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CHAPTER 1

Introdu
tion

Getting a
quainted with lo
ally stationary pro
esses:

Question: What are lo
ally stationary pro
esses and why do we need them?

Answer

(Sergides [49℄)

Lo
ally stationary pro
esses are nonstationary sto
hasti
 pro
esses

whose se
ond order stru
ture varies smoothly over time. [We need

them to 
reate a℄ more realisti
 framework in time series analysis.

Answer

(Martin

and Flandrin

[37℄):

[That's be
ause in reality℄ the assumption of stationarity fails to be

true: the physi
al 
hara
ter of random signals demands a nonsta-

tionary approa
h su
h as in a
ousti
s, spee
h, geophysi
, biology,

biomedi
ine �elds, et
. However, a spe
trum of [a℄ nonstationary

pro
ess(...) 
annot be de�ned by simply generalizing the ordinary

stationary spe
trum.

Question: Before we go into a thorough dis
ussion on the histori
al approa
h

to model nonstationarity in general, 
ould you please brie�y point

out the main ideas the subsequent work is based on?

Answer: Introdu
ing a time varying spe
tral representation similar to sta-

tionary pro
esses and thus allowing to study pro
esses with 
on-

tinuously 
hanging spe
tral patterns has �rst been suggested by

Priestley [46℄.

His time dependent spe
tral fun
tions are 
alled evolutionary spe
-

tra, whi
h have a physi
al interpretation as lo
al energy distribu-

tions over frequen
y.

As pointed out by Dahlhaus [6℄ the approa
h of Priestley [46℄ does,

however, not allow for meaningful lo
al asymptoti
 
onsiderations.

In order to over
ome these di�
ulties, Dahlhaus [7℄ suggested to


onsider a triangular array of data.

1



1 Introdu
tion

The di�eren
e of the approa
h of Dahlhaus [7℄ to the approa
h

of Priestley [46℄ is, that Dahlhaus [7℄ uses double indexed pro-


esses and makes use of asymptoti
 
onsiderations. His 
on
ern

is to provide a representation whi
h allows for rigorous asymptoti


treatment of statisti
al inferen
e problems, whereas Priestley [46℄

intended to gain a sto
hasti
 representation of the pro
ess.

Modelling non-stationarity � histori
al overview

When dealing with time series in appli
ations, it has already been pointed out that

the assumption of stationarity is more than questionable. Modelling time-dependent

pro
esses has therefore been dealt with for several de
ades. There is, of 
ourse the

possibility to model time-dependent pro
esses in the time domain as done by Hallin

[23℄ and Subba Rao [51℄. Subba Rao [51℄ 
onsidered AR-pro
esses with time-varying


oe�
ients represented as expansions of orthogonal polynomials and weighted least

squares estimation of the time-varying 
oe�
ients. However, he also 
onsidered the

evolutionary spe
tral approa
h developed by Priestley [46℄. This 
on
ept of an evo-

lutionary spe
trum will be dis
ussed later on.

Espe
ially when en
ountering the �eld of signal pro
essing and a
ousti
s the assump-

tion of a stationary signal is not 
onvin
ing. A stationary signal (in 
ontinuous time)


an be des
ribed by the power spe
tral density

f(ω) =

∫

τ

Cov(Xt+τ , Xt−τ )e
−i2πωτdτ, 0 < ω <∞

(Hlawats
h and Matz [25℄). Contrasting stationary pro
esses, non-stationary signals


all for time-frequen
y methods to a

ount for the 
hange of the signal throughout

time in order to provide a 
omplete and unique des
ription of the pro
ess' se
ond

order statisti
s and spe
tral properties (
f. Hlawats
h and Matz [25℄).

The aim is, thus, to generalize the power spe
tral density in a way that we get a

natural extension with an expli
it time-dependen
e of the 
lassi
al notion of power

spe
tral density together with most of its "ni
e" properties (
f. Flandrin [19℄).

Unfortunately, there is no 
han
e to obtain su
h a time-dependent spe
trum whi
h

is unique and well-de�ned. Whenever 
hoosing a de�nition, we have to sa
ri�
e one

desirable property we would have liked the time-dependent spe
trum to have.

There has also been some heated dis
ussion of what 
onditions are the ne
essary

ones and when a fun
tion is allowed to be 
alled a spe
trum (
f. Loynes [36℄ and

the dis
ussion of the paper in the appendix).

Priestley [46℄ reviews the resear
h on the problem of 
hara
terizing non-stationary

pro
esses via a spe
tral density: In 1960, Cramér [5℄ 
onsidered the 
lass of non-

stationary harmonizable (in the Loève sense) pro
esses. That is, pro
esses with the

Cramér representation

Xt =

∫ ∞

−∞
eiωtdZ(ω), −∞ < t <∞.

2



The in
rement pro
ess Z(ω), however, is not orthogonal anymore, the in
rements


an be 
orrelated. Cramér then de�ned the integrated spe
trum of su
h a pro
ess

by dF (ω, ν) := E(|dZ(ω)dZ∗(ν)|). A major drawba
k of this approa
h, as pointed

out by Priestley [47℄, is the di�
ulty of interpreting this two-dimensional spe
tral

density fun
tion.

Another de�nition has been given by Hatanaka and Suzuki (unpublished). They

de�ne the spe
tral density fun
tion of non-stationary pro
esses as the limit of of the

expe
ted value of the periodogram as sample size tends to in�nity. Both, Cramér and

Hatanaka and Suzuki intended to 
hara
terize the behaviour of the non-stationary

pro
ess over the whole parameter spa
e with the help of a single fun
tion.

When 
on
entrating on looking for a lo
al des
ription of the spe
trum of a non-

stationary pro
ess one inevitably 
omes to Page [43℄ who was the �rst to be toying

with the idea of a 
hanging spe
trum. He de�nes the instantaneous power spe
trum

of a non-stationary pro
ess.

Instantaneous power spe
trum (→ Page [43℄) Considering the energy of a

signal to be distributed over time and frequen
y, the density of the energy in the

time-frequen
y plane is 
alled ρ(t, f). For some �xed t, this is 
alled the instanta-

neous power spe
trum at time t.

Motivation (
f. Priestley [46℄ and Page [43℄):

∫ T
0

∫∞
−∞ ρ(t, f)dfdt is the total energy of the signal output up to time

T . To get the in
rease in total power from time T to T + ∆T one

di�erentiates with respe
t to t. Now di�erentiating with respe
t to t
yields

∫ ∞

−∞
ρ(T, f)df,

whi
h is the instantaneous power of the signal at time T . Thus, ρ(T, f)
des
ribes the di�eren
e between the energy on the interval (0, T ) to the

interval (0, T + δT ) and is 
alled the instantaneous power spe
trum at

time T . Approximately,

ρ(T, f) ≈ 1

∆T
E

(∣∣∣∣
∫ T+∆T

0

Xte
−iftdt

∣∣∣∣
2

−
∣∣∣∣
∫ T

0

Xte
−iftdt

∣∣∣∣
2
)

≈ 1

∆T

(∫ T+∆T

0

ρ(t, f)dt−
∫ T

0

ρ(t, f)dt

)
.

Integration of the instantaneous power spe
trum over time yields the 
onventional

spe
trum (
f. Page [43℄). His de�nition of the 
onventional spe
trum is the same as

of Hatanaka and Suzuki.

3



1 Introdu
tion

The reason for Priestley [46℄ to resort to evolutionary spe
tra is that he is unhappy

with the physi
al interpretation of Page's instantaneous power spe
trum. Priestley


onsidered it far more important to study the spe
tral 
ontent of the pro
ess within

the interval (T, T + δT ) than studying the di�eren
e between the spe
tral 
ontents

of the intervals (0, T ) and (0, T + δT ). His evolutionary spe
trum at time T 
an

roughly be understood as

f(t, ω) ≈ E

(∣∣∣∣
∫ T+∆T

T

Xte
−iftdt

∣∣∣∣
2
)
.

For the interpretation of the de�nitions, see the dis
ussions at the end of Priestley

[46℄, pp. 234,235.

Evolutionary spe
trum (→ Priestley [46℄,[47℄) Priestley's [47℄ 
on
ept is to

generalize the representation of a stationary pro
ess as

Xt =

∫ ∞

−∞
eiωtdZ(ω), −∞ < t <∞,

with dZ(ω) remaining an orthogonal pro
ess. Not giving up on the in
rements, i.e.

the random amplitudes, being un
orrelated ensures easy interpretation, whi
h has

not been provided by Cramér [5℄.

In order maintain this un
orrelatedness of the in
rements, Priestley [46℄ restri
ts

attention to the 
lass of pro
esses for whi
h there exists a family F of fun
tions

{φt(ω)} de�ned on the real line, indexed by t, and a measure µ(ω) on the real line,

su
h that for ea
h −∞ < s, t <∞ the 
ovarian
e fun
tion 
an be written as

Cov(Xt, Xs) =

∫ ∞

−∞
φs(ω)φt(ω)dµ(ω).

Referring to Parzen [45℄, Priestley [46℄ points out that for the parameter spa
e being

a bounded interval (0 ≤ t ≤ T ) it is always possible to obtain this kind of represen-

tation. Given φt(ω) is quadrati
 integrable for ea
h t, Xt admits a representation of

the form

Xt =

∫ ∞

−∞
φt(ω)dZ(ω),

where dZ is an orthogonal pro
ess with E|Z(ω)|2 = dµ(ω). (Note: µ(ω) here mirrors

the role of F (ω) in the stationary 
ase.) Depending on whi
h family of fun
tions

is 
hosen for φt one gets a wide variety of di�erent representations of the pro
ess.

This again is a result of Parzen [45℄ and has been taken up by Priestley [46℄.

By 
hoosing φt(ω) = eiωt we get the stationary 
ase. Aiming to 
onsider non-

stationary pro
esses, we ought to 
hoose another family of fun
tions. Priestley [46℄

pi
ked out os
illatory fun
tions (as to preserve the physi
al 
on
ept of frequen
y):

4



De�nition of an os
illatory fun
tion:

→Priestley [46℄

The fun
tion of t, φt(ω), will be said to be an os
illatory fun
tion if, for

some (ne
essarily unique) θ(ω) it may be written in the form φt(ω) =
At(ω)e

iθ(ω)t
, where At(ω) is of the form

At(ω) =

∫ ∞

−∞
eitθdHω(θ),

with |dHω(θ)| having an absolute maximum at θ = 0.

Note: With At(ω) = 1 and θ(ω) = ω the 
lass of os
illatory pro
esses 
ertainly

in
ludes all se
ond-order stationary pro
esses.

An os
illatory pro
ess whose se
ond-oder 
hara
teristi
s 
hange "slowly" over time,

is 
onsidered by Priestley [46℄ to be a semi-stationary pro
ess. (Of 
ourse, in Priest-

ley [46℄ the term slowly is de�ned mathemati
ally.)

For a non-stationary pro
ess Xt represented by

Xt =

∫ ∞

−∞
At(ω)e

iωtdZ(ω),

with an orthogonal in
rement pro
ess dZ(ω), we 
an interpret At(ω)dZ(ω) as ran-
dom amplitudes and 
onsider Xt to be the limit of a sum of many sine and 
osine

waves with di�erent frequen
ies and amplitudes At(ω)dZ(ω). Hen
e, the power that
is 
ontributed by frequen
y ω is

|At(ω)|2dF (ω) = |At(ω)|2|dZ(ω)dZ∗(ω)|.

The evolutionary power spe
trum by Priestley [46℄ is then de�ned to be

ft(ω) := |At(ω)|2dF (ω).

F is the spe
tral distribution fun
tion of the 
orresponding stationary pro
ess

Xt =

∫ ∞

−∞
eiωtdZ(ω).

The evolutionary spe
trum has the same physi
al interpretation as the spe
trum of

a stationary pro
ess (
f. Brus
ato and Toloi [4℄), namely, it des
ribes a distribution

of power over frequen
y, but whereas the latter is determined by the behaviour of

the pro
ess for all time t, the former represents spe
i�
ally the spe
tral 
ontent of

the pro
ess in the neighbourhood of ea
h time instant t.
Unfortunately, this evolutionary spe
trum is by no means unique and depends on

the family F 
onsidered. Moreover, as pointed out by Dahlhaus [7℄, the approa
h

of [46℄ does not allow for rigorous lo
al asymptoti
 
onsiderations. In order to over-


ome these di�
ulties, Dahlhaus [7℄ suggested to 
onsider a triangular array of data.

Subba Rao [51℄ not only 
onsidered estimation in the time domain, but he also used

5



1 Introdu
tion

the evolutionary spe
tral approa
h developed by Priestley to estimate the time-

varying parameters of the time-dependent AR-pro
esses. Subba Rao's modelling

of non-stationary time series with time-dependent AR-models has been resumed by

Grenier [22℄ and Kitagawa and Gers
h [29℄. The latter restri
ted the time-varying


oe�
ients by introdu
ing smoothness priors, that is setting up sto
hasti
ally per-

turbed di�eren
e equations for the 
oe�
ients. By doing so, they also 
reate a lo
al

time-varying stru
tural model, whi
h does not have global stru
tural time-varying

properties.

Evolutive spe
trum (→ Tjostheim [53℄ and Mélard [38℄) The evolutive spe
-

trum has independently been proposed by Tjostheim [53℄ and Mélard [38℄. It is

de�ned for dis
rete time pro
esses and is a spe
ial 
ase of Priestley's evolutionary

spe
tra with respe
t to some spe
ial family F . This is explained in more detail in

Flandrin [19℄.

Wigner-Ville spe
trum (→ Martin and Flandrin [37℄) Another popular de�-

nition of a spe
trum of nonstationary pro
esses is the Wigner-Ville spe
trum (
f.

Brus
ato and Toloi [4℄):

When generalizing the 
lassi
al ordinary spe
trum for stationary time series "un-

der natural 
onditions" Martin and Flandrin [37℄ �nd the Wigner-Ville spe
trum

to be the only time-varying spe
trum to su�
iently 
omply with those 
onditions,

su
h as satisfying the linear time-frequen
y dualism and redu
ing to the ordinary

spe
tral density if the pro
ess is stationary. The major drawba
k of the Wigner-

Ville spe
trum is the sa
ri�
e of the non-negativity, whi
h does no longer allow for

the physi
al interpretation of lo
al energy over time. The Wigner-Ville spe
trum is

(uniquely) de�ned as the expe
ted value of the Wigner-Ville distribution:

fWV (t, ω) := E[Wx(t, ω)] = E

[∫ ∞

−∞
Xt+ τ

2
Xt− τ

2
e−iωτdτ

]
, −∞ < t <∞.

For the dis
rete 
ase

fWV (t, ω) := 2
∞∑

τ=−∞
γ(t + τ, t− τ)e−2iωτ

de�nes the dis
rete Wigner-Ville spe
trum. We 
an see, that this is a representation

similar to the one for stationary pro
esses.

Time varying spe
tral density The most re
ent amendment to the te
hniques of

modelling non-stationary time series has been made by Dahlhaus [8℄. He introdu
es

the 
lass of lo
ally stationary pro
esses and along with it, the 
on
ept of a time vary-

ing spe
tral density, whi
h is the spe
tral density of the stationary approximations

at di�erent points in time. For this time-varying spe
tral density, he pi
ks up the

idea of Priestley [46℄ of lo
ally des
ribing the spe
tral density, but, as pointed out

6



before, he introdu
ed double-indexed pro
esses allowing for asymptoti
 
onsidera-

tions. Also 
ontrasting the evolutionary spe
trum, the time varying spe
tral density

of a lo
ally stationary pro
ess is unique and equals the limit of the Wigner-Ville

spe
trum of this pro
ess (see Theorem 2.1).

Aims of this work

Looking at the long list of approa
hes to 
onsider deviations from stationarity, one


an see the great relevan
e of the topi
 � and also the di�
ulties 
oming along with

it, among them the problem of generalizing the stationary model maintaining the

possibility of asymptoti
 theory and the di�
ulty of generalizing the 
on
ept of a

spe
trum to the non-stationary 
ase � not to speak of estimating it. This thesis,

based on the 
on
ept of lo
ally stationary time series introdu
ed by Dahlhaus [8℄,

aims to develop a modi�
ation of the Fourier transform whi
h enables us to transfer

the lo
al stru
ture of the data from the time domain to the frequen
y domain, yet

preserving the 
onvenient property of the resulting Fourier 
oe�
ients being at least

un
orrelated in the frequen
y domain. This is then the basis for the appli
ation of

bootstrap te
hniques. Of 
ourse, some appropriate inverse transformation should be


onstru
ted to allow for the bootstrapped 
oe�
ients to be 
onverted ba
k to time

domain data, again, without losing stru
tural information. The �rst main goal is

thus to generalize the TFT bootstrap by Kir
h and Politis [28℄ to lo
ally stationary

time series. This, of 
ourse, �rst implies to �nd a suitable estimator of the time

varying spe
tral density as well as proving its 
onsisten
y. It also requires to prove

that the TFT bootstrap for lo
ally stationary time series yields the 
orre
t 
ovari-

an
e stru
ture of the bootstrap observations.

The se
ond obje
tive is to validate that the new way of Fourier transforming is appli-


able to other state-of-the-art bootstraps. There exist extensions to the wild hybrid

bootstrap (Kreiss and Paparoditis [33℄) as well as the autoregressive periodogram

bootstrap (Kreiss and Paparoditis [31℄) using the lo
al periodogram. We intend to

generalize these pro
edures to stationary time series using the periodogram resulting

from our new transform and 
ompare the performan
e of our obtained pro
edures

to the extensions already in existen
e.

The third aspe
t is a pra
ti
al one as it is intended to implement the new trans-

form as well as the new version of the TFT bootstrap and the two other bootstrap

pro
edures. We will moreover deal with the question whether there is any way of

redu
ing the 
omplexity of the algorithm. As test statisti
s 
an often be written as

spe
tral means, we also aim to stru
turally investigate those spe
tral means being

based on the newly introdu
ed periodogram. Naturally, it is also intended to survey

those statisti
s using simulations. The pra
ti
al part even goes to su
h lengths as

to introdu
e uniform 
on�den
e bands for the auto
orrelation and to examine them

thoroughly with respe
t to di�erent error distributions.
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1 Introdu
tion

Agenda

We start with an introdu
tion to lo
ally stationary pro
esses proposed by Dahlhaus

[8℄. This 
on
ept inspired us to extend the ordinary Fourier transform to a moving

version. In Chapter 3, the derivation and 
onstru
tion of the transform is presented

and a 
orresponding transformation to return to the time domain is introdu
ed.

The moving Fourier transform as well as the resulting moving periodogram have

been thoroughly investigated in Chapter 4 and 5 
on
erning their asymptoti
 prop-

erties. We have even gone further taking a

ount of moving spe
tral means and

their asymptoti
 
hara
teristi
s. Chapter 6 in
ludes some philosophi
al aspe
ts on

possible modi�
ations of the moving Fourier transform. Appli
ation of the moving

transform to bootstrapping has been dis
ussed in Chapter 7. Chapter 7 also ex-

poses the need for an appropriate estimator for the time varying spe
tral density.

The 
onstru
tion of an estimator as well as the proof of adequateness has been

done in Chapter 8. Finally, Chapter 9 looks at the bootstrap data emerging from

the moving wild TFT bootstrap and dis
overs that the auto
ovarian
e stru
ture

is mimi
ked well. We have sto
hasti
 
onvergen
e to the 
orre
t auto
ovarian
e

fun
tion, uniformly in lag h, when h is smaller than the window width used for the

transformation. Chapter 10 is dedi
ated to the investigation whether an analogon of

the Fast Fourier transform 
an be 
onstru
ted to redu
e numeri
al 
omplexity. The

�nal Chapter 11 presents a simulation study in
luding the moving Fourier transform

and the bootstrap pro
edures developed in Chapter 7. We 
onstru
t simultaneous


on�den
e bands for the auto
orrelation fun
tion as well as for the auto
ovarian
e

fun
tion of lo
ally stationary data and investigate their performan
e with respe
t

to di�erent bootstrap pro
edures and di�erent data generating pro
esses.
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CHAPTER 2

Lo
ally stationary pro
esses

2.1 The 
on
ept of lo
al stationarity

2.1.1 Asymptoti
 theory

If X1, . . . , XT are the observations at hand, letting T tend to in�nity whi
h means

extending the pro
ess into the future, does, in 
ase of a non-stationary pro
ess,

not yield any more information. Thus, asymptoti
 
onsiderations have to be ade-

quately adapted in the sense that letting T tend to in�nity does indeed reveal more

information on the pro
ess. Exemplarily, the pro
ess

Xt = g∗(t)Xt−1 + εt, εt
iid∼ N (0, σ2), t = 1, . . . , T,

with some fun
tion g∗ : {1, 2, . . . , T} → R is 
onsidered. Currently we have informa-

tion on the unknown fun
tion g∗(t) on the grid {1, 2, . . . , T}. Dahlhaus [6℄,[7℄ and

[8℄ sets down the asymptoti
 theory not by assuming the fun
tion g∗ to be observed

for a longer period of time on an extending grid with 
onstant grid width, but to

be observed on a �ner and �ner grid on the same interval. This is done by res
aling

the unknown fun
tion g∗ to the interval (0, 1] in the way that the res
aled fun
tion

g now reads g∗(t) = g
(
t
T

)
and thus

Xt,T = g

(
t

T

)
Xt−1 + εt, εt

iid∼ N (0, σ2), t = 1, . . . , T. (2.1)

We 
an see that the larger T grows the �ner the grid on whi
h we observe the fun
tion

g gets, but the domain of the res
aled fun
tion g remains to be the interval (0, 1].
This means that more and more information on the fun
tion g is available as T tends

to in�nity. Still, Dahlhaus [6℄ indi
ates to exer
ise 
aution when interpreting the

asymptoti
s. The big di�eren
e to stationary time series is that the approa
h using

9



2 Lo
ally stationary pro
esses

res
aling is purely an abstra
tion for judging statisti
al inferen
e. As a 
onsequen
e

it makes for example no sense to ask for a real data example that ful�lls the res
aling

property introdu
ed in Equation (2.1).

2.1.2 De�nition of lo
ally stationary pro
esses

Dahlhaus [8℄ introdu
ed the time-varying spe
tral representation of lo
ally station-

ary pro
esses in analogy to stationary pro
esses. Easier to work with, however, is

the equivalent time varying MA(∞)-representation of lo
ally stationary time series

as given by Dahlhaus [10℄, Eq. (11).

Following Sergides [49℄, all forth
oming 
al
ulations are based on the de�nition, that

a triangular array {XT}T∈N = {Xt,T , t = 1, . . . , T}T∈N is 
alled lo
ally stationary, if

the pro
esses have a tvMA(∞)-representation with time varying 
oe�
ients at,T (j)
(ful�lling 
ertain smoothness 
onditions stated below):

Xt,T =

∞∑

j=−∞
at,T (j)εt−j,

with {εt}t∈Z being independent, identi
ally distributed random variables with zero

mean and varian
e 1. Hen
e, we do only 
onsider 
entered time series and fo
us on


hanges in the auto
ovarian
e stru
ture. The exa
t de�nition used is

De�nition 2.1 (tvMA(∞) representation of lo
ally stationary pro
esses).

→ Dahlhaus [10℄, Ass. 2.1 , Dahlhaus and Polonik [15℄, Ass. 2.1, Sergides [49℄,

Ass. 1

A sequen
e of sto
hasti
 pro
esses Xt,T , t = 1, . . . , T, is 
alled lo
ally stationary if

there exists a representation

Xt,T =
∞∑

j=−∞
at,T (j)εt−j, (2.2)

where the following holds

(a) εt
iid∼ (0, 1) with �nite fourth moment Eε4t <∞,

(b) supt |at,T (j)| ≤ K
l(j)

, and

let {l(j)} be a positive sequen
e with l(j) :=

{
1, |j| ≤ 1

|j|log1+κ|j|, |j| > 1

for some κ > 0.

(
) There exist fun
tions a(·, j) : (0, 1] → R, j ∈ Z, with

(i) supt
∣∣at,T (j)− a( t

T
, j)
∣∣ ≤ K

Tl(j)
.

10



2.1 The 
on
ept of lo
al stationarity

(ii) |a(u, j)− a(v, j)| ≤ K|u−v|
l(j)

(iii) supu

∣∣∣∂
ia(u,j)
∂ui

∣∣∣ ≤ K
l(j)

, i = 0, 1, 2, 3.

Remark 2.1

Throughout this thesis we use K and C as generi
 positive 
onstants not depending

on any other quantities if not stated otherwise.

Remark 2.2

.

1. The rather 
ompli
ated 
onstru
tion using the 
oe�
ients at,T (j) and a(u, j)
is justi�ed in Dahlhaus [10℄, p.454 and Dahlhaus and Polonik [14℄, Remark

2.12 (i). The fun
tion a(·, j) is needed for res
aling and to impose ne
essary

smoothness 
onditions in the time dire
tion, while the additional use of at,T (j)
makes the 
lass ri
h enough to 
over interesting 
ases, su
h as tvAR models.

2. Despite the fa
t that De�nition 2.1 appears to admit only homos
edasti
 inno-

vations, Dahlhaus and Polonik [14℄, Remark 2.12 (ii) state that a time varying

s
aling fa
tor of the innovations may be in
luded in the 
oe�
ients at,T (j).

Remark 2.3

For Lemma 5.1 we use a slightly di�erent assumption to De�nition 2.1(b): Let {l(j)}
be a positive sequen
e with

∞∑

k=−∞

∑

j>k

1

l(j)
<∞.

2.1.3 Stationary approximation

Taking up the wording of Sergides [49℄ that a lo
ally stationary pro
ess is a sto
hasti


pro
ess whose se
ond order stru
ture varies slowly over time, it feels intuitive to


onsider this pro
ess stationary within a lo
al neighbourhood of some point in time.

We are now going to formally 
larify what is meant by '
hanging slowly'.

Based on Sergides [49℄, Dahlhaus and Subba Rao [16℄ and Subba Rao [50℄ we de�ne,

for some u ∈ (0, 1), the stationary pro
ess X̃t(u) by

X̃t(u) :=

∞∑

j=−∞
a(u, j)εt−j, (2.3)

where a(·, j) are the fun
tions used in the de�nition of a lo
ally stationary pro
ess

and the errors are those of the lo
ally stationary pro
ess

Xt,T =
∞∑

j=−∞
αt,T (j)εt−j .

11
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ally stationary pro
esses

Now, 
omparing these two pro
esses yields (
f. Sergides [49℄, Equation (1.1.19))

∣∣Xt,T − X̃t(u)| ≤ K

(∣∣∣∣
t

T
− u

∣∣∣∣+
1

T

) ∞∑

j=−∞

|εt−j |
l(j)

,

whi
h implies

Xt,T = X̃t(u) +OP

(∣∣∣∣
t

T
− u

∣∣∣∣+
1

T

)
. (2.4)

X̃t(u) is a stationary approximation to Xt,T in some lo
al neighbourhood of u (Note:

u is the time parameter in res
aled time). That is, if

t
T
is 
lose to u � meaning we

are only looking at Xt,T in some lo
al neighbourhood of u � Xt,T and X̃t(u) are very

lose, and Xt,T is 'basi
ally' stationary.

As it 
an be seen above, the degree of approximation depends on the res
aling fa
tor

T and the deviation

∣∣ t
T
− u
∣∣
(
f. Dahlhaus and Subba Rao [16℄, p.4).

To study the behaviour of {Xt,T}, we will follow Sergides [49℄ and use the pro
ess

Zt,T (u) := Xt,T − X̃t(u), whi
h then has the tvMA(∞)-representation

Zt,T (u) =
∞∑

j=−∞
(at,T (j)− a(u, j)) εt−j, (2.5)

with εt, at,T (j) and a(·, j) from De�nition 2.1.

2.1.4 Time varying spe
tral density and 
ovarian
e

In order to work theoreti
ally with the 
on
ept of lo
ally stationary time series,

it needs to be 
lari�ed what is meant by the spe
tral density or the 
ovarian
e

of a lo
ally stationary pro
ess and how these fun
tions relate to their stationary


ounterparts.

First, the 
on
epts time varying spe
tral density and time varying 
ovarian
e are

introdu
ed.

De�nition 2.2 (time varying spe
tral density and 
ovarian
e).

→ Dahlhaus and Polonik [15℄

Let Xt,T be a lo
ally stationary pro
ess.

(a) The time varying spe
tral density of a lo
ally stationary pro
ess is given by

f(u, λ) =
1

2π
|A(u, λ)|2, (2.6)

with A(u, λ) :=
∑∞

j=−∞ a(u, j)e−iλj.

12
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(b) The Fourier transform of the time-varying spe
tral density (at res
aled time

u)

c(u, h) :=

∫ π

−π
f(u, λ)eiλhdλ =

∞∑

j=−∞
a(u, h+ j)a(u, j) (2.7)

denotes the time varying 
ovarian
e of lag h, h ∈ Z (at res
aled time u).

As Sergides [49℄ notes, both the time varying spe
tral density and the time varying


ovarian
e are the 
orresponding fun
tions of the stationary approximation X̃t(u) of
Xt,T at time u. However, as X̃t(u) does not equal but only serves as an approximation

of Xt,T at any time other than u, the a
tual auto
ovarian
e fun
tion of Xt,T will

only for

t
T

= u equal the 
orresponding time varying 
ovarian
e. Referring to

Dahlhaus [10℄, Equation (17), we have the following 
oheren
e between the time

varying 
ovarian
e fun
tion and the 
ovarian
e fun
tion of the lo
ally stationary

pro
ess.

Cov(X⌊uT ⌋,T , X⌊uT ⌋+h,T ) = c(u, h) +O

(
1

T

)
(2.8)

uniformly in u and h.

Remark 2.4

In the following, the time-varying 
ovarian
es c(u, h) are assumed to be absolutely

summable for every u ∈ [0, 1].

Without asymptoti
s, one 
an only identify a �nite number of 
ovarian
es within any

approximative stationary environment of Xt,T and thus, as Dahlhaus [6℄ mentions,

the spe
tral density is not uniquely determined. Just like in the 
ase of stationary

pro
esses this problem 
an be solved by employing the asymptoti
s introdu
ed by

Dahlhaus [8℄ as in ea
h approximately stationary environment more and more data

be
omes available. Due to that asymptoti
 approa
h Dahlhaus [7℄ is now able to

obtain a uniqueness property of the time varying spe
tral density. To be more

spe
i�
 on this uniqueness we need to 
onsider the Wigner-Ville spe
trum, whi
h

has already been introdu
ed in the previous se
tion:

We de�ne, for �xed T , λ ∈ [−π, π] and u ∈ [0, 1] the Wigner-Ville spe
trum of a

lo
ally stationary pro
ess {Xt,T} as

fT (u, λ) :=
1

2π

∞∑

s=−∞
Cov(X⌊uT− s

2
⌋,T , X⌊uT+ s

2
⌋,T )e

−iλs. (2.9)

The Wigner-Ville spe
trum is a real-valued fun
tion of time and frequen
y. This is,

as dis
ussed before, one possibility of de�ning a time dependent spe
trum.

Dahlhaus [7℄ proved that the time varying spe
tral density f(u, λ) is uniquely de-

termined and equals the limit of the Wigner-Ville spe
trum.
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ally stationary pro
esses

Theorem 2.1 (L2
-
onvergen
e of fT (u, λ) to f(u, λ)).

→ Dahlhaus [7℄, Theorem 2.2

Let Xt,T be a lo
ally stationary pro
ess and A(u, λ) uniformly Lips
hitz 
ontinuous

in both 
omponents with index α > 1
2
.

We then have for all u ∈ (0, 1):

∫ π

−π
|fT (u, λ)− f(u, λ)|2dλ = o(1).

Remark 2.5

Continuous di�erentiability of A with respe
t to u and λ is su�
ient for A(u, λ)
being uniformly Lips
hitz-
ontinuous (as in Haug [24℄, De�nition 2.7) with α > 1

2
.

Despite the fa
t that the spe
tral representation of a non-stationary pro
ess is not

unique (see Se
tion 1), the above theorem points out that if there exists a tvMA(∞)-
representation as in De�nition (2.1) of a lo
ally stationary pro
ess with a(u, λ) (and
therefore A(u, λ)) su�
iently smooth, the time varying spe
tral density f(u, λ) is
asymptoti
ally unique. It is determined by the whole triangular array and equals

the limit of the Wigner-Ville spe
trum, 
f. Dahlhaus [7℄, p.143.

2.1.5 Dependen
e stru
ture of a lo
ally stationary pro
ess

Let Xt,T be a lo
ally stationary pro
ess as in De�nition 2.1. For stationary time

series with absolutely summable auto
ovarian
e fun
tion γ we have |γ(h)| → 0
as |h| → ∞. So it does seem only natural that lo
ally stationary pro
esses, as

generalizations of stationary pro
esses, do also have a de
aying 
ovarian
e stru
ture

as |h| → ∞. From Dahlhaus [15℄, proof of Proposition 5.4, we obtain

cT

(
t

T
, h

)
:= Cov(Xt,T , Xt+h,T ) =

∞∑

j=−∞
at,T (j)at+h,T (j + h). (2.10)

They then prove (Equation (51)) that the above relation yields

sup
t

∣∣∣∣cT
(
t

T
, h

)∣∣∣∣ ≤
∞∑

j=−∞

K

l(j)l(j + h)
≤ K

l(h)
,

with supt |at,T (j)| ≤ K
l(j)

(from De�nition 2.1 (b)). The last inequality results from

the fa
t that

sup
j∈Z

1

l(j + h)
=

1

l(h)
.

14



2.1 The 
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Considering the de�nition of l in De�nition 2.1 (b), we 
an see that

K
l(h)


onverges

to zero for |h| → ∞. Thus, the following Lemma results:

Lemma 2.1.

→ Dahlhaus [15℄

The time varying 
ovarian
e cT
(
t
T
, h
)
of a lo
ally stationary pro
ess {Xt,T} at time

t = 1, . . . , T 
onverges to zero for lags |h| → ∞ :

cT

(
t

T
, h

)
= o(1).

The notation cT is borrowed from Neumann and von Sa
hs [40℄.
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CHAPTER 3

Adapting the Fourier transformation

A lo
ally stationary pro
ess {Xt,T} 
an, as the name suggests, be lo
ally (i.e. in

a small environment U) approximated by a stationary pro
ess, see Equation (2.4)

for a formal des
ription. In order to preserve the 
hanging nature of a lo
ally

stationary time series for the frequen
y domain it may therefore seem only natural

to apply the Fourier transformation to ea
h environment. The lo
al moving Fourier

transformation is introdu
ed as an intuitive and numeri
ally 
heap pro
edure to

meet these needs.

3.1 Prerequisites

Con
erning the sample size T and the segments' length 2m + 1, we require the

following 
onditions to hold:

• m→ ∞ (for T → ∞).

• m
3
2

T
→ 0 (for T → ∞) i.e. the sample size in
reases 
onsiderably faster than

the window size.

For the sake of simpli
ity, we introdu
e the following 
on
epts for j ∈ Z:

mod(j) :=





m, if m is a fa
tor of j ∈ Z,

j mod (m) , j > 0 ∧ m | j,
m− [(−j) mod (m)], j < 0 ∧ m ∤ j.

(3.1)

div(j) :=

⌈
j

m

⌉
. (3.2)

Then, j = mod(j) + (div(j)− 1)m. (3.3)
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3 Adapting the Fourier transformation

3.2 The lo
al moving Fourier transform

In the following, no distin
tion is made between the a
tual pro
ess and the realiza-

tion of the pro
ess. We heuristi
ally des
ribe how the lo
al moving Fourier transform

is developed. The formal de�nition 
an be found in De�nition 3.2.

In order to simplify notation, we will from here on assume to not only have {Xt,T}t∈[1,T ]
� our time series of length T we wish to transform � available, but also addition-

ally a su�
ient (depending on the window size 2m + 1) number of pre
eding and

su

eeding observations, i.e.

X−m+1,T , . . . , X1,T , . . . , XT,T , . . . , XT+m,T .

The reason is, as already stated above, the advantage of keeping notation simple

enough to be able to fully fo
us on the new way of transforming {Xt,T}t∈[1,T ].

As a lo
ally stationary pro
ess 
an lo
ally (in an environment getting larger at some

su�
iently slower pa
e than T ) be 
onsidered stationary, we 
an look at

{Xt,T}t∈[t0−C·m,t0+C·m], (3.4)

C > 0, t0 ∈ [1, T ], as an approximately stationary time series. This espe
ially holds

true for the sequen
e

Xt0−m,T , . . . , Xt0+m,T . (3.5)

Without taking into a

ount that there are more observations than those 2m+1we
now apply the usual Fourier transform to the stationary sequen
e (3.5).

F(Xt0−m,T , . . . , Xt0+m,T ;λk) :=
1√

2m+ 1

2m∑

l=0

Xl+t0−m,T e
−ilλk

=
1√

2m+ 1

t0+m∑

l=t0−m
Xl,Te

−ilλkei(t0−m)λk , (3.6)

with 1 ≤ k ≤ 2m, and λk :=
2πk

2m+1
denoting the Fourier frequen
ies.

We now 
on
entrate on the shifted stret
h

Xt0−m+1,T , . . . , Xt0+m+1,T (3.7)

and 
al
ulate F(Xt0−m+1,T , . . . , Xt0+m+1,T ;λk), k = 1, . . . , m.

The motive for shifting and doing another Fourier transform of a slightly di�erent

stret
h be
omes more obvious when noti
ing that the observations (3.7) also fall

within (3.4). Heuristi
s then indi
ate that the Fourier 
oe�
ients of (3.5) and (3.7)

should also possess similar statisti
al properties. A

ordingly, Fourier 
oe�
ients

stemming from adja
ent stret
hes may be inter
hanged without major 
hanges to

18



3.2 The lo
al moving Fourier transform

statisti
al inferen
e.

