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1 Introduction

Superconducting qubits as artificial atoms

Superconducting quantum circuits opened up a rapidly expanding re-

search field with new possibilities compared to experiments with natural

quantum particles such as atoms and spins [CW08]; [YN11]; [DS13]. The

key element of such circuits is the superconducting quantum bit (qubit).

It acts as artificial atom whose main properties can not only be designed

and engineered during the fabrication phase, but also be tuned dynami-

cally during the experiment. Although it is of macroscopic dimension, its

characteristics obey the laws of quantummechanics [NPT99]; [PCC+09];

[FPC+00]. For instance, the flux qubit is defined by two quantummechan-

ical states, which are characterized by oppositemacroscopic currents in a

loop having persistent currents of 1 𝜇A carried by a million pairs of elec-

trons. Still it possesses quantum behaviour manifested in the tunnelling

of the long-lived macroscopic magnetic moments [FMF+11].

Superconducting qubits are fabricated with nano-lithography technol-

ogy and can be integrated into complex electronic circuits for precise

control and measurement. These characteristics have led to the explo-

ration of light-matter interaction at the single particle level [WSB+04];

[CNH+03], verification of fundamental concepts of quantum physics

[AWB+09]; [WJP+11] and, in addition, they yield a strong application

as basic elements for a future quantum computer [GDS09]. Yet another

application for the qubit is the field of quantum simulation. Unlike a

quantum computer which implements a universal set of quantum gates,

in the quantum simulations approach specific Hamiltonians for defined

problems are experimentally realized and analysed [CZ12]; [HTK12]. For

those applications low coherence times have been a limitation for a long

time. Recent progress in both, material science [CVC+13] and microwave

engineering [PSB+11]; [RGP+12] pushed them to tens of microseconds.
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1 Introduction

All in all, it is save to say, that in the past years studieswith superconduct-

ing qubits went beyond copying text book experiments from quantum

mechanics (or quantum optics) to conquer new realms of physics, which

have not been possible to reach up to now. One very recent milestone

experiment has been the implementation of continuous quantum feed-

back control [WM93] by the demonstration of persistent Rabi oscillations

[VMS+12], only shortly after the first ever realization of continuous quan-

tum feedback [SDZ+11].

The superconducting flux qubit [MOL+99] is the fundamental element

of this thesis. It effectively is, and serves as, an artificial quantum me-

chanical two-level system. Its transition frequency can be tuned in situ

by an external magnetic field, which will be used to study the interaction

between such systems and a multi mode cavity. The two fundamental

elements, the cavity and the qubit, will be introduced in chapter 2.

Cavity Quantum Electrodynamics based on solid state physics

Coupling a single artificial two-level system to a photon field in a su-

perconducting microwave resonator (cavity) is the foundation of circuit

quantum electrodynamics (cQED), i.e. a research field studying coherent

quantum phenomena based on light-matter interaction in electrical cir-

cuits. The effective dipole moment of a superconducting qubit is several

orders of magnitude larger than the dipole moment of a natural atom.

This makes it possible to bring many-photon non-linear quantum optics

to the single photon level. Outstanding examples are the observation of

the Bloch-Siegert shift for the vacuum field of a resonator [FDLM+10] and

the implementationof aKerrmediumat the single photon level [KVL+13].

Here, a first step towards another important ubiquitousquantumeffect,

namely lasing, is taken. Lasing stands for Light Amplification by Stimu-

latedEmissionofRadiation. Interestingly, theamplificationprocessworks

even with a single atom [MBB+03], which has also been demonstrated

using a superconducting charge qubit [AIN+07]. In the latter work, the

quasiparticle bath of the superconductor serves as a third level in order

to create a population inversion, one of three fundamental requirements

for stimulated emission. This could be referred to as the active medium.

The other two requirements are a pumping process to maintain the level
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1 Introduction

inversion in the active medium and a high quality cavity to ensure that

photons are trapped long enough to pass through the cavity several times

before leaving the cavity. A flux qubit has been used to realize cooling and

amplification of a classical resonator [GPI+08]. In principle, this effect

is similar to Rabi spectroscopy [IOI+03] and in the quantum picture –

using a quantum resonator – it can be interpreted as lasing at the Rabi

frequency [HFH+08]. In that scheme the pumping is done by coherently

driving the two level system, creating a level inversion in the dressed

state basis, which may be called lasing with a hidden inversion [MC00].

For atomic systems a similar effect has been demonstrated using the

Rabi sidebands [WED+77]; [KVG88], as a transition directly at the Rabi

frequency does not occur and, in addition, its frequency is typically too

low to be accessible. Employing superconducting qubits, it is possible to

use the direct transition at the Rabi frequency [HFH+08].

In chapter 3 of the thesis, a single qubit coupled to a superconducting

high quality resonator is analysed and its level population is controlled by

microwave driving. Initially, it is fully characterized, before experiments

on the strongly driven system are presented.

Quantum metamaterials

One natural pathway for the evolution of experiments with solid state

qubits is to expand the system to many qubits. On the one hand, individ-

ually controlled qubits are used to build up quantum registers for future

quantumcomputers [FSB+11]; [LBC+12]; [JPM+12]. Realizing such quan-

tum registers requires individual readout and sophisticated control over

each qubit. On the other hand, ensembles of coupled qubit systems can

be employed to form artificial quantum materials. In this approach, the

focus lies on the observation of collective quantumphenomena [RZS+08].

In reference to the fieldofmetamaterials, a coupledqubit systemmaybe

referred to as a quantummetamaterial. Generally, metamaterials are any

kind of artificially created structures with properties either unknown in

nature ormimicking nature. They are of subwavelength scale and used to

manipulate the propagation of electro-magnetic waves [ZK12]. Resonant

structures, such as the split ring resonator, play the role of artificial atoms

and shape the effective magnetic response. Superconducting metamate-
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rials havemoved into the spotlight for their very lowohmic losses and the

possibility to tune their resonance by exploiting the non-linear Joseph-

son inductance [ROA05]; [Anl11]. One example is the implementation of

a metamaterial based on radio frequency superconducting interference

devices (RF-SQUIDs) [DCL06]; [LT07], which has recently been realized

[JBS+13]. In a similar configuration, by using DC-SQUIDS in a resonator,

amplification and squeezing of quantum noise has been demonstrated

[CBIH+08]. Today, these so-called Josephson parametric amplifiers are

widely used and have led to the observation of quantum jumps in a su-

perconducting qubit [VSS11]. Additionally, the cavities themselves can

also act as a metamaterial. There has been a recent proposal to im-

plement ideas from classical left-handed metamaterials, a left-handed

transmission line, in the realm of circuit QED [EW13].

An analogue system for quantum metamaterials as implemented here,

are spin ensembles found in nature. They have attracted renewed in-

terest, because they are the basis for one possibility of hybrid quantum

systems [XAY+13]. In such a hybrid systemdifferent quantumsystems are

combined in such a way to profit from the advantages while eliminating

the drawbacks of each individual system. One example is the combination

of natural spins and superconducting circuits. The storage of excitations

in an electron spin ensemble and its use as quantum memory has been

demonstrated [SSG+10]; [WGW+10]. Another future application of hy-

brid systems might be as an interface between microwave and optical

frequencies, as offered by the use of Erbium [BFR+11].

One of the clear advantages of natural spin systems compared to ar-

tificial qubit materials is that they consist of identical atoms. Although

this might appear trivial from the point of view of atomic systems, it is

challenging for superconducting qubits. The properties of each qubit

strongly depend on the fabrication parameters. In a linear qubit chain,

which relies on nearest-neighbour interaction, a single off-resonant qubit

may act as defect and may therefore destroy the collective modes. This

can be circumvented by using a cavity as coupling element between the

qubits. By carefully designing the coupling of the qubits to the cavity it

is possible to make only multi-qubit resonances visible. In chapter 4, the

realization of such an experiment with 20 superconducting flux qubits

embedded into a single microwave resonator is reported. The phase of
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the signal transmitted through the resonator reveals the resonant cou-

pling of up to 8 qubits. Quantum systems based on this proof-of-principle

experiment of many coupled artificial atoms with tunable parameters

offer wide prospects: From the realization of a single photon detector

in the microwave regime [RGRS09], over phase switching [Tia10] to the

observation of a superradiant phase transition [LCJ+09].
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2 Fundamentals

This thesis deals with the interaction between artificial atoms and photons.

Here, the building blocks will be introduced. In particular, these are the flux

qubit, and the interaction between a resonator and the flux qubit.

There are a lot of different implementations of superconducting qubits.

Currently, themost spread version of superconducting qubits is the so-called

transmon [KYG+07], and with one of the biggest groups moving from

phase qubits to transmons [BKM+13], it is dominating the research field

by far. However, the flux qubit features important advantages for certain

applications. For example, its highanharmonicity allows to drive the system

very strongly while the two-level approximation is still valid. This will be

of importance in chapter 3, where Rabi frequencies up to several GHz are

realized. Furthermore, the flux qubit's small size is of advantage for the

experiment described and analysed in chapter 4. There, many qubits are

embedded into a single cavity and their small size makes it possible to

couple them uniformly to the cavity.

In the first section 2.1 of the current chapter the properties of the flux

qubit are introduced, whereas the second section 2.2 discusses the cavity

and its interaction with the qubits.

2.1 The flux qubit

The flux qubit or persistent current qubit is one of three fundamental

realizations of superconducting qubits. All of them rely on the integration

of one or more Josephson junctions into a superconducting circuit. The

junctions serve as non-linear dissipation less inductance, which is shown

in subsection 2.1.1. Together with the remaining circuit a non-linear

quantum oscillator is formed. The properties of this oscillator and its

quantummechanicalnaturearediscussed in2.1.2. Whentheenergyspace
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2 Fundamentals

is truncated to the first two levels, which is justified by the anharmonicity,

the systembecomesaquantummechanical two-level system, hencequbit.

The properties of this qubit can be controlled by static magnetic and

electric fields as well as by microwave radiation. Different coupling

mechanismsof qubits are reviewed in subsection2.1.3. Of special interest

is how strong such interactions can get without significantly altering the

properties of the coupled system when compared to a single qubit.

2.1.1 Superconductivity and Josephson junctions

More than 100 years ago Helium was liquefied for the first time by

Kamerlingh Onnes. This event led to the important follow up discovery

that the resistanceofmercury vanishesbelowa critical temperatureof 4.2

K, which opened up the field of superconductivity. The newly discovered

phase was described phenomenologically by a vanishing resistance for

electric current and a complete screening of external magnetic field. The

theory of John Bardeen, Leon N. Cooper and John R. Schrieffer explained

superconductivity by an attractive interaction between two electrons

mediated by phonons. These so-called Cooper pairs condense into a

single state at temperatures well below the critical temperature. The

observation of flux quantization inclined that copper pairs are indeed

responsible for the effect of superconductivity. The fluxΦ resulting from

a superconducting current running in a closed loop is a whole–number

multiple𝑛 of the flux quantumΦ􀇅 =
􀉬

􀇇􀉩
. Following Feynman [FLS71], this

phenomenonis intuitivelyexplainedbythe ideaofacommongroundstate.

The common phase of the superconducting state Ψ(𝑟, 𝑡) = √𝜌𝑒
􀊻􀈑(􀉶,􀉸) is

denoted byΘ and 𝜌 is the Cooper pair density. Because the wave function

is single valued the change of the phase over a closed path is an integer

multipleof2𝜋. TheLondonequation
ℏ

􀉵
𝛁Θ = 𝐀 links the fluxandthephase.

Here, 𝐀 is the vector potential of the electromagnetic field threading the

loop with area 𝑂 and the carrying charge 𝑞 of superconductivity. Finally,

using Stokes theorem and rewriting fluxΦ yields

Φ = ∫
􀉙

𝐁𝑑𝐅 = ∫
􀉙

𝛁 × 𝐀𝑑𝐅 = ∮
􀊲􀉙

𝐀𝑑𝐬 = ∮
􀊲􀉙

ℏ

𝑞
𝛁Θ𝑑𝐬 =

ℎ

𝑞
⋅ 𝑁 , (2.1)
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2.1 The flux qubit

where ℏ/𝑞 is the flux quantum with 𝑞 = 2𝑒 and 𝑁 an integer. The

flux quantization will be of use later for the construction of the energy

potential of the flux qubit.

When two superconductors are separated by a weak link, which can be

an insulator forming a tunnel barrier, even in the absence of a voltage a

current is flowing with

𝐼 = 𝐼􀉧𝑠𝑖𝑛(𝜙) , (2.2)

where 𝐼􀉧 is the critical current of the contact and 𝜙 the phase difference

between the wave functions of the bosonic mode left and right of the

contact. Such a superconductor-insulator-superconductor (SIS) contact

is called a Josephson junction. The critical current is proportional to the

area of the junction and to the critical current density 𝐽􀉧 , which generally

depends on the electrodematerial and the type of the barrier. It decreases

with the thickness ℎ of the barrier as 𝑒􀇐􀉬, and for Al-AlO-Al junctionswith

the oxidation time 𝑡 for the barrier as 𝑒􀇐􀉸. For junction calibration

proposes the critical current can be estimated from the normal state

resistance 𝑅􀉘 with 𝐼􀉧 ≈ Δ/𝑅􀉘 [AB63]. In addition to the first Josephson

relation (2.2), the second Josephson relation connects the time evolution

of the phase with the voltage across the junction as

𝑉 =
ℏ

2𝑒

𝑑𝜙

𝑑𝑡
. (2.3)

By combining Equation (2.2) and Equation (2.3) in Farady's law 𝑉 =

−𝐿􀉔𝜕􀉸𝐼, the junction's inductance is obtained as

𝐿􀉔 =
Φ􀇅

2𝜋𝐼􀉧 cos𝜙
. (2.4)

If the subgap resistance is negligible, the current flow through the

junction is basically dissipation-less. Therefore, the junction can be

interpreted as a lossless non-linear inductance. The energy stored in the

junction is obtained by ∫ 𝑉(𝑡)𝐼(𝑡)𝑑𝑡, which yields

𝑈 = 𝐸􀉔 ⋅ (1 − cos𝜙) , (2.5)
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2 Fundamentals

where the Josephson energy is 𝐸􀉔 =
ℏ􀉓􀍟

􀇇􀇴
. Furthermore, the junction

forms a parallel plate capacitor with capacitance 𝐶, which results into the

electrostatic energy

𝑇􀉍 =
𝑄􀇇

2𝐶
= 𝐸􀉍𝑁

􀇇
􀉍 , (2.6)

where 𝐸􀉧 =
􀇉􀉩􀊿

􀇇􀉍
corresponds to the Coulomb energy of a single Cooper

pair stored on the capacitor. 𝑁􀉧 is the difference in number of pairs stored

on either side of the junction.

2.1.2 From classical physics to quantum physics

For the experiments conducted in chapters 3 and 4, a three-junction flux

qubit [MOL+99] is employed. It consists of a superconducting loop with

three embedded Josephson junctions. One of them is by a factor of 𝛼

smaller than the other two. The flux quantization imposes the following

condition for the phase differences 𝜙􀉭 across junction 𝑖:

∑

􀉭

𝜙􀉭 + 2𝜋𝑓 = 2𝜋𝑁 , (2.7)

where𝑓 = Φ/Φ􀇅 is themagnetic frustrationof the loopand𝑁 corresponds

to the number of flux quanta trapped in the loop. Please note, that the

frustration in the experimental part of the thesis refers to the detuning

from half a flux quantum, 𝑓̃ = Φ − Φ􀇅/2.

Usingcondition(2.7)andsummingupover the Josephsonenergystored

in each junction, described by Equation (2.5), the potential energy of the

circuit reads

𝑈

𝐸􀉮
= 2 + 𝛼 − cos𝜙􀇆 − 𝑐𝑜𝑠𝜙􀇇 − 𝛼𝑐𝑜𝑠(2𝜋𝑓 − 𝜙􀇆 − 𝜙􀇇) , (2.8)

where 𝐸􀉮 is the Josephson energy of one of the large junctions. The self

inductance of the qubit loop resulting from its geometric inductance is

assumed to be negligible compared to the Josephson inductance. For an

elaborate discussion on the matter refer to [Bri05].

To include the dynamics of the system, the kinetic energy of the system

mustbe taken intoaccount. It arrives fromthechargesstoredonthe island

10



2.1 The flux qubit

between the Josephson junctions and results from the time derivatives of

the phases as [OMT+99]

𝑇 =
1

2
(
Φ􀇅

2𝜋
)

􀇇

( ̇𝜙􀇆 ̇𝜙􀇇) ⋅ 𝐂 ⋅ (
̇𝜙􀇆
̇𝜙􀇇
) . (2.9)

The capacitance matrix 𝐂 is diagonalized by the transformation to the

phase differences 𝜙􀉴 = 𝜙􀇆 + 𝜙􀇇 and 𝜙􀉱 = 𝜙􀇆 − 𝜙􀇇.

The potential energy for the new coordinates reads

𝑈􀉴􀉱

𝐸􀉮
= 2 + 𝛼 − 2 cos(𝜙􀉴/2)𝑐𝑜𝑠(𝜙􀉱/2) − 𝛼𝑐𝑜𝑠(2𝜋𝑓 − 𝜙􀉴) . (2.10)

The potential is shown in Figure 2.1. Along the axis 𝜙􀉴 it forms an

effective one-dimensional double well potential, which is well separated

from neighbouring wells for 𝛼 in the range [0.5, 1]. The barrier hight 𝐸􀉌
depends on 𝛼 and decreases with decreasing 𝛼. For 𝛼 < 0.5 the barrier

vanishes completely. For 𝛼 > 1 the potential barriers between different

unit cells have the same height and the systembecomes two-dimensional.

The two minima correspond to two classical states of opposite circu-

lating currents. The magnitude of the current, the so-called persistent

current, is found to be [MOL+99]

𝐼􀇥 = ±𝐼􀉧√1 −
1

4𝛼􀇇
. (2.11)

A typical persistent current of 0.5 𝜇A is generated by roughly 10􀇋

Cooper pairs. The difference between the two current states is 0.01Φ􀇅 in

magnetic flux or 10􀇋 Bohr magnetons, which makes the flux qubit a truly

macroscopic system. For a particle whosemass relates to the capacitance

of the junctions in one of the two minima, the barrier 𝐸􀉌 is classically

impenetrable. However, quantum mechanically, it is allowed to tunnel

through the barrier with a certain probability.

The flux qubit works in the regime 𝐸􀉔 > 𝐸􀉍 , where the phase is well

defined. Therefore, the Hamiltonian can be derived from the classical

11
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Figure 2.1: The potential landscape of the flux qubit according to Equation (2.10)

for 𝑓 = 0.5 and 𝛼 = 0.8. The z-axis represents 𝑈􀉴􀉱/𝐸􀉮. Along the axis Φ􀉴 an

effectively one-dimensional double well potential is formed. The two minima

correspond to clockwise and counter-clockwise circulating persistent currents in

the qubit loop. The lowered double well potential (black solid line) is for𝛼 = 0.7.

