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CHAPTER 1

Introduction

Getting acquainted with locally stationary processes:

(QUESTION:

ANSWER
(Sergides [49])

ANSWER
(Martin

and Flandrin
[37]):

(QUESTION:

ANSWER:

What are locally stationary processes and why do we need them?

Locally stationary processes are nonstationary stochastic processes
whose second order structure varies smoothly over time. [We need
them to create a] more realistic framework in time series analysis.

[That’s because in reality| the assumption of stationarity fails to be
true: the physical character of random signals demands a nonsta-
tionary approach such as in acoustics, speech, geophysic, biology,
biomedicine fields, etc. However, a spectrum of [a] nonstationary
process(...) cannot be defined by simply generalizing the ordinary
stationary spectrum.

Before we go into a thorough discussion on the historical approach
to model nonstationarity in general, could you please briefly point
out the main ideas the subsequent work is based on?

Introducing a time varying spectral representation similar to sta-
tionary processes and thus allowing to study processes with con-
tinuously changing spectral patterns has first been suggested by
Priestley [46].

His time dependent spectral functions are called evolutionary spec-
tra, which have a physical interpretation as local energy distribu-
tions over frequency.

As pointed out by Dahlhaus [6] the approach of Priestley [46] does,
however, not allow for meaningful local asymptotic considerations.
In order to overcome these difficulties, Dahlhaus [7] suggested to
consider a triangular array of data.



1 Introduction

The difference of the approach of Dahlhaus [7] to the approach
of Priestley [46] is, that Dahlhaus [7] uses double indexed pro-
cesses and makes use of asymptotic considerations. His concern
is to provide a representation which allows for rigorous asymptotic
treatment of statistical inference problems, whereas Priestley [46]
intended to gain a stochastic representation of the process.

Modelling non-stationarity — historical overview

When dealing with time series in applications, it has already been pointed out that
the assumption of stationarity is more than questionable. Modelling time-dependent
processes has therefore been dealt with for several decades. There is, of course the
possibility to model time-dependent processes in the time domain as done by Hallin
[23] and Subba Rao [51]. Subba Rao [51] considered AR-processes with time-varying
coefficients represented as expansions of orthogonal polynomials and weighted least
squares estimation of the time-varying coefficients. However, he also considered the
evolutionary spectral approach developed by Priestley [46]. This concept of an evo-
lutionary spectrum will be discussed later on.

Especially when encountering the field of signal processing and acoustics the assump-
tion of a stationary signal is not convincing. A stationary signal (in continuous time)
can be described by the power spectral density

f(LLJ) = /COV(Xt+T7 thT)eizgﬂ—wTdT, O<w<oo

(Hlawatsch and Matz [25]). Contrasting stationary processes, non-stationary signals
call for time-frequency methods to account for the change of the signal throughout
time in order to provide a complete and unique description of the process’ second
order statistics and spectral properties (cf. Hlawatsch and Matz [25]).

The aim is, thus, to generalize the power spectral density in a way that we get a
natural extension with an explicit time-dependence of the classical notion of power
spectral density together with most of its "nice" properties (cf. Flandrin [19]).
Unfortunately, there is no chance to obtain such a time-dependent spectrum which
is unique and well-defined. Whenever choosing a definition, we have to sacrifice one
desirable property we would have liked the time-dependent spectrum to have.
There has also been some heated discussion of what conditions are the necessary
ones and when a function is allowed to be called a spectrum (cf. Loynes [36] and
the discussion of the paper in the appendix).

Priestley [46] reviews the research on the problem of characterizing non-stationary
processes via a spectral density: In 1960, Cramér [5]| considered the class of non-
stationary harmonizable (in the Loéve sense) processes. That is, processes with the
Cramér representation

X, = / e“tdZ (w), —00 <t < o0.

[e.9]



The increment process Z(w), however, is not orthogonal anymore, the increments
can be correlated. Cramér then defined the integrated spectrum of such a process
by dF (w,v) := E(|dZ(w)dZ*(v)|). A major drawback of this approach, as pointed
out by Priestley [47], is the difficulty of interpreting this two-dimensional spectral
density function.

Another definition has been given by Hatanaka and Suzuki (unpublished). They
define the spectral density function of non-stationary processes as the limit of of the
expected value of the periodogram as sample size tends to infinity. Both, Cramér and
Hatanaka and Suzuki intended to characterize the behaviour of the non-stationary
process over the whole parameter space with the help of a single function.

When concentrating on looking for a local description of the spectrum of a non-
stationary process one inevitably comes to Page [43] who was the first to be toying
with the idea of a changing spectrum. He defines the instantaneous power spectrum
of a non-stationary process.

Instantaneous power spectrum (— Page [43]) Considering the energy of a
signal to be distributed over time and frequency, the density of the energy in the
time-frequency plane is called p(t, f). For some fixed ¢, this is called the instanta-
neous power spectrum at time ¢.

Motivation (cf. Priestley [46] and Page [43]):

fOT S5 p(t, f)dfdt is the total energy of the signal output up to time
T. To get the increase in total power from time 7 to T+ AT one
differentiates with respect to t. Now differentiating with respect to ¢
yields

| o
which is the instantaneous power of the signal at time 7. Thus, p(T, f)
describes the difference between the energy on the interval (0,7") to the
interval (0,7 + ¢67") and is called the instantaneous power spectrum at
T+AT '
/ Xteilftdt
0

time T'. Approximately,
T 2
— / Xteiiftdt
0
1 T+AT T
L pit. Nt = [ ottt
sr(/ 0

1
T —F
p(T' f) AT (
Integration of the instantaneous power spectrum over time yields the conventional
spectrum (cf. Page [43]). His definition of the conventional spectrum is the same as
of Hatanaka and Suzuki.

2

Q

Q
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The reason for Priestley [46] to resort to evolutionary spectra is that he is unhappy
with the physical interpretation of Page’s instantaneous power spectrum. Priestley
considered it far more important to study the spectral content of the process within
the interval (7,7 + d7T) than studying the difference between the spectral contents
of the intervals (0,7") and (0,7 + 07'). His evolutionary spectrum at time 7' can
roughly be understood as

)

For the interpretation of the definitions, see the discussions at the end of Priestley
[46], pp. 234,235.

T+AT '
/ Xteilftdt

T

flt,w) =~ E(

Evolutionary spectrum (— Priestley [46],[47]) Priestley’s [47] concept is to
generalize the representation of a stationary process as

X, = / e“'dZ(w), —oo <t < oo,

—00

with dZ(w) remaining an orthogonal process. Not giving up on the increments, i.e.
the random amplitudes, being uncorrelated ensures easy interpretation, which has
not been provided by Cramér [5].

In order maintain this uncorrelatedness of the increments, Priestley [46] restricts
attention to the class of processes for which there exists a family F of functions
{¢1(w)} defined on the real line, indexed by ¢, and a measure p(w) on the real line,
such that for each —oo < s,1 < 0o the covariance function can be written as

Cov(X,, X,) = / " ) B @),

Referring to Parzen [45], Priestley [46] points out that for the parameter space being
a bounded interval (0 < ¢ < T') it is always possible to obtain this kind of represen-
tation. Given ¢;(w) is quadratic integrable for each ¢, X; admits a representation of
the form

x- [ Z Bu(w)dZ(w),

where dZ is an orthogonal process with E|Z(w)|* = du(w). (Note: p(w) here mirrors
the role of F(w) in the stationary case.) Depending on which family of functions
is chosen for ¢; one gets a wide variety of different representations of the process.
This again is a result of Parzen [45] and has been taken up by Priestley [46].

