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Abstract

We study Higgs physics and related issues in the Standard Model (SM) and beyond.
In the first part, we present theoretical predictions for Higgs pair production in the
SM including higher order corrections in Quantum Chromodynamics (QCD) and the
uncertainties on the respective cross sections from various sources. The second part
covers supersymmetry. In the framework of the minimal supersymmetric extension
of the SM, we investigate decays of light top squarks in the kinematic region where
a flavour-changing decay into a charm or up quark and a neutralino or a four-body
decay occurs. Furthermore, we discuss the Higgs sector in the next-to-minimal super-
symmetric extension of the SM with complex parameters. In particular, we calculate
the Higgs boson masses at one-loop order. In addition, we present Higgs boson pro-
duction cross sections and decay widths. The third part introduces Composite Higgs
Models as plausible candidates for physics beyond the SM. We calculate the leading-
order cross section for single and double Higgs production via gluon fusion obtained
by means of the low-energy theorem (LET) and compare it to the result computed
with full mass dependence of the new heavy vector-like fermions. In addition, we cal-
culate the next-to-leading order QCD corrections for double Higgs production in the
LET approximation for Composite Higgs Models. Furthermore, we study the effects
of fermionic bottom partners on Higgs and electroweak precision observables.

Zusammenfassung

Im Rahmen dieser Doktorarbeit werden Higgsphysik und verwandte Themen im Stan-
dardmodell (SM) und darüber hinaus diskutiert. Im ersten Teil werden theoretische
Vorhersagen für Higgspaarproduktion im SM inklusive Korrekturen höherer Ordnung
und die entsprechenden Unsicherheiten auf die Wirkungsquerschnitte präsentiert. Im
zweiten Teil untersuchen wir im Rahmen der minimalen supersymmetrischen Erweite-
rung des Standardmodells Zerfälle eines leichten Top-Squarks in dem kinematischen Be-
reich, in dem es mittels eines Flavour-ändernden Prozesses oder in einen Vier-Teilchen-
Endzustand zerfallen kann. Zudem wird der Higgssektor in der nächst-minimalen su-
persymmetrischen Erweiterung des SMs mit komplexen Parametern untersucht, mit
Fokus auf der Berechnung der Higgsmassenkorrektur auf Einschleifenniveau. Außer-
dem diskutieren wir Higgs-Produktionsraten und Zerfälle. Im dritten Teil der Arbeit
berechnen wir für Composite Higgs Modelle in führender Ordnung den Wirkungsquer-
schnitt für die Produktion eines oder zweier Higgsbosonen – sowohl im Niederenergie-
limes als auch in voller Massenabhängigkeit der schweren neuen Fermionen. Zusätzlich
präsentieren wir Ergebnisse für Higgspaarproduktion in nächstführender Ordnung in
der starken Kopplungskonstante im Niederenergielimes. Zudem untersuchen wir die Ef-
fekte fermionischer Bottom-Partner unter Berücksichtigung der Einschränkungen aus
Messungen elektroschwacher Präzisions- und Higgsobservablen.
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CHAPTER 1

Introduction

“I am a firm believer that without speculation
there is no good and original observation.”
Charles Darwin
Letter to Alfred Russell Wallace, 1857

These are exciting times for particle physics. With the Large Hadron Collider (LHC)
at CERN in Geneva, we have a powerful tool at our disposal to study the smallest
constituents of nature. The first big success of the LHC could already be announced
on 4th July 2012 by the ATLAS and CMS collaborations [1, 2]: The discovery of a new
scalar particle with similar properties to the long-sought Higgs boson of the Standard
Model (SM) of particle physics.
The SM [3–5] provides a theoretical framework describing the fundamental forces of
nature in terms of a gauge field theory, apart from the gravitational force. The Higgs
boson is a crucial part of the SM. It emerges as a remnant of the mechanism of elec-
troweak symmetry breaking (EWSB) [6–10], which gives mass to gauge bosons and
fermions and is essential for the consistency of the theory. Its discovery hence marks
the beginning of a new era of particle physics. The new focus will now consist in the
precise determination of its properties, such as its mass, its quantum numbers and its
couplings.
Even though the SM describes the so-far gathered data with high accuracy, there
are indications that it is not the ultimate theory of nature. Neither is gravitation
implemented in the SM nor does the SM provide a candidate for Dark Matter or an
explanation for Dark Energy. Furthermore, the Higgs boson mass in the SM seems to
be unnatural since contributions from very high-scale physics lead to large quantum
corrections to the Higgs boson mass. This poses the question why the Higgs boson
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2 Chapter 1. Introduction

mass scale is so much smaller than the Planck scale, known as the hierarchy problem.
A large amount of fine-tuning between the different loop contributions is needed to
achieve a Higgs boson mass at the electroweak (EW) scale. This hints to New Physics
which becomes relevant at a scale that might be reachable at the LHC. In the past,
this theoretical problem acted as a guideline for numerous extensions of the SM.
A solution to many shortcomings of the SM is provided by supersymmetry (SUSY) [11–
18]. Supersymmetry is a space-time symmetry which enhances the Poincaré symmetry
by additional anti-commuting generators. These generators transform bosonic states
into fermionic states and vice versa. Each particle is hence paired with a superpartner,
which only differs by the spin. None of these superpartners, however, have been dis-
covered yet. Thus, SUSY cannot be an exact symmetry. This problem can be evaded
by introducing SUSY breaking sources, leading to different masses for the particles
and their superpartners. If SUSY is supposed to solve the naturalness problem of the
SM Higgs boson, the discovery reach of the superpartners lies within the range of the
LHC. By now, all experiments could only report exclusion limits on the SUSY particle
masses, but large parts of the parameter space remain to be explored.
Another interesting alternative to the SM are Composite Higgs Models [19–27]. In
these models, the Higgs boson is not a fundamental particle but a composite state
emerging from a new strong sector. The Higgs boson will naturally be lighter than
the other resonances of the strong sector if it arises as a Goldstone boson of a global
symmetry. Due to its Goldstone nature, the Higgs boson is supposed to be massless. If
the global symmetry is not exact, however, but explicitly broken, loops of SM fermions
and gauge bosons can generate a Higgs boson mass. The phenomenological implica-
tions of Composite Higgs Models at the LHC are, apart from deviations in the Higgs
boson couplings, the emergence of new resonances of the strong sector. In particular,
fermionic resonances which can mix with the top quark are expected to have masses
within the reach of the LHC [28–32].
As input from the theory side the experiments need phenomenological studies and
precise predictions concerning both SM and New Physics. Precise predictions for the
SM are required to detect possible anomalies, in particular because New Physics can
also appear indirectly via loop contributions. In order to anticipate where New Physics
is supposed to emerge, it is also of great importance to predict the phenomenological
implications of New Physics models as accurately as possible. The goal of this thesis is
to contribute to this effort. This work is based on the research papers in Refs. [33–37].
The thesis is divided in three parts. The first part deals with the Higgs boson in the
SM. Chapter 2 gives an introduction in the SM and motivates physics beyond the
SM. In Chapter 3, predictions for Higgs pair production cross sections in the SM are
discussed. Higgs pair production is an interesting process giving access to the trilinear
Higgs self-coupling [38–40] and hence to the Higgs potential. Thus a measurement of
this process is a first step towards the experimental verification of the exact form of
the Higgs potential.
The second part of this thesis is dedicated to supersymmetry. After a short introduction
in Chapter 4, we discuss in Chapter 5 decays of a light top squark, the superpartner
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of the top quark. A relatively light top squark is motivated by the fact that it reduces
the amount of fine-tuning of the Higgs boson mass [41]. In Chapter 6, we introduce an
extension of the minimal supersymmetric extension of the SM (MSSM) by an additional
scalar singlet field, the so-called next-to-minimal supersymmetric extension of the SM
(NMSSM) [42–47]. Within this model, the Higgs boson masses at one-loop order are
calculated taking into account CP-violation. Additionally, we compute Higgs boson
production and decay rates in the NMSSM.
The third part covers Composite Higgs Models. First, an introduction into Com-
posite Higgs Models is given in Chapter 7. Afterwards, the discussion turns to the
phenomenology of fermionic resonances of the strong sector. We study in Chapter 8
the impact of top partners on Higgs physics, i.e. of fermions that mix with the top
quark. In particular, single Higgs boson production and Higgs pair production and
their dependence on the spectrum of the new resonances are investigated. Chapter 9
covers the phenomenological implications of bottom partners, taking into account var-
ious constraints for instance from electroweak precision tests and the current Higgs
results. Chapter 10 summarizes the previous chapters.





Part I.

The Standard Model

5





CHAPTER 2

The Standard Model

2.1. The Higgs boson in the Standard Model

Five decades after the Higgs mechanism was proposed [6–10] in order to generate masses
for the SM particles, the discovery of a Higgs boson with properties compatible with
the SM could finally be announced by the ATLAS and CMS collaborations in 2012
[1, 2]. The SM is a gauge theory with a local SU(3)C × SU(2)L × U(1)Y gauge group
[3–5]. The SU(3)C symmetry describes QCD where gluons emerge as the gauge bosons.
The electroweak (EW) gauge group SU(2)L×U(1)Y unifies weak and electromagnetic
forces. A Lagrangian for the SM can be constructed out of symmetry principles. Gauge
invariance forbids an explicit mass term for gauge bosons, even though experimentally
three EW gauge bosons were found to be massive. Here the Higgs mechanism provides
a solution: A complex SU(2)L doublet φ is introduced into the SM with a potential
given by

− V = µ2φ†φ− λ(φ†φ)2 . (2.1)

A non-zero minimum of the potential can occur at 〈φ†φ〉 = v2/2 = µ2/(2λ) for
λ > 0 and µ2 > 0. The vacuum expectation value (VEV) v spontaneously breaks
the SU(2)L × U(1)Y symmetry to the U(1)em symmetry of quantum electrodynamics
(QED). The VEV v can then be aligned such that the expansion of the Higgs doublet
φ about the VEV can be written as

φ =
(

θ2 + iθ1
1√
2 (v +H)− iθ3

)
= eiθa

τa
v

1√
2

(
0

v +H

)
, (2.2)

where θ1, θ2, θ3 and H denote four real fields and τa are the SU(2)L generators. The
three degrees of freedom θa with a = 1, .., 3 can be rotated away by a SU(2)L gauge
transformation. They will correspond in the unitary gauge to the longitudinal degrees
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8 Chapter 2. The Standard Model

of freedom of the massive gauge bosons. One physical degree of freedom is left over –
the Higgs boson H.
The gauge symmetry of the SM is a local symmetry. The kinetic term Lkin of the
scalar field φ hence involves a covariant derivative,

Lkin = (Dµφ)†(Dµφ) . (2.3)

The covariant derivative reads

Dµφ =
(
∂µ − ig2W

a
µ τ

a − i12g1Bµ

)
φ , (2.4)

and introduces the U(1)Y gauge field Bµ and the SU(2)L gauge fields W a
µ with a =

1, ..., 3. The corresponding gauge couplings are denoted by g1 and g2, respectively.
Replacing φ by Eq. (2.2) in Lkin, the bilinear terms in the gauge fields arise with the
gauge boson mass squared as coefficient. Additionally, one finds interaction terms of
vector bosons with the Higgs bosons in Eq. (2.3), proportional to the mass squared of
the gauge boson.
Explicit mass terms for the fermions in the Lagrangian would break SU(2)L invariance.
They can, however, be generated by Yukawa couplings (with a, b = 1, 2 and ε12 = 1)

∆Lyuk = −ydQLφ dR − yuεabQLaφ
†
buR − yeLLφeR + h.c. , (2.5)

once φ acquires a non-zero VEV. The SU(2)L quark doublet is denoted by QL, the
SU(2)L lepton doublet by LL, the right-handed up-type fermions by uR, the down-
type fermions by dR and the right-handed leptons by eR. Indices in the flavour and
gauge space have all been contracted in the above formula. The Higgs boson H itself
is massive, with the mass connected by an unique relation to the parameter λ of the
Higgs potential, given by M2

H = 2λv2. Thus, by the measurement of MH all unknown
parameters of the SM Higgs potential are fixed. The currently measured value of the
Higgs boson mass MH by the ATLAS collaboration is 125.5 ± 0.2 ± 0.6 GeV [48] and
125.7± 0.3± 0.3 GeV by CMS [49].
Due to the close connection between the Higgs mass and the self-coupling λ, theoretical
bounds on λ are directly translated into bounds on MH . The scale dependence of
the coupling λ due to radiative corrections manifests itself by renormalization group
running. If the self-coupling λ runs to values smaller than zero before the Planck scale
MPlanck ' 1019 GeV the vacuum becomes unstable. By the requirement of absolute
stability a bound on the Higgs mass can be obtained. It turns out that this bound is
very near to the measured value and suggests a metastable vacuum [50–52]. Note that
the self-coupling λ could also run into a Landau pole at some high scale. In order to
avoid this, an upper limit on the Higgs boson mass is given by the so-called triviality
bound MH . 650 GeV [53–64], which turns out not to be relevant for the measured
Higgs mass.
The SM Higgs boson exhibits another very important feature: It unitarizes longitudi-
nal vector boson scattering. Without Higgs boson exchange the scattering amplitude
would increase for high energies with the energy squared leading to a breakdown of
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perturbative unitarity at some energy scale Λ. The Higgs boson restores unitarity if
the Higgs boson mass is smaller than an upper bound of MH ≤ 700 GeV [65], which
can easily be fulfilled by the current measurement. However, any deviations in the
Higgs boson self-couplings and Higgs boson couplings to vector bosons and fermions
would prevent a full restoration of perturbative unitarity.

2.2. Why Beyond the SM Physics?

Even though the SM was quite successful in explaining the experimental data in the
last few decades, there still remain some open issues of theoretical or experimental
nature that hint to physics beyond the SM. In this section some of them will be shortly
described, without any claim of completeness.
Experimental problems:

• In the SM, no mass term for the neutrinos is incorporated. There is, however,
experimental evidence [66–69], that neutrinos can oscillate, a phenomenon which
can theoretically only be explained, if the mass eigenstates and current eigenstates
do not coincide [70]. This implies that neutrinos are massive. The current upper
bound on the neutrino masses is a few eV [71].
A simple extension of the SM, with an additional right-handed, sterile neutrino
can solve this problem. For such a sterile neutrino an explicit Majorana mass term
can be introduced without violating the SM gauge symmetries (though violating
lepton number). The massless neutrino can mix with the massive Majorana
neutrino via Yukawa interactions, such that the physical spectrum contains only
massive neutrinos, with a very light and a heavy neutrino. This mechanism is
called ’seesaw’ [72–74].
If lepton number is conserved, neutrinos are Dirac particles. This, however,
requires the strength of the Yukawa interaction to be much smaller than the
Yukawa interactions of the other fermions without explaining this hierarchy.

• On experimental side many observations in cosmology e.g. orbital velocities of
galaxies in clusters or stars in the milky way, gravitational lensing effects [75] or
fluctuations in the cosmic microwave background [76, 77] give evidence for a non-
baryonic kind of matter, called Dark Matter. A suitable candidate is commonly
assumed to be a weakly-interacting massive particle (WIMP) [78], which cannot
be provided by the SM. Moreover, observations of distances and associated red
shifts of supernovae of type Ia indicate an acceleration of the universe [79, 80],
which is explained by a larger energy density of the universe as given by the
known and the dark matter together. This means there must be a new energy
source, the so-called Dark Energy. The simplest candidate for Dark Energy is a
cosmological constant in the Einstein equation, but the origin and size is yet to be
explained. Other propositions are e.g. modified gravity or spatial inhomogeneity.
For a review, see Ref. [81].

• Another cosmological problem is the dominance of matter over antimatter in the
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universe. The process leading to an asymmetry between baryons and anti-baryons
is called baryogenesis. The necessary conditions are given by the Sakharov crite-
ria [82], which state that a violation of baryon number, a violation of C and CP
symmetry and a departure from thermal equilibrium are necessary. The SM can
fulfill this conditions, but it turns out that within the SM, the produced amount
of net baryons by baryogenesis is too small to explain the baryon asymmetry of
the universe. Another connected approach is leptogenesis, which can be incorpo-
rated into extensions of the SM concerning the neutrino sector. The asymmetry
generated by leptogenesis between leptons and anti-leptons can be transferred to
baryons by non-perturbative processes.

Theoretical problems:
• A full description of nature should also include gravitation.
• A unification of all forces is a very appealing scenario. The running gauge cou-

plings in the SM seem to hint to such a possible gauge coupling unification at
some high scale MGUT ≈ 1016 GeV, but they do not fully unify. In Grand Uni-
fied Theories (GUT), the SM gauge group is embedded into a larger symmetry
group. This is normally accompanied by new particles at a very high scale. Ide-
ally, in GUT models the amount of parameters is reduced with respect to the SM.
They also give a possible explanation of charge quantization and predict matter
instability.

• Hierarchy problem: The hierarchy problem concerns the question why the Higgs
boson mass is so much smaller than the Planck scale. It is closely connected to
the issue of fine-tuning. To be more concrete: Quantum corrections to the Higgs
boson mass introduce a conceptual problem in the SM [83]. If the SM is seen as
an effective theory valid up to some scale Λ, the ratio of the one-loop corrections
δM2

H to the squared Higgs boson mass M2
H reads [84]

δM2
H

M2
H

= 3Λ2

8π2v2M2
H

(4m2
t −M2

H − 2M2
W −M2

Z) . (2.6)

with mt, MW and MZ denoting the top quark mass, the W boson mass and the
Z boson mass, respectively. Numerically, this means that the SM should only be
valid up to a scale of roughly 0.5 TeV for a natural theory. A theory is natural if
physics at a certain scale is determined by physics at the same scale, hence the
ratio δM2

H/M
2
H should be of order 1.

The problem can be reformulated in terms of a renormalizable theory, if one adds
an additional particle at some high scale. For concreteness, it is assumed that
the new particle is a new very heavy scalar particle Φ with an interaction term
gΦ|H|2|Φ|2 and a mass mΦ as it can e.g. arise in GUT models. Then the finite
terms of the one-loop contribution are given by

δM2
H ≈ −

gΦ

16π2m
2
Φ

(
1− log m

2
Φ

µ2

)
+ ..., (2.7)

with the renormalization scale µ. This means that a large amount of fine-tuning
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is necessary for the Higgs boson mass to have a mass value at the scale of EWSB
rather than at some high scale mΦ due to the dependence on m2

Φ.
In this sense, it is also necessary to distinguish between two different concepts of
naturalness: In the strict sense, naturalness means that parameters should be of
order one in natural units. There is, however, also the concept of ’t Hooft [85],
called ’technical naturalness’, which states that a small parameter is natural if it
is protected by some symmetry. This means e.g. that in the SM light fermion
masses are technically natural, as the limit mf → 0 leads to a chirally symmetric
Lagrangian and hence enhances the symmetry. For the Higgs boson mass there is
no such symmetry protection. Note that most SM extensions address the problem
of technical naturalness.
A comment on fine-tuning of the cosmological constant is in order. The energy
density of the vacuum, which acts like Einstein’s cosmological constant, is by
dimensional analysis found to be of the orderM4

Planck. Compared to the measured
value of the cosmological constant due to cosmic acceleration, this implies a fine-
tuning of ∼ 120 orders of magnitude, an even more severe fine-tuning than for
the Higgs boson mass. One can, however, hope that quantum gravity might solve
this problem.

The hierarchy problem plays a special role in all previously discussed points. All the
other problems do not give a direct hint to a New Physics scale or, instead point to
some very high scale, whereas the hierarchy problem suggests New Physics at the TeV
scale. Hence it has acted as a guideline and motivation for model-building and searches
for New Physics in the past. In this spirit, many New Physics models were proposed,
addressing the hierarchy problem by New Physics at a low scale. In this context, we
will discuss supersymmetry (SUSY) and Composite Higgs Models (CHM) in this thesis
as possible New Physics scenarios in the second and third part of this thesis.
It should be noted, though, that low-energy modifications to the SM are not the only
solutions to the hierarchy problem. Another possibility to circumvent it, is to argue
that there is no higher scale introducing any hierarchy to the SM. This can of course
only work under the assumption that gravity does not pose any problem and that all
hard experimental problems of the SM can be solved at scales below the EWSB scale.1

Another, maybe more speculative, idea is based on the multiverse. Under the assump-
tion that there is a multitude of universes, there will be one where the parameters are
realized as we observe them. By an anthropic principle, the values of some parame-
ters are selected such that the existence of us as observers is possible. This allows to
give bounds on parameters, see e.g. Ref. [87] for a discussion of possible values of the
cosmological constants by an anthropic principle.
We will now turn back to the SM and discuss the measurement of the Higgs boson
self-couplings, which give directly access to the Higgs potential and hence are the last
part in the program of establishing experimentally the mechanism of EWSB of the SM.

1In Ref. [86] a very simple extension of the SM was proposed by adding three right-handed neutri-
nos with masses smaller than the EW scale that can solve the issue of neutrino masses, dark matter
and baryogenesis at once.
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Afterwards, the phenomenological implications of two beyond the SM extensions will
be discussed.



CHAPTER 3

Higgs pair production at the LHC

After the Higgs boson discovery one of the major goals of the LHC has become the
measurement of the Higgs boson couplings. A special role take in this context the
Higgs boson self-couplings. Their measurement allows for a reconstruction of the Higgs
potential and hence an experimental verification of the mechanism of EWSB.
Experimentally, the measurement of the Higgs boson self-couplings is a very challenging
task, which requires high luminosities for the triple Higgs coupling measurement. The
quartic Higgs boson coupling seems to be neither measurable at a high-luminosity
upgraded LHC [88–90] nor at a linear collider [38, 91].
The triple Higgs coupling is accessible in Higgs pair production processes. In the SM
the most important process at the LHC is double Higgs production via gluon fusion,
which is induced by loops of heavy fermions namely top and bottom quarks, followed
by Higgs pair production via vector boson fusion (VBF), double Higgs-strahlung off
vector bosons and associated production of the Higgs boson pair with top quarks.
In the previous works of Refs. [39, 40] the gluon fusion, the VBF and the Higgs-
strahlung production modes were studied and the sensitivity on the extraction of the
triple Higgs coupling was investigated. In this work, which is based on Ref. [35], the
previous analysis of Refs. [39, 40] is updated by including into the analysis higher order
QCD corrections for the three main production processes and by amending the results
with modern parton distribution function (PDF) sets. Additionally, the associated
production of a Higgs boson pair with a top quark pair is calculated at leading order
(LO). The theoretical uncertainties are studied by taking into account uncertainties due
to missing higher order calculations by varying the renormalization and factorization
scales, the uncertainty on the PDFs and the strong coupling constant αs and, for the
gluon fusion process, the uncertainty stemming from the usage of the heavy quark mass
limit for the next-to leading order (NLO) QCD corrections.

13
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Q

Figure 3.1.: Generic Feynman diagrams for Higgs pair production via gluon fusion at LO. The
blob in the diagram indicates the triple Higgs coupling. The symbol Q stands
for the top and bottom quark.

In order to explore if the triple Higgs coupling can be measured at the LHC, a parton
level analysis is performed for various final states into which the Higgs boson pair can
decay. For this analysis we restrict ourselves to the dominant Higgs pair production
process. Similar analyses have been performed in Refs. [92–100].
In the first part of this chapter the gluon fusion process and its theoretical uncertainties
are discussed. In the second part, VBF with the higher order corrections and the
associated theoretical uncertainties will be described and, similarly, the Higgs-strahlung
process in the third part. In the fourth part of this chapter a brief summary on the
size of the cross sections for all the processes will be given, together with a short
investigation on the sensitivity on the triple Higgs coupling. Before concluding in the
last section, the fifth part discusses the prospects of measuring the gluon fusion cross
section in the three final states bb̄τ τ̄ , bb̄γγ and bb̄W+W−.

3.1. Higgs pair production via gluon fusion

Double Higgs production via gluon fusion is the dominant Higgs pair production pro-
cess. It is induced by heavy fermion loops – mainly by top quarks, while bottom quark
loops contribute with less the 1%. At LO the process is known with the full quark
mass dependence and can be found in Refs. [101–104]. Figure 3.1 shows the generic
LO Feynman diagrams for the gluon fusion process. There are a triangle and box
contributions. The triangle diagram contains the triple Higgs coupling. For the box
diagram in Fig. 3.1 we only show one generic diagram. There are three different box
contributions corresponding to different momentum configurations.
The QCD corrections to the gluon fusion channel were computed in Ref. [105] at NLO
in the low-energy theorem (LET) approximation, which means for the limit of heavy
fermion masses in the loop. In the LET approximation, the loop-induced process can
be replaced by an effective coupling of gluons to Higgs bosons. In order to improve
the NLO result, the LO cross section is taken into account with the full fermion mass
dependence in Ref. [105], which improves the results significantly. In Ref. [106], this
heavy quark mass approximation was tested by the inclusion of higher order terms
in the expansion in 1/mt. Recently, in Ref. [107], the LET calculation of Ref. [105]
was improved by including the real emission matrix element with the full mass depen-
dence. Furthermore, the next-to-next-to-leading order (NNLO) QCD corrections in
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the LET approximation were calculated in Ref. [108]. Threshold resummation in the
soft-collinear effective theory of soft gluons in the initial state are given in Ref. [109].
The QCD corrections to this process turn out to be quite large: At NLO the full cross
section is almost the double of the LO result. The NNLO corrections are of O(20%).
In the following only the NLO QCD corrections in the heavy quark mass limit are
taken into account as for the NNLO corrections no public code is available.
For the evaluation of the numerical results I have used the code HPAIR [110], with the
renormalization and factorization scale set to

µ0 = µR = µF = MHH , (3.1)

with MHH denoting the invariant mass of the Higgs boson pair, unless indicated oth-
erwise. We thus obtained a K-factor of

K = σNLO
σLO

∼ 2 (1.5) at
√
s = 8 (100) TeV ,

evaluating the cross section at NLO consistently with the PDFs at NLO, with αs(MZ)
as given by the PDF set and the evolution of αs at the corresponding order depending
on the evaluated order of the cross section. The cross section at LO, σLO, was calculated
correspondingly with a LO PDF set and the corresponding αs. At LO the full mass
dependence has been taken into account. As reference PDF set we have used the
MSTW2008PDF set [111], as it includes error PDFs which allow for an estimation of
the theoretical uncertainties. As input parameters we chose

MH = 125 GeV , MZ = 91.1876 GeV, MW = 80.398 GeV,
mt = 173.1 GeV , αLOs (MZ) = 0.13939 , αNLOs (MZ) = 0.12018 .

(3.2)

3.1.1. Theoretical uncertainties

As described above, the theoretical uncertainties on the inclusive cross section of the
gluon fusion process will be estimated by taking into account the following sources of
error:

• The uncertainty due to missing higher order corrections is estimated by varying
the scale µ0, cf. Eq. (3.1). This gives an estimate of the size of the missing higher
order corrections.

• The uncertainties on the PDFs and, related, on αs. The PDFs are fitted from
data. The starting point is a parametrization at some low scale Q0 in the Bjorken
x. With the help of DGLAP equations [112–114], they are then obtained at any
scale Q0 and for any x. Since the PDFs are fitted from the data, they depend on
the choice of the data sets and the treatment of the errors on the data, as well as
on the parametrization. Furthermore, different groups have a different treatment
of heavy quark flavours or use different αs.

• Specifically for the gluon fusion channel, we additionally estimate the error due
to the heavy quark mass approximation for the calculation of the higher order
corrections.
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In order to obtain the scale uncertainty we varied the scale according to
1
2µ0 ≤ µR = µF ≤ 2µ0 . (3.3)

The obtained uncertainty at NLO is quite high: ∆µ ∼ 20%/ − 17% at
√
s = 8 TeV

and ∆µ ∼ 12%/ − 10% at
√
s = 100 TeV. Note, however, that varying the scale as

described in Eq. (3.3) in the LO result would not capture the NLO cross section and
could suggest to vary the scale within a larger window. The correction from NLO to
NNLO is, however, given in Ref. [108] and turned out to be O(20%), reducing the
scale uncertainty below 10%. Additionally, for single Higgs production the same scale
variation as in Eq. (3.3) is used to estimate the theoretical uncertainty [115, 116],
suggesting the scale variation as given in Eq. (3.3).
Another source of a theoretical uncertainty is due to the PDFs. One part of the un-
certainties on the PDFs comes from the assumptions made for the parametrization, as
e.g. different ways of how to parameterize the data, another part comes from theoretical
assumptions as e.g. on the behaviour for x→ 0, 1 or from different input data. These
uncertainties are rather hard to estimate. The only possibility is to compare different
PDF sets from different groups. A comparison of the prediction of the different PDF
sets can be found in Fig. 3.2, where we show in black the MSTW [111] prediction, in
red the CT10 [117], in green the ABM11 [118], in blue the GJR08 [119], in violet the
HERA 1.5 [120] and in light blue the NNPDF 2.3 [121] prediction as a function of the
centre-of-mass (c.m.) energy

√
s. In the small subfigure of Fig. 3.2 the cross sections

are normalized to the MSTW prediction. The MSTW PDF set leads to the largest
cross section. For

√
s = 8 TeV the ABM11 PDF set gives a cross section which is

smaller by 20%. At
√
s = 100 TeV the largest discrepancies of 15% are between the

GJR08 PDF set and the MSTW2008 or the GJR08 and the ABM11 PDF set. All the
other predictions of the different PDF groups lie in between.
The other source of uncertainty on the PDFs stems from the errors on the fitted data.
With the MSTW PDF set these errors can be easily estimated by using the error
PDFs [122] provided by the MSTW collaboration. They give additional 2 NPDF sets
to determine the variation around the global minimum of the χ2 distribution obtained
from their fit, where NPDF corresponds to the number of fitted parameters. Using the
90% C.L. error PDFs we obtain as an uncertainty

∆PDF ∼ 6% (2.7%) at
√
s = 8 (100) TeV . (3.4)

There is additionally an uncertainty on αs. The MSTW PDF set, however, allows
to do a combined analysis on the PDF+αs uncertainty, by providing PDF sets for
the central value of αs, and in addition for the maximal and minimal values of αs of
a 90% C.L. interval and two values of αs half between the central value and those
maximal and minimal values, with

αNLOs (MZ) = 0.12018+0.00317
−0.00386 (at 90% C.L.) . (3.5)

I hence had to compute the cross section 2NPDF + 1 times for each of the five values
of αs. For each fixed value of αs with a central PDF set S0 and the NPDF error sets
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Figure 3.2.: The Higgs pair production via gluon fusion cross section as a function of the
c.m. energy

√
s for different PDF sets. In the insert the cross sections normalized

to the MSTW prediction are shown. This figure is already published in Ref. [35].

S±i the PDF error can be calculated with [122]

(∆σαsPDF )+ =

√√√√NPDF∑
i=1

{
max

[
σ(αs, S+

i )− σ(αs, S0), σ(αs, S−i )− σ(αs, S0), 0
] }2

(3.6)

(∆σαsPDF )− =

√√√√NPDF∑
i=1

{
max

[
σ(αs, S0)− σ(αs, S+

i ), σ(αs, S0)− σ(αs, S−i ), 0
] }2

. (3.7)

The combined PDF+αs uncertainty can be obtained from [122]

(∆σαs+PDF )+ = max
αs

({σ(αs, S0) + (∆σαsPDF )+})− σ(α0
s, S0) (3.8)

(∆σαs+PDF )− = σ(α0
s, S0)−min

αs
({σ(αs, S0)− (∆σαsPDF )−}) . (3.9)

Taking into account the combined PDF+αs uncertainty, and not just the pure PDF
uncertainty, leads to larger values

∆PDF+αs ∼ 8.5% (6.2%) at
√
s = 8 (100) TeV . (3.10)

Note that the given PDF+αs uncertainties are not large enough to explain the differ-
ences in the different prediction using different PDF sets. However, we only calculated
the uncertainties from the MSTW PDF set. Possibly, taking into account the error
bands from all PDF sets could show an overlap between them. By now, however, the
results show that the uncertainty on the combined PDF+αs error might underestimate
the actual uncertainty which can also stem from the different parametrizations.
For the gluon fusion process there is an additional uncertainty, due to the use of the
heavy quark mass approximation for the calculation of the higher order corrections. In
this limit the loops of heavy quarks can be replaced by an effective ggH and ggHH
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√
s [TeV] σNLO

gg→HH [fb] Scale [%] PDF [%] PDF+αs [%] EFT [%] Total [%]
8 8.16 +20.4 −16.6 +5.8 −6.0 +8.5 −8.3 ±10.0 +41.5 −33.3
14 33.89 +18.2 −14.7 +3.9 −4.0 +7.0 −6.2 ±10.0 +37.2 −29.8
33 207.29 +15.2 −12.4 +2.5 −2.7 +6.2 −5.4 ±10.0 +33.0 −26.7
100 1417.83 +12.2 −9.9 +2.0 −2.7 +6.2 −5.7 ±10.0 +29.7 −24.7

Table 3.1.: The Higgs pair production cross section at NLO for the gluon fusion process (in fb)
for different c.m. energies (in TeV) taken at the central scale µF = µR = MHH , for
MH = 125 GeV. The theoretical uncertainties due to the various sources described
in the text as well as the total theoretical uncertainty are listed. The results of
this table are already published in Ref. [35].

vertex with the help of the LET [123–125]. This approximation, however, is valid for√
ŝ� mt, with

√
ŝ being the partonic c.m. energy, and therefore works much better for

single Higgs production, where
√
ŝ = MH . For the double Higgs production, we have

2MH ≤
√
ŝ ≤
√
s. At LO the LET underestimates the total cross section for double

Higgs production by O(20%) at
√
s = 16 TeV [102]. For distributions it is even worse

[92–95]. On the other hand, for NLO corrections the approximation should become
better, if the LO cross section is taken into account with the full mass dependence,
because the dominant corrections given by the real radiation of a gluon factorize into
the LO cross section and a part independent of the masses of the heavy fermions in the
loop. Based on the single Higgs production case we estimate the theoretical uncertainty
due to the use of the effective vertex for the corrections to

∆EFT ± 10% . (3.11)

This estimate was recently confirmed by the calculation in Ref. [106], which estimated
the finite mass effects by including in the calculation of the NLO cross section higher
orders in 1/mt.
The various theoretical uncertainties then need to be combined. A quadratic addition
of the uncertainties is quite optimistic [115] as it assumes that the uncertainties are
uncorrelated. A linear addition is very conservative, so we follow Ref. [126], which
calculates the scale uncertainty and then adds the PDF+αs uncertainty calculated at
the minimal and maximal cross sections with respect to the scale variation. The error
from the use of the LET for the NLO QCD corrections is then added linearly.
For the gluon fusion process the total cross section and the corresponding theoretical
uncertainties can be found in Table 3.1 for collider energies of

√
s = 8, 14, 33 and 100

TeV. It can be inferred from the table that the theoretical uncertainty is quite high
(up to ∼ 40 % for

√
s = 8 TeV), but decreases a bit with the c.m. energy.

3.2. Higgs pair production via vector boson fusion

Double Higgs production via VBF is the process with the second largest cross section.
For the single Higgs production case, its interesting kinematics of two high invariant
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Figure 3.3.: Feynman diagrams for the Higgs pair production process via vector boson fusion,
qq′ → HHqq′, at LO.

mass tagging jets with larger rapidity gap and a centrally produced Higgs boson make
it a very sensitive channel and therefore worthwhile to study it also for the double
Higgs production case. We, therefore, determined the NLO QCD corrections for this
process and investigated its theoretical uncertainties. The Feynman diagrams for the
process at LO can be found in Fig. 3.3.

3.2.1. Higher order corrections

The calculation of higher order QCD corrections for the VBF channel are simplified by
the fact that all interference diagrams with a gluon exchange between the two fermion
lines disappear due to the colour singlet nature of the exchanged gauge bosons at LO.
The NLO QCD corrections then consist only of the known corrections in the structure
function approach [127–129]. In the framework of this project, the matrix elements
for this process were implemented in the code VBFNLO [130, 131], such that the generic
QCD corrections for VBF processes can be applied to the double Higgs production
case. We found the QCD corrections to be of O(7%), by using

µ0 = µR = µF = QV ∗ ,

where QV ∗ denotes the momentum of the intermediate vector boson (V ∗ = W ∗, Z∗).
Note that a cut on QV ∗ ≥ 2 GeV has to be applied, as the PDFs are only available
for higher scale values. More details on the higher order corrections can be found
in Ref. [35]. The result is in agreement with a previous calculation in Ref. [132] in
the context of the two Higgs doublet model. In a recent work [133], the NNLO QCD
corrections were calculated but turned out to be quite small. They will not be included
in the following discussion on the theoretical uncertainties.

3.2.2. Theoretical uncertainties

In order to determine the theoretical uncertainties we proceeded here very similar to
what was done for the gluon fusion production channel. It will therefore be discussed
only very briefly. In order to obtain the scale uncertainty we explored the range

µ0

2 ≤ µR, µF ≤ 2µ0 , (3.12)

using 1
2 ≤ µR/µF ≤ 2 after checking that this restriction does not modify the result.

The scale uncertainty for this process is quite small ∼ ±2% at 8 TeV and even smaller
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√
s [TeV] σNLOqq′HH [fb] Scale [%] PDF [%] PDF+αs [%] Total [%]

8 0.49 +2.3 −2.0 +5.2 −4.4 +6.7 −4.4 +9.0 −6.4
14 2.01 +1.7 −1.1 +4.6 −4.1 +5.9 −4.1 +7.6 −5.1
33 12.05 +0.9 −0.5 +4.0 −3.7 +5.2 −3.7 +6.1 −4.2
100 79.55 +1.0 −0.9 +3.5 −3.2 +5.2 −3.2 +6.2 −4.1

Table 3.2.: The total Higgs pair production cross section at NLO for the vector boson fusion
process at the LHC for different c.m. energies at a central scale µF = µR = QV ∗ for
MH = 125 GeV. Additionally, the theoretical uncertainties of various sources and
the total theoretical uncertainty are given. The results of this table are already
published in Ref. [35].

at higher energies. Note that the NLO QCD corrections decrease the theoretical un-
certainties due to higher order corrections considerably. At LO the scale uncertainty
is still ∼ 8% at 8 TeV.
The PDF+αs uncertainty dominates the theoretical error with +7%/-4% for

√
s = 8

TeV and +5%/-3% at
√
s = 100 TeV. For this process we add up the PDF+αs and

the scale uncertainty linearly, justified by the fact that the scale uncertainty is very
small. This thus leads to the same result as the procedure described for the gluon
fusion process.
In Table 3.2 the cross section at NLO QCD for different c.m. energies with the corre-
sponding theoretical uncertainties can be found. The total theoretical uncertainty is
much lower than for the gluon fusion production mode, maximally amounting to 9%.

3.3. Double Higgs-strahlung

At LO the Higgs-strahlung process has been calculated a long time ago in Ref. [134].
The two Higgs bosons can be radiated from either a Z boson or a W boson. At LO
the radiation off a W boson dominates [39, 40] over the corresponding process with a
Z boson. As a central scale for this process we chose (V = W,Z)

µ0 = µR = µF = MV HH , (3.13)

where MV HH denotes the invariant mass of the vector boson and two Higgs final state.
The Feynman diagrams for the process at LO can be found in Fig. 3.4.

3.3.1. Higher order corrections

For double Higgs-strahlung off vector bosons qq̄ → V ∗ → V HH the NLO QCD
corrections can be inferred from the long known correction to the Drell-Yan process
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Figure 3.4.: Feynman diagrams for the Higgs pair production via Higgs-strahlung off a vector
boson, qq̄ → V HH (V = W,Z), at LO.
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Figure 3.5.: Generic Feynman diagrams for the process gg → ZHH, which are part of the
NNLO QCD corrections for the process pp→ ZHH.

qq̄ → V [135–137], as the process can be viewed as the Drell-Yan production qq̄ → V ∗

followed by the splitting V ∗ → V HH with an off-shell vector boson with squared mo-
mentum k2 and (2MH + MV )2 ≤ k2 ≤ ŝ. The NNLO QCD corrections consist of the
known Drell-Yan NNLO QCD corrections [138–140]. For double Higgs-strahlung off
a Z boson, there is an additional contribution from gluon-initiated one-loop diagrams
(see Refs. [140–142] for single-Higgs radiation), which are of the same order as the
NNLO QCD corrections.1 For the double Higgs-strahlung process, this means that the
contributions from gg → ZHH stemming from triangle, box and pentagon diagrams
need to be included. The Feynman diagrams can be found in Fig. 3.5. The process
is mediated by heavy quark loops. For the box and pentagon diagrams this is due
to the Higgs coupling to the fermion loop: Since the Higgs coupling to fermions is
proportional to their mass, light quark loops are negligible. For the triangle diagram,
the reason is that the contribution of the quarks of one SU(2)L doublet cancels if the
masses of the quarks in the doublet are degenerate, meaning that for the light quarks
this contribution is negligible as their masses are nearly degenerate. For the calcu-
lation of this process I used FeynArts/FormCalc/LoopTools [147–150]. The results
were cross-checked in a second independent calculation.
The gg → ZHH contribution is of O(20 − 30%) depending on the c.m. energy. Note
that this contribution is much more important than in the single Higgs production case
where gg → ZH only contributes with less than 5%. The reason is, that, in addition,
we have the contribution from the pentagon diagram which involves two top Yukawa
couplings. Also the destructive interference of the triangle and box diagram in the case
of single Higgs production is softened.