The black dashed line indicates the tilted potential for a frustration 𝑓 = 0.51.
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2.1 The flux qubit

equation ofmotion, the Lagrangianℒ = 𝑇−𝑈, by considering the classical

phases and their conjugate momenta as operators [OMT+99]. It reads

𝐻 =
𝑃􀇇􀉴

2𝑀􀉴

+
𝑃􀇇􀉱

2𝑀􀉱

+

2 + 𝛼 − 2 cos(𝜙􀉴/2)𝑐𝑜𝑠(𝜙􀉱/2) − 𝛼𝑐𝑜𝑠(2𝜋𝑓 − 𝜙􀉴) ,

(2.12)

with the masses 𝑀􀉴 = 2𝐶(Φ􀇅/2𝜋)
􀇇 and 𝑀􀉱 = 2𝐶(1 + 2𝛼)(Φ􀇅/2𝜋)

􀇇,

and the momentum operators 𝑃􀉴,􀉱 = −ℏ𝜕/𝜕𝜙􀉴,􀉱.

The Hamiltonian (2.12) can be solved numerically. However, the tunnel

rate between the wells can be also estimated using a tight-binding model

[OMT+99]. At a frustration of 𝑓 = 0.5 it yields [FD10]

Δ/2𝜋 ≈
2𝐸􀉔

√𝛼𝐸􀉮/𝐸􀉍
𝑒􀇐􀇅.􀇆􀇊√􀇉􀊙(􀇆􀇏􀇇􀊙)􀉏􀍌/􀉏􀍅 . (2.13)

The tunnel rate Δ depends exponentially on the design parameters which

makes the fabrication of identical flux qubits challenging. This rate

corresponds to the Larmor frequency of the classical persistent current

states, which oscillate as 𝑃(𝑡) = (1 + cos (2𝜋Δ𝑡))/2 (see Figure 2.2).

Asmentioned before, the lowest two states can be treated as a two-level

system, where the Hamiltonian in the persistent current basis {↓, ↑} reads

𝐻̃􀉵 = ℏ
1

2
𝜖𝜎􀉾 + ℏ

1

2
Δ𝜎􀉼 , (2.14)

where 𝜎􀉾 = | ↑⟩⟨↑ | − | ↓⟩⟨↓ |, and 𝜎􀉼 = | ↑⟩⟨↓ | + | ↑⟩⟨↓ |. The energy bias

𝜖 is related to the frustration and corresponds to tilting the double well

potential

𝜖 = 2𝐼􀇿 (Φ −
Φ􀇅

2
) /ℏ , (2.15)

where 𝑓̃ = Φ −
􀈞􀊽

􀇇
corresponds to the frustration used in the remainder

of the thesis. After diagonalization of 𝐻̃􀉵 , the qubit in its energy basis

{|𝑔⟩, |𝑒⟩} is expressed by the Hamiltonian

𝐻􀉵 =
ℏ𝜔􀉵

2
𝜎􀉾 , (2.16)
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Figure 2.2: Experimental observation of the oscillations between clockwise and

counter-clockwise persistent currents for (a) Δ/2𝜋 = 200 MHz and (b) Δ/2𝜋 =

180MHz. The solid lines show fits to the damped oscillations 𝑃(𝑡) ⋅ exp (−𝑡/𝑇􀇇)

with 𝑇􀇇 = 62 ns and 𝑇􀇇 = 34 ns, respectively. The coupling Δ decreases

with increasing barrier. At a certain point the oscillation period approaches

the dephasing time, thus showing the border between quantum and classical

regime. A further increase of the barrier leads to a total destruction of the

quantum phase between the persistent current states. As a consequence, the

system is no longer regarded as quantum [FMF+11].
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2.1 The flux qubit

a) b) c) d) e)

Figure 2.3: Various possibilities to couple flux qubits: (a) via geometric induc-

tance, (b) with additional kinetic inductance over a shared line and (c) with

additional Josephson inductance over a shared Josephson contact. All those

designs feature anti-ferromagnetic coupling. The coupling can be made ferro-

magnetic by using the Josephson contact to effectively twist the lines (d) and

tunable using a coupler loop (e).

where𝜎􀉾 = |𝑒⟩⟨𝑒|−|𝑔⟩⟨𝑔|. The energy states are symmetric and antisym-

metric superpositions of the persistent current states. In the symmetry

point they are equal superpositions, whereas away from the symmetry

point the ground state and excited state of the qubit correspond to one of

the classical states.

The qubit frequency 𝜔􀉵/2𝜋 is set by

𝜔􀉵 = √Δ
􀇇 + 𝜖􀇇 . (2.17)

Such, thespectrumof theartificial two-level systemfollowsahyperbolic

dependence on the magnetic frustration of the qubit loop.

2.1.3 Coupled qubits

Different coupling mechanisms

Flux qubits can be coupled straightforwardly by placing them next to

each other. In the simplest configuration they couple through the geo-

metric mutual inductance 𝑀􀇶􀇴􀇾 of their loops (see Figure 2.3 (a)). The

qubit senses the magnetic flux generated from its neighbour effectively

changing its energy bias and vice versa, thus the coupling type of such

an arrangement is 𝜎􀉾𝜎􀉾. Therefore, the interaction Hamiltonian between

qubit 𝑖 and 𝑗 reads 𝐻
􀉭􀉮
􀉵􀉵 = 𝑔

􀉭􀉮
􀉵􀉵𝜎

􀉭
􀉾𝜎

􀉮
􀉾 . The current in each qubit screens

the external magnetic flux. When the currents flow in the same direction,

the neighbouring qubits have to screen less external flux. If the circu-

lating currents had opposite directions, they would work against each

15
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other, hence an anti-parallel orientation of the qubit fluxes is favoured.

Consequently, the sign of the coupling energy 𝑔
􀉭􀉮
􀉵􀉵 = ±𝑀􀉵􀉵𝐼

􀉭
􀉴𝐼

􀉮
􀉴 is positive

corresponding to anti-ferromagnetic coupling.

Through different geometries varying types of coupling can be realized

[Paa09]. For instance, ferromagnetic coupling is obtained by twisting

the lines of the qubit loops (see Figure 2.3 (d)) [GIP+05]. Here, it is

favourable for the currents to flow through the junction in the same

direction, such leading to a parallel orientation of the qubit fluxes. The

coupling strength can be significantly increased by sharing arms between

the qubits, increasing the mutual inductance by the kinetic inductance

(see Figure 2.3 (b)) and even further by placing an additional Josephson

junction on the coupling line (see Figure 2.3 (c)). By using the Josephson

inductance a remarkable qubit-qubit coupling of about 21 GHz has been

demonstrated. The coupling in this system exceeds the level splitting by

two orders of magnitude [GIP+05].

The coupling strength and type can also be modulated in situ using

tunable couplers (see Figure 2.3 (e)). In this case the mutual inductance

is provided by a coupling loop with embedded Josephson junctions. The

inductance of this coupling loop depends on the Josephson inductance

𝐸􀉮 , which can be tuned by an external magnetic field. A crossover from

anti-ferromagnetic to ferromagnetic coupling has been demonstrated in

suchasystem[PIB+07].Spectroscopyof thetunableavoided levelcrossing

between two qubits has also been shown [HRP+06].

Weakly coupled qubit chains

In the following, a system of 𝑛 qubits in anti-ferromagnetic configuration

is analyzed. The Hamiltonian for 𝑛 coupled qubits in the flux basis {↓, ↑}

reads:

𝐻 =

􀉲

∑

􀉭􀇑􀇆

𝐻̃􀉭
􀉵 +

􀉲

∑

􀉭􀉅􀉮

𝐻
􀉭􀉮
􀉵􀉵 =

􀉲

∑

􀉭􀇑􀇆

ℏ
1

2
(𝜖􀉭𝜎

􀉭
􀉾 + Δ􀉭𝜎

􀉭
􀉼) +

􀉲

∑

􀉭􀉅􀉮

ℏ𝑔
􀉭􀉮
􀉵􀉵𝜎

􀉭
􀉾𝜎

􀉮
􀉾 . (2.18)

The first sum contains the contributions from the individual qubits and

the second the interaction between nearest neighbours. In absence of

the tunnel splitting Δ􀉭 the system corresponds to a classical Ising chain
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2.1 The flux qubit

[Paa09]. In order to study Hamiltonian (2.18), its spectrum is analysed

numerically for different numbers of qubits 𝑛 and positive coupling 𝑔
􀉭􀉮
􀉵􀉵 .

First, a system of two coupled flux qubits is studied. The Hamiltonian

(2.18) has four eigenstates which can be described by superpositions of

the triplet states | ↓↓⟩, 1/√(2)(| ↑↓⟩ + | ↓↑⟩), | ↑↑⟩ and the singlet state

1/√(2)(| ↑↓⟩−| ↓↑⟩) [SW03]. For veryweak coupling, the first and second

excited states of the coupled system are effectively degenerate at all times

(see Figure 2.4 (a)). Therefore, there is no difference from the excitation

spectrum of a single qubit. Even when one qubit is already excited, the

transition frequency in order to excite the second one is identical to the

first. Once the coupling is increased, it can be seen, that the coupling

reduces the energy of the antiferromagnetic states and that the state

1/√(2)(| ↑↓⟩ − | ↓↑⟩), i.e. the one with lower energy, is independent on

the energy bias 𝜖 (see Figure 2.4 (b)) [MPH+05]. Consequently, the energy

of the first excited state is lowered (see Figure 2.4 (c)) compared to a

single qubit. The effect of the coupling is strongest in the symmetry point.

There, for a strongly coupled system, the transition frequencies to the

second and third excited states are no longer identical to the transition

frequencyof the first excitedstate. Hence, thesystembecomesaneffective

4 level system. Assuming qubit linewidths of tens of MHz, the coupling

between the qubits becomes relevant when 𝑔􀉵􀉵 ≫ 0.01 ⋅ Δ.

Next, the spectrum is analysed for a systemwith coupling𝑔
􀉭􀉮
􀉵􀉵 = 0.01⋅Δ

and an increasing number of qubits 𝑛 (see Figure 2.5). The spectrum of

a system of 6 coupled qubits is shown in Figure 2.5 (a). The number of

eigenstates increases with 2􀉲, which results in the appearance of band

like structures. Thewidth of the bands corresponds approximately to the

coupling strength. However, the difference in the transition frequencies

between the excited states is again small (see Figure 2.5 (b)). Therefore,

the system behaves just like an ensemble of uncoupled qubits. This

still holds while increasing the number of qubits 𝑛, where the transition

frequency of the first excited state is slightly reduced compared to the

single qubit case (see Figure 2.5 (c)).

For a in-depth discussion of strongly coupled qubit chains refer to

[Paa09].
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Figure 2.4: (a) The spectrum of two weakly coupled flux qubits 𝑔
􀉭􀉮
􀉵􀉵 = 0.001 ⋅ Δ.

The first and second excited state of the system are effectively degenerated. (b)

Two qubits with a coupling of 𝑔
􀉭􀉮
􀉵􀉵 = 0.6 ⋅ Δ. Now, the degeneracy is lifted.

(c) The transition frequency between ground state and first excited state 𝐸􀇅􀇆 in

dependence on the qubit-qubit coupling.
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Figure 2.5: (a) The energy spectrum for a system of 6 coupled qubits with a

coupling of𝑔􀉵􀉵 = 0.01⋅Δ. An energy-band like level structure is visible, however,

the bands are only of the order of the coupling and therefore quite small. (b) The

degeneracy between the excited states is lifted, (c) which leads to a decreasing

transition frequency 𝐸􀇅􀇆 with the number of qubits 𝑛.
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2.2 Atoms and photons

Whereas it was a long time goal of cavity QED to couple the photon field

of a cavity with a single atom, it was the starting point for circuit QED.

This thesis is a first step towards further increasing the number of atoms,

trying to break the dominating bottom-up approach regarding scalability

of the field.

A superconducting qubit was analysed by the means of measuring a

resonator for the first time by using the impedance measurement tech-

nique [IOI+03]. This approach relies on a high-quality resonator whose

impedance is disturbed by the system to be analysed. Here, the system

coupled to the resonator changes its effective inductance, thus leading to

a shift of its resonance frequency. The resonator was formed by an LC

circuit with a resonance frequency in the radio-frequency domain (of the

order of MHz). Even atmillikelvin temperatures such a resonator will not

reach its ground state, as the energy of a single photon 𝐸􀉴 = 𝑘􀇗1 mK is

much less than the thermal noise from the environment. Therefore, the

resonator acts as a classical field. When higher frequencies are used, the

groundstateof thecavitycanbereached, i.e. experimentsatsingle-photon

levels are realized [WSB+04]. The two limiting cases of cavity QED are the

weak coupling limit and the strong coupling limit. The strong coupling

regime of cavity QED is reached, when the coherent coupling constant

𝑔 exceeds the dissipation of the system [RBH01], 𝑔 > [Γ, 𝜅], where Γ is

the dephasing of the atoms and 𝜅 the photon loss rate of the cavity. For

an optical cavity it was realized using the collective coupling [RTB+89].

The strong coupling regime between a transmission line resonator and

a flux qubit was demonstrated in 2008 [AAN+08]. Recent experiments

study effects which go beyond the physics described within the rotating

wave approximation (RWA) in the so-called ultra strong coupling regime

[BGA+09]; [NDH+10]. For instance, the counter-rotating terms produce a

shift proportional to 𝑔􀇇/(𝑤􀉵 +𝑤􀉶), the Bloch Siegert Shift [BS40], which

was observed in a system of a flux qubit and a lumped-element resonator

at single photon level [FDLM+10]. For higher photon numbers a similar

shift can be observed at a somewhat lower coupling [TSS+10].

This work studies systems close to the weak coupling limit, focusing

on the interaction of photons and either a single qubit (see chapter 3)
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or many qubits (see chapter 4). The model describing 𝑛 mutually non-

interacting qubits coupled to a photonic field is introduced in subsection

2.2.1. Subsequently, the system is analysedusinga semiclassical approach

(see subsection 2.2.2) in the resonant regime (see subsection 2.2.3). The

section concludes with a brief discussion of the dispersive regime (see

subsection 2.2.4).

2.2.1 The Tavis-Cummings model

The Tavis-Cummings Hamiltonian was named byMichael Tavis and Fred-

erickW.Cummingswhosolved itdirectly in resonance [TC68]. It describes

𝑛mutually non-interacting qubits coupled to a bosonic mode.

The photon field in the resonator is characterized by the creation and

annihilation operators𝑎􀉂 and𝑎. By neglecting the diagonal coupling term

to the resonator, which is proportional to 𝜎􀉾, as well as the non-resonant

terms (𝑎􀉂𝜎􀇏 and 𝑎𝜎􀇐), where 𝜎± = (𝜎􀉼 ± 𝑖𝜎􀉽)/2, the Tavis-Cummings

model reads [TC68]

𝐻 = ℏ𝜔􀉶𝑎
􀉂𝑎 +

􀉲

∑

􀉮􀇑􀇆

(
ℏ𝜔􀉵,􀉮

2
𝜎
􀉮
􀉾 + ℏ𝑔􀊳,􀉮(𝜎

􀉮
􀇏𝑎 + 𝜎

􀉮
􀇐𝑎

􀉂)) , (2.19)

where

𝑔􀊳,􀉮 = 𝑔
Δ􀉮

𝜔􀉵,􀉮
(2.20)

is the transversal coupling strength between qubit 𝑗 and the resonator.

Until now, it has been be diagonalized for up to 3 atoms. However, the

total number of excitations 𝑛􀉸􀉳􀉸 commutes with the Hamiltonian (2.19),

which allows the diagonalizationwithin themanifold of a constant excita-

tion number [Bre09]. Such, the Hamiltonian can be analysed in the single

excitation basis {|0𝑔𝑔𝑔…⟩, |1𝑔𝑔𝑔…⟩, |0𝑒𝑔𝑔…⟩, |0𝑔𝑒𝑔…⟩, |0𝑔𝑔𝑒…⟩, … , }.

Assuming identical qubits, the diagonalization results in two eigenstates,

which are coherent superpositions of the basis states with the eigenen-

ergies of [Bre09]

𝐸± = ℏ
𝜔􀉶 + 𝜔􀉵

2
±
1

2
√(𝜔􀉶 − 𝜔􀉵)

􀇇 + 4𝑔􀇇􀊳𝑛 . (2.21)
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Interestingly, thesecorrespondtotheeigenstatesof theJaynes-Cummings

Hamiltonian, which describes the interaction of a single atomand a cavity,

where𝑛 corresponds to the number of photons𝑁 [BHW+04].When𝑛 = 1

and𝑁 = 0, the eigenstates of the Tavis-Cummings and Jaynes-Cummings

Hamiltonians are identical. Here, the separation between the two states

in resonance 𝜔􀉶 − 𝜔􀉵 = 0 scales with the number of atoms √𝑛, which is

referred to as collectively enhanced coupling.

In order to describe the experiments, a driving field is necessary which

accounts for the probe signal with frequency𝜔􀉨/2𝜋 and driving strength

𝑓. The driving term ℏ𝑓 cos(𝜔􀉨𝑡)(𝑎 + 𝑎
􀉂) is added to Hamiltonian (2.19).

Subsequently, the Tavis-Cummings Hamiltonian (2.19) is transformed in

the rotating frame of the driving frequency 𝜔􀉎/2𝜋 by using the unitary

operator

𝑈 = 𝑒
􀉭􀊱􀍠(􀉥

􀌺􀉥􀇏
􀊾

􀊿
∑
􀍪
􀍥 􀊪

􀍥
􀍶)􀉸 . (2.22)

The new Hamiltonian follows from 𝐻 = 𝑈􀉂𝐻𝑈 − ℏ𝜔􀉨(𝑎
􀉂𝑎) +

􀇆

􀇇
∑
􀉲
􀉭 𝜎

􀉭
􀉾

as

𝐻̃ = ℏ𝛿􀉶􀉨𝑎
􀉂𝑎 +

􀉲

∑

􀉮􀇑􀇆

(
ℏ𝛿

2
𝜎
􀉮
􀉾 + ℏ𝑔􀊳,􀉮(𝜎

􀉮
􀇏𝑎 + 𝜎

􀉮
􀇐𝑎

􀉂)) −
ℏ𝑓

2
(𝑎 + 𝑎􀉂) ,

(2.23)

where the detunings 𝛿􀉶􀉨 = 𝜔􀉶 − 𝜔􀉨 and 𝛿 = 𝜔􀉵,􀉮 − 𝜔􀉨 are introduced.

In order to account for the coherence of the system, the Markovian

Master equation, the equation of motion for the density matrix 𝜌,

𝜌̇ =
1

𝑖ℏ
[𝐻̃, 𝜌] + 𝐿 [𝜌] , (2.24)

is introduced, where the dissipative Lindblad term𝐿 = 𝐿􀉶+𝐿􀉵 presents

the photon loss with rate 𝜅 of the resonator (𝐿􀉶) as well as the relaxation

Γ⇓ anddephasingΓ􀊮 of thequbit (𝐿􀉵). The steady state solutions 𝜌̇ = 0 can

benumerically calculated. Itwas shown that the full-quantummechanical

treatment gives the same results as the semiclassical treatment [Rei12].