By choosing ¢;(w) = e“! we get the stationary case. Aiming to consider non-
stationary processes, we ought to choose another family of functions. Priestley [46]
picked out oscillatory functions (as to preserve the physical concept of frequency):



Definition of an oscillatory function:
— Priestley [46]

The function of , ¢;(w), will be said to be an oscillatory function if, for
some (necessarily unique) f(w) it may be written in the form ¢;(w) =
Ap(w)e??@ where A;(w) is of the form

A(w) = /OO e dH,(6),

with |dH,(#)| having an absolute maximum at 6 = 0.

Note: With A;(w) = 1 and §(w) = w the class of oscillatory processes certainly
includes all second-order stationary processes.

An oscillatory process whose second-oder characteristics change "slowly" over time,
is considered by Priestley [46] to be a semi-stationary process. (Of course, in Priest-
ley [46] the term slowly is defined mathematically.)

For a non-stationary process X; represented by

Y= [ Az,

o0

with an orthogonal increment process dZ(w), we can interpret A;(w)dZ(w) as ran-
dom amplitudes and consider X; to be the limit of a sum of many sine and cosine
waves with different frequencies and amplitudes A;(w)dZ(w). Hence, the power that
is contributed by frequency w is

[Ai(w)PdF (w) = |A(w)*|dZ (w)dZ" ().
The evolutionary power spectrum by Priestley [46] is then defined to be
filw) = [Ay(w)PdF (w).

F'is the spectral distribution function of the corresponding stationary process

X, - / A7 ().

— 00

The evolutionary spectrum has the same physical interpretation as the spectrum of
a stationary process (cf. Bruscato and Toloi [4]), namely, it describes a distribution
of power over frequency, but whereas the latter is determined by the behaviour of
the process for all time ¢, the former represents specifically the spectral content of
the process in the neighbourhood of each time instant t.

Unfortunately, this evolutionary spectrum is by no means unique and depends on
the family F considered. Moreover, as pointed out by Dahlhaus [7], the approach
of [46] does not allow for rigorous local asymptotic considerations. In order to over-
come these difficulties, Dahlhaus |7] suggested to consider a triangular array of data.
Subba Rao [51] not only considered estimation in the time domain, but he also used
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the evolutionary spectral approach developed by Priestley to estimate the time-
varying parameters of the time-dependent AR-processes. Subba Rao’s modelling
of non-stationary time series with time-dependent AR-models has been resumed by
Grenier [22] and Kitagawa and Gersch [29]. The latter restricted the time-varying
coefficients by introducing smoothness priors, that is setting up stochastically per-
turbed difference equations for the coefficients. By doing so, they also create a local
time-varying structural model, which does not have global structural time-varying
properties.

Evolutive spectrum (— Tjostheim [53] and Mélard [38]) The evolutive spec-
trum has independently been proposed by Tjostheim [53] and Mélard [38|. Tt is
defined for discrete time processes and is a special case of Priestley’s evolutionary
spectra with respect to some special family F. This is explained in more detail in
Flandrin [19].

Wigner-Ville spectrum (— Martin and Flandrin [37]) Another popular defi-
nition of a spectrum of nonstationary processes is the Wigner-Ville spectrum (cf.
Bruscato and Toloi [4]):

When generalizing the classical ordinary spectrum for stationary time series "un-
der natural conditions" Martin and Flandrin [37] find the Wigner-Ville spectrum
to be the only time-varying spectrum to sufficiently comply with those conditions,
such as satisfying the linear time-frequency dualism and reducing to the ordinary
spectral density if the process is stationary. The major drawback of the Wigner-
Ville spectrum is the sacrifice of the non-negativity, which does no longer allow for
the physical interpretation of local energy over time. The Wigner-Ville spectrum is
(uniquely) defined as the expected value of the Wigner-Ville distribution:

fwv<t, w) = E[Wx@, w)] =F |:/ XtJr%th%eiiwq—dT , —oo <t <oo.
For the discrete case

fWV(t, LLJ) =2 Z ’Y(t -+ T,t _ 7_)6721'0.17—

T=—00

defines the discrete Wigner-Ville spectrum. We can see, that this is a representation
similar to the one for stationary processes.

Time varying spectral density The most recent amendment to the techniques of
modelling non-stationary time series has been made by Dahlhaus [8]. He introduces
the class of locally stationary processes and along with it, the concept of a time vary-
ing spectral density, which is the spectral density of the stationary approximations
at different points in time. For this time-varying spectral density, he picks up the
idea of Priestley [46] of locally describing the spectral density, but, as pointed out



before, he introduced double-indexed processes allowing for asymptotic considera-
tions. Also contrasting the evolutionary spectrum, the time varying spectral density
of a locally stationary process is unique and equals the limit of the Wigner-Ville
spectrum of this process (see Theorem 2.1).

Aims of this work

Looking at the long list of approaches to consider deviations from stationarity, one
can see the great relevance of the topic — and also the difficulties coming along with
it, among them the problem of generalizing the stationary model maintaining the
possibility of asymptotic theory and the difficulty of generalizing the concept of a
spectrum to the non-stationary case — not to speak of estimating it. This thesis,
based on the concept of locally stationary time series introduced by Dahlhaus [8],
aims to develop a modification of the Fourier transform which enables us to transfer
the local structure of the data from the time domain to the frequency domain, yet
preserving the convenient property of the resulting Fourier coefficients being at least
uncorrelated in the frequency domain. This is then the basis for the application of
bootstrap techniques. Of course, some appropriate inverse transformation should be
constructed to allow for the bootstrapped coefficients to be converted back to time
domain data, again, without losing structural information. The first main goal is
thus to generalize the TFT bootstrap by Kirch and Politis [28] to locally stationary
time series. This, of course, first implies to find a suitable estimator of the time
varying spectral density as well as proving its consistency. It also requires to prove
that the TFT bootstrap for locally stationary time series yields the correct covari-
ance structure of the bootstrap observations.

The second objective is to validate that the new way of Fourier transforming is appli-
cable to other state-of-the-art bootstraps. There exist extensions to the wild hybrid
bootstrap (Kreiss and Paparoditis [33]) as well as the autoregressive periodogram
bootstrap (Kreiss and Paparoditis [31]) using the local periodogram. We intend to
generalize these procedures to stationary time series using the periodogram resulting
from our new transform and compare the performance of our obtained procedures
to the extensions already in existence.

