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Abstract

Salt stress is a major constraint for many crop plants, such as the moderately salt-sensitive economically important

fruit crop grapevine. Plants have evolved different strategies for protection against salinity and drought. Jasmonate

signalling is a central element of both biotic and abiotic stress responses. To discriminate stress quality, there must

be cross-talk with parallel signal chains. Using two grapevine cell lines differing in salt tolerance, the response of

jasmonate ZIM/tify-domain (JAZ/TIFY) proteins (negative regulators of jasmonate signalling), a marker for salt

adaptation Na+/H+ EXCHANGER (NHX1), and markers for biotic defence STILBENE SYNTHASE (StSy) and

RESVERATROL SYNTHASE (RS) were analysed. It is shown that salt stress signalling shares several events with
biotic defence including activity of a gadolinium-sensitive calcium influx channel (monitored by apoplastic

alkalinization) and transient induction of JAZ/TIFY transcripts. Exogenous jasmonate can rescue growth in the salt-

sensitive cell line. Suppression of jasmonate signalling by phenidone or aspirin blocks the induction of JAZ/TIFY

transcripts. The rapid induction of RS and StSy characteristic for biotic defence in grapevine is strongly delayed in

response to salt stress. In the salt-tolerant line, NHX1 is induced and the formation of reactive oxygen species,

monitored as stress markers in the sensitive cell line, is suppressed. The data are discussed in terms of a model

where salt stress signalling acts as a default pathway whose readout is modulated by a parallel signal chain

triggered by biotic factors downstream of jasmonate signalling.
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Introduction

Soil salinity poses a serious problem worldwide, causing

global costs equivalent to an estimated US$11 000 million

per year (FAO, 2011). Salt-affected soils negatively affect

both the ability of crops to take up water and the

availability of micronutrients, while they increase the

concentration of toxic ions to plants, and may degrade soil

structure. At the cellular and molecular levels, salt stress

causes membrane disorganization, metabolic toxicity,
formation of reactive oxygen species (ROS), inhibition of

photosynthesis, and reduced nutrient acquisition (for

reviews, see Hasegawa et al., 2000; Zhu, 2002). Plants have

evolved many mechanisms to survive under salinity such as

selective accumulation or exclusion of ions, synthesis of

compatible solutes, sequestering of ions into separate

compartments, induction of antioxidative enzymes, and

adaptive regulation of plant hormones such as abscisic acid

(ABA), ethylene (ET), and jasmonates (JAs) (for a review,

see Parida and Das, 2005).

JA signalling (for reviews, see Wasternack, 2007; Avanci

et al., 2010) has been extensively studied, using biochemical

and molecular genetical approaches, in Arabidopsis thaliana

and other species (Browse, 2009; Chini et al., 2009; Fonseca
et al., 2009; for reviews, see Memelink, 2009; Reinbothe,

2009; Schaller and Stintzi, 2009). (+)-7-iso-Jasmonoyl-l-

isoleucine (JA-Ile) generated by the JAR1 (Jasmonate-

Resistant 1) enzyme represents the endogenous bioactive

form of JAs (Staswick and Tiryaki, 2004; Staswick, 2008;

Fonseca et al., 2009). Similar to gibberellin and auxin
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signalling, JA-dependent gene activation involves hormone-

induced degradation of a transcriptional repressor, the

jasmonate ZIM/tify-domain (JAZ/TIFY) proteins (Vanholme

et al., 2007). To date, 12 JAZ/TIFY genes have been

identified in A. thaliana (Chini et al., 2007). The products of

these JAZ/TIFY genes share two conserved domains, a ZIM/

tify (zinc-finger protein expressed in inflorescence meristem)

and a Jas (jasmonate-associated) domain. The ZIM/tify
domain mediates homo- and heteromeric hormone-indepen-

dent interactions between individual JAZ/TIFY proteins

(Chini et al., 2009). In contrast, the Jas domain is required

for hormone-dependent interactions of JAZ/TIFY with

MYC2 and COI1 (Chini et al., 2007; Thines et al., 2007) and

for nuclear localization (Grunewald et al., 2009). In response

to environmental or developmental signals that stimulate the

biosynthesis of JAs, the elevated levels of JA-Ile promote the
interaction of JAZ/TIFY repressors with SCFCoI1-mediated

ubiquitination and subsequently degrade JAZ/TIFY proteins

via the 26S proteasome, which in turn releases MYC2 and

probably other transcription factors. Activation of MYC2

induces transcription of early JA-responsive genes including

JAZ/TIFY genes themselves. The newly synthesized JAZ/

TIFY proteins dimerize with MYC2, restore the repression of

MYC2, and turn the pathway off (for reviews, see Chico
et al., 2008; Chung et al., 2009). They also recruit the

Groucho/Tup1-type co-repressor TOPLESS (TPL) and

TPL-related proteins (TPRs) through a Novel Interactor of

JAZ/TIFY (NINJA). NINJA acts as a transcriptional

repressor whose activity is mediated by a functional

TPL-binding EAR repression motif, and both NINJA and

TPL proteins function as negative regulators of JA responses

(Pauwels et al., 2010).
JAs are involved in plant responses to several abiotic and

biotic stresses such as wounding (mechanical stress), drought

stress, salt stress, ozone, pathogen infection, and insect

attack. In addition, JAs regulate many aspects of plant

development and growth such as seed germination, fruit

ripening, production of viable pollen, root growth, tendril

coiling, photomorphogenesis, leaf abscission, and senescence

(Creelman and Mullet, 1995, 1997a, b; Conconi et al., 1996;
Rao et al., 2000; Riemann et al., 2003; Haga and Iino, 2004;

Ma et al., 2006; Robson et al., 2010; Wang et al., 2011).