The semiclassical ansatz allows for an analytical solution. Therefore,

the main results of the thesis will be analysed using the semiclassical

treatment, which is discussed in the following subsection.
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2.2.2 Semiclassical treatment

The time evolutions of the expectation values of 𝑎 and 𝜎􀇐 are [Rei12]

⟨𝑎̇⟩ = −(𝑖𝛿􀉶􀉨 +
𝜅

2
) ⟨𝑎⟩ −

􀉲

∑

􀉮􀇑􀇆

𝑖𝑔 ⟨𝜎􀉮􀇐⟩ +
𝑖𝑓

2
, (2.25)

⟨𝜎̇􀉮􀇐⟩ = − (𝑖𝛿 + Γ􀊮) ⟨𝜎
􀉮
􀇐⟩ + 𝑖𝑔 ⟨𝜎

􀉮
􀉾𝑎⟩ . (2.26)

It is assumed that all average values factorize, e.g. ⟨𝜎
􀉮
􀉾𝑎⟩ = ⟨𝜎

􀉭
􀉾⟩⟨𝑎⟩. For

aweakly driven system follows ⟨𝜎􀉭􀉾𝑎⟩ = −⟨𝑎⟩, whichmeans that the atoms

are not excited by the drive signal and remain in their ground states.

Such, 𝜎􀉮􀇐 in Equation (2.25) can be replaced for the steady case 𝜎̇􀉮􀇐 from

Equation (2.26) and the equation of motion for ⟨𝑎⟩ follows

⟨𝑎̇⟩ = (−(𝑖𝛿􀉨􀉶 +
𝜅

2
) +

􀉲

∑

􀉭􀇑􀇆

𝑔􀇇􀊳

Γ􀊮 + 𝑖𝛿
) ⟨𝑎⟩ +

𝑖𝑓

2
. (2.27)

In the case of a steady state ⟨𝑎̇⟩ = 0 for a system driven directly at the

resonance frequency of the resonator 𝛿􀉨􀉶 = 0 follows

0 = (
𝜅

2
−

􀉲

∑

􀉮􀇑􀇆

𝑔􀇇􀊳

Γ􀊮 + 𝑖𝛿
) ⟨𝑎⟩ +

𝑖𝑓

2
. (2.28)

From now on, the detuning 𝛿 refers to the detuning between qubit

and resonator frequency. In the case of 𝑛 identical qubits in Equation

(2.28) the sum can be replaced by a product. This leads to an analytically

solvable equation for ⟨𝑎⟩. The observable measured in the experiment

corresponds to the expectation value of ⟨𝑎⟩. Later on, the phase of the

measured signal will be analysed, which can be found as

tan𝜑 =
ℑ⟨𝑎⟩

ℜ⟨𝑎⟩
. (2.29)

Separating imaginary and real part of ⟨𝑎⟩ from Equation (2.28) yields

tan𝜑 =
−2𝑛𝑔􀇇􀊳𝛿

𝜅 (Γ􀇇􀊮 + 𝛿􀇇) + 2𝑛𝑔
􀇇
􀊳Γ􀊮

. (2.30)
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Figure 2.6: (a) The dependence of the resonant phase shift transmitted at the

resonance frequency of a resonator coupled to 5 identical qubits for different

dephasing rates Γ􀊮. (b) The magnitude and the width of the resonant phase

shift in dependence on the dephasing rate Γ􀊮 as extracted from (a).

The parameter tuned during the experiment is the qubit-resonator de-

tuning 𝛿. The transversal coupling 𝑔􀊳,􀉮 changes correspondingly with

the qubit frequency, yet is otherwise fixed by the bare coupling 𝑔. The

behaviour of the phase shift tuned over a qubit-resonator resonance in

dependence on the dephasing Γ􀊮 and the number of qubits 𝑛 is studied

in the following.

2.2.3 Analysis of the resonant behaviour

In the experiments discussed in chapter 4, the resonator isweakly probed

directly at its resonance frequency. The frustrationΦ of the qubit system

is the main parameter to be varied. It sets the qubit frequency 𝜔􀉵,􀉮/2𝜋
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according to Equation (2.17). Here, the interest lies on the resonant

interactionbetween thequbit systemand the resonator, which is centrally

symmetric in respect to the degeneracy point. In order to understand

the behaviour of the system in different parameter ranges, the phase

transmitted directly at the resonator frequency 𝜔􀉶/2𝜋 is analysed in

detail in the vicinity of a resonant mode between the qubit system and

the resonator by using the semiclassical Equation (2.30). When crossing

such a resonance in dependence on the frustration, the phase shifts to

negative values relative to its off-resonant value. In the case of crossing

the resonance from lower frequencies, the phase reappears from positive

values, which is due to a jump of the phase at the resonance.

The dependence of the shape of the resonant phase shift on the de-

phasing rate Γ􀊮 (see Figure 2.6 (a)) is of great interest. Further it yields:

the higher the dephasing rate Γ􀊮, the lower the magnitude of the phase

signal, scaling approximately with 1/Γ􀊮 (see Figure 2.6 (b)). The peak-to-

peak width of the phase shift, defined as the distance in the qubit energy

from minimum to maximum of the phase signal, behaves linearly with

the dephasing rate Γ􀊮. Note, that the width of the resonant phase shift is

almost completely given by the dephasing rate, the small remaining offset

arrives from the number of qubits 𝑛.

Next, the dependence of the resonant phase shift on the number of

qubits 𝑛 is analysed (see Figure 2.7 (a)). Obviously, the magnitude

increases with the number of qubits. Yet, it is important to note, that it

scales linearlywith𝑛 for small qubit numbers, but notwith√𝑛 (see Figure

2.7 (b)). Thewidth of the resonantmodedepends only veryweakly on the

number of qubits 𝑛. An increase of about 40 MHz occurs between 1 and

10 qubits. Therefore, it can be concluded, that the width is given by the

dephasing rate Γ􀊮, whereas the magnitude results from a product of the

number of qubits 𝑛 and dephasing rate Γ􀊮. Out of the resonance 𝛿 > Γ􀊮,

the remainingdispersivephase shift is dominatedby thenumberof qubits

𝑛. In consequence, for not too many qubits, 𝑛 and Γ􀊮 are independent of

one another in certain regions.

In an authentic experiment not all qubits will be identical. Therefore, it

is important to study the conditions in which collective resonant modes

are formed. In Figure 2.8 the behaviour of three non-identical qubits

equally coupled to a single cavity is analysed. Thequbits possess the same
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Figure 2.7: The resonant mode in dependence on the number of qubits 𝑛. Panel

(a) shows the resonant phase shift for an increasing number 𝑛 of identical qubits,

whereas their magnitude is extracted in (b). Here, the solid lines show the

expectation if the magnitude is enhanced either linearly or by √𝑛.
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Figure 2.8: Three qubits with different detunings between each other. In panel

(a) the detuning of the two outer qubits relative to the middle qubit at its

resonance to the resonator is 𝛿􀉵􀉵 = 13 ⋅ Γ􀊮. Three individual phase shifts are

visible. In panel (b) the detuning is reduced to 𝛿􀉵􀉵 = 6.5 ⋅ Γ􀊮. In panel (c), for a

detuning of 𝛿􀉵􀉵 = 3.25 ⋅ Γ􀊮, the phase shifts merge, yet the resonances of each

qubit are distinguishable. Once the detuning equals the dephasing𝛿􀉵􀉵 = Γ􀊮/2𝜋,

the three qubits form a collective resonant mode (see panel (d)). Please note,

that the curves shown here were calculated numerically from Equation (2.27).
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persistent current, but different gaps Δ􀉮 . Relative to the center qubit 1,

both outer qubits 0 and 2 feature a lower and a higher gap, respectively.

The detuning of qubits 0 and 2 at the resonance to the resonator 𝜔􀉵,􀇆 =

𝜔􀉶 , 𝛿􀉵􀉵 = |𝜔􀉵,􀇆 − 𝜔􀉵,(􀇅,􀇇)| is the parameter varied between the panels.

For a detuning 𝛿􀉵􀉵 = 13 ⋅ Γ􀊮 the qubits form independent resonant

modes (see Figure 2.8 (a)). The different peak-to-peak magnitudes of the

resonant phase shifts result from the different effective coupling𝑔􀊳which

depends on the qubit-resonator detuning 𝛿􀉵􀉶 . When 𝛿􀉵􀉵 is reduced, the

shape of the phase shift is altered, yet the qubits still act independently

(see Figure 2.8 (b)). Once 𝛿􀉵􀉵 reaches the order of the dephasing Γ􀊮, the

magnitude of the phase shift is enhanced and the three individual modes

appear almost as one single resonantmode (see Figure 2.8 (c)). Note, that

Δ􀇅 and Δ􀇇 are 360 MHz detuned. A single collective resonant mode with

maximum magnitude is formed in the case, that the detuning is equal or

less than the dephasing Γ􀊮 (see Figure 2.8 (d)). Here, the spread in the

gaps of the qubits is still allowed to be in the range of 100 MHz.

2.2.4 Dispersive regime

If the qubits and the resonator are detuned fromeach other, 𝛿 > 𝑔􀊳 , Γ􀊮, no

energy exchange will occur between them. Still, the coupling is present

and therefore resonator and qubit influence each other dispersively. The

effects become visible when transforming the Tavis-Cummings Hamilto-

nian (2.19) to [ZRK+09]:

𝐻􀉨􀉭􀉷􀉴 = ℏ(𝜔􀉶 +

􀉲

∑

􀉭􀇑􀇆

𝑔􀇇􀊳

𝛿􀉮
𝜎􀉭􀉾)𝑎

􀉂𝑎 +

􀉲

∑

􀉭􀇑􀇆

ℏ

2
(𝜔􀉵,􀉭 +

𝑔􀇇􀊳

𝛿􀉮
)𝜎􀉭􀉾+

+ℏ

􀉲

∑

􀉭􀉆􀉮

𝐽􀉭􀉮 (𝜎
􀉭
􀇐𝜎

􀉮
􀇏 + 𝜎

􀉮
􀇏𝜎

􀉭
􀇐) .

(2.31)

Here, a Haussdorff expansion to second order in the small parameter

𝜆􀉭 = 𝑔􀊳,􀉭/𝛿􀉭 with the generator 𝑆 = exp (∑􀉭 𝜆􀉭𝜎
􀉭
􀇐𝑎

􀉂 − 𝜎􀉭􀇏𝑎) has been

applied to Hamiltonian (2.19) [BGW+07]. The last term in the dispersive
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2.2 Atoms and photons

Hamiltonian 𝐻􀉨􀉭􀉷􀉴 reveals a direct interaction between the qubits with a

coupling strength of

𝐽􀉭􀉮 = 𝑔􀊳,􀉭𝑔􀊳,􀉮 (
1

𝛿􀉭
+
1

𝛿􀉮
) . (2.32)

In principle, this can be used to couple the qubits dispersively over

the resonator [MCG+07]. However, the effect is inverse proportional to

the qubit-resonator detuning, which reduces the off-resonant coupling

significantly in the multi-qubit system presented in chapter 4. In the

case of ultra-strong coupling, when the counter-rotating terms have to be

taken into account, the effective qubit coupling will change qualitatively

to the Ising type [ZRK+09].

The first term in𝐻􀉨􀉭􀉷􀉴 shows that the cavity frequency acquires a shift

which depends on all qubits ∑
􀉲
􀉭􀇑􀇆

􀉫􀊿􀎫

􀊜􀍦
𝜎􀉭􀉾 and their states. This dispersive

shift of the resonator frequency is called AC-Stark, or in this case, AC-

Zeeman shift, because the coupling is based on magnetic interaction. In

this thesis, it will be referred to as dispersive shift. It will be analysed ex-

perimentally for a single qubit (see subsection 3.2.2) and for amulti-qubit

system (see subsection 4.2.3).

Analogously, as revealed by the second term in 𝐻􀉨􀉭􀉷􀉴, the qubit transi-

tion frequencies are individually shifted by 2𝑔􀇇􀊳/𝛿 per cavity photon. For

zero photons this corresponds to the so-called Lamb shift induced by the

vacuum fluctuations, whereas it is called AC-Zeeman shift in the case of𝑁

photons. The linear dependence on the photon number𝑁will be demon-

strated for a single qubit in subsection 3.4.2. Using the AC-Zeeman shift,

the qubit energies can be tuned, which will be applied to the multi-qubit

system in a sophisticated way (see subsection 4.4.2).
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One of the unique features of circuit QED compared to cavity QED is that

all parameters of the system can be defined in a precise way and that

the number of atoms is constant. For superconducting qubits coupling a

single atom to a cavity is common [BHW+04], whereas it has been a big

achievement in cavity QED [RBH01]. In this chapter, the focus lies on a

system containing a single qubit embedded into a high-Q cavity on the edge

of the strong coupling regime. For flux qubits, the regime 𝑔 > 𝜅 is readily

achieved as this depends mainly on the photon loss rate 𝜅 of the resonator

and the coupling 𝑔 between qubit and resonator which can be controlled

by design. The coupling between qubit and resonator and the resulting

avoided level crossing is observable regardless of the coherence of the qubit

[OPM+10]. The regime𝑔 > Γ↓ is also easily achievable for flux qubits, yet the

dephasing time of flux qubits degrades quickly when biased away from the

symmetry point. The dephasing rate Γ􀊮 typically exceeds 100 MHz outside

the degeneracy point. In order to be truly in the strong coupling regime

𝑔 > Γ􀊮, 𝜅 the coupling needs to exceed Γ􀊮, which can be achieved either by

coupling the qubit at its symmetry point [FFM+10], thus minimizing Γ􀊮, or

by increasing 𝑔 [FDLM+10]. In this work, 𝑔 is of the order of and even less

than Γ􀊮. This bears the advantage that the system can be strongly driven

without the avoided level crossing to be the dominating effect.

In the first part of this chapter, section 3.1, the sample design is outlined

briefly and the measurement setup is discussed in detail. Subsequently,

in section 3.2, the experiments performed on the interaction of a single

qubit and a resonator are presented. Along the way the measurement

setup which has been used throughout this thesis, unless noted differently,

is introduced. The system is characterized using spectroscopic and ground

state measurements. A similar set of experiments will be used later on to

reconstruct the parameters of the multi-qubit sample. The coherence of the

qubit is estimated from the spectroscopy peak. Afterwards, the temperature
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¹m1

Mqr

Figure 3.1: A scanning electron micrograph of the sample showing the central

part of the coplanar wave guide resonator where the qubit is situated. The qubit

is coupled to the resonator by the mutual inductance𝑀􀉵􀉶.

dependence of the system is reported (see section 3.3). In section 3.4 the

possibilities of tuning the parameters of the qubit through dressing the

states with an additional photon field are investigated and the main result

of these experiments, the demonstration of amplification directly at the

Rabi frequency of the driven qubit, is shown [OMA+13].

3.1 The sample and experimental setup

The sample consists of a single qubit coupled to a coplanar waveguide

resonator (CPWR). Its geometry and design are presented in subsec-

tion 3.1.1. In this thesis, steady state transmission experiments of the

resonator-qubit systems are performed. The measurement setup used

throughout this thesis is outlined in subsection 3.1.2.
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3.1.1 The sample

The sample consists of a CPWR containing a single flux qubit. An electron

micrograph of the qubit next to the central line of the resonator is shown

in Figure 3.1. The length of the resonator's central line is 23 mm, its

width is 50 𝜇m, and the gap between the central line and the ground

plane is 30 𝜇m resulting in a wave impedance of 50 Ω. In the middle

of the resonator the central line is tapered to a width of 0.8 𝜇m for a

length of 30 𝜇m with a 9 𝜇m gap which provides better qubit-resonator

coupling and a small impedancemismatch to detune the harmonics of the

resonator. The separation between themultiple of the fundamentalmode

frequency and the third harmonic is about 25 linewidths. Otherwise, the

properties of the resonator remain unchanged, as the tapered section is

much smaller than the wavelength. The symmetric gap capacitors have a

width of 90 𝜇m, putting the resonator in the undercoupled regime. The

fundamental mode frequency is 𝜔􀉶,􀇆/2𝜋 = 2.59 GHz with a linewidth of

only 𝜅􀇆/2𝜋 = 21.5 KHz (see Figure 3.2 (a)). The quality factor is 𝑄􀇆 =

𝜔􀉶,􀇆 / 𝜅􀇆 = 1.2⋅ 10􀇊. The inductanceof the resonator is calculatedusing

finite element electromagnetic simulation on the complete geometry of

the resonator and is found to be 𝐿􀉶 = (11.0 ± 0.4) nH.

The resonator was fabricated by e-beam lithography, which guarantees

an accurateness of the dimensions of better than 0.2 𝜇m. After exposure

of the resist, the 200nm thick niobium filmdeposited on a high-resistivity

silicon substrate was patterned by CF􀇉 reactive-ion etching. The three-

junction flux qubit was deposited in a second step at the center of the

resonator using conventional two-angle shadow evaporation technique

[Dol77].

The coupling between the resonator and the qubit is purely induc-

tive and can be either calculated numerically or analytically, see sub-

section 4.1.2 for details of the procedure. The mutual inductance is

𝑀􀉵􀉶 = (0.92 ± 0.02) pH.
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Figure 3.2: The properties of the resonator. The transmitted amplitude (a) and

phase (b) around the fundamental mode frequency 𝜔􀉶,􀇆/2𝜋. The solid line

shows the Lorentzian fit, which is used to extract the resonator parameters.

3.1.2 Experimental setup

Cryogenic environment

In the experiments presented here, low temperatures are needed for

two reasons. Firstly, the working principle of the flux qubit is based

on superconductivity. The qubit is made of aluminium with a critical

temperature of 𝑇􀉧 ≈ 1.2 K. For the circuit to work in a stable regime a

temperature below the critical temperature must be reached, where all

quasi particle effects are saturated. This temperature typically is 𝑇􀉧/10.

The superconducting resonators are made of niobium with 𝑇􀉧 ≈ 9 K.

Secondly, the reason why even lower temperatures are necessary

evolves fromthequantumnatureof theobjectsof interest. The resonators
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3.1 The sample and experimental setup

used in the different experiments feature a fundamental mode frequency

of about 2.5 GHz which corresponds to a temperature of 120 mK. In or-

der to reach the ground state of the resonator the temperature of the

environment must be less than the eigenenergies of the system. Natural

quantum systems are onlyweakly coupled to the environment and do not

require this condition in order to reach the ground state. Yet, supercon-

ducting qubits as macroscopic quantum systems are easily thermalized

making a sufficiently low temperature necessary to reach the ground

state. Interestingly, with increasing coherence times of superconducting

qubits [PSB+11]; [RGP+12], additional tools have to be applied in or-

der to reach the ground state in a reasonable time [RJH+10]; [GLP+13].

Once the system is in its ground state, the coherence times of qubits de-

pend only weakly on temperature [LLA+07], which is consistent with the

report that low-frequency noise seems to be temperature independent

[YBG+12]. However, not only the superconducting qubits will be in their

ground state, but also other quantum mechanical systems with similar

level splitting will relax to a lower quantum state, resulting in additional

loss mechanisms for superconducting qubits [MCM+05] and resonators

[MPO+10]. Ubiquitous microscopic two level systems influence the prop-

erties of qubits and resonators at low temperatures. They have also been

reported to be present in flux qubits [GYB+12]; [LBD+09].