We use these heuristi
s to 
ome up with the following 
onstru
tion: Instead of


al
ulating all 2m+ 1 Fourier 
oe�
ients for every single stret
h, we 
al
ulate just

one Fourier 
oe�
ient per stret
h and then move on to the next stret
h. That is,

the 
entre of the stret
h 
onsidered is no longer a �xed t0 as in the transformation

(3.6), but depends on the index k of the Fourier frequen
y λk 
onsidered:

F(Xk−m,T , . . . , Xk+m,T ;λk) =
1√

2m+ 1

k+m∑

l=k−m
Xl,T e

−ilλkei(k−m)λk , 1 ≤ k ≤ m,

(3.8)

with λk :=
2πk

2m+1
denoting Fourier frequen
ies.

Exemplarily, we 
al
ulate, say F(X1−m,T , . . . , X1+m,T ;λ1) for the �rst stret
h and

then move on to the adja
ent stret
h and 
al
ulate F(X2−m,T , . . . , X2+m,T ;λ2). Con-
sequently, as the Fourier 
oe�
ients of adja
ent stret
hes are inter
hangeable, the

Fourier 
oe�
ients F(X1−m,T , . . . , X1+m,T ;λ1), F(X2−m,T , . . . , X2+m,T ;λ2) are, from
a statisti
al point of view, as good as F(X1−m,T , . . . , X1+m,T ;λ1),
F(X1−m,T , . . . , X1+m,T ;λ2). We then move on to the next stret
h, from whi
h we


al
ulate F(X3−m, . . . , X3+m;λ3). Again, F(X2−m,T , . . . , X2+m,T ;λ2),
F(X3−m,T , . . . , X3+m,T ;λ3) should, 
on
erning statisti
al properties, be as good as

F(X2−m,T , . . . , X2+m,T ;λ2), F(X2−m,T , . . . , X2+m,T ;λ3).
So intuitively, instead of

F(X1−m,T , . . . , X1+m,T ;λ1),F(X2−m,T , . . . , X2+m,T ;λ2),F(X3−m,T , . . . , X3+m,T ;λ3),

we 
an also use

F(Xj−m,T , . . . , Xj+m,T ;λ1),F(Xj−m,T , . . . , Xj+m,T ;λ2),F(Xj−m,T , . . . , Xj+m,T ;λ3),

j = 1, 2, 3, basi
ally without any 
hange in statisti
al 
hara
teristi
s. Shifting the

time window of length 2m + 1, m − 1 times (ea
h time generating an additional

Fourier 
oe�
ient stemming from the a
tual stret
h) we �nally obtain m Fourier


oe�
ients

F(X1−m,T , . . . , X1+m,T ;λ1),F(X2−m,T , . . . , X2+m,T ;λ2), . . . ,F(X0,T , . . . , X2m,T ;λm)

(3.9)

This is still not a transformation of a time series of length T , but 
aptures the basi

idea!

Note that the observations used for those Fourier 
oe�
ients are X1−m,T , . . . , X2m,T ,

withX0,T , . . . , X1+m being part of ea
h of them−1 Fourier transforms. The set (3.9)

therefore 
onsists of Fourier 
oe�
ients of basi
ally X0,T , . . . , Xm+1, as these are the

most in�uential observations on the 
oe�
ients. When intending to refer to the set

(3.9) as lo
al moving Fourier 
oe�
ients at some time k, it is thus apparent that we
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3 Adapting the Fourier transformation

should speak of (3.9) as the lo
al moving Fourier 
oe�
ients at time k = ⌊m
2
⌋+ 1.

To ease the understanding of the following de�nition, we will 
onsider the next

two points in time and look at the lo
al moving Fourier 
oe�
ients at the time

k =
⌊
m
2

⌋
+ 2 and k =

⌊
m
2

⌋
+ 3:

F(X1,T , . . . , X2m+1,T ;λ1),F(X2−m,T , . . . , X2+m,T ;λ2), . . . , F(X0,T , . . . , X2m,T ;λm)

F(X1,T , . . . , X2m+1,T ;λ1), F(X2,T , . . . , X2m+2,T ;λ2), . . . , F(X0,T , . . . , X2m,T ;λm).

We 
an see that by moving on in time, the 
oe�
ients, starting at frequen
y λ1 get

repla
ed by more re
ent 
oe�
ients at the same frequen
y. This s
heme 
ontinues

until we get to time k =
⌊
m
2

⌋
+m+ 1:

F(X1,T , . . . , X2m+1,T ;λ1), F(X2,T , . . . , X2m+2,T ;λ2), . . . , F(Xm,T , . . . , X3m,T ;λm),

and then starts anew, substituting F(X1,T , . . . , X2m+1,T ;λ1) by the more re
ent 
o-

e�
ient F(Xm+1,T , . . . , X3m+1,T ;λ1).
The formal de�nition of the lo
al moving Fourier 
oe�
ients at time k, MFk(λj), is
as follows:

De�nition 3.1 (Lo
al moving Fourier 
oe�
ients).

The lo
al moving Fourier 
oe�
ients at time k for frequen
ies λl, l = 1, . . . , m, are

given by

MFk(λl) :=
1√

2m+ 1

2m∑

t=0

X
l+

(

div(k−⌊m2 ⌋)−1{l≥mod(k−⌊m2 ⌋)}
)

m−m+t,T
e−itλl .

Furthermore,

MFk(λ2m+1−j) :=MFk(λj), j = 0, . . . , m,

and MFk(λ0) := 0. (3.10)

The operators mod and div are de�ned a

ording to (3.1) and (3.2).

The reason for de�ning MFk(λ2m+1−j) := MFk(λj), j = 0, . . . , m, and MFk(λ0) := 0
is given in Remark 3.4.

Remark 3.1

The lo
al moving Fourier 
oe�
ients at time k+
⌊
m
2

⌋
and frequen
y λl, l = 1, . . . , m

are depending on

X
l+0−m+[div(k)−1{l≥mod(k)}]m, Xl+1−m+[div(k)−1{l≥mod(k)}]m, . . . , Xl+m+[div(k)−1{l≥mod(k)}]m.

Removing the indi
ator fun
tion and using k = mod(k) + [div(k)− 1]m, this is for

l < mod(k)

Xl+k−mod(k), Xl+k−mod(k)+1, . . . , Xl+k−mod(k)+2m
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3.2 The lo
al moving Fourier transform

and for l ≥ mod(k)

Xl+k−mod(k)−m, Xl+k−mod(k)−m+1, . . . , Xk−mod(k)+m.

That is, the set

{MF
k+⌊m2 ⌋(λl)}l=1,...,m

in
orporates the observations Xk−m, . . . , Xk+2m−1. Of those 3m observations,

Xk−1, . . . , Xk+m

o

ur in all of the lo
al moving Fourier 
oe�
ients. In other words, the set of lo
al

moving Fourier 
oe�
ients basi
ally des
ribes the time series in an environment of

time k +
⌊
m
2

⌋
.

We now extend our 
onstru
tion in order to �nally be able to fully transform

{Xt,T}t∈[1,T ]. This is done by starting with X1−m,T , . . . , X1+m,T and shifting the

time window of length 2m + 1 not just m − 1 times, but T − 1 times (ea
h time

generating an additional Fourier 
oe�
ient stemming from the a
tual stret
h). By

doing so, we �nally obtain T Fourier 
oe�
ients. Some attention, however, has to be

paid to the frequen
ies, as we only 
al
ulate the 
oe�
ients for frequen
ies λmod(k),
whi
h guarantees the index to remain between 1 and m (see also Remark 3.4).

De�nition 3.2 (Moving Fourier transform).

Let Xt,T be a lo
ally stationary pro
ess as in De�nition 2.1. The moving Fourier


oe�
ients ck (1 ≤ k ≤ T ) of Xt,T are then de�ned by

ck := Fdiv(k)−1
(
λmod(k)

)
:= F(Xk−m,T , . . . , Xk+m,T ;λmod(k))

=
1√

2m+ 1

k+m∑

l=k−m
Xl,Te

−ilλmod(k)ei(k−m)λmod(k) ,

(3.11)

with λmod(k) :=
2πmod(k)
2m+1

denoting the Fourier frequen
ies and the operator mod a
-


ording to (3.1).

Following the algorithm (3.11), hen
e, yields the moving Fourier 
oe�
ients

c1, . . . , cT ,

whi
h 
ode the time series X1,T , . . . , XT,T . Due to the 
ontinuous shifting, lo
al

stru
tural information is preserved.
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3 Adapting the Fourier transformation

Remark 3.2

We will speak of moving Fourier 
oe�
ients when referring to c1, . . . , cT , while we

use the term lo
al moving Fourier 
oe�
ients at time k to indi
ate that we are lo-


ally, at one point in time, looking at m of the moving Fourier 
oe�
ients and

rearranging them a

ording to their frequen
ies. Hen
e, lo
al moving Fourier 
o-

e�
ients refers to the set MFk(λ1), . . . ,MFk(λm) of m rearranged moving Fourier


oe�
ients at some point in time k. They relate to ea
h other by

MFk(λl) = c
l+

[

div(k−⌊m2 ⌋)−1{l≥mod(k−⌊m2 ⌋)}
]

m
(3.12)

Remark 3.3

The additional notation Fdiv(k)−1
(
λmod(k)

)
instead of ck in De�nition 3.2 is intro-

du
ed to ease the understanding of the 
on
ept of the moving Fourier transform.

When 
onstru
ting lo
al moving Fourier 
oe�
ients we 
ombine moving Fourier 
o-

e�
ients lo
ated around the point in time 
onsidered and do some rearranging. We

might therefore en
ounter a set of 
oe�
ients whi
h 
onsists of the moving Fourier


oe�
ients, say, cm+1, . . . , cm+17, c18, . . . , cm. Due to the moving, some 
oe�
ients

are 'older' than others. Sorting with respe
t to the 
urrentness of the 
oe�
ients

yields c18, . . . , cm+17. The notation with the 
alligraphi
 F is 
hosen to prominently

display via the supers
ript where the dis
ontinuity 
on
erning the up-to-dateness of

the 
oe�
ients is. In the example, we would write

F0 (λ1) ,F0 (λ2) , . . . ,F0 (λ17) ,F−1 (λ18) , . . . ,F−1 (λm) .

The notation is used in Theorem 5.4.

Remark 3.4

We have restri
ted the range of k to {1, . . . , m} . The reason we imply this restri
tion

is as follows:

The spe
tral density of a stationary pro
ess (of length 2m+1) is uniquely spe
i�ed by

values within the interval [0, π]. This means that in order to extra
t all information

on the spe
tral density, only the Fourier 
oe�
ients 
orresponding to the frequen
ies

λ0, . . . , λm are needed. The remaining Fourier 
oe�
ients (in the stationary 
ase

of a time series of length 2m + 1) follow using symmetry arguments and the 
on-

jugated 
omplexes of the already 
al
ulated 
oe�
ients. In detail: Suppose we are

given a time series of length 2m+1 and have 
al
ulated F(X1−m,T , . . . , X1+m,T ;λ1),
F(X2−m,T , . . . , X2+m,T ;λ2), . . . , F(X0,T , . . . , X2m,T ;λm) We may now write

F(Xj−m,T , . . . , Xj+m,T ;λ2m+1−j) = F(Xj−m,T , . . . , Xj+m,T ;λj), for j = 0, . . . , m.

F(X−m,T , . . . , Xm,T ;λ0) 
arries information on the mean. As we start out with a

time series with mean zero, we may set these to zero in order for the ba
k trans-

formed time series to be 
entred as well. This is the reason why we only gather

Fourier 
oe�
ients for frequen
ies λ1, . . . , λm from the given time series {Xt,T}.
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3.3 Moving inverse Fourier transform

Remark 3.5

The assumption that we have data

X−m+1,T , . . . , XT+m,T

available, i.e. a time series of length T+2m instead of just a time series of length T ,

an easily be abandoned by slightly 
hanging the s
heme of transformation, employing

the ordinary Fourier transform (
f. (3.6)) for the �rst and last stret
h and retrieving

not one, but m Fourier 
oe�
ients.

However, the question is not only how to transform the data to the frequen
y do-

main, but how to obtain (bootstrapped) time series data from the moving Fourier


oe�
ients. This is where the spe
ial de�nition of the lo
al moving Fourier 
oe�-


ients are of great importan
e. The pro
edure will be explained in Se
tion 3.3.

Of 
ourse, the de�nition of lo
al moving Fourier 
oe�
ients implies that there is

also a moving periodogram.

De�nition 3.3 (Lo
al moving periodogram).

Consider a lo
ally stationary pro
ess Xt,T a

ording to De�nition 2.1 and its lo-


al moving Fourier 
oe�
ients at time k as in De�nition 3.1. The lo
al moving

periodogram MIk : [0, 2π] → R at time k is then de�ned by

MIk (λj) := |MFk(λj)|2 , (3.13)

with λj :=
2π j
N
, j = 1, . . . , m, denoting the Fourier frequen
ies and k = 1, . . . , T .

The lo
al moving periodogram 
an be periodi
ally extended.

Remark 3.6

The intention of introdu
ing the new term moving periodogram is to 
reate a sequen
e

of lo
al periodograms whi
h 'move' through the time series. At ea
h point in time

k, however, the lo
al moving periodogram equals the lo
al periodogram I2m+1,X

(
k
T
, ·
)

used by Sergides [49℄. The lo
al periodogram is de�ned by

I2m+1,X (u, λ) :=
1

2π(2m+ 1)

∣∣∣∣∣

2m∑

l=0

Xl−m+⌊uT ⌋e
−iλl

∣∣∣∣∣

2

(3.14)

and we have 2πI2m+1,X

(
u, λmod(⌊uT ⌋)

)
= |c⌊uT ⌋|2.

3.3 Moving inverse Fourier transform

3.3.1 Prin
iple of 
onstru
tion

In the following se
tion, we will 
onstru
t a transformation from the frequen
y

domain to the time domain.
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3 Adapting the Fourier transformation

We start witha sequen
e of length T +2
⌊
m
2

⌋
of arbitrary 
omplex random variables

in the frequen
y domain:

c1−⌊m2 ⌋, . . . , c1, . . . , cT+⌊m2 ⌋.

Now, for ea
h point in time k, we 
an sele
t c
k−⌊m2 ⌋, . . . , ck+⌈m2 ⌉−1 and rearrange

them in the manner of Remark 3.2, Equation 3.12. Having done so, we 
all the

elements of the set

MF
(c)
k (λ1), . . . ,MF

(c)
k (λm).

(We 
hose the notation like this, be
ause the 
onstru
tion mirrors the 
onstru
tion

of the lo
al moving Fourier 
oe�
ients MF from the moving Fourier 
oe�
ients c.)
Analogously to De�nition 3.1, the de�nition of the lo
al moving Fourier 
oe�
ients,

we use the 
omplex 
onjugated values for the missing frequen
ies:

0,MF
(c)
k (λ1), . . . ,MF

(c)
k (λm),MF

(c)
k (λm),MF

(c)
k (λm−1), . . . ,MF

(c)
k (λ1).

We now apply the ordinary inverse Fourier transformation of length 2m+1 at time

k to this data.

For all other points in time we pro
eed analogously.

Summing up, the idea underlying this transformation in
ludes shifting a window

of length m along the given sequen
e c1−⌊m2 ⌋, . . . , c1, . . . , cT+⌊m2 ⌋, rearranging the

elements resulting from ea
h shift to 
reate the MF (c)
's and applying the ordinary

inverse Fourier transform of length 2m+ 1 at the 
orresponding time to ea
h of the

sets, whi
h results in T elements in the time domain.

The formal de�nition of the new transformation is as follows:

De�nition 3.4 (Moving inverse Fourier transform).

Let c1−⌊m2 ⌋, . . . , cT+⌊m2 ⌋ be elements in the frequen
y domain. The transformation

yielding a sample in the time domain is 
alled moving inverse Fourier transform and

is de�ned by

Xback
t,T := F−1

(
MF

(c)
t (λ1),MF

(c)
t (λ2), . . . ,MF

(c)
t (λm); t

)

:= 0 · eitλ0 + 1√
2m+ 1

m∑

l=1

c
l+

(

div(t−⌊m2 ⌋)−1{l≥mod(t−⌊m2 ⌋)}
)

m
eiλlt (3.15)

+
1√

2m+ 1

m∑

l=1

c
l+

(

div(t−⌊m2 ⌋)−1{l≥mod(t−⌊m2 ⌋)}
)

m
e−iλlt (3.16)

with λk :=
2π k
N
, k = 0, . . . , m, denoting the Fourier frequen
ies and t = 1, . . . , T .
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k 0,MF
(c)
k (λ1),MF

(c)
k (λ2), . . . ,MF

(c)
k (λm) MF

(c)
k (λm+1), . . . ,MF

(c)
k (λ2m) Xback

k,T

1 0, c1, . . . , c⌈m2 ⌉, c1−⌊m2 ⌋, c2−⌊m2 ⌋, c3−⌊m2 ⌋ . . . , c0, c0, . . . , c1−⌊m2 ⌋, c⌈m2 ⌉, . . . , c1 ⇒ Xback
1,T

2 0, c1, . . . , c⌈m2 ⌉, c⌈m2 ⌉+1, c2−⌊m2 ⌋, c3−⌊m2 ⌋ . . . , c0, c0, . . . , c2−⌊m2 ⌋, c⌈m2 ⌉+1, . . . , c1 ⇒ Xback
2,T

3 0, c1, . . . , c⌈m2 ⌉, c⌈m2 ⌉+1, c⌈m2 ⌉+2, c3−⌊m2 ⌋, . . . , c0, c0, . . . , c3−⌊m2 ⌋, c⌈m2 ⌉+2, . . . , c1 ⇒ Xback
3,T

.

.

.

.

.

.

.

.

.

.

.

.

1 +
⌊
m
2

⌋
0, c1, . . . , cm, cm, . . . , c3, c2, c1 ⇒ Xback

1+⌊m2 ⌋,T
2 +

⌊
m
2

⌋
0, cm+1, c2, . . . , cm, cm, . . . , c3, c2, cm+1 ⇒ Xback

2+⌊m2 ⌋,T
3 +

⌊
m
2

⌋
0, cm+1, cm+2, c3, . . . , cm, cm, . . . , c3, cm+2, cm+1 ⇒ Xback

3+⌊m2 ⌋,T
.

.

.

.

.

.

.

.

.

.

.

.

m+ 1 +
⌊
m
2

⌋
0, cm+1, . . . , c2m, c2m, . . . , cm+1 ⇒ Xback

m+1+⌊m2 ⌋,T
m+ 2 +

⌊
m
2

⌋
0, c2m+1, cm+2, . . . , c2m, c2m, . . . , cm+2, c2m+1 ⇒ Xback

m+2+⌊m2 ⌋,T
.

.

.

.

.

.

.

.

.

.

.

.

T −
⌈
m
2

⌉
+ 1 0, cT−m+1, cT−m+2, cT−m+3, . . . , cT , cT , . . . , cT−m+3, cT−m+2, cT−m+1 ⇒ Xback

T−⌈m2 ⌉+1,T

T −
⌈
m
2

⌉
+ 2 0, cT+1, cT−m+2, cT−m+3, . . . , cT , cT , . . . , cT−m+3, cT−m+2, cT+1 ⇒ Xback

T−⌈m2 ⌉+2,T

.

.

.

.

.

.

.

.

.

.

.

.

T 0, cT+1. . . , cT+⌊m2 ⌋, cT−⌈m
2
⌉, . . . , cT , cT , . . . , cT−⌈m

2
⌉, cT+⌊m2 ⌋, . . . , cT+1 ⇒ Xback

T,T

Figure 3.1: Illustrating the moving inverse Fourier transform (De�nition 3.4)
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3 Adapting the Fourier transformation

3.3.2 Inverse - quote unquote

The de�nition of the moving inverse Fourier transform enables us to obtain samples

ba
k in the time domain. We now have the possibility, having applied the moving

Fourier transformation to time domain data, to go ba
k to the time domain. The

resulting observations will not be the original Xt,T one starts out with, due to the

shifting performed, but some time series with similar 
hara
teristi
s.

We are interested in how many (and whi
h) of the original observations of the time

series {Xt,T} are used to 
onstru
t one observation Xback
t,T ?

De�nition 3.4 then yields, using the 
oe�
ients ck obtained as in De�nition 3.2 and

the 
oe�
ients MFk as in De�nition 3.1:

Xback
t,T = F−1 (MFt(λ1),MFt(λ2), . . . ,MFt(λm); t) .

Xback
t,T is, thus, 
onstru
ted using the lo
al moving Fourier 
oe�
ients at time t.

A

ording to Remark 3.1, the set {MFt(λl)}l=1,...,m in
orporates the observations

X
t−⌊m2 ⌋−m, . . . , Xt+⌈m2 ⌉+m−1.

Therefore, in order to 
onstru
t Xback
t,T , we need a stret
h of observations of length

3m, namely the stret
h X
t−⌊m2 ⌋−m, . . . , Xt+⌈m2 ⌉+m−1.

Of those 3m observations,

X
t−⌊m2 ⌋−1, . . . , Xt+⌈m2 ⌉

o

ur in all of the lo
al moving Fourier 
oe�
ients. That is, those m+2 observations
have the main in�uen
e on Xback

t,T .

26



CHAPTER 4

Basi
 properties of the moving Fourier 
oe�
ients

The following se
tion is devoted to determining distributional 
hara
teristi
s of the

lo
al moving Fourier 
oe�
ients. As our De�nition 2.1 of lo
ally stationary pro-


esses assumes errors with mean zero, we may dire
tly state that the expe
ted value

of the moving Fourier transform equals zero.

All results also hold for λj , j = 1, . . . , 2m + 1, due to symmetry. The 
ase of

j = 1, . . . , m is 
onsidered w.l.o.g. for the sake of readability.

Lemma 4.1. Let Xt,T be a lo
ally stationary pro
ess as in De�nition 2.1. It holds

that

sup
u∈[0,1]

sup
l=1,...,m

E
(
MF⌊uT ⌋(λl)

)
= 0. (4.1)

A

ording to De�nition 3.1, with ζk,l := div
(
k −

⌊
m
2

⌋)
− 1{l≥mod(k−⌊m2 ⌋)},

MF ε
k (λl) :=

1√
2m+ 1

2m∑

t=0

εl+ζk,lm−m+te
−itλl

(4.2)

denotes the lo
al moving Fourier 
oe�
ient at time k of the innovations at frequen
y

λl. Analogously, we de�ne for the stationary approximation at time k

MF X̃
k (λl) :=

1√
2m+ 1

2m∑

t=0

X̃l+ζk,lm−m+t

(
k

T

)
e−itλl . (4.3)

For the asymptoti
 
onsiderations we will make use of the res
aling as introdu
ed by

Dahlhaus [8℄. However, not only the relationship between the lo
al moving Fourier
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oe�
ients but also between the moving periodograms is relevant for further proofs

throughout this work. If squared, the lo
al moving Fourier 
oe�
ient at time ⌊uT ⌋
and frequen
y λl of the innovations yields the value of the moving periodogram of

the innovations at that frequen
y: |MF ε
⌊uT ⌋(λl)|2 =MIε⌊uT ⌋,m(λl).

The following approa
h is taken:

In a �rst step, the lo
al moving Fourier transform of a stationary time series is 
on-

sidered and linked to the lo
al moving Fourier transform of the innovations. This

is done in Lemma 4.2. To prove this we extend the proof of Theorem 10.3.1 in

Bro
kwell and Davis [3℄. Lemma 4.3 then is a generalization to lo
ally stationary

time series.

In order to gain analogous results for the moving periodograms, Lemma 4.2 is used

as a basis to prove Theorem 4.2. The 
ulminating result is Theorem 4.3, whi
h

links the moving periodogram of a lo
ally stationary time series to the moving pe-

riodogram of the innovations.

In the beginning some te
hni
al requirements are proved.

4.1 Te
hni
al basi
s

Proposition 4.1

Let X̃t(u) denote the stationary approximation of Xt,T at time ⌊uT ⌋.
Let further l = 1, . . . , m. With the De�nitions given by (4.2) and (4.3),

(a)

sup
u∈[0,1]

sup
l=1,...,m

E|MF ε
⌊uT ⌋(λl)|2 = 1. (4.4)

(b)

sup
u∈[0,1]

sup
l=1,...,m

E|MF ε
⌊uT ⌋(λl)|4 <∞. (4.5)

(
)

sup
u∈[0,1]

sup
l=1,...,m

E|MF X̃
⌊uT ⌋(λl)|4 <∞, (4.6)

sup
u∈[0,1]

sup
l=1,...,m

E|MF⌊uT ⌋(λl)|4 <∞. (4.7)

Proof. Let ζ⌊uT ⌋,l = div
(
⌊uT ⌋ −

⌊
m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)}.
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(a) Be
ause Eεkεl = δk,l it holds

sup
u∈[0,1]

sup
l=1,...,m

E|MF ε
⌊uT ⌋(λl)|2

= sup
u∈[0,1]

sup
l=1,...,m

1

2m+ 1
E

(
2m∑

t1,t2=0

εl+ζ⌊uT⌋,lm−m+t1εl+ζ⌊uT⌋,lm−m+t2e
−i(t1−t2)λl

)

= sup
u∈[0,1]

sup
l=1,...,m

1

2m+ 1

2m∑

t1,t2=0

E(εl+ζ⌊uT⌋,lm−m+t1εl+ζ⌊uT⌋,lm−m+t2)e
−i(t1−t2)λl

= E(ε21) = 1.

(b) Sin
e

E(εl+ζ⌊uT⌋,lm−m+t1εl+ζ⌊uT⌋,lm−m+t2εl+ζ⌊uT⌋,lm−m+t3εl+ζ⌊uT⌋,lm−m+t4)

=





E(ε41), if t1 = t2 = t3 = t4,

1, if ∃i1, i2, j1, j2 : ti1 = ti2 6= tj1 = tj2,

0, else,

(4.8)

we get

sup
u∈[0,1]

sup
l=1,...,m

E|MF ε
⌊uT ⌋(λl)|4

= sup
u∈[0,1]

sup
l=1,...,m

1

(2m+ 1)2

∣∣∣∣
2m∑

t1,t2,t3,t4=0

E(εl+ζ⌊uT⌋,lm−m+t1εl+ζ⌊uT⌋,lm−m+t2

·εl+ζ⌊uT⌋,lm−m+t3εl+ζ⌊uT⌋,lm−m+t4)e
i(t2−t1+t3−t4)λl

∣∣∣∣

≤ sup
u∈[0,1]

sup
l=1,...,m

1

(2m+ 1)2

(
K

∣∣∣∣
2m∑

t1,t2=0

1

∣∣∣∣+K

∣∣∣∣
2m∑

t1=0

E(ε41)

∣∣∣∣

)
<∞.

(
) The same 
ase di�erentiation as in (4.8) needs to be done, however, note that

instead of just having to 
onsider ti being equal or not, we need to be 
on-


erned whether indi
es ti − ji are equal, as we fa
e
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sup
u∈[0,1]

sup
l=1,...,m

E|MF X̃
⌊uT ⌋(λl)|4

= sup
u∈[0,1]

sup
l=1,...,m

1

(2m+ 1)2

∣∣∣∣
2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞

a

(
l + ζ⌊uT ⌋,lm−m+ t1 − j1

T
, j1

)
a

(
l + ζ⌊uT ⌋,lm−m+ t2 − j2

T
, j2

)

a

(
l + ζ⌊uT ⌋,lm−m+ t3 − j3

T
, j3

)
a

(
l + ζ⌊uT ⌋,lm−m+ t4 − j4

T
, j4

)

E(εl+ζ⌊uT⌋,lm−m+t1−j1εl+ζ⌊uT⌋,lm−m+t2−j2

·εl+ζ⌊uT⌋,lm−m+t3−j3εl+ζ⌊uT⌋,lm−m+t4−j4)e
i(t2−t1+t3−t4)λl

∣∣∣∣.

Still, sin
e

sup
u∈[0,1]

|a (u, j1)| ≤
K

l(j1)
,

by De�nition 2.1, we get for the 
ase of all indi
es being equal, that is the 
ase

of t1− j1 = t2− j2 = t3− j3 = t4− j4, an upper bound of the above expression

of

E(ε41)
K

(2m+ 1)2

·
∣∣∣∣

2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞

∣∣∣∣
1

l(j1)

∣∣∣∣
∣∣∣∣

1

l(j2)

∣∣∣∣ ·
∣∣∣∣

1

l(j3)

∣∣∣∣ ·
∣∣∣∣

1

l(j4)

∣∣∣∣1{t1−j1=t2−j2=t3−j3=t4−j4}

≤ K(2m+ 1)E(ε41)

(2m+ 1)2
= O

(
1

m

)
.

The other possibility is any two indi
es being equal. There are three 
ases:

t1 − j1 = t2 − j2 6= t3 − j3 = t4 − j4,

t1 − j1 = t3 − j3 6= t2 − j2 = t4 − j4,

t1 − j1 = t4 − j4 6= t2 − j2 = t3 − j3.

Exemplarily, we will 
onsider t1 − j1 = t4 − j4 6= t2 − j2 = t3 − j3. Hen
e, the
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upper bound in that 
ase is

K

(2m+ 1)2

2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞

∣∣∣∣
1

l(j1)

∣∣∣∣ ·
∣∣∣∣

1

l(j2)

∣∣∣∣

·
∣∣∣∣

1

l(j3)

∣∣∣∣ ·
∣∣∣∣

1

l(j4)

∣∣∣∣1{t1−j1=t4−j4 6=t2−j2=t3−j3}

= O (1) .

Finally, we now get

sup
u∈[0,1]

sup
l=1,...,m

E|MF X̃
⌊uT ⌋(λl)|4 = O (1) .

For supu∈[0,1] supl=1,...,mE|MF⌊uT ⌋(λl)|4 we get the same result, as we merely

need to substitute all fun
tions a
(
t
T
, j
)
by at,T (j). For the new 
oe�
ients the

same bounds apply. See De�nition 2.1.

.

Proposition 4.2

Let X̃t(u) denote the stationary approximation of Xt,T at time ⌊uT ⌋.
Let further l = 1, . . . , m and ζ⌊uT ⌋,l = div

(
⌊uT ⌋ −

⌊
m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)} and

A(u, λ) :=
∑∞

j=−∞ a(u, j)e−iλj, At,T (λ) :=
∑∞

j=−∞ at,T (j)e
−iλj .

Then

(a)

sup
u∈[0,1]

∑

j∈Z

∣∣a⌊uT ⌋,T (j)
∣∣ <∞. (4.9)

(b)

sup
x∈[0,1]

sup
l=1,...,m

|A (x, λl)| <∞. (4.10)

(
) For z ∈ R>0

sup
m∈N

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣∣A
(
l + ζ⌊uT ⌋,lm−m

T
, λl

)
− A(u, λl)

∣∣∣∣
z

= O

(
mz

T z

)
.(4.11)

(d) For z ∈ R>0

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣∣A
(
l + ζ⌊uT ⌋,lm−m

T
, λl

)
− Al+ζ⌊uT⌋,lm−m,T (λl)

∣∣∣∣
z

= O

(
1

T z

)
.

(4.12)
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For z ∈ R>0

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣A (u, λl)− Al+ζ⌊uT⌋,lm−m,T (λl)
∣∣∣
z

= O

(
mz

T z

)
.

(4.13)

(e) Let j = 1, . . . , 2m.

sup
|u−u′|≤Cm

T

||A(u, λj)|2 − |A(u′, λj)|2| = O

(
m2

T 2
+
m

T

)
= O

(m
T

)
. (4.14)

(f) Let j = 1, . . . , 2m.

sup
|u−u′|≤Cm

T

||A(u, λj)|4 − |A(u′, λj)|4| = O

(
m4

T 4
+
m3

T 3
+
m2

T 2
+
m

T

)
= O

(m
T

)
.

(4.15)

Proof. (a) With De�nition 2.1,

sup
u∈[0,1]

∞∑

j=−∞

∣∣a⌊uT ⌋,T (j)
∣∣ ≤ sup

u∈[0,1]

∞∑

j=−∞

∣∣a⌊uT ⌋,T (j)− a(u, j)
∣∣+ sup

u∈[0,1]

∞∑

j=−∞
|a(u, j)|

≤ K sup
u∈[0,1]

∞∑

j=−∞

∣∣∣∣
⌊uT ⌋
T

− u

∣∣∣∣
1

l(j)
+ sup

u∈[0,1]

∞∑

j=−∞

1

l(j)
<∞.

(b)

sup
x∈[0,1]

sup
l=1,...,m

|A (x, λl)| ≤ sup
x∈[0,1]

sup
l=1,...,m

∞∑

j=−∞
|a (x, j)|

≤
∞∑

j=−∞

K

l(j)
<∞,


f. De�nition 2.1(b).
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(
) Sin
e supu∈[0,1] supl=1,...,m

∣∣∣ l+ζ⌊uT⌋,lm−m
T

− u
∣∣∣ ≤ Cm

T
, it holds

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣∣A
(
l + ζ⌊uT ⌋,lm−m

T
, λl

)
−A(u, λl)

∣∣∣∣

≤ sup
u∈[0,1]

sup
l=1,...,m

∞∑

j=−∞

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)
− a(u, j)

∣∣∣∣

≤
∞∑

j=−∞

Km

Tl(j)
= O

(m
T

)
,


f. De�nition 2.1(b) and (
). Consequently, (4.11).

(d) Sin
e

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣∣
l + ζ⌊uT ⌋,lm−m

T
− u

∣∣∣∣ ≤ K
m

T
,

it holds that

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣∣A
(
l + ζ⌊uT ⌋,lm−m

T
, λl

)
−Al+ζ⌊uT⌋,lm−m,T (λl)

∣∣∣∣

≤ sup
u∈[0,1]

sup
l=1,...,m

∞∑

j=−∞

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)
− al+ζ⌊uT⌋,lm−m,T (j)

∣∣∣∣

≤
∞∑

j=−∞

K

Tl(j)
= O

(
1

T

)
,


f. De�nition 2.1(b) and (
). Consequently, (4.12).

(e) Results from parts (
) and (d).

(f) Let |u− u′| ≤ Cm
T

|A(u, λj)|2 =

∣∣∣∣∣

∞∑

k=−∞
a(u, k)e−iλjk

∣∣∣∣∣

2

=
∞∑

k1,k2=−∞
a(u, k1)a(u, k2)e

−iλj(k1−k2).

=
∞∑

k1,k2=−∞
[a(u, k1)− a(u′, k1) + a(u′, k1)][a(u, k2)− a(u′, k2) + a(u′, k2)]

·e−iλj(k1−k2).

Maintaining the di�eren
e a(u, ki) − a(u′, ki), extra
ting yields 4 summands
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with the last one being a(u′, k1)a(u
′, k2). Substra
ting |A(u′, λj)|2 therefore

merely gets rid of this one summand. The remaining terms 
an be bounded

by either

m
Tl(ki)

, if we have a di�eren
e a(u, ki) − a(u′, ki), or
K
l(ki)

in the 
ase

of a(u, ki) (
f. De�nition 2.1). Hen
e,

sup
|u−u′|≤Cm

T

∣∣|A(u, λj)|2 − |A(u′, λj)|2
∣∣

≤ K

∞∑

k1,k2=−∞

(
m2

T 2l(k1)l(k2)
+

2m

Tl(k1)l(k2)

)

= O

(
m2

T 2
+
m

T

)
.

(g)

|A(u, λj)|4

=

∣∣∣∣∣

∞∑

k=−∞
a(u, k)e−iλjk

∣∣∣∣∣

4

=

∞∑

k1,k2,k3,k4=−∞
a(u, k1)a(u, k2)a(u, k3)a(u, k4)e

−iλj(k1−k2+k3−k4).

=
∞∑

k1,k2,k3,k4=−∞
[a(u, k1)− a(u′, k1) + a(u′, k1)][a(u, k2)− a(u′, k2) + a(u′, k2)]

·[a(u, k3)− a(u′, k3) + a(u′, k3)][a(u, k4)− a(u′, k4) + a(u′, k4)]

·e−iλj(k1−k2+k3−k4).

Maintaining the di�eren
e a(u, ki) − a(u′, ki), extra
ting yields 16 summands

with the last one being a(u′, k1)a(u
′, k2)a(u

′, k3)a(u
′, k4). Substra
ting |A(u′, λj)|4

therefore merely gets rid of this one summand. The remaining terms 
an be

bounded by either

m
Tl(ki)

, if we have a di�eren
e a(u, ki) − a(u′, ki), or
K
l(ki)

in

the 
ase of a(u, ki) (
f. De�nition 2.1). Hen
e,

sup
|u−u′|≤Cm

T

∣∣|A(u, λj)|4 − |A(u′, λj)|4
∣∣

≤ K
∞∑

k1,k2,k3,k4=−∞

(
m4

T 4l(k1)l(k2)l(k3)l(k4)
+

4m3

T 3l(k1)l(k2)l(k3)l(k4)

+
6m2

T 2l(k1)l(k2)l(k3)l(k4)
+

4m

Tl(k1)l(k2)l(k3)l(k4)

)

= O

(
m4

T 4
+
m3

T 3
+
m2

T 2
+
m

T

)
.
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Proposition 4.3

For a sequen
e ε1, ε2, . . . of independent identi
ally distributed 
entred random vari-

ables with varian
e 0 < σ2 <∞ and existing fourth moment, the following inequality

holds

E

(
n∑

j=1

εj

)4

≤ nE(ε41) + 3n2σ4.

See also Exer
ise 10.14 in Bro
kwell and Davis [3℄.

Proof.

E

(
n∑

j=1

εj

)4

= Var

(
n∑

j=1

εj

)2

+


E

(
n∑

j=1

εj

)2



2

=: A1 + A2.

A2

A2 =


E

(
n∑

j=1

εj

)2



2

=



Var

(
n∑

j=1

εj

)
+

(
E

(
n∑

j=1

εj

))2



2

.

Employing that the random variables are independent identi
ally distributed and


entred, we get

A2 =

(
Var

(
n∑

j=1

εj

))2

=

(
n∑

j=1

Var(εj)

)2

= n2σ4.