The third aspect is a practical one as it is intended to implement the new trans-
form as well as the new version of the TF'T bootstrap and the two other bootstrap
procedures. We will moreover deal with the question whether there is any way of
reducing the complexity of the algorithm. As test statistics can often be written as
spectral means, we also aim to structurally investigate those spectral means being
based on the newly introduced periodogram. Naturally, it is also intended to survey
those statistics using simulations. The practical part even goes to such lengths as
to introduce uniform confidence bands for the autocorrelation and to examine them
thoroughly with respect to different error distributions.
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Agenda

We start with an introduction to locally stationary processes proposed by Dahlhaus
[8]. This concept inspired us to extend the ordinary Fourier transform to a moving
version. In Chapter 3, the derivation and construction of the transform is presented
and a corresponding transformation to return to the time domain is introduced.
The moving Fourier transform as well as the resulting moving periodogram have
been thoroughly investigated in Chapter 4 and 5 concerning their asymptotic prop-
erties. We have even gone further taking account of moving spectral means and
their asymptotic characteristics. Chapter 6 includes some philosophical aspects on
possible modifications of the moving Fourier transform. Application of the moving
transform to bootstrapping has been discussed in Chapter 7. Chapter 7 also ex-
poses the need for an appropriate estimator for the time varying spectral density.
The construction of an estimator as well as the proof of adequateness has been
done in Chapter 8. Finally, Chapter 9 looks at the bootstrap data emerging from
the moving wild TFT bootstrap and discovers that the autocovariance structure
is mimicked well. We have stochastic convergence to the correct autocovariance
function, uniformly in lag h, when h is smaller than the window width used for the
transformation. Chapter 10 is dedicated to the investigation whether an analogon of
the Fast Fourier transform can be constructed to reduce numerical complexity. The
final Chapter 11 presents a simulation study including the moving Fourier transform
and the bootstrap procedures developed in Chapter 7. We construct simultaneous
confidence bands for the autocorrelation function as well as for the autocovariance
function of locally stationary data and investigate their performance with respect
to different bootstrap procedures and different data generating processes.



CHAPTER 2

Locally stationary processes

2.1 The concept of local stationarity

2.1.1 Asymptotic theory

If Xq,..., X7 are the observations at hand, letting 7" tend to infinity which means
extending the process into the future, does, in case of a non-stationary process,
not yield any more information. Thus, asymptotic considerations have to be ade-
quately adapted in the sense that letting 7" tend to infinity does indeed reveal more
information on the process. Exemplarily, the process

. iid
Xe=9"t)Xe1+e1, &1~

(0,0%), t=1,...,T,

with some function ¢* : {1,2,...,7} — R is considered. Currently we have informa-
tion on the unknown function ¢g*(¢) on the grid {1,2,...,7}. Dahlhaus [6],[7] and
[8] sets down the asymptotic theory not by assuming the function g* to be observed
for a longer period of time on an extending grid with constant grid width, but to
be observed on a finer and finer grid on the same interval. This is done by rescaling
the unknown function ¢g* to the interval (0,1] in the way that the rescaled function
g now reads g*(t) = g (%) and thus

t i
Xt,T =g (T) thl —|—€t, Et JN(O,U2), t= 1, Ce ,T. (21)

We can see that the larger T grows the finer the grid on which we observe the function
g gets, but the domain of the rescaled function g remains to be the interval (0, 1].
This means that more and more information on the function g is available as T" tends
to infinity. Still, Dahlhaus [6] indicates to exercise caution when interpreting the
asymptotics. The big difference to stationary time series is that the approach using
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rescaling is purely an abstraction for judging statistical inference. As a consequence
it makes for example no sense to ask for a real data example that fulfills the rescaling
property introduced in Equation (2.1).

2.1.2 Definition of locally stationary processes

Dahlhaus [8] introduced the time-varying spectral representation of locally station-
ary processes in analogy to stationary processes. Easier to work with, however, is
the equivalent time varying MA (co)-representation of locally stationary time series
as given by Dahlhaus [10], Eq. (11).

Following Sergides [49], all forthcoming calculations are based on the definition, that
a triangular array {Xr}ren = {Xer,t =1,...,T}ren is called locally stationary, if
the processes have a tvMA (co)-representation with time varying coefficients a; r(j)
(fulfilling certain smoothness conditions stated below):

e}

Xir = Z arr(j)er;,

j=—o00

with {e;}+cz being independent, identically distributed random variables with zero
mean and variance 1. Hence, we do only consider centered time series and focus on
changes in the autocovariance structure. The exact definition used is

Definition 2.1 (tvMA (co) representation of locally stationary processes).
— Dahlhaus [10], Ass. 2.1 , Dahlhaus and Polonik [15], Ass. 2.1, Sergides [49],
Ass. 1

A sequence of stochastic processes Xyr, t =1,...,T, is called locally stationary if
there exists a representation

Xir = Z atr(J)ee—j, (2.2)

where the following holds
(a) & w (0,1) with finite fourth moment Ee} < oo,

(b) sup, larr ()| < 2. and
1 jl<1

let {l(j)} be a positive sequence with I(j) := {
lillog"**15], 15| > 1

for some k > 0.
(¢) There exist functions a(-,j) : (0,1] = R, j € Z, with
(i) sup, |arr(j) — a(F.7)| < 7557-

10



2.1 The concept of local stationarity

(i) |a(u, j) —a(v, j)] < =1

Palug) | < K i =0,1,2,3.

1)

(i) sup,

Remark 2.1
Throughout this thesis we use K and C as generic positive constants not depending
on any other quantities if not stated otherwise.

Remark 2.2

1. The rather complicated construction using the coefficients a;r(j) and a(u,j)
is justified in Dahlhaus [10], p.454 and Dahlhaus and Polonik [14], Remark
2.12 (i). The function a(-,j) is needed for rescaling and to impose necessary
smoothness conditions in the time direction, while the additional use of a1 (j)
makes the class rich enough to cover interesting cases, such as tvAR models.

2. Despite the fact that Definition 2.1 appears to admit only homoscedastic inno-
vations, Dahlhaus and Polonik [14], Remark 2.12 (ii) state that a time varying
scaling factor of the innovations may be included in the coefficients a; (7).

Remark 2.3
For Lemma 5.1 we use a slightly different assumption to Definition 2.1(b): Let {l(j)}
be a positive sequence with

2.1.3 Stationary approximation

Taking up the wording of Sergides [49] that a locally stationary process is a stochastic
process whose second order structure varies slowly over time, it feels intuitive to
consider this process stationary within a local neighbourhood of some point in time.
We are now going to formally clarify what is meant by ’changing slowly’.

Based on Sergides [49], Dahlhaus and Subba Rao [16] and Subba Rao [50] we define,
for some u € (0, 1), the stationary process X;(u) by

[e.9]

Ki(w)i= 3 alw, ey, 23)

j=—o0

where a(-, j) are the functions used in the definition of a locally stationary process
and the errors are those of the locally stationary process

[e.9]

Xt,T = Z Oét,T(j)gtfj-

j=—o0

11



2 Locally stationary processes

Now, comparing these two processes yields (cf. Sergides [49], Equation (1.1.19))

~ t 1 > |Et_'|
X, — X <K|(|=- — § J
=Sl <x([g-uf 4 ) = 16)
which implies
X7 = Xy(u) + O d ;2 (2.4)
= U ——ul+=]. .
b P\T T

X, (u) is a stationary approximation to X, ; in some local neighbourhood of u (Note:
w is the time parameter in rescaled time). That is, if % is close to u — meaning we
are only looking at X, r in some local neighbourhood of v — X, r and )Z't(u) are very
close, and X, 7 is 'basically’ stationary.

As it can be seen above, the degree of approximation depends on the rescaling factor
T and the deviation |% — u| (cf. Dahlhaus and Subba Rao [16], p.4).

To study the behaviour of {X;r}, we will follow Sergides [49] and use the process
Zyr(u) = X¢r — Xi¢(u), which then has the tvMA (co)-representation

o

Zyr(u) = Y (ayr(j) — alu, j)) e, (2:5)

j=—o0

with e, a;7(j) and a(-, j) from Definition 2.1.

2.1.4 Time varying spectral density and covariance

In order to work theoretically with the concept of locally stationary time series,
it needs to be clarified what is meant by the spectral density or the covariance
of a locally stationary process and how these functions relate to their stationary
counterparts.

