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Col I collagen type I
DAPI 4,6-diamino-2-phenylindole
ddH2O double-destilled water
DMEM Dulbecco’s modified Eagle medium
DMSO dimethyl sulfoxide
DOC deoxycholate
ECM extracellular matrix
EDTA ethylenediaminetetraacetic acid
EG3O-Me ethylenglycol-3-O-mercaptan
EM electron microscopy
FA focal adhesion
FAK focal adhesion kinase
FCS fetal calf serum
F-D curve force-distance curve
Fig. figure
FITC fluorescein isothiocyanate
FN fibronectin
FN-AF488 fibronectin conjugated with Alexa Fluor 488® dye
FN-AF568 fibronectin conjugated with Alexa Fluor 568® dye
FN-AF633 fibronectin conjugated with Alexa Fluor 633® dye
FX focal complex
HFF Human foreskin fibroblast
H2O2 hydrogen peroxide
mAB monoclonal antibody
MDCK Madin Darby canine kidney cell line
MEF mouse embryonic fibroblasts
MEM minimal essential medium
MeOH methanol
pAB polyclonal antibody
PAA polyacrylamide
PBS phosphate buffered saline
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Abbrevations, symbols and units

PDMS polydimethylsiloxane
PFA paraformaldehyde
RAW264.7 mouse leukaemic monocyte macrophage cell line
REF52 rat embrionic fibroblasts
RGD arginine-glycine-aspartate
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
SEM scanning electron microscopy
SMFS single-molecule force spectroscopy
TEM transmission electron microscopy
TEMED N,N,N’,N’-Tetramethylethylendiamin
TIRF total internal reflection fluorescence
Tris tris(hydroxymethyl)aminomethane
TRITC tetramethylrhodamin isothiocyanat
v/v volume per volume
w/v weight per volume

Symbols and units

Å Angstrom (10−10 m)
°C degree Celsius
⌀ diameter
h hour
L liter
M molar
m meter
min minute
mM millimolar
µg microgramm (10−6 g)
µl microliter (10−6 L)
µm micrometer (10−6 m)
µM micromolar (10−6 M)
N Newton (kg⋅m/s2)
nm nanometer (10−9 m)
nN nanonewton (10−9 N)
Pa Pascal (N/m2)
pN piconewton (10−12 N)
rcf relative centrifugal force (m/s2)
sec second
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Zusammenfassung

Zellen in Geweben sind von der extrazellulären Matrix (EZM) umgeben, einem komplexen
Gemisch aus Makro- und Signalmolekülen. Zellen interagieren mit dieser Umgebung über
verschiedene Rezeptoren, mit deren Hilfe sie auf die mechanischen Eigenschaften und die
chemische Zusammensetzung der EZM reagieren und entsprechende Signale in die Zelle
weiterleiten können. Durch diese Signale werden wiederum vielfältige zelluläre Prozesse re-
guliert, wie Zellteilung, Differenzierung oder Migration. Über Integrin-Rezeptoren, welche
über intrazelluläre Adapterproteine mit dem Zytoskelett verbunden sind, kann die Zelle
auch Kräfte auf die EZM ausüben und diese so umstrukturieren. Des Weiteren können Zel-
len durch Sekretion von Matrixproteinen und Enzymen die Komposition und die mechani-
schen Eigenschaften der EZM beeinflussen. In dieser Dissertation werden verschiedene As-
pekte der Zell-EZM-Wechselwirkung behandelt, wobei hochauflösende Mikroskopietech-
niken wie die Rasterkraft- (atomic force microscopy, AFM), Rasterelektronen- (scanning
electron microscopy, SEM) und Fluoreszenzmikroskopie eingesetzt wurden. Ein besonder
Schwerpunkt lag dabei in der Kombination dieser Techniken, um so neue Möglichkei-
ten für die Analyse zellulärer und matrix-gebundener Strukturen zu eröffnen. So erlaubt
die spezifsche Markierung ausgewählter Proteine mit Fluorophoren deren spätere Loka-
lisierung in komplementären, hochaufgelösten rastermikroskopischen Bildern. Allerdings
finden in adhärenten Zellen viele Zell-EZM–Wechselwirkungen unterhalb des Zellkörpers
statt, so dass deren direkte Beobachtung durch oberflächen-sensitive Methoden wie AFM
oder SEM unmöglich ist. Deshalb wurde im Rahmen dieser Doktorarbeit eine Technik
entwickelt, die es ermöglicht, die Zellunterseite samt assoziierter Matrix-Bestandteile un-
beschadet freizulegen (Kapitel 3). Mit Hilfe eines UV-aushärtbaren Haftmittels werden
dabei adhärente Zellen von ihrem Substrate gelöst und invertiert, so dass die zellulären
Matrixadhesionspunkte an der basalen Membran und die daran gebundenen EZM Prote-
ine exponiert werden. Bemerkenswert an dieser Methode sind die vollständige Bewahrung
der zellulären Integrität während des Invertierungsschrittes und die hohe Reproduzier-
barkeit. Um die Nützlichkeit des neuen Verfahrens zu demonstrieren, wurde zum ersten
Mal die Struktur der basalen Seite von Podosomen, spezieller Zell-Matrix-Kontakte, bis in
den Nanometerbereich aufgelöst (Kapitel 4). Podosomen sind hoch dynamische Zell-EZM-
Adhäsionspunkte welche unter anderem bei der Matrixdegradation und dem Knochenab-
bau eine entscheidende Rolle spielen. Podosomen bestehen aus einem F-Aktin-Kern und
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Zusammenfassung

einem zentralen Membrankanal, welcher für die Sekretion von Enzymen verantwortlich
sein könnte. Durch die Kombination von Fluoreszenzmikroskopie, AFM und SEM konnte
hier erstmals eine apikale und basale Einstülpung der Podosomenstruktur nachgewiesen
werden, welches für die Existenz eines zentralen Kanals spricht. Ein weiterer Aspekt der
Dissertation betrifft die Interaktion zwischen Fibroblasten und dem EZM-Protein Fibro-
nektin (FN, Kapitel 5). FN ist ein globuläres Protein, welches von Zellen über Integrine
gebunden und mit Hilfe von zellulären Kräften in eine entfaltete Konformation überführt
werden kann. Dadurch werden verborgene FN-FN Bindestellen freigelegt, so dass FN-
Moleküle miteinander wechselwirken und sich in einem als Fibrillogenese bezeichneten
Prozess zu dickeren Fibrillen anlagern. Bisher wurde die Fibrillogenese vorwiegend an
fixierten Präparaten untersucht, welche die Fibrillen-Entstehung lediglich zu unterschied-
lichen Zeitpunkten aufzeigen. AFM- oder Fluoreszenzmikroskopie-basierte Zeitrafferauf-
nahmen gab es dagen bislang nicht. Im Rahmen dieser Dissertation ist es gelungen, die
Fibrillenbildung durch lebende Zellen mit Hilfe von AFM erstmals direkt zu visualisieren.
Aus den hochaufgelösten AFM-Bildern kann die Dynamik des Fibrillen-Wachstum und
die Fibrillen-Struktur bestimmt werden. Versuche, die FN-Fribrillogenese auch mit Hilfe
der Fluoreszenzmikroskopie abzubilden waren dagegen zunächst nicht erfolgreich, führten
jedoch zu der Erkenntnis, dass die FN-Fibrillogenese ein stark lichtsensitiver Prozess ist
(Kapitel 6). So verhindert selbst kurzzeitige Belichtung mit UV- oder sichtbarem Licht
unterhalb einer Wellenlänge von 560 nm effektiv die Zell-abhängige Fibrillenbildung des
FNs. Nach Optimierung verschiedener Belichtungsparameter und der eingesetzten Wel-
lenlänge konnte jedoch schließlich die Fibrillogenese auch fluoreszenzmikroskopisch beob-
achtet werden. Zusammenfassend lässt sich festhalten, dass Zell-EZM-Interaktionen trotz
intensiver Erforschung noch immer viele offene Fragen bieten, deren Klärung neue expe-
rimentelle Vorgehensweisen erfordert. So kann durch die neue Invertierungs-Methode die
Zellunterseite für hochauflösendede Abbildungsverfahren wie AFM und SEM zugänglich
gemacht werden. Des Weiteren muss beachtet werden, dass die eingesetzten Mikrosko-
pietechniken selbst die beobachteten biologischen Prozesse stark beeinflussen können. So
kann durch die notwendige Belichtung der Probe während der Fluoreszenzmikroskopie die
Fibrillenbildung des FN vollständig verhindert werden, was wiederum zur Beeinflussung
zellulärer Wechselwirkungen mit der EZM führen kann.
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Summary

Cells in tissues are surrounded by the extracellular matrix (ECM), a complex mixture
of different macro- and signaling molecules. Cells interact with the ECM using a variety
of receptors, which enables them to respond to the mechanical properties and chemical
composition of the ECM and to transmit signals into the cell. These intracellular sig-
naling pathways then regulate a wide variety of cellular processes, such as cell division,
differentiation and migration. Via cytoskeleton-attached integrin receptors, cells can also
exert external forces on the ECM, leading to matrix processing and remodeling. Fur-
thermore, cells may secrete additional matrix components and enzymes to modify the
composition and mechanical properties of the ECM. This thesis addresses different as-
pects of cell-ECM interactions by using high-resolution microscopy techniques, including
atomic force microscopy (AFM), scanning electron microscopy (SEM), and fluorescence
microscopy, with a special focus on combining these techniques to obtain complimentary
information. For instance, fluorescent labeling of specific proteins allows for relocating
them in corresponding high-resolution AFM or SEM images. However, in adherent cells
the majority of cell-matrix interactions occur at the basal cell side, making them in-
accessible to surface-sensitive scanning techniques. In this thesis, a new method was
developed for non-destructively inverting adherent cells, exposing the basal cell side in-
cluding associated matrix components (Chapter 3). In this method, adherent cells are
embedded in a UV-curable adhesive, removed from their substrate and finally inverted
for further analysis. A special advantage of this technique is the complete preservation of
the structural integrity of the cells during inversion and the high degree of reproducibility.
To demonstrate the feasibility of this method, the basal surface of podosomes, special-
ized cell-matrix adhesion sites, were imaged with nanometer resolution for the first time
(Chapter 4). Podosomes are highly dynamic cell-ECM adhesion sites which play a crucial
role in matrix degradation and bone resorption. Podosomes contain an F-actin-rich core
and possible a central membrane channel proposed to participate in enzyme secretion into
the extracellular space. Using a combination of fluorescence microscopy, AFM and SEM
and the cell inversion technique, it could be shown here for the first time that podosomes
contain a central depression at both their apical and basal side, strongly supporting the
idea of a central channel. A further topic of this thesis concerns interactions between
fibroblasts and the ECM protein fibronectin (FN, Chapter 5). FN is a globular protein,
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Summary

which can be bound by cells via integrins and stretched into an elongated conformation
as a result of cellular contraction forces. FN extension exposes cryptic FN-FN binding
sites, which enables FN molecules to laterally interact with each other and to form large
fibrillar structures in a process termed fibrillogenesis. So far FN fibrillogenesis has been
mainly studied using chemically fixed samples, displaying intermediate steps of fibrilloge-
nesis at different time points only, while AFM- or fluorescence-based time-lapse imaging
experiments had been missing. Within the framework of this thesis, the rearrangement
of FN fibrils by living cells could be visualized for the first time using time-lapse AFM
imaging. In contrast, complimentary fluorescence-based time-lapse experiments initially
proved unsuccessful, but revealed that FN fibrillogenesis is a strongly light-sensitive pro-
cess (Chapter 6). Even short exposure to UV or visible light below a wavelength of
560 nm effectively inhibits cell-induced fibril formation of FN. However, after optimiz-
ing different exposure conditions, including exposure time and intensity, and illumination
with light of longer wavelength, cell-induced FN remodeling could be visualized in real
time by fluorescence microscopy as well. In summary, cell-ECM interactions still pose
numerous questions despite extensive research in this field. Important novel insight can
be gained by developing new sample preparation and imaging techniques, such as the cell
inversion method which makes the basal cell side accessible to high resolution raster scan-
ning by AFM and SEM. However, it must be noted that different microscopy techniques
themselves may strongly affect the investigated biological processes. In particular, sample
illumination during fluorescence microscopy can completely inhibit fibril formation of FN,
which in turn may influence cellular interactions with ECM.
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1 Introduction

1.1 The extracellular matrix (ECM)
The different tissues of the vertebrate body consist of two main components: a cellu-
lar part and a surrounding extracellular matrix (ECM). The ECM is mainly composed
of water, proteoglycans, glycoproteins, such as collagens, laminins and fibronectin (FN),
and signaling proteins, such as growth factors (Berrier and Yamada, 2007). ECM macro-
molecules are secreted by cells and then assembled into a complex, three dimensional (3D)
network. Each tissue has an ECM with a unique composition (Table 1.1) and structure
generated during tissue development (Frantz et al., 2010). For instance, the bulk of bone,
cartilage and dermal tissue is formed by the ECM. In contrast, in epithelia and muscle
most of the tissue is cellular and the matrix is confined to a basal lamina surrounding the
cellular component (Goodman, 2007).
Besides providing a scaffold for cell embedding, the ECM also promotes and restricts

cell adhesion and movement and acts as a reservoir for growth factors, limiting their
diffusion and facilitating the transmission of environmental signals to cells (Goodman,
2007; Rozario and DeSimone, 2010).

1.2 Collagen
Collagens are the most abundant structural ECM proteins of animal tissue (Frantz et al.,
2010). In vertebrates, there are 28 different collagens, numbered in order of their discov-
ery with Roman numerals I-XXVIII (Myllyharju and Kivirikko, 2004) (Table 1.2). Struc-
turally, all collagens are built-up of tropocollagen, a right-handed bundle of three parallel,
left-handed proline-rich α-helices. The most common motif in the amino acid sequence of
the α-helix is the repeating sequence (glycine-X-Y)n, where X and Y represent any amino
acid other than glycine. However, proline is often found at the X position, and 4-hydroxy-
proline at the Y position (Brodsky and Persikov, 2005; Myllyharju and Kivirikko, 2004;
Shoulders and Raines, 2009). In some collagens all three α-helices are identical, whereas
in others the triple helix contains two or even three different α-helices (Myllyharju and
Kivirikko, 2004). Different collagen classes can be defined depending on the tropocollagen
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ECM macromolecule Components Localization
collagens collagen type I skin, tendon, bone

glycoproteins

fibronectin blood, connective tissue
laminin basal lamina
vitronectin blood
entactin basal lamina
tenacscin embryonic connective tissue
osteopontin bone, kidney

proteoglycans

decorin connective tissue
aggrecan cartilage
perlecan epithelium, muscle
fibromodulin cartilage, skin, tendon

glycosaminoglycans keratan

Table 1.1: Composition of the ECM matrix (adapted from (Gartner and Hiatt, 2010)).

organization, including fibrillar and network-forming collagens, fibril-associated collagens
with interrupted triple helices (FACIT), membrane associated collagens with interrupted
triple helices (MACITs) and multiple triple-helix domains and interruptions (Kadler et
al., 2008; Rest and Garrone, 1991) (Table 1.2). Generally, collagen assembly is a complex
and hierarchical process, ultimately resulting in the creation of macroscopic fibers and
networks (Shoulders and Raines, 2009) (Fig. 1.1).
Fibrillar collagen is synthesized in the endoplasmatic reticulum as soluble procollagen

with large propeptides at both ends of the α-helix (Myllyharju and Kivirikko, 2004).
Outside the cell, the propeptides are cleaved by special metalloproteinases leaving short
telopeptides (Colige et al., 2005; Maki et al., 2005). The collagen α-helix with cleaved
ends is called tropocollagen. Three tropocollagen α-helices then assemble into a triple
helix in an entropically driven process. Since tropocollagen molecules are less soluble
than procollagen, the loss of solubility results in the creation of a triple helix with mini-
mized area to volume ratio (Kadler et al., 1987). Several tropocollagen triple helices are
organized into collagen fibrils, where lysine residues in the telopeptide and triple-helical
hydroxylysines are covalently cross-linked. This stabilization of collagen fibrils results in
a high tensile strength (Canty and Kadler, 2005). For example, collagen type I fibrils
consists of tropocollagen subunits being 280 nm long and having a diameter of 1.5 nm
(Fig. 1.1B). These subunits form fibrils in a self-assembly process (Kadler et al., 1996) by
aligning with each other with a regular stagger. This leads to a periodical structure of
gaps and overlaps every 67 nm forming so called D-bands (Kadler et al., 2008). Since the
1960s it has been possible to visualize the collagen structure with nm resolution by trans-
mission electron microscopy (TEM), revealing showing the D-band periodicity directly
(Fig. 1.1C).
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Figure 1.1: Molecular organization of collagen type I. (A) The hierarchical organization of
collagen in the tendon. The triple helix of tropocollagens associate with other helices into
fibrils. Then, several fibrils form larger fibers, which are composed into bundles resulting
in the tendon (adapted from (Gartner and Hiatt, 2010)). (B) During the self-assembly of
tropocollagen triple helices into fibrils overlap and gap regions are created, resulting in a
staggered structure with a period of 67 nm, the so called D-band. (C) A TEM image of a
collagen type I fibril contains brighter and darker regions, corresponding to overlap and gap
regions, respectively (adapted from (Kadler et al., 1996)).
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Class Collagen type Representative tissues
fibrillar I, II, III, V, XI, XXIV,

XXVII
dermis, bone, tendon,
ligament, cornea placenta,
cartilage.

fibril associated collagens
with interrupted triple
helices on the fibril
surface (FACIT)

IX, XII, XIV, XVI, XIX,
XX, XXI, XXII, XXVI

cartilage, cornea, vitreous,
dermis, tendon, bone,
kidney, basement
membrane, tissue
junctions, ovary, testis

hexagonal networks IV, VI, VIII, X basement membranes,
dermis, brain, bone,
cornea, heart, kidney,
cartilage

anchoring fibrils VII dermis, bladder
membrane-associated
collagen with interrupted
triple helices (MACIT)

XIII, XVII, XXIII, XXV endothelial cells, dermis,
eye, heart,
hemidesmosomes in
epithelia, brain, testis

multiple triple-helix
domains and interruptions

XV, XVIII capillaries, testis, kidney,
heart, basement
membrane, liver

Table 1.2: Overview of vertebrates collagens (adapted from (Shoulders and Raines, 2009)).

1.3 Fibronectin (FN)
Fibronectin (FN) is an ubiquitous ECM protein. It plays a crucial role not only in tissue
organization as a scaffold protein, but also in regulating cellular processes, such as cell
differentiation, growth, adhesion and migration (Hynes, 1990). FN is also important for
vertebrate development. For example, the inactivation of the FN gene in mice embryos
results in early embryonic lethality (George et al., 1993).

1.3.1 FN structure

FN is a dimeric glucoprotein containing two nearly identical monomers with a molec-
ular weight of approximately 250 kDa each. The monomers are covalently linked near
their C-terminal ends via disulfide bond pairs (Johnson et al., 1999) (Fig. 1.2). Each FN
monomer contains three types of repeating units, called FN type I (FNI), II (FNII) or
III (FNIII) (Pankov and Yamada, 2002; Singh et al., 2010; Wierzbicka-Patynowski and
Schwarzbauer, 2003). The FN gen encodes twelve different FNI, two FNII, and 15 con-
stitutively expressed and two alternatively spliced (EIIIA and EIIIB) FNIII repeats, and
a non-homologous variable (V) region (To and Midwood, 2011). The molecular diversity
of FN is therefore generated by alternative splicing (Hynes, 1990).
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Figure 1.2: Schematic picture illustrating the structure of the dimeric FN molecule. (A)
Each FN monomer contains type I (rectangular), type II (oval) and type III (circle) repeating
units. The alternatively spliced FNIIIA and FNIIIB units and the V-region are colored
in yellow. Blue circles represent the cell binding domains containing the RGD (FNIII10)
and the synergy site (FNIII9). Domains containing FN binding sites are colored in orange,
binding sites for other ECMmolecules are marked with black lines and the 70 kDa N-terminal
fragment is underlined (blue). The FN monomers are covalently linked near their C-terminal
ends via disulfide bonds pairs. (B) Ribbon structures of the FNI1, FNII1 and FNIII10
repeating units. The FNI and FNII units contain intramolecular disulfide bonds (in magenta)
(modified from (Mao and Schwarzbauer, 2005a)).

11



1 Introduction

Within the FN monomers, the repeats are organized into binding domains for extracel-
lular molecules (collagen, heparin, fibrin and FN) and cell-surface receptors (Hynes, 1990;
Pickford and Campbell, 2004) (Fig. 1.2A). One of the major FN cell-binding domains is
present within the FNIII10 repeat and contains an RGD (Arg-Gly-Asp) sequence. The
RGD motif promotes cell adhesion mainly via α5β1-integrin (Hynes, 1990; Singh et al.,
2010; Takagi, 2004). The amino acid sequence PHSRN (Pro-His-Ser-Arg-Asn) in FNIII9,
which is located next to the RGD site, was identified as a synergistically site enhancing
the cell-adhesive function of the RGD site (Aota et al., 1994; Grant et al., 1997).

1.3.2 FN types

FNs are classified into plasma (pFN) and cellular FN (cFN). Both FN types possess a
distinct molecular composition, solubility and rate of assembly into the 3D matrix (To
and Midwood, 2011). Hepatocytes secrete pFN into blood plasma, where it circulates at
a concentration of 300 - 400 µg/ml (Zardi et al., 1979) in a compact, globular conforma-
tion. The pFN dimer contains only one V region, but EIIIA and EIIIB units are absent
(Magnusson and Mosher, 1998; Tressel et al., 1991; Wilson and Schwarzbauer, 1992).
Compared to pFN cFN is expressed by a larger variety of cell types, including fibroblasts,

endothelial cells, myocytes, chondrocytes and synovial cells (To and Midwood, 2011). cFN
is a mixture of up to 20 different isoforms generated by alternative splicing of EIIIA, EIIIB
and V regions (ffrench-Constant, 1995). The expression of different cFN isoforms is tissue
and cell specific and temporally regulated (Hershberger and Culp, 1990; To and Midwood,
2011; Tressel et al., 1991; Van Vliet et al., 2001).
Both, pFN and cFN can be incorporated into a 3D matrix. The order of the inser-

tion depends on the tissue. For example, during wound healing, pFN is responsible for
early wound healing events, whereas cFN is expressed and incorporated later. Directly
after wound creation, soluble, circulating pFN associates into fibrin clots which regulate
platelet adhesion (Corbett et al., 1997), spreading (Cho et al., 2005) and aggregation
(Cho and Mosher, 2006; Ni et al., 2003). In late wound healing after clot formation has
been achieved, endothelial cells and fibroblasts migrate into the wound, and secrete and
assembly cFN into a high-molecular weight multimeric matrix (To and Midwood, 2011).
This dense network helps these cells to spread, polarize, proliferate and migrate (Knox
et al., 1986; Manabe et al., 1997; Sechler and Schwarzbauer, 1998; Wang et al., 2005a).
In the further course of wound healing, incorporation of cFN also regulates the deposition
of other ECM molecules (Sottile and Hocking, 2002; To and Midwood, 2011), such as
collagens (Chiang et al., 2009; Dzamba and Peters, 1991; Dzamba et al., 1993), fibrinogen
(Pereira et al., 2002), laminins (Sottile and Hocking, 2002), tenascin (Chung et al., 1995)
and fibulin (Godyna et al., 1995) into the matrix.
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1.3.3 FN fibrillogenesis

Both pFN and cFN are secreted in a compact, globular and inactive form stabilized
by intramolecular interactions between the FNI1−5, FNIII2−3 and FNIII12−14 domains
(Johnson et al., 1999; Rocco et al., 1983; To and Midwood, 2011). Low concentrations
of chemical denaturants destabilize these ionic interactions, leading to a separation of
the crossed-over arms (extended structure). Higher denaturant concentrations result in
complete FN molecule unfolding (Smith et al., 2007). FN type I and II repeats are
stabilized by intramolecular disulfide bonds inside the FN molecule (Fig. 1.2B), whereas
type III repeats do not have these bonds in their seven-stranded β-barrel structure (Leahy
et al., 1996; Potts and Campbell, 1994) (Fig. 1.2B). Therefore, only FNIII repeats can be
unfolded by external force applied on the FN molecule (Mao and Schwarzbauer, 2005a;
Smith et al., 2007).
In solution, secreted FN does not polymerize (Mosher and Johnson, 1983) and does

not form a 3D matrix in absence of cells (Mao and Schwarzbauer, 2005b). However, the
assembly of FN into fibrils, the so called FN fibrillogenesis, plays a key role in many
physiological processes during embryonal development and also later in the adult organ-
ism. For example, during embryogenesis fibrillar FN is a major guidance component for
gastrulation (Boucaut et al., 1990) and neural crest cell migration (Duband et al., 1986;
Dufour et al., 1986). Fibrillar FN is also required for branching morphogenesis during
kidney, lung, salivary gland and gonad formation (Jiang et al., 2000; Larsen et al., 2006;
Paranko et al., 1983; Sakai et al., 2003).
Mechanisms of FN fibrillogenesis have been extensively studied in vitro. For instance,

cellular rearrangement of surface-bound FN into fibrils has been visualized by immunola-
beling in fixed cells (Pankov and Momchilova, 2009). The initial step of FN fibrillogenesis
takes place at the cell surface through integrin receptor binding to FN (McKeown-Longo
and Mosher, 1983) (Fig. 1.3A). The major FN receptor is α5β1, which binds to the RGD
sequence of FN (Wennerberg et al., 1996; Wu et al., 1993). However, other integrins
can also interact with FN and are involved in fibrillogenesis (Table 1.4). It has been
suggested that initiating FN-matrix assembly may not dependent on just a single type of
integrin or single region within the FN molecule, but that this process involves additional
cellular proteins (Singh et al., 2010; To and Midwood, 2011). Integrin binding induces
FN unfolding by tensin-dependent integrin translocation (Baneyx et al., 2002; Pankov
et al., 2000) and exposure of cryptic FN-FN binding sites (Ingham et al., 1997; Zhong
et al., 1998). These sites are located inside of FNIII1 (Hocking et al., 1994), FNIII1−2

(Zhong et al., 1998), FNIII10 (Hocking et al., 1996), FNIII7 and FNIII15 repeats (In-
gham et al., 1997; To and Midwood, 2011), which are not stabilized by intramolecular
disulfide bonds and therefore can be unfolded by applying external force (Baneyx et
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Figure 1.3: Major steps of FN fibrillogenesis. (A) Integrins (grey) bind globular FN dimers
(the FN monomers are colored in two shades of orange). (B) Intracellular proteins (red,
yellow, blue) are recruited to integrins and connected to the actin cytoskeleton (green).
Increased cell contractility (black arrows) results in conformational changes of the FN
molecules. (C) Integrin clustering leads to further FN extension. (D) FN unfolding re-
sults in the exposure of FN-FN binding sites, leading to mutual interaction and to fibril
formation. (E) Possible interactions between FN dimers inside the fibril are shown, where
N indicates the N-terminus of FN molecule. Two possible association mechanisms inside the
fibril:end-to-end FN dimer association (i) and lateral fibril association (ii) (modified from
(Singh et al., 2010)).

al., 2002; Pankov et al., 2000). Unfolding of FNIII results in the exposure of cryptic
FN-FN binding sites promoting fibril creation. FNIII repeats pass through several in-
termediate states during its stretching from a compact, over partially unfolded to an
unfolded conformation (Craig et al., 2001; Gao et al., 2003; Gao et al., 2002; Li et al.,
2005). For example, experimental unfolding of FNIII1−2 domains exposes a cryptic FN
binding site, resulting in increased FN binding activity after stretching (Aguirre et al.,
1994; Hocking et al., 1994; Zhong et al., 1998). Investigating the mechanical stability
of individual FNIII domains is therefore important for better understanding how FN-
FN interactions are regulated. Recombinant FNIII domains have been unfolded using
single-molecule AFM (Oberhauser et al., 2002). Domain unfolding has also been simu-
lated using SMD (steered molecular dynamics) (Craig et al., 2004). The SMD predictions
agree well with the AFM results, demonstrating a decreasing mechanical stability in the
order of FNIII7 >FNIII1 ⩾FNIII2 >FNIII12 ⩾FNIII13 ≈FNIIIEDB >FNIII14 >FNIII10

(Craig et al., 2004; Craig et al., 2001; Oberhauser et al., 2002). Thus, the FNIII10 mod-
ule is mechanically least stable and therefore most prone to cell binding and unfolding
(Oberhauser et al., 2002).
The exposed FN binding sites then induce interactions between other FN molecules to

create fibrils (Ingham et al., 1997; Singh et al., 2010) (Fig. 1.3D). In turn, FN-integrin in-
teractions promote integrin clustering in focal adhesions (Friedland et al., 2009; Pankov et
al., 2000) and further unfolding of FN molecules. Once assembled, FN fibrils are continu-
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ously polymerized and remodeled within the fibrillar matrix on the cell surface (Sottile and
Hocking, 2002; To and Midwood, 2011). FN remodeling is a dynamic process involving
frequent fibril extension, stretching, retraction and bending (Dallas et al., 2006; Davidson
et al., 2008; Ohashi et al., 2002; Sivakumar et al., 2006). Moreover, initial thin fibrils
grow in length and thickness creating a 3D FN matrix with covalent and non-covalent
FN-FN interactions inside (Singh et al., 2010). Such an FN matrix is deoxycholate (DOC)
insoluble, providing stability and rigidity within the tissue (McKeown-Longo and Mosher,
1983). The incorporation of new FN fibrils into the 3D matrix occurs along pre-existing
fibrils, so that the initial matrix acts as a scaffold for further fibril deposition (Klotzsch
et al., 2009; Mao and Schwarzbauer, 2005b). Moreover, FN fibrillogenesis is required for
the incorporation of other ECM molecules, such as collagen (Kadler et al., 2008), fibrillin
(Sabatier et al., 2009) and fibrinogen (Pereira et al., 2002), into a 3D matrix.

1.4 Cell-matrix adhesions
Cell-matrix interactions are essential in many physiological processes, such as cell adhe-
sion, migration, growth, proliferation, survival and differentiation (Boudreau and Bissell,
1998; Giancotti and Ruoslahti, 1999; Howe et al., 1998; Ruoslahti, 1999), and are par-
ticularly crucial during embryonic development of multicellular organisms (Hogan, 1999).
Cell adhesion to the ECM is generated through interactions between matrix molecules
and membrane receptors. The major membrane receptors involved in this interaction are
integrins. Integrins form a mechanical link between ECM and the cytoskeleton through
multiple adaptor proteins, like talin, vinculin, paxillin, creating adhesions sites. Cell ma-
trix adhesions contain 180 cytoplasmatic proteins (Zaidel-Bar and Geiger, 2010). Three
basic categories of proteins are recruited to cell-matrix adhesions: (1) integrin-binding
proteins, for example talin, (2) adaptors and/or scaffolding proteins that lack intrinsic
enzymatic activity, for example vinculin, paxillin or α-actinin, and (3) enzymes, such as
nonreceptor tyrosine kinases FAK and Src (Berrier and Yamada, 2007).
Adhesion sites can be classified into focal adhesions (FAs), focal complexes (FXs), fibril-

lar adhesions, invadopodia and podosomes, depending on their organization and composi-
tion (Geiger and Bershadsky, 2002; Petit and Thiery, 2000; Webb et al., 2002) (Fig. 1.4).
The morphological characteristics of FAs, podosomes and invadopodia are summarized
in Table 1.3. FAs, FXs and fibrillar adhesions are involved in cell-matrix adhesion, cell
polarization, migration, signaling and ECM remodeling, for example, FN matrix creation.
In contrast, invadopodia and podosomes are more dynamic but are also involved in mi-
gration, as well as matrix invasion and degradation, for example, bone resorption (Linder,
2007).
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FAs Podosomes Invadopodia
Location leading edge ventral cell surface,

often clustered
behind the leading
edge

ventral cell surface,
often situated under
the nucleus

Actin
arrangement

parallel actin
filament bundles,
with branched actin
at the end of the
filament

branched and
unbranched actin
filaments
perpendicular to the
surface

branched actin
filaments at cell
surface and
unbranched actin
filaments through
the tip of the
protrusion.

Pericellular
proteolysis

minimal yes yes

Lifetime hours, depending on
cell migration rate

minutes hours

Table 1.3: Morphological characteristics of cell-matrix adhesions (adapted from (Murphy
and Courtneidge, 2011)).

1.4.1 Integrins

Integrins are heterodimeric glycoproteins composed of non-covalently linked α- and β-sub-
units. Mammals contain 18 α-subunits and 8 β-subunits, generating 24 αβ integrin combi-
nations in total (Hynes, 2002a) (Fig. 1.5). The integrin expression profile varies depending
on tissue type or developmental stage (Humphries et al., 2006). Additional diversity of
integrins is generated by alternative splicing. Most integrin heterodimers are widely ex-
pressed in many tissues. However, some integrins are more restricted in their expression.
For example, integrin αu�u�u�β3 is only found on platelets and integrins αEβ7, α4β7, α4β1,
and the β2 integrin families are restricted to leukocytes (Takada et al., 2007).
Most integrins can recognize several different ECM proteins (ligands). At the same time,

a particuclar ligand, e.g. FN, laminins, collagens, or vitronectin, can be recognized by
several different integrin types, indicating that integrins have overlapping functions (De
Arcangelis and Georges-Labouesse, 2000). Knock-out experiments of most integrin chains
demonstrated their essential role in many developmental processes (De Arcangelis and
Georges-Labouesse, 2000; Fassler et al., 1996; Harburger and Calderwood, 2009; Hynes
et al., 2002b). For example, inactivation of the β1 integrin chain affects the assembly
of more than 10 different integrin types (Fig. 1.5), resulting in early embryonic lethality
(Fassler et al., 1996; Fassler and Meyer, 1995; Stephens et al., 1995). Knock-out of the
α4, α5 or αv subunit is also lethal for the embryo (Arroyo et al., 1996; Bader et al., 1998;
Goh et al., 1997). However, knock-out of other α subunits usually only results in different
aberrations during development (De Arcangelis and Georges-Labouesse, 2000).
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Figure 1.4: Cell-matrix adhesion structures. (A) Schematic depiction of the location of
different cell-matrix adhesions in the cell. Focal complexes are located at the edge of the
lamellipodium. During maturation, FAs translocate to the lamella region and fibrillar adhe-
sions form closer to the cell center. Podosomes and invadopodia are distributed throughout
the cell body (adapted from www.mechanobio.info). (B) Cell-matrix adhesions shown as a
cross sections perpendicular to the substrate. At sites of cell-ECM contact, FAs anchor bun-
dled actin filaments oriented parallel to the surface. In contrast, podosomes and invadopodia
have disorganized actin cores surrounded by a ring of adhesion structures. Moreover, po-
dosomes and invadopodia are involved into matrix degradation (white circles). Invadopodia
are used by cells for matrix invasion (adapted from (Gimona et al., 2005)).

