ary network.



34 4. Simulation Method

Structure generation and Discretization

Starting structures for the simulations are generated by a randomly seeded
Voronoi tesselation of a cube with side length 𝐿 and periodic boundary
conditions in all three spatial directions. These initial grain boundary
networks consist of quadruple points and triple lines only and need further
discretization in order to allow for smoothly curved grain boundaries. For
this reason, additional vertices are introduced both in plane and along
the triple lines. This initial discretization is done using a 2D Delaunay
triangulation, producing a fairly regular initial mesh.

During the simulation, the triangulation is controlled adaptively based on
a critical reference length

𝑙𝑐𝑟𝑖𝑡 = �̄�

𝑛𝑣𝑖𝑟𝑡 + 1 , (4.4)

that triggers topological transformations and rediscretization events as a
function of the number of discretizational vertices 𝑛𝑣𝑖𝑟𝑡 along an edge of
the length of an average grain radius �̄�.

Prior to use in further grain growth simulations, these initial structures
are grown assuming isotropic grain boundary energy until they show the
properties of a self-similarly growing grain ensemble.

Equations of Motion

A coupled system of equations of motion is derived by expressing the
integrals over the grain boundary area in equations 4.1 and 4.2 as sums
over the contribution of all discretizational triangles, so that the energy
and dissipation potentials are functions of the nodal position {r𝐴} and
velocity {v𝐴} only.

Using the Lagrange formalism given in equation 4.3 a coupled system of
equations of motion for the velocities {v𝐴} of the 𝑁 vertices in the system
is obtained:

D𝐴v𝐴 + 1
2

(𝐴)∑︁
𝐵,𝐶

D𝐴𝐵𝐶
(︀

v 𝐵 + v𝐶
)︀

= f𝐴 𝐴,𝐵,𝐶 = 1...𝑁 (4.5)
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Figure 4.2.: Conventions for the notation of the vertex positions and
normal orientation on a basic discretizational unit (triangle).

Here, 𝐴,𝐵 and 𝐶 denote the vertices with the positions r𝐴, r𝐵 and r𝐶

forming a triangle (𝐴𝐵𝐶), see figure 4.2. D𝐴 and D𝐴𝐵𝐶 are coupling
matrices given by

D𝐴 =
(𝐴)∑︁
𝐵,𝐶

D𝐴𝐵𝐶 , (4.6)

where the sum
(𝐴)∑︀
𝐵,𝐶

is defined to go over the vertices 𝐵,𝐶 of each triangle

that is connected to vertex 𝐴. The coupling matrix D𝐴𝐵𝐶 is defined as

D𝐴𝐵𝐶 = 1
6𝑀 𝑎𝐴𝐵𝐶n𝐴𝐵𝐶 ⊗ n𝐴𝐵𝐶 . (4.7)

Here, 𝑎𝐴𝐵𝐶 is the surface area of the triangle (𝐴𝐵𝐶) and n𝐴𝐵𝐶 denotes
its normal vector.

The components of the force vector f𝐴 are given by

𝑓𝐴
𝑗 = 1

2

(𝐴)∑︁
𝐵,𝐶

[︀[︀
𝛾𝐴𝐵𝐶(n𝐴𝐵𝐶 × (r𝐶 − r𝐵))𝑗

]︀
− 𝑓T

𝑗

]︀
. (4.8)
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Corresponding to the Herring relation for local mechanical equilibrium
at triple lines [88], the last term 𝑓T

𝑗 of equation 4.8 represents the torque
contributions resulting from inclination dependent grain boundary energies
𝛾(n(𝑎)). 𝑓T

𝑗 is calculated as

𝑓T
𝑗 = 𝜕𝛾𝐴𝐵𝐶

𝜕𝑛𝐴𝐵𝐶
𝑙

𝑅𝑙𝑖
𝜕𝑛𝐴𝐵𝐶

𝑖

𝜕𝑟𝐴
𝑗

(4.9)

applying the Einstein summation convention for the indices 𝑖 and 𝑙. The
rotation matrix R transforms the change of the normal orientation with
respect to the variation of the position of vertex 𝐴,

𝜕𝑛𝐴𝐵𝐶
𝑖

𝜕𝑟𝐴
𝑗

which is calculated in the laboratory coordinate system, to the grains
coordinate system.

Solving the equation system 4.5 yields the nodal velocities needed for the
time evolution of the system.

Dynamics

The time evolution of the model system is implemented using a nested
time stepping scheme. A global time stepping, involving recalculation of
the complete structure is complemented by a subtime stepping (step 4 of
the global scheme) limited to the recalculation of regions with considerable
geometrical change.

The overall scheme is structured as follows:

1. start a global time step 𝑖

2. calculate geometrical and physical properties of all triangles (ABC)

a) compute interface normal n𝐴𝐵𝐶 and misorientation Φ

b) derive grain boundary energy 𝛾, mobility 𝑀 and nodal forces
f𝐴

3. solve linear system for nodal velocities {v𝐴}
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4. enter subincremental scheme

a) detect critical regions (defined below): calculate a time step
Δ𝑡𝐴𝐵 per subedge

b) determine the time step Δ𝑡 given by Δ𝑡 = min𝐴𝐵(Δ𝑡𝐴𝐵)

c) apply Euler scheme to all vertices: r𝐴(𝑡+ Δ𝑡) = r𝐴(𝑡) + v𝐴Δ𝑡

d) apply necessary topological transformations to vertices whose
velocity has been (re)calculated in the previous (sub)-step

e) determine vertices, subedges and triangles which need to be
recalculated, i.e. those with a short Δ𝑡𝐴𝐵or involved in a
topological transformation

f) recalculate geometrical and physical properties of the objects
found in step 4(e)

g) solve linear system for the velocities of the vertices found in
step 4(e)

5. check global topology and perform necessary transformations

6. execute global time step 𝑖+ 1 unless stopping criteria are reached.

In step 3 the nodal velocities v𝐴 are calculated by a conjugate gradient
(CG) solver taking the full coupling between vertices into account. As both,
the connectivity and the coupling terms may change between time steps,
the necessary matrix vector operations for the iterative solver have to be
rebuilt after each time step. For flat boundaries the coupling matrix D𝐴

becomes singular as the in-plane motion of a virtual vertex is frictionless.
Therefore a unity matrix with a small prefactor in the range 𝜅 = 0.1 . . . 1 is
added giving an effective friction to the in-plane motion of virtual vertices
on a flat grain boundary.

In substep 4(a) the maximal allowed time step of each subedge is calculated
based on two conditions: first, a subedge is not allowed to shrink or expand
more than a fraction of its own length, e.g. Δ𝑙𝑚𝑎𝑥/𝑙 = 0.2. Second, a
subedge is not allowed to rotate out of its initial orientation by more than
𝜑𝑚𝑎𝑥 = 2 . . . 5 degrees per time step. The values of Δ𝑙𝑚𝑎𝑥/𝑙 and 𝜑𝑚𝑎𝑥

are chosen depending on the inclination dependent grain boundary energy
variation.
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Significantly varying vertex velocities frequently lead to a very small
time step Δ𝑡. During sub-timestepping those geometrical objects with
a recalculation interval smaller than 𝑛Δ𝑡 with 𝑛 in the range of 5...10
are identified. The environment of these vertices up to their second
order neighbors is then considered as critical region and included in the
recalculation scheme during step 4(g).

A detailed description of the topological transformations performed during
step 4(d) and step 6 is given in appendix A.

The evolution of the grain structure may generate strongly distorted
triangles necessitating a local rediscretization. Triangles with inner angles
smaller or greater than a user defined critical angle (15∘ and 135∘ in the
current configuration) and subedges longer than a critical length (1.2𝑙𝑐𝑟𝑖𝑡)
will be dealt with in a rediscretization procedure depending on the missed
quality criteria as described in detail in appendix B.

Since distinct grain boundary energy and mobility values may be assigned
to each basic discretization unit, the model allows the simulation of ma-
terials with inclination and/or misorientation dependent grain boundary
properties.

These scenarios require reliable input data for the orientation dependent
grain boundary properties (energy and mobility). For the simulations
presented here, all grain boundary energy potentials are based on the
assumption that the grain boundary energy 𝛾(n) can be approximated
from the normal dependent surface energies 𝜎(n) of the adjacent grains:

𝛾(n) = 𝜎(n)𝑙 + 𝜎(n)𝑟 − 𝜎𝐵 . (4.10)

Here 𝜎𝐵 refers to the binding energy gained when the two surfaces are
brought together and new bonds are formed. This binding energy however
is often hard to access experimentally. Investigations on MgO suggest the
average of the surface energies to be a good description of the grain bound-
ary energy [15, 16]. Accordingly, the normal dependent grain boundary
energy 𝛾(n) is approximated as:

𝛾(n) = 𝜎(n)𝑙 + 𝜎(n)𝑟

2 . (4.11)
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Figure 4.3.: Modeled grain boundary network colored according to bound-
ary normal dependent grain boundary energy.

An example for a triangulated grain boundary ensemble colored according
to normal dependent interface energy is given in figure 4.3.

Unfortunately reliable experimental data on relative grain boundary mo-
bility in SrTiO3 is not available. Therefore, orientation dependent grain
boundary mobility potentials are built in a similar manner as orientation
dependent grain boundary energy potentials, averaging a fictional normal
dependent surface mobility of the adjacent grains:

𝑀(n) = 𝑚(n)𝑙 +𝑚(n)𝑟

2 . (4.12)





5. Results

The investigation of microstructure evolution in the model material is
approached by a combination of experiments and simulations. In this
chapter results from time-resolved microstructure characterization in 2D
and 3D are followed by simulation results on the influence of grain boundary
parameter variations on the growth dynamics.

5.1. Experimental Results

5.1.1. DCT Annealing experiments

A cylindrical specimen prepared from the polycrystalline bulk material
described in section 3.1.2 is characterized by means of DCT before and
after exposing it to 1h ex-situ annealing at 1600∘C. Microstructure recon-
structions of the specimen before and after annealing are generated. These
structures are then aligned and identical subvolumes identified.

General characterization

Three dimensional microstructure reconstructions of the specimen before
and after annealing are presented in figure 5.1(a) and (b). The overall
shape is identical and surface grains can easily be re-identified by their
color which is assigned based on their crystallographic orientation. The
second scan is performed on a slightly smaller subvolume of the specimen
due to a vertical positioning offset.

The common subvolume contains a total of 849 grains in the initial state.
434 grains are connected with the surface and 415 are bulk grains. During
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(a) (b)

Figure 5.1.: 3D microstructure reconstruction (a) before and (b) after
annealing.

annealing, the number of grains shrinks to 797 (398 surface and 399 bulk
grains). This corresponds to an average volume growth of 4% per grain.
Volumetric grain size investigations reveal that the bulk grains grow from
an average grain radius of 14.3±2µm before annealing to 15.0±2µm after
annealing. The growth of the surface grains is less pronounced due to
surface grooving effects, hindering the free motion of the grain boundaries.
Grain size distributions for the bulk grains are given in figure 5.2. Both
distributions can be described by a log normal fit

𝑓(𝑥) = 1
𝑥𝜎𝑆

√
2𝜋
𝑒𝑥𝑝

(︂
− (𝑙𝑛𝑥− 𝜇𝑆)2

2𝜎2
𝑆

)︂
(5.1)

with parameters 𝜎𝑆 = 0.42 and 𝜇𝑆 = 0.17 in the initial state and 𝜎𝑆 = 0.58
and 𝜇𝑆 = 0.20 in the annealed state. The goodness of fit is tested with a
Chi-Square goodness of fit test according to

𝜒2 =
𝑘∑︁

𝑖=1

(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖
, (5.2)
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Figure 5.2.: Normalized grain size distributions of bulk grains in initial
and annealed state of the tomography specimen. Grain sizes are evaluated
from volume data.

where 𝑂𝑖 is the observed frequency for bin i and 𝐸𝑖 is the expected
frequency for bin i. A total of 6771 and 5311 data points are considered.
The data is binned with a bin-width of 0.25 resulting in 15 bins. The 𝜒2

values for the initial and annealed state are 𝜒2=28 and 𝜒2=22, respectively.

A comparison of close ups on cross sections taken at the same height of the
reconstructed volumes before and after annealing is shown in figure 5.3.
Examples of shrinking and growing grains are encircled with continuous
and dashed lines respectively.

Porosity

After sintering, the specimen exhibits a remaining amount of residual
porosity which is visible as black areas in figures 5.3(a) and (b). For
the initial state, absorption information is used for the reconstruction of
pore shapes. The porosity in the annealed state is investigated by means
of phase contrast tomography (PCT). Smaller pores are visible in the
reconstruction of the annealed state because of the higher sensitivity of
the PCT to pores. Accordingly the smallest pores may not have been
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(a) (b)

Figure 5.3.: Cross section taken at corresponding height in the recon-
structed volume (a) before and (b) after annealing.Examples of shrink-
ing and growing grains are encircled with continuous and dashed lines
respectively.

detected in the initial structure. An example for such a small pore is seen
in the intragranular region of the purple colored grain in the upper right
region of figure 5.3(b). Figure 5.4 shows an overlay of the porosity before
(red) and after (green) annealing. A decrease in pore fraction is visible
in the picture. At the same time pore clusters can be re-identified in the
annealed state. A calculation of the volume fraction of porosity for both
states yields a decrease in volume fraction of porosity from 2.6 ± 0.2 vol-%
in the initial state to 1.2 ± 0.1 vol-% in the annealed state. Because of the
lower sensitivity of DCT to pores, the initial structure has certainly had
a larger volume fraction of pores. Independent measurement of porosity
from the sample material in the initial state by the buoyancy method
reveals a value of 3.0 ± 0.4 vol-% [2].

Comparison to conventional metallography of bulk material

Figures 5.5(a) and (b) show cross sections through the reconstructed
tomography specimen and a scanning electron microscopy (SEM) micro-
graph taken from the same sintering load of bulk material. Upon visual
inspection, similar and realistic grain shapes are identified. A number
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Figure 5.4.: Collective pore ensembles in the microstructure reconstruction
before (red) and after (green) annealing.

of intragranular pores are visible in the SEM micrograph, whereas the
microstructure reconstruction shows none of these pores.