The activity of JA responses is regulated by antagonistic

cross-talk with salicylic acid (SA) signalling (for reviews, see

Lorenzo and Solano, 2005; Balbi and Devoto, 2008). SA and

its acetylated form aspirin can suppress the JA-dependent

response to wounding and pathogen or insect attack in

A. thaliana and tomato (Peña-Cortès et al., 1993; Leon-Reyes
et al., 2010). In addition to SA, inhibitors of JA biosynthesis

have been used to suppress JA-responsive genes. The redox-

active compound 1-phenylpyrazolidinone (phenidone) inhibits

the activity of lipoxygenases (LOXs) by reducing their active

form to an inactive form. This inhibits the octadecanoid

pathways at an early stage, and, thus, plant defence

(Bruinsma et al., 2010a, b).

Due to these manifold functions, JAs are considered as
a master switch for the adaptation to biotic and abiotic

factors (for a review, see Wasternack and Hause, 2003).

This leads to the central question of specificity: whether the

cellular response to biotic attack is different from the

response to abiotic stress. For instance, many plants

respond by a plant-specific form of programmed cell death

termed the hypersensitive reaction (Jones and Dangl, 2006).

This response would be meaningless in response to salt

stress. Adaptation to salt stress, in turn, was shown to

involve NHX1, the plant homologue of the yeast Na+/H+

exchanger, suggested to catalyse Na+ accumulation in

vacuoles (Gaxiola et al., 1999). In concert with other

members of this family of transporters, NHX1 plays crucial

roles in pH regulation and K+ homeostasis, regulating

processes from vesicle trafficking and cell expansion to

plant development (for a review, see Rodrı́guez-Rosales

et al., 2009). Despite this divergence of downstream

responses, biotic and abiotic stress signalling overlap during
their early stages. For instance, calcium channels activated

by mechanic stimulation (a typical indicator for wounding)

have been shown to mediate, in addition, gene activation

(MYP9, WRKY1, PR1, and PR2) through the pep-13

elicitor derived from an oomycete pathogen (Gus-Mayer

et al., 1998). In addition, changes in apoplastic pH, one of

the fastest known responses to biotic attack (Felix et al.,

1993), are also observed in response to abiotic stresses
including drought (for a review, see Felle et al., 2001).

At what point does the abiotic stress signal diverge from

defence-related signalling? Is this branching point upstream

or downstream of JA activity? To address these questions,

two grapevine cell lines that differ in their drought tolerance

were used. One line was derived from the wild North

American grape Vitis rupestris inhabiting sunny rocks and

slopes and therefore used in viticulture as a drought-
tolerant rootstock, and the other cell line was generated

from Vitis riparia, a North American species growing in

alluvial forests and therefore not adapted to drought. Using

these two systems, the role of the JA pathway for salt

tolerance was analysed. It is shown that the two cell lines

differ in their sensitivity to salt stress, correlated with

expression of grapevine JAZ/TIFY and rapid responses of

apoplastic pH. Markers for JA signalling, defence, salt
adaptation, and oxidative stress in combination with

inhibitors of JA synthesis and signalling link salt tolerance

with the activity of the JA pathway. It can be further shown

that the salt-sensitive V. riparia line can be rendered salt

tolerant by addition of exogenous JA. Early events are

shared between salt-triggered and defence-related signalling,

whereas the downstream pattern of gene expression differs,

leading to a model of a JA-dependent default pathway
triggered by salt stress that is modulated by a parallel

pathway activated by pathogen-derived factors.

Materials and methods

Cell lines and treatments

Suspension cell cultures of V. rupestris and V. riparia generated
from leaves (Seibicke, 2002) were used in this experiment. They
were cultivated in liquid medium containing 4.3 g l�1 Murashige
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and Skoog salts (Duchefa, Haarlem, The Netherlands), 30 g l�1

sucrose, 200 mg l�1 KH2PO4, 100 mg l�1 inositol, 1 mg l�1

thiamine, and 0.2 mg l�1 2,4-dichlorophenoxyacetic acid (2,4-D),
pH 5.8. Cells were subcultured weekly; 10 ml of stationary cells were
inoculated into 30 ml of fresh medium in 100 ml Erlenmeyer flasks.
The cell suspensions were incubated at 25 �C in the dark on an
orbital shaker (KS250 basic, IKA Labortechnik, Staufen, Germany)
at 150 rpm. To induce cellular responses, cultures were treated at
day 5 after subcultivation with different concentrations of sodium
chloride (NaCl) aqueous solution, (6)-jasmonic acid (JA) (Sigma-
Aldrich, Germany) dissolved in ethanol (EtOH), acetylsalicylic acid
(aspirin) (Sigma-Aldrich, Germany) dissolved in dimethylsulphoxide
(DMSO), an aqueous solution of the inhibitor 1-phenylpyrazolidi-
none (phenidone) containing 0.1% polyoxy-ethylene-orbitan
monolaurate (Tween-20) (both obtained from Sigma-Aldrich,
Germany), or Harpin elicitor [Messenger�, EDEN Bioscience
Corporation, Washington, USA; active ingredient: 3% (w/w) Harpin
protein]. Negative controls contained the corresponding concentra-
tions of solvent without the active ingredient.

Measurement and quantitative analysis of pH and PCV responses

to salt stress

pH changes were followed using a pH meter (Schott handylab, pH
12) connected to a pH electrode (Mettler Toledo, LoT403-M8-S7/
120) and recorded by a paperless recorder (VR06; MF Instuments
GmbH, Albstadt-Truchtelfingen, Germany) at 1 s intervals. Before
treatments, 2 ml of suspension cells (3–4 d after subcultivation)
were pre-adapted on an orbital shaker for ;90 min until the pH
was stable. To test the effect of salt on pH, cells were treated with
NaCl at 0, 10, 20, 30, 40, 50, 85, 120, 155, 200, and 300 mM for
1 h. To block the induction of apoplastic pH, cells were pre-treated
with different concentration of GdCl3 or water for 2 min before
the addition of salt.
The pH data were exported to Microsoft Office Excel by the

data-acquisition software Observer II_V2.35 (MF Instruments
GmbH). The data were fitted based on a Michaelis–Menten
equation with TpH50 as Vmax, EC25 as Km, and the concentration
of NaCl as [S]. TpH50 was the time required to reach 50% of the
maximal pH response. Consequently, the equation yielded Km as
an estimate for the concentration causing 25% of the maximal
response (EC25).
The packed cell volume (PCV) as a measure of growth was re-

corded in response to different concentrations of NaCl (0–200 mM)
added directly at subculture. In some experiments, JA (30 lM) was
added. The increment in PCV was used as measure of the growth
response. Each data point represents the mean from three measure-
ments collected 4 d after subcultivation.