1Note that in Ref. [143–146] it was shown that additional contributions to the NNLO QCD cor-
rections via an effective ggZ vertex with the initial states qg or qq̄ are negligably small.
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√
s [TeV] σNNLO

WHH [fb] Scale [%] PDF [%] PDF+αs [%] Total [%]
8 0.21 +0.4 −0.5 +4.3 −3.4 +4.3 −3.4 +4.7 −4.0
14 0.57 +0.1 −0.3 +3.6 −2.9 +3.6 −3.0 +3.7 −3.3
33 1.99 +0.1 −0.1 +2.9 −2.5 +3.4 −3.0 +3.5 −3.1
100 8.00 +0.3 −0.3 +2.7 −2.7 +3.8 −3.4 +4.2 −3.7

Table 3.3.: The total Higgs pair production cross sections at NNLO QCD for the qq̄′ →WHH
process at the LHC for different c.m. energies at the central scale µF = µR =
MWHH for MH = 125 GeV. Additionally, the theoretical uncertainties of various
sources and the total theoretical uncertainty are given. The results of this table
are already published in Ref. [35].

In total, we obtain as K-factors for
√
s = 14 TeV

K = σNNLO
σLO

= 1.32(1.52) for WHH (ZHH) , (3.14)

for which we have set αNNLOs (MZ) = 0.11707. In our calculation we have included the
full CKM matrix elements in the quark luminosities and initial state bottom quark
contributions.

3.3.2. Theoretical uncertainties

For the theoretical uncertainties on the Higgs-strahlung process I proceeded in the
same way as was done for the VBF production mode. The scale was varied within the
range µ0/2 ≤ µR = µF ≤ 2µ0. The uncertainty due to missing higher order corrections,
which is deduced from the scale variation, for the WHH process turns out to be very
small, less than 1%. For the ZHH process the scale uncertainty is, however, higher
because of the additional contribution of the gluon induced diagrams at NNLO. For
this subchannel these are the LO contributions, which means that they still show a
large scale uncertainty. Since they are, however, part of the NNLO corrections the
scale uncertainty for the ZHH production process is still below ∼ 5%.
The combined PDF+αs uncertainty is for both processes roughly between 3-4%. This,
in the end, adds up to a theoretical uncertainty of less then 5% for the WHH produc-
tion channel and of less then 9% for ZHH. More details can be found in Table 3.3 for
WHH production and in Table 3.4 for ZHH production.

3.4. Cross sections and sensitivity on the triple Higgs
coupling at the LHC

With the higher order corrections of the last section at hand, we can now compare the
cross sections of the different production modes. Additionally to the already discussed
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√
s [TeV] σNNLO

ZHH [fb] Scale [%] PDF [%] PDF+αs [%] Total [%]
8 0.14 +3.0 −2.2 +3.8 −3.0 +3.8 −3.0 +6.8 −5.3
14 0.42 +4.0 −2.9 +2.8 −2.3 +3.0 −2.6 +7.0 −5.5
33 1.68 +5.1 −4.1 +1.9 −1.5 +2.7 −2.6 +7.9 −6.7
100 8.27 +5.2 −4.7 +1.9 −2.1 +3.2 −3.2 +8.4 −8.0

Table 3.4.: Same as Table 3.3 for ZHH production using the central scale µF = µR = MZHH .
The results of this table are already published in Ref. [35].
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Figure 3.6.: Example Feynman diagrams for the process pp→ tt̄HH.

processes of gluon fusion, vector boson fusion and Higgs-strahlung off W or Z bosons,
we calculated the associated production of a Higgs boson pair with a top quark pair at
LO with the help of Madgraph/MadEvent[151, 152]. I provided a cross-check for this
calculation. Only the diagrams involving strong interactions need to be included for
the process. The inclusion of the electroweak contributions barely changes the result.
Generic Feynman diagrams for the pp → tt̄HH process can be found in Fig. 3.6. For
the scale of the process we used µ0 = mt + 1

2MHH . The final results for the cross
sections can be found in Fig. 3.7, which shows in red the gluon fusion cross section at
NLO QCD, in green the VBF cross section at NLO QCD, in blue theWHH and ZHH
cross sections at NNLO and in violet the tt̄HH cross section at LO. The cross sections
are roughly three order of magnitudes smaller than the corresponding single Higgs
production processes. The gluon fusion production mode dominates over the others by
at least one order of magnitude. Note that the tt̄HH process has a larger cross section
in Fig. 3.7 than theWHH and ZHH production modes in contrast to the single Higgs
production case. In Ref. [153], where this process was investigated, the hierarchy was
found to be inverse. We checked, however, that the process is very sensitive to the scale
choice and has therewith large uncertainties on the cross section. Another scale choice
can invert the order of the two processes and can therefore reconcile our result with
the one in Ref. [153]. The issue about the best scale choice for this process can only be
solved by including higher order corrections. In Ref. [107] the NLO QCD corrections
were recently calculated. Even though the scale choice differs from ours, the results
are in good agreement.
In order to investigate the sensitivity on the triple Higgs coupling λHHH , we rescale it
in terms of the SM triple Higgs coupling, λSMHHH = 3M2

H/v, for the gluon fusion, VBF
and Higgs-strahlungs production channels to obtain the maximal possible sensitivity,
similar to what has been done in Refs. [38, 39]. This does not give any information
on New Physics models, as in most New Physics models, not only the triple Higgs
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Figure 3.7.: The cross sections as functions of the c.m. energy for the gluon fusion process
(red/full) at NLO QCD, VBF (green/dashed) at NLO QCD, WHH and ZHH
(blue/dotted) at NNLO QCD and tt̄HH (violet/small dotted) at LO QCD. This
plot is already published in Ref. [35].

coupling is modified but there might also be some other important contributions to
the process from e.g. dimension six operators or new particles running in the loop. It
merely tests how well a certain production process needs to be known to extract the
SM triple Higgs coupling with a certain accuracy. Figure 3.8 shows the sensitivity on
the SM triple Higgs coupling for the c.m. energies

√
s = 8, 14, 33 TeV. The left plots

in Fig. 3.8 show the total cross section as a function of the variation of the triple Higgs
coupling κ = λHHH/λ

SM
HHH , the right plots are normalized to the value of the cross

section at κ = 1 corresponding to the SM result. As can be inferred from the plots,
the VBF production channel is the most sensitive one, followed by gluon fusion. The
minimal cross section for production in the VBF channel is obtained for κ ≈ 2, for
gluon fusion at κ ≈ 3 and for WHH and ZHH production at κ ≈ −1. The sensitivity
on the triple Higgs coupling decreases with the energy for all the shown processes as
the diagram involving the triple Higgs coupling is generally suppressed by the Higgs
boson propagator with the partonic c.m. energy

√
ŝ.

3.5. Prospects of measuring Higgs pair production at
the LHC

The prospects of measuring the Higgs pair production process at the LHC are investi-
gated in the following in a parton level analysis. As the cross sections are very small,
we will concentrate on the main production channel gluon fusion. In order to keep the
signal from becoming too small, one of the Higgs bosons should at least decay via the
dominant decay mode: H → bb̄. For the decays of the second Higgs boson, a first pos-
sibility would be to also consider the second Higgs boson decaying into bb̄, but this final
state is overwhelmed by the large 4b QCD background [94]. We, therefore, consider the
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Figure 3.8.: The sensitivity on the triple Higgs coupling for the gluon fusion process, the
VBF process and WHH and ZHH production for the c.m. energies

√
s = 8 TeV

(upper plots), 14 TeV(plots in the middle), 33 TeV (lowest plots). The plots
on the left show the total cross section as a function of the variation of the
triple Higgs coupling, the plot on the right are normalized to the prediction for
no variation of the SM triple Higgs coupling (λHHH/λSMHHH). These plots are
already published in Ref. [35].
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final states bb̄τ τ̄ , bb̄γγ and bb̄W ∗W ∗ with the off-shell W bosons decaying leptonically.
Following the recommendations of the LHC Higgs cross section working group [115],
we use for the branching ratios of the 125 GeV SM Higgs boson, BR(H → bb̄) = 0.577,
BR(H → τ τ̄) = 0.0612, BR(H → W ∗W ∗) = 0.215 and BR(H → γγ) = 0.00228.
The general approach will be exemplified for the bb̄γγ final state, whereas the results
of the other final states will be only summarized shortly. More details can be found in
Ref. [35].
For the calculation of the signal, the LO matrix element of HPAIR [110] was implemented
into Pythia 6 [154]. The NLO QCD corrections were taken into account via aK-factor
of K = 1.88 [115]. The background processes were calculated with Madgraph 5 [152].
Again, higher order corrections were taken into account with multiplicative K-factors.
For the evaluation of the cross sections the MSTW2008 PDF set was used as before.
As c.m. energy we use throughout this section

√
s = 14 TeV.

3.5.1. The bb̄γγ final state

In this subsection the results of the bb̄γγ final state study of Ref. [35, 155] are summa-
rized. More studies for this final state can be found in Refs. [95, 99, 100]. Background
processes for this final state are the QCD continuum processes bb̄γγ and the produc-
tion of a Higgs boson in association with a tt̄ pair with the Higgs boson decaying into
photons and the top quarks into W bosons and bottom quarks. Another background
stems from the associate production of a single Higgs boson with a Z boson with the
Higgs boson decaying to γγ and the Z boson to bb̄. For the QCD continuum process no
higher order corrections are taken into account, whereas for tt̄H production a K-factor
of 1.1 was used and for ZH production a NNLO K-factor of 1.33. The K-factors were
taken from Ref. [115]. First, some basic selection cuts were applied, namely:

• Cuts on the pT of the leptons pT,`> 20 GeV and on the pseudorapidity |η`| < 2.4,
on the pT of the jets pT,jets > 20 GeV and their pseudorapidity |ηjet| < 2.4 to
reduce the tt̄H background;

• pT,b > 30 GeV, |ηb| < 2.4, and ∆R(b, b) > 0.4 (with ∆R being the distance of the
two b quarks in the pseudorapidity and azimuthal plane, ∆R =

√
(∆η)2 + (∆φ)2)

for the b-quark;
• pT,γ > 30 GeV, |ηγ| < 2.4 and ∆R(γ, γ) > 0.4 for the photons;
• the reconstruction of the Higgs mass in the windows 112.5 GeV < Mbb̄ <

137.5 GeV and 120 GeV < Mγγ < 130 GeV;
• ∆R(γ, b) > 0.4;

and we require exactly one bottom quark pair and one photon pair. We assume a
b-tagging efficiency of 70%. Based on the boosted Higgs boson topology one can apply
further cuts to reduce the background. As can be inferred from Fig. 3.9 (right) a cut on
the invariant massMHH of the Higgs boson pair can reduce the background as the signal
itself peaks at higher values ofMHH , so we appliedMHH > 350 GeV. In the left plot of
Fig. 3.9 it can be seen that a cut on the pT,H > 100 GeV can further remove background
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Figure 3.9.: Normalized differential cross sections of signal (in red) and background processes
with respect to the transverse momentum of one Higgs boson, pT,H , (left plot)
or the invariant mass MHH (right plot). These plots are already published in
Ref. [35].

HH bb̄γγ tt̄γγ ZH S/B S/
√
B

σNLO [fb] 8.92 · 10−2 5.05 · 103 1.39 3.33 · 10−1 1.77 · 10−5 6.87 · 10−2

MH from b’s 4.37 · 10−2 4.01 · 102 8.70 · 10−2 1.24 · 10−3 1.09 · 10−4 1.20 · 10−1

MH from γ’s 3.05 · 10−2 1.78 2.48 · 10−2 3.73 · 10−4 1.69 · 10−2 1.24
Cut on MHH 2.73 · 10−2 3.74 · 10−2 7.45 · 10−3 1.28 · 10−4 6.07 · 10−1 7.05
Cut on pT,H 2.33 · 10−2 3.74 · 10−2 5.33 · 10−3 1.18 · 10−4 5.44 · 10−1 6.17
Cut on |ηH | 2.04 · 10−2 1.87 · 10−2 3.72 · 10−3 9.02 · 10−5 9.06 · 10−1 7.45
Cut on ∆R(b, b) 1.71 · 10−2 0.00 3.21 · 10−3 7.44 · 10−5 5.21 16.34

Table 3.5.: Cross sections of the signal and the various backgrounds for
√
s = 14 TeV for the

different cuts as described in the text, the signal to background ratio S/B and the
significance S/

√
B for

∫
L = 3000 fb−1 in the bb̄γγ channel. This table is already

published in Ref. [35].

events without cutting away too many signal events. In addition, we applied a cut on
the pseudorapidity of the Higgs bosons of |ηH | < 2 and the isolation of the two b
quark jets to be ∆R(b, b) < 2.5. The latter in particular significantly reduces the
bb̄γγ continuum background, since this background does not show a boosted topology.
The cross sections for the various cuts for signal and background processes as well
as the signal over background ratio S/B and the significance S/

√
B are summarized

in Table 3.5. As final significance 16.34 is obtained for an integrated luminosity of∫
L = 3000 fb−1, corresponding to 51 signal events. The channel therefore seems

promising. A more detailed analysis including fake rates and a detector simulation,
however, needs to be performed by the experimental collaborations in order to give a
more realistic picture.2

2A rough detector simulation has been included in Ref. [35]. The significance was reduced to
S/
√
B = 6.46.



28 Chapter 3. Higgs pair production at the LHC

3.5.2. The bb̄τ τ̄ and bb̄W+W− final states

The bb̄τ τ̄ final state as been studied in Refs. [35, 94, 96]. We consider for the analysis
background processes from the QCD-QED continuum processes bb̄τ τ̄ and bb̄τ ν̄τ τ̄ ντ with
the latter stemming mostly from the pair-production of top quarks with subsequent
decay of the top quarks to t→ bW+ → bτ̄ντ . Additionally, there is a background of the
associate production of a single Higgs boson with a Z boson, similar to the bb̄γγ final
state. We applied the following basic acceptance cuts, assuming a b-tagging efficiency
of 70% and a τ -tagging efficiency of 50% [156, 157]

• pT,b > 30 GeV and |ηb| < 2.4 for the b-quark;
• pT,τ > 30 GeV and |ητ | < 2.4 for the τ -lepton pair;
• the reconstruction of the Higgs mass in the windows 112.5 GeV < Mbb̄ <

137.5 GeV and 100 GeV < Mττ < 150 GeV.
In addition, similar to the bb̄γγ final state we applied cuts on the invariant mass of the
Higgs boson pair of MHH > 350 GeV and we restricted pT,H > 100 GeV. This leads to
a significance S/

√
B = 6.71 for

∫
L = 3000 fb−1, corresponding to 330 signal events.

It therefore seems promising, but depends strongly on how well the Higgs boson mass
can be reconstructed from the bottom quark pair and the τ -leptons. More details on
the analysis can be found in Ref. [35].
The bb̄W+W− final state has been studied in Refs. [35, 96, 97]. We consider only the
leptonic W boson decays W → `ν` (` = e, µ) with a branching ratio of 10.8% for ` = e
or µ. This channel, however, is quite difficult because, due to the missing energy of
the W decays, the mass of the Higgs boson decaying into W bosons cannot be re-
constructed. It, therefore, does not allow for such a significant background reduction
as for the previously discussed final states bb̄γγ and bb̄τ τ̄ . In the end, after taking
into account all the bb̄`1ν`1`2ν`2 continuum background processes and applying cuts
on transverse momenta and pseudorapidities of the leptons and b-quarks, assuming a
Higgs boson mass reconstruction of the bottom quark pair as in the previous chan-
nels and applying some more advanced cuts on the missing transverse energy and the
transverse mass of the leptons, the significance and the background to signal ratio is
still quite small. Therefore, this channel is not very promising. Note, that in Ref. [97]
it was pointed out, that semi-leptonic decays of the W boson pair might show more
encouraging prospects. A more detailed discussion on the leptonic decays of the W
boson pair for the bb̄W+W− final state can be found in Ref. [35].

3.6. Summary

In this chapter, the prospects of measuring the triple Higgs coupling have been dis-
cussed, based on Ref. [35]. The triple Higgs coupling can be measured in Higgs pair
production processes. The most important one is Higgs pair production via gluon fusion
followed by VBF, associated production with a top quark pair and Higgs-strahlung off
a vector boson. In the framework of this thesis and Ref. [35], higher order corrections
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to gluon fusion, VBF and Higgs-strahlung were included. For VBF, the matrix element
had to be implemented into VBFNLO to obtain the NLO QCD corrections. For Higgs-
strahlung off vector bosons the NLO and NNLO QCD corrections were taken over from
the Drell-Yan process. In addition, in this thesis we calculated gluon-induced double
Higgs-strahlung off a Z boson, which is of the same order in the perturbative expan-
sion as the NNLO QCD corrections. This calculation involves one-loop two-to-three
diagrams. The theoretical uncertainties for gluon fusion, VBF and Higgs-strahlung
have been determined. For gluon fusion they are quite high, whereas for VBF and
Higgs-strahlung they are below 10%. Within the SM, we studied how sensitive the
different processes are to the triple Higgs coupling.
The last part of this chapter shortly summarized the prospects of measuring the gluon
fusion process at the LHC at

√
s = 14 TeV, discussed in Ref. [35], to get access to

the triple Higgs coupling. The final states bb̄γγ and bb̄τ τ̄ seem promising, whereas
bb̄W+W− with leptonic W decays does not.
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CHAPTER 4

Supersymmetric extensions of the Standard Model

In 1967, Coleman and Mandula published a no-go-theorem [158] which states that
all possible symmetries of an interacting quantum field theory are restricted to the
Poincaré algebra and internal symmetry generators commuting with the Poincaré
group. The restrictions of the Coleman-Mandula theorem are evaded in supersym-
metry (SUSY) by allowing for Fermi-type generators, which act as anticommutating
spinors. Haag, Lopuszanski and Sohnius showed in 1974 [159] that the SUSY alge-
bra as a generalization of the Lie algebra, is indeed the only graded Lie-algebra [160]
(i.e. an algebra with anticommutators and spinor generators) of symmetries of the S
matrix consistent with an interacting quantum field theory. This in itself provides a
motivation for SUSY as the maximal possible symmetry.
In SUSY, single-particle states are included in irreducible representations of the super-
algebra. These representations contain both fermionic and bosonic degrees of freedom.
Supersymmetric transformations convert fermions into bosons and vice versa. The
SUSY generators commute with gauge transformations, which make the bosons and
the fermions in one supersymmetric multiplet identical in quantum numbers and mass.
In addition to symmetry considerations, SUSY is motivated by the fact that many
shortcomings of the SM can be solved. For instance, one of the main motivations for
low-energy SUSY is, that the quadratic dependence of the Higgs boson mass on the
cut-off is cured. In a supersymmetric theory, bosonic loops exactly cancel all fermionic
loop contributions in the Higgs boson mass. In contrast to the prediction of degen-
erate masses for the members of one supermultiplet, none of the superpartners have
been observed yet. Hence, SUSY must be broken. If SUSY is broken softly, meaning
that no SUSY breaking operators of dimension four or higher are added in the SUSY
breaking part, the Higgs mass corrections are only logarithmically divergent, and not
quadratically as in the SM. The Higgs boson mass becomes then technically natural,
see Section 2.2. A moderate amount of fine-tuning will, however, be introduced due to

33
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the current bounds from direct searches for SUSY particles. In order to break SUSY,
the Lagrangian has to be extended by terms parameterizing this breaking. The coef-
ficients of the soft-SUSY breaking operators in the Lagrangian are in general treated
as unknown parameters. This means, that many new parameters are introduced into
the theory. The number of parameters can be reduced by assumptions on the SUSY
breaking mechanism. In viable SUSY breaking models an additional ’hidden’ sector
is needed, from which the SUSY breaking is communicated by messenger particles to
the visible sector. Candidates for messenger particles are e.g. heavy chiral supermul-
tiplets charged under the SM gauge groups in gauge mediated SUSY breaking models,
or in gravity mediated SUSY breaking models, SUSY breaking is communicated by
gravitational interactions.
In supersymmetric extensions of the SM new renormalizable operators can arise leading
to proton decay, which has not been observed so far. Such operators can be forbidden if
a discrete symmetry, called R-parity, is introduced. Superpartners get different charges
under R-parity. If R-parity is indeed perserved, the lightest SUSY particle (LSP) is
stable. In case the LSP is uncharged and colourless, it provides a natural candidate
for Dark Matter. Additional benefits of SUSY are the successful unification of the
gauge couplings and a dynamical mechanism for electroweak symmetry breaking. In
most SUSY models, the sign of the Higgs boson mass squared parameter is driven to
negative values by renormalization group running, whereas the signs of the other mass
parameters stay positive.

4.1. The SUSY algebra

Supersymmetric transformations are generated by an operator Q through

Qi
a|boson >= |fermion > , Qi

a|fermion >= |boson > . (4.1)

The exact type of fermions and bosons related to each other as well as the number of
generators Q with the supercharge index i = 1, ..., N depend on the specific framework.
The generators Q are complex, anticommuting spinors, transforming under the Lorentz
group as (1

2 , 0), their conjugate Q† transforms as (0, 1
2). The spinor indices a can take

the values a = 1, 2. In the following, we will consider only N = 1 SUSY, corresponding
to one generator Q and its complex hermitian conjugate Q†. The SUSY algebra is an
extension of the Poincaré algebra with the additional anticommutator and commutator
relations

{Qa, Q
†
b} = 2σµabPµ (4.2)

{Qa, Qb} = {Q†a, Q
†
b} = 0 (4.3)

[Qa, P
µ] = [Q†a, P µ] = 0 (4.4)

[Mµν , Qa] = −(σµν)abQb , (4.5)

with σµ = (1, σi), σ̄µ = (1,−σi) and σµν = i(σµσ̄ν − σ̄νσµ)/4 and σi the Pauli spin
matrices (i = 1, 2, 3). The operator P µ is the four momentum acting as generator for
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space-time translations of the Poincaré algebra and Mµν represents the six Lorentz
generators [161].
Single-particle states transform under irreducible representations of the super-algebra,
so-called supermultiplets. They contain both bosonic and fermionic degrees of freedom.
According to Eq. (4.4), P 2 commutes with Q and Q† so that all particles of the same
multiplet must have the same mass. Different masses can only be obtained by SUSY
breaking. The same quantum numbers under the SM gauge group arise for all degrees
of freedom of one supermultiplet, due to the commutation of the SM gauge group with
Q and Q†.
Supermultiplets can be assembled in superfields, which live in superspace. The super-
space has, in addition to the usual spacetime coordinates, anticommuting coordinates,
which can be expressed in terms of Grassmann spinors θ and θ̄. The superspace coor-
dinate yµ is then defined as

yµ = xµ − iθσµθ̄ , (4.6)
with the usual bosonic space-time coordinate xµ. This formalism was introduced for
N = 1 SUSY in Ref. [162].
For N = 1 SUSY, there are two possible SUSY representations under the additional
assumption of renormalizability of the resulting Lagrangian, namely chiral supermul-
tiplets and vector supermultiplets. A chiral supermultiplet contains a Weyl spinor and
a complex scalar field. A vector supermultiplet can be reduced in the Wess-Zumino
gauge [163] to a massless spin-1 field and a massless Weyl spinor.1 A mass for the
gauge boson can be obtained by EWSB. The fermionic superpartner of the gauge field
is a Majorana fermion, as gauge bosons transform in the adjoint representation, which
is a real representation, of the corresponding gauge groups.
A supersymmetric Lagrangian for interacting chiral superfields is given by

L =
∫
d4θ K(Φ,Φ†) +

[∫
d2θW (Φ) + h.c.

]
, (4.7)

with Φ denoting a generic chiral superfield, K the Kähler potential, leading to kinetic
terms, and W the superpotential. The Kähler potential is real. In general, the su-
perpotential can have the form W = f Φ + m/2 Φ2 + λ/3 Φ3, with generic coupling
constants f,m, λ. Invariance under supersymmetry dictates that W only depends on
Φ, not on Φ†. The superpotential is hence holomorphic.
For a gauge invariant Lagrangian the kinetic terms are minimally coupled to a vector
superfield V . The Kähler potential becomes then

K(Φ,Φ†) = Φ†eigTaV aΦ , (4.8)

with V a denoting the vector superfields, g the coupling constant and T a the generators
of the gauge group. Additionally, kinetic terms for the vector superfields need to be
introduced via superfield strength tensors.

1Expansion of both the chiral and vector superfield in the Grassmann variables θ and θ̄ yields an
additional auxiliary field, which can, however, be eliminated by applying the equations of motion.
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Superfield spin 0 spin 1/2 SU(3)× SU(2)× U(1)
Q̂ Q̃ = (ũL d̃L) (uL dL) (3, 2, 1/6)
Û c ũ∗R u†R (3̄, 1,−2/3)
D̂c d̃∗R d†R (3̄, 1, 1/3)
L̂ L̃ = (ν̃L ẽL) (νL eL) (1, 2,−1/2)
Êc ẽ∗R e†R (1, 1, 1)
Ĥu φu = (H+

u H0
u) (H̃+

u H̃0
u) (1, 2, 1/2)

Ĥd φd = (H0
d H−d ) (H̃0

d H̃−d ) (1, 2,−1/2)

Table 4.1.: Chiral superfields of the MSSM and their particle content with their respective
representations/quantum numbers under SM gauge group. The index c denotes
charge conjugation.

Superfield spin 1/2 spin 1 SU(3)× SU(2)× U(1)
Ŵ W̃1 W̃2 W̃3 W1 W2 W3 (1, 3, 0)
B̂ B̃ B (1, 1, 0)
Ĝ g̃ g (8, 1, 0)

Table 4.2.: Vector superfields of the MSSM and their particle contents with their respective
representations/quantum numbers under the SM gauge group.

We will now turn to a discussion of the Minimal Supersymmetric Extension of the
SM (MSSM). More detailed discussions on SUSY in general can be found in many
textbooks and reviews, see e.g. Refs. [15, 18, 161, 164].

4.2. The Minimal Supersymmetric Extension of the
Standard Model

The MSSM is minimal in the sense that the spectrum contains the minimal amount of
necessary particles. Each chirality component of a SM Dirac fermion is part of a chiral
supermultiplet, each SM vector boson is part of a vector supermultiplet. The Higgs
boson is introduced as part of a chiral supermultiplet. One Higgs boson superfield is,
however, not sufficient. A second SU(2) Higgs doublet is needed for gauge anomaly
cancelation. In addition, the second superfield with a different hypercharge is required
to assign a mass to both up-type and down-type fermions due to the holomorphy of
the superpotential. The particle content of the MSSM is detailed in Table 4.1 and
Table 4.2, where only the the quark and lepton superfields of the first generation are
shown.
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The superpotential of the MSSM expressed in terms of the superfields is given by

WMSSM = εab
(
yuQ̂

aĤb
uÛ

c + ydĤ
a
d Q̂

bD̂c + yeĤ
a
d L̂

bÊc − µĤa
d Ĥ

b
u

)
, (4.9)

with ε12 = ε12 = 1. The dimensionless Yukawa couplings yu, yd and ye are in general
3× 3 matrices in flavour space. The new parameter, µ, has mass dimension one. Due
to our ignorance on the exact mechanism of SUSY breaking, the SUSY breaking part
of the Lagrangian will be parameterized in the most general way by explicit SUSY
breaking terms. We require that SUSY is broken softly. This means that all SUSY
breaking terms must have positive mass dimension. For the MSSM, the soft-SUSY
breaking Lagrangian reads

Lsoft
MSSM = −m2

Hd
|φd|2 −m2

Hu |φu|
2 − Q̃∗m2

Q̃Q̃− ũ
∗
Rm

2
Ũ ũR

− d̃∗Rm2
D̃d̃R − L̃

∗m2
L̃L̃− ẽ

∗
Rm

2
Ẽ ẽR

− εab(ũ∗RyuAuQ̃aφbu + d̃∗RydAdφ
a
dQ̃

b + ẽ∗RyeAeφ
a
dL̃

b −Bµφadφbu + h.c.)

− 1
2(M1B̃B̃ +M2W̃iW̃i +M3g̃g̃ + h.c.) , (4.10)

where we have introduced the soft-SUSY breaking mass parameters mHd , mHu , mQ̃,
mŨ , mD̃, mẼ, mL̃, M1, M2 and M3, the parameter B and the soft-SUSY breaking
trilinear couplings Au, Ad and Ae. Note that in general the soft-SUSY breaking mass
parameters mŨ , mD̃, mẼ and mL̃ and the trilinear couplings Au, Ad and Ae are 3× 3
matrices in flavour space. We will now shortly highlight the different sectors needed
for the discussion in the following two sections.

4.2.1. The Higgs boson sector

The two complex Higgs doublets of the MSSM lead to five physical Higgs bosons on
top of the three usual SM Goldstone bosons: Two charged Higgs bosons H± and three
neutral ones. If CP is conserved, one is CP-odd, A, and two are CP-even, h and H.
Spontanous symmetry breaking can take place, so that the masses of the massive vector
bosons are generated when the two Higgs doublets φu and φd acquire VEVs

〈φd〉 = 1√
2

(
vd
0

)
, 〈φu〉 = 1√

2

(
0
vu

)
. (4.11)

A relative phase between the Higgs doublets can be absorbed by a redefinition of either
φu or φd. With v2 = v2

u+v2
d ≈ 246 GeV, the gauge boson masses are given by the usual

relations in terms of the VEV v. It is useful to define

tan β = vu
vd
. (4.12)

The range of tan β is restricted by perturbativity of the bottom and top Yukawa
couplings. In addition, the requirement of dynamical EWSB, meaning that the correct
sign for the determinant of the squared Higgs mass matrix is obtained by RGE running,
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restricts tan β to 1 . tan β . 60. In the SM, the negative sign of the mass squared
term was introduced by hand, see Eq. (2.1). The mass of the charged Higgs boson is
obtained by diagonalizing all terms bilinear in H−d and H+

u . This leads to a massless
charged Goldstone boson and a charged Higgs boson with mass

M2
H± =

(
Bµ

vuvd
+ 1

4g
2
2

)
v2 . (4.13)

The mass matrix of the CP-odd components can be obtained similarly. Its diagonal-
ization leads to a massless Goldstone boson and the CP-odd Higgs boson with mass

m2
A = 2Bµ

s2β
. (4.14)

We introduced the short-hand notations sx = sin x, cx = cos x and tx = tan x. It is
convenient to replace the parameter B by the CP-odd Higgs boson mass. Then the
CP-even Higgs boson mass matrix is given by

M2
ΦΦ =

(
m2
As

2
β +M2

Zc
2
β −(m2

A +M2
Z)sβcβ

−(m2
A +M2

Z)sβcβ m2
Ac

2
β +M2

Zs
2
β

)
. (4.15)

The neutral Higgs boson masses follow from this as

m2
h,H = 1

2
(
m2
A +M2

Z ∓
√

(m2
A +M2

Z)2 − 4M2
Zm

2
Ac

2
2β

)
. (4.16)

From this formula it can be inferred that at tree level the lighter Higgs boson mass
is bounded to be smaller than mh ≤ MZc2β. In order to lift the Higgs boson mass
to the measured value of 125 GeV, loop corrections are essential. In particular, the
leading corrections to the Higgs boson masses come from top quark and top squark
loops. Including these corrections, the lightest CP-even Higgs boson mass is found
to be smaller than mh < 132 GeV [161], for a typical scale of the SUSY spectrum of
MSUSY = 1 TeV.

4.2.2. Gauginos and higgsinos

The spin-1/2 partners of the gauge bosons and Higgs bosons, called gauginos and hig-
gsinos can mix. The mass eigenstates of the neutral components are called neutralinos,
χ̃0, the mass eigenstates of the charged components are called charginos, χ̃±. The only
exception is the gluino g̃, which does not mix with the other gauginos and higgsinos, due
to its non-trivial quantum number under SU(3)C . Hence, the gluino mass is directly
given by the parameter M3 in the soft-SUSY breaking Lagrangian in Eq. (4.10).
The masses of the four neutralinos are obtained by diagonalizing the mass matrix. In
the ψ0 = (B̃, W̃3, H̃

0
d , H̃

0
u) basis the mass matrix for the neutralinos reads

MN =


M1 0 −cβMZsW MZsβsW
0 M2 cβMW −MW sβ

−cβMZsW cβMW 0 −µ
MZsβsW −MW sβ −µ 0

 , (4.17)



4.2. The Minimal Supersymmetric Extension of the Standard Model 39

The sine of the Weinberg angle is denoted by sW and is given by sW = g1/
√
g2

1 + g2
2.

The mass matrix is diagonalized by means of a unitary transformation N , yielding

diag(mχ̃0
1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
) = N ∗MNN † . (4.18)

The mass eigenstates χ̃0
i are mass-ordered, with χ̃0

1 being the lightest neutralino. The
chargino masses will be given in Section 6.1.2 in the context of the NMSSM.

4.2.3. Squark sector

The superpartners of the left- and right-handed SM fermions can mix. We will restrict
ourselves in this discussion to the superpartner of the quarks, the squarks. In the
general case of flavour violation, all flavour eigenstates can mix, such that we can
define a six-component vector

q̃ =
(
q̃L
q̃R

)
. (4.19)

The 6× 6 mass matrix for the up-type squarks reads

M2
ũ =

(
m2
Q̃

+M2
Z(T 3

L −Qũs
2
W )c2β1 +mum

†
u −mu(A∗u + µ/tβ)

−(ATu + µ∗/tβ)m†u m2
Ũ

+QũM
2
Zc2βs

2
W1 +m†umu

)
,

(4.20)
and for the down-type quarks

M2
d̃ =

(
m2
Q̃

+M2
Z(T 3

L −Qd̃s
2
W )c2β1 +mdm

†
d −md(A∗d + µtβ)

−(ATd + µ∗tβ)m†d m2
D̃

+Qd̃M
2
Zc2βs

2
W1 +m†dmd

)
,

(4.21)
where we introduced the fermion mass matrices mu = yuvu/

√
2 and md = ydvd/

√
2.

The soft-SUSY breaking masses mQ̃, mŨ , mD̃ and trilinear couplings Au and Ad are
3 × 3 matrices. In general, they are non-diagonal and hence provide new sources of
flavour violation. The third component of the SU(2)L generator is denoted by T 3

L, the
charge operator is called Qf̃ . The sfermions are rotated into mass eigenstates f̃m by
means of an unitary transformation

q̃m = W̃ q̃ q̃ , (4.22)

with
diag(m2

q̃1 , ...,m
2
q̃6) = W̃ q̃M2

q̃ W̃
q̃† (4.23)

and q̃ = ũ, d̃. The masses are ordered, starting from the lightest eigenvalue. It is
often useful to work in the super-CKM basis [165]. In this basis the quark masses
matrices are diagonal and the squarks are rotated in parallel to the quarks. All terms
are flavour-diagonal in this basis, apart from soft-SUSY breaking masses and trilinear
couplings. The squarks are hence rotated to

q̃′L = ULq̃L , q̃′R = URq̃R (4.24)
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where the generation indices are suppressed and UL/R are the matrices which rotate
the left-handed/right-handed quark current eigenstates to their respective mass eigen-
states. A further transformation with a 6 × 6 matrix W rotates the squarks into the
mass eigenstates q̃m

q̃ms = W q̃
st

(
q̃′L
q̃′R

)
t

= W q̃
siq̃
′
Li +W q̃

s i+3q̃
′
Ri , (4.25)

with s, t = 1, ..., 6 and i = 1, 2, 3. The bases of Eq. (4.22) and (4.25) are connected via

W̃ q̃
si = W q̃

sjU
L
ji , W̃ q̃

s i+3 = W q̃
s j+3U

R
ji , (4.26)

where summation over j = 1, 2, 3 implied. Without flavour violation in the soft-SUSY
breaking sector the 3×3 matrices entering the squark mass matrices in Eqs. (4.20) and
(4.21) are diagonal in the super-CKM basis, such that the 6× 6 squark mass matrices
become block-diagonal and can hence be reduced to three 2× 2 matrices for the three
flavour eigenstates ũ, c̃, and t̃ or d̃, s̃, and b̃, respectively.



CHAPTER 5

Light stop decays

In this chapter we consider the phenomenology of light top squarks. Their lightness is
motivated by naturalness arguments, since the amount of fine-tuning of the EW scale
is significantly driven by the top squark [41]. A 125 GeV Higgs boson in the MSSM
can only be obtained if the loop corrections to its mass are large. In particular, top
squarks and quarks give the leading contribution to these loop corrections. For such a
large Higgs boson mass, two scenarios are possible: either the top squarks are rather
heavy or they are maximally mixed. The latter case allows for one lighter top squark
and refers to scenarios with a large stop mixing parameter Xt = (At − µ cot β)/mS,
with the average stop mass m2

S = mt̃1mt̃2 . This can be seen by means of the following
formula for the leading corrections to the lightest Higgs boson mass in the decoupling
limit mA �MZ [166]

m2
h = M2

Z cos2 2β + 3m4
t

2π2v2

(
log

(
m2
S

m2
t

)
+X2

t

(
1− X2

t

12

))
. (5.1)

The lightest stop masses, that can lead to the observed Higgs mass value, can be
obtained for mS ≈ 500 GeV and X2

t ≈ 6. The maximal mixing scenario turns out to
optimally reduce the amount of fine-tuning for given MH [167]. A light top squark
can also be helpful to create the correct relic abundance due to co-annihilation, in
particular for stop-neutralino mass differences between 15 − 30 GeV or mA ≈ 2mχ̃0

1
,

see Ref. [168–171].1

In this chapter we consider very light top squarks, with masses below the kinematic
threshold for the decays t̃1 → tχ̃0

1 of a top squark t̃1 into a top quark t and a neutralino
χ̃0

1 and for decays t̃1 → bWχ̃0
1 into neutralino, bottom quark and W boson. We assume

1A light stop can also be helpful for successful baryogenesis within the MSSM. It turns out,
however, that it would require stop masses below the top quark mass [172–177], which is in tension
to the direct searches for light top squarks by ATLAS [178].

41
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that the lightest stop is the next-to-lightest supersymmetric particle (NLSP) and the
lightest neutralino is the lightest supersymmetric particle (LSP). The light top squark
can then decay into t̃1 → (u/c)χ̃0

1 [179–181] and t̃1 → bχ̃0
1ff̄

′ [182], where f and f̄ ′

denote generic light fermions.
The strongest limits on light stop masses in this kinematic region are given by ATLAS
[178], which exclude light top squark masses up to ∼ 230 GeV for mχ̃0

1
≈ 200 GeV.

Another analysis has recently been performed by the CMS collaboration [183] with a
similar outcome as the ATLAS analysis, but depending on the mass splitting between
the neutralino and the stop mass. Tevatron [184, 185] and LEP results [186, 187] give
weaker bounds on the stop masses than the recent ATLAS and CMS searches. All
these analyses assume a branching ratio of 100% for the decay t̃1 → cχ̃0

1. Reference
[188] pointed out, that similar results on the bounds on the lightest stop mass could
also be obtained from already existing searches for monojets [189, 190] or searches with
final states including more than two jets [191, 192] by the CMS razor analysis [193],
for BR(t̃1 → bχ̃0

1ff̄) = 100%.
The decays t̃1 → (u/c)χ̃0

1 are flavour violating. In general, the MSSM exhibits many
new sources of flavour violation, such that the decays t̃1 → (u/c)χ̃0

1 can directly occur
at tree level. In the case of flavour violation we will hence denote the light stop
ũ1, as it is a mixture of all up-type flavours but with the largest component being
stop-like.2 Precise measurements of flavour observables from K, D and B processes,
however, strongly restrict the new sources of flavour violation. The flavour structure of
New Physics models must hence be highly non-generic. A framework for suppression
of flavour-violating interactions is given by means of the Minimal Flavour Violation
(MFV) concept [194–196].
In this chapter we compute the decay widths for the two-body decays ũ1 → (u/c)χ̃0

1 and
the four-body decay ũ1 → bχ̃0

1ff̄
′. If the flavour-violating coupling is very small the

four-body decay can become important. Compared to the existing works of Ref. [179–
181], we take into account a flavour-violating coupling of a charm/up quark to a ũ1
and a neutralino already at tree-level and compute the NLO QCD corrections to the
decay width. For the four-body decay, in contrast to the work in Ref. [182], we allow
for flavour violation and we take into account the full mass dependence on the third
generation quarks and leptons.
The chapter is structured as follows. In Section 5.1 we will shortly discuss the concept of
MFV. Then we will discuss the decays ũ1 → (u/c)χ̃0

1 in Section 5.2 and the decay ũ1 →
bχ̃0

1ff̄
′ in Section 5.3. Afterwards, we show the numerical impact of our calculation in

Section 5.4. In the last section, a short summary will be given.