In order to reach millikelvin temperatures the samples are installed on

themixing chamber stage of a dilution refrigerator. The base temperature

of the dilution refrigerator is about 10 mK and the cited cooling power

at 100 mK is about 400 𝜇W. The left hand side of Figure 3.3 shows the

design drawing of the system used throughout this thesis, indicating the

different temperature stages, installed microwave elements (cables are

not shown) and sample holders. The numbers in brackets refer to the

designations in Figure 3.3. The essential elements of the dilution unit are

the condensing line, in which the mixture of He-3 and He-4 is pre-cooled

in the 1 K bath (3), and heat exchangers at the different temperature

stages. The mixing chamber (7) is the place where the two phases -

one with He-3 diluted phase of super-fluid He-4 and one of pure He-3 -

are separated. He-3 is pumped through the still (5), which is typically

heated up to 600 mK. Three complete test setups are installed consisting

of input lines, sample holders (9, 10 and 12) and output lines with
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cryogenic circulators (6,8) at the 20 mK and 50 mK stage and croygenic

high-electron-mobility transistor (HEMT) amplifiers (1, 2) at the 1.6 K

and 4 K stage. The samples are magnetically shielded by one or two

cryoperm shields, which allows for a cool down of the sample in near zero

magnetic field. Any remaining magnetic field is frozen by an additional

superconducting lead shield. For thermometry the cryostat control unit

is used, which has been verified by a calibrated RuO􀇇 thermometer. The

externalmagnetic field for the qubits is provided by two superconducting

coils for each setup made of 400 turns of niobium titanium wire on PVC

cylinderswith a diameter of 0.5 cm. A Keithley 2600 serves as differential

current source.

Microwave setup

The right hand side of Figure 3.3 provides an overview of the microwave

setup. The room temperature (RT) part and the input lines are the same

for all measurement setups. The probe signal from port 1 of a network

analyzer is combined with a second tone from a microwave generator

and attenuated subsequently. The input lines are additionally attenuated

at the 1 K pot stage (4) and the mixing chamber stage (11) with 20 dB

each in order thermalize the line and to prevent room temperature noise

from reaching the sample. The dissipation at the last attenuator limits the

power which can be applied at the input of the sample. If it exceeds the

cooling power of the refrigerator the systemwill start warming up. Three

sample holders are installed, two of them (9, 10) hold an approximately

3 cm long rectangular copper box. This sample compartment contains

the chips studied in this thesis. The chips are placed directly in the sample

compartment without using a printed circuit board (PCB). Directly below

the chip, there is a cut-out to ensure the microwaves travel mainly in the

substrate of the chip. On both ends, the input and the output line of the

chips are connected to the pins of the connectors to themicrowave cables

using silver conductive grease. A third sample holder (12) for the round

sample holder design from Karlsruhe contains smaller chips connected

to a PCB. The output lines consist of flexible superconducting aluminium

cables leading to circulators either at the 20 mK (8) or 50 mK (6) stage.

Superconducting niobium cables connect the circulators to the cryogenic
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Figure 3.3: Sketch of the experimental setup used throughout this thesis. A

design drawing (by Thomas Wagner et al.) of the dilution refrigerator is shown

on the left hand side. The microwave setup is shown on the right hand side. For

a complete description of the system, please refer to the main text.
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HEMT amplifiers. Measurement setup I uses an amplifier (1)with a noise

temperature of about 𝑇􀉲 = 14 K, a gain of 35 dB and a circulator with a

bandwidth of 2-3 GHz. This measurement setup has been implemented

twice. Measurement setup II utilizes an amplifier fromLowNoise Factory

(LNF) (2) with a noise temperature of about 𝑇􀉲 = 5.4 K, a gain of 40 dB

and two circulators from Channel Microwave with a bandwidth of 4-8

GHz. The working frequency band is the main difference between the

two measurement setups. The returning signal is further amplified at

room temperature before reaching port 2 of the network analyzer. In the

experiments the forward transmission coefficient S􀇇􀇆 ismeasured. Figure

3.2 shows the phase and amplitude of the S􀇇􀇆 parameter in dependence

on the frequency around the fundamental resonance of the CPWR. The

transmission is maximal directly in resonance and follows a Lorentzian

line shape. In the following experiments, the transmission is always

probed directly at the resonance of the resonator. There, the phase signal

is most sensitive to changes of resonator properties like its resonance

frequency. If the resonator's frequency is shifted due to a change of the

system, this can be observed as a phase shift in the transmitted signal.

3.2 A single qubit and a resonator

In the first part of this section, the results of a two-tone spectroscopy

on a single flux qubit are presented (see subsection 3.2.1). Here, the

resonator is monitored continuously while a second tone probes the

transition frequency of the qubit. In combination with a measurement of

the resonator-qubit system in its ground state, which results in the so-

called dispersive shift, all parameters of the sample are determined (see

subsection 3.2.2). In the end, the dephasing time of the qubit is estimated

from the linewidth of the spectroscopy peak (see subsection 3.2.3).

3.2.1 Spectroscopy

The phase of the transmitted signal, measured as a function of the qubit's

level spacing, exhibits a dip in the vicinity of the degeneracy point, when

the minimal transition frequency of the qubit, the gap Δ, is above the en-
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Figure 3.4: The spectrum of a single flux qubit around its symmetry point. The

frequency of a strong excitation tone is swept while the phase at the probe

frequency is continuously monitored. The solid line shows a fit to the hyperbolic

qubit spectrum with the parameters Δ = 2.96 GHz and 𝐼􀇿 = 158 nA.

ergy of the resonator. This dip, originated from the shift of the resonance

frequency of the resonator-qubit system, is usually called a dispersive

shift. Moreover, this shift depends on the state of the qubit. Therefore,

the level spacing of the qubit can be identified by performing a two-

tone spectroscopy experiment. In practice, the resonator is continuously

probed at the fundamental mode frequency 𝜔􀉶,􀇆/2𝜋 and a second mi-

crowave tone is directly applied to the input of the resonator. When the

second microwave tone and the qubit are in resonance, the population of

the qubit is changed and a peak is observed in the signal of the transmit-

ted phase. Figure 3.4 shows the spectrum around the symmetry point.

The solid line is a fit to the hyperbolic qubit spectrum from which the
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Figure 3.5: The dispersive shift of the transmitted phase through the resonator

at the fundamental mode frequency in dependence on the frustration of a single

qubit. The solid line shows a fit according to Equation (3.1).

parameters Δ = 2.96 GHz and 𝐼􀇿 = 158 nA are extracted. From this the

coupling to the fundamental mode follows to be 𝑔􀇆 = (2.7 ± 0.2) MHz.

3.2.2 Ground state measurement

Here, the probe signal is the only tone applied. The phase of the trans-

mitted signal is measured in dependence on the qubit frustration (see

Figure 3.5). As said before, the system is in the fully dispersive regime

Δ > 𝜔􀉶,􀇆, where a dip is observed, which corresponds to a shift of the

cavity frequency. It dependson thedetuningbetweenqubit and resonator
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frequency 𝛿 = 𝜔􀉵 − 𝜔􀉶 and the transversal coupling 𝑔􀊳 . The dispersive

shift for a single flux qubit coupled to a resonator follows

tan𝜑 = −
2𝑔􀇇􀊳

𝜅𝛿
. (3.1)

From fitting the observed dispersive phase shift to Equation (3.1), the

coupling between qubit and resonator can be extracted. The best fit is

obtained for 𝑔 = 3 MHz (see solid line in Figure 3.5). This experimental

value and the expected one are in fair agreement.

3.2.3 Estimation of coherence times

Fromthespectrum(seeFigure3.4) thecoherence timesof thequbit canbe

estimated. The linewidths of the spectroscopic peaks (see Figure 3.6 (a))

allow the extraction of the dephasing time 𝑇􀇇. For a weak probe signal

with a photon number smaller than unity, the line shape is Lorentzian and

the linewidth corresponds directly to the dephasing rate Γ􀊮 = 1/𝑇􀇇. For

higher photon numbers the linewidth will be homogeneously broadened

[SWB+05]. Here, a driving signal of less thanonephotonhas been applied.

The spectroscopic peaks in and out of the symmetry point are shown in

Figure 3.6 (a), where the so-called sweet spot of the flux qubit is clearly

visible. In the symmetry point, the linewidth is much narrower than out

of it. The solid lines show fits to Lorentzians from which 𝑇􀇇 is extracted.

In Figure 3.6 (b) the fit results are shown. The minimal dephasing rate is

29 MHz, which corresponds to a dephasing time of 35 ns. Even though

the dephasing time is somewhat lower than expected, it is comparable to

the results of measurements in the time domain on qubits from the same

fabrication run [Jer09]. There, a spin-echo measurement yields 41 ns.

The phase coherence follows a linear dependence on the detuning from

the symmetry point similar to the one observed by Kakuyanagi et al.

[KMS+07].

Note, that the dephasing rate exceeds the coupling strength while

the coupling exceeds the photon loss rate, placing the system in the

intermediate coupling regime.
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Figure 3.6: From the linewidths of the spectroscopy peaks the phase coherence

of the qubit can be estimated. (a) Two peaks at different qubit bias points. The

peak with smaller linewidth is taken at the symmetry point, the one with higher

linewidth out of the symmetry point. The solid lines show the Lorentzian curves

used to extract the dephasing rate. (b) The dependence of the dephasing rate

Γ􀊮 on the qubit frustration.
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3.3 Temperature dependence

In this section, the temperature dependence of the system is studied.

In subsection 3.3.1 the shape of the dispersive shift is analysed, which

behaves as expected. More surprisingly, the symmetry point of the

flux qubit appears at different bias points for different temperatures.

Indeed, it is seen, that the periodicity of the flux qubit changes (see

subsection 3.3.2). Here, the periodicity refers to the external magnetic

flux needed to generate one flux quantum in the qubit loop. The only

reported shift similar to this one has been observed in SQUIDS and has

been related to the relaxation of paramagnetic spins on the surface of the

superconductor [SHK+08].

3.3.1 Dispersive shift

The dispersive shift as discussed in subsection 3.2.2 is measured in

dependenceon themixing chamber temperature. The results fordifferent

temperatures are shown in Figure 3.7. The magnitude of the dispersive

shift is reducedwith increasing temperature. This is a direct consequence

of the thermal excitation of the qubit. The population difference between

ground and excited state of the qubit in thermal equilibrium depends on

the temperature 𝑇 as

tanh (ℏ𝜔􀉵/(2𝑘􀉌𝑇)) . (3.2)

The dispersive shift as described by Equation (3.1) is modified by this

factor. The expectedphase shifts are in good agreementwith the data (see

solid lines in Figure 3.7). For higher temperatures a deviation occurs. Not

only the population of the qubit changes, but also the persistent current is

reduced with increasing temperature. Therefore, the dip becomes wider

and smaller than expected when only considering the thermal excitation.

3.3.2 Change of flux bias

The change of the flux threading the qubit loop in dependence on the

temperature is monitored by measuring the periodicity. Two different

runs (Set 1 andSet 2) havebeenperformed, showing reproducible results.
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Figure 3.7: The dispersive shift at the fundamental mode of the resonator in

dependence on the mixing chamber temperature. The magnitude of the shift is

reduced, which is related to an increased population of the excited qubit state

due to excitation from the environment. The black lines show the theoretical

curves. In addition, the bias point of the qubits is shifting.
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Figure 3.8: Temperature dependence of the flux threading a single supercon-

ducting flux qubit. Three different data sets are shown. The measurement was

performed twice for increasing temperature (Set 1 and Set 2, Temp up) and once

for decreasing temperature (Set 2, Temp down). The different set numbers refer

to different cool downs of the cryostat.
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3 Dressed state amplification

The periodicity increases with increasing temperature, consequently the

magnetic field required to provide one flux quantum increases as well.

The magnitude of the effect is reproducible for different cool downs and

therefore does not depend on the specifics of the cool down procedure.

There isnohystereticbehaviour, since themeasurements inSet2proveno

significantdifferencebetweenincreasinganddecreasingthetemperature.

The change of the flux threading 𝛿Φ is recalculated by normalizing the

periodicity, given in the current 𝐼per used to generate the magnetic flux

through the external coil, to the onemeasured at the highest temperature

(225mKand300mK, respectively),𝛿Φ = (𝐼per−𝐼per, max)/𝐼per, max. A clear

inverse proportional dependence on the temperature is observed (see

Figure 3.8). The Curie-like dependence indicates a paramagnetic origin

of the effect. On the reason for the paramagnetic behaviour, whether it is

due to paramagnetic spins or the effect of other paramagnetic residuals

in the environment, can not be concluded, yet. This issue requires further

study.

3.4 Dressed states

Dressed states are of growing importance for quantum information pro-

cessing. Quite early there has been the idea to use dressed states for

quantum gates [RBD05] or as tunable coupling mechanism [LSN06], yet

only recently they are experimentally investigated in the field of super-

conductingqubits. For example, the coherence ina stronglydriven system

has been studied [WJD+10]. Recently, the renormalized decay rates in the

dressed system have been be used for cooling the qubit [MVZ+12]. At the

end of this section, the renormalized decay rates in the dressed system

will be used to amplify the signal passing the cavity.

Here, the system is studied under the influence of a strong driving

signal. In the first experiment the driving and probing signals are iden-

tical. A dependence on the power of the probing field at 𝜔􀉶,􀇆 is shown

in Figure 3.9. The lowest power shown is already exceeding the single

photon limit leading to the appearance of resonances on top of the dis-

persive shift. Those resonances result from multiphoton transitions and

are discussed in subsection 3.4.1. With increasing photon number the

46
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dispersive shift gets distorted. This results from the renormalization of

the qubit spectrum by the AC-Zeeman shift (see subsection 3.4.2).

In a second set of experiments, two microwave tones are applied:

One weak probe signal at the fundamental mode with a photon number

less than unity and a strong driving signal to dress the qubit at the

third harmonic of the resonator. Figure 3.10 shows the dependence of the

phaseandamplitudetransmittedat theweakprobefieldonthe frustration

versus thephotonnumberof thedriving field. Besides thedispersive shift,

which is also visible in the amplitude, an additional resonance appears.

The shape of this resonance differs from the resonances observed due to

an excitation of the qubit. Indeed, it is the result of resonant interaction

between the dressed qubit states and the probe signal. Interestingly,

the amplitude transmitted in the resonance exceeds the transmission

corresponding to an amplification. This so-called Rabi resonance will be

discussed in subsection 3.4.3.

3.4.1 Multiphoton transitions

The qubit may not only absorb one resonant photon, but can also be

excited by simultaneously absorbing two or more photons. In sum, the

photons need to accord with the transition frequency of the qubit. The

two-photon transition can be used in order to access otherwise forbid-

den side band transitions [WSB+07]. This non-linear process appears at

high-photon numbers. Figure 3.11 shows the results for two different

photon numbers. First, the two-photon resonance appears already at

photon number𝑁 < 1 ⋅ 10􀇈, where the resonance position corresponds

to a qubit transition frequency of 𝜔􀉵 = 2 ⋅ 𝜔􀉶,􀇆. The second resonance

occurs at a qubit transition frequency of 𝜔􀉵 = 3 ⋅ 𝜔􀉶,􀇆 and therefore

relates to a three-photon excitation process. The suppression of the

dispersive shift and the peak at the degeneracy point results from the

re-normalization of the qubit spectrum by the AC-Zeeman shift discussed

in the next subsection.
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Figure 3.9: The system is probed at the fundmental mode frequency 𝜔􀉶,􀇆/2𝜋.

The shading shows the transmitted phase in dependence on the power of

the probe signal and the qubit frustration. At low signals the dispersive shift

as discussed before is dominating, whereas at higher power clear two- and

three-photon resonances appear. Furthermore, the dispersive shift changes its

shape due to the shift of the qubit frequency in dependence on the photon

number𝑁. The small resonances, which appear in the vicinity of the two-photon

resonance at a drive power of -25 dBm and at the degeneracy point at about

-21 dBm have not been explained, yet.
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Figure 3.10: The system is weakly probed at the fundamental mode frequency

𝜔􀉶,􀇆/2𝜋, while a second driving tone is applied at the third harmonic frequency

𝜔􀉶,􀇈/2𝜋. The dependence of the phase (a) and amplitude (b) on the driving

power and the frustration is shown. The second tone dresses the qubit. When

the level splitting of the dressed states equals the frequency of the fundamental

mode, the Rabi resonance can be observed.
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Figure 3.11: Multiphoton transitions in a single flux qubit. (a) The two-photon

resonance shown for a photon number of 𝑁 = 0.7 ⋅ 10􀇈. (b) At a higher

photon number the three-photon excitation of the qubit becomes also visible,

here shown for 𝑁 = 39 ⋅ 10􀇈. The peak at the symmetry point is due to the

AC-Zeeman shift.
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Figure 3.12: (a) The dispersive shift measured at a photon number of 𝑁 =

16 ⋅ 10􀇈. The solid line shows a fit according the combined Equations (3.3) and

(3.1). (b) The dependence of the minimal qubit frequency Δ̃ on the photon

number 𝑁. The solid line shows the expected linear dependence.
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3.4.2 AC-Zeeman shift

Not only the qubit shifts the resonator frequency, but also the frequency

of the qubit is altered by the resonator. The resulting shift is known as

the AC-Zeeman shift and the qubit frequency changes linearly with the

photon number 𝑁 in the cavity:

𝜔̃􀉵 = 𝜔􀉵 + 2
𝑁 ⋅ 𝑔􀇇􀊳

𝜔􀉵 − 𝜔􀉶
. (3.3)

With increasing photon number the qubit transition is shifted to higher

frequencies.

On the one hand, when fitting the dispersive shift with the gap Δ as only

free parameter, the renormalized transition frequency at the symmetry

point of the qubit Δ̃ can be extracted from the data shown in Figure

3.9. This method can be applied only as long as the dispersive shift

does not get distorted too much, especially when no peak occurs at the

degeneracy point. The peak at high photon numbers is a consequence

of the non-linearity of the AC-Zeeman shift. The shift depends on the

coupling between qubit and resonator which is fully transversal and

therefore maximal at the symmetry point. Out of the symmetry point the

coupling is reduced. Consequently, at high photon numbers, the qubit

frequency at the symmetry point is no longer the minimal transition

frequency of the qubit. On the other hand, using the renormalized qubit

frequency according to Equation (3.3) in Equation (3.1) for fitting the

data, the photon number𝑁 can be extracted. This methods works as long

as the multiphoton resonances do not dominate the transmitted phase.

The curve resulting from fitting at a photon number of 𝑁 = 16 ⋅ 10􀇈

compared themeasurement data is shownFigure3.12 (a). Here, the qubit

frequency has been shifted for about 1 GHz to 4 GHz at the symmetry

point. The dependence of Δ̃ on the photon number 𝑁 is shown in Figure

3.12 (b). The extracted data shows a clear linear dependence on the

photon number. The possibility to change the qubit spectrum by a

continuous drive will be applied later in order to tune the multi-qubit

system (see subsection 4.4.2).
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3.4.3 Rabi resonance and level inversion

When the qubit is driven strongly, its levels are splitted. In the quantum

mechanical picture this is a direct result of the photon ladder created

by the driving field and the coupling between the resulting degenerate

states, which is proportional to the driving strength (see Figure 3.13 (a)).