Cloning, sequencing, and sequence analysis of JAZ/TIFY genes

Three putative full-length cDNA clones coding for the grapevine
homologues of AtJAZ1, 2, and 3 (TIFY10a, 10b, and 6b,
respectively) were isolated from V. rupestris using full-length
primers (Supplementary Table S1 available at JXB online).
A high-fidelity PCR system (Phusion� DNA Polymerase, NEB)
was used with the following PCR parameters: 30 s template initial
denaturation at 98 �C, 10 s template denaturation at 98 �C, 15 s
primer annealing at 63, 64.1, and 64.1 �C, respectively, and 40 s
primer extension at 72 �C for 35 cycles, with a final 5 min
extension step at 72 �C. The isolated sequences were compared
with the database sequence using the BLAST program (Altschul
et al., 1997). The three putative grapevine JAZ/TIFY homologues
were inserted into the pJet1.2 vector (CloneJET� PCR Cloning
Kit, Fermentas) and transformed into competent Escherichia coli
DH5a according to the manufacturer’ protocol, yielding pJet1.2
JAZ1/TIFY10a, JAZ2/TIFY10b, or JAZ3/TIFY6b that were
isolated using the Roti�-Prep Plasmid MINI (Carl Roth,
Karlsruhe, Germany) kit according to the supplier’s protocol. The
three inserts were sequenced by a commercial provider (GATC,

Konstanz, Germany) and submitted to GenBank under the accession
nos JF900329 (VrJAZ1/TIFY10a), JF900330 (VrJAZ2/TIFY10b),
and JF900331 (VrJAZ3/TIFY6b). Predicted protein sequences were
aligned and analysed using ClustalX (Jeanmougin et al., 1998), and
GeneDoc (Nicholas and Nicholas, 1997), and the tree was visualized
with the Treeview program (http://taxonomy.zoology.gla.ac.uk/rod/
rod.html).

Quantification of gene expression

Aliquots (1.5 ml) of cells collected at day 5 after subcultivation
were treated with different concentrations of NaCl (0–200 mM) for
30 min and 1 h, sedimented by low-speed centrifugation (3000
rpm; 1 min), and shock-frozen in liquid nitrogen. Samples were
homogenized with steel beads (Tissue Lyser, Qiagen/Retsch,
Germany), and total RNA extracted using the innuPREP Plant
RNA Kit (analytikjena, Jena, Germany) following the manufac-
turer’s protocol. The extracted RNA was treated with a DNA-free
DNase (Qiagen, Hildesheim, Germany) to remove potential
contamination by genomic DNA. The mRNA was transcribed
into cDNA using the M-MuLV RTase cDNA Synthesis Kit (New
England BioLabs; Frankfurt am Main, Germany) according to the
manufacturer’s instructions.
To study gene expression by reverse transcription-PCR

(RT-PCR), transcripts were amplified by PCR primers (Supple-
mentary Table S1 at JXB online) with 30 cycles of 1 min
denaturation at 94 �C, 30 s annealing at 60 �C (except with MYC2
which was at 63 �C), and 1 min synthesis at 72 �C. The PCR
products were separated by conventional agarose gel electrophore-
sis after visualization with SybrSafe (Invitrogen, Karlsruhe,
Germany). Images of the gels were recorded on a MITSUBISHI
P91D screen (Invitrogen) using a digital image acquisition system
(SafeImage, Intas, Germany). The bands of the amplificons were
quantified using the Image J software (http://rsbweb.nih.gov/ij/)
and normalized relative to elongation factor 1a as internal
standard. The results were plotted as fold increase of transcript
abundance as compared with the untreated control. For the time
course, cells were treated with 155 mM NaCl for 1, 3, and 6 h, and
then RNA was extracted. JAZ1/TIFY10a, COI1, MYC2, NHX1,
STILBENE SYNTHASE (StSy), and RESVERATROL
SYNTHASE (RS) expression was measured by RT-PCR at each
time point.
To test the effect of JA on the induction of the three putative

JAZ/TIFY genes, cells were pre-treated with 0, 10, 20, 30, 40, and
50 lM JA for 1 h or with corresponding concentrations of EtOH
as a solvent control. Alternatively, 1 mM aspirin (Peña-Cortès
et al., 1993) was added 6 h prior to addition of NaCl, and cells
were harvested 1 h later. As a solvent control, corresponding
concentrations of DMSO were added instead of aspirin. In a third
set of experiments, cells were pre-treated with 2 mM phenidone for
30 min (Bruinsma et al., 2010a) prior to addition of 155 mM NaCl
and then harvested 1, 3, and 6 h later. As a control, cells were
pre-treated with 0.1% Tween-20 as control 1 or phenidone as
control 2 for 30 min before 0 mM NaCl was added for 1 h. All
quantifications of gene expression represent the mean from at least
three independent experimental series.

Detection of oxidative burst in response to salt stress

ROS were detected under salt stress using dihydroethidium (DHE)
according to Tarpey et al. (2004). DHE detects essentially
superoxide radicals (O2

d�). In brief, 1 ml of suspension cells was
stabilized for at least 1 h in the culture shaker, and then 30 lM
DHE was added. Cells were incubated with the dye for 3–7 min in
a dark chamber, on an orbital shaker at room temperature. They
were washed three times in MS medium in a dark chamber, on an
orbital shaker at room temperature. NaCl (155 mM) was added
immediately before observing cells under a fluorescent microscope
(AxioImager Z.1, Zeiss, Jena, Germany) equipped with an
ApoTome microscope slider through the filter set 43 HE
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(excitation at 550 nm, beamsplitter at 570 nm, and emission at 605
nm) for up to 6 h.