2In the text, we will still refer to it as the ’light stop’ but keeping in mind, that it also has
components from other flavours.
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5.1. Minimal Flavour Violation

In the SM, all flavour and CP-violation originates from the Yukawa sector3 and is
parameterized in terms of the Cabbibo-Kobayashi-Maskawa (CKM) matrix [197, 198].
Generic New Physics models exhibit new sources of flavour and CP-violation. Limits on
electron and neutron electric dipole moments, however, set tight bounds on the amount
of CP-violation. Equivalently, flavour observables, in particular e.g. K0 − K̄0 mixing,
lead as well to large bounds on the scale of New Physics under the assumption of a
generic O(1) flavour structure. Flavour transitions can be parameterized by effective
four-fermion interactions. These effective operators are suppressed by the scale of
New Physics, which would generate such an effective operator. If the New Physics
scale of such an operator is the TeV-scale, the flavour structure of the model cannot be
generic. The coupling constant of the operator must be small. A solution is provided by
the MFV ansatz [194–196]. Essentially, MFV means that all flavour and CP-violating
interactions are linked to the structure of the SM Yukawa couplings. It can be formally
described in the following way: In the SM, there are three families with two SU(2)L
doublets denoted by QL and LL and with three SU(2)L singlets denoted by UR, DR

and ER. The largest global symmetry of their kinetic terms that commutes with the
gauge group is a U(3)5 symmetry. The latter can be decomposed into an SU(3)5, that
we call flavour symmetry, and a U(1)5 factor. In the following, we will concentrate on
the quark sector and thus define

SU(3)3
q = SU(3)QL × SU(3)UR × SU(3)DR . (5.2)

The flavour symmetry is not exact, since it is broken by the Yukawa couplings. For-
mally, the invariance under the flavour group can be restored by promoting the Yukawas
yu/d to non-dynamical fields, called spurions, with the following transformation under
SU(3)3

q

yu ∼ (3, 3̄, 1)SU(3)3
q
, yd ∼ (3, 1, 3̄)SU(3)3

q
. (5.3)

In analogy, this can be extended to the lepton sector with an SU(3)2
l symmetry.4 An

effective theory then satisfies MFV if all the operators constructed by the SM fields and
the spurions are formally invariant under the flavour symmetry and CP. This means
that in MFV all sources of flavour and CP-violation are completely determined by the
CKM matrix.
Such an approach can be implemented for SUSY as well. In general, the MSSM has
many new flavour-violating sources given by the soft-SUSY breaking masses and trilin-
ear couplings, see e.g. Section 4.2.3. Employing MFV, the soft-SUSY breaking squark

3In general, strong interactions in the SM could break CP as well. Experimental evidence, in
particular from the measurement of the electric dipole moment of the neutron, suggests, however,
that QCD does not violate CP. The puzzling question why QCD does not exhibit any CP-violation is
commonly known as the ’strong CP-problem’.

4Note that in SUSY the SU(3)LL
can be enlarged to SU(4)LL

by including the Ĥd field into a
generalized lepton multiplet [199].
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masses and trilinear couplings can be written as [196, 200]

m2
Q̃ = m̃2(a11 + b1 yu y

†
u + b2 yd y

†
d + b3 yd y

†
d yu y

†
u + b4 yu y

†
u yd y

†
d) , (5.4)

m2
Ũ = m̃2(a21 + b5 y

†
u yu) , (5.5)

m2
D̃ = m̃2(a31 + b6 y

†
d yd) , (5.6)

Au = A(a41 + b7 yd y
†
d + b9 yu y

†
u) , (5.7)

Ad = A(a51 + b8 yu y
†
u + b10 yd y

†
d) , (5.8)

where we have introduced the coefficients ai (i = 1, ..., 5) and bj (j = 1, ..., 10), the
mass parameter m̃ and the trilinear coupling A. The Yukawa couplings yu and yd,
the soft-SUSY breaking masses mQ̃, mŨ and mD̃ and the trilinear soft-SUSY breaking
couplings Au and Ad are 3 × 3 matrices in flavour space. Often universality of the
soft-SUSY breaking masses and trilinear terms is assumed, meaning the coefficients bi
are set to zero. For example, in supergravity models all soft-SUSY breaking masses
are universal at a scale close to the Planck scale. In models with gauge-mediated
SUSY breaking, the soft-SUSY breaking terms are universal at the mass scale of the
messenger particles. The assumption of universality is, however, not invariant under
renormalization group evolution. Coefficients bi are induced by renormalization group
equation (RGE) running. If the scale of universality is large, as e.g. it is in supergravity
scenarios, then their typical size can be rather large.
As can be seen in Eqs. (5.4–5.8), MFV implies that the soft-SUSY breaking masses
and trilinear couplings are nearly degenerate, leading to squark masses with tightly
constrained mass splittings. However, we want to discuss scenarios with light stop
quark masses, meaning that the 3rd generation squark mass is supposed to be much
smaller than the squark masses of the other generations. In such a case the MFV
assumptions can be relaxed a bit by an intermediate breaking of the SU(3) flavour
symmetry factors into SU(2) [201]. In the past, some flavour observables have exhibited
a slight tension, which can even be eased a bit, if the flavour symmetry of the quark
sector is reduced to an SU(2)3 [202].

5.2. Flavour-violating two-body decays of a light
squark

In this section, we will discuss the decays ũ1 → cχ̃0
1 and ũ1 → uχ̃0

1. The latter is
typically suppressed by two orders of magnitude with respect to the former, due to the
smaller CKM matrix element for transitions of the third generation to the first, if ũ1 is
mainly stop-like. We will hence mainly refer in the discussion to the ũ1 → cχ̃0

1 decay,
but results for the ũ1 → uχ̃0

1 decay were obtained in the same way. In Ref. [179], the
authors have considered the decay ũ1 → cχ̃0

1 with a vanishing c− χ̃0
1 − ũ1 coupling at

tree level. The process then takes place at one-loop order by loops of charged particles,
i.e. W bosons, charginos or charged Higgs bosons. The divergences (in scalar self-
energy diagrams) are canceled by the introduction of a soft counterterm at the Planck
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scale, which leads to a large logarithm, namely log ΛPlanck/MW , at the weak scale,
which has been chosen to be MW in their calculation. This large logarithm stems from
flavour off-diagonal terms induced in the soft-SUSY breaking masses by RGE running.
Reference [179] argues that in view of the large logarithm, the non-logarithmic terms
in the decay width can be neglected. In Refs. [180, 181], these non-logarithmic terms
for the decay at one loop at the MFV scale µMFV with universal soft-SUSY breaking
masses and trilinear couplings were then given, meaning the process has been calculated
at full one-loop order under the assumption of a vanishing c− χ̃0

1 − t̃ coupling at tree
level. The results have been compared to Ref. [179] and it has been shown that the non-
logarithmic terms contribute with O(10%) to the partial decay width. For a reliable
result the large logarithms need to be resummed. This is provided by solving the RGEs
for the scalar soft-SUSY breaking masses. Furthermore, Refs. [180, 181] compare their
results with the flavour-violating tree-level process, with the c−χ̃0

1−ũ1 coupling induced
by RGE running. They come to the conclusion that a resummation of the logarithms
is important, if the scale µMFV , at which the soft-SUSY breaking masses and trilinear
couplings are universal, is large.
In this section, we will describe the calculation of the one-loop SUSY-QCD (sQCD)
corrections to the ũ1 → cχ̃0

1 decay width assuming that this decay can already occur
at tree level.

5.2.1. Tree-level decay width

At tree level the decay width of the lightest up-type squark into a charm quark and
the lightest neutralino is given by

Γ = 1
16πmũ1

√√√√(1−
(mc +mχ̃0

1
)2

m2
ũ1

)(
1−

(mc −mχ̃0
1
)2

m2
ũ1

)[
−4 gL211g

R
211
mcmχ̃0

1

m2
ũ1

+
(

1−
m2
c +m2

χ̃0

m2
ũ1

)(
(gL211)2 + (gR211)2

)]
,

(5.9)

withmũ1 denoting the up-type squark mass, mχ̃0
1
the neutralino mass andmc the charm

quark mass. The couplings gL and gR are given by

gLijk = 2
√

2
3 g1N ∗k1W

ũ∗
j i+3 −

√
2mui

v sin β N
∗
k4W

ũ∗
ji , (5.10)

gRijk = −
√

2
6 (g1Nk1 + 3g2Nk2)W ũ∗

ji −
√

2mui

v sin β Nk4W
ũ∗
j i+3 , (5.11)

for the quark indices i = 1, .., 3, the squark indices j = 1, ..., 6 and the neutralino indices
k = 1, ..., 4. The mass of the up-type quark i is denoted by mui . Flavour non-diagonal
matrix elements in Eqs. (5.10, 5.11) from the squark mixing matrix W ũ as introduced
in Eq. (4.22) are necessary for non-vanishing couplings. They will automatically be
generated by RGE running, if we evolve the parameters of the model to µ 6= µMFV .
The charm mass in Eq. (5.9) can usually be neglected. Only if the mass difference
between the decaying squark and the neutralino becomes comparable with the charm
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Figure 5.1.: Feynman diagrams showing the NLO sQCD corrections to ũ1 → cχ̃0
1.

quark mass or if the lightest neutralino is mostly higgsino-like, the charm mass can
play a role. In mSUGRA models the lightest neutralino for a 173.2 GeV top quark
is never higgsino-like [203]. In general, the lightest neutralino is mainly bino-like if
|M1| < |µ| (for |M2| < |M1| it could also be wino-like). The parameters |M2| and |µ|
determine also the chargino masses directly. The exclusion limits on charginos go up
to ≈ 800 GeV [204] if the decay of a chargino into a slepton is kinematically allowed or
for decoupled sleptons up to 315GeV [204, 205]. Both exclusion limits are given under
some assumptions on branching fractions and masses of the sparticles. The lightest
neutralino can only be mainly wino or higgsino-like, if its mass value is close to the
mass of one of the charginos. In scenarios, where the lightest neutralino is much lighter
that the charginos, the neutralino will thus be mainly bino-like. For the tree-level decay
width, we have taken into account the charm quark mass, while at one-loop order we
have neglected it.

5.2.2. The decay at one loop

The Feynman diagrams for the one-loop process ofO(αsα) can be found in Fig. 5.1. The
first two diagrams show the virtual contributions given by vertex corrections involving
gluons and gluinos in the loop. Gluinos can in general couple to two different flavours
of quarks and squarks, hence we have introduced the indices i and j into the Feynman
diagram. The two last Feynman diagrams show the real corrections due to radiation
of a gluon off the squark and off the charm quark.
Virtual corrections:
The virtual corrections have been calculated with FeynArts/FormCalc [147–150]. The
results for the gluon contributions are the same as for the decay t̃1 → tχ̃0

1 given in
Refs. [206–208]. The gluino contributions could not be checked against the literature,
as they involve flavour-changing loop couplings.
The virtual corrections involve ultraviolet (UV), infrared (IR) and collinear divergences.
We distinguish between UV-poles, which show up as 1/εUV using dimensional regular-
ization, which regularizes the divergent integrals by going to D = 4 − 2ε dimensions,
and IR and collinear poles which show up as 1/εIR. Combined collinear and IR diver-
gences lead even to poles in 1/ε2IR. The IR divergences of virtual and real corrections
cancel according to the Kinoshita-Lee-Nauenberg theorem [209, 210]. In our case, also
the collinear divergences of virtual and real corrections cancel completely, as we do not
have massless particles in the initial state. The UV divergences cancel in the renor-



5.2. Flavour-violating two-body decays of a light squark 47
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Figure 5.2.: Feynman diagrams for the one-loop sQCD corrections to the self-energies Σ̃ij(p2)
of the squarks.

malization procedure. The specific steps will be discussed in the following in more
detail.
Renormalization of UV divergences:
The virtual corrections to the decay at one loop are divergent and hence need to
be renormalized. We adopt a complete on-shell scheme, meaning we demand for all
counterterms on-shell renormalization conditions. The bare fermion and sfermion fields
with superscript (0) need to be replaced by the renormalized ones

ũ(0) →
(

1 + 1
2δZ

ũ
)
ũ , u

(0)
L/R →

(
1 + 1

2δZ
L/R

)
uL/R , (5.12)

with the help of wave-function renormalization constants δZ ũ and δZL/R. The wave-
function renormalization constants of the squark fields are given by (i, j = 1, ..., 6)

δZ ũ
ij =

−
1
2R̃e

∂Σ̃ii(p2=m2
ũi

)
∂p2 if i = j ,

2
m2
ũi
−m2

ũj

R̃e Σ̃ij(p2 = m2
ũj

) if i 6= j ,
(5.13)

where R̃e only takes the real part of the one-loop integrals but keeps the complex
structure of the parameters. The self-energies Σ̃ij are calculated from the Feynman
diagrams shown in Fig. 5.2. The indices i and j denote the flavour indices of the
external particles. Note that we only calculate corrections ∝ αs. This means that
in the third diagram of Fig. 5.2, featuring a quartic squark coupling, only the terms
proportional to αs need to be taken into account. In principle, there is also a diagram
involving a quartic coupling between up-type and down-type squarks. This diagram,
however, turns out to be zero due to the flavour structure.
Defining the following structure for the quark self-energies

Σij(p2) = /pΣL
ij(p2)PL + /pΣR

ij(p2)PR + Σl
ij(p2)PL + Σr

ij(p2)PR (5.14)

with PL/R = (1 ∓ γ5)/2, the wave-function renormalization constants for the quarks
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read

δZ
L/R
ij = 2

m2
i −m2

j

R̃e
(
m2
jΣ

L/R
ij (m2

j) +mimjΣR/L
ij (m2

j)

+miΣl/r
ij (m2

j) +mjΣr/l
ij (m2

j)
)

for i 6= j , (5.15)

δZ
L/R
ii = −R̃eΣL/R

ii (m2
i )−mi

∂

∂p2 R̃e
(
mi(ΣL/R

ii (p2) + ΣR/L
ii (p2))

+Σl/r
ii (p2) + Σr/l

ii (p2)
) ∣∣∣

p2=m2
i

for i = j , (5.16)

with i, j = 1, .., 3. The masses mi/mj will later on be identified with the quark
masses mui/muj . The self-energies are calculated from the Feynman diagrams shown
in Fig. 5.3. Note that in the calculation of the self-energies of the fermions special care
needs to be taken: for the calculation of fermion self-energies it is important to take
into account that dimensional regularization breaks SUSY, as it leads to a mismatch
between fermionic and bosonic degrees of freedom. Thus, a SUSY restoring countert-
erm needs to be introduced. An alternative approach perserving SUSY is provided by
dimensional reduction [211, 212], where the space-time dimension for the nominator in
the loop integral, in particular for the γ-algebra, is kept in four dimensions. We follow
the latter approach.
A second subtle point is that the gluon diagram in Fig. 5.3 does not have any scale and
should hence be zero. But it exhibits UV and IR divergences. If they are to be canceled
separately, one needs to take into account that this diagram is given by 1/εUV − 1/εIR.
In addition to the quark and squark fields, their mixing matrices need to be renormal-
ized. The mixing matrix counterterms δu and δw̃ relate the bare mixing matrices U (0)

and W̃ (0) with the renormalized ones

U
(0)L/R
ij →(δik + δu

L/R
ik )UL/R

kj , i, j, k = 1, 2, 3 , (5.17)
W̃

(0)
st →(δsr + δwsr)W̃rt , s, r, t = 1, ..., 6 . (5.18)

Summation over common indices is implied. The bare and renormalized mixing matri-
ces need to be unitary. The counterterms hence have to be defined anti-hermitian [213].
They are thus chosen such that they cancel the anti-hermitian part of the wave-function

ui ui

g

uj ui

g̃

ũk

Figure 5.3.: Feynman diagrams for the one-loop sQCD corrections to the self-energy of the
quark.
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renormalization constants

δuL/R = 1
4
(
δZL/R − δZL/R†

)
, (5.19)

δw̃ = 1
4
(
δZ ũ − δZ ũ†

)
. (5.20)

We define the counterterms on-shell. Note that the on-shell definition of the mixing
matrix counterterms is known to be gauge dependent [214–217]. We adopt the prescrip-
tion of Ref. [217], where it was stated that the result obtained in the Feynman-’t Hooft
gauge corresponds to the gauge-independent one.
In the Yukawa part of the coupling, the bare fermion mass m(0) needs to be replaced
by the renormalized one

m(0)
ui
→ mui + δmui (5.21)

with the counterterm δmui given by

δmui = 1
2R̃e

[
mui

(
ΣL
ii(m2

ui
) + ΣR

ii(m2
ui

)
)

+ Σl
ii(m2

ui
) + Σr

ii(m2
ui

)
]
. (5.22)

Note, that even if the fermion mass is set to zero, a counterterm arises nevertheless,
due to the Σl and Σr contributions of the gluino diagram of Fig. 5.3, see e.g. also
Ref. [218].
With these ingredients at hand, we can define the counterterm Lagrangian in the basis
of the mass eigenstates of the squark, neutralino and quark as

Lūũχ̃0
1

= ūi(gLijk + δgLijk)PLũjχ̃0
k + ūi(gRijk + δgRijk)PRũjχ̃0

k . (5.23)

The counterterms δgL and δgR are given by

δgLijk =2
√

2
3 g1N ∗k1

( 3∑
n=1

[1
2δZ

R†
in W

ũ∗
j n+3 +W ũ∗

j n+3δu
R
in

]
+

6∑
m=1

[
δw̃∗jmW

ũ∗
mi+3 + 1

2W
ũ∗
mi+3δZ

ũ
mj

])

−
√

2
v sin βN

∗
k4

( 3∑
n=1

[
δniδmunW

ũ∗
ji + 1

2δZ
R†
in W

ũ∗
jnmun +muiW

ũ∗
jn δu

L
in

]

+
6∑

m=1

[
muiδw̃

∗
jmW

ũ∗
mi +mui

1
2W

ũ∗
miδZ

ũ
mj

])
, (5.24)

δgRijk =−
√

2
6 (Nk1 + 3g2Nk2)

( 3∑
n=1

[1
2δZ

L†
inW

ũ∗
jn +W ũ∗

jn δu
L
in

]
+

6∑
m=1

[
δw̃∗jmW

ũ∗
mi + 1

2W
ũ∗
miδZ

ũ
mj

])

−
√

2
v sin βNk4

( 3∑
n=1

[
δniδmunW

ũ∗
j i+3 + 1

2δZ
L†
inmunW

ũ∗
j n+3 +muiW

ũ∗
j n+3δu

R
in

]
+

6∑
m=1

[
muiδw̃

∗
jmW

ũ∗
mi+3 +mui

1
2W

ũ∗
mi+3δZ

ũ
mj

])
, (5.25)
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with the fermion flavour index i = 1, 2, 3, the squark index j = 1, ..., 6 and the neu-
tralino index k = 1, ..., 4. We only sum over the indices if indicated. In the expressions
in Eqs. (5.24) and (5.25) only the previously discussed counterterms are needed. All
other parameters do not get any QCD contributions at one-loop level.
There is another subtle point that we have not discussed yet. The wave-function
renormalization constants δZij in Eq. (5.15) and δZ ũ

ij in Eq. (5.13) have a vanishing
denominator for degenerate masses of particle i and j. In particular, if the first and
second generation fermion masses are set to zero, this becomes problematic. The prob-
lem is solved though by renormalizing both the fields and the mixing matrices on-shell,
as the combination of the renormalization constants is non-singular, see e.g. Ref. [219]
for the case of degenerate squark masses. We thus replace for degenerate fermions

1
2δZ

L/R†
ij + δu

L/R
ij =1

4
(
δZ

L/R
ij + δZ

L/R†
ij

) mui=muj−−−−−→ −1
2 R̃e ΣL/R

ij (m2
ui

)

−mui

∂

∂p2 R̃e
(
mui(Σ

L/R
ij (p2) + ΣR/L

ij (p2))

+ Σl/r
ij (p2) + Σr/l

ij (p2)
) ∣∣∣∣

p2=m2
ui

, (5.26)

and
1
2δZ

L/R†
ij muj + δu

R/L
ij mui = 1

2δZ
L/R†
ij muj + 1

4
(
δZ

R/L
ij − δZR/L†

ij

)
mui

mui=muj−−−−−→ 1
2R̃e

[
muiΣ

R/L
ij (m2

ui
) + 2Σr/l

ij (m2
ui

)
]
− 1

2
∂

∂p2 R̃e
[
m3
ui

ΣL/R
ij (p2) +m3

ui
ΣR/L
ij (p2)

+m2
ui

Σl/r
ij (p2) +m2

ui
Σr/l
ij (p2)

] ∣∣∣∣
p2=m2

ui

. (5.27)

We do not sum in Eqs. (5.26) and (5.27) over common indices. Equations (5.26) and
(5.27) have been derived by using δZ†ij = δZij(mi ↔ mj) in Eq. (5.15). The latter
relation follows from the hermiticity of the Lagrangian, implying that the self-energies
obey Σij = γ0Σ†ijγ0, with Σij defined in Eq. (5.14). For degenerate squark masses, we
use

1
2δZ

ũ
st + δw̃†ts = 1

4
(
δZ ũ

st + δZ ũ†
st

) mũs=mũt−−−−−−→ −1
2R̃e

∂

∂p2 Σ̃st(p2)
∣∣∣∣
p2=m2

ũs

. (5.28)

Real corrections:
For the computation of the real corrections we follow Ref. [220]. The Feynman diagrams
are the last two diagrams in Fig. 5.1. We use the following parametrization

r2 :=(pũ − pc − pg)2

m2
ũ1

=
m2
χ̃0

1

m2
ũ1

, (5.29)

pc pg =
m2
ũ1

2 (1− r)2y , (5.30)

pũ1 pg =
m2
ũ1

2 (1− r2)(1− z) , (5.31)
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with pũ1 , pc and pg denoting the four-momenta of the squark, the charm quark and the
gluon, respectively. As a first step the squared matrix elements of the diagrams three
and four of Fig. 5.1 and their interference term need to be calculated. Then they need
to be integrated over the three-particle phase space. We regularize the phase space
integral by going from four dimensions to D = 4 − 2ε dimensions, with ε = εIR. The
three-particle phase space integral is given by

dΦ(3)(pc, pχ̃0
1
, pg, pũ1) =dΦ(2)(pc, pχ̃0

1
, pũ1)(1− r)2

16π2
(m2

ũ1)1−ε(4π)ε
Γ(1− ε)

(1 + r

1− r

)2ε

∫ 1

0
dz(r2 + (1− r2)z)−ε

∫ ymax

0
dyy−ε(ymax − y)−ε ,

(5.32)

where pχ̃0
1
denotes the four-momentum of the neutralino. The upper integration limit

ymax reads
ymax = (1 + r)2z(1− z)

(z − r2z + r2) . (5.33)

The two-particle phase space dΦ(2) can either be evaluated in four dimensions or in D
dimensions after the cancellation of the divergences with the virtual corrections. We
are only interested in the total decay width, for which the phase space integration can
be performed analytically, thus we can directly cancel the IR and collinear divergences
against the ones occurring in the virtual corrections without introducing a subtraction
counterterm.
The full result of the decay width at NLO QCD can be found in Appendix A. My
results for this process have been numerically cross-checked by a second independent
calculation [221]. I have implemented them into the SDECAY [222] routine of SUSY-HIT
[223]. For SUSY-HIT to cope with the SUSY Les Houches Accord 2 (SLHA2) [224]
input files, the read-in routine had to be modified. A new routine SD_lightstop2bod
and some follow-up routines have been implemented into SUSY-HIT to evaluate the
discussed decay.

5.3. Four-body decay of a light squark

The light squark can also decay via a four-body decay. Especially, if the flavour-
violating coupling c − χ̃0

1 − ũ1 is very small, the four-body decay can dominate as it
has flavour-conserving subprocesses. The process was computed for the first time in
Ref. [182]. Compared to Ref. [182], we allow for flavour-violating couplings at tree
level and take into account the full mass dependence on the third generation quarks
and fermions. Due to the flavour violation, not only a bχ̃0

1ff̄
′ final state is considered,

as would be in the t̃1 decay in a non-flavour violating theory, but more generally,
ũ1 → diχ̃

0
1ff̄

′ with di denoting a down-type fermion with flavour index i = 1, 2, 3. The
final state fermions can be f, f̄ ′ = u, d, c, s, b, τ, µ, e, νe, νµ, ντ . The Feynman diagrams
for the process are shown in Fig. 5.4. In addition to the shown Feynman diagrams,
there are diagrams with an exchange of a neutral particle e.g. a neutralino or a gluino
which can only proceed via flavour-violating couplings. They will not be considered
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ũ1

χ̃0
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ũ1
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ũ1

di

χ̃0
1

f

f̄ ′

d̃s

W

ũ1
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χ̃0
1

f

f̄ ′

d̃s

H+

ũ1
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f
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1
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Figure 5.4.: Feynman diagrams for the decay ũ1 → diχ̃
0
1ff̄

′. The indix i can take values
i = 1, ..., 3. The indices j, k, and s imply a summation over the three genera-
tions of fermions, the two chargino indices and the six down-type squark indices,
respectively. The arrows in the plots are chosen according to the Feynman rules
in Ref. [161]. The arrows on the chargino lines show the charge flow. Neutralino
lines do not have an arrow to indicate their Majorana nature.

for phenomenological studies, but we checked explicitly that they are negligibly small.
The Feynman diagrams of Fig. 5.4 include fermion number flow violating interactions.
We have followed the techniques in Ref. [225] for the evaluation of such diagrams.5

The calculation was done with two independent approaches: I have performed the
calculation by hand, but evaluating the traces with FeynCalc [230]. The cross-check
was performed with FeynArts/FormCalc [147–150]. I have implemented my results

5Earlier works giving the Feynman rules for Majorana fermions can be found in Refs. [226–229].
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into SUSY-HIT [223] in a new routine SD_lightstop4bod and follow-up routines. For
the numerical evaluation of the process, the phase space generator RAMBO [231] was
used.
There is one caveat in the numerical evaluation of this process: The masses of the
propagating particles can potentially get quite important loop corrections, which we
take into account by using the output of a spectrum generator. These loop corrections
of the particle masses, however, lead to an artificial gauge dependence of the process
due to a mismatch of the perturbative order of the particle masses with the couplings.
In order to deal with this issue, we have cancelled the gauge dependence obtained in
a general Rξ gauge, before setting the masses to their loop-corrected values. The thus
obtained result corresponds to the one obtained in the unitary gauge.
We find that the most important contribution comes from the first diagram of Fig. 5.4
with a top quark and aW boson as propagating particles. Note that Ref. [182] finds the
most important contribution to be the second diagram of Fig. 5.4, withW and chargino
propagators. The reason that we find something different is that in the parameter space
we have considered the top quark is lighter than the charginos such that the virtuality
of the top exchange diagrams is smaller and the respective diagram can hence dominate
the process.

5.4. Numerical analysis

In this section we study the numerical impact of our calculation on the decay widths
and branching ratios of the light up-type squark. In order to do so, we have generated
the spectrum with the code SPheno [232, 233]. The code allows for flavour violation.6

For the CKM matrix we used7

VCKM =

 0.9742 0.2257 0.0036
−0.2256 0.9733 0.0425
0.0061 −0.0422 0.9991

 . (5.34)

The top quark mass was set to mt = 173.3 GeV; for the bottom quark mass mb =
4.89 GeV and for the τ lepton mass mτ = 1.77 GeV was used. The strong coupling
constant at NLO was taken to be αDR

s (MZ) = 0.10665 in the evaluation of the NLO
QCD corrections of the two-body decay widths. As SUSY parameter set, we have

6Another spectrum calculator allowing for flavour violation is SOFTSUSY [234]. The results of
these codes seem to be in good agreement, taken into account the uncertainties due to e.g. different
treatment of higher order corrections to the sparticle masses [235, 236]. The only significant deviation
can be found in the case of flavour violation and large difference between the soft-SUSY breaking
squark masses.

7These CKM matrix elements have been obtained from the Wolfenstein parameterization [237]
of the CKM matrix. The input for the Wolfenstein parameters is given by λ = 0.2257, A = 0.814,
ρ̄ = 0.135 and η̄ = 0.349, see Ref. [238].
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chosen

tan β = 10 , µ = 900 GeV , mA = 600 GeV , M2 = 650 GeV ,
M3 = 1530 TeV , mQ̃ = 1.5 TeV , (mŨ)11 = (mŨ)22 = 1.5 TeV ,

(mŨ)33 = 480 GeV , mD̃ = 1.5 TeV , mL̃ = mẼ = 1 TeV ,
Ad = Ae = 0 , (Au)11 = (Au)22 = 0 , (yuAu)33 = 1.4 GeV . (5.35)

The soft-SUSY breaking masses as well as the trilinear couplings have to be understood
as 3 × 3 diagonal matrices with the given values generation universal if not explicitly
indicated otherwise. The bino soft-SUSY breaking massM1 is allowed to vary between
272 GeV and 344 GeV.
The output scale in the spectrum generator was set to 300 GeV. As can be seen from
the above values, the input was taken to be flavour diagonal with the exception of the
CKM matrix. Flavour off-diagonal matrix elements in the squark sector were generated
by RGE running. Our input corresponds to the MFV assumption with the exception
that the SU(3)3 flavour symmetry of the quark sector is broken to an SU(2)×SU(3)2

by setting the third generation soft-SUSY breaking squark mass (mŨ)33 to a lower
value than the other soft-SUSY breaking squark masses.
The resulting sparticle masses are all above the current exclusion limits. For example,
the gluino mass for this parameter set is mg̃ = 1.5 TeV and hence above the exclusion
limits of Refs. [239–242]. The squark masses, apart from the lightest mostly stop-like
squark, are all found to be roughly at mQ̃ = 1.45 TeV and hence evade the exclusion
limits of Refs. [239, 242]. The sleptons in the investigated scenarios have masses of
around 1 TeV. They are not excluded yet [204, 243]. The charginos in this scenario have
masses larger than mχ̃±1,2

≥ 660 GeV. If the decay of the lightest chargino into sleptons
is kinematically forbidden, the strongest exclusion limits are only ≈ 315 GeV [204, 205],
such that our scenario is save. The lightest up-type squark mass is mũ1 = 350 GeV
and hence not excluded by the ATLAS search on light top squarks in Ref. [178] in the
kinematic region we are interested in.
We also verified that the point is compatible with the results of the Higgs searches: The
exclusion limit on heavy Higgs bosons was tested with the help of HiggsBounds [244,
245]. The compatibility with the excess of a Higgs boson at 125 GeV was checked with
HiggsSignals [246]: the light Higgs boson with a mass of 123.9 GeV in this scenario is
compatible with the excess at 68% C.L. . Additionally, we checked flavour observables
in particular from rare B decays (Bs → µ+µ− [247], B → µ+µ− [248], B− → τ−ντ
[249], B+ → τ+ντ [250] and B → Xsγ [251]) with the help of SuperIsoRelic [252–
254]. The code SuperIsoRelic can also compute the relic density. We demand the
relic density Ωch

2 to be smaller than 0.123 for our parameter points, in accordance
with the measurement of the WMAP [255] and the Planck satellite [77] of

Ωch
2 = 0.1196± 0.0031 (Planck at 68%C.L.) . (5.36)

If the relic density we obtain in our model is smaller than the lower bound given by the
Planck experiment, we assume that the neutralino is not the only Dark Matter particle,
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Figure 5.5.: Decay widths Γ for the decays of ũ1 to the final states cχ̃0
1 (black), uχ̃0

1 (gray),
bχ̃0

1jj (dark green), bχ̃0
1(µ̄νµ/ēνe) (dark blue/dashed), bχ̃0

1τ̄ ντ (dark red), jχ̃0
1jj

(light green), bχ̃0
1b̄j (brown), jχ̃0

1(µ̄νµ/ēνe) (light blue/dashed), jχ̃0
1τ̄ ντ (pink),

jχ̃0
1b̄j (light brown). The red dashed-dotted line shows the total decay width.

Total decay widths below 10−12 GeV lead to displaced vertices as indicated by
the pink region. The gray area is excluded by a too large relic density.

but that we have instead a multi-component Dark Matter scenario. More details on
the constraints imposed on the parameter points can be found in Ref. [221].
In order to show the numerical results, we have varied M1 and fixed all parameters as
described above. We introduce the parameter ∆m = mũ1 −mχ̃0

1
describing the mass

difference between the lightest squark mass and the lightest neutralino mass, as the
decay widths will in particular depend on this.
In Fig. 5.5 the decay widths as a function of ∆m are shown. The decay widths were
evaluated at the scale of the decaying particle, i.e. µ = mũ1 . The mass difference ∆m
in the plot is varied within the kinematic region of interest i.e., the mass splitting
was only varied up to the kinematic threshold of the decay ũ1 → bχ̃0

1W
+. We do not

consider in our plot ∆m < 2 GeV. For very small ∆m the light squark will be quasi-
stable, such that exclusions due to the observations from big bang nucleosynthesis from
e.g. the observation of H, D, He and Li abundances need to be taken into account, as
the decay products of the decays of the quasi-stable squarks during nucleosynthesis can
lead to various effects such as the dissociation of the light elements [256]. Not going
below ∆m = 2 GeV, we are not yet in the region were the lifetime of the squark is
sufficiently long such that these bounds become relevant.
The red dashed-dotted line in Fig. 5.5 shows the total decay width. The decay width
into the final state cχ̃0

1 is shown by a black line, the one into the final state uχ̃0
1 by a

gray line. The dark green line shows the decay with into the final state bχ̃0
1jj, the light

green line into the final state jχ̃0
1jj. The symbol j stands here for quarks of the first or

second generation or the respective antiquarks. The dark blue dashed line corresponds
to the decay widths into the final states bχ̃0

1µ̄νµ or bχ̃0
1ēνe, the light blue dashed line to
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the decay widths into the final states jχ̃0
1µ̄νµ or jχ̃0

1ēνe. The respective final states with
muons or electrons have both almost the same decay width. The only difference in the
calculation arises for the diagrams with sleptons or sneutrinos as propagating particles
(last two Feynman diagrams of Fig. 5.4), but these contributions are so small that the
difference between µ or e final state is completely negligible. The decay widths of the
squark into bχ̃0

1τ̄ ντ and jχ̃0
1τ̄ ντ are shown in dark red and pink, respectively. The pink

line is nearly completely below the light blue dashed line, since the τ final states differs
from the respective µ and e final state only by the mass of the τ , which in contrast to
the µ and e mass was not set to zero. The decay width into the final state bχ̃0

1b̄j is
shown as a dark brown line; the decay width into the final state jχ̃0

1b̄j as light brown
line. The gray region in the figure is excluded due to a too large relic density. If the
total decay width is below 10−12 GeV (pink region), displaced vertices are possible.
The minimal decay length that allows a measurement of the lifetime of the decaying
particle is strongly detector dependent. We assume 0.1 mm, corresponding to a lifetime
of τ ≈ 0.3 ps and a total decay width of Γ ≈ 10−12 GeV for a velocity of the decaying
particle of v ≈ c [257].8

From Fig. 5.5, it can be inferred that the total decay width of the light up-type squark
is rather small. Such a small decay width allows the squark to hadronize before it
decays. In our computation of the decay width we did not take into account any long
distance effects from hadronization. Since we consider the inclusive decay, the long
distance effects can be estimated to be of O(ΛQCD/mũ1) or even O(Λ2

QCD/m
2
ũ1) (with

ΛQCD ≈ 200 MeV denoting the scale at which QCD becomes perturbative), if the
energy release in the decay is much larger than ΛQCD, see e.g. Refs. [260–262] with a
similar argument for rare B decays. Hence hadronization effects can be neglected here.
In Fig. 5.6, the branching ratios are shown. The colour code is the same as in Fig. 5.5:
The black line shows the branching ratio for the decay ũ1 → cχ̃0

1, the gray line shows
the one for the final state uχ̃0

1, the dark green line the one for the four-body decay
into final state bχ̃0

1jj, the dark blue dashed line the branching ratios for both the final
states bχ̃0

1µ̄νµ and bχ̃0
1ēνe final states, the dark red line the branching ratio into the

final state bχ̃0
1τ̄ ντ . All other final states have too small branching ratios to be seen

in the plot. The gray region is again excluded by a too large relic density. As can
be seen from this figure, the assumption of the experimental analyses of a branching
ratio of 100% for the final state cχ̃0

1 is not valid here for ∆m & 7 GeV. From both
Fig. 5.5 and Fig. 5.6, it can be inferred that for this parameter point, the four-body
decays dominate for large mass splittings ∆m between the squark and the neutralino
mass. In the region with small mass splitting the decay cχ̃0

1 dominates. The reason
is that for the four-body decay more phase space is needed, hence the decay width
decreases strongly with ∆m. The size of the two-body decay widths strongly depends
on the size of the flavour violation. Typically, the decay width into uχ̃0

1 is O(1%) of
the decay width into cχ̃0

1 for a mainly stop-like ũ1, due to the suppression of flavour
transitions t → u compared to t → c by two orders of magnitude, as long as the

8Studies on displaced vertices have been performed by the experimental collaborations mainly in
the context of R-parity violating SUSY, see e.g. Refs. [258, 259]. They can, however, not directly be
applied to our case.
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Figure 5.6.: Branching ratios of the light stop decays into the final states cχ̃0
1 (black), uχ̃0

1
(gray), bχ̃0

1jj (dark green), bχ̃0
1µ̄νµ, bχ̃0

1ēνe (both in dark blue dashed) and bχ̃0
1τ̄ ντ

(dark red) as a function of ∆m.

flavour-violating sources are restricted to the CKM matrix. For the four-body decays,
the decay ũ1 → bχ̃0

1jj dominates by roughly a factor 6 over the decays to bχ̃0
1µ̄νµ and

bχ̃0
1ēνe. The reason is that for the four-body decay the first two Feynman diagrams of

Fig. 5.4 give the most important contributions. The only difference between the final
states of the decays into bχ̃0

1jj and bχ̃0
1µ̄νµ/bχ̃0

1ēνe in these two diagrams are given by a
colour factor of three for the decays into bχ̃0

1jj and, additionally, a sum over the CKM
matrix elements for j = u, c, d, s. Hence, the final state bχ̃0

1jj has a factor 6 larger
decay width with respect to bχ̃0

1µ̄νµ and bχ̃0
1ēνe. The decay width into the final state

bχ̃0
1τ̄ ντ is a bit smaller than that into bχ̃0

1µ̄νµ and bχ̃0
1ēνe, as we did not set mτ to zero.

In order to estimate the impact of the one-loop corrections on the two-body decays,
we show in Fig. 5.7 the K-factor, defined as

K = ΓNLO
ΓLO

, (5.37)

as a function of ∆m for the decay ũ1 → cχ̃0
1. The line for the final state uχ̃0

1 is similar
and hence it is not shown in Fig. 5.7. From the figure it can be inferred that the NLO
corrections are O(10%) for large ∆m and can be up to O(30%) for small ∆m.
In Fig. 5.8 we estimate the impact of our calculation for the four-body decay. The
left plot of Fig. 5.8 shows, for the sum over all final states of the four-body decays,
the effects of the inclusion of the third generation masses. More precisely, we have
plotted Γ(mb = 4.89 GeV,mτ = 1.77 GeV)/Γ(mb = 0,mτ = 0) as a function of the
mass difference ∆m. From the figure it can be inferred, that the finite mass effects
are quite important. They lead to a at least 10% smaller decay width. For small mass
splittings the mass effects are of course much more important, due to the phase space,
which becomes significantly smaller if finite masses of the final state particles are taken
into account.
In the right plot of Fig. 5.8, we show the impact of the inclusion of flavour-violating
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Figure 5.7.: The K-factor, K = ΓNLO/ΓLO, for the decay ũ1 → cχ̃0
1 as a function of ∆m.