The frequency of the splitting in the resonantly driven system is called

on-resonance Rabi frequencyΩ􀉘􀇧􀇅 = 2𝑔􀊳√𝑁. The resulting dressed states

are an equal superposition of |𝑔, 𝑁 + 1⟩ and |𝑒, 𝑁⟩. The system becomes

more complex, when the frequency of the driving field 𝜔􀉎/2𝜋 is detuned

from the qubit transition frequency by 𝛿 = 𝜔􀉎 − 𝜔􀉵 . For a negative

detuning 𝛿, the energy of |𝑔, 𝑁 + 1⟩ is lowered by 𝛿 compared to |𝑒, 𝑁⟩

(see Figure 3.13 (b)). The splitting is increased, where

Ω􀉘􀇧 = √𝛿
􀇇 + (Ω􀉘􀇧􀇅)

􀇇 (3.4)

is the generalized Rabi frequency. Therefore, the dressed states are no

equal superpositions anymore. In the general case, the dressed states are

[CTDRG98]

|1𝑁⟩ = sinΘ|𝑔, 𝑁 + 1⟩ + cosΘ|𝑒, 𝑁⟩ ,

|2𝑁⟩ = cosΘ|𝑔, 𝑁 + 1⟩ − sinΘ|𝑒, 𝑁⟩ ,

where tan 2Θ = −Ω􀉘􀇧􀇅/𝛿.

For large 𝑁 and small deviations from the average photon number ⟨𝑁⟩

of the driving cavity field, Ω􀉘􀇧 can be substituted by the constant value

Ω􀇧 = Ω
⟨􀉘⟩
􀇧 . Consequently, the dressed states {|1⟩,|2⟩} can be taken as

effective two level system with a transition frequency Ω􀇧. In the case of

𝛿 < 0, the excited state |1𝑁⟩ is mainly formed by |𝑒, 𝑁⟩. As the qubit is

in its ground state, the dressed system will remain in its ground state as

well. This is different for a positive detuning 𝛿, where the energy of |𝑒, 𝑁⟩

is lowered by 𝛿 compared to |𝑔, 𝑁 + 1⟩ (see Figure 3.13 (c)). Now, the

excited state |1, 𝑁⟩ is dominated by |𝑔, 𝑁⟩. Hence, when the qubit relaxes,

the dressed system gets excited. Such, there is a population inversion for

the dressed system. Its energy diagram is depicted in Figure 3.13 (d). For

a rigorous derivation of the renormalized relaxation rates in the dressed

system, refer to [HFH+08] or [OMA+13].
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Figure 3.13: Energy level diagrams for the different cases of strongly driving the

qubit. (a-c) show the dressed qubit system in the photon ladder of the driving

field for different detunings 𝛿 = 𝜔􀉎−𝜔􀉵. (following [CTDRG98]) (d) After tracing

over the photon number 𝑁 an effective two-level system, denoted with states

|1⟩ and |2⟩, is obtained. Both the sign and strength of the relaxation (excitation)

in this system depend on the detuning.
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If the resonator 𝜔􀉶,􀇆 is tuned in resonance with the dressed system, it

will either lose photons due to absorption (𝛿 < 0) or win photons due to

spontaneous or stimulated emission (𝛿 > 0). If the photons in the cavity

possess a lifetime of 1/𝜅 longer than the energy relaxation of the qubit

𝑇􀇆, which is the case for the system presented here (47 𝜇s > ≈ 10 𝜇s),

the condition for stimulated emission will be formally fulfilled. In order

to optimize the process the relaxation rate of the qubit may be artificially

enhanced. In a second sample this has been successfully realized by using

a resistive gold film close to the qubit. In that case, the relaxation time of

the qubit has been estimated to be only 12.5 ns [OMA+13]. Yet, in order

to rigorously prove lasing, the photon field generated in the resonator has

to be characterized. A lasing process would create a coherent state with

a Poisson distribution in the photon number contrary to the incoherent

state following a Bose-Einstein distribution [HFA+08].

In the experiment presented here, the qubit is driven at the third

harmonic frequency 𝜔􀉎 = 𝜔􀉶,􀇈, because this provides optimal coupling

strength of the driving signal to the qubit. In the weak probing signal the

signature of resonant coupling (see Figure 3.14 (a)) is visible, which is

the Rabi resonance

𝜔􀉶,􀇆 = Ω􀉜 . (3.5)

Indeed, at the resonance a clear amplification of the transmitted signal

of up to 40 % is observed (see Figure 3.14 (b)). The position of the Rabi

resonance has been extracted from Figure 3.10. Its dependence on the

driving strength is shown in Figure 3.15. The data is in good agreement

with the theoretical dependence according to Equation (3.5).
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Figure 3.14: Individual traces taken from Figure 3.10. The phase (a) and

amplitude (b) of the transmitted signal at the fundamental mode frequency

while continuously driven in the third harmonic. In the phase signal a resonant

phase shift is visible, whereas the transmitted amplitude is amplified in this

point.
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Figure 3.15: The dependence of the Rabi resonance on the driving strength. The

experimental positions have been extracted from Figure 3.10 (closed circles), the
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the on-resonance Rabi frequency can be calculated. The orange solid line shows

the theoretical position of the Rabi resonance, obtained independently from the

qubit parameters.
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metamaterial

In the previous chapter the interaction of a single qubit and a resonator has

been studied. Next, the system is expanded to a higher number of qubits.

Such a system forms ametamaterial in the sense, thatmany artificial atoms

couple to an electro-magneticwavewith awavelengthmuch larger than the

atomdimension. Inreference to the fieldofmetamaterials [ZK12]; [RZS+08],

this constitutes the first implementation of a truly quantum metamaterial.

The transmission through the metamaterial is not studied directly, but by

making use of a resonator that exhibits a standing wave. The photon field

in the resonator is localized and consequently the coupling is well defined.

All qubits are coupled individually to the resonator while the qubit-qubit

coupling is designed to be negligible leaving the system in an uncoupled

(disordered) paramagnetic ground state, if far detuned from the resonator.

The coupling to the resonator is chosen in such a way, that only collective

effects are expected to be visible. In resonance, when the level spacing of the

qubits equals the frequency of the resonator, the degeneracy between their

states is lifted and an avoided level crossing (anticrossing) in the spectrum

of the resonator is observed in the absence of decoherence. In the collective

case of 𝑛 mutually non-interacting qubits [Dic54], an enhancement by a

factor of √𝑛 compared to a single-qubit anticrossing is predicted. This has

been demonstrated for up to 3 qubits [FSS+10]. Nonetheless, no experiment

has yet been reported involving many superconducting qubits coupled to a

resonator.

The first section of this chapter introduces the design properties of the

sample (4.1). Thereafter, the first set of experiments is presented. When

the qubits can be detuned from each other, spectroscopic or ground state

measurements reveal all parameters of the system at once [IPS+08]. With

no means to individually control the qubits, the ensemble parameters can
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only be extracted by employing several complementary measurements. In

section 4.2, the fundamental properties of the metamaterial are extracted

by themeans of spectroscopy, analysis of the resonances between qubits and

resonatormodes aswell as the phase shift in the fully dispersive regime. The

spectroscopy provides only a rough estimate of the qubit parameters and

suffices for a first insight into the properties of themetamaterial. The phase

shift in the fully dispersive regime gives an estimate of the total number of

qubits. The effective parameters for the qubit metamaterial are extracted

from its resonances with the different modes of the resonator. The main

result - the demonstration of resonant interaction of up to 8 qubits and the

resonator - is presented in section 4.3. The resonant phase shift between

the qubit system and the resonator is quantitatively analysed. Interestingly,

the system exhibits two stable states, whose time evolution concludes this

subsection. Subsequently, an additional microwave drive is employed in

order to tune the metamaterial via the AC-Zeeman shift of the qubits and

observe additional resonances, such asmultiphoton transitions (see section

4.4).

4.1 The sample

So far, there have been only few attempts to fabricate samples containing

many coupled superconducting qubits [Paa09]. For flux qubits the lowest

transition frequency Δ depends exponentially on the ratio 𝛼 making the

fabrication of qubits with similar parameters challenging. This is of

special importance when realizing arrays of coupled qubits. If one qubit

is off, the array might be interrupted by this defect and the experiment

is likely to fail. In order to overcome this pitfall, the photon field of a

resonator is used tomediate the coupling between the qubits rather than

relying ondirect qubit-qubit interaction. In principle, the coupling of each

qubit to the resonator is uniform and does not depend on the relative

position of the qubits.

The sample studied contains 20 flux qubits embedded into a single

cavity (see Figure 4.1). It was fabricated in the clean room facilities of

the IPHT Jena. The qubits and the resonator are galvanically decoupled,

making the qubit fabrication independent on the resonator fabrication.
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¹m2

Mqr Mqq

Figure 4.1: Scanning electronmicrograph of the sample showing the central part

of the coplanar wave guide resonator where the qubits are situated. Each qubit

is individually coupled to the resonator by the mutual inductance𝑀􀉵􀉶 and to its

neighbour by𝑀􀉵􀉵. In the current system the qubit-qubit coupling is negligible.

They were fabricated in two separate steps. In the following the sample

design and the fabrication process are discussed. Moreover, the coupling

constants are calculated from geometry, and from the junction sizes first

estimations of the qubit parameters are made.

4.1.1 The resonator

Acoplanarwaveguideresonator (CPWR)of similargeometryas inchapter

3 is used. Contrary to lumped-element resonators, the CPWR has higher

harmonics𝜔􀉶,􀉱 ≈ 𝑚⋅𝜔􀇆, which are accessible through themeasurement

setup up to 𝑚 = 5 (see Figure 4.2). This feature has already been

exploited for strong driving of a single qubit (see section 3.4). Here, the

harmonics are not only used for strong driving, but also to probe resonant

interaction at different frequencies. The fundamental mode frequency

is 𝜔􀉶,􀇆/2𝜋 = 2.594 GHz and its quality factor 𝑄􀇆 = 𝜔􀉶,􀇆/𝜅􀇆 = 47 ⋅ 10
􀇈.

The quality factors vary roughly 10 % from cooldown to cooldown. This

indicates a good magnetic shielding and that only few vortices are frozen

in the superconducting film.
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Figure 4.2: The fundamental mode and the first four harmonics of the resonator.

The black lines are fits to Lorentzians. The resonance frequencies𝜔􀉶,􀉱/2𝜋 (GHz)

are 2.594, 5.202, 7.780, 10.403 and 12.963. The linewidths are 𝜅􀉱/(2𝜋) (KHz)

55.5, 216, 715, 950 and 1400. 𝜅􀉱 are the photon loss rates of the resonator. The

curves are scaled over the frequency axis to a factor of 250 to ensure visibility

over this large frequency range. The relative linewidth is to scale. Please note,

that only 𝜔􀉶,􀇆, 𝜔􀉶,􀇇 and 𝜔􀉶,􀇈 are within the band of the cold amplifiers and the

corresponding isolators. Therefore, the signal to noise ratio in 𝜔􀉶,􀇉 and 𝜔􀉶,􀇊 is

relatively low, but nevertheless resolvable.
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4.1 The sample

The resonator has been fabricated by e-beam lithography and dry

etching of a 200 nm thick Nb film deposited on a high-resistivity silicon

substrate. The length of the resonator's central line is 23mm, its width is

50 𝜇m,andthegapbetweenthecentral lineand thegroundplane is30 𝜇m

resulting in a wave impedance of 50 Ω. In the middle of the resonator the

central line is tapered to a width of 0.8 𝜇m for a length of 30 𝜇m with a

9 𝜇m gap which provides better qubit-resonator coupling. The resulting

impedance mismatch detunes the harmonics of the resonator. Otherwise

the taper is not expected to alter the properties of the modes themselves

significantly, as its length is much smaller than the wavelength. The

difference to the resonator used in chapter 3 are the gap capacitors,

whose width are reduced to 5 𝜇𝑚. This reduces the insertion loss of

the resonator and decreases the quality factor slightly. The inductance

of the resonator 𝐿􀉶 = (11.0 ± 0.4) nH is calculated using finite element

electromagnetic simulation in FastHenry [Whi01] and Sonnet [Son] for

the full geometry. The latter includes the effect of the kinetic inductance,

yet at an estimated 0.1 pH/sq it only accounts for 0.05 nH. The main

contribution to the resonator's inductance arrives from the geometric

inductance. Thezero-point currents 𝐼􀉶,􀉱 = √ℏ𝜔􀉱/𝐿of theodd-resonator

modes 𝐼􀉶,􀉱, 𝑚 = (1, 3, 5) result as (12.5 ± 0.5) nA, (21.6 ± 0.8) nA and

(28 ± 1) nA.

The sample does neither contain additional microwave lines nor DC-

bias lines for manipulating the qubits. The resonator acts as filter which

suppresses out-of-band signals by approximately 1/𝑄, which influences

the driving strength when manipulating the qubit by off-resonant mi-

crowaves directly applied to the resonator. In practice, only a small signal

reaches the qubits because of the relatively high 𝑄-factors.

4.1.2 The qubits

Junction parameters

The 20 three-junction flux qubits are placed at the center of the resonator.

The target area of the two identical junctions of each qubit is 700×200 nm

at a design critical current density of about 200 A/cm² and a junction

capacitance of 4.9 fF. They are fabricated using conventional two-angle
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Figure 4.3: (a) Histogram of the junction areas for the three junctions of the flux

qubit. 0 and 1 are the two bigger junctions, whereas 2 refers to the 𝛼 junction.

(b) Histogram of the corresponding ratios 𝛼. (c) An electron micrograph of a

single Josephson junction, from which the junction size - the black-rimmed area

- was extracted. The two shadows from the fabrication technique appear on the

right and left side of the junction. (d) Expected qubit spectra for the 𝛼 value

distribution in (b). The shaded areas in between two black lines correspond to

the bins in (b), the number of qubits expected in each such region from the

lowest to the highest frequency is 5, 7, 4, 1 and 3.
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4.1 The sample

shadow evaporation technique [Dol77]. By making use of e-beam lithog-

raphy two layers of photo resist are prepared forming a mask above the

substrate. Subsequently, two layers of aluminium are deposited under

opposite angles at a rate of 1.8 nm/s. Before evaporation of the second

layer, the surface of the first aluminium film is oxidized in an oxygen at-

mosphere of 10􀇐􀇇mbar for 6.5min. In the finalizing step the photo resist

is lifted off leaving a superconductor–insulator–superconductor tunnel

junction on the chip. The evaporation in two opposing angles using a

two-slit mask results in three lines of aluminium, forming two separate

layersdue to theoxidation step. Both layers areoverlappingon the central

line (see Figure 4.3 (c)).

The areas for each junction andeachqubitwere extracted fromelectron

micrographs of a second chip processed in the same run as the one

described in this chapter. During an electron micrograph static charges

are accumulated, which can alter the junction properties. This is why a

second chip was used. The histogram of the areas for each junction is

shown in Figure 4.3 (a), where the bin size reflects the uncertainty in the

junction area, which is about 10 %. Each junction has a well pronounced

maximum containing up to 12 similarly sized junctions. This translates

into a similar distribution of 𝛼 values, the ratio between the size of the

smallest junction and of the larger junctions, in the range of [0.6, 0.9].

Here, the uncertainty in 𝛼 is as large as two bins. Still, from Equations

(2.13) and (2.11) the qubit parameters can be estimated. The Josephson

energy is𝐸􀉮 ≈ 81 GHz and the charging energy𝐸􀉧 ≈ 4 GHz. The resulting

qubit spectra are shown in Figure 4.3 (d). About 16 qubits are expected

to posses a gap Δ below the third harmonic𝜔􀇈 of the resonator. Themean

value is 6.8 GHz at a standard deviation of 1.4 GHz. The relative spread

of about 20 % is consistent with the results previously obtained for the

fabrication process [JPM+11]. The two regions containing most qubits (n

= 5,7) have a width of only 0.6 GHz. The expected persistent current 𝐼􀉴 is

of the order of 100 nA.

The low ratio of𝐸􀉮/𝐸􀉧 ≈ 20might result in a sensitivity to gate charges.

As a consequence the gap is under the influence of charge fluctuations,

which might be the reason for the time dependent variation of the pa-

rameters of the metamaterial discussed in subsection 4.3.3.
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Qubit-resonator coupling

The bare coupling between the qubits and the resonator results from

the persistent current 𝐼􀉴,􀉮 in the qubit loop and the zero-point current

of the resonator 𝐼􀉶,􀉱. The coupling energy is then ℏ𝑔 = 𝑀􀉵􀉶𝐼􀉴,􀉮𝐼􀉶,􀉱,

where𝑀􀉵􀉶 is themutual inductance between the qubit and the resonator.

The value of 𝑀􀉵􀉶 = 0.51 pH has been numerically calculated using

FastHenry [Whi01].

It is also possible to estimate the mutual inductance by assuming a

rectangular loop with height ℎ and length 𝑙 placed in a distance 𝑥 next

to an infinite wire carrying the zero-point current 𝐼􀉶,􀉱. According to the

Biot–Savart law the magnetic field at the loop is 𝐵 = 𝜇􀇅𝐼􀉶,􀉱
􀇆

􀇇􀊨􀉼
. The flux

Φ threading the loop is obtained by integration over its area. The mutual

inductance results from

𝑀􀉵􀉶 =
Φ

𝐼􀉶,􀉱
=
𝜇􀇅𝑙

2𝜋
ln (

𝑥 + ℎ

𝑥
) . (4.1)

The qubit's dimensions are 𝑙 = 1.6 𝜇m and ℎ = 4.3 𝜇m. Its distance

to the central line of the resonator is 1.1 𝜇m. Equation (4.1) results

in an inductance 𝑀􀉵􀉶,􀉩 = 0.51 pH, which is identical to the numerical

calculation. This is surprising, because the influence of the currents in

the ground plane have not been taken into account.

Yet, this can easily be accomplished by simplifying the ground plane

to a one-dimensional wire as well. The distance of each qubit to the

ground plane is 4.5 𝜇m. The total mutual inductance will be the sum

of the contribution of the central line and of the ground plane 𝑀􀉵􀉶,􀉩 =

0.51 pH + 0.2 pH = 0.71 pH.

That value is again consistent with the result of an implementation

of this idealized case in FastHenry, which yields 0.71 pH. If the ground

plane on the opposite side of the central wire is taken into account, the

idealized simulation already results in 0.55 pH. The fact, that the central

wire accounts for the full mutual inductance implies that the effects from

the ground planes effectively annihilate each other. As a consequence,

Equation (4.1) can be used in order to calculate the coupling of the

qubit from its geometry. This allows for a propagation of uncertainty.
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The uncertainty for the dimensions extracted from the micrograph are

±0.03 𝜇m, which leads to Δ𝑀􀉵􀉶 = ±0.02 pH.

Now, it is possible to give a first estimate of the coupling strength. The

coupling of the qubits to the resonator is of the order of𝑔􀉵􀉶/2𝜋 ≈ ⋅1MHz.

Qubit-qubit coupling

The mutual inductance between two neighbouring qubits is𝑀􀉵􀉵 = 0.13

pH. This leads to a qubit-qubit interaction strength of 𝑔􀉵􀉵 = 𝑀􀉵􀉵(𝐼􀇿)
􀇇.