A1

A1 = Var

(
n∑

j=1

εj

)2

= Var

(
n∑

j=1

ε2j +
n∑

i 6=j=1

εiεj

)

= Var

(
n∑

j=1

ε2j

)
+ Var

(
n∑

i 6=j=1

εiεj

)
+ 2Cov

(
n∑

j=1

ε2j ,
n∑

k 6=l=1

εkεl

)
.(4.16)

Var

(
n∑

j=1

ε2j

)
=

n∑

j=1

Var(ε2j) = nVar(ε21) = n
(
E(ε41)− (E(ε21))

2
)

= nE(ε41)− nσ4. (4.17)
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Var

(
n∑

i 6=j=1

εiεj

)
= E

(
n∑

i 6=j=1

εiεj − E

(
n∑

i 6=j=1

εiεj

))2

= E

(
n∑

i 6=j=1

εiεj

)2

= E

(
n∑

i 6=j=1

n∑

k 6=l=1

εiεjεkεl

)

=

n∑

i 6=j=1

n∑

k 6=l=1

E(εiεjεkεl) · 1{(i=k∧j=l)∨(i=l∧j=k)}

(4.18)

= 2

n∑

i 6=j=1

E(ε2i ε
2
j) = 2n(n− 1)σ4. (4.19)

Cov

(
n∑

j=1

ε2j ,
n∑

k 6=l=1

εkεl

)
=

n∑

j=1

n∑

k 6=l=1

Cov(ε2j , εkεl)

=

n∑

j=1

n∑

k 6=l=1

(E(ε2jεkεl)− E(εj)
2E(εk)E(εl))

=

n∑

j=1

n∑

k 6=l=1

E(ε2jεkεl) =

n∑

j=1

n∑

k 6=l=1

(E(ε2jεkεl)1{k=j∨l=j}

=
n∑

j=1

n∑

l=1, l 6=j
E(ε3j)E(εl) +

n∑

j=1

n∑

k=1, k 6=j
E(ε3j)E(εk) = 0.

(4.20)

Now, with (4.17), (4.19) and (4.20) Equation (4.16) simpli�es to

A1 = nE(ε41)− nσ4 + 2n(n− 1)σ4 + 0 = nE(ε41) + 2n2σ4 − 2nσ4.

With the knowledge about A1 and A2 one �nally obtains

E

(
n∑

j=1

εj

)4

= nE(ε41) + 3n2σ4 − 2nσ4 ≤ nE(ε41) + 3n2σ4.

.

The following Theorem is kept in the notation of Bro
kwell and Davis [3℄, Theorem

10.3 and is an additional result to their theorem.
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Theorem 4.1. Let {Zt} ∼ IID(0, σ2) and

∑
j∈Z |ψj |

√
|j| < ∞. Let further, for

λj =
2πj
n
, j = 1, . . . , n

Y (λj) =
1√
n

∞∑

s=−∞
ψse

−iλjsUn,s,

with Un,s =

n−s∑

t=1−s
Zte

−iλjt −
n∑

t=1

Zte
−iλjt.

Then

E

(
n∑

j=1

|Y (λj)|2
)2

= O(1),

for n→ ∞.

Proof. Y (λj) =
1√
n

∑∞
s=−∞ ψse

−iλjsUn,s, with Un,s =
∑n−s

t=1−s Zte
−iλjt−∑n

t=1 Zte
−iλjt

.

Un,s is a sum of 2|s| independent random variables, if |s| < n. If |s| ≥ n it is a sum

of 2n independent random variables.

We now intend to prove that

E

(
n∑

j=1

|Y (λj)|2
)2

= O(1),

for n→ ∞.

De�ne

T (s) :=





{1− s, . . . , 0} ∪ {n− s+ 1, . . . , n}, 0 < s < n,

{1, . . . ,−s} ∪ {n+ 1, . . . , n− s}, −n < s < 0,

{1− s, . . . , n− s} ∪ {1, . . . , n}, |s| ≥ n.

This set indi
ates, whi
h Zt 
ontribute to Un,s. Note that

#T (s) = min{2|s|, 2n}.

In the following, we will also be 
on
erned with the 
ardinality of the interse
tions

of the sets T (si) ∩ T (sj), i, j = 1, 2, 3, 4, whi
h is

#T (si) ∩ T (sj) ≤ min{min{2|si|, 2n},min{2|sj|, 2n}} = O(min{n, |si|, |sj|}).

Further note that

min{n, |si|, |sj|} ≤
√

|si|
√
|sj|.
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We then set In,s,t := ±1, depending on whi
h Zt's 
ontribute to Un,s.

(
n∑

j=1

|Y (λj)|2
)2

=
1

n2

n∑

j1=1

∞∑

s1,s2=−∞
ψs1ψs2e

−iλj1 (s1−s2)
∑

t1∈T (s1)
In,s1,t1Zt1e

−iλj1 t1
∑

t2∈T (s2)
In,s2,t2Zt2e

+iλj1 t2

·
n∑

j2=1

∞∑

s3,s4=−∞
ψs3ψs4e

iλj2 (s3−s4)
∑

t3∈T (s3)
In,s3,t3Zt3e

+iλj2 t3
∑

t4∈T (s4)
In,s4,t4Zt4e

−iλj2 t4

=
∑

k1,k2∈Z

∞∑

s1,s2,s3,s4=−∞
ψs1ψs2ψs3ψs4

∑

t1∈T (s1)
In,s1,t1Zt1

∑

t2∈T (s2)
In,s2,t2Zt2

·
∑

t3∈T (s3)
In,s3,t3Zt3

∑

t4∈T (s4)
In,s4,t4Zt41{t1−t2+(s1−s2)=k1n}1{t3−t4+(s3−s4)=k2n}.

As we are interested in the value of the expe
tation of this expression, we only

need to look at the 
ases when E(Zt1Zt2Zt3Zt4) 6= 0. As the fourth moment of

the random variables exists, we may bound it, as well as lower moments by some

arbitrary 
onstant C ≥ 0. Formally, we get

∣∣∣∣∣∣
E

(
n∑

j=1

|Y (λj)|2
)2
∣∣∣∣∣∣

≤ C

∞∑

s1,s2,s3,s4=−∞
ψs1ψs2ψs3ψs4

∑

k1,k2∈Z

∑

ti∈T (si), i=1,2,3,4

[
1{t1=t2}1{t3=t4} + 1{t1=t3}1{t2=t4}

+1{t1=t4}1{t2=t3}
]
· 1{t1−t2+(s1−s2)=k1n}1{t3−t4+(s3−s4)=k2n}.

We hen
e en
ounter the following situations

• Case 1:

(I) t1 = t2

(II) t3 = t4

as well as

(III) t1 − t2 + (s1 − s2) = k1n

(IV ) t3 − t4 + (s3 − s4) = k2n

With (I) and (II) we get

(III ′) k1 =
s1 − s2
n

,

(IV ′) k2 =
s3 − s4
n

.
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k1 and k2 are therefore uniquely determined by s2, s2, s3, s4 and n and 
an

therefore be eliminated. Note that k1 and k2 need to be integers. To be exa
t,

we would then have to write

k1 =
s1 − s2
n

∩ Z, k2 =
s3 − s4
n

∩ Z.

Su�
ient for an upper bound, however, is to use the whole range of the si,
i = 1, 2, 3, 4.

∑

s1,s2,s3,s4

ψs1ψs2ψs3ψs4
∑

t1∈T (s1)∩T (s2)
1

∑

t3∈T (s3)∩T (s4)
1

≤ K
∑

s1,s2,s3,s4

ψs1ψs2ψs3ψs4 min{n, |s1|, |s2|}min{n, |s3|, |s4|}

≤ K
∑

s1,s2

ψs1ψs2
√

|s1|
√

|s2|
∑

s3,s4

ψs3ψs4
√
|s3|
√

|s4|

= O (1) .

• Case 2:

(I) t1 = t3

(II) t2 = t4

as well as

(III) t1 − t2 + (s1 − s2) = k1n

(IV ) t1 − t2 + (s3 − s4) = k2n

With (I) and (II) we get

(III ′) k1 =
t1 − t2 + s1 − s2

n
,

(IV ′) k2 =
t1 − t2 + s3 − s4

n
.

k1 and k2 are therefore uniquely determined by s2, s2, s3, s4, t1, t2 and n and


an therefore be eliminated. Note that k1 and k2 need to be integers. To be

exa
t, we would then have to write

k1 =
t1 − t2 + s1 − s2

n
∩ Z, k2 =

t1 − t2 + s3 − s4
n

∩ Z.
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Now,

∑

s1,s2,s3,s4

ψs1ψs2ψs3ψs4
∑

t1∈T (s1)∩T (s3)
1

∑

t3∈T (s2)∩T (s4)
1

≤ K
∑

s1,s2,s3,s4

ψs1ψs2ψs3ψs4 min{n, |s1|, |s3|}min{n, |s2|, |s4|}

≤ K
∑

s1,s2

ψs1ψs2
√

|s1|
√

|s2|
∑

s3,s4

ψs3ψs4
∑√

|s3|
√

|s4|

= O (1) .

• Case 3: Analogously to Case 2.

.

Remark 4.1

The 
ondition

∑
j∈Z |ψj |

√
|j| <∞ is not very strong. Dahlhaus and Giraitis [12℄ use

in Corollary 4.1, whi
h is the asymptoti
 normality of the res
aled spe
tral mean of

the Fourier 
oe�
ients of a stationary time series the assumption that

∑
j∈Z |ψj|j2 <

∞. As we need the result of the above Theorem to 
onsider the res
aled spe
tral mean

later on, we are on the safe side starting o� with a 
ondition not as strong as their

�nal 
ondition.

Moreover, Grenander and Rosenblatt [21℄ also use this assumption in Theorem 6,

when they intend to generalize their results from iid white noise to stationary time

series.

4.2 Linking the lo
ally stationary 
ase to the i.i.d.


ase

Lemma 4.2 (Relationship between MF X̃
⌊uT ⌋ and MF ε

⌊uT ⌋).

Let X̃t(u) denote the stationary approximation of Xt,T at time ⌊uT ⌋.
Let further A(u, λ) :=

∑∞
j=−∞ a(u, j)e−iλj. Then for l = 1, . . . , m

MF X̃
⌊uT ⌋(λl) = A (u, λl)MF

ε
⌊uT ⌋(λl) + R

(1)
⌊uT ⌋,m(λl),

with sup
u∈[0,1]

sup
l=1,...,m

E|R(1)
⌊uT ⌋,m(λl)|4 → 0, as m→ ∞, (4.21)

and

ER
(1)
⌊uT ⌋,m(λl) = 0. (4.22)
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If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞,

sup
u∈[0,1]

sup
l=1,...,m

E|R(1)
⌊uT ⌋,m(λl)|4 = O

(
1

m2

)
, (4.23)

as well as

E

(
1√

2m+ 1

2m+1∑

l=1

|R(1)
⌊uT ⌋,m(λl)|2

)2

→ 0 as m→ ∞. (4.24)

Proof. With ζ⌊uT ⌋,l = div
(
⌊uT ⌋ −

⌊
m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)} it follows that

MF X̃
⌊uT ⌋(λl) =

1√
2m+ 1

2m∑

t=0

X̃t

(
l + ζ⌊uT ⌋,lm−m+ t

T
, j

)
e−itλl

=
1√

2m+ 1

2m∑

t=0

∞∑

j=−∞
a

(
l + ζ⌊uT ⌋,lm−m+ t

T
, j

)
εl+ζ⌊uT⌋,lm−m+t−je

−itλl .

In order to pro
eed as in Bro
kwell and Davis [3℄, we need to free the 
oe�
ients

a(·, j) of their dependen
e on time. We do this by splitting:

MF X̃
⌊uT ⌋(λl)

=
1√

2m+ 1

2m∑

t=0

∞∑

j=−∞

[
a

(
l + ζ⌊uT ⌋,lm−m+ t

T
, j

)

−a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)]
εl+ζ⌊uT⌋,lm−m+t−je

−itλl

+
1√

2m+ 1

2m∑

t=0

∞∑

j=−∞
a

(
l + ζ⌊uT ⌋,lm−m

T
, j

)
εl+ζ⌊uT⌋,lm−m+t−je

−itλl

=: Y
X̃,(1)
⌊uT ⌋,m(λl) +

1√
2m+ 1

∞∑

j=−∞
a

(
l + ζ⌊uT ⌋,lm−m

T
, j

)
e−ijλl

2m−j∑

t=−j
εl+ζ⌊uT⌋,lm−m+te

−itλl

= Y
X̃,(1)
⌊uT ⌋,m(λl) + A

(
l + ζ⌊uT ⌋,lm−m

T
, λl

)
1√

2m+ 1

2m∑

t=0

εl+ζ⌊uT⌋,lm−m+te
−itλl

+
1√

2m+ 1

∞∑

j=−∞
a

(
l + ζ⌊uT ⌋,lm−m

T
, j

)
e−ijλlU⌊uT ⌋,m,j(λl)

=: Y
X̃,(1)
⌊uT ⌋,m(λl) + A

(
l + ζ⌊uT ⌋,lm−m

T
, λl

)
MF ε

⌊uT ⌋(λl) + Y
X̃,(2)
⌊uT ⌋,m(λl),
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where

U⌊uT ⌋,m,j(λl) =

(
2m−j∑

t=−j
εl+ζ⌊uT⌋,lm−m+te

−itλl −
2m∑

t=0

εl+ζ⌊uT⌋,lm−m+te
−itλl

)
.

It is evident, that the expe
tan
y of both terms Y
X̃,(1)
⌊uT ⌋,m(λl) and Y

X̃,(2)
⌊uT ⌋,m(λl) equals

zero, implying (4.22) for R
(1)
⌊uT ⌋,m(λl) := Y

X̃,(1)
⌊uT ⌋,m(λl) + Y

X̃,(2)
⌊uT ⌋,m(λl).

It now remains to show that

sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(1)
⌊uT ⌋,m(λl)|4 → 0 as m→ ∞, (4.25)

sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(2)
⌊uT ⌋,m(λl)|4 → 0 as m→ ∞, (4.26)

with adequate rates in the 
ase of the stronger assumption.

To show the L4-
onvergen
e (4.25) �rst note that

sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(1)
⌊uT ⌋,m(λl)|4 = O

(
m6

T 4(2m+ 1)2

)
= O

(
m4

T 4

)
,

with the proof basi
ally analogous to the proof of (4.6), however it is slightly more

demanding:

sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(1)
⌊uT ⌋,m(λl)|4

= sup
u∈[0,1]

sup
l=1,...,m

1

(2m+ 1)2

2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞(
a

(
l + ζ⌊uT ⌋,lm−m+ t1

T
, j1

)
− a

(
l + ζ⌊uT ⌋,lm−m

T
, j1

))

·
(
a

(
l + ζ⌊uT ⌋,lm−m+ t2

T
, j2

)
− a

(
l + ζ⌊uT ⌋,lm−m

T
, j2

))

·
(
a

(
l + ζ⌊uT ⌋,lm−m+ t3

T
, j3

)
− a

(
l + ζ⌊uT ⌋,lm−m

T
, j3

))

·
(
a

(
l + ζ⌊uT ⌋,lm−m+ t4

T
, j4

)
− a

(
l + ζ⌊uT ⌋,lm−m

T
, j4

))

·E(εl+ζ⌊uT⌋,lm−m+t1−j1εl+ζ⌊uT⌋,lm−m+t2−j2εl+ζ⌊uT⌋,lm−m+t3−j3εl+ζ⌊uT⌋,lm−m+t4−j4)e
i(t2−t1+t3−t4)λl .

Just like in the proof of Proposition 4.1, one needs to distinguish between the di�er-

ent values the expe
ted value 
an take and split the above expression a

ordingly.

Sin
e for v ∈ [0, 1]

sup
u∈[0,1]

|a (u+ v, j1)− a (u, j1)| ≤
K|v|
l(j1)

,
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we get for the 
ase of all indi
es of the innovations being equal an upper bound of

E(ε41)
K

(2m+ 1)2

·
∣∣∣∣

2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞

∣∣∣∣
t1

T l(j1)

∣∣∣∣
∣∣∣∣

t2
T l(j2)

∣∣∣∣ ·
∣∣∣∣

t3
T l(j3)

∣∣∣∣ ·
∣∣∣∣

t4
T l(j4)

∣∣∣∣1{t1−j1=t2−j2=t3−j3=t4−j4}

≤ K(2m+ 1)5E(ε41)

(2m+ 1)2T 4
= O

(
m3

T 4

)
.

The other possibility is any two indi
es being equal. There are three 
ases:

t1 − j1 = t2 − j2 6= t3 − j3 = t4 − j4,

t1 − j1 = t3 − j3 6= t2 − j2 = t4 − j4,

t1 − j1 = t4 − j4 6= t2 − j2 = t3 − j3.

Exemplarily, we will 
onsider t1 − j1 = t4 − j4 6= t2 − j2 = t3 − j3. For this 
ase, an
upper bound is

K

(2m+ 1)2

2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞

∣∣∣∣
t1

T l(j1)

∣∣∣∣ ·
∣∣∣∣

t2
T l(j2)

∣∣∣∣

·
∣∣∣∣

t3
T l(j3)

∣∣∣∣ ·
∣∣∣∣

t4
T l(j4)

∣∣∣∣1{t1−j1=t4−j4 6=t2−j2=t3−j3}

≤ K(2m+ 1)4

(2m+ 1)2T 4

2m∑

t1,t2=0

∞∑

j1,j2,j3,j4=−∞

1

l(j1)l(j2)l(j3)l(j4)

≤ K(2m+ 1)6

(2m+ 1)2T 4
= O

(
m4

T 4

)
.

Finally, 
olle
ting the results on the upper bounds in the di�erent 
ases, we get

sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(1)
⌊uT ⌋,m(λl)|4 = O

(
m4

T 4

)
. (4.27)

Now for the se
ond error term Y
X̃,(2)
⌊uT ⌋,m(λl), the Minkowski inequality yields

sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(2)
⌊uT ⌋,m(λl)|4

≤ sup
u∈[0,1]

sup
l=1,...,m

1

(2m+ 1)2

( ∞∑

j=−∞

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣ (E|U⌊uT ⌋,m,j(λl)|4)
1
4

)4

.

(4.28)

Note that for n ∈ N, E
(∑n

j=1 ej

)4
≤ nE(e41) + 3n2

(
f. Proposition 4.3).
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As stated before, for |j| < 2m+ 1, U⌊uT ⌋,m,j(λl) is the sum of 2|j| independent and

entred random variables. For |j| ≥ 2m+1, U⌊uT ⌋,m,j(λl) is the sum of 2(2m+1) =
4m+ 2 independent and 
entred random variables.

sup
u∈[0,1]

sup
l=1,...,m

E|U⌊uT ⌋,m,j(λl)|4 ≤ 2min(|j|, 2m+ 1)E(e41) + 12(min(|j|, 2m+ 1))2

= O
(
min(|j|2, (2m+ 1)2

)
.

Let µ0 ∈ N arbitrary but �xed. It follows that

1√
2m+ 1

∞∑

j=−∞

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣
4
√
(min(|j|2, (2m+ 1)2)

≤ 1√
2m+ 1

∑

|j|≤µ0

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣ ·
√

|j|

+
∑

|j|>µ0

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣ .

Con
erning the fun
tion a: Note that m is only present in the �rst 
omponent of

the fun
tion a. We may therefore exploit the assumption made by De�nition 2.1(
):

sup
m,u,l

∣∣∣∣∣

∞∑

j=−∞
a

(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣∣ ≤ sup
u∈[0,1]

∣∣∣∣∣

∞∑

j=−∞
a(u, j)

∣∣∣∣∣ <∞. (4.29)

We note that now

sup
u∈[0,1]

sup
l=1,...,m

1√
2m+ 1

∞∑

j=−∞

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣
4
√

(min(|j|2, (2m+ 1)2)

≤ K
√
µ0√

2m+ 1
+ sup

x∈[0,1]

∑

|j|>µ0

|a (x, j)| , (4.30)

with

lim sup
m→∞

sup
u∈[0,1]

sup
l=1,...,m

1√
2m+ 1

∞∑

j=−∞

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣
4
√

(min(|j|2, (2m+ 1)2)

≤ sup
x∈[0,1]

∑

|j|>µ0

|a (x, j)|

As µ0 is arbitrary and due to the uniform absolute summability of a(u, j) (De�nition
2.1(
)), the upper bound of (4.28) 
onverges to zero for T → ∞ (and thus m→ ∞).
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If additionally

sup
u∈[0,1]

∞∑

j=−∞
|a(u, j)|

√
|j| <∞,

we get with the same argument as in (4.29) that

sup
m,u,l

∞∑

j=−∞

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣
√
|j| <∞.

This then results in a rate of 
onvergen
e, whi
h we did not get in (4.30):

sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(2)
⌊uT ⌋,m(λl)|4

≤ C · sup
u∈[0,1]

sup
l=1,...,m

1

(2m+ 1)2

( ∞∑

j=−∞

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣ |j|
1
2

)4

= O

(
1

m2

)
.

All in all, we get for R
(1)
⌊uT ⌋,m(λl) := Y

X̃,(1)
⌊uT ⌋,m(λl) + Y

X̃,(2)
⌊uT ⌋,m(λl)

sup
u∈[0,1]

sup
l=1,...,m

E|R(1)
⌊uT ⌋,m(λl)|4 ≤ 24

(
sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(1)
⌊uT ⌋,m(λl)|4

+ sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(2)
⌊uT ⌋,m(λl)|4

)

= O

(
1

m2

)
,

as the assumptions given in Se
tion 3.1 imply

m6

T 4 = o(1).

Now, to �nally prove (4.24), we note again that

R
(1)
⌊uT ⌋,m(λl) := Y

X̃,(1)
⌊uT ⌋,m(λl) + Y

X̃,(2)
⌊uT ⌋,m(λl).

By (4.27)

sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(1)
⌊uT ⌋,m(λl)|4 = O

(
m4

T 4

)
.
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Hen
e,

E

(
1√

2m+ 1

2m+1∑

j=1

|Y X̃,(1)
⌊uT ⌋,m(λl)|2

)2

= O

(
m5

T 4

)
= o(1),

by the assumptions given in Se
tion 3.1.

From Theorem 4.1 we get

E

(
2m+1∑

j=1

|Y X̃,(2)
⌊uT ⌋,m(λl)|2

)2

= O(1).

(4.24) now follows by Cau
hy-S
hwarz.

Theorem 4.2 (Relationship between MIX̃⌊uT ⌋,m and MIε⌊uT ⌋,m).
In the situation of Lemma 4.2

MIX̃⌊uT ⌋,m(λl) = |A (u, λl)|2MIε⌊uT ⌋,m(λl) +R⌊uT ⌋,m(λl), (4.31)

with sup
u∈[0,1]

sup
l=1,...,m

E|R⌊uT ⌋,m(λl)|2 → 0 for m→ ∞. (4.32)

If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞

sup
u∈[0,1]

sup
l=1,...,m

E|R⌊uT ⌋,m(λl)|2 = O

(
1

m

)
. (4.33)

Proof. Now, extending the result of Lemma 4.2 to a relationship between the moving

periodograms, one merely needs to 
onsider the remainder R⌊uT ⌋,m(λl), whi
h is of

the form

R⌊uT ⌋,m(λ) = A (u, λl)MF
ε
⌊uT ⌋(λj)R

(1)
⌊uT ⌋,m(λl)

+ A (u, λl)MF ε
⌊uT ⌋(λj)R

(1)
⌊uT ⌋,m(λl) + |R(1)

⌊uT ⌋,m(λl)|2.

Therefore,

sup
u∈[0,1]

sup
l=1,...,m

E|R⌊uT ⌋,m(λl)|2

≤ 22
(

sup
u∈[0,1]

sup
l=1,...,m

|A (u, λl)|2 ·
∣∣MF ε

⌊uT ⌋(λj)
∣∣2 ·
∣∣∣R(1)

⌊uT ⌋,m(λl)
∣∣∣
2

+ sup
u∈[0,1]

sup
l=1,...,m

∣∣∣R(1)
⌊uT ⌋,m(λl)

∣∣∣
4
)

(4.34)
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A

ording to Lemma 4.2, supu∈[0,1] supl=1,...,m

∣∣∣R(1)
⌊uT ⌋,m(λl)

∣∣∣
4

= O
(

1
m2

)
, if the stronger

assumption applies. Otherwise this term simply tends to zero. Con
erning the other

summand, the appli
ation of the Cau
hy-S
hwarz inequality readily yields the result

when additionally employing Propositions 4.1 and 4.2.

Lemma 4.3 (Relationship between MF⌊uT ⌋ and MF ε
⌊uT ⌋).

Under the same assumptions as in Lemma 4.2 and with At,T (λl) :=
∑∞

j=−∞ at,T (j)e
−iλlj ,

the result (4.21) extends to

MF⌊uT ⌋(λl) = Al+ζ⌊uT⌋,lm−m,T (λl)MF
ε
⌊uT ⌋(λl) +R

(2)
⌊uT ⌋,m(λl), (4.35)

with R
(2)
⌊uT ⌋,m(λl) := R

(1)
⌊uT ⌋,m(λl) + R̃⌊uT ⌋,m(λl) and R

(1)
⌊uT ⌋,m(λl) as in Lemma 4.2.

Then

ER
(2)
⌊uT ⌋,m(λl) = 0 (4.36)

and

sup
u∈[0,1]

sup
l=1,...,m

E|R̃⌊uT ⌋,m(λl)|4 = O

(
m4

T 4

)
. (4.37)

In parti
ular, we get

sup
u∈[0,1]

sup
l=1,...,m

E|R(2)
⌊uT ⌋,m(λl)|4 → 0 as m→ ∞. (4.38)

If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞, then even

sup
u∈[0,1]

sup
l=1,...,m

E|R(2)
⌊uT ⌋,m(λl)|4 = O

(
1

m2

)
, (4.39)

as well as

E

(
1√

2m+ 1

2m+1∑

l=1

|R(2)
⌊uT ⌋,m(λl)|2

)2

→ 0 as m→ ∞. (4.40)
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Proof. We �rst split MF⌊uT ⌋(λl) to be able to apply Lemma 4.2:

MF⌊uT ⌋(λl) = MF X̃
⌊uT ⌋(λl) + (MF⌊uT ⌋(λl)−MF X̃

⌊uT ⌋(λl))

= A (u, λl)MF
ε
⌊uT ⌋(λl) +R

(1)
⌊uT ⌋,m(λl) + (MF⌊uT ⌋(λl)−MF X̃

⌊uT ⌋(λl))

= Al+ζ⌊uT⌋,lm−m,T (λl)MF
ε
⌊uT ⌋(λl) +R

(1)
⌊uT ⌋,m(λl)

+
(
A (u, λl)−Al+ζ⌊uT⌋,lm−m,T (λl)

)
MF ε

⌊uT ⌋(λl) + (MF⌊uT ⌋(λl)−MF X̃
⌊uT ⌋(λl)).

(4.41)

As already de�ned in the above Lemma, R̃ is the additional remainder we obtain

when bridging the gap from the stationary approximation to the a
tual lo
ally sta-

tionary time series. Inspe
ting (4.41) yields the exa
t stru
ture of this remainder:

R̃⌊uT ⌋,m(λl) =
(
A (u, λl)− Al+ζ⌊uT⌋,lm−m,T (λl)

)
MF ε

⌊uT ⌋(λl) + (MF⌊uT ⌋(λl)−MF X̃
⌊uT ⌋(λl)).

Here, we 
an easily see that ER̃⌊uT ⌋,m(λl) = 0.With (4.22), we have ER
(2)
⌊uT ⌋,m(λl) =

0.

Propositions 4.1 and 4.2 immediately result in

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣A (u, λl)− Al+ζ⌊uT⌋,lm−m,T (λl)
∣∣∣
4

E
∣∣MF ε

⌊uT ⌋(λl)
∣∣4 = O

(
m4

T 4

)
. (4.42)

Con
erning the di�eren
e between the two Fourier transformsMF⌊uT ⌋(λl) andMF
X̃
⌊uT ⌋(λl),

we may use the pro
edure as 
hosen in the proof of Proposition 4.1, sin
e

sup
u∈[0,1]

∣∣a (u, j1)− a⌊uT ⌋,T (j1)
∣∣ ≤ K

Tl(j1)
.

Hen
e, we 
ontinue with

sup
u∈[0,1]

sup
l=1,...,m

E|MF⌊uT ⌋(λl)−MF X̃
⌊uT ⌋(λl)|4

≤ sup
u∈[0,1]

sup
l=1,...,m

1

(2m+ 1)2

2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞∣∣∣∣
[
al+ζ⌊uT⌋,lm−m+t1,T (j1)− a (u, j1)

]
·
[
al+ζ⌊uT⌋,lm−m+t2,T (j2)− a (u, j2)

]

·
[
al+ζ⌊uT⌋,lm−m+t3,T (j3)− a (u, j3)

]
·
[
al+ζ⌊uT⌋,lm−m+t4,T (j4)− a (u, j4)

]

·E(εl+ζ⌊uT⌋,lm−m+t1−j1εl+ζ⌊uT⌋,lm−m+t2−j2εl+ζ⌊uT⌋,lm−m+t3−j3εl+ζ⌊uT⌋,lm−m+t4−j4)

·ei(t2−t1+t3−t4)λl
∣∣∣∣. (4.43)
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Considering that X̃ is the stationary approximation at time u, we need to pay a

little attention, though, as

MF⌊uT ⌋(λl)−MF X̃
⌊uT ⌋(λl)

=
1√

2m+ 1

2m∑

t=0

∞∑

j=−∞

[(
al+ζ⌊uT⌋,lm−m+t,T (j)− a (u, j)

)]
εl+ζ⌊uT⌋,lm−m+t−je

−itλl

=
1√

2m+ 1

2m∑

t=0

∞∑

j=−∞

[(
al+ζ⌊uT⌋,lm−m+t,T (j)− a

(
l + ζ⌊uT ⌋,lm−m+ t

T
, j

))

+

(
a

(
l + ζ⌊uT ⌋,lm−m+ t

T
, j

)
− a (u, j)

)]
εl+ζ⌊uT⌋,lm−m+t−je

−itλl .

With De�nition 2.1((
)),

sup
m,u,l

∣∣∣∣al+ζ⌊uT⌋,lm−m+t,T (j)− a

(
l + ζ⌊uT ⌋,lm−m+ t

T

)∣∣∣∣ ≤ sup
s

∣∣∣as,T (j)− a
( s
T
, j
)∣∣∣ ≤ K

Tl(j)
.

The se
ond summand an be bounded (see De�nition 2.1) by

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m+ t

T
, j

)
− a (u, j)

∣∣∣∣ ≤

∣∣∣ l+ζ⌊uT⌋,lm−m+t

T
− u
∣∣∣

l(j)
≤ K

Tl(j)
.

The next step is now to 
onsider all 
ases for whi
h the expe
ted value of the errors

for 0 ≤ t ≤ 2m, see (4.43), is not zero. That is either, in the notation of (4.43), that

{t1 − j1 = t2 − j2 = t3 − j3 = t4 − j4} or that one of the three 
ases

t1 − j1 = t2 − j2 6= t3 − j3 = t4 − j4,

t1 − j1 = t3 − j3 6= t2 − j2 = t4 − j4,

t1 − j1 = t4 − j4 6= t2 − j2 = t3 − j3

holds true, be
ause we have de�ned ζ⌊uT ⌋,l := div
(
⌊uT ⌋ −

⌊
m
2

⌋)
−1{l≥mod(⌊uT ⌋−⌊m2 ⌋)}.

So, again, we split the sums in supu∈[0,1] supl=1,...,mE|MF⌊uT ⌋(λl)−MF X̃
⌊uT ⌋(λl)|4 a
-


ordingly and bound them one by one. For equal indi
es of the errors, we get the

upper bound

E(ε41)
K

(2m+ 1)2
·

2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞

( ∣∣∣∣
m

Tl(j1)

∣∣∣∣

·
∣∣∣∣

m

Tl(j2)

∣∣∣∣ ·
∣∣∣∣

m

Tl(j3)

∣∣∣∣ ·
∣∣∣∣

m

Tl(j4)

∣∣∣∣
)
1{t1−j1=t2−j2=t3−j3=t4−j4}

= O

(
m3

T 4

)
,
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Se
ondly, we exemplarily 
onsider t1 − j1 = t4 − j4 6= t2 − j2 = t3 − j3 and get a

bound of

1

(2m+ 1)2

2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞

( ∣∣∣∣
m

Tl(j1)

∣∣∣∣ ·
∣∣∣∣

m

Tl(j2)

∣∣∣∣

·
∣∣∣∣

m

Tl(j3)

∣∣∣∣ ·
∣∣∣∣

m

Tl(j4)

∣∣∣∣
)
1{t1−j1=t4−j4 6=t2−j2=t3−j3}

= O

(
m4

T 4

)
.

Finally, 
olle
ting the results on the upper bounds, we get

sup
u∈[0,1]

sup
l=1,...,m

E|MF⌊uT ⌋(λl)−MF X̃
⌊uT ⌋(λl)|4 = O

(
m4

T 4

)
= O

(
1

m2

)
. (4.44)

At last, the proof of (4.37) is 
ompleted by putting together the results of (4.42)

and (4.44).

The result (4.39) is then a 
onsequen
e of the result (4.23) of Lemma 4.2.

Now, to prove (4.24), re
all that

R
(2)
⌊uT ⌋,m(λl) := R

(1)
⌊uT ⌋,m(λl) + R̃⌊uT ⌋,m(λl).

A

ording to Lemma 4.2 Equation (4.24)

E

(
1√

2m+ 1

2m+1∑

j=1

|R(1)
⌊uT ⌋,m(λl)|2

)2

→ 0, for m→ ∞.

We further know from the above proof that

sup
u∈[0,1]

sup
l=1,...,m

|R̃⌊uT ⌋,m(λl)|4 = O

(
m4

T 4

)
.

Hen
e,

E

(
1√

2m+ 1

2m+1∑

j=1

|R̃⌊uT ⌋,m(λl)|2
)2

= O

(
m5

T 4

)
.

(4.40) now follows by Cau
hy-S
hwarz.

Theorem 4.3 (Relationship between MI⌊uT ⌋,m and MIε⌊uT ⌋,m).

Under the same assumptions as in Theorem 4.2 and At,T (λl) :=
∑∞

j=−∞ at,T (j)e
−iλlj ,

the result (4.31) extends to

MI⌊uT ⌋,m(λl) = |Al+ζ⌊uT⌋,lm−m,T (λl) |2MIε⌊uT ⌋,m(λl) +R′
⌊uT ⌋,m(λl), (4.45)
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with

sup
u∈[0,1]

sup
l=1,...,m

E|R′
⌊uT ⌋,m(λl)|2 → 0 for m→ ∞. (4.46)

If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞,

sup
u∈[0,1]

sup
l=1,...,m

E|R′
⌊uT ⌋,m(λl)|2 = O

(
1

m

)
, (4.47)

as well as

E

(
1√

2m+ 1

2m+1∑

l=1

|R′
⌊uT ⌋,m(λl)|

)2

→ 0 as m→ ∞. (4.48)

Proof. This Theorem is an immediate 
onsequen
e of Lemma 4.3, Propositions 4.1

and 4.2, as well as the appli
ation of the Cau
hy-S
hwarz inequality. The proof is

in analogy to the proof of Theorem 4.2.
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CHAPTER 5

Distributional properties of the moving Fourier 
oe�
ients

5.1 Varian
e

Theorem 5.1.

(a)

sup
u∈[0,1]

sup
l=1,...,m

|Var(MF⌊uT ⌋(λl))− 2πf(u, λl)| → 0.

(b) If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞,

sup
u∈[0,1]

sup
l=1,...,m

|Var(MF⌊uT ⌋(λl))− 2πf(u, λl)| = O

(
1√
m

)
.

Proof. Lemma 4.3 provides the following relation

MF⌊uT ⌋(λl) = Al+ζ⌊uT⌋,lm−m,T (λl)MF
ε
⌊uT ⌋(λl) +R

(2)
⌊uT ⌋,m(λl),

sup
u∈[0,1]

sup
l=1,...,m

E|R(2)
⌊uT ⌋,m(λl)|4 → 0.

If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞,

sup
u∈[0,1]

sup
l=1,...,m

E|R(2)
⌊uT ⌋,m(λl)|4 = O

(
1

m2

)
.
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If we apply Lemma 4.3, we now get

Var(MF⌊uT ⌋(λl)) = Al+ζ⌊uT⌋,lm−m,T (λl)Al+ζ⌊uT⌋,lm−m,T (λl)Var(MF
ε
⌊uT ⌋(λl))

+Al+ζ⌊uT⌋,lm−m,T (λl)Cov(MF
ε
⌊uT ⌋(λl), R

(2)
⌊uT ⌋,m(λl))

+Al+ζ⌊uT⌋,lm−m,T (λl)Cov(R
(2)
⌊uT ⌋,m(λl)),MF

ε
⌊uT ⌋(λl)) + Var(R

(2)
⌊uT ⌋,m(λl))

=: A1 + A2 + A2 + A3.

A1

By Proposition 4.1 and Lemma 4.1 it holds

supu∈[0,1] supl=1,...,mVar(MF ε
⌊uT ⌋(λl)) = 1.

With Proposition 4.2 (b) and (
),

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣Al+ζ⌊uT⌋,lm−m,T (λl)−A(u, λl)
∣∣∣ = O

(m
T

)
.

Hen
e, with De�nition 2.2,

A1 = |A(u, λl)|2Var(MF ε
⌊uT ⌋(λl)) +O

(m
T

)

= 2πf(u, λl) +O
(m
T

)
.

A2 From Proposition 4.2 it follows that

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣Al+ζ⌊uT⌋,lm−m,T (λl)
∣∣∣ <∞.

Furthermore, Proposition 4.1 tells us that

sup
u∈[0,1]

sup
l=1,...,m

E
∣∣MF ε

⌊uT ⌋(λl)
∣∣2 = 1.

Finally, the use of Lemma 4.3 and the appli
ation of the Cau
hy-S
hwarz inequality

yield

supu∈[0,1] supl=1,...,mAl+ζ⌊uT⌋,lm−m,T (λl)E
(
MF ε

⌊uT ⌋(λl) · R
(2)
⌊uT ⌋,m(λ−l)

)
= o(1).

(5.1)

If the stronger assumptions apply, we have the rate

1√
m
.