The gray area is excluded by a too large dark matter abundance.

couplings for the computation of the four-body decay. For this purpose, we show the
total decay width of the four-body decay without flavour violation Γno FV , for which we
have excluded all diagrams with flavour transitions in the computation of the four-body
decay, divided by the decay width with flavour violation as a function of ∆m. The
decay width of the four-body decay here again is the sum over all possible final states.
As it can be inferred from the plot, the impact for large ∆m is tiny. For small ∆m the
effect becomes larger, mainly due to the fact that the flavour non-violating final states
of the four-body decay are kinematically closed. The flavour-violating final states can
still be kinematically open as they do not necessarily involve a bottom quark in the
final state.

5.5. Summary and Outlook

In this chapter we have studied the decays of a very light top squark in the kinematic
region where only four-body decays or flavour changing two-body decays are possible.
We have analyzed the two-body decays at one-loop order allowing for a flavour-changing
coupling already at tree level. We found that the K-factor increases with decreasing
mass splitting between the squark mass and the neutralino mass. The one-loop cor-
rections roughly increase the decay width by O(10%− 30%). For the four-body decay
we have improved the previous work of Ref. [182] by including the mass dependence
of the third generation fermions. In addition, we allowed for flavour violation. We
found that the effects of the flavour-violating couplings in the four-body decay for the
investigated parameters are rather small. The inclusion of the masses of the third gen-
eration fermions for the four-body decay, however, was shown to be quite important.
The branching ratio of the four-body decay can be quite significant, even 100%, in
contrast to the assumptions made for exclusion limits of the light stops [178, 183].
A phenomenological analysis of the different parameter regions is planned for the future.
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Figure 5.8.: Left plot: The decay width of the sum of the different final states of the four-
body decays divided by the corresponding decay width with bottom quark mass
and τ mass set to zero, as a function of ∆m. Right plot: The sum of all four-
body decay widths without flavour violation divided by the decay width of all
four-body decays with flavour violation, as a function of ∆m. The gray area is
excluded by a too large dark matter abundance.

In the end our results can directly be compared to the exclusion limits on the light top
squark. Our analysis shows, that the exclusion limits will possibly be weakened, as
taking into account the four-body decay leads to a branching ratio into the two-body
decay which is not 100%. However, the experiments assumed in their analysis, that
the branching ratio into the final state cχ̃0

1 is 100%.





CHAPTER 6

Higgs bosons in the NMSSM with complex
parameters

The NMSSM has in addition to the two Higgs doublets of the MSSM an extra complex
scalar singlet field. Apart from the usual benefits of a supersymmetric theory, the
introduction of the complex singlet field in the NMSSM is motivated by the fact that
the µ-problem [263] of the MSSM can be solved. The µ-problem originates from the
µ-term of the MSSM,

−WMSSM,µ = µεabĤ
a
d Ĥ

b
u (6.1)

which generates the so-called little hierarchy problem. Being a supersymmetric mass
parameter, the only natural values of the µ-term are the Planck-scale MPlanck or zero.
Both values, however, are not allowed e.g. by the requirement of a successful EWSB.
For EWSB, the µ-parameter needs to be of the order of the weak or SUSY scale.
Another reason, which forbids these values for µ, is e.g. also an cosmologically unac-
ceptable massless axion in the spectrum for µ = 0 [263]. In the NMSSM the problem
is solved by introducing the singlet superfield Ŝ coupling to the doublet fields Ĥu and
Ĥd, which generates dynamically a µ-term of the order of the weak or SUSY scale by
acquiring a VEV vs

−WNMSSM,µ = λεabŜĤ
a
d Ĥ

b
u → µeff = λ〈S〉√

2
≡ λvs√

2
. (6.2)

An additional advantage of the NMSSM is that it needs less fine-tuning in order to lift
the lightest Higgs boson mass up to 125 GeV. The tree-level bound on the lightest Higgs
boson mass squared in the MSSM is given by M2

h ≤ M2
Z cos2 2β, in the NMSSM it is

increased to M2
H1 ≤ M2

Z(cos2 2β + 2λ2/(g2
1 + g2

2) sin2 2β).1 Therefore, loop corrections
1This corresponds to the mass value obtained by diagonalizing the submatrix of the SU(2)L

doublets of the Higgs boson mass matrix [264].

61
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to the Higgs boson mass, which go logarithmically with the soft-SUSY breaking scale,
can be smaller than in the MSSM to achieve the 125 GeV Higgs boson mass, and hence
less fine-tuning is necessary. Nevertheless, loop corrections to the Higgs boson mass
are still essential in order to obtain the experimentally measured Higgs boson mass
value.
In general, many parameters of the NMSSM can be complex. This can lead already at
tree level to CP-violation in the Higgs sector, in contrast to the MSSM. The 3 CP-even
neutral Higgs bosons and the 2 CP-odd neutral Higgs bosons of the NMSSM then
become mixtures of both CP-even and CP-odd components. CP-violation is strongly
restricted by the measurement of electric dipole moments (EDMs), in particular from
the non-observation of EDMs for thorium monoxide, thallium, neutron and mercury
[265–268]. However, the phase combinations occuring in the EDMs can be different
from the ones inducing a mixing between CP-even and CP-odd components in the
Higgs sector, such that the effect of the CP-violating phases on the Higgs boson masses
can still be sizable [269–273]. New sources of CP-violation compared to the SM are
necessary for a successful baryogenesis [274].
This chapter is structured as follows: In Section 6.1 the NMSSM with complex param-
eters at tree level is introduced. In Section 6.2 we discuss the Higgs boson masses at
one-loop level with special focus on the renormalization. Compared to previous works
on Higgs boson mass corrections in the NMSSM [275–283] and the complex NMSSM
[284–289], this work employs a Feynman-diagrammatic based calculation in a mixed
on-shell-DR scheme, similar to what was done in Ref. [290] for the real NMSSM. Sec-
tion 6.3 deals with Higgs boson production and decays in the complex NMSSM. In
Section 6.4, numerical results of the one-loop calculation of the Higgs boson masses are
given. Section 6.5 summarizes the main results. The results of this chapter have been
published in Refs. [33, 37, 291].

6.1. The NMSSM with complex parameters

The superpotential of the NMSSM can be separated into a part equal to the one of the
MSSM and an NMSSM specific part, which contains the new singlet superfield. The
superpotential then reads

WNMSSM = εab
(
yuQ̂

aĤb
uÛ

c + ydĤ
a
d Q̂

bD̂c + yeĤ
a
d L̂

bÊc
)

︸ ︷︷ ︸
WMSSM

−εabλŜĤa
d Ĥ

b
u + 1

3κŜ
3 . (6.3)

The notation corresponds to the one of Section 4.2. The parameters κ and λ can have
complex values. The cubic term in the singlet field is necessary in order to break the
accidental Peccei-Quinn symmetry explicitly to avoid an axion in the spectrum, which
would be very strongly constraint by cosmology [71]. A linear term in the singlet field
and a quadratic term in the singlet field in the superpotential are not forbidden by
SU(3) × SU(2) × U(1) invariance. They are, however, unwanted as they need to be
of the order of the SUSY scale and, would thereby introduce a similar problem as the



6.1. The NMSSM with complex parameters 63

original µ-problem [264]. We, therefore, consider the simpler version of the NMSSM
without these terms. The NMSSM Lagrangian in this form exhibits a discrete Z3
symmetry corresponding to invariance under a multiplication of all components of a
chiral superfield by ei 2/3π. Note that the Z3 invariance leads to the so-called domain
wall problem, for more details see e.g. Ref. [292].
In the following we assume yu, yd and ye to be diagonal, neglecting any generation
mixing. In such a case, they can always be chosen to be real as their phases can be
absorbed into the quark fields. The soft-SUSY breaking part of the Lagrangian reads

Lsoft
NMSSM = Lsoft

MSSM −m2
S|S|2 + (εabAλλSφadφbu −

1
3AκκS

3 + h.c.) , (6.4)

where the soft-SUSY breaking trilinear couplings Aλ and Aκ and the soft-SUSY break-
ing mass mS in the NMSSM specific part have been introduced. The soft-SUSY break-
ing Lagrangian part LsoftMSSM is given in Eq. (4.10). The Bµ term of the MSSM is
replaced by the λAλ term of Eq. (6.4) and hence must be set to zero in LsoftMSSM in
Eq. (4.10). In the soft-SUSY breaking part of the Lagrangian the component fields,
denoted without a hat, are used. All trilinear couplings in the soft-SUSY breaking
Lagrangian can be complex valued, whereas among the soft-SUSY breaking masses,
only the ones for the gaugino fields B̃, W̃ and G̃ can have a non-zero CP-violating
phase. The kinetic and gauge parts of the Lagrangian cannot contain any phases. The
only other source for CP-violating phases are relative phases between the Higgs boson
fields. Expanding them around the VEVs yields

φd =
( 1√

2(vd + hd + iad)
h−d

)
, φu = eiϕu

(
h+
u

1√
2(vu + hu + iau)

)
,

S = eiϕs√
2

(vs + hs + ias) ,
(6.5)

and one thus obtains two further phases ϕu and ϕs. In case of vanishing phases the
neutral components hi and ai with i = d, u, s correspond to the CP-even and CP-
odd parts of the neutral components of φu, φd and S. The charged components are
denoted by h−d and h+

u , see also Section 4.2. Exploiting that the phases of the Yukawa
couplings can be chosen arbritrarily, the phase of the up-type Yukawa coupling is set
to φyu = −φu while the down-type and the charged lepton-type ones are assumed to be
real. This corresponds to a field redefinition of the up-type fermion fields by a phase
φu/2 and leads to real values for the fermion masses. This phase is then reintroduced
in some of the couplings of the fermions to other particles, such as the coupling of the
up- and down-type quarks to the W bosons.

6.1.1. The Higgs sector at tree level

For non-vanishing VEVs vu, vd and vs of the two Higgs doublet and the Higgs singlet
fields the tadpole conditions must be fulfilled, which means that all terms linear in the
Higgs field must vanish
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tφ ≡
〈
∂VHiggs

∂φ

〉
= 0 for φ = hd, hu, hs, ad, au, as. (6.6)

By using that the complex parameters can be expressed by their absolute value and a
phase, respectively, the only phase combinations appearing in the Higgs sector are

ϕx = ϕAλ + ϕλ + ϕs + ϕu , (6.7)
ϕy = ϕκ − ϕλ + 2ϕs − ϕu , (6.8)
ϕz = ϕAκ + ϕκ + 3ϕs . (6.9)

The tadpole conditions for the CP-even components then read,

thd =
m2

Hd
+ M2

Zc2β

2 − vstβ |λ|
(
|Aλ|√

2
cϕx + |κ| vs2 cϕy

)
(6.10)

+ |λ|2
(

2s2
βM

2
W s

2
W

e2 + v2
s

2

)2cβMW sW
e

,

thu =
m2

Hu −
M2

Zc2β

2 − |λ| vs
tβ

(
|Aλ|√

2
cϕx + |κ|vs2 cϕy

)
(6.11)

+ |λ|2
(

2c2
βM

2
W s

2
W

e2 + v2
s

2

)2sβMW sW
e

,

ths =m2
Svs −

s2β|λ|
(
|Aλ|√

2
cϕx + |κ|vscϕy

)
(6.12)

− |λ|2vs

2M2
W s

2
W

e2 + |κ|2v3
s + 1√

2
|Aκ||κ|v2

scϕz ,

and for the CP-odd components, they yield

tad = MW sW sβ
e

|λ|vs
(√

2|Aλ|sϕx − |κ|vssϕy
)
, (6.13)

tau = 1
tβ
tad , (6.14)

tas = 2M2
W s

2
W s2β

e2 |λ|
(

1√
2
|Aλ|sϕx + |κ|vssϕy

)
− 1√

2
|Aκ||κ|v2

ssϕz . (6.15)

We have expressed the tadpole conditions directly in terms of the SM input parameters
that we will use later on for the renormalization procedure. With the help of Eqs. (6.10–
6.12) the soft-SUSY breaking massesmHu ,mHd andmS can be eliminated. The tadpole
conditions tad and tas each eliminate one of the phase combinations in Eqs. (6.7–6.9)
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and they lead to

cϕx = ±

√√√√1− |κ|
2v2
s

2|Aλ|2
s2
ϕy , (6.16)

cϕz = ±

√√√√1− 18
M4

W s
4
W s

2
2β|λ|2

e4|Aκ|2v2
s

s2
ϕy , (6.17)

with e denoting the electric charge. The tadpole condition for tau does not lead to
a new linear independent condition and can therefore not be used to eliminate any
further parameters.2 In the end, at tree level in the Higgs sector there is one phase
left, namely the phase combination ϕy. Note that the signs in Eqs. (6.16, 6.17) are
undetermined. They are additional input parameters. In general, however, not all of
the possible sign combinations work for a specific parameter point.
The mass matrix for the neutral Higgs bosons can be obtained by collecting all bilinear
terms of the Lagrangian. In a first step, a rotation RG is performed in order to extract
the Goldstone field G

Φ = (hd, hu, hs, A, as, G)T = RG(hd, hu, hs, au, ad, as)T

with RG =
(

1 0
0 G

)
and G =

sβn cβn 0
0 0 1
cβn −sβn 0

 .
(6.18)

At tree level the mixing angle is given by βn = β = arctan vu/vd. The thus obtained
basis Φ needs to be rotated by another unitary transformation in order to obtain the
mass eigenstates

RMΦΦRT = diag
(

(M (0)
H1 )2, ..., (M (0)

H5 )2, 0
)

=: DH . (6.19)

The diagonal matrix DH is ordered in the masses, with MH1 being the lightest Higgs
boson mass. The subscript (0) always denotes the tree-level Higgs boson masses. The
6 × 6 Higgs boson mass matrix MΦΦ in the basis Φ is given in Appendix C, directly
written in terms of the input parameters used for the renormalization.
The charged Higgs boson mass matrix can be read from the Lagrangian L =
(h+

d , h
+
u )Mh+ h−(h−d , h−u )T and yields

Mh+ h− = 1
2

(
tβ 1
1 1

tβ

) [
M2

W s2β + |λ|vs
(√

2|Aλ|cϕx + |κ|vscϕy
)
− 2|λ|2M

2
W s

2
W

e2 s2β

]
.

(6.20)
This mass matrix can be diagonalized by a rotation with the angle βc, with βc = β at
tree level. Thus, one obtains a vanishing mass for the charged Goldstone boson G±

and a mass of

M2
H± = M2

W + |λ|vs
s2β

(√
2|Aλ|cϕx + |κ|vscϕy

)
− 2|λ|2M

2
W s

2
W

e2 , (6.21)

2The reason is that the au and ad states are rotated into the neutral Goldstone boson G and the
CP-even Higgs boson interaction state A. In the basis of (A,G) there is only a tadpole condition for
A.
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for the charged Higgs boson H±.

6.1.2. The neutralino and chargino sectors

In the NMSSM there exists an additional neutralino state compared to the four neu-
tralinos of the MSSM, which is, in the interaction eigenstates, the superpartner of the
scalar singlet, and will be named S̃ in the following. The other neutral components are
the fermionic superpartners of the φu and φd fields, H̃0

u and H̃0
d , the bino B̃ and the

neutral component of the winos W̃3. These particles can mix through a non-diagonal
mass matrix, in the basis ψ0 = (B̃, W̃3, H̃

0
d , H̃

0
u, S̃)T ,

MN =

M1 0 −cβMZsW MZsβsW e
−iϕu 0

0 M2 cβMW −MW sβe
−iϕu 0

−cβMZsW cβMW 0 −λ vs√
2e
iϕs −

√
2MW sβsWλeiϕu

e

MZsβsW e
−iϕu −MW sβe

−iϕu −λ vs√
2e
iϕs 0 −

√
2MW cβsWλ

e

0 0 −
√

2MW sβsWλeiϕu

e −
√

2MW cβsWλ
e

√
2κvseiϕs


,

(6.22)

which needs to be diagonalized, in order to obtain mass eigenstates. The diagonaliza-
tion of the mass matrix can be performed with the help of the unitary 5× 5 matrix N

diag(mχ̃0
1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
) = N ∗MNN † . (6.23)

The fermionic superpartners of the charged Higgs bosons, H̃±d and H̃±u , and of the
charged components of the Winos W̃± = (W̃1 ∓ iW̃2)/

√
2, can be arranged into

ψ−R =
(
W̃−

H̃−d

)
, ψ+

L =
(
W̃+

H̃+
u

)
. (6.24)

The mass term has the form (ψ−R)TMCψ
+
L + h.c., with the chargino mass matrix

MC =
(

M2
√

2sβMW e
−iϕu

√
2cβMW λ vs√

2e
iϕs

)
. (6.25)

The chargino mass matrix can be diagonalized with the help of two unitary matrices,
U and V , as the left- and right-handed spinors are different. This leads to

diag(mχ̃±1
,mχ̃±2

) = U∗MCV
† . (6.26)

Again the mass eigenstates χ̃±i are mass-ordered. Note that the soft-SUSY breaking
massesM1 andM2 in the neutralino/chargino sector can be complex. An R-symmetry,
however, can be applied to rotate away either the phase of M1 or M2.3

3The R-symmetry assigns to fields and Grassmann coordinates a U(1) charge [18]. As the R-
symmetry transforms the different components of the super-field in a different way, the R-symmetry
is broken, but it allows to rotate away a non-physical phase. It can be applied very similarly to
the MSSM to rotate away e.g. the phase of M2 [293, 294]. Additionally, to the assignments of
Refs. [293, 294] the singlet field obtains a charge of 1/3 under R-symmetry.
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f̄

f

Hi Hj

V V

S

S S V

Figure 6.1.: Generic Feynman diagrams for the calculation of Σij(p2). The label f generically
stands for all contributing fermions, like the quarks, leptons and gauginos, and
the ghost fields; the label V for vector bosons and the label S for the scalar
particles, such as sfermions, Higgs bosons and Goldstone bosons.

6.2. Higgs boson masses at one loop

At one loop the Higgs boson mass gets corrections via loop contributions which con-
tribute to the renormalized self-energy Σ̂ij at momentum p. The self-energy diagrams
are given by two-point functions for the two Higgs bosons i and j. Figure 6.1 shows the
generic Feynman diagrams, for scalar loop particles S, vector bosons V and fermions f ,
where f generically also stands for the ghost contributions. All of these contributions
are needed for the calculation of the unrenormalized self-energy Σij(p2) with incom-
ing momentum p. The renormalized self-energies Σ̂ij are then given in terms of the
unrenormalized ones and the counterterms by

Σ̂ij(p2) = Σij(p2)+ 1
2p

2
[
δZ† + δZ

]
ij
− 1

2
[
δZ†DH +D†HδZ

]
ij
− [RδMΦΦR†]ij , (6.27)

with i, j = 1, ..., 6 and H6 = G the Goldstone boson. The diagonalized mass matrix
DH was introduced in Eq. (6.19). The matrix δMΦΦ is the counterterm matrix, which
needs to be introduced to renormalize the parameters appearing in the mass matrix
given in Appendix C. The 6× 6 wave-function renormalization constant matrix δZ is
defined by

δZ = RδZΦR† with Φ→
(

1 + 1
2δZΦ

)
Φ , δZΦ = RGδZφRG† , (6.28)

and

δZφ = diag(δZHu , δZHd , δZS, δZHd , δZHu , δZS) . (6.29)

Note that due to SU(2)L invariance, both CP-even and CP-odd current eigenstates
of one multiplet have the same wave-function renormalization constant. The wave-
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function renormalization constants can be calculated from the derivatives of the un-
renormalized self-energies in the following way:

δZHd(|Ri1|2 + |Ri4 sin β +Ri6 cos β|2) + δZHu(|Ri2|2 + |Ri4 cos β −Ri6 sin β|2)

+ δZS(|Ri3|2 + |Ri5|2) = −
∂Σii(p2 = (M (0)

Hi
)2)

∂p2

∣∣∣∣
div

with i = 1, .., 6 . (6.30)

The subscript ’div’ means that we only take into account terms proportional to ∆ =
2/(4 − D) − γE + ln 4π with γE denoting the Euler constant and D the number of
dimensions. The value D = 4 characterizes the divergence. Note that these are six
equations with three variables. We used the three equations of (6.30) with i = 1, 2, 3,
but checked explicitly, that the others are also fulfilled. The mixing matrix element Ri6
is zero if i 6= 6, leading to a simplification of the given Eqs. (6.30) for the considered
cases. A DR scheme for the wave-function renormalization constants, as is used in
Eqs. (6.30), is convenient, because it avoids the occurrence of unphysical threshold
effects [295–297].

6.2.1. Renormalization of the parameters

As a first step in the renormalization of the Higgs boson mass matrix, one needs to
define a parameter set that will be used throughout the calculation consistently. Instead
of the original parameter set entering the Higgs potential, obtained from Eqs. (6.3, 6.4),

m2
Hd
,m2

Hu ,m
2
S, ϕAκ , ϕAλ , |Aλ|, g1, g2, vu, vd, vs, ϕs, ϕu, |λ|, ϕλ, |κ|, ϕκ, |Aκ| , (6.31)

the following parameters were used

thd , thu , ths , tad , tas ,M
2
H± ,M

2
W ,M

2
Z , e︸ ︷︷ ︸

on-shell

, tan β, vs, ϕs, ϕu, |λ|, ϕλ, |κ|, ϕκ, |Aκ|︸ ︷︷ ︸
DR

, (6.32)

as the first parameters are “physical” quantities4 for which physical on-shell renormal-
ization conditions can be found. The transformation rules for going from the parame-
ters given in Eq. (6.31) to the ones in Eq. (6.32) can be found in Appendix B. In the
following the renormalization conditions for the parameters will shortly be discussed.
Tadpole parameters:
The renormalized tadpoles are obtained by replacing the unrenormalized ones by tφ →
tφ+ δtφ with φ = hd, hu, hs, ad, as. The counterterm δtφ is calculated from the one-loop
irreducible tadpole diagrams THi of the ith Higgs boson by requiring that the tadpole
condition remains equal to zero at one loop,

δtφ = R†THi , (6.33)

4Whether the tadpole parameters can be called physical quantities is debateable. Since their
introduction is motivated by physical interpretation, we call in a slight abuse of language the renor-
malization conditions for the tadpoles on-shell.
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with Hi denoting the Higgs boson mass eigenstates. Note that setting this condition
at one loop, leads to a simplification of the calculation of the unrenormalized Higgs
self-energies: no diagrams in Fig. 6.1 with tadpoles need to be taken into account as
they are automatically set to zero.
Gauge boson masses MW , MZ and charged Higgs boson mass MH± :
By replacing the unrenormalized masses by M2 →M2 + δM2 the counterterms in the
on-shell scheme are given by

δM2
W = R̃eΣT

WW (p2 = M2
W ) , δM2

Z = R̃eΣT
ZZ(p2 = M2

Z) ,
δM2

H± = R̃eΣH+H−(p2 = M2
H±) .

(6.34)

The index T denotes the transverse part of the unrenormalized gauge boson self-energy.
The electric charge e:
In order to obtain the renormalized electric charge, the bare charge is replaced by
e → (1 + δZe)e. The counterterm is defined in the Thomson limit, by requiring that
the full e+e−γ coupling for on-shell external particles and vanishing photon momentum
is equal to the physical electric charge, leading to

δZe = 1
2
∂ΣT

γγ(p2 = 0)
∂p2 + sW

cW

ΣT
γZ(p2 = 0)
M2

Z

. (6.35)

Again, the index T denotes the transverse part of the gauge boson self-energy. Note
that the sign between the unrenormalized self-energies Σγγ and ΣγZ depends on the
convention for the covariant derivative. For the convention used here, see Eq. (2.4).
The ratio of the vacuum expectation values tan β
The bare tan β needs to be replaced by tan β → tan β + δ tan β. The counterterm
δ tan β is obtained from

δ tan β = tan β
2 (δZHu − δZHd)

∣∣∣
div
, (6.36)

using a DR condition to renormalize tan β. There are several other options on how to
renormalize tan β which all suffer either from gauge dependence, numerical instability
or process dependence. As was pointed out in Ref. [298], the condition in Eq. (6.36)
is a fair compromise, as it leads to numerically stable results, is process- and gauge-
independent for the important class of Rξ gauges. Note that the angle β also appears as
the mixing angle of e.g. the charged Higgs boson mass matrix. As we do not renormalize
the Higgs boson mixing matrices, since they will only get a finite contribution [297],
the angles β need to be separated into the ones which stem from the ratio of the VEVs
and the ones stemming from angles in the mixing matrices.
The vacuum expectation value vs, the couplings λ and κ and the phases ϕu and ϕs:
In the bare Lagrangian these parameters need to be replaced in the following way:

vs →vs + δvs , ϕu → ϕu + δϕu , ϕs → ϕs + δϕs ,

λ→λ+ δ|λ|eiϕλ + iλδϕλ , κ→ κ+ δ|κ|eiϕκ + iκδϕκ .
(6.37)
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In order to determine the above counterterms from the neutralino/chargino sector the
counterterms of M1 and M2 have to be derived, even though not needed for the Higgs
sector. They enter through the replacements of the bare mass parameters by

M1 →M1 + δ|M1|eiϕM1 + iM1δϕM1 , M2 →M2 + δ|M2|eiϕM2 + iM2δϕM2 . (6.38)

With the decomposition of the fermionic self-energy as in Eq. (5.14) for the renormal-
ized self-energies Σ̂ and the relations[

mf,i

(
R̃e Σ̂L(p2) + R̃e Σ̂R(p2)

)
+ R̃e Σ̂l(p2) + R̃e Σ̂r(p2)]ii = 0 , (6.39)[

mf,i

(
R̃e Σ̂L(p2)− R̃e Σ̂R(p2)

)
− R̃e Σ̂l(p2) + R̃e Σ̂r(p2)

]
ii

= 0 , (6.40)

derived from the renormalization conditions, with mf,i being the mass of either the ith
chargino or neutralino, the following conditions for the charginos can be found

Re(U∗δMCV
†)|div = 1

2
[
mχ̃±i

(
ΣL
χ+(p2) + ΣR

χ+(p2)
)

+ Σl
χ+(p2) + Σr

χ+(p2)
]
ii
|div

=: Re δmχ+
ii
, (6.41)

Im(U∗δMCV
†)|div = i

2
[
Σr
χ+(p2)− Σl

χ+(p2) + imχ̃±i
(U∗ ImδZC

RU
T + V ImδZC

L V
†)
]
ii
|div

=: Im δmχ+
ii
. (6.42)

For the neutralinos, one finds instead

Re(N ∗δMNN †)ii|div =
[
mχ̃0

i
ΣL
χ0(p2) + 1

2
(
Σl
χ0(p2) + Σr

χ0(p2)
)]
ii
|div =: Re δmχ0

ii
,

(6.43)

Im(N ∗δMNN †)ii|div = i

2
[
Σr
χ0(p2)− Σl

χ0(p2) + 2imχ̃0
j
(N ∗ImδZNN †)

]
ii
|div

=: Im δmχ0
ii
, (6.44)

where we used that Σ̂L,R = (Σ̂L,R)† and Σ̂l = (Σ̂r)†. The imaginary parts of the field
renormalization constants δZN , δZC

L and δZC
R can be chosen freely. For convenience

we chose Im δZN = 0, Im δZC
R = 0 and Im δZC

L = 0. The counterterm matrices δMN

and δMC are derived from the mass matrices of the neutralinos in Eq. (6.22) and of the
charginos in Eq. (6.26) by expanding them in the counterterms at one loop. For explicit
formulae, see Ref. [33]. The chargino/neutralino sector provides fourteen equations for
the eleven parameters. We use for the renormalization of vs, λ, κ ϕu and ϕs a DR
scheme. Hence, it does not matter which of these equations are used. In principle,
the counterterms could be taken directly from the Higgs sector. However, determining
them from the chargino/neutralino sector provides an additional consistency check.
The phases of the complex parameters determined from the chargino/neutralino sector
turn out to get a vanishing counterterm. This behaviour was also noticed in Ref. [299]
for the complex MSSM.
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The absolute value Aκ
The bare Aκ needs to be replaced by Aκ → Aκ + δ|Aκ|eiϕAκ + iδϕAκAκ, with ϕAκ
and δϕAκ being substituted by the tadpole tas and and its counterterm δtas . The
counterterm can then be derived from the Higgs boson self-energies with

Ri5Rj5Σ̂ij(Masas) = 0 ⇔ δMasas = Ri5Rj5Σij(Masas) . (6.45)

The counterterm δMasas contains δAκ. We renormalize Aκ in the DR scheme, meaning
that only the divergent part is taken.
I have performed the calculation of all the self-energies and tadpoles with
FeynArts/FormCalc [147–150] and derived the renormalization conditions. The re-
sults were checked by a second independent calculation [300].

6.2.2. Loop-corrected Higgs boson masses and mixing matrices

The squared one-loop corrected masses are extracted as the zeros of the determinant
of the two-point function Γ̂,

Γ̂(p2) = i
(
1 ·p2−M1l

)
with

(
M1l

)
ij

=
(
M

(0)
Hi

)2
δij−Σ̂ij(p2) i, j = 1, . . . , 5 , (6.46)

with the one-loop corrected Higgs boson mass matrixM1l and the renormalized self-
energy as given in Eq. (6.27). The Higgs boson masses at one loop are then calculated
in an iterative procedure. We will exemplify the procedure here for the nth Higgs boson
mass. In a first step, the momentum squared p2 in Eq. (6.46) is set to the tree-level
mass of the nth Higgs boson. The Higgs boson mass matrixM1l is then diagonalized,
with the nth eigenvalue being the input for p2 in the next iteration step. As soon as
the thus obtained Higgs boson mass does not change within a certain precision, for
which we assumed 10−9, the procedure ends and the one-loop corrected Higgs boson
mass is given by the nth eigenvalue of the matrixM1l. This procedure is applied for
all the n = 1, ..., 5 Higgs bosons. We did not include the Goldstone boson into this
procedure but explicitly checked that the numerical result is basically unchanged, and
that if the Goldstone boson is included, it gets a mass of zero. Furthermore, it was
shown in Ref. [301] that it is sufficient to include the mixing with the neutral Goldstone
boson. The inclusion of the mixing with the longitudinal Z boson and the Goldstone
boson leads to the same result as only including the mixing with the Goldstone boson.
Note that with this procedure, we include terms beyond one-loop order, as through
the calculation of the determinant of the Higgs boson mass matrix higher order terms
occur. As discussed in Ref. [295] for the MSSM, this is justified by the fact, that these
corrections improve the numerical accuracy of the one-loop corrections significantly,
therefore this is called improved one-loop corrections in literature, see e.g. Ref. [295].
These corrections are the dominant ones, apart from the QCD corrections occurring
at two-loop order. With the above described procedure, we can hence significantly
improve the accuracy of the results.
We have compared our thus obtained results against other methods for the calculation
of the Higgs boson mass of the renormalized two point function, as e.g. the p2 = 0
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approximation, where the one-loop corrected mass is obtained by diagonalizing M1l
after setting p2 = 0. The numerical differences in the obtained loop-corrected masses
were always acceptably small for the parameter points we checked.
The mixing matrix at one loop is determined as the matrix which diagonalizes the
one-loop corrected Higgs boson mass matrixM1l calculated at p2 = 0. This procedure
yields a unitary mixing matrix. Another possibility would be to follow Ref. [296], where
the mixing matrices at one loop are calculated by finite wave-function renormalization
factors for the MSSM. This procedure has the advantage that it guarantees the correct
on-shell properties of the Higgs bosons. But the mixing matrix is not unitary anymore.
We have extended this procedure to the case of a 5 × 5 Higgs boson mass matrix
and checked the results that we obtained with the p2 = 0 approximation against the
thus obtained result. The results were numerically in good agreement, so that we
stuck to the simpler and faster method, applying the p2 = 0 approximation for the
determination of the Higgs boson mixing matrix.

6.3. Higgs boson production and decays

In this section the Higgs boson production processes and Higgs boson decays, needed
for the numerical analysis in the next section, are summarized. The second part of this
section is based on Ref. [37]. The Higgs boson couplings will be generically denoted by g
with an appropriate subscript throughout this section. Note that the couplings denoted
by g are reduced couplings, the factors, which were factored out of the couplings, can
be found in Appendix D.

6.3.1. Neutral Higgs boson production

Neutral Higgs bosons are dominantly produced at the LHC through the gluon fusion
production process, followed by vector boson fusion (VBF), Higgs-strahlung off a vec-
tor boson (VH) and associated production with top quarks. The cross section for VBF,
Higgs-strahlung and associated production with top quarks can be obtained from the
known results of the MSSM, after adjusting the Higgs boson couplings. For the gluon
fusion process, it is slightly more complicated, since the pseudoscalar and scalar contri-
butions need to be combined. They do not interfere, as it can easily be seen from the
Lorentz structure of the matrix elements. The LO gluon fusion cross section is given
by

σLO(ggHi) =
M2

Hi

s

∫ 1

τ=M2
H/s

dx

x
fg(x, µ2

F )fg(τ/x, µ2
F )σ0

Hi
, (6.47)

with the gluon PDFs, fg, evaluated at the factorization scale µF and with

σ0
Hi

= GFα
2
s(µ)

512
√

2π


∣∣∣∣∣∣
∑
q=t,b

gSHiqq̄A
S
1/2(τq) + gHiq̃q̃

M2
Z

m2
q̃

A0(τq̃)
∣∣∣∣∣∣
2

+ 4
∣∣∣∣∣∣
∑
q=t,b

gPHiqq̄A
P
1/2(τq)

∣∣∣∣∣∣
2
 ,

(6.48)
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where we defined τx = 4m2
x/M

2
Hi
. The Fermi constant is denoted by GF . We have set

the scales to µ = µF = MHi/2. The loop-functions are given by

AS1/2(τ) = 2τ
[
1 + (1− τ) f(τ)

]
, (6.49)

AP1/2(τ) = τf(τ) , (6.50)

A0(τ) = − τ
[
1− τf(τ)

]
, (6.51)

with

f(τ) =
 arcsin2

(
1√
τ

)
τ ≥ 1 ,

−1
4

[
ln
(

1+
√

1−τ
1−
√

1−τ

)
− iπ

]2
τ < 1 .

(6.52)

For the NMSSM the QCD corrections can be taken over from the MSSM. The NLO
QCD corrections can be found in Refs. [302–306] in the LET approximation and with
the full mass dependence in Refs. [307–309]. The full mass dependence on the squark
masses was calculated in Ref. [310]. In the large top mass approximation the NNLO
QCD corrections are given in Refs. [138, 311–314]. For the numerical computation,
I have modified the publicly available code HIGLU [315] to adapt it to the complex
NMSSM. The above described higher-order corrections are included in the numerical
evaluation.
The NMSSM VBF and VH cross sections can easily be obtained from the respective
SM cross sections by multiplying them with the appropriate modification factor:

σ(qqHi/V Hi) =
(
gHiV V
gSMHV V

)2

σSM(qqHSM/V HSM) , (6.53)

where the coupling gHiV V can be found in Appendix D. The SM VBF cross section
is taken into account at NLO QCD [127–129, 316] and was computed with the code
VV2H [110]. The SM VH cross section is taken at NLO QCD [137, 316] and was
calculated with the publicly available code V2HV [110]. Note that in supersymmetric
theories the VBF and VH cross sections are always reduced compared to the SM, but
summing over all Higgs bosons leads to the SM result due to the following sum rule of
the Higgs boson to vector boson couplings

5∑
i=1

(
gHiV V
gSMHV V

)2

= 1 . (6.54)

Analogously to Higgs-strahlung and VBF, the cross section for Higgs production via
associated production with a top quark pair can be obtained by modifying the Higgs
boson to top quark coupling by

σ(Hitt̄) =
(
gHitt̄
gSMHtt̄

)2

σSM(HSM tt̄) . (6.55)

The SM cross section is taken at NLO QCD, as provided in Ref. [317–320], from the
LHC Higgs cross section working group homepage [321].
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6.3.2. Higgs boson decays

The Higgs boson decays for both the real and the complex NMSSM are implemented in
the publicly available code NMSSMCALC [37], which is based on HDECAY [223, 322, 323].
The implementation includes for the dominant decays higher order QCD corrections by
adapting them from the MSSM case as given in HDECAY. For the decays of the neutral
Higgs bosons into bottom quarks the SUSY-QCD corrections and the approximate
SUSY-electroweak corrections are included. The decays into strange quarks include
the dominant resummed SUSY-QCD corrections and the decays into a τ pair the
resummed electroweak corrections.
Many Higgs boson decays can simply be obtained by adapting them from the MSSM
by adjusting the couplings of the Higgs bosons. Some cases, especially in the complex
NMSSM are more involved as the Higgs bosons are admixtures of CP-even and CP-odd
components. The relevant two-body decays for the numerical analysis in this thesis,
will therefore shortly be described here. For the Higgs boson off-shell decays we refer
to the program code of NMSSMCALC. For Higgs boson decays into scalar particles or W
and Z bosons the couplings simply need to be adjusted at tree level. QCD corrections
can be taken over from the MSSM, electroweak corrections can, however, not be used.
Higgs boson decays into fermions can be obtained at tree level from the real MSSM case
by adding the scalar and the pseudoscalar decay widths of the real NMSSM, leading
to

ΓHiff̄ = GF cf

4π
√

2
MHim

2
f

√
1− 4

(
mf

MH

)2
[(
gSHiff̄

)2
(

1− 4
(
mf

MH

)2
)

+
(
gPHiff̄

)2
]
,

(6.56)
for MH > 2mf . For the decays into quarks we define cf = 3, for the decays into the
leptons cf = 1. The reduced coupling gS/P

Hiff̄
is given in Appendix D.

The decays of neutral Higgs bosons into gluons are mediated by loops of heavy quarks,
with the dominant contribution coming from the heaviest quark, namely the top quark,
and by squark loops. The decay widths are given by

Γ(Hi → gg) =
GFα

2
sM

3
Hi

64
√

2π3


∣∣∣∣∣∣
∑

q=t,b,c
gSHiqq̄A

S
1/2(τq) +

∑
q̃

M2
Z

m2
q̃

gHiq̃q̃A0(τq̃)
∣∣∣∣∣∣
2

+4
∣∣∣∣∣∣
∑

q=t,b,c
gPHiqq̄A

P
1/2(τq)

∣∣∣∣∣∣
2
 , (6.57)

with the loop functions in Eqs. (6.51) and the coupling conventions in Appendix D. The
sum over q̃ includes all squark mass eigenstates. The QCD corrections are included in
NMSSMCALC up to N3LO in the limit of heavy quark masses [302, 306, 308, 324–330].
The squark loops were taken at NLO QCD in the limit of heavy squark masses [331].
The Higgs decays into photons are mediated by loops of top, bottom and charm quarks,
τ leptons and squarks, sleptons, charginos, charged Higgs bosons and W bosons. The
largest contribution stems from the W boson loops. The decay widths within the
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complex NMSSM are then given by

Γ(Hi → γγ) =
GFα

2M3
Hi

128π3
√

2
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∑
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2 , (6.58)

with f = t, b, c, τ and f̃ = q̃, τ̃1, τ̃2. With q̃ we denote all squark mass eigenstates and
cf = 3, 1 denotes the colour factor of the (s)quarks and the (s)tau. The loop functions
for AS,P1/2 and A0 can be found in Eq. (6.51). The loop function A1 is given by

A1(τ) = − [2 + 3τ + 3τ(2− τ)f(τ)] , (6.59)

with f(τ) as defined in Eq. (6.52). The QCD corrections for the quark [326, 332–337]
and squark loops [310] can be taken over from the MSSM.
For the loop-induced process H → Zγ, the determination of the tree-level decay width
proceeds analogously to the Higgs decays into photons and it is not needed for the
analysis of the Higgs boson masses in the next section, as due to its smallness it will
only affect the total decay width in a negligible manner. Hence it will not be given
here explicitly, but it can be found in the program code of NMSSMCALC. As part of
this thesis, I have provided cross checks for all the Higgs boson couplings, the above
described Higgs boson decays and various other decays in the implementation of the
complex NMSSM in the code NMSSMCALC.