The average grain size of the initial structure is assessed by the equivalent
circle diameter (ECD) method: The average grain area is measured and
the average grain diameter is calculated from a circle with equivalent area.
ECD measurements on cross sections of the reconstructed structure reveal
an average grain radius of 13.0 ± 2µm. The corresponding value obtained
by measuring ECD on SEM micrographs of the bulk material shown in
figure 5.5(b) is 14.1 ± 2µm. The average grain radius evaluated from the
bulk grains volume approximated as spheres is 14.3 ± 0.7µm, if surface
grains are included one obtains 14.7 ± 0.7µm.

A comparison of grain size distributions evaluated by means of ECD on
DCT and SEM data is given in figure 5.6(a). The grain size distribution
obtained from the volumetric voxel data is given in figure 5.6(b). Although
all three distributions can be fitted as log normal distributions, this fit
holds best for the distribution obtained from 3D DCT data. The goodness
of fit, measured as Chi-Square, is 27 for 3D DCT data, 97 for 2D DCT
data and 127 for the distribution obtained from micrographs. The fitted
log normal distribution for the grain size distribution of the bulk grains
evaluated from 3D DCT data has a standard deviation of 𝜎𝑆 = 0.47.
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(a) (b)

Figure 5.5.: (a) Cross section of the reconstructed structure colored ac-
cording to crystallographic orientation, (b) spherical section of an SEM
micrograph of the bulk material.

(a) (b)

Figure 5.6.: Grain size distributions (a) obtained by equivalent circle
diameter measurements on bulk DCT data and conventional micrographs,
(b) derived from bulk grain volumes in the DCT reconstruction.
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Figure 5.7.: Bulk grain colored according to the local grain boundary
normal orientation after surface triangulation. Triangles sharing a triple
line are blackened.

Interface orientation

Investigations of local grain boundary orientation are performed on indi-
vidual grains. The grain surfaces are Laplace smoothed and tessellated
using the Multiple Material Marching Cubes algorithm described in [89].
Conservation of the physically relevant microstructure elements (triple
lines and quadruple points) during smoothing is ensured by restricting the
motion of a vertex according to its type: on-face vertices are allowed to
move in all directions, on-edge vertices are allowed to move along the edge,
while quadruple points are fixed.

Evaluation of the normal orientation of the discretizational elements with
respect to the crystallographic orientation of the considered grain for all
bulk grains reveals a preference for <100> oriented grain boundaries in the
initial state. Figure 5.7 shows a reconstructed bulk grain colored according
to the local grain boundary normal orientation. Triangles along triple lines
are shown in black. Although this grain consists of 55 faces, its overall
shape could almost be described as cube-like with truncated edges showing
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Figure 5.8.: Distribution of local grain boundary orientations for all bulk
grains in the initial (left) and annealed (right) state given in multiples of
the random distribution (MRD).

a clear preference for <100> grain boundary normals.

The preference for <100> oriented grain boundaries observed in the initial
state is consolidated post annealing. The frequency of occurrence of local
grain boundary orientations is investigated. By discretizing the orientation
space in bins of approximately 0.5∘ in both azimuthal and polar angle.
Due to the cubic symmetry of the crystal structure, all grain boundary
orientations are mapped onto the standard stereographic triangle. The
observed distribution is normalized by a random orientation distribution.
The corresponding distributions for both annealing states are given in
figure 5.8. The distributions show a preference for certain grain boundary
orientations reflected in an excess of 15% and 20% with respect to the
random distribution.

Upon visual inspection, grain faces, that are mainly oriented near the
preferred orientations reveal a tendency to flatten throughout the annealing
process. Figure 5.9(a) and (b) show a close-up on two faces that show
mainly [100] oriented normals in the initial and annealed state. The big
face on the left appears to be more homogeneous in color and thus in grain
boundary orientation in the annealed state. The curvature visible in the
initial state of the bottom face is diminished after annealing.

Figures 5.10 (a) and (b) show cross sections along the (100)-plane of a large
grain and its neighbors before and after annealing. The crystallographic
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(a)

(b) (c)

Figure 5.9.: Close up of triangulated grain (representation as in figure 5.7)
in the (a) initial and (b) annealed stage. A flattening of faces with normals
oriented near [100] is observed.
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orientations of the neighboring grains are indicated by tripods. The cutting
plane is located at the median [100] coordinate. Red and green lines mark
the outline of the center grains shape 10% of the grain diameter above
and below the cutting plane so as to give an idea about how the cut grain
boundary is continued in 3D. From this information it becomes clear,
that nearly all cut faces of the pictured grain are oriented parallel to the
[100]-axes. Special emphasis shall be drawn to the grain boundaries shared
by the central grain and grain #27 and the shared boundary between the
central grain and grain #170. These boundaries are also almost parallel to
the [010]- and [001]-axes, respectively, indicating a <100> grain boundary
normal orientation. Both boundaries appear to be of even more perfect
<100> orientation in figure 5.10(b) illustrating the post-annealing state.

Two 3D views of the same grain (#100) are given in figure 5.11, indicating
the cutting plane for the cross sections shown in figure 5.10 as black lines.
The grain is now colored according to the local migration distance during
annealing. The migration distance is determined with reference to a face
vertex mesh of the grain in the initial state. A nesting scale of bigger and
smaller grains with identical shape is generated in 0.7µm increments. Every
triangle of the post-annealing state mesh is then classified according to
which zone of this matryoshka like scale it reached and colored accordingly.
From figure 5.11 it is clearly visible, that regions, which are already flat
in the initial state exhibit less pronounced changes during annealing as
opposed to more corrugated regions, which tend to change a lot.

Misorientation

The grain boundary misorientation angle distribution for the microstruc-
ture reconstructions in the initial state is presented in figure 5.12(a). It is
found to be very close to the distribution of randomly textured polycrys-
tals [90] which is represented as continuous line.
The misorientation of 3850 grain pairs in the initial and annealed state
is compared. Figure 5.12(b) provides the frequency of occurrence of
misorientation differences between identical neighbors before and after
annealing.
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(a)

(b)

Figure 5.10.: 2D cut along the median (001)-plane of grain #100 and
neighboring grains (a) initially and (b) post-annealing. Green and red
lines mark the outline of the center grain when cut 10% of the grain
diameter above and below the shown cross section.
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Figure 5.11.: Two 3D views of grain #100 colored according to migration
distance during annealing. The black line indicates the cutting plane for
the sections shown in figure 5.10.

(a) (b)

Figure 5.12.: Frequency of occurrence for (a) misorientation angles in the
initial state and (b) misorientation difference for 3850 identical grain pairs
which are present in the initial and annealed state.
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Figure 5.13.: Distributions of number of neighbors per grain for both
annealing states.

Topological Quantities

The microstructure is further characterized by measuring topological quan-
tities and their evolution during annealing. Surface grains are excluded
from this investigation since their shape and thus their topological quanti-
ties are altered during specimen fabrication and their growth is hindered
by surface grooving effects.

Figure 5.13 shows the distribution of the number of contiguous neighbors
(or number of faces per grain) for both annealing states. The distributions
look fairly similar, with the mean number of neighbors 𝐹𝐺 changing from
12.8 in the initial state to 13.3 in the annealed state.

Distributions of the number of edges per grain for both annealing states
are given in figure 5.14. Both distributions are best approximated with
a lognormal fit with parameters 𝜎𝑆 = 3.25 and 𝜇𝑆 = 0.62 for the initial
and 𝜎𝑆 = 3.29 and 𝜇𝑆 = 0.58 for the annealed state. The goodness of
fit estimated as Chi-Square is 𝜒2 = 49 for the edge distribution of the
initial state and 𝜒2 = 38 for the annealed state. The distribution does not
change significantly during annealing, which is also displayed in the average
number 𝐸𝐺 of 31.1 ± 0.2 edges per grain in the initial state and 32.2 ± 0.2
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Figure 5.14.: Distributions of number of edges per grain for both annealing
states as histogram and log normal fit with parameters 𝜎𝑆 = 3.25, 𝜇𝑆 =
0.62 for the initial state and 𝜎𝑆 = 3.29, 𝜇𝑆 = 0.68 for the annealed state.

edges per grain in the annealed state. Both distributions exhibit a long
tail caused by the few extremely big grains contained in the structure.

Figure 5.15 shows the relative average grain size as a function of coordi-
nation for bulk grains contained in microstructure reconstructions of the
initial as well as the annealed state. The relative grain size is averaged
within each class of grains. When the single extraordinary big grain con-
taining 55 grain faces in the initial structure is omitted, a linear correlation
is obtained for both annealing states.

Sphericity distributions of both annealing states are compared in fig-
ure 5.16. Since calculating sphericity values from voxel data is highly
discretization dependent and requires a voxel size that is small compared
to the average feature size [91], the sphericity is measured on topology
conserving triangulated surface meshes of individual grains according to:

Ψ = 𝜋
1
3 (6𝑉𝐺) 2

3

𝑂𝐺
. (5.3)

Here, 𝑉𝐺 denotes the volume of a grain and 𝑂𝐺 the grains surface area.
No significant deviation between the sphericity distributions of initial and
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Figure 5.15.: Relative grain size 𝑔𝐶 plotted versus number of neighbors
𝐹𝐺 for the bulk grains in microstructure reconstructions of the initial and
annealed state. Regression lines are given as continuous lines.

Figure 5.16.: Distributions of sphericity values for both annealing states
as histograms.
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(a) (b)

Figure 5.17.: Two different cross sections at height 308 µm and 311 µm
in the DCT reconstruction (colored) layered with corresponding EBSD
networks.

annealed state is obtained, the average sphericity Ψ is 0.80 ± 0.06 before
and 0.81 ± 0.15 after annealing. For comparison, the sphericity of a cube
is 0.806.

5.1.2. EBSD Validation

A total of eight cross sections are prepared from the tomography specimen
presented in section 5.1.1 and characterized by EBSD. All sections are
taken in the upper third of the tomography specimen. Best matching
cross sections through the DCT reconstruction are identified based on the
location of small pores. A detailed description of the applied experimental
techniques and the identification process is given in section 3.2.1.

Overlays of the identified DCT cross sections with the corresponding EBSD
networks are presented in figures 5.17(a) and (b). Here, the EBSD data is
pictured as grain boundary networks, while the colored grains mark the
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Figure 5.18.: DCT network shown in figure 5.17(a) colored according to
euclidean distance to corresponding EBSD network.

DCT reconstruction. The spacing between the two EBSD sections along
the axis of the cylindrical specimen is approximately 3 µm.

Microstructure Characteristics

The grain boundary networks in figure 5.17(a) contain 107 (DCT) and 108
grains (EBSD) respectively. The average grain radius for these sections
is measured by the linear intersect method and is 15.1 ± 0.4 µm (DCT)
and 14.9 ± 0.4 µm (EBSD). The grain boundary networks in figure 5.17(b)
contain 109 (DCT) and 110 grains (EBSD) respectively. The average
grain radius for these sections is 15.8 ± 0.6 µm (DCT) and 14.5 ± 0.5 µm
(EBSD). The difference between the average grain sizes as obtained by the
different characterization methods is much larger for the second section.
Possible explanations for this phenomenon are discussed in chapter 6.

Visual comparison of corresponding slices reveals a good agreement in
grain shape and pore size but a higher amount of pores in the EBSD data.
The number of pores in the DCT slices reaches approximately 80% to 90%
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Figure 5.19.: (a)-(f) Close ups of several regions selected from figure
5.17(a) and 5.17(b). DCT with superposed EBSD grain boundary network
(left), DCT (center), EBSD greyscale (right)
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of the pore count in the corresponding EBSD section. The remaining pores,
which are missing in the DCT reconstruction are assumed to be very small
intragranular pores. Only some of these very small pores (i.e. covering
an area smaller than 10 µm2 in EBSD data) could also be detected in the
DCT data set. An example are the small pores in the purple grain in the
center image of figure 5.19(f).

Euclidean Distance Mapping

The difference between the corresponding DCT and EBSD grain boundary
networks is assessed using a 2D Euclidean distance transform [92]. The
euclidean distance between each point on the EBSD network and the
nearest point on the corresponding DCT network is calculated. The average
distance between the corresponding networks is found to be 1.98 µm for the
cross section shown in 5.17(a) and 1.95 µm for the cross section shown in
5.17(b). Removing intragranular pores, whose uncertainty is not affecting
the accuracy at the grain boundaries, changes the average error values to
1.86 µm and 1.88 µm respectively. The DCT network of the cross section
shown in figure 5.17(a) colored according to the euclidean distance to the
EBSD network is given in figure 5.18. From this image, it can be seen, that
the grain boundaries in the DCT reconstruction appear to be slightly more
curved, since the greatest deviation between DCT and EBSD networks is
observed on the grain boundaries rather than at the triple points.

Qualitative comparison

Figure 5.19 shows close ups of regions from both inspected cross sec-
tions. The superposed representation of DCT grain map and EBSD grain
boundary network is complemented by both the DCT (colored) and EBSD
(greyscale) grain maps to allow for a more detailed investigation. While
corresponding intragranular pores are found in many cases (figure 5.19(a),
(d-f)), there are also a few examples for pores revealed in the EBSD analy-
sis, which are not resolved in the DCT reconstruction (e.g. missing pores
in the brown grain in figure 5.19(b), the blue grain in 5.19(c), the upper
left green grain in 5.19(e) or the brown grain in 5.19(f)). Moreover, the
image reveals some pores at doubtable locations in the DCT reconstruction
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(e.g. the pore inside the pink grain in the upper part of 5.19(d)). Both, the
EBSD grain map and the shape of the pore suggest it to be intergranular
rather than intragranular.

Figure 5.19(e) reveals a region of very small grains in the EBSD grain map,
that is not resolved in DCT (blue region in the left part of the image).
Furthermore, a local deviation in curvature is observed. In these cases,
the grain boundaries appear to be more straight in the EBSD grain maps
than in the DCT maps (e.g. between blue and pink grain in 5.19 (b), in
between the blue grains in 5.19(c)) while figure 5.19(a) shows that the
surface contour of the two grain maps is nearly identical.

Lastly, a pixel wise smearing presumably resulting from the interpolation
during plane fitting is obtained at the grain boundaries in some of the
DCT reconstructions. These artifacts occur typically as one voxel wide
extrusions reaching two or three voxel lengths into the neighboring grain
(figure 5.19(b),(d),(e)).