Statistical analysis

Three biological replicates were analysed for each treatment. Mean
values and the SEM were calculated using Microsoft Excel. P-values
for differences between treatments were tested by a paired Student
t-test.

Results

Growth of the two cell lines shows differential NaCl
sensitivity

The reference system for the present study was two
grapevine cell lines from genotypes that differ in their

sensitivity to drought. The NaCl sensitivity in these two cell

lines was therefore characterized; a dose–response curve of

cell growth (monitored as the increment of PCV, DPCV)
over different concentrations of NaCl was established for

both V. rupestris and V. riparia cells (Fig. 1A). Since growth

under control conditions was higher in V. rupestris as

compared with V. riparia (18.41 ml as compared with 10.3
ml), the increment had to be normalized to the control

value. Cells were treated with 0.5–200 mM NaCl for 4 d

following the weekly subculture. At low concentrations of

NaCl (0–50 mM) the DPCV was progressively decreased. In

none of the cell lines was any significant growth observed for

concentrations of NaCl exceeding 50 mM. In the physiolog-

ically relevant dose range between 10 mM and 50 mM

NaCl, V. rupestris cells grew better than V. riparia cells. In
this dose range, the curve for V. rupestris was shifted by

a factor of ;1.5 to higher concentrations. To investigate the

role of JA in the growth rate at physiologically relevant

concentrations of NaCl, 30 lM JA was added (Fig. 1B, C). JA

in the absence of salt stress reduced growth by ;20% in both

cell lines as compared with the control. In V. rupestris,

exogenous JA did not cause significant changes in the

response to salt (Fig. 1B). However, in V. riparia, JA increased
DPCV significantly (P¼0.05) over the corresponding values

measured for salt treatment without JA supplementation

(Fig. 1C). This suggests that JA ameliorates the negative

impact of salt stress on cell growth.

NaCl induces extracellular alkalinization

Extracellular alkalinization is one of the earliest defence-

related responses (Felix et al., 1993) and was therefore used

to monitor potential differences in the response of the two

Vitis cell lines to NaCl (Fig. 2). In both cell lines, the pH

increased rapidly and culminated within 10–20 min after the

addition of NaCl, and subsequently decreased. A represen-

tative time course is shown for V. rupestris in Fig. 2A. At

higher concentrations, the maximum was reached later than
with lower concentrations. In V. rupestris, the peaks were

much more pronounced compared with V. riparia (Fig. 2B).

To characterize the difference between the two cell lines

on a quantitative level, time courses were recorded by

varying the concentration of salt. The results were fitted

using a Michaelis–Menten equation with pHmax50 (the time

when the pH response reached the half-maximum) as an

indicator of velocity. When TpH50 was plotted over the
concentration of NaCl (Fig. 2C), saturable curves were

found that could be well fitted by a Michaelis–Menten

function (R2¼0.840 for V. rupestris and R2¼0.882 for

V. riparia). From these functions, effective concentrations

(EC25, inducing 25% of the maximal response) could be

calculated to be 80 mM NaCl for V. rupestris and 122 mM

NaCl for V. riparia, respectively. This means that the

responsiveness of V. rupestris is ;1.5 times higher
compared with V. riparia, consistent with the shift of the

dose–response curves for cell growth (Fig. 1A). Since the

apoplastic alkalinization triggered by biotic stress can be

blocked by gadolinium ions (Qiao et al., 2010), the

salt-induced pH response was assessed after pre-treatment

with GdCl3. As shown in Supplementary Fig. S1 at JXB

online, 500 lM could already inhibit salt-induced alkaliniza-

tion in V. riparia. For V. rupestris, inhibition was observed at
a somewhat higher (750 lM) concentration of GdCl3.

Fig. 1. Response of cell growth to NaCl in V. rupestris and V. riparia cells. (A) Increment of packed cell volume (DPCV) as a measure of

cell growth with different concentrations of NaCl. The growth of the untreated control is defined as 100%. Values represent means and

standard errors from three measurements. (B and C) Effect of 30 lM JA on NaCl-dependent inhibition of cell growth in V. rupestris (B) or

V. riparia (C). Values represent means and standard errors from three individual experiments. The grey values represent the combinations

of the respective salt concentration with JA; arrows indicate the values obtained for the JA treatment in the absence of salt.
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Isolation and Identification of JAZ genes

Based on the available sequences of A. thaliana JAZ/TIFY

proteins, putative homologues in V. vinifera cv. ‘Pinot Noir’

were identified by a BLAST search. The phylogenetic tree

based on the 12 available JAZ/TIFY protein sequences of

A. thaliana and their nine putative JAZ/TIFY-LIKE (JAZL/

TIFYL) homologues in V. vinifera cv. ‘Pinot Noir’ (Fig. 3A)

showed five branches (I–V). Four of those contained

members from both plant species; branch III did not contain

a member from Vitis. All Vitis JAZL/TIFYL proteins

contain a putative N-terminal ZIM/tify domain, and a

putative C-terminal Jas domain as conserved domains. The

consensus sequence for the ZIM/tify and Jas domains (Fig. 3B)

was created using http://weblogo.berkeley.edu/logo.cgi. Three

of these putative JAZ/TIFYL genes were successfully cloned

from the V. rupestris cell line using RT-PCR with degenerated

primers (Supplementary Table S1 at JXB online). Alignment

of the three proteins (Fig. 3C) showed that two of those,

VrJAZ1/TIFY10a (GenBank accession no. JF900329) and

VrJAZ2/TIFY10b (GenBank accession no. JF900330) were

fairly similar and belonged to the same branch of the tree

(I, Fig. 3A), whereas the third, VrJAZ3/TIFY6b (GenBank

accession no. JF900331) was longer and belonged to a differ-

ent branch (IV, Fig. 3A). The sequences from V. rupestris

were almost identical to those from V. vinifera cv. ‘Pinot

Noir’ (only 2–3 amino acid exchanges in the variable regions

of the JAZ/TIFYL proteins).