1.4.1.1 Integrin structure

The crystal structure of integrins (αu�β2, αvβ3) shows that the α- and β-subunits are com-
posed of several domains with flexible linkers between them (Campbell and Humphries,
2011). Integrins contain a large N-terminal ectodomain, a single transmembrane domain
and a short C-terminal cytoplasmic tail domain (Fig. 1.6A) (Shattil et al., 2010). The
ectodomains of α- and β-integrin subunits are assembled by non-covalent interactions
forming a “head”, which is responsible for ligand bindings in the extracellular environ-
ment (ECM proteins, metal ions). The cytoplasmatic tail domain forms a link to the
cytoskeleton via cytoplasmatic adaptor proteins (Hynes, 2002a). Electron microscopy
studies have demonstrated three integrin conformations (Takagi et al., 2002; Takagi et
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Figure 1.5: Schematical view of integrin heterodimers. The 18 α- and 8 β-integrin mam-
malian subunits can form 24 distinct integrins. Integrins can be divided into several subfam-
ilies based on evolutionary relationships (coloring of α subunits), ligand specificity and, in
the case of β2 and β7 integrins, restricted expression on white blood cells (yellow box). The
α1, α2, α10, and α11 subunits (gray hatching) have an additional structural element (or
“domain”) inserted toward the N-terminal, the A-domain. α subunits with specificities for
laminins (purple) or the RGD motif (blue) are found throughout metazoa. Asterisks denote
alternatively spliced cytoplasmic domains (modified from (Hynes, 2002a)).

al., 2003): low-affinity or bent, intermediate or extended with a closed headpiece, and
high affinity or extended with an open headpiece (Fig. 1.6B).

1.4.1.2 Integrin activation and signaling

Integrins are not constitutive active in cells. Structural and functional studies have demon-
strated that depending on the presence or absence of divalent cations or ligands, integrins
can exist in three different conformations which correspond to different activation states.
Depending on activation, integrin function is either blocked, or partially or completely
turned on. Activation, i.e. the change from a bent to an extended conformation (Takagi
et al., 2002), can be triggered in two ways: by the binding of activator proteins to the
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Figure 1.6: Integrin structure and conformations. (A) Domain arrangement of αu�β2 integrin
showing approximate integrin dimensions (adapted from (Campbell and Humphries, 2011)).
(B) Electron microscopy images of three αvβ3 integrin conformations: bent or low affinity
(i), extended with closed headpiece or intermediate affinity (ii) and extended with opened
headpiece or high affinity (iii). (C) Schematic representation of integrin conformations (α
integrin - red, β integrin - blue) (modified from (Takagi et al., 2002)).

cytoplasmic tail of β-integrins, or by binding of ligands or divalent cations to the integrin
ectodomain (Takagi et al., 2002).
Divalent cations such as Mn2+, Mg2+ and Ca2+ have distinct effects on integrin function

in vitro. Mn2+ converts integrins into a high affinity conformation stimulating ligand
binding, whereas Ca2+ inhibits ligand binding. Mg2+ also stimulates the high affinity
state, but the integrin conformation is less extended compared to Mn2+. Studies on
the α5β1 integrin demonstrated the presence of three distinct cation binding sites for
Mn2+, Mg2+ and Ca2+ in the β subunit (Mould et al., 1995a; Tiwari et al., 2011). The
high affinity Ca2+ binding site, a so called “effector site” stabilizes the inactive integrin
conformation. At a second site both Ca2+ and Mg2+ can bind in a competitive manner
(Mould et al., 1995a; Smith et al., 1994).
Beside divalent cation activation, integrins can be also activated through binding to

both extracellular and intracellular ligands. In this way, integrins provide a transmem-
brane link for bidirectional signal transmission. Integrin activation by binding of an
intracellular activator protein, such as talin or kindlin, to the β-integrin cytoplasmic tail
is called inside-out signaling (Fig. 1.7). Integrin activation results in an increased affinity
to extracellular ligands, allowing cells to regulate adhesion strength to the ECM and to
transmit forces required for cell migration and ECM remodeling and assembly (Calder-
wood, 2004; Shattil et al., 2010). Integrin activation via multivalent ligand binding to the
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Figure 1.7: Model of bidirectional integrin signaling. Integrins in an inactive bent conforma-
tion with low affinity to the ligand (B) can be activated either by ligand binding (outside-in
signaling) or by binding events at the cytoplasmic domains (inside-out signaling). Integrin
activation leads to straightening of the ectodomain into an extended conformation (E, ex-
tended closed conformation) and separation of the transmembrane and cytoplasmic α and
β domains integrins (A, extended open conformation) (modified from www.ks.uiuc.edu).

extracellular head ectodomain is called outside-in signaling (Fig. 1.7). During outside-in
signaling, integrins transmit signals into the cell, generating intracellular signals control-
ling cell polarity, cytoskeleton structure, gene expression, cell survival and proliferation.
Inside-out and outside-in signaling are often closely linked. For example, integrin acti-
vation can increase ligand binding, resulting in outside-in signaling, while ligand binding
can generate signals that cause inside-out signaling (Shattil et al., 2010).

1.4.1.3 Integrin receptors for FN

α5β1 integrin is the first identified FN receptor (Pytela et al., 1985). It is expressed in
many cell types and it is the major receptor for FN recognition (Ruoslahti, 1991; Wu
et al., 1993). However, other integrins can also bind FN via specific binding motives
(Table 1.4) (Fogerty and Mosher, 1990). After binding, FN molecules are remodeled by
the cell, resulting in FN fibrillogenesis. However, not all FN binding integrins support
fibril creation. For example, integrin α8β1 is mainly expressed in epithelial cells, smooth
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Figure 1.8: Model of the FA molecular architecture showing experimentally determined
protein positions (adapted from (Kanchanawong et al., 2010)).

muscle cells, myofibroblasts, and embryonic neural cells (Bossy et al., 1991; Schnapp et al.,
1995a) where it functions as a major FN receptor , but is not involved in FN fibrillogenesis
(Johansson et al., 1997).

1.4.2 Focal adhesions, focal complexes, fibrillar adhesions

FAs, FXs and fibrillar adhesions are found in many cell types. These adhesion plaques
connect cells to surrounding ECM molecules. Cell-matrix adhesion formation is a highly
dynamic process (Webb et al., 2002). After cell attachment, small dot-like nascent ad-
hesion structures (FXs), form at the cell periphery. Early FXs contain paxillin, vinculin,
and thyrosine-phosphorylated proteins. Furthermore, FXs are enriched with activated
(high-affinity) αvβ3 integrins (Kiosses et al., 2001). FXs can maturate into FAs (Geiger
et al., 2001; Zamir et al., 2000), recruiting further cytoplasmic adaptor proteins (Fig. 1.8).
Development of FAs is stimulated by the small GTPase Rho-A, and is driven by acto-
myosin contractility (Geiger et al., 2001). In contrast to FXs, FAs are linked to actin
stress fibers by talin (Kiosses et al., 2001). As force is applied to FAs, α5β1-integrin and
tensin translocate to the cell center at a rate of 6.5±0.7 µm/h (Pankov et al., 2000) result-
ing in the formation of fibrillar adhesions (Geiger et al., 2001; Webb et al., 2002; Zamir
et al., 2000). Characteristic features of FA, FX and fibrillar adhesions are summarized in
Table 1.5.
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Integrin Ligand Binding
motive

Supports
fibrillogenesis

Referenz

α3β1 FN, laminin 70-kDa + (Johansson et al., 1997;
To and Midwood, 2011)

α4β1 FN, VCAM-1 LDV/IDS,
(RGD)

+ (Johansson et al., 1997;
To and Midwood, 2011;
Wu et al., 1995)

α5β1* FN RGD, (PH-
SRN)

+ (Johansson et al., 1997;
Takagi et al., 2003; To
and Midwood, 2011;
Wennerberg et al., 1996;
Wu et al., 1993)

α8β1* FN, vit-
ronectin,
tenascin

RGD - (Johansson et al., 1997;
Schnapp et al., 1995b; To
and Midwood, 2011)

α9β1 FN, EIIIA - (Liao et al., 2002; To and
Midwood, 2011)

αvβ1* FN, vit-
ronectin,
fibrinogen,
collagens,
laminin, osteo-
pontin

RGD - (Johansson et al., 1997;
Schnapp et al., 1995b; To
and Midwood, 2011)

αIIbβ3* FN, vit-
ronectin,
fibrinogen,
throm-
bospondin,
von Wille-
brand factor

RGD,
KQAGDV

+ (Johansson et al., 1997;
Kauf et al., 2001; To and
Midwood, 2011)

αvβ3* FN, vit-
ronectin,
fibrinogen,
osteopontin,
collagens,
tenascin, von
Willebrand
factor

RGD, RLD/
KRLDGS

+ (Johansson et al., 1997;
To and Midwood, 2011;
Wennerberg et al., 1996)

αβ6* FN, vit-
ronectin,
tenascin

RGD + (Johansson et al., 1997;
To and Midwood, 2011)

Table 1.4: FN binding integrins. Integrins for which FN is the main ligand are denoted by
an asterisk (modified from (Johansson et al., 1997; To and Midwood, 2011)).
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Figure 1.9: Schematic podosome cross section perpendicular to the substrate. Podosomes
consist of an actin-rich core which is surrounded by a ring of adhesion proteins (e.g. talin, vin-
culin, paxillin). Matrix receptors such as integrins are anchored within the plasma membrane
and mediate the linkage between the actin cytoskeleton and the ECM. (i) Molecular compo-
sition of podosomal ring. Paxillin acts as a scaffold for an intracellular complex consisting
of Src, Pyk2/FAK, gelsolin, phosphoinositide 3-kinase (PI3K) and p130cas. This complex is
linked via vinculin, talin and α-actinin to the F-actin core. (ii) Detailed view of the podoso-
mal core structure. Actin filaments are nucleated at the membrane via CDC42-activated
WASp/N-WASp and the Arp2/3 complex, and are linked to each other via cortactin and
fimbrin. The orange circle in the middle of the actin core represents the proposed dynamin
localization. Lower panel: description of symbols used (modified from (Linder and Aepfel-
bacher, 2003)).
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Structure Focal complex
(FX)

Focal adhesion
(FA)

Fibrillar
adhesion

Location edge of
lamellipodium

cell periphery central region of
cells

Morphology dot-like elongated, oval fibrillar or beaded
Size (long
axis)

1 µm 2 - 5 µm 1 - 10 µm

Typical
constituents

αvβ3 integrin,
paxillin, vinculin,
tyrosine-
phosphorylated
proteins

αvβ3 integrin and
α5β1, paxillin,
vinculin, α-actinin,
talin, FAK,
tyrosine-
phosphorylated
proteins

α5β1 integrin,
tensin

Table 1.5: Characteristic features of FA, FX and fibrillar adhesions. (adapted from (Geiger
et al., 2001)).

1.4.3 Podosomes and invadopodia

Migratory and invasive cells build-up so called podosome-type adhesions (Linder, 2007).
These can be classified into podosomes and invadopodia, depending on their structure and
function (Block et al., 2008). Podosomes were first found in cells of the monocytic lineage
(macrophages (Lehto et al., 1982), osteoclasts (Marchisio et al., 1984) and dendritic cells
(Burns et al., 2001)), whereas invadopodia were identified in carcinoma cells (Linder and
Aepfelbacher, 2003). Podosome formation can also be induced in other cell types, includ-
ing smooth muscle cells and endothelial cells (Linder and Kopp, 2005). In contrast to FAs,
podosomes have not only adhesive function, but are also involved in matrix degradation.
Each podosome consists of an F-actin rich core surrounded by a ring structure composed
of integrins and integrin-associated proteins, such as talin, paxillin and vinculin (Bowden
et al., 1999; Gaidano et al., 1990; Pfaff and Jurdic, 2001) (Fig. 1.9). The F-actin filaments
are oriented perpendicular to the substratum. Moreover, they are associated with regu-
latory proteins such as cortactin (Hiura et al., 1995), Wiskott-Aldrich Syndrome protein
(WASP) (Calle et al., 2004), actin-related protein complex 2/3 (Arp2/3) (Hurst et al.,
2004), gelsolin (Chellaiah et al., 2000) and dynamin (Ochoa et al., 2000). However, in
contrast to FAs, zyxin and tensin are not recruited to the podosome ring structure (Block
et al., 2008). Different integrins are present in podosomes depending on the cell type.
Podosomes of endothelial cells contain α6β4, while osteoclasts recruit αvβ1, α2β1, αvβ3

(( )Buccione2004). In osteoclasts cultured on rigid surfaces, such as glass, podosomes
change their organization, from individual structures, distributed throughout the ventral
cell membrane, via clusters or rosettes into ring structures (Fig. 1.10A-C). The podosome
ring formation can be subdivided into several steps. Firstly, podosomes are assembled
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Figure 1.10: Model of podosome dynamics during osteoclast maturation. (A). Osteoclast
precursor cells plated on glass surface form individual podosomes separated from each other.
Podosomes are composed of a dense actin core (red circles) surrounded by integrin associated
proteins (green), e.g. vinculin. During precursor cell differentiation into mature osteoclasts,
single podosomes form a podosome ring (B). The podosome rings expand (black arrows) and
fuse (red arrow), while inhibiting new podosome formation inside the ring. (C). A mature
osteoclast on glass surfaces often have a single podosome ring near the cell periphery. (D).
Osteoclasts seeded on bone create a dense podosome ring, called sealing zone. In the sealing
zone, single podosomes cannot be distinguished anymore, instead a dense actin ring (red) is
surrounded by outer and inner rings of integrin-associated proteins (green) (modified from
(Destaing et al., 2003)).

de novo at the leading edge of a cell and are stabilized by microtubules. Neighboring
podosomes fuse together (Cox et al., 2012) forming clusters which are shaped to small
rings. Then, these structures expand and fuse to a larger ring. During this process, new
podosomes are assembled at the outer ring edges, while podosome formation is inhibited
inside the rings. The ring fusion is a self-organization process regulated by local mech-
anisms (Destaing et al., 2003; Gerhart and Kirschner, 1997). For example, a podosome
itself might stimulate but also inhibit the formation of other podosomes in its immediate
surroundings (Gerhart and Kirschner, 1997; Destaing et al., 2003). However, osteoclasts
seeded on bone substrates usually create a stable peripheral belt, the so called sealing
zone (Fig. 1.10D), a condensed actin structure (∼ 4 µm-wide), flanked by integrins and
focal adhesion proteins at the outer and inner areas (Destaing et al., 2003; Lakkakorpi
et al., 1993). The sealing zone is essential for matrix degradation and stable for minutes
to hours. Degradation enzymes are secreted into the sealed space between cell membrane
and matrix surface (Chiusaroli et al., 2004; Salo et al., 1997) by an unknown mechanisms.
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Invadopodia are invasive cell structures. Similar to podosomes, they consist of an actin
structure positioned perpendicular to the cell membrane. However, the architecture of
invadopodia appears less well-defined and integrin-associated proteins are also found in
the actin core of these structures (Linder, 2007). Invadopodia have a diameter of ∼ 8 µm
and penetrate into the matrix by up to 5 µm. In contrast, podosomes are comparatively
small structures with a diameter of ∼ 1 µm entering the matrix by 0.2 to 0.4 µm (Buccione
et al., 2004). Typically, cells contain 20 to 500 single podosomes which have a relatively
short life-span of 2 to 12min, except for the sealing zone (Destaing et al., 2003). In
contrast, cells contain only up to 10 individual invadopodia and these structures have a
persistence time of hours (Yamaguchi et al., 2006).

1.5 Microscopy techniques for investigating cell-ECM
interactions

Microscopy is one of the primary tools not only for studying cell surfaces and cell com-
partments, but also cell-cell and cell-ECM interactions. There are different kinds of
microscopy techniques most commonly used for biological applications: light, electron
and atomic force microscopy. Each microscopy technique has advantages and disadvan-
tages, which are summarized in Table 1.6. Light microscopy is one of the earliest and
most frequently-used methods to observe structures too small for the human eye. Since
the 1960s , fluorescence microscopy has become particularly important in biological re-
search (Diaspro, 2010). This light microscopy technique allows for the visualization even
of low numbers of fluorescently-labeled molecules. A great advantage of light microscopy
in general is that it is possible to observe the sample in real time and under physiologi-
cal conditions. Except for labeling structures or molecules with fluorophores, there is no
need for sample preparation. However, the conventional type of light microscopy yields a
rather low resolution compared to other microscopy techniques.
The electron microscope was developed in 1930s (Hayat, 2000) and allows for the obser-

vation of structures with nm or even subnanometer resolution. However, samples for EM
usually require a special preparation protocol including chemical fixation and staining.
Furthermore, only the surface or very thin slices of the sample can be investigated. Thus,
particular features of the cell can be studied in detail, while it is impossible to inves-
tigate dynamic biological processes. In the 1980s, the atomic force microscope (AFM)
was developed (Binnig et al., 1986). It provides high resolution imaging in air or liq-
uids. Since no special sample preparation and even fixation is required, one is able to
observe time-dependent processes with sub-nanometer resolution (Baro and Reifenberger,
2012). However, similar to scanning electron microscope, AFM only allows for imaging
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the surface of the sample. In the past, different microscopy techniques were used mostly
independent from each other, making it necessary to prepare different probes for different
microscopy techniques. Nowadays, devices are used which combine several microscopy
techniques and which thus bring together the advantages of the different methods.

1.5.1 Fluorescence microscopy

The main advantage of a fluorescence microscope is that a particular molecule type of
interest can be imaged after labeling it with a specific fluorophore. Depending on the used
fluorophore, the sample is illuminated with light of a specific wavelength ranging from
UV to infrared. This excitation light is absorbed by the fluorophores and reemitted as
light with a longer wavelength. Furthermore, it is also possible to mark several types of
molecules in one sample and image them during one run by using fluorophores of different
wavelengths and corresponding filters. Thus, the locations of different molecules can be
overlaid allowing the investigation of cellular processes on a molecular level in real time
(Diaspro, 2010).

1.5.1.1 Confocal scanning microscopy

Fluorescence imaging of dense tissues in a conventional way is difficult and results in a
poor contrast. In the late 1950s, Marvin Minsky developed a new type of microscope that
has become known as the confocal microscope (Kubitscheck, 2013). A confocal microscope
scans the sample in 3D point by point, instead of illuminating the whole sample at once,
providing not only better contrast but also an image stack in z-direction. The excitation
light passes through the illumination pinhole (Fig. 1.11), is deflected by a dichromatic
mirror and focused by an objective into a small spot. This spot might be positioned at
any position of interest in the 3D space. When using a laser as the light source, the pinhole
is not required, so that the mirror and the objective just control the laser beam path. In
any case, the imaged point in the xy-plane is controlled by the dichromatic mirror. Excited
fluorophores emit light, which passes through the objective and the dichromatic mirror.
Depending on the z-plane from where the light is coming, the light is focused at different
positions. Thus, only light coming from a particular z-plane is detected by varying the
position of the confocal pinhole in front of the detector (Fig. 1.11). The resolution of
confocal images in the xy-plane is about 180 nm and thus hardly improved in comparison
to a standard fluorescence microscope. The main advantage of a confocal microscope is
the increased z-resolution of about 400 nm and the improved image contrast by blocking
background fluorescence, both of which are controlled by size of the pinhole.
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Figure 1.11: Principle of laser scanning confo-
cal microscope (CLSM). The excitation light
passes a pinhole, and is deflected by a dichro-
matic mirror and focused by the objective onto
to the sample. Emitted light from the sample
passes through back through the objective, the
dichromatic mirror and the pinhole aperture
before reaching the detector. The pinhole acts
as a spatial filter for the z-dimension, creating
optical sections (adapted from www.jic.ac.uk).

1.5.1.2 Total internal reflection fluorescence microscopy

The refraction of light is an optical phenomenon occurring at interfaces between media
of different optical densities. As shown in Fig. 1.12B, when light passes from an optically
denser (higher refractive index) to an optically less dense media (lower refractive index),
the exitangle θ′ is larger than the incident angle θ (measured from the surface normal,
dashed line in Fig. 1.12B). Therefore, there is a critical angle, θu�, at which the exitangle
equals 90°, i.e. the light travels parallel to the interface. If θ is larger than θu�, the incident
light is totally reflected at the interface (Fig. 1.12C). However, due to the wave-nature
of light, the electromagnetic wave penetrates into the adjacent medium. There, it decays
exponentially and is therefore called the evanescent wave (Kubitscheck, 2013).
For studying biological samples, usually glass is used as the substrate. Therefore, glass

is the optically denser medium, while the optically less dense medium is liquid. The pen-
etration depth of the evanescent wave is about 250 nm (Axelrod, 2001), so that it is able
to excite the fluorophores located in direct proximity of the glass surface (Fig. 1.12D).
Fluorescence excitation of this thin zone results in images with improved signal-to-noise
ratio, compared to epi-illumination. Moreover, at the glass-water interface the illumi-
nation intensity is increased up to five fold compared to epi-fluorescence using the same
laser beam, allowing for detecting low intensity fluorescence signals with the total internal
reflection microscope TIRFM (Axelrod et al., 1984; Kubitscheck, 2013).
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Figure 1.12: Principle of TIRF microscopy. (A) In Epi-fluorescence, the angle of incident
light θ is zero and light (red line) passes glass and medium nearly unobstructed. (B) When
the laser beam is tilted from the surface normal (dashed line), a small portion is reflected
(gray line), while the major part of the light beam is refracted with an exitangle θ′ larger
than θ. As in (A), the fluorophores in the whole medium are excited (gray background). (C)
Increasing θ yields to an increase of θ. For θ > θc (critical angle, see text) the incident beam
is totally reflected creating an exponentially decaying evanescent wave in the liquid (black to
white gradient). (D) In TIRFM a laser beam (red) is focused through an objective onto the
optical density interface to create an evanescent wave within the liquid. Only fluorophores
near the glass surface are excited (green circles) and detected (via the same objective).
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These unique features of TIRFM are broadly used by numerous applications in biochem-
istry and cell biology. (1) TIRFM is used for the selective visualization and quantification
of cell-substrate contact regions (Gingell et al., 1987; Todd et al., 1988; Weis et al., 1982).
(2) Time-lapse imaging of single molecules located near a surface using TIRF allows quan-
titative analysis of molecular motion (Dickson et al., 1998; Khan et al., 2000; Vale et al.,
1996). (3) Motion of molecules in the vertical direction can be calculated with nm ac-
curacy by measuring the changes of the fluorescence intensity and using the exponential
dependence of the evanescent wave amplitude. For example, the secretory processes of
granules were studied in this way (Lang et al., 1997; Steyer and Almers, 1999; Steyer and
Almers, 2001; Toomre et al., 2000). (4) TIRFM in combination with fluorescence recovery
after photobleaching (FRAP) was used to measure the kinetic rates of protein binding to
cell surface receptors or artificial membranes (Burghardt and Axelrod, 1981; Hellen and
Axelrod, 1991; Kalb et al., 1990; Thompson and Axelrod, 1983; Thompson et al., 1981).
(5) Combination of TIRFM with AFM allows for examining the force transmission from
the apical to the basal cell membrane in living cells (Mathur et al., 2000).

1.5.2 Electron microscopy techniques

First EM was built in 1931 by Max Knoll and Ernst Ruska (Freundlich, 1963; Ruska and
Knoll, 1931) and is thus one of the oldest high-resolution microscopy techniques. Already
in 1934, the tobacco mosaic virus was one of the first biological samples imaged by EM
(Kausche et al., 1939). The first EM picture of a cell was published in 1945 by Porter et.
al (Porter et al., 1945).
EM techniques can be classified in transmission electron microscopy (TEM) and scan-

ning electron microscopy (SEM), which are briefly discussed in the following. Both EM
types use an electron beam for sample imaging. After generation, electrons are accelerated
towards the sample. The accelerating voltage of the beam is quoted in kilovolts (kV) and
determines the microscope resolution. Electrons are deflected via electromagnetic lenses,
which are in principle magnetic coils. This results in a path of electrons similar to the
optical path in a light microscope (Fig. 1.13). The main difference between TEM and
SEM are the irradiation conditions and electron detection.

1.5.2.1 Transmission electron microscopy

TEM (Fig. 1.13) is the original form of EM. TEM operates at an acceleration voltage of
the electron beam between 50 and 150 kV. In principle, the resolution of TEM increases
with the acceleration voltage. However, the power of resolution is usually restrained by the
quality of the lens system and, especially, by the sample preparation technique. Modern
microscopes have powers of resolution ranging between 0.2 and 0.3 nm. The electron beam
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in TEM is rather broad to illuminate the complete sample at once. Like in the optical
microscope, the transmitted beam carries the whole image information. The electron
beam is formed by several magnetic lenses building the objective before detection. The
detector is a fluorescent screen or photographic material.
Images taken with TEMs are always in grayscale, representing the electron density leav-

ing the sample and so the sample structure. Thus, on the one hand, the sample has to be
thin (about 100 nm) to be sufficiently transparent for electrons. On the other hand, the
chemical composition of specimen should vary strong enough to be able to resolve struc-
tural differences. In biological probes this is usually not the case, because they consist
of basically four elements (H, C, O and N) which are homogenously distributed. How-
ever, the different cell compartments can be visualized by staining with special contrast
enhancing chemicals, e.g. heavy metals (Hayat, 2000).

1.5.2.2 Scanning electron microscopy

The principle of SEM differs from that of the TEM (Fig. 1.13). The energy of electrons
emitted by the electron gun lies in the range between 1 and 50 keV. The electron beam
is formed by the condenser lenses (one or two) and is focused into a fine spot of about
1 to 3 nm in diameter on the probe (Fig. 1.13). These primary electrons interact with
atoms of the sample surface and cause the emission of secondary electrons, backscattered
electrons and X-rays. Secondary electrons are the most important product for imaging
with SEM. The intensity of this type of electrons is dependent on the angle between the
surface and the primary electron beam. The thickness of the specimen for SEM is not
such a crucial factor as for TEM. Nevertheless, the probe has to be covered with a thin
metallic film, e.g. platinum or gold, to increase the number of secondary electrons (Hayat,
2000). In contrast to TEM, the specimen is scanned point by point which results in a
kind of 3D-image displaying the tilt of the surface. The spatial resolution for biological
specimens is generally in the range between 1.5 and 2 nm. Moreover SEM allows not
only for visualizing the sample structure, but also for analyzing its chemical composition
by X-ray detection. In contrast to fluorescence microscopy and AFM, where biological
samples can be observed without fixation, all samples for electron microscopy have to
be fixed. Furthermore, best results are achieved with dehydrated probes treated with
contrast enhancing agents such as heavy metal salts (Hayat, 2000).

1.5.3 Atomic force microscopy

AFM belongs to the family of scanning probe microscopes (SPM). This type of micro-
scopes records the sample topography by using distance dependent interactions between
a sharp probe (tip) and the sample. In fact, different SPMs use different tip-sample inter-
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Figure 1.13: Principles of light microscopy, TEM and SEM. In contrast to the light micro-
scope, the beam in TEM and SEM consists of electrons. TEM and SEM also use lenses
to form the beam, which in this case are magnetic coils. While in TEM electrons pass
through the sample and non-deflected electrons are detected, in SEM the electron beam is
focused onto a point of the sample and secondary electrons are measured (adapted from
cmrf.research.uiowa.edu).

33



1 Introduction

action types. In case of AFM, it is the van-der-Waals, electrostatic and capillary forces
interactions. By using piezoelectric actuators to control the tip position, one can achieve
resolutions far beyond the optical limit down to atomic scale.
Since its development in 1986 (Binnig et al., 1986), AFM has become an important tool

for studying a broad range of biological applications. AFM can operate in almost any
environment including liquids. Since no special sample preparation is required, one can
perform experiments under physiological conditions (Moreno-Herrero and Gomez-Herrero,
2012). For example, non-fixed cells or bacteria can be scanned at high resolution (Ober-
leithner et al., 1993) or one can study the self-assembly of proteins, e.g. collagen fibrils.
Moreover, in the force mode it is possible to measure the interaction strength between
the cell and the substrate or between two cells, or the unfolding force of proteins (Baro
and Reifenberger, 2012).

1.5.3.1 Basic principles

AFM can be subdivided into three main components: the tip on a spring (cantilever), the
piezoelectric component, and the detection with a feedback mechanism (Fig. 1.14). The
AFM tip mounted on the end of the cantilever interacts with the sample surface. The tip
and the cantilever are made of hard materials, e.g. silicon (Si) or silicon nitride (Si3N4),
to withstand large forces on a very small area. Commercially produced cantilevers are
available with different tip geometries (pyramidal, spike, hyperbolic circular symmetric)
and tip apex diameters ranging from several nm to about 20 nm. A subnanometer change
of the tip position is achieved via piezoelectric actuators, irrespective whether the tip or
the sample is shifted (Morris et al., 1999). A force acting on the tip results in a deflection
of the cantilever, z, according to Hook’s law

𝐹 = −𝑘 ⋅ 𝑧, (1.1)

where F (N) is the acting force and k (N/m) is the spring constant of the cantilever.
The deflection is monitored by a laser beam focused onto the backside of the cantilever.
Cantilevers can be coated with gold or aluminum to increase reflectivity. The reflected
laser beam is projected onto a photodetector. A photodiode is a semiconductor component
which converts light into an electrical signal. Frequently, the photodiode is composed of
four segments (Fig. 1.14). This allows the detection of lateral and torsional motion of
the cantilever in a very simple way (Morris et al., 1999). Lateral deflection is measured
by monitoring the vertical change of the laser position, which equals (𝐴 + 𝐵) − (𝐶 +
𝐷), while (𝐴 + 𝐶) − (𝐵 + 𝐷) corresponds to friction due to torsion of the cantilever
(Fig. 1.14), providing lateral force information (Leite and Herrmann, 2005). In this way,
the orientation of the AFM tip can be measured and the information is provided to the
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Figure 1.14: Principle of AFM. An AFM tip (yellow) interacts with the sample surface
resulting in cantilever deflection (gray) towards or away from the surface. A laser light (red)
is focused on the cantilever and reflected to a photodetector. Usually, the photodetector
is divided into four areas so that the cantilever deflection (vertical shift of the laser beam)
and torsion (horizontal shift of the laser beam) can be measured. The feedback loop adjusts
the cantilever-sample distance (Δu�) via a piezo transducer (green), e.g., to compensate the
cantilever deflection.

feedback loop. Thus, e.g., the force acting on the tip can be kept constant by adjusting
the z-position via piezoelements.

1.5.3.2 AFM imaging modes

There are three main forces between the tip and the sample: van der Waals, electrostatic
and capillary forces (Binnig and Rohrer, 1999). Depending on the sample’s nature and
the tip morphology, one force type may dominate over the others. In the case of biolog-
ical samples imaged in liquid, the cantilever is deflected mostly by van der Waals forces.
The dependence of these forces on the tip-sample distance is modeled by the Lennard-
Jones-Equation (Jones, 1924), which approximates the energy of interaction between two
neutral atoms or molecules as a function of their distance of separation. Attractive van
der Waals forces are too small to deflect the cantilever at larger tip-sample separation
(Fig. 1.15, green) (Binnig and Rohrer, 1999) and it increases during movement of the
cantilever towards the sample resulting in cantilever bending downwards (Fig. 1.15, red).
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Figure 1.15: Idealized plot illustrating the forces between AFM tip and sample in relation
to the tip height. The force between the tip and the sample changes from an attractive to
a repulsive regime while bringing the tip closer to the surface. The three marked regions on
the curve visualize the tip-surface distances during different imaging modes (adapted from
(Braga and Ricci, 2004) and (Dao, 2012)).

Attractive van der Waals forces are largest in the range of 1 - 10 nm measured from the
sample surface (Bèguin et al., 2013). A further approach of the cantilever towards the
surface introduces repulsive forces due to the Pauli principle, resulting finally in a net
repulsive interaction and therefore an upward bending of the cantilever (Fig. 1.15, blue).
The samples can be scanned in three different imaging modes, which are classified into

static (contact mode) and dynamic modes (intermittent and non-contact mode) (Baro and
Reifenberger, 2012). Due to the different imaging pirnciples, the three modes operate at
different tip-sample distances (Fig. 1.15). The comparison of these modes is summarized
in Table 1.7.
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Cantilever
spring
constant,
N ⋅ m−1

Resonance
frequency,
kHz (in
air)

Scanning
force

Advantages and
Disadvantages

Contact
mode

0.01 - 1.0 7 - 50 µN - nN + high speed
+ high (atomic) resolution
– lateral force causes sample
damage
– not negligible capillary forces
occur while scanning in air

Inter-
mittent
contact
mode

30 - 60 250 - 350 nN + high lateral resolution
+ nearly no lateral forces
+ minimizes capillary forces
– slower than contact mode

Non-
contact
mode

0.5 - 5 50 - 120 pN + no force exerted on the sample
– low lateral resolution
– slowest scan speed
– works only on extremely
hydrophobic samples

Table 1.7: Comparison of different AFM imaging modes (adapted from (Dao, 2012)).