Note, that (4.36) tells us that E(R
(2)
⌊uT ⌋,m(λl)) = 0. Due to this and Lemma 4.1,
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5.2 Covarian
e stru
ture

relation (5.1) entails

sup
u∈[0,1]

sup
l=1,...,m

Al+ζ⌊uT⌋,lm−m,T (λl)Cov(MF
ε
⌊uT ⌋(λl), R

(2)
⌊uT ⌋,m(λl)) = o(1)

sup
u∈[0,1]

sup
l=1,...,m

Al+ζ⌊uT⌋,lm−m,T (λl)Cov(R
(2)
⌊uT ⌋,m(λl),MF

ε
⌊uT ⌋(λl)) = o(1).

If the stronger assumptions apply, we have the rate

1√
m
.

A3 Lemma 4.3 and the appli
ation of the Cau
hy-S
hwarz inequality yields

sup
u∈[0,1]

sup
l=1,...,m

E
(
R

(2)
⌊uT ⌋(λl) · R

(2)
⌊uT ⌋(λ−l)

)
= o(1). (5.2)

The rate given the stronger set of assumptions is

1
m
.

Relation (5.2) now entails

sup
u∈[0,1]

sup
l=1,...,m

Var

(
R

(2)
⌊uT ⌋(λl)

)
= o(1).

With the set of stronger assumptions, we 
an now even get

sup
u∈[0,1]

sup
l=1,...,m

|Var(MF⌊uT ⌋(λl))− 2πf(u, λl)| = O

(
m

T
+

1√
m

)
= O

(
1√
m

)
.

.

5.2 Covarian
e stru
ture

For the next theorems, we de�ne sets A1(am, u) and A2 in order to rule out λj, λl

onverging to the same frequen
y from di�erent sides, as we do not get asymptoti


un
orrelated moving Fourier 
oe�
ients in these 
ases. This phenomenon is not

indigenous to our moving pro
edure. There are also pro
edures like the blo
k boot-

strap � pro
edures whi
h basi
ally mimi
k the dependen
e stru
ture but exhibit

some minor ex
eptions at 
ertain 
ut o� points.

A

ordingly, two main questions have to be answered: What are the situations in

the moving 
ase where asymptoti
 un
orrelation is not ful�lled? And why do the

situations o

ur in our 
ase?

Ad 1: Looking at the suggestive Figure 3.1, one 
an see some 'break' 
on
erning the

indi
es. For k =
⌊
m
2

⌋
+ 2 we have the sequen
e cm+1, c2, c3, . . . , cm for the moving

Fourier transform at frequen
ies λ1, . . . , λm. At frequen
y λ
mod(⌊m2 ⌋+2−⌊m2 ⌋) = λ2,

the break o

urs. That is, for λj and λk 
onverging to λ2 from di�erent sides, we

en
ounter a situation where the a
tual frequen
ies get 
loser and 
loser whereas the

indi
es of the 
oe�
ients do not.
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Ad 2: The reason for these situations � getting lo
al moving Fourier 
oe�
ients,

whi
h are not asymptoti
ally un
orrelated � is due our very good up-to-dateness

of the pro
edure. Meaning: We use only m moving Fourier 
oe�
ients and then

assume that we have already extra
ted all information about the se
ond order stru
-

ture of the time series. See Remark 3.4 for the expli
it argument. Usually, one would

have 
al
ulated all 2m + 1 
oe�
ients. We 
all that the long version of our trans-

formation. We, however, double the 
oe�
ients (see Se
tion 3.3) in an adequate

way when going ba
k into time domain. So, having generated the mth

oe�
ient,

one would start duplexing the newest information when using the long version of

the moving pro
edure. At that point, our pro
edure, however, starts updating the

oldest information, that is the oldest 
oe�
ient. In the easier understandable non-

moving 
ase this problem 
orresponds to: Take 2m+1 real random variables and use

the Fourier transform. This yields m 
omplex 
oe�
ients with 'new' information,

that is 2m real 
oe�
ients with new information. So there is a one-to-one relation

between the information 
arried by the original data and the information 
arried by

the transformed data.

If one took 2m+1 real random variables and got 2m+1 
omplex 
oe�
ients out of

them this would be 4m+ 2 real 
oe�
ients, all 
arrying new information and thus

the information in the frequen
y domain is double the amount of information in the

time domain, with no doubling of information. Not being in the land of milk and

honey we need to pay for this over�owing information � by hi

ups in the depen-

den
e stru
ture, 
ompared to the long version.

Theorem 5.2. For u ∈ [0, 1], j 6= l = 1, . . . , m, let

ζ⌊uT ⌋,l := div
(
⌊uT ⌋ −

⌊m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)},

l′ := l + ζ⌊uT ⌋,lm,

j′ := j + ζ⌊uT ⌋,jm.

Then,

sup
1≤l 6=j≤m

max

(
m

|l′ − j′| , |l − j|
) ∣∣E(MF ε

⌊uT ⌋(λl)MF
ε
⌊uT ⌋(λj))

∣∣ = O(1).

Remark 5.1

The di�eren
e l′−j′ equals either l−j, l−j+m or l−j−m, depending on the time

⌊uT ⌋ we are 
urrently at, as the 
omposition of the lo
al moving Fourier 
oe�
ients

of old and new moving Fourier 
oe�
ients 
hanges throughout time.
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Proof. Lemma 4.1 allows us to write

Cov
(
MF ε

⌊uT ⌋(λl),MF
ε
⌊uT ⌋(λj))

)
= E

(
MF ε

⌊uT ⌋(λl)MF
ε
⌊uT ⌋(λj)

)

=
1

2m+ 1

2m∑

t1,t2=0

E(εl′−m+t1εj′−m+t2)

·e−iλlt1eiλjt2 .

Sin
e E(MF ε
⌊uT ⌋(λl),MF

ε
⌊uT ⌋(λj)) = 0 i� l+ ζ⌊uT ⌋,lm−m+ t1 = j+ ζ⌊uT ⌋,jm−m+ t2,

we get

sup
1≤l 6=j≤m

max

(
m

|l′ − j′| , |l − j|
) ∣∣E(MF ε

⌊uT ⌋(λl)MF
ε
⌊uT ⌋(λj))

∣∣

= sup
1≤l 6=j≤m

max

(
m

|l′ − j′| , |l − j|
) ∣∣∣∣

1

2m+ 1

2m∑

t1,t2=0

E(εl+ζ⌊uT⌋,lm−m+t1εj+ζ⌊uT⌋,jm−m+t2)

·e−iλlt1eiλjt2 · 1{l′+t1=j′+t2}

∣∣∣∣

= sup
1≤l 6=j≤m

Cmax

(
1

|l′ − j′| ,
|l − j|
m

) ∣∣∣∣∣∣

min{2m,2m+(j′−l′)}∑

t1=max{0,(j′−l′)}
e−iλl−jt1+iλj(l

′−j′)

∣∣∣∣∣∣
.

We de�ne

g1(u, l, j) = g1 := max{0, (j′ − l′)}, . . . ,min{2m, 2m+ (j′ − l′)} =: g2 = g2(u, l, j).

Then,

sup
1≤l 6=j≤m

max

(
1

|l′ − j′| ,
|l − j|
m

) ∣∣∣∣∣e
iλj(l′−j′)

g2∑

t1=g1

e−iλl−jt1

∣∣∣∣∣

= sup
1≤l 6=j≤m

max

(
1

|l′ − j′| ,
|l − j|
m

) ∣∣∣∣∣

g2−g1+1∑

t1=1

e−iλl−jt1

∣∣∣∣∣ .

Appli
ation of Lemma A.4 in Kir
h [27℄ yields that uniformly in l, j.

∣∣∣∣∣

g2−g1+1∑

t1=1

cos

(
2π(l − j)

2m+ 1
t1

)∣∣∣∣∣ = O

(
min

(
m

|l − j| , |g2 − g1|
))

.

Analogously for the sine. Consequently,

∣∣∣∣∣

g2−g1+1∑

t1=1

e−iλl−jt1

∣∣∣∣∣ = O

(
min

(
m

|l − j| , |g2 − g1|
))

. (5.3)
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On the other hand

∣∣∣∣∣

g2−g1+1∑

t1=1

e−iλl−jt1

∣∣∣∣∣ =
∣∣∣∣∣

2m∑

t1=0

e−iλl−jt1 −
2m+1∑

t1=g2−g1+2

e−iλl−jt1

∣∣∣∣∣ =

∣∣∣∣∣

2m∑

t1=g2−g1+1

e−iλl−jt1

∣∣∣∣∣

using that

∑2m
k=0 e

−ikλ = 0 for λ 6= 2πZ.
Again, with Lemma A.4 in Kir
h [27℄,

∣∣∣∣∣

g2−g1+1∑

t1=1

e−iλl−jt1

∣∣∣∣∣ = O

(
min

(
m

|l − j| , |2m− (g2 − g1)|
))

. (5.4)

With (5.4) we get

∣∣∣∣∣

g2−g1+1∑

t1=1

e−iλl−jt1

∣∣∣∣∣ = O

(
min

(
m

|l − j| , |g2 − g1|, |2m− (g2 − g1)|
))

= O

(
min

(
m

|l − j| , |2m− |l′ − j′||, |l′ − j′|
))

= O

(
min

(
m

|l − j| , |l
′ − j′|

))

= O

((
max

( |l − j|
m

,
1

|l′ − j′|

))−1
)
.

All in all, we now have that

sup
1≤l 6=j≤m

max

(
m

|l′ − j′| , |l − j|
) ∣∣E(MF ε

⌊uT ⌋(λl),MF
ε
⌊uT ⌋(λj))

∣∣ = O(1).

.

Let am be a sequen
e with am → ∞ with am/m→ 0.
The following set A1(am, u) in
ludes all indi
es of Fourier frequen
ies who are either

su�
iently far apart or, if they are 
lose to ea
h other, one needs to ensure that

the indi
es do not relate to 
oe�
ients whi
h are very di�erent 
on
erning up-to-

dateness.

Let am be a sequen
e with am → ∞, am
m

→ 0. Then de�ne

A1(am, u) := {(l, j) ∈ {1, . . . , m}2|(l 6= j) ∧ [|l′ − j′| ≤ am ∨ |l − j| ≥ am]}, (5.5)

with

ζ⌊uT ⌋,l := div
(
⌊uT ⌋ −

⌊m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)},

l′ := l − ζ⌊uT ⌋,lm,

j′ := j − ζ⌊uT ⌋,jm.
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Denote by Acu
1 (am, u) := {l, j|l 6= j} \ A1(am, u). It holds (see Remark 5.2) that

|Acu
1 (am, u)| = a2m.

Theorem 5.3. Let am be a sequen
e with am → ∞, am
m

→ 0 and A1(am, u) as in

(5.5) .

(a)

sup
(l,j)∈A1(am,u)

Cov(MF ε
⌊uT ⌋(λl),MF

ε
⌊uT ⌋(λj)) = O

(
1

am
+
am
m

)
. (5.6)

(b)

sup
(l,j)∈A1(am,u)

Cov(MF⌊uT ⌋(λl),MF⌊uT ⌋(λj)) → 0. (5.7)

(
) If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞,

sup
(l,j)∈A1(am,u)

Cov(MF⌊uT ⌋(λl),MF⌊uT ⌋(λj)) = O

(
1

am
+
am
m

+
1√
m

)
. (5.8)

(d)

sup
1≤l 6=j≤m

Cov(MF⌊uT ⌋(λl),MF⌊uT ⌋(λj)) = O(1). (5.9)

Proof. Part (a) is an immediate 
orollary of Theorem 5.2, substituting the set

{1, . . . , m} by the spe
ial set A1(am, u).

Con
erning parts (b) to (d):

Analogously to the previous proof of Theorem 5.1, we now utilize Lemma 4.3
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sup
(l,j)∈A1(am,u)

Cov
(
MF⌊uT ⌋(λl),MF⌊uT ⌋(λj))

)

= sup
(l,j)∈A1(am,u)

E
(
MF⌊uT ⌋(λl) ·MF⌊uT ⌋(λj))

)

≤ sup
(l,j)∈A1(am,u)

Al+ζ⌊uT⌋,lm−m,T (λl)Aj+ζ⌊uT⌋,jm−m,T (−λj)

·E
(
MF ε

⌊uT ⌋(λl) ·MF ε
⌊uT ⌋(λj)

)

+ sup
(l,j)∈A1(am,u)

Al+ζ⌊uT⌋,lm−m,T (λl)E
(
MF ε

⌊uT ⌋(λl) · R(2)
⌊uT ⌋,m(−λj)

)

+ sup
(l,j)∈A1(am,u)

Aj+ζ⌊uT⌋,jm−m,T (−λj)E
(
R

(2)
⌊uT ⌋,m(λl) ·MF ε

⌊uT ⌋(−λj)
)

+ sup
(l,j)∈A1(am,u)

E
(
R

(2)
⌊uT ⌋,m(λl) · R

(2)
⌊uT ⌋,m(−λj)

)

=: B1 +B2 + B2 +B3.

In
orporating the result for the errors given by part (a), we get for the term B1:

B1 With Proposition 4.2 (a) and (
), we get

sup
1≤l 6=j≤m

∣∣∣Al+ζ⌊uT⌋,lm−m,T (λl)
∣∣∣ <∞. (5.10)

Hen
e,

sup
(l,j)∈A1(am,u)

|B1| ≤ sup
(l,j)∈A1(am,u)

|Al+ζ⌊uT⌋,lm−m,T (λl)Aj+ζ⌊uT⌋,jm−m,T (−λj)|

· sup
(l,j)∈A1(am,u)

E
(
MF ε

⌊uT ⌋(λl),MF
ε
⌊uT ⌋(λj)

)

= O

(
1

am
+
am
m

)
.

B2 From (5.10) it follows that

sup
(l,j)∈A1(am,u)

∣∣∣Al+ζ⌊uT⌋,lm−m,T (λl)
∣∣∣ <∞.

Furthermore, Proposition 4.1 tells us that

sup
(l,j)∈A1(am,u)

E
∣∣MF ε

⌊uT ⌋(λl)
∣∣2 = 1.

Finally, the use of Lemma 4.3 and the appli
ation of the Cau
hy-S
hwarz inequality
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yield

sup(l,j)∈A1(am,u)Al+ζ⌊uT⌋,lm−m,T (λl)E
(
MF ε

⌊uT ⌋(λl) ·R
(2)
⌊uT ⌋,m(−λj)

)
= o(1).(5.11)

If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞ we have the rate

1√
m
.

Due to sup(l,j)∈A1(am,u)E(R
(2)
⌊uT ⌋,m(λl)) = 0 (4.36) and Lemma 4.1, relation (5.11)

entails

sup
(l,j)∈A1(am,u)

Al+ζ⌊uT⌋,lm−m,T (λl)Cov(MF
ε
⌊uT ⌋(λl), R

(2)
⌊uT ⌋,m(λj)) = o(1)

sup
(l,j)∈A1(am,u)

Al+ζ⌊uT⌋,lm−m,T (λl)Cov(R
(2)
⌊uT ⌋,m(λl),MF

ε
⌊uT ⌋(λj)) = o(1).

If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞

sup
(l,j)∈A1(am,u)

Al+ζ⌊uT⌋,lm−m,T (λl)Cov(MF
ε
⌊uT ⌋(λl), R

(2)
⌊uT ⌋,m(λj)) = O

(
1√
m

)

sup
(l,j)∈A1(am,u)

Al+ζ⌊uT⌋,lm−m,T (λl)Cov(R
(2)
⌊uT ⌋,m(λl),MF

ε
⌊uT ⌋(λj)) = O

(
1√
m

)
.

B3 Lemma 4.3 and the appli
ation of the Cau
hy-S
hwarz inequality yields

sup
(l,j)∈A1(am,u)

E
(
R

(2)
⌊uT ⌋(λl) · R

(2)
⌊uT ⌋(−λj)

)
= o(1). (5.12)

The rate given the stronger set of assumptions is

1
m
.

Due to (4.36) relation (5.12) entails

sup
(l,j)∈A1(am,u)

Cov

(
R

(2)
⌊uT ⌋(λl), R

(2)
⌊uT ⌋(−λj)

)
= o(1).

If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞

sup
(l,j)∈A1(am,u)

Cov

(
R

(2)
⌊uT ⌋(λl), R

(2)
⌊uT ⌋(−λj)

)
= O

(
1

m

)
.

.

Remark 5.2

Let x be de�ned as

x := mod
(
⌊uT ⌋ −

⌊m
2

⌋)
. (5.13)
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The set A1(am, u) 
an then also be written as

A1(am, u) := {(l, j) ∈ {1, . . . , m}2|(l 6= j) ∧ [(max{|l − x|, |j − x|} ≥ am)

∨ (x ≤ l, j ≤ x+ am)∨ (x− am ≤ l, j < x)]},
(5.14)

whi
h makes the interpretation of the set more obvious. First, we illustrate the

meaning of x: When 
onsidering a set of lo
al moving 
oe�
ients (see De�nition

3.1), we have, depending, what time they refer to, a Fourier frequen
y λx whose


orresponding 
o�
ient is freshest. The 
oe�
ient 
orresponding to the next Fourier

frequen
y λx+1 is the oldest one, due to 
onstru
tion. The set A1(am, u), hen
e,


ontains all pairs of non-equal indi
es of Fourier frequen
ies whi
h are either both

smaller or both larger than x or whi
h are, if there is one smaller and one larger,

su�
iently far away from x.

The 
omplementary set to A(am, u) in
ludes to following pairs of indi
es (l, j): Let

w.l.o.g. l ≤ j. If one of the to indi
es is further away from x than am, we are no

longer in Ac(am, u). Thus, the 
omplementary set 
omprises only of pairs of indi
es

(l, j) ∈ {1, . . . , m}2 with x− am < l < x and x ≤ j < x+ am, and, not to forget, all

pairs (l, l).
Now, 
on
erning the 
ardinality of Ac(am, u) : We have m possibilities to 
hoose l
and set j = l. Further, there are am possibilities, to 
hoose l su
h that x−am < l < x
and another am to 
hoose for ea
h of the l′s an index j, su
h that x ≤ j < x+ am.
Hen
e, we have

|Ac(am, u)| = m+ a2m.

If we are only looking at indi
es (l, j), with l 6= j, that is the set Acu
1 (am, u) :=

{(l, j) ∈ {1, . . . , m}2|(l 6= j) ∧ [|l′ − j′| ≤ am ∨ |l − j| ≥ am]}. We have

|Acu
1 (am, u)| = a2m.

When not 
onsidering moving Fourier 
oe�
ients 
entred around the same point at

time ⌊uT ⌋, but 
entred around ⌊uT ⌋ and ⌊uT ⌋ + s, s = 1, . . . , cm, we are still left

with the problem we have already fa
ed when formulating Theorem 5.3. In that


ase we have worked around it with the help of A1(am, u). In the situation of the

se
ond point in time being s apart, the work around, however, is slightly 
hanged

and slightly more tri
ky due to the additional variable s.
For the next result we will therefore �rst evoke some intuition of how we 
onstru
t

the set A2 used in Theorem 5.4.

Consider the points in time ⌊uT ⌋ and ⌊uT ⌋ + s for some s = 1, . . . , cm. We use

Fourier frequen
ies with indi
es up to ±
⌊
m
2

⌋
around ea
h point. For the sake of

notation needed for the proof of Theorem 5.4 we set

U(s) :=
{
⌊uT ⌋+ s−

⌊m
2

⌋
, . . . , ⌊uT ⌋+ s+

⌊m
2

⌋}
. (5.15)
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| ×
⌊uT ⌋

| ×
⌊uT ⌋+ s

|
c1 . . . cm cm+1 c2mc2m+1 c3m c3m+1 . . . cT

S1 S2

o

l′

)(

[ ℄[ ℄

Figure 5.1: Illustrative sket
h: The set U(0) � see Equation (5.15) � is marked blue,

the set V (s) is marked green.

The 
oe�
ients in set U(0) 
orrespond to frequen
ies λ
mod(⌊uT ⌋−⌊m2 ⌋), . . . , λmod(⌊uT ⌋+⌊m2 ⌋).

Vi
e versa, when near the time ⌊uT ⌋, the 
orresponding moving Fourier 
oe�
ient

to frequen
y λl, l = 1, . . . , m, is, see (3.12),

cl+ζ⌊uT⌋,lm,

with ζ⌊uT ⌋,l = div
(
⌊uT ⌋ −

⌊
m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)}. We 
all the above index of

the moving Fourier 
oe�
ient l′.
Analogously,

j′ := j + ζ⌊uT ⌋+s,jm.

l′ and j′ 
an now take values from 1 to T , depending on the lo
ation of ⌊uT ⌋ and

the value of s.
Now 
onsider the following Figure 5.1 with some exemplary ⌊uT ⌋ and ⌊uT ⌋+ s. No
problem arises, as long as j′ and l′ remain in the same set, say Sk, with div(j

′) =
div(l′), k ∈ N0. As soon as they sit in di�erent stret
hes, the possibility of the

problem arises that |l′ − j′| → ∞, while |mod(l)−mod(j)| = |l − j| does not. The
problem is banned as soon as we require that |mod(j′)−mod(l′)| ≥ am. That is, for
some exemplary l′, j′ must not be within the red area l′+m ±am. In words, we need

to ensure that we do not use moving Fourier 
oe�
ients 
orresponding to frequen
ies

that are very near to ea
h other, unless the 
oe�
ients themselves are lo
ated very

near to ea
h other (with a distan
e of the indi
es of less than m). By phrasing very

near to ea
h other, we mean that one 
an not �nd a sequen
e am → ∞,

am
m

→ 0,
with |l − j| ≥ am.

We 
an now 
hoose a set of indi
es A2, for whi
h the moving Fourier 
oe�
ients at

the 
orresponding frequen
ies are asymptoti
ally un
orrelated.
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Theorem 5.4. Let am be a sequen
e with am → ∞, am
m

→ 0 and de�ne

A2(s) := {l′ ∈ U(0), j′ ∈ U(s)|[div(l′) = div(j′)] ∨ [|mod(l′)−mod(j′)| ≥ am]},

with U(0) and U(s) as in (5.15).

Let F−1
ε (λ1−⌈m2 ⌉), . . . ,F

−1
ε (λm),F0

ε (λ1), . . . ,F0
ε (λm), . . . , F

T
m
ε (λ⌊m2 ⌋) denote the mov-

ing Fourier transforms (De�nition 3.2 and Remark 3.3) of the innovations. Then

sup
s≥0

sup
ϕ 6=ψ∈A2(s)

Cov(Fdiv(ϕ)−1
ε (λmod(ϕ)),Fdiv(ψ)−1

ε (λmod(ψ))) = O

(
1

am
+
am
m

)
. .(5.16)

Proof. Due to Lemma 4.1, it is su�
ient to 
onsider only

sup
s≥0

sup
(ϕ,ψ)∈A2(s)

E
(
Fdiv(ϕ)−1
ε (λmod(ϕ)) · Fdiv(ψ)−1

ε (λmod(ψ))
)
.

Hen
e,

sup
(ϕ,ψ)∈A2(s)

E
(
Fdiv(ϕ)−1
ε (λmod(ϕ)) · Fdiv(ψ)−1

ε (λmod(ψ))
)

= sup
(ϕ,ψ)∈A2(s)

1

2m+ 1

2m∑

t1,t2=0

E(εϕ−m+t1εψ−m+t2)e
−iλmod(ϕ)t1eiλmod(ψ)t2 .

The expe
tan
y E(εϕ−m+t1εψ−m+t2) equals not zero only if ϕ+ t1 = ψ + t2.
The remaining proof is 
ompletely analogous to the proof of Theorem 5.2 and we

end up with

sup
s≥0

sup
(ϕ,ψ)∈A2(s)

1

2m+ 1

2m∑

t1,t2=0

E(εϕ−m+t1εψ−m+t2)e
−iλmod(ϕ)t1eiλmod(ψ)t2

= O

(
sup
s≥0

sup
(ϕ,ψ)∈A2(s)

min

(
m

|mod(ϕ)−mod(ψ)| , |ϕ− ψ|, |2m− ϕ− ψ|
))

= O

(
1

am
+
am
m

)
.

Remark 5.3

Theorem 5.4 
an also be formulated using the notation of the lo
al moving Fourier


oe�
ients. Doing so, one needs another 
hara
terisation of the set A2(s):

A2(s) := A21(s) ∪A22(s) ∪ A23.
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These sets A21,A22,A23 are spe
i�ed below. However, as the whole de�nition of

A2(s) is a bit nasty looking, we de
ided on the neater notation using the moving

Fourier 
oe�
ients.

For the alternative de�nition of A2(s), we are 
on
erned with two points in time,

⌊uT ⌋ and ⌊uT ⌋+ s. De�ne x as in (5.13) and

ys := mod
(
⌊uT ⌋+ s−

⌊m
2

⌋)
, s ∈ {−2m, . . . , 2m}.

Then, for l, j ∈ 1, . . . , m, de�ne the 
onditions

(
1) (l < x) ∧ [(j < ys) ∨ ((j ≥ ys) ∧ (|l − j| ≥ am))]

(
2) (l ≥ x) ∧ [(j ≥ ys) ∧ ((j < ys) ∧ (|l − j| ≥ am))]

(
3) (l < x) ∧ [(j ≥ ys) ∧ ((j < ys) ∧ (|l − j| ≥ am))]

(
4) (l ≥ x) ∧ (|j − l| ≥ am)

(
5) |l − j| ≥ am.

Now de�ne three sets of indi
es, depending on s: If s = 1, . . . , m− x

A21(s) := {(l, j) ∈ {1, . . . , m}2|(l 6= j) ∧ [ (c1)∨(c2)]}. (5.17)

If s = m− x+ 1, . . . , 2m− x

A22(s) := {(l, j) ∈ {1, . . . , m}2|(l 6= j) ∧ [ (c3)∨(c4)]}. (5.18)

If s = 2m− x+ 1, . . . , 2m

A23(s) := {(l, j) ∈ {1, . . . , m}2|(l 6= j) ∧ (c5)}. (5.19)

Linking these sets, we get the set of indi
es whi
h 
orresponds to the set A2(s) when
using the notation of lo
al moving Fourier 
oe�
ients.

Lemma 5.1. Let k, l = 1, . . . , T and denote the Fourier transforms by c1, . . . , cT
as in De�nition 3.2. Further, use the assumption on the fun
tion l dis
ussed in

Remark 2.3.

Then

sup
|k−l|≥3m

sup
k,l

|Cov(ck, cl)| = o(1). (5.20)

The proof is based on the 
on
ept of weak dependen
e developed by Doukhan and

Louhi
hi [18℄:
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De�nition 5.1 ((ϑ,F , ψ)-weak dependen
e).

→ Doukhan and Louhi
hi [18℄, De�nition 1

The sequen
e (Xn)n∈N of r.v.s is 
alled (ϑ,F , ψ)-weak dependent, if there exists a


lass F of real-valued fun
tions, a sequen
e ϑ = (ϑr)r∈N de
reasing to zero at in�nity,

and a fun
tion ψ with arguments (h, k, u, v) ∈ F2 × N2
su
h that for any u-tuple

(i1, . . . , iu) and any v-tuple (j1, . . . , jv) with i1 ≤ . . . ≤ iu < iu + r ≤ j1 ≤ . . . ≤ jv,
one has

|Cov(h(Xi1 , . . . , Xiu), k(Xj1, . . . , Xjv))| ≤ ψ(h, k, u, v)ϑr,

for all fun
tions h,k ∈ F that are de�ned on Ru
and Rv

, respe
tively.

In the setting of Doukhan and Louhi
hi [18℄ we have L := {set of bounded Lips
hitz

fun
tions Ru → R, for some u ∈ N}. Further,

Lip(h) := sup
x 6=y

|h(x)− h(y)|
||x− y||

denotes the Lips
hitz modulus of a fun
tion h : Ru → R, where Ru
is equipped with

its l1-norm. Furthermore, L1 := {h ∈ L; ‖h‖∞ ≤ 1}.
We 
ite subse
tion 4.3.4 in Nze and Doukhan [41℄, where the (ϑ,L, ψ)-weak depen-

den
e of two-sided sequen
es is stated. A

ordingly, the in�nite moving average

Xt,T =

∞∑

j=−∞
at,T (j)et−j ,

with ϑr = 2 · E|ε0| ·
∑

|j|≥m
1
l(j)

and ψ(h, k, u, v) = (uLip(h) + vLip(k)) is (ϑ,L, ψ)-
weak dependent.

Proposition 5.1

A lo
ally stationary pro
ess as in De�nition 2.1 is (ϑ,L1, ψ)-weak dependent, with

a sequen
e ϑ = (ϑ2m)2m∈N de
reasing to zero at in�nity, and a fun
tion ψ with

arguments (h, k, u, v) ∈ L1
2 × N2

su
h that for any u-tuple (i1, . . . , iu) and any v-
tuple (j1, . . . , jv) with i1 ≤ . . . ≤ iu < iu + 2m ≤ j1 ≤ . . . ≤ jv

|Cov(h(Xi1,T , . . . , Xiu,T ), k(Xj1,T , . . . , Xjv,T ))| ≤ ψ(h, k, u, v)ϑ2m,

with ψ(g, h, u, v) := (u+ v) ·max{Lip(h), Lip(k)} and

ϑ2m := E|ε0| ·


∑

|j|≥m

1

l(j)


 . (5.21)

Proof. To prove the (ϑ,L1, ψ)-weak dependen
e of a lo
ally stationary pro
ess as

in De�nition 2.1, we follow Nze and Doukhan [41℄ p.1007 and split Xt,T in an m-

dependent pro
ess Yt,T and some pro
ess Rt,T , being asymptoti
ally negligible with
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respe
t to the L1
-norm.

Yt,T :=

⌊m2 ⌋∑

j=−⌊m2 ⌋
at,T (j)εt−j Rt,T :=

∑

|j|>⌊m2 ⌋
at,T (j)εt−j .

Consequently,

|Cov(h(Xi1,T , . . . , Xiu,T ), k(Xj1,T , . . . , Xjv,T ))|
≤ |Cov(h(Xi1,T , . . . , Xiu,T )− h(Yi1,T , . . . , Yiu,T ), k(Xj1,T , . . . , Xjv,T ))|

+|Cov(h(Yi1,T , . . . , Yiu,T ), k(Yj1,T , . . . , Yjv,T ))|
+|Cov(h(Yi1,T , . . . , Yiu,T ), k(Xj1,T , . . . , Xjv,T )− k(Yj1,T , . . . , Yjv,T ))|

Due to the m-dependen
e of the pro
ess Yt,T ,

|Cov(h(Yi1,T , . . . , Yiu,T ), k(Yj1,T , . . . , Yjv,T ))| = 0.

We may therefore 
ontinue with

|Cov(h(Xi1,T , . . . , Xiu,T ), k(Xj1,T , . . . , Xjv,T ))|
≤ |Cov(h(Xi1,T , . . . , Xiu,T )− h(Yi1,T , . . . , Yiu,T ), k(Xj1,T , . . . , Xjv,T ))|

+|Cov(h(Yi1,T , . . . , Yiu,T ), k(Xj1,T , . . . , Xjv,T )− k(Yj1,T , . . . , Yjv,T ))|
< 2Lip(h)‖k‖∞‖(Xi1,T , . . . , Xiu,T )− (Yi1,T , . . . , Yiu,T )‖1

+2Lip(k)‖h‖∞‖(Xj1,T , . . . , Xjv,T )− (Yj1,T , . . . , Yjv,T )‖1
≤ 2Lip(h)‖(Ri1,T , . . . , Riu,T )‖1 + 2Lip(k)‖(Rj1,T , . . . , Rjv,T )‖1

due to ‖h‖∞ ≤ 1 as well as ‖k‖∞ ≤ 1.

For t = 1, . . . , T ,

E|Rt,T | ≤
∑

|j|≥⌊m2 ⌋
|at,T (j)|E|εt−j| ≤ E|ε0|




∑

|j|≥⌊m2 ⌋
|at,T (j)|


 ≤ C




∑

|j|≥⌊m2 ⌋

1

l(j)


 .

This result also holds for every u ∈ [0, 1] :

sup
u∈[0,1]

sup
t∈Bu

E|Rt,T | ≤ C




∑

|j|≥⌊m2 ⌋

1

l(j)


 .
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Thus, Xt,T is weak dependent with ψ(g, h, u, v) = (u+ v) ·max{Lip(h), Lip(k)} and

ϑm := E|ε0| ·




∑

|j|≥⌊m2 ⌋

1

l(j)


 .

ϑm → 0 due to the the behaviour of l(j) as given in De�nition 2.1. .

Proof of Lemma 5.1. Let |k − l| ≥ 3m. Then |k − m + j − (l − m + i)| ≥ m, for
j, i = 0, . . . , 2m.
Consider the spe
ial 
ase of u = v = 2m, r ≥ m, f1(x) :=

∑2m
j=0 xk−m+je

−iλmod(k)j

and f2(x) :=
∑2m

j=0 xl−m+je
−iλmod(l)j

. Both fun
tions f1 and f2 have a Lips
hitz

modulus of 1, as

∣∣∣
∑2m

j=0(xk−m+j − yk−m+j)e
−iλmod(k)j

∣∣∣
∑2m

j=0 |xk−m+j − yk−m+j|
≤
∑2m

j=0 |xk−m+j − yk−m+j|∑2m
j=0 |xk−m+j − yk−m+j|

= 1.

We begin with

sup
|k−l|≥3m

sup
k,l

|Cov(ck, cl)|

= sup
|k−l|≥3m

sup
k,l

∣∣∣∣∣Cov
(

1√
2m+ 1

2m∑

j=0

Xk−m+j,Te
−iλmod(k)j,

1√
2m+ 1

2m∑

j=0

Xl−m+j,Te
−iλmod(l)j

)∣∣∣∣∣

= sup
|k−l|≥3m

sup
k,l

1

2m+ 1

∣∣∣∣∣Cov
(

2m∑

j=0

Xk−m+j,Te
−iλmod(k)j ,

2m∑

j=0

Xl−m+j,Te
−iλmod(l)j

)∣∣∣∣∣

= sup
|k−l|≥3m

sup
k,l

1

2m+ 1
|Cov(f1(Xk−m,T , . . . , Xk+m,T ), f2(Xl−m,T , . . . , Xl+m,T ))|

≤ sup
|k−l|≥3m

sup
k,l

1

2m+ 1
ψ(f1, f2, 2m, 2m) · ϑ2m,

E|ε0| ≤ C (
f. De�nition 2.1). Furthermore, Lip(f1) = Lip(f2) = 1, whi
h then

results in

sup
|k−l|≥3m

sup
k,l

1

2m+ 1
ψ(f1, f2, 2m, 2m) · ϑ2m ≤ 2 ·K · 2m

2m+ 1

∑

|j|≥m

1

l(j)
.

Hen
e, (5.20) follows.

Remark 5.4

There is also an alternative, more obvious proof of Lemma 5.1:
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Proof. First note that

Cov(ck, cl) =

∞∑

j1,j2=−∞
ak,T (j1)al,T (j2)

2m∑

t1,t2=0

E (εk−j1+t1εl−j2+t2) e
−iλmod(k)t1+iλmod(l)t2 ,

with E (εk−j1+t1εl−j2+t2) = δ{t1=t2+l−k+j1−j2}. However, as t1 is restri
ted to the range

from 0 to 2m, the expe
tan
y 
an only be non-zero for |j1− j2| > m, if |k− l| ≥ 3m.
Hen
e,

sup
|k−l|≥3m

sup
k,l

|Cov(ck, cl)| ≤ C sup
|k−l|≥3m

sup
k,l

∑

|j1−j2|>m
|ak,T (j1)| · |al,T (j2)| → 0.

The drawba
k of this simple proof, however, is that it 
an not easily extended to

periodograms, as the arguments require a lineare stru
ture.

The following Lemma is an extension of Theorem 5.3 (a) to moving periodograms.
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Lemma 5.2. For u ∈ [0, 1], j 6= k = 1, . . . , m, let

ζ⌊uT ⌋,k := div
(
⌊uT ⌋ −

⌊m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)},

l′ := l + ζ⌊uT ⌋,lm

j′ := j + ζ⌊uT ⌋,jm.

Then,

sup
l 6=j=1,...,m

[
min

(
m,max

(
|l − j|2, m2

|l′ − j′|2
)) ∣∣E(MIε⌊uT ⌋,m(λj)MIε⌊uT ⌋,m(λl))− 1

∣∣
]
= O(1);

sup
j=1,...,m

VarMIε⌊uT ⌋,m(λj) = 2 +O

(
1

m

)
.

Proof.

E(MIε⌊uT ⌋,m(λl)MI
ε
⌊uT ⌋,m(λj))

=
1

(2m+ 1)2

2m∑

t1,t2,t3,t4=0

E
(
εl+ζ⌊uT⌋,lm−m+t1εl+ζ⌊uT⌋,lm−m+t2e

−i(t1−t2)λl

εj+ζ⌊uT⌋,jm−m+t3εj+ζ⌊uT⌋,jm−m+t4e
−i(t4−t3)λj)

=
1

(2m+ 1)2

2m∑

t1,t2,t3,t4=0

e−i(t1−t2)λle−i(t4−t3)λj

·E
(
εl+ζ⌊uT⌋,lm−m+t1εl′−m+t2εj′−m+t3εj+ζ⌊uT⌋,jm−m+t4

)
.

We now have

1

(2m+ 1)2

l′+m∑

t1,t2=l′−m′

j′+m∑

t3,t4=j′−m
E(εt1εt2εt3εt4)e

−i(t1−t2)λlei(t3−t4)λj

For further 
al
ulations we need the following 
ase di�erentiation with respe
t to

the indi
es t1, . . . , t4.

• t1 = t2 = t3 = t4

In this 
ase, we 
an get the upper bound

1

2m+ 1
E(ε41) +

Σ(l, j)E(ε41)

(2m+ 1)2
(5.22)

The exa
t value value of Σ(l, j) is:

Σ(l, j) := min{2m+ l′, 2m+ j′} −max{l′, j′}+ 1 = 2m− |l′ − j′|+ 1.
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• t1 = t2 6= t3 = t4

yields

σ2 − Eε41
(2m+ 1)2

∑

t1=t2=t3=t4

1 = 1− Σ(l, j)E(ε41)

(2m+ 1)2
.