First, the concepts time varying spectral density and time varying covariance are
introduced.

Definition 2.2 (time varying spectral density and covariance).
— Dahlhaus and Polonik [15]

Let X1 be a locally stationary process.

(a) The time varying spectral density of a locally stationary process is given by

£l 2) = 514G, VP, (2.6

12



2.1 The concept of local stationarity

(b) The Fourier transform of the time-varying spectral density (at rescaled time

T o0

c(u, h) = fu, Ne?d\ = Z a(u,h+ j)a(u, j) (2.7)

j=—o0

denotes the time varying covariance of lag h, h € Z (at rescaled time u).

As Sergides [49] notes, both the time varying spectral density and the time varying
covariance are the corresponding functions of the stationary approximation Xt(u) of
X7 at time u. However, as Xt(u) does not equal but only serves as an approximation
of X, at any time other than u, the actual autocovariance function of X, will
only for % = wu equal the corresponding time varying covariance. Referring to
Dahlhaus [10], Equation (17), we have the following coherence between the time
varying covariance function and the covariance function of the locally stationary

process.

1
COV(XLUTJ,Ta XLUTJ-HMT) = c(u, h) + O (T) (28)

uniformly in u and h.

Remark 2.4
In the following, the time-varying covariances c(u, h) are assumed to be absolutely
summable for every u € [0, 1].

Without asymptotics, one can only identify a finite number of covariances within any
approximative stationary environment of X;r and thus, as Dahlhaus [6] mentions,
the spectral density is not uniquely determined. Just like in the case of stationary
processes this problem can be solved by employing the asymptotics introduced by
Dahlhaus [8] as in each approximately stationary environment more and more data
becomes available. Due to that asymptotic approach Dahlhaus [7] is now able to
obtain a uniqueness property of the time varying spectral density. To be more
specific on this uniqueness we need to consider the Wigner-Ville spectrum, which
has already been introduced in the previous section:

We define, for fixed T, A\ € [—m, 7] and u € [0,1] the Wigner-Ville spectrum of a
locally stationary process {X;r} as

1 4
fT(u, )\) = % Z COV<X|_uT—§J,T7XLuT—f—%J,T)eiMs- (29)

S=—00

The Wigner-Ville spectrum is a real-valued function of time and frequency. This is,
as discussed before, one possibility of defining a time dependent spectrum.
Dahlhaus [7] proved that the time varying spectral density f(u,A) is uniquely de-
termined and equals the limit of the Wigner-Ville spectrum.

13



2 Locally stationary processes

Theorem 2.1 (L*-convergence of fr(u,)\) to f(u,\)).
— Dahlhaus [7], Theorem 2.2

Let X1 be a locally stationary process and A(u, \) uniformly Lipschitz continuous
in both components with indexr o > %

We then have for all u € (0,1):

/ " N) =l NPdA = of1).

Remark 2.5
Continuous differentiability of A with respect to w and X\ is sufficient for A(u,\)
being uniformly Lipschitz-continuous (as in Haug [24], Definition 2.7) with o > %,

Despite the fact that the spectral representation of a non-stationary process is not
unique (see Section 1), the above theorem points out that if there exists a tvMA (co)-
representation as in Definition (2.1) of a locally stationary process with a(u, \) (and
therefore A(u, \)) sufficiently smooth, the time varying spectral density f(u,\) is
asymptotically unique. It is determined by the whole triangular array and equals
the limit of the Wigner-Ville spectrum, cf. Dahlhaus [7], p.143.

2.1.5 Dependence structure of a locally stationary process

Let X;r be a locally stationary process as in Definition 2.1. For stationary time
series with absolutely summable autocovariance function v we have |y(h)| — 0
as |h| — oo. So it does seem only natural that locally stationary processes, as
generalizations of stationary processes, do also have a decaying covariance structure
as |h| — oo. From Dahlhaus [15], proof of Proposition 5.4, we obtain

t - . 4
er (T, h) = Cov(Xyr, Xepnr) = Z arr(7)anr(j+ h). (2.10)

j=—o0

They then prove (Equation (51)) that the above relation yields

or (71)] < jizo)zg 7 < T

with sup, |a;7(j)| < % (from Definition 2.1 (b)). The last inequality results from
the fact that

sup
t

1 1
Sup —— = )
jez 1 +h)  U(h)

14



2.1 The concept of local stationarity

Considering the definition of [ in Definition 2.1 (b), we can see that % converges
to zero for |h| — oo. Thus, the following Lemma results:

Lemma 2.1.

— Dahlhaus [15]

The time varying covariance cr (%, h) of a locally stationary process {X.r} at time
t=1,...,T converges to zero for lags |h| — oo :

or <%h) — o(1).

The notation ¢r is borrowed from Neumann and von Sachs [40].
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CHAPTER 3

Adapting the Fourier transformation

A locally stationary process {X;7} can, as the name suggests, be locally (i.e. in
a small environment U) approximated by a stationary process, see Equation (2.4)
for a formal description. In order to preserve the changing nature of a locally
stationary time series for the frequency domain it may therefore seem only natural
to apply the Fourier transformation to each environment. The local moving Fourier
transformation is introduced as an intuitive and numerically cheap procedure to
meet, these needs.

3.1 Prerequisites

Concerning the sample size T and the segments’ length 2m + 1, we require the
following conditions to hold:

e m — oo (for T — o).

[Ze

— 0 (for T"— o0) i.e. the sample size increases considerably faster than
e window size.

=

t
For the sake of simplicity, we introduce the following concepts for j € Z:

m, if m is a factor of j € Z,
mod(j) == ¢ 7 mod (m), j>0 Am|j, (3.1)
m—[(=j) mod (m)], j<0 Amftj.

div(j) == [4 | (3.2)

Then, j =mod(j)+ (div(j) — 1)m. (3.3)

17



3 Adapting the Fourier transformation

3.2 The local moving Fourier transform

In the following, no distinction is made between the actual process and the realiza-
tion of the process. We heuristically describe how the local moving Fourier transform
is developed. The formal definition can be found in Definition 3.2.

In order to simplify notation, we will from here on assume to not only have {X; 7 }1cp1,1)
— our time series of length 7" we wish to transform — available, but also addition-
ally a sufficient (depending on the window size 2m + 1) number of preceding and
succeeding observations, i.e.

Xfm+1,T7 R 7X17T7 e 7XT,T7 R 7XT+m,T-

The reason is, as already stated above, the advantage of keeping notation simple
enough to be able to fully focus on the new way of transforming { X r}ien 7.

As a locally stationary process can locally (in an environment getting larger at some
sufficiently slower pace than T') be considered stationary, we can look at

{ X1 }eepto—cmotorcom)s (3.4)

C >0, tg € [1,T], as an approximately stationary time series. This especially holds
true for the sequence

Xtofm,T7 cee 7Xto+m,T- (35)

Without taking into account that there are more observations than those 2m + 1we
now apply the usual Fourier transform to the stationary sequence (3.5).

1 — —ilA
F<Xtofm,T7 s 7Xt0+m,T7 Ak) = T—'—l Z Xltho*m,Te k
to+m

NI

—ilA ei(tO*m)Ak , (36)

with 1 <k <2m, and )\, := er’:fl denoting the Fourier frequencies.