6.4. Numerical analysis

The numerical analysis of the Higgs boson masses in the complex NMSSM was done
with a self-written Mathematica [338] code using the LOOPTOOLS [148, 149] library. A
slightly different implementation but based on the described work is publicly available
as part of a FORTRAN code in NMSSMCALC [37, 291]. The latter is adapted to the SUSY
Les Houches 2 (SLHA2) convention [224]. In the SLHA2 convention the complex
parameters are split into real and imaginary parts, and not into absolute value and
phase. This leads to a numerically slightly different result. For the numerical results
in this section, the renormalization procedure as described in this chapter was used.
For the numerical values of the input parameters we follow the SLHA [339] and compute
the parameters M2

W and e from the SLHA pre-defined input values for the Fermi
constant GF = 1.16637 · 10−5 GeV−2, the Z boson mass MZ = 91.187 GeV and the
electroweak coupling α = 1/137. If not stated otherwise, we use the running DR top
quark mass mt at the scale Q = √mQ̃3

mt̃R , with mQ̃3
and mt̃R denoting the soft-SUSY
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breaking masses of the third generation squarks, obtained from the top quark pole
mass mt = 173.2 GeV by taking the routines for the renormalization group running of
the parameters of NMSSMTools [340–342]. All other parameters were evolved to this
scale with NMSSMTools as well. In the same way we obtain the running DR bottom
quark mass starting from the SLHA input value mb(mb)MS = 4.19 GeV. For the light
quarks we chose mu = 2.5 MeV, mc = 1.27 GeV, md = 4.95 MeV, ms = 101 MeV and
for the τ lepton mass mτ = 1.777 GeV.
For the analysis of the Higgs boson masses a scenario needs to be found which fulfills
the phenomenological constraints. To begin with, we require the most SM-like Higgs
boson to have a mass value close to the measured value. Due to the experimental and
theoretical uncertainties on the Higgs boson mass, the Higgs boson mass window is
chosen to be

120 GeV < MSM−like
Hi

< 130 GeV . (6.60)
Additionally, the Higgs rates should be SM-like, meaning we demanded for the signif-
icance of the SM-like Higgs boson to lie within 20% of the value for the significance
of the SM Higgs boson with the same mass. The significance was been estimated to
be given by S = Ns/

√
Nb, where Ns denotes the number of signal events and Nb the

number of background events, to be within a window of ±20% compared to the SM,
for the most SM-like Higgs boson with a mass in the interval given in Eq. (6.60). This
in the end leads to the criterion

0.8σSMtot < σNMSSM
tot < 1.2σSMtot , (6.61)

with

σtot =
(
σ(ggHi) + σ(qqHi) + σ(WHi) + σ(ZHi) + σ(tt̄Hi)

)
[
BR(H → γγ)2 + 16BR(H → W+W−)2BR(W+ → ¯̀νl)2BR(W+ → `ν̄l)2

+16BR(H → ZZ)2BR(Z → ``)2BR(Z → ``)2
]
.

(6.62)

In σtot, the NMSSM value is calculated with the cross sections and branching ratios of
the most SM-like Higgs boson, hence Hi = HSM−like. For σSMtot the cross sections and
branching ratios are given by the values obtained in the SM with a mass of the SM Higgs
boson equal to the mass of the NMSSM Higgs boson in σNMSSM

tot , i.e.MH = MSM−like
Hi

.
I performed this check of the compatibility with the Higgs results by computing the
cross sections and branching ratios as outlined in Section 6.3.5 The branching ratios
of the vector boson decays into lepton final states were taken to be

BR(W+ → `ν̄l) = 0.108 , BR(Z → ``) = 0.0366 . (6.63)

Note that in the analysis only the Higgs boson discovery channels, i.e. γγ, ` ¯̀̀ ¯̀with ` =
e, µ and `ν̄l ¯̀νl, are included, as at the time of the analysis in June 2012 an evidence of a
Higgs boson was only seen in these channels. Our results here are based on the 7 TeV

5The Higgs boson branching ratios were calculated with the help of an early version of NMSSMCALC.
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run of the LHC, denoted in the following by LHC7. Furthermore, we have checked
whether one of the non-SM like Higgs bosons is excluded by the searches at LHC, LEP
[343, 344] or TEVATRON [345]6, with the program HiggsBounds [346, 347]. Again
these bounds were taken from the data available in June 2012. The main intention of
this section is to show the importance of the one-loop corrections for the Higgs boson
mass calculation and to study the influence of the CP-violating phases on the Higgs
mass predictions at one loop. The findings presented here will not change qualitatively
by taking into account the newer, now available data.
For a numerical study, we started out from some of the benchmark points given in
Ref. [348], but modified them a bit. All the points lead to the correct relic density in
the limit of the real NMSSM, as we checked with MicrOMEGAs [342]. All the scenarios
are taken with the parameters evolved to the scale Q = √mt̃RmQ̃3

and with the soft-
SUSY breaking parameters of the sleptons and the up, down, charm, strange and
bottom squarks given by

mŨ = mD̃ = mQ̃1,2
= mẼ = mL̃ = 1 TeV ,

Ax = 1 TeV (x = u, c, d, s, e, µ, τ) ,
Ab ≈ 1 TeV . (6.64)

This leads to masses of the the sleptons and the squarks of the first and second gen-
eration of ∼ 1 TeV. At the time of the analysis, these values were still allowed by the
direct searches for squarks and sleptons.

6.4.1. Scenario 1: SM-like H3

The parameter set for this scenario is given by

|λ| = 0.72 , |κ| = 0.20 , tan β = 3 , MH± = 629 GeV , |Aκ| = 27 GeV
|µ| = 198 GeV , |Ab| = 963 GeV , |At| = 875 GeV , M1 = 145 GeV ,
M2 = 200 GeV , M3 = 600 GeV . (6.65)

The parameters λ and κ cannot be chosen too high in order to keep them perturbative
up to the GUT scale. In Ref. [349] an upper bound of

λ2 + κ2 . 0.5 (6.66)

for λ and κ at the electroweak scale was given. Note that the bound in Eq. (6.66) is
only a rough guideline. The actual bound also depends on tan β. In Ref. [348], it was
also shown that our parameter choice of λ and κ in Eq. (6.65) is still perturbative up
to the GUT scale with extra matter above the TeV-scale, which would influence the
analysis here in no other way. For the analysis we set all CP-violating phases to zero

6We only gave the references for the most stringent bounds at the time of our analysis. More
references can be found in the manual of HiggsBounds [346, 347] for version 3.8.0.
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Figure 6.2.: Left: Tree-level (dashed) and one-loop corrected (full) Higgs boson masses for
H1 (red) and H2 (blue) as a function of ϕκ. Right: Tree-level (dashed) and one-
loop (full) mass, MH3 , of the most SM-like Higgs boson in the CP-conserving
limit as a function of ϕκ. The exclusion region due to LEP, Tevatron and LHC7
data is shown as a gray area, the region with the SM-like Higgs boson not being
compatible with an excess of data around 125 GeV as dashed area. These plots
are already published in Ref. [33].

and subsequently turn on specific phases to study their respective influence. The signs
of the tree-level CP-violating phases in Eqs. (6.16, 6.17) are chosen as

sign cosϕx = +1 , sign cosϕz = −1 . (6.67)

The left- and right-handed soft-SUSY breaking mass parameters in the stop sector are
given by mQ̃3

= 490 GeV and mt̃R = 477 GeV, leading to relatively light stop masses
mt̃1 = 363 GeV andmt̃2 = 616 GeV. Newest ATLAS and CMS searches for stops restrict
masses in that region significantly, see e.g. Refs. [350, 351]. In this scenario, in the
limit of CP-conservation, the one-loop corrected H3 plays the role of the SM-like Higgs
boson with a mass MH3 = 125 GeV compatible with present LHC searches. In the
following we discuss for various complex phase choices the phenomenology of the three
lightest Higgs bosons. The two heavier ones receive mass corrections of maximally
2 GeV leading to masses of ∼ 642 GeV so that they were not excluded by collider
searches in June 2012, with H4 being mostly CP-odd and H5 mostly CP-even. Their
masses are not displayed in the plots.
In a first example, we discuss CP-violation occuring already at tree level by varying the
phase ϕκ and, through this the phase ϕy which is the only relevant phase combination
at tree level. The value of ϕκ is not restricted by EDMs, as it leaves the phase entering
the prediction of the EDMs unchanged [287]. Note that by varying ϕκ also the phases
ϕAκ and ϕAλ are varied in order to fulfill the tadpole conditions. They are, however,
not taken as input parameters here.
In Fig. 6.2 (left plot) the tree-level and one-loop masses of the two lightest Higgs boson
mass eigenstates H1,2 are shown as a function of ϕκ. The limit ϕκ = 0 corresponds
to the real NMSSM. The phase can only be varied up to a value of π/8, since for
higher values the tadpole conditions, Eqs. (6.10–6.15), do not give valid solutions for
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the phases ϕx and ϕz anymore, since they become complex. The tree-level and one-
loop corrected masses of the SM-like H3 are shown in Fig. 6.2 (right plot). The gray
areas in the plots are the ones which are excluded by the searches for the other Higgs
boson by either LEP, LHC7 or Tevatron. As described above we obtained them with
HiggsBounds. This excludes the regions 0.074 π < ϕκ < 0.099 π and ϕκ > 0.112 π.
Again, these exclusions were obtained in June 2012 and do not correspond to the newest
LHC results. The dashed region marks the parameter region where the criterion of
compatibility with the Higgs excess around 125 GeV stated in Eq. (6.61) cannot be
fulfilled anymore. The dashed region starts at ϕκ > 0.021π. As can be seen from
Fig. 6.2 the one-loop corrections to the Higgs boson mass are very important. For this
example they are up to 15 GeV for the two lightest Higgs boson. For the third lightest
Higgs boson, for ϕκ = 0, they are about 4 GeV, but for larger values of ϕκ they can
become more important. It can also be seen that indeed both at tree level and at one
loop the Higgs boson masses are sensitive to a variation of ϕκ. At one loop even the
slope of the curves can change compared to the tree-level curve, as e.g. for MH3 in the
right plot of Fig. 6.2.
In order to have a measure for the CP-violation we define (i = 1, 2, 3)

riCP ≡ (Ri1)2 + (Ri2)2 + (Ri3)2 , (6.68)

with riCP = 1 for a completely CP-even Higgs boson and riCP = 0 for a completely CP-
odd Higgs boson. The CP-even singlet component of the Higgs bosons is given by Ri3.
In Fig. 6.3, the amount of CP-violation as a function of ϕκ is shown in the left plot,
while the right plot displays the CP-even singlet component squared. It can be inferred
from the plots that for ϕκ = 0 the lightest Higgs boson is CP-even but mostly singlet
like, whereas the second lightest Higgs boson is CP-odd. Both the lightest and the
second lightest Higgs bosons interchange their roles at ϕκ ∼ 0.02. The most SM-like
Higgs boson is, for ϕκ = 0, a CP-even state with no singlet component. For increasing
values of ϕκ it becomes a CP-mixed state, which is then excluded at the LHC by not
showing a SM-like signature anymore.
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Figure 6.3.: The amount of CP violation riCP for Hi (i = 1, 2, 3) as a function of ϕκ (left
plot). The amount of CP-even singlet component (Ri3)2 as a function of ϕκ
(right plot). This figure is already published in Ref. [33].
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Figure 6.4.: The Hi coupling to V (V = Z,W ) bosons squared (i = 1, 2, 3) normalized to the
SM coupling, |gV V Hi |2, as a function of ϕκ. This plot is published in Ref. [33].
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Figure 6.5.: The one-loop corrected mass of the SM-like Higgs H3 evaluated with the top
and bottom running DR masses (full) and with the corresponding pole masses
(dashed). This figure is already published in Ref. [33].

Finally, Fig. 6.4 shows the coupling squared of the Higgs bosons to the V bosons
(V = Z,W ), normalized to the SM as a function of ϕκ. The vector bosons couple only
to the CP-even, non-singlet components of the Higgs bosons.
In order to get an estimate of the theoretical uncertainty due to the unknown higher-
order corrections, the one-loop corrections to the Higgs boson masses calculated with
the top and bottom pole masses, mt = 173.2 GeV and mb = 4.88 GeV, are compared
to the results for the one-loop corrected masses evaluated with the running DR top
and bottom quark masses mt,b at the scale Q = √mQ̃3

mt̃R . In this scenario they
are mt = 153.4 GeV and mb = 2.55 GeV. The result can be found in Fig. 6.5. The
absolute values of the corrections change quite a bit and are larger for higher top
quark masses. The slope of the curve is, however, in both cases nearly the same. The
theoretical uncertainty due to the different quark mass renormalization schemes can
then conservatively be estimated to be about 10%.
In the previous example, the dependence of the Higgs boson masses on a CP-violating
phase which enters the Higgs sector at tree level was discussed. It is, however, possible
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Figure 6.6.: One-loop corrected Higgs boson massesMHi (i = 1, 2, 3) as a function of ϕκ = ϕλ
(left plot). Tree-level (dashed) and one-loop corrected (full) mass for H3 as a
function of ϕκ = ϕλ (right plot). These plots are already published in Ref. [33].

R
2 i1
+

R
2 i2
+

R
2 i3

ϕκ

H1

H2

H3

0

0.2

0.4

0.6

0.8

1

0 π/4 π/2 3π/4 π

R
2 i3

ϕκ

H1

H2

H3

0

0.2

0.4

0.6

0.8

1

0 π/4 π/2 3π/4 π

Figure 6.7.: The amount of CP violation riCP for Hi (i = 1, 2, 3) as a function of ϕκ = ϕλ
(left). The amount of CP-even singlet component (Ri3)2 as a function of ϕκ = ϕλ
(right). This figure is already published in Ref. [33].

that the phases only enter at one-loop level. In order to explore this possibility we
vary the phase ϕκ by an equal amount as the phase ϕλ in order to keep the phase
ϕy constant such that CP-violation is only introduced radiatively. Figure 6.6 (left
plot) shows the one-loop corrected masses of the three lightest Higgs states H1,2,3 as
a function of ϕκ = ϕλ. In Fig. 6.6 (right plot) a comparison between the tree-level
and one-loop corrected mass of the SM-like Higgs boson H3 is provided. The tree-
level mass shows, of course, no dependence on ϕκ. The one loop mass MH3 changes
by only ∼ 3 GeV for ϕκ varying from 0 to π, and the loop-corrected masses for H1,2
show almost no dependence on the CP-violating phase. The reason is the following:
the main correction to the Higgs boson masses stem from the top squarks. The phase
ϕλ enters the stop quark mass matrix. The third lightest Higgs boson H3 has the
largest hu component and therefore has a large coupling to up-type quarks and squarks.
Therefore, it is most sensitive to a change in the top squark masses. For MH1 (MH2)
the mass corrections are of about 15 (11) GeV. With mass values around 120 GeV they
could lead to additional signals at the LHC if they were SM-like. In the left plot of
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Figure 6.8.: One-loop corrected Higgs boson masses MHi (i = 1, 2, 3) as a function of ϕAt
(left). Tree-level (dashed) and one-loop (full) mass MH3 as a function of ϕAt
(right). These plots are already published in Ref. [33].

Fig. 6.7 the amount of CP-violation of H1, H2, H3 is shown, whereas the right plot
shows the CP-even singlet component squared. With their masses around 120 GeV the
two lightest Higgs boson are within the discovery region of the LHC. However, due to
the CP-odd nature of H2 and the singlet character of H1, the signals are considerably
reduced. The whole shown region for the variation of ϕκ = ϕλ was hence still allowed
in June 2012.
Another possibility to study radiatively induced CP-violation is to vary a phase of a
parameter which only enters at loop level, such as the phases of the trilinear couplings
At, Ab or Aτ or the soft-SUSY breaking gaugino masses M1 or M2. The gaugino mass
M3 enters only at two-loop level and is therefore not relevant here. The effects of the
phase ϕM3 were though studied for the MSSM in e.g. Ref. [297], showing that they
can be quite significant. The largest effect here is to be expected from a variation of
At, as the stop sector gives the most important contributions to the Higgs boson mass
corrections at one loop. We thus restrict ourselves to study this case.
Figure 6.8 shows in the left plot the one-loop corrected masses for H1, H2, H3 as a
function of ϕAt . The right plot in Fig. 6.8 compares the tree-level (dashed line) and the
one-loop mass (solid line) of H3. Again, MH1 and MH2 show barely any dependence
on ϕAt because of the same argument as given before. The mass MH3 varies over
the given range of ϕAt by 2 GeV. In Fig. 6.9 the Higgs boson mass of H3 is shown
for different values of the renormalization scale. The blue long-dashed line is for the
renormalization scale µren = 250 GeV. The green short dashed line corresponds to
our standard choice of µren = Q = 500 GeV and the red dotted line corresponds to
µren = 1000 GeV. The uncertainty due to unknown higher order corrections can then
be estimated to be of O(4%). This might, however, underestimate the uncertainty
slightly, as we only renormalized part of the parameters in a DR scheme. The on-shell
renormalized counterterms do not show any dependence on the renormalization scale.
Checking the dependence of the Higgs boson mass corrections on the renormalization
scheme of the quark masses by using either pole or running masses might in this case
give a more realistic picture of the theoretical uncertainty. As mentioned before in
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Figure 6.9.: One-loop corrected Higgs boson masses MH3 as a function of ϕAt for three dif-
ferent renormalization scales, µren = 250 (blue/long-dashed), 500 (green/short-
dashed) and 1000 GeV (red/dotted). This plot is already published in Ref. [33].

Fig. 6.5 this leads to an estimate of the uncertainty of 10%.

6.4.2. Scenario 2: SM-like H1 or H2

In this scenario the following parameter set was chosen

|λ| = 0.65 , |κ| = 0.25 , tan β = 3 , MH± = 619 GeV , |Aκ| = 18 GeV ,
|µ| = 199 GeV , |Ab| = 971 GeV , |At| = 1143 GeV , M1 = 105 GeV ,
M2 = 200 GeV , M3 = 600 GeV , sign cosϕx = +1 , sign cosϕz = −1 .

(6.69)

The left- and right-handed soft-SUSY breaking mass parameters in the stop sector
were set to mQ̃3

= 642 GeV and mt̃R = 632 GeV, leading to mt̃1 = 514 GeV and
mt̃2 = 768 GeV. The renormalization scale is set to µren = 650 GeV. The values of λ
and κ in Eq. (6.69) respect the bound of Eq. (6.66). We again vary the phase ϕκ. The
results can be found in Fig. 6.10 which shows in the left plot the Higgs boson masses
of H1 and H2 at tree level as a dashed line, and at one loop as a solid line. The right
plot in Fig. 6.10 shows the couplings of the respective Higgs boson to vector bosons
normalized to the SM coupling as a function of ϕκ at tree level as a dashed line and
at one loop as a solid line. The gray area is the area where one of the Higgs bosons
is excluded by direct searches of the LHC7, Tevatron or LEP. In the dashed area the
most SM-like Higgs boson is not compatible anymore with the imposed constraint of
Eq. (6.61). The plots show the variation of ϕκ for which the tadpole conditions can
be fulfilled. From the plots it can be inferred that the one-loop corrections are very
important leading to an increase of up to ∼ 20 GeV for the lightest Higgs boson mass.
The lightest Higgs boson has for ϕκ = 0 a very SM-like vector boson coupling. At
ϕκ ∼ 3π/64 the Higgs boson H1 and H2 interchange their roles and H2 becomes more
SM-like. Unfortunately, this phenomenological very interesting cross-over is in the area
which is incompatible with the Higgs boson excess at 125 GeV.
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Figure 6.10.: Left: Tree-level (dashed) and one-loop corrected (full) Higgs boson masses as a
function of ϕκ for H1 (red) and H2 (blue). Right: The H1 (red) and H2 (blue)
Higgs couplings squared to two V bosons (V = W,Z) normalized to the SM
coupling as a function of ϕκ at tree level (dashed) and at one loop (full). The
exclusion region due to LEP, Tevatron and LHC7 data is shown as gray area,
the region with the SM-like Higgs boson not being compatible with an excess
of data around 125 GeV as dashed area. These plots are already published in
Ref. [33].

Figure 6.11 in the left plot shows the amount of CP-violation riCP of the three lightest
Higgs bosons; the right plot in Fig. 6.11 shows the CP-even singlet component squared
of the Higgs bosons, as a function of ϕκ. The lightest Higgs boson is first mainly CP-
even, the second lightest is CP-odd. There is a cross-over between the two of them
at ϕκ ∼ 3π/64. The third lightest Higgs boson is mainly CP-even singlet like and
therefore not excluded by the searches.

6.5. Summary

In this chapter the neutral Higgs boson sector of the complex NMSSM was analyzed
with the main focus on the one-loop corrections to the Higgs boson masses. In the com-
plex NMSSM the Higgs bosons are a superposition of CP-even and CP-odd components.
The mass corrections were calculated at one-loop order in a Feynman diagrammatic
approach in a mixed on-shell–DR renormalization scheme. It was shown that these
corrections are very important. We studied the influence of the phases of the complex
parameters which either enter the Higgs sector at tree level already or only at one loop.
The dependence can be quite significant.
In addition, we have briefly discussed the neutral Higgs boson production and Higgs
boson decays. This was needed to give exclusions due the most SM-like Higgs boson
not being compatible the excess at 125 GeV. In addition, we checked whether one of
the non-SM like Higgs bosons is excluded by the searches at LHC, LEP or Tevatron.
Our scenarios show that not only the lightest Higgs boson can play the role of the
SM-like Higgs boson but also the second or third lightest, as the lighter ones can be



6.5. Summary 85

R
2 i1
+

R
2 i2
+

R
2 i3

ϕκ

H1

H2

H3

0

0.2

0.4

0.6

0.8

1

0 π/16 π/8

R
2 i3

ϕκ

H1

H2

H3

0

0.2

0.4

0.6

0.8

1

0 π/16 π/8

Figure 6.11.: The amount of CP violation riCP for Hi (i = 1, 2, 3) as a function of ϕκ (left).
The amount of CP-even singlet component (Ri3)2 as a function of ϕκ (right).
This figure is already published in Ref. [33].

mainly singlet or CP-odd like and therefore escape the searches so far.
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CHAPTER 7

Composite Higgs Models

An alternative to stabilize the electroweak scale against UV physics is provided by
theories with an additional strong sector. Similar to QCD, a number of new resonances
emerge. Their masses arise through the strong dynamics of the new gauge sector. The
theory is asymptotically free, but becomes strong and confining at the electroweak
scale. Then the hierarchy between the scales of the strong sector and the Planck scale
arises naturally like in QCD. Such a class of models are known as technicolour models
and were originally proposed in the late 1970’s by Weinberg and Susskind [352, 353].
A related concept is the one of Composite Higgs Models, which was developed in the
1980’s. Composite Higgs Models are based on the idea that a Higgs boson arises as a
pseudo-Nambu Goldstone boson from an additional strong sector, and is thus naturally
lighter than the other resonances of the strong sector [19–25].
These ideas were revived in the 2000’s with the ’holographic’ Higgs models [26, 27, 354]
in terms of five dimensional models. The composite Higgs boson was identified with the
fifth component of a gauge field living in a five-dimensional space-time with Anti-de-
Sitter (AdS) metric. The physics of such models is the same as the low-energy effective
description of a strongly-interacting conformal field theory (CFT) with a breaking of
the conformal symmetry by the elementary sector. In this thesis, we will stick to the
four-dimensional approach in order to study the phenomenology of these models.
One of the key ingredients in Composite Higgs Models is the pseudo Goldstone nature
of the Higgs boson. A global symmetry G is broken to a subgroup H1 at a scale f
with n = dim(G) − dim(H1) Goldstone bosons arising from this symmetry breaking
pattern. A subgroup H0 of G is gauged by external vector bosons and can be identified
with the SM gauge group. An embedding for the SM gauge group into H1 has to
exist, in order not to break the gauge symmetry by the strong sector. The coset G/H1
needs to contain at least one SU(2)L doublet to be identified with the Higgs doublet.
Hence, of the n Goldstone bosons, three can be identified with the longitudinal modes
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of the massive vector bosons. Interactions of the SM fields with the strong sector
must respect the SM gauge symmetry but, in general, will break the global symmetry
G. These interactions give rise to a Higgs potential, which is generated by loops of
SM fermions and gauge bosons and can break the electroweak symmetry. By naive
dimensional analysis the Higgs mass scale is hence MH ∼ O(v) and the mass scale of
the strong resonances is mρ ≈ gρf with the coupling 1 . gρ . 4π. The Higgs boson is
thus naturally lighter than the other resonances of the strong sector.
In the models we will consider in the following, the Higgs potential arises directly at
one-loop order. In such model a mild tuning, given by ∆ = 1/ξ with ξ = v2/f 2, is
unavoidable [27]. The explicit symmetry breaking terms are given by linear couplings
of the SM fermions ψ to an operator O of the strong sector L = λψ̄O. This implies
that the SM fermions are mixtures of composite and elementary fermions, which is
commonly known as ’partial compositeness’. Note that the Higgs potential cannot be
generated by the gauge bosons alone as they align the vacuum along the SU(2)L×U(1)Y
preserving direction. Therefore, couplings of the fermions to the strong sector are
necessarily needed to break the global symmetry. In the following section, strongly-
interacting models will be discussed in a model independent way. After that we will
turn to a discussion on explicit models with the main focus on minimal models.

7.1. The Strongly-Interacting Light Higgs Lagrangian

A low-energy, model-independent description of the idea of a composite Higgs boson is
given in terms of the strongly-interacting light Higgs (SILH) Lagrangian [355], which
can in general be applied for models in which the Higgs boson arises as a pseudo-Nambu
Goldstone boson. In particular, it can be applied if ξ = v2/f 2 � 1. The deviations
with respect to the SM are then parameterized in terms of dimension-six operators.
The only possible dimension-five operator gives mass to neutrinos [356]. We will not
include this operator in our description, as for an O(1) coupling constant the bound
on neutrino masses requires a suppression scale of about O(1013 GeV). The operator
is hence not relevant for our analysis.
Due to its Goldstone nature the Higgs doublet has a shift symmetry. Coefficients for the
different operators can be obtained by symmetry considerations. Operators violating
the symmetry must be suppressed by at least the same coupling as represented in the
renormalizable SM counterpart. For instance, a higher dimensional operator in the
Higgs doublet φ given by (φ†φ)3 is suppressed by the coupling of its SM counterpart,
given in this case by L = −λ(φ†φ)2. The SILH Lagrangian for the Higgs doublet φ
then reads [355]

LSILH = cH
2f 2∂

µ
(
φ†φ

)
∂µ
(
φ†φ

)
+ cT

2f 2

(
φ†
←→
Dµφ

)2
+ cr

2f 2φ
†φ(Dµφ)†(Dµφ)

− c6λ

f 2

(
φ†φ

)3
+
(
cyyf
f 2 φ†φf̄LφfR + h.c.

)
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2m2
ρ

(
φ†σi
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)
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2m2
ρ

(
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Dµφ

)
(∂νBµν) (7.1)
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+ icHWg2

16π2f 2 (Dµφ)† σi (Dνφ)W i
µν + icHBg1

16π2f 2 (Dµφ)† (Dνφ)Bµν
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2
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16π2f 2
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2
g2
ρ
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with the SM Yukawa couplings yf and the SM gauge couplings g1, g2 and gs. The
abbreviation

φ†
←→
Dµφ = φ†Dµφ− (Dµφ)†φ , (7.2)

has been introduced. The gauge field strengths Wµν and Gµν are defined by

[Dµ, Dν ] = −igF a
µνT

a with Fµν = Wµν , Gµν , (7.3)

with g denoting the respective gauge coupling and T a the generators of the gauge group.
For the U(1) field strenght Bµν , Eq. (7.3) can be simplified to Bµν = ∂µBν − ∂νBµ.
The coefficients ci in Eq. (7.1) are expected to be of order one. The coefficient cT ,
however, must be strongly suppressed. The reason is that the SM Higgs sector is
actually invariant under a global SU(2)L × SU(2)R, called custodial symmetry. The
SU(2)L×SU(2)R symmetry is broken by Yukawa and gauge interactions, but it protects
the relation between the W boson and Z boson mass from large corrections. The term
associated with the coefficient cT breaks the custodial symmetry. We will hence set
cT to zero in the following. Note that the term associated with cr is not part of
the original formulation of the SILH Lagrangian in Ref. [355]. Together with the term
with coefficient cH , it makes a field redefinition necessary in order to have a canonically
normalized kinetic term.
Another useful description of a strongly-coupled Higgs boson is given in terms of the
effective chiral Lagrangian. We will not discuss this Lagrangian any further but refer to
the literature [357, 358]. For large values of ξ, the SILH Lagrangian is not an accurate
description anymore. A resummation in ξ needs to be performed, as it is provided by
explicit model constructions. In the next sections, we will discuss such explicit models.

7.2. Explicit Composite Higgs Models

A simple model fulfilling our requirement of a global symmetry with the SM gauge
group as a subgroup is given by the SU(3). This is, however, not a good choice, as the
custodial SU(2)L×SU(2)R symmetry group is not contained in SU(3). The unbroken
subgroup hence needs to be enlarged to an SO(4) global symmetry, with the algebra
SO(4) ∼= SU(2)L × SU(2)R. Another rank 2 group is SO(5) [359] (SU(3) is also rank
2). Minimal Composite Higgs Models (MCHM) are thus based on an SO(5)/SO(4)
coset, leading to four Goldstone bosons with three becoming the longitudinal modes of
the massive vector bosons and one physical Higgs boson. Before focusing on minimal
realizations some comments on extensions are in order. Enlarged global symmetries
normally lead to an enlarged Higgs boson spectrum. A simple extension is e.g. based
on an SO(6)/SO(5) coset and contains an extra singlet field [360] compared to the min-
imal model. Apart from the interesting phenomenology arising through the additional
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Higgs boson, this extension has additional benefits such as the possibility of success-
ful baryogenesis [361].1 Other possible extensions are e.g. SO(6)/SO(4) × SO(2) or
Sp(6)/Sp(4)× SU(2) leading to effective two-Higgs doublet models [362].
We will now turn to the discussion of MCHM with SO(5) as global symmetry group.
In order to assign the correct hypercharges, the symmetry needs to be enlarged by a
U(1) factor, with charge X, so that in the end the MCHM is based on an SO(5) ×
U(1)X/SO(4)× U(1)X coset. The SM gauge group SU(2)L × U(1)Y is embedded into
SO(4) × U(1)X with Y = T 3

R + X. The four Goldstone bosons hâ (â = 1, ..., 4) are
introduced by means of a field Σ with

Σ = Σ0 exp(Π(x)/f), Σ0 = (0, 0, 0, 0, 1) , Π(x) = −i
√

2T âhâ(x) , (7.4)

and T â denoting the generators of the coset SO(5)/SO(4), which are defined in Ap-
pendix E. The low-energy physics of the strong sector can be described in terms of a
non-linear σ-model

Lkin = f 2

2 (DµΣ) (DµΣ)T , with DµΣ = ∂µΣ−ig1BµΣ(T 3
R+X)−ig2W

a
µΣT aL . (7.5)

For further discussion the explicit form of the Goldstone field is useful. It can be
obtained from Eq. (7.4) and (E.10) and reads

Σ = sin h/f
h

(h1, h2, h3, h4, h cot(h/f)) , h =

√√√√ 4∑
â=1

h2
â . (7.6)

In the unitary gauge three of the degrees of freedom become the longitudinal modes
of the gauge bosons. By means of a unitary gauge transformation, Σ can thus be
simplified to

Σ = (0, 0, 0, sin(H/f), cos(H/f)) , (7.7)
with the VEV aligned in the h4 direction (H = h4). The Lagrangian in Eq. (7.5) then
reads

Lkin = 1
2∂µH∂

µH + f 2

4 sin2
(
H

f

)[
g2

2W
+
µ W

µ− + g2
2

2 cos2 θW
ZµZµ

]
. (7.8)

By expanding the Higgs field around the VEV2 H = 〈H〉 + h in zeroth order and by
identifying

ξ = v2

f 2 = sin2
(
〈H〉
f

)
, (7.9)

the usual relation between v and the gauge boson masses can be obtained. Note that
ξ can have values between zero and one, with ξ = 0 corresponding to the SM limit and
ξ = 1 to the technicolour limit, in which the scale of the strong sector corresponds to the

1Note also that SO(6) ∼= SU(4), hinting to a possible four-dimensional UV completion with
fermions, since the global symmetry of the kinetic term of N fundamental Weyl fermions is SU(N).

2Note that we slightly changed our notation here: The fluctuation of the Higgs field H around
the VEV is now called h throughout of this part of the thesis. The Higgs boson mass will hence be
denoted by mh.



7.2. Explicit Composite Higgs Models 93

EWSB scale. The Higgs boson to gauge boson couplings can be obtained by expanding
in higher orders in H = 〈H〉 + h. In terms of the corresponding SM couplings, they
are given by (V = W,Z)

ghV V = gSM
hV V

√
1− ξ , ghhV V = gSM

hhV V (1− 2ξ) . (7.10)

The ghV V and ghhV V couplings are hence reduced compared to the SM for all possible
values of ξ. Due to the modified Higgs boson vector boson couplings, the Higgs boson
cannot fully unitarize the longitudinal vector boson scattering anymore. This leads
to a characteristic increase of this process with the energy and can be viewed as a
kind of ’smoking gun’ signature of such a class of models [355, 358]. However, it is
experimentally very challenging to be measured. Unitarity of longitudinal vector boson
scattering can be restored by the inclusion of further resonances of the strong sector
[363].
The Higgs boson to fermion couplings and Higgs self-couplings can only be calculated
once a representation for the fermions is chosen. The simplest choice for an SO(5)
representation is the spinorial representation corresponding to a 4. It was, however,
shown in Ref. [364] that such a model has problems to evade the constraints from ZbLb̄L
and we will thus not discuss it any further here. Instead we will discuss models with
the fermions transforming in the fundamental and the antisymmetric representation of
SO(5). For fermions transforming in the symmetric representation (a 14), we refer to
the works in Refs. [32, 365].

7.2.1. Fermions transforming in the fundamental representation

The fundamental representation of the SO(5) is a 5. This model is often abbreviated
by MCHM5 in literature. As already mentioned, linear couplings of the SM fermions to
the strong sector can break the global symmetry explicitly and hence generate a Higgs
potential. Such terms will also generate a mass for the corresponding SM fermion by
mixing with the strong sector. Explicit mass terms for the SM fermions are thus not
needed. The mixing will be connected to the mass of the fermion and is thus most
interesting for the heaviest SM fermion, the top quark. We will therefore concentrate
the discussion on the third generation quarks. We introduce a single five-plet of new
fermions with a U(1) charge X = 2/3 since this will lead to the desired new fermions
which mix with the top quark. The new multiplet decomposes into

ψ = 1√
2


d− χ1
−i(d+ χ1)
u+ u1
i(u− u1)√

2T

 . (7.11)

The fermionic states have been directly expressed in terms of SO(4) eigenstates. In
Table 7.1 the isospin quantum numbers TL/R and their third component T 3

L/R, the
hypercharge Y and the electric charge Qel for the fermions in Eq. (7.11) are given.
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u u1 T d χ1

T 3
L 1/2 -1/2 0 -1/2 1/2
TL 1/2 1/2 0 1/2 1/2
T 3
R -1/2 1/2 0 -1/2 1/2
TR 1/2 1/2 0 1/2 1/2
Y 1/6 7/6 2/3 1/6 7/6

Qel = T 3
L + Y 2/3 2/3 2/3 -1/3 5/3

Table 7.1.: Quantum numbers under SU(2)L × SU(2)R, the hypercharge Y and the electric
charge Qel of the composite fermions in ψ. The isospin quantum numbers are
denoted by TL/R, their third component by T 3

L/R.

As can be inferred from the Table, the new SU(2)L doublet Q̃ = (u, d) has the same
quantum numbers as the the doublet QL of the left-handed top and bottom quark.
A term invariant under the SM gauge group can thus be formed such that the SM
doublet of the left-handed top and bottom quark can mix with the SU(2)L doublet Q̃
on Lagrangian level. The singlet field T has the same quantum numbers as the right-
handed top quark tR. Furthermore, another charged 2/3 fermion u1 and an exotic
fermion χ1 with charge 5/3 were introduced. With these ingredients at hand, the
Lagrangian reads

Lf = iqL /DqL + itR /DtR + ibR /DbR + iψL /DψL + iψR /DψR

−yf(ψLΣT )(ΣψR)−M5ψ̄LψR + h.c.
−λqQLQ̃R − λtTLtR + h.c. ,

(7.12)

with the mass M5 of the five-plet, the coupling y of the Goldstone field to the new
fermions and the linear couplings λq and λt of the strong sector to the SM fermions.
The covariant derivative is given by (a = 1, 2, 3)

Dµψ =
[
∂µ − ig2W

a
µT

a
L − ig1Bµ(T 3

R +X)
]
ψ , with X = (2/3)15 . (7.13)

The new fermions introduced in Eq. (7.11) are vector-like, namely both left- and right-
handed components transform in the same way under the SM gauge group. A mass
term can thus be written down without violating the SU(2)L×U(1)Y symmetry. Note
that we did not introduce any explicit mass term for the top and bottom quark in
Eq. (7.12). The top quark gets its mass through mixing with the 2/3 charged fermions,
the so-called top partners. The mass matrix for the top-like quarks reads (with s =
sin〈H〉/f = v/f and c = cos〈H〉/f)

−Lm =


tL
uL
u1,L
TL




0 λq 0 0
0 M5 + fys2

2
yfs2

2
yfsc√

2
0 yfs2

2 M5 + fys2

2
yfsc√

2
λt

yfsc√
2

yfsc√
2 M5 + yfc2


︸ ︷︷ ︸

Mt


tR
uR
u1,R
TR

+h.c. . (7.14)
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The mass matrix can be diagonalized by a bi-unitary transformation with
(
U t
L

)†
MtU

t
R = Mdiag

t . (7.15)

Before EWSB (v = 0) the mass matrix is diagonalized by the rotations
(
QL

Q̃L

)
→
(

cosφL sinφL
− sinφL cosφL

)(
QL

Q̃L

)
, tanφL = λq

M5(
tR
TR

)
→
(

cosφR sinφR
− sinφR cosφR

)(
tR
TR

)
, tanφR = λt

M5 + yf
. (7.16)

The masses of the new fermions are then given by

M5

cL
, M5 ,

yf +M5

cR
, (7.17)

with sL,R = sinφL,R and cL,R = cosφL,R. The lightest mass eigenstate, identified with
the top quark, obtains a mass only at O(v/f) given by

mt = y sinφL sinφR
v√
2
. (7.18)

The parameter sinφR is fitted to the experimental top quark mass. Note that y and
sinφL cannot be chosen too small in order to obtain the correct mass value for mt.
The Goldstone coupling y is however perturbative only below 4π.
The Lagrangian of Eq. (7.12) does not give rise to a bottom quark mass, as there is
no new fermionic resonance with the same quantum numbers than the right-handed
bottom quark. It can, however, be introduced by adding a 5−1/3. In order to avoid
additional parameters which would then arise, we introduce a bottom quark mass via
an ad hoc Yukawa coupling

Lb = −λbQLφbR + h.c. . (7.19)

As will be shown in the next subsection, a bottom quark mass can also easily be
introduced by resorting to larger representations of the fermions. For later use, we will
also give the Higgs boson couplings to fermions. They can be obtained by expanding
the bilinear terms in the fermion fields in higher orders in H = 〈H〉+h. The interaction
Lagrangian of one Higgs boson with two fermions is given by

− Lhtt̄ = y h


tL
uL
u1,L
TL




0 0 0 0
0 sc sc 1−2s2√

2
0 sc sc 1−2s2√

2
0 1−2s2√

2
1−2s2√

2 −2sc


︸ ︷︷ ︸

G̃hff̄


tR
uR
u1,R
TR

+ h.c. (7.20)
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and the interaction of two Higgs bosons with two fermions reads

−Lhhtt̄ = y

2f h
2


tL
uL
u1,L
TL




0 0 0 0
0 1− 2 s2 1− 2 s2 −2

√
2sc

0 1− 2 s2 1− 2 s2 −2
√

2sc
0 −2

√
2sc −2

√
2sc −2 (1− 2 s2)


︸ ︷︷ ︸

G̃hhff̄


tR
uR
u1,R
TR

+h.c. . (7.21)

The coupling matrices are rotated to the mass eigenstates by

y(U t
L)†G̃hff̄U

t
R = Ghff̄ , and y(U t

L)†G̃hhff̄U
t
R = Ghhff̄ . (7.22)

If all new fermionic resonances are above the cut-off of the effective theory, we are left
with only the pure Higgs non-linearities, expressed by means of ξ. The Higgs boson to
fermion couplings are then given by (see e.g. Ref. [27, 366])

ghff = gSMhff
1− 2ξ√

1− ξ and ghhff = −gSMhff
4ξ
v

(7.23)

The ghff and ghhff couplings as defined in Eq. (7.23) can of course be obtained from
Eq. (7.22) by taking the limit of very heavy top partners masses. Note that the ghhff
coupling does not exist in the SM. The trilinear Higgs self-coupling reads

ghhh = gSMhff
1− 2ξ√

1− ξ . (7.24)

Coupling matrices of the fermions with vector bosons can be obtained from the covari-
ant derivative as defined in Eq. (7.13).