Orientation Information

In order to identify corresponding grains in both characterizations, the
global rotation between the laboratory systems of the different methods
had to be identified. Therefore, 24 grains which could be related to each
other were determined visually in cross sections obtained by both char-
acterization methods. The identification of the smallest misorientation
between the orientation of these 24 crystallites reveals a consistent trans-
formation between EBSD and DCT orientation space for all crystallites.
The transformation is a rotation of 20.83±1.54∘ around the misorientation
axis [0.0461 0.9935 0.1040] ± 3∘.
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5.2. Simulation Results

Grain growth simulations are a valuable addition to conventional mi-
crostructure characterization because they allow to study parameter vari-
ations that are not possible experimentally. Three major simulation
scenarios are presented throughout this section: two set-ups studying grain
growth under isotropic and anisotropic conditions and a set-up investigat-
ing the nucleation of abnormal grain growth as a function of relative grain
size and relative grain boundary properties.

5.2.1. Grain Growth

Initial configurations for all simulations are grain structures from Voronoi
tessellations, that were isotropically coarsened to a regime with self similar
grain size distributions, as described in section 4.1.2. The simulation box
is periodic in all three dimensions. The grain boundary energy 𝛾 and
mobility 𝑀 are treated as dimensionless quantities. If not stated otherwise,
the simulations are started from configurations containing 515 grains. The
coarsening process is investigated until a lower limit of 100 remaining
grains is reached.

For all scenarios, the growth dynamics is assessed as area evolution. As-
suming linear growth, the normalized growth rate 𝑘 is defined as

𝑘 = 𝛼𝛾𝑀

𝐴(0) , (5.4)

see equation 2.14. It can be established as the slope of a linear fit to the
area evolution obtained from the simulation. For comparison of various
grain boundary property anisotropy scenarios a relative growth rate 𝐾

𝐾 = 𝑘

𝑘0
(5.5)

is defined, where 𝑘0 is the normalized growth rate of a system with isotropic
grain boundary properties.
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(a) (b)

Figure 5.20.: (a) Volume change rates dV/dt of all grains obtained at
three stages of a simulation started with 2522 grains plotted against the
analytically derived value [33]. (b) Time evolution of the volume change
rates obtained from simulation (symbols) and analytical calculation for
three randomly chosen grains (continuous line).

Isotropic systems

For the isotropic scenario, the modeling accuracy is tested by comparison
with the MacPherson Srolovitz relation 2.19. Initially, the investigated
system contains 2522 grains. Grain growth is simulated until the number
of remaining grains reaches a lower limit of 500 grains.

Figure 5.20(a) shows the volume change rate of each grain in the system at
three steps during the simulation plotted against the analytically derived
value according to equation 2.19. Almost all data points lie on a straight
line with slope one indicating a very good agreement between analytical
and simulation results. Exemplarily, volume change rates of randomly
chosen grains showing growing, shrinking and undecided behavior are com-
pared to the analytically derived rates over the course of the simulation in
figure 5.20(b). Here, the analytically derived values are plotted as contin-
uous lines, while the symbols mark the volume change rate as obtained
from the simulation. The overall agreement is again very good. Occasional
differences can be traced to topological changes and rediscretization events
in the simulation.
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Figure 5.21.: Normalized volume change rate plotted against number of
grain faces. Blue dots mark the normalized volume change rate obtained
from the simulation, black dots their average for a constant number of grain
faces. The mean normalized volume change rate according to MacPherson
et al. [33] for each class of grains is marked as red stars. Analytical
approaches of Mullins [93] and the best fit to Weygands simulation [24]
are given as solid and dashed line, respectively.

Figure 5.22.: Area evolution as a function of normalized time depending
on the discretization.
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In figure 5.21 the analytical approximation of Mullins [93] for the normal-
ized volume change rate is plotted against the number of faces 𝐹𝐺 together
with the normalized volume change rate obtained from the simulation and
the best fit to the results presented in [24]. A moderate scatter around
the mean values of the simulation is obtained. The volume change rate
changes sign for grains with 15 faces, whereas for the basic 3D vertex
model [24] a slightly higher value of 15.6 faces is observed. The mean
values of both the current vertex model and the analytical expression
according to MacPherson-Srolovitz agree, independent of the number of
faces as expected from the results shown in figures 5.20(a) and (b) and
contrary to the observations reported in [94]. The obtained deviations
in predicted volume change rate increase with decreasing coordination
number. For very small grains, the results of the new vertex dynamics
model are considerably closer to the analytical expression.

A systematic variation of the number of discretizational vertices (𝑛𝑣𝑖𝑟𝑡 =
2 . . . 6) introduced between two physically relevant vertices along a triple
line shows that the growth dynamics, expressed as an equivalent area
time evolution 𝐴(𝑡) is linear in time and independent of the level of
discretization, see figure 5.22. Within the range of the varied discretizations
the grain size distributions remain unaffected. Therefor, and to allow
for anisotropy induced local grain boundary orientation gradients, all
subsequent simulations are performed with 𝑛𝑣𝑖𝑟𝑡 = 5.

Anisotropic systems

The simulations featuring anisotropic grain boundary properties are di-
vided into three major scenarios investigating the influence of (I) grain
boundary energy anisotropy, (II) grain boundary mobility anisotropy and
(III) combined energy and mobility anisotropy on the growth dynamics.

I. Energy Variation

Simulations studying the influence of grain boundary energy anisotropy on
the overall growth dynamics are performed using energy functionals based
on the smooth energy functional described in section 3.3.3. The applied
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Figure 5.23.: Stereographic projections of the applied energy functionals:
(a) simplified one cusp energy functional; (b) as (a) with additional cusp;
(c) two-cusp functional with overall attraction zone equal to (a).

functionals differ in number, depth and width of the energy minima. Four
major energy variation scenarios are distinguished:

(a) effects of torque contribution: simulations applying the
basic normal dependent (one cusp) functional with and without the
torque contribution (second term in equation 2.9 and equation 4.8),

(b) variation of cusp depth: simulations applying the energy
functional of (a) with torque contribution and varied cusp depth Δ𝜎,

(c) variation of cusp width: simulations applying the energy
functional of (a) with torque contribution and varied cusp opening
angle 𝜑,

(d) effects of additional energy minima: simulations applying
energy functionals containing two cusps with torque contribution
and varied opening angle of the <100> cusp.

Stereographic projections of the energy functionals are given in figure 5.23.
The predominant difference between these functionals is the attraction
zone of their energy cusps, where the term attraction zone refers to the
area of the stereographic projection with 𝜎 < 1. Accordingly, the half-
depth attraction zone is the area of the surface energy functional with
𝜎 < (1 − 1

2 Δ𝜎).
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Figure 5.24.: Area evolution as a function of normalized time for simu-
lations with isotropic and anisotropic grain boundary energy with and
without torque contribution.

I(a) effects of torque contribution The growth dynamics for identical
starting configurations treated with isotropic and anisotropic grain bound-
ary energy according to the smooth surface energy functional presented
in section 3.3.3 are given in figure 5.24. The configuration containing
2500 grains is simulated with a cusp depth Δ𝜎 = 0.2 and cusp opening
angle 𝜑 = 30∘ with and without taking into account the torque term in
equation 4.8. Both anisotropic simulations exhibit increased growth rates
with respect to the isotropic one. The relative growth rate 𝐾 is 1.50 ± 0.05
for anisotropic systems with and 1.56±0.04 without torque contribution.

Figure 5.25 shows the fraction 𝑓𝐶 and 𝑓1/2𝐶 of triangles whose grain
boundary normal with respect to one of the adjacent grains lies within
the attraction zone and the half-depth attraction zone of the energy cusp
plotted against the number of remaining grains. While 𝑓𝐶 and 𝑓1/2𝐶

remain roughly constant for the simulations neglecting the torque term, a
significant increase of in-cusp orientations is observed when considering
torque contributions. Accordingly, the average grain boundary energy
stays constant for systems not accounting for torque contributions, while
a transition to a lower average grain boundary energy is observed when
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Figure 5.25.: Fractions 𝑓𝐶 and 𝑓1/2𝐶 of discretizational units with grain
boundary normal (with respect to one of the two adjacent grains) falling
in the attraction zone and the half-depth attraction zone of the energy
cusp plotted against number of grains remaining in the system.

Figure 5.26.: Average grain boundary energy 𝛾 over number of remaining
grains for systems with and without torque contribution.
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Figure 5.27.: Normalized equilibrium angle distribution for simulations
with isotropic and orientation dependent grain boundary energy with and
without torque contribution.

accounting for torque contributions, see figure 5.26. The transition to the
lower level is completed after about one third of the grains are consumed.

Figure 5.27 shows a comparison of the equilibrium angle distributions for
all three configurations, measured after coarsening the structure to half
the initial number of grains. A broadening of the distribution is obtained
for the anisotropic simulation scenarios. The broadening is more distinct
for the configuration accounting for torque contributions.

The evolution away from an isotropic structure dominated by 120∘ equilib-
rium angles can also be visualized at the evolving shape of a growing grain:
figures 5.28(a) and (b) show a randomly chosen grain in its initial (green
surface) and evolved (wireframe) state alongside a tripod indicating its
crystallographic orientation. A tilting of certain grain boundaries towards
<100> oriented normals (indicated by the angle between the continuous
and the dashed line in figures 5.28(a) and (b)) as well as differences in
migration distance of various facets are clearly visible.

Normalized grain size distributions of the isotropically and both anisotropi-
cally coarsened structures and the corresponding log normal fits are shown
in figure 5.29. The grain size 𝑟 is assessed as radius of a sphere with
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(a) (b)

Figure 5.28.: Two views (a) and (b) of a growing grain at two stages
during anisotropic grain growth simulation with orientation dependent
grain boundary energy. The green surface marks the grain in its initial
state, the wireframe shows its evolved state. The grains crystallographic
orientation is indicated by a tripod. Exemplarily, two grain faces that tilt
throughout the simulation are marked with a dashed line for their initial
and a continuous line for their final position.
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Figure 5.29.: Normalized grain size distributions f(x) as obtained from
simulations with isotropic and anisotropic grain boundary energy with
and without torque contribution.

equivalent volume. The distributions can not be fitted to a log normal
function. For both cases of anisotropic coarsening a broadening of the
distribution is obtained. At the same time, the maxima of both anisotropic
distributions are shifted towards smaller relative grain sizes.

I(b) variation of cusp depth The influence of the cusp depth Δ𝜎 on the
overall growth dynamics is studied in simulations performed with energy
functionals with Δ𝜎 = 0.05, . . . , 0.2 and constant opening angle 𝜑 = 30∘.
The resulting relative surface energy around the perimeter of the standard
stereographic triangle is given in figure 5.30.

Figure 5.31 shows the fraction 𝑓𝐶 and 𝑓1/2𝐶 of in-cusp orientations over
the course of the simulation for the four configurations. The fraction
of triangles with low energy orientations increases for all configurations,
resulting in a decreasing average grain boundary energy 𝛾, see figure 5.32.
Here, the average energy for the four configurations is plotted against
the number of remaining grains. After a transition period the average
grain boundary energy settles at a new stable value for each configuration.
This value is 𝛾 = 0.995 ± 0.01 for the configuration with Δ𝜎 = 0.05,
𝛾 = 0.984 ± 0.01 for Δ𝜎 = 0.1, 𝛾 = 0.967 ± 0.01 for Δ𝜎 = 0.15 and



5.2. Simulation Results 71

Figure 5.30.: Relative surface energy 𝜎(n) around the perimeter of the
unit triangle for variation of energy functional cusp depth Δ𝜎.

Figure 5.31.: As figure 5.25 for configurations with varied cusp depth Δ𝜎.
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Figure 5.32.: As figure 5.26 for systems with varied cusp depth Δ𝜎.

𝛾 = 0.946 ± 0.01 for Δ𝜎 = 0.2. The relationship between average grain
boundary energy 𝛾 and cusp depth Δ𝜎 can be approximated by a linear
function

𝛾 = 1 − 0.24Δ𝜎, (5.6)

with a standard deviation of 𝜎𝑆 = 0.002 for the opening angle 𝜑 = 30∘.

All anisotropic configurations are found to exhibit accelerated growth rates
compared to the isotropic one. Figure 5.33 shows the relative growth rate
𝐾 as a function of cusp depth Δ𝜎. While a linear increase in relative
growth rate with rising cusp depth is observed for the functionals with
Δ𝜎=0.05 and Δ𝜎=0.1, the increase in relative growth rate slows down for
the deeper cusps.

I(c) variation of cusp width The influence of the cusp width on the
overall growth dynamics is studied in simulation scenarios with varied
cusp opening angle 𝜑 = 10∘, . . . , 40∘. For these scenarios, the cusp depth
is kept constant at Δ𝜎 = 0.2. Figure 5.34 shows the resulting relative
grain boundary energy around the perimeter of the standard stereographic
triangle.

Figure 5.35 shows the fraction 𝑓𝐶 of triangles affected by the attraction
zone and the fraction 𝑓1/2𝐶 affected by the half-depth attraction zone of
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Figure 5.33.: Relative growth rate 𝐾 plotted against cusp depth Δ𝜎 =
0, . . . , 0.2. Datapoints with error bars and linear regression.

Figure 5.34.: As figure 5.30 for variation of opening angle 𝜑 in the range
of 10∘ to 40∘.
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Figure 5.35.: As figure 5.25 for configurations with varied cusp opening
angle 𝜑.

the energy cusp over the course of the simulation. Again, the fraction
of triangles with low energy orientations increases for all investigated
configurations during the first third of the simulation time. Afterwards,
the fraction stabilizes. Accordingly, the average grain boundary energy 𝛾
decreases for all four configurations during the first third of the simulation
period. The average grain boundary energy stabilizes at 𝛾 = 0.98 ± 0.03
for the configuration with a cusp opening angle of 𝜑 = 10∘, 𝛾 = 0.96 ± 0.03
for 𝜑 = 20∘, 𝛾 = 0.95 ± 0.03 for 𝜑 = 30∘ and 𝛾 = 0.94 ± 0.03 for 𝜑 = 30∘.
Neglecting the widest cusp, a linear correlation between the average grain
boundary energy and the area fraction of the orientation landscape affected
by the cusp in the energy functional can be approximated as

𝛾 = 0.99 − 0.18 𝐴𝐶

𝐴𝑡𝑜𝑡
, (5.7)

with an error of 𝜎𝑆 = 3.2 · 10−3 for constant cusp depth of Δ𝜎 = 0.2. Here,
𝐴𝑡𝑜𝑡 is the total surface area of the pole sphere and 𝐴𝐶 is the part of the
surface area affected by the energy cusp.