We now concentrate on the shifted stretch

Xto—m+1,T7 s aXto-f—m-i-l,T (37)

and calculate F( Xy _mi17, .-, Xpgrmirm: M), k=1,...,m

The motive for shifting and doing another Fourier transform of a slightly different
stretch becomes more obvious when noticing that the observations (3.7) also fall
within (3.4). Heuristics then indicate that the Fourier coefficients of (3.5) and (3.7)
should also possess similar statistical properties. Accordingly, Fourier coefficients
stemming from adjacent stretches may be interchanged without major changes to

18



3.2 The local moving Fourier transform

statistical inference.

We use these heuristics to come up with the following construction: Instead of
calculating all 2m + 1 Fourier coefficients for every single stretch, we calculate just
one Fourier coefficient per stretch and then move on to the next stretch. That is,
the centre of the stretch considered is no longer a fixed t; as in the transformation
(3.6), but depends on the index k of the Fourier frequency \; considered:

k+m
1

= 7+ 1 Z XLT@iil)\kei(kim))\k, 1 S k S m,

F(Xpemrs s Xk, 15 Ak)
2m I=k—m

(3.8)

with Ay = zfﬁl denoting Fourier frequencies.

Exemplarily, we calculate, say F(Xi_mr1,-.., X14mr; A1) for the first stretch and
then move on to the adjacent stretch and calculate F(Xo_p, 1, ..., Xoymr; A2). Con-
sequently, as the Fourier coefficients of adjacent stretches are interchangeable, the
Fourier coefficients F(X1_p7, ..., Xitmri A1), F(Xommr, - -+, Xogm1; A2) are, from
a statistical point of view, as good as F(Xi_m.1, .., Xi4m1i A1),

F(Xi—mrs s Xitmr; A2). We then move on to the next stretch, from which we
calculate F(Xs_p, ..., Xaym; As). Again, F(Xopmr, ..., Xoymr; A2),

F(Xs—m1, - Xsrm,r; A3) should, concerning statistical properties, be as good as
.F(Xg_m7T, e aX2+m,T; )\2), .F(XQ_m7T, e aX2+m,T; )\3)

So intuitively, instead of

F(ka,T, e 7X1+m,T; )\1), F<X2fm,T7 cee ,X2+m,T; )\2), F<X3fm,T7 ce ,X3+m,T; )\3),
we can also use
F(Xjemms oo Xjpma; M)y F(Xjomrs - Xjpmrs A2)s F(Xjomrs -+ oy Xjpm i Az),

j = 1,2,3, basically without any change in statistical characteristics. Shifting the
time window of length 2m + 1, m — 1 times (each time generating an additional
Fourier coefficient stemming from the actual stretch) we finally obtain m Fourier
coefficients

F(Xicmm, s Xigmrs M)y F(Xomr, o Xogmri X2), oo  F(Xor, -+ Xomri Am)
(3.9)

This is still not a transformation of a time series of length T', but captures the basic
idea!

Note that the observations used for those Fourier coefficients are X,_,, 7, ..., Xom 1,
with Xo 1, ..., X11m being part of each of the m—1 Fourier transforms. The set (3.9)
therefore consists of Fourier coefficients of basically X¢ r, ..., X, 41, as these are the
most influential observations on the coefficients. When intending to refer to the set
(3.9) as local moving Fourier coefficients at some time k, it is thus apparent that we
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3 Adapting the Fourier transformation

should speak of (3.9) as the local moving Fourier coefficients at time k= [ % | + 1.
To ease the understanding of the following definition, we will consider the next
two points in time and look at the local moving Fourier coefficients at the time

k=|2]+2and k= |Z]+3:

F(Xir, o Xomrrri M), F(Xomr, s Xogmri o)y ooy F(Xors -, Xomr; Am)
F(Xir, . o Xomyiri M), F(Xor, ..o, Xomgori Aa)y ooy F(Xor, .-, Xomr; Am)-

We can see that by moving on in time, the coefficients, starting at frequency A; get
replaced by more recent coefficients at the same frequency. This scheme continues
until we get to time k£ = L%J +m+ 1:

JT'.(XLT, S 7X2m+1,T; )\1)7 I<X2 Ty 7X2m+2,T; )\2>7 BRI F(Xm Ty~ 7X3m,T; )\m>7

and then starts anew, substituting F(X; r,..., Xomi1.7; A1) by the more recent co-
efficient F<Xm+1,T7 cey X3m+1,T; )\1)

The formal definition of the local moving Fourier coefficients at time k, MF,(};), is
as follows:

Definition 3.1 (Local moving Fourier coefficients).

The local moving Fourier coefficients at time k for frequencies \;, [ =1,...,m, are
given by
1 2m
MFE (A —— X /. - —ith
K V2m +1 tz; ot (div (k| 5 | )*1{zzmod(;¢_L%J)})m*mH,T

Furthermore,

Wk()\Qerlfj) = Wk()\]), j = 0, e,

and MFy(Xo) := 0. (3.10)

The operators mod and div are defined according to (3.1) and (3.2).

The reason for defining MF,(Agpmi1—;) == MEFy(A;), 5 =0,...,m, and MFi(\) :==0
is given in Remark 3.4.

Remark 3.1
The local moving Fourier coefficients at time k + L%J and frequency A, L =1,...,m
are depending on

X X

14+0—m+[div(k)—1 (1> mod(k)} | M’ Xl+1fm+[div(k)fﬂ{lZmod(k)}]m’ © 0 A pmeA [div(R) —1 (1> moa(e) M

Removing the indicator function and using k = mod(k) + [div(k) — 1]m, this is for
[ < mod(k)

Xt k—mod(k)s Xitk—mod(k)+1s - - - » Xi+k—mod(k)+2m
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3.2 The local moving Fourier transform

and for I > mod(k)
X1t k—mod(k)—m> Xitk—mod(k)—m+1> - - - s X k—mod(k)-+m-

That is, the set
{Wk+ L%J ()‘l)}l:L...,m

incorporates the observations Xg_p,, ..., Xgrom—1. Of those 3m observations,
KXk—1y -+ s Xkm

occur in all of the local moving Fourier coefficients. In other words, the set of local
mowving Fourier coefficients basically describes the time series in an environment of
time k + [%J

We now extend our construction in order to finally be able to fully transform
{Xir}eep,m- This is done by starting with X,_,,, r,..., X141 and shifting the
time window of length 2m + 1 not just m — 1 times, but 7' — 1 times (each time
generating an additional Fourier coefficient stemming from the actual stretch). By
doing so, we finally obtain 7" Fourier coefficients. Some attention, however, has to be
paid to the frequencies, as we only calculate the coefficients for frequencies Ay,oq(x),
which guarantees the index to remain between 1 and m (see also Remark 3.4).

Definition 3.2 (Moving Fourier transform).

Let X, 1 be a locally stationary process as in Definition 2.1. The moving Fourier
coefficients ¢, (1 <k <T) of Xyr are then defined by

cp = FUE (N amy) = F(Xpmts -+ s Xt 75 Amod(k))
1 k+m
— - X e_ilAmod(k) ei(k_m)Amod(k) ,
v 2m + 1 l:kzm 7
(3.11)
with Apod(k) = QFQTnﬂk) denoting the Fourier frequencies and the operator mod ac-

cording to (3.1).