• t1 = t3 6= t2 = t4

W.l.o.g. l′ > j′

1

(2m+ 1)2

j′+m∑

t1,t2=j′−m

l′+m∑

t3,t4=l′−m
E(εt1εt2εt3εt4)e

−i(t1−t2)λlei(t3−t4)λj1{t1=t3 6=t2=t4}

=
1

(2m+ 1)2

2m+j′∑

t1,t2=l′

e−i(t1−t2)λlei(t1−t2)λj − Eε41
(2m+ 1)2

∑

t1=t2=t3=t4

1

=
1

(2m+ 1)2

∣∣∣∣∣

2m+j′∑

t1=l′

e−it1λl−j

∣∣∣∣∣

2

− Σ(l, j)E(ε41)

(2m+ 1)2
.

Considering the term

1

(2m+ 1)2

∣∣∣∣∣

2m+j′∑

t1=l′

e−it1λl−j

∣∣∣∣∣

2

,

whi
h equals 1 for l = j, we write

2m+j′∑

t1=l′

e−it1λl−j =

2m+j′−l′∑

t1=0

e−i(t1+l
′)λl−j +

2m∑

t1=2m+j′−l′+1

e−i(t1+l
′)λl−j

−
2m∑

t1=2m+j′−l′+1

e−i(t1+l
′)λl−j

= −
2m∑

t1=2m+j′−l′+1

e−i(t1+l
′)λl−j

= −
l′−j′∑

t1=1

e−i(t1+2m+l′)λl−j .

From this, we de�ne

T := T (l′, j′, l, j) :=

l′−j′∑

t1=1

e−i(t1+2m+j′)λl−j ,
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to whi
h we apply Lemma A.4 in Kir
h [27℄. This yields

T = O

(
min

(
2m+ 1

|l − j| , |l
′ − j′|

))
.

Analogously for the sine term. Hen
e,

1

(2m+ 1)2
|T |2 ≤ Cmin

(
1

|l − j|2 ,
|l′ − j′|2
m2

,
|l′ − j′|
m|l − j|

)
+

1

m

= Cmin

(
1

|l − j|2 ,
|l′ − j′|2
m2

)
+

1

m
. (5.23)

• t1 = t4 6= t2 = t3 This 
ase is analogous to the 
ase of t1 = t3 6= t2 = t4 and

yields the same result, whi
h in
ludes 1 +O
(

1
m

)
for l = j. So note that all in

all

sup
j=1,...,m

VarMIε⌊uT ⌋,m(λj) = 2 +O

(
1

m

)
.

Continuing for l 6= j we 
an write

Cov

(
MIε⌊uT ⌋,m(λj),MI

ε
⌊uT ⌋,m(λl)

)
= Σ(l, j) · E(ε

4
1)− 3

(2m+ 1)2
+O

(
min

(
1

|l − j|2 ,
|l′ − j′|2
m2

))
.

(5.24)

All in all,

|E(MIε⌊uT ⌋,m(λl),MIε⌊uT ⌋,m(λl))− 1| ≤ C1min

(
1

|l − j|2 ,
|l′ − j′|2
m2

)
+ C2

1

m
.

≤ C3max

(
min

(
1

|l − j|2 ,
|l′ − j′|2
m2

)
,
1

m

)
.

.

Lemma 5.3. Let am be a sequen
e with am → ∞,

am
m

→ 0 and A1(am, u) as in

(5.5).

Then,

(a)

sup
(l,j)∈A1(am,u)

∣∣E(MIε⌊uT ⌋,m(λl)MIε⌊uT ⌋,m(λj))− 1
∣∣ = O

(
1

m
+

1

a2m
+
a2m
m2

)
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(b)

sup
l 6=j=1,...,m

E(MIε⌊uT ⌋,m(λl)MI
ε
⌊uT ⌋,m(λj)) = O(1).

Proof. The set A1(am, u) is de�ned as

A1(am, u) := {(l, j) ∈ {1, . . . , m}2|(j 6= l) ∧ [|l′ − j′| ≤ am ∨ |l − j| ≥ am]}.

(a) In any of the two 
ases |l′ − j′| ≤ am or |l − j| ≥ am, the result follows from

Lemma 5.2.

(b) Follows immediately from Lemma 5.3.

We introdu
e the following notation. Let

x ≻ y :⇔ x

y
= o(1),

x < y :⇔ x

y
= O(1).

Remark 5.5

If additionally to the assumptions of Lemma 5.3 am 4
√
m,

sup
(l,j)∈A1(am,u)

∣∣E(MIε⌊uT ⌋,m(λl)MIε⌊uT ⌋,m(λj))− 1
∣∣ = O

(
1

a2m

)
.

Corollary 5.1. In the situation of Lemma 5.2 with am → ∞ and am 4
√
m,

sup
(l,j)∈A1(am,u)

Cov(MIε⌊uT ⌋,m(λl),MI
ε
⌊uT ⌋,m(λj)) = O

(
1

a2m

)
.

Proof. Under the assumptions made, Lemma 5.3 states that

sup
(l,j)∈A1(am,u)

∣∣E(MIε⌊uT ⌋,m(λl)MIε⌊uT ⌋,m(λj))− 1
∣∣ = O

(
1

a2m

)
,

As supu,lE(MI
ε
⌊uT ⌋,m(λl)) = 1, see Proposition 4.1, the result follows.
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Lemma 5.4.

1

2m+ 1

∑

j,l=0,...,2m

∣∣
Cov(MIε⌊uT ⌋,m(λl),MI

ε
⌊uT ⌋,m(λj))

∣∣ = O(1).

Proof. We split the set of indi
es and then apply Corollary 5.1:

1

2m+ 1

2m∑

j 6=l=0

∣∣E(MIε⌊uT ⌋,m(λl)MIε⌊uT ⌋,m(λj))− 1
∣∣

=
2

2m+ 1


 ∑

(l,j)∈A1(am,u)

∣∣
Cov(MIε⌊uT ⌋,m(λl),MI

ε
⌊uT ⌋,m(λj))

∣∣

+
∑

(l,j)6∈A1(am,u)

∣∣
Cov(MIε⌊uT ⌋,m(λl)MI

ε
⌊uT ⌋,m(λj))

∣∣



= O

(
m

a2m
+
a2m
m

)
.

With am =
√
m the result follows. Note that the 
ase l = j 
an be in
luded into

the sum.

Lemma 5.5. Let supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞. Then,

1

2m+ 1

2m∑

j,k=0

∣∣∣∣Cov(MI⌊uT ⌋,m(λj),MI⌊uT ⌋,m(λk))− |Aj+ζ⌊uT⌋,jm−m,T (λj) |2

·|Ak+ζ⌊uT⌋,km−m,T (λk) |2 · Cov
(
MIε⌊uT ⌋,m(λj),MI

ε
⌊uT ⌋,m(λk)

) ∣∣∣∣ = o(1).

Proof. Theorem 4.3 enables us to express the moving periodogram of a lo
ally sta-

tionary time series with the help of the moving periodogram of iid random variables

plus some remainder with vanishing se
ond moment. The properties of the remain-

der are formally stated in Equations (4.47) and (4.48).
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5.2 Covarian
e stru
ture

We may therefore substitute

1

2m+ 1

2m∑

j,k=0

∣∣∣∣Cov(MI⌊uT ⌋,m(λj),MI⌊uT ⌋,m(λk))− |Aj+ζ⌊uT⌋,jm−m,T (λj) |2

·|Ak+ζ⌊uT⌋,km−m,T (λk) |2Cov
(
MIε⌊uT ⌋,m(λj),MI

ε
⌊uT ⌋,m(λk)

) ∣∣∣∣

≤ 1

2m+ 1

2m∑

j,k=0

|Aj+ζ⌊uT⌋,jm−m,T (λj) |2
∣∣
Cov

(
MIε⌊uT ⌋,m(λj), R

′
⌊uT ⌋,m(λk)

)∣∣

+
1

2m+ 1

2m∑

j,k=0

|Ak+ζ⌊uT⌋,km−m,T (λk) |2
∣∣
Cov

(
R′

⌊uT ⌋,m(λj),MI
ε
⌊uT ⌋,m(λk)

)∣∣

+
1

2m+ 1

2m∑

j,k=0

∣∣
Cov

(
R′

⌊uT ⌋,m(λj), R
′
⌊uT ⌋,m(λk)

)∣∣ ,

with At,T (λl) :=
∑∞

j=−∞ at,T (j)e
−iλlj

.

A

ording to Proposition 4.2 supj=1,...,m |Aj+ζ⌊uT⌋,jm−m,T (λj) |2 is bounded. More-

over, note that ER
(2)
⌊uT ⌋,m(λl) = 0 (4.36) and 
onsequently ER

′

⌊uT ⌋,m(λl) = 0.

1

2m+ 1

2m∑

j,k=0

|Aj+ζ⌊uT⌋,jm−m,T (λj) |2
∣∣E
(
MIε⌊uT ⌋,m(λj)R

′
⌊uT ⌋,m(λk)

)∣∣

≤ E

(
1√

2m+ 1

2m∑

j=0

|Aj+ζ⌊uT⌋,jm−m,T (λj) |2
∣∣MIε⌊uT ⌋,m(λj)

∣∣

· 1√
2m+ 1

2m∑

k=0

∣∣R′
⌊uT ⌋,m(λk)

∣∣
)

≤ CE

(
1√

2m+ 1

2m∑

j=0

∣∣MIε⌊uT ⌋,m(λj)
∣∣ 1√

2m+ 1

2m∑

k=0

∣∣R′
⌊uT ⌋,m(λk)

∣∣
)

≤ C

√√√√ 1

2m+ 1
E

(
2m∑

j=0

∣∣∣MIε⌊uT ⌋,m(λj)
∣∣∣
)2

·

√√√√ 1

2m+ 1
E

(
2m∑

k=0

∣∣∣R′
⌊uT ⌋,m(λk)

∣∣∣
)2

with the Cau
hy-S
hwarz inequality. Similarly,

1

2m+ 1

2m∑

j,k=0

∣∣E
(
R′

⌊uT ⌋,m(λj)R
′
⌊uT ⌋,m(λk)

)∣∣ ≤ E

(
1√

2m+ 1

2m∑

k=0

∣∣R′
⌊uT ⌋,m(λk)

∣∣
)2

.
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We know from Lemma 5.4 that

Var

(
1√

2m+ 1

2m∑

j=0

∣∣MIε⌊uT ⌋,m(λj)
∣∣
)

= Var

(
1√

2m+ 1

2m∑

j=0

MIε⌊uT ⌋,m(λj)

)

=
1

2m+ 1

2m∑

j,k=0

Cov

(
MIε⌊uT ⌋,m(λj),MI

ε
⌊uT ⌋,m(λk)

)

= O(1).

With Proposition 4.1,

E

(
1√

2m+ 1

2m∑

j=0

∣∣MIε⌊uT ⌋,m(λj)
∣∣
)2

= O(1).

And with Theorem 4.3, Equation (4.48), that is

E

(
1√

2m+ 1

2m∑

k=0

∣∣R′
⌊uT ⌋,m(λk)

∣∣
)2

= o(1),

the result follows.

5.3 Spe
tral means with moving periodograms:

asymptoti
 
hara
teristi
s

We de�ne the spe
tral mean MT using the lo
al moving periodogram:

MT (u) :=
1

2m+ 1

2m∑

j=0

ϕ(λj)|MF⌊uT ⌋(λj)|2 (5.25)

T (u) :=
1

2m+ 1

2m∑

j=0

ϕ(λj)|F(X⌊uT ⌋−m+1,T , . . . , X⌊uT ⌋+m,T ;λj)|2 (5.26)

T (u) denotes the spe
tral mean statisti
 as used by Sergides [49℄, employing the

lo
al periodogram. Here, ϕ is 
hosen as in Sergides [49℄, Assumption 4. ϕ is a


omplex-valued bounded fun
tion. Moreover, it is periodi
ally extended to R with

period 2π and has a bounded se
ond derivative. For 2m ≥ j > m, we require

ϕ(λj) = ϕ(λ2m−j).
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Proposition 5.2

1

m

2m∑

l,j=0, l>j

min




1

|l − j|2 ,

∣∣∣l − j + 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)>j}m
∣∣∣
2

m2


 = O

(
m− 1

3

)
.

Proof.

1

m

∑

l>j

min




1

|l − j|2 ,

∣∣∣l − j + 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)>j}m
∣∣∣
2

m2




≤ 1

m

∑

l>j

min

(
1

|l − j|2 ,
|l − j|2
m2

)
+

1

m

∑

l≥j+m
1
3

1

|l − j|2

+
C

m

mod(⌊uT ⌋−⌊m2 ⌋)−1∑

j=mod(⌊uT ⌋−⌊m2 ⌋)−m 1
3

j+m
1
3∑

l=mod(⌊uT ⌋−⌊m2 ⌋)
1

The splitting is 
hosen a

ording to the di�erent possible values of the indi
ator

fun
tion: The �rst 
ase is assuming that 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)>j} = 0, the se
ond one

assumes that the indi
ator fun
tion equals 1, but l > j + m
1
3
, and the third 
ase

assumes the indi
tor being 1 and all values of l and j not in
luded in the se
ond 
ase.

With Kreiss and Neuhaus [30℄, Equation (A.11),

1

m

∑

l>j

min

(
1

|l − j|2 ,
|l − j|2
m2

)
=

1

m

∑

1≤|h|≤O(m)

(2m− |h|)min

(
1

h2
,
h2

m2

)

≤ O(1)

∣∣∣∣∣∣

∑

|h|≤√
m

h2

m2
+
∑

|h|>√
m

1

h2

∣∣∣∣∣∣
= O

(
1√
m

)
.

Analogously,

1

m

∑

l≥j+m
1
3

1

|l − j|2 =
1

m

∑

O(m)≥|h|≥m
1
3

2m− |h|
h2

=
∑

|h|≥m
1
3

1

h2
= O

(
m− 1

3

)
.
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And �nally,

1

m

mod(⌊uT ⌋−⌊m2 ⌋)−1∑

j=mod(⌊uT ⌋−⌊m2 ⌋)−m 1
3

j+m
1
3∑

l=mod(⌊uT ⌋−⌊m2 ⌋)
1

=
1

m

mod(⌊uT ⌋−⌊m2 ⌋)−1∑

j=mod(⌊uT ⌋−⌊m2 ⌋)−m 1
3

(
j +m

1
3 −mod

(
⌊uT ⌋ −

⌊m
2

⌋)
+ 1
)

=
1

m

m
1
3∑

k=1

k = O

(
m

2
3

m

)
= O

(
m− 1

3

)
.

Theorem 5.5. With MT as in (5.25), for every u ∈ [0, 1] it holds that

Var

(√
2m+ 1 [MT (u)−E(MT (u))]

)
=

=
8π2

2m+ 1

2m∑

j=0

|ϕ(λj)|2f 2(u, λj) + (E(ε41)− 3)

(
8π2

(2m+ 1)3
·

·
2m∑

j 6=l=0

ϕ(λj)ϕ(λl)f(u, λj)f(u, λl)|Σ(l, j)|
)

+ o(1).

with

Σ(l, j) := 2m− |l′ − j′|+ 1,

ζ⌊uT ⌋,k := div
(
⌊uT ⌋ −

⌊m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)},

l′ := l + ζ⌊uT ⌋,lm,

j′ := j + ζ⌊uT ⌋,jm.

Remark 5.6

Σ(l, j) is bounded from above by 2m+ 1. In the 
ase of lo
al periodograms, as seen

in Sergides [49℄, it equals 2m+ 1, as we do not do any shifting.
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Proof.

With Lemma 5.5, De�nition 2.2 and ϕ bounded

1

2m+ 1

∑

j 6=l
ϕ(λj)ϕ(λl)Cov(MI⌊uT ⌋,m(λj),MI⌊uT ⌋,m(λl))

=
4π2

2m+ 1

∑

j 6=l
ϕ(λj)ϕ(λl)f(u, λj)f(u, λl)Cov(MI

ε
⌊uT ⌋,m(λj),MI

ε
⌊uT ⌋,m(λl)) + o(1).

From this,

Var

(√
2m+ 1 [MT (u)−E(MT (u))]

)

=
1

2m+ 1

2m∑

j=0

ϕ(λj)ϕ(λj)Var
(
MI⌊uT ⌋,m(λj)

)

+
1

2m+ 1

2m∑

j 6=l=0

ϕ(λj)ϕ(λl)Cov
(
MI⌊uT ⌋,m(λj),MI⌊uT ⌋,m(λl)

)

=
1

2m+ 1

2m∑

j=0

ϕ(λj)ϕ(λj)Var
(
MI⌊uT ⌋,m(λj)

)

+
2

2m+ 1

∑

j 6=l
ϕ(λj)ϕ(λl)Cov

(
MI⌊uT ⌋,m(λj),MI⌊uT ⌋,m(λl)

)

=
1

2m+ 1

2m∑

j=0

ϕ(λj)ϕ(λj)Var
(
MI⌊uT ⌋,m(λj)

)

+
8π2

2m+ 1

∑

j 6=l
ϕ(λj)ϕ(λl)f(u, λj)f(u, λl)Cov(MI

ε
⌊uT ⌋,m(λj),MI

ε
⌊uT ⌋,m(λl))

+o(1)

=: A1 + A2 + o(1),

A1

By slightly modifying Theorem 4.3, we get with Propositions 4.1 and 4.2

MI⌊uT ⌋,m(λj) = |A (u, λj)|2MIε⌊uT ⌋,m(λj) +R′′
⌊uT ⌋,(λj).

R′′
⌊uT ⌋,m(λj) ful�lls (4.46) and, under the additional assumption of

sup
u∈[0,1]

∞∑

j=−∞
|a(u, j)|

√
|j| <∞,

(4.47) holds.
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With the above modi�
ation of Theorem 4.3

Var

(
MI⌊uT ⌋,m(λj)

)
= |A (u, λj)|4Var

(
MIε⌊uT ⌋,m(λj)

)
+ Var

(
R′

⌊uT ⌋(λj)
)

+2 |A (u, λj)|2Cov
(
MIε⌊uT ⌋,m(λj), R

′
⌊uT ⌋(λj)

)
.

Now,

sup
u∈[0,1]

sup
l=1,...,m

Var

(
R′

⌊uT ⌋(λj)
)
≤ sup

u∈[0,1]
sup

l=1,...,m
E|R′

⌊uT ⌋(λj)|2 = o(1)

Under the assumption that supu∈[0,1]
∑∞

j=−∞ a(u, j)
√
|j| <∞, we get O

(
1
m

)
.

Hen
e, with Cau
hy-S
hwarz and Propositions 4.1 and 4.2, we also have that

sup
u∈[0,1]

sup
l=1,...,m

|A (u, λj)|2Cov
(
MIε⌊uT ⌋,m(λj), R

′
⌊uT ⌋(λj)

)
= o(1).

Again, with the additional assumption, this yields a rate of O
(

1√
m

)
.

From Lemma 5.2 we have that

sup
j=1,...,m

Var

(
MIε⌊uT ⌋,m(λj)

)
= 2 +O

(
1

m

)
.

Thus,

1

2m+ 1

2m∑

j=0

ϕ(λj)ϕ(λj)Var
(
MI⌊uT ⌋,m(λj)

)
=

2

2m+ 1

2m∑

j=0

|ϕ(λj)|2 |A (u, λj)|4 + o(1).

With the de�nition of the time-varying spe
tral density, f(u, λ), De�nition 2.2,

Var(MI⌊uT ⌋,m(λj)) = 8π2f 2(u, λj) + o(1). (5.27)

With the additional assumption we get

Var(MI⌊uT ⌋,m(λj)) = 8π2f 2(u, λj) +O

(
1√
m

)
. (5.28)

And, hen
e,

A1 =
1

2m+ 1

2m∑

j=0

ϕ(λj)ϕ(λj)Var
(
MI⌊uT ⌋,m(λj)

)

=
8π2

2m+ 1

2m∑

j=0

|ϕ(λj)|2f 2(u, λj) + o(1).
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A2

From the proof in Lemma 5.2, we obtain Equation (5.24), that is

Cov

(
MIε⌊uT ⌋,m(λj),MI

ε
⌊uT ⌋,m(λl)

)
= Σ(l, j) · E(ε

4
1)− 3

(2m+ 1)2
+O

(
min

(
1

|l − j|2 ,
|l′ − j′|2
m2

))
.

Hen
e, by Proposition 5.2,

A2 =
8π2

2m+ 1

2m∑

j 6=l=0

ϕ(λj)ϕ(λl)f(u, λj)f(u, λl)Cov
(
MIε⌊uT ⌋,m(λj),MI

ε
⌊uT ⌋,m(λl)

)

= (E(ε41)− 3)

(
1

(2m+ 1)3

2m∑

j 6=l=0

ϕ(λj)ϕ(λl)f(u, λj)f(u, λl)Σ(l, j)

)
+O

(
m− 1

3

)
.

and therefore the result follows.
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CHAPTER 6

Alternative Fourier transformations

In Chapter 5 we have looked at the 
ovarian
e of lo
al moving 
oe�
ients. In

the easiest 
ase, the 
oe�
ients referred to and were based on a sequen
e of i.i.d.

random variables εt. We will restri
t ourselves in the following to this 
ase in order

to understandably 
onvey our point. The results 
an, of 
ourse, analogously to the

pro
edure in Chapter 4 be extended to the 
ase of stationary, as well as lo
ally

stationary time series.

We look at the statement made by Theorem 5.3:

In the situation of Lemma 5.2 with am → ∞ and am/
√
m→ 0,

sup
(l,j)∈A1(am,u)

Cov(MIε⌊uT ⌋,m(λl),MI
ε
⌊uT ⌋,m(λj)) = O

(
1

a2m

)
.

Here, one might ask oneself if the restri
tion to the set A1(am, u) introdu
ed to

maintain the 
orre
t 
ovarian
e stru
ture is indeed ne
essary or whether it 
an be


ir
umvented by slightly 
hanging the transform in some way. For the de�nition of

the set A1(am, u) see Equation (5.5).

Note that in the following se
tions, we will refer to the 
oe�
ients

MF ε
k (λl) :=

1√
2m+ 1

2m∑

t=0

ε
l+

(

div(k−⌊m2 ⌋)−1{l≥mod(k−⌊m2 ⌋)}
)

m−m+t,T
e−itλl ,

(De�nition 3.1) as the original lo
al moving Fourier 
oe�
ients in 
ontrast to the

below-mentioned alterations MF
ε,(1)
k (λl), MF

ε,(2)
k (λl), and MF

ε,(3)
k (λl).
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6 Alternative Fourier transformations

Further, we de�ne two alternative operators to mod and div for j ∈ Z:

MOD(j) :=





2m+ 1, if 2m+ 1 is a fa
tor of j ∈ Z,

j mod (2m+ 1) , j > 0 ∧ (2m+ 1) | j,
2m+ 1− [(−j) mod (2m+ 1)], j < 0 ∧ (2m+ 1) ∤ j.

(6.1)

DIV (j) :=

⌈
j

2m+ 1

⌉
. (6.2)

Then, j =MOD(j) + (DIV (j)− 1)(2m+ 1).

Those operators arise from the de�nition of mod and div by substituting m by

2m+ 1.

6.1 Lo
al moving Fourier transform (Alt 1) -

adding some rearranging

Motivated by the pro
edure 
hosen for the transformation from frequen
y to time

domain (De�nition 3.4), one might also want to 
onsider the rearranging of the

input data in this 
ase. We have already done this in the frequen
y domain where

it seems very intuitive, as one would want to link the Fourier 
oe�
ient cl (referring
to frequen
y λl to the exponential fun
tion eiλlt. Simply speaking, one would like

to have

εt =
2m∑

l=0

cle
iλlt,

just like we do for the ordinary global Fourier transform. Note, however, that we

do move through the sequen
e c1, c2, . . . , cT when performing the inverse moving

Fourier transform. Hen
e, we would, in the next step, link cl with e
−iλl−1t

, as the set

of Fourier 
oe�
ients we started with would be not c1, . . . , cm, but c2, . . . , cm+1. Now

c2 would be multiplied by eiλ1·, whi
h does not make any sense, as it 
orresponds to

frequen
y λ1. Hen
e, in the frequen
y domain the reason why we do the rearranging,

whi
h is thoroughly des
ribed in Chapter 3, is obvious.

We now asked ourselves the question whether we may either get rid of or redu
e

the 
ardinality of the set A1(am, u) by doing the same rearranging in the time

domain, ensuring that some random variable εt will always, when o

uring in any

sele
ted stret
h of data be linked with e−iλlt (in
orporating the same index t and
not in
orporating just some index used for summing up the 2m + 1 elements).

Without rearranging, the random variable ε16, for example, whi
h is used in 2m+1
transformations, is always linked to a di�erent value of the index of summation. By

rearranging, we ensure that the random variable ε16 is always in position 16 of our

set of length 2m+ 1. That's the idea so far, now 
omes the theory.
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6.1 Lo
al moving Fourier transform (Alt 1) - adding some rearranging

What happens formally, when adding rearranging to the original lo
al moving Fourier

transform? Starting out with the time series ε0, . . . , εT , we intend to always link ε0
to the �rst position in the set, ε1 to the se
ond position, up to ε2m, whi
h is linked

to the position 2m+ 1. ε2m+1 shall then be again linked to the �rst position in the

sample and so on. We 
an see that this way the 
orresponding positions result from

using the a
tual indi
es MOD(2m+ 1).

Now 
onsider the exemplary set of

ε4, ε5, . . . , ε2m+1, ε2m+2, ε2m+3, ε2m+4.

The �rst step is to �nd out, what the inherent position of the last element is:

MOD(2m+ 4). This equals 3. Now, the set is rearranged to

ε2m+2, ε2m+3, ε2m+4, ε4, ε5, . . . , ε2m+1,

pla
ing ε2m+4 in position 3. The number MOD(2m + 4) will be referred to as the

spli
e of the stret
h of random variables 
onsidered.

Assuming we want to 
al
ulate the Fourier 
oe�
ient at frequen
y 1 ≤ l ≤ m, the

spli
e in the sequen
e of indi
es 
an be written as

ξl :=MOD(l + ζ⌊uT ⌋,lm+m)

That is

MF
ε, (1)
⌊uT ⌋ (λl) :=

1√
2m+ 1

ξl∑

t=1

εl+ζ⌊uT⌋,lm−m+2m+t+1e
−iλlt

+
1√

2m+ 1

2m+1∑

t=ξl+1

εl+ζ⌊uT⌋,lm−m+te
−iλlt.

Now, with similar arguments as in the proof of Theorem 5.2,

E(MF
ε, (1)
⌊uT ⌋ (λl)MF

ε, (1)
⌊uT ⌋ (λj))

= E

((
1√

2m+ 1

ξl∑

t=1

εl+ζ⌊uT⌋,lm−m+2m+te
−iλlt +

1√
2m+ 1

2m+1∑

t=ξl+1

εl+ζ⌊uT⌋,lm−m+te
−iλlt

)

·


 1√

2m+ 1

ξj∑

t=1

εj+ζ⌊uT⌋,jm−m+2m+te
iλjt +

1√
2m+ 1

2m+1∑

t=ξj+1

εj+ζ⌊uT⌋,jm−m+te
iλjt






=
O(1)

m




min(ξl,ξj)∑

t1=1

e−i(λl−λj)t1 +
2m+1∑

t2=max(ξl,ξj)+1

e−i(λl−λj)t2




=
O(1)

m


−

max(ξl,ξj)∑

t=min(ξl,ξj)+1

e−i(λl−λj)t


 = O

(
min

( |ξl − ξj|
m

,
1

l − j

))
.
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6 Alternative Fourier transformations

Here, we 
an see that for |l − j| small, that is for Fourier frequen
ies λl and λj

lose to ea
h other, we 
annot guarantee |ξl − ξj | to be of an order less than m. An

example would be l + ζ⌊uT ⌋,lm = m+ 3 and j + ζ⌊uT ⌋,jm = 2, l = 2, j = 3.

6.2 Lo
al moving Fourier transform (Alt 2) -

formally 
ir
umventing the stumbling blo
ks

To ta
kle the question, whether the introdu
tion of the set A1(am, u) 
an be 
ir
um-

vented, one might also want to look 
riti
ally at the fa
t that we arti�
ially 
reate

some kind of break in the sequen
e of Fourier 
oe�
ients. What we are 
urrently

doing is as follows: We 
al
ulate the moving Fourier 
oe�
ients by shifting along

the time series and for ea
h stret
h of data we 
al
ulate the Fourier transform for

one single frequen
y λl and then move on to the next stret
h, with l = 1, . . . , m.

Having rea
hed λm, we start anew with l = 1.
The following alternative transformation di�ers from our original one by the fa
t

that we generate Fourier 
oe�
ients 
orresponding to the whole set of Fourier fre-

quen
ies {λ1, . . . , λ2m+1} before 
ontinuing with λ1. In the original pro
edure we

generated 
oe�
ients for frequen
ies λ1, . . . , λm and then started again with λ1. To
adapt the original method, we need to use the two operators MOD and DIV .

The 
ru
ial point, however, is that for the pro
edure to work, we need to get rid

of all Fourier 
oe�
ients belonging to frequen
ies λm+1, . . . , λ2m+1. To illustrate

the 
on
ept: Having generated c1, . . . , cT , we throw away cm+1, . . . , c2m+1, as well as
c3m+2, . . . , c4m+2 and so on, that is in the end we have a gapped stret
h of 
oe�
ients,

be
ause every m times we have thrown away a stret
h of length m. If we didn't, the

same problem as in Chapter 5 and the resulting need for the set A1(am, u) would
emerge.

Hen
e,

MF
ε,(2)
⌊uT ⌋(λl) :=

1√
2m+ 1

2m∑

t=0

ε
l+[DIV (⌊uT ⌋−m)−1{l≥MOD(⌊uT⌋−m)}](2m+1)−(2m+1)+te

−iλlt1 ,

with l = 1, . . . , m. De�ne

ζ̃⌊uT ⌋,l :=
[
DIV (⌊uT ⌋ −m)− 1{l≥MOD(⌊uT ⌋−m)}

]
.

We now propose that

sup
l 6=j=1,...,m

E(MF
ε,(2)
⌊uT ⌋(λl)MF

ε,(2)
⌊uT ⌋(λj)) = o(1).
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6.2 Lo
al moving Fourier transform (Alt 2) - formally 
ir
umventing the stumbling blo
ks

The formal proof that this works 
an be seen in the following:

E(MF
ε,(2)
⌊uT ⌋(λl)MF

ε,(2)
⌊uT ⌋(λj))

=
1

2m+ 1

2m∑

t1,t2=0

E(εl+ζ̃⌊uT⌋,l(2m+1)−(2m+1)+t1
εj+ζ̃⌊uT⌋,j(2m+1)−(2m+1)+t2

)e−iλlt1eiλjt2 .

This equals not zero only if l + ζ̃⌊uT ⌋,l(2m+ 1)− t1 = j + ζ̃⌊uT ⌋,j(2m+ 1) + t2, that
is l′ + t1 = j′ + t2.
Note, that MOD(l′) = l and MOD(j′) = j.

We thus 
hoose to substitute t2 by (l′− j′)+ t1 and, hen
e, have to 
orre
t the range

of t1 to

g1(u, l, j) = g1 := max{0, (j′ − l′)}, . . . ,min{2m, 2m− (l′ − j′)} =: g2 = g2(u, l, j).

Let w.l.o.g. j′ > l′.

E(MF
ε,(2)
⌊uT ⌋(λl)MF

ε,(2)
⌊uT ⌋(λj))

=
1

2m+ 1
e−iλjg1

[ 2m∑

t1=g1

eiλl−jt1
]

=
1

2m+ 1
e−iλjg1

[ 2m∑

t1=g1

(
cos

(
2π(l − j)

2m+ 1
t1

)
− i sin

(
2π(l − j)

2m+ 1
t1

))]
.

Appli
ation of Lemma A.4 in Kir
h [27℄ yields that

2m−j′+l′∑

t1=0

cos

(
2π(l − j)

2m+ 1
t1

)
= O

(
min

(
2m+ 1

|l − j| , |2m+ 1− j′ + l′|
))

.

Analogously for the sine term.

2m−j′+l′∑

t1=0

eiλl−jt1 =
2m∑

t1=0

eiλl−jt1 −
2m∑

t1=2m−j′+l′+1

eiλl−jt1

=

j′−l′−1∑

t1=0

e−iλl−j(t1+2m−j′+l′+1) = e−iλl−j(l
′−j′)

j′−l′−1∑

t1=0

eiλl−jt1 .

For this sum, we get, again by Lemma A.4 in Kir
h [27℄,

j′−l′−1∑

t1=0

eiλl−jt1 = O

(
min

(
2m+ 1

|l − j| , |l
′ − j′|

))
.
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6 Alternative Fourier transformations

Putting the two results together, one gets

E(MF
ε,(2)
⌊uT ⌋(λl)MF

ε,(2)
⌊uT ⌋(λj)) = O

(
min

(
1

|l − j| ,
|l′ − j′|
2m+ 1

,
|2m+ 1− j′ + l′|

2m+ 1

))

We know that |l− j| is between 0 and m− 1. The di�eren
e ζ̃⌊uT ⌋,j − ζ̃⌊uT ⌋,l is either
±1 or 0, depending on the position of l and j with regard to MOD(⌊uT ⌋−m). We

have assumed that j′ > l′. Hen
e, the 
ase that the di�eren
e equals −1 
an not

o

ur.

Now 
onsider the 
ase ζ̃⌊uT ⌋,j − ζ̃⌊uT ⌋,l = 0. In this 
ase, j′ − l′ = j − l. Hen
e,

E(MF
ε,(2)
⌊uT ⌋(λl)MF

ε,(2)
⌊uT ⌋(λj)) = O

(
min

(
1

|l − j| ,
|l − j|
2m+ 1

))
= O

(
1√
m

)
.

On the other hand, if ζ̃⌊uT ⌋,j− ζ̃⌊uT ⌋,l = 1, j′− l′ = j− l+2m+1. In this 
ase, again,

E(MF
ε,(2)
⌊uT ⌋(λl)MF

ε,(2)
⌊uT ⌋(λj)) = O

(
min

(
1

|l − j| ,
|l − j|
2m+ 1

))
= O

(
1√
m

)
.

Thus, the phenomenon whi
h o

urred in Chapter 3 
an not o

ur here. And we do

not need to make any ex
eptions to values of j and l.

The reason why we do not get a problem here, is that from a stret
h of T real

random variables we have 
reated T/2 
omplex random variables, that is T real

random variables. In our original transformation, we have used T real random

variables to 
reate T 
omplex variables, that is 2T real random variables. By doing

so, we 
ertainly have to pay a pri
e and this pri
e is this dependen
e 
oming in �

dependen
e of 
oe�
ients whi
h belong to frequen
ies with index not in A1(am, u).
This pri
e, however, is not too high to pay as the 
ardinality of the set of indi
es not

in A1(am, u) is of an order less than m, whi
h makes it negotiable when speaking

of spe
tral means, ratios et
. Using the �rst amendment to the list of alternative

transformations introdu
ed above, we, however, have to pay the pri
e of a
tually

wasting information on the time series or, putting it in other words, being too slow

with 
olle
ting information. Whi
h is not important for stationary time series, but

very well important for lo
ally stationary time series. In reality, stru
tural 
hanges


an happen quite fast, and if one had the 
hoi
e between a method whi
h uses

a stret
h of data double the size for the same information avoiding a negligible

additional dependen
y, one would most 
ertainly go for the information whi
h is

denser in time.

We have �nally extra
ted the 
on
eptual problem of why we get this restri
tion to

A1(am, u): By applying the original lo
al moving Fourier transform we gain double

the information whi
h is present. Whi
h ought to 
ost something.

The altered lo
al moving Fourier transform has been the �rst try to 
onstru
t a

transform in a way that we get a 1-1 relation between the information 
ontained in

the time domain and the information 
ontained in the frequen
y domain.
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6.3 Lo
al moving Fourier transform (Alt 3) - 
ustomized to �t the needs

A further approa
h is taken in the following se
tion.

6.3 Lo
al moving Fourier transform (Alt 3) -


ustomized to �t the needs

A further amendment to the list of transformations is to use the original transform

with the adaption that for the �rst m times we obtain not the 
omplex Fourier


oe�
ient, but only the real part. The se
ondm times we generate the 
orresponding

imaginary parts. Then the m real parts and m imaginary parts are stu
k together

as m 
omplex Fourier 
oe�
ients to frequen
ies λ1, . . . , λm. We then 
ontinue with

the transformation of our time series. The following m stret
hes serve as data to

obtain real parts and the 
orresponding imaginary parts are generated by the next

but one set of m transforms. All in all, having moved through the time series we

end up with T/2 real parts and T/2 imaginary parts, that is T/2 moving Fourier


oe�
ients. One 
ould think of this method as a more adapted method than Alt 2,

better 
apturing the aspe
t of lo
ally 
hanging time series as the information at all

times is in
orporated in the sample and hen
e, the 
hange is mirrored more 
losely.

Still, of 
ourse, this method su�ers from the same �aw as Alt 2, to obtain m Fourier


oe�
ients, we need a number of observations in the time domain whi
h would have

generated 2m 
oe�
ients using the original method.

For l = 1, . . . , m, de�ne

MF
ε,(3)
⌊uT ⌋(λl) :=

1√
2m+ 1

2m∑

t=0

ε
l+[DIV (⌊uT ⌋−m)−1{l≥MOD(⌊uT⌋−m)}](2m+1)−(2m+1)+t cos(λlt1).