1.5.3.2.1 Contact mode

In contact mode the AFM tip is in direct contact with the sample and pressed against the
probe with a particular force during scanning (Fig. 1.14). This interaction corresponds
to a repulsive tip-surface force and an upward deflection of the cantilever. The position
of the laser beam on the photodiode in this initial situation corresponds to “zero”. While
scanning, the cantilever becomes sometimes more, sometimes less bended, depending on
topographical features. Since a different deflection corresponds to a different force, a
feedback mechanism is required to keep the interaction force between the tip and the
sample constant during the scan. Therefore, the vertical position of the cantilever is
continuously adjusted via the piezo actuator to adjust the deflected laser beam back to
the user-defined set point. For scanning biological samples soft cantilevers with spring
constants ranging from 0.01 to 1Nm−1 are often used to avoid damaging the sample (Baro
and Reifenberger, 2012; Braga and Ricci, 2004). The height data collected from AFM
scans can be used to create a 3D reconstruction of the surface. The contact mode imaging
in liquid has two common drawbacks. Firstly, due to temperature changes the cantilever
drifts during imaging, e.g., leading to a deviation from the initial set point and drift of the
scanning force. Therefore, cantilever deflection adjustment and scan force minimization
plays a crucial role for each scan, in particular in liquids (Baro and Reifenberger, 2012).
Secondly, lateral motion of the cantilever during the scan introduces lateral forces onto the
sample, resulting in sample movement or damage. Thus, soft samples or weakly attached
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structures to the surface, such as proteins or viruses, are often not suitable for contact
mode imaging (Baro and Reifenberger, 2012).

1.5.3.2.2 Intermittent contact mode

The intermittent contact mode were developed to minimize shear forces applied on the
sample during scaning (Baro and Reifenberger, 2012). In this mode the cantilever is stim-
ulated by the piezo actuator to oscillate close to its resonance frequency with amplitudes
between 100 and 200 nm, so that the tip only intermittently touches the sample. During
each cantilever oscillation the tip changes between repulsive and adhesive interactions
with the surface (Fig. 1.15). With changes in topography, the average distance between
the tip and the sample varies resulting in a changed amplitude and oscillation frequency
(Baro and Reifenberger, 2012). A piezoelectric actuator adjusts the distance between the
tip and the surface in order to maintain a preset cantilever oscillation amplitude and fre-
quency (Braga and Ricci, 2004). Often, the main quantity for the feedback loop and the
measurement is the amplitude of oscillations, however, the frequency can be used as well.
In comparison to the contact mode, the lateral force is reduced due to the short contact
time between the tip and the sample, resulting in less sample damages and improved
lateral resolution for soft samples (Baro and Reifenberger, 2012).

1.5.3.2.3 Non-contact mode

In non-contact mode, the oscillating tip is brought into proximity to the sample albeit
without making any contact. The tip should not be farther away from the surface as 10 nm
for a maximal effect. Therefore, the oscillation amplitude should be sufficiently small to
stay in the attractive regime of the van der Waals forces (Fig. 1.15). The changing sample
topography will then cause a varying strength of the tip-sample interaction and induce
a shift of the resonance frequency and also a change of the amplitude. The imaging and
feedback mechanism is based on measuring the oscillation frequency or amplitude, similar
to the intermittent contact mode. Stiff cantilevers are typically used for non-contact mode
imaging. The great advantage of this mode is that the tip never touches the sample and
that the interaction forces are very low in the range of pN (Braga and Ricci, 2004).

1.5.3.3 Resolution limitation in AFM imaging

Although piezoelectric actuators can work close to atomic accuracy, the effective AFM
scan resolution is often lower. The resolution of AFM scans strongly depends on the
tip sharpness and geometry. In particular, the radius of the tip apex is an important
parameter. Sharp edges in the sample appear often smoothed out due to the convolution
phenomenon. As shown on Fig. 1.15A, during scanning the tip starts to move upwards
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Figure 1.16: Resolution limitation of AFM. Spatial resolution of AFM scans depend on the
tip size and geometry. (A) Scanning of objects with AFM tip having the radius u�tip results
in broadening of the object due to convolution, so that the object with a width u� appears
to be widened to the width u�. The height ℎ remains unchanged. (B) Two objects must be
separated from each other at least by the distance u� to be resolved. u� depends on the tip
geometry and on the relative heights, ℎ1 and ℎ2, of the objects.(adapted from (Baro and
Reifenberger, 2012))

when it hits the edge of the object. Due to the finite tip apex radius, this happens before
the tip center reaches the edge. Correspondingly, the tip hits again the substrate at a
particular distance from the second object edge. Altogether, the object appears on the
AFM scan larger as it is in reality. Furthermore, also the depths of surface invaginations
with a diameter smaller than the tip apex diameter can only be measured as far as the tip
immerses (Fig. 1.15B) (Baro and Reifenberger, 2012). Fabry and Perot defined a criteria
for the resolution limit for optical microscopy (Lauterborn and Kurz, 2003) which can be
also applied on AFM. According to that, two peaks of equal intensity are resolved if they
are separated from each other at least by full width at half maximum (FWHM). This
yields for the minimal distance d between two neighboring features

𝑑 ≥ √2 ⋅ 𝑅 ⋅ (ℎ1 − ℎ2), (1.2)

where 𝑅 is tip radius, and ℎ1 and ℎ2 are the heights of the objects. Therefore, imaging of
smaller objects with AFM is only possible with a tip that is sufficiently sharp (Baro and
Reifenberger, 2012). On the other hand, tips with a larger apex radius are more robust.
Therefore, tips with different radii ranging from 1 to 20 nm are commercially available. In
case of scanning non-fixed samples, one should also take the scanning time into account
for choosing the appropriate resolution. Imaging a larger area with maximal resolution
can easily take several hours (Baro and Reifenberger, 2012).
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1.5.3.4 AFM imaging of biological samples

AFM is a universal tool for imaging a great variety of biological samples at scales rang-
ing from subnanometer to tenth of µm. For example, cell motion, growth, division and
organization into cell masses and tissues can be visualized by AFM time-lapse imaging
(Kuznetsov et al., 1997). Also, the dynamics of cellular structures were studied with AFM
in living cells. To mention only some further applications, the activation of platelets (Fritz
et al., 1994), protrusion of lamellipodia (Rotsch et al., 1999; Schoenenberger and Hoh,
1994), cytoskeletal rearrangement (Henderson et al., 1992) and also membrane structures
involved in exocytosis (Schneider et al., 1997) have been successfully imaged in AFM
contact mode. The architecture of FAs and actin cytoskeleton organization were stud-
ied with AFM (Franz and Muller, 2005). On the protein level, collagen remodeling by
cells (Friedrichs et al., 2007) as well as self-organization of collagen matrices (Stamov
et al., 2013) could be resolved by AFM. The extracellular self-assembly of collagen type
I was observed by time-lapse AFM with subnanometer resolution, showing characteris-
tic 67 nm D-band fibril structure its substructure (Cisneros et al., 2006; Yadavalli et al.,
2010). Furthermore, the structure and conformation of proteins was investigated with
AFM, e.g. collagen, laminin, lumican, decorin and FN (Muller and Engel, 2002). Even
the submolecular structure of the major intrinsic proteins from lens fiber cells and its
structural changes at the surfaces of biomolecules was detected with a time resolution
of a few milliseconds, sufficient to monitor conformational changes involved in biological
processes (Fotiadis et al., 2000). In summary, AFM is a very convenient and successful
tool for observing and studying many biological phenomena. Fortunately, commercially
available AFMs achieve easily subnanometer resolutions in contact (Muller et al., 1999;
Muller et al., 1995) as well as in tapping mode (Moller et al., 1999).

1.5.3.5 AFM force spectroscopy mode

AFM introduced not only a revolution in imaging, but also opened a way to obtain infor-
mation about forces acting between tip and the sample, in the range between ∼ 10 - 100 nN.
Thus, in biological applications the interaction between cells, proteins and/or substrates
can be studied. For example, one can attach a cell to the cantilever tip, let the cell
interact with the substrate or another cell and then determine the adhesion force by de-
taching the cell from its partner (Benoit et al., 2000; Roure et al., 2006; Franz et al., 2007;
Taubenberger et al., 2007).
In contrast to scanning, in force spectroscopy mode the XY-position of the AFM can-

tilever is fixed, while the cantilever is moved in Z-direction only. Because the actual spring
constants of commercial cantilevers vary, a calibration procedure has to be performed for
each cantilever before data collection. Usually, the spring constant is determined via the
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Figure 1.17: A typical force-distance curve of an approach-retract cycle between a tip and
a substrate. The cantilever is approached to the sample until the required force is reached
(A, B, C). After retraction and detachment of the tip from the surface (D, E, F), the loose
of contact appears at another force-distance point than the establishment of contact (E
compared to B). adapted from (Shahin et al., 2005)

thermal noise calibration. Other methods are, e.g., calibration over reference cantilever or
over dimension calculations (Noy, 2007). A typical force-distance curve between a sample
and the tip is schematically shown in Fig. 1.17. The force on the tip is zero while the
tip is approaching the substrate (Fig. 1.17A). The tip is subject to adhesive forces very
close to the substrate, bending the cantilever downwards (Fig. 1.17B). Further cantilever
movement towards the sample first decreases the attractive force between the tip and
the substrate and then turns the tip-sample interaction into a repulsive one, until the
required force is reached (Fig. 1.17C). These three steps can also be observed in reversed
order while moving the cantilever away from the substrate (Fig. 1.17D, E, F). However,
the cantilever must move further away from the surface before the tip detaches from the
substrate due to strong adhesive tip-sample forces. This is clearly visible on the force-
distance curve. A high force resolution can be achieved by moving the cantilever slowly,
while a more frequent vertical displacement can be useful to investigate other mechanical
properties (Braga and Ricci, 2004). The detected forces range from pN to µN depend-
ing on the cantilever stiffness (Benoit and Gaub, 2002). This is in the range of forces
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present in intramolecular interactions inside proteins, so that even the forces needed to
unfold proteins (Best et al., 2003; Rief et al., 1997) as well as adhesive receptor-ligand
interaction forces can be measured.
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2 Matherials and methods

2.1 Materials

2.1.1 Reagents and Kits

Reagents and Kits Company Applications
3-Glycidyloxypropyl-
trimethoxysilane

www.sigmaaldrich.com silanization

Acetic acid www.sigmaaldrich.com contains in
solutions

Acryl-bisacrylamide mix www.carlroth.de PAA-gel
Alexa Fluor® 488 www.invitrogen.com FN labeling
Alexa Fluor® 568 www.invitrogen.com FN labeling
Alexa Fluor® 633 www.invitrogen.com FN labeling
APS www.carlroth.de PAA-gel
APTES www.sigmaaldrich.com PDMS

functionalization
Borax anhydrous www.sigmaaldrich.com silver staining
Bovine collagen type I www.advancedbiomatrix.com surface coating
Bromophenol blue www.sigmaaldrich.com loading buffer
CO2 independent medium www.invitrogen.com SCFS
DMEM www.invitrogen.com cell culture
Dymax OP-29 www.dymax.com cell inversion
EDTA www.sigmaaldrich.com contains in buffer
Ethanol/EtOH (>99.8%) www.carlroth.de washing, solvent
Fibronectin www.roche.de surface coating
FITC conjugated collagen
type I

www.sigmaaldrich.com surface coating

Fluorescent mounting medium www.dako.com fluorescence
microscopy
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Formaldehyde www.carlroth.de contains in
solutions

Gelatine www.sigmaaldrich.com degradation
experiment

Geneticin/G-418 Sulfate www.invitrogen.com cell culture
Glutaraldehyde www.sigmaaldrich.com cell fixation
Glycine www.carlroth.de collagen buffer
Hepes www.sigmaaldrich.com buffer
Hydrochloric acid www.carlroth.de contains in

solutions
L-glutaminie www.invitrogen.com cell culture

medium
supplement

Isopropanol/2-propanol www.carlroth.de washing
Methanol (MeOH) www.carlroth.de contains in

solutions
MnCl2 www.sigmaaldrich.com integrin

activation
Mowiol® www.sigmaaldrich.com mounting

solution
Nanofectin Kit www.paa.com cell transfection
Osmiumtetroxide (4%) www.sigmaaldrich.com electron

microscopy
OxyFluor™ Oxyrase www.oxyrase.com fluorescence

imaging
Paraformaldehyd/PFA www.sigmaaldrich.com fixation
Penicillin-streptomycin www.invitrogen.com cell culture
Recombinant mouse M-CSF www.rndsystems.com RAW264.7 cell

differentiation
Recombinant mouse RANK-L www.rndsystems.com RAW264.7 cell

differentiation
Silver nitrate www.sigmaaldrich.com silver staining
Sodium borohydride www.sigmaaldrich.com FN treatment,

GA inactivation
Sodium bicarbonate www.sigmaaldrich.com buffer
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Sodium cacodylate trihydrate www.sigmaaldrich.com electron
microscopy

Sodium carbonate www.sigmaaldrich.com buffer
Sodium-DL-Lactate www.sigmaaldrich.com substrate for

oxyrase
Silicone elastomer kit
Sylgard®184/PDMS

www.dowcorning.com cell inversion

Potassium chloride www.sigmaaldrich.com collagen buffer
TEMED www.carlroth.de PAA-gel
Tris www.sigmaaldrich.com Buffer
Triton X-100 www.carlroth.de cell

permeabilizing
Trypsin/EDTA www.invitrogen.com cell detachment
Trypsin inhibitor www.sigmaaldrich.com inhibits trypsin

after cell
passaging

Table 2.1: Reagents and Kits
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2.1.2 Buffers and solutions

0.1M Cacodylate buffer 0.1M Na(CH32As02⋅3H20, 0.04M HCl, pH 7.2
0.1M Carbonate-
bicarbonate buffer

80mM NaHCO3, 20mM Na2CO3, pH 9.3

Electroporation buffer 120mM KCl, 10mM K2PO4/ KH2PO4 (pH 7.6), 2mM
MgCl2, 25mM Hepes (pH 7.6) and 0.5% Ficoll 400

5x Loading buffer 250mM Tris-HCl (pH 6.8), 50% (v/v) glycerol, 0.2%
(m/v), bromophenol blue

PBS 137mM NaCl, 2.7mM KCl, 10mM Na2HPO4⋅2H2O,
2mM KH2PO4, pH 7.4

Running buffer 25mM Tris-HCl (pH 8.8), 192mM glycine
Silver stain developer 6% (w/v) Na2CO3, 0.05% (v/v) formaldehyde, 0.004%

(w/v) Na2S2O3
Silver stain fixative 40% (v/v) MeOH, 10% (v/v) acetic acid, 0.05% (v/v)

formaldehyde
Silver stain oxidizer 0.1M borax anhydrous, 1% (v/v) glutaraldehyde
Silver reagent 0.2% (w/v) AgNO3, 0.076% (v/v) formaldehyde
Silver stain stop solution 12% (v/v) acetic acid
TBS 120mM Tris-HCl and 150mM NaCl, pH 7.4

Table 2.2: Buffers and solutions

46



2 Matherials and methods

2.1.3 Antibodies and labeling reagents list

Primary antibodies Company Reacts
with

Appl. Di-
lu-
tion

mouse monoclonal
anti-paxillin

www.bdbiosciences.com M, R, H IF 1:200

mouse monoclonal
anti-vinculin, clone
hVin-1

www.sigmaaldrich.com M, R, H IF 1:100

rabbit polyclonal
anti-fibronectin

www.sigmaaldrich.com M, R, H IF 1:100

Table 2.3: Primary antibodies. M - mouse, R - rat, H - human, IF - immunofluorescence.

Secondary antibodies and labeling
reagents

Company Dilution

4, 6-Diamidino-2-phenylindol
Dihydrochlorid, DAPI

www.carlroth.de 1:1000

Alexa Fluor® 568 phalloidin www.lifetechnoligies.com 1:200
goat anti-mouse IgG (H+L)-FITC www.dianova.com 1:200
goat anti-rabbit IgG (H+L)-Alexa
Fluor® 488

www.dianova.com 1:200

goat anti-rabbit IgG (H+L)-Cy3 www.dianova.com 1:200

Table 2.4: Secondary antibodies and labeling reagents.
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2.1.4 Aparatus

Apparatus Company Applications
2K Dialyse cassette www.thermoscientific.com FN dialysis
AxioObserver inverted
optical microscope

www.zeiss.com optical imaging

Biorad Genepulser www.bio-rad.com cell transfection
Bright light-UV table www.vilber.de adhesive polymerization
Carry 300 UV-Vis
Spectrophotometer

www.agilent.com absorbance measurement

EM CPD030 www.leica.com critical point drying
Eppendorf
microcentriguge 5415R

www.eppendorf.com centrifugation

Fluorodish FD35-100 www.wpiinc.com optical imaging
Harrick PDC-002 plasma
cleaner

www.harrickplasma.com PDMS treatment,
cantilever cleaning

iMIC Digital Microscope www.till-photonics.com TIRF imaging
Laser scanning
microscope, LSM 510

www.zeiss.com optical imaging

NanoDrop2000c www.thermoscientific.com protein concentration
determination

NanoWizard II AFM www.jpk.com AFM scanning
Petridish heater www.jpk.com control temperature

during AFM scanning
Scanning electron
microscope,
LeoSupra55VP

www.zeiss.com SEM imaging

Sephadex G-10 column www.sigmaaldrich.com gel filtration
Sigma 4-16K centrifuge www.sigma-

centrifuges.co.uk
centrifugation

V-shaped Si3N4
cantilever, MLCT

www.brukerafm-
probes.com

AFM scanning

V-shaped Si3N4
cantilever, MSNL-10

www.brukerafm-
probes.com

AFM scanning

Universal 320R centrifuge www.hettichlab.com centrifugation

Table 2.5: Apparatus.
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2.1.5 Software

Adobe Illustrator CS5 www.adobe.com
Adobe Photoshop CS2 www.adobe.com
EndNote X4 endnote.com
Gwyddion gwyddion.net
ImageJ 1.45r http://imagej.nih.gov/ij
JPK Data Processing www.jpk.com
LATEX www.latex-project.org
Matlab www.mathworks.de
OriginPro 8.6G www.originlab.de
TeXstudio texstudio.sourceforge.net
Volocity www.perkinelmer.com

Table 2.6: Software.
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2.2 Methods

2.2.1 FN preparation

2.2.1.1 FN labeling

For FN labeling three different Alexa Fluor® carboxylic acid succinimidyl (NHS) ester
dyes were used. The NHS ester group reacts with primary amines of FN to form a stable
dye-protein conjugate. Before labeling human plasma FN (2mg/ml) was dialyzed against
PBS in a 2K Dialyse Casette overnight at 4°C to remove glycine, which significantly
inhibits the labeling reaction, from the solution. Afterwards, FN was incubated with the
Alexa Fluor® dye at room temperature in the dark for 1 h. The unbound dye was removed
from the conjugate by gel filtration using a Sephadex G-10 column. Final elution was
performed using 1.2ml PBS.

Dye Excitation
wavelength,
Ex (nm)

Emission
wavelength

(nm)

Moles
dye per
FN

Correc-
tion

factor, cf

Extinction
coefficient,

𝜀u�u�u�u�u�
(M−1cm−1)

Alexa Fluor® 488 494 519 5 - 8 0.11 71 000
Alexa Fluor® 568 577 603 2 - 6 0.46 91 300
Alexa Fluor® 633 632 647 1 - 3 0.55 100 000

Table 2.7: Properties of Alexa Fluor® dyes

The amount of protein can be determined by measuring the absorbance at 280 nm
(A280). However, A280 of the labeled protein includes also the dye absorbance. There-
fore, it is necessary to also measure the absorbance at the corresponding dye excitation
wavelength Au�u�. Then, the protein concentration after elution equals

protein concentration (M) = [𝐴280 − (𝐴u�u� ⋅ 𝑐𝑓)] ⋅ dilution factor
𝜀u�u�

, (2.1)

where cf and 𝜀u�u� are a correction factor and the molar extinction coefficient of FN
(292 250M−1cm−1), respectively. Since the amount of dye bound to FN might influence
the structural conformation of the protein (Hoffmann et al., 2008), the average molar
ratio of dye bound to FN was estimated by spectrophotometry as

moles dye per mole protein (M) = 𝐴u�u� ⋅ dilution factor
𝜀u�u�,u�u�u� ⋅ protein concentration

, (2.2)

where 𝜀u�u�,u�u�u� is the molar extinction coefficient of the Alexa Fluor® dyes. The FN Alexa
Fluor® conjugates were stored at a concentration of 1mg/ml at -80 °C.
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2.2.1.2 Surface coating with FN

Before coating, pure FN or fluorescently labeled FN conjugates were centrifuged at
15 700 rcf for 5min to separate protein aggregates from the solution. Afterwards, glass
bottom cell culture dishes (Fluorodish, FD35) or freshly cleaved mica were coated with
FN or FN conjugates at a concentration of 50 µg/ml at room temperature for 1 h in
the dark. Afterwards, the mica surface was rinsed with 10ml PBS to remove unbound
proteins.

2.2.1.3 FN exposure

For investigating FN properties as a function of exposure to visible light, three types of
experiments were performed: exposure using different wavelength, exposure using different
light intensities using a photo mask and exposure using different irradiation times.

2.2.1.3.1 FN exposure at different wavelengths

FN was exposed with different wavelengths (400, 440, 480, 520, 560, 600 and 640 nm)
using a self-built setup (Fig. 2.1) containing a monochromator light source (Polychrome
5000 with a 150W Xenon lamp). The light was focused on the FN coated surface through
a 63x LD Plan-Neofluar objective with numerical aperture of 0.75. The position of the
probe was adjusted with µm accuracy, so that on one substrate different areas could be
exposed with different wavelengths. In physics, the wave-particle duality of light is well
known. This means, that some experiments like interference can be easily explained with
waves. However, atomic excitations occur due to absorption of photons, which are energy
packets of light. Therefore, light induced changes of the protein structure at different
wavelength should be compared via the photon number and not via the photon energy.
This can be achieved by measuring the incident light power and adjusting the exposure
time (Table 2.8). The energy of a photon 𝐸u� equals

𝐸u� = ℎ ⋅ 𝑐
𝜆

, (2.3)

where ℎ is the Planck’s constant, c is the light velocity and 𝜆 is the wavelength. The
power of the incident light on the sample was measured as a function of the wavelength,
𝑃u�, with a power meter. The number of incident photons equals

𝑁u� = 𝑃u� ⋅ 𝑡u�
𝐸u�

, (2.4)
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Wavelength Measured incident power Calculated exposure time
(nm) (µW/mm2) (sec)
400 27 667
440 39 419
480 50 300
520 45 308
560 41 314
600 38 316
640 31 363

Table 2.8: Exposure time as a function of wave length and incident power.

Figure 2.1: Self-built setup for FN exposure. The setup is shown in (A) and the correspond-
ing schematic view in (B). An optical fiber was used to guide the light to the mirror. A 63x
objective focuses the reflected light onto the sample. It was possible to precisely position
the sample in x-, y- and z-direction through using a micrometer gauge.

with the exposure time 𝑡u�. Different exposure times were normalized to the reference
condition at 480 nm with 𝑃480 = 50 µW/mm2 and 𝑡480 = 5min. Thus, the exposure time
as a function of the wavelength is

𝑡u� = 𝑃480 ⋅ 480 nm ⋅ 𝑡480
𝑃u� ⋅ 𝜆

. (2.5)

2.2.1.3.2 FN exposure at different light intensities

An area of ∼ 1.5 cm2 was exposed by a non-focused beam using an Axio Observer inverted
optical microscope and an X-Cite 120Q Xenon lamp (120W). To control the light intensity,
a grey-scale pattern was printed on a transparent film. This photo mask was attached
to the underside of an FD35 glass bottom dish coated with FN-AF488 from the top.
Afterwards, the FD35 was placed directly onto the objective holder of the fluorescence
microscope and exposed for 10min at a power of 76 µW/mm2. Alternatively, the FD35
carrying the photo mask was exposed with UV light (365 nm) on a Bright Light UV table
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at a power of 0.1mW/mm2 for 5min. Finally, the FN was washed once with PBS before
further using.

2.2.1.3.3 FN exposure for different times

FN was exposed using irradiation times ranging from 1 to 300 sec (1, 3, 5, 7, 10, 30, 100
and 300 sec) using the Axio Observer inverted optical microscope and X-Cite 120Q. Via
an optical band pass filter, the wavelength was restricted to a range between 480 and
490 nm, and the beam was focused on the sample with a 63x objective. Afterwards, the
sample was prepared as described in Section 2.2.1.3.2.

2.2.1.4 Chemical fixation of FN

FN samples were incubated with 1% glutaraldehyde for 30min and then washed with
PBS. To remove free aldehyde groups, FN was incubated with 0.1% BH4 for 5min and
finally washed again with PBS.

2.2.1.5 FN thermal denaturation

To examine denatured FN, a FN solution (50 µg/ml) was incubated for 30min at 60°C.
Afterwards, a FD35 glass bottom dish was coated with the thermally denaturated FN for
1 h at room temperature before cell seeding. Alternatively, the glass bottom of a FD35
dish or freshly cleaved mica was first coated with FN (50 µg/ml) and the sample was then
incubated for 30min at 60°C. Finally, in both cases the FN was washed with PBS before
cell seeding.

2.2.2 PDMS substrates

A pre-polymer solution of polydimethylsiloxane (PDMS) was thoroughly mixed with the
cross-linker at a ratio of 10:1. The mixture (1ml) was placed into a Ø 35mm plastic
cell culture dish. The PDMS substrate was degassed in a vacuum chamber before curing
in a drying chamber at 60°C for 4 h. Immediately before cell seeding, the cured PDMS
substrates were treated with oxygen plasma in a Harrick PDC-002 plasma cleaner for
5min to increase their hydrophilicity.

2.2.2.1 PDMS coating with FN

Before coating, the PDMS substrate was treated with oxygen plasma for 1min to increase
its hydrophilicity. Afterwards, the FN-AF488 was incubated on the plasma activated
PDMS for 1 h at room temperature in the dark. Then, unbound FN was washed out with
PBS. The coated substrate was kept in PBS till further usage.
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2.2.2.2 PDMS coating with collagen type I fibrils

Bovine collagen type I monomers were diluted in ice-cold PBS to a final concentration of
50 µg/ml and mixed with 1 µg/ml FITC-conjugated monomeric bovine collagen I. Collagen
fibrillogenesis was performed in a reaction tube at 37°C overnight in the dark. The formed
fibrils were then attached to the PDMS using a covalent coating protocol (Wipff et al.,
2009). Briefly, the activated, plasma-treated PDMS was incubated with a 10% solution of
3-aminopropyltriethoxysilane (APTES) in ethanol at 60°C for 30min to introduce amino
groups to the surface. Afterwards, the PDMS was rinsed with PBS and incubated with 3%
glutaraldehyde for 20min followed by washing with PBS. Finally, the suspended collagen
I fibrils were incubated on the PDMS for 60min, where they covalently bound to the
surface, and washed with PBS.

2.2.3 Silanization of glass coverslips

Glass coverslips (Ø 24mm) were cleaned in 100% ethanol in an ultrasonic bath for 30min
and dried with N2 gas. Clean glass coverslips were incubated in 3-glycidoxypropyl-
trimethoxysilane (2%) in 95% ethanol for 5min at room temperature in the dark, then
dried with N2 gas, washed in 100% ethanol and dried again with N2 gas. Finally, glass
coverslips were treated with plasma for 10min in the plasma cleaner.

2.2.4 Surface coating with gelatine-FITC

Gelatine (20mg/ml) was incubated with FITC (40 µg/ml) in 0.1M carbonate-bicarbonate
buffer (pH 9.3) at room temperature for 18 h. The unbound dye was removed by gel
filtration through a Sephadex G-10 column in PBS. Gelatin-FITC aliquots were stored at
-20°C. Gelatin-FITC was incubated on silanized glass coverslip at room temperature in
the dark for 1 h.

2.2.5 Cell culturing, passaging and differentiation

2.2.5.1 Cell culture

Rat embryonic fibroblasts (REF52), mouse embryonic fibroblasts (MEF), human foreskin
fibroblasts (HFF), Madin Darby canine kidney (MDCK) and a mouse macrophage cell
line (RAW 264.7) were cultured in DMEM containing 10% fetal bovine serum, 100 IU/ml
penicillin, and 100 µg/ml streptomycin at 37°C and 5% CO2. Cells were not cultured for
more than 30 passages. All cells were passaged every 2 - 3 days or before reaching conflu-
ency. For passaging, cells were rinsed with PBS and incubated with 1ml trypsin/EDTA
at 37°C for 5min to detach the cells from the cell culture flask bottom. To inactivate
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trypsin, 9ml of growth medium were added and the cells were diluted according to their
growth at a ratio of 1:3 to 1:10.

2.2.5.2 Osteoclast differentiation

To induce osteoclast differentiation, RAW 264.7 cells were seeded at a density of
100 cells/mm2 and cultured for 6-7 days in alpha MEM medium containing 10% fe-
tal bovine serum, 100 IU/ml penicillin supplemented with soluble Receptor Activator of
NFκB Ligand (RANK-L; 50 ng/ml) and Macrophage Colony Stimulating Factor (M-CSF;
50 ng/ml). The medium was changed every 3 days.

2.2.6 Cell transfection methods

2.2.6.1 Transfection via electroporation

Cells were grown in tissue culture plates (Ø 140mm) to 95% confluence. Cells were washed
with PBS and trypsinized with 1.5ml trypsin/EDTA for 5min. After detachment, cells
were resuspended in 8.5ml ice-cold electroporation buffer (pH 7.6), transferred to a 15ml
Falcon tube and centrifuged for 4min at 170 rcf. Afterwards, the supernatant was removed
and cells were resuspended in 200 µl ice-cold electroporation buffer and transferred to
a 0.4 cm electroporation cuvette on ice containing 1 µg plasmid DNA. Electroporation
was performed using a Biorad Genepulser at 250V and 960mF. Subsequently, cells were
diluted into 10ml growth medium and plated into tissue culture plates (Ø 60mm). For
TIRF imaging, cells were further diluted in growth medium at 1:1000 and seeded into
FD35 dishes and grown for 16 to 24 h.

2.2.6.2 Transfection via FuGENE

For osteoclasts transfection, RAW 264.7 cells seeded in an FD35 dish at a density of
50 cells/mm2 were first differentiated into osteoclasts for 6 days in alpha MEM medium
containing 10% fetal bovine serum, 100 IU/ml penicillin supplemented with 50 ng/ml
RANK-L and 50 µg/ml M-CSF. Afterwards, cells were transfected with 5 µg plasmid DNA
in serum free alpha MEM medium according to the supplier’s manual.

2.2.7 Inverting cells

Cells were cultured on PDMS for 4 to 48 h and then fixed with 4% PFA/1% glutaralde-
hyde for 30min. Fixed cells were washed in PBS, rinsed with 70% and then 100% ethanol
for 30 sec, respectively. Samples were then quickly dried with N2 gas to remove excess
water. A drop of Dymax OP-29 optical adhesive was applied onto the PDMS substrate
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and covered with a glass coverslip. The adhesive was then exposed with UV light (365 nm)
on a Bright Light UV table at a power of 0.1W/cm2 for 5 min. Afterwards, the coverslip-
attached adhesive was gently peeled-off the PDMS substrate, exposing the basal side of
the embedded cells for further investigation. Alternatively, for AFM imaging a region of
interest within the cell layer was cut out of the PDMS substrate with a scalpel. One drop
of the optical adhesive was placed into a Fluorodish and the PDMS cutout was placed
onto the adhesive with the cells pointing towards the adhesive. After curing, the PDMS
cutout was carefully detached from the cured adhesive in the glass bottom dishes and
1ml of PBS was added for subsequent AFM imaging in liquid.

2.2.8 Immunofluorescence staining

Cells were fixed for 30min with 4% PFA, permeabilized with PBS containing 0.2% Triton
X-100 for 5min and incubated with primary antibodies at room temperature for 1 h. After
two wash steps with PBS containing 0.2% Tween and one wash step with PBS, samples
were incubated with the corresponding secondary antibodies for 1 h at room temperature.
Actin filaments were labeled with Alexa488-coupled Phalloidin. Cell nuclei were stained
with 4,6-diamidino-2-phenylindole (DAPI) and finally washed with PBS.

2.2.9 Protein separation via electrophoresis

Total protein concentrations in cell lysates were determined using the NanoDrop2000c
spectrophotometer. Equal amounts of protein were mixed with 5x loading buffer and
denatured at 95°C for 5min. Samples were then loaded along with a molecular weight
marker (Precision Plus Protein™ Kaleidoscope™ standards) into the wells of 7.5% PAA
gel. Electrophoresis was performed at 100V in an electrophoresis chamber containing the
running buffer.

2.2.10 Detection of proteins in PAA gel using an silver staining
technique

Separated proteins in PAA gel were fixed by using silver stain fixative for 20min. After-
wards, a PAA gel was incubated three times in 30% ethanol for 10min each and then rinse
twice in water for 10min each. Then, the PAA gel was transfered into the silver stain
oxidizing solution for 1min and rinsed three times in water (about 30 sec each). Then,
the gel was incubated with the silver reagent for 20min and rinsed three times in water
(about 30 sec each). Proteins were visualized by incubating the PAA gel in the silver
stain developer solution until bands became visible, then the gel was rinsed three times
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in water (about 30 sec each) and incubated in silver stain stop solution to prevent fading
of the bands. Finally, the gel was imaged for further analysis.