The relative growth rates, assessed from the normalized area evolution,
exhibit accelerated growth for the four configurations with different cusp
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Figure 5.36.: As figure 5.26 for variation of cusp opening angle 𝜑.

opening angles compared to the isotropic one. The acceleration increases
up to a cusp opening angle of 𝜑 = 30∘. For wider cusps, the relative
growth rate is found to stagnate.

I(d) two-cusp functional The influence of an additional cusp in the
applied surface energy functional is studied in two simulation scenarios.
The applied functionals differ in the overall attraction zone of the energy
cusps:

(i) extended attraction zone functional: one cusp functional ap-
plied in energy variation scenario (a) with a cusp depth of Δ𝜎 = 0.2
and opening angle 𝜑 = 30∘ provided with additional cusp (cusp
depth Δ𝜎 = 0.15, opening angle 𝜑 = 30∘) at the <111> orientation
increasing the overall attraction zone.

(ii) equal attraction zone functional: surface energy functional as
for scenario (i) but with reduced opening angle 𝜑 of the <100> cusp
resulting in an overall attraction zone equal to the one cusp functional
applied in scenario I(a).

Stereographic projections of both energy landscapes are given in fig-
ures 5.23(b) and (c). Figure 5.37 shows the relative surface energies around
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Figure 5.37.: Normal dependent relative surface energies around the
perimeter of the standard stereographic triangle for the two-cusp function-
als with extended and equal attraction zone.

the perimeter of the standard stereographic triangle. The simulations are
started from configurations containing 296 grains.

For both energy functionals, increasing fractions 𝑓𝐶 and 𝑓1/2𝐶 of low
energy triangles are observed during the first half of the simulation time,
see figure 5.38. After a transition period both fractions remain constant.
The system with the extended attraction zone functional exhibits a 10%
higher value of both 𝑓𝐶 and 𝑓1/2𝐶 compared to the system with the two-
cusp functional with identical attraction zone. Accordingly, the average
relative grain boundary energy 𝛾 decreases in the first half of the simulation
and then stabilizes at approximately 𝛾 = 0.935 ± 0.03 for the functional
with extended attraction zone and 𝛾 = 0.945 ± 0.03 for the functional with
equal attraction zone, see figure 5.39.

Comparing the normalized growth dynamics for both two-cusp functionals
the one cusp functional with Δ𝜎 = 0.2 and 𝜑 = 30∘ and the isotropic
scenario reveals a significant increase in relative growth rate 𝐾 for the
two-cusp functional with extended attraction zone (𝐾 = 1.60±0.03), while
the relative growth rate for the simulation of the two-cusp functional with
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Figure 5.38.: As figure 5.31 for simulation scenarios using two-cusp energy
functionals.

Figure 5.39.: As figure 5.32 for simulation scenarios using two-cusp energy
functionals.
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equal attraction zone (𝐾 = 1.34 ± 0.03) and the relative growth rate 𝐾
of the one-cusp scenario (𝐾 = 1.38 ± 0.03) are equal within the error
margins.

II. Mobility Variation

Simulations studying the influence of anisotropic grain boundary mobility
on the overall growth dynamics are performed in two scenarios:

(a) orientation dependent mobility: scenario applying an ori-
entation dependent grain boundary mobility functional. Variation of
the maximum mobility 𝑚𝑚𝑎𝑥.

(b) fraction of highly mobile grain faces: scenario assigning
elevated mobility to varied fractions of entire grain faces.

II(a) orientation dependent mobility Since there is no published data
on orientation dependent grain boundary mobility in strontium titanate
an artificially designed mobility functional is introduced. For reasons that
come into play when studying combined energy and mobility anisotropy
(see III. Energy and Mobility Variation), the functional is build such that
it is inverse to the applied orientation dependent surface energy functional
with opening angle 𝜑 = 30∘. Relative mobility values around the perimeter
of the standard stereographic triangle are given in figure 5.40.

As it is well accepted that the orientation dependent grain boundary
mobility may vary by orders of magnitude [9,18], the maximum normal
dependent mobility 𝑚𝑚𝑎𝑥 is varied between 1 and 50.

In analogy to the 𝑓𝐶 and 𝑓1/2𝐶 values studied for the energy variation
scenarios, the fractions 𝑓𝑃 and 𝑓1/2𝑃 of triangles, which are affected by
the mobility peak and the half-height of the mobility peak are investigated.
Figure 5.41 shows the 𝑓𝑃 and 𝑓1/2𝑃 values for configurations applying
orientation dependent mobility functionals with maximum mobility 𝑚𝑚𝑎𝑥

in the range of 1 to 50 plotted against the number of remaining grains.
Both values decrease by 4-7% over the course of the simulation regardless of
the peak height 𝑚𝑚𝑎𝑥. Accordingly, the average grain boundary mobility
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Figure 5.40.: Normal dependent mobility around the perimeter of the unit
triangle.

Figure 5.41.: Fractions 𝑓𝑃 and 𝑓1/2𝑃 of triangles affected by the mobility
peak and the half-height of the mobility peak respectively plotted against
the number of remaining grains.
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Figure 5.42.: As figure 5.24 for systems with orientation dependent mobil-
ity anisotropy under variation of the maximum normal dependent mobility
𝑚𝑚𝑎𝑥.

𝑀 decreases by 3-8%. The correlation between average grain boundary
mobility and maximum surface mobility is

𝑀 = 0.85 + 0.12𝑚𝑚𝑎𝑥. (5.8)

Figure 5.42 shows the normalized area evolution for systems with orienta-
tion dependent mobility in the range of 1 to 50. All configurations show
a linear growth behavior. The systems with elevated mobility exhibit
accelerated growth. The acceleration of the growth rate is found to slow
down with increasing maximum mobility, see figure 5.43.

II(b) fraction of highly mobile grain faces As a prerequisite for the
investigation of abnormal grain growth, the influence of varying fractions
of high mobility grain boundaries on the overall growth dynamics is
investigated. Therefor, fractions 𝑓𝐺𝐹 of 10% to 90% of the grain faces
are provided with a relative surface mobility 𝑀=20. The highly mobile
grain faces are chosen randomly. Grain faces generated due to topological
changes during grain growth are assigned low (𝑀=1) or high (𝑀=20)
mobility with a probability corresponding to the overall distribution in
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Figure 5.43.: Relative growth rates for systems with orientation depen-
dent mobility and varied peak height 𝑚𝑚𝑎𝑥 plotted against maximum
orientation dependent mobility 𝑚𝑚𝑎𝑥.

order to keep a constant fraction of special boundaries. For all fractions
𝑓𝐺𝐹 the normalized grain area evolves linear with time. The relative
growth rates 𝐾 for scenarios with different fractions 𝑓𝐺𝐹 of highly mobile
grain boundaries are shown in figure 5.44. Two separate regions with a
transition at 𝑓𝐺𝐹 = 0.5 are identified. Both regions are best approximated
by a linear regression. For mobile grain face fractions of up to 0.5 the
relative growth rate 𝐾 increases by a factor of 4.92. For higher fractions
of highly mobile grain faces, the slope of the regression line rises to 31.82,
finally yielding a twenty-fold increase for the system with high mobility
grain faces only.

Figure 5.45 shows normalized grain size distributions for systems with
different fractions 𝑓𝐺𝐹 of highly mobile faces. All distributions are found
to remain self-similar throughout the coarsening process. For intermediate
fractions the peak is slightly lowered with an overall broadening. For
the limiting fractions 𝑓𝐺𝐹 = 0 and 𝑓𝐺𝐹 = 1 the distributions are almost
identical. This is expected because effectively these two systems are both
treated with isotropic grain boundary mobility.
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Figure 5.44.: Relative growth rate 𝐾 plotted against fraction of high
mobility grain faces 𝑓𝐺𝐹 .

Figure 5.45.: Normalized grain size distribution for different fractions
𝑓𝐺𝐹 =0, 0.2, 0.5, 1 of high mobility grain faces
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Figure 5.46.: As figure 5.24 for systems with energy, mobility and com-
bined energy and mobility anisotropy.

III. Energy and Mobility Variation

Simulations applying combined orientation dependent mobility and energy
functionals are performed in order to compare their influence on the
growth dynamics to pure energy and mobility anisotropy effects. The
combined energy and mobility anisotropy is simulated two ways, differing
in the assigned mobility. The low energy facets are either provided with
an elevated mobility (𝑚𝑚𝑎𝑥 = 10) or a lowered mobility (𝑚𝑚𝑖𝑛 = 0.5).
These combined anisotropy scenarios are compared to the pure energy
anisotropy scenario with Δ𝜎 = 0.2 and 𝜑 = 30∘ and the pure mobility
anisotropy scenario with 𝑚𝑚𝑎𝑥 = 10. Figure 5.46 shows the normalized
area evolution for all scenarios. Compared to the isotropic scenario, all
anisotropic configurations exhibit accelerated growth rates. The increase
in relative growth rate 𝐾 is most pronounced for scenarios combining
reduced grain boundary energy with elevated mobility. At the same time,
a combination of reduced grain boundary energy and reduced mobility
weakens the increase in growth rate. The relative growth rate for combined
energy and elevated mobility (𝐾 = 2.09 ± 0.03) is approximately the
product of the growth rates for pure energy (𝐾 = 1.36 ± 0.03) and pure
mobility anisotropy (𝐾 = 1.68 ± 0.03).
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Figure 5.47.: Distributions of number of neighbors 𝐹𝐺 for different grain
boundary property anisotropy scenarios.

Distributions of the number of neighbors 𝐹𝐺 of all grains are compared
between the different anisotropy scenarios and the isotropic scenario in
figure 5.47. For the anisotropic systems the distributions are generated
after the structure is coarsened to 250 grains. No significant deviation
between the distributions is observed. The average number of neighbors
per grain 𝐹𝐺 is 13.6 for the isotropic scenario, 13.8 for the system treated
with pure energy anisotropy and 13.7 for the remaining scenarios.

Distributions of number of edges per grain generated for the same scenarios
and simulation steps as for the number of neighbor investigation are
presented in figure 5.48. There is no significant deviation between the
edge distributions for the anisotropic and isotropic scenarios. The average
number of edges per grain 𝐸𝐺 is 34.8 for the isotropic configuration, 35.4
for pure energy as well as combined energy and mobility anisotropy with
reduced mobility, 35.2 for pure mobility anisotropy and 35.1 for combined
energy and mobility anisotropy with elevated mobility.

The evaluation of the average relative grain size 𝑔𝐶 related to the number
of neighbors per grain given in figure 5.49 shows a linear correlation for
the energy anisotropy scenario. All other scenarios can not be regressed
linearly. The influence of the anisotropy scenarios on the grain shape is
investigated comparing sphericity distributions, see figure 5.50. Compared
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Figure 5.48.: Distributions of number of edges for different grain boundary
property anisotropy scenarios.

to the distribution for the isotropic scenario, a slight broadening of the
distribution around the same mean value (Ψ = 0.87) is obtained for
all anisotropic scenarios, except for the pure energy anisotropy cases
accounting for torque. Here, the broadening of the distribution is more
distinctive and the mean value is shifted towards lower values (Ψ =
0.81 − 0.83). Both, the shift and the broadening are found to be more
distinct with increasing cusp depth Δ𝜎.

Figure 5.51 shows the average sphericity Ψ over the course of the simulation
for all six configurations. The average sphericity stays almost constant
during the whole time span of the simulation for all configurations, except
for the one receiving pure energy anisotropy under consideration of torques.
This configuration exhibits a significant decrease in average sphericity. A
distinct difference in grain shape is also visible in 2D cross-sections of
the simulated structures, given as inlay in figure 5.51. Compared to the
isotropic structure (upper image), the structure coarsened with orientation
dependent grain boundary energy under consideration of torques reveals
straighter boundaries with dihedral angles deviating severely from 120∘.
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Figure 5.49.: Relative average grain size 𝑔𝐶 plotted against number of
neighbors 𝐹𝐺 for the initial structure and anisotropic simulations with
and without torque contribution after coarsening to 250 grains. The
continuous line is a linear regression to the data points obtained in the
energy anisotropy scenario accounting for torque contributions.
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Figure 5.50.: Number count of sphericity values after coarsening to half
the initial number of grains for simulation scenarios with energy anisotropy
with and without torque contribution, mobility and combined energy and
mobility anisotropy compared to the isotropic case.

Figure 5.51.: Average sphericity Ψ plotted against number of remaining
grains for simulation scenarios with energy anisotropy with and without
torque contribution, mobility and combined energy and mobility anisotropy
compared to isotropic scenario. The inlays show cross sections of the
different structures (isotropic and anisotropic grain boundary energy).
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(a) (b) (c)

Figure 5.52.: Candidate grain treated with a relative grain boundary
energy of 0.8 and a relative grain boundary mobility of 10 at different
steps during its evolution. The grain has been rescaled. It consists of (a)
14, (b) 39 and (c) 158 faces respectively.