For the parameters in the system the qubit-qubit coupling is of the

order 2𝜋 ⋅ 2 MHz, leading to 𝑔􀉵􀉵 ≈ 0.002 ⋅ Δ ≪ 𝜔􀉵 , leaving the system

in its paramagnetic ground state [Tia10]. For such a small coupling,

only the qubits' effective transition frequencies are shifted a few MHz

(see subsection 2.1.3). The spread in parameters further decreases the

effective coupling. The distribution of parameters is not expected to be

uniform among qubits, that is why identical qubits are unlikely to be

nearest neighbours. Thus, the qubits are effectively uncoupled, when

detuned from the resonator modes.

4.2 Characterization of parameters

Spectroscopy is the standard procedure for obtaining information on the

level structure of a multi-atom system. Despite the weak coupling to

off-resonant1 microwave radiation, performing a spectroscopic analysis

in the fully dispersive regime 𝜔􀉶,􀉱 < Δ􀉵,􀉮 was possible and several sets

of parameters were identified. As the qubit-qubit coupling is weak no

deviations from thehyperbolic single-qubit spectrum, such as qubit-qubit

anticrossings, are observed. Several parameter sets can be extracted,

yet no information on the number of qubits taking part in each set

could be obtained (see subsection 4.2.1). The number of qubits in the

parameter sets will be resolved through the analysis of the resonant

regime 𝜔􀉶,􀉱 ≈ 𝜔􀉵,􀉮 (see next section 4.3). The resonant case between

the resonator modes and qubits is used in order to extract effective sets

of parameters for the resonant modes of the qubit metamaterial (see

1to the resonator modes

67



4 Implementation of a quantum metamaterial

subsection 4.2.2). At the end of this section the dispersive shift opposed

on the resonator by the qubit metamaterial is analysed, which yields the

total number of qubits in a working parameter range (see subsection

4.2.3).

4.2.1 Spectroscopy

In order to gain a first impression of the qubit parameters a two-tone

spectroscopy experiment is performed. The resonator is continuously

probed by a weak signal directly at the fundamental mode frequency

𝜔􀉶,􀇆/2𝜋. The phase of the signal is recorded while a second microwave

tone 𝜔􀉷 is applied at the input of the resonator. The frequency of the

second tone 𝜔􀉷/2𝜋 is swept in the area range of the expected qubit

transition frequencies.

The phase of the transmitted probe signal, measured as a function of

the external magnetic flux controlling the qubit level spacing, exhibits a

dip in the vicinity of the degeneracy point Φ = 0, when the gaps Δ􀉮 are

above the energyof the resonator. This dip, originated fromthe shift of the

resonance frequency of the resonator-qubits system, is usually called a

dispersive shift. It is analysed in detail in subsection 4.2.3. The dispersive

shift is directly proportional to the state of qubit 𝑗, the expectation value of

𝜎
􀉮
􀉾 . When the additional driving signal is resonant with a qubit transition

frequency,𝜔􀉷 = 𝜔􀉵,􀉮 , the expectation value of 𝜎
􀉮
􀉾 becomes zero, resulting

in the disappearance of the shift for the excited qubits. In the strong

coupling regime, this is applied in order to dispersively readout the state

of the qubits [BHW+04].

Figure 4.4 shows the dispersive shift and overlying spectroscopy peaks

for two different excitations frequencies. Compared to the result in

subsection 3.2.1, where a clear spectroscopy signal was observed, the

coupling of the out-of-band microwave signal is much weaker. The peaks

are small compared to the overall shift, because not all qubits are in-

volved in their formation and because the excited qubits might not be

fully saturated due to the weak drive. In Figure 4.4 (a) several parallel

spectroscopy peaks at a fixed excitation frequency are shown. In order to

reconstruct the spectrum symmetric peaks around the degeneracy point

are taken,whichcanbe followedoverat least twoconsequential excitation
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Figure 4.4: Spectroscopic measurement of the qubit system. (a) The left panel

shows the dispersive shift of the phase transmitted at the fundamental mode

frequency 𝜔􀉶,􀇆/2𝜋 with resonances 𝜔􀉷 = 𝜔􀉵,􀉮 on top at an excitation tone of

𝜔􀉷/2𝜋 = 6.15 GHz. The closed circles correspond to the different qubit sets

as introduced in Figure 4.5. (b) The right panel shows the area around the

symmetry point at an excitation tone of 𝜔􀉷/2𝜋 = 6.1 GHz. The resonances

around the degeneracy point arrive from qubits, which could not be assigned

unambiguously to a qubit set.
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Figure 4.5: The two-tone spectroscopy shows several resonances through which

individual sets of qubits can be identified. The data points (closed circles),

extracted from single traces as shown in Figure 4.4, allow the distinction of 6

different sets. The solid lines show fits to the hyperbolic qubit spectra. The

horizontal dashed line in blue corresponds to the frequencyof the third harmonic.

The black circles show the region where resonant interaction of several qubits

and the resonator is expected. The lower dashed lines correspond to the two

excitation frequencies for the traces shown in Figure 4.4.
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frequencies. If a resonance peak satisfies this condition it is assigned to

an individual set of parameters. The data points of the set are fitted to the

hyperbolic frequency dependence on a flux qubit. Symmetric resonances

which appear on the extrapolation of the fit are added to the set. It does

not appear to be possible to unambiguously follow all peaks and assign

them to individual sets of qubits. One example are the resonances around

the degeneracy point which start at about 6 GHz (see Figure 4.4 (b)).

The final results of these measurements and their analysis is pre-

sented in Figure 4.5. In total, 6 different sets could be identified. The

solid lines are fits for each set 𝑗 to hyperbolic qubit spectra 𝜔􀉵,􀉮 =

√Δ􀉵,􀉮 + (2𝐼􀉴,􀉮Φ/(ℏΦ􀇅))
􀇇
. A summary of the parameters can be found

in the first part of Table 4.1. In principle, they are consistent with those

expected from the junction properties (see subsection 4.1.2). The mean

gap Δ is about 5.5 GHz with a standard deviation of 0.2 GHz. However,

this does not account for the resonances with a gap of about 6 GHz. The

full spread might be close to 0.8 GHz as previously reported for the fabri-

cation technology [JPM+11]. The mean persistent current is 71 nA with a

standard deviation of 17 nA. This is slightly less than expected, yet of the

same order of magnitude. The error margin for the persistent current

𝐼􀇿,􀇹 is at least ±1.5 nA, whereas the gaps are exact to about ±100 MHz.

The coupling of the qubits to the third harmonic is expected to be about

1MHz.

4.2.2 Reconstruction from higher harmonics

In this experiment, the resonator is probedat the center frequenciesof the

harmonics 𝜔􀉶,􀇈, 𝜔􀉶,􀇉 and 𝜔􀉶,􀇊. No additional microwave tone is applied.

The phase at the probe frequency is monitored while the frustration is

varied.

The symmetric features appearing most prominently in the third har-

monic correspond to a resonant mode between the qubits and the res-

onator (see Figure 4.6). They are discussed in detail in section 4.3. Here,

the fact that the transition frequency of qubit ensemble 𝑗 is equal with the

frequency of resonator mode 𝑚, 𝜔􀉵,􀉮 = 𝜔􀉶,􀉱, is used in order to recon-

struct the ensemble parameters. Fitting those resonance points (closed
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Figure 4.6: The transmission through the systemat the3rd, 4th and5thharmonic

frequency in dependence on the qubit transition frequencies (frustration) in state

1 of the system. The curves are separated in phase by an offset, in a way that

their position corresponds to the probe frequency indicated on the right y-axis.

This axis also shows the qubit frequencies of effective parameter set S (solid line)

which is extracted from the resonance points (closed circles).
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Figure 4.7: The transmission through the systemat the3rd, 4th and5thharmonic

frequency in dependence on the qubit transition frequencies (frustration) in state

2 of the system. The curves are separated in phase by an offset, in a way that

their position corresponds to the probe frequency indicated on the right y-axis.

This axis also shows the qubit frequencies of the two effective parameter sets A

and B (solid lines) which are extracted from the resonance points (closed circles).
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Set Δ􀉮/2𝜋 𝐼􀇿,􀇹 𝑔􀉮􀇈/2𝜋

[GHz] [nA] [MHz]

1 5.2 70 1.1

2 5.3 74 1.2

3 5.5 70 1.1

4 5.5 55 0.9

5 5.7 103 1.6

6 5.8 61 1

Mean 5.5 71 1.2

Std 0.2 17 0.2

Set A 5.26 76 1.2

Set B 6.08 72 1.2

Set S 5.63 74 1.1

Table 4.1: The parameter sets extracted from the spectroscopy (Figure 4.5, sets

1-6) and resonant interaction (Figures 4.6 and 4.7, sets A, B and S). Sets 1-6 are

ordered according to ascending Δ􀉮. 𝑔􀉮􀇈 is the coupling to the third harmonic for

a single qubit calculated from 𝐼􀇿,􀇹. For sets 1-6, the error in 𝐼􀇿,􀇹 is ±1.5 nA and

the resulting error in the coupling to the third harmonic is 2𝜋 ⋅ 0.1 MHz. The

spectroscopy yields no information on the number of qubits responsible for one

resonance. The errors for sets A, B and S are Δ𝐼􀉴,􀉮 = ±1 nA and ΔΔ􀉮 < ±2𝜋 ⋅50

MHz. The error in the coupling is±2𝜋⋅0.1MHz, calculated for the uncertainty in

the inductance of the resonator of Δ𝐿􀉶 = ±0.4 nH and in the mutual inductance

Δ𝑀􀉵􀉶 = ±0.02 pH. Anticipating the quantitative analysis in subsection 4.3.1 it is

known, that ensembles A and B consist of 4 qubits each. Ensemble S comprises

8 qubits.

circles, Figure 4.6) to the hyperbolic dependence on the transition fre-

quency of a flux qubit yields Δ􀇨/2𝜋 = 5.63 GHz and 𝐼􀇿,􀇨 = 74 nA. This

agreeswellwith the average values fromsets 1-6. The individual coupling

of the qubits in this mode to the resonator is 𝑔􀉮􀇈 = 2𝜋 ⋅ (1.2 ± 0.1)MHz.

This is state 1 of the metamaterial, referring to the one resonant mode.

The system exhibits two stable states with a different number of res-

onant modes (see subsection 4.3.3). In the second state two distinct

resonant phase shifts appear, whereas in the higher harmonics again only

one resonant phase shift is visible (see Figure 4.7). The single resonance
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at higher harmonics is expected as ensembles with similar persistent

current converge at high frustration. Yet, the signal-to-noise ratio in

𝜔􀉶,􀇉 would not allow to distinguish between two close lying resonant

modes. By fitting the resonance points to the hyperbolic dependence on

the transition frequency of a flux qubit, two sets of effective parameters

can be extracted. Set A (Δ􀇖 = 2𝜋 ⋅ 5.26 GHz, 𝐼􀇿,􀇖 = (76 ± 1) nA) is close

to the average values of the parameters found in the spectroscopy (see

subsection 4.2.1). The position of the resonance points matches within

the error of 𝐼􀇿,􀉮 the region where sets 1,2,3 and 6 converge. The second

set B (Δ􀇗 = 2𝜋 ⋅ 6.08 GHz, 𝐼􀇿,􀇗 = (72 ± 1) nA) presumably arises from

those qubits whose gaps were found to be in the range of 6 GHz in the

spectroscopy. The individual coupling of the qubits in modes A and B to

the resonator is 𝑔􀉮􀇈 = 2𝜋 ⋅ (1.2 ± 0.1) MHz. All parameters are summa-

rized in Table 4.1. Note, that the parameters of ensemble S correspond

to the average values of ensembles A and B. This hints, that ensemble S

is formed by some kind of overlap of A and B, an assumption that will be

further supported later on.

4.2.3 Ground state measurement

When all the qubit gaps Δ􀉮 are higher than the resonator frequency no

resonant interaction occurs. A frequency shift - the so-called dispersive

dip - of the resonator is observed while tuning the frustration. It can

be understood as a consequence of the AC-Zeeman shift, the pull of the

cavity frequency by all qubits of ±𝑔􀊳/𝛿 for each qubit in dependence on

its state, where 𝛿 = 𝜔􀉵−𝜔􀉶 is the qubit-resonator detuning. If the system

remains in the ground state at all times, the cavity shift depends solely

on the qubit-resonator detuning. Similarly, it may also be interpreted in

terms of a change of the susceptibility of the qubits with their frustration,

which inductively influences the resonance frequency. The susceptibility

of thequbits follows the curvatureof their groundstate. Here, no resonant

interaction occurs, therefore the system remains in its ground state at all

times. Hence, this subsection is called ground state measurement.

For frequencies below 5.3 GHz, the qubit metamaterial is in the full

dispersive regime, when probing the resonator at the fundamental mode

𝜔􀉶,􀇆/2𝜋 frequency and at the second harmonic 𝜔􀉶,􀇇/2𝜋 frequency. In
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Figure 4.8: Dispersive shift at the fundamental mode frequency induced by all

qubits in dependence on their frustration. In each panel, the black dashed

line shows the expected curve for a single qubit. The black solid lines are the

theoretical phase shifts for ensembles A, B and S, where the number of qubits 𝑛

is known. For ensembles 1-6 it is assumed, that each set contains a single qubit.

No ensemble accounts for the full shift by itself. The orange solid lines show fits

to Equation (4.2) with 𝑛 as only fitting parameter.
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this regime the detuning between qubits and resonator 𝛿􀉮􀉱 is always

above the dephasing Γ􀊮. The formula for the transmitted phase through

the metamaterial consisting of 𝑛 atoms, Equation (2.30), consequently

simplifies to

tan𝜑 = −
2𝑛𝑔􀇇􀉮􀉱,􀊳

𝜅𝛿
, (4.2)

where 𝑔􀉮􀉱,􀊳 = 𝑔􀉮􀉱Δ􀉮/𝜖􀉮 is the transversal coupling.

The fundamental mode

Figure 4.8 shows the dispersive shift measured at the fundamental mode

frequency 𝜔􀉶,􀇆/2𝜋. The experimental data is compared to the expected

shifts for the different qubit ensembles extracted before. Note, that the

shift inducedby a single qubit (black dashed lines) is alwaysmuchweaker

than the one actually observed. For further discussion specific results

from the following section must be anticipated. Parameter sets A and B

constitute 4 qubits each. The orange dashed line shows the theoretical

dispersive shift for each ensemble independently (see Figure 4.8 (a) and

(b)). As expected, they do not amount for the full magnitude of the shift.

The same is true for set S with 8 qubits in total (see Figure 4.8 (c)). When

fitted to Equation (4.2) with the ensemble parameters A, B, S (orange

dashed lines) and 𝑛 as a free parameter, best fits are obtained for 9, 12

and 10 qubits, respectively. The fit to the parameters for set A slightly

overshoots while the one for set B is slightly smaller. In contrary, the fit

using the parameters of set S agrees well to the data, which indicates that

those parameters reflect the distribution of the qubit system well. This

is also the case for the average values from sets 1-6. Here, the best fit is

obtained for 10 qubits.

The number of qubits is in principle consistent with the analysis of

the junction areas (see subsection 4.1.2). However, some outliers are

unavoidable. The dominating influence arrives from the qubits in the

resonant modes, which have a minimal detuning to the fundamental

mode. The remaining qubits can have a high gap (low 𝛼) resulting in

a negligible contribution to the dispersive shift which is proportional to

1/𝜔􀇈
􀉵 . Another explanation may be a very low persistent current or a

very small gap, both resulting in a negligible coupling and therefore a
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4 Implementation of a quantum metamaterial

negligible contribution to the dispersive shift. That said, the number of

qubits extracted by the fit to the fully dispersive shift constitutes a lower

bound on the total number of working qubits.

In general, the observation of a smaller shift than expected might

indicate the occurrence of qubit-qubit entanglement, which leads to a

reduction of the dispersive shift as a result of the reduced energy of

the frustrated state compared with the uncoupled one [IGI+04]. Yet, the

coupling between qubits far away from the resonance with the resonator

is expected to be negligible (compare with subsection 2.1.3).

The second harmonic

In the second harmonic, the standing wave in the resonator possesses

a minimum in the current and a maximum in the voltage. The coupling

of qubits to the resonator is governed by the capacitance between both.

The coupling constant is unknown, but can be determined experimentally

from the dispersive shift measured in 𝜔􀉶,􀇇 (see Figure 4.9). Considering

the fit with the coupling as free parameter and the mean values from

sets 1-6 as well as an effective qubit number of 𝑛 = 10.5, a coupling

of 𝑔􀉮􀇇 ≈ 0.4 MHz is obtained. The fit deviates from the data, as it

appears to be somewhat steeper and deeper. Ensemble A with a minimal

splitting Δ􀇖 = 2𝜋 ⋅ 5.26 is fairly close to the second harmonic frequency

𝜔􀉶,􀇇 = 2𝜋 ⋅ 5.202 GHz. Although still in the dispersive regime, those

qubits lie close to the resonant regime, because the detuning between

qubits and resonator is of the same order as the dephasing. This could be

the reason for the observed deviation.

4.3 Resonant interaction

In the preceding section the basic properties of the metamaterial have

been characterized and several sets of parameters have been extracted.

Yet, except for a lower bound on the total number of qubits, no further

information on the number of qubits taking part in each set has been

revealed. This questionwill be addressed from thedata showing resonant

interaction with the resonator. Resonant modes are observed in the
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Figure 4.9: Dispersive shift of the phase transmitted at the second harmonic

frequency in dependence on the frustration induced by all qubits. Using the

parameters of set S, the data is fitted and an estimate of the coupling to the

second harmonic is extracted. The black solid line shows the expected shift for

a single qubit with this coupling.
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4 Implementation of a quantum metamaterial

regime Δ􀉮 < 𝜔􀉶,􀉱. Consequently, the first crossing between the qubits

and the resonator is expected at the third harmonic (blue dashed line

in Figure 4.5), where several fits from the spectroscopy converge at a

frustration of about 11mΦ􀇅. The average coupling to the third harmonic

is about1MHz. Thisplaces theparametersof the systemon theedgeof the

strong-coupling limit, close to the intermediate regime where 𝑔􀉮􀉱 > 𝜅􀉱,

but 𝑔􀉮􀉱 ≈ Γ􀊮 [OPM+10], with Γ􀊮 being the qubit dephasing rate. Here,

the two vacuum-Rabi peaks of a qubit-resonator anticrossing can not be

resolved, but the signature of the anticrossing is still visible. Single qubit

interactions fall in the regime 𝑔􀉵􀉶 ≤ 𝜅􀇈, which leads to the disappearance

of single qubit anticrossings [OSG+10]. With the collective coupling of 𝑛

qubits the regime 𝜅􀇈 < √𝑛𝑔􀉮􀇈 is reached again. Note, that for small 𝑛 the

magnitude of the phase signal scales linearly with 𝑛.

The quantummetamaterial exhibits two states, one with two resonant

modes and onewith a single resonantmode, whichwill be analysed in the

following subsection 4.3.1. By fitting the two resonant modes observed

in the transmitted phase at the third harmonic frequency, the number

of qubits in sets A and B is obtained. Equally treating the data of the

single resonant mode reveals the number of qubits in set S. Furthermore,

the single resonant phase shift observed in the higher harmonics can

be described theoretically using the previously extracted values (see

subsection 4.3.2).

As already denoted, the system undertakes a transition from those two

resonant modes to one single resonant mode. The time dependence and

stability of this process is described in subsection 4.3.3.