2.2.11 Microscopy techniques

2.2.11.1 Atomic force microscopy (AFM) techniques

2.2.11.1.1 AFM imaging

AFM imaging was performed using a JPK NanoWizard II AFM mounted on top of an
AxioObserver inverted optical microscope. AFM scans of fixed cells were performed in
PBS at room temperature in contact mode by using gold-coated silicon nitride V-shaped
cantilevers (MLCT-C) with a nominal spring constant of 0.06N/m. Cellular structures
on the basal cell membrane were scanned at room temperature in contact mode by us-
ing gold-coated silicon nitride V-shaped cantilevers (MSNL-10-C) with a nominal spring
constant of 0.01N/m. Living cells were scanned in DMEM containing 10% FCS, 1% Peni-
cillin/streptomycin and 20mM HEPES pH 7.6 at 37°C in contact mode. Imaging was
performed using MLCT-C cantilevers and a line scan rate between 0.3 and 2.5Hz. AFM
images were processed using the JPK image processing software (version 3.1.6).

2.2.11.1.2 Rearrangement FN with the AFM tip

For rearranging FN by AFM, four different samples were prepared: native, light-exposed,
chemically fixed and thermally denatured FN. For all probes, freshly cleaved mica discs
were coated with FN at a concentration of 50 µg/ml at room temperature for 1 h and
washed with PBS. FN rearrangement experiments were performed in PBS at room tem-
perature in contact mode using a JPK NanoWizard II AFM and gold coated silicon nitride
V-shaped cantilevers (MLCT-C) with a nominal spring constant of 0.06N/m. First, a
15 x 15 µm2 overview scan of FN with a resolution of 512 x 512 pixel was performed with a
force of 0.1 nN applied to the cantilever tip to monitor the FN-coated area. The low force
of 0.1 nN was used to prevent the creation of FN fibrils by lateral scanning forces exerted
by the AFM tip. Afterwards, 3 x 3 µm2 sections within the overview area were scanned
applying contact forces between 0.5 nN and 4 nN. After manipulation, an overview area
of 15 x 15 µm2 was reimaged at 0.5 nN contact forces to illustrate FN rearrangements
caused by the AFM tip. To ensure reproducibility in force application, the sensitivity
and spring constant of cantilevers were calibrated before each experiment using the JPK
software. For characterizing the roughness of the remodeled areas, the height amplitudes
(height signal decreased by the mean value) were used to calculate Ra (average value of
absolute height amplitudes), Rq (standard deviation of the height amplitudes) and Rp

(peak-to-peak distance). These values were directly extracted using the JPK software.
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Component Final concentration
DL-Lactate 10mM

MnCl2 1mM
Oxyrase 0.3 - 0.6U/ml

Table 2.9: Medium supplements for time-lapse imaging.

2.2.11.2 Scanning electron microscopy (SEM)

For SEM imaging samples were fixed for 1 h in 2.5% glutaraldehyde dissolved in 0.1M
cacodylate buffer (pH 7.2) and washed afterwards with 0.1M cacodylate buffer. For com-
plementary fluorescence microscopy, the actin cytoskeleton was stained with phalloidin-
TRITC and phase contrast and fluorescence images of cells were collected using an Ax-
ioObserver inverted optical microscope. Afterwards, cells were incubated in 1% osmi-
umtetroxide for 1.5 h on ice to increase the contrast between cells and surface during
SEM imaging. Samples were then washed three times with ddH2O for 30min each. Af-
terwards, samples were dehydrated in an ethanol series (30%, 50%, 70%, 90%, 95% and
two times with 100%, each for 10min), transferred into acetone and critical point-dried
in a Leica EM CPD030 dryer. Dried samples were immediately sputtered with 2 nm plat-
inum and analyzed with a LeoSupra55VP scanning electron microscope using an aperture
size of 20 µm and an accelerating voltage of 7.0 kV.

2.2.11.3 Imaging by optical microscopy

2.2.11.3.1 Imaging by total internal reflection microscopy (TIRF-M)

TIRF imaging was performed on an iMIC microscope with APON 60xOTIRF objective
(Olympus) using a 491 nm (100mW) or 561 nm (75mW) diode-pumped solid state laser.
The generated images were processed with the ImageJ software.

2.2.11.3.2 Fluorescence imaging of FN fibrillogenesis

Cells were seeded on FN-coated glass surfaces of FD35 dishes immediately before imaging.
The composition of DMEM serum free medium is summarized in the Table 2.9. Imaging
of FN-AF488 or FN-AF568 was performed on an iMIC microscope at 37°C using APON
60xOTIRF or UPLSAPO 40x2 objectives (Olympus). Fibrillogenesis of FN-AF633 was
imaged on the Axio Imager2 microscope using the ZEISS Colibri LED illumination system
and a 40x Zeiss Fluar oil immersion objective. All imaging was performed at 37°C. The
collected images were processed in ImageJ.
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2.2.11.3.3 Fluorescence imaging of fixed cells by confocal laser scanning mi-
croscopy

For spatial analysis of fluorescently-labeled samples (e.g. immunostained cells or fluores-
cently labeled FN), imaging was performed on a LSM 510 Meta confocal laser scanning
microscope. For this, samples were embedded in Mowiol® before imaging, with the ex-
ception of inverted cells, which were imaged in PBS. The images were collected with the
LSM 510 software. The 3D reconstruction of confocal image stacks was performed using
the Volocity 3D imaging software.

2.2.12 Statistical analysis

2.2.12.1 Cell shape and area

To determine cell shape and cell area, cells were imaged by phase contrast using a 20x
Plan-Apochromat objective. The cell border was outlined manually in the program Im-
ageJ. Afterwards, the cell shape and area were analyzed by the software. The data were
presented as Box-and-Whisker plots using the OriginPro 8.6G software. Statistically sig-
nificant differences between conditions (p < 0.05, 0.01 and 0.001) were denoted as one,
two or three asterisks.

2.2.12.2 Analysis of focal adhesion distribution

To visualize focal adhesions, the marker protein vinculin was stained with a monoclonal
antibody. Fluorescence images of vinculin and phase contrast images of the cells were
then collected using a 40x Plan-Apochromat objective. Focal adhesions on the fluores-
cence images were analyzed using ImageJ. First, a brightness threshold was defined for
separating focal adhesions from the background. Then, unsing the Analyze Particle Plu-
gin, the area, length and width (by fitting of an ellipse) and the roundness (width over
length) of each focal adhesion was extracted. The cell outlines were then superimposed
onto the phase contrast images and the fluorescence images of vinculin to calculate the
distance of each focal adhesion to the cell border. The obtained values were plotted as
histograms using OriginPro 8.6G.

2.2.12.3 Topographic analysis of single podosomes

The analysis of the podosome surface was performed via a self-written script in Matlab.
In high-resolution AFM images (10 nm/pixel in x-,y-direction), podosome borders were
marked manually and the lowest point of the resulting enclosed area was identified. If
the deepest point lay inside the podosome area and not on its border, the podosome was
considered to possess an invagination, the depth and width of which were extracted.
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2.2.12.4 Background subtraction for FN fibril analysis

For better visualization, the background was subtracted from fluorescence images of FN
fibrils using a rolling ball function with a radius of 50 pixels. Fibril area, length and
roundness were extracted using the Analyze Particles plugin. The plugin threshold for
the smallest detectable FN fibril area was set to 0.04 µm2, assuming a resolution limit of
the light microscopy images of ∼ 200 nm. Statistical data analysis was performed using
the OriginPro 8.6G software.
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3 A novel cell inversion method for
visualizing cell-ECM interactions at
the basal side

The following chapter is based on the publication “Inverting adherent cells for visualizing
ECM interactions at the basal cell side” (Gudzenko and Franz, 2013).

3.1 Abstract
Cell-ECM interactions provide a wide range of cellular functions, including survival, mi-
gration and invasion. However, in adherent cells, these interactions occur primarily on
the basal cell side, making them inaccessible to high-resolution, surface-scanning imag-
ing techniques such as atomic force microscopy (AFM) or scanning electron microscopy
(SEM). To investigate basal cell-ECM interactions, a novel cell inversion method was de-
veloped. This technique exposes the basal cell membrane for direct analysis by AFM or
SEM in combination with fluorescence microscopy. In addition to single cells, complete cell
layers can also be inverted with this technique and cell-cell contacts stay intact during the
procedure. Likewise, cellular matrix adhesion sites, such as focal adhesions (FAs), remain
intact after cell inversion and the full array of basally-associated ECM proteins is inverted
together with the cell and molecular features of the ECM proteins can be investigated. To
further demonstrate the versatility of the method, basal interactions of fibroblasts with
fibrillar collagen I and fibronectin (FN) matrices were compared. While fibroblasts re-
model the FN layer exclusively from above, they actively invade even thin collagen layers
by contacting individual collagen nanofibrils both basally and apically through a network
of cellular extensions. Cell-matrix entanglement coincides with enhanced cell spreading
and flattening, indicating that nanoscale ECM interactions govern macroscopic changes
in cell morphology. The presented cell inversion technique can therefore provide novel
insight into nanoscale cell-matrix interactions at the basal cell side.
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3.2 Introduction
Many cellular processes, such as proliferation, differentiation, and migration are gov-
erned by interactions between the cell and the surrounding ECM (Berrier and Yamada,
2007; Gumbiner, 1996). The interplay between cells and the ECM is complex and in-
volves chemical and mechanical aspects. Adherent cells interact with ECM via adhesion
receptors, which transmit cellular contraction forces to the ECM (Frantz et al., 2010;
Wolf and Friedl, 2009) contributing to cell-induced matrix remodeling. Matrix remod-
eling frequently occurs on the level of individual ECM proteins (Friedrichs et al., 2007;
Schwarzbauer and Sechler, 1999), while in turn cells are able to recognize and to respond
to nanoscale features in their environment (Andersson et al., 2003; Biela et al., 2009;
Curtis and Wilkinson, 1998; Poole et al., 2005; Teixeira et al., 2003).
Better understanding the intricate structural and functional interplay between the ECM

and matrix-embedded cells is an ongoing challenge in cell biological and medical research
and would benefit substantially from high-resolution images of the underlying molecu-
lar interactions. SEM yields sub-nanometer resolution images and is frequently applied
to image ECM components (Engel, 1994) and cell-ECM interactions (Chen et al., 2008;
Nermut, 1989). Alternatively, basal cell-matrix interactions can be investigated by trans-
mission electron microscopy (TEM) (Fleischmajer and Timpl, 1984) or in situ by light
microscopy. However, since conventional optical resolution is limited to ∼ 200 nm, individ-
ual ECM proteins usually cannot be resolved unless recently-developed super-resolution
microscopy techniques are used (Huang, 2010; Huang et al., 2009; Schermelleh et al.,
2010). However, super-resolution light microscopy still features a limited resolution in
the z-range and usually provides little information on the molecular scale about the 3D
organization of membrane-associated extracellular components. AFM (Binnig et al., 1986)
is increasingly becoming popular for studying cell-matrix interactions, as they can be ex-
amined with nanometer resolution in 3D under physiological conditions and even in living
cells (Friedrichs et al., 2010; Lal and John, 1994). Additional advantages of this tech-
nique are the simple sample preparation protocol and non-destructive conditions during
scanning. Investigating the ultrastructure of adherent cells by AFM has so far focused on
the apical cell side, as it is readily accessible to the AFM tip. In contrast, the basal cell
side, where the majority of cell-matrix interactions occur, is hidden underneath the cell
body and has consequently been less thoroughly studied by AFM. Suitable techniques for
inverting cells and exposing the basal cell membrane would therefore greatly facilitate the
investigation of these processes.
Previously several protocols have been developed to expose basal cell sides for SEM

imaging. In one approach, the entire cell culture substrate was dissolved from underneath
a confluent cell monolayer. Arnold and Boor (Arnold and Boor, 1986), as well as Revel
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and Wolken (Revel and Wolken, 1973) used plastic petri dishes for cell culture and or-
ganic solvents for substrate dissolving and cell detachment, while Singer et al. (Singer
et al., 1989) dissolved glass cover slips in 10% hydrofluoric acid. In another approach,
cells were cultured on titanium-coated silicon wafers, fixed, embedded into LR White
resin and finally removed from the substrate (Goto et al., 1999; Richards et al., 1993).
Since the resin also penetrates the space underneath the cells, it needs to be removed
by glow discharge etching after cell inversion to expose the basal cell membrane. All of
these methods use comparatively aggressive chemicals, potentially leading to structural
artifacts or even wide-scale damage of the cell surface. Furthermore, these techniques
are experimentally challenging and often yield low success rates. Less invasive and more
reliable methods for basal cell membrane preparation are therefore desirable.
In this study, a new protocol for cell inversion was developed by significantly improving

a previously described reversed cell imprinting (RCI) method (Zhou et al., 2010). The cell
inversion technique allows preparing basal cell membranes for high-resolution imaging by
AFM and SEM. This technique involves polymerizing an adhesive on top of adherent cells
and the subsequent removal of the adhesive together with the embedded cells from the cell
culture substrate. By using a silicone cell culture substrate, the adhesive together with the
embedded cells can be easily peeled-off from the substrate without the use of aggressive
chemicals or introducing structural damages to the cells. AFM and fluorescence images of
cells before and after inversion show excellent agreement, demonstrating the high fidelity
and quality of the inversion technique. Moreover, cells are transferred together with the
complete set of basally-associated ECM proteins. Using the cell inversion technique, it was
shown that differences in the cell spreading behavior on collagen type I and FN coincide
with different mechanisms of matrix remodeling on the basal cell side, thereby providing
novel insight into basal matrix remodeling processes.
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3.3 Results

3.3.1 Embedding and inverting adherent cells

To expose basal plasma membranes of adherent cells for high resolution imaging by scan-
ning microscopy techniques (AFM and SEM) the substrate-attached cells were covered
with an UV-sensitive adhesive, followed by curing of the adhesive and detaching it together
with the embedded cells from the cell culture substrate (Fig. 3.1B).
To demonstrate the general feasibility of this approach, human foreskin fibroblast (HFF)

cells were seeded on a PDMS substrate, cultured overnight, then fixed with 4% PFA and
washed with PBS. Before starting the cell inversion procedure, the region of interest was
scanned by AFM, showing the topography of two cells. Then, the cells were briefly rinsed
in ethanol and quickly dried in a nitrogen flow. Afterwards, the cells were overlaid with a
drop of Dymax OP-29 optical adhesive, covered with a glass coverslip and exposed to UV
light. Afterwards, the cured adhesive could be easily detached from the PDMS substrate
by gently lifting off the coverslip.

Figure 3.1: Procedure for inverting adherent cells. HFF Cells are cultured on PDMS for 16 h
and fixed with 4% PFA. (A) AFM deflection image of the apical cell side before inverting.
(B) For inverting, cells are briefly dried to remove excess water from the cell surface (I) and
then covered with an UV adhesive (II). After applying a glass cover slip, the adhesive is
cured under UV light (III). Afterwards, the glass coverslip together with the adhesive and
the embedded cells is lifted off from the PDMS substrate and inverted (IV), exposing the
basal cell side. (C) The same group of cells shown in (A) rescanned from the basal side.
Scale bar 20 µm.

Inverted cell samples were transferred to PBS buffer and the cell morphology after inver-
sion was examined again by AFM scanning. Comparison of AFM scans of the same sample
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region before and after inversion shows excellent agreement of the same group of cells in-
dicating complete cell transfer and maintenance of overall cell architecture (Fig. 3.1A
and C). Moreover, the AFM images show that the adhesive did not fracture, deform or
shrink after curing, and cells had an identical spread area before and after inversion. In-
verted cells displayed an intricate network of fine cytoskeletal structures bulging against
the basal cell membrane. Also, the position of the nucleus could be identified in the cells
(Fig. 3.1C).

3.3.2 Validation of cell transfer after inversion

The excellent agreement of AFM contact mode scans of the same group of cells performed
before and after inversion suggested complete cell transfer during inversion (Fig. 3.1A and
C). Nevertheless, obtaining reliable, high-resolution structural information about the basal
cell membrane requires that the entire cell remains intact during the inversion procedure,
including potentially fragile membranous structures. The inversion protocol should also
ensure that all cells on a cell culture substrate, not just the most weakly adhering cells,
are inverted to provide a representative view on the full range of cell-matrix interactions
within a particular cell culture sample. Furthermore, a complete and non-destructive
inversion of the whole cell layer would facilitate re-locating individual cells after inversion
so that the same cell can be imaged from both the apical before and the basal side after
inversion.
To verify complete cell transfer from the PDMS surface into the adhesive, HFF cells were

labeled with CellTracker Green, a fluorescent live-cell staining reagent seeded on PDMS
and fixed. Phase contrast and fluorescence images of the cell sheet were taken before and
after the inversion procedure. Before inversion, HFF cells were uniformly distributed on
the substrate (Fig. 3.2A). Adding the adhesive and the subsequent UV-curing step did not
affect cell arrangement. To determine the efficiency of the cell transfer into the adhesive,
the border of the area covered by the adhesive was imaged, which appeared slightly darker
in phase contrast images (Fig. 3.2B). The UV adhesive did not noticeably degrade the
fluorescence image quality, demonstrating its excellent optical properties, in particular the
absence of autofluorescence. After removing the glass coverslip together with the adhesive
from the substrate, both, phase contrast and fluorescence images demonstrate complete
cell denuding of the PDMS surface originally covered by the adhesive. Furthermore,
the absence of CellTracker fluorescence signals in this area indicated that cells do not
disintegrate during detachment and inversion. Likewise, AFM scanning of the cell-free
substrate revealed flat, featureless surfaces, confirming complete cell removal from the
substrate.
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Figure 3.2: Verifying the efficiency of the inversion method. HFF cells were cultured on
PDMS, stained with CellTracker Green and fixed. Representative phase contrast and flu-
orescence images of cells on the PDMS substrate taken before (A), during (B) and after
inversion(C). In (B), the area covered by the UV adhesive corresponds to the darker region
on the left side of the phase contrast image. Removing the cover slip from the PDMS surface
produces a cell-free area on the left side of the images (C). The absence of fluorescence stain-
ing in this area confirms the complete transfer of intact cells and demonstrates the efficiency
of the method. Scale bar 200 µm.

To demonstrate that cells are transferred together with their FAs, rat embryonic fibrob-
lasts (REF52) stably expressing YFP-Paxillin as a FA marker (Turner et al., 1990) were
inverted. FA arrangement and the relative fluorescence intensities of the contacts stayed
unchanged (Fig. 3.3) after inversion. The resolution of FAs imaged with an inverted light
microscope after inversion was superior due to better optical properties of the adhesive
compared to the PDMS substrate.
For a more accurate verification of the integrity of the cell, AFM scans and fluorescence

images of the same cell from the apical side before and from the basal after inversion were
performed. The scans demonstrate that the inverted cells have undamaged membranes
including the membrane-associated adhesion complexes, while the fluorescence images
proof that the quantity and location of FAs stays the same (Fig. 3.4).
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Figure 3.3: Demonstration of FA transfer after inversion. Phase contrast (left), fluores-
cence image (middle) and its overlay (right) of REF52 YFP-Paxillin expressing cells shows
a transfer of whole cells including their FAs. Scale bar 20 µm.

Figure 3.4: Comparison of FAs of one and the same cell before and after inversion. AFM
deflection (left), fluorescence (middle panels) and AFM/fluorescence overlay (right) images
show the apical (top panels) and the basal (bottom panels) side of a REF52-Paxillin-YFP
cell. In the fluorescence images, paxillin localization visualizes FAs. FAs imaged with an
inverted fluorescence microscope from the apical side are better resolved due to superior
optical properties of the UV adhesive in comparison to PDMS. Scale bar 20 µm.
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Figure 3.5: Verification of the cell shape after inversion. Fixed HFF cells were stained with
phalloidin-TRITC, inverted and imaged with a confocal microscope. The x-y cross-section
(A) and the y-z plane (B) are shown. The central cell region is bulging, while the cell pe-
riphery remains flat. Scale bars 20 µm (A), 5 µm (B). (C) Schematic of the cell inversion
procedure. The cell is completely embedded into the adhesive before inversion. After expos-
ing the adhesive with UV light and inverting the cells, the region at the cell center extends
above the plane of the adhesive top surface, indicated by the dotted line.

Remarkably, AFM scans of inverted cells sometimes showed an upward bulging of the
central cell region above the plane of the adhesive, while the cell edges remained rather flat
(Fig. 3.4). The schematic draw of cell inversion (Fig. 3.1) shows that the cell body after
inversion is embedded into cured adhesive. To verify the cell shape inside the adhesive
after inversion, the HFF cells were cultured on PDMS until spreading and fixed with 4%
PFA. The actin cytoskeleton was stained with phalloidin-TRITC. Afterwards, the cells
were inverted and imaged with a confocal microscope. This type of microscope allows
imaging the region of interest at several layers along the z-direction creating a z-stack
and therefore providing an insight into the cell shape inside the adhesive (Fig. 3.5B).
The z-y cross-section shows cells with a bulged central region and flat regions at the cell
periphery like in AFM scans. Furthermore, the cell regions embedded into adhesive are
rather flat and do not contain the whole cell body inside, indicating that it was pushed
out during polymerization of the adhesive. Nevertheless, the shape of the structures at
the cell periphery stays unchanged, and the method is therefore very suited for studying
cell adhesion structures, e.g. FAs or podosomes.

3.3.3 Inverting cell-sheets

As shown in Section 3.3.2, single cells or groups of non-connected cells can be inverted
with a high success rate. It was also tested whether larger groups of connected cells
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Figure 3.6: Inverting semi-confluent and confluent cell layer of MDCK cells. (A) A semi-
confluent and (B) confluent cell layer was scanned by AFM from its apical and basal side.
(C) 3D reconstructions were generated from the region marked with a white dotted box in
(B). (D) A magnified 3D reconstruction image of the region marked by the white box white
box in (C) showing cell-cell contacts before and after inversion. Scale bar 20 µm.

or even small cell colonies can also be inverted together. Madin-Darby canine kidney
(MDCK) cells, an epithelial cell line known for forming extensive cell-cell junctions, were
cultured on PDMS at different confluences (semi-confluent at 100 cells/mm2 and confluent
at 500 cells/mm2) for 16 h. In contrast to fibroblasts, MDCK cells establish contiguous
cell-cell contacts with neighboring cells, creating a dense cell sheet. Before inversion,
both semi and fully confluent cell layers were scanned by AFM (Fig. 3.6A and B, upper
row). As expected, the less dense cell layer contained well-spread, rather flat cells (max.
height ∼ 1.5 - 2 µm, Fig. 3.6A, top row), while at higher seeding density cells have limited
spreading space available and therefore extend further into the vertical direction (max.
height ∼ 5 - 6 µm). The same regions scanned from the apical side were also scanned
from the basal cell side (Fig. 3.6A and B, lower row), showing that the layer integrity is
preserved after cell inversion. Likewise, scans of a region containing cell-cell contacts at
even higher magnification indicate no structural damage (Fig. 3.6D).

3.3.4 Investigating cell-ECM interactions at the basal cell side

On planar tissue culture surfaces cells basally interact with the underlying ECM, leading
to nanoscale rearrangements of individual ECM molecules. Investigating these cell-ECM
interactions in inverted cells requires that the ECM macromolecules are transferred to-
gether with the inverted cells. To monitor the degree of matrix transfer, PDMS was coated
with plasma FN fluorescently-labeled with AlexaFluor® 488 (FN-AF488) and incubated
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HFF cells on this coating for 24 h. Before and after inversion, cells and FN were imaged
by phase contrast and fluorescence microscopy and scanned with AFM. Merged phase
contrast and fluorescence overview images of larger groups of cells (Fig. 3.7A) revealed
extensive reorganization of FN into large, brightly-stained areas. The overall organization
of these macroscopic patches was well preserved after inverting cells, demonstrating the
complete transfer of the extracellular FN matrix together with the cells. Comparing the
mirror-images of the FN patches also helped relocating individual cells on the inverted
samples. Higher magnification fluorescence images of individual cells revealed a much
finer level of FN fibril reorganization occurring below cells. Basal FN fibrils frequently
assumed a zigzag pattern along the cell periphery. In contrast, in the cell vicinity, FN
was often completely removed from the substrate, indicated by a complete absence of
the fluorescence signal. Again, fluorescence imaging of FN structures before and after
inversion yielded largely identical results (Fig. 3.7B). To prove basal localization of the
FN fibrils, FN-rich region on the basal cell side by AFM was scanned and the obtained
topography (Fig. 3.7C) was overlaid with the corresponding fluorescence image of FN
(Fig. 3.7E). The high-resolution AFM image clearly resolved the FN fibrils at the cell
basal side and revealed the same zigzag pattern consisting of thin FN fibrils (Fig. 3.7D).
Height profiles generated along cross sections of several FN fibrils displayed a typical
height of ∼ 20 - 80 nm (Fig. 3.7F).

3.3.5 Nanoscale differences in matrix remodeling affect cell
spreading

To investigate whether cells remodel different ECMmatrix proteins differently at the basal
cell membrane, HFF cells were cultured on FN or collagen-coated glass for four hours and
fixed. AFM scans of HFF cells on FN (Fig. 3.8A) suggested that cells grow exclusively
on top of the FN coating, indicated by the absence of fibrillar structures crossing over
the apical side of cells. In contrast, cells on collagen displayed numerous collagen fibrils
apparently extending over the apical cell surface (Fig. 3.8B), indicating that cells had
partly invaded the 2D matrix.
To test whether these differences in matrix interaction coincided with changes in cell

morphology, the cell spreading area was analyzed by taking phase contrast light mi-
croscopy images after four hours of culture. The HFF mean spreading area was signifi-
cantly larger on collagen (5683±1922 µm2) than on FN (4859±1610 µm2, Fig. 3.9B). Fur-
thermore, analyzing AFM height images generated from the same samples revealed that
increased spreading on collagen correlated with a decrease in cell height (2.03 ± 0.28 µm)
compared to cells spreading on FN (3.08 ± 0.62 µm, Fig. 3.8D). Thus, collagen matrix
intertwining coincided with increased cell spreading and flattening.
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Figure 3.7: Imaging basal FN arrangement with high resolution. (A) HFF cells were in-
cubated overnight on FN-AF488 (green). The FN arrangement after inversion mirrors the
original arrangement, demonstrating complete ECM transfer. Scale bar 50 µm. (B) AFM
deflection, fluorescence and overlay images of a single representative cell from its apical and
basal side visualizes the FN fibril arrangement in detail. Scale bar 10 µm. (C) A 3D re-
construction of a high-resolution AFM height image (not shown) of the area marked by the
white box in (B). (D) Overlay image of FN fibrils distributed at the basal cell side and the
actin cytoskeleton labeled with phalloidin-TRITC. Scale bar 10 µm. (E) Overlay of the 3D
reconstruction and the fluorescence image shows good overall correlation between topogra-
phy, and FN fibrils and actin stress fiber location. (F) Height profiles along the cross sections
indicated in (E) perpendicular to actin stress fibers and FN fibrils overlaid with the corre-
sponding fluorescence intensities (green for FN and red for actin) for a better representation
of the affiliation of profile peaks and fluorescence intensities.
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Figure 3.8: Comparing the nanoscale rearrangement of collagen and FN matrices by HFF
cells. AFM deflection and 3D reconstruction images show the apical side of HFF cells cul-
tured on glass coated with FN (A) or collagen type I fibrils (B). On the higher resolution
scans (A and B, middle panels) of the regions indicated by the white boxes (left panels), col-
lagen fibrils extending above cells are visible, while FN fibrils are completely restricted to the
basal cell side. Scale bars 20 µm (left panel) or 5 µm (middle panel). Box-and-Whisker-plot
of HFF cell area (B) and cell height (C) on collagen or FN. Statistically significant differ-
ences between different conditions (p<0.01, 0.001) are denoted by one and two asterisks,
respectively.
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Figure 3.9: Spreading behavior of HFF cells cultured on uncoated glass and PDMS, or on
glass and PDMS coated with FN or collagen type I fibrils. (B) Median spread areas of more
than 100 cells per condition are displayed in Box-and-Whisker-plots. Statistically significant
differences between different conditions (p<0.05, 0.01, 0.001) are denoted by one, two and
three asterisks, respectively. Scale bar 20 µm.

To investigate basal matrix remodeling and entanglement with collagen fibrils in more
detail, HFF cells were grown on collagen-coated PDMS for four hours and individual
cells were imaged with AFM before and after inversion (Fig. 3.10A and B). In these
experiments collagen fibrils were covalently bound to the PDMS substrate to improve
cell attachment and spreading in comparison to collagen coatings using hydrophobic or
electrostatic interactions (Wipff et al., 2009). The good agreement of apical and basal
images made it possible to relocate individual collagen fibrils and to track them across the
apical and basal cell side (Fig. 3.10A and B). Many fibrils showed alternating basal and
apical localization, indicating a high degree of cell-matrix intertwining. Thus, fibroblasts
had remodeled the flat and thin collagen layer into a complex, semi-3D network. High-
resolution AFM imaging of basally located collagen fibrils (Fig. 3.10C) also revealed the
characteristic 67 nm periodic D-band resulting from the staggered array of collagen build-
ing blocks. This demonstrated that the molecular structure of collagen fibrils is preserved
during the inverting process and that it can be analyzed with nanometer-range resolution
in inverted cells.
Finally, the collagen matrix remodeling was analyzed after inversion by SEM. HFF cells

were cultured on a collagen-FITC fibril matrix, fixed, stained with phalloidin-TRITC to
visualize the actin cytoskeleton and inverted. After collecting phase contrast and fluo-
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Figure 3.10: Comparing the nanoscale rearrangement of collagen type I fibrils at the apical
and basal side of HFF cells. (A) Deflection images of the apical and basal side of the same
HFF cell incubated on PDMS coated with collagen type I fibrils. (B) The region marked
with white box in (A) was imaged at higher magnification, showing Individual collagen fibrils
extending above as well as below the same cellular extension (white asterisks). (C) In a higher
magnification image of an area indicated by the white arrow in (B), the characteristic 67 nm
collagen D-banding is visible, demonstrating that the collagen ultrastructure is undamaged
after inversion. Scale bars in 20 µm (A), 3 µm (B), 200 nm (E).
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Figure 3.11: Localization of collagen type I fibrils on the basal cell side. Phase contrast (A)
and fluorescence images of collagen fibrils (B) and the actin cytoskeleton of the HFF cells
(C) taken before inversion. (D) The same region as in (A) imaged by SEM after inversion.
(E) Overlay of fluorescence images of F-actin (red) and collagen (green) and the SEM image.
(F) Higher magnification of the region marked by the yellow box in (D). To monitor collagen
fibril structure on the basal cell side, higher magnification images were recorded (F′, F″)
showing typical collagen 67 nm D-band. Scale bars 100 µm (D), 10 µm (F), 1 µm (F′), 200 nm
(F″).

rescence images (Fig. 3.11A-C), the sample was dehydrated, critical point-dried, coated
with platinum and imaged with SEM (Fig. 3.11D). The good correspondence between
SEM and fluorescence images (Fig. 3.11E) indicated that cells and collagen matrix were
not destroyed or deformed by the preparation procedure. Moreover, higher magnification
of the collagen matrix associated with the basal cell side (Fig. 3.11F′ and F″) demon-
strates preservation of the collagen fibril ultrastructure indicated by the presence of the
67 nm periodic D-band. The preservation of this nanoscale-feature again demonstrates the
suitability of our cell inversion technique for high-resolution imaging of basal cell sides,
including cell-associated matrix proteins.
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3.4 Discussion

3.4.1 Cell inversion protocol

This chapter describes a new cell inversion protocol for investigating the basal cell sur-
face with high resolution scanning microscopy techniques, such as AFM and SEM. The
introduced method has several important advantages over previous protocols described
in the literature (Arnold and Boor, 1986; Goto et al., 1999; Revel and Wolken, 1973;
Richards et al., 1993; Singer et al., 1989). In contrast to other methods exposing the
basal cell side for investigation (Arnold and Boor, 1986; Goto et al., 1999; Revel and
Wolken, 1973; Richards et al., 1993; Singer et al., 1989), this method does not require
any aggressive chemicals. Instead, an UV-adhesive is used to glue the cells to a glass
cover slip. Advantages of the one-component adhesive are favorable optical properties,
including an index of refraction similar to glass (𝑛 = 1.5), its high transparency and low
autofluorescence. Furthermore, the adhesive polymerizes in seconds by exposing it with
UV-light and displays low shrinkage (< 1%) and low water adsorption during curing. Also
after cell inversion no fracture or deformation of the adhesive could be observed. Using
an elastic PDMS polymer as cell substrate is crucial as the adhesive cannot be removed
from stiff glass or tissue culture plastic surfaces due to strong bonding to these surfaces.
PDMS is biocompatible and a suitable substrate for culturing different mammalian cell
types (Bélanger and Marois, 2001; Chen et al., 2008; Lee et al., 2004). However, freshly
polymerized PDMS is hydrophobic, while efficient cell spreading and growth generally
benefit from hydrophilic surfaces (Kottke-Marchant et al., 1996). After rendering the
PDMS hydrophilic by oxygen plasma treatment (Lee et al., 2004), HFF cell spreading
was comparable to that on glass surfaces (Fig. 3.9). Additional advantage of the adhesive
is that after inversion the adhesive did not fracture, deform or shrink after curing, and
cells had an identical spread area before and after inversion, that was shown by AFM
imaging of the same cell (Fig. 3.1A and C).
In this protocol cells are initially fixed and shortly dried. Importantly, phase contrast

and AFM images demonstrate that the drying step does not introduce obvious structural
damage to the cells. However, AFM scans of inverted cells sometimes showed an upward
bulging of the central cell region above the plane of the adhesive, while the cell edges
remained rather flat. Both dry and re-hydrated samples displayed a similar degree of
bulging, ruling out cell swelling after hydration as the responsible mechanism. Bulging
of the basal cell membrane was also observed by Zhou et al. (Zhou et al., 2010), which
the authors attributed to the comparatively low stiffness and the visco-elastic properties
of fixed cells, so that cell is deformed while being pulled from the substrate. However,
a 3D reconstruction of confocal image stacks of phalloidin-stained inverted HFF cells
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(Fig. 3.5B) demonstrates that after removal from the PDMS substrate the cured adhesive
assumes a nearly-planar surface even in the region of the embedded cells, possibly due to
surface tension. As a result, the inverted cells are pushed outwards and partially extend
above the surface of the adhesive, rather than being fully embedded. As the cell body
is pushed upwards to the greatest extent in the cell center, the bulging effect should
be taken into account when quantifying height differences in this area. In contrast, the
bulging effect is small within the extremely flat cell periphery, which typically measured
∼ 200 nm in height. Here, relative height differences between neighboring structures are
not significantly affected, making the inversion method suitable for studying cell adhesion
sites, for instance.