5.2.2. Abnormal Grain Growth

Conditions for the nucleation of abnormal growth under combined energy
and mobility advantages are investigated providing candidate grains of
varying initial size with relative grain boundary energy and mobility values
in the range of 𝛾

𝛾 = 0.8 . . . 1.2 and 𝑀

𝑀
= 1 . . . 20. Each class of grains

is represented by a randomly chosen candidate grain. The remaining
grains (matrix grains) are treated isotropically. The size evolution of the
candidate grains is compared to the average trend. A candidate grain is
considered as growing abnormal, when the grain exhibits a relative growth
rate

𝑑(𝑟/𝑟)
𝑑𝑡

> 0 (5.9)

and its normalized grain size 𝑟
𝑟 exceeds a factor of three. An example of a

candidate grain with 14 grain faces at three stages during the simulation
is shown in figure 5.52. The particular grain is treated with a relative
grain boundary energy of 0.8 and a relative grain boundary mobility of
10. Upon visual inspection the grain develops the characteristic abnormal
grain shape with an overall convex but locally concave shape resulting
from the smaller neighboring grains. Figure 5.53 shows the probability
𝑝 for the occurrence of abnormal growth as a function of relative grain
size and mobility for relative energy values 𝛾

𝛾 = 0.8 and 𝛾
𝛾 = 1.2. Red
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(a)

(b)

Figure 5.53.: Probability 𝑝 for the occurrence of abnormal grain growth
as a function of relative grain boundary mobility 𝑀

𝑀
and relative grain size

𝑟
𝑟 of candidate grains: with relative grain boundary energy (a) 𝛾

𝛾 = 0.8
and (b) 𝛾

𝛾 = 1.2. Solid lines indicate the stability range of abnormal grains
in mean field theory [36] plotted at different 𝑝 values for guiding the eye.
The points in the 𝑝 = 0 plane indicate the projected probability (0.1, 0.5
and 0.9) of the simulation results, for better comparison with the mean
field plot.
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data points mark the probability assessed as percentage of abnormally
growing candidate grains of a particular relative size. Grey data points
mark interpolations for probability values 0.1, 0.5 and 0.9, respectively.
Additionally, the stability range of abnormal growth from the well-accepted
mean field approach [36] is given as continuous blue line.

For both scenarios, the transition from the region of normal to abnormal
growth is rather gradual, the spread in 𝑟

𝑟 between the probability of 10,
50 and 90% for abnormal growth does not show a systematic dependency
on the relative grain boundary properties 𝛾

𝛾 and 𝑀

𝑀
. The transition range,

where the probability 𝑝 increases from 10% to 90%, is about 0.6 wide
on the 𝑟

𝑟 axis. For 𝛾
𝛾 =0.8 the mean field line is between 50 and 90%

probability, for 𝛾
𝛾 = 1.2 the line is close to the 10% value.



6. Discussion

6.1. Microstructure Characterization

In the context of the present work, the grain, which is described by its size,
shape and crystallographic orientation, is the fundamental microstructure
element. The discussion of microstructure characterization is organized
accordingly.

6.1.1. Grain Size and Morphology

Since the grain size distribution is a sensitive metric of polycrystalline
structure great importance is attached to the reliability of grain size
measurement. Prior to adressing more complex correlations, the accu-
rateness and comparability of the grain size measurements in the various
investigations presented in this thesis must be critically reviewed.

In section 5.1.1 the average grain size of the sample material in the initial
state was assessed as average grain radius 𝑟 by measuring the equivalent
circle diameter on micrographs of the bulk material as well as cross sections
of the DCT reconstruction. Both values are equal within the error margins
of ±2µm.

For the DCT reconstruction, the average initial grain size was also derived
from the volume information, approximating the grains as spheres. The
factor between the values obtained by the 3D and 2D method can be
explained with stereological effects arising from cutting 3D polyhedra with
apparent diameter smaller than the maximal diameter. With a value of
𝑟2𝐷

𝑟3𝐷
= 0.9 the ratio of equivalent circle diameter and equivalent sphere

diameter measurements differs by about 10% from the values found in
literature (0.78 to 0.84) [95,96]. However, the difference between the 2D
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and 3D value for the average grain size in the DCT reconstruction of the
initial structure is small compared to the possible maximal error introduced
by the dilation step of the DCT reconstruction. Here, an average radial
dilation of 2.6µm per grain is applied in order to reach a dense material.

In the course of a validation of the DCT reconstruction of the annealed
state against EBSD data, the grain size and shape of two corresponding
EBSD and DCT sections were compared in figure 5.17. The number of
grains found in the EBSD and corresponding DCT maps is almost equal,
the average grain size assessed by the linear intersect method is equal
within the error margins. The difference in the average grain size is the
result of a number of grains that are barely cut in either of the cross
sections thus appearing as very small areas. Furthermore, it is more likely
to find less grains in the DCT maps since diffraction spots with an area
smaller than about 100 pixels have been excluded from the current analysis
for the purpose of noise reduction. As a consequence grains below the
corresponding volume (103 voxels) can not be indexed and are lost in the
analysis. The smallest detected grain has a radius of about 2.2µm in the
undilated and 2.7µm in the dilated state. This gives a realistic estimation
for the resolution limit for the reconstruction of small grains. Also, already
a small angular uncertainty in the identification of the best fitting plane
in the DCT reconstruction might leave very small grains undetected above
or below the cutting plane.

Finding a good agreement in overall grain size, the average euclidean
distance between the grain boundary networks obtained by DCT and
EBSD was found to be 1.95µm and 1.98µm, see section 5.1.2. These values
correspond well to the previously reported accuracy of 1.60µm obtained
from a 3D distance transform [74]. It shall be emphasized that an estimate
made from a 2D distance transform on a 3D grain boundary network is
necessarily conservative. For grain boundaries which are close to parallel
to the 2D cross section, a one pixel error in the 3D reconstruction may
give rise to large shifts and irregular shapes in the corresponding 2D
observation. The brown grain at the bottom of figures 5.17(a) and (b), as
well as the light green grain in the center of figure 5.19(d) are examples
for this kind of configuration. Close ups of these two regions as obtained
from the fitted DCT cross sections with a separation distance of 3µm are
given in figure 6.1. The remaining differences in grain boundary location,
which tend to appear half way between two triple points, can partly be
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(a) (b)

Figure 6.1.: Close ups of two grains in two cross sections of the DCT
reconstruction. Both the brown grain in the lower part of (a) and the
green grain in the center of (b) exhibit boundaries which are close to
parallel to the section resulting in a large shift and irregular shape when
going from one section to the other.

explained by the dilation procedure applied during post processing of the
diffraction data.

This dilation, being of uniform character, hinders the detection of pro-
nounced faceting expected in anisotropic materials. Such faceting is
detected in EBSD sections. A close up of a faceted grain boundary that
is curved in the reconstruction can be seen in the purple grain in fig-
ure 5.19(d). Another fact, that might account for some of the deviations
in the grain boundary networks is the manual preparation of the specimen
resulting in an uneven cutting plane. The one voxel wide extrusion-like
artifacts obtained at some grain boundaries in the DCT grain map, see for
example figure 5.19(b) and (d) can be traced to the interpolation procedure
applied during plane fitting.

Porosity data for the bulk material in the initial state was gained by
the buoyancy method as well as from absorption contrast tomography
measurements on the DCT specimen. The obtained volume percentages
of porosity differ by 15%. The lower amount of porosity obtained from
the reconstructed microstructure can be explained by intragranular pores
that could not be resolved using absorption tomography but are visible in
SEM images of the same sintering load, as well as EBSD sections of the
annealed structure, see figures 5.5(b) and 5.17(a) and (b). Only the phase
contrast tomography (PCT) investigations applied to the annealed state of
the specimen were able to resolve these smaller pores inside the grains.
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Comparing the pores obtained in EBSD investigations of the annealed state
and corresponding sections of the microstructure reconstruction reveals a
mixed picture: while notably even small intragranular pores were observed
in the PCT reconstruction, some pores appear to be at doubtable location
inside the reconstructed microstructure and inconsistently connected to
the grain boundaries, see close ups and textual description of figure 5.19.

A comparison of euclidean distance transforms of the corresponding sections
with and without pores is given in figure 6.2. It shows clearly, that despite
the higher resolution resulting from PCT data, the porosity obtained by
the two characterization methods is not yet reliably comparable. The
deviation between the compared grain boundary networks can be traced
to several factors: The higher amount of (especially intragranular) pores
in the EBSD slices can be related to ring artifacts and uncertainties in
the PCT reconstruction [97]. These artifacts hamper the segmentation of
individual pores. During pore segmentation a threshold was applied that
eliminated small pores and pores with a low intensity value. Furthermore,
thin material layers above pores might have collapsed during the mechanical
preparation for sectioning and hereby revealed underlying pores, so that
the EBSD sections might also contain pores, which are underneath the
actual section. Moreover, material that has been removed during polishing
might accumulate in large pores, altering the shape of the pores visible in
the EBSD orientation map.

Despite the above mentioned elements of uncertainty, the EBSD and DCT
grain boundary networks correspond well showing an average euclidean dis-
tance below 2µm. The maximum euclidean distance of 7µm was obtained
midway between two triple points on grain boundaries that appear to be
curved in the DCT reconstruction and straight in the EBSD map and is
most certainly caused by the grain dilation during volume reconstruction.
Accordingly we can assume that the DCT technique is able to determine
grain boundaries with a spatial resolution of ±2µm.

6.1.2. Topology

The grain topology in dense polycrystalline microstructures depends on
the number of contiguous neighbors, the form of the shared faces between
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(a)

(b)

Figure 6.2.: Euclidean distance map as shown in figure 5.18 (a) with and
(b) without consideration of intragranular pores. The maximum euclidean
distance is significantly reduced in (b). The mean euclidean distance is
only changed a little (as shown in section 5.1.2).
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the grains and how these faces are connected at the triple lines. The
topology and its evolution is governed by the local equilibrium conditions
at the triple lines on one hand and the requirement to build a space filling
structure on the other hand.

From the DCT microstructure reconstruction it is possible to investigate
the topology of the bulk material and its evolution in 3D. The average
number of neighboring grains 𝐹𝐺 was found to be approximately 13 in
both annealing states. The average number of edges per grain 𝐸𝐺 was
found to be 31.1 in the initial and 32.2 in the annealed state. The distri-
bution of the number of edges per grain is best approximated by a log
normal fit, see figure 5.14. Its rather long tail can be explained by the
few extraordinary large grains (𝐹𝐺 > 30) contained in the structure. A
comparison of the topological quantities with the values obtained from
vertex dynamics simulations (𝐹𝐺=13.6-13.8, 𝐸𝐺=35.1-35.4, depending on
simulation scenario) and statistical grain models such as Coxeter poly-
topes [98] (𝐹𝐺=13.7, 𝐸𝐺=34.9), Kelvin’s 𝛼-tetrakaidecahedrons [99] or
Williams’ 𝛽-tetrakaidecahedrons [100] (both 𝐹𝐺=14.0, 𝐸𝐺=35.7) shows
similar values for the average number of grain faces 𝐹𝐺, while the average
number of edges per grain 𝐸𝐺 is small with respect to all other investi-
gations. This effect can be traced to pancake shaped pores between two
grains contributing with two faces to the face counting but only with one
edge to the edge counting. A total of 191 of these pores is contained in
the reconstruction of the annealed state. Removing these pores from the
counting increases the number of edges per grain to 𝐸𝐺=34.4. Accordingly,
both, the average number of faces per grain 𝐹𝐺 = 13 as well as the average
number of edges per grain 𝐸𝐺=34.4 of the investigated microstructure
were found to be smaller than the values predicted by statistical grain
models. This is in good agreement with values observed in common metals
and alloys [101,102].
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6.1.3. Interface Orientations

Being a sensitive metric of polycrystalline structure, the grain boundary
character distribution in polycrystals, represented by relative areas of grain
boundaries distinguished by their lattice misorientation and grain boundary
plane orientations has been studied extensively both in experiment and
simulation.

Prior to investigating grain boundary plane orientation in DCT data, the
spatial resolution at the grain boundaries must be addressed: Due to
the uncertainty induced by the dilation procedure, the orientation of the
interface normal of a grain boundary with an average length of 𝑟 = 14.3µm
can only be estimated within ±10∘. Since we find a good agreement with
EBSD grain boundary networks and intergranular pores are consistently
connected to the outgoing grain boundaries, see figure 5.5(b), we conclude
however, that the true interface normal uncertainty is significantly below
±10∘.

A preference for {100} grain boundary planes was found in microstructure
reconstructions of both annealing states, see figure 5.8. These planes were
identified as minimum energy planes both in calculations [103, 104] and
experiments [82]. Together, this is in good agreement with recent studies
reporting, that the lowest energy interfaces dominate the distribution of
grain boundary planes in SrTiO3 [3, 105]. The microstructure reconstruc-
tion of the initial state reveals grains with a global outer shape close to
a <001> oriented cube, see figure 5.7. While the global interface normal
orientations in these cubic grains are along <001> directions with respect
to the grain reference frame, these faces are composed of many grain
boundaries separated by triple lines. A similar behavior has also been
observed for grain boundaries surrounding abnormally growing grains in
strontium titanate [106]. There, the general interface orientation is parallel
to <100> orientations of the abnormally growing grain. These transmis-
sion electron microscopy observations indicate that the grain boundaries
are curved close to triple lines. Boundary segments away from these triple
lines can be atomically flat over micrometers [106, 107]. In the current
study no such well developed abnormal grains were present.

The <100> orientation was also observed to be the preferred orientation
for external crystal surfaces in SrTiO3 [82]. This justifies to derive the
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Figure 6.3.: Experimentally obtained and Fourier fitted relative surface
energies around the perimeter of the standard stereographic triangle com-
pared to the smooth energy functional with cusp opening angle 𝜑 = 30∘.

orientation dependent interface energy from the surface energy functional
presented in [82]. A smooth version of this functional was used to estimate
the orientation dependent interface energy for the vertex simulations. As
can be seen in figure 6.3, the smooth functional with cusp opening angle
30∘ mimics the overall form of the deepest and steepest energy cusp better
than the Fourier fit proposed in [82]. We assume the most relevant influ-
ence on microstructure evolution to be associated with this <100> cusp.

There is no consensus in literature about the misorientation distribu-
tion in polycrystalline SrTiO3. A preferred occurrence for Σ3 boundaries
reported in [108] is in contrast to a random misorientaton distribution
obtained in [3]. The misorientation distribution obtained from DCT ex-
periments is random, changes in the distribution of misorientation angles
during annealing were below the resolution, see figures 5.12(a) and (b).
This is expected for undeformed polycrystals with rather large grain size.