For l = m+ 1, . . . , 2m+ 1, de�ne

MF
ε,(3)
⌊uT ⌋(λl) :=

1√
2m+ 1

2m∑

t=0

ε
l+[DIV (⌊uT ⌋−m)−1{l≥MOD(⌊uT⌋−m)}](2m+1)−(2m+1)+t sin(−λlt1)

Now, for l = 1, . . . , m and j = m+ 1, . . . , 2m+ 1

E(MF
ε,(3)
⌊uT ⌋(λl),MF

ε,(3)
⌊uT ⌋(λj))

=
1

2m+ 1

2m∑

t1,t2=0

E(εl+ζ̃⌊uT⌋,l(2m+1)−(2m+1)+t1
εj+ζ̃⌊uT⌋,j(2m+1)−(2m+1)+t2

)

· cos
(

2πlt1
2m+ 1

)
sin

(
− 2πjt2
2m+ 1

)
.

This equals not zero only if l + ζ̃⌊uT ⌋,l(2m+ 1) + t1 = j + ζ̃⌊uT ⌋,j(2m+ 1) + t2, that
is l′ + t1 = j′ + t2. Note, that MOD(l′) = l and MOD(j′) = j.

We thus 
hoose to substitute t2 by (l′− j′)+ t1 and, hen
e, have to 
orre
t the range
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6 Alternative Fourier transformations

of t1 to

g1(u, l, j) = g1 := max{0, (j′ − l′)}, . . . ,min{2m, 2m− (l′ − j′)} =: g2 = g2(u, l, j).

Let w.l.o.g. j′ > l′.

E(MF
ε,(3)
⌊uT ⌋(λl),MF

ε,(3)
⌊uT ⌋(λj))

=
1

2m+ 1

2m∑

t1=(j′−l′)
cos

(
2πlt1
2m+ 1

)
sin

(
−2πj(t1 + l′ − j′)

2m+ 1

)
.

Simulations have lead to the 
on
lusion that the above sum 
onverges to 0 for all

possible 
ombinations of j and l.

6.4 Summary

Con
erning Alt 1, we 
an say: Rearranging uni�es the pro
edures applied for ba
k

and forth transform, but does not have any e�e
t on the set A1(am, u). Looking


loser at why the need for this ex
eption arises, one mathemati
ally �nds out that

if |j′ − l′| → ∞ always implied |l − j| → ∞, we would be done. This has been

a
hieved by developing Alt 2. Looking 
loser at this transformation we have now

been able to dete
t the kernel of the brute. The need for set A1(am, u) was due to

the fa
t that we overindulged in information. We had m random variables at hand,

and 
reated out of them 2m random variables. These 2m random variables 
an not

possibly all be un
orrelated, ea
h 
arrying di�erent information, as this information


ould not all have been stored in the m variables we started with. Getting this

bonus of double the random variables with our transform, we need to pay the pri
e

of some of them not being un
orrelated. As long as this 'some' is of less than order

m, though, all is well. Both, Alt 2 and Alt 3 su�er from the problem of needing to

use wider stret
hes of input data, whereas the lo
al moving Fourier transform uses

stret
hes half as wide, resulting in a more lo
al pro
edure. Alt 2 and 3 both, of


ourse, get rid of the set A1(am, u), with Alt 3 de�nitely being superior to Alt 2.

Alt 2 grabs some information, waits some time without getting information, then

again grabs another pie
e of information and so on. By doing so, Alt 2 will miss

out on the gradual 
hange in information. Alt 3, however, meets the 
riterion of


onstantly updating its information while moving through time, as does the lo
al

moving Fourier transform.

Remark 6.1

As we have noti
ed, rearranging the data stret
hes does not e�e
t the se
ond order

stru
ture of the Fourier 
oe�
ients. This leaves room for the 
onje
ture that there

is no 
hange of the distributional properties of Fourier 
oe�
ients in the station-

ary 
ase when using shifted data. That is that F(X1, X2, . . . , Xn;λ1) is as far as
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6.4 Summary

distributional 
hara
teristi
s are 
on
erned, equal to F(Xn, X1, . . . , Xn−1;λ1).
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CHAPTER 7

Appli
ation of the moving Fourier transformation

A lo
ally stationary pro
ess {Xt,T} des
ribes a time series with slow 
hanges. In

Chapter 3 we have developed a method to transfer the 
hanging information 
on-

tained in the time series to the frequen
y domain using the moving Fourier trans-

formation (De�nition 3.2). Further, we have also found a way to 
onvert these


oe�
ients ba
k to some time series with the same stru
tural 
hara
teristi
s as the

original one.

Now, seeing that the lo
al moving Fourier 
oe�
ients at time t (De�nition 3.1),

whi
h are basi
ally a set of 2m+ 1 spe
ially 
reated Fourier 
oe�
ients assigned to

some time t, as well as the 
orresponding periodogram ordinates exhibit an asymp-

toti
ally de
reasing 
ovarian
e, one is reminded of the ordinary Fourier 
oe�
ients

whi
h are asymptoti
ally iid.

Taking up this dis
overy that lo
al moving Fourier 
oe�
ients asymptoti
ally be-

have similarly to Fourier 
oe�
ients, we extend bootstrap methods in the frequen
y

domain from the stationary to the lo
ally stationary setting.

7.1 Bootstrap methods in the frequen
y domain

7.1.1 Wild bootstrap

→ Kir
h and Politis [28℄

We apply the standard bootstrap method of wild bootstrap as des
ribed in Kir
h and

Politis [28℄ to the moving Fourier 
oe�
ients (De�nition 3.2). In order to perform the

wild bootstrap, we need an estimator of the time varying spe
tral density (De�nition

2.2), meeting the requirement

max
k∈{⌊uT ⌋−⌈m2 ⌉+1,...,⌊uT ⌋+⌊m2 ⌋}

∣∣∣∣f̂
(
k

T
, λmod(k)

)
− f

(
u, λmod(k)

)∣∣∣∣ = oP (1).
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7 Appli
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See Chapter 8 for existen
e and 
onstru
tion of su
h an estimator.

We now pro
eed as follows

Step 1:

Split ea
h ck into real and imaginary part ck := xk + iyk.
Step 2:

Let Gk, Gk+T , k = 1, . . . , T, be independent identi
ally standard normal random

variables. Generate the bootstrap samples c∗k a

ording to

x∗k :=

√
πf̂

(
k

T
, λmod(k)

)
Gk,

y∗k :=

√
πf̂

(
k

T
, λmod(k)

)
Gk+T ,

c∗k := x∗k + iy∗k.

7.1.2 Residual based bootstrap

→ Kir
h and Politis [28℄

The initial requirement is just like in the 
ase of the wild bootstrap: In order to

be able to apply the standard bootstrap method of residual based bootstrap as

des
ribed in Kir
h and Politis [28℄ to the moving Fourier 
oe�
ients (De�nition 3.2)

we need an estimator of the time varying spe
tral density (De�nition 2.2) with

max
k∈{⌊uT ⌋−⌈m2 ⌉+1,...,⌊uT ⌋+⌊m2 ⌋}

∣∣∣∣f̂
(
k

T
, λmod(k)

)
− f

(
u, λmod(k)

)∣∣∣∣ = oP (1).

Step 1:

Split ea
h ck into real and imaginary part ck := xk + iyk.

Step 2:

Estimate residuals of real and imaginary part and put them in a ve
tor {s̃j}1≤j≤2T

s̃k :=
xk√

πf̂
(
k
T
, λmod(k)

) , s̃T+k :=
yk√

πf̂
(
k
T
, λmod(k)

) .

Step 3:

Standardization yields

sk :=
s̃k − 1

T

∑2T
l=1 s̃l

1
2T

∑2T
t=1

(
s̃t − 1

2T

∑2T
l=1 s̃l

)2 .
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7.1 Bootstrap methods in the frequen
y domain

Step 4:

Ordinary iid resampling with repla
ement in order to get s∗1, . . . , s
∗
2T .

Step 5:

De�ne bootstrap Fourier 
oe�
ients

x∗k :=

√
πf̂

(
k

T
, λmod(k)

)
s∗k,

y∗k :=

√
πf̂

(
k

T
, λmod(k)

)
s∗T+k,

c∗k := x∗k + iy∗k.

7.1.3 Lo
al bootstrap

→ Kir
h and Politis [28℄, Paparoditis and Politis [44℄

Step 1:

Sele
t a symmetri
, nonnegative kernel K(·) with
∫
K(t)dt = 1. Spe
ial assumptions

on the kernel K are made in Chapter 8.

Moreover, one needs to sele
t a bandwidth h, ful�lling h→ 0, but mh→ ∞.

Step 2:

De�ne iid random variables J1,T , . . . , J2T,T on Z, with

ps,T = P (Jj,T = s) =
K(2πs/((2m+ 1)h))∑∞

l=−∞K(2πl/((2m+ 1)h))

Independent of these, de�ne 2T iidBern(1/2)-distributed random variablesB1, . . . , B2T .

Step 3:

The bootstrap is performed as follows:

x̃∗k :=

{
xk+Jk,T , if Bk = 0,

yk+Jk,T , if Bk = 1,

ỹ∗k :=

{
yk+JT+k,T

, if BT+k = 0,

xk+JT+k,T
, if BT+k = 1.

This 
onstru
tion exploits the fa
t that for a smooth spe
tral density, the distribu-

tion of the moving Fourier 
oe�
ients in a small environment should approximately

be the same.

The �nal bootstrap 
oe�
ients are then obtained after 
entering with the weighted
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mean of the original series and are thus given by

x∗k := x̃∗k −
1

2

∑

s∈Z
ps,T (xk+s + yk+s),

y∗k := ỹ∗k −
1

2

∑

s∈Z
ps,T (xk+s + yk+s),

c∗k := x∗k + iy∗k.

7.2 Bootstrapping time domain data

7.2.1 Moving TFT-bootstrap

As soon as one is provided with some suitable method of transforming ba
k and

forth from time to frequen
y domain the most natural thought when intending to

use bootstrapping is to do so in the frequen
y domain as it allows for iid bootstrap

methods. For the �rst time, this has been done by Kir
h and Politis [28℄ using the

ordinary Fourier transformation of length T . With the new method of the moving

Fourier transformation at hand, we 
an now extend the 
on
ept to lo
ally stationary

pro
esses, perform lo
al iid bootstrap methods in the frequen
y domain and return

to the time domain.

Thus, the moving TFT-bootstrap 
an essentially be viewed as a three step pro
edure.

Step 1:

The observed time series is transformed using the so 
alled moving Fourier transform

(3.11):

ck = F(Xk−m,T , . . . , Xk+m,T ;λmod(k)) =
1√

2m+ 1

k+m∑

l=k−m
Xl,T e

−ilλmod(k)ei(k−m)λmod(k) ,

with λmod(k) := 2πmod(k)
2m+1

denoting the Fourier frequen
ies and the operator mod
a

ording to (3.1).

We now fa
e the T moving Fourier 
oe�
ients c1, . . . , cT .

Step 2:

In a se
ond step, the resulting moving Fourier 
oe�
ients are bootstrapped by a

lo
alized standard method of 
hoi
e, su
h as the wild, the lo
al or the residual

bootstrap. See Se
tion 7.1. This results in

c∗1, . . . , c
∗
T .
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7.2 Bootstrapping time domain data

Step 3:

The moving bootstrap 
oe�
ients gained are then transformed ba
k using a moving

version of the inverse Fourier transform (3.15).

X∗
t,T =

1√
2m+ 1

m∑

l=1

c∗
l+

(

div(t−⌊m2 ⌋)−1{l≥mod(t−⌊m2 ⌋)}
)

m
eiλlt

+
1√

2m+ 1

m∑

l=1

c∗
l+

(

div(t−⌊m2 ⌋)−1{l≥mod(t−⌊m2 ⌋)}
)

m
e−iλlt

with λk :=
2π k
N
, k = 0, . . . , m, denoting the Fourier frequen
ies and t = 1, . . . , T .

This �nally yields a bootstrap repli
ate X∗
1,T , X

∗
2,T , . . . , X

∗
T,T of the original time se-

ries in the time domain.

Basi
ally all bootstrap methods involving the frequen
y domain whi
h are used for

stationary time series 
an be adapted to the lo
ally stationary situation using the

moving Fourier transformation and the moving periodogram, as de�ned in De�ni-

tion 3.3. There are also other ways of lo
alizing bootstrap pro
edures using peri-

odograms, for example the use of the lo
al periodogram as done by Sergides [49℄

and Kreiss and Paparoditis [32℄. We will now modify these two pro
edures using

our moving periodogram and 
ompare their performan
e.

7.2.2 Moving autoregressive-aided periodogram bootstrap

The lo
al autoregressive-aided periodogram bootstrap by Sergides [49℄ 
ombines a

parametri
 bootstrap in the time domain with a lo
al nonparametri
 
orre
tion in

the frequen
y domain. It is an extension of the autoregressive-aided periodogram

bootstrap by Kreiss and Paparoditis [31℄ to lo
ally stationary time series and essen-

tially works as follows: The part 
on
erned with the parametri
 bootstrap is based

on lo
ally �tting an AR(p)-model to the data, 
al
ulating the residuals and gen-

erating bootstrap errors from the empiri
al distribution fun
tion of the residuals.

The bootstrap observations then result from using the estimated AR(p)-
oe�
ients

and the bootstrap errors. Up to now, we just have, as Sergides [49℄ point out, a

lo
al version of the autoregressive bootstrap. In order to loosen the restri
tion of

an underlying AR(p)-pro
ess, a nonparametri
 
orre
tion is added to the bootstrap

AR(p)-periodogram. It serves the purpose to 
orre
t the bootstrap periodogram of

the time varying AR(p)-pro
ess for stru
ture of the data that 
an not be explained

by some autoregressive model. The 
orre
tion is a smoothed version of the lo
al

periodogram divided by an estimate of the lo
al spe
tral AR(p)-density.

Using the autoregressive-aided periodogram bootstrap by Kreiss and Paparoditis

[31℄ as a fundament, Sergides [49℄ has 
reated a lo
al bootstrap method. We pro-

vide a further adaption of the autoregressive-aided periodogram bootstrap of Kreiss

and Paparoditis [31℄ to lo
ally stationary time series. The parametri
 bootstrap
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is mainly mimi
ked, ex
ept for the fa
t that we draw the bootstrap errors lo
ally

using iid resampling. To 
al
ulate the bootstrap periodogram, however, we use the

moving periodogram.

The next se
tion displays our algorithm for the moving autoregressive-aided peri-

odogram bootstrap. The alterations to Sergides [49℄ are in the use of the moving

periodogram, the remaining parts, however, are borrowed from Sergides [49℄. For

the sake of simpli
ity, we restri
t ourselves w.l.o.g. to an AR(1) model.

We therefore assume

Let X1,T , X2,T , . . . , XT,T be a lo
ally stationary time series as in De�nition 2.1. In

order to keep the algorithm as simple as possible, we will assume that there is

a su�
ient number of pre
eding and su

eeding observations available. Namely,

X1−3m,T , . . . , X0,T and XT+1,T , . . . , XT+3m,T . If applied to a real set of data, we need

to slightly adapt the pro
edure by settling for a blo
kwise approa
h in the beginning

and in the end of the time series.

We also assume that (Sergides [49℄, Assumption 2.2) the stationary approximation

of Xt,T at time u ∈ [0, 1] has the AR(∞)-representation

X̃t(u) =
∞∑

k=1

βk(u)X̃t−1(u) + a(u, 0)εt,

where 1 +
∑∞

k=1 a(u, k)z
k = (1 −∑∞

k=1 βk(u)z
k)−1

,

∑∞
k=1 k|βk(u)| < ∞ and 1 −∑∞

k=1 βk(u)z
k 6= 0 for all 
omplex z with |z| ≤ 1.

Step 1: Lo
al �t of AR(1)-model

For every point in time 1 ≤ t ≤ T we �t an autoregressive model of order 1 to

the data Xt−m,T , . . . , Xt+m,T and 
al
ulate the estimated parameter â(t) := β̂1
(
t
T

)
.

This leaves us with the estimated 
oe�
ients â(1), â(2), . . . , â(T ) and the estimated

standard deviations of the errors σ̂(1), . . . , σ̂(T )
.

(The exa
t formula to 
al
ulate the standard deviation using Yule-Walker estima-

tors on the stationary approximations is given by Sergides [49℄, Se
tion 2.3, page 14.)

Step 2: Estimation of the 
entered and res
aled errors ε̂1,T , . . . , ε̂T,T

Consider the res
aled residuals

ε̃t,T :=
1

σ̂(t)

(
Xt,T − â(t)Xt−1,T

)
, t = 2, . . . , T.

These res
aled residuals are then 
entered by ε̂t,T := ε̃t,T − 1
T

∑T
τ=1 ε̃τ,T , so we �nally

get ε̂1,T , . . . , ε̂T,T .

Step 3: Generation of the bootstrap errors ε+1,T , . . . , ε
+
T,T

For every t ∈ {1, . . . , T} 
onsider the stret
h ε̂t−m,T , . . . , ε̂t+m,T with equal probabil-

ity assigned to ea
h residual, and draw one residual. This sample is named ε+t,T .
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7.2 Bootstrapping time domain data

Step 4: Generation of the bootstrap observations X+
1,T , . . . , X

+
T,T

Having 
reated all bootstrap errors ε+1,T , . . . , ε
+
T,T , we 
an now 
al
ulate the bootstrap

observations by using the lo
ally �tted AR(1)- models (
f. Step 1). We set X+
1,T :=

X1,T and

X+
t,T := â(t)X+

t−1,T + σ̂(t)ε+t,T , t = 2, . . . , T.

Step 5: Cal
ulation of moving periodogram.

Appli
ation of the moving Fourier transform (as in De�nition 3.2) to the bootstrap

observations X+
1,T , . . . , X

+
T,T yields

c+1 , c
+
2 , . . . , c

+
T .

Using the lo
al moving 
oe�
ients as in De�nition 3.1 at ea
h time t results in T
sets

MF+
t (λ1), . . . ,MF

+
t (λm)

The moving periodogram MIt,m(λj) is de�ned in De�nition 3.3 and, thus, analo-

gously

MI+t,m(λj) :=
∣∣MF+

t (λj)
∣∣2 .

Step 6: Lo
al 
orre
tion

Computation of the lo
al kernel estimator. The assumptions on the kernel are given

by (K)(i)-(v) in Chapter 8.

q̂

(
t

T
, λ

)
:=

1

2m+ 1

2m∑

j=−m
Kh(λ− λj)

MI+t,m(λj)

f̂
(t)
AR

(
t
T
, λj
) ,

where

f̂
(t)
AR

(
t

T
, λj

)
:=

(σ̂(t))2

2π
· 1

|1− â(t)e−iλj |2
.

Step 7: Constru
tion of moving bootstrap periodogram

The moving bootstrap periodogram is then given by

MI∗t,m(λj) := q̂

(
t

T
, λj

)
·MI+t,m(λj),

j = 1, . . . , m, and t = 1, . . . , T.
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7.2.3 Moving wild hybrid bootstrap

The hybrid bootstrap by Kreiss and Paparoditis [32℄ 
ombines a wild bootstrap in

the time domain with a nonparametri
 approa
h in the frequen
y domain. It is

an extension of the wild hybrid bootstrap by Kreiss and Paparoditis [33℄ to lo
ally

stationary time series.

It uses two major ideas: Firstly, that the observations Xt,T 
an approximately be

written as

Xt,T ≈ 1

T

T−1∑

j=0

√
f

(
t

T
, λj

)
Jε(λj)e

itλj ,

with Jε(λj) := 1
T

∑T−1
l=0 εle

−ilλj . This is heuristi
ally dedu
ed from the relation

|JX(λj)|2 ≈ f(λj)|Jε(λj)|2 in Bro
kwell and Davis [3℄, Theorem 10.3.1, and has,

for a time-independent density, already been used by Kreiss and Paparoditis [33℄.

In the moving version this approximating expression is slightly 
hanged to

Xt,T ≈ 1

2m+ 1

2m∑

j=0

√
f

(
t

T
, λj

)
Fdiv(t)−1
ε (λj)e

itλj ,

in
orporating the moving Fourier transform instead of the original Fourier transform

of the errors, see also Remark 3.3.

The se
ond nip is, as already done in Kreiss and Paparoditis [33℄, to estimate the

fourth order 
umulant of the innovations by using the relation

Cov(Xt
2(u), Xt+k

2(u)) = κ4

∞∑

j=−∞
ψj

2(u)ψj+k
2(u)

+ 2 · Cov2(Xt(u), Xt+k(u)), u ∈ [0, 1]. (7.1)

Here, Xt(u) =
∑∞

j=−∞ ψj(u)εt−j is the stationary approximation of Xt,T at time

⌊uT ⌋. Equation (7.1) then yields,

κ4(u) :=

∑∞
k=−∞ (c2(u, k)− 2c2(u, k))

c2(u, 0)
, u ∈ [0, 1],

with c2(u, k) being the auto
ovarian
e fun
tion of the squared stationary approx-

imation X2
t (u) at time ⌊uT ⌋. Contrasting Kreiss and Paparoditis [32℄, we refrain

from integrating over time in a next step in order to avoid evening out 
hanges in

the fourth order stru
ture, but to be able to mimi
k them.

The next paragraph des
ribes the bootstrap algorithm for the moving hybrid boot-

strap. Note that just like for the previous pro
edure in Se
tion 7.2.2, we will also

assume that su�
ient observations pre
eding time t = 1 and su

eeding time t = T
are available in order to straighten out notation.
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7.2 Bootstrapping time domain data

Step 1: Estimating the lo
al fourth order 
umulant κ̂4
(
t
T

)
at time t

We follow Kreiss and Paparoditis [32℄ de�ning an estimator of the fourth order


umulant. However, we do allow κ4 to lo
ally vary and a

ount for that variation

by lo
al estimation:

κ̂4

(
k

T

)
:=

Ĝ1

(
k
T

)
− Ĝ2

(
k
T

)

Ĝ3

(
k
T

) .

The fun
tions Ĝ1, Ĝ2 and Ĝ3 are de�ned in the following.

Ĝ1

(
k

T

)
:=

2m∑

j=−m
Kh(0− λj) · MI(2),k,m(λj),

where

MI(2),k,m(λj) :=
1

(2m+ 1)

∣∣∣∣∣

2m∑

l=0

(
X2
j+ζk,jm−m+l,T − 1

2m+ 1

2m∑

r=0

X2
j+ζk,jm−m+r,T

)
e−iλj l

∣∣∣∣∣

2

denotes the lo
al moving periodogram of the squared and lo
ally 
entered time series

X2
t,T . The smoothing kernelKh(·) ought to ful�ll the assumptions given by (K)(i)-(v)

in Chapter 8.

Ĝ1

(
k
T

)
is an estimator for (a multiple of) the spe
tral density of the squared time

series X2
t,T at time 1 ≤ k ≤ T and frequen
y zero. The se
ond estimator Ĝ2

(
k
T

)

estimates the sum of the squared auto
ovarian
es of the stationary approximation

of Xt,T at time k:

Ĝ2

(
k

T

)
:=

2m∑

l=0

(MIk,m(λl))
2 .

And, at last, Ĝ3

(
k
T

)
is an estimator for the squared auto
ovarian
e fun
tion of the

stationary approximation of Xt,T at time k and lag zero:

Ĝ3

(
k

T

)
:=

(
2m∑

l=0

MIk,m(λl)

)2

.

Having 
al
ulating κ̂4
(
1
T

)
, . . . , κ̂4

(
T
T

)
, we aim (see Kreiss and Paparoditis [32℄) to

get estimates for the fourth moment of the errors, by setting

κ̃t4 := κ̂4

(
t

T

)
+ 3,
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and thus obtain lo
al estimates κ̃14, κ̃
2
4, . . . , κ̃

T
4 of the fourth order moment stru
ture

of the errors εt.

Step 2:

Knowing about the �rst se
ond and fourth order moment stru
ture of the errors,

one 
an now generate bootstrap residuals a

ording to the following sampling rule:

Generate a sample ε∗1, . . . , ε
∗
T of length T of iid random variables meeting

P (ε∗t =
√
κ̃t4) = P (ε∗t = −

√
κ̃t4) =

1

2κ̃t4
,

P (ε∗t = 0) = 1− 1

κ̃t4
,

for 1 ≤ t ≤ T .

Step 3:

Cal
ulation of the moving Fourier transform of the bootstrap errors ε∗1, . . . , ε
∗
T , re-

sulting in

cε
∗

1 , c
ε∗

2 , . . . , c
ε∗

T

Step 4: The lo
al moving Fourier 
oe�
ients at ea
h time t = 1, . . . , T, are then

given by the T sets

MF ε∗

t (λ1), . . . ,MF
ε∗

t (λm)

Step 5: Generation of the bootstrap observations by

X∗
t,T :=

1√
2m+ 1

m∑

j=0

√
f̂

(
t

T
, λj

)(
MF ε∗

t (λj)e
itλj +MF ε∗

t (λj)e
−itλj

)
,

where f̂ is an estimator of the spe
tral density, ful�lling

max
k∈{⌊uT ⌋−⌈m2 ⌉+1,...,⌊uT ⌋+⌊m2 ⌋}

∣∣∣∣f̂
(
k

T
, λmod(k)

)
− f

(
u, λmod(k)

)∣∣∣∣ = oP (1).

See Chapter 8 for existen
e and 
onstru
tion of su
h an estimator.
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CHAPTER 8

Moving spe
tral density estimation

8.1 Approa
hes to estimate the time-varying

spe
tral density

There are basi
ally two fundamental approa
hes in literature, how to estimate the

time varying spe
tral density of a lo
ally stationary pro
ess.

Lo
alized periodogram

The �rst is 
al
ulating the 
lassi
al periodogram only lo
ally over a segment of length

N << T . This estimator, 
alled "lo
alized periodogram", has been introdu
ed by

von Sa
hs and S
hneider [54℄. It uses a stret
h of length N of tapered data with

some midpoint ⌊uT ⌋ to obtain an estimate for the spe
tral density at this point in

time ⌊uT ⌋.

IN(u, λ) =
1

H2,N

∣∣∣∣∣

N−1∑

s=0

h
( s
N

)
X⌊uT−N

2
+s+1⌋e

−i2πλs

∣∣∣∣∣

2

,

with h : [0, 1] → [0, 1] being a su�
iently smooth tapering fun
tion and H2,N being

the appropriate norming fa
tor as in Dahlhaus [8℄, Se
tion 3.

This is what Sergides [49℄ basi
ally 
alls the tapered lo
al periodogram. For h ≡ 1
it is the lo
al periodogram. He is not doing any tapering, though and uses another

notation of the Fourier transformation. In order to get an estimator for the spe
tral

density at all times, von Sa
hs and S
hneider [54℄ 
al
ulate IN(u, λ) on possibly

overlapping segments of Xt,T of length N . Denote the shift from segment to segment

by S, 1 ≤ S ≤ N . The resulting number of segments is 
alled M . Hen
e, IN(u, λ)
is evaluated at M timepoints ui =

ti
T
, where ti = S · i+ N

2
, 0 ≤ i ≤M − 1.
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The drawba
k of this pro
edure is for one the 
omputational 
ost, whi
h is the


ost of M times a Fourier transformation of length N , i.e. O(NM log(N)). For

another it is the additional parameter N . Dahlhaus and Neumann [13℄ ni
ely and

understandably pose the problem, whi
h is twofold: First, this parameter delivers

a 
ut-o� point, from whi
h on 
ovarian
es of higher lags than k are ex
luded from

the estimation, whi
h indu
es a bias in time domain, if N is small.

For the se
ond aspe
t one needs to bear in mind the so-
alled un
ertainty prin
iple,

whi
h says (in the more general 
ase of evolutionary spe
tra):

un
ertainty prin
iple

→ Priestley [46℄, p. 217

In determining evolutionary spe
tra, one 
annot obtain simultaneously

a high degree of resolution in both the time domain and the frequen
y

domain.

Now, when using the estimator

f̂(u, λ) =
1

bf

∫
Kf

(
λ− µ

bf

)
IN(u, µ)dµ,

with Kf being a symmetri
 kernel with

∫
Kf(x)dx = 1 and bf the bandwidth in

frequen
y dire
tion (
f. Dahlhaus [11℄), there is already in
luded some smoothing in

the time domain, whi
h is not obvious at �rst glan
e. That is, as part of the lo
aliza-

tion of the 
lassi
al periodogram made by von Sa
hs and S
heider [54℄ was obtained

by summation over 
ertain time points in segments of 
hosen length N . Dahlhaus

[11℄ provides in Equation (83) the exa
t kernel estimate in the time domain, whi
h

is impli
itly 
ontained and possesses a bandwidth of bt =
N
T
. Thus, inherently a

lower bound for the resolution in the time domain is �xed. This lower bound for

the resolution in the time domain immediately results in an upper bound for the

resolution in frequen
y domain, due to the un
ertainty prin
iple (
f. Neumann and

von Sa
hs [40℄).

Dahlhaus and Neumann [13℄ draw the following 
on
lusion: Lo
al periodograms

therefore la
k the possibility to 
ontrol for the whole amount of smoothing expli
itly

� in an additional smoothing step. A possible remedy 
an be to 
ontrol the smooth-

ing in time domain purely by the 
hoi
e of N and perform the se
ond smoothing

step for smoothing only in the frequen
y domain. Also, when using a higher degree

of smoothing in the se
ond step, for example, a kernel with a bandwidth bt >>
N
T
,

the use of the lo
al periodogram is reasonable.

Preperiodogram

The se
ond approa
h taken to estimate the time-dependent spe
tral density is the

use of the so-
alled preperiodogram, whi
h does not in
orporate any impli
it smooth-

ing. The preperiodogram for a lo
ally stationary time series {Xt,T} at frequen
y

λ ∈ [0, π] has been introdu
ed by Neumann and von Sa
hs [40℄:
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8.2 Prerequisites

De�nition 8.1 (Preperiodogram).

→ Neumann and von Sa
hs [40℄, Equation (3.7)

It,T (λ) =
1

2π

∑

s:1≤⌊t− s
2⌋,⌊t+ s

2⌋≤T
X⌊t− s

2⌋,TX⌊t+ s
2⌋,T e

−iλs.

Neumann and von Sa
hs [40℄ point out that the preperiodogram 
an serve as a

preliminary estimate of the spe
tral density, whi
h is even more �u
tuating than

the 
lassi
al periodogram. Asymptoti
ally, its expe
ted value equals the evolution-

ary spe
trum (introdu
ed by Priestley [47℄, see Se
tion 1). For �xed length T , its
expe
ted value equals the Wigner-Ville spe
trum (Martin and Flandrin [37℄, see

Se
tion 1).

There is a ni
e relation of the preperiodogram to the 
lassi
al periodogram over the

whole stret
h of data, whi
h is shown by Dahlhaus [9℄. It eases the interpretation of

the preperiodogram: The 
lassi
al periodogram is the average of the preperiodogram

over time, that is IT (λ) =
1
T

∑T

t=1 It,T (λ). The preperiodogram uses only the produ
t

X⌊t− k
2⌋,TX⌊t+ k

2⌋,T to estimate the 
ovarian
e at time t, while the periodogram is the

Fourier transformation of the 
ovarian
e estimator of lag k over the whole segment

(see Neumann and von Sa
hs [40℄, Se
tion 2.1).

We base our estimator on the �rst approa
h. However, instead of smoothing the

lo
al periodogram in frequen
y dire
tion, we do so with our moving periodogram

as in De�nition 3.3. The di�eren
e to the lo
al periodogram is explained in the

subsequent Remark 3.6.

We look for an estimator for the time varying spe
tral density whi
h is still 
lose to

the true spe
tral density at time t, even when we estimate at a time slightly earlier

or later than t. In formulae: For every u ∈ [0, 1],

sup
k∈{⌊uT ⌋−⌈m2 ⌉+1,...,⌊uT ⌋+⌊m2 ⌋}

∣∣∣f̂ (k)− f
(
u, λmod(k)

)∣∣∣ = oP (1). (8.1)

Before we introdu
e our estimator, we state the assumptions made on the time

varying spe
tral density.

8.2 Prerequisites

(F) Assumptions on the time varying spe
tral density

(i) f is uniformly Lips
hitz 
ontinuous in both arguments.

(ii) f is uniformly bounded from above and below: ∃c, C with 0 < c ≤ |f(u, λ)| ≤
C for all u ∈ [0, 1], λ ∈ [0, 2π].
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Remark 8.1

The existen
e of an upper bound in (F)(ii) follows from De�nition 2.1 and De�nition

2.2, sin
e

|f(u, λ)| =
1

2π

∣∣∣∣∣

∞∑

j=−∞
a(u, j)e−iλj

∣∣∣∣∣

2

≤ 1

2π

∞∑

j,k=−∞
|a(u, j)| |a(u, k)|

≤ C
∞∑

j=−∞

1

l(j)

∞∑

k=−∞

1

l(k)
≤ C.

De�nition 8.2 (Uniformly Lips
hitz 
ontinuous).

→ Haug [24℄ De�nition 2.7

A fun
tion g : D ⊂ R×R → R is uniformly Lips
hitz 
ontinuous of order α in both


omponents (with Lips
hitz 
onstants M1 and M2), if for all u, v ∈ D

|g(u, µ)− g(v, µ)| ≤M1|u− v|α ∀µ ∈ R,

and for all λ, µ ∈ R

|g(u, λ)− g(u, µ)| ≤ M2|λ− µ|α ∀ u ∈ D.

Based on Sergides [49℄, we use a lo
al kernel density estimator to estimate f . Never-

theless, modi�
ations are needed to adapt to our way of lo
ally Fourier transforming

a time series. The kernel K ought to be 
hosen a

ording to the following 
riteria

(K) Assumptions on the kernel

(i) K is a nonnegative, symmetri
 fun
tion with 
ompa
t support.

(ii)

∫
K(x)dx = 1, |K(x)| ≤ const.,

2π

(2m+ 1)h

∑

j∈Z
K

(
2πj

(2m+ 1)h

)
=

∫
K(x)dx+ o(1) = 1 + o(1).

(iii) K is uniformly Lips
hitz 
ontinuous.

(iv) h→ 0 (T → ∞) and hm
1
4 → ∞.

(v) |Kh(x)| = O
(
1
h

)
, with Kh(·) := 1

h
K
( ·
h

)
.
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8.3 De�nition of the estimator: The smoothed moving periodogram

8.3 De�nition of the estimator: The smoothed

moving periodogram

De�nition 3.3 provides the 
on
ept of the moving periodogram and it is (see Remark

3.6) 
ompared to the 
on
ept of the lo
al periodogram as used by Sergides [49℄. The

new terminology introdu
ed in the 
hapter's heading also underlines the di�eren
e

in 
on
ept and intended use of the moving periodogram: moving spe
tral density

estimation.

We do not intend to lo
ally estimate the spe
tral density at one point and then do

the same estimation again and again in neighbouring points in time like Sergides

[49℄: He uses the lo
al periodogram on window of width N to de�ne a lo
al spe
tral

density estimator by

f̂ (u, λ) :=
1

N

⌊N2 ⌋∑

j=−⌊N2 ⌋
Kh(λ− λj)IN,X(u, λj). (8.2)

The lo
al (uns
aled and untapered) periodogram is given by

IN,X(u, λj) =
1

N

∣∣∣∣∣

2m∑

t=0

X⌊uT ⌋−m+te
−iλjt

∣∣∣∣∣ . (8.3)

Note, that Sergides' original results are all obtained for the lo
al periodogram

res
aled by the fa
tor

1
2π
. When referring to his results, however, we will always

refer to the uns
aled version (8.3).

Contrasting the de�nition of the lo
al estimator of the spe
tral density and the lo
al

periodogram, we de�ne the smoothed moving periodogram, whi
h is e�e
tively just

a fun
tion of one argument � of time.

De�nition 8.3 (Smoothed moving periodogram).

Consider a lo
ally stationary pro
ess Xt,T a

ording to De�nition 2.1 and a fun
tion

K ful�lling (K)(i) � (K)(v).

The smoothed moving periodogram f̂ : {1, . . . , T} → R is then de�ned by

f̂ (k) :=
1

m

2m∑

t=−m
Kh

(
λmod(k) − λt

)
MIk,m (λt) , (8.4)

with MIk,m (λt) being the lo
al moving periodogram as in De�nition 3.3.
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8.4 Lo
ally uniform 
onsisten
y of the estimator

The following Theorem mathemati
ally formalizes the aim indi
ated in (8.1).

Theorem 8.1 (Lo
ally uniform 
onvergen
e).

Let Xt,T be a lo
ally stationary time series as in De�nition 2.1 with time varying

spe
tral density f meeting (F)(i) and (ii). Further assume that (K)(i)-(v) hold.

Then, for every u ∈ [0, 1], the estimator f̂ as in Equation (8.4) ful�lls 
ondition

(8.1), that is

sup
k∈{⌊uT ⌋−⌈m2 ⌉+1,...,⌊uT ⌋+⌊m2 ⌋}

∣∣∣f̂ (k)− f
(
u, λmod(k)

)∣∣∣ = oP (1).

Preliminary work

We have seen in the de�nition of f̂ that the moving spe
tral density estimator is a

fun
tion of only one variable k whi
h tells us to use frequen
y λmod(k) at time k. We

have not yet dis
ussed, though, how to spe
ify the point in time we need to 
onsider

when intending to estimate the moving spe
tral density at a 
ertain frequen
y ω.
This problem is addressed in the following:

For the sake of simpli
ity, de�ne Bu :=
{
⌊uT ⌋ −

⌈
m
2

⌉
+ 1, . . . , ⌊uT ⌋+

⌊
m
2

⌋}
. With

s′(ω) := min

{
l ∈ {1, . . . , m}

∣∣∣∣λl −
π

2m+ 1
< ω ≤ λl +

π

2m+ 1

}
(8.5)

the frequen
ies λs′(ω), λs′(ϑ) are the Fourier frequen
ies 
losest (in absolute value) to

0 < ω, ϑ < π (
f. Bro
kwell and Davis [3℄, De�nition 10.3.1).

Note that as pointed out in Remark 3.2, the relation between the moving and the

lo
al moving Fourier 
oe�
ients is as follows:

MFk(λl) = c
l+

[

div(k−⌊m2 ⌋)−1{l≥mod(k−⌊m2 ⌋)}
]

m
(8.6)

c
k−⌊m2 ⌋ =MFk

(
λ
mod(k−⌊m2 ⌋)

)
. (8.7)
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Lemma 8.1. Using the assumptions of Theorem 8.1 and with Theorem 5.5,

1

2π(2m+ 1)

2m∑

j=1

MI⌊uT ⌋,m(λj)

f(u, λj)

P→ 1.