3.4.2 Investigating cell adhesion sites after inversion

Cells interact with extracellular substrates primarily via integrin-containing FAs (Burridge
and Chrzanowska-Wodnicka, 1996; Wozniak et al., 2004). These specialized cell-substrate
contact points constitute the strongest cell attachment areas and frequently remain be-
hind after cell detachment using, for instance, hydrodynamic shear (Ziegler et al., 1998)
or sonication (Franz and Muller, 2005). FA arrangement and the relative fluorescence
intensities of the contacts were unchanged after inversion. Moreover, the resolution of
FAs imaged with an inverted light microscope after inversion was superior due to better
optical properties of the adhesive compared to the PDMS substrate.

3.4.3 Investigating ECM after cell inversion

The investigation of cell-ECM interactions at the basal cell side was performed on FN
and collagen substrate. Cells bind dimeric plasma FN and reorganize them into long FN
fibrils as a result of cellular pulling forces (Mao and Schwarzbauer, 2005a; Schwarzbauer
and Sechler, 1999). The inversion protocol strictly requires using PDMS instead of glass
or tissue culture plastic as the substrate. However, the initial conformation of the FN
molecule depends on the substrate chemistry to which it is attached. For instance, on
hydrophobic surfaces FN assumes a compact or semi-compact conformation (Bergkvist et
al., 2003; Erickson and Carrell, 1983; Pitt et al., 1987), whereas FN assumes an elongated
conformation on glass or hydrophilic PDMS (Bergkvist et al., 2003; Erickson and Carrell,
1983). The elongated conformation is more favorable for cell attachment, spreading and
proliferation (Chen et al., 2008; García et al., 1999; Grinnell and Feld, 1981). Furthermore,
the PDMS substrate may have an influence on the creation of fibrillar FN structure. The
fluorescence images show that on PDMS rendered hydrophilic by plasma treatment before
FN coating HFF cells are able to remodel FN into fibrils (Fig. 3.9B), similar to what has
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been observed on glass surfaces (Mao and Schwarzbauer, 2005a). However, the fibril
ultrastructure might still be dependent on the substrate.
Previously, FN fibrillogenesis has been mainly studied by fluorescence microscopy using

labeled FN. However, the size of the smallest FN fibrils is well below the diffraction limit
of optical microscopy of ∼ 200 nm. As a result, these small FN fibrils cannot be resolved
by conventional fluorescence microscopy. Here, AFM proves to be an especially valuable
tool for analyzing the arrangement of complete FN network including FN nanofibrils.
While investigating FN fibrils on the basal cell side after inversion, some structures in

the same height range were observed that did not co-localize with stained FN (Fig. 3.9F)
but with phalloidin-TRITC co-stained F-actin (Fig. 3.9D-F). Cell membranes are rela-
tively pliable compared to stiff submembraneous actin structures, such as FAs or cortical
actin stress fibers, which then push against the cell membrane form the cell interior. The
actin-rich ridge structures therefore likely correspond to membrane impressions of intra-
cellular actin filaments (Fig. 3.9D). Unequivocally attributing cell membrane features to
subcellular ECM components may therefore require fluorescently-labeling both cytoskele-
tal and matrix components and overlaying AFM topographs with the fluorescence images
to distinguish between ECM and cellular structures (Fig. 3.9E).

3.4.4 Investigating invasion into collagen type I fibrils by fibroblasts

In contrast to FN, culturing cells on planar collagen type I fibrils shows a matrix inva-
sion effect, where the cells penetrate into the ECM layer. Given the extensive collagen
nanofibril entanglement, even cells growing on 2D collagen coatings may receive structural
and chemical signals from the environment similar to cells partially or fully embedded in
3D collagen matrices (Fraley et al., 2010). Such potential 3D aspects of adhesion may
thus need to be considered when interpreting results obtained on nominally 2D coatings.
The functional significance of strong cell-matrix entanglement seen on collagen matrices is
not entirely clear. Fibroblast migration on 2D substrates usually involves repeated cycles
of lamellipodial extension, attachment, translocation of the cell body and retraction of
the cell rear (Ridley et al., 2003). However, cells migrating on collagen substrates have
been observed to translocate individual collagen fibrils across the cell body by forming
membrane protrusions along fibrils and retracting them in a so called “hand-over-hand”
mechanism (Meshel et al., 2005). A similar process of cellular extension along collagen
fibrils and subsequent cell retraction has been observed on cells adhering to thin collagen
sheets (Friedrichs et al., 2007). The contribution of fibril translocation to cell migration
on two-dimensional or in three-dimensional collagen networks is not fully understood.
Nevertheless, alternating cycles of extension and retraction appear to help cells inserting
these protrusions into the collagen network to maximize traction.
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3 A novel cell inversion method for visualizing cell-ECM interactions at the basal side

3.5 Conclusions
The novel cell inversion protocol described here opens the door for high-resolution imaging
of basal cell surfaces, including nanoscale cell-matrix interactions. This technique has
several important advantages: (1) The preparation protocol is fast and efficient. (2) The
inversion procedure does not damage the cell or cell membrane and the adhesive does not
penetrate the space underneath the cell. (3) The basal cell side can be imaged by surface
sensitive imaging techniques, such as AFM or SEM. (4) Due to the optical properties of
the embedding adhesive, it is possible to use fluorescence labeling to locate specific cellular
structures, such as ECM or cytoskeletal proteins, in corresponding high-resolution AFM
or SEM scans. (5) The inversion method is suitable for investigating different cellular
structures, such as podosomes, providing new insight about their possible functions. (6)
Single cells, as well as cell layers, can be inverted even together with the underlying
matrix coat, providing a unique nanoscale look at basal cell-ECM interactions. Using the
described cell inversion technique, basal interactions of fibroblasts with fibrillar collagen
and FN matrices were compared. It was demonstrated that nanoscale differences in
matrix remodeling may lead to macroscopic changes in cell morphology. In future, the
presented inversion technique could easily be extended to investigate other cell membrane
compartments, such as cellular adhesion sites or processes related to endo- and exocytosis,
thereby providing additional insight into the ultrastructure of the basal membrane of
adherent cells.
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4 Investigating the basal side of
podosomes

4.1 Abstract
Podosomes are dot-like adhesion structures primarily found in cells of monocytic lineage,
where they play an active role in matrix degradation. They consist of an F-actin core
(∼ 1 µm diameter) surrounded by additional adhesion proteins. It has been previously
was proposed that podosomes may contain a channel in the center of the actin core to
facilitate enzyme secretion, but the existence of a central channel has not been conclusively
demonstrated. Here, podosome structure was investigated using a cell inversion technique,
exposing the basal cell side to high-resolution imaging by SEM and AFM in combination
with fluorescence microscopy. AFM height images show that about 50% of investigated
podosomes possess a membrane depression at their basal side with a diameter and depth
ranging between 80 and 320 nm and between 6 and 24 nm, respectively. The presence and
the diameter of these depressions were also confirmed by SEM imaging. These results
support the idea of a central membrane channel in podosomes.
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4.2 Introduction
Cell-ECM interactions occur at the basal membrane side and they are therefore usually
inaccessible to investigation by high resolution scanning microscopy techniques. However,
the cell inversion method (Chapter 3) allows exposing the basal cell side with cell ad-
hesion structures staying intact. In this chapter the cell inversion method was used to
study the basal surface structure of podosomes. Podosomes are dot-like (∼ 1 µm diam-
eter) adhesions first found in cells of monocytic lineage, including macrophages (Lehto
et al., 1982), osteoclasts (Marchisio et al., 1984) and dendritic cells (Burns et al., 2001).
Podosome formation can also be induced in other cell types, including smooth muscle
and endothelial cells (Linder and Kopp, 2005). Podosomes are involved in cell adhesion,
migration and they are also responsible for degrading the underlying ECM substrate.
Substrate degradation occurs directly below podosomes, suggesting that podosomes may
be points of protease secretion. However, the mechanisms behind this process are not well
understood (Murphy and Courtneidge, 2011). Podosomes consist of an F-actin core with
a column structure oriented perpendicularly to the substrate. The core is surrounded by
a ring structure containing integrin receptors and focal adhesion proteins, such as vinculin
or talin (Bowden et al., 1999; Gaidano et al., 1990; Pfaff and Jurdic, 2001) (Fig. 1.9). The
podosomes are dynamic structures. During osteoclast differentiation, single podosomes
cluster and fuse together forming small podosome rings. These rings continue to fuse and
create a large podosome ring along the cell periphery. Podosomes in mature osteoclasts
seeded on bone substrate create an even denser ring, called the sealing zone. Early TEM
studies of chondrocytes transformed with the Rous sarcoma virus demonstrate a tubular
channel and a membrane invagination within the F-actin core (Nitsch et al., 1989). This
supports the hypothesis that podosomes may contain a pipeline for enzyme secretion.
However, TEM images of podosomes in dendritic cells do not show similar membrane
invaginations (Gawden-Bone et al., 2010). Furthermore, images of podosomes obtained
by 3D structured illumination microscopy (SIM) have provided data about the spatial dis-
tribution of actin and vinculin. SIM images demonstrate that the actin core has a rather
condense structure without internal channel structures (Gawden-Bone et al., 2010). On
the other hand, SEM images have revealed occasional concavities at the cytoplasmic peak
of podosomes (Luxenburg et al., 2007), which may indicate the terminus of a central
channel. Thus, studies of podosome ultrastructure have provided partially contradictory
results. Here, the cell inversion method was used in combination with AFM and SEM to
investigate the possible existence of a central channel and membrane invaginations at the
basal surface of the podosomes.
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4.3 Results

4.3.1 Differentiated RAW264.7 cells form functional podosomes

Podosome structure was investigated in osteoclast cells. This cell type is responsible for
bone degradation and is known to form multiple podosomes (Marchisio et al., 1984). To
induce differentiation of osteoclasts precursors into mature osteoclasts and to promote
podosome formation, RAW264.7 cells were incubated for 6 days in presence of the soluble
cytokines Receptor Activator of NFκB Ligand (RANK-L; 50 ng/ml) and Macrophage
Colony Stimulating Factor (M-CSF; 50 ng/ml). These cytokines bind to receptors of
osteoclast precursor cells, leading to osteoclast maturation (Lacey et al., 1998). As a
result, cells differentiate into large (Ø∼ 100 - 200 µm) multinuclear osteoclasts (Nijweide
et al., 1986) containing a large number of podosomes.

Figure 4.1: Degradation of gelatin-FITC by podosomes of osteoclasts cells. Cells were incu-
bated on gelatin for 2 h (A) or 4 h (B), fixed and stained for F-actin with phalloidin-TRITC.
Gelatin-FITC free regions are represented by black areas (middle column) and agree well
with podosome location (overlay images). Scale bar: 30 µm.

Podosomes are formed at the basal cell surface (Linder, 2007) of different cell types
(Burns et al., 2001; Lehto et al., 1982; Marchisio et al., 1984). In macrophages and
smooth muscle cells it has been observed that the ECM is degraded only strictly below
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Figure 4.2: Schematic podosome cross section indicating a proposed membrane invagination.
For a detailed explanation of podosome structure see also Fig. 1.9. The membrane at the
basal side of podosomes may possess an invagination (red arrow). The black arrow indicates
the area where ECM degradation occurs (adapted from (Linder and Aepfelbacher, 2003)).

the podosomes (Lener et al., 2006; Murphy and Courtneidge, 2011; Nitsch et al., 1989),
indicating that podosomes play an important role in ECM degradation (Linder, 2007).
To verify that ECM is degraded exclusively below podosomes, and therefore that the
differentiated osteoclasts form functional podosomes, the cells were seeded on gelatin-
FITC coated glass and incubated for 2 or 4 h. Afterwards, cells were fixed and the actin
cytoskeleton was stained with phalloidin-TRITC. Podosomes consist of a characteris-
tic condensed actin core (Fig. 1.9) and they can therefore be identified by actin staining
(Murphy and Courtneidge, 2011). The fluorescence images of actin reveal several spot-like
podosomes per cell (Fig. 4.1, left column). After 2 h of cell spreading, there is a punctate
degradation of gelatin-FITC below the cell body (black areas) (Fig. 4.1A, middle). The
areas of degraded gelatin-FITC expand with incubation time (Fig. 4.1B, middle). Overlay
images of actin and gelatin-FITC validate the coincidence of podosomes and the degraded
areas (Fig. 4.1, right column). Thus, gelatin-FITC degradation apparently starts under-
neath single podosomes and then extends over larger areas as podosomes mature and
merge into clusters.

4.3.2 Imaging the basal podosome surface with AFM

The previous experiment demonstrated that ECM degradation by osteoclasts occurs in
the vicinity of podosomes. As mentioned before, the actin core of podosomes may form a
scaffold containing an internal tubular membrane structure involved in enzyme secretion
for ECM degradation (Nitsch et al., 1989). In this case, one would expect to find a
membrane invagination at the basal podosome side (Fig. 4.2).
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To investigate this idea, cells were inverted according to the cell inversion technique
described in Chapter 3 with the aim to image areas at the basal cell side corresponding to
podosomes by AFM. For cell inversion, cells were cultured on PDMS substrates in presence
of the differentiation factors RANK-L and M-CSF for 6 days and finally fixed and the actin
cytoskeleton was stained with phalloidin-TRITC. Osteoclasts that had formed individual
podosomes suitable for AFM imaging were identified by fluorescence microscopy and
inverted (Section 2.2.7). Afterwards, the sample was scanned by AFM in contact mode in
PBS with a MSNL-10 cantilever with a nominal tip radius of 2 nm. The AFM overview
image of a single inverted osteoclast cell reveals a variety of different structures at the cell
periphery (Fig. 4.3A). By overlaying the AFM with the fluorescence image (F-actin), the
location of single podosomes can be identified in the AFM image (Fig. 4.3C). A region
containing several individual podosomes was afterwards imaged with higher magnification
(Fig. 4.3D). The height images are also presented as 3D reconstructions to demonstrate the
podosome topography at the basal side in more clarity (Fig. 4.3E). Several podosomes
are visible, three of which possess an apparent membrane invagination. In total, 350
podosomes of twelve different cells were scanned and analyzed with a self-written routine
in Matlab. In presence of a depression, the Matlab function finds the deepest point around
the podosome center and calculates the depression depth and diameter with respect to the
highest point of the podosome. Approximately 50% of the analyzed podosomes possess
a clear central depression with diameters ranging between 80 and 320 nm and depths
ranging from 6 to 24 nm (Fig. 4.3F and G).

4.3.3 Visualizing basal podosome side by SEM and correlated
fluorescence microscopy

To complement the AFM experiments, podosomes at the basal side of osteoclasts were also
scanned by SEM. For this, RAW264.7 cells were seeded on PDMS as before, differentiated
into osteoclasts for 6 days, fixed and stained with phalloidin-TRITC. Afterwards, both
phase contrast images and fluorescence images of cells were taken before inverting and
preparing the samples for SEM scanning (Section 2.2.11.2). Light microscopy images
needed to be collected before processing the samples for SEM, since sample becomes
unusable for other microscopy techniques due to the drying and coating with a 2 nm
platinum layer.
An SEM overview image of an inverted osteoclast and the corresponding fluorescence

image are shown in Fig. 4.4A, B and C. The fluorescence image demonstrates strong
F-actin staining along the cell periphery corresponding to a dense belt of individual po-
dosomes. A region containing single podosomes (Fig. 4.4C, white box) was rescanned
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Figure 4.3: Imaging of podosomes after cell inversion by AFM in combination with flu-
orescence microscopy. (A) The AFM deflection image showing the basal cell side of a
representative osteoclast cell scanned in contact mode. (B) F-Actin staining provides in-
formation about podosome localization. (C) An overlay image of (A) and (B) identifies cell
regions containing several individual podosomes suitable for further scanning by AFM. Nu-
clei stained with DAPI (blue)). (D) The region marked with a white box in (C) rescanned
at higher magnification. Several podosomes are visible as local elevations. The region in the
white rectangle was reimaged and presented in a 3D reconstruction (E) to reveal the basal
topography. Three individual podosomes containing a central depression are marked by
cyan arrows. Scale bars: 10 µm (A) and 2.5 µm (D). Quantification of podosome depression
(Section 2.2.12.3) depth (F) and diameter (G).
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Figure 4.4: Visualization of podosomes in inverted cells by SEM in combination with fluo-
rescence microscopy. (A) SEM image of a single inverted osteoclast. (B) Fluorescence image
of the same cell. Actin-rich podosomes localize to bright regions at the cell periphery. (C)
An overlay of the fluorescence image (taken before inversion) and the SEM image (taken
after inversion) confirms that the cell shape is preserved during sample preparation. (D) A
part of the cell marked by the white box in (C) imaged by SEM at higher magnification
and overlaid with the corresponding part of the fluorescence image. Three single podosomes
(white boxes i-iii) rescanned at higher magnification. The darker spots at the podosome
center indicate the possible existence of membrane invaginations. Scale bars: 20 µm (C),
10 µm (D) 1 µm (i-iii).
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at higher magnification (Fig. 4.4D). Most podosomes appear to contain a central cavity
(Fig. 4.4D, i-iii), in agreement with results obtained by AFM scanning.

4.4 Discussion
The cell inversion method presented in the previous chapter allows inverting cells to
expose their basal side without damaging the membrane or cell adhesion contact sites.
Here this method was applied to study the structure of the basal podosome surface. Both,
AFM topographs and SEM images indicate that podosomes frequently possess a central
depression at their basal side. These depressions may result from membrane invagination
and a central cavity within the F-actin core as previously proposed (Nitsch et al., 1989).
This idea can be verified by staining the cell membrane and imaging the inverted cell with
a confocal microscope.

Figure 4.5: Cytoplasmic actin organization of podosomes in osteoclasts imaged by SEM. (A)
Overview image of part of a osteoclast after deroofing show several podosomes. (B) Three
podosomes imaged at higher magnification and image of the podosome actin core showing
a concavity at the top of the podosome. Scale bars: 1 µm (A), 200 µm (B) and 100 µm (C)
(adapted from (Luxenburg et al., 2007))

The molecular architecture of the podosome actin core has been previously studied
from the cytoplasmic side by SEM (Luxenburg et al., 2007). In this study, the apical cell
membrane and the cytoplasmic part of the cell were removed by cell “de-roofing” prior
to high resolution SEM imaging of single podosomes (Fig. 4.5A). The obtained images
show densely packed actin fibers at the actin core with a perpendicular orientation to the
substrate and a concavity at the apex of the podosome actin structure (Fig. 4.5B and
C) (Luxenburg et al., 2007). Using a similar osteoclast preparation procedure, concave
features on the apical podosome side were also observed by AFM (Fig. 4.6, unpublished
data from Dr. C. Franz). In that case, the depth of the invaginations ranges from 19 to
37 nm (Fig. 4.6F).
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Figure 4.6: Investigating podosome structure from the cytoplasmic side. (A) Fluorescence
image of the actin cytoskeleton and (B) an AFM height image of the ventral membrane of
de-roofed osteoclasts. (C) An AFM scan of the region marked by the white dotted box in (B)
shows part of the cell periphery containing single podosomes. The area marked by the black
dotted box in (C) rescanned at higher magnification. Height profiles of three podosomes
(blue, green and red) along the three corresponding lines marked in (D) are plotted in (F)
visualizing a central cavity within the actin structure. (E) A 3D reconstruction of the AFM
height image (D) reveals a better representation of the central depression (images provided
by Dr. C. Franz)

The imaging of the podosome basal side with AFM provides 3D information about
podosome topography. According to the data obtained from AFM height images, depres-
sions on the podosome surface have a depth ranging between 6 and 24 nm and a diameter
ranging from 80 to 320 nm. Thus, a true to scale schematic can be drafted (Fig. 4.7)
visualizing the podosome topography. The podosome height (H) measured from the flat
membrane of the cell periphery to the podosome peak ranges from 150 to 250 nm, while the
height between neighboring podosomes (h) is smaller and ranges between 65 to 155 nm.
The difference between H and h can be explained by the fact, that the actin core of each
podosome is surrounded by FA proteins. In the case that podosomes are close enough to
each other, the FA proteins of neighboring podosomes build a denser structure.
The pore-like structures at the cytoplasmic side and the depression at the basal cell side

suggest that podosomes may contain a central channel. These findings support a previ-

91



4 Investigating the basal side of podosomes

Figure 4.7: True to scale schematic of podosome basal side scanned by AFM. Three po-
dosomes are schematically shown having a height H measured from the cell periphery and
h measured from the gap between podosomes. The podosome core is indicated on the right
two podosomes by F-actin in red and the Arp2/3 complex in green. Cyan and yellow ellipses
represent the FA proteins and integrins, respectively. The basal side of podosomes possesses
a depression (black) with a depth Hb and a width Wb. On the cytoplasmic side, the po-
dosomes have a cavity (black dashed line) with height Ha. The AFM tip with a nominal
radius of 2 nm is shown in grey.

ously proposed model about tubular membrane structures inside the podosome actin core
(Nitsch et al., 1989). Interestingly, TEM micrographs of podosome sections cut perpen-
dicularly to the substratum demonstrate dense tubular structures (Nitsch et al., 1989).
Under favorable sectioning conditions, these dense areas appear to represent channels
(Fig. 4.8C and D). The membrane of these channels is in continuity with the ventral
plasma membrane and is surrounded by a cuff of dense filamentous matrix (Nitsch et
al., 1989). The diameter of such channels is around 25 nm (Ochoa et al., 2000). More-
over, podosomes are associated with dynamin, a GTPase involved in vesicle formation at
the plasma membrane and endocytosis (Hinshaw, 2000). TEM and fluorescence images
demonstrate that dynamin surrounds the tubular invaginations of the plasma membrane
of podosomes. These observations suggest that a membrane may flow through the po-
dosome core and that vesicles may pinch off at its top on the cytoplasmic side (Ochoa et
al., 2000). Similar to podosomes, invaginations of tubular plasma membrane surrounded
by a dense F-actin network have been observed in yeast by TEM (Mulholland et al., 1994).
However, these membrane invaginations are smaller (up to 7 nm in diameter) than those
in podosomes (Fig. 4.3F). Furthermore, the actin cytoskeleton surrounding yeast mem-
brane invaginations colocalizes with the vesicle generation protein Rvs167, a homologue
of the amphiphysin protein which has similar functions as dynamin (Takei et al., 1999).
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Figure 4.8: TEM images of podosomes. (A-D) TEM images of RSV-transformed chick
embryo chondrocytes. (A) Section cut parallel and close to the bottom of the culture dish.
Dark dots with a size of 30 nm in this area have been identified as podosomes. (B) A
magnified view of a single podosome showing a dense ring of microfilaments. (C) A cross
section perpendicularly to the dish shows several membrane invaginations. (D) Magnification
view of a membrane invagination, which is 30 nm thick and up to 1 µm long. Magnification
factors: 50 000x (A), 230 000x (B), 11 000 (C), 31 000x (D) (adapted from (Nitsch et al.,
1989))

A recent model of endocytosis in yeast shows that the assembly of a dense branched
actin network can promote the formation of plasma membrane invaginations. Once the
extended membrane tubule forms, the vesicle scission apparatus (Rvs161/167 and Vps1)
narrows the neck of the vesicle forming at the invagination tip to promote scission (Boet-
tner et al., 2012). A similar mechanism may be involved in enzyme secretion though
membrane invagination of podosomes.
Interestingly, according to the SEM and AFM images presented in this chapter only

50% of podosomes display a depression at the basal side. In case of SEM, one could
argue that the metal coating partly disguises the cavities. However, the 2 nm coating is
thin compared to the invagination depth (6 - 24 nm) observed by AFM (Fig. 4.3F, G),
making it unlikely that the metal coating filled the depression. High podosome dynam-
ics could provide an alternative explanation for the mixed morphologies. The fixative
glutaraldehyde chemically crosslinks cells and podosomes near instantaneously due to its
high penetration velocity of 5.6 µm/min (Hopwood, 1967). The thin cell edge, where
the majority of podosomes are located, is therefore fixed within seconds. If the chan-
nels alternate between an open and closed state, only a fraction of podosomes would
display concavities at a given time. Podosome maturation and the dynamics of podosome
turnover could affect the presence of cavities. The average podosome life time is on the
order of minutes (Linder, 2007), consistent with rapid assembly and disassembly. As only
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mature, functional podosomes may contain an open channel for enzyme secretion, while
assembling or disassembling podosomes may be closed.

4.5 Conclusions
After cell inversion structures at the basal cell side can be investigated by high-resolution
scanning microscopy techniques. In this chapter, this technique was applied to study
the structure of the basal podosome surface. In agreement with the hypothesis that
the F-actin core of podosomes contains a central tubular membrane structure involved
in enzyme secretion for matrix degradation, a central depression in the podosome basal
membrane could be frequently detected by AFM and SEM. While these results do not
conclusively prove the existence of a central channel spanning the podosome core, they
still provide important additional support for this idea.
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5 Studying fibronectin fibrillogenesis in
living cells by atomic force
microscopy

5.1 Abstract
Fibronectin (FN) is an abundant glycoprotein of the extracellular matrix (ECM). In tis-
sues, cells remodel globular FN molecules into complex fibrillar matrices. However, the
dynamics of cellular remodeling and the transition through intermediate fibrillar stages
are still incompletely understood on the nanoscale. In this chapter, initial and later stages
of FN fibrillogenesis were visualized by combining high resolution microscopy techniques,
atomic force microscopy (AFM) and fluorescence microscopy imaging, directly in living
fibroblasts. FN nanofibrils originate in the vicinity of cellular adhesion complexes during
membrane retraction. The very first fibrils are created below the cell staying hidden to
AFM, so that the earliest detectable FN nanofibrils contain already about 8 molecules.
With progressing cell spreading, these fibrillar precursors are elongated and reinforced
to include several hundred FN molecules. Ultimate fibril dimensions crucially depend
on integrin-receptor-driven mechanisms. For example, in presence of Mn2+, a known
activator of integrin receptor binding to FN, both the final fibril size and the fibril exten-
sion speed are increased. Spatial aspects of FN remodeling also strongly depend on cell
density. While FN fibrillogenesis by individual fibroblasts occurs primarily beneath cells,
fibroblasts in denser layers collectively remodel FN into lateral structures preferentially at
regions of cell-cell contacts, emphasizing the role of FN in regulating cell-cell interactions.
High-resolution AFM under physiological conditions in combination with fluorescence mi-
croscopy thus provides unique insight into structural and temporal aspects of cell-driven
FN fibrillogenesis.
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5.2 Introduction
FN is a large (∼ 460 - 500 kDa), homodimeric glycoprotein of the ECM (Hynes, 1985;
McDonald, 1988). It mediates cell attachment (Yamada and Olden, 1978) and matrix
cross-linking (Dallas et al., 2005; Pereira et al., 2002; Sottile and Hocking, 2002; Velling
et al., 2002) and plays an indispensable role during development, wound healing (To
and Midwood, 2011) and matrix repair (Singh et al., 2010). FN consists of two nearly
identical monomers linked by disulfide bridges near the C-terminus (Hynes, 1985). The
FN monomers are composed of types I (FNI), II (FNII) and III (FNIII) repeating units
(Fig. 1.2) (Hynes, 1985). The repeating units are organized into different functional
domains that provide interactions with other ECM molecules or with cellular receptors.
The reorganization of FN monomers into large fibrils is a hallmark of FN function

(McDonald, 1988; Singh et al., 2010). FN fibrillogenesis is a complex multistep pro-
cess which has been studied extensively on the molecular level (McDonald, 1988; Singh
et al., 2010). Initially, dimeric globular FN proteins are secreted in a compact confor-
mation. Afterwards, these globular FN molecules are converted into an extended, ac-
tive conformation through cellular contraction forces mediated via actin cytoskeleton and
transmitted by integrin receptors. During this process FN-FN binding sites are progres-
sively exposed, allowing FN molecules to align and to form larger fibrils. The divalent
cation Mn2+ increases the binding affinity of different integrins, such as α5β1, to FN
(Gailit and Ruoslahti, 1988; Mould et al., 1995b) and accelerates the FN fibrillogenesis
process (Sechler et al., 1997). Accumulated FN fibrils are then stabilized inside fibrillar
networks and undergo strong, non-covalent, protein–protein interactions (Ohashi et al.,
1999; Schwarzbauer and DeSimone, 2011). The fibril insolubility is depend on formation
of interactions between partially unfolded FNIII modules, for example FNIII9 (Litvi-
novich et al., 1998) and FNIII13−14, FNIII5−6, FNIII8−9 (Smith et al., 2007). Therefore,
for the insoluble FN matrix formation the FN unfolded dimers first associate with each
other and then undergo conformational changes for irreversibly incorporation in to fibrils
(Schwarzbauer and DeSimone, 2011).
FN fibrillogenesis has been mostly investigated using fluorescently labeled FN and flu-

orescence energy transfer (FRET) spectroscopy (Baneyx et al., 2001; Karuri et al., 2009;
Wolff and Lai, 1989). FRET experiments have provided evidence for conformational
changes occurring within single FNIII modules, as well as the entire FN molecule. This
processes occur during different stages of fibril formation (Baneyx et al., 2001). Cell-
mediated extension of FN molecules has been shown to involve FNIII domain unfolding
(Smith et al., 2007). However, complete unfolding of FN modules or FN proteins in vitro
may result in severe conformational changes inconsistent with natural processes occurring
in tissues (Ulmer et al., 2008). Therefore, cell-induced remodeling of homogenous FN sub-
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strates into fibrillar matrices has also been studied directly by fluorescence microscopy.
These experiments have shown that cells stretch individual FN fibrils by up to four times of
their initial length during matrix formation (Ohashi et al., 1999). However, with conven-
tional optical microscopy techniques small fibrillar FN intermediates (< 200 nm) cannot
be resolved due to the optical limitation. Therefore, many open questions, regarding the
deep understanding of the organization of FN molecule organization into fibrils and fib-
ril maturation require high resolution microscopy methods able to resolve individual FN
building blocks.
Important information about the structure of single FN dimers has been obtained by

electron microscopy imaging (Erickson et al., 1981; Erickson and Carrell, 1983; Kotelian-
sky et al., 1980; Price et al., 1982; Tooney et al., 1983). For instance, by transmission
electron microscopy (TEM) the length and width of a single folded plasma FN molecule
were measured to be 15.5 and 8.8 nm, respectively (Koteliansky et al., 1980). The scan-
ning transmission electron microscopy images of freeze-dryed FN molecules on carbon
surface reveal the average dimensions of 16 nmx 24 nm (width x length) (Tooney et al.,
1983), while the electron micrographs of rotary-shadowed FN show folded dimers with
dimensions of 32 nmx 51 nm (Erickson and Carrell, 1983; Price et al., 1982). The length
and height of the unfolded FN molecule were estimated to be 120 - 160 nm and 2 – 3 nm,
respectively (Engel et al., 1981; Erickson et al., 1981; Erickson and Carrell, 1983). Scan-
ning electron microcopy (SEM) revealed a mean counter length of 130 nm of extended
FN dimers adsorbed to mica (Tooney et al., 1983). However, preparation of EM samples
typically include drying and staining or sputtering steps, which can not only affect the
molecular structure of FN but also make this technique incompatible for observing the
fibrillogenesis process in vivo. In general, most studies investigating cell-induced fibril-
logenesis were performed on fixed and stained samples, providing only a snapshot state
of FN fibrillogenesis rather than visualizing the entire process from initial precursors to
fully-formed fibrils.
Another powerful technique for both, obtaining high resolution images under physiologi-

cal conditions and for characterizing the unfolding mechanism of molecules is AFM. Both,
conformational changes of entire FN molecules and the unfolding of individual FNIII mod-
ules have been analyzed by single-molecule AFM force spectroscopy (Oberhauser et al.,
2002) giving deeper insight into unfolding events involved in matrix assembly with more
accuracy. AFM tapping mode revealed a length of the extended FN dimers of 120 - 160 nm
and a height of ∼ 1 nm in air (Lin et al., 2000) and liquid (Chen et al., 2007). Furthermore,
AFM images of FN molecules adsorbed to different surfaces have revealed morphologi-
cal changes depending on surface hydrophobicity (unfolded or compact conformation),
including different FN dimer configurations, ring-shaped and beaded-filament or FN ag-

97



5 Studying fibronectin fibrillogenesis in living cells by atomic force microscopy

gregates. Some of these structures were proposed to represent early and intermediate
states of FN fibrillogenesis (Chen et al., 2007).
In this chapter, results of live-cell time lapse AFM imaging in combination with fluores-

cence microscopy are presented, visualizing for the first time the initial steps of FN fibril
formation by living fibroblasts. Also the number of FN molecules incorporated into FN
fibrils at different stages of fibrillogenesis was estimated from AFM scans. Adding Mn2+

to the cells accelerates the FN fibrillogenesis dynamics. Moreover, the cell density seems
to strongly influence the FN remodeling. Altogether, these results provide a novel insight
into the dynamics of FN fibrillogenesis.
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5.3 Results

5.3.1 Investigating FN fibrillogenesis by TIRF microscopy

Fibroblasts have a well-characterized role in FN remodeling in different tissues (Grinnell,
1984; Singer et al., 1984). Fibroblasts, such as the REF52 (rat embryonic fibroblast)
cell line, also provide useful model systems to study cell-induced FN fibrillogenesis in
tissue culture experiments. To assess the general dynamics of FN fibrillogenesis in REF52
cells, different stages of fibrillogenesis were visualized using conventional fluorescence mi-
croscopy imaging. Cells were seeded on homogeneous coatings of FN labeled with Alexa
Fluor 488® (FN-AF488) and incubated for 10, 30, 60 or 240min. After fixation and im-
munostaining for vinculin, a marker protein for focal adhesion (FA) cell-matrix contact
sites, the FN layer and FAs were imaged by TIRF microscope (Fig. 5.1A). To improve the
clarity of newly formed FN fibrils against the diffuse background of the unremodeled FN
layer, the background from the FN-AF488 fluorescence images was subtracted by using a
“rolling ball” algorithm (Fig. 5.1A). After 10min of incubation, cells had begun to spread
and to recruit vinculin to FAs (Fig. 5.1A, 10min). In this stage, only few and small
fibrillar FN structures were visible. The bulk of FN showed an almost fully homogeneous
distribution, indicating that FA formation precedes FN remodeling. After 30min, cells
formed more and larger FAs, especially at the cell periphery (Fig. 5.1A, 30min). FN fibrils
were still difficult to discern on raw but became apparent on the background-subtracted
images. In accordance, a fluorescence intensity profile line showed increased roughening
(Fig. 5.1B). After 60min, full size FA contacts had formed and the FN layer was markedly
remodeled in the vicinity of these contacts (Fig. 5.1A, 60min). In agreement with FA-
induced fibrillogenesis, the FN-AF488 and vinculin fluorescence intensity profiles showed
partial correlation (Fig. 5.1B, 60min). After 240min, cells had fully spread, formed a
mature array of FA sites and extensively remodeled FN below the cell body (Fig. 5.1A,
240min). The intensity profile of vinculin fluorescence remained at a similar level as be-
fore, but the FN-AF488 profile peaks had increased in height and number compared to
previous time points (Fig. 5.1B, 240min). Furthermore, the spatial correlation between
FA and FN structures is maximal at 240min.
To visualize the spatial overlap of FA and FN fibrils in more detail, cells were fixed after

240min and stained for paxillin as an alternative FA marker (Fig. 5.2). An extensive co-
localization of paxillin and fibrillar FN at FAs could be observed, although paxillin was
usually oriented more towards the center of the cell body, while FN fibrils were concen-
trated on the outer part of focal adhesions (Fig.5.2). Together, these results provided a
picture of the dynamics of FN fibril formation over the first 4 hours of cell spreading and
verified the active role of focal adhesions in this process.
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Figure 5.1: Dynamics of cell-induced FN fibrillogenesis. (A) REF52 cells were incubated
on a homogenous coating of FN-AF488 for 10, 30, 60 or 240min. TIRF microscopy images
of FN demonstrate the progressive formation of FN fibrils (top row). Background subtrac-
tion (see Section 2.2.12.4) increases the visibility of newly formed FN fibrils (second row).
Immunostaining for vinculin visualizes emerging FAs (third row). Overlay of unprocessed
FN (green) and vinculin (red) images (bottom row). Scale bar: 10 µm. B. Fluorescence
intensity profiles of FN (green lines) and vinculin (red lines) generated along cross sections
(white lines) in A at corresponding time points.
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Figure 5.2: Visualizing partial colocalization of paxillin and FN-AF488 fibrils with fluores-
cence microscope. REF52 cells were incubated on FN-AF488 (A) for 4 h and paxillin (B)
was stained to visualize FAs. Cropped regions from the overlay image (C) demonstrate the
association of FN fibrils and focal adhesions at the basal side of the cell. Scale bars: 20 µm
(A) and 2.5 µm (C2).