Overall, these findings enforce the view that the grain boundary pop-
ulation in polycrystalline ceramics is correlated with the grain boundary
plane orientation rather than the lattice misorientation as previously
reported [3, 16].
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6.2. Microstructure Evolution

The time evolution of the grain size during annealing of the tomography
specimen analyzed in terms of a quadratic growth law

𝑘 = 𝐴(𝑡) −𝐴(𝑡0)
Δ𝑡 (6.1)

gives 𝑘 = 2.3 10−14. Annealing experiments with identical heating condi-
tions using scanning electron microscopy for the microstructure characteri-
zation of 386 grains [84] report a value of 𝑘 = 5.6 10−14. The deviation
of more than 40% can be explained by the uncertainty in the grain size
measurement (±2µm) accounting for an error of 14%. The reduced growth
rate obtained for the tomography specimen might also be rooted in a
pinning effect due to surface grooving that reaches deeper than the one
layer of surface grains that have already been excluded from the analysis.
Due to the limited reproducibility of the heating conditions (we used
two different furnaces in different laboratories), the tomography specimen
might have been annealed at slightly lower temperatures. Moreover, we
have to consider the small feature size in both experiments.

The volumetric grain size distributions obtained at both annealing states
shown in figure 5.2 reveal a significant broadening and a shift towards
smaller relative grain sizes. This is in agreement with the grain size distri-
bution evolution obtained during annealing experiments on dense SrTiO3
specimens that have been sintered at 1450∘C in oxygen atmosphere [2].
In [2] a significant shift of 0.25 𝑟

𝑟 (approximately one binning width) of the
maximum towards smaller relative grain sizes was observed over the course
of the first 1.5 hours during annealing at 1550∘C. Considering the growth
behavior of SrTiO3, which does not follow a single Arrhenius dependency
over the whole range of annealing temperatures, it is not straightforward to
compare the annealing behavior of specimens annealed at different temper-
atures. In the present case however the initial microstructures were both
sintered and annealed at temperatures belonging to the high temperature
growth regime, see left slope in figure 3.7, so that a comparison of these
experimental results is legitimate. In order to assess the observed shift of
the peak quantitatively a distribution function needs to be applied. The
equivalent circle diameter grain size distributions of both experiments are
best approximated by log normal fits. A comparison of these fits is given in
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Figure 6.4.: Log normal fits to grain size distributions of 2D cross sections
during annealing. Dashed lines: grain sizes obtained by DCT before and
after ex-situ annealing at 1600∘C. Solid lines: grain sizes at three stages
during annealing at 1550∘C as obtained by optical microscopy [2].

figure 6.4. Both, the broadening and the shift of the grain size distribution
during annealing were also reported in experimental investigations of the
coarsening process in the final sintering stage of alumina [109] and during
annealing of BaTiO3 [110].

Both effects, a broadening and a maximum shift of the distribution towards
smaller relative grain sizes are also observed in grain growth simulations
with orientation dependent interface energy: Figure 5.29 shows the grain
size distribution of the isotropically coarsened initial structure as well
as the distributions after coarsening to 250 remaining grains for simula-
tions with anisotropic grain boundary energy with and without torque
contribution. Both anisotropic configurations exhibit a broadening and
a maximum shift of the distribution towards smaller relative grain sizes.
The broadening is more pronounced for the simulation accounting for
torque contribution. This behavior is contrary to results obtained by
2D phase field modeling [111] and simulations using a 3D Monte Carlo
Potts model [112]. A possible origin of the discrepancy between those
two investigations and the ones presented in this work is the handling of
energy anisotropy in the simulations. The phase field as well as the Monte



6.2. Microstructure Evolution 101

Carlo Potts Model do not explicitly take into account torque contributions
due to inclination dependent grain boundary energy.

Simulations applying orientation dependent grain boundary energy showed,
that both grain size and shape may differ from the values observed in
the isotropic configuration. One example for a quantity that is strongly
affected by the energy anisotropy is the equilibrium angle distribution
given in figure 5.27. A broadening in the distribution is observed for all
anisotropic configurations. This is expected from the latter part of the
Herring relation 2.9 and in good agreement with simulations applying
a Monte Carlo model [113]. The more pronounced broadening for the
simulation scenario accounting for torque contribution can be explained as
resulting from a torque-driven rotation of boundaries. Instead of building
the 120∘ equilibrium angle, the boundary segment connected to the triple
line is exposed to a momentum trying to rotate it into an energetically
more favorable position. This is also true for dicretizational units not
shared by a triple line and reflected in the increasing fraction of low energy
orientations that was observed for scenarios including torque contributions
exclusively, see figure 5.25.

A linear correlation between relative average grain size and number of
neighbors is found for the reconstructed microstructure in both annealing
states, see figure 5.15. The slope of the regression lines of both states does
not vary more than 10%. This is in good agreement with findings in other
sintered materials [114,115] and gives rise to the suggestion, that the grain
shape distribution remains self-similar throughout annealing. A linear
correlation is also observed in the vertex dynamics simulations featuring
pure energy anisotropy under consideration of torque contributions. All
other scenarios, independent of the kind of anisotropy included, were
found to show a declining rise in relative average grain size 𝑔𝐶 with
increasing number of neighbors 𝐹𝐺, see figure 5.49. This is expected for
structures with predominantly spherical grains where the average grain size
is proportional to the grains volume and the number of faces is proportional
to the grains surface area. Accordingly the shape of the grains in the
energy anisotropy scenario is expected to diverge from the sphere shape.
Grains within one class are relatively bigger, which intends a more convex
grain shape compared to isotropic grains of the same class. The slope
of the regression line for the energy anisotropy scenario was found to
remain constant once the system is transitioned to the anisotropic state.
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Considering this and the fact that the simulations accounting for torque
contributions must be regarded as closest to the real physical situation,
the grain shape in anisotropic structures can be assumed to vary from that
in isotropic ones particularly for grains with a high number of faces. This
is confirmed by sphericity values obtained from the simulation data for
all scenarios, showing a reduced average sphericity Ψ and hence a more
cubic grain shape for structures simulated with pure energy anisotropy,
see figures 5.50 and 5.51. Here. the change in grain shape is also visible
from the inlays showing 2D cross-sections of the simulated structures. The
insertion of the anisotropy to an isotropically primed initial structure causes
the grain shape to evolve from a spherical shape towards a more cube-like
shape. The average sphericity obtained in the simulation scenario dealing
with anisotropic grain boundary energy under consideration of torques
reduces from 0.87 to 0.82 (a cube corresponds to Ψ = 0.8). This is in
good agreement with the average sphericity value of 0.81 observed in both
annealing states of the DCT experiments and the sphericity distribution
given in figure 5.16.

It is not straightforward, that structures simulated with combined energy
and mobility anisotropy come to resemble isotropic ones. A possible
hint towards an explanation is found in the comparison of fractions of
in-cusp orientations for the different scenarios given in figure 6.5. While
the fraction of in-cusp orientations increases throughout the simulation
for the scenario with pure energy anisotropy, the fraction stays roughly
constant, when low energy orientations are provided with reduced or
elevated mobility. For the reduced mobility case, it can be assumed
that the reduced mobility hinders the motion of grain boundary segments
attracted by the low energy orientation thus hindering a change in the grain
boundary character distribution. Accordingly, the structure of systems
with reduced mobility of low energy grain faces is closer to isotropic ones
than that of the scenario with pure energy anisotropy. In the case of
elevated mobility, a slight decrease of in-cusp orientations is observed. At
the same time, for this scenario, the fraction of grain faces that is attracted
by the half-depth width of the cusp approaches zero. Apparently, the
extinction of grain faces due to high mobility which was also observed in all
simulation scenarios with pure mobility advantages, see 5.41, outrules the
torque effect. This phenomenon might be reinforced by the different shape
of the energy and mobility peak: the mobility peak has the same attraction
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zone, but a very steep slope, see figure 5.40. Accordingly all grain faces
affected by the energy cusp receive the maximum mobility. Due to the
absence of experimentally observed grain boundary mobility functionals
in literature, shape and height of the mobility peak were chosen without
much physical reasoning. Both aspects should certainly be adressed in
future investigations.

Figure 6.6 shows cross sections through the structures simulated with the
different anisotropy scenarios at three stages throughout the simulation.
The cross sections are colored according to the local grain boundary
orientation. Both scenarios including mobility anisotropy exhibit fewer
low-energy faces. Moreover, there are a couple of effects which are only
visible for the pure energy anisotropy scenario: Apparently, only the
pure energy anisotropy scenario allows for grain faces to bend themselves
towards a favorable orientation, as can be seen in the grain faces marked
by the letter A in figure 6.6. While a gradient in color is visible in the
pure energy scenario, all grain faces in the other two scenarios seem to
be uniformly colored. This effect is also visible in the grain face below
the letter C: while the grain faces stys straight ind all evolution states of
both energy and mobility anisotropy scenarios, it is clearly curved in the
cross section taken at 290 remaining grains in the pure energy scenario.
Once the grain faces are oriented energetically favorable, they appear to
be very stable in the pure energy scenario, see grain faces around the
letter B. Lastly, we observe more triple line angles deviating from 120∘ in
the pure energy scenario, see shape of the grain encircling the letter C in
figure 6.6. This is effect is confirmed by equilibrium angle distributions
which are found to be more narrow for simulations with combined energy
and mobility anisotropy, see figure 6.7.

These observations do not explain the fact that an additional mobility
anisotropy deletes the effects of energy anisotropy in the simulation sce-
narios. However, it can be followed that a detailed investigation of triple
line forces and cusp shape variation is needed to study this phenomenon
in greater detail.

The fraction of {100} grain boundary planes was found to increase during
1h annealing at 1600∘C, see figure 5.8. This is in excellent agreement
with 3D simulations, where the fraction of {100} grain boundary planes
increased for scenarios exhibiting an energy minimum at this orientation,
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Figure 6.5.: Fractions 𝑓𝐶 and 𝑓1/2𝐶 of discretizational units with grain
boundary normal falling in the attraction zone and the half-depth attraction
zone of the energy cusp plotted against number of grains remaining in
the system for simulation scenarios with combined energy and mobility
anisotropy.
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Figure 6.6.: Cross sections of structures simulated with pure energy and
combined energy and mobility anisotropy at three stages during grain
coarsening. The cross sections are colored according to local grain boundary
energy.
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Figure 6.7.: Normalized equilibrium angle distribution for simulations
with pure energy and combined energy and mobility anisotropy.

see figure 5.25. As discussed above, this effect is only observed, when
torque contributions, helping to rotate grain faces into the low energy
orientation, are considered. Varying the depth Δ𝜎 of the cusp in the
energy functional for a constant cusp opening angle 𝜑 = 30∘ shows an
increasing fraction 𝑓𝐶 of in-cusp orientations, see figure 6.8. The dashed
line represents the natural lower limit of 𝑓𝐶 given by the fraction of a
random orientation distribution falling in the part of the pole sphere
affected by the energy cusp with opening angle 𝜑 = 30∘. Sections through
the corresponding grain structures after coarsening from 515 to 250 grains
visualize the change in structure affected with the different fractions 𝑓𝐶 of
low energy orientations. The grain boundary network is colored according
to local grain boundary energy. For cusps deeper than Δ𝜎 = 0.15, it seems
to saturate. At this point 70% of the grain faces are oriented in directions
representing only 25% of the orientation space. However, in order to have a
consistently connected grain boundary network some non-cusp orientations
must be included in the network, too. Clearly, an increasing occurrence
of straight grain boundaries and a divergence of the dihedral angles from
120∘ is obtained with increasing fractions 𝑓𝐶 of low-energy orientations.

Higher fractions 𝑓𝐶 of in-cusp orientations can be reached when varying the
opening angle 𝜑 and thus the fraction 𝐴𝐶

𝐴𝑡𝑜𝑡
of the orientation space affected
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𝜑 = 30∘ Δ𝜎 =0.05 Δ𝜎 =0.1 Δ𝜎 =0.15 Δ𝜎 =0.2
0.02 0.05 0.09 0.14

Δ𝜎 = 0.2 𝜑 = 10∘ 𝜑 = 20∘ 𝜑 = 30∘ 𝜑 = 40∘

0.02 0.07 0.14 0.18

Table 6.1.: Ratio of in-cusp oriented grain faces 𝑓1/2𝐶

𝑓𝐶
that reaches the

half-depth width of the cusp.

by the cusp in the energy functional for a constant cusp depth Δ𝜎 = 0.2,
see figure 6.9. Here again, the dashed line represents the fraction of a
random orientation distribution falling in the corresponding orientation
space. The graph is complemented by sections through the structure
obtained after coarsening from 515 to 250 grains. The observed fractions
are more than twice as high as those expected from a random orientation
distribution. Energy cusps with a larger opening angle allow a larger
variety of low energy orientations, so that a space filling grain boundary
network can be build from up to 90% low energy planes. Here too, an
increase of straight boundaries and a broader spectrum of dihedral angles
is observed for higher fractions 𝑓𝐶 of low-energy orientations. Compared
with the cusp depth variation, we see slightly more grain boundaries which
are curved towards triple lines. This is also due to the greater variety of
low-energy orientations.

For all variations of the energy cusp considering torque contributions, the
average grain boundary energy was found to decrease during the simula-
tions; a result of the increasing fraction of triangles affected by the cusp.
This is in excellent agreement with experimental and simulation results
showing a preservation of low energy boundaries during anisotropic coars-
ening [113,116]. The average grain boundary energy correlates with both
depth and width of the cusp in the energy landscape. From equation 5.6
which gives the proportionality between average grain boundary energy
and cusp depth for constant cusp opening angle 𝜑 = 30∘ and equation 5.7,
which gives a similar correlation for the cusp width for constant depth
Δ𝜎 = 0.2 we can conclude

𝛾 ≈ 1 − 𝐶
𝐴𝐶

𝐴𝑡𝑜𝑡
Δ𝜎. (6.2)
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Figure 6.8.: Fraction 𝑓𝐶 of discretizational units with in-cusp orientations
plotted against cusp depth Δ𝜎 for a constant cusp opening angle 𝜑 =
30∘. The dashed red line represents the fraction of a random orientation
distribution affected by the corresponding area fraction 𝐴𝐶

𝐴𝑡𝑜𝑡
. The inlays

show cross sections of the corresponding structures after coarsening to 250
grains.
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Figure 6.9.: As figure 6.8 for variation of the fraction of the total pole
sphere area affected by the cusp in the energy functional 𝐴𝐶

𝐴𝑡𝑜𝑡
.
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In the current investigations the constant 𝐶 is of the order of unity. This is
not expected since it implies, that all grain faces with in-cusp orientations
receive the full energy advantage, which is not true, since the number of
in-cusp orientations that reaches the half-depth width is below 20% for
all investigated scenarios, see table 6.1. Therefore we have to assume that
the rather large value for 𝐶 arises from energy gradient effects induced
by the variation of cusp depth Δ𝜎 and cusp width 𝜑. This assumption is
underlined by the fact that the ratio is 𝑓1/𝐶

𝑓𝐶
= 0.02 for the simulation with

𝜑 = 30∘, Δ𝜎 = 0.2 witout torque contributions. Clearly, this effect must
be adressed in more detail by systematic cusp shape variations. However,
equation 6.2 does only hold until an upper limit of about 70%-80% of
grain faces is affected by the cusp. Afterwards, the average grain boundary
energy stagnates. This is rooted in a saturation of the structure with low
energy orientations, see also figures 6.8 and 6.9.