7.2.2. Fermions transforming in the antisymmetric representation

The antisymmetric representation is a ten-plet of SO(5). We assign a U(1) charge
of X = 2/3. Our approach in this discussion will be very similar to the previous
subsection. But as the results will be needed in the phenomenological study, we will
nevertheless repeat here some steps, pointing to the differences compared to the fun-
damental representation case. The decomposition of the 10 under SU(2)L × SU(2)R
is given by

10 = (2,2)⊕ (3,1)⊕ (1,3) . (7.25)
The fermion ten-plet reads

Q = 1
2

0 −(u+ u1) i(d−χ)√
2 + i(d1−χ1)√

2
d+χ√

2 −
d1+χ1√

2 d4 + χ4

u1 + u 0 d1+χ1√
2 + d+χ√

2
i(d1−χ1)√

2 − i(d−χ)√
2 −i(d4 − χ4)

− i(d1−χ1)√
2 − i(d−χ)√

2 −d1+χ1√
2 −

d+χ√
2 0 u1 − u t4 + T4

d1+χ1√
2 −

d+χ√
2

i(χ1−d1)√
2 + i(d−χ)√

2 u− u1 0 −i(t4 − T4)
−d4 − χ4 i(d4 − χ4) −t4 − T4 i(t4 − T4) 0


.

(7.26)
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u u1 t4 T4 d d1 d4 χ χ1 χ4

T 3
L 0 0 -1/2 1/2 -1 0 -1/2 1 0 1/2
TL 1 0 1/2 1/2 1 0 1/2 1 0 1/2
T 3
R 0 0 1/2 -1/2 0 -1 -1/2 0 1 1/2
TR 0 1 1/2 1/2 0 1 1/2 0 1 1/2
Y 2/3 2/3 7/6 1/6 2/3 -1/3 1/6 2/3 5/3 7/6

Qel = T 3
L + Y 2/3 2/3 2/3 2/3 -1/3 -1/3 -1/3 5/3 5/3 5/3

Table 7.2.: Quantum numbers of the new vector-like fermions under SU(2)L × SU(2)R, the
hypercharge Y and the electric charge Qel.

For convenience we have chosen a two-indexed way of writing the ten-plet. The action
of the generators in Eqs. (E.10–E.12) on the representation is given by the commutator,
as shown in Appendix E. The quantum numbers of the specific fermions appearing in
Eq. (7.26) can be found in Table 7.2. The fermions u1 and d1 can mix with a right-
handed top and bottom quark, respectively, as they have the same quantum numbers.
The SU(2)L doublet Q̃ = (T4, d4) can mix with the SM doublet QL of left-handed
top and bottom quarks. In contrast to the fundamental representation, we have now
all ingredients at hand to introduce the bottom quark mass via partial compositeness
without introducing another representation. The Lagrangian is then, analogously to
Eq. (7.12), given by

L = iTr(Q̄R /DQR) + iTr(Q̄L /DQL) + iq̄L /DqL + ib̄R /DbR + it̄R /DtR

−M10Tr(Q̄RQL)− yf
(
Σ†Q̄RQLΣ

)
+ h.c.

− λtt̄Ru1L − λbb̄Rd1L − λq(T̄4R, d̄4R)QL + h.c. .

(7.27)

In order to form an SO(5) invariant, the trace must be taken in the kinetic terms.
The mass matrices for the 2/3 charged fermions, the −1/3 charged fermions and the
5/3 charged fermions can be derived now from the bilinear terms in the Lagrangian in
zeroth order in the H = 〈H〉+ h expansion, and are given by

−Lmt =


tL
uL
u1L
t4L
T4L




0 0 0 0 λq
0 m̃a −1

4fys
2 −1

4fycs −
1
4fycs

λt −1
4fys

2 m̃a
1
4fycs

1
4fycs

0 −1
4fycs

1
4fycs m̃b −1

4fys
2

0 −1
4fycs

1
4fycs −1

4fys
2 m̃b




tR
uR
u1R
t4R
T4R

+ h.c. , (7.28)

− Lmb =


bL
dL
d1L
d4L




0 0 0 λq
0 m̃a −1

4fys
2 fy cs

2
√

2
λb −1

4fys
2 m̃a −fy cs

2
√

2
0 fy cs

2
√

2 −fy cs
2
√

2 m̃c




bR
dR
d1R
d4R

+ h.c. , (7.29)
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and

− Lmχ =

 χL
χ1L
χ4L




m̃a −1
4fys

2 fy cs
2
√

2
−1

4fys
2 m̃a −fy cs

2
√

2
fy cs

2
√

2 −fy cs
2
√

2 m̃c


 χR
χ1R
χ4R

+ h.c. , (7.30)

with

m̃a ≡
1
4fys

2 +M10 , m̃b ≡
1
2fy(1− 1

2s
2)+M10 , m̃c ≡

1
2fyc

2 +M10 . (7.31)

The transformation into the mass eigenstates is defined, in analogy to Eq. (7.15), by(
U
t/b/χ
L

)†
Mt/b/χU

t/b/χ
R = Mdiag

t/b/χ . (7.32)

In order to gain an analytic understanding, the mass matrix can be diagonalized before
EWSB, i.e. for v = 0. This can be done by the following rotations(

QL

Q̃L

)
→

(
cosφL sinφL
− sinφL cosφL

) (
QL

Q̃L

)
, tanφL = λq/(M10 + fy/2) ,(

tR
u1R

)
→

(
cosφRt sinφRt
− sinφRt cosφRt

) (
tR
u1R

)
, tanφRt = λt/M10 ,(

bR
d1R

)
→

(
cosφRb sinφRb
− sinφRb cosφRb

) (
bR
d1R

)
, tanφRb = λb/M10 .

(7.33)

This results in the following masses of the top partners

M10 ,
M10

cosφRt
, M10 + fy

2 ,
M10 + fy

2
cosφL

, (7.34)

and masses of the bottom partners

M10 ,
M10

cosφRb
,

M10 + fy
2

cosφL
. (7.35)

The mass matrix of the 5/3 charged fermions can be diagonalized exactly leading to

M10 , M10 , M10 + fy

2 . (7.36)

At LO in v/f , we obtain for the top and bottom quark masses

mt = y v

4 sinφL sinφRt , mb = y v

2
√

2
sinφL sinφRb . (7.37)

Note that the mass formula for the top quark mass is suppressed compared to the
fundamental representation, meaning that the parameters need to be chosen larger to
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fulfill the requirement of the correct top quark mass. As can be inferred from Eq. (7.37),
either sinφL or sinφRb needs to be small to fit the small bottom quark mass. Since
sinφL cannot be too small, to achieve the correct top quark mass, sinφRb will be small,
implying that the right-handed bottom quark is mainly fundamental.
The Higgs coupling matrices can be obtained from the bilinear terms of the Lagrangian
by expanding the mass matrices in the interaction eigenstates up to first order in the
Higgs field h. They read
− Lhtt̄ =

y h


tL
uL
u1L
t4L
T4L




0 0 0 0 0
0 1

2sc −1
2sc

1
4(2s2 − 1) 1

4(2s2 − 1)
0 −1

2sc
1
2sc

1
4(1− 2s2) 1

4(1− 2s2)
0 1

4(2s2 − 1) 1
4(1− 2s2) −1

2sc −1
2sc

0 1
4(2s2 − 1) 1

4(1− 2s2) −1
2sc −1

2sc


︸ ︷︷ ︸

G̃htt̄


tR
uR
u1R
t4R
T4R

+ h.c. ,

− Lhbb̄ = y h


bL
dL
d1L
d4L




0 0 0 0
0 1

2sc −1
2sc

1
2
√

2(1− 2s2)
0 −1

2sc
1
2sc

1
2
√

2(2s2 − 1)
0 1

2
√

2(1− 2s2) 1
2
√

2(2s2 − 1) −sc


︸ ︷︷ ︸

G̃hbb̄


bR
dR
d1R
d4R

+ h.c. .

(7.38)
In analogy to Eq. (7.22) the Higgs boson couplings to the top quarks and bottom
quarks in the mass eigenstates are given by

y(U t
L)†G̃htt̄U

t
R = Ghtt̄ , and y(U b

L)†G̃hbb̄U
b
R = Ghbb̄ . (7.39)

We do not give the Higgs couplings to the 5/3 charged fermions here, as they only
interact with the Higgs boson with very small off-diagonal couplings. Couplings to the
Goldstone bosons can be derived by the replacements

h1 →
G− −G+

i
√

2
, h2 → −

G− +G+
√

2
, h3 → G0 , (7.40)

in the Lagrangian in Eq. (7.27). The couplings of the Goldstone bosons with the
fermions can be found in explicit form in Ref. [36].
With the heavy new vector-like fermions integrated out, the model with fermions
transforming in the antisymmetric representation has exactly the same Higgs boson
couplings as the one with the fundamental representation [27]. Note that in the holo-
graphic Composite Higgs Model of Ref. [27] with fermions in the 10 representation,
one representation per generation is required. Simplified models with only one new
multiplet are often dubbed by ’two site’ models.

7.3. Concluding remarks

Our approach for defining the explicit models was guide-lined by the principle of min-
imality. In addition to the operators present in the Lagrangians in Eq. (7.12) or
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Eq. (7.27), extra operators such as e.g.

∆L = i y′L(ψLΣT ) /D(ΣψL) + i y′R(ψRΣT ) /D(ΣψR) , (7.41)

can be introduced into the Lagrangian (7.12). We restrict ourselves, however, to the
necessary set of operators, meaning that their couplings are set to zero. We also do not
introduce any further sources of SO(5) breaking other than the linear couplings of the
SM fermions with the strong sector. In general, it is e.g. possible to introduce different
masses for the different SU(2)L multiplets of vector-like fermions, which would not
break the SM gauge group but only the global symmetry SO(5). With our approach,
we end up with a minimal amount of new parameters. Compared with the SM, only
four new parameters both in the model with the fundamental and in the model with
the antisymmetric representation are introduced.
Until now, we did not give any motivation why the fermionic resonances need to be
included in the effective theory approach. In Refs. [28–31] the explicit form of the
Higgs potential for minimal Composite Higgs Models with fermions transforming in
different representations was calculated. This results in a relation between the Higgs
boson mass and the masses of the fermionic resonances. The Higgs mass turns out to
be in general too large in the considered models, but light top partners, typically at
around a TeV for moderate values of ξ, can cure the tension with the experimentally
measured Higgs mass value. Based on Weinberg sum rules, Ref. [31] derived for the
SO(5)/SO(4) model with fermions in the fundamental representation a mass bound
for the lightest top partner of

mT,lightest .
mhπv

mt

√
Nc

√
ξ
, (7.42)

is found, with Nc denoting the number of colours. For the antisymmetric representation
the same formula can be applied. Of course, the upper mass bound on the lightest top
partner mass is complementary with bounds of direct searches. Combining both, large
values of ξ are excluded. Recently in Ref. [367], it was shown that the bound on the
lightest resonance mass can be relaxed by O(10%) if loop corrections of heavy new
gluons are taken into account.
Finally, a remark on UV-completions of Composite Higgs Models is in order. All the
models presented here are effective theories, with a cut-off scale Λ = 4πf , of an under-
lying yet unknown theory. An interesting question is of course the underlying dynamics
of such a theory. As already mentioned, there exist some extra-dimensional approaches,
in which the low-energy theory is described by the first few Kaluza-Klein states. A
true UV-completion of extra dimensional models, however, relies on the knowledge of
a (string) theory of gravity [368]. Four-dimensional approaches can be classified in two
groups: The supersymmetric UV-completions and the non-supersymmetric ones. A
supersymmetric UV-completion was proposed e.g. in Refs. [369, 370], with the usual
SUSY spectrum showing up at energies above ∼ 10 TeV and gauge and fermion reso-
nances of the strong sector at lower energies. A non-supersymmetric UV-completion is
e.g. given in Ref. [371] and relies on four-fermion operators. Embeddings into theories
with fundamental fermionic matter were discussed in Ref. [372] for an SO(6)/SO(5)
coset.



CHAPTER 8

Phenomenology of Top Partners in Composite
Higgs Models

The next two chapters are dedicated to the phenomenological implications of Com-
posite Higgs Models on LHC physics. As discussed in the previous chapter, fermionic
resonances, in particular top partners, need to be light to accommodate the correct
Higgs boson mass and are hence within the reach of the LHC. In this spirit, this
chapter will be devoted to study the influences of top partners on Higgs physics, in
particular on single and double Higgs production via gluon fusion. The structure of
the loop-induced Higgs boson to two gluon coupling which mediates the dominant
Higgs production channel at the LHC can be approximated by the low-energy theorem
(LET) [123–125]. The application of the LET on Composite Higgs Models is discussed
in both a model-independent way and for an explicit model with top partners, taking
into account constraints on the masses of the top partner from electroweak precision
tests (EWPTs) and from direct searches of new vector-like fermions. The discussion is
based on Ref. [34].
The LET is especially useful for the calculation of higher order QCD corrections for
the single and double Higgs production processes via gluon fusion, as it reduces the
loop order by one. We will discuss the NLO QCD corrections to Higgs pair production
in Composite Higgs Models within the LET approach in Section 8.3 of this chapter.

8.1. The low-energy theorem in Composite Higgs
Models

With the help of the LET, the loop-induced interactions of the Higgs boson with gluons
can be replaced by effective couplings for a zero momentum Higgs boson. The LET

101
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prediction for the Higgs boson coupling to gluons can be obtained by treating the Higgs
field H as a background field, as zero momentum of the Higgs boson implies that it
is a constant field. We can then treat the masses of each heavy particle pi as field
dependent. They enter the QCD gauge coupling as threshold corrections

1
g2
s(µ) = 1

g2
s(Λ) −

11− 2/3nf
8π2 log

(
Λ
µ

)
− 1

8π2

∑
pi

δbpi log
m2
pi

(H)
µ

, (8.1)

with nf the number of fermions and δb = 2/3 if pi is a Dirac fermion. We assumed
that the particles pi transform as triplets under SU(3)C . The effective Lagrangian is
then simply derived from the kinetic terms of the gluons [373]

− 1
4g2

s(µ)G
a
µνG

aµν , (8.2)

with the field strength Gµν as defined in Eq. (7.3) and reads

Leff = g2
s

64π2G
a
µνG

aµν
∑
pi

δbpi logm2
pi

(H) . (8.3)

By expanding the field-dependent masses of the heavy fermions around the VEV 〈H〉,
the effective Higgs-gluon couplings are given by

Lhngg = g2
s

96π2G
a
µνG

aµν
(
A1h+ 1

2A2h
2 + . . .

)
, (8.4)

where we have defined

An ≡
(
∂n

∂Hn
log detM2(H)

)
〈H〉

, (8.5)

with M2 ≡ M†M, and M is the heavy fermion mass matrix. Later on, the explicit
form of the coefficients A1 and A2 will be useful. They read

A1 = 1
〈H〉

[
∂

∂(logH) log detM2(H)
]
〈H〉

, (8.6)

A2 = 1
〈H〉2

[(
∂2

∂(logH)2 −
∂

∂(logH)

)
log detM2(H)

]
〈H〉

. (8.7)

In the SM, only the effects of the top quark can be integrated out by the LET. The
bottom quark mass is too light, such that an expansion in small external momentum,
from which the LET arises as the zeroth coefficient, is not suitable. The field dependent
mass of the top quark in the SM can be written as mt(H) = ytH/

√
2. Using An =

(−1)n+1(n− 1)!/vn Eq. (8.5) can be resummed to

Lhngg = g2
s

48π2G
a
µνG

aµν log
(

1 + h

v

)
. (8.8)
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The corresponding operator for a chiral fermion is given generically by
Ga
µνG

aµν log(H†H), for a vector-like fermion it is instead Ga
µνG

aµνH†H. The effects of
these two operators on double Higgs production were discussed in Ref. [373].
In a first step, the LET predictions for single and double Higgs boson production will
be given in a model independent way. Using the SILH Lagrangian given in Eq. (7.1),
expressions for the hgg and hhgg couplings can easily be derived. The contributions
split in three parts. The first part stems from the top quark mass, given in the effective
approach by

mt(H) = ytH√
2

(
1− cy

H2

2f 2

)
. (8.9)

The second part is generated by the contributions of the heavy fermions. In the effective
Lagrangian of Eq. (7.1), this is encoded in the operator with coefficient cg, such that
we end up with

1
2

(
∂

∂ logH log detM2(H)
)
H=v

= 1− cy
v2

f 2 + 3cg
y2
t

m2
ρ

v2 , (8.10)

1
2

((
∂2

∂(logH)2 −
∂

∂ logH

)
log detM2(H)

)
H=v

= −1− cy
v2

f 2 + 3cg
y2
t

m2
ρ

v2 . (8.11)

Finally, one needs to take into account the proper canonical normalization of the Higgs
boson kinetic term. The SILH Lagrangian contains an additional kinetic term,

∆Lh kin = 1
2f 2

(
cH + cr

4

)
(〈H〉+ h)2∂µh∂

µh , (8.12)

such that a field redefinition needs to be performed. The field redefinition to first order
in ξ is given by

h→ h− ξ

2

(
cH + cr

4

)(
h+ h2

v
+ h3

3v2

)
. (8.13)

Finally, taking into account the relation between v and 〈H〉 with a first order correction
term in ξ

v2 = 〈H〉2
(

1 + cr
4
〈H〉2

f 2

)
, (8.14)

leads to the effective Higgs to gluon couplings given by

Lhgg = g2
s

48π2G
a
µνG

aµν h

v

[
1− cy

v2

f 2 + 3cg
y2
t

m2
ρ

v2 − cH
2 ξ

]
, (8.15)

Lhhgg = g2
s

96π2G
a
µνG

aµν h
2

v2

[
−1− cy

v2

f 2 + 3cg
y2
t

m2
ρ

v2 − cr
4 ξ
]
. (8.16)

Note that often the expressions given in terms of the determinant of the mass matrix as
in Eqs. (8.4) and (8.5) are more useful, especially if there are several top partners.1 Af-
ter having derived the effective vertices in terms of a model independent Lagrangian, we

1Both the terms of Eq. (8.4) and the shifts due to the canonical normalization of the kinetic term
need to be taken into account.
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will turn now to a discussion in terms of an explicit model with fermions transforming
in the fundamental representation, as introduced in Section 7.2. More results derived
in a model independent way can be found in Ref. [34], including also a discussion on
the LET for the Higgs to photon couplings.

8.2. Low-energy theorem for a model with top partners

For the discussion of the LET in an explicit model, we will stick to the minimal
SO(5)/SO(4) model with the fermions transforming in the fundamental representa-
tion as introduced in Section 7.2.1. A discussion of the LET in Littlest Higgs Models
or in the Minimal Composite Higgs Model with fermions transforming in the spinorial
representation can be found in Ref. [34]. We will first shortly review some constraints
on new fermions from electroweak precision tests and direct searches, based on the
results obtained in Ref. [34] in 2012. Since then, the exclusion limits on direct searches
have been updated. These updated limits will be discussed in more detail in in Section
9.2, in terms of a different model with the fermions transforming in a 10 of SO(5).

8.2.1. Constraints from electroweak precision data and direct
searches for fermions transforming in the fundamental
representation

New Physics models are strongly constrained by the measurement of the resonant
production of a Z boson at LEP with high precision. For Composite Higgs Models,
constraints from the electroweak precision tests (EWPTs) were discussed widely in
literature [374, 375], also regarding models with top partners [376–380]. For this work,
the results of Ref. [380] have been updated by including a newer measurement of the
W boson mass based on Tevatron results [381, 382], leading to the new world average
value [383]

MW = 80.385± 0.015 GeV . (8.17)

A further discussion on EWPTs will be delayed to Section 9.1. For the constraints on
the new vector-like fermions from direct searches, we took into account several searches
for pair-produced heavy fermions with subsequent decays intoWbWb, ZtZt andWtWt
final states. They are based on the data available in June 2012 [384–393]. A list of
the experimental searches included into our analysis can be found in Table 8.1, with
the respective excluded mass range of the new vector-like fermion ψ. Even though we
will discuss in more detail the constraints in Section 9.2, the general way of obtaining
them will be given here. The reason is that the presentation of the results from the
experimental collaborations has changed since June 2012. At that time, the constraints
were given for the different channels assuming for each branching ratios of 100%. The
newer constraints are given in terms of branching ratios of the new fermions.
The search results given in Table 8.1 are all based on pair-production of the heavy
fermions. As this is a pure QCD process, the cross section σ(pp, pp̄ → ψψ̄) only
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exp. search L [fb−1] Mψ [GeV] range arXiv Ref.
CMS [384–387] WbWb (1 lepton) 4.7 [400, 625] 1209.0471

WbWb (2 leptons) 5.0 [350, 600] 1203.5410
WtWt 4.9 [450, 650] 1204.1088
ZtZt 1.14 [250, 550] 1109.4985

ATLAS [388–391] WbWb 1.04 [250, 500] 1202.3076
WqWq 1.04 [300, 500] 1202.3389

WtWt (1 lepton) 1.04 [300, 600] 1202.6540
WtWt (2 leptons) 1.04 [300, 600] 1202.5520

CDF [392, 393] WbWb 5.6 [180, 500] 1107.3875
WtWt 4.8 [260, 425] 1101.5728

Table 8.1.: List of experimental searches for pair-produced heavy fermions included in our
analysis of collider constraints. For this table, see also Ref. [34].

depends on the mass of the new vector-like fermion ψ, denoted generically byMψ. The
constraint from e.g. a search for ψψ̄ → WbWb at the LHC will then read

σQCD(pp→ ψψ̄)×BR(ψ → Wb)2 ≤ σexp , (8.18)

where σexp is the experimental upper bound on the cross section. The QCD pair
production cross section was obtained with the code HATHOR [394] at approximate
NNLO. The branching ratios of the decays of the vector-like fermions were computed
with the formulae given in Appendix F. Both the heavy -1/3 charged fermion d as well
as χ1 have branching ratios of 100% into Wt. The results of the searches in the WtWt
final state can be straightforwardly applied to both cases.
All the searches reported here were for

√
s = 7 TeV. These results can be projected

to
√
s = 8 TeV. This is done in the following way: Backgrounds in searches for top

partners are mainly given by top quark pair production, which is increased by 42% by
going from

√
s = 7 TeV to

√
s = 8 TeV. The search strategy relies on a cut on the tt̄

invariant mass, whose distribution is not significantly changed by the energy increase,
as was explicitly checked with MadGraph 5 [152]. The upper limit on the cross section
is hence softened in the Gaussian approximation by a factor of

√
1.42 ∼= 1.19. The large

luminosity of the 8 TeV run is nevertheless tightening the limit on the cross section,
lowering it by a square root factor of the luminosity in every channel. We have assumed∫
L = 15 fb−1 for the 2012 run. The resulting constraints were mχ ≥ 700 GeV for 5/3

charged fermions χ and mT & 500 GeV, with T denoting generically a top partner.
Note that at the time of the completion of this thesis, the actual data constrained the
masses a bit tighter: For mχ the strongest bound comes from a CMS dedicated search
for 5/3 charged fermions [395] leading to a limit of

mχ ≥ 770 GeV (8.19)

and for top partners from an ATLAS search [396], excluding top partners up to

mT ≥ 850 GeV for BR(T → ht) = 100% . (8.20)
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8.2.2. The low-energy theorem for single Higgs production

The cross section for single Higgs production in this model can easily be derived in the
LET approximation by applying Eq. (8.4) since the kinetic term of the Higgs boson is
already canonically normalized. Thus, only the determinant of the mass matrix of the
top-like fermions given in Eq. (7.14) needs to be derived, which yields

detM†(H)M(H) = M4
5 y

2f 2 sin2 φL sin2 φR
8 cos2 φL cos2 φR

(M5 + yf)2 sin2
(

2H
f

)
. (8.21)

Hence, this leads to A1 = (2/v)(1 − 2ξ)/
√

1− ξ with sin2(〈H〉 /f) = ξ. The cross
section is then modified, compared to the SM cross section, according to

σ(pp→ h)
σ(pp→ h)SM

=
(

1− 2ξ√
1− ξ

)2

. (8.22)

Compared to the results given in Eq. (8.15) for the model independent parametrization
of the strong dynamics, this result here is valid to all orders in ξ as it provides the
resummed result within this model. Equation (8.22) is independent of the details of
the heavy spectrum, meaning that it does not depend on the couplings λi or the masses
Mi of the heavy new fermions, but solely on the Higgs boson non-linearities given by
ξ. This behaviour always takes place if the heavy mass matrix takes the form

detM2 = F (H/f)× P (λi,Mi, f) with F (0) = 0 . (8.23)

It can then easily be seen that the LET prediction becomes independent of the masses
and of the couplings of the new heavy top partners. In Ref. [397] the origin of this
factorization was discussed by means of a spurion analysis. It was also shown that this
factorization can break down if the top quark mixes with more than one composite
operator. This and the introduction of bottom partner mixing with the SM bottom
quark can lead to a dependence of the cross section on the composite masses and
couplings. This statement will be further discussed in Section 9.3. The question,
which needs to be addressed now, is how well the LET result approximates the full
cross section including all top-like fermions in full mass dependence. The full cross
section was computed with a self-written FORTRAN code. For the purpose of showing
numerical results, a scan was performed over the parameter space retaining only points
allowed by EWPTs. The mass matrix for the top quarks of Eq. (7.14) was diagonalized
numerically without any approximations. The result can be found in Fig. 8.1 which
shows the σ(pp → h)/σSM(pp → h) ratio as a function of the lightest resonance mass
for ξ = 0.25. Showing the ratio of the cross sections has the advantage that QCD K-
factors cancel out under the assumption that the higher order corrections are the same
in both cases. This is approximately true as was shown in Ref. [398]. The green points
in Fig. 8.1 are still allowed by EWPTs and direct searches for vector-like fermions. The
gray points are excluded by direct searches and the orange points are the projected
exclusions for the 8 TeV run 2012. They are by now excluded. The black line in the
plot shows for comparison the result obtained with the LET in Eq. (8.22). As can be
inferred from the plot, the LET very well describes the full cross section. The cross
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Figure 8.1.: The MCHM5 cross section for single Higgs production through gluon fusion (in-
cluding the exact dependence on top and heavy fermion masses), normalized to
the SM cross section (computed retaining the mt dependence), as a function of
the mass of the lightest fermion resonance mlightest for mh = 125 GeV. The com-
positeness parameter is set to ξ = 0.25. Green points are allowed, gray points
are excluded by current collider constraints, whereas orange points show the pro-
jected exclusions at LHC8 in 2012 and are by now excluded. For comparison,
the cross section ratio computed with the LET approximation in Eq. (8.22) is
shown as a black line. This figure is already published in Ref. [34].

section barely depends on the details of the heavy spectrum, as it shows not much
dependence on the mass of the lightest new fermion. The reason is that the shift in the
top Yukawa coupling originating from the heavy top partner spectrum cancels with the
loop contributions of the heavy fermions.2 Remark, finally, that Eq. (8.22) coincides
with the result obtained if only the Higgs non-linearities are taken into account, i.e.
by rescaling the SM cross section by the correction factor of the top Yukawa coupling
in the limit where all the fermionic resonances are very heavy.

8.2.3. The low-energy theorem for double Higgs production

The double Higgs production in the LET approximation has two contributions. They
are depicted in Fig. 8.2 and consist of an effective vertex of two gluons with two
Higgs bosons and an effective coupling of two gluons to a single Higgs boson which
then splits into a Higgs boson pair. The latter can be obtained from the single Higgs
production case by multiplying with the triple Higgs boson coupling and the Higgs
boson propagator. For the former, the contribution A2 in Eq. (8.4) has to be computed.

2Note, that in Refs. [399, 400] the idea of lifting the degeneracy between the Higgs gluon and the
Higgs top quark coupling by using pp→ hj production was discussed.
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Figure 8.2.: Feynman diagrams for double Higgs production in the LET approximation.

We find
A2 = − 2

v2
1

1− ξ . (8.24)

The partonic cross section is then given by

σ̂gg→hh = G2
Fα

2
s(µ)ŝ

128(2π)3
1
9

√
1− 4m2

h

ŝ
C2

LET(ŝ) , (8.25)

with
CLET(ŝ) = 3m2

h

ŝ−m2
h

(
1− 2ξ√

1− ξ

)2

− 1
1− ξ , (8.26)

and
√
ŝ denoting the partonic c.m. energy, connected to the hadronic c.m. energy

√
s

by ŝ = τs, with τ denoting the product of the two proton momentum fractions of
the gluons. The hadronic cross section is obtained by convolution with the parton
distribution functions fg of the gluon in the proton,

σ =
∫ 1

4m2
h
/s
dτ
∫ 1

τ

dx

x
fg(x, µ) fg(τ/x, µ) σ̂gg→hh(τs) . (8.27)

As renormalization and factorization scale we chose µ = µF = µr =
√
ŝ. The parton

distribution functions of the MSTW2008 collaboration [111] were used. For ξ → 0 the
SM result can be reproduced in Eq. (8.27). The LET is, as for single Higgs production,
independent of the spectrum of heavy new fermions and only depends on the Higgs
non-linearities expressed in terms of the parameter ξ. For comparison, the full cross
section for Higgs boson pair production is calculated. The Feynman diagrams can be
found in Fig. 8.3. There are two triangle contributions, one involving the triple Higgs
boson coupling and one involving a two Higgs boson two fermion coupling. Note that
the two Higgs boson two fermion coupling is an effective coupling of dimension-five
and hence vanishes in the SM limit as ξ → 0. This diagram leads to a quite strong
enhancement of the cross section compared to the SM for large values of ξ, as it is not
suppressed by an extra propagator. In the context of Composite Higgs Models, this
was first noticed in Ref. [366]. The sensitivity on this novel Higgs coupling to fermions
was investigated in Ref. [401].
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Figure 8.3.: Feynman diagrams for double Higgs production via gluon fusion with nf novel
fermionic resonances, with masses mi (i = 1, ..., nf ). The masses mi and mj are
introduced to indicate where different fermions can contribute in the loop.

I performed the calculation of the matrix elements for the composite Higgs pair produc-
tion cross section with FeynCalc [230]. The results can be found in Appendix G. The
Lorentz structure of the matrix elements can be derived by using the Ward identity.
Two different Lorentz structures arise. They are combined in such a way that they act
as projectors. The triangle diagrams only contribute to the form factors corresponding
to the Lorentz structure of spin Sz = 0 along the z-axis. The box diagrams can involve
both Sz = 0 and Sz = 2 form factors. Different fermions can couple to the Higgs boson
via the off-diagonal entries of the coupling matrices given in Eq. (7.20). Due to the
off-diagonal matrix elements, the Higgs boson can also couple with a γ5 to two different
fermions. Diagrams including only one coupling with γ5 disappear due to a sign flip
of the coupling when the direction of the fermion line changes direction. Form factors
stemming from these γ5 contributions are denoted with a subscript ’5’. The boxes then
give rise to the Sz = 0 form factors F�, F�,5, and the Sz = 2 form factors G�, G�,5,
whereas the triangle form factor is called F4. The partonic cross section is given by

σ̂gg→hh = α2
s

1024(2π)3
1
ŝ2

∫ t̂+

t̂−
dt̂


∣∣∣∣∣∣

4∑
i=1

4∑
j=1

(
g2
hq̄iqj

G�(mi,mj) + g2
hq̄iqj ,5G�,5(mi,mj)

)∣∣∣∣∣∣
2

+
∣∣∣∣∣∣

4∑
i=1

Ci,4F4(mi) +
4∑
j=1

(
g2
hq̄iqj

F�(mi,mj) + g2
hq̄iqj ,5F�,5(mi,mj)

)∣∣∣∣∣∣
2
 ,

(8.28)

with the integration limits

t̂± = − ŝ2

1− 2m
2
h

ŝ
∓
√

1− 4m2
h

ŝ

 . (8.29)

The couplings are defined as

ghq̄iqj = 1
2 (Ghff,ij +Ghff,ji) ghq̄iqj ,5 = 1

2 (Ghff,ji −Ghff,ij) , (8.30)
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Figure 8.4.: The cross section for double Higgs production via gluon fusion normalized to the
SM cross section as a function of the mass of the lightest resonance of the heavy
top sector, for mh = 125 GeV and ξ = 0.25. Green (gray) dots denote points
which pass (do not pass) the constraints from EWPT and direct heavy fermion
searches, whereas orange dots correspond to points that were not excluded by
June 2012, but tested at LHC8 by the end of 2012. These points are excluded by
now. The left plot is for sinφL > 0.5, the right plot for sinφL < 0.5. The black
solid line corresponds to the result in the limit of heavy top partners keeping the
full top mass dependence. The dashed line is the LET cross section normalized
to the SM LET cross section. The expected number of events in the hh→ bb̄γγ
final state after all cuts at LHC14 with

∫
L = 300 fb−1 is shown on the right side

of the plots, along with the 3σ evidence threshold as red dot-dashed line. This
figure is already published in Ref. [34].

and

ghhq̄iqj = 1
2 (Ghhff,ij +Ghhff,ji) , (8.31)

with Ghff,ij and Ghhff,ij denoting the (ith, jth) matrix elements of the coupling ma-
trices in Eq. (7.22). The triangle factor Ci,4 reads

Ci,4 = ghhh ghq̄iqi
ŝ−m2

h

+ 2ghhq̄iqi with ghhh = 3m2
h

v

1− 2ξ√
1− ξ in the MCHM5. (8.32)

The SM partonic cross section can be obtained from Eq. (8.28) for mi = mj = mt

and taking off the sum over the top partners, replacing the couplings ghhh and ghq̄iqi
by the SM couplings and setting ghhq̄iqi = 0. Of course, the contributions of F�,5 and
G�,5 then get a zero prefactor and are thus irrelevant. Numerical results have been
obtained by a self-written FORTRAN code. The SM result was cross-checked against
the results given in Ref. [104]. Figure 8.4 shows the cross section divided by the SM
cross section for points obtained by a scan over the parameter space for a fixed value
of ξ = 0.25, with the mass of the lightest top partner shown on the x-axis. In Fig. 8.5
the same is shown, but for ξ = 0.1. The colour code of the points is the same as in
Fig. 8.1. The black line shows the cross section if only the pure Higgs non-linearities
are taken into account, meaning that only the mass dependence on the top quark mass
is retained. The new fermionic resonances are integrated out. This corresponds to
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Figure 8.5.: The same as in Fig. 8.4, but for the compositeness parameter ξ = 0.1. The
left plot here is for sinφL > 0.8, the right plot for sinφL < 0.8. On the right
side of the plots the number of expected events are shown for a luminosity of∫
L = 3 ab−1. The red dashed-dotted line is the 5σ discovery line. This figure is

already published in Ref. [34].

the case discussed in Ref. [366]. The cross section can be obtained from the SM cross
section with the modified Higgs top couplings and taking into account the new triangle
graph of Fig. 8.3 with the novel two Higgs two fermion coupling. The black dashed
line corresponds to the LET approximation. It is normalized to the SM LET cross
section. The labels on the right hand side of the plots give an estimate of the expected
number of events at LHC14 for

∫
L = 300 fb−1 for the hh→ bb̄γγ final state. This final

state was pointed out in Ref. [95] to be the most promising one to observe the process.
The expected number of events was obtained as follows: We calculated the expected
number of events based on σ(pp → hh) × BR(hh → bb̄γγ) under the assumption of
a SM K-factor of 1.9. The result was multiplied by the acceptance for all cuts as
derived in Ref. [95]. The number of events marked with the red dash-dotted line shows
the 3 (5)σ evidence line, based on the background estimate of Ref. [95] for one tagged
b-jet. This is a conservative estimate as the misidentification probabilities have been
improved since the appearance of Ref. [95]. Of course this is only meant to give a very
rough estimate. A detailed analysis is beyond the scope of this work. As can be inferred
from the plots in Figs. 8.4 and 8.5 the cross section is always enhanced with respect
to the SM cross section. For ξ = 0.25 the enhancement is 2.7 . σ/σSM . 3.7, for
ξ = 0.1 it is 1.5 . σ/σSM . 2.0. This enhancement, as discussed in detail in Ref. [366],
originates mainly from the triangle graph involving an effective hhff̄ coupling. The
other Feynman diagrams only lead to an enhancement of the cross section for ξ > 0.75 if
only the pure Higgs non-linearities are retained. The cross section obtained in the limit
of very heavy top partners, while keeping the full top mass dependence overstimates
the results for mlightest . 1.5 TeV. For larger values of mlightest the cross section tends
to the value obtained if only the top quark loops are retained.
From the plots it can also be inferred that the cross section is quite underestimated by
the LET. In order to investigate the reason for this further, we take a look at the case
where the fermionic resonances can be integrated out and the only effect of the strong
sector are the Higgs non-linearities, corresponding to the black line in Figs. 8.4 and 8.5.
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As already mentioned, the cross section for this case can be obtained from the SM cross
section by adjusting the Higgs boson couplings and adding the new triangle diagram.
In the SM, the LET already underestimates the cross section by O(20%) [102]. For
ξ = 0.25 we obtained for the MCHM5 without heavy top partners σMCHM5

LET = 37 fb
and σMCHM5 = 64 fb, i.e. a difference of the order of 50% between the LET and the
full cross section including the top mass dependence.
In order to understand why the LET does not work as well as for the single Higgs case,
I calculated correction terms to the LET. They were cross-checked in a second inde-
pendent calculation. They can be obtained from the full result by expanding in small
external momenta before integration of the loop integrals, as described in Ref. [402].
For this purpose, we only consider here the cross section with pure Higgs non-linearities
without extra fermionic resonances.3 The propagators in the loop functions with loop
momentum q can then be expanded to

1
(q + p)2 −m2 = 1

q2 −m2
1

2q·p+p2

q2−m2 + 1
≈ 1
q2 −m2 −

2q · p+ p2

(q2 −m2)2 + ... , (8.33)

for small external momentum p and a large mass m of the loop particles.4 Special
care needs to be taken for a consistent treatment of the orders in this expansion. The
reason is that terms of the same order of p/m in the external momentum can arise in
different orders of the Taylor expansion in Eq. (8.33). All terms with odd power in the
loop momentum in the expansion in Eq. (8.33) drop out, as the loop integral is zero.
The zeroth order results for the form factors are then given by the LET results. Going
one order further gives the correction terms. The form factors then read

F4 = ŝ

mt

(
2
3 + 7

180
ŝ

m2
t

)
, (8.34)

F� = ŝ

m2
t

(
−2

3 −
7
30
m2
h

m2
t

)
, (8.35)

G� = ŝ

m4
t

11
90

(
m4
h − t̂û
ŝ

)
, (8.36)

with ŝ, t̂, and û denoting the partonic Mandelstam variables, see Eq. (G.1). The
partonic cross section of Eq. (8.28) can be simplified to

σ̂gg→hh = α2
s

1024(2π)3
1
ŝ2

∫ t̂+

t̂−
dt̂
[
|C4F4 + C�F�|2 + |C�G�|2

]
, (8.37)

with t̂± given by Eq. (8.29). For consistency in the orders one needs to take into
account, that the form factors enter the cross section formula quadratically. Therefore

3After this work was finished a similar work [403] appeared with the same expansion, but taking
into account also the fermionic resonances in the loop.

4Note that this expansion can also be performed if one of the loop masses is small, by assigning
the momenta in such a way that the light fermion in the loop is without an external momentum in
its propagator.
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Figure 8.6.: Higgs pair production cross sections in the MCHM5 (pure Higgs non-linearities)
as a function of ξ. The red solid line is the result with the full top quark mass
dependence. The blue dotted line is the LET result for the cross section and the
black dashed line the LET with correction terms.

only the interference terms between the result in zeroth order in p2/m2 and the first
order result of the form factors are needed. As G� has no zeroth order coefficient, it
drops out of the first order cross section. The result then reads

|C4F4 + C�F�|2+|C�G�|2 = ŝ2

v4
4
9(c4−c�)2

[
1 + 1

m2
t (c4 − c�)

(
c4

7
60 ŝ− c�

7
10m

2
h

)]
,

(8.38)
with

c4 = 3m2
h

ŝ−m2
h

(
1− 2ξ√

1− ξ

)2

− 4ξ , c� =
(

1− 2ξ√
1− ξ

)2

. (8.39)

In Fig. 8.6 we show for the MCHM5 the full cross section (red solid line), the cross
section calculated with LET (blue dotted line) and the one including the correction
terms (black dashed line). The figure shows that the LET drastically underestimates
the full cross section, as we already saw in Figs. 8.4 and 8.5. The correction terms
improve the agreement with the full cross section only very close to the SM limit
ξ = 0. In particular, for large values of ξ the correction terms completely fail to describe
the full cross section. The reason is that, basically, the expansion in small external
momenta is not valid here. For single Higgs production the expansion parameter is
m2
h/m

2
t and the LET is the zeroth order result. For double Higgs boson production

the external momenta are not small. The expansion parameters are ŝ/m2
t , t̂/m

2
t , û/m2

t

or m2
h/m

2
t , but we have e.g. 4m2

h ≤ ŝ ≤ s. This also explains that for larger ξ the
disagreement of the correction terms with the full cross section becomes worse: The
reason is that the diagram involving the hhff̄ coupling is not suppressed by an extra
propagator as the triangle with the triple Higgs coupling. Therefore, the propagator
cannot cure the ŝ dependence of the correction term. The correction terms of the box
diagrams are not troublesome. The correction to G� is irrelevant, as in the squared
matrix elements the leading order in |G�|2 is one order higher as the considered order.
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Figure 8.7.: The same as in Fig. 8.4, but with an invariant mass cut of mhh > 600 GeV. In
contrast to Fig. 8.4 neither the LET line nor the number of events is shown. This
figure is already published in Ref. [34].