The fluorescence images also provided a means for quantitating longitudinal and latitu-
dinal FN fibril growth. Plotting fibril length (Fig. 5.3A) and width (Fig. 5.3C) at different
time points in histogram form allows visualizing considerable structural heterogeneity of
fibrils, which cannot be represented by averaged results. The smallest detectable pre-
cursors were typically ∼ 0.3 µm in length and ∼ 0.2 - 0.3 µm in width, approaching the
resolution limit of the optical microscope. Fibrils then grew up to ∼ 2 µm in length and
∼ 0.3 – 1 µm in width, with some rare fibrils reaching a length of up to 6 µm. Determin-
ing the aspect ratio of individual fibrils (width divided by length) (Fig. 5.3B) confirmed
that fibrils progressively transformed from a near-circular shape after 10min to a strongly
elongated shape after 240min. The averaged longitudinal and lateral fibril growth was
plotted to determine the dynamics of fibril extension (Fig. 5.3B). Between 10 and 240min,
the mean fibril length increased by a factor of ∼ 6.33 from 0.3 ± 0.1 µm (10min) to
1.9 ± 0.6 µm (240min). Over the same time, the mean fibril thickness increased from
0.2 ± 0.1 µm (10min) to 0.5 ± 0.1 µm (240min), or by a factor of 2.5. Interestingly,
plotting fibril width versus length for all time points revealed a highly-linear correlation
(coefficient of determination R2 = 0.989, Fig. 5.3B) and longitudinal and latitudinal fibril
growth remained constant at a ratio of ∼ 4.3:1 over the entire time course, indicating a
uniform extension mechanism of the fibrils. Dividing mean final fibril length (∼ 1.9 µm) by
time (240min) yielded a comparatively slow averaged fibril elongation rate of ∼ 8 nm/min.
However, fibrils might grow not at a constant speed but in bursts characterized by higher
speed over short time intervals, in which case averaging over time would underestimate
the effective fibrillar extension speed.
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Figure 5.3: Quantification of FN fibril dimensions at time points 10, 30, 60 and 240min.
The data are taken from fluorescence images of more than 50 cells at each time point from
two independent experiments. The histograms of the FN fibril width (A) and length (C)
show that the FN width as well as FN length increases with time with a maximal value
of 1 µm and 6 µm, respectively, after 240min. (B) Plotting the mean fibril width versus
mean fibril length reveals a nearly linear correlation between both parameters (coefficient of
determination R2 = 0.989). The ratio between longitudinal and latitudinal growth remained
constant at ∼ 4.3:1 over the entire time course. (D) Relative frequency of the width to length
ratio at different time points.

5.3.2 Investigating FN fibrillogenesis by AFM in combination with
fluorescence microscopy

Analyzing early FN fibrils from fluorescence microscopy images provides a reliable measure
of fibril dimensions at later stages of extension. However, at early stages of fibrillogen-
esis, fibril dimensions approach the resolution limits of conventional optical microscopy
(∼ 200 nm), preventing accurate quantification from fluorescence images. Moreover, FN
fibrils are 3D structures and fluorescence images do not provide any information regarding
the fibril height. Therefore, for obtaining additional insight into the FN fibril ultrastruc-
ture, AFM was used to image the cell-remodeled FN layer after incubation for 4 h and
chemical fixation. Using FN-AF488 allowed for complementary fluorescence microscopy
during AFM imaging. While cells were spreading on planar cell culture substrates, FN was
remodeled into fibrils primarily at the basal cell side (Gudzenko and Franz, 2013). There-
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fore, preliminary fibrils were not directly accessible to the AFM tip. Nevertheless, FN
fibrils could be visualized by AFM at the rear end of strongly polarized cells (Fig. 5.4A),
where fibrils apparently became gradually exposed during cell migration. AFM height and
deflection images revealed a complex entanglement of cellular retraction fibers and fibrillar
FN structures at the cell rear. The FN fibrils were usually oriented in the same direction
as the cellular retraction structures, suggesting that the FN fibrils were created during
cell retraction. An overlay of AFM and fluorescence images collected from the same area
identified the majority of these structures as FN fibrils (Fig. 5.4A). Nevertheless, since the
fibrillar structures appeared to be tightly associated with cellular structures (Fig. 5.4A,
overlay image), unambiguous identification and height quantification of FN fibrils was im-
possible from these AFM images. When extending the cell incubation time on FN to 16 h,
cells had frequently vacated whole areas of remodeled FN, and these cell-free areas could
then be easily scanned by AFM (Fig. 5.4B). Higher-resolution AFM images of these areas
revealed a complex array of mainly parallel fibrils, which often appeared frayed at one
end (Fig. 5.4C). Again, overlay with the corresponding fluorescence image demonstrated
excellent overall structural agreement between the AFM and light microscopy images.
However, the light microscopy images failed to resolve the FN fibril ultrastructure visible
in AFM images. In particular, only AFM images revealed the gradual transition of frayed
nanofibrils into thicker structures progressive fibril bundling.
To further investigate the correlation between fluorescence and AFM images, height

(blue lines) and fluorescence intensity profiles (red lines) were extracted along lines travers-
ing the fibril arrays at different positions and plotted together in single diagrams (Fig. 5.4D
and E). As expected, the fluorescence signal was generally of lower spatial resolution, while
the height profiles from the AFM image contained more structural detail and easily re-
solved fibrils thinner than 200 nm. The AFM cross sections yielded additional information
about height variations along the FN fibrils. Fibril were typically ∼ 10 nm high at the
frayed front end (Fig. 5.4D, blue trace) and maximally 30 nm at the fibril center and rear
end (Fig. 5.4E, blue trace), indicating gradually increasing fibril height along the cellu-
lar pulling direction. At the fibril front (cell distal orientation), height and fluorescence
intensity signals correlated weakly at best (Fig. 5.4D), indicating that light microscopy
images are particularly unsuitable for investigating FN fibril structure at this location.
In contrast, in the central region, where fibrils reached their greatest width, fluorescence
and AFM height signals correlated well (Fig. 5.4E).

5.3.3 Imaging FN fibrillogenesis in living cells by time-lapse AFM

AFM scanning generates high resolution images, among others also under physiological
conditions, and is therefore a unique tool to investigate cell-induced matrix rearrangement
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Figure 5.4: Investigating FN fibril structure by combined AFM and fluorescence microscopy.
(A) REF52 cells were incubated on fluorescently-labeled FN and fixed after 4 h. AFM height
and deflection images visualize cellular protrusions and associated FN fibrils along the cell
edge. Overlay of the AFM deflection image with the fluorescence image demonstrates the
complex entanglement of cellular protrusions and FN fibrils. (B) After 16 h, the FN layer
frequently displays fibrillar structures also in cell-free areas apparently previously vacated
by migrating cells. (C) The cell-free region indicated by the white rectangle in (B) scanned
by AFM at higher resolution visualizing FN fibril ultrastructure. (D) Superimposition of
height and fluorescence intensity profiles generated along the blue and the corresponding
red line “D” in panel (C) across a thinner, distal section of an array of FN fibrils. (E)
Superimposition of height and fluorescence intensity profiles generated along the blue and
red line “E” across a proximal, thicker section of an array of FN fibrils. The AFM profile lines
(in blue) provide a significantly higher spatial resolution than the corresponding fluorescence
intensity profiles (in red). Scale bars: 5 µm (A), 20 µm (B), 2 µm (C).
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with near molecular resolution in living cells (Friedrichs et al., 2007). To monitor the
initial steps and dynamics of FN fibril formation directly, AFM time-lapse scanning of
unfixed cells was performed. To minimize a potentially destructive influence of the AFM
tip on cell and FN morphology, scans were performed in contact mode using a low scan
force (< 1 nN) and moderate scan speeds. To maximize the frame rate while maintaining
adequate image resolution, scan regions were limited to 10 x 10 µm2 at 512 x 512 pixels.
Using these conditions and a line scan frequency of 2Hz, image series were recorded
with approximately one image every 4min. To increase the vertical resolution of the
AFM images, ultraflat cleaved mica disks were used as supports, instead of rough glass
coverslips (Wittenburg et al., 2013).
Before starting live cell imaging, cells were incubated on FN for 5min to ensure ini-

tial cell attachment and initiation of spreading. According to images obtained on fixed
cells (Fig. 5.4A and B), FN fibrillogenesis occurs primarily near the cell edge. To in-
crease the probability of observing active fibrillogenesis events within a limited scan frame
(10 x 10 µm2), regions at the cell periphery were therefore chosen for live cell imaging. In
agreement, AFM time lapse recordings showed that FN fibrils frequently emerged dur-
ing membrane retraction (Fig. 5.5A and Movie 5.1). Fibrils were usually aligned in the
direction of the retracting membrane, suggesting that fibrils formed as the result of trac-
tion forces applied by the retracting cell membrane (Fig. 5.5A, 47min). Occasionally,
cells went through several cycles of membrane retraction and extension, apparently re-
contacting the newly formed fibrils (Fig. 5.5A, 31 - 69min). Overall, fibrillar arrays imaged
in time series experiments showed similar dimensions as fixed samples. However, during
live cell scanning the AFM image quality of FN fibrils sometimes appeared degraded due
to poor sample tracing (Fig. 5.5A, 47min). Nevertheless, once cells had completely moved
out of the scan area, tip-sample tracing usually stabilized, revealing a structurally intact
array of FN nanofibrils (Fig. 5.5A, 85min). The mechanically instable regions apparently
did not correspond to flexible FN fibrils moved back and forth by the scanning tip. In-
stead, soft cellular structures, such as membranous extensions, appeared to be transiently
connected to the FN fibrils during cell retraction and could not be stably imaged.
The time-lapse series provided the first direct view of the initial stages of cell-induced FN

fibrillogenesis. Fibrils extended at a mean rate of 22 - 65 nm/min and widened at a rate of
7 – 10 nm/min. While the ratio of longitudinal and latitudinal fibril growth was in a sim-
ilar range (∼ 1.9:1 – 6:1) as the data obtained by fluorescence microcopy (∼ 4.3:1), AFM
revealed a substantially higher rate of FN fibrillogenesis compared to the fluorescence
analysis. This analysis, however, required interpolating fibril dimensions over longer time
periods (240min), potentially averaging out burst-like fibril growth events with higher ex-
tension speeds. Judging by AFM time lapse imaging, initial fibrillar extension appeared
to be completed within 30 – 60min, and thus at considerably shorter time frames as pre-
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Figure 5.5: Investigating FN fibrillogenesis by time-lapse AFM of living REF52 cells. Cells
were placed on with FN coated mica and a region of 10 x 10 µm2 was scanned by AFM in
contact mode. The deflection time-lapse images show cell edge on homogeneous FN after
initial cell spreading (5min). The cell first protrudes (21min), after 31min it retracts and
FN fibrils appear at the cell protrusions indicated by white arrows. After 85min, the region
which was initially hidden by the cell is covered with small FN fibrils (height image). Scale
bar 1.5 µm.

viously assumed based on the light microscopy images. The AFM time-lapse series also
revealed a fibril height increase with time. The earliest detectable fibrillar precursors
had a height of 1.6 to 4 nm (Fig. 5.5A, 31 min). As the membrane continued to retract,
these small fibrils appeared to merge into larger fibrils reaching a height of 6 - 9 nm and a
maximal length of 1 µm (Fig. 5.5A, 85min). The height values on native FN fibrils were
lower than those obtained on fixed fibrils (see Fig. 5.4E), suggesting a subtle influence of
the glutaraldehyde fixation protocol on fibril height.
Several previous structural studies have been carried out on cellular FN reorganization

using PFA- or glutaraldehyde-treatment to stabilize FN structures for AFM scanning
(Tooney et al., 1983). However, it was unclear if chemical cross linking affects the fibril
structure, for instance, by bundling thin neighboring fibrils into larger fibrillar structures.
The AFM images of chemically-fixed FN fibrils showed a comparable nanoarchitecture as
FN imaged in unfixed, living cells, confirming that fixation is not harmful to the structure
of early FN fibrils. However, a subtle effect of fixation on fibril height was observed.
Importantly, however, chemical fixation is not required for high-resolution imaging with
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AFM. On the contrary, working with living cells allows observing the FN fibrillogenesis
process in real time.

5.3.4 Mn2+ promotes early FN fibrillogenesis

Extracellular Mn2+ activates integrin receptors and enhances cell attachment, spreading
and migration on FN and other substrates (Afshari et al., 2010a; Afshari et al., 2010b;
Byzova et al., 2000). Traction force experiments have shown that integrin activation with
Mn2+ increases cytoskeletal tension transmitted onto FN (Lin et al., 2013), stimulating the
assembly of a mature, deoxycholate-insoluble FN matrix after several hours of incubation
(Brenner et al., 2000; Sechler et al., 1997). However, less is known whether Mn2+ also
affects the formation dynamics and structure of early FN fibrils. In a previous study
using fluorescence microscopy analysis, Sechler et. al detected no significant differences
in FN matrix assembly in Mn2+- treated or untreated cells after 30min of incubation
(Sechler et al., 1997), but a significant effect of Mn2+ on FN fibril morphology starting
after 4 h of incubation. However, due to the limited resolution of conventional fluorescence
microscopy, subtle nanoscale structural differences may not be detectable at the earliest
stages of fibrillogenesis when fibrils are still small.
To assess the impact of Mn2+ on the morphology of early FN fibrils, live cell scanning

was performed by AFM in the presence of 1mM Mn2+. In this case, cells began to form
fibrils almost immediately (6min) after cell seeding (Fig. 5.6A). After 30min, FN fibrils
had reached an average length of ∼ 2 µm and a height of up to 30 nm, in contrast to ∼ 1 µm
and ∼ 6 nm, respectively, in the absence of Mn2+ (Fig. 5.6C and D). Cells also formed FN
fibrils at higher speed in the presence of Mn2+ (157 ± 107 nm/min) than in its absence
(42 ± 28 nm/min). Unexpectedly, the rate of membrane retraction was also enhanced in
Mn2+-containing medium, which may provide an additional mechanism for the enhanced
velocity of fibrillogenesis. Mn2+ addition therefore has a profound impact on early FN
fibril formation, leading to accelerated initiation of fibril formation, increased growth
rates and larger final fibrillar dimensions. Here, the resolution advantage of AFM can
reveal new important structural insight into FN fibrillogenesis depending on the integrin
activation state.

5.3.5 FN fibrils form during membrane retraction

As fibrillar FN structures became visible at the same rate as the membrane retracted, this
raised the possibility that preformed FN fibrils at the basal cell side only became progres-
sively uncovered by the retracting cell membrane sheet during AFM scanning, instead
of being created during membrane retraction. However, given the short time interval
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Figure 5.6: Investigating FN fibrillogenesis by time-lapse AFM in living REF52 cells in
presence of Mn2+. Cells were placed on FN coated mica and a region of 10 x 10 µm2 was
scanned by AFM in contact mode. (A) In presence of 1mM Mn2+, FN fibrils are visible
already on the first AFM image (5min, white arrows). After 38min, long FN fibrils are
created after membrane retraction (height image). Scale bar: 1.5 µm. To illustrate the
influence of Mn2+ on FN fibril creation, the figures (B – D) show Box-and-Whisker plots
of analyzed parameters from at least 9 independent experiments per condition. (B) The
velocity of lamellipodium retraction in presence of Mn2+ is significantly higher than without
it. The FN fibril length (C) and height (D) in presence of Mn2+ is increased compared
to absence of Mn2+. The statistically significant differences between the two conditions
(p<0.01) are denoted by one asterisk.
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between cell seeding and starting AFM imaging (5min), extensive fibril preformation at
the basal cell side is unlikely. Instead, fibrils appeared to form de novo as a result of
contractile forces exerted on the FN matrix during membrane retraction. In agreement,
continuously imaging the same FN area before (Fig. 5.7A) and after (Fig. 5.7D) cells had
extended and retracted a membrane sheet (Fig. 5.7C) indicated that FN reorganization
occurred primarily at the moment of membrane retraction, but not during the brief (5
to 15min) period the area was fully covered by the membrane extension. Determining
the height profile of the unmodified FN layer before cell contact (Fig. 5.7B) and of the
reorganized FN matrix after cell contact at the same position (Fig. 5.7E) again confirmed
that the maximal height of the FN layer had increased from 0.5 - 3 nm to 4 - 10 nm after
cell contact, consistent with FN fibril formation.
Pre-deposited plasma FN can serve as an anchor point for additional FN deposition

by cells (Master Thesis Marcus Schäfer, 2013). Despite the fairly short interaction time
between the extended membrane sheet and the FN layer, fibroblasts may likewise not
only remodel the pre-coated plasma FN layer, but also deposit additional endogenously-
synthesized FN on top. However, using a height threshold to estimate the total volume
of the FN layer before and after fibrillar rearrangement yielded almost identical volume
values (Fig. 5.8A and B). Therefore, remodeling appeared to occur exclusively from the
pre-deposited plasma FN, not by deposition of additional cellular FN.

5.3.6 Beads on a string ultrastructure of FN fibrils

Cell-induced FN fibrils in AFM scans often appeared structurally inhomogeneous along
their length (Fig. 5.4, 85min and Fig. 5.7D). Higher resolution scans (5 x 5 µm2 scan
area at 512 x 512 pixels) of cell-induced FN fibrils revealed a complex height profile along
the fibrils. Bead-like domains appeared to be interspersed by more elongated stretches
(Fig. 5.9A). The height of the inter-bead structure was in the range of 1 - 2 nm, which
corresponds to the diameter of a fully extended FN molecule (∼ 2 nm) as demonstrated by
EM and rotary shadowing (Erickson et al., 1981). In contrast, the height of the bead-like
structures was typically 3 - 6 nm, close to the diameter of folded FN domains. In some
regions, three or more neighboring globular domains appeared to be evenly spaced (Fig.
7B-G). This was most apparent in thinner fibrils, while bigger fibrils usually displayed
no obvious periodicity. Similar periodic bead-on-a-string structures with a periodicity
of ∼ 60 nm have been previously observed by Nelea et al. using high-resolution AFM
scanning of FN adsorbed onto negatively-charged mica in a cell-free system (Nelea and
Kaartinen, 2010). In this study, the regular bead spacing was proposed to originate from
the staggered array of extended FN dimers, leading to the antiparallel juxtaposition of
bulky FNIII1−7 domain regions every 60 nm. Compared to the cell-free system used by
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Figure 5.7: Analyzing the FN substrate before and after rearrangement by living cells in
presence of 1mM Mn2+. A cell edge (a region of 10 x 10 µm2) was observed by AFM in
contact mode for 40min. (A) AFM deflection image (left) shows a part of a lamellipodium
on FN before rearrangement (time point zero). A magnification of the marked region in (A,
left) shows homogeneously distributed FN (right). (B) The height profile along the light
green line in (height) demonstrates quite small variations of the FN heights of max. 3 nm.
(C) During the next 21mins, the cell protruded and covered a part of the imaged area,
before it started to retract back (29min). (D) AFM deflection and height images of the
same regions as in (A) after lamellipodium retraction (40min) show FN fibrils. (E) From
the AFM height image (D, right) the FN fibril height profile (D, light green line) can be
extracted showing FN fibrils with heights up to 10 nm proving that the FN fibrillogenesis
took place. Green asterisks indicate the representative, unchanged structure in (A, height)
and (D, height). Scale bars: 1 µm. The whole time lapse can be seen in Movie 5.3.
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Figure 5.8: Total volume of the FN molecules before and after rearrangement by living cell.
The AFM height images of the FN region at the time point 0 (A, left) and 40min (B, left)
were analyzed with Gwyddion 2.20 software. The white spot on the height images marked
with the green triangle represent the reference height (22 nm). For volume analysis, the FN
molecules and fibrils with heights exceeding 0.81 nm were marked via threshold algorithm.
The total volume of the marked structures was calculated from the threshold images (A
and B, right) via Grain Statistics algorithm. The resulting values of 2.430 x10−3 µm3 and
2.330 x10−3 µm3 for 0 and 40min, respectively, are similar confirming, that the FN fibrils
are build from on the substrate present globular FN. Scale bar 1 µm.

Nelea et al., in cell-induced FN fibrils the inter-bead distance varied more widely and
the array of globular domains was less regular. Nevertheless, the presence of regular
globular features suggested a regular stagger of FN dimers in cell-induced FN fibrils. To
quantitate the inter-bead distance, height profiles generated along seven nanofibrils were
Fourier-transformed to generate a power spectrum which highlights the most frequent
inter-domain distances. Due to the limited number of nanofibrils analyzed and the limited
resolution of the AFM images, the power spectra were of comparatively low density and
therefore provided only approximate spacing values. Nevertheless, typical interdomain
spacing values of ∼ 77, 97, 118 and 150 nm could be determined, while the increase in
spacing appeared to occur at values between ∼ 20 – 30 nm.

5.3.7 Investigation of FN fibrils at the basal cell side with AFM

In the previous experiments, the structure of initial FN nanofibrils formed within the first
hours after cell seeding was analyzed. Sometimes, these nanofibrillar arrays were also
present in cell-free areas. Apparently, random cell migration occasionally leads to vaca-
tion of these initial fibrillar arrays. After long incubation times (16 h), however, cells had
occasionally created much larger FN superfibrils (length 10 µm) located either directly
beside or below the cell body, indicating additional mechanisms of fibril restructuring and

111



5 Studying fibronectin fibrillogenesis in living cells by atomic force microscopy

Figure 5.9: Ultrastructural analysis of cell-produced FN fibrils. (A) AFM height image of
FN fibrils created by living cells. (B) and (D) AFM height images of single short FN fibrils
show periodic, beaded structure. The height profiles along the fibrils of (B) and (D) is
plotted in (C) and (E). (F) AFM height image of 700 nm long FN fibril with corresponding
height profile (G) shows a ∼ 70 nm periodic, beaded structure. Scale bars: 500 nm (A),
50 nm (B) and 100 nm (F).

maturation. Superfibrils next to the cell body were usually straight, while cell-associated
fibrils were often bent. Ordered fibrils next to cells and unorganized FN fibrils below cells
have been previously described and explained with the large difference between forces be-
low the cell body and at the cell periphery (Jong et al., 2006; Ladoux and Nicolas, 2012).
Traditionally, the structure of FN fibrils associated with the basal cell side are investigated
by fluorescence microscopy, without resolving details of the fibril structure, as they are
inaccessible for direct observation by surface scanning techniques, such as SEM or AFM.
To investigate whether FN superfibrils below the cell body or in cell free areas differed
structurally, a recently developed method for inverting adherent cells together with the
underlying matrix was used (Gudzenko and Franz, 2013), so that the basal cell side can
be investigated by AFM or SEM. In this procedure, cells are incubated on PDMS coated
with FN-AF488 for 16 h and afterwards fixed. Then, both, fluorescence and AFM images
of the cells and FN are first taken from the apical side (Fig. 5.10A). After embedding in
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a transparent UV-curable adhesive, cells are inverted and fluorescence and AFM images
are collected from the basal side of the same regions (Fig. 5.10A). AFM height images of
inverted cells demonstrate well-established FN fibrils at the basal cell membrane, over-
all corresponding well to the fluorescence signal. The AFM images revealed additional
structural details not resolved by fluorescence microscopy. For instance, the curved basal
FN fibrils were often structurally less homogeneous (Fig. 5.10B) and appeared in loose
bundles (Fig. 5.10B), possibly as a result of decreased cellular tension below the cell
body. The individual superfibrils below or next to cells, however, had similar diameters
(∼ 100 - 150 nm, Fig. 5.10D-G), indicating that cells did not further remodel or enlarge
fibrils at the basal cell side.

5.3.8 Impact of cell density on FN organization

In the previous experiments, cells were seeded at comparatively low densities (10 -
100 cells/mm2) to observe how single cells or small groups of adjacent cells reorga-
nize FN molecules into fibrils (Fig. 5.11A). In this case, cells remodeled FN primarily
at the basal side. However, working with denser cell cultures (500 cells/mm2) showed
strong FN accumulation in particular between cells (Fig. 5.11B). Furthermore, in dense
cultures FN was often completely removed from the substrate, indicated by black areas
on the TIRF microscopy images (Fig. 5.11D). A 3D reconstruction of confocal image
stack revealed that FN in dense cell cultures was partially organized into large structures
extending into z-direction. Combining fluorescence images with AFM images demon-
strated that these lateral FN agglomerates localized preferentially between cells at areas
of cell-cell contact (Fig. 5.11F and G, black arrows). In low density cultures, there was
no correlation between FN intensity and height signal at cell borders (Fig. 5.11D and
E, black arrows). This indicates that at higher densities cells remodel FN collectively
into 3D structures extending several µm perpendicularly from the cell substrate at sites
of cell-cell contact, whereas at lower density individual cells remodeled FN horizontally
directly on the substrate. Thus, when investigating cellular FN remodeling, the influence
of cell density must be considered.
FN accumulation at areas of cell-cell contact has an important function during develop-

ment. For instance, FN fibrils accumulation in narrow epithelial clefts is essential for the
initiation of epithelial branching (Daley and Yamada, 2013; Sakai et al., 2003). Healing
wounds and fibrotic tissues display a higher fibroblast density than healthy organs as
a result of higher cell proliferation rates (Muller and Rodemann, 1991; Rodemann and
Muller, 1991) and these fibroblasts secrete higher levels of ECM components, including
FN. FN accumulation between cells has also been suggested to facilitate a switch from
cell-cell to cell-matrix adhesion (Sakai et al., 2003).
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Figure 5.10: Verification of FN fibrils by AFM at the basal cell side. (A) AFM deflection
images of REF52 cell (left), fluorescence images of FN-AF488 (middle panels) and AFM/fluo-
rescence overlay (right) images showing the apical (top panels) and the basal (bottom panels)
side of a cell and FN fibrils. The region from the basal cell side with attached FN fibrils
(B) and the region near the cell with FN fibrils (C) are represented by corresponding height,
fluorescence and overlay images. The height profiles of FN fibrils underneath (D and E) and
near the cell (F and G) show both thin (∼ 20 nm) and thick (up to 100 nm) fibrils. The height
profiles are overlaid with the corresponding fluorescence images for a better representation
of the FN fibrils. Scale bars: 20 µm (A), 5 µm (B and C).
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Figure 5.11: Influence of REF52 cell density on FN fibril creation. Cells at a density of 100
(A) and 500 (B) cells per mm2 were incubated on FN-AF488 for 4 h, fixed and immunos-
tained with phalloidin-TRITC for actin and DAPI for nucleus visualization. The fluorescence
images were taken with a confocal microscope allowing getting also 3D information about
FN fibril position. The overlays of the whole z-stack for cell density of 100 and 500 cells/mm2

are shown in (A) and (B), respectively. The yz- and xz-projections (black arrows in A and
B) are extracted for each condition. While at lower cell density the cells are flat and FN is
homogeneously distributed between and below cells (A), at a density of 500 cells per mm2

FN is partially removed from the surface and can be even detected above the cell (B). Scale
bar: 20 µm (white bar) and 5 µm (black bar). (C) The 3D reconstruction image of a z-stack
(B), visualizes this FN distribution clearer. Moreover, a 100 x 100 µm2 large region of cell
layers at a density of 100 (D) and 500 cells/mm2 (F) was scanned with AFM. The height
profiles overlaid with the corresponding FN fluorescence signal along the white line in (D)
and (F) confirm that at higher cell density the FN peaks between cells (black arrows) may
be higher than the cell edge. Scale bar: 20 µm.
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5.4 Discussion

5.4.1 Timeline of cell-mediated FN fibrillogenesis

In this study, initial steps of cell-induced FN fibrillogenesis were investigated by using
AFM and fluorescence microscopy. By continuous AFM life-cell imaging under physiolog-
ical conditions, the dynamic formation of initial FN fibrils from their molecular precursors
can be visualized at nanometer resolution for the first time. Under optimized AFM scan-
ning conditions, cell-driven fibrillogenesis processes could be visualized over several hours
without affecting cell or FN morphology. The AFM images revealed the formation of
thin fibrillar FN networks that cannot be resolved with conventional fluorescence mi-
croscopy. The high resolution AFM images also showed a progressive formation of thick
and long fibrils from thinner precursors and fibril bundling. A detailed analysis of AFM
and fluorescence images provided additional quantitative information on fibril creation
and growth.
According to AFM images and results from previous studies (Pankov et al., 2000), early

FN fibrillogenesis on cell culture substrates can be divided into three phases (Fig. 5.12).
Firstly, FN nanofibrils are formed at the cell periphery near focal adhesion sites after
∼ 10min of spreading. These initial fibrils are less than 300 nm long and have a diameter
of less than 10 nm (Fig. 4A). These values are in agreement with earlier observations
using EM that fibrils have a diameter of ∼ 5 nm at this stage (Chen et al., 1978). During
subsequent cell-substrate interaction (< 1 h), cells reorganize these initial fibrillar precur-
sors into larger fibrils predominantly at the cell periphery but to some degree also more
centrally beneath the cell body. At this time, fibrils are oriented mainly perpendicular
to the cell edge and reach a length of 1 µm, a maximal width of 300 nm and a height of
30 nm. Cells may re-contact these early fibrils several times through cycles of membrane
extension and retraction. Cells then either vacate these structures or continue to remodel
FN into superfibrils, which may reach a length of up to 6 µm.