Impact of NaCl, JA, and aspirin on the expression of
JAZ/TIFY genes

Since the three proteins (termed as JAZ1–3/TIFY10a, b, 6b

based on their homology to AtJAZ/TIFY proteins) seemed

to be the dominant members in V. rupestris cells, their

expression was investigated under salt-stress by RT-PCR

using elongation factor 1a as the internal reference for

quantification. The dose–response dependency of transcript

abundance was determined 30 min and 1 h after the
addition of NaCl. The preliminary work showed that the

expression of JAZ1/TIFY10a after 30 min was very weak in

both cell lines (Supplementary Fig. S2 at JXB online). The

results were in agreement with the expression of defence

genes under Harpin treatment (Qiao et al., 2010). In

contrast, all three genes were induced after addition of salt

for 1 h (Fig. 4A shows a representative concentration series;

Supplementary Table S2A shows the quantification) with
a peak at concentrations around 80–120 mM and a decrease

for higher salt concentrations. JAZ1/TIFY10a showed

significant (Fig. 4A) induction in V. rupestris under salt

stress as compared with V. riparia. The same was observed

for JAZ3/TIFY6b. JAZ2/TIFY10b was slightly induced by

Fig. 2. Response of apoplastic pH to NaCl in grapevine cells. (A) Representative time course for V. rupestris. (B) Dose–response curves

for the maximal pH change with salt concentration. (C) Kinetic analysis of pH responses in V. rupestris (filled squares, solid lines) and

V. riparia (open squares, dotted lines). The half-maxima of pH to increasing concentrations of NaCl were fitted by a Michaelis–Menten

function. TpH50max is defined as time to reach 50% of the maximal response.
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salt by a similar factor in both cultivars (Fig. 4A;

Supplementary Table S2A). These results show a significant

(by a factor of ;2) salt induction of JAZ1/TIFY10a and
JAZ3/TIFY6b in V. rupestris, which parallels the salt

tolerance of growth and the induction of extracellular

alkalinization.

To test whether these JAZ/TIFY genes respond to JA, cells

were treated for 1 h with different concentrations (0–50 lM)

of JA. As a solvent control, cells were treated with

a corresponding concentration of EtOH. Figure 4B shows

a representative dose series, and Supplementary Table S2B at
JXB online shows the quantification. JAZ1/TIFY10a as well

as JAZ3/TIFY6b was induced with the increase in the JA

concentration to 30 lM, with a tendency to decrease at

40 lM and 50 lM in both cell lines (Fig. 4B; Supplementary

Table S2B). JAZ2/TIFY10b was only very weakly expressed.

Both cell lines responded in a similar way; the difference in

induction observed for NaCl (Fig. 4A; Supplementary Table

S2A) was not manifest in their response to JA.

To test whether the induction of JAZ/TIFY transcripts by

salt can by suppressed by JA antagonists, cells were treated

with the same concentrations of NaCl for 1 h after
pre-treatment with 1 mM aspirin or a corresponding amount

of its solvent solution (DMSO) as a control for 6 h. The

induction of these JAZ/TIFY genes by salt treatments was

completely suppressed by pre-treatment with aspirin (Fig. 4C

shows a representative dose series; Supplementary Table S2C

at JXB online shows the quantification).

Thus, JAZ1/TIFY10a and JAZ3/TIFY6b are significantly

induced by NaCl in a concentration-dependent manner.
This induction is more pronounced in V. rupestris as

compared with V. riparia, especially in the physiologically

relevant range around 100 mM NaCl. Both JAZ/TIFY gene

transcripts are induced by JA, with the highest expression at

30 lM and without any significant difference between the

two cell lines. Aspirin can suppress the induction of JAZ/

TIFY transcripts by salt, indicating that the response of

transcription requires JA signalling.

Fig. 3. In silico analysis of Vitis JAZ/TIFY homologues. (A) Phylogenetic tree based on Neighbor-Joining (NJ) of available JAZ/TIFY

sequences from Arabidopsis thaliana and their JAZ-LIKE/TIFY-LIKE (JAZL/TIFYL) homologues in Vitis vinifera cv. ‘Pinot Noir’. NJ,

bootstrap values 0.1. (B) Consensus motifs. (C) Alignment with AtJAZ/TIFY-homologues (the sequences of Vr and Vv are almost

identical); arrows indicate amino acid differences between V. rupestris and V. vinifera cv. ‘Pinot Noir’.
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Time courses of gene induction by salt

To gain insight into the sequence of cellular events, the

expression of three marker genes for JA signalling (JAZ1/

TIFY10a, MYC2, and COI1), a marker for salt adaptation

(NHX1), and two markers of biotic defence (phytoalexin

synthesis genes StSy and RS) was measured at a concentra-

tion of 155 mM NaCl, at which concentration JAZ1/

TIFY10a was significantly expressed (Fig. 5 shows a repre-

sentative time series; Supplementary Table S3 at JXB online

shows the quantifications). In both cell lines, induction of

JAZ1/TIFY10a was clearly manifest 1 h after addition of

NaCl. However, it was significant in V. rupestris, and even

doubled during the following 2 h, declining subsequently, while

in V. riparia the induction was much weaker and did not

increase after 1 h (Fig. 5; Supplementary Table S3). In

contrast, MYC2 slightly increased after 1 h and then declined

over time in both cell lines. COI1, encoding the JA receptor,

seemed to be increased between 1 h and 3 h after addition of

salt (Fig. 5), but this response was not significant (Supplemen-

tary Table S3). In contrast, NHX1, as a marker for salt

adaptation, was clearly induced in V. rupestris from 3 h (;3-

fold at 6 h) which was not observed in V. riparia. The stilbene-

related genes StSy and RS, widely used as markers for biotic

defence in Vitis, did not respond to salt in V. riparia. However,

they were clearly induced in V. rupestris from 3 h after

addition of salt, especially RS. These results show a stronger

induction of JAZ1/TIFY10a correlated with elevated induction

of NHX1 (salt adaptation) and RS/StSy (phytoalexin, biotic

defence) in V. rupestris as compared with V. riparia.