In F� only the expansion parameter m2
h/m

2
t gets a non-zero coefficient.

Finally, we also want to study whether the application of a cut on the invariant mass
mhh can help to discriminate between the composite Higgs cross section and the SM
cross section. Therefore, we show in Fig. 8.7 the same plots as in Fig. 8.4, but after a cut
of mhh > 600 GeV has been applied. The colour code in the plot is the same as before.
We did not show the LET cross section in this plot as for kinematic distributions the
LET approximation is even worse [92]. As can be seen in the plot, the invariant mass
cut increases the difference between the SM cross section and the composite Higgs cross
section. The cross section obtained for pure Higgs non-linearities cannot describe the
full cross section with top partners accurately anymore after application of an invariant
mass cut, not even for large masses of the top partners. Note that the total number of
events decreases quite a bit after applying the invariant mass cut. For a measurement,
this is problematic due to a small number of events. Small invariant mass cuts can,
however, be useful to reduce the background, see e.g. Section 3.5.

8.3. NLO QCD corrections to Higgs pair production

The NLO QCD corrections to Higgs pair production in the SM have been calculated
in Ref. [105] in the LET approximation. In this section we will explain how they have
to be modified for Composite Higgs Models. Before that, however, a comment is in
order on the LET approximation for the NLO QCD corrections. As described in the
previous section, the LET is not a good approximation for Higgs pair production as
the expansion in small external momenta is not valid for this process. In the NLO
QCD corrections in most of the contributions, the LO cross section factors out. This
is in particular true for the dominant contribution to the NLO QCD corrections given
by the real radiation of a gluon. If the LO LET cross section is then replaced by the
result with the full mass dependence, the final NLO result is significantly improved.
As already discussed in Section 3.1 the LET approximation for the calculation of the
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NLO QCD corrections is therefore expected to lead to an uncertainty on the cross
section of O(10%). In Fig. 8.8 the Feynman diagrams of the process at NLO QCD are
shown. The blob in the figure marks the effective vertex of gluons to Higgs bosons.
The Feynman diagram are divided in different categories. The first three diagrams
show the virtual contributions. The other Feynman diagrams of Fig. 8.8 are the real
corrections ordered by the initial states gg, gq and qq̄. At NLO the cross section is
then given by

σNLO = σLO + ∆σvirt + ∆σgg + ∆σgq + ∆σqq̄ . (8.40)
The real corrections ∆σgg, ∆σgq and ∆σqq̄ can directly be taken over from Ref. [105]
by replacing the LO cross section of the SM in the formulae by the LO cross section
for Composite Higgs Models. The calculation of ∆σvirt is a bit more involved. The
first two diagrams in Fig. 8.8 are again very simple and can be taken over directly from
the SM as they factorize into the LO cross section and correction terms. The only
problematic diagram is the third diagram shown in Fig. 8.8. It does not factorize in
that way and therefore needs to be recalculated to adjust it to the composite Higgs
case. The virtual corrections are then found to be

∆σvirt = αs(µR)
π

∫ 1

τ0
dτ

dLgg

dτ

(
α2
s(µ)G2

F

1024(2π)3
1
ŝ2A+ σ̂LO,gg→hh C

)
, (8.41)

with the factorization scale denoted by µF and the renormalization scale by µR. The
term with coefficient C corrsponds to the first two diagrams in Fig. 8.8, the term with
coefficient A corresponds to the third diagram in Fig. 8.8. The coefficients A and C
for the virtual corrections read

A = Re
∫ t̂+

t̂−
dt̂

{
4
9cLO

nt∑
i=1

(
Ci,4F4(mi) +

nt∑
j=1

(g2
hq̄iqj

F�(mi,mj) (8.42)

+ g2
hq̄iqj ,5F�,5(mi,mj))

)
−
∫ t̂+

t̂−
dt̂

4
9
p2
T

2t̂û
(ŝ− 2m2

h)cLO
nt∑

i,j=1
(g2
hq̄iqj

G�(mi,mj)


+ g2
hq̄iqj ,5G�,5(mi,mj))

} ,
C = π2 + 11

2 + 23
6 log µ

2
R

ŝ
, (8.43)

with
p2
T = (t̂−M2

H)(û−m2
h)

ŝ
−M2

H . (8.44)

The definitions of the couplings and the triangle form factor Ci,4 can be found in
Eqs. (8.30, 8.32). The form factors are given in Appendix G. The sum in the formulae
runs over all nt top partners and the top quark. The constant cLO is given by

cLO =
(
nt∑
i=1

ghq̄iqiv

mi

)2

. (8.45)

I have implemented the Composite Higgs cross section with these NLO corrections
into the Fortran code HPAIR [110]. In order to exemplify our results, we consider the
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Figure 8.8.: Generic Feynman diagrams for the NLO QCD corrections to gg → hh.
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simpler case where only the pure Higgs non-linearities are taken into account. The
constant cLO then simplifies to (1−2ξ)2/(1− ξ) and the couplings reduce to ghq̄q,5 = 0,
ghq̄q = mq/v(1− 2ξ)/

√
1− ξ and ghhq̄q = −4ξmq/v

2 with nt = 1 and mq denoting the
respective quark mass. We define

K = σNLO
σLO

, Ki = ∆σi
σLO

, (8.46)

where ∆σi denotes the individual contributions to the NLO cross section. The cross
section at LO is computed with the full top quark mass dependence. The cross sections
are computed with the MSTW2008LO/MSTW2008NLO PDF set [111] according to
the respective order of the cross section. The strong coupling constant is evaluated at
the corresponding order with αNLOs (MZ) = 0.12018 and αLOs (MZ) = 0.13939. The scale
is set to µF = µR = MHH =

√
ŝ. Figure 8.9 shows the results for the K-factors for the

case where the heavy top partner spectrum is integrated out as a function of ξ. The solid
line shows the full K-factor, the dashed lines are the individual contributions. As can
be seen from the plot, the real radiations of a gg initial state (black dashed line) are the
most important contributions of the QCD corrections. They are followed by the virtual
corrections (blue dashed line). The qg initiated real radiation diagrams (pink dashed
line) and the qq̄ ones (green dashed line) only lead to a very small correction. The
lines basically do not depend on ξ. For the real radiation lines, the Born cross section,
which shows the only dependence on ξ, factors out. out For the virtual contributions
some dependence on ξ is to be expected. The C term of the virtual corrections,
however, shows no dependence on ξ as it factorizes into the LO cross section. The only
dependence of ξ can hence come from the A term in Eq. (8.41). It turns out, however,
that the term given by C is the dominant one. This is already the case in the SM,
where the A term contributes with less than 3% to ∆σvirt. This result will also hold
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true for the case were the top partners are explicitly included. We thus conclude that,
in good approximation, the NLO QCD corrections for Higgs pair production on the
total cross section can directly be obtained by multiplying with the SM K-factor.

8.4. Summary

In this chapter we have investigated the effects of top partners on the single and double
Higgs production cross sections via gluon fusion. Being both, already at LO, loop-
induced processes, it is often helpful to calculate the gluon fusion cross sections via the
LET approximation. In the LET approximation the loop-induced process is replaced
by an effective gluon to Higgs boson coupling. In this chapter we have calculated the
LET for both single and double Higgs boson production in the MCHM5 and compared
to the exact cross section. For single Higgs boson production via gluon fusion, the
LET very well approximates the full LO result. The full cross section depends barely
on the details of the spectrum of the heavy top partners, but solely on the Higgs non-
linearities expressed in terms of the parameter ξ. For double Higgs boson production
via gluon fusion the LET does not provide a good approximation anymore. The full
cross section shows a significant dependence on the spectrum of heavy top partners.
For the NLO QCD corrections to double Higgs boson production the LET is expected
to describe the full result, if the Born cross section is taken into account with the full
mass dependence. The reason is that the dominant contributions factorize into LO
cross section and correction terms. Apart from the virtual corrections, which we have
explicitly computed here, the corrections can be directly taken from the SM result. It
turns out that the K-factor barely depends on ξ and is in good approximation given
by the SM K-factor.



CHAPTER 9

Phenomenology of Bottom Partners

In the previously discussed model, with the fermions transforming in the 5 of SO(5),
no bottom partners with the correct quantum numbers to mix with the right-handed
bottom quark were introduced. A bottom quark mass was thus not generated by the
principle of partial compositeness. The bottom quark as next-heaviest fermion of the
SM implies, however, a sizeable mixing with the strong sector.
Bottom partners automatically accompany top partners in the same fermionic represen-
tations. If one considers larger fermion representations than the previously discussed
5, the top and bottom quark masses can easily be generated by a single representation.
This has the advantage that no new parameters are necessary. The simplest possibility
is the antisymmetric representation – a 10 of SO(5). The purpose of this chapter is to
show the phenomenological implications of bottom partners by means of the model of
Section 7.2.2. As showed in Refs. [404–406], also partners of the lighter fermions can
show an interesting phenomenology.
The chapter is organized as follows: First, in Section 9.1, the effects of bottom partners
on EWPTs are discussed, followed by a discussion on direct searches of vector-like
fermions and flavour physics in Section 9.2. The constraints from Higgs physics are
investigated in Section 9.3, where all the results of the previous sections are taken into
account to perform a χ2 test to identify the preferred regions in parameter space. This
chapter is based on Ref. [36].

9.1. Electroweak precision tests

As already shortly discussed for the top partners, New Physics models are quite con-
strained by the precise measurements of LEP1 of the resonant production of a Z bo-
son. The gathered data allows, due to the very high accuracy, to probe indirectly New

119
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Physics through loop contributions. On the theoretical side, a New Physics model can
easily be checked by the calculation of the Peskin-Takeuchi parameters S, T , and U
[407], which parameterize the oblique corrections entering through vacuum polarization
diagrams of gauge boson propagators. The non-oblique corrections, namely vertex and
box diagrams with couplings of new physics to light quarks and leptons are expected
to be suppressed. The only exception is the vertex correction to the ZbLb̄L coupling,
which gets sizable corrections due to New Physics. The reason is that the left-handed
bottom quark is in the same SU(2)L doublet as the top quark, which can then couple
in a sizable manner to new physics. We will shortly review the calculation of the S and
T parameter in Composite Higgs Models. The U parameter gets contributions only
from dimension-eight operators or higher. We will therefore not discuss it any further.
The calculation of the vertex correction to ZbLb̄L will be discussed subsequently, with
special focus on the influences of bottom partners on the calculation and the numerical
results. Instead of using the S and T parameters and the shift in the ZbLb̄L coupling,
we employ the parameters ε1, ε2, ε3 and εb [408–410], as they do not depend on a
reference point in the SM.

9.1.1. Contributions to ε1

The T parameter – or equivalently ε1 – gets a correction due to modified Higgs-vector
boson couplings. They prevent a full cancellation of the UV-divergences in the T -
parameter such that a logarithmically divergent part remains [376]. It is cut off by the
mass of the first vector resonance mρ,

∆εIR1 = −3α(M2
Z)

16πc2
W

ξ log
(
m2
ρ

m2
h

)
, (9.1)

with α the electromagnetic coupling at the scaleMZ . The cosine of the Weinberg angle
is denoted by cW . This contribution is called IR contribution as it stems from low-
energy modifications due to the compositeness of the Higgs boson. Another important
contribution to ε1 comes from loops of fermionic partners. Explicit formulae at the
one-loop order for the fermionic loop contributions can be found in Refs. [379, 411].

9.1.2. Contributions to ε3

Similar to the IR contribution to ε1, a UV-divergent contribution due to modified
Higgs-vector boson couplings also arises for the S parameter – or ε3 –,

∆εIR3 = α(M2
Z)

48πs2
W

ξ log
(
m2
ρ

m2
h

)
. (9.2)

Additionally, at tree level there is a contribution from the mixing of elementary gauge
fields with new vector and axial vector resonances [355, 412],

∆εUV3 = M2
W

m2
ρ

(
1 +

m2
ρ

m2
a

)
, (9.3)
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where ma denotes the mass of the first axial vector resonance. For definiteness, we set
mρ/ma ≈ 3/5 as obtained in the five-dimensional SO(5)/SO(4) models of Refs. [26, 27].
We explicitly checked that varying mρ/ma between 1 and 2 has only a slight effect on
our numerical results.1 The index ’UV’ in Eq. (9.3) refers to the UV physics origin of
this contribution.
The finite fermionic one-loop contributions to ε3, which can be found in Ref. [411], are
neglected, as they are small compared to the tree-level UV contributions. As pointed
out in Ref. [374], there can be an additional logarithmically divergent contribution
stemming from fermion loops, which is given by

∆εdiv3 ∼ Tr
[
W †
LYL +W †

RYR
]
, (9.4)

where WL,R are the left- and right-handed fermion couplings to W 3
µ and YL,R the

corresponding hypercharges. In our case the trace in Eq. (9.4) is zero if we sum over
the heavy fermion contributions including top and bottom quarks.

9.1.3. Contributions to εb
The New Physics contribution to εb is given by the shift in the ZbLb̄L coupling due
to the new fermions. In this discussion, we try to stay as general as possible, such
that the results can also be applied for other models. Our calculation differs from the
previous works of Refs. [379, 380] by the inclusion of the mixing of the bottom quark
with bottom partners.
The Lagrangian for the coupling of a Z boson to a quark ΨQ

i of charge Q in the mass
eigenstate basis can be parameterized by

LZ = g2

2cW
ZµΨ̄i

Qγ
µ
(
XQL
ij PL +XQR

ij PR − 2s2
WQδij

)
Ψj
Q , (9.5)

where i, j run over all quarks present in the model. The matrix X−1/3,L/R is given by

X−1/3,L/R = U b †
L/RT

3
LU

b
L/R , (9.6)

where T 3
L is the generator defined in Eq. (E.11). For the top quark and top partners,

X2/3,L/R is defined analogously. The amplitude of the Z boson decay into a pair of
massless left-handed bottom quarks reads

MZ→bLb̄L = −
e(gSMbL + δgbL)

cW sW
εµ(pZ)b̄(pb̄)γµPLb(pb) , (9.7)

with the SM coupling gSMbL of the Z boson to the left-handed bottom quarks and the
shift in the coupling due to New Physics δgbL . The polarization vector of the Z boson
with four-momentum pZ is denoted by εµ. We have introduced the momenta pb and pb̄
of the bottom quark and antiquark, respectively.

1For a QCD like strong sector, the ratio mρ/ma is roughly 1/
√

2 [413].
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Figure 9.1.: Loop vertex diagrams for heavy fermion partner contributions to the ZbLb̄L cou-
pling. The loops contain W bosons, Goldstone bosons and the top and bottom
quark and their respective partners. The indices denote all indices occurring in
the bottom and top mass matrices.

Large corrections to the ZbLb̄L coupling can occur at tree level if there is no symmetry
protection. In Ref. [364] it was shown that custodial symmetry can provide such a
protection of the Zbb̄ coupling. If the SU(2)L/R quantum numbers obey either TL = TR
and T 3

R = T 3
L or T 3

L = T 3
R = 0, such a protection will take place.2 The former condition

is e.g. fulfilled if the bottom partner which mixes with the left-handed bottom quark
(on Lagrangian level) is part of an SU(2)L×SU(2)R bidoublet, as it is the case for the
52/3 and 102/3 representations. In our case the tree-level shift in the coupling δgZbLb̄L
is therefore tiny as we also explicitly verified numerically.
Important contributions can, however, still occur at one-loop level. We show the con-
tributions to the one-loop corrections to the ZbLb̄L coupling in Fig. 9.1, including gauge
bosons, Goldstone bosons, top and bottom quarks and their respective partners. Ad-
ditionally, there are diagrams involving Higgs bosons, but they turn out to be very
small. Hence we do not show them explicitly here. In order to quantify the beyond
the SM effect of the heavy quarks on δgbL , the SM contributionMt+b

SM of the bottom
and top quarks has to be subtracted,

δgbL =Mheavy −Mt+b
SM , (9.8)

whereMheavy denotes the contributions from the loops with the heavy quarks and the
top and the bottom quarks. This assures that the effects of the modification of the top

2Note that this symmetry cannot simultaneously protect the Zbb̄ coupling and the Ztt̄ or Wtb̄
couplings [364].
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and bottom couplings due to the heavy new spectrum is taken into account properly.
For a finite result, the ZbLb̄L vertex needs to be renormalized. We adopt an on-
shell renormalization scheme similar to Ref. [414]. The wave-function renormalization
constants δZL,R relate the left- and right-handed bare fields bL,R0 with the renormalized
ones bL,R,

bL,R0 = (1 + 1
2δZ

L,R)bL,R . (9.9)

The coupling of the Z boson to the bottom quarks involves the mixing matrices of the
bottom-like quarks, see Eq. (9.6). The renormalization of the vertex hence requires
their renormalization. Note that the exact definition of the generator T 3

L in Eq. (9.6) is
not relevant here, but only the fact that the mixing matrices are part of the coupling.
The results can also be applied to other models as long as they have the general
structure of the Zbb̄ coupling as given in Eq. (9.6). For the renormalization of the
mixing matrix U b

L, defined in Eq. (7.32), a counterterm δubL is introduced. The complete
ZbLb̄L vertex including the counterterm in the mass eigenstate basis then reads

LZb̄LbL = − e

sW cW
b̄ γµ

(
1 + 1

2δZ
†
L

) (
1 + δubL

) (
X−1/3,L − 2s2

WQ
)

(
1 + δub †L

)(
1 + 1

2δZL
)
PLb Z

µ .

(9.10)

In Eq. (9.10) only wave-function renormalization constants and a counterterm for the
mixing matrix are introduced. Counterterms for the electric charge, the Z boson field
and the Weinberg angle are already included in the oblique parameters, as they are
flavour-type universal. Since the light flavours do not get any New Physics corrections
to the vertex, these counterterms can not lead to any new infinities compared to the
SM matrix element. We can therefore expect thatMheavy is not finite with the given
renormalization procedure in Eq. (9.10), but that δgbL as defined in Eq. (9.8) will be
finite after the renormalization procedure.
The counterterm for the mixing matrix δubL is defined antihermitian [213], to ensure
the unitarity of the bare and renormalized mixing matrices,

δubL,ij = 1
4
(
δZL

ij − δZ
L †
ij

)
. (9.11)

For the renormalization we only need to calculate the wave-function renormalization
constants δZL

ij. They are determined from Eqs. (5.15, 5.16). Note that throughout the
calculation we have set mb = 0, which implies that either mi or mj is zero in Eq. (5.15)
and mi = 0 in Eq. (5.16). The self-energies needed for the determination of the wave-
function renormalization constants can be computed from the Feynman diagrams of
Fig. 9.2.
The final results of the calculation can be found in Appendix H. Note again, that
they are given as general as possible. The notation is very similar to the results
given in Ref. [379]. Our results differentiate from those of Ref. [379] by the inclusion
of the mixing of the bottom quarks with bottom partners, which led to a different
renormalization procedure. My results of this section have been confirmed in a second
independent calculation [415].
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Figure 9.2.: Self-energy corrections needed for the renormalization of the vertex ZbLb̄L.

9.1.4. The χ2 test

The agreement of the model with the experimental data can be assessed by performing
a χ2 test. The experimental values for the ε parameters and their correlation ρ come
from the LEP measurement at the Z pole mass, see Ref. [416]. We use, however, the
updated values of Ref. [34], which take into account a newer value of the W boson
mass [381–383]:

εexp1 = (5.4± 1.0) · 10−3 ,
εexp2 = (−7.9± 0.90) · 10−3 ,
εexp3 = (5.34± 0.94) · 10−3 ,
εexpb = (−5.0± 1.6) · 10−3 ,

ρ =


1 0.80 0.86 0.00

0.80 1 0.53 −0.01
0.86 0.53 1 0.02
0.00 −0.01 0.02 1

 . (9.12)

The theory contributions to the parameters ε1, ε2, ε3 and εb are given by [34, 375],

εth1 = (5.66− 0.86 log(mh/MZ)) · 10−3 + ∆εIR1 + α∆T ,
εth2 = (−7.11 + 0.16 log(mh/MZ)) · 10−3 ,

εth3 = (5.25 + 0.54 log(mh/MZ)) · 10−3 + ∆εIR3 + ∆εUV3 ,

εthb = −6.48 · 10−3 + δgbL . (9.13)

The first summands in Eqs. (9.13) are the SM corrections. The contributions ∆εUV/IRi

and δgbL have been given in Eqs. (9.1–9.3, 9.8) and ∆T is the contribution to the T
parameter stemming from loops of heavy fermions as given in Ref. [379]. The covariance
matrix is defined by

Cij = ∆εexpi ρij∆εexpj , (9.14)

where i, j runs over 1, 2, 3 and b. The χ2 test is thus defined as

χ2(ξ,M10, sinφL, y) =
∑
i,j

(
εthi − ε

exp
i

)
C−1
ij

(
εthj − ε

exp
j

)
. (9.15)

We perform the χ2 test for the four parameters ξ, M10, sinφL and y, as λt and λb of
the Lagrangian in Eq. (7.27) are fixed by the requirement of recovering the measured
values of the top and bottom quark masses. The parameter λq has been traded for
sinφL. The mass of the first vector resonance mρ is set to its maximal value of 4πf .
We found that this leads for most of the parameter sets to minimal or close to minimal
values of χ2 as it minimizes ∆εUV3 . It also mirrors the fact that we only take the vector
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Figure 9.3.: The CKM matrix element |Vtb| as a function of the lightest mass of the new
fermions. The gray points are forbidden by the recent CMS measurement [417].
The dark blue points are allowed.

resonance indirectly into account as cut-off scale. A specific point in the parameter
space fulfills the electroweak precision tests at 99% C.L. if it satisfies the criterion

χ2(ξ,M10, sinφL, y)− χ2
min ≤ 13.28 , (9.16)

where χ2
min ≈ 0.87 is the minimum of χ2. The latter is smaller than the SM value

χ2 ≈ 4.71 as expected for a model with additional parameters.
We performed a scan over the parameter space, setting the top and bottom quark
masses to mt = 173.2 GeV and mb = 4.2 GeV, respectively, and the Higgs boson
mass to mh = 125 GeV. For the vector boson masses we used MW = 80.385 GeV and
MZ = 91.1876 GeV. The model parameters have been varied in the range

0 ≤ ξ ≤ 1 , 0 < sinφL ≤ 1 , |y| < 4π , 0 ≤M10 ≤ 10 TeV . (9.17)

The range for y marks the perturbative regime. An additional constraint on the model
is imposed by the recent measurement of the single top cross section at CMS [417],
which provides a lower limit on the CKM matrix element |Vtb| > 0.92 at 95% C.L.. In
our model we calculate Vtb from the matrix element of the W boson coupling matrix
to the top and bottom quarks, V 2/3,L

tb , as defined in Eq. (H.1). Figure 9.3 shows |Vtb|
as a function of the lightest new fermion mass, which in our case is always a 5/3
charged fermion. The gray area shows the excluded points from the CMS constraint
|Vtb| > 0.92, the dark blue points are the points which are still allowed. We only
retained points which fulfill the EWPT at 99% C.L.. As can be inferred from the plot,
the CMS measurement of Ref. [417] excludes quite some points, especially for small
mlightest. For mlightest & 3.5TeV the measurement of |Vtb| does not lead to any further
constraint.
For the following discussion, we only retain points with |Vtb| > 0.92 unless stated
otherwise. In Fig. 9.4 (left) we show the results of our scan in the sinφL − ξ plane.
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Figure 9.4.: Parameters passing the χ2 test of electroweak precision observables, fulfilling in
addition |Vtb| > 0.92, for a scan over ξ, sinφL, y and M10. Dark blue: 68% C.L.
region, medium blue: 95% C.L. region and light blue: 99% C.L. region. Left: the
ξ-sinφL plane. Right: ∆χ2 versus ξ. This figure is already published in Ref. [36].

The colour code in the plot shows from darker to lighter colours the 68% C.L., the 95%
C.L. and the 99% C.L. region. In the right plot of Fig. 9.4 we show ∆χ2 versus ξ with
the same colour code as in the left plot. From the two plots one can see that values up
to ξ ≈ 0.2 are still allowed by EWPT at 68% C.L.. Values up to ξ ≈ 0.55 are allowed
at 99% C.L.. For sinφL, there are two preferred region which allow high values of ξ:
A region between 0.25 . sinφL . 0.4 and a second one at sinφL ≈ 1. The scan only
leads to points with sinφL & 0.23, otherwise the experimental top quark mass cannot
be recovered, see Eq. (7.37). A similar plot to the left plot of Fig. 9.4 can be found
in Ref. [380], for the fermions transforming in the fundamental representation. There,
however, a maximal allowed value of ξ ≈ 0.35 was found. Note though, that we use a
different representation and instead of mρ = 2.5 TeV, we take mρ = 4πf , which can
lower the tension with the electroweak precision observables. Note also that in both
plots of Fig. 9.4 the SM limit cannot be achieved. The SM limit can be obtained for
y > 0, by letting ξ → 0 and M10 →∞, but we restricted ourselves to M10 ≤ 10 TeV in
the scan. We checked, however, explicitly that the SM limit is reached in the coupling
matrices of the fermions to the Higgs boson, the Goldstone bosons and the vector
bosons.
The inclusion of the bottom partners in the calculation was essential. Their inclusion
not only requires the renormalization of the mixing matrix, but they also significantly
influence the finite terms. We found parameters in our scan for which contributions
of the bottom partner to the ZbLb̄L vertex can change ∆χ2 by a factor of 2. For
the majority of the parameter points, however, the effect is much smaller. We also
explicitly calculated the Higgs boson contributions to ZbLb̄L and saw that they can
maximally alter ∆χ2 by ±2.9%, and for most of the parameter points even less. We
hence conclude that the Higgs contributions for ZbLb̄L are negligible.
A comment is in order about the approximation of zero bottom quark mass in the
computation of the corrections to the ZbLb̄L vertex. Neglecting the bottom mass
changes the couplings of the bottom quark and of the bottom-like quarks to the vector
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bosons and Goldstone bosons. The effect, however, is small. The matrix element
X
−1/3,L
bb , cf. Eq. (9.6), changes by maximally 1% and the change in the corresponding

matrix element for the Goldstone coupling is O(mb/v). Compared to the largest matrix
elements in the Goldstone coupling matrix this is less than a percent effect.3 A non-zero
X
−1/3,R
bb is induced by the bottom mass, but it is several orders of magnitude smaller

than the other entries of this coupling matrix. We explicitly verified this numerically.
Additional mass terms can arise in the loop corrections to the ZbLb̄L vertex. They are
proportional to mb/MZ or higher powers, and assuming that the couplings multiplying
these terms are of the same order as the ones multiplying mt/MZ , they would only
contribute to about 3% of the total matrix element. A conservative estimate of the
error done by neglecting the bottom mass is therefore 5%, obtained by adding up
linearly the error due to the kinematics and an estimate of 2% for the error due to
the change in the couplings. I have performed thes analysis of this section with a
self-written Mathematica [338] code.

9.2. Constraints from direct searches and flavour
physics

Further constraints on Composite Higgs Models come from direct searches of heavy
vector-like fermions from Tevatron, ATLAS and CMS. The most restrictive constraints
come from the ATLAS [396, 418–420] and CMS [395, 421, 422] searches for pair pro-
duction of heavy new fermions. In our model, top partners can decay into W+b, Zt
and ht. If kinematically allowed, decays into a lighter new fermion accompanied by
either a W , Z or h depending on the nature of the lighter fermion can occur. Bottom
partners can analogously decay into W−t, Zb and hb, or lighter new fermions. The
lightest exotic fermion can only decay into W+t or into a lighter top partner and a
W boson if kinematically allowed. I have computed the theoretical predictions for the
branching ratios of the new vector-like fermions. The formulae for the decay widths
can be found in Appendix F.
The experimental collaborations give their newest results4 directly in terms of branch-
ing ratios, assuming that e.g. for the case of a top partner

BR(T → W+b) +BR(T → Zt) +BR(T → ht) = 1 . (9.18)

Therefore, their results are strictly speaking only valid for the lightest new fermion and
not necessarily for the heavier ones. In the specific model studied in this work, it turns
out that the lightest new fermion is always an exotic 5/3 charged fermion. It decays
to 100% into W+t, such that the bound on the mass from the CMS analysis [395] of

mχ ≥ 770 GeV , (9.19)
3We discuss here the Goldstone coupling and not the gauge boson coupling as this corresponds

to the gauge-less limit in which e.g. in Ref. [380] the EWPT were calculated for the fundamental
representation.

4Results before March 2013 were given as mass bounds under the assumption of branching ratios
of 100%, see Section 8.2.1.
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Figure 9.5.: Spectrum of the lightest composite fermion as function of ξ. The points in the
plot are obtained from a scan over ξ, y, M10 and sinφL and fulfill the EWPT at
99% C.L. and |Vtb| > 0.92. The light blue points are excluded by direct searches
for vector-like fermions at 95% C.L., the dark blue points are not excluded. This
plot is already published in Ref. [36].

can directly be applied to the lightest fermion. The bounds on the bottom-like quarks
are less stringent, but for top-like quarks the ATLAS results extend up to 850 GeV, if
the top partner decays mostly into ht [396]. This limit can be applied to the lightest
top partner, since it is below the kinematic threshold of the decayW−χ, if χ has a mass
larger than the limit given in Eq. (9.19). In our model, however, the search for top-like
fermions never leads to stronger constraints than the searches for exotic 5/3 charged
fermions. Figure 9.5 can confirm this fact, by showing the masses of the lightest partner
as a function of ξ. The points in the plot fulfill the EWPT at 99% C.L. and lead to
|Vtb| > 0.92. The light blue points are excluded at 95% C.L. by direct searches, the dark
blue points are not excluded yet. The line marks the exclusion limit of Eq. (9.19). As
can be inferred from the plot, this exclusion limit can eliminate quite some parameter
space. All excluded points are, however, excluded by mχ,lightest ≥ 770 GeV. No points
above the line are excluded, confirming that the bounds on top-like fermions cannot
further constrain the parameter space.
Flavour physics can lead to further constraints on Composite Higgs Models. They
depend on the exact flavour structure of the model. For anarchic flavour structures
very strong constraints arise from CP-violating observables in the Kaon system [423].
Implementing minimal flavour violation can, however, avoid these constraints [424]. In
this case, also the light quarks are required to be composite, which can change the
Higgs phenomenology [404]. While dijet searches put constraints on the New Physics
coupling to up and down quarks [425, 426], the second generation quarks are practically
unconstrained [427]. Alternatively, the top quark can be treated differently than the
light quarks [428]. The flavour bounds can still be satisfied, and the constraints from
EWPT and searches for compositeness are relaxed, as the first two generations are
mostly elementary. Both the left-handed and right-handed top can be composite in
this case. Bounds on the masses of the lightest fermionic resonance have been obtained
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in Ref. [429] and depend on the specific flavour symmetry.5 We do not assume a specific
flavour model and therefore do not further discuss constraints from flavour physics.

9.3. Constraints from Higgs results

The recent Higgs results can further constrain the parameter space. As an input,
theoretical predictions for Higgs boson production and decays are needed. They will
be given in the next two subsections, followed by the numerical results of a χ2 test
with all the previously discussed constraints. The procedure to obtain the Higgs boson
production and decay rates is very similar to the detailed discussion in Section 6.3.

9.3.1. Higgs boson production

Gluon fusion: Higgs boson production via gluon fusion is the dominant channel at
the LHC. In the SM it is mediated by loops of top and bottom quarks. In Composite
Higgs Models, as already described in Section 8.2.2, the loop contributions from the new
fermions can be important. For the case of top partners we have seen in Fig. 8.1, that
the cross section shows only a slight dependence on their spectrum. The cross section
mainly depends on the Higgs non-linearities expressed by means of the parameter ξ.
The gluon fusion cross section is therefore always reduced for ξ < 0.75 [430]. With
bottom partners the situation changes, as the bottom quark cannot be described by
the LET due to its small mass. The LET prediction for the matrix element of the
bottom-like quarks,Mbot, needs therefore to be modified to

Mbot ≈MSM
LET

(
1− 2ξ√

1− ξ −
yb
ySMb

)
, (9.20)

with yb and ySMb denoting the bottom Yukawa couplings in the Composite Higgs Model
and the SM, respectively. The SM LET prediction for the matrix element is denoted
by MSM

LET . The gluon fusion cross section hence depends on the details of the heavy
bottom partner spectrum [397], encoded in the coupling yb. The effects due to the
heavy fermion spectrum are hence estimated to be of O(10%) as the bottom quark
effects on the gluon fusion cross section in the SM are of this size. I have implemented
the process with the full fermion mass dependence into HIGLU [315] including the NLO
QCD corrections [302–309, 326], following what has been done in the context of the 4th
generation. This means that the Yukawa couplings had to be adjusted and all sums had
to be extended to include the new fermions contributions. Electroweak corrections and
NNLO QCD corrections have not been included. The former would require a dedicated
calculation in the Composite Higgs Model. The latter is only available in the heavy top
mass limit and cannot be applied to bottom quark loops. The thus obtained K-factor,

K = σNLO
σLO

, (9.21)

5 For a mixing of the left-handed SM doublet of fermions with a (2, 2) under SU(2)L × SU(2)R
and a mixing with (1, 3) of the right-handed fermions the mass bounds on the lightest fermion mass
lie beneath the constraints from direct searches for a U(2)3 flavour symmetry, see Ref. [429].
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deviates by less then 2% from the SM K-factor, in accordance with Ref. [398], where
the NLO and NNLO QCD corrections for Composite Higgs Models are calculated.
Vector boson fusion: The VBF cross section can be obtained from the SM cross sec-
tion by multiplying with the modification factor for the Higgs boson coupling squared
to vector bosons,

σCHMV BF = σSMV BF (1− ξ) . (9.22)
The cross section is always reduced compared to the SM due to the reduced hV V
coupling. The NLO QCD corrections are taken over from the SM [127–129, 316]. The
SM cross section has been calculated with VV2H [110].
Higgs-strahlung off vector bosons: As for VBF, the Higgs-strahlung cross section
can be obtained from the SM cross section by multiplying with the modification factor
for the hV V coupling squared

σCHMVH = σSMVH (1− ξ) . (9.23)

The SM cross section was taken at NLO QCD [137, 316] and calculated by means of
the code V2HV [110].
Associated production with top quarks: The SM cross section for associated
production with top quarks is quite small, roughly two orders of magnitude smaller
than the gluon fusion cross section. The composite Higgs cross section can be obtained
from the SM cross section by modifying accordingly the Higgs boson coupling,

σCHMhtt̄ = σSMhtt̄

(
ghtt̄
gSMhtt̄

)2

, (9.24)

where the coupling ghtt̄ is the matrix element of the Higgs boson coupling matrix in
Eq. (7.39) associated with the top quark. In the SM, the cross section is known at
NLO QCD [317–320]. We have taken the value given at the LHC Higgs cross section
working group homepage [321] for mh = 125 GeV.

9.3.2. Higgs boson decays

The branching ratios for the Higgs boson decays have been calculated with an adapted
version of HDECAY [223, 322, 323]. All the decays are taken at NLO QCD if available
in HDECAY. We have explicitly removed the electroweak corrections to the Higgs boson
decays, as they can only be taken over for small deviations from the SM [431]. For the
specific decay channels I have modified HDECAY in the following way: For the Higgs
decays into fermions, the SM decay widths needed to be multiplied by modification
factors for the Higgs boson couplings,

ΓCHMh→ff̄ =


(

(Ghbb̄)bb̄
gSM
hbb̄

)2
ΓSM
h→ff̄ if f = b ,

(1−2ξ)2

1−ξ ΓSM
h→ff̄ if f = c, s, µ, τ .

(9.25)

The modified coupling of the Higgs boson to a pair of bottom quarks (Ghbb̄)bb̄ is obtained
from the coupling matrix Ghbb̄ of Eq. (7.39) by taking the matrix element corresponding
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to the mass eigenstate with the bottom quark mass. The Higgs boson to light fermion
coupling is modified by a factor (1− 2ξ)/

√
1− ξ due to the Higgs non-linearities. For

a Higgs boson of 125 GeV, decays into on-shell top quarks are kinematically forbidden.
The decays into vector bosons V are obtained from the corresponding SM widths by
the modification

ΓCHMh→V V = (1− ξ) ΓSMh→V V . (9.26)

In the loop-induced decays, the loops of the top and bottom partners need to be taken
into account. The widths of the Higgs boson decays into photons and gluons are given
by

Γγγ =GFα
2m3

h

128
√

2π3

∣∣∣∣∣
5∑
i=1

4
3
v(Ghtt̄)ii
mti

AS1/2(τti) +
4∑
i=1

1
3
v(Ghbb̄)ii
mbi

AS1/2(τbi)

+ 1− 2ξ√
1− ξ A

S
1/2(ττ ) + 4

3
1− 2ξ√

1− ξ A
S
1/2(τc) +

√
1− ξA1(τW )

∣∣∣∣∣
2

, (9.27)

Γgg =GFα
2
sm

3
h

64
√

2π3

∣∣∣∣∣
5∑
i=1

v(Ghtt̄)ii
mti

AS1/2(τti) +
4∑
i=1

v(Ghbb̄)ii
mbi

AS1/2(τbi)

+ 1− 2ξ√
1− ξA

S
1/2(τc)

∣∣∣∣∣
2

, (9.28)

where we introduced the notation

τW = 4M2
W

m2
h

, τti/bi =
4m2

ti/bi

m2
h

, τc = 4m2
c

m2
h

and ττ = 4m2
τ

m2
h

. (9.29)

The loop functions AS1/2 and A1 are given in Eqs. (6.49) and (6.59), respectively. Note,
that the loop contributions of the top-like fermions in Eqs. (9.27) and (9.28) reduce to
the LET contributions in the limit of heavy fermion masses, and hence only depend on
the Higgs non-linearities.
We do not give any results for the Higgs boson decay into Zγ, as the current exper-
imental results are not sensitive to this channel yet. The calculation of this decay
width for our model involves the calculation of the matrix element with two different
fermions in the loops, see Ref. [415]. The decay rate is, however, mostly dominated by
the W boson contribution, which is reduced by (1 − ξ). Due to the smallness of the
decay width and because it only enters in the total width in our discussion, we will
not investigate it here any further. Note that in some Composite Higgs Models large
deviations from the SM in h→ Zγ are possible [432].

9.3.3. Numerical results

In order to check the compatibility of our model with EWPTs, the recent Higgs results
and the measurement of Vtb, a χ2 test is performed, where

χ2 = χ2
EWPT + χ2

Higgs + χ2
Vtb
, (9.30)
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for the parameter points of the scan specified in Eq. (9.17). No contribution of the
direct searches is included in Eq. (9.30), as no χ2 information is available. We, however,
exclude all points from the scan which do not fulfill direct searches at 95% C.L.. The
contributions of the EWPTs, χ2

EWPT , are defined in Eq. (9.15). For the Higgs boson
results the experimental collaborations provide results in terms of the signal strength
modifiers, µ(X), defined as

µ(X) = σ(pp→ h) ·BR(h→ X)
σ(pp→ h)SM ·BR(h→ X)SM

. (9.31)

They also provide the correlation between the ggh+tt̄h and the V BF+V H production
channels. This correlation can be taken into account via a covariance matrix C defined
by

C =
(

∆µ2
ggF+tth ρ∆µggF+tth ∆µV BF+VH

ρ∆µggF+tth ∆µV BF+VH ∆µ2
V BF+VH

)
, ∆µi ≡

√
(∆µexpi )2 +

(
∆µthi

)2
.