5.4.2 Estimation of the FN molecules number inside the FN fibril

The AFM images provide a means to roughly estimate the FN fibril volume and the
number of FN molecules at different stages of fibrillogenesis. Knowing the number of
FN dimer building blocks constituting individual fibrils formed would be of great help for
better understanding the FN fibril function. Such information could, for instance, generate
new insight into how cellular traction forces are shared by individual FN molecules in
fibrils. AFM scanning generates topographic images from which the volume of sample
features can be approximated (Barkay et al., 2005). However, while AFM images yield
precise (< 0.1 nm) information about the sample height, lateral sample dimensions cannot
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Figure 5.12: Chronological sequence of cell mediated FN fibrillogenesis. After initial spread-
ing, the cell forms protrusions and starts to extend FN molecules, which are initially in glob-
ular compact conformation. After 10min, the cell creates smaller fibrils with a length (l) of
0.2 – 0.3 µm, a width (w) of 0.1 – 0.15 µm and a height (h) of 2 – 4 nm. The cell protrusion
and retraction events during the next 60min lead to increased fibril lengths of up to 1 µm,
widths of up to 0.4 µm and heights between 5 and 10 nm. After 4 h, the cell reorganizes FN
molecules further and migrates away leaving fibrils with up to 10 µm length, 0.3 – 1 µm width
and higher than 30 nm behind.

be extracted directly: Due to the finite width of the cantilever tip, measured sample
profiles are a convolution of the sharp image with the shape of the tip (Fig. 1.16) (Baro
and Reifenberger, 2012). However, lateral sample dimensions can be approximated if the
reduction of lateral resolution due to tip convolution effects is accounted for. The precise
tip geometry of commercial AFM cantilevers varies, but the nominal tip radius usually
provides a workable solution for estimating the tip convolution lateral sample dimensions
(Fig. 5.13 and (Barkay et al., 2005)). Thus, the number of single FN dimers incorporated
into FN fibrils at different stages of fibrillogenesis can be estimated.
From EM studies it is known that the diameter d of a single extended FN dimer is ap-

proximately 2 - 3 nm (Engel et al., 1981; Erickson et al., 1981). Unfortunately, the precise
lateral and longitudinal arrangement of FN dimers in the fibers is still unknown. Likewise,
the molecular density of FN molecules in fibrils has not been conclusively established. Re-
cently, Bradshaw et. al. determined the FN monomer concentration in micrometer-sized
unstressed fibrils formed in vitro using quantitative deep UV transmission microscopy as
177mg/ml (Bradshaw et al., 2012). Based on these data, approximately three-quarters
of the unstressed FN fiber is composed of solute (Bradshaw et al., 2012), suggesting a
rather loose lateral spacing of FN molecules and an effective cross section area occupied
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Figure 5.13: Estimation of the FN molecule number inside the FN fibril. (A) The dimeric FN
molecule is schematically shown. The FN-FN interacting sites and cryptic sites are indicated
with curly brackets and arrows, respectively. (B) Possible interaction of fully extended FN
molecules with each other over FN-FN binding sites in the domain I1−5, III1−2, III4−5 and
III12−14 inside the fibril. (C and D) Assuming that the FN subunits interact with other FN
subunits over the whole length, the simplified model for FN fibril organization can be used
to estimate the FN molecules number inside the FN fibril. d, B and h denote the molecule
diameter and fibril width and height, respectively. Due to the finite tip radius R and the
resulting convolution, the fibril appears on AFM scans larger having the width w.

by an individual FN dimer of 43 nm2 (Bradshaw et al., 2012). Under external stress, FN
dimers may further extend and FNIII domains may partially unfold, leading to a reduction
in molecular diameter and hence a denser possible packing arrangement. Nevertheless,
the final diameter and packing density of fully stretched FN dimers in physiological fib-
rils is still unknown, although TEM images suggest dense packing of FN molecules in
cell-stretched FN fibrils (Dzamba and Peters, 1991; Singer et al., 1984).
To estimate the number of FN dimers populating a transversal fibrillar cross section,

the fibrillar cross section is assumed to have an elliptical shape with a dense (hexagonal)
fibril packing. As the fibril width the tip-deconvoluted value from AFM height images is
used (Fig. 1.16). The earliest detectable fibrils forming within the first 30min of matrix
contact had a mean cross section area of 64 ± 24 nm2. The diameter of a single FN
molecule is 3 nm yielding a cross section area of ∼ 7 nm2, so that the area is taken up
by ∼ 8 hexagonally stacked FN molecules. Cross-sections of late fibrils ( 1 h, mean fibril
diameter 357 ± 215 nm) could incorporate ∼ 46 FN molecules. Using the same model,
early fibrils formed in presence of Mn2+ contain approximately 44 FN molecules per cross
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section (mean diameter 345±63 nm), and up to 167±105 molecules at later stages (mean
fibril diameter 1298±817 nm). Thus, the cross section profile of early FN nanofibrils may
contain only few FN molecules. In agreement, EM studies have shown that FN nanofibrils
can contain as few as 2 or 3 molecules (Peters et al., 1990; Peters et al., 1998). Integrin
activation by Mn2+ apparently causes a strong increase in the number of FN molecules
incorporated into early and later nanofibrils.
Estimating the total number of FN molecules in an entire FN fibril requires taking into

account the FN dimer length and the lateral stagger of these dimers. An extended FN
molecule is ∼ 130 - 160 nm long (Erickson and Carrell, 1983). Based on EM studies using
immunogold labeling, staggers of 48 nm in early and 82 nm in mature fibrils have been
suggested (Dzamba and Peters, 1991; Erickson and Carrell, 1983). In this study also
prominent periodic features on the order of 70 - 80 nm was detected with AFM (Fig. 5.9).
Previously, extended FN dimers have been suggested to interact in an antiparallel manner
in FN nanofibrils (Dzamba and Peters, 1991; To and Midwood, 2011) so that FNI1−5

domains from one dimer would interact with FNIII12−14 domains from an adjacent dimer
(To and Midwood, 2011). Such an antiparallel arrangement of fully extended FN dimers
(160 nm) would create an extensive overlap zones of 60 nm and short gap zones of 20 nm
(Fig. 5.9), Thus, each FN dimer would lead to a net-extension of the fibril by ∼ 100 nm
(half the extended dimer length plus gap zone). Combining this stagger with the cross
section data, mature FN fibrils (diameter 64±24 nm, length 0.51±0.18 nm) would contain
∼ 30 molecules, while more mature fibrils with maximal length of 6 µm may contain up
to ∼ 300 molecules. Mature fibrils with length of 10 µm formed in presence of Mn2+ may
even contain up to ∼ 500 molecules.
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5.5 Conclusions
Although the FN fibrillogenesis was extensively studied in the past, there are still many
open questions regarding fibril formation, structure and composition. AFM combined
with fluorescence microscopy allows for detailed imaging of FN fibrils at high resolution
at different stages of fibrillogenesis. Furthermore, with the cell inversion technique, in
particular the initial fibrils formed at the cell basal side can be visualized. In contrast
to studying fixed samples, live-cell time lapse AFM imaging shows the fibril creation, ac-
companied with cell migration, in real time. Thus, novel insight is provided into FN fibril
creation, extension and arrangement. Moreover, the highly resolved AFM images from
time-lapse show bead-string structure of FN fibrils allowing estimating the FN molecule
stagger inside fibrils and so providing data about fibril structure. Furthermore, the num-
ber of FN molecules inside a fibril was approximated from AFM images. It was shown,
that the fibril growth is accelerated after integrin activation with Mn2+, resulting in higher
amount of FN molecules inside a fibril. FN fibrillogenesis strongly depends on the cell
density. In denser cell cultures, the FN fibrils are accumulated at areas of cell-cell con-
tact, showing different mechanisms in matrix creation. These data might help to better
understand the FN function during biological processes.
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6 Inhibiting fibronectin fibrillogenesis
using visible light

6.1 Abstract
Tissue fibronectin (FN) is usually assembled into a branched fibrillar matrix. FN fibrillo-
genesis is a highly regulated, cell mediated multistep process, which has been extensively
studied using different techniques, among others, fluorescence microscopy. Although FN
fibrillogenesis is a highly dynamic process, the initial fibril creation has not been ob-
served in real time with fluorescence microscopy until now. Instead, fixed samples at
different stages of fibril creation were analyzed, possibly missing early or intermediate
stages. Observing FN fibrillogenesis in real time may therefore be helpful to understand
also the early steps of fibril creation. However, initial attempts at time-lapse imaging of
cell-induced FN fibrillogenesis by fluorescence microscopy failed. Surprisingly, FN fibril-
logenesis appeared to be prevented in the focal area, but progressed normally in regions
outside the illuminated focus circle. Apparently, light induces changes to the FN molecule
which efficiently blocks the formation of fibrils. Light-induced changes on cells, such as
photo toxicity, could be ruled out because illuminating the FN layer before cell seeding
also blocked fibril formation. To test the influence of different irradiation parameters on
the ability of FN to be reorganized into fibrils, the illumination wavelength was adjusted
in the range between 400 and 640 nm using a monochromator, while the light intensity
was controlled via gradient photo masks printed on transparent film. These experiments
demonstrated that the photoactive effect on FN increased with decreasing wavelengths.
The photo effect occurred on unlabeled FN, but was further enhanced by covalent label-
ing of FN with different fluorophores. Together, these experiments suggested that photo
damage induced by light with short wavelength prevents FN fibrillogenesis, for instance
via the production of oxygen radicals or singlet oxygen. In agreement, when the concen-
tration of these harmful reagents in the cell culture medium was lowered by adding the
radical scavenger enzyme Oxyrase® and when FN was labeled with a dye requiring long
excitation wavelength (Alexa Fluor® 633), FN fibrillogenesis could be successfully imaged
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for the first time using TIRF microscopy, providing additional insight into the dynamics
of this process.

6.2 Introduction
FN is a dimeric extracellular matrix glycoprotein. The dimer structure is mediated by
disulfide bonds at the C-terminus. The FN monomer has a multi-domain structure com-
posed of an array of repeated modular units (FN type I, II and III repeats) (Hynes, 1985).
The FN multimodular structure provides flexibility of the FN molecule, which is crucial
for the FN function (Erickson et al., 1981; Rocco et al., 1987). Secreted FN has a compact
conformation (Hynes, 1985), which can then be remodelled into a branched fibrillar ma-
trix in tissues (Chen et al., 1978; Singer, 1979). The formation of such a fibrillar matrix,
or fibrillogenesis, is a highly regulated multistep process (McDonald, 1988; Singh et al.,
2010). Cells bind FN via integrins mostly at the RGD sequence of FNIII10 repeat and
unfold the FN molecule into an extended conformation by applying mechanical tension via
the actomyosin system (Mosher, 1993; Sechler et al., 2000; Wu et al., 1995; Halliday and
Tomasek, 1995). During this process FN-FN binding sites are exposed and FN molecules
can interact with each other to be assembled into fibrils (Hocking et al., 2000; Singh
et al., 2010). Much of the insight into FN fibrillogenesis was obtained by fluorescence
microscopy. For instance, labeling FN with a fluorescent dye and imaging samples fixed
at different stages of fibrillogenesis provided a first look at this complex process (Pankov
and Momchilova, 2009). In other fluorescence microscopy studies, real-time observations
were made of FN fibrillogenesis at later stages, where FN fibrils were already created
(Jong et al., 2006; Ohashi et al., 2002). These experiments provided valuable information
about the rate of fibril extension and fibril orientation at the basal cell side (De Jong
et al., 2006; Ohashi et al., 2002). In this way, it was shown that cellular adhesions stretch
FN molecules against the substrate by translocating α5β1 integrin receptors from the cell
periphery towards the cell center (Ohashi et al., 2002; Pankov et al., 2000). Many of
these studies were performed in different cell lines, but FN fibrillogenesis was also studied
in a physiological situation in the blastocoel roof of the Xenopus embryo (Winklbauer
and Stoltz, 1995). The assembly of FN into fibrils is a rather rapid process in embryos.
The rate of fibril extension in embryos was measured to be 4.7 µm/min (Winklbauer and
Stoltz, 1995), which differs from fibril extension by cells (0.1 - 0.2 µm/min) (Ohashi et al.,
2002).
Suprisingly, so far only FN fibril rearrangement, but not the formation of initial fib-

rils have been observed in real time by fluorescence microscopy. Apparently, collecting
time-lapse images of FN by fluorescence microscopy remains a challenge, probably be-
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cause exposure with UV and/or visible light affects its structure or function (DeRosa and
Crutchley, 2002; Pattison et al., 2012).
Light is an electromagnetic wave characterized by its wavelength and intensity. To the

human’s eye, visible light has a wavelength ranging from 390 to 750 nm (Starr et al., 2007).
Light with shorter wavelengths (give range) is called ultraviolet (UV) and it is subdivided
into three groups: UVA (315 - 400 nm), UVB (260 - 315 nm), and UVC (100 - 260 nm). On
the other side of the visible light spectrum lies the infrared (IR) region.
As Einstein showed electromagnetic radiation is carried by single wave packets, the

photons (Einstein, 1905). The photon energy 𝐸 is proportional to the wave frequency f
and inversely proportional to the wavelength 𝜆,

𝐸 = ℎ𝑓 = ℎ𝑐
𝜆

(6.1)

where ℎ is the Planck’s constant and 𝑐 is the speed of light. Thus, the shorter the
wavelength, the higher the energy of a photon. On the one hand, highly energetic UV
photons can interact with the atomic structure and split atomic bonds, causing damage
to proteins. On the other hand, lower energy infrared photons are the main compound
of thermal radiation (Einstein, 1905; Tong and Kohane, 2012). Therefore, light toxicity
is classified into two main groups: photothermal and photochemical damage (Pattison
et al., 2012; Tong and Kohane, 2012).
First attempts to image cell-induced FN fibril creation by fluorescence microscopy were

unsuccessful, pointing to a harmful influence of exposure to light on FN functionality.
Therefore, the influence of visible light on fibrillogenesis was investigated in detail and the
results summarized in this Chapter. The inability of cells to create fibrils after exposure to
light could be attributed to the effect of oxygen radicals during exposure. However, after
optimizing the experimental conditions (labeling dye and therefore the required excitation
wavelength, light intensity, the imaging (or illumination) rate and the concentration of
Oxyrase® to remove oxygen radicals), FN fibrillogenesis could be imaged for the first
time.
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6.3 Results

6.3.1 FN rearrangement by fibroblasts

FN fibril rearrangement by living cells has been successfully visualized by fluorescence
microscopy (Jong et al., 2006; Ohashi et al., 2002). Furthermore, the fibril creation by
human voreskin fibroblasts (HFF) (Pankov et al., 2000) as well as REF52 cells (Sec-
tion 5.3.1) was visualized with fluorescent microscopy at different time points. However,
aspects concerning dynamics of fibrillogenesis cannot be awered by such snapshot imag-
ing. In particular, time-lapse imaging is required to visualize the coordinated process
involving integrin receptor binding and clustering and actin cytoskeleton polymerization
during FN fibril formation. To image the early steps of FN fibrillogenesis, MEF (mouse
embryonic fibroblasts) cells were used. By transiently transfecting the cells via electropo-
ration (see section 2.2.6.1) with a plasmid DNA containing the vinculin-EGFP construct,
and seeding the cells on FN labeled with AlexaFluor® 568 dye (FN-AF568), both, the FA
and FN dynamics can be observed by TIRF imaging. The frame rate was set to one frame
per minute (Movie 6.1), because AFM time-lapse imaging (section 5.3.3) demonstrates
that the fibrillogenesis takes place on a scale of minutes. However, imaging an individual
cell on the FN-AF568 layer showed that the cell had not reorganized the FN at all, even
after 60min of incubation (Fig. 6.1). Thus, the time-lapse experiments yielded a different
result compared to the previous experiments with AFM time-lapse imaging, where the
REF52 cells have created an extensive fibrillar network after 60min. Nevertheless, the
MEF cells spread normally during time-lapse and displayed normal vinculin clustering at
FA at the cell periphery. Moreover, vinculin displayed dynamic assembly and disassembly
during imaging (Movie 6.1), indicating that functional cell adhesion contacts had formed.
It is known that 1mM Mn2+ increases the affinity of integrins to FN and enhances the

formation of new cell adhesions (Dransfield et al., 1992; Edwards et al., 1988; Fernan-
dez et al., 1998; Kirchhofer et al., 1990; Mould et al., 1995b). As a consequence, the
fibrillogenesis process also becomes strongly enhanced (Sechler et al., 1997). The stimu-
latory effect of Mn2+ was also confirmed by AFM time lapse imaging of cells on FN (see
Chapter 5, Movie 5.2). However, attempts to observe active fibrillogenesis by fluorescence
microscopy in presence of Mn2+ were also unsuccessful.
To verify the ability of MEF cells for fibril formation, they were incubated on FN

for five different time points (10, 30, 60min, 4 and 16 h). For that, a Fluorodish was
coated with FN-AF488 at a high concentration (2.5 µg/cm2) to ensure homogeneous FN
distribution (similar to the experiment described in Section 5.3.1). The fluorescence
images (Fig. 6.2, top row) taken after cell fixation demonstrate different stages of FN
reorganization. However, due to the high concentration of FN-AF488 on the substrate,
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Figure 6.1: Imaging MEF cells expressing vinculin-EGFP on FN-AF568 with TIRFM. Rep-
resentative fluorescence images of FN-AF568 (left), vinculin-EGFP (middle) and overlay
(right) 10, 30 and 60min after cell seeding. (A) After attachment and initial cell spreading
(10min), the cell starts to form FAs, but FN is homogeneously distributed under and near
the cell. (B) After 30min, FAs are distributed at the cell periphery. However, the FN dis-
tribution does not show any changes. (C) Even after 60min no FN fibrils can be observed,
although the cell spreads normally and forms large FA clusters. Scale bar 5 µm.
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Figure 6.2: Observing FN fibril creation by fluorescence microscopy. MEF cells were in-
cubated on FN-AF488 for different times (10, 30, 60min, 4 and 16 h), fixed and imaged
with a fluorescence microscope (upper row).The background of the fluorescence images was
subtracted (lower row) for better fibril clarity at different stages of fibril creation. The first
fibrils can be identified already after 10min of incubation, while after 16 h the entire FN
substrate is reorganized into fibrils. Scale bar 50 µm.

small fibrils cannot be identified on the images. To enhance the clarity of the images in
the fluorescence micrographs, the background was subtracted from the original FN-AF488
fluorescence images using a “rolling ball” algorithm in ImageJ (Fig. 6.2, bottom row).
On the filtered images the first FN fibrils appearing as white dots could be identified
already after 10min of incubation. With increasing incubation time, the number of FN
fibrils increased and darker regions resulting from removed FN by cells from the substrate
started to appear. Finally, after 16 h, a dense matrix containing branched fibrils appeared,
indicating almost complete reorganization of FN-AF488.
To summarize, the fluorescence images of FN demonstrate that MEF cells are able to

reorganize FN into fibrils, however, not during fluorescence time-lapse imaging. So, the
influence of illumination of FN on fibrillogenesis is discussed in the following.

6.3.2 Inhibition of FN fibrillogenesis as a function of exposure time

Time lapse fluorescence microscopy imaging of labeled FN revealed that cells had not cre-
ated any fibrils within the imaging field even after longer incubation times (Movie 6.1).
The fibril-free area, however, was restricted to the region initially illuminated during fluo-
rescence imaging. In contrast, neighboring areas, which were not illuminated during time
lapse, always contained a multitude of fibrils. The border between the illuminated and
non-illuminated areas reveals a rather abrupt transition from a fibril-free to a fibril-rich
area (Fig. 6.3B). This suggests that FN fibrillogenesis may have been inhibited by light
focused onto the sample during imaging. To clarify whether FN fibrillogenesis or cell
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behavior are affected by expose to light could be answered by the following experiment:
FN was illuminated first and cells were seeded afterwards. This procedure prevented FN
fibrillogenesis similar to the results obtained during time-lapse imaging, indicating that
the fibrillogenic properties of FN change within the focal area during exposure, and that
the absence of fibrillogenesis in this area did not result from cell damage. Nevertheless, to
exclude any potential cell damage due to extended illumination, all experiments described
in the following were performed by first illuminating the FN substrate, and incubating
the cells on these substrates afterwards in the dark, followed by chemical fixation and
fluorescence imaging.
In a first set of experiments, the negative influence of visible light on FN fibrillogenesis

was investigated as a function of exposure time. For this, different regions with an area of
0.02mm2 each on an FN-AF488 substrate were exposed at a power of 0.1mW/mm2 and
a wavelength of 480 ± 20 nm for 1, 3, 5, 7, 10 and 30 sec using a 63x LD Plan-Neofluar
objective (numerical aperture of 0.75). After culturing MEF cells on the exposed sub-
strates and chemical fixation, overview fluorescence images were collected using a 20x
objective (Fig. 6.3A). With increasing exposure time, circular areas on the sample corre-
sponding to homogeneous, unmodified FN regions become visible (from left to right). Size
and intensity of the unremodeled regions on the FN substrate increased with exposure
time, indicating a dose-dependent illumination effect. Apparently, longer exposure time
fully inhibited FN reorganization, making the homogenous FN area appears brighter (see
Fig. 6.1 after 10min of incubation). The corresponding phase contrast image (Fig. 6.3A)
demonstrates a homogeneous cell distribution on the whole sample, verifying that cells
were present everywhere on the substrate. However, cells were unable to rearrange pre-
illuminated FN-AF488 molecules. An explanation might be that the excitation of the
labeling dye leads to radical formation affecting FN properties.
To test whether the labeling dye is responsible for light-induced prevention of FN fib-

rillogenesis, experiments were repeated using unlabeled FN. To visualize the FN coating,
FN was stained with a polyclonal anti-FN antibody after cell incubation in these experi-
ments (Fig. 6.3C). Fibrillogenesis was inhibited on exposed areas of unlabeled FN similar
to fluorescently-labeled FN, indicating that the fluorescent label itself did not prevent
fibril formation. However, the inhibitory effect could not be observed for exposure times
of less than 10 sec, in contrast to 3 sec with labeled FN. This indicates that the label-
ing dye enhances the sensitivity of FN molecules to irradiation, but is not required for
the photo-induced effect. The contrast between the exposed and non-exposed regions
of non-labeled FN is also much lower compared to FN-AF488 samples even after longer
exposure times (Fig. 6.3A and B), further indicting that the fluorescent dye enhances the
inhibitory effect of light. However, in these experiments fibroblasts were incubated for
16 h, by which time they had secreted substantial cellular FN, which was detected by
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antibody staining in addition to the substrate FN. In contrast to the exposed substrate
FN, cells had reorganized the secreted FN into fibrils in all area of the substrate, causing
a reduction in image contrast.

6.3.3 Investigating mechanical properties of FN by AFM

The previous experiments showed that cells are unable to reorganize exposed FN into
fibrils. Fibrillogenesis is primarily a mechanical process, and mechanical properties of FN
before and after exposure should therefore be compared. AFM is well-suited to investigate
the mechanical stability of surface coatings. For instance, Friedrichs et al. (Friedrichs et
al., 2007), studied the mechanical properties of different collagen matrices by scanning
the substrate with increasing force exerted by the AFM tip. In case of FN, this procedure
may result in partial unfolding of the FN molecules and fibril creation. Of interest in these
experiments is the minimal scan force inducing the structural rearrangement of FN. To be
able to determine this force, AFM cantilevers were force-calibrated before scanning. For
a quantitative comparison of the created fibrils, the roughness parameters Ra (average
value of absolute height amplitudes), Rp (standard deviation of the height amplitudes)
and Rq (peak-to-peak distance) of the scanned area were extracted from the obtained
AFM data (Section 2.2.11.1.2). To obtain reliable roughness results from these AFM
scans, it is important to use an atomically flat surface, such as freshly cleaved mica, for
FN coating.
After coating mica with non-exposed FN, the substrate was rinsed with PBS to remove

unbound FN and scanned with AFM in contact mode in PBS. First, an overview scan of a
15 x 15 µm2 region of native FN was performed with a minimal scanning force of 0.1 nN to
verify the homogeneous distribution of the FN. Afterwards, five smaller (3 x 3 µm2) areas
inside the overview region were scanned with different forces ranging from 0.1 to 3 nN.
Finally, a second overview scan of the same region was performed with the minimal force
of 0.1 nN to visualize potential FN rearrangement. Area scanned with forces between 0.1
and 0.5 nN do not show fibril formation (Fig. 6.4A). In contrast, forces of 1 nN or above
were sufficient to reorganize FN into fibrils. An AFM scan force of 3 nN yields maximal
rearrangement and maximal roughness parameters (Table 6.1).
The same rearrangement experiment was repeated with exposed FN. To prepare exposed

FN, FN was irradiated on the AxioObserver inverted light microscope at 9mW/cm2 for
10min and rinsed with PBS before scanning. The AFM images of 3 x 3 µm2 large scan
areas of exposed FN with forces ranging from 0.1 to 2 nN do not show observable changes
in the FN distribution (Fig. 6.4B). FN rearrangement into fibrils starts from applying an
AFM scan force of 3 nN. In contrast to non-exposed FN, where maximal rearrangement
occurs at a force of 3 nN, a force of 6 nN is needed for a comparable rearrangement of
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Figure 6.3: The degree of FN fibrillogenesis as a function of exposure time. Areas of 0.02mm2

on a FN substrate were exposed at a wavelength of 480 nm and a power of 0.1mW/mm2

for 1, 3, 5, 7, 10 and 30 sec. After culturing cells on the substrates for 16 h and subsequent
fixing, images of the sample were taken. (A) Fluorescence images of FN (upper row) show
circular regions containing non-reorganized FN, which appear brighter in comparison to the
darker areas containing reorganized fibrils. Phase contrast images of MEF cells (lower row)
demonstrate a homogeneous cell distribution over the whole sample including the exposed
areas (marked by dashed white circles). (B) A higher magnification of the border of an
illuminated area reveals a sharp transition from a homogenous distribution on exposed FN
to a fibrillar distribution on non-exposed FN (left). Cell nuclei staining with DAPI (middle)
and the overlay image (right) demonstrate the homogeneous cell distribution on the FN
substrate. (C) Areas of 0.02mm2 of non-labeled FN were exposed for 1, 10 and 100 sec.
After culturing and fixing MEF cells, FN was visualized by antibody staining. The bright
round regions (upper row) demonstrate that exposed FN was not reorganized into fibrils.
Some FN fibrils on the exposed areas can be attributed to staining of secreted cellular FN.
Scale bars 50 µm (A and C), 15 µm (B).
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exposed FN (Table 6.1). This suggests that exposed FN is stiffer than non-exposed FN,
which may also explain the inability of cells to reorganize exposed FN. However, although
larger forces are required for rearranging of exposed FN molecules, this is still possible if
external forces are large enough.
These AFM rearrangement experiments demonstrate that higher forces are required for

reorganizing exposed FN. One could think of two explanations for the inhibitory effect
of light on FN fibrillogenesis. First, exposure of FN may induce additional intra- or
inter-molecular cross-links molecules similar to chemically fixed proteins. Cross-linking
of FN in its globular, folded conformation may prevent its unfolding and subsequent fib-
ril formation. To verify this idea, unexposed FN was fixed with 1% glutaraldehyde for
30min. Glutaraldehyde is a fixative that cross-links the proteins via amines (Kiernan,
2000). After rinsing the fixed substrates with PBS and incubation with 0.1% BH4 to
deactivate free aldehyde groups on the FN surface, the surfaces were scanned with AFM
as before. The resulting AFM image demonstrates that it is impossible to reorganize
glutaraldehyde-fixed FN into fibrils even using forces up to 6 nN (Fig. 6.4C). These re-
sults are supported by the roughness parameters, which do not increase throughout the
whole force range between 0.1 and 6 nN. Thus, glutaraldehyde fixation prevents FN fibril-
logenesis completely. However, this is not the case with exposed FN, where some residual
FN rearrangement is still possible at elevated forces. Thus, light-exposed FN behaves
differently from chemically-fixed FN. Irradiation of FN may also result in fewer molecular
crosslinks than chemical fixation.
A second explanation for the increased stiffness of FN after exposure to light may be

thermal denaturation. Generally, thermal denaturation of proteins leads to loss of function
as a result of changes in protein folding (Tanford, 1968). FN is a thermally stable protein
between 4 and 60°C. To prepare thermally denatured FN, it should therefore be incubated
at 60°C for at least 30min (Ingham et al., 1984). The effect of force application on
fibrillogenesis of thermally denatured FN was again investigated by force-modulated AFM
scanning. Even at the maximal force applied by the AFM tip of 6 nN, no fibrillar structures
could be induced in thermally-denatured FN (Fig. 6.4D). The roughness parameter values
of thermally denatured FN also do not increase with higher scanning force, similar to
chemically fixed FN. However, Ra, Rq and Rp at 0.1 nN are larger than those of FN,
exposed FN and fixed FN. This might be a result of aggregation of FN molecules due
to denaturation. A closer look at the scratched areas shows that some FN molecules are
apparently shifted back and forth during scanning, an effect never observed with exposed
FN, indicating an overall weakening of the molecular structure of thermally-denatured
FN. In conclusion, thermal denaturing as a result of exposure to a high-powered light
source did not appear to be responsible for altered fibrillogenic properties.
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Figure 6.4: FN rearrangement by AFM. Untreated FN (A), light-exposed (B),
glutaraldehyde-fixed (C) and thermally-denatured FN (D). Areas of 3 x 3 µm2 were scanned
on each sample with different scan forces ranging from 0.1 to 6 nN. Afterwards an overview
scan at a minimal force of 0.1 nN was performed to visualizes scratched areas. Scale bar
3 µm.

6.3.4 Investigating wavelength-dependent effects on FN
fibrillogenesis

The previous experiments verify that the FN fibrillogenesis prevention depends on the
exposure duration. However, it is well known that the impact of light on biological
samples strongly varies with the light wavelength (Pattison et al., 2012). To investigate
the influence of wavelength on fibrillogenesis, a monochromator (Polychrome 5000) was
used to generate light of distinct wavelength. Reactions between light and FN takes place
on the molecular level and the quantum nature of light has to be taken into account
when comparing to results obtained at different wavelengths. Therefore, the power of the
incident light on the sample as a function of the wavelength has to be measured and the
total number of photons hitting the sample has to be matched by adjusting the exposure
time.
To systematically test the influence of the light wavelength, distinct areas on the sam-

ple (0.02mm2) were exposed as before with wavelengths ranging from 400 to 640 nm in
40 nm steps. Afterwards, MEF cells were cultured on FN for 16 h, fixed and non-labeled
FN was stained with polyclonal anti-FN antibody and imaged. The fluorescence images
demonstrate that fibroblasts were unable to efficiently reorganize exposed unlabeled FN
into fibrils up to a wavelength of 560 nm (Fig. 6.5A). The same experiment was also per-
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formed with labeled FN-AF488 and FN-AF568. The different labeling dyes affected how
FN responds to light at longer wavelengths. While FN-AF488 cannot be rearranged after
illumination at 600 nm, FN-AF568 is completely reorganized by cells after illumination
with the same wavelength. Even at 640 nm, fibrillogenesis of FN-AF488 is appreciably
affected (Fig. 6.5A, B, C), demonstrating a severe impact of the labeling dye on the photo-
induced suppression of FN fibrillogenesis. These experiments were repeated at least three
times for each condition and the mean intensity profiles of the corresponding images were
plotted to compare the intensity distributions of the exposed areas (Fig. 6.5D, E, F). The
photo-affected area of FN-AF568 at a wavelength of 560 nm is slightly larger in compari-
son to the other wavelengths. Interestingly, the AF568 dye has an absorption maximum
at 577 nm, which is in the vicinity of 560 nm, indicating that at this particular wavelength
the interaction between light and the labeling dye is strongest. Similarly, FN-AF488 fea-
tures a larger affected area at 480 nm (Fig. 6.5E), which is also in good agreement with
the dye excitation maximum of 494 nm. However, another explanation for the slightly
varying photo-affected areas might be a slight defocusing during sample displacement.

6.3.5 Using a photo mask to control cell-induced FN fibrillogenesis

The previous experiments demonstrated that cell-induced FN fibrillogenesis could be spa-
tially controlled by selectively exposing certain regions on the FN substrate. A structured
photomask allows for an even greater control over the illumination pattern. Suitable pho-
tomasks, such as a gradient photomask, were produced by laser printing grayscale patterns
on a transparent film (Fig. 6.6, Mask). The mask was attached with adhesive tape to
the bottom of a Fluorodish from the outer side. The Fluorodish was then coated on
the inside with FN-AF488 and exposed through this mask at a power of 0.1mW/cm2

for 5min. Afterwards, MEF cells were seeded on the prepared substrate and incubated
for 16 h. After cell fixation and nuclei staining with DAPI, the FN-AF488 substrate was
imaged by fluorescence microscopy. The fluorescence images reveal a smooth transition
from homogeneously distributed to remodeled, fibrillar FN (Fig. 6.6, FN-AF488). The
obtained FN pattern correlates very well with the photomask (Fig. 6.6, Mask). Fib-
rillogenesis was blocked only in the transparent regions of the mask, while the opaque
regions had protected FN from exposure, permitting subsequent cell-induced FN rear-
rangement. Even individual round areas, reflecting the pixel limit of the laser printer, are
reproduced truthfully in the FN fibrillogenesis pattern. DAPI staining of nuclei serves to
demonstrate a homogenous cell distribution in exposed and non-exposed areas (Fig. 6.6,
DAPI), indicating that exposure to light only affects the ability of FN to create fibrils, but
not the ability of cells to adhere and spread. Furthermore, different gray-scale intensity
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Figure 6.5: Supression of fibrillogenesis as a function of wavelength. Equal circular ar-
eas (0.02mm2) on unlabeled FN (A), FN-AF488 (B) and FN-AF568 (C) were illuminated
through a 63x lens (numerical aperture of 0.75) with different wavelengths ranging from 400
to 640 nm in 40 nm steps. After culturing and fixing MEF cells, unlabeled FN was stained
with a polyclonal anti-FN antibody. Fluorescence images of exposed areas surrounded by
non-exposed areas (A-C). Intensity profiles extracted from the corresponding fluorescence
images (mean values from three independent experiments at each condition) (D, E, F). The
plateaus on the intensity profiles correspond to a lower degree of FN reorganization. Scale
bar 50 µm (A).
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Figure 6.6: Guiding FN fibrillogenesis using a graded photomask. FN-AF488 was exposed
through a gradient mask (upper image) printed on transparent film. FN was imaged after
cell culturing, fixation and nuclei staining with DAPI. The fluorescence image of FN-AF488
(row second from top) demonstrates that the fibrillogenesis process was blocked in a dose-
dependent manner below the transparent or semi-transparent regions. DAPI staining verifies
a homogeneous cell distribution throughout the imaged region. Scale bar 200 µm.

on the remodeled FN substrate indicated a dose-dependent effect of illumination on FN
fibrillogenesis.
Different photomask patterns can be chosen to produce, for example, stripe or dot

patterns. It is even possible to produce complex patterns with this method. For demon-
stration purposes, two photomasks were printed showing the KIT Logo or the molecular
model of an FN type III domain. After cell incubation, approximately 50 overlapping
areas on the substrate were imaged using a 10x objective and the collected fluorescence
images were aligned using Photoshop. The resulting overview image (Fig. 6.7A and C)
again demonstrates the excellent match between the original photomask and the pattern
of reorganized FN.