Following the algorithm (3.11), hence, yields the moving Fourier coefficients

Cly...,C,

which code the time series X;p,..., Xprp. Due to the continuous shifting, local
structural information is preserved.
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3 Adapting the Fourier transformation

Remark 3.2

We will speak of moving Fourier coefficients when referring to ci,...,cr, while we
use the term local moving Fourier coefficients at time k to indicate that we are lo-
cally, at one point in time, looking at m of the moving Fourier coefficients and
rearranging them according to their frequencies. Hence, local moving Fourier co-
efficients refers to the set MFy(\y),. .., MF,(\y) of m rearranged moving Fourier
coefficients at some point in time k. They relate to each other by

e [dio (k= [ )Lz moate- 3]
Remark 3.3

The additional notation F4wk)—1 ()\mgd(k)) instead of ¢ in Definition 3.2 is intro-
duced to ease the understanding of the concept of the moving Fourier transform.
When constructing local moving Fourier coefficients we combine moving Fourier co-
efficients located around the point in time considered and do some rearranging. We
might therefore encounter a set of coefficients which consists of the moving Fourier

coefficients, $ay, Cmi1,-- -5 Cmi17,C18, - - -, Cm- Due to the moving, some coefficients
are ’older’ than others. Sorting with respect to the currentness of the coefficients
yields cig, . .., ¢ma17. The notation with the calligraphic F' is chosen to prominently

display via the superscript where the discontinuity concerning the up-to-dateness of
the coefficients is. In the example, we would write

FOO), FP) o, FO7), F () - F ()
The notation is used in Theorem 5.4.

Remark 3.4

We have restricted the range of k to {1,...,m}. The reason we imply this restriction
15 as follows:

The spectral density of a stationary process (of length 2m+1) is uniquely specified by
values within the interval [0, 7). This means that in order to extract all information
on the spectral density, only the Fourier coefficients corresponding to the frequencies
Aoy - -y A are needed. The remaining Fourier coefficients (in the stationary case
of a time series of length 2m + 1) follow using symmetry arguments and the con-
jugated complexes of the already calculated coefficients. In detail: Suppose we are
given a time series of length 2m+1 and have calculated F(Xq1_m 1, .-, Xitmr; M),
F(Xoemrs s Xovmri A2)s ooy F(Xor, oy Xomr: Am) We may now write

F(Xjmm, - Xjgmri Aomy1—j) = F(Xjemrs -, Xjpmri Aj), forj=0,...,m.

F(X_mr, .-, Xma; Xo) carries information on the mean. As we start out with a
time series with mean zero, we may set these to zero in order for the back trans-
formed time series to be centred as well. This is the reason why we only gather
Fourier coefficients for frequencies Ay, ..., Ay, from the given time series { X, r}.
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3.3 Moving inverse Fourier transform

Remark 3.5
The assumption that we have data

X,m+17T7 s 7XT+m,T

available, i.e. a time series of length T'+2m instead of just a time series of length T,
can easily be abandoned by slightly changing the scheme of transformation, employing
the ordinary Fourier transform (cf. (3.6)) for the first and last stretch and retrieving
not one, but m Fourier coefficients.

However, the question is not only how to transform the data to the frequency do-
main, but how to obtain (bootstrapped) time series data from the moving Fourier
coefficients. This is where the special definition of the local moving Fourier coeffi-
cients are of great importance. The procedure will be explained in Section 3.3.

Of course, the definition of local moving Fourier coefficients implies that there is
also a moving periodogram.

Definition 3.3 (Local moving periodogram).

Consider a locally stationary process X, according to Definition 2.1 and its lo-
cal moving Fourier coefficients at time k as in Definition 3.1. The local moving
periodogram MIy, : [0,27] — R at time k is then defined by

Ml (A;) == |MF ()], (3.13)

with \j := %, j=1,...,m, denoting the Fourier frequencies and k =1,...,T.

The local moving periodogram can be periodically extended.

Remark 3.6

The intention of introducing the new term mouving periodogram is to create a sequence
of local periodograms which ‘move’ through the time series. At each point in time
k, however, the local moving periodogram equals the local periodogram Is,,+1 x (%, )
used by Sergides [49]. The local periodogram is defined by

2m 2

1 —i
Z AXVl—m-i-l_uTJ6 Al
=0

27 (2m + 1) (3.14)

Izm+1,x (U, )\) =

and we have 2mloy 41 x (u, Amod(LuTJ)) = |clur |

3.3 Moving inverse Fourier transform

3.3.1 Principle of construction

In the following section, we will construct a transformation from the frequency
domain to the time domain.
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3 Adapting the Fourier transformation

We start witha sequence of length T'+ 2 L%J of arbitrary complex random variables
in the frequency domain:

CI’L%J’“"Cl""’CTﬂLL%J'

Now, for each point in time k, we can select c, [m ] Ch[m] 1 and rearrange
2 2

them in the manner of Remark 3.2, Equation 3.12. Having done so, we call the
elements of the set

MEE (M), ..., ME (\n).

(We chose the notation like this, because the construction mirrors the construction
of the local moving Fourier coefficients MF' from the moving Fourier coefficients c.)
Analogously to Definition 3.1, the definition of the local moving Fourier coefficients,
we use the complex conjugated values for the missing frequencies:

0, MELO(A), ..., MEY (M), MES? (M), MFY (A1), - . ., ME (Ay).

We now apply the ordinary inverse Fourier transformation of length 2m + 1 at time
k to this data.
For all other points in time we proceed analogously.

Summing up, the idea underlying this transformation includes shifting a window
of length m along the given sequence ¢, [m ] Cle s Oy m s rearranging the
2 2

elements resulting from each shift to create the MF(©)’s and applying the ordinary

inverse Fourier transform of length 2m + 1 at the corresponding time to each of the
sets, which results in 7" elements in the time domain.
The formal definition of the new transformation is as follows:

Definition 3.4 (Moving inverse Fourier transform).

Letc, {my,...,Cpr, |m| be elements in the frequency domain. The transformation
- %] T+ %)

yielding a sample in the time domain is called moving inverse Fourier transform and
s defined by

Xpack = 1 (WP(M), ME (o), ... M (A1)

m

=00 4 ——— |z - e
Z dw -5 ﬂ{lzmod(tfl%J)})m ( )

2
=1

—_

—iAut 3.16
Qm“; b (=13 )L a1 (3:10)

with A\, == %, k=0,...,m, denoting the Fourier frequencies andt =1,...,T.
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Gc

k 0, ME (), MEY (), . .., MES (\n) MF (A1) (Vo) | XPack
0,c1,...,¢ m ’Cl_L% ,CZ_L%J,C:S_L%J...,CO, Co, ,CI_L%J,C[%",. ,C1L XbaCk
O,Cl,...vc[%-‘ ((%—‘+1’C2—|_%J’C3—|_%J ..., Co, Co, ,C2_L%J,C(%-|_H, e :}XZCLCZ
07(1----70[% ((%—IJFPC[%—IJ”Q’C?’_L%J’“ , Co, Co, ,C3_|_%J,C[%L‘|+2,. e Xac
1+L%J 07017"'7CW17 Cm, , C3,C2, C1 :>Xbacf JT
2+L%J Ovcm-i-laCZy--'vcmv mv"'vc_&c_%m :>Xbacf JT
3+ L%J 070771+17C771+27C37"'7Cm7 ma---ac_& Cm+2, Cm+1 = X?l:icf J T
m+ 1+ [%J O7CWI+17“'702W17 Com), - -+, Cm+1 fs_f_]i+ m
m‘|’2+ [%J 0702771+1acm+27---762m7 %7"'7cm+2762m+1 :>st_f_];+L%J T
T — ’7%—‘ 1 07 CT—m+1, CT—m+42; CT—m+3, - - -, CTy @7 cooy CT—m4-35 CT—m+2, CT—m+1 = XbaCl’?%“+17T
T—[2]+2 0, ¢r41, Cr—mt2, CT—m+3, - - -, CT, CTy -+ - s CT—m+3, CT—m+2; CT+1 Xbac’f%HZT
T O’CT“‘l""CTJrL'"J CT—[m7, -+ CT, Cr,...,C_ i ]7CT+|_%J , CT11 XbaCk

Figure 3.1: Illustrating the moving inverse Fourier transform (Definition 3.4)
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3 Adapting the Fourier transformation

3.3.2 Inverse - quote unquote

The definition of the moving inverse Fourier transform enables us to obtain samples
back in the time domain. We now have the possibility, having applied the moving
Fourier transformation to time domain data, to go back to the time domain. The
resulting observations will not be the original X; 1 one starts out with, due to the
shifting performed, but some time series with similar characteristics.