Phenidone can inhibit the induction of JAZ1/TIFY10a
genes by salt

To investigate further whether the induction of JAZ1/

TIFY10a by salt requires JA, the synthesis of JA was blocked

by phenidone, an inhibitor of LOXs that trigger early steps

in the octadecanoid pathway. Vitis cells were pre-treated

with 2 mM phenidone for 30 min before adding 155 mM
NaCl for 1, 3, and 6 h. As a control, cells were pre-treated

with 2 mM phenidone or 0.1% Tween-20 for 30 min before

0 mM NaCl was added for 1 h (Fig. 6). Phenidone inhibited

the induction of JAZ1/TIFY10a by salt stress very efficiently,

especially in V. rupestris. Similar to the results obtained for

aspirin (Fig. 4C), this result suggests that JA signalling (more

specifically JA synthesis) is necessary to mediate the induction

of JAZ1/TIFY10a expression in response to NaCl.

NaCl induces ROS

To test for the negative impact of NaCl on Vitis cells, ROS

as an indicator of cellular stress were visualized by DHE.

DHE is a cell-permeable compound that upon entering the

cells interacts with O2
d
�, considered to be the earliest ROS

Fig. 4. Response of JAZ/TIFY genes in V. rupestris and V. riparia to different concentrations of NaCl (A) and JA (B) for 1 h, or to NaCl for

1 h after pre-treatment with aspirin (1 mM) (C) for 6 h. Elongation factor 1a (EF1-a) was used as the internal standard. One representative

example of three independent experiments is shown.
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to be generated, to form oxyethidium, which in turn

interacts with nucleic acids to emit a bright red colour

detectable as red fluorescence (Tarpey et al., 2004). The

induction of ROS species was monitored over 6 h in both

cell lines. Elevated levels of ROS were induced by salt stress
in both cultivars (Fig. 7). However, ROS induction

commenced earlier (from 1 h) and reached much higher

levels in V. riparia as compared with V. rupestris, where the

earliest indications of elevated ROS levels were not visible

before 3 h after addition of salt. Thus, the amplitude and

onset of the oxidative burst clearly behave antagonistically

to the other tested events (extracellular alkalinization,

induction of JAZ/TIFY, induction of NHX1, induction of
RS, and growth), because here the response is most

pronounced in V. riparia, but not in V. rupestris.

JAZ1/TIFY10a is induced during biotic stress

Since JA has been shown to trigger phytoalexin synthesis in

Vitis (Tassoni et al., 2005), a typical biotic stress response,

and since salt stress was found to induce RS and StSy in

V. rupestris, tests were carried out to determine whether

JAZ1/TIFY10a can be induced in the absence of salt by

triggering biotic defence. For this purpose the elicitor Harpin

that, in V. rupestris, can induce the entire programme of

defence (Qiao et al., 2010), was used. In fact, a clear

induction of JAZ1/TIFY10a (Fig. 8) could be observed to

a level similar to that observed after treatment with NaCl
(Fig. 5; Supplementary Table S3 at JXB online). Also MYC2

showed a slight induction, similar to that observed after salt

treatment (Fig. 5; Supplementary Table S3). Thus, the

primary events of biotic and salt signalling including

extracellular alkalinization, induction of JAZ1/TIFY10a,

and (slight) induction of MYC2, seem to be very similar.

Discussion

Adaptive response versus cellular damage

The following cellular events were observed in response to
salt stress (Fig. 9): extracellular alkalinization, which can be

inhibited by gadolinium ions, induction of JAZ1/TIFY10a

and JAZ3/TIFY6b, (weak) induction of MYC2 and COI1,

induction of NHX1, induction of RS, formation of ROS,

and salt tolerance monitored as an increase in PCV despite

Fig. 6. Effect of phenidone on the induction of JAZ1/TIFY10a transcripts under salt stress at different time points in V. rupestris (Rup)

and V. riparia (Rip). (A) Representative time course of transcript abundance of cells pre-treated with phenidone for 30 min in response to

155 mM NaCl for 1, 3, and 6 h. Cells were pre-treated with 0.1% Tween-20 as control 1 or phenidone as control 2 for 30 min before

0 mM NaCl was added for 1 h. (B) Time course of transcript abundance of JAZ1/TIFY10a in both cultivars relative to elongation factor 1a
(EF1-a). The data represent averages from three independent experimental series; error bars represent standard errors.

Fig. 5. Time course of induction for transcripts of JAZ1/TIFY10a, MYC2, COI1, NHX1, StSy, and RS by 155 mM NaCl in V. rupestris and

V. riparia. Elongation factor 1a (EF1-a) was used as internal standard. One representative example of three independent experiments is

shown.
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challenge by NaCl. These responses could either be adaptive

or they could merely report cellular damage caused by

NaCl.

For instance, both biotic and abiotic stress factors induce an
oxidative burst. The resulting ROS are highly destructive and

can damage DNA, proteins, lipids, and carbohydrates (for

a review, see Gill and Tuteja, 2010). On the other hand, ROS

can be important signal transduction molecules acting in stress

adaptation (for a review, see Miller et al., 2010).

To discriminate between adaptive and damage events,

two grapevine cell lines were used that were expected to

differ in their salt tolerance, because they originated from
two species with different humidity requirements. In fact,

the growth of V. rupestris cells was found to be more

tolerant to NaCl by a factor of 1.5 compared with V. riparia.

Based on this reference, adaptive responses should be more

pronounced in V. rupestris, whereas events found to be

stronger in V. riparia are likely to report damage rather

than adaptation. In fact, extracellular alkalinization was

stronger in V. rupestris. The same was true for the induction

of JAZ1/TIFY10a, JAZ3/TIFY6b, NHX1, and RS. In

contrast, generation of ROS was stronger in V. riparia,

suggesting that this oxidative burst represents a manifestation
of cellular damage rather than an adaptive response.