6.3.6 Reducing the impact of light on the FN properties by removing
reactive oxygen species (ROS)

The previous experiments demonstrated that the degree of inhibition of FN fibrillogenesis
by exposure with light depends on light intensity, exposure time, wavelength, but also
the used labeling dye. In these experiments FN was maintained in PBS buffer during
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Figure 6.7: Exposing FN-AF488 through the mask of the KIT logo (B) or of a model of
the FN type III domain (D) at 0.1mW for 5min. Corresponding fluorescence images of FN-
AF488 reorganized by MEF cells for 16 h (A) and (C) demonstrate an excellent agreement to
the masks. The bright regions represent transparent (B, D) and therefore exposed FN areas
with prevented fibrillogenesis (A, C), while FN is reorganized below the opaque regions on
the photomasks. Scale bar 200 µm.

136



6 Inhibiting fibronectin fibrillogenesis using visible light

Figure 6.8: Reducing the photo damage to FN by removing ROS from the medium. FN
was exposed with wavelengths ranging from 400 to 600 nm. The medium was supplemented
with 0.5U/ml Oxyrase® and 10mM DL-lactate as a substrate for Oxyrase®N fibrillogenesis
occurs at wavelengths ⩾ 520 nm. However, exposing FN with 400 and 440 nm still prevents
the fibrillogenesis process (bright circles). Scale bar 50 µm.

exposure, and the aqueous solution may provide the molecular mechanisms for the changed
properties of exposed FN. Exposure of aqueous solutions to light with high-energy, such
as the UVB (260 - 320 nm) or UVA (320 - 400 nm) bands, causes production of reactive
oxygen species (ROS) including singlet oxygen (1O2), superoxide (O•−

2 ), its protonated
form (hydroperoxyl radical; HOO•−), hydrogen peroxide (H2O2) and the hydroxyl radical
(HO•) (Burns et al., 2012). The creation rate of 1O2 is enhanced in presence of so called
photosensitizers, molecules absorbing UV and visible light, such as organic dyes (DeRosa
and Crutchley, 2002) or other chromophores (Pattison et al., 2012). However, the ROS
level can be kept low by adding biocatalytic oxygen-reducing agents. Oxyrase® from
Escherichia coli, for example, is such an enzyme (Adler et al., 1983).
To verify whether ROS in the medium contributes to the inhibition of fibrillogenesis,

0.5U/ml Oxyrase® was added to the PBS solution and FN-AF488 was exposed with
wavelengths ranging from 400 to 600 nm using a 63x objective. Afterwards, the PBS was
replaced by DMEM medium and MEF cells were seeded on FN and incubated for 16 h.
After cell fixation, overview images of exposed areas were taken with a 20x objective
(Fig. 6.8). The fluorescence images of FN-AF488 demonstrate the inhibition of fibrilloge-
nesis by FN exposure at wavelengths shorter than 480 nm, similar to the corresponding
experiments without Oxyrase® (Fig. 6.4B). However, at 480 nm the affected area is much
smaller and has a smooth transition from the remodeled to unremodeled FN, while above
520 nm no inhibition of fibrillogenesis was observed. Since inhibition of fibrillogenesis is
quite strong in absence of Oxyrase® the ROS likely play a main part in changing the
properties of FN during illumination.
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6.3.7 Optimized conditions for visualizing FN fibrillogenesis by
fluorescence microscopy

Due to the strong photo-induced inhibition of FN fibrillogenesis, this process cannot
be observed by conventional fluorescence time-lapse imaging. However, the presented
results provide some possibilities to minimize photo-damage of FN during time-lapse
imaging. Since fibrillogenesis is strongly suppressed at wavelengths below 400 to 560 nm
(Section 6.3.3), it would be beneficial to label FN with a dye that is excited at longer
wavelength. For instance, AlexaFluor®6̃33 is excited at a wavelength of 632 nm, poten-
tially minimizing the negative effect of the excitation light on the FN. As described in the
previous section, removing ROS from the medium by adding Oxyrase® substantially re-
duces the impact of light on FN. To further minimize photo damage, images are collected
at low frequency (one image every 30min). Furthermore, the integrin affinity to FN can
be enhanced by adding 1mM Mn2+ to the imaging medium resulting in the accelera-
tion of the FN fibrillogenesis (Edwards et al., 1988; Fernandez et al., 1998; Mould et al.,
1995b). Using a combination of these strategies to minimize photo damage, FN fibrillo-
genesis induced by HFF cells can be observed by fluorescence time-lapse microscopy for
the first time, albeit with comparatively low time resolution (Movie 6.2 and Fig. 6.9). In

Figure 6.9: Imaging FN fibrillogenesis by fluorescence microscopy. FN-AF633 reorganized
by HFF cells in DMEM medium containing 1% FCS, 1mM MnCl2, 0.5U/ml Oxyrase® and
10mM DL-lactate. Fluorescence images of FN-AF633 taken after 5, 30, 60, and 270min
show an increasing number of fibrils (top row). Background fluorescence was subtracted in
images on the lower row to increase image contrast and to improve fibril visibility. Scale bar
20 µm.

these movies imaging started immediately after cell seeding and was performed for a total
duration of 270min. To improve the visibility of FN fibrils, image contrast was increased
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by background subtracting (Fig. 6.9, lower row). As early as 30min, small fibrils are dis-
tributed over the entire imaged region. At this time, the mean fibril length is 0.6±0.2 µm
and the mean velocity of fibril formation is 37 ± 9 nm/min. This value is lower than the
velocity obtained by AFM time-lapse imaging (157 ± 107 nm/min, see Section 5.3.4). A
reason might be the different temporal and spatial resolutions between the fluorescence
and AFM time-lapse. AFM images were taken at a much higher rate (every 3min) and
with nm resolution, so that the fibril dynamics can be analyzed more precisely. Further-
more, according to the fluorescence images taken 60 and 90min after cell seeding, the
fibril growth rate decreases to 13 ± 5 nm/min at later time points. Starting after 60min,
and becoming more clearly after 270min, cells start to remove FN fibrils from the surface,
leaving dark, FN-free areas behind (Fig. 6.9).
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6.4 Discussion
Fluorescence microscopy is one of the most frequently used microscopy techniques in biol-
ogy and permits observing labeled proteins in real time. Fluorescence microscopy would
therefore suggest itself also as a useful technique to observe the dynamic rearrangement
of FN. Although FN fibrillogenesis can be visualized by life-cell AFM scanning (Sec-
tion 5.3.3, Movie 5.1 and Movie 5.2), the creation of initial FN fibrils is hidden from
surface scanning techniques because it takes place primarily underneath adherent cells.
Therefore one would profit substantially from visualizing the FN fibrillogenesis with a
fluorescence microscope. Furthermore, specific labeling would also allow for investigating
the contribution of different types of proteins in this process. A number of previous stud-
ies investigating FN fibrillogenesis by fluorescence microscopy have been either performed
using chemically-fixed samples or visualizing fibril extension of already created fibrils
(Ohashi et al., 2002; Pankov et al., 2000). However, the initial steps of fibril creation have
so far not been observed in real time. Initial attempts to visualize FN fibril creation by
fluorescence time-lapse imaging failed. Surprisingly, while the imaged area remained free
from fibrils, fibrils were created – unobserved – everywhere else on the sample. Obviously,
illumination of the sample during time-lapse imaging prevented fibrillogenesis completely.
To distinguish whether illumination negatively affected the FN molecules or the cells re-
modeling it into fibrils, small areas of the FN substrate were exposed to light first and cells
were seeded afterwards and incubated in the dark. Again, no fibrils were created in the
previously exposed areas, reproducing the results from the time lapse experiments. Thus,
FN properties related to the fibrillogenesis process are changed irreversibly by exposure
to visible light.

6.4.1 Photo damage to proteins

In general, photo damage depends on several parameters, including irradiation power
density, irradiation time and wavelength (Tong and Kohane, 2012). In the case of FN,
the degree of fibrillogenesis decreases with increasing exposure time and intensity (sec-
tions 6.3.2 and 6.3.4). Therefore, these parameters should be chosen to be as low as pos-
sible to minimize the damage to FN. However, an essential parameter is also wavelength,
because it influences the character of the photo damage. Irradiation by UV and visible
light causes photochemical injury, resulting in protein oxidation. There are two major
pathways for photo-induced damage of proteins (Bensasson, 1983; Pattison et al., 2012).
The first pathway is mediated by UVB irradiation (280 – 315 nm), where the irradiation
energy is directly absorbed by amino acid residues (e.g. tryptophan, tyrosine, phenylala-
nine, histidine, methionine, cysteine and cysteine disulfide bonds). This energy absorption
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results in the formation of electronically-excited states but also in photo-ionization reac-
tions. However, this pathway is unlikely to occur in FN experiments presented in this
thesis, because the energy of the used light (400 - 640 nm) was lower than that of UVB
irradiation. A second pathway involves the absorption of energetically lower UVA and
visible light (315 – 390 nm and 390 – 700 nm) by photosensitizing components (Pattison
et al., 2012), such as porphyrins (Afonso et al., 1999), vitamins (Clausen et al., 2010) and
polyaromatic compounds (Phillips, 2010). One further group of sensitizers is formed by
labeling dye molecules. The irradiation experiments of labeled and non-labeled FN (Sec-
tion 6.3.2) verified that labeled FN is more sensitive to photo damage. The sensitizers are
excited into a short singlet state and then either decay to the ground state while emitting
light (fluorescence) or to the more stable triplet state, allowing reactions with surrounding
molecules (Phillips, 2010). The sensitizers can transfer their energy to proteins or water
molecules from the medium resulting in formation of radicals, e.g. ROO•, RO•, O•−

2 or
OH• (Balasubramanian et al., 1990), which, in turn, can affect other molecules. This pro-
cess is referred to as a type I mechanism. The type II mechanism involves energy transfer
from a sensitizer in triplet state to molecular oxygen, resulting in the creation of singlet
oxygen (1O2) (Davies, 2003). This highly reactive molecule oxidizes other molecules in
the immediate vicinity of the initially excited sensitizer. Thus, both type I and type II
mechanisms involve short-range electron transfers, which could explain the sudden drop
in FN damage at the transition zone from exposed to non-exposed FN (Fig. 6.3B).
Irradiation with light at longer wavelengths than those of visible light (> 700 nm, in-

frared light) induces photo thermal damages and denaturation of proteins. Studies on FN
fragments (Litvinovich and Ingham, 1995; Odermatt et al., 1982; Vuento et al., 1980) as
well as whole FN molecules (Ingham et al., 1984; Pauthe et al., 2002) have demonstrated
that FN is thermally stable between 4 and 60°C and fully recovers its specific confor-
mational state at 20°C (Nelea et al., 2008). Above 60°C, thermal denaturation starts
and is completed by incubating the solution for 30min (Ingham et al., 1984). Thermally
denatured FN showed different mechanical properties compared to exposed FN. The FN
rearrangement experiment (Section 6.3.3) demonstrates that thermally denatured FN can-
not create fibrils by reorganizing it with the AFM tip. However, the rearrangement of
exposed FN results in fibril formation, albeit at an applied force stronger than that for
non-exposed FN. The difference in the underlying mechanical properties is also confirmed
by the large difference in roughness parameters (Table 6.1).
Due to the illumination induced effect on FN, exposure time should be kept as short

and intensity as low as possible when imaging fibrillogenesis. Furthermore, a labeling dye
with an excitation wavelength as long as possible should be chosen. For example, using
AlexaFluor® 633 dye with an excitation wavelength of 632 nm for FN labeling allows for
observing fibrillogenesis for several hours at low frame rates. The results can be further
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improved by adding enzymes such as Oxyrase® to remove ROS from the medium and to
suppress radical and 1O2 formation.

6.4.2 Possible targets for photo-induced damages in FN

The different plasma FN splice variants contain in average 52 tyrosine, 46 phenylalanine,
38 histidine, 26 methionine and 44 cysteine residues. Furthermore, FN consists of at least
31 intra-chain disulfide bonds (-S-S-), two inter-chain disulfide bonds (Petersen et al.,
1983) and two sulfhydryl (SH) groups per monomer (Smith et al., 1982). Disulfide bridges
in FN are necessary for its biological activity (Ali and Hynes, 1978). Tyrosine residues in
peptides are oxidized by 1O2 to form dienone alcohol, which can react with neighboring
nucleophiles such as thiols and amines, leading to protein cross-linking (Davies, 2003).
Phenylalanine oxidation occurs only by irradiation at short wavelengths. On the one
hand, the phenylalanine oxidation leads to the formation of hydroxylated benzyl ring
products, and on the other hand by deprotonation of the phenylalanine molecule to the
creation of benzyl radicals (Davies et al., 1991). Direct absorption of UV or visible light
by histidine is not a major mechanism for causing damages. Damages at histidines occur
predominantly by energy transfer from sensitizers via type II reactions (Pattison et al.,
2012). The oxidation of histidine by 1O2 leads to the formation of histidine-histidine
and histidine-lysine cross-linked products (Pattison et al., 2012). Methionine residues
can be oxidized by many species including HO•, H2O2 and 1O2 (Schöneich, 2005). The
oxidation by 1O2 leads to the formation of a zwitterionic species (R2S+-OO−) which can
oxidize other methionines or eliminate H2O2 to form a single molecule of MetSO (Sysak
et al., 1977). Cysteine photo-oxidation via 1O2 results in the formation of cysteic acids
(RSO3H) (Pattison et al., 2012). Photo-oxidation of disulfide bonds via electron transfer
from sensitizers yields disulfide radical anions (RSSR•−), which can rapidly dissociate into
thiyl anion (RS−) and thiyl radical (RS•) or transfer electrons to O2, creating O•−

2 (Creed,
1984). The irradiation influence of FN is not well understood due to the complexity of
the molecule and requires further studies.

6.4.3 Protein aggregation and fragmentation as a consequence of
protein photo oxidation

Photo oxidation of proteins results in their fragmentation or in irreversible cross-linking
by the formation of intermolecular covalent bonds (Bedwell et al., 1989; Dean et al., 1984;
Wolff and Dean, 1986). The introduction of intermolecular crosslink’s can lead to the
formation of insoluble aggregates (Wang, 2005b). Non-covalent aggregates are formed
solely via weak interaction forces, such as van der Waals, hydrophobic or electrostatic
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Figure 6.10: Analysis of FN on
a 7.5% PAA gel. FN and ir-
radiated FN (FN*) were loaded
on the PAA gel (1 ng each), sep-
arated under non-reducing con-
ditions and visualized by silver
staining. The main band in both
samples runs at approximately
250 kDa.

interactions, whereas covalent aggregates are formed via disulfide bond linkages through
free thiol groups or via non-disulfide cross-linking pathways such as dityrosines (Mahler
et al., 2009). Protein aggregation occurs also during chemical fixation. Therefore, the
mechanical properties of chemically fixed FN were compared to those of exposed FN.
The AFM rearrangement experiment (Section 6.3.3) demonstrates that fixed FN is a stiff
substrate, at least for maximal applied forces up to 6 nN. However, roughness parameters
extracted from AFM scans of glutaraldehyde-fixed FN (Table 6.1) were comparable to
those of exposed FN if the scans were performed at a minimal force of 0.1 nN, suggesting
a common molecular arrangement of the FN in both cases. However, artificial fibrillar
structures could be created at larger scanning forces on exposed FN, while on fixed FN
this was impossible. The results of the rearrangement experiment do not clearly prove
that the changed properties of exposed FN are attributed to protein aggregation.
Some proteins can be cleft by photo-inducible fragmentation in the presence of sensitiz-

ers (Davies, 2003; Michaeli and Feitelson, 1994; Pattison et al., 2012; Sharma and Rokita,
2012). For instance, it was shown that lysozymes undergo photolysis in presence of O2

by tryptophan oxidation and radical formation (Hawkins and Davies, 2001). In case of
exposed FN, it should be verified whether the photo-inducible fragmentation occurs. To
compare the molecular mass of exposed and non-exposed FN, they were separated by
protein electrophoresis on a 7.5% PAA gel under non-reducing conditions followed by its
visualizing via silver staining (Fig. 6.10). The results show that irradiated FN (FN*) runs
at the same height as native FN, indicating that exposure does not cause FN fragmenta-
tion. FN aggregation, however, should be analyzed on a low concentration PAA gel (4%)
or with other techniques, such as mass spectroscopy.

143



6 Inhibiting fibronectin fibrillogenesis using visible light

6.5 Conclusions
Time-lapse fluorescence microscopy imaging can provide important insights into dynamic
biological processes. In the case of FN fibrillogenesis, however, a standard imaging ap-
proach does not work due to severe photo sensitivity of the FN molecule. In this chapter,
the inhibitory influence of visible light on FN fibrillogenesis is discussed. Based on the
presented results, a modified approach for successfully observation of fibrillogenesis is de-
veloped and consists of (1) minimizing exposure time and intensity, (2) using a labeling
dye with an excitation maximum at longer wavelengths and (3) enzymatically decreasing
the concentration of ROS in the imaging medium.
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7.1 Cell inversion as a tool for exposing basal surface
structures

Interactions between cells and the surrounding ECM regulate many cellular processes,
such as differentiation, proliferation and migration (Berrier and Yamada, 2007; Gumbiner,
1996). The interplay between cells and the ECM is complex and involves many aspects,
in particular, the chemical and mechanical properties of the ECM (Fig. 7.1). To inves-
tigate these interactions, two kinds of microscopy techniques are most widely used. On
the one hand, optical microscopes can provide images of the entire cell, including inner
cellular structures, but with limited resolution. On the other hand, scanning microscopes,
such as AFM and SEM provide high-resolution images but only of the sample surface.
These restrictions makes it usually impossible to collect detailed images of the basal side
of adherent cells. However, exactly at the basal side the majority of cell-matrix interac-
tions take place. There are many open questions regarding the nanoscale arrangement of
cell-matrix contacts which would benefit from high-resolution imaging.
In this thesis, a new protocol for exposing the cell basal side was developed (Chapter 3),

so that it can be directly investigated with scanning microscopy techniques. Moreover, this
cell inversion technique provides further important advantages. The preparation protocol
is fast, easy and very efficient. Thus, it is possible to study one and the same cell from both
its apical and basal side. Furthermore, the optical properties of the sample do not suffer
from the preparation, so that fluorescence microscopy still can be used for locating labeled
cellular structures. In future, the presented inversion technique could be used to provide
additional insight into the ultrastructure of cell adhesions. For example, it was shown that
the spacing of integrins plays a key role for cell adhesion (Ruoslahti, 1996). In fact, if the
distance between ligands the integrins bind to exceeds ∼ 70 nm, FAs cannot form and the
cells cannot adhere to the substrate (Arnold et al., 2004). These experiments indicate that
regular integrin clustering is essential for effective integrin-mediated signaling. However,
the molecular mechanism behind integrin clustering is not yet understood completely.
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Figure 7.1: Complexity of cell-ECM interactions. The vertical “axis” containing colored
cylindrical segments represents the biochemical diversity of the ECM, consisting of, for ex-
ample, vitronectin, RGD sequence, fibronectin (FN), and cell-derived natural composite
matrix (CDM). The ECM can vary in rigidity, ligand spacing and dimensionality. Fluores-
cence images demonstrate several possible cellular responses. (A) Cell morphology depending
on substrate dimensionality. Cells inside 3D matrices have an elongated morphology (Aa),
whereas cells on 2D spread radially (Ab). Integrin α5 (red) localizes to FAs in cells on 2D
substrates that are coated with FN (green), whereas it is organized into thin, elongated ad-
hesions in a 3D matrix. (B) Cell shape, as well as the organization of GFP-paxillin-labelled
FAs (green) and phalloidin-labelled F-actin (red) strongly differ in cells that are plated onto
rigid from that on soft FN-coated substrates. (C) The organization of FAs differs in cells
on rigid 2D matrices depending of the biochemical nature of ECM molecule. Cells on FN
(Ca) have different FA distributions and size than cells on vitronectin (Cb). (D) Cells show
differences in spreading on nanopatterned surfaces consisting of adhesive nanodots spaced at
varying distances. Successful spreading and formation of FAs was observed on surfaces with
a 58 nm dot spacing (Da) but failure on surface with a 73 nm dot spacing (Db) (adapted
from (Geiger et al., 2009)).
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Knowing the organization of integrins inside the adhesion sites (FAs, focal complexes and
fibrillar adhesions), in particular, the exact integrin spacing would provide new insights
into assembly and function of cell adhesions (Wehrle-Haller, 2012).

7.2 Investigating podosome organization with the cell
inversion technique

Podosomes are dot-like and highly dynamic adhesive structures found in osteoclasts,
macrophages and endothelial cells (Linder, 2007). During osteoclast maturation, sin-
gle podosomes cluster together and form rings, which mature in several steps into a dense
podosome ring called the “sealing zone” (Lakkakorpi et al., 1989; Destaing et al., 2003)
(Fig. 7.2A-D). This zone provides tight attachment to the substrate and forms an isolated
compartment in which bone tissue is extensively resorbed through the action of secreted
proteases and protons (Vaananen et al., 2000; Gimona et al., 2008). The exact molecular
mechanism of the podosome ring formation is, however, not fully understood. Moreover,
matrix degradation was also observed below single podosomes without any sealing zone
(Linder, 2007), so that the role of a single podosome in matrix degradation is still under
debate (Nitsch et al., 1989; Ochoa et al., 2000).
The developed cell inversion method in this work was used to study the basal surface

of single podosomes of osteoclasts (Chapter 4). Furthermore, the cell inversion method
can be used to investigate also the podosome ring formation. Preliminary results are
presented in Fig. 7.2A´-D´, showing the basal side of osteoclasts at different stages of
podosome ring formation. Single, spatially separated podosomes (Fig. 7.2A´) aggregate
and form several small rings (Fig. 7.2B´), which, in turn, congregate to establish a large
podosome ring along the entire cell periphery (Fig. 7.2C´). Finally, individual podosomes
fuse to form the sealing zone (Fig. 7.2D´). In further studies, the precise basal structure
of the podosome rings with still distinguishable podosomes and the transition from such
rings to the dense podosome structure forming the sealing zone border could be analyzed
with AFM and SEM.
Another promising method to investigate the structure of individual podosomes and

of podosome rings is focused ion beam (FIB) milling in combination with SEM imag-
ing in a dual beam apparatus (Fig. 7.3A). Nanometer-thick layers can be milled away
from the sample in a defined region by FIB, exposing a cross-section for imaging with
SEM. FIB/SEM imaging has already been used to study different biological samples
(Drobne et al., 2005). For example, cell-substrate interfaces of cells grown on micro- and
nanopatterned substrates were studied using FIB/SEM (Fig. 7.3B-D), providing informa-
tion about cell-ECM anchor points (Martinez et al., 2008). Thus, the FIB/SEM technique
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Figure 7.2: Different stages of podosome ring formation in osteoclasts. (A) Osteoclast
precursor cells contain individual podosomes which are clearly separated from each other.
(B) Podosome rings composed of a dense actin core (red circles) surrounded by integrin
associated proteins (green). (C) Podosome ring around the cell periphery. (D) A mature
osteoclast with a dense podosome ring called the sealing zone. In the sealing zone, single
podosomes cannot be distinguished with conventional fluorescence microscopy any more.
Instead, a dense actin ring (red) is surrounded by outer and inner rings of integrin-associated
proteins (green) (adapted from (Destaing et al., 2003)). (A´-D´) AFM deflection images
of the basal side of osteoclasts after inversion at different stages of podosome development
corresponding to the organization of podosomes in (A-D).

is suitable for investigating cell-substrate adhesions and, therefore, also podosome struc-
ture. Moreover, this technique allows not only for obtaining a single cross-section, but
sequential milling and imaging steps can produce 3D maps of samples. Such 3D maps of
podosomes would help to elucidate the podosome structure in greater detail.

7.3 Studying FN fibrillogenesis in living cells by AFM
FN is an ubiquitous, multifunctional, high-molecular weight dimeric glycoprotein that is
implicated in a wide array of fundamental biological processes regulating cell behavior
and modification of the extracellular environment (Hynes, 1990). Fibroblasts secrete FN
and incorporate it into matrices in form of fibrils. This so called FN fibrillogenesis has
been studied extensively in the past, but there are still debates regarding, for example,
the exact organization of FN molecules inside the fibrils.
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Figure 7.3: Investigating cell-substrate interactions using the FIB/SEM technique. (A)
Schematic diagram of the FIB/SEM dual beam apparatus. The sample is tilted by 52° with
respect to the electron beam. The ion beam has also an inclination of 52°, so that ion
milling occurs at 90° to the sample, while electron imaging takes place at 52°. In this way,
the cross-section perpendicular to the substrate can be imaged. (B) SEM image of a cell
on a micropatterned substrate. A region of the cell was milled with FIB. (C) SEM image
of a cross-section of a cell on a micropatterned substrate. The dashed line indicates the
profile of the pattern on the substrate. (D) Magnified view of the cell-substrate interface
showing microcavities around the substrate pillars and cell attachments pointing to the
surface (adapted from (Martinez et al., 2008)).

In this work, the FN fibrillogenesis by living cells was imaged with the high resolution
AFM time-lapse. Unfortunately, the AFM tip has no access to the basal side of living
cells, where the initial steps of fibril creation take place. However, as soon as the cell
membrane retracts, e.g. during cell migration, thin fibrils become visible at the cell
edge. If a cell protrudes and retracts its membrane several times over the same area,
the progression of fibril growth can be observed, ultimately resulting in the formation of
large superfibrils. Usually, this process takes several hours. By activating integrins with
Mn2+, fibrillogenesis is significantly accelerated, facilitating the imaging and analysis of
fibril extension dynamics and arrangement. Interestingly, in dense cell cultures FN fibrils
accumulate between cell-cell contacts, revealing different mechanisms in matrix creation
and remodeling compared to single cells.
Furthermore, AFM images of unfixed samples show a bead-on-a-string structure of FN

fibrils, from which conclusions about the stagger of FN molecules inside fibrils can be
drawn. Also, the number of FN molecules inside a fibril can be approximated based on
the measured diameter of FN fibrils, the known diameter of a single FN molecule and by
assuming a dense cylindrical packing of FN molecules in fibrils. Altogether, these data
could help one to understand better the function of FN and the mechanisms of fibril
formation in different biological contexts.
A recently developed AFM technique, so called force-distance (F-D) curve-based AFM

imaging, allows for obtaining high resolution scanning images and simultaneous recording
of an F-D curve at each pixel (Dufrene et al., 2013). Furthermore, by functionalizing
the AFM tip with relevant biomolecules, this technique allows for obtaining information
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about the physical and/or biological interactions between the tip and sample (Muller
and Dufrene, 2008) with spatial resolution in the nanometer range and exquisite force
control (Dufrene et al., 2013). Thus, e.g., maps of indentation, elasticity, adhesion, energy
dissipation, electrostatic repulsion and surface charge distribution can be created (Heinz
and Hoh, 1999). Furthermore, the architecture of fragile biological samples, such as living
cells, cellular membranes, protein complexes, viruses and nucleic acids, can be imaged
at low scanning force. In particular, the formation of fragile FN fibrils and soft cellular
structures, such as membranous extensions, could be imaged with minimized affection,
while maintaining spatial and temporal resolution.

7.4 Light-induced changes of FN preventing
fibrillogenesis

AFM can produce highly resolved time-lapse images of biological samples. However, the
size of the scanned area is rather limited and it is impossible to observe the processes taking
place at the basal side of a living cell. For visualizing the dynamic relocation of specific
membrane proteins in the context of a living cell, such as integrin translocation during
fibril formation, it is necessary to use fluorescence microscopy. However, cell-induced FN
fibrillogenesis is strongly inhibited by exposure to light. In Chapter 6 of this thesis, critical
points for imaging FN fibrillogenesis by fluorescence microscopy were identified.
However, the question regarding possible conformational changes in the FN molecule

or the introduction of additional intra- or intermolecular bonds caused by UV and visible
light is still open. Exposing FN may also lead to denaturation, aggregation or fragmenta-
tion. Therefore, the molecular structure of exposed FN should be analyzed and compared
to non-exposed FN. As a first step, protein mass spectrometry coupled with whole protein
ionization by electrospray ionization (ESI) (Fenn et al., 1989) or matrix-assisted laser des-
orption/ionization (MALDI) (Jensen et al., 1996) could be used to compare exposed and
non-exposed FN molecules. Furthermore, FN protein analysis could also be facilitated by
mass analysis of peptide fragments produced by either chemical or enzymatic treatment
(Trauger et al., 2002).
Another approach to investigate the differences between exposed and native FN is to

compare intramolecular interactions. An FN monomer is composed of FNI, FNII and
FNIII repeating units, which are organized into functional domains (Fig. 1.2). Inter-
actions between FN domains can be quantified using AFM-based single-molecule force
spectroscopy (SMFS) (Meadows and Walker, 2005; Oberhauser et al., 2002) by pulling
single FN molecules away from the substrate with the AFM tip (Fig. 7.4). The FN re-
peats inside the molecule are stabilized by intra- and/or intermolecular interactions and
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Figure 7.4: Investigating FN mechanics by AFM-SMFS. (A) Principle of AFM-SMFS. The
AFM tip is approached to surface coated with FN. (1) During contact, non-specific interac-
tions occur between the AFM tip and FN molecules. (2-4) The AFM tip is elevated from
the surface with one end of the FN molecule attached. (B) Sequential FN unfolding occurs
during tip elevation, resulting in several peaks in the F-D curve. (A5) After elongation of
the molecule and complete unfolding, the FN molecule detaches from the tip or the surface
(adapted from (Meadows and Walker, 2005)).

therefore can withstand mechanical tension applied during pulling up to several hundred
pN (Craig et al., 2004; Craig et al., 2001; Gao et al., 2002; Oberhauser et al., 2002).
When the externally applied force overcomes the stability of an FN repeat, the repeat
unfolds spontaneously, yielding a distinct unfolding peak in the force-distance (F-D) curve
(Fig. 7.4B). Other FN repeats then unfold subsequently, resulting in multiple peaks along
F-D curve (Meadows and Walker, 2005). In contrast, more stable repeat will remain
folded. Recording and comparing F-D curves of native and exposed FN could help to
identify the structural differences.
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Movies (included in CD)
Movie 5.1 Investigating FN fibrillogenesis by time-lapse AFM in living REF52
cells. Cells were placed on FN coated mica and a region of 10 x 10 µm2 was scanned by
AFM in contact mode after initial spreading of 5min. Images were collected every ∼ 3min.
The deflection time-lapse images show retraction of cell edge on FN creating fibrils. Scale
bar 1.5 µm.

Movie 5.2 Investigating FN fibrillogenesis by time-lapse AFM in living REF52
cells in presence of 1 mM Mn2+. Cells were placed on FN coated mica and incu-
bated on it in presence of 1mM Mn2+ for 5min to ensure initial spreading. A region of
10 x 10 µm2 was scanned by AFM in contact mode. Images were collected every 3min.
The deflection time-lapse images show retraction of cell edge on FN creating fibrils. Scale
bar 1.5 µm.

Movie 5.3 FN rearrangement by cells in presence of 1 mM Mn2+. A region of
10 x 10 µm2 was scanned by AFM in contact mode for 40min. AFM images were taken
approximatly every 4min. In the beginning, a part of a lamellipodium is shown. The
major part of the imaged region demonstrates that FN had a homogeneous distribution
before rearrangement. During the next 21min, the cell protruded and covered a part
of the imaged area, before it started to retract back (29min) leaving fibrils back on the
substrate. After 40min, many large FN fibrils are present on the substrate. Scale bars:
1 µm.

Movie 6.1 Imaging of vinculin-EGFP expressing MEF cells on FN-AF568 with
TIRFM. MEF cells, transiently expressing the vinculin-EGFP construct for visualizing
FAs were seeded on FN-AF568. The area around one representative FN-AF568 cell was
imaged every minute to monitor FN rearrangement into fibrils. However, the time-lapse
imaging does not show any changes of the FN distribution, although the cell spreads
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normally and creates FAs at its periphery. Moreover, FAs demonstrate dynamic behavior
during imaging. Scale bar 5 µm.

Movie 6.2 Visualizing FN fibrillogenesis in HFF cells by time-lapse fluores-
cence microscopy. HFF cells were seeded on FN-AF633, to exposure the sample at
625 nm wavelength. Images were collected every 30min to minimize the irradiation time.
Furthermore, Oxyrase® was added to the imaging medium to remove oxygen preventing
creation of reactive oxygen. To improve integrin binding to FN, imaging medium was sup-
plemented with 1mM Mn2+. The time-lapse demonstrates fibril creation by cells during
imaging. Scale bar 20 µm.
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