(9.32)
The experimental values for the best-fit points ∆µi, their errors ∆µexpi and the correla-
tion ρ have been extracted from the ellipse plots of Refs. [49, 433]. The thus obtained
numerical values can be found in Ref. [36]. The theoretical uncertainties on µ, denoted
by ∆µthi , are obtained by calculating the uncertainties on the production cross sections
due to scale dependence and PDF+αs uncertainties. We use the relative errors on
the SM cross section throughout the analysis, but explicitly checked that the errors
did not change significantly in our model. The errors are consistently taken at NLO
QCD. The theoretical error on µV BF+VH becomes zero because, due to the same scaling
behaviour of the V BF and V H cross section, a cancellation between the SM error
and the Composite Higgs cross section error can take place. With these ingredients at
hand, χ2

Higgs is finally defined by

χ2
Higgs =

∑
channels

∑
i,j=1,2

(µexpi − µthi )C−1
ij (µexpj − µthj ) , (9.33)

with i, j = 1 corresponding to the (ggF + tth) production channel and i, j = 2 to
(V BF + V H). The sum over the channels takes into account the Higgs decays into
bb̄, τ τ̄ , γγ, WW and ZZ. Note that ATLAS does not provide any information on the
correlation in the bb̄ decay mode. In this case we define the χ2 of the bb̄ channel as

χ2
h→bb̄ = (µexpb − µthb )2

(∆µexpb )2 + (∆µthb )2 , (9.34)

where in the definition of µb, all production channels are summed up.
The χ2 contribution from the measurement of Vtb reads

χ2
Vtb

= (|V exp
tb | − |V th

tb |)2

(∆V exp
tb )2 . (9.35)

For the SM value we have assumed that |V th
tb | = 1. The experimental best fit value is

given by [417]
|V exp
tb | = 1.02± 0.046 , (9.36)
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|Vtb| > 0.92 |Vtb| in χ2

Experiment ξ χ2/n χ2
n ξ χ2/n χ2

n

ATLAS 0.105 8.06/9 0.90 0.096 12.34/10 1.23
0 17.54/13 1.35 0 17.73/14 1.25

CMS 0.057 5.22/10 0.52 0.055 6.36/11 0.58
0 9.90/14 0.71 0 10.09/15 0.67

Table 9.1.: Global χ2 results for the best fit points taking into account EWPTs and the Higgs
results of the ATLAS and CMS analyses, respectively: Left: For parameter points
which fulfill |Vtb| > 0.92. Right: When including the measured value of |Vtb| in
the χ2 test. The rows for ξ = 0 list for comparison the SM values. The number of
degrees of freedom, n, are counted naively as the difference between the number
of observables and the number of parameters in the model, and χ2

n ≡ χ2/n. This
table is already published in Ref. [36].

where unitarity of the CKM matrix is not assumed. In Table 9.1, the best fit values
of the scan are summarized. On the left side, the best fit values were obtained by not
including χ2

Vtb
into the total χ2 but instead requiring |Vtb| > 0.92. The right side are

the best fit values if χ2
Vtb

is included into the fit. For the ATLAS Higgs results the
best fit values are around ξ ≈ 0.1, for CMS at ξ ≈ 0.055. The best fit values are
always better than the SM value, due to the larger number of free parameters. The
ratio χ2

n = χ2/n, where n denotes the number of degrees of freedom, gives an estimate
of the relative goodness of the fit. Note, however, that the counting of free parameters
is not obvious, as the SM limit is reached for y > 0, ξ → 0 and M10 →∞. The other
parameters become meaningless in this limit.
Figure 9.6 shows ∆χ2 = χ2 − χ2

min as a function of ξ. In χ2 the full definition of
Eq. (9.30) is used including χ2

Vtb
. The minimal value χ2

min is the one of the best fit
point. The colour distinguishes between points which do better than the SM (dark
blue) and those doing worse (light blue). For the CMS results only points with ξ . 0.1

Figure 9.6.: ∆χ2 = χ2−χ2
min taking into account the Higgs results of ATLAS (left) and CMS

(right), as a function of ξ. The dark blue points do better than the SM, the light
blue points have a higher ∆χ2. This figure is already published in Ref. [36].
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Figure 9.7.: Fit results obtained from a scan over ξ, y, sinφL and M10 taking into account
EWPTs, the measured value of |Vtb| and the ATLAS Higgs results, shown in the
µggF+tth − µV BF+VH plane for the channels γγ (top left), W+W−, ZZ (both top
right) and τ+τ− (bottom). The black rhombus in the plot is the best fit point.
The colour code in the plots indicates from dark to light colours the 1σ, 2σ, 3σ
and 5σ regions obtained from the χ2 test with four degrees of freedom. These
plots are already published in Ref. [36].

have a lower ∆χ2 than the SM, while for the ATLAS results this is the case for points up
to ξ . 0.25, although most of the scenarios doing better than the SM are for ξ . 0.15.
Note that these plots can give some information on the amount of fine-tuning needed
to comply with the data. The minimal amount of fine-tuning can be estimated by
∆ = 1/ξ, which corresponds to the inverse of the cancellation among the parameters in
the Higgs potential needed in order to satisfy the EWSB condition [365]. This would
e.g. mean for our CMS best fit point at ξ ≈ 0.05 a tuning of ∆ ≈ 20, and a bit less
tuning for the ATLAS best fit point at ξ ≈ 0.1 of ∆ ≈ 10. This is only a very rough
estimate. A better measure can be obtained by taking into account the explicit form
of the Higgs potential, as was e.g. discussed in Ref. [365, 434].
In Fig. 9.7, the fit results of the scan in the µggF+tth − µV BF+VH plane for the Higgs
decay channels into γ,W,Z and τ pairs, respectively, are shown. The black rhombus
in the plot marks the best fit point obtained from the minimum value of the χ2 test.
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Figure 9.8.: Fit results obtained from a scan over ξ, y, sinφL and M10 taking into account
the EW precision data, the measured value of |Vtb| and the CMS Higgs results,
shown in the µggF+tth−µV BF+VH plane for the channels γγ (top left),W+W−, ZZ
(both top right), bb̄ (bottom left) and τ+τ− (bottom right). The black rhombus
in the plot is the best fit point. The colour code in the plots indicates from dark
to light colours the 1σ, 2σ, 3σ and 5σ regions obtained from the χ2 test with
four degrees of freedom. These plots are already published in Ref. [36].

The colour code in the plots indicates from
dark to light colours the 1σ, 2σ, 3σ and 5σ regions obtained from the χ2 test as defined
in Eq. (9.30) with the experimental Higgs results of ATLAS. The fit contours for W
and Z bosons are the same as their couplings are modified in the same way due to
custodial symmetry. They are thus depicted in the same plot. As can be inferred
from Fig. 9.7 (top left and right), the ATLAS data prefer an enhanced Higgs to γγ
and Higgs to vector boson rate. The best fit point in the τ channel shows a nearly
SM like rate. The same plots for the CMS Higgs results can be found in Fig. 9.8.
Additionally, the bb̄ channel is shown (bottom left), as CMS provides information
about the (V BF +V H) and (ggF + tth) production modes and their correlation in the
bb̄ channel. The best fit points are near the SM-like rates in the γγ final state, while the
rates in the W+W−, ZZ, bb̄ and τ+τ− channel are slightly reduced in the (ggF + tth)
production mode with respect to the SM value. In the τ τ̄ final state the region of
points passing the test is very narrow. This behaviour can already be found before
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Experiment ξ mtlightest χ2

ATLAS 0.067 806 GeV 13.71
CMS 0.055 1335 GeV 7.17

Table 9.2.: Global χ2 results for the best fit point respecting EWPT, |Vtb| and the Higgs
search results by ATLAS and CMS, respectively, with the corresponding ξ value
and the mass of the lightest top partner mtlightest . In addition the constraint of
Eq. (7.42) originating from the connection between a light Higgs boson and light
resonances was taken into account. This table is already published in Ref. [36].

applying EWPT and |Vtb| constraints. This means the signal strength modifiers for
the different production modes (ggF + tth) and (V BF +V H) are correlated. This can
be understood if one takes into account for a moment only the Higgs non-linearities.
Then both production via gluon fusion and the decay rate h → τ τ̄ decrease with ξ
proportional to (1 − 2ξ)2/(1 − ξ). This means that the gluon fusion production cross
section and the decay rate into h→ τ τ̄ decrease for ξ = 0, ..., 0.5 and vanish completely
for ξ = 0.5. The (V BF + V H) production mode decreases with (1 − ξ). Due to this
strong correlation between the rates from this two production channels only a small
stripe remains in the µggF+tth − µV BF+VH plane. The effect of the imposed constraints
is then merely to divide this strip into the 1σ to 5σ regions.
The region in the b-quark final state, cf. Fig. 9.8 (bottom left), is similarly explained.
It is, however, more spread because the Higgs coupling to the bottom quarks and hence
the branching ratio into the bb̄ final state is influenced directly by the compositeness
of the bottom quark. For the WW , ZZ and γγ final states there is no such strong
correlation between the rates.
So far, I have not taken into account in my analysis of this section the connection
between a light Higgs boson and light top partners given in Eq. (7.42). If this bound
is employed, we obtain new best fit values given in Table 9.2. Additionally, we give in
Table 9.2 the mass of the lightest top partner. The global χ2 results of the new best
fit values become slightly worse. Automatically, large values of ξ are eliminated, as
otherwise the bound on the mass of the lightest partner would be below the exclusion
from direct searches.

9.4. Summary

In this chapter the phenomenology of bottom partners has been investigated. We con-
sidered fermions transforming in the antisymmetric representation of SO(5), which
allowed us to introduce the bottom quark mass by the principle of partial composite-
ness. Being guide-lined by the principle of minimality, only the necessary operators
have been introduced, leading to a minimal amount of new parameters. The constraints
on such a model were investigated, with special focus on EWPTs, direct searches for
new vector-like fermions, the constraint on |Vtb| and from the current Higgs results.
Compared to the previous works [378–380] computing the EWPTs in Composite Higgs
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Models, we included in our calculation the loop contributions of the bottom partner to
the constraint on ZbLb̄L. The contributions of the bottom partners turned out to have
a significant impact on the EWPTs.
Bottom partners can also have an important influence on the Higgs boson production
and decay channels. As has been shown in Chapter 8, the gluon fusion Higgs production
cross section can well be described by the LET approximation, which is independent
of the details of the top partner spectrum. Once the bottom quark has a significant
mixing with bottom partners, however, the gluon fusion cross section will show a
dependence on the bottom partner spectrum, since the LET cannot be applied for
the bottom quark. Hence, the full mass dependence needs to be taken into account
for the calculation of the loop-induced processes. In this spirit, we evaluated here the
production and decay modes of the Higgs boson and compared them to the available
Higgs data.
For our final results we performed a χ2 test, checking the compatibility of the model
with EWPTs, the measurement of Vtb and the Higgs results. Direct searches for vector-
like fermions were taken into account by excluding the affected points from the scan.
ATLAS data prefers values of ξ ≈ 0.1, with enhanced rates of the Higgs boson decaying
into photons and vector bosons. CMS data prefers values of ξ ≈ 0.05 with rather SM-
like Higgs rates.
In conclusion, it was shown that the model is still in good agreement with all the
investigated constraints. Bottom partners can play an important role for the viability
of the model with the experimental data. The preferred values of ξ correspond to a
moderate amount of fine-tuning.
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Conclusion

The discovery a Higgs boson with a mass of ∼ 125 GeV marks a huge success for
particle physics. The next phase is the precise measurement of the properties of this
last ingredient of the SM. One of the last steps to experimentally verify the mechanism
of electroweak symmetry breaking of the SM is the measurement of the Higgs boson
self-couplings, since they give direct access to the Higgs potential. The determination
of the triple Higgs coupling provides a first step towards the experimental verification
of the Higgs potential.
In the framework of this thesis, we have given predictions for the inclusive SM Higgs bo-
son pair production cross sections via gluon fusion, vector boson fusion, Higgs-strahlung
off aW or Z boson and associated production with a top quark pair. We have included
in the discussion the NLO QCD corrections for gluon fusion and vector boson fusion
processes. The Higgs-strahlung cross section has been given at NNLO QCD. The gluon
induced subchannel of Higgs-strahlung off a Z boson, which is part of the NNLO cor-
rections, has been calculated for the first time in the framework of this thesis. For the
three processes gluon fusion, vector boson fusion and Higgs-strahlung, we have studied
in detail the theoretical uncertainties. It turns out that they are of O(40%) for the
gluon fusion process and well below 10% for vector boson fusion and Higgs-strahlung.
Our input is important for the experimental studies on the accessibility of the triple
Higgs boson coupling.
The current results from LHC still leave space for physics beyond the SM. Precise pre-
dictions of the phenomenological implications of New Physics are a necessary input for
the discovery of new particles or for the derivation of exclusion bounds. A particularly
appealing New Physics scenario is supersymmetry. In the second part of this thesis,
after giving a small introduction into supersymmetry, we have discussed the decays
of a light top squark in the framework of the MSSM with flavour violation. In par-
ticular, we have been interested in the kinematic region in which the top squark can
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either decay via a flavour changing decay into (u/c)χ̃0
1 or via a four-body decay. In the

framework of this thesis, we have calculated the NLO QCD corrections to the (u/c)χ̃0
1

decay, allowing for the process to occur already at tree level. The corrections turn out
to be O(10%− 30%). The four-body decay has been computed in this thesis with the
full mass dependence of the third generation fermions including flavour-violating cou-
plings. The flavour-violating effects are small if no flavour-violating sources other than
the Yukawa couplings are introduced. The inclusion of the third generation fermion
masses, however, turns out to be important.
In Chapter 6, we have studied the Higgs sector of the NMSSM with complex param-
eters. The five neutral Higgs bosons are then mixtures of the CP-even and CP-odd
components. In this thesis, we have computed one-loop corrections to the neutral
Higgs boson masses. These corrections are essential. Our analysis has shown that the
Higgs boson masses can significantly depend on the phases of the complex parameters.
This is in particular the case if the phases already enter the Higgs sector at tree level.
Furthermore, we have given Higgs production cross sections and decay rates for the
NMSSM with complex parameters.
Another interesting alternative to the SM are Composite Higgs Models. In the third
part of the thesis we first gave a short introduction to such models, in which the Higgs
boson is a pseudo-Goldstone Boson of a strongly-interacting sector. The Higgs mass
value implies for these models the emergence of light fermionic resonances.
In Chapter 8 we have focused on fermionic resonances that can mix with the top quark.
These top partners can influence Higgs boson production via gluon fusion through their
loop contributions. We studied in detail the effects of the top partners on single and
double Higgs boson production, also by comparing with the predictions obtained by
means of the low-energy theorem. It turned out that the inclusive single Higgs boson
production cross section can well be approximated by the low-energy theorem. The
low-energy theorem approximation is independent of the details of the heavy spectrum,
the cross section in the full mass dependence only depends slightly on the spectrum of
the top partners. For double Higgs boson production the low-energy theorem prediction
shows large deviations from the cross section in the full mass dependence of the fermions
in the loop. The double Higgs boson production cross section including the full mass
dependence of the loop particles shows a sizable dependence on the spectrum of the
heavy fermions. We ended Chapter 8 with a discussion of the NLO QCD corrections
to Higgs pair production via gluon fusion in the low-energy theorem approximation.
In turns out, that the NLO QCD K-factor of roughly 1.9 can well be described by the
SM K-factor of Ref. [105].
In Chapter 9 we studied fermionic resonances which can mix with the bottom quark.
These bottom partners can show important effects on electroweak precision observables
and Higgs boson production and decay rates. In the framework of this thesis, we
computed the one-loop contributions of the bottom partners to the ZbLb̄L coupling.
With these results at hand, we performed a χ2 test including electroweak precision
tests, the current Higgs results and the measurement of the CKM matrix element Vtb.
We also took into account exclusions from direct searches of new heavy fermions. Our
final results showed that Composite Higgs Models are still viable candidates for physics
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beyond the SM.
Although with the discovery of the Higgs boson a first big success has been achieved, a
lot of work still needs to be done. The true nature of this new particle yet needs to be
unveiled. As we have discussed in this thesis in detail, the discovered boson can still
be a particle of a New Physics scenario, as for instance one of the Higgs bosons of the
MSSM or the NMSSM, or it can be a Composite Higgs boson. With the second run of
the LHC we will hopefully be able to shed more light onto this exciting question.





APPENDIX A

NLO Decay Width of ũ1 → cχ̃0
1

In this Appendix, the results for the top squark decay width into a charm quark c and
the lightest neutralino χ̃0

1 will be presented. Only the finite parts will be given, while
the divergences cancel in the renormalization procedure. The full decay width is given
by

Γ = ΓLO + Γvirt + ΓCT + Γreal , (A.1)
with ΓLO as given in Eq. (5.9). For the virtual contributions and the counterterms the
scalar integrals are defined as
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The indices i, j will be set to either c, ũ1 or χ̃0
1 for the respective four momenta. The

virtual corrections Γvirt are composed of the contributions from the gluon exchange
Γvirt,g and from the gluino exchange Γvirt,g̃, with Γvirt = Γvirt,g + Γvirt,g̃. The specific
contributions are given by
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The gluino mass is denoted by mg̃ and µ denotes the renormalization scale. All other
notations correspond to those introduced in Chapter 5. The part of the decay width
corresponding to the counterterms ΓCT is given by
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with δgL/R as defined in Eqs. (5.24) and (5.25). The specific counterterms were derived
in Section 5.2.2. Only the self-energies have not been given yet. The squark self-energy
reads (with s, t = 1, ..., 6)
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ũ
ti)
)]

+2αs(µ)
3π δst

[
A(m2
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The symbol Bp2 is defined in analogy to Eq. (A.3), with undetermined momentum p2.
The quark self-energies are
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ũ∗
s j+3 , (A.11)

Σl
ij = −2αs(µ)

3π

6∑
s=1

mg̃Bp2(m2
g̃,m

2
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We finally give also the real corrections Γreal. They read
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with r defined in Eq. (5.29) and
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APPENDIX B

Relations between the original and the physical
parameters

For the transformation of the Lagrangian from the original parameters to the physical
ones the following relations are used:
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with nx and nz zero or one if there exist two solutions of the tadpole conditions in
Eqs. (6.13) and (6.15) and zero if there exists only one solution. The single solutions
correspond to ϕx, ϕz = ±π/2. Here, signx/z are the signs of the corresponding arcsine
evaluated in the interval [−π, π). We have defined ∆β = β − βB and βB ≡ βn = βc.



APPENDIX C

Higgs boson mass matrix at tree level in the
complex NMSSM

In this Appendix, the tree-level Higgs boson mass matrix will be given directly in terms
of the parameters used as the input parameters in the renormalization procedure.
The consistency in the parameter choice is essential in order to obtain the correct
counterterm matrix. Therefore, the mass matrix is expressed in the the parameters
|λ|, |κ|, |Aκ|, vs, ϕλ, ϕκ, ϕs, and ϕu, the tadpoles tφ as defined in Eqs. (6.10-6.14),
the gauge couplings and the VEVs have been replaced by the electric charge e, the W
boson massMW , the Z boson massMZ and tβ, and the parameter Aλ has been treated
for the charged Higgs boson mass MH± . The sine of the Weinberg angle is given by
sW = (1−M2

W/M
2
Z)1/2 and still needs to be replaced in the following equations before

the renormalization procedure is applied. In addition, the parameter Aλ is replaced
by the charged Higgs boson mass MH± . The Higgs boson mass matrix, in the basis
Φ = (hd, hu, hs, A, as, G)T , then reads
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evsc2
∆β

−
cβc

2
βB
s∆β

vsc2
∆β

[
thu + tβt

2
βB
thd
]

+ |λ|MW
sW s∆β

evs

[
2|λ|M2

W

s2
W

e2 s2β − 3|κ|v2
scϕy

]
, (C.11)

MGG =
[
M2

H± −M2
W c

2
∆β

]
t2∆β + ecβ−2βB

2MW sW c2
∆β

[
thd − tβ−2βB thu

]
+ 2|λ|2M2

W

s2
W

e2 s
2
∆β .

(C.12)

with the mixing between CP-even and CP-odd components given by

MhaGT =


ecβB

2MW sW sβ
tad

1
vs
tad + 3|κ||λ|MW

sW
e
vssβsϕy − esβB

2MW sW sβ
tad

esβB
2MW sW sβ

tad
1

vstβ
tad + 3|κ||λ|MW

sW
e
vscβsϕy

ecβB
2MW sW sβ

tad

MhsA Mhsas MhsG

 (C.13)
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with G as defined in Eq. (6.18) and

MhsA = c∆β

vssβ
tad − |κ||λ|MW

sW
e
vsc∆βsϕy , (C.14)

Mhsas = 2
vs
tas −

4MW sW
e

[
cβ
v2
s

tad + |κ||λ|MW
sW
e
s2βsϕy

]
, (C.15)

MhsG = s∆β

vssβ
tad − |κ||λ|MW

sW
e
vss∆βsϕy . (C.16)

For φy = nπ with n ∈ Z the entries of Mha vanish and their is no mixing between
CP-even and CP-odd components. We have introduced ∆β defined as ∆β = β − βB.
At tree level the relation βB = βc = βn = β holds. At one loop these angles need to
be distinguished, as the mixing matrices of the charged and neutral Higgs bosons are
not renormalized. Therefore βB, βc and βn do not get a counterterm, whereas β is
renormalized with the counterterm δβ = c2

βδtβ.





APPENDIX D

Conventions for the Higgs boson couplings in the
complex NMSSM

In this Appendix the coupling factors appearing in the formulae for the production and
decay rates of the NMSSM Higgs bosons in Section 6.3 are defined. The full coupling
in this section is denoted by C with the appropriate subscript. The reduced coupling
constants g (with subscript) can be obtained from the full couplings C by means of the
following formulae.
The Higgs boson to fermion couplings are given by (i = 1, ..., 5)

CHiff̄ = −ig2mf

2MW

[
gSHiff̄ − iγ5 g

P
Hiff̄

]
, (D.1)

with

gSHiff̄ =
{ Ri2

sinβ for f = up-type
Ri1
cosβ for f = down-type (D.2)

and

gPHiff̄ =
{ Ri4

tanβ for f = up-type
Ri4 tan β for f = down-type . (D.3)

The Higgs boson squark couplings are defined as

CHif̃ f̃∗ = −ig2
M2

Z

MW

gHif̃ f̃ . (D.4)

The formula for gHif̃ f̃ is lengthy and therefore we refer to the program code of
NMSSMCALC [37] and Ref. [292] for detailed expressions. For the neutral Higgs boson
decays the Higgs couplings to W bosons are necessary. They are given by

CHiV V = ig2MV gHiV V , with gHiV V = Ri1 cos β +Ri2 sin β , (D.5)
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with V = W, Z. Furthermore, the convention for the Higgs boson couplings to charged
Higgs bosons is

CHiH+H− = −ig2M
2
Z

2MW

gHiH+H− . (D.6)

For the Higgs boson couplings to charginos we used the convention (j, k = 1, 2)

CHiχ̃+
j χ̃
−
k

= −ig2

2

[
gS
Hiχ̃

+
j χ̃
−
k
− iγ5 g

P
Hiχ̃

+
j χ̃
−
k

]
. (D.7)

For all the discussed decays we, however, only need the case j = k. The full expressions
for gHiH+H− and g

S/P

Hiχ̃
+
j χ̃
−
j

can be found in the program code of NMSSMCALC [37] or in
Ref. [292].



APPENDIX E

The special orthogonal group

In this Appendix, we will give some basics results and formulae regarding SO(N)
groups, in particular for SO(5). The special orthogonal group SO(N) is defined by

OTO = 1 (E.1)

and
detO = 1 , (E.2)

with O ∈ SO(N) and describes rotations in the N -dimensional Euclidean space. Its
fundamental representation is given by an N component vector φ, with transformation
properties given by

φi → φ′i = Oijφj (E.3)

with i, j = 1, ..., N . Sometimes it can be useful, to write the representation in terms of
a two-indexed object, in particular for the symmetric and antisymmetric representation,
as is discussed in Chapter 7. The transformation rule then reads

φij → φ′ij = OikOjnφkn . (E.4)

The SO(N) element O is given by

O = ei
Taθa

2 ≈ 1 + i

2T
aθa , (E.5)

with T a the generators of SO(N) and θ the infinitesimal parameter associated with
the rotation. Using the defining property in Eq. (E.1), the transposed generator can
be calculated

OTO = 1 + i

2
(
(T a)T + T a

)
θa

!= 1 ⇒ T T = −T . (E.6)
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With Eq. (E.6) at hand, Eq. (E.4) becomes

φ′ij = (OφOT )ij ≈ φij + i

2θ
a
(
T aφ+ φ(T a)T

)
ij

= φij + i

2θ
a[T a, φ]ij . (E.7)

Hence the action of the generator on a two-indexed representation is given by the
commutator with the generator in the fundamental representation. We just need to
verify, that the antisymmetric/symmetric representation can indeed be described as
two-indexed representations. The antisymmetric/symmetric representations are de-
fined by

φT =
−φ, for antisymmetric representation
φ for symmetric representation .

(E.8)

Hence the transpose of the transformed representation as given in Eq. (E.4) can be
calculated to prove that it is still antisymmetric/symmetric. Indeed,

(φ′)Tij = φTij + i

2θ
a[T a, φ]Tij = φTij + i

2θ
a[T a, φT ]ij (E.9)

is symmetric/antisymmetric if φ is symmetric/antisymmetric. Note that in general in
SO(N) groups, the antisymmetric representation corresponds to the adjoint represen-
tation.
By now, all the properties are in general valid for SO(N) models. We are, however,
in particular interested in the SO(5). Thus, we finally give an explicit form for the
generators of SO(5) in a suitable basis. The generators of SO(5)/SO(4) are given by

(T â)ij = − i√
2
(
δâi δ

5
j − δâj δ5

i

)
, (E.10)

with (â = 1, ..., 4). Together with the ones of SU(2)L,R (a, b, c = 1, 2, 3, i, j = 1, ..., 5),

(T aL)ij = − i2

[1
2ε

abc(δbi δcj − δbjδci ) + δai δ
4
j − δ4

i δ
a
j

]
, (E.11)

(T aR)ij = − i2

[1
2ε

abc(δbi δcj − δbjδci )− δai δ4
j + δ4

i δ
a
j

]
, (E.12)

they form the complete set of generators in the fundamental representation of SO(5).
Of course, the SU(2)L,R generators fulfill the SU(2) algebra [T i, T j] = iεijkT k.



APPENDIX F

Decay widths for vector-like fermions

In this Appendix, the decay widths for vector-like fermions will be given in a general
form, such that they can be applied for other models. The decay width of a fermion
F with mass MF into a vector boson V with mass MV and a lighter fermion f with
mass mf and the Lagrangian

L = F̄ γµ(gVLPL + gVRPR)fVµ + h.c. , (F.1)

where gVL and gVR are generic coupling constants, is given by

Γ(F → V f) = MF

32π
√
λ(MF ,mf ,MV )

{
(|gVL |2 + |gVR |2)

(
M2

F

M2
V

)
(F.2)[

M2
V (M2

F +m2
f ) + (M2

F −m2
f )2 − 2M4

V

M4
F

]
− 12 mf

MF

Re(gVL gV ∗R )
}
.

We have defined

λ(M,m1,m2) = 1− 2m
2
1 +m2

2
M2 + (m2

1 −m2
2)2

M4 . (F.3)

For the decay into a Higgs boson h and a fermion f the Lagrangian is given by

L = F̄ (gSLPL + gSRPR)fh+ h.c. . (F.4)

The partial decay width then reads

Γ(F → hf) =MF

32π
√
λ(MF ,mf ,mh)[

(|gSL|2 + |gSR|2)
(

1 +
m2
f

M2
F

− m2
h

M2
F

)
+ 4mf

MF

Re(gSLgS∗R )
]
.

(F.5)

My results for the decay widths were compared with the work of a second computation
[435], and in a limit were some of the couplings are set to zero with Ref. [436].
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APPENDIX G

Triangle and box form factors for double Higgs
boson production

In this Appendix the analytic results for the triangle and box form factors for Higgs
pair production in a Composite Higgs Model are given. They can also be found in
Ref. [34, 437, 438].1

G.1. Notation

The four-momenta of the gluons are denoted by p1 and p2, the four-momenta of the
Higgs bosons by p3 and p4 with all momenta incoming. The Mandelstam variables
ŝ, t̂, û are hence given by

ŝ = (p1 + p2)2 , t̂ = (p1 + p3)2 , û = (p2 + p3)2 . (G.1)

The scalar integrals are defined as

Cij(m2
1,m

2
2,m

2
3) =∫ d4q

iπ2
1

(q2 −m2
1) ((q + pi)2 −m2

2)((q + pi + pj)2 −m2
3)

(G.2)

Dijk(m2
1,m

2
2,m

2
3,m

2
4) =∫ d4q

iπ2
1

(q2 −m2
1) ((q + pi)2 −m2

2)((q + pi + pj)2 −m2
3)((q + pi + pj + pk)2 −m2

4)
.

They have been evaluated numerically in a self-written code with the help of
LoopTools [148, 149]. We introduce the following abbreviations for the scalar inte-

1Compared to Ref. [34] a typo was corrected in this thesis.
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grals, to give the results for the form factors in a compact way

C12 ≡ C12(m2
1,m

2
1,m

2
1) , C13 ≡ C13(m2

1,m
2
1,m

2
2) ,

C14 ≡ C14(m2
1,m

2
1,m

2
2) , C23 ≡ C23(m2

1,m
2
1,m

2
2) ,

C24 ≡ C24(m2
1,m

2
1,m

2
2) , C34 ≡ C34(m2

1,m
2
2,m

2
1) ,

D123 ≡ D123(m2
1,m

2
1,m

2
1,m

2
2) , D132 ≡ D132(m2

1,m
2
1,m

2
2,m

2
2) ,

D213 ≡ D213(m2
1,m

2
1,m

2
1,m

2
2) . (G.3)

G.2. Tensor basis and projectors

The tensor basis reads

Aµν1 = gµν − pν1 p
µ
2

(p1 · p2) (G.4)

Aµν2 = gµν + p2
3 p

ν
1 p

µ
2

p2
T (p1 · p2) −

2 (p3 · p2) pν1 p
µ
3

p2
T (p1 · p2) − 2 (p3 · p1) pν3 p

µ
2

p2
T (p1 · p2) + 2pµ3 pν3

p2
T

(G.5)

with

p2
T = 2(p1 · p3) (p2 · p3)

(p1 · p2) − p2
3 ,

A1 · A2 = 0 and A1 · A1 = A2 · A2 = 2 . (G.6)

The Lorentz structure Aµν1 corresponds to Sz = 0, and Aµν2 to Sz = 2.

G.3. Form factor

Triangle:

F4(m) = 2
[
2m+

(
4m3 − ŝ m

)
C12

]
. (G.7)

Box form factors

F�(mi,mj) = 2
ŝ

[
2ŝ+ 4m2

i ŝ C12 + ŝ((mi +mj)(2m2
i (mi +mj)−miŝ)

− m2
i (t̂+ û))(D123 +D132 +D213) (G.8)

+ (m2
h − (mi +mj)2)

[
(t̂−m2

h)(C13 + C24) + (û−m2
h)(C23 + C14)

− (t̂û−m4
h + ŝ(m2

j −m2
i ))D132

]]
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G�(mi,mj)

= 1
t̂û−m4

h

[
(t̂2 + û2 − (4m2

j + 4mimj)(t̂+ û) + 4(mj −mi)(mi +mj)3 + 2m4
h)ŝC12

+ (m4
h + t̂2 − 2t̂(mi +mj)2)((t̂−m2

h)(C13 + C24)− ŝt̂D213)
+ (m4

h + û2 − 2û(mi +mj)2)((û−m2
h)(C23 + C14)− ŝûD123) (G.9)

− (t̂2 + û2 − 2m4
h)(t̂+ û− 2(mi +mj)2)C34

− (t̂+ û− 2(mi +mj)2)((t̂û−m4
h)(m2

i +m2
j) + ŝ(m2

i −m2
j)2)(D123 +D132 +D213)

]

and

F�,5(mi,mj) = −F�(mi,−mj), G�,5(mi,mj) = −G�(mi,−mj). (G.10)





APPENDIX H

Results for the vertex correction to ZbLb̄L

The results for the corrections to the vertex ZbLb̄L will be presented in this Appendix.
In order to give them in a general way, the Lagrangians for the specific couplings of the
W bosons, the Z bosons, the charged Goldstone bosons G± and the neutral Goldstone
boson G0 to the quarks Ψ of charge Q and Q− 1 are parameterized as follows

LW = g2√
2
W+
µ Ψ̄i

Qγ
µ
(
V QL
ij PL + V QR

ij PR
)

Ψj
(Q−1) + h.c. , (H.1)

LZ = g2

2cW
ZµΨ̄i

Qγ
µ
(
XQL
ij PL +XQR

ij PR − 2s2
WQδij

)
Ψj
Q , (H.2)

LG± = g2√
2
G+Ψ̄i

Q

(
WQL
ij PL +WQR

ij PR
)

Ψj
(Q−1) + h.c , (H.3)

LG0 = g2

2cW
G0Ψ̄i

Q

(
Y QL
ij PL + Y QR

ij PR
)

Ψj
Q . (H.4)

The indices i and j run over all the quarks present in the model, V QL/R,WQL/R, XQL/R

and Y QL/R denote the coupling matrices. Additionally, we define

X̃
Q(L/R)
ij = X

Q(L/R)
ij − 2s2

WQδij . (H.5)

The decay amplitudeMheavy, as defined in Eq. (9.8), gets loop contributions from the
top quark and its partners,Mheavy

t , from the bottom quark and its partners,Mheavy
b ,

and from Higgs bosons in the loops,Mheavy
Higgs. Hence, we denote collectively

Mheavy =Mheavy
t +Mheavy

b +Mheavy
Higgs . (H.6)

We introduce the reduced masses

yi = m2
i

M2
Z

, yW = M2
W

M2
Z

and ybβ =
m2
bβ

M2
Z

, (H.7)
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where mi is the mass of one of the top-like quarks denoted by the index i and mbβ the
mass of one of the bottom-type quarks, denoted by the index β. With the definitions
of the gauge and Goldstone boson couplings as in Eqs. (H.1–H.4) the contributions
from the top quark and the heavy top partners (Q = 2/3) read,

Mheavy
t =− α

8πs2
W

∑
i

∑
j

V QL
jb V QL?

ib (2X̃QR
ij Eij

1 + X̃QL
ij Eij

2 )

+WQL
jb W

QL?
ib (X̃QL

ij Eij
1 + X̃QR

ij Eij
3 )
]

+
∑

β

X̃
−1/3,L
bβ

(1
2
(
V QL?
iβ V QL

ib + V QL
iβ V QL?

ib

)
(2Eiβ

4 − 1)

+1
2
(
WQL?
iβ WQL

ib +WQL
iβ WQL?

ib

)
Eiβ

4

)]
+ (2s2

W − 1)
∣∣∣WQL

ib

∣∣∣2Ei
5 − 2c2

W

∣∣∣V QL
ib

∣∣∣2Ei
6 + 4s2

W Re(V QL?
ib WQL

ib )Ei
7

−
∑
β

X̃
−1/3,L
βb (WQR?

ib WQL
iβ − 4V QR

ib V QL?
iβ )Eiβ

8 ,

(H.8)

where the summation in i, j runs over all indices appearing in the top mass matrix
and the summation in β over all indices appearing in the bottom mass matrix. The
index b stands for the mass eigenstate with the bottom quark mass. The abbreviations
introduced in the above formula are given by

Eij
1 = √

yiyj I1(yi, yW , yj) , (H.9)
Eij

2 = Div− 2 + yi + yj − 2yW + 2I1(yi, yW , yj) (yi − yW − 1) (yj − yW − 1)

−I2(yi, yj) (yi + yj − 2yW − 3) + log(yi)
(

2yi
yi − yW

− yi
)

(H.10)

+ log(yj)
(

2yj
yj − yW

− yj
)

+ 2yW log(yW )
(

1− yi + yj − 2yW
(yi − yW )(yj − yW )

)
,

Eij
3 = 1

2

[
Div + 1 + yi + yj − 2yW + 2I1(yi, yW , yj) (yi − yW ) (yj − yW ) (H.11)

−I2(yi, yj) (yi + yj − 2yW + 1)− yi log(yi)− yj log(yj) + 2yW log(yW )
]
,

Eiβ
4 = 1

2



Re
[
−Div + 2− log(yW )− yW−yi

yi

√
yb
β

yi
Eiβ

8

+x+(ybβ, yW , yi) log(1− 1/x+(ybβ, yW , yi))
+x−(ybβ, yW , yi) log(1− 1/x−(ybβ, yW , yi))

]
for ybβ 6= 0 ,

−Div + 1− yi
yi−yW

log(yi)− yW
yW−yi

log(yW )
+ yi+yW

2(yi−yw) −
yiyW

(yi−yW )2 log(yi/yW ) for ybβ = 0 ,

(H.12)
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Ei
5 = Div

2 − 1
2 + yi − yW − yi log(yi) + yW log(yW )

−I1(yW , yi, yW )
(
(yi − yW )2 + yi

)
(H.13)

−I2(yW , yW )
(
yi − yW + 1

2

)
,

Ei
6 = 3 Div− 4 + 2 (yi − yW )− 2I1(yW , yi, yW )

(
(yi − yW )2 + 2yW

)
−I2(yW , yW ) (2yi − 2yW − 1)

+2 log(yi)
(

2yi
yi − yW

− yi
)

+ 2 log(yW )
(
− 2yW
yi − yW

+ yW

)
, (H.14)

Ei
7 = √

yWyi I1(yW , yi, yW ) , (H.15)

and

Eiβ
8 =



√
yi
yb
β

Re
[
1 + yi

yW−yi
log

(
yW
yi

)
+x+(ybβ, yW , yi) log(1− 1/x+(ybβ, yW , yi))
+x−(ybβ, yW , yi) log(1− 1/x−(ybβ, yW , yi))

]
for ybβ 6= 0 ,

0 for ybβ = 0 ,

(H.16)

with

x±(y1, y2, y3) = 1
2

1 + y3 − y2

y1
±

√√√√(1 + y3 − y2

y1

)2

− 4y3

y1

 , (H.17)

I1(y1, y2, y3) = −
∫ 1

0
dx

1
x+ y2 − y3

log
[

xy1 + (1− x)y2

xy1 + (1− x)y3 − x(1− x)

]
, (H.18)

I2(y1, y2) = −
∫ 1

0
dx log[xy1 + (1− x)y2 − x(1− x)] . (H.19)

The symbol “Div” in the formulae stands for the divergent part and has to cancel in
the end. The expressions E1, E2, E3, E5, E6 and E7 are the same as the ones obtained
in Ref. [379], whereas, due to the mixing matrix renormalization, expression E4 differs
from Ref. [379] and an additional contribution, corresponding to the E8 term was added.
Note that the gauge boson self-interactions and the interactions of the Goldstone bosons
with the gauge bosons for the derivation of the result forMheavy

t are those of the SM
and are defined as in Ref. [379].
In case the fermions in the loop are the bottom quark and its partners, the amplitude
Mheavy

b is obtained from Eq. (H.8) for Q = −1/3 by taking the first three lines and the
last line with the replacements

yW → 1, yi,j → ybi,j, V
Q(L,R)
ij → 1√

2cW
X̃
Q(L,R)
ij and W

Q(L,R)
ij → 1√

2cW
Y
Q(L,R)
ij .

(H.20)
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Additionally, for bottom partners in the loop there are also Higgs contributions. They
read

Mheavy
Higgs =− 1

16π2

∑
i

∑
j

Ghbb?
bj Ghbb

bi (X̃−1/3,L
ij Eij

1 + X̃
−1/3,R
ij Eij

3 )

−X̃−1/3,L
jb (Ghbb?

ib Ghbb?
ji )Eij

8 + X̃
−1/3,L
bj

Eij
4

2
(
Ghbb
ji G

hbb?
bi +Ghbb?

ji Ghbb
bi

)]

+ 2esW
cW

Re(Ghbb?
bi X

−1/3,L?
ib )Ei

7 ,

(H.21)

where in the Ei expressions, as given by Eqs. (H.9–H.16), the replacements yW →
m2
h/M

2
Z and yi → ybi are needed. All summations over i and j are understood as

summations over the bottom indices. The Higgs boson coupling matrices Ghbb̄ were
defined in Eq. (7.39). For the SM result Mt+b

SM , the top-loop contribution Mt
SM has

been calculated from Eq. (H.8) by replacing the couplings with the corresponding SM
couplings and by taking into account only top contributions, i.e. no summation over
the heavy top partner contributions is performed. Analogously, the bottom-loop con-
tributionMb

SM is obtained from the first three lines of Eq. (H.8) after the replacements
in Eq. (H.20) and by substituting the corresponding SM couplings where necessary and
not taking into account any heavy bottom partner loop.
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