Plotting the relative growth rate 𝐾 as a function of low energy orientations
reveals an increasing growth rate that seems to saturate for fractions of
low energy triangles greater than 0.7. The absence of data points below
𝑓𝐶 = 0.6 is rooted in the fact that the cusp depth was investigated for the
functional with cusp opening angle 𝜑 = 30. Thus the lower limit for the
fraction of in-cusp orientations, which would be the random distribution,
is given by the area fraction of the pole sphere affected by the cusp
𝐴𝐶

𝐴𝑡𝑜𝑡
= 0.25.

The influence of cusp depth variation and cusp width variation on the
growth dynamics is summarized in figure 6.10. Here, the relative growth
rate 𝐾 is parametrized by a cusp variation factor given by the product
of area fraction 𝐴𝐶

𝐴𝑡𝑜𝑡
and cusp depth Δ𝜎. The data points plotted in this

diagram reveal a consistent picture, showing an increase in growth rate
with rising cusp variation leveling off for 𝐴𝐶

𝐴𝑡𝑜𝑡
Δ𝜎 > 0.05. This is in good

agreement with the findings for the average grain boundary reported in
equation 6.2. Apparently, the parametrization of the energy anisotropy
functional with the proposed cusp variation factor ( 𝐴𝐶

𝐴𝑡𝑜𝑡
Δ𝜎) collapsing

width and depth of the cusp is appropriate.

The relative growth rate was found to be larger than 1 for all scenarios
investigating the effects of energy anisotropy where the average grain
boundary energy was smaller than 1, see figure 6.10. This is counter
intuitive to the growth law for curvature driven grain growth described
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by equation 2.14, which suggests a declining growth rate with decreasing
average grain boundary energy rooted in a reduced driving force for grain
boundary motion. Considering that the average grain boundary energy
decreases with increasing cusp variation factor according to equation 6.2,
we find the opposite correlation: an increasing growth rate with decreas-
ing average energy. This gives rise to the speculation that a moderate
relative energy difference - here of the order of 10-20% -independent of
sign leads to an energy gradient which causes the increased growth rate.
Under anisotropic conditions the force equilibrium along the interface
and especially along triple lines and quadruple points constantly evolves
during migration and strongly depends on the interfacial normal. This
is different in the isotropic case, where the equilibrium conditions do not
evolve and the system stays closer to equilibrium during growth. The
net effect of the anisotropic grain boundary energy landscape is therefore
an on average increased driving force for grain growth. Furthermore, the
grain boundary character distribution is sensitive to grain boundary energy
gradients as reported in [15] and observed from our simulations and DCT
reconstructions. Together with the increased amount of low energy planes
reported both in experiments and simulations, this suggests that also the
time evolution of three dimensional grain boundary networks is sensitive
to a gradient in grain boundary energy.

In simulation scenarios investigating pure mobility anisotropy no more
than the fraction 𝑓𝑃 = 41% of grain boundary orientations expected to be
affected by the mobility peak of the corresponding width was observed.
Throughout the simulation this value decreased by about 10%, see fig-
ure 5.41. This behavior is expected since the high mobility might also
enable grains to shrink faster thereby deleting their highly mobile bound-
aries. Other than in the energy anisotropy scenario, there are no torque
contributions rotating new triangles in high mobility orientations. The
correlation between average grain boundary mobility 𝑀 and maximum
mobility 𝑚𝑚𝑎𝑥 described in equation 5.8 can be approximated as a linear
mixing rule

𝑀 = (1 − 𝑓𝑃 )𝑚𝑖𝑠𝑜 + 𝑓𝑃𝑀. (6.3)
The grain boundary energy for each triangle is built as average of the
orientation dependent surface mobilities with respect to both adjacent
grains 𝑀 = (𝑚𝑙+𝑚𝑟)

2 . Since the mobility cusp if of such a form, that
either the maximum mobility 𝑚𝑚𝑎𝑥 or 𝑚𝑖𝑠𝑜 = 1 is allocated and with
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Figure 6.10.: Relative growth rate 𝐾 plotted against cusp variation factor.

the addition, that for the current investigations only in rare occasions the
triangle is oriented such that it represents a high mobility orientation with
respect to both adjacent grains, the average mobility can be approximated
as

𝑀 = (1 − 𝑓𝑃 ) + 𝑓𝑃
(𝑚𝑚𝑎𝑥 + 1)

2 . (6.4)

A quadratic correlation between maximum mobility 𝑚𝑚𝑎𝑥 and relative
growth rate 𝐾 was observed, see figure 5.43. Together with findings of a
simulation scenario varying the fraction 𝑓𝐺𝐹 of highly mobile grain faces,
which are discussed in detail in the context of abnormal grain growth in
section 6.3, the impact of a fraction 𝑓𝐺𝐹 of grain faces provided with a
mobility 𝑀 = (𝑚𝑚𝑎𝑥+1)

2 on the growth dynamics of the system can be
described as

𝐾 = 1 + 0.23𝑓𝐺𝐹𝑀. (6.5)

Simulations combining energy and mobility anisotropy show that providing
those grain boundaries affected by the energy cusp with Δ𝜎 = 0.2 and
𝜑 = 30∘ with elevated relative mobility increases the growth rate with
respect to the pure energy anisotropy scenario. The increased growth rate
is approximately the product of the growth rates for pure energy and pure
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mobility scenarios. Providing the low energy orientations with lowered
relative mobilities on the other hand reduces the growth rate compared to
the pure energy anisotropy scenario, see figure 5.46.

In the context of sintering the evolution of pore shapes and sizes during the
heating period is a very interesting aspect. During annealing performed in
between DCT scans, a significant decrease in volume fraction of porosity
(from 2.6% to 1.2%) was observed. This is despite the fact that more pores
were detected in the annealed state due to the exploitation of phase contrast
tomography data and can thus be regarded as a strong indication for an
ongoing densification. Since the material was already dense before heating
and we do not observe interconnected pore channels, the densification must
be induced by grain boundary diffusion. Unfortunately, a more detailed
investigation of pore shape evolution during annealing is ruled out by the
comparatively low resolution in the initial state.

6.3. Nucleation of Abnormal Growth

Grain growth simulations investigating the growth behavior of candidate
grains as a function of relative grain size and relative grain boundary
properties showed that a combined effect of grain boundary energy and
mobility advantages is needed to detach an otherwise average grain from
a uniform grain size distribution. The results shown in figure 5.53 show
that combined energy and mobility advantages can trigger abnormal
grain growth in otherwise isotropic grain structures. Compared to a well-
accepted mean field approach [36], in our investigations the abnormally
growing grains are observed at higher energies and larger relative grain
sizes. This gives rise to the assumption that the grain boundary energy
has a significant impact on the effective mobility in anisotropic materials.
Furthermore, the transition from the normal to abnormal regime for a
given energy and mobility ratio is smeared out for the normalized size
dependence 𝑟

𝑟 . This shows that the three dimensional grain topology also
plays an important role for the transition.

The influence of grain boundary mobility anisotropy on the nucleation
of abnormal growth was also investigated in simulation scenarios vary-
ing the fraction of highly mobile grain faces in otherwise homogeneous
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Figure 6.11.: Effective mobility 𝑘 of the grain boundaries in a polycrys-
talline BaTiO3 microstructure as a function of the thermal energy [117].
Small markers indicate normal growth behavior, large markers indicate
matrix grains between abnormally growing grains as a function of annealing
time. Stars denote abnormal grains in the transition region.

grain boundary ensembles. In a simplified system consisting of two grain
boundary populations with different mobility, the effective mobility is
clearly dependent on the fraction 𝑓𝐺𝐹 of highly mobile grain faces. For
𝑓𝐺𝐹 less than 50% a rather moderate increase of the effective mobility
and for values larger than 50% a steep increase is observed, see figure 5.44.
This simulation result can be related to the transition to a high mobility
growth regime and the occurrence of abnormal grain growth observed
in BaTiO3 [117]. Figure 6.11 shows the effective mobility 𝑘 of grain
boundaries in a polycrystalline BaTiO3 microstructure as a function of the
annealing temperature. Abnormal grain growth occurs in the transition
region between the two growth regimes indicated by solid lines. Focus-
ing on the temperature range of the transition zone (between T=1250∘C
and 1320∘C), the growth rate increases at first very little and at higher
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temperatures a steep increase is observed. In the light of the simulation
results presented in section 5.2.1, this transient behavior does not exclude
the presence of highly mobile grain boundaries in the intermediate part of
the transition zone but strongly suggests that a critical fraction of more
than 50% of the grain boundaries have to be in the highly mobile state in
order to lead to an overall increase of the effective grain boundary mobility.
In the case of an abnormal grain terminated by special orientations this
condition is already fulfilled for the faces being part of the abnormal grains
boundary only, explaining its accelerated growth.

In order to generate such a configuration the following nucleation mech-
anism is possible: If there is a preferred low energy orientation close to
the orientation of a grain face that undergoes a transition to the high
mobility state, the face will tend to turn into the energy minimum due to
torque contributions. From that point on, the low boundary energy helps
to sustain the grain boundary state during growth. Accordingly a grain
that shows no initial size advantage (a grain that lies within the unimodal
grain size distribution) needs planes that underwent a transition to a
high mobility and have an energy advantage in order to grow abnormally
independent of its changing neighboring grains. Grain growth simulations
where the fractions of grain faces with pure mobility advantage was var-
ied show a correlation between the fraction of highly mobile faces and
growth rate. This correlation happens to be of a nonlinear type revealing
a percolation barrier around 50%. Thus a high number of high mobility
faces distributed around one growing grain is needed in order to dominate
its growth and make it possible for the grain to break free from the log
normal distribution observed otherwise.





7. Conclusion

This work focuses on the correlation between interface property anisotropy,
microstructure evolution and morphology in polycrystalline perovskites
following an integrated experimental and numerical approach. The experi-
ments and simulations presented in the preceding chapters were designed
to explore two major questions:

What is the connection between anisotropic interface properties and
the growth anomaly observed in strontium titanate?

What are the conditions for the nucleation of abnormal grain growth
in perovskites?

The applied DCT technique has proven to be an appropriate tool to non-
destructively characterize 3D microstructures in ceramics with the added
benefit of high resolution grain orientations. The applied instruments
and reconstruction techniques yield very good results in terms of image
quality, spatial resolution and high accuracy orientation resolution. The
goal of non-destructive 3D imaging of microstructure evolution in ceramic
materials can be realized with this technique. Even more so, due to
the absence of orientation gradients and dislocations undeformed ceramic
materials are easier to reconstruct than other polycrystals. Accordingly,
grain growth in ceramic materials marks the ideal application area for
DCT at its present stage. Despite the possible further improvements in the
DCT reconstruction (see Outlook) the currently obtained accuracy in the
determination of grain shape and size of about 1.5µm is accurate enough
to directly compare grain growth simulations and DCT observations in
SrTiO3 for reasonably large grain growth regimes, provided the initial
grain size is large enough. However, the accuracy may not yet be sufficient
to identify general anisotropies in grain boundary properties except for
very strong cases of faceting.
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The modeling approach is confirmed by a validation against analytical pre-
dictions for the growth rate. The good agreement in topological quantities
obtained experimentally and from grain boundary networks resulting from
anisotropic scenarios show the models ability to represent systems with
anisotropic grain boundary properties.

Rising fractions of (100) orientations were observed in DCT experiments.
At the same time, rising fractions of low energy grain faces were found
in vertex dynamics simulations approximating the orientation dependent
grain boundary energy as average of the normal dependent surface energies
with respect to the crystallography of the two adjacent grains. Together
this clearly demonstrates that an energetically favorable orientation with
respect to one crystallite is sufficient in strontium titanate to affect the
local interface orientation severely. Grain growth simulations applying
an orientation dependent grain boundary energy functional based on the
normal dependent surface energy functional presented in [82] were found
to mimic the growth behavior of SrTiO3 better than simulations including
grain boundary mobility anisotropy. From the obtained relationship be-
tween average grain boundary energy and cusp variation factor expressed
in equation 6.2 we suspect part of the effect we see in the simulations to
be attributed to the energy gradient resulting from the sharp cusp in the
energy functional. Thus, the cusp shape must be further investigated in
order to discriminate, whether an energy advantage of sufficient size or
the sharpness of the energy cusp is the dominant effect.

The grain boundary energy anisotropy was identified as the dominant
anisotropy in systematic computer simulations. Both topology, as well
as growth kinetics are strongly modified by comparatively small changes
in relative grain boundary energy. A correlation between fraction of low-
energy orientations and relative growth rate was observed. Variation of
both the width and the depth of the cusp in the grain boundary energy
functional were found to alter the fraction of low-energy orientations. The
saturation limit for low-energy orientations was found to be between 70-
80% dependent on the cusp shape. Above this limit the growth rate did
not increase any farther.

In the context of investigations on the nucleation of abnormal grain growth,
a non-linear mixing rule for the effective mobility has been derived from
three dimensional grain growth simulations. The mobility measured is
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below the weighted average of the mobilities present in the microstructure.
A critical fraction of roughly 50% of high mobility grain boundaries is
needed to change growth dynamics and show significant impact on normal
growth, with abnormal grains nucleating with a probability closely linked to
the total number of grain boundaries in the high mobility state. A strong
coupling of anisotropic grain boundary energy and mobility is needed
in order to detach a grain from the log normal grain size distribution.
Based on these observations a percolation mechanism for the nucleation of
abnormal grain growth was proposed.





8. Outlook

Since time resolved 3D microstructure characterization with complemen-
tary crystallographic information became only recently available for poly-
crystalline ceramic materials in the form of synchrotron based X-ray
diffraction contrast tomography experiments, the results presented in this
study can only be regarded as a feasibility study and the starting point
for a more thorough characterization of microstructure evolution during
sintering.