Proof. Note that with ϕ(λj) =
1

f(u,λj)
,

1

(2m+ 1)

2m∑

j=1

1

f(u, λj)
MI⌊uT ⌋,m(λj) =MT (u) .

in the notation of (5.25). We 
an thus use the results of Theorem 5.5 and have that

for every u ∈ [0, 1] it holds that

Var

(√
2m+ 1 [MT (u)−E(MT (u))]

)
=

=
4π2

2m+ 1

2m∑

j=0

|ϕ(λj)|2f 2(u, λj) + (E(ε1)
4 − 3)

(
8π2

(2m+ 1)3
·

·
2m∑

j 6=l=0

ϕ(λj)ϕ(λl)f(u, λj)f(u, λl)Σ(l, j)

)
+ o(1).

with

Σ(l, j) := max{2m− l′, 2m− j′, 2m} −min{0,−l′,−j′}+ 1,

ζ⌊uT ⌋,l := div
(
⌊uT ⌋ −

⌊m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)},

l′ := l + ζ⌊uT ⌋,lm,

j′ := j + ζ⌊uT ⌋,jm,

with Σ(l, j) bounded from above by 2m+ 1.

E (MT (u)) = 2π +O

(
1√
m

)
,

by Theorem 5.1. Hen
e, an appli
ation of the Markov inequality yields

1

2m+ 1

2m∑

j=1

1

f(u, λj)
MI⌊uT ⌋,m(λj) = 2π + oP (1).

.
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Proof of Theorem 8.1. The spe
tral density estimator is given by

f̂ (k) =
1

m

2m∑

t=−m
Kh

(
λmod(k) − λt

)
MIk,m (λt) ,

see De�nition 8.3. The set of lo
al moving periodograms in
orporated 
an also

be written in the notation introdu
ed in Remark 3.3 � as a set of moving Fourier


oe�
ients. We estimate the spe
tral density at k ∈ {⌊uT ⌋−
⌈
m
2

⌉
, . . . , ⌊uT ⌋+

⌊
m
2

⌋
}.

Note that, depending on the time u, the set of moving Fourier 
oe�
ients in
ludes

a "jump" in the supers
ripts, whi
h o

urs at frequen
y λ
mod(⌊uT ⌋−⌊m2 ⌋):

Now, for some �xed time u, the 
orresponding set of moving Fourier 
oe�
ients is

Fdiv(⌊uT ⌋)(λ1), . . . ,Fdiv(⌊uT ⌋)(λ
mod(⌊uT ⌋−⌊m2 ⌋)−1),

Fdiv(⌊uT ⌋)−1(λ
mod(⌊uT ⌋−⌊m2 ⌋)), . . . ,F

div(⌊uT ⌋)−1(λm).

If we restri
t the range of k tom
(
div
(
⌊uT ⌋ −

⌈
m
2

⌉)
− 1
)
≤ k ≤ mdiv

(
⌊uT ⌋ −

⌈
m
2

⌉)
,

we ensure that � for small h and due to the 
ompa
t support of the kernel � only

moving Fourier 
oe�
ients "after the jump" are used for estimation, whi
h then

enables us to reformulate the spe
tral density estimator:

f̂(k) =
1

m

2m∑

t=−m
Kh

(
λmod(k) − λt

)
|Fdiv(⌊uT ⌋−⌈m2 ⌉)−1(λt)|2.

With z := div
(
⌊uT ⌋ −

⌈
m
2

⌉)
− 1,

f̂(k) =
1

m

2m∑

t=−m
Kh

(
λmod(k) − λt

)
|F z(λt)|2. (8.8)

For mdiv
(
⌊uT ⌋ −

⌈
m
2

⌉)
+ 1 ≤ k ≤ m

(
div
(
⌊uT ⌋ −

⌈
m
2

⌉)
+ 1
)
, we ensure that only

moving Fourier 
oe�
ients "before the jump" are used, hen
e,

f̂(k) =
1

m

2m∑

t=−m
Kh

(
λmod(k) − λt

)
|F z+1(λt)|2. (8.9)

Using restri
ted values of k allows for a handier representation of the spe
tral density

estimator. In order to be able to use these representations (8.8) and (8.9), we need

to perform at the beginning of the proof a split of the term

sup
⌊uT ⌋−⌈m2 ⌉<k≤⌊uT ⌋+⌊m2 ⌋

∣∣∣f̂ (k)− f
(
u, λmod(k)

)∣∣∣


on
erning the range of k:
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sup
⌊uT ⌋−⌈m2 ⌉<k≤⌊uT ⌋+⌊m2 ⌋

∣∣∣f̂ (k)− f
(
u, λmod(k)

)∣∣∣

= max


 sup

⌊uT ⌋−⌈m2 ⌉<k≤mdiv(⌊uT ⌋−⌈m2 ⌉)

∣∣∣f̂ (k)− f
(
u, λmod(k)

)∣∣∣

+ sup
mdiv(⌊uT ⌋−⌈m2 ⌉)+1≤k≤⌊uT ⌋+⌊m2 ⌋

∣∣∣f̂ (k)− f
(
u, λmod(k)

)∣∣∣




≤ sup
m (div(⌊uT ⌋−⌈m2 ⌉)−1)≤k≤mdiv(⌊uT ⌋−⌈m2 ⌉)

∣∣∣f̂ (k)− f
(
u, λmod(k)

)∣∣∣

+ sup
mdiv(⌊uT ⌋−⌈m2 ⌉)+1≤k≤m (div(⌊uT ⌋−⌈m2 ⌉)+1)

∣∣∣f̂ (k)− f
(
u, λmod(k)

)∣∣∣

:= A+B. (8.10)

The treatment of A and B is basi
ally analogous.

In the following we use the same idea as in the proof of Theorem A1 in Franke and

Härdle [20℄, as well as

αm := h

m
1
4
, µm :=

⌊
1
αm

⌋

Part I: A = oP (1)

With z := div
(
⌊uT ⌋ −

⌈
m
2

⌉)
− 1,

A = sup
l=1,...,m

∣∣∣∣∣
1

m

2m∑

t=−m
Kh (λl − λt) |F z(λt)|2 − f (u, λl)

∣∣∣∣∣

≤ sup
j≤µm

∣∣∣∣∣
1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
|F z(λt)|2 − E

(
1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
|F z(λt)|2

)∣∣∣∣∣

+ sup
j≤µm

∣∣∣∣∣E
(

1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
|F z(λt)|2

)
− f(u, λj)

∣∣∣∣∣

+ sup
|l−j|≤αm(2m+1)

π

∣∣∣∣∣
1

m

2m∑

t=−m

[
Kh

(
λ
s′( πjµm )

− λt

)
−Kh

(
λ
s′( πl

µm
) − λt

)]
F z(λt)|2

∣∣∣∣∣

+ sup
|l−j|≤αm(2m+1)

π

|f(u, λl)− f(u, λj)|

=: A1 + A2 + A3 + A4. (8.11)
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A4

The �rst thing one noti
es is A4 = o(1) as |l − j| ≤ αm(2m+1)
π

⇔ |λj − λl| ≤ 2αm,
f is uniformly Lips
hitz 
ontinuous in both arguments, see assumption (F)(i), and

αm → 0.

A1

Note that from the assumptions (K) on the kernel fun
tion

1
m

∑
j∈ZKh(λj) = O(1),

as well as K2
h(·) ≤ 1

h
Kh(·).

We are interested in

sup
j 6=l

Cov

(
|F z(λj)|2, |F z(λl)|2

)
.

Being in the situationA, we always have |l′−j′| = |l−j|, due to the supers
ripts being
the very same z for both arguments. That is, the set A1(u, am) equals {1, . . . , m}2.
Hen
e, with Lemma 5.3, we get

sup
j 6=l

Cov

(
|F z,ε(λj)|2, |F z,ε(λl)|2

)
= O

(
1

m

)
,

and, with the Cau
hy-S
hwarz inequality and Theorem 4.3,

sup
j 6=l

Cov

(
|F z(λj)|2, |F z(λl)|2

)
= O

(
1√
m

)
. (8.12)

We need this result (8.12) when 
onsidering

P (A1 > ε) ≤
µm∑

j=1

1

m2ε2
Var

(
2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
|F z(λt)|2

)

=

µm∑

j=1

1

m2ε2

2m∑

t=−m
K2
h

(
λ
s′( πjµm )

− λt

)
Var

(
|F z(λt)|2

)

+

µm∑

j=1

1

m2ε2

2m∑

t6=τ=−m
Kh

(
λ
s′( πjµm )

− λt

)
Kh

(
λ
s′( πjµm )

− λτ

)

·Cov
(
|F z(λt)|2, |F z(λτ )|2

)

=: A11 + A12.

Now, A12 is with the above arguments of order O
(
µm√
m

)
= O

(
1

m
1
4 h

)
= o(1), as

hm
1
4 → ∞. With (5.28), A11 = O

(
1

m
3
4 h

)
= o(1), as hm

1
4 → ∞.

A3

Making use of the kernel being uniformly Lips
hitz 
ontinuous (see assumptions

(K)),
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sup
|l−j|≤αm(2m+1)

π

∣∣∣∣∣
1

m

2m∑

t=−m

[
Kh

(
λ
s′( πjµm )

− λt

)
−Kh

(
λ
s′( πl

µm
) − λt

)]
|F z(λt)|2

∣∣∣∣∣

≤ 1

m

2m∑

t=−m
|F z(λt)|2O

(αm
h2

)
.

Note that due to Lemma 8.1,

1
m

∑2m
t=−m |F z(λt)|2 = OP (1), and therefore, as

hm
1
4 → ∞,

A3 = OP

(
1

hm
1
4

)
= oP (1).

A2

With Theorem 5.1 and, again,

1
m

∑
j∈ZKh(λj) = O(1),

sup
j≤µm

∣∣∣∣∣E
(

1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
|F z(λt)|2

)
− f(u, λj)

∣∣∣∣∣

= sup
j≤µm

∣∣∣∣∣
1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)

·


f



s′
(
πj

µm

)
+m

(
div
(
⌊uT ⌋ −

⌈
m
2

⌉)
− 1
)

T
, λt


− f(u, λt)



∣∣∣∣∣∣

+ sup
j≤µm

∣∣∣∣∣
1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
f(u, λt)− f(u, λj)

∣∣∣∣∣ + o(1)

:= A21 + A22 + o(1).

Using the uniform Lips
hitz 
ontinuity of f yields A21 = o(1).

A22 ≤ sup
j≤µm

1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
|f(u, λt)− f(u, λj)|+ o(1)

≤ sup
j≤µm

1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
|λt − λj |+ o(1)

≤ sup
j≤µm

1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
1{|λt−λj |≤Ch}|λt − λj |+ o(1)

≤ Ch
1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
+ o(1) = o(1).

113



8 Moving spe
tral density estimation

Part II: B = oP (1)

The treatment of B is analogous to A, ex
ept for a minor alteration in the splitting

up (
f. (8.11)) in four analogue terms to Ai, i = 1, 2, 3, 4. Instead of using the

supers
ript z, we have to use the supers
ript z+1. The following proof is, after the


hange in the supers
ript, again, 
ompletely analogous to part I for the analogue

terms to A1, A3 and A4. When 
onsidering the analogon to A2, we merely have to

bear in mind that instead of looking at time s′
(
πj

µm

)
+m

(
div
(
⌊uT ⌋ −

⌈
m
2

⌉)
− 1
)
, as

we did in A21, the point of time 
on
erned is s′
(
πj

µm

)
+mdiv

(
⌊uT ⌋ −

⌈
m
2

⌉)
, whi
h

does not make any di�eren
e to the behaviour of the analogue term to A2, as the

two times are only m apart.
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CHAPTER 9

Covarian
e stru
ture of the bootstrap sample

This 
hapter is devoted to proving that the moving TFT-Bootstrap maintains the

se
ond order stru
ture of the original pro
ess.

W.l.o.g. only lags h ≥ 0 are 
onsidered. A distin
tion is made between some �xed

integer h and h in
reasing withm in the way that

h
m

→ α form→ ∞ and 0 < α < 1.
In the 
ase of α > 1 or

h
m

→ ∞ the bootstrap observations X∗
t,T and X∗

t+h,T are

independent, due to the m-dependen
e of the bootstrap s
heme.

(B) Assumptions on the lo
al bootstrap Fourier 
oe�
ients

(i) E∗(c∗k) = 0, ∀k = 1, . . . , T.

(ii) Independen
e of c∗l and c
∗
k (k 6= l). for any k, l = 1, . . . , T.

(iii)

sup
k∈{⌊uT ⌋−⌈m2 ⌉+1,...,⌊uT ⌋+⌊m2 ⌋}

∣∣∣Var*(Re(c∗k))− πf(u, λk)
∣∣∣ = oP (1).

sup
k∈{⌊uT ⌋−⌈m2 ⌉+1,...,⌊uT ⌋+⌊m2 ⌋}

∣∣∣Var*(Im(c∗k))− πf(u, λk)
∣∣∣ = oP (1).

(iv) Independen
e of Re(c∗k) and Im(c∗k).

Remark 9.1

Due to Theorem 8.1, assumption (iii) is ful�lled for the wild bootstrap. (B)(i),(ii),(iv)

are true due to 
onstru
tion of the bootstrap repli
ates.
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Theorem 9.1 (Se
ond order stru
ture of bootstrap repli
ate).

Let Xt,T be a lo
ally stationary time series with time varying spe
tral density f
meeting (F)(i) and (ii). Further assume that (K)(i)-(iv) as well as (B)(i)-(iv) hold.

X∗
t,T is the bootstrap time series 
reated a

ording to the s
heme in Se
tion 7.2.1

using the wild bootstrap.

Then

sup
|h|≤m

∣∣∣Cov*(X∗
⌊uT ⌋,T , X

∗
⌊uT ⌋+h,T )− c(u, h)

∣∣∣ = oP (1).

Proof. To simplify notation we set t := ⌊uT ⌋−
⌊
m
2

⌋
. The �nal result is then adjusted

by shifting. Note that

E

∗(c∗kc
∗
l ) = E

∗(Re(c∗k)Re(c
∗
l) + iRe(c∗k)Im(c∗l) + iIm(c∗k)Re(c

∗
l) + Im(c∗k)Im(c∗l)).

Due to Assumption (B)(ii),

E

∗(Re(c∗k)Im(c∗l)) = E

∗(Re(c∗k))E(Im(c∗l)) = 0,

for k 6= l. Analogously, E∗(Im(c∗k)Re(c
∗
l)) = 0, for k 6= l.

(2m+ 1)Cov*(X∗
t+⌊m2 ⌋,T , X

∗
t+⌊m2 ⌋+h,T )

= E

∗
[( m∑

l=1

c∗
l+(div(t)−1{l≥mod(t)})m

eiλl(t+⌊m2 ⌋) +
m∑

l=1

c∗
l+(div(t)−1{l≥mod(t)})me

−iλl(t+⌊m2 ⌋)
)

·
( m∑

l=1

c∗
l+(div(t+h)−1{l≥mod(t+h)})me

−iλl(t+h+⌊m2 ⌋)

+
m∑

l=1

c∗
l+(div(t+h)−1{l≥mod(t+h)})m

eiλl(t+h⌊m2 ⌋)
)]

=

( m∑

l,k=1

E

∗
(
c∗
l+(div(t)−1{l≥mod(t)})m

c∗
k+(div(t+h)−1{k≥mod(t+h)})m

)
eiλl(t+⌊m2 ⌋)e−iλk(t+h+⌊m2 ⌋)

m∑

l,k=1

E

∗
(
c∗
l+(div(t)−1{l≥mod(t)})m

c∗
k+(div(t+h)−1{k≥mod(t+h)})m

)
eiλl(t+⌊m2 ⌋)eiλk(t+h+⌊m2 ⌋)

m∑

l,k=1

E

∗
(
c∗
l+(div(t)−1{l≥mod(t)})mc

∗
k+(div(t+h)−1{k≥mod(t+h)})m

)
e−iλl(t+⌊m2 ⌋)eiλk(t+h+⌊m2 ⌋)

m∑

l,k=1

E

∗
(
c∗
l+(div(t)−1{l≥mod(t)})mc

∗
k+(div(t+h)−1{k≥mod(t+h)})m

)
e−iλl(t+⌊m2 ⌋)e−iλk(t+h+⌊m2 ⌋)

)

As the bootstrap 
oe�
ients are assumed to be independent for di�erent indi
es

a

ording to (B)(ii), we need to 
larify when the indi
es of c∗
l+(div(t)−1{l≥mod(t)})m

and
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c∗
k+(div(t+h)−1{k≥mod(t+h)})m

are equal.

Let w.l.o.g. h ≥ 0. We are hen
e only 
on
erned with h = 0, . . . , m, as for larger h,
the bootstrap 
ovarian
e equals zero.

A

ordingly, we always have t ≤ t + h.

The following situations 
an o

ur:

Case 1: {div(t) = div(t+ h)} =: A

As h ≤ m, we 
an de�nitely say that mod(t) ≤ mod(t + h). In this 
ase, the fol-

lowing �gure exemplarily states the situation. The shaded area marks the intervals

in whi
h the indi
es of c∗
l+(div(t)−1{l≥mod(t)})m

and c∗
k+(div(t+h)−1{l≥mod(t+h)})m

are equal.

We get mat
hes for l = 1 . . .mod(t)− 1 and l = mod(t) + h, . . . , m

We 
an also write the 
ondition of 
ase 1 in a di�erent way. A = {t+h ≤ div(t)m}.

Case 2: {div(t) = div(t+ h)− 1} =: B

In this 
ase, again, as h ≤ m, we know for sure, that mod(t + h) ≤ mod(t).

We get mat
hes for l = mod(t+h), . . . , mod(t)−1 = mod(t)+h−m, . . . ,mod(t)−1

We 
an also write the 
ondition of 
ase 2 in a di�erent way: B = {div(t)m < t+h ≤
(div(t) + 1)m}

With |h| ≤ m, there is no possibility of getting into the situation of |div(t)−div(t+
h)| ≥ 2.

The Fourier 
oe�
ients are 
onstru
ted using the estimated time varying spe
tral

density. Now, using the result of Chapter 8 
on
erning the spe
tral density estimator
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and the assumption (B)(iii), we may write:

Cov

*(X∗
t+⌊m2 ⌋,T , X

∗
t+⌊m2 ⌋+h,T )

=
2π

2m+ 1
1A



mod(t)−1∑

l=1

(f(u, λl) + oP (1))e
−iλlh +

m∑

l=mod(t)+h

(f(u, λl) + oP (1))e
−iλlh




+
2π

2m+ 1
1B

mod(t)−1∑

l=mod(t)+h−m
(f(u, λl) + oP (1))e

−iλlh

+
2π

2m+ 1
1A

(mod(t)−1∑

l=1

(f(u, λl) + oP (1))e
+iλlh +

m∑

l=mod(t)+h

(f(u, λl) + oP (1))e
+iλlh

)

+
2π

2m+ 1
1B

mod(t)−1∑

l=mod(t)+h−m
(f(u, λl) + oP (1))e

+iλlh

+
1

2m+ 1
1A

(mod(t)−1∑

l=1

oP (1)e
−iλl(h+2t+2⌊m2 ⌋) +

m∑

l=t+h−m
oP (1)e

−iλlh
)

+
1

2m+ 1
1B

mod(t)−1∑

l=mod(t)+h−m
oP (1)e

−iλl(h+2t+2⌊m2 ⌋)

+
1

2m+ 1
1A

(mod(t)−1∑

l=1

oP (1)e
+iλl(h+2t+2⌊m2 ⌋) +

m∑

l=t+h−m
oP (1)e

+iλl(h+2t+2⌊m2 ⌋)
)

+
2π

2m+ 1
1B

mod(t)−1∑

l=mod(t)+h−m
oP (1)e

+iλlh.

Treating all sums involving the term oP (1) as oP (1) is possible, as these sums 
an

at most have 2m+1 summands and we then get the uniform asymptoti
 behaviour

of

2m+1
m

· oP (1) = oP (1). We 
an thus simplify to

2π

2m+ 1
Cov

*(X∗
t+⌊m2 ⌋,T , X

∗
t+⌊m2 ⌋+h,T )

=
2π

2m+ 1
1A



mod(t)−1∑

l=1

f(u, λl)e
−iλlh +

m∑

l=mod(t)+h

f(u, λl)e
−iλlh




+
2π

2m+ 1
1A

(mod(t)−1∑

l=1

f(u, λl)e
+iλlh +

m∑

l=mod(t)+h

f(u, λl)e
+iλlh

)

+
2π

2m+ 1
1B




mod(t)−1∑

l=mod(t)+h−m
f(u, λl)e

−iλlh +

mod(t)−1∑

l=mod(t)+h−m
f(u, λl)e

+iλlh


 + oP (1)
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=
2π

2m+ 1
1A



mod(t)−1∑

l=1

f(u, λl)e
−iλlh +

m∑

l=mod(t)+h

f(u, λl)e
−iλlh




+
2π

2m+ 1
1A

( 2m∑

l=2m+2−mod(t)
f(u, λ2m+1−l)e

−iλlh +

2m+1−mod(t)−h∑

l=m+1

f(u, λ2m+1−l)e
−iλlh

)

+
2π

2m+ 1
1B




mod(t)−1∑

l=mod(t)+h−m
f(u, λl)e

−iλlh +

3m+1−h−mod(t)∑

l=2m+2−mod(t)
f(u, λ2m+1−l)e

−iλlh


+ oP (1),

noting symmetry of the spe
tral density we substitute f(u, λl) = f(u, λ2m+1−l).

We readily get that Cov

*(X∗
t+⌊m2 ⌋,T , X

∗
t+⌊m2 ⌋+h,T ) = OP (

m−h
m

), as the number of

summands is part A as well as in part B is equal to m− h.

We 
an now 
ontinue with 
ompleting the fragments in part A as well as in part B
to a sum from 1 to 2m+ 1:

Cov

*(X∗
t+⌊m2 ⌋,T , X

∗
t+⌊m2 ⌋+h,T )

=
2π

2m+ 1
1A

( 2m+1∑

l=1

f(u, λl)e
−iλlh−

mod(t)+h−1∑

l=mod(t)

f(u, λl)e
−iλlh − f(u, λ2m+1)e

−iλ2m+1h

−
2m+1−mod(t)∑

l=2m+2−mod(t)−h
f(u, λl)e

−iλlh
)

+
2π

2m+ 1
1B

( 2m+1∑

l=1

f(u, λl)e
−iλlh−

mod(t)+h−m−1∑

l=1

f(u, λl)e
−iλlh

−
2m+1−mod(t)∑

l=mod(t)

f(u, λl)e
−iλlh −

2m+1∑

l=3m+2−h−mod(t)
f(u, λ2m+1−l)e

−iλlh
)
+ oP (1)

=
2π

2m+ 1
1A

( 2m+1∑

l=1

f(u, λl)e
−iλlh +

2π

2m+ 1
1B

2m+1∑

l=1

f(u, λl)e
−iλlh + oP (1)

− 2π

2m+ 1
1A

(mod(t)+h−1∑

l=mod(t)

f(u, λl)e
−iλlh + f(u, λ2m+1)e

−iλ2m+1h

+

2m+1−mod(t)∑

l=2m+1−mod(t)−h
f(u, λl)e

−iλlh
)
− 2π

2m+ 1
1B

(
+

mod(t)+h−m−1∑

l=1

f(u, λl)e
−iλlh

+

2m+1−mod(t)∑

l=mod(t)

f(u, λl)e
−iλlh +

2m+1∑

l=3m+2−h−mod(t)
f(u, λ2m+1−l)e

−iλlh
)

=: A1 +B1 + oP (1) + A2 +B2.
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Note that with De�nition 2.2 we get the following relation between the time-varying

spe
tral density at time u and frequen
y λl and the time-varying auto
ovarian
e

fun
tion.

f(u, λl) =
1

2π
|A(u, λl)|2 =

1

2π

∞∑

j,k=−∞
a(u, j)a(u, k)e−i(λl(j−k))

=
1

2π

∞∑

j=−∞

∞∑

n=−∞
a(u, j)a(u, j − n)e−iλln =

1

2π

∞∑

n=−∞
c(u, n)e−iλln.

Hen
e,

2π

2m+ 1

(
1A

2m+1∑

l=1

f(u, λl)e
−iλlh + 1B

2m+1∑

l=1

f(u, λl)e
−iλlh

)

=
1

2m+ 1
1A

( ∞∑

n=−∞
c(u, n)

2m+1∑

l=1

e−iλl(h+n)
)

+
1

2m+ 1
1B

( ∞∑

n=−∞
c(u, n)

2m+1∑

l=1

e−iλl(h+n)
)
.

The �rst two sums equal zero ex
ept for the 
ase when h+n = Z · (2m+1). In this


ase,

∑2m+1
l=1 e−iλl(h+n) = 2m+ 1. Therefore, due to the absolute summability of the

auto
ovarian
e fun
tions (
f. Remark 2.4),

A1 +B1 = 1A

(
c(u, h) +

∑

|k|≥1

c(u, h+ k(2m+ 1))

)

+1B

(
c(u, h) +

∑

|k|≥1

c(u, h+ k(2m+ 1))

)

= c(u, h) +
∑

|k|≥1

c(u, h+ k(2m+ 1)).

The last sum 
an, as |h| ≤ m, be bounded by

∑

|k|≥1

c(u, h+ k(2m+ 1)) ≤
∑

|l|≥m
c(u, l) = o(1).

With this knowledge, we may now write

sup
|h|≤m

∣∣∣Cov*(X∗
⌊uT ⌋,T , X

∗
⌊uT ⌋+h,T )− c(u, h)

∣∣∣

= sup
|h|≤m

|A2 +B2|+ oP (1).

As the term A2 is only non-zero for the indi
tor 1A being equal to 1, we do not need
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to 
onsider all 0 ≤ h ≤ m, but only those that result in div(t) = div(t+h), t := ⌊uT ⌋.
We have noted before that we 
an also write the set A as {t + h ≤ div(t)m}. This

ondition 
an be reformulated as h ≤ div(t)m− t and, with the de�nition of div and
mod, we get h ≤ m−mod(t). We therefore need to 
onsider only 0 ≤ h ≤ m−mod(t)
when looking at A2. Similarly, we only need to 
onsider m ≥ h > m−mod(t) when
looking at B2.

To treat sup|h|≤m |A2 +B2|, �rstly, 
onsider

sup
0≤h≤m−mod(t)

|A2| =
1

m
sup

0≤h≤m−mod(t)

∣∣∣∣∣∣

mod(t)+h−1∑

l=mod(t)

f(u, λl)e
−iλlh

+

2m+1−mod(t)∑

l=2m+1−mod(t)−h
f(u, λl)e

−iλlh

∣∣∣∣∣∣
+O

(
1

m

)

Hen
e,

sup
0≤h≤m−mod(t)

|A2| = O

(
1

m

)
+ sup

0<h≤m−mod(t)

1

m

∞∑

n=−∞
|c(u, n)|

(∣∣∣∣∣

h−1∑

l=0

e−iλl+mod(t)(n+h)

∣∣∣∣∣

+

∣∣∣∣∣

h∑

l=0

e−iλl+2m+1−mod(t)−h(n+h)

∣∣∣∣∣

)

= O

(
1

m

)
+ sup

0<h≤m−mod(t)

1

m

∞∑

n=−∞
|c(u, n)|O

(
min

(
2m+ 1

|n+ h| , |h|
))

by Lemma A.4 in Kir
h [28℄. We 
ontinue with

sup
0<h≤m−mod(t)

1

m

∞∑

n=−∞
|c(u, n)|O

(
min

(
2m+ 1

|n+ h| , |h|
))

= sup
0<h≤m−mod(t)

∞∑

n=−∞
|c(u, n)|O

(
min

(
1

|n+ h| ,
|h|
m

))

= sup
0<h≤m−mod(t)

∑

|n|<
√
h

|c(u, n)|O
(
min

(
1

h
,
|h|
m

))

+ sup
0<h≤m−mod(t)

∑

|n|≥
√
h

|c(u, n)|O
(
min

(
1,

|h|
m

))
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≤ O

(
sup
h≤m

min

(
1

h
,
|h|
m

))
+O


sup
h≤m

min


 |h|
m
,
∑

|n|≥
√
h

|c(u, n)|






≤ O

(
1√
m

)
+O


max


 1√

m
,
∑

|n|≥√
m

|c(u, n)|






= o(1).

Se
ondly, we look at

sup
m−mod(t)<h≤m

|B2| ≤ sup
m−mod(t)<h≤m

1

m



∣∣∣∣∣∣

mod(t)+h−m−1∑

l=1

f(u, λl)e
−iλlh

∣∣∣∣∣∣

+

∣∣∣∣∣∣

2m+2−2mod(t)∑

l=1

f(u, λl+mod(t)−1)e
−iλl+mod(t)−1h

∣∣∣∣∣∣

+

∣∣∣∣∣∣

−m+h+mod(t)∑

l=1

f(u, λl+3m+1−h−mod(t))e
−iλl+3m+1−h−mod(t)h

∣∣∣∣∣∣




≤ sup
m−mod(t)<h≤m

1

m

∞∑

n=−∞
|c(u, n)|



∣∣∣∣∣∣

mod(t)+h−m−1∑

l=1

e−iλl(h+n)

∣∣∣∣∣∣

+

∣∣∣∣∣∣

2m+2−2mod(t)∑

l=1

e−iλl+mod(t)−1(h+n)

∣∣∣∣∣∣
+

∣∣∣∣∣∣

−m+h+mod(t)∑

l=1

e−iλl+3m+1−h−mod(t)(h+n)

∣∣∣∣∣∣




With Lemma A.4 in Kir
h [28℄ we 
an 
ontinue analogously as for the term A2:

sup
m−mod(t)<h≤m

1

m

∞∑

n=−∞
|c(u, n)|

(
O

(
min

(
2m+ 1

|n+ h| , |mod(t) + h−m− 1|
))

+ O

(
min

(
2m+ 1

|n+ h| , |2m+ 2− 2mod(t)|
)))

= sup
m−mod(t)<h≤m

[ ∑

|n|<
√
h

|c(u, n)|
(
O

(
min

(
1

h
,
|mod(t) + h−m− 1|

m

))

+ O

(
min

(
1

h
,
|2m+ 2− 2mod(t)|

m

)))

+
∑

|n|≥
√
h

|c(u, n)|
(
O

(
min

(
1,

|mod(t) + h−m− 1|
m

))

+ O

(
min

(
1,

|2m+ 2− 2mod(t)|
m

)))]
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As mod(t) ≤ m and mod(t) + h − m ≥ 0, we 
an bound |mod(t) + h − m| by h.
Moreover, as also h > m−mod(t), we may bound |2m+2− 2mod(t)| by 2h as well.

Hen
e,

sup
m−mod(t)<h≤m

|B2| ≤ O

(
sup
h≤m

min

(
1

h
,
h

m

))
+O

(
sup
h≤m

min

(
1

h
,
2h

m

))

+O


sup
h≤m

min


 h

m
,
∑

|n|≥
√
h

|c(u, n)|






≤ O

(
1√
m

)
+O


max


 1√

m
,
∑

|n|≥√
m

|c(u, n)|






Thus,

sup
0≤h≤m

|A2 +B2| = o(1).

So all in all,

sup
0≤h≤m

Cov

*(X∗
t+⌊m2 ⌋,T , X

∗
t+⌊m2 ⌋+h,T ) = oP (1).
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CHAPTER 10

De�
ien
y of the Adapted Fast Fourier Transformation (AFFT)

As the moving Fourier transformation of T values X1, . . . , XT with window width

N := 2m + 1 is of order O(mT ), one might think of exploiting the bene�ts of

developing an algorithm in the style of the ordinary fast Fourier transform to redu
e


omputing time. This is, unfortunately, not possible without 
ompromises. The

�rst se
tion shortly displays the algorithm of the fast Fourier transform. In the

se
ond part, we adapt the fast Fourier transform to �t our needs. And in the next

step, we then give the reasons of why we 
an't possibly a
hieve any improvement in


omputing time. Finally, an algorithm is suggested whi
h � to a previously 
hosen

extent � 
ompromises on 'lo
ality' for the bene�t of speed.

10.1 The fast Fourier transform

This Se
tion follows 
losely Chapter 3.7 in S
hwarz and Koe
kler [48℄.

Assume we have N values X0, . . . , XN−1. For reasons of simpli
ity, we assume that

N = 2q, whi
h 
overs the most popular algorithm. There are also algorithms for

N being a power of other bases, for example Boor [17℄, Brigham [2℄ and Winograd

[55℄. Nowadays, software pra
ti
ally allows for any N , the amount of 
omplexity

depending on the prime fa
torization of N .

We employ the standard notation and use ωjN := e−
2πij
N = e−iλj , j = 0, . . . , N − 1,

to refer to the j-th unit root. The Fourier 
oe�
ient at frequen
y λk =
2πk
N

is then

given by

ck :=
1√
N

N−1∑

j=0

Xje
−ijλk .

For the fast Fourier transform one needs to distinguish between odd and even indi
es.
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ien
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Let, for the �rst step to be
ome more illustrating m := N
2
= 2q−1

.

k = 2l, l = 0, . . . , m− 1

As ω
2l(m+j)
N = ω2lj

N ω2lm
N = ω2lj

N and ωm = ω2
N , we get

c2l =
1√
N

N−1∑

j=0

Xje
−ijλ2l =

1√
N

N−1∑

j=0

Xjω
2lj
N =

1√
N

m−1∑

j=0

(Xj +Xm+j)ω
2lj
N

=
1√
N

m−1∑

j=0

(Xj +Xm+j)(ω
2
N)

lj =
1√
N

m−1∑

j=0

zjω
lj
m. (10.1)

We have now redu
ed the Fourier transform of the N = 2m values X1, . . . , XN to a

Fourier transform of the m auxiliary variables

zj,e := Xj +Xm+j , j = 0, . . . , m− 1.

k = 2l + 1, l = 0, . . . , m− 1

As ω
(2l+1)(m+j)
N = ω

(2l+1)j
N ω

(2l+1)m
N = −ω(2l+1)j

N and ωm = ω2
N , we get

c2l+1 =
1√
N

N−1∑

j=0

Xjω
(2l+1)j
N =

1√
N

m−1∑

j=0

(
Xjω

(2l+1)j
N +Xm+jω

(2l+1)(m+j)
N

)

=
1√
N

m−1∑

j=0

(Xj −Xm+j)ω
(2l+1)j
N =

1√
N

m−1∑

j=0

(
(Xj −Xm+j)ω

j
N

)
ω2lj
N

=
1√
N

m−1∑

j=0

zj+mω
lj
m. (10.2)

Again, we have redu
ed the Fourier transform of the N = 2m values X1, . . . , XN to

a Fourier transform of m auxiliary variables

zj+m,o := (Xj −Xm+j)ω
j
N , j = 0, . . . , m− 1.

This a
t of redu
ing the Fourier transform of 2m values to a Fourier transform of m
values e�e
tively 
osts m 
omplex multipli
ations (for 
al
ulating the zj+m).
Note, that for ea
h k = 2l, we have the same auxiliary variables zj , j = 0, . . . , m−1.
Analogously, for ea
h k = 2l + 1, we have the same auxiliary variables zj+m, j =
, . . . , m − 1. This is a
tually the key to why we lose 
omplexity - the auxiliary

variables remaining un
hanged in ea
h group.

The next step is then to redu
e both of the new formulae (10.1) and (10.2) to Fourier

transforms of

m
2
values, whi
h 
osts 2 · m

2
= N

2

omplex multipli
ations. That is, a

Fourier transform of order N = 2q 
an in q steps be redu
ed to N Fourier transforms

of order 1, whi
h are the desired 
oe�
ients. Ea
h of the steps requires

N
2

omplex
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multipli
ations and thus, the total 
omplexity is

N

2
· q = O(N log2N).

Compared to the straight 
al
ulation ofN Fourier 
oe�
ients, ea
h of them resulting

from a Fourier transform of N values, we have redu
ed the 
omplexity from O(N2)
to O(N log2N) by using this spe
ial algorithm, the Fast Fourier Transformation.

10.2 Pro
edure

As the moving Fourier transformation performs a Fourier transform of length 2m
on ea
h stret
h of data, one might think of employing the FFT-algorithms to speed

things up. However, one has to note that we don't a
tually 
al
ulate all frequen
ies

for ea
h stret
h, but 
al
ulate one frequen
y only and then shift to the next stret
h.

The point of matter, therefore, is whether the shift still allows for a su�
ient 'reuse'

of the auxiliary variables zj and zj+ N
2q

in ea
h group j = 0, . . . , N
2q

− 1, q = 1, . . . , p.

The parameter q denotes the redu
tion step we are 
urrently at. To �nd out, whether

shifting 
auses the algorithm to lose its 
omputational advantage (whi
h it has


ompared to the ordinary DFT) 
ompared to the straight 
al
ulation of the moving

Fourier transform, we need to write it down �rst.

Note that the width of the 
hosen window for our transformation has been 2m+ 1
in the previous 
hapters. For reasons of simpli
ity, as pointed out before, we sele
t

a window width of N := 2m = 2q, q ∈ N . Further, we assume m|T .
The pro
edure of the adapted fast Fourier transform is analogous to the ordinary


ase. We redu
e the transform of N values to 2 transforms of m := N
2
values ea
h

(distinguishing odd and even indi
es, as usual).

Note that we want to look at the 
omplexity of transforming a time series of length

T , whi
h normally only yields T −m moving Fourier 
oe�
ients. As m is so mu
h

smaller than T , we 
an very well 
onsider the 
oe�
ients cj , 1 ≤ j ≤ T, when being

interested in 
omplexity only.