We are interested in how many (and which) of the original observations of the time
series { X, 7} are used to construct one observation X7

Definition 3.4 then yields, using the coefficients ¢, obtained as in Definition 3.2 and
the coefficients MF}, as in Definition 3.1:

X = FHME(\), ME,(\2), ..., MFy(Am); t) .
ngﬁk is, thus, constructed using the local moving Fourier coefficients at time ¢.

According to Remark 3.1, the set {MF;(\)}i=1,. . incorporates the observations

X, || —mo ’Xt+|_%-|+m71'
Therefore, in order to construct Xg‘}ck, we need a stretch of observations of length

3m, namely the stretch X, ETESEE ’Xt—f—[m—‘—km—l'

Of those 3m observations,

Xt—L%J—l""’Xt-i-(ﬂ—l

2

occur in all of the local moving Fourier coefficients. That is, those m+2 observations
have the main influence on X?3¢*.
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CHAPTER 4

Basic properties of the moving Fourier coefficients

The following section is devoted to determining distributional characteristics of the
local moving Fourier coefficients. As our Definition 2.1 of locally stationary pro-
cesses assumes errors with mean zero, we may directly state that the expected value
of the moving Fourier transform equals zero.

All results also hold for A;,j = 1,...,2m + 1, due to symmetry. The case of
j=1,...,mis considered w.l.o.g. for the sake of readability.

Lemma 4.1. Let X, 1 be a locally stationary process as in Definition 2.1. It holds
that

sup sup E (MFr(N)) = 0. (4.1)

u€l0,1] I=1,....m

According to Definition 3.1, with (;; := div (k: — L%J) — 1{l>mod(k7 1= ])}
=z 2

2m
1 i
MFE(A) == Nl > e momiie ™ (4.2)
t=0

denotes the local moving Fourier coefficient at time k of the innovations at frequency
Ar. Analogously, we define for the stationary approximation at time k

2m
s 1 - k A
MFX()\) = —— E X —mm — | 7N, 4.3
k ( l) /72711 1 < I4+Cr, +t (T) ( )

For the asymptotic considerations we will make use of the rescaling as introduced by
Dahlhaus [8]. However, not only the relationship between the local moving Fourier
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4 Basic properties of the moving Fourier coefficients

coefficients but also between the moving periodograms is relevant for further proofs
throughout this work. If squared, the local moving Fourier coefficient at time |u7|
and frequency )\; of the innovations yields the value of the moving periodogram of
the innovations at that frequency: [MFF, ;. (M)|* = MIf 7, (M)

The following approach is taken:

In a first step, the local moving Fourier transform of a stationary time series is con-
sidered and linked to the local moving Fourier transform of the innovations. This
is done in Lemma 4.2. To prove this we extend the proof of Theorem 10.3.1 in
Brockwell and Davis [3]. Lemma 4.3 then is a generalization to locally stationary
time series.

In order to gain analogous results for the moving periodograms, Lemma 4.2 is used
as a basis to prove Theorem 4.2. The culminating result is Theorem 4.3, which
links the moving periodogram of a locally stationary time series to the moving pe-
riodogram of the innovations.

In the beginning some technical requirements are proved.

4.1 Technical basics

Proposition 4.1
Let X;(u) denote the stationary approzimation of Xz at time [uT].
Let further l = 1,...,m. With the Definitions given by (4.2) and (4.3),

(a)
sup  sup E|]\/_/FfuTJ()\l)|2 = 1. (4.4)

u€l0,1] I=1,...,m

(b)
sup  sup E|MFfuTJ()\l)|4 < 0. (4.5)

u€l0,1] I=1,...,m

(¢)

sup sup E|MFL§TJ (M)]* < oo, (4.6)
u€l0,1] I=1,...,m
sup sup E|MF .z (\)]* < oc. (4.7)

u€el0,1] I=1,....,m

Proof. Let (pur)y = div ([uT] — |2]) — ﬂ{lzmod(L“TJ*L%J)}'
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4.1 Technical basics

(a) Because Fege; = 0y, it holds

sup sup FE|MF},r (A2

u€[0,1] I=1,....,m

1 2m

_ —i(t1—t2) N\
= sup sup E E Eiy m—m-+t1 El4+ m—mttz€

wel0.4] 1=, o2m + 1 CluT i 19HClur) 2

t1,t2=0

2m
_ —i(t1 —t2)\
- sup sup 2 1 E E(€l+<\_uTJ,lm—m+t1€l+<\_uTJ,lm—m+t2)6 (i=t2)X

wel0,1]1=1,..,m 2m + 1 <~

1,t2=0

= E(e}) =1.
(b) Since

E(El+qumlm—m+t1 El-l—CLuTJJm—m—f—tggl—i—CLuTJ’lm—m+t3€l+CLuTJ’lm—m+t4)
E(Eéll), if tl = t2 = tg = t4,
= 17 if Elilu i27j17j2 : ti1 = tiQ 7£ tjl = tj27 (48)
0, else,

we get

sup sup E|MF,r ()|

u€l0,1] I=1,....m
2m

E E(El+quﬂ,lm—m+t15l+quﬂ’lm—m+t2
t1,t2,t3,t4=0

1
- sup sup ———
uE[OI,)l] 121,,,1,)7m (2m + 1)2

i(ta—t1+t3—ta)A
'51+CLuTJ,zm*m+t3€l+qum,zm*m+t4)e (t2—trtts—ta)

2m 2m
1
< sup sup — | K 1|+ K EEY|) < .
wel0,1] =1,...m (2m + 1)? ( m%;o t;} 1

(c) The same case differentiation as in (4.8) needs to be done, however, note that
instead of just having to consider ¢; being equal or not, we need to be con-
cerned whether indices t; — j; are equal, as we face
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4 Basic properties of the moving Fourier coefficients

sup sup E\MF@TJ ()|

uel0,1] I=1,...,m
2m [e'e)
1
by S
u€[0,1}1=1,....;m (2m + 1) t1,t2,t3,t4=0 j1,j2,73,j4=—00
[+ Curjym —m -+t —j1 [+ Curjym —m +1ty — jo
a T ,Ji ) a T y J2

(l—l-CLuTJ’lm—m—l-tg—jg ) <l+<\_uTJ7lm—m+t4—j4 )
a yJ3 | a ) J4

T T
E(€l+<LuTJ,lm7m+t17j1€l+<LuTJ,lm*m+t2 —Jj2

e’i(tg —t1+t3—ta) N

Cl+C ur ) ym—mAtz—ja €1+ 1) ym—mAta—ja )

Still, since

0 (u, 1)) < >
Sup a U,j S —
u€[0,1] ' l(]l)

by Definition 2.1, we get for the case of all indices being equal, that is the case
of t{ — j3 =ty — jo = t3 — j3 = t4 — J4, an upper bound of the above expression

of
P G
2 'u;) 'l(i) "u;:» "l(i)'ﬂ{“‘ﬁ“‘M‘f””“

t1,t2,t3,t4=0 j1,j2,73,Ja=—00

K D7) o (1)

The other possibility is any two indices being equal. There are three cases:

thh—Ji=ts—Jo # t3—J3=1ts— ju,
thh—J1=t3—Js # to—Jo=1ts— ja,
thh—j1=ts—Jas # ta—Jo=1t3— Ja.