Multiple time step annealing experiments using DCT will not only help to
understand the densification during sintering but also give access to a more
continuous time evolution of an evolving grain boundary network. Experi-
ments including at least three states will allow to use the first annealed
state as confirmation for the correct application of the reconstruction tech-
nique and grant comparability of the reconstructions of further annealing
states. Recording more time steps would also facilitate comparison with
simulations started from the experimentally observed microstructure.

A direct remodeling of synchrotron experiments will allow to study orien-
tation dependent interface properties, especially grain boundary mobility,
in greater detail. Systematic parameter variations in grain growth sim-
ulations started from 3D microstructure reconstructions will eventually
allow to iteratively adapt the grain boundary properties, such that the
annealed state is best approximated in the model. This would be a great
step towards the modeling based discrimination between orientation and
temperature dependent grain boundary energy and mobility. The first
prerequisite for this kind of investigations, a conversion of the experimen-
tally obtained structure into an input mesh for the grain growth model
is already accomplished, see figure 8.1. In a next step, the influence of
the cusp shape on the growth dynamics should be investigated thoroughly.
Once isotropic and anisotropic simulations started from these experimen-
tally obtained structures are available, the development of a 3D metric for
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Figure 8.1.: DCT reconstruction in the post annealing state transferred
to the vertex dynamics model.

comparison of structures evolved in experiment and simulation will be of
crucial importance.

The combination of a specific specimen geometry of single crystals bonded
to a polycrystalline matrix and DCT will permit observations of the grain
boundary mobility with respect to the crystallographic orientation of
both sides. Preliminary investigations using SEM imaging showed that the
interface mobility is not only temperature but also inclination dependent [2].
These differences in local growth rate are caused by the anisotropy of the
mobility and energy with regard to the orientation of the matrix grain,
which is not experimentally accessible by conventional metallography. In
order to back out the effect of the local driving force, governed by the
matrix grain boundaries, the full three dimensional information is needed.
Giving access to a statistically relevant set of migration lengths under
full knowledge of the crystallography of the participating grains, these
experiments will allow generating a database of the interface orientation
dependent relative grain boundary mobility.
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Prior to future DCT investigations of microstructure in polycrystalline
ceramics improvements of the technique could be achieved: The spatial
resolution at the grain boundaries can be improved by advanced optical
techniques and optimized data processing. This will also lead to improved
accuracy with respect to curvature and porosity. Considering the shape of
the reconstructed porosities, it is noteworthy, that spherical small pores
seem to lie preferably within grains, whilst larger, eccentric shaped pores
seem to appear at triple lines. This information could be exploited in an
improved version of the dilation algorithm e.g. in creating a probability
map for grain and pore areas. High resolution porosity information could
consolidate the accuracy of this approach. Better resolved 3D images (0.3
µm pixel size ∼ 1µm full width at half maximum of detector point spread
function) can be obtained using a different combination of (microscope)
optics in the high resolution detector system employed for (parallel beam)
PCT measurements. X-ray microscopy techniques (e.g. zoom tomography
[118]) can provide higher spatial resolution. A 20482 zoom tomography
reconstruction with a voxel size of 150 nm would still allow to analyse the
300 µm diameter specimen analysed in the current study. Replacing the
up to date uniform dilation step with a more elaborate algorithm based on
forward modeling of the diffraction process could represent a starting point
for improved microstructure reconstructions with respect to the spatial
resolution at the grain boundaries. For each of the unassigned voxels,
the goodness of fit of simulated versus measured diffraction patterns
can be evaluated while assigning any of the possible (adjacent) grain
orientations.

The accuracy of the EBSD validation might be further improved if the
material could be in-situ ablated in defined thickness using a machine
grinding technique. The recently developed TriBeam technique [69] pro-
vides plane-parallel in-situ laser ablation which is significantly faster than
the EBSD scan itself and thus allows fast acquisition of large (several hun-
dred slices) 3D post-mortem datasets. The validation against such data is
necessary and will help to further improve the reconstruction technique





A. Topological Transformation

The basic elements of the model implementation is described in section 4.1.2.
This chapter deals with the topological transformations applied during
coarsening of the model structure using the nomenclature as defined
in chapter 4.1.2. All topological transformations applied in the vertex
dynamics simulation are based on a combination of the following two basic
operations:

1. Joining Vertices The joining operation is applied to collapse short
subedges and merge the connectivity of its endpoints consistently.

Two joining operations must be distinguished according to the type
of the subedge they affect:

a) subedges with two type 1 vertices as endpoints

b) subedges with at least one endpoint of type 2 or higher

Operation 1(a) triggers real topological changes if required, i.e. re-
connection of vertices and changes in faces after joining. The steps
within this operations are:

(i) combine the connectivity list of the two endnodes A and B of
the subedge and consign this information to the surviving node
A.

(ii) check the subedge or edge connections of the surviving node:

remove double connected subedges and collapse the at-
tached triangles to a single subedge.

remove one edge of faces shared by the double connected
edge.
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(a) (b)

Figure A.1.: Detachment process of a grain of type GF3: (a) initial config-
uration with two edges sharing three faces and one edge sharing four faces;
(b) configuration after detachment: a new edge is introduced between the
old real vertex 𝑃0 and the new real vertex 𝑃1. On each of the outer faces
(not shared by GF3) of the detached triple lines now connected to 𝑃1, the
new edge (𝑃0, 𝑃1) is added and the face triangulation is adapted. This
operation is only performed if a net depinning force of grain GF3 on the
vertex 𝑃0 occurs.

check all faces sharing node A: remove faces with two or
less edges.

(iii) if vertex A is connected to more than three edges check for
grain detachment (the second basic topological transformation,
detailed description below)

During joining operation 1(b) only steps (i) and (ii) are performed,
so that the faces shared by the subedge are rediscretized without
affecting the physically relevant topological quantities of the grain.

2. Detaching a grain from a real vertex

The detachment procedure is applied to deconnect grains which share
two or three faces with a type 1 vertex 𝑃0. Subsequently, these
grains are denoted GF𝑛(𝑖) according to their grain number 𝑖 and
the number of faces 𝑛 they share with 𝑃0, see figure 2.

The routine handles edges with three or more shared faces according
to the following scheme:
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a) detach all edges and subedges of the selected grain that share
the vertex 𝑃0 and attach them to the new vertex 𝑃1, which is
located at a defined distance Γ = 𝑛 · 𝑙𝑐𝑟𝑖𝑡 in direction of the net
depinning force.

b) generate a new edge between vertex 𝑃0 and 𝑃1. For the
subedges along an edge with endnode 𝑃0 two cases have to be
distinguished:

i. three faces attached to an edge: insert a new triangle on
the outer grain boundary not shared by the detached grain.

ii. more than three faces attached to an edge: create a new
face between grain 1 and 2. Divide the edge into a triple
line shared by the detached grain and an edge with one
shared face less than the initial edge. The new face is
placed between the splitted edge. During this splitting a
new type1 vertex 𝑃2 is introduced at the end of the splitted
subedge and new edges are introduced between the vertices
𝑃0, 𝑃2 and 𝑃1, 𝑃2. The new face is spanned by the edges
between the three vertices 𝑃0, 𝑃1, 𝑃2, see figure 2.

c) check newly generated edge between 𝑃0 and 𝑃1 for consistency
after detachment of a grain which shares two faces with 𝑃1
(edge connectivity test).

Figure 2 illustrates the detachment process for a grain of type 𝐺𝐹3 sharing
one edge with four faces applying step (ii) of the detachment procedure.

The transformation events are triggered based on user defined critical
values for basic geometric elements. The following testing scheme checking
for the necessity of topological events is applied to the whole data structure
at every global time step:

1. check subedges: if the length of a subedge is shorter than Δ =
𝑓 ·𝑙𝑐𝑟𝑖𝑡, 𝑓 = 0.05, . . . , 0.1 and is shrinking or excessively small (shorter
than 0.2Δ) apply joining vertices operation to this subedge.

2. check vertices: if vertex has more than three edges search for grain
to be detached (the grain with the strongest depinning force).
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3. check faces: remove faces with less than three sides if no internal
structure/triangulation is present.

4. check grains: remove grains with less than two faces.

In all tests of subedges, vertices and faces, the geometrical objects that
meet the critical condition are stored in a temporary list. For the subedges,
this list is ordered with increasing subedge length and the application of
the topological transformation is done starting with the shortest subedge
assuring that transformations will be performed according to their prior-
ity.

A second scheme, applied after the motion of the vertices, tests the
connectivity of a vertex as follows:

1. check for short subedges attached to the vertex and join vertices if
needed.

2. check for deformed triangles shared by the vertex and perform redis-
cretization if required.

Real vertices connected to more than three edges are tested whether they
represent a stable configuration in the grain boundary network. This test
is needed as no artificial assumption on the topology of the smallest grain,
and on the number of faces shared by one edge, is made in the algorithm. A
grain will disappear by loosing faces ending up with a flat grain consisting
of two faces. Real vertices sharing three edges occur naturally after a
joining operation on real vertices, which may generate edges shared by
four faces.

The stability procedure for a real vertex 𝑃0 consists of the following
steps:

1. check the connectivity list of the vertex 𝑃0: edges sharing two faces
only are unphysical as they separate the same grains. Merge the two
faces and remove the edge.

2. analyse the grains sharing the vertex 𝑃0: classify grains according
to the number of faces they share with the vertex.
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3. test detachment of grains for the general case: start with the class of
grains with the lowest number of shared faces. These are the grains
with the smallest inner opening angle at the vertex and therefore a
presumably large driving force for detachment:

a) calculate the forces on the real vertex 𝑃0: a detachment force
f𝐺
𝑑𝑒𝑡 resulting from the boundaries of the grain to be detached

from vertex 𝑃0 and the opposing forces f𝐺
𝑝𝑖𝑛, imposed by the new

grain boundaries that need to be created during the detachment
process. A depinning is possible, if the condition ( f𝐺

𝑑𝑒𝑡 + f𝐺
𝑝𝑖𝑛) ×

t𝐺
𝑖𝑛 > 0 is fulfilled. Here, t𝐺

𝑖𝑛 is a vector pointing from the
real vertex towards the center of mass of the grain for which
detachment is tested.

b) if more than one grain per class exists, test all possible detach-
ment processes, repeat step (a) for all grains of the class and
seclect the one with the highest driving force and best alignment
to the direction t𝐺

𝑖𝑛.

c) detach selected grain from real vertex (second topological trans-
formation).

d) check edge between original vertex 𝑃0 and new vertex 𝑃1 for
connectivity.

A simplification in the detachment routine is done for one of the most
frequent configurations consisting of a vertex 𝑃0 sharing nine different
faces and five different grains in total: two grains with a vertex shared
by three faces of the grain (𝐺𝐹3 type grains), and three grains, with a
vertex shared by four faces of the grain (𝐺𝐹4 type grains), see figure A.2.
This configuration can occur after the collapse of a triple line. If the above
described detachment process procedure fails to detach one of the grains
of type 𝐺𝐹3 as the force criterion is not fulfilled for either grain, a new
triangular face between the two 𝐺𝐹3 grains sharing three faces with the
vertex 𝑃0, is generated. This transformation is often referred to as flip. It
transfers a shrinking edge to configurations with a triangle between the
two 𝐺𝐹3 grains. The inverse transformation starting from a shrinking
triangular face to the generation of a new edge is handled automatically
by subsequent application of the node joining transformation, leading
temporarily to edges shared by four faces, and finally to a vertex connected
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(a) (b)

(c)

Figure A.2.: Topological transformation: (a) short subedge between two
real vertices; (b) intermediate configuration which is decomposed based
on force conditions to either the configuration shown in (a) or (c); (c)
configuration with a triangular face separating the grains GF3(1) and
GF3(2).

to six edges. This vertex is then decomposed using the vertex splitting
and grain detachment scheme.



B. Rediscretization

Throughout the simulation a rediscretization procedure is applied to
triangles with inner angles smaller or greater than a user defined critical
angle (15∘ and 135∘ in the current configuration) and subedges longer
than a critical length (1.2𝑙𝑐𝑟𝑖𝑡), see figure B.1. Depending on the missed
quality criteria the following operations are performed :

triangles with inner angles smaller than 15∘ or exceeding 135∘: the
shortest subedge are collapsed using the joining routine for vertices,
see figure B.1(a)

pair of triangles with inner angles smaller than 15∘ or exceeding 135∘:
a swap of subedges of these triangles is performed, see figure B.1(b).

subedges longer than 1.2 𝑙𝑐𝑟𝑖𝑡: a new virtual vertex is introduced
along the subedge as shown in figure B.1(c).

The rediscretization scheme does not affect the physical properties of the
model: in case of two vertices of different type, the final position is the
one of the vertex with the lower type number whereas for vertices of the
same type the midpoint position is taken as final position. Furthermore,
the operations on subedges of type 1, which are along triple lines, ensure
that the triangulation of the other faces remains consistent.

More complex situations consisting of triangles formed by more than one
large subedge are also handled: all long subedges of the triangle are divided
by introducing virtual vertices and subedges connecting the new vertices
are introduced. In the case of three new vertices, three new subedges
are introduced, dividing the old triangle into four triangles. For two new
vertices one new subedge connects the newly introduced virtual vertices
and a further subedge is introduced between a vertex of the old triangle
and the new vertex on the opposite subdivided subedge, subdividing
the old triangle into three triangles. All the other triangles shared by
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(a) (b)

(c)

Figure B.1.: Rediscretization: (a) Combine endpoints of a short subedge
in ill shaped triangle, (b) switch the common side of a pair of triangles with
extreme angles, (c) introduce a discretizational vertex on a long subedge.
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subdivided subedges are rediscretized accordingly, to ensure a compatible
discretization of the concerned faces.

Edge connectivity test

A possible scenario for generating topological redundant edges is detach-
ment of a grain with two faces as the newly created edge has only two
faces separating the same grains. In this case the two faces are joined
and the edge is removed from the structure. The removal has to be done
consistently because the endnodes of the removed edge lose a connection
and their topological role changes. Resulting type 1 vertices with two
edges are transformed to virtual vertices of type 2 and the shared faces
loose one edge.
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