JA signalling is necessary and sufficient for JAZ/TIFY
induction and salt adaptation

JA signalling plays a crucial role in plant responses to biotic

and abiotic stress factors, such as wounding, drought, ozone

exposure, pathogen infection, and insect attack (for reviews,

see Wasternack, 2007; Avanci et al., 2010). The biosynthetic

and signalling pathways underlying these responses have
been intensively studied during the last decades. Recently,

JAZ/TIFY repressor proteins have been identified as key

regulators of JA signalling (Chini et al., 2007; Thines et al.,

2007). Three representatives of the Vitis JAZ/TIFY family

(Fig. 3) were therefore cloned and their expression was

Fig. 7. Effect of 155 mM NaCl on ROS induction in 5-day-old suspension cells of V. rupestris an V. riparia. Cells were stained with

dihydroethidium (DHE), which records superoxide radicals (O2
d
�). NaCl (155 mM) was added to cells pre-loaded with the dye

immediately before microscopic observation, and the signal was followed over 6 h. Size bar 20 lm.

Fig. 8. Effect of Harpin elicitor on the induction of JAZ1/TIFY10a and MYC2 transcripts in V. rupestris (Rup). Cells were treated with

9 lg ml�1 active elicitor for 1 h. The transcript abundance of JAZ1/TIFY10a and MYC2 is given relative to elongation factor 1a (EF1-a).

The data represent averages of three independent experimental series; error bars represent standard errors.
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followed under NaCl stress (Fig. 4A). A transient induction
of two JAZ/TIFY members (JAZ1/TIFY10a and JAZ3/

TIFY6b) was observed that was more pronounced in

V. rupestris (Fig. 4). In parallel, MYC2, a transcription

factor whose activity is blocked in the absence of JA-Ile by

dimerization with JAZ/TIFY proteins, is slightly elevated,

as is the JA receptor gene COI1, whose transcription is

induced in response to JAs. Since the activity of JA

signalling is primarily regulated at the post-translational
level (e.g. by proteolytic degradation of the inhibitory JAZ/

TIFY proteins), these transcript responses of JAZ1/

TIFY10a and JAZ3/TIFY6b as well as of MYC2 and COI1

are probably not directly involved in the signalling per se,

but must be interpreted as elements in the complex feedback

regulation that tunes the competence for JA signalling with

the activity of the signalling pathway (Fig. 9). Nevertheless,

these responses can be used as a readout to monitor the
activity of JA signalling.

The differential responsiveness of JAZ/TIFY in the two

cell lines could be caused either by differential activation of

JA synthesis or, alternatively, by differential JA sensitivity of

signalling. To differentiate between these two possibilities,

the cell lines were treated with exogenous JA. The applica-

tion of JA could mimick the effect of salt stress on the

induction of JAZ/TIFY transcripts (Fig. 4B), with virtually

the same response observed for both cell lines. This suggests

that the signalling evoked by JA proceeds in the same

manner and with the same intensity. Thus, the differences in

salt-induced JAZ/TIFY induction must reside upstream of

JA signalling, for instance in different levels of JA synthesis.
The salt tolerance of growth in the sensitive V. riparia line

can be rescued by exogenous JA (Fig. 1C), supporting

a model where the activation of JA synthesis probably

induces the adaptation to salt stress.

Pre-treatment with aspirin (Fig. 4C) or phenidone

(Fig. 6A, B) was able to suppress the induction of JAZ/TIFY

genes in response to salt stress, suggesting that salt-induced

JA signalling is necessary for the JAZ/TIFY response. Both
agents have been used to silence JA-dependent signalling, but

have a different mode of action (Fig. 9): SA and its

acetylated derivative, aspirin, seem to act as antagonists of

JA signalling (reviewed in Lorenzo and Solano, 2005; Balbi

and Devoto, 2008), whereas phenidone is thought to block

JA synthesis through inhibition of the LOX that converts

a-linolenic acid (Bruinsma et al., 2010a, b).

Since aspirin and phenidone inhibit JA signalling by
different modes of action, the observed suppression of

NaCl-induced induction of JAZ/TIFY transcripts is

unlikely to be caused by unspecific side effects of the two

compounds but rather by their inhibition of the JA

signalling pathway. Thus, JA signalling is necessary and

sufficient for JAZ/TIFY induction and cellular adaptation

in the context of salt stress.

Salt and defence signalling share several upstream
events

Salt signalling shares several events with biotic defence,

including apoplastic alkalinization (Fig. 2) that is sensitive
to gadolinium (Supplementary Fig. S1 at JXB online), and

transient induction of JAZ/TIFY transcripts (Figs 4, 8).

Apoplastic pH has been used to monitor rapid defence

responses upstream of gene expression (Felix et al., 1993;

Felle and Hanstein, 2002). A widely accepted model (for

a review, see Scheel, 1998) proposes that pathogen-derived

elicitors bind to a host receptor activating calcium influx.

Together with calcium, protons can permeate from the
acidic apoplast into the neutral cytoplasm (Jabs et al.,

1997). The resulting apoplastic alkalinization is therefore

a readout for the activity of the calcium channel, but does

not convey defence signalling itself (Fig. 9). The time course

of apoplastic alkalinization under salt stress differed from

that observed after Harpin elicitation. After Harpin treat-

ment, the pH increased directly, whereas, in the case of salt

stress, it first showed a transient reduction of pH before
returning to the initial level and subsequently increasing.

This transient drop in pH reduction was more pronounced

with increasing salt concentration, such that a longer time

was required to reach the initial level and to launch the pH

increase. Since the proton influx underlying apoplastic

Fig. 9. Model for the signalling induced by salt stress and biotic

stress (as induced by the Harpin elicitor) in grapevine. Csk,

cytoskeleton; hrp, Harpin elicitor; hrpR, putative Harpin receptor;

msc, putative mechanosensitive channel; DW, gradient in water

potential between the apoplast and cytoplasm triggering salt

signalling; 13-LOX, 13-lipoxygenase species triggering jasmonate

synthesis by converting a-linoleic acid (aLA); JA, jasmonate-

dependent signaling; A, a hypothetical factor required for the

activation of defence and salt adaptive genes. For details refer to

the Discussion.
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alkalinization is linked to the activity of a mechanosensitive

calcium channel (Gus-Mayer et al., 1998), it is expected to

close due to relaxation of membrane strains as a result of

plasmolytic shrinkage in the hyperosmotic solution. This

would account for the initial decrease. After activation of

the channel, a certain time is required until the initial pH is

established, such that alkalinization can become manifest.