Exemplarily, we will consider ¢; — j; = t4 — jy # to — jo = t3 — j3. Hence, the
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4.1 Technical basics

upper bound in that case is

K 2 > 1
(2m + 1) 2 2 'l(jl).

t1,t2,t3,t4=0 j1,j2,53,Ja=—00

1(j2)

1 1
'@ ’m ]l{tl—j1:t4—j47£t2_j2:t3_j3}
- 0(1).

Finally, we now get

sup sup E|]\4FL)§TJ()\Z)|4 =0(1).
u€l0,1] I=1,....m

need to substitute all functions a (%,j) by a;7(j). For the new coefficients the
same bounds apply. See Definition 2.1. O

Proposition 4.2
Let X;(u) denote the stationary approzimation of X;r at time [uT].
Let further | = 1,...,m and (jur); = div (LuTJ — L%J) — ﬂ{lzmod(LuTJ—L%J)} and

Alu,A) = 0 a(u e ™, Aur(A) == 00 agr(j)e ™.
Then

(a)

sup Z |apur) 7(j)| < 0. (4.9)
u€[0,1] ez

(b)
sup sup |A(z, \)| < oc. (4.10)

(¢) For z € Ryg

sup sup sup
meNuel0,1] I=1,...,m

[+ Clupiym —
A ( +4 Té’fm n Al) ~ Alu, )

_o (2’}—) (4.11)

(d) For z € Ry

I+ Clur)ym —m
A ( L /_JZ" 7)\l) - Al+C|_uTJ,Lm—m,T()\l)
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4 Basic properties of the moving Fourier coefficients

For z € Ry

sup sup |A(u, A1) = Aigep) ymemr(N)
u€l0,1] I=1,....m

(4.13)

(e) Let j =1,...,2m.
2

sup || A(w, A2 — |, A2 = O (% + ?) ~0 (?) L (4.14)

lu—w/|<Em

(f) Let j=1,...,2m.
4 , 4 mt  m* m? m m
sup (A A = A NI = O (T + 7 + T+ 2 ) =0 ().

C
ju—w/| <G

Proof.  (a) With Definition 2.1,

sup Z‘CLLUTJT < sup Z‘auTJT —auy‘—l— sup Z‘GUJ”

u€[0,1] ]_700 u€[0,1] j=—oo u€(0,1] j=—o0
= | |uT ’ 1 |
< K sup —U| 7= + sup — < 00.
u€el0,1] jz_:oo T 1(J)  uepy jz_:oo 1(j)

wwp s (Al < s swp D fated)

z€[0,1] I=1,....,m z€[0,1] I=1,..., miTT
> <
2

cf. Definition 2.1(b).
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4.1 Technical basics

(c) Since sup,ep.1)SUP_1,...m )HCL“T# - u) < C%%, it holds

.....

sup sup
u€l0,1] I=1,....m

0o I ., .
< sup sup Z'a(JFCLT%;lm m,j)—a(U,j)‘

uel0,1]I=1,....m . —

< ¥ g 0(F),

j=—o00

[+ Cur gm —
A( +4 Té;lm m,)\l) — Afu, \)

cf. Definition 2.1(b) and (c). Consequently, (4.11).

(d) Since
[+ Clurjym —m m
sup  sup : —u| < K—,
u€l0,1] I=1,....,m T T
it holds that
[+ Clur;ym —m
sup sup |A ( L T; A ) = Ay ymem,r (M)
uE[O,l] =1,....m

- I+ Curyym—m -
< s 3 [o (St

u€0,1] I=1,..., mi

[e.9]

> iy =°(7):

j=—00
cf. Definition 2.1(b) and (c). Consequently, (4.12).
(e) Results from parts (c¢) and (d).

Cm
(f) Let |[u—u'| < 5

00 2

Z a(u, k)e A"

k=—o0

[A(u, A =

[e.e]

= Z a(u, ky)a(u, ky)e iki=hk2),

k1,ko=—00

[e.9]

= > alu k) = a(u' k) + (! k))[a(u, k) = a(u, ke) + a(u, k)]

k1,ka=—00
.eii)‘j(klka) .

Maintaining the difference a(u, k;) — a(v’, k;), extracting yields 4 summands
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4 Basic properties of the moving Fourier coefficients

34

with the last one being a(u’, k1)a(u/, ko). Substracting |A(u/, \;)|? therefore
merely gets rid of this one summand. The remaining terms can be bounded
by either 7=, if we have a difference a(u, k;) — a(u', k;), or % in the case
of a(u, k;) (cf. Definition 2.1). Hence,

sup || A(u, A)* — [A(, A7)

ju—w'| <G
. m? 2m
< K +
B kl,;_oo(Tﬂl(k’l)l(kz) Tl(kl)l(k;z))
m?2 m
= O(F+T)
|A(ua)‘j)|4
0 4
= Z a(u, k)e "
k=—o00

= > alukialu,kaa(u,ksa(u, ky)em o tr—kethahe),
k1,ko,k3,ka=—00

= Z [a’<u7 kl) - a’<u/7 kl) + a’<u/7 kl)][a’<u7 k2) - a’<u/7 k2) + a’<u/7 k2)]
k1,k2,k3,ka=—00
'[CL(U, k3) - a(ulu k3) + a(ulu k3)] [CL(U, k4) - a’<u/7 k4) + a(ulu k4)]
_e—iAj(kl—k2+k3—k4)'

Maintaining the difference a(u, k;) — a(v’, k;), extracting yields 16 summands
with the last one being a(v/, k1 )a(u, ko)a(v’, k3)a(u', ky). Substracting [A(u’, \;)|*
therefore merely gets rid of this one summand. The remaining terms can be
bounded by either %, if we have a difference a(u, k;) — a(v’, k;), or % in
the case of a(u, k;) (cf. Definition 2.1). Hence,

sup || A(u, Aj)|* = JA®, )|
|u—w | <G

0 4 3

m 4dm
Koo (T4l<k1>Z<k2>Z<k3>Z<m>*T3Z<k1>Z<k2>Z<k3>Z<k4>

k1,k2,k3,ka=—00

IN

6m?2 4m
TR e o)L e L) T«kl)ukz)ukg)um)
= 0 (F t gt t ?) =



4.1 Technical basics

Proposition 4.3

For a sequence e1,¢9, ... of independent identically distributed centred random vari-
ables with variance 0 < 0% < 0o and existing fourth moment, the following inequality
holds

<Z Q) < nE(e}) + 3n’c

See also Exercise 10.