This results in

T
2
odd and

T
2
even indi
es.

k = 2l, l = 0, . . . , m− 1

Analogously to the stationary 
ase,

c2l =
1√
N

m+2l∑

j=2l−m+1

Xjω
2lj
N =

1√
N

2l∑

j=2l−m+1

(Xj +Xj+m)ω
lj
m

=
1√
N

2l∑

j=2l−m+1

zj, eω
lj
m,

with zk, e := Xk +Xk+m.
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Analogously,

k = 2l + 1, l = 0, . . . , m− 1

c2l+1 =
1√
N

m+2l+1∑

j=2l−m+2

Xjω
(2l+1)j
N =

1√
N

2l+1∑

j=2l−m+2

[
(Xj −Xj+m)ω

j
N

]
ωljm

=
1√
N

2l+1∑

j=2l−m+2

zj, oω
lj
m,

with zj, o := (Xj −Xj+m)ω
j
N .

10.3 Complexity and the reason there is no 'fast'

transform

As k ranges from 1 to T , T Fourier 
oe�
ients need to be 
al
ulated. Let p designate
the 'splitting' step we look at. The �rst splitting step (p = 1) is performed in the

previous se
tion for odd as well as even indi
es of the Fourier 
oe�
ients. With the

de�nitions zk, e := Xk +Xk+m and zk, o := (Xk −Xk+m)ω
k
N , we 
an then write ea
h

of the Fourier 
oe�
ients as a sum of length m of either zo's (if the index k is odd)

or ze's (if the index k is even).

Hen
e, a 
oe�
ient, for example, c1 with a sum of only zo's is followed by a 
oe�-


ient, c2 with a sum of only ze's and so on.

We now 
ontinue the 
onstru
tion prin
iple of the fast Fourier transform � the split-

ting of sums and redu
ing to Fourier transforms of lower order. For the sake of

simpli
ity, we 
onsider only the 
ase of k being odd. The even 
ase works analo-

gously.

As we 
ontinue splitting, ea
h sum of length m of zo's is split and then rearranged

to a sum of length

m
2
= N

4
of either zo,e's or zo,o's, where

zk,o,e := zk,o + zk+m
2
,o, zk,o,o := (zk,o − zk+m

2
,o)ω

k
m
2
,

depending on whether

(k−1)
2

is even (�rst 
ase) or odd (se
ond 
ase). Figure 10.1

symbolizes the possible 
ombinations of evens and odds for the �rst 4 steps:
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p = 1 p = 2 p = 3 p = 4
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· e eo eoo eooe
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.
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.
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.
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o oo ooo oooo

cT e ee eee eeee

Figure 10.1: Suggestive graphi
 of the indi
es used for zk,·, k = 1, . . . , T .

The more splitting steps we perform, the longer it takes for a 
ombination to repeat

itself. In the se
ond splitting step, for example, the 
ombination oe is repeated every

22 times, whereas, in the third step, the 
ombination oee is repeated every 23 times.

The number of di�erent out
omes is 2p.
Let's say we are 
urrently at step p and interested in all Fourier 
oe�
ients that


an be split in a way that only ze,e,e,...e's remain (p× e). In this group, there is the

Fourier 
oe�
ient cm, as well as cm+2p, cm+2·2p , cm+3·2p, . . . . All in all, there should

be

T
2p

Fourier 
oe�
ients in this group.

Now, to determine the number of 
al
ulations to be done to obtain all Fourier


oe�
ients for this group in step p, we start with the easiest 
ase (p = 1):
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Ea
h of the m 
al
ulations of ze's in the even 
ase 
osts one 
omplex addition,

whereas ea
h of the m 
al
ulations of a single zo in the odd 
ase 
osts � at �rst

glan
e � one 
omplex addition and one 
omplex multipli
ation.

In Figure 10.2 all summands involved in the 
al
ulation of two subsequent odd-

indexed Fourier 
oe�
ients c2l0+1 and c2l0+3 (l0 �xed) are expli
itly listed.

Given z2l0−m+2, o, . . . , z2l0+1, o, we 
an see from Figure 10.2 that we only need to in-

vest 2 further 
omplex multipli
ations (and 
omplex additions) in order to obtain

all the zo's needed to 
onstru
t c2l0+3. For the very �rst odd 
oe�
ient, however,

we need to 
al
ulate all zo's, whi
h 
osts

N
2

omplex multipli
ations (and the same

amount of 
omplex additions).

The number of 
omplex multipli
ations needed to 
al
ulate all zo's totals

N

2
+ 2 ·

(
T

2

)
=
N

2
+ T

Same applies of 
ourse, for the 
omplex additions. That was for the �rst step p = 1.

Now, for the p-th step, the idea remains the same, but we have already noti
ed, that

the Fourier 
oe�
ients yielding the same output (i.e. sums of z's with the same in-

dex) � �guratively spoken (in view of Figure 10.1)� 'move further and further apart'

with every splitting step. As we don't use the same data for ea
h transformation,

but shift, the number of 
ommon elements of two Fourier 
oe�
ients yielding the

same output gets less and less. A

ounting for this the number of z's to be 
al-


ulated additionally in ea
h further step is no more only 2 (as in step p = 1), but
depends on p and is equal to 2p � whi
h is the reason why we fail to 
reate a faster

algorithm.

For our 
onvenien
e, we will refer to Fourier 
oe�
ients, whi
h � splitted p-times �

in a way that they 
an be expressed with sums 
ontaining only ze,e,e,...e's (p× e) as
Fourier 
oe�
ients of group eeeee....e.
The p-th letter is an e, indi
ating that the z's are 
reated solely by one 
omplex

addition (without 
omplex multipli
ation)
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√
Nc2l0+1 =

[
(X2l0−m+2 −X2l0+2)ω

(2l0−m+2)
N

]

︸ ︷︷ ︸
=z2l0−m+2, o

ωl0(2l0−m+2)
m +

[
(X2l0−m+3 −X2l0+3)ω

(2l0−m+3)
N

]

︸ ︷︷ ︸
=z2l0−m+3, o
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m
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[
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.

+
[
(X2l0 −X2l0+m)ω

(2l0)
N

]

︸ ︷︷ ︸
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N
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︸ ︷︷ ︸
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m

√
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N
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Figure 10.2: Comparison of summands used for 
al
ulation of two su

eeding odd indexed moving Fourier 
oe�
ients

1

3
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If we now exemplarily 
onsider the number of 
omplex multipli
ations needed to


onstru
t all elements of group oooo...o, we end up with

N

2p
+ 2p ·

(
T

2p

)

• N
2p
=̂ number of initially to be 
al
ulated z's, when no element of group oooo...o

has been 
al
ulated yet.

• 2p =̂ number of z's that have yet to be 
al
ulated, given we have already


al
ulated an element of group oooo...o

• T
2p
=̂ number of Fourier 
oe�
ients in group oooo...o


omplex multipli
ations and the same number of additions in the p-th step.

Putting the results together, we obtain the following:

• T Fourier 
oe�
ients (i.e. sums of length N = 2q) need to be 
al
ulated.

• We split ea
h sum p times, in order to be �nally left with only one summand

� the Fourier 
oe�
ient. So q = log2N is the number of splitting steps.

• We have 2p di�erent oe-index-
ombinations after the p−th step.

• For the p-th step, the 
osts for one group total

(
N

2p
+ 2p ·

(
T

2p

))
(multipli
ation only)

As we split q times, we have to a

ept a 
ost of

q∑

p=1

2p
(
N

2p
+ 2p ·

(
T −N

2p

))
= O(NT ).

So it doesn't a
tually help to exploit the bene�t of 'reusable' (in the sense

of: already 
al
ulated) elements. If we would have been able to dete
t an

advantage at this point, we would also have had to numeri
ally take into 
on-

sideration, that the number of 
ommon elements (of Fourier 
oe�
ients in one

group) de
reases steadily and thus, at some step p, we don't have any over-

lapping anymore and have to 
al
ulate all

N
2p
z's for ea
h Fourier 
oe�
ient in

ea
h group.

Though we didn't get a 
omputational advantage, we will write down the

general formula for the sake of 
ompleteness.
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10.4 A 
ompromise between speed and lo
ality

If the last step with overlapping elements is p = x, the formula yielding the


orre
t 
ost is

x∑

p=1

2p
(
N

2p
+ 2p ·

(
T −N

2p

))
+

q∑

p=x+1

2p
(
N

2p
·
(
T −N

2p

))
= O(NT ).

Referring ba
k to Se
tion 10.1, we have now seen that the reason we fail to get

a numeri
al advantage to the straight 
al
ulation of the moving Fourier trans-

form by applying fast Fourier te
hniques, is the shifting. The ordinary Fourier

transform, after having 
al
ulated the summands for the �rst two Fourier


oe�
ients in one group, 
ompletely reuses the summands z for the remain-

ing 
oe�
ients in this step and there is no exponentially growing amount of

summands to be additionally 
al
ulated as in the previous pro
edure of the

adapted fast Fourier transform.

10.4 A 
ompromise between speed and lo
ality

As we have �gured out the problem that o

urs when intending to adapt the idea of

the fast Fourier transform, one might want to try out an alternative, whi
h bene�ts

from the redu
tion of 
omplexity by 
reating reusable summands, but at the same

time doesn't give up on the aspe
t of shifting.

Basi
 idea

Let again 1 ≤ j ≤ T . The proposed algorithm of the moving Fourier transform

implies that, after the 
al
ulation of one Fourier 
oe�
ient based on N data values,

for example X1, . . . , XN , the 'window' shifts and the next Fourier 
oe�
ient is 
al-


ulated based on only almost the same data X2, . . . , XN+1. So what we are doing

is that we are, in a sense, shifting the 
at
hment area of the Fourier transform by 1

unit after the 
al
ulation of ea
h 
oe�
ient.

The idea of the 
ompromising algorithm is not to shift by 1 unit, but by L units

� and also not after the 
al
ulation of every single Fourier 
oe�
ient, but the shift

ought to o

ur after having 
al
ulated L Fourier 
oe�
ients on the basis of the same

data values.

Formulae

Choose L := L(N) in a way that

L(N)
N

→ 0 and L(N) → ∞ for N → ∞. The


al
ulation of the Fourier transform in this adapted way is suggestively displayed in

Figure 10.3.

Note: If

T
L

is not an integer, the last blo
k is shorter and 
omplexity somewhat

smaller.

Now what we have is basi
ally

T
L
times a Fourier transform of N values.
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Case 1: L ≥ 2p As long as L ≥ 2p, whi
h means that ea
h possible out
ome of the

p-th step is 
overed at least on
e, we 
an refer to the ordinary Fourier transform of

N values. For simpli
ity let L := 2x and we get, for p ≤ x

T

L

x∑

p=1

2p
N

2p
= O

(
TN log2 L

L

)
.

Case 2: L < 2p However, as soon as L is no longer 
overing all out
omes, whi
h

means as soon as p > x, we 
an no longer resort to the idea of

T
L
separate Fourier

transforms, but we have to revisit the previous pro
edure:

• 2p di�erent groups

• T
2p

elements in ea
h group

• Taking into 
onsideration the shift on indi
es: Having 
al
ulated one element

of the group, we need, for any other element of the group,

⌊
2p

L

⌋
·L operations.

q∑

p=x+1

2p
(
N

2p
+

⌊
2p

L

⌋
· L · T

2p
− 1

)

So the 
omplexity is now

T

L

(
x∑

p=1

2p
N

2p

)
+

q∑

p=x+1

(
2p
(
N

2p
+

⌊
2p

L

⌋
· L · T

2p
− 1

))

= O

(
TN log2 L

L
+ (log2N − log2 L)N +

NT

L

)
.

This en
loses the 
ases of

• L = 1 (maximal lo
ality, high 
omplexity) � the moving Fourier transform

(→ O(NT )), and

• L = N (minimal lo
ality, low 
omplexity) � the original Fourier transform of

T
N

blo
ks of length N (→ O(T log2N)).

Therefore, this method a
hieves a redu
tion in 
omplexity for L > 1 � to the 
ost

of lo
ality.
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1st blo
k of length L :

c1 =
1√
N

N+1∑

k=1

Xk−N
2
ω1·k
N , c2 =

1√
N

N+1∑

k=1

Xk−N
2
ω2·k
N , . . . , cL =

1√
N

N+1∑

k=1

Xk−N
2
ωL·kN

2nd blo
k of length L :

cL+1 =
1√
N

N+1+L∑

k=1+L

Xk−N
2
ω
(L+1)k
N , cL+2 =

1√
N

N+1+L∑

k=1+L

Xk−N
2
ω
(L+2)k
N , . . . , c2L =

1√
N

N+1+L∑

k=1+L

Xk−N
2
ω
(2L)k
N

.

.

.

T
L
th blo
k of length L :

cT−L+1 =
1√
N

T∑

k=T−N+1

Xk−N
2
ω
(T−L+1)k
N , cT−L+2 =

1√
N

T∑

k=T−N+1

Xk−N
2
ω
(T−L+2)k
N ,

. . . , cT =
1√
N

T∑

k=T−N+1

Xk−N
2
ω
(T )k
N

Figure 10.3: Constru
tion of moving Fourier 
oe�
ients with shift L
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CHAPTER 11

Simultaneous 
on�den
e bands for the auto
orrelation

When estimating statisti
al quantities, one does also want, as Neumann and Polzahl

[39℄ put it, to give a visual impression of the adequa
y and variability of the estima-

tion. This 
an be done by the presentation of 
on�den
e intervals for the values of

interest. When estimating fun
tions, however, it does not su�
e to provide point-

wise 
on�den
e intervals for ea
h fun
tion value, as the main fo
us is most of the

time on the overall shape of the 
urve and not the reliabilities of single values. Vi-

sualizations of su
h pointwise 
on�den
e bands will most likely also lead to a wrong

interpretation by the user of statisti
al evaluations. It is therefore of great interest

to provide uniform or simultaneous 
on�den
e bands when estimating fun
tions to

o�er an easy and intuitive understanding of the pre
iseness of the estimation.

Why would one want to study auto
orrelation fun
tions? Auto
orrelation of a time

series means that values yet to 
ome depend on past values. Auto
orrelation some-

times eases predi
tions, indi
ating some persistan
e in systems meaning that some

states perservere for additional time-units as the system is quite inertial. Some ex-

amplary time series 
an be seen in the �eld of hydrometerology: Garen and Pagano

[42℄ analyze April � September stream�ow volume data from 141 unregulated basins

in the western United States for trends in persisten
e. De
adal time-s
ale 
hanges

in lag-1-year auto
orrelation (persisten
e) were observed. The 1930s � 50s was a

period of low variability and high persisten
e, the 1950s � 70s was a period of low

variability and antipersisten
e, and the period after 1980 was highly variable and

highly persistent. In parti
ular, regions from California and Nevada to southern

Idaho, Utah, and Colorado have re
ently experien
ed an unpre
edented sequen
e of


onse
utive wet years along with multiyear extreme droughts.

Paying attention to auto
orrelation fun
tions is not only of major interest against

physi
al ba
kground, but also in e
onomi
 settings: Auto
orrelation in sto
k returns

is used as one important measure of se
urities market pri
ing. To monitor the au-

to
orrelation of sto
k returns 
losely is important, as it may be a sign of genuine
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pri
ing ine�
ien
y (see Anderson [1℄).

Building on the example of auto
orrelation � estimating the auto
orrelation fun
tion

and 
onstru
ting 
on�den
e bands for the �rst order auto
orrelation � we point out

the pra
ti
al relevan
e of estimators grasping the time-varying stru
tures o

urring

in time series. We advertise our method of the moving Fourier transform, the mov-

ing periodogram and 
orrespondingly adapted bootstrap pro
edures to meet these

needs.

11.1 Design of simultaneous 
on�den
e bands for

the auto
orrelation

Con�den
e bands for a time varying auto
orrelation fun
tion have hardly been stud-

ied in literature.

Sergides [49℄ 
onstru
ts pointwise 
on�den
e bands for the time varying auto
orrela-

tion fun
tion of a tvMA(1)-pro
ess. These pointwise intervals are of variable width

and are 
al
ulated by adding (and substra
ting) the bootstrap estimate of the stan-

dard deviation times the theoreti
al quantiles of the standard normal distribution

to the estimated auto
orrelation fun
tion.

Kreiss and Paparoditis [32℄ do also 
onstru
t pointwise 
on�den
e bands by using the

same approa
h as Sergides [49℄ employing their hybrid bootstrap method. However,

they do not provide any further simulation study but merely apply their bootstrap

method to give a numeri
al example.

As pointed out before, it would be far more reasonable and also more intuitive

from a pra
titioner's point of view to provide simultaneous 
on�den
e bands for

estimated fun
tions. This is a problem, whi
h is, up to now, mainly addressed

in nonparametri
 regression, where simultaneous 
on�den
e bands are 
onstru
ted

for the regression fun
tion (see Sun and Loader [52℄ and Neumann and Polzehl [39℄).

There are two basi
 approa
hes to 
onstru
t simultaneous 
on�den
e bands: either

with �xed or with variable width. For the situation of nonparametri
 regression, an

easy to understand des
ription of how to pro
eed in either 
ase is given by Neumann

and Polzehl [39℄. There is also a fairly good manual of how to 
onstru
t simultaneous


on�den
e bands with variable width using bootstrapping in Lenho� et al. [34℄.

We now des
ribe two methods of 
onstru
ting simultaneous 
on�den
e bands for

the auto
orrelation ρ(u, h), u ∈ [0, 1], of the lo
ally stationary time series {Xt,T}.
W.l.o.g. we will restri
t ourselves to h = 1, that is the 1-lag auto
orrelation.

Firstly, the 
onstru
tion of a 
on�den
e band of variable width is 
onsidered. We

aim to use bootstrapping in order to mimi
 the behaviour of the pro
ess

{
ρ(u, 1)− ρ̂(u, 1)

σ̂ρ(u)

}

u∈[0,1]
.
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This pro
ess spe
i�es the maximal weighted deviation of the auto
orrelation from

the estimate ρ̂(u, 1), for all u ∈ [0, 1].

Step 1: Choose a suitable latti
e L[0, 1] on the interval [0, 1]. For example, {t/T, t =
1, . . . , T}. For every �xed u ∈ L[0, 1] 
al
ulate an estimate ρ̂(u, 1) of the

auto
orrelation fun
tion.

Step 2: Generate B bootstrap time series by employing a moving bootstrap. For ea
h

time series

{
X∗,b
t,T

}
, b = 1, . . . , B, estimate the auto
orrelation ρ̂b(u, 1) for

every u ∈ L[0, 1].

Step 3: Use all B time series to estimate the standard deviation σ̂ρ̂(u) of ρ̂ for every

u ∈ L[0, 1].

Step 4: Choose Cboot > 0 su
h that

1

B

B∑

b=1

1

{
max
u∈L[0,1]

ρ̂(u, 1)− ρ̂b(u, 1)

σ̂ρ(u)
≤ Cboot

}
≥ 1− α,

for some pres
ribed α, 0 < α < 1.

The simultaneous α · 100% 
on�den
e band for ρ(u, 1), 0 ≤ u ≤ 1, is then given by

CBvariable := [ρ̂(u, 1)− Cboot · σ̂ρ(u), ρ̂(u, 1) + Cboot · σ̂ρ(u)].

In order to maintain uniform size of the 
on�den
e band, one simply omits the

third step of the above algorithm and adapts the fourth step. Doing so, we hen
e

mimi
 the pro
ess of the maximal deviation of the auto
orrelation from the estimate

ρ̂(u, 1), for all u ∈ [0, 1].

{ρ(u, 1)− ρ̂(u, 1)}u∈[0,1] .

Step 1: Create a suitable latti
e L[0, 1] on the interval [0, 1]. For every �xed u ∈ L[0, 1]

al
ulate an estimate ρ̂(u, 1) of the auto
orrelation fun
tion.

Step 2: Generate B bootstrap time series by employing a moving bootstrap. For ea
h

time series

{
X∗,b
t,T

}
, b = 1, . . . , B, estimate the auto
orrelation ρ̂b(u, 1) for

every u ∈ L[0, 1].

Step 4': Choose C ′
boot > 0 su
h that

1

B

B∑

b=1

1

{
max
u∈L[0,1]

{
ρ(u, 1)− ρ̂b(u, 1)

}
≤ Cboot

}
≥ 1− α,

for some pres
ribed α, 0 < α < 1.
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The simultaneous α · 100% 
on�den
e band for ρ(u, 1), 0 ≤ u ≤ 1, is then given by

CBfixed := [ρ̂(u, 1)− C ′
boot, ρ̂(u, 1) + C ′

boot].

In our simulations, the moving bootstrap method, as referred to in Step 2, will

either be the moving TFT-bootstrap, the moving autoregressive aided periodogram

bootstrap or the moving wild hybrid bootstrap.

11.2 Simulation study

The study is stru
tured as follows: At �rst, we will simulate di�erent types of lo
ally

stationary pro
esses. Those pro
esses vary with respe
t to the model stru
ture

and the distribution of the white noise. We will 
onsider a tvAR(1)-pro
ess with

linearly 
hanging 
oe�
ients, as well as a tvMA(1)-pro
ess as used by Sergides [49℄.

Con
erning the white noise, we will study standard normal errors, standardized

χ2
- as well as standardized exponentially distributed errors. De�nition 2.1 merely

pres
ribes that Eεt = 0, Eε2t = 1, as well as Eε4t < ∞ whi
h is ful�lled after

appropriate 
entering and res
aling of the errors.

DGP 1 (time-varying AR(1)-pro
ess)

Xt,T = at,T ·Xt−1,T + εt,

with at,T =
(
1− t

T

)
· (−0.6) + t

T
· 0.6 and εt independent and identi
ally

distributed for all t = 1, . . . , T .

DGP 2 (time-varying MA(1)-pro
ess)

Xt,T = 1.1 · cos
(
1.5− cos

(
4π i

T

))
· εt−1 + εt,

with εt independent and identi
ally distributed for all t = 1, . . . , T .

The following arrangements will be 
onsidered:

Error distribution

N (0, 1) 5 · Exp(5)− 1
χ2
3−3√
6

Model

tvAR(1) DGP1a DGP1b DGP1


tvMA(1) DGP2a DGP2b DGP2
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Figure 11.1: A realization of DGP 1


Figure 11.2: A realization of DGP 2a

To a

ount for the boundary e�e
ts whi
h o

ur as we don't use the moving versions

of the bootstrap for the very �rst and the very last N = 201 observations, we only

evaluate the simulations in between t = 200 and t = 800, that is at 601 points

in time. This is in agreement with Sergides [49℄. The following graphi
s, though,

display the whole range of t = 1 to t = 1000. One 
an 
learly see � for example in

Figure 11.3 � the e�e
t of the blo
kwise bootstrap in the beginning and at the end.

We have 
onstru
ted the 
on�den
e bands to a 
overage of 95%. In order to verify

whether the 
on�den
e bands a
tually meet the intended 
overage probability, we


al
ulate the empiri
al 
overage probability using R = 200 repetitions. As we work

with simultaneous 
on�den
e bands, the question is how to 
hara
terize a 
urve to
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lie in between two other 
urves. Should we require all points of the 
urve to be in

between, do we allow for some per
entage of points that 
an be outside?

The �rst 
he
k is whether the empiri
al 
overage is dependent on the data. This

is done by looking at di�erent seeds. The resulting empiri
al 
overage probability

of the theoreti
al auto
orrelation fun
tion at lag 1 of a time-varying AR(1)-pro
ess

with standard normal iid errors (DGP 1a) is given in the following table. The theo-

reti
al 
urve ρ(1) is 
onsidered to lie within the 
on�den
e band if all values between

t = 200 and t = 800 are within the 
on�den
e band.

Width Type of bootstrap

variable �xed mTFT mAAPB mH

Seed

1:200 x 0.960 0.99 1.000

1:200 x 0.970 0.995 1.000

201:400 x 0.980 0.995 1.000

201:400 x 0.985 0.995 1.000

We 
an see that for di�erent seeds, the moving version of the TFT-bootstrap is the

most volatile. We should as a rule of thumb 
onsider random deviations of ±0.01
before drawing 
on
lusions.

Having mentioned the di�
ult question of 
larifying when the theoreti
al 
urve ρ(1)
is 
onsidered to lie within the 
on�den
e band, we 
onsider di�erent numbers of

points we allow to deviate. The �rst 
riterion is that all 601 points do have to lie

within the bounds, se
ondly, only 590 of the 601 points need to be in the band. The

most is a miss by 100 points, whi
h is 17% of the 
urve.

Empiri
al 
overage probability based on DGP1a

Width Type of bootstrap

variable �xed mTFT mAAPB mH

≥ bound

601 x 0.96 0.99 1.00

601 x 0.97 1.00 1.00

590 x 0.97 0.99 1.00

590 x 0.98 1.00 1.00

560 x 0.98 1.00 1.00

560 x 0.99 1.00 1.00

500 x 1.00 1.00 1.00

500 x 1.00 1.00 1.00
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We now perform the autoregressive-aided periodogram bootstrap as given by Sergides

[49℄, still with a window width of N = 201, but 
al
ulating all N Fourier 
oe�
ients

at ea
h point in time u. Thus, for ea
h u bootstrap repli
a of IN(u, λj) for ea
h

j = 1, . . . , N are produ
ed. From those we obtain ρ(u, 1) for every u ∈ [0, 1]. How-
ever, instead of 
onstru
ting pointwise 
on�den
e bands as done by Sergides [49℄,

we now 
onstru
t uniform 
on�den
e bands pro
eeding as in Se
tion 11.1. The al-

gorithm of obtaining the bootstrap repli
ates has a 
omplexity of O(N2T ) and thus

takes up mu
h more time than 
onstru
tion of simultaneous 
on�den
e bands using

the moving Fourier transform, whi
h is only of order O(NT ). Given the 
omputa-

tional ressour
es available, we have performed the autoregressive-aided periodogram

bootstrap B = 200 times for ea
h of the 56 trials in order to 
al
ulate the empiri
al


overage probability. For the standard normal iid errors, both, the �xed and the

variable 
on�den
e band exhibit an empiri
al 
overage of 100%.

A visual 
omparison of the moving version of the autoregressive-aided periodogram

bootstrap and the original version 
an be found in Figure 11.3.

0 0.2 0.4 0.6 0.8 1

−
0
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−
0
.3

0
0
.3

0
.6

Figure 11.3: Con�den
e band of the mAAPB (solid) and the AAPB (dotted)

The resulting 
on�den
e bands have a mean width of 0.484 with a standard deviation

of 0.023 
ompared to the mean width of 0.485 with standard deviation of 0.022 of

the moving version. Both with an empiri
al 
overage of 100%.
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Figure 11.4: Con�den
e bands (variable width) of moving version of (a) TFT boot-

strap, (b) AAP bootstrap and (
) wild hybrid bootstrap for DGP1a for

di�erent realizations
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Empiri
al 
overage probability based on DGP1 with di�erent error distributions

Width Type of bootstrap

variable �xed mTFT mAAPB mH

DGP1b ≥ bound

601 x 0.95 0.99 1.00

601 x 0.97 0.99 1.00

590 x 0.96 0.99 1.00

590 x 0.98 0.99 1.00

560 x 0.99 0.83 1.00

560 x 1.00 1.00 1.00

500 x 1.00 1.00 1.00

500 x 1.00 1.00 1.00

DGP1
 >bound

601 x 0.97 0.99 1.00

601 x 0.98 0.99 1.00

590 x 0.99 0.99 1.00

590 x 0.99 0.99 1.00

560 x 1.00 1.00 1.00

560 x 1.00 1.00 1.00

500 x 1.00 1.00 1.00

500 x 1.00 1.00 1.00

Empiri
al 
overage probability based on DGP2a

Width Type of bootstrap

variable �xed mTFT mAAPB mH

≥ bound

601 x 0.02 0.86 0.41

601 x 0.04 0.72 0.56

590 x 0.04 0.91 0.49

590 x 0.07 0.80 0.66

560 x 0.19 0.97 0.80

560 x 0.26 0.97 0.88

500 x 0.58 1.00 0.97

500 x 0.78 1.00 1.00
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Figure 11.5: Con�den
e band of moving version of (a) TFT bootstrap, (b) AAP

bootstrap and (
) wild hybrid bootstrap
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.

Empiri
al 
overage probability based on DGP2 with di�erent error distributions

Width Type of bootstrap

variable �xed mTFT mAAPB mH

DGP2b ≥ bound

601 x 0.01 0.90 0.23

601 x 0.01 0.78 0.39

590 x 0.02 0.94 0.32

590 x 0.03 0.85 0.49

560 x 0.07 0.99 0.71

560 x 0.08 0.97 0.83

500 x 0.18 1.00 0.95

500 x 0.27 1.00 0.98

DGP2
 ≥ bound

601 x 0.02 0.91 0.32

601 x 0.03 0.76 0.49

590 x 0.03 0.95 0.43

590 x 0.06 0.82 0.58

560 x 0.16 0.99 0.75

560 x 0.26 0.98 0.82

500 x 0.61 1.00 0.95

500 x 0.76 1.00 0.99

One might also want to 
he
k, how the pointwise asymptoti
 
on�den
e bands per-

form (see Figure 11.6). From a simple look at one realization of the asymptoti


95%-
on�den
e band 
ompared to the true auto
orrelation ρ(u, 1) one 
an readily

tell that this band will not be likely to get anywhere near an empiri
al 
overage of

95%.
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Figure 11.6: Pointwise asymptoti
 95%-
on�den
e band for DGP1a

A exemplary visual 
omparison of the variable and �xed width 
on�den
e band in

the 
ase of a χ3
2-distribution of the errors 
onstru
ted using the moving version of

the TFT-bootstrap shows that there is not mu
h di�eren
e between the two ways,

though the table hints a higher empiri
al 
overage rate of the method using a �xed

width.
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Figure 11.7: DGP 1
: Comparison of the simultaneous 
on�den
e bands of �xed

(solid) and variable (dotted) width obtained via the moving TFT

bootstrap
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We have seen that the wild hybrid bootstrap exhibits a 
overage of 100% for DGP1a.

This is also re�e
ted in the width of the 
on�den
e bands. We will now 
ompare the


on�den
e bands with �xed width and present the average width and the standard

deviation of the widths of ea
h pro
edure in the 
ase of DGP1a and DGP2a.

Width of 
on�den
e bands

(width)

DGP1a DGP2a

mean std mean std

mTFT 0.4659180 0.01825032 0.4569330 0.01950276

mAAPB 0.4837308 0.02309174 0.7110781 0.04509634

mHB 0.6538740 0.06472582 0.6432225 0.03435888
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Figure 11.8: DGP 2a: Com-

parison of the

simultaneous 
on-

�den
e bands

of �xed width

obtained via the

moving TFT boot-

strap (solid), the

moving AAP boot-

strap (dotted) and

the moving wild

hybrid bootstrap

(dashed)
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Figure 11.9: DGP 1a: Com-

parison of the

simultaneous 
on-

�den
e bands

of �xed width

obtained via the

moving TFT boot-

strap (solid), the

moving AAP boot-

strap (dotted) and

the moving wild

hybrid bootstrap

(dashed)
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Figure 11.10: DGP 1a: Simultaneous 95% 
on�den
e bands of �xed width with

two realizations ea
h using (a) the moving TFT bootstrap (solid), (b)

the moving AAP bootstrap (dotted) and (
) the moving wild hybrid

bootstrap (dashed)

.
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We 
on
lude with a look at the auto
ovarian
e fun
tion. In Chapter 5, we have

seen that the varian
e of the spe
tral mean in
orporating the moving periodogram

still depends on the fourth order 
umulant. The moving TFT bootstrap has not

been designed to bootstrap the fourth order 
umulant of the data. However, we

were interested in how well the bootstrap still works deviating from the standard

normal distribution of the errors. In the following study we have used �xed width


on�den
e bands of the auto
ovarian
e fun
tion of lag 1 (i.e. of the spe
tral mean

with weight fun
tion ϕ(λ) = eiλ). First, using standard normally distributed errors

and, se
ond, using standardized exponentially distributed errors. In the �rst 
ase,

we get an ex
ess 
urtosis of zero, in the se
ond of 6. The empiri
al 
overage of the

bands has been surprisingly good in the 
ase of the high ex
ess kurtosis.

DGP1a DGP1b

≥ 601 0.88 0.75

≥ 590 0.92 0.82

≥ 560 0.97 0.92

≥ 500 0.99 0.96

Exemplary 
on�den
e bands 
an be seen in the following �gures.
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Figure 11.11: Exemplary simultaneous 95% 
on�den
e bands of �xed width with the

moving TFT bootstrap for DGP1a (solid) and DGP1b (dashed)
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Figure 11.12: Bootstrap versions of simultaneous 95% 
on�den
e bands of �xed

width with the moving TFT bootstrap for DGP1b

We eye the assumption that κ4 := E(εt)
4 − 3 is un
hanged throughout time. We

don't see any reason for κ4 to remain un
hanged while the varian
e of the time series


hanges. Assuming that there is a 
hange in κ4, would the moving spe
tral density

estimation help to mimi
k this 
hanging κ4? Or would it fail, just like the pro
edure

in Kreiss and Paparoditis [32℄. They estimate a single value of κ4 using all data.

It is quite hard to 
onsistently estimate the fourth moment. So what we did was to

estimate the time varying auto
ovarian
e at lag 1, whi
h is a spe
tral mean. The

asymptoti
 
ovarian
e stru
ture, both in our 
ase (see Theorem 5.5) as well as in

the situation when using the lo
al periodogram as an estimator (Lemma 2.4.2 in

Sergides [49℄) is dependent on κ4. We now estimate the auto
ovarian
e fun
tion

of iid data with a fourth moment of m1 := 3 for t = 1, . . . , 499 and then swit
h

to iid data with a fourth moment of 18 for t = 500, . . . , 1000. For 
onstru
ting

the data, the 
onstru
tion made by Kreiss and Paparoditis [31℄ is used: E.g. for

t = 1, . . . , 499, P (εt =
√
m1) = P (εt = −√

m1) = 1
2m1

and P (εt = 0) = 1 − 1
m1

.

Being interested in how well the 
hange in κ4 is mimi
ked, we need to look at the

varian
e of the estimated auto
ovarian
es.

When estimating the auto
ovarian
e using the moving Fourier transform for 200

di�erent but identi
ally distributed sets of iid random variables, we get 200 values

at ea
h time t. The estimated varian
e at ea
h time 
an be seen in Figure 11.13.

For illustrative reasons the average varian
e of the �rst 300 observations as well as

of the last 300 observations is marked. It 
an 
learly be seen that the variability of

the estimation 
hanges as time passes.
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Figure 11.13: Sample varian
e of 200 realizations of the estimated auto
ovarian
e of

lag 1 using the moving periodogram

Changes of the fourth moment are 
ompletely omitted by Kreiss and Parparoditis

[32℄. Their bootstrap pro
edure is therefore only appli
able in the restri
ted setting

of 
onstant fourth moment of the innovations. Still, the bootstrap is able to 
opy

the information on the fourth moment. We therefore propose the moving hybrid

bootstrap as presented in Se
tion 7.2.3 in order to be able to 
over 
hanges in the

fourth moment.
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CHAPTER 12

Con
lusion and outlook

The new aspe
t of this thesis is the idea of shifting a lo
al Fourier transform along

a time series. It re�nes in an elegant and e�
ient way the 
ommon idea of apply-

ing a lo
al Fourier transform to the data: At ea
h time t, only one of the Fourier


oe�
ients is updated. For slow 
hanges, whi
h are 
hara
teristi
al for lo
ally sta-

tionary time series, this is an e�e
tive way to mirror stru
tural 
hanges. The very

last se
tion of Chapter 11 exemplarily shows that even 
hanges in fourth moments


an be tra
ed. This interesting aspe
t of how 
hanging fourth order 
umulants 
an

be monitored will 
ertainly be of future interest. We 
ontribute by proposing the

moving wild hybrid bootstrap (see Se
tion 7.2.3).

Using the moving Fourier transform, we have been able to develop a well-behaved

and numeri
ally 
heap estimator for the time varying spe
trum, whi
h is lo
ally

uniform 
onsistent, whi
h means that the spe
tral density estimator at some time k
in the neighbourhood of t 
onverges to the true spe
tral density at time t, uniformly

in k. This is the lo
al equivalent to the 
ondition required in the stationary set-

ting. We may therefore extend all pro
edures involving spe
tral density estimation

in the stationary setting to the lo
ally stationary setting. This has expli
itly been

done for three bootstrap pro
edures in Chapter 8. We now have two methods, the

moving TFT-bootstrap, as well as the moving wild hybrid bootstrap, to generate

bootstrap observations of lo
ally stationary data not just in the frequen
y domain,

but also in the time domain. The moving autoregressive aided periodogram boot-

strap only generates repli
ates in the frequen
y domain. Adapting the extension

made by Jents
h and Kreiss [26℄ to the moving 
ase, however, one 
ould also obtain

a moving autoregressive aided Fourier 
oe�
ient bootstrap whi
h is able to generate

bootstrap observations in the time domain.

The maintaining of the 
orre
t 
ovarian
e stru
ture of the bootstrap data has been

proved in Chapter 10 exemplarily for the TFT-bootstrap. We have also investigated

whether there is a possibility of being more e�
ient 
on
erning the 
al
ulation of
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the moving Fourier transform by introdu
ing some kind of adapted fast Fourier

transform. However, it turned out that when intending to redu
e 
omplexity, the

transform needs to spend a longer period of time without shifting to the next stret
h

of data. It would therefore be desirable to investigate further methods of speeding

up 
omputations.

Referring to the aspe
t of only transforming a small set of data at a time, the ques-

tion arises whether the 
hoi
e of the window width 
an somehow be lo
ally adapted

to the degree of stru
tural 
hange. The question of an optimal 
hoi
e of the window

width has also not been answered yet. Con
erning the spe
tral density estimation,

future work will in
lude the examination of the 
hoi
e of kernel and bandwidth.

In Chapter 5 we have turned our attention to spe
tral means and provided asymp-

toti
 expe
tation and varian
e of those statisti
s. The next step will now be to

expli
itly prove the asymptoti
 normality, as explorative simulations have hinted

that normal distribution is most likely. In a further step, one should look at ratio

statisti
s and their properties. The simulation part of this thesis has already turned

to solve this problem by bootstrapping. The lo
al auto
orrelation fun
tion of lo
ally

stationary pro
esses is studied and we provide uniform bootstrap 
on�den
e bands,


omparing di�erent bootstrap approa
hes.
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