4.3.1 Analysis of the resonant modes

In state1of themetamaterial, a single resonantmodeappears in thephase

transmitted at the third harmonic signal (see Figure 4.10 (a)). First, the

phase shifts to negative values relative to its off-resonant value. When

crossing the resonance from lower frequencies the phase reappears from

positive values, which is due to a jump of the phase at the resonance. If no

dephasing occurred, the phase curve would be singular. Hence, the finite

width of this effect is a result of the dephasing Γ􀊮 in the system. Out of this

resonance the resonator is dominated by the dispersive shift, similarly
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Figure 4.10: The measurement of the transmitted phase at the third harmonic

signal 𝜔􀇈 in the two states of the qubit system. The upper panel (a) shows state

1 with a single resonant mode. The data (closed circles) is fitted using Equation

(2.30) (solid line). The best fits yields 8 qubits. The lower panel (b) shows data

(closed circles) in state 2 with two resonant modes. The best fits for the outer

and inner mode yields 4 qubits each.
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4 Implementation of a quantum metamaterial

as characterized in subsection 4.2.3. The sign of the shift depends on the

qubit-resonator detuning 𝛿 and has opposite signs inside and outside the

resonances. In state 2 of the metamaterial, two distinct resonant modes

appear in the phase transmitted at the third harmonic frequency of the

resonator (see Figure 4.10 (b)).

The model and fitting

The energy relaxation Γ⇓ has no significant influence on the resonant

phase shift, the photon loss rate 𝜅􀉱 is defined by the linewidth of the

resonator and thequbit parametershavebeendeterminedas setsA, B and

S, respectively. The remaining parameters of the system are the number

of qubits 𝑛 and the dephasing rate Γ􀊮.

In order to model the system the Tavis-Cummings Hamiltonian is uti-

lized, i.e. the model Hamiltonian for 𝑛 mutually non-interacting qubits

coupled to a single bosonic mode. The phase transmitted through the

resonator corresponds to the argument of the expectation value for the

annihilation operator of the resonator. An analytical formula in the

semi-classical limit for a weakly driven system has been developed in

subsection 2.2.1, resulting in Equation (2.30). Note, that the theoretical

phase shift quantitatively corresponds to the one measured in the ex-

periment, without any normalization or calibration factor. Cables and

amplifiers contribute as a constant offset to themeasured phase, yet they

do not influence the phase shift itself. Furthermore, it has been shown

(see subsection 2.2.3), that dephasing and qubit number dominate differ-

ent regimes. The dephasing is responsible for the width of the resonant

mode, whereas the dispersive shift out of resonance is independent on

the dephasing. Therefore, 𝑛 and Γ􀊮 can be regarded as independent

parameters in certain regions. Still, the magnitude is a result of both of

them.

Thebest fit for the single resonantmodeyields𝑛􀇨 = 8andΓ􀊮,􀇨 = 2𝜋⋅53

MHz (see solid line Figure 4.10 (a)). The dephasing rate corresponds to

a phase coherence time of several ns which is expected. In order to fit

the two resonant modes, it is assumed that they are detuned from each

other, and hence can be treated independently. The total phase shift

results from the individual phase shifts of ensemble A and ensemble B,
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Figure 4.11: Visualization of the uncertainty in the results from fitting the

resonant phase shifts in the two-mode and single-mode regime. The exact fit

results are 𝑛􀇖,􀇗 = 3.8 ± 0.6 and 𝑛􀉝 = 8.3 ± 1.2

respectively. The best fit for the two resonant modes results in 𝑛􀇖 = 4

and Γ􀊮,􀇖 = 2𝜋 ⋅ 54 MHz, and 𝑛􀇗 = 4 and Γ􀊮,􀇖 = 2𝜋 ⋅ 41 MHz (see

solid line Figure 4.10 (b)). Again, the dephasing time is of the order of

several ns. The number of qubits is half the number for each resonant

mode compared to the single resonant mode. With high probability, the

ensemble of the single resonant mode is formed by the overlapping of

ensembles A and B.

Error estimation

By varying the fixed parameters 𝑔􀉮􀇈 and Δ􀉮 within their error bounds

while fitting, an estimate of the error for 𝑛 can be given (see Figure 4.11).

Note, that the dephasing rate is insensitive to such variation of the fixed
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parameters, once again showing that dephasing and number of qubits are

independent to a certain degree. The uncertainty for ensembles A and

B is ±0.6, therefore it can be considered as sure that those ensembles

contain 4 qubits each. The uncertainty for ensemble S is slightly higher,

resulting in 𝑛􀇨 = 8 ± 1. Yet, as the number for A and B is fixed and

ensemble S is assumed to result from merging of ensembles A and B, it

can be concluded that 𝑛􀇨 = 8.

Inhomogeneous broadening

In the model describing the system it is assumed that the ensembles

consist of identical spins. It has been shown, that the spread directly

in resonance is allowed to be within the range of the dephasing rate in

order to form a single resonant mode. Here, the dephasing was found to

be 50 MHz. The spread in the gaps of the qubits within one ensemble

is allowed to be higher, in this case in the range of 100 MHz. If it is

equal to or exceeds this value, the resonance will be broadened, as it

occurs in the data directly in resonance (see Figure 4.12). The theoretical

curve appears to be slightly narrower and lower in amplitude than the

experimental data, which is a direct consequence of the assumption of

identical qubits. The two resonant modes show less broadening, still

the theoretical curve does not account for the whole magnitude of the

resonant phase shift.

4.3.2 The higher harmonics

Even in state 2 only a single resonant mode is observed in the higher

harmonics. This results from the convergence of A and B for high critical

currents 𝐼􀇿. The coupling to the 5th harmonic is 𝑔􀉮􀇊 = 2𝜋 ⋅ (1.56 ± 0.14)

MHz. The coupling is higher than the coupling to the third harmonic,

because of the higher zero-point current. However, the effective coupling

of the qubits in the resonant mode is reduced by Δ􀉮/𝜔􀉵,􀉮 making the

coupling identical. Themagnitudeof thephase shift is still reduced,which

results from the higher dephasing of the qubits, which increases with the

detuning from their symmetry point. Applying the same procedure as

before, fitting the resonant phase shift with 𝑛 and Γ􀊮 as free parameters
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Figure 4.12: Close up of the single resonant mode (a) and the two resonant

modes (b) taken from Figure 4.10. The fitted curves (solid lines) deviate directly

in the resonance. This is a consequence of the spread of parameters in the qubit

system, which is not reflected in the current model.
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Figure 4.13: (a) The resonant phase shift between the qubits and the 5th

harmonic of the resonator. The solid line shows the theoretical curve for

ensemble S. (b) The resonant phase shift between the qubits and the 4th

harmonic of the resonator. The solid line shows the theoretical curve for 8

qubits.
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4.3 Resonant interaction

yields𝑛 = 9 and Γ􀊮 = 2𝜋⋅109MHz (see Figure 4.13 (a)). The uncertainty

in 𝑛 is ±1.5, so it is likely that again 8 qubits participate in this resonant

mode.

The data taken for the transmission at the 4th harmonic frequency

𝜔􀉶,􀇉/2𝜋 has a low signal-to-noise ratio (see Figure 4.13 (b)). Nonethe-

less, the position of the resonant mode can be detected. Note, that the

magnitude is more than one order of magnitude less than for the phase

shift observed in𝜔􀇊. Fitting the data is not useful. Instead, the theoretical

curve with a dephasing Γ􀊮 = 2𝜋 ⋅ 82 MHz and 𝑛 = 8 is shown. The

coupling is 𝑔􀉮􀇊 ≈ 0.6MHz.

4.3.3 Two stable states

The system exhibits two stable states, formerly referred to as state 1 and

state 2. Here, the dependence on time is described and the stability over

time of those two states is shown.

In principle, the system is stable in one of those two states over hours

and days. A couple of times during a measurement run a transition from

the one resonant mode to two resonant modes is observed or vice versa.

This is what is meant by referring to two different states of the system.

Figure 4.14 (top panel) shows the development of the system over

time. The phase at the third harmonic signal frequency was continuously

monitored around a fixed frustration point. In the beginning of the

measurement the system is in the state of a single resonant mode. Each

single trace is averaged over a period of 3 minutes. The cryostat and the

test setup are left undisturbed and no parameters are varied. After about

45 min the transition starts.

First, themagnitudeof the resonantmode is reduced. Subsequently, the

qubits start to decouple from each other and a state of several resonances

is reached. At the end, the system settles in the state of two resonant

modes. The full process takes several minutes, such being very short

compared to the overall time scale (see Figure 4.14 (bottom panels)).

Once the transition is completed the system is again stable over time.

Thereare twopossible reasons for theoccurrenceof this transition. The

properties of the qubit ensemble may change either due to local changes

in the magnetic environment or due to a non-magnetic influence of the
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qubit-parameters. The time dependence could be a very slow drift in a

non-uniformmagnetic field-gradient over the area of the qubit array. This

gradient shifts the two sub ensembles A and B together when present. As

long as the detuning between the two sub ensembles A and B is less than

thedephasing rate they formacollective system. Yet, the effect of trapping

vortices at such low temperatures is rather unlikely, and rearranging the

qubits from ensembles A and B by a single magnetic field in such a way,

that they overlap symmetrically, is not possible. Non-magnetic changes

to the gap of the qubits could arrive from its sensitivity to charges, for

small ratios of 𝐸􀉮/𝐸􀉧 the gap depends on the voltage across the smallest

junction. It is currently under investigation towhich degree the gapmight

changedue to chargenoise. An important question is, whether the change

arrives from several qubits changing their parameters simultaneously or

a single qubit which mediates an effective coupling between ensembles

A and B and therefore leads to their collective interaction.

4.4 Strong driving and tuning themetamaterial

So far, the probe signal amplitudewas kept sufficiently small to guarantee

that the average number of photons in the resonator is below unity. Here,

the behaviour of themetamaterial in dependence on the probe or driving

power, i.e. in dependence on the photon number 𝑁, is studied. In the

first and last part of this section the dependence on the probe power

is analysed. Multiphoton transitions induced by the strong probe signal

are discussed. The data confirms certain properties of the qubit system

in an independent measurement (see subsection 4.4.1). The last part

reveals the occurrence of photon number dependent resonances around

the degeneracy point of the qubits (see subsection 4.4.3).

As already seen in subsection 4.2.1, off-resonant microwave radiation

couples only weakly to the qubits. Thus, the harmonics are exploited in

order to strongly drive the metamaterial. In subsection 4.4.2 two-tone

experiments, in which one signal is used to dress the system (similar to

section 3.4), are discussed. This method allows for additional control

over the metamaterial and underlines the quantum nature of the system.

88



4.4 Strong driving and tuning the metamaterial

100 200 300 400
Time (min)

−9

−10

−11

−12

−13

Fr
us

tra
tio

n
(m

Φ
0
)

Phase

−0.2

−0.1

0.0

0.1

0.2

−12 −10

−0.2

−0.1

0.0

0.1

0.2

P
ha

se

32 min

−12 −10

48 min

−12 −10

51 min

−12 −10

269 min

Frustration (mΦ0)

Figure 4.14: (top panel) The two states of the system over a time of 7 hours. A

transition from the state of a single resonant mode to the state of two resonant

modes is observed. The black dashed lines are guides to the eyes. (bottom

panels) Single traces from the time dependence. At 𝑡 = 0 min (very left) and

𝑡 = 323 min (very right) the two stable states are shown. The two traces in

the middle demonstrate the transition from a single resonant mode (left) to two

resonant modes (right).
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For instance, the metamaterial can be tuned in and out of resonance with

the harmonics of the resonator.

The rotating wave approximation (RWA), which is used for the analysis

of the data presented here, is valid up to the critical photon number

𝑁􀉧􀉶􀉭􀉸 = (Δ􀉮/2𝑔􀉮􀉱)
􀇇
[BHW+04]. In dependence on the harmonic of the

resonator used for driving the system, this can be up to several million

photons, before deviation from the RWA could be observed.

4.4.1 Multiphoton processes

In the following experiment the probe power is increased in order to

populate the resonator with a higher photon number. Figure 4.15 (a)

displays the dispersive shift while the system is probed strongly at the

fundamentalmode frequency𝜔􀉶,􀇆/2𝜋. The two resonanceswhich appear

correspond to an excitation of ensembles A and B. The first transition of

this kind appears at a qubit transition frequency of 𝜔􀉵 = 3 ⋅ 𝜔􀉶,􀇆. The

two-photon resonance does not occur, because the qubit gaps are above

2 ⋅ 𝜔􀉶,􀇆. The full dependence on the probe power is shown in Figure

4.16. Above a certain probe power the excitation of the qubits by a

combination of𝑚 𝜔􀇆 photons is observed. The theoretical curves for the

resonances are plotted for ensembles A and B. It is possible to follow

the three-photon resonance at lower powers, whereas the resolution

is too low to distinguish between several overlapping resonances at

higher powers. Some features, like the disappearance of resonances

and appearance of strong resonances can be explained by following the

theoretical curves. The principle occurrence of higher ordermultiphoton

transitions is visible.

In the next step, the resonator is still driven at the fundamental

mode frequency 𝜔􀉶,􀇆/2𝜋, yet weakly probed at the third harmonic fre-

quency 𝜔􀉶,􀇈/2𝜋 (see Figure 4.15 (b)). In addition to the resonant modes

𝜔􀉵,􀇖,􀇗 = 𝜔􀉶,􀇈 discussed before, secondary resonant phase shifts appear

at higher frustration due to the population of𝜔􀉶,􀇆 photons. Their position

corresponds to 𝜔􀉵,􀇖,􀇗 = 4 ⋅ 𝜔􀉶,􀇆. The qubit ensembles are excited due

to multiphoton transitions, which can be observed in the probe signal,

as the phase shift depends on the qubits states. Here, in contrary to the

experiment where the transmission at 𝜔􀉶,􀇉 was measured directly, two
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Figure 4.15: (a) In the upper panel the system is probed and driven at the

fundamental mode frequency 𝜔􀉶,􀇆/2𝜋. The driving power yields a photon

number high enough in order to induce multiphoton transitions. The two

resonancesmarked by the dashed black lines appear at the transition frequencies

𝜔􀉵,􀇖,􀇗 = 3 ⋅𝜔􀉶,􀇆. (b) The system is driven at𝜔􀉶,􀇆 and weakly probed at the third

harmonic frequency 𝜔􀉶,􀇈. The outer resonant phase shifts appear at transition

frequencies 𝜔􀉵,􀇖,􀇗 = 4 ⋅ 𝜔􀉶,􀇆.
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Figure 4.16: The dependence of the dispersive shift at the fundamental mode

frequency on the probe power. The shading corresponds to the phase signal.

The solid lines show the theoretical dependence on the multiphoton resonances

for ensembles A (red) and B (blue). The damping in the line at the fundamental

mode frequency is extracted to be 67.5 dB. The blue dashed line indicates the

single trace taken for Figure 4.15 (a).

separate resonances are observed at 4 ⋅ 𝜔􀉶,􀇆. Yet, this possibility has

already been included in the error margin of the ensemble parameters,

and if taken into account, does not modify but confirm the ensemble

spectra extracted in subsection 4.2.2. The question remains, whether the

ensembles are excited collectively or not.

4.4.2 Tuning of the qubit ensembles

By driving the metamaterial in an additional mode 𝑚 the transition

frequencies acquire a pull which depends on the photon number 𝑁. This
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is comparable to the AC-Zeeman shift, which is the only possibility to tune

natural occurring spin ensembles [PRW+13]. In this thesis, it has already

been discussed for a single qubit in subsection 3.4.2 and theoretically for

a multi-qubit system in subsection 2.2.4. The shift is opposed on each

qubit individually while the qubit frequencies are shifted in dependence

on the sign of the qubits-resonator detuning 𝛿􀉮􀉱 = 𝜔􀉵,􀉮 −𝜔􀉶,􀉱 to either

higher or lower frequencies. The driving process can be separated from

the probing process. First, the system is considered to be under drive by

𝑁􀉱 photons at the driving frequency, which shifts the qubit parameters

by the AC-Zeeman shift as

𝜔̃􀉵 = 𝜔􀉵 + 2
𝑁􀉱 ⋅ 𝑔

􀇇
􀊳,􀉱

𝜔􀉵 − 𝜔􀉱
. (4.3)

Subsequently, the re-normalized system is probed and, depending on the

regime, a dispersive shift or resonantmodes at the probe frequencies can

be observed.

Transition from the dispersive regime to the resonant regime

Whilestronglydriving thesystemat the thirdharmonic frequency𝜔􀉶,􀇈/2𝜋

and weakly probing at the second harmonic frequency 𝜔􀉶,􀇇/2𝜋 at small

photon numbers, the pure dispersive shift is observed, as all qubit split-

tings are above the resonator mode. The qubits-resonator detuning 𝛿􀉵􀉶
is negative. Consequently, the qubit energies decrease with increasing

driving strength. As soon as 𝜔̃􀉵 < 𝜔􀉶,􀇇 is reached, a resonant mode

appears (see Figure 4.17 (a)). This happens at first for ensemble A. At

higher driving powers a second resonant mode corresponding to ensem-

ble B appears (data not shown). The position of the resonant phase shift

follows the resonance condition 𝜔􀉶,􀇇 = 𝜔̃􀉵,􀇖 (see Figure 4.18). The axis

on the left-hand side indicates the power in dBm of the driving signal

at the generator, the damping in the line has been extracted from the

comparison to the theoretical curve to be 82.2 dB, which is in accordance

with the estimation from the calibration of the measurement setup. Con-

sequently, the photon number in the resonator can be extracted, as shown

on the right y-axis. In Figure 4.17 (b) a scheme of the energy level for two

different photon numbers is shown. At low driving power, the transition
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Figure 4.17: (a) The phase of the transmission (shading) in dependence on the

driving power at a frequency of 𝜔􀉶,􀇈/2𝜋 and a probe frequency of 𝜔􀉶,􀇇/2𝜋. At

low driving powers the metamaterial is in the fully dispersive regime, whereas at

higher powers two resonant modes appear. A single trace of the resonant mode

is depicted in Figure 4.19. (b) The level diagram of the system. The horizontal

lines correspond to the harmonics of the resonator. In its initial condition, the

qubit ensemble is above the second harmonic frequency (black line). While

driven with 𝑁􀇈 = 300 ⋅ 10
􀇈 photons at the third harmonic frequency the qubit

ensemble is shifted below the second harmonic mode (orange line).
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Figure 4.18: The position of the resonant phase shift in the second harmonic

signal in dependence on the driving power in the third harmonic frequency

𝜔􀉶,􀇈/2𝜋 as extracted from Figure 4.17 (a). The solid line shows the theoretical

curve following the resonance condition 𝜔􀉶,􀇇 = 𝜔̃􀉵,􀇖. The right y-axis indicates

the corresponding photon number 𝑁 in the driving field.
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Figure 4.19: The resonantmodeobserved in the phase transmitted at the second

harmonic frequency 𝜔􀉶,􀇇/2𝜋. The metamaterial is continuously driven at the

third harmonic frequency 𝜔􀉶,􀇈/2𝜋 with a photon number 𝑁􀇈 = 75 ⋅ 10
􀇈. The

solid line shows the theoretical curve. The data is taken from the cross-section

from Figure 4.17 (a) at a driving strength of -1 dBm.
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frequency of the ensemble is still undisturbed. At a photon number of

𝑁􀇈 = 300 ⋅ 10
􀇈 the minimal transition frequency lies below the second

harmonic frequency. So, the ensemble is crossing the resonatormode and

a resonant phase shift can be observed. Note, that the shift is only valid

in the dispersive regime of the driving field. Therefore, the line of the

shifted system is interrupted around the driving frequency. A resonant

mode of the systemat the secondharmonic is depicted in Figure 4.19. The

qubit ensemble is continuously driven at a photon number𝑁􀇈 = 75 ⋅ 10
􀇈.