In the V. rupestris cell line, the activation of apoplastic
alkalinization by the Harpin elicitor could be blocked by

gadolinium, a classical inhibitor of mechanosensitive

calcium channels (Qiao et al., 2010). Gadolinium sensitivity

could be confirmed also for salt-induced alkalinization

(Supplementaty Fig. S1 at JXB online), suggesting that the

same mechanosensitive calcium channel is at work. Consis-

tent with this conclusion, in self-reporting A. thaliana cells

expressing green fluorescent protein (GFP)-based pH and
Ca2+ indicators, salt and drought stress were shown to

trigger apoplastic alkalinization as well as calcium influx

(Gao et al., 2004). Activation of calcium influx is followed

by activation of JA synthesis (blocked by phenidone) and

JA signalling (blocked by aspirin), culminating in the

induction of JAZ/TIFY transcripts. All of these early events

are more pronounced in V. rupestris as compared with

V. riparia on the background of a comparable JA respon-
siveness of JA signalling (Fig. 4B). This indicates that the

difference between the two cell lines resides in the sensitivity

of osmotic sensing. Whether V. rupestris is responding more

efficiently because it harbours a higher density of mechano-

sensitive calcium channels or whether the activity of the

individual channels is elevated remains to be elucidated.

Salt and defence signalling diverge in their downstream
events

Whereas early responses of transcription to salt and Harpin

(JAZ1/TIFY10a and MYC2) showed a similar pattern

(compare Figs 5 and 8), there were clear differences in the
expression of downstream genes. For instance, transcripts

for the phytoalexin synthesis genes StSy and RS were

induced much later after salt stress (from 3 h) as compared

with a much earlier induction (;0.5 h) after Harpin

treatment (Qiao et al., 2010). Moreover, the pattern of

transcript abundance is inverted; whereas in the case of

Harpin StSy is most responsive, for salt stress it was RS

that showed the strongest induction. These differences
suggest that both kinds of stresses use separate pathways.

In addition to phytoalexin synthesis, salt stress initiates

adaptive processes, such as the synthesis of NHX1 that is

observed from 3 h in V. rupestris. NHX1 sequestrates Na+

into the vacuole and thus contributes to osmotic adjustment

by maintaining water uptake under saline conditions (for

a review, see Zhu, 2003). As a consequence of this

adaptation, cellular damage monitored by fluorescent de-
tection of superoxide radicals was clearly ameliorated in

V. rupestris as compared with V. riparia, where superoxide

radicals were dramatically increased from 2 h after the onset

of salt stress (Fig. 7). Again, this response clearly diverges

from the situation observed for biotic stress: in the

V. rupestris cell line, Harpin treatment was found to induce

a massive oxidative burst. This seems to be connected to the

oxidation of resveratrol into its highly toxic derivative

d-viniferin (Chang et al., 2011), probably involved in the

execution of hypersensitive cell death. Programmed cell

death is an efficient strategy to block a biotic intruder, but

would be completely inappropriate for salt adaptation.

When salt and biotic signalling overlap in their upstream
events (gadolinium-sensitive calcium influx accompanied by

apoplastic alkalinization and induction of JA signalling), but

differ in their downstream output (salt stress producing

induction of salt sequestration, late induction of stilbene

metabolism, predominance of RS, and suppression of the

oxidative burst; and Harpin-triggered biotic signalling

producing early induction of stilbene metabolism, predomi-

nance of StSy, and induction of the oxidative burst), there
must be a parallel pathway activated during biotic signalling

that modulates the transcriptional responses to JA signalling

(Fig. 9). A good candidate is the mitogen-activated proten

(MAP) kinase pathway, which is triggered by Harpin

independently of calcium influx (Lee et al., 2001). A simple

mechanism to switch between salt adaptation and biotic

defence would be the JA-dependent formation or activation

of a transcriptional regulator (depicted as A in Fig. 9) that is
recruited to JA-responsive genes acting in salt adaptation, but

can form a complex with the output from the biotically

triggered MAP kinase pathway and will then be recruited to

JA-responsive genes acting in biotic defence. Thus, salt signal-

ling would act as a default pathway that can be modulated by

biotic signalling towards activation of defence genes.

Supplementary data

Supplementary data are available at JXB online.

Figure S1. The effect of GdCl3 (an inhibitor of stretch-

activated ion channels) on extracellular alkalization induced
by NaCl. The cells of V. rupestris or V. riparia were pre-

incubated for 2 min with different concentrations of GdCl3
before 155 mM NaCl was added.

Figure S2. Response of JAZ1/TIFY10a genes in

V. rupestris and V. riparia to different concentrations of

NaCl for 30 min. Elongation factor 1a (EF1-a) was used as

internal standard.

Table S1. Designations, sequences, and literature
references for the oligonucleotide primers used to amplify

the marker sequences used in this study

Table S2. Dose dependency of transcript abundance for

JAZ1, 2, and 3 (TIFY10a, b, and 6b, respectively) relative

to elongation factor 1a (EF) for increasing concentrations

of NaCl (A), JA (B), or NaCl after pre-treatment with

1 mM aspirin or its solvent solution (C) in V. rupestris and

V. riparia cells.
Table S3. Time course of transcript abundance for JAZ1/

TIFY10a, MYC2, COI1, NHX1, StSy, and RS relative to

elongation factor 1a (EF). Effect of 155 mM NaCl on the

induction of JAZ1/TIFY, MYC2, COI1, NHX1, StSy, and

RS in V. rupestris and V. riparia cells.
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