All parameters of the system are known, there are no free parameters.

The agreement between data and theoretical curve, as calculated from

Equations (4.3) and (2.30), for ensemble A continuously driven at 𝑁􀇈 is

good. Hence, the previously extracted parameters can be considered as

confirmed by this measurement, as there are the ensemble parameters

(see subsection 4.2.2), the number of qubits (see subsection 4.3.1) and

the coupling to the second harmonic 𝑔􀉮􀇇 (see subsection 4.2.3).

Transition from the resonant to the dispersive regime

When the system is driven at the fundamental mode frequency 𝜔􀉶,􀇆/2𝜋

and probed at third harmonic frequency 𝜔􀉶,􀇈/2𝜋, the effective qubit

frequencies 𝜔̃􀉵 increasewith increasing driving power. As a consequence,

the two resonant modes approach until they converge and disappear. At

that point the qubit frequencies excess 𝜔􀉶,􀇈/2𝜋 (see Figure 4.20 (a)).

The position of the resonant phase shift follows the resonance condition

𝜔􀉶,􀇈 = 𝜔̃􀉵,􀉮 . Figure 4.21 shows the measurement data in comparison

to the theoretical curve for ensemble B. The axis on the left-hand side

indicates the power of the driving signal at the generator, the damping

in the line has been extracted to be 68 dB. This is in good agreement

with the estimation from the measurement setup. In Figure 4.20 (b) a

scheme of the energy levels for two different photon numbers is shown.

At low driving power, the transition frequencies of the ensembles are still

undisturbed. At a photon number of𝑁􀇆 = 16 ⋅ 10
􀇋 theminimal transition

frequency lies above the third harmonic frequency. Therefore, there is no

crossing between the qubits and the resonator mode and the resonant

phase shift disappears.
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Figure 4.20: (a) The phase of the transmission (shading) in dependence on the

driving power at a frequency of𝜔􀉶,􀇆/2𝜋 and a probe frequency of𝜔􀉶,􀇈/2𝜋. The

single trace shown in Figure 4.15 (b) is taken from this data set. At low driving

powers the metamaterial is in the resonant regime exhibiting two resonant

modes. At the highest driving power, the resonant modes disappear and the

metamaterial is in the fully dispersive regime. (b) The horizontal lines correspond

to the harmonics of the resonator. In its initial condition the qubit ensembles

are below the third harmonic frequency (black lines). At a photon number of

𝑁􀇆 = 16 ⋅ 10􀇋 in the driving field, which corresponds to a driving power of

−5 dBm, the lowest transition frequencies of both ensembles are clearly above

the third harmonic frequency (orange lines).
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Figure 4.21: The position of the inner resonant mode (ensemble B) in 𝜔􀉶,􀇈 in

dependence on the driving power in𝜔􀉶,􀇆 extracted fromFigure 4.20 (a). The solid

line shows the theoretical curve following the resonance condition 𝜔􀉶,􀇈 = 𝜔􀉵,􀇗.

The right y-axis indicates the corresponding photon number in the driving field.
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Figure 4.22: (a) The qubit energies of set B under continuous drive at 𝜔􀉶,􀇇 with

a photon number of 5 ⋅ 10􀇋. The solid line corresponds to the third harmonic

𝜔􀉶,􀇈 which is crossed four times by the qubit ensemble. (b) The experimental

curve for the case depicted in (a). Four resonant modes are observed.

Non-linearity of the shift

The shift as described by Equation (4.3) depends on the effective coupling

𝑔􀊳 which in turn depends on the detuning of the qubit from its symmetry

point. Therefore, the frequencies are shifted non-linearly (see Figure

4.22 (a)). In the degeneracy point the shift is strongest, because there the

coupling is fully transversal. Interestingly, theoccurrenceof four resonant

modes at a certain driving strength is expected. Indeed, this could be

confirmed while driving at the second harmonic frequency 𝜔􀉶,􀇇/2𝜋 and

probing the phase at third harmonic frequency 𝜔􀉶,􀇈/2𝜋 (see Figure 4.22

(b)). The driving signal contains roughly 5 million photons.
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Conclusion

The method presented allows for additional tuning of the flux qubits

beyond the limitation of their minimal transition frequency . In princi-

ple, within this section the coupling of a flux qubit ensemble close its

symmetry point to a resonator has been demonstrated, which is similar

as in [FFM+10]. Yet, the photon number in the driving field may fluc-

tuate, which will lead to additional dephasing due to photon shot noise

[SWB+05], which may limit the application.

4.4.3 Additional effects

The model developed for the transmitted phase is valid only for a small

driving signal and a single excitation in the system. In order to analyse its

behaviour in dependence on the driving signal and its robustness in the

last experiment, the qubit metamaterial is both driven and probed at the

third harmonic frequency of the resonator𝜔􀇈/2𝜋. The transmitted phase

is monitored, while the probing strength, corresponding to the photon

number in the resonator, is increased. Figure 4.23 shows the results in

logarithmicand linearscale. Thedampingat the thridharmonicmodewas

previously extracted to be 82.2 dB, here, the probe signal is attenuated

by 20 dB more. This is used to recalculate the photon number in the

resonator.

In the beginning, at the single photon level, the two resonant modes

are observed. At higher photon numbers the magnitude of the resonant

phase shifts diminishes and the curve is broadened. In the vicinity of the

resonantmodes additional resonances appear at a driving field of several

hundreds of photons. At even higher photon numbers resonances at the

degeneracy point of the qubits appear, which follow a hyperbolic-like

dependence on the photon number. The origin of those resonances is still

under investigation.

The quantitative description applied to analyse the resonant modes is

only valid for small driving signals. Still, the data can be fitted according

to Equation (2.30) for arbitrary driving strength. The product 𝑛𝑔􀇇 and

the dephasing Γ􀊮 are taken as free parameters. As long as the driving field

is below a single photon, 𝑛𝑔􀇇 is approximately constant (see Figure 4.24
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Figure 4.23: The phase transmitted through the system under strong drive at

the third harmonic frequency 𝜔􀇈/2𝜋. (a) The left panel shows the dependence

on the photon number in a logarithmic scale. For low photon numbers the two

resonant modes are visible. With increasing photon number they are fading

away and additional resonances appear. (b) The right panel displays the same

data in a linear scale, highlighting the effects at higher photon numbers.

(a)). In the region between 1 and 10 photons, the product starts deviating

from its initial value. The dephasing rate shows similar characteristics,

whereas it increases significantly for photon numbers above 10 (see

Figure 4.24 (b)). Indeed, the model seems to be robust for small photon

numbers, especially for 𝑁 < 1. At higher photon numbers the model

still fits the data well and the parameters extracted could be used as

phenomenological values in order to describe the system. In the region

between 50 and 90 photons, the two resonant modes approach, which

can be seen in the correlated fit results for both ensembles in the product

𝑛𝑔􀇇.
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Figure 4.24: Fitting the measurement data from Figure 4.23 according to Equa-

tion (2.30) with the product 𝑛𝑔􀇇 and the dephasing Γ􀊮 as free parameters. (a)

The fitting results for 𝑛𝑔􀇇 normalized to its value at the lowest photon number.

(b) The fitting results for the dephasing Γ􀊮.
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5 Conclusion

In this thesis, superconducting quantum bits (qubits) weakly coupled

to a superconducting high quality cavity have been analysed in order to

systematically develop a many-qubit system to be used as a quantum

metamaterial. Such a metamaterial offers the possibility to engineer the

propagation of light by tuning the transition frequencies of its atoms and

the atom-atom coupling either by design or in situ in the experiment.

Here, the weak coupling bears certain advantages. For instance, the

driven qubit exhibits a level splitting, whose magnitude, the Rabi fre-

quency, depends on the photon number of the driving field. Because of

theweak coupling highphotonnumbers are required to strongly drive the

qubit, making the difference between neighbouring photon numberman-

ifolds negligible and allowing to average over the photon number. Such,

the dressed states of the driven system can be reduced to an effective

two-level system, whose population depends on the detuning between

the qubit and the microwave drive. This has lead to the demonstration

of dressed state amplification with a single superconducting flux qubit.

When coupling many qubits to the cavity, the weak coupling prevents

the occurrence of strong single qubit resonances and makes only collec-

tive resonances visible. Therefore, even in the presence of a spread in

parameters, the system remains understandable, which is important for

this first implementation of a many-qubit system, a so-called quantum

metamaterial.

The firstpartof this thesis (seechapter3)concentratesonthebehaviour

of a single flux qubit in the fully dispersive regime, where the qubit

frequency is below the resonator frequency. The phase transmitted at the

resonator frequencyexhibits adispersive shift independenceon thequbit

frequency and its state. This has been used to characterize the qubit and

extract all relevant parameters. Subsequently, increasing the power of the

probing field has been shown to induce multi-photon transitions and to
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alter the qubit transition frequency by theAC-Zeeman shift. Furthermore,

a second microwave field has been applied in order to dress the qubit.

It has been argued, that the dressed system exhibits a level inversion in

dependence on the detuning between the qubit and themicrowave drive.

When probing the dressed system, an amplification of the transmitted

signal of up to 40 % has been observed.

In the second part of the thesis (see chapter 4), the system is extended

to many qubits: 20 flux qubits have been embedded in a single supercon-

ducting resonator. This system constitutes the first implementation of a

basic quantum metamaterial in the sense, that many artificial atoms are

coupled to the quantizedmode of a photon field. The different harmonics

of the resonator are exploited in order to test the system at different

frequencies. The dispersive shifts measured at the first two harmonics

are induced by all qubits collectively and serve to make first estimations

of the parameters of the metamaterial. It is found, that not all qubits

contribute equally to the dispersive shift. By using the resonant modes

observed in the higher harmonics of the resonator, the parameters of

three different ensembles of identical qubits could be reconstructed. A

quantitative analysis of the resonantmodes has revealed that two ensem-

bles are formed by 4 qubits each and the third by not less than 8 qubits.

Indeed, the system exhibits a time dependence, where the third ensemble

is formed by an overlapping of the two other ones. The metamaterial

consists of artificial two-level systems similar to natural spins and just

like them, their transition frequency can be tuned by the AC-Zeeman

shift, as shown before. Here, this has been used to tune the quantum

metamaterial in and out of the fully dispersive regime, which underlines

the quantum mechanical nature of the system. The consistency of all

extracted parameters could be demonstrated.

The next iteration of the quantum metamaterial will have on-chip bias

lineswhich couplenon-uniformly to thequbits andallow to locally control

the frustration and therefore the transition frequencyof individual qubits.

Such, the number of qubits participating in the resonant modes can be

tuned in a controlled way and as a consequence, the collective coupling

can be tuned. Once the coupling becomes of the order of the qubits level

splitting and the resonator frequency, the occurrence of a quantum phase

transition is likely [NC10].
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Zusammenfassung

In dieser Dissertation wurden supraleitende Quantenbits (Qubits) unter-

sucht, welche schwach mit einem supraleitenden Resonator hoher Güte

gekoppelt sind.DieExperimentedientender systematischenEntwicklung

eines Multi-Qubit-Systems, welches als Quantenmetamaterial eingesetzt

werden kann. Ein solches Metamaterial bietet die Möglichkeit, die Aus-

breitung von Licht zu manipulieren, indem die Übergangsfrequenzen der

Atome sowie die Atom-Atom-Kopplung entweder durch das Design oder

während des Experiments in situ eingestellt werden.

Die schwache Kopplung im verwendeten System birgt verschiedene

Vorteile, so erfährt etwa das getriebene Qubit eine Niveau-Aufspaltung,

deren Stärke – die Rabi-Frequenz – von der Photonenzahl des Treibungs-

feldes abhängt. Aufgrund der schwachen Kopplung sind hohe Photo-

nenzahlen erforderlich, um das Qubit stark zu treiben. Damit wird der

Unterschied zwischen benachbarten Photonenzahl Mannigfaltigkeiten in

den vernachlässigbaren Bereich gedrängt. Hierdurch wird es möglich,

über die Photonenanzahl zu mitteln. Auf diese Weise können die beklei-

deten Zustände des getriebenen Systems auf ein effektives Zwei-Niveau-

System reduziert werden, dessen Besetzung von der Verstimmung zwis-

chenQubit undMikrowellentreibung abhängt. Die Signal Verstärkungmit

Hilfe des bekleideten Zustandes konnte an einem einzelnen supraleiten-

den Qubit gezeigt werden. Werden mehrere Qubits mit einem Resonator

gekoppelt, verhindert die schwacheKopplungdasAuftreten starkerReso-

nanzen einzelner Qubits. Nur kollektive Resonanzen sind sichtbar. Selbst

bei einer starken Streuung der Parameter bleibt dadurch das System

verständlich, was eine Grundvoraussetzung darstellt für die erste Real-

isierung einesMulti-Qubit-Systems, eines so genanntenQuantenmetama-

terials.

Der erste Abschnitt der Dissertation (Kapitel 3) konzentriert sich

auf das Verhalten eines einzelnen Flussqubits im vollständig dispersen
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Regime, in dem die Qubitfrequenz niedriger ist als die Frequenz des Res-

onators. Die Phase des durch den Resonator geleiteten Signals, weist eine

dispersiveVerschiebung auf,welche vonder FrequenzdesQubits undvon

dessen Zustand abhängt. Das wurde ausgenutzt, um das Qubit zu charak-

terisieren und alle relevanten Parameter zu ermitteln. Anschließend kon-

nte gezeigt werden, dass durch die Erhöhung der Leistung des Testfeldes

Multiphotonenübergänge induziert werden und dass die Übergangsfre-

quenz des Qubits durch die AC-Zeeman-Verschiebung beeinflusst wird.

Des weiteren wurde ein zweites Mikrowellenfeld angelegt, um das Qubit

in den bekleideten Zustand zu überführen. Das bekleidete System weist

eine Besetzungsinversion auf, die von der Verstimmung zwischen Qubit

und Mikrowellentreibung abhängt. Bei der Untersuchung des bekleide-

ten Systems konnte eine Verstärkung des übertragenen Signals um bis zu

40 % festegstellt werden.

Im zweiten Abschnitt der Dissertation (Kapitel 4) wurde das System

auf eine höhere Zahl von Qubits erweitert: zwanzig Flussqubits wurden

in einen einzelnen supraleitenden Resonator integriert. Dieses Systems

stellt die erste Verwirklichung eines einfachen Quantenmetamaterials

dar, und zwar in dem Sinne, dass eine Vielzahl künstlicher Atomemit der

quantisierten Mode eines Photonenfeldes koppeln. Die verschiedenen

Harmonischen des Resonators werden ausgenutzt, um das System bei

unterschiedlichen Frequenzen zu testen. Die dispersen Verschiebungen

in den ersten beiden Harmonischen werden durch alle Qubits kollek-

tiv verursacht. Sie dienen dazu, erste Abschätzungen der Parameter des

Metamaterials vorzunehmen. Es wurde festgestellt, dass nicht alle Qubits

im gleichen Maße zur dispersen Verschiebung beitragen. Unter Nutzung

der resonantenModen, die in den höherenHarmonischen des Resonators

auftreten, konnten die Parameter dreier verschiedener Ensembles iden-

tischer Qubits rekonstruiert werden. Eine quantitative Analyse der reso-

nanten Moden zeigte, dass zwei Ensembles aus jeweils vier Qubits beste-

hen und das dritte sogar acht Qubits umfasst. In der Tat zeigt das System

eine Zeitabhängigkeit, wobei das dritte Qubit-Ensemble durch eine Über-

lappung der beiden anderen gebildet wird. Das Metamaterial besteht aus

künstlichenZwei-Niveau-Systemen,welchenatürlichenSpins ähneln, und

bei denen – genau wie bei letzteren – die Übergangsfrequenz durch die

AC-Zeeman-Verschiebung eingestellt werden kann, wie es bereits vorher
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gezeigt werden konnte. In diesem Fall wurde das ausgenutzt, um das

Quantenmetamaterial in das und aus dem vollständig dispersen Regime

zu schieben, was den quantenmechanischen Charakter des Systems un-

terstreicht. Die Konsistenz aller ermittelten Parameter konnte gezeigt

werden.

In einem nächsten Iterationsschritt wird das Quantenmetamaterial

Kontrolllinien auf dem Chip aufweisen, die nicht uniform an die Qubits

koppeln.Dadurch ist esmöglich, dieFrustrationunddamitdieÜbergangs-

frequenz der einzelnen Qubits zu steuern. Auf diese Weise kann die Zahl

der in den resonanten Moden beteiligten Qubits kontrolliert eingestellt

werden. SobalddieKopplungdieGrößenordnungderNiveau-Aufspaltung

der Qubits und des Resonators erreicht, ist ein Quantenphasenübergang

wahrscheinlich [NC10].

109





Appendix

Experimental validation of the coupling

It has been already shown, that the theoretical mutual inductance is

in good agreement with the experiment (see subsection 3.2.2). Here,

the consistence between the experimentally extracted and the calculated

coupling is validated one more time. The single qubit described in

chapter 3 is analysed in a different measurement setup. The system is

probed at the third harmonic of its resonator, in a similar way as shown

for the metamaterial in subsection 4.3.1. The frequency of the third

harmonic is 𝜔􀇈/2𝜋 = 7.77 GHz and 𝜅􀇈 = 0.46 Mhz. The dimension and

location of the single qubit differs from the ones used in themetamaterial,

which results in a slightly higher mutual inductance𝑀􀉵􀉶 = (0.92±0.02)

pH. The gap and the persistent current are Δ = 3 GHz and 𝐼􀇿 = 158 nA.

The expected coupling is 𝑔􀉵􀉶 = 2𝜋 ⋅ (4.7 ± 0.3) MHz. Figure .1 shows

the phase of the transmission through the resonator. Similar as for the

metamaterial two symmetric resonance phase shifts occur. The solid

line shows a two-parameter fit with 𝑔􀉵􀉶 and Γ􀊮 as free parameters using

Equation (2.30) for 𝑛 = 1. The best fit is obtained for 𝑔̃􀉵􀉶 = 2𝜋 ⋅ 4.9MHz

and Γ􀊮 = 2𝜋 ⋅ 141 MHz. The experimental result for the coupling is in

good agreement with the theoretical value. The higher dephasing results

from the larger detuning of the flux qubit from its degeneracy point.
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Figure .1: Transmitted phase through a resonator containing a single flux qubit

with known parameters. In order to compare the expected coupling with the

fitted coupling, the solid line shows a two-parameter fit as described in the main

text. The expected coupling is 𝑔􀉵􀉶 = 2𝜋 ⋅ (4.7 ± 0.3) MHz, while the best fit is

obtained for 𝑔̃􀉵􀉶 = 2𝜋 ⋅ 4.9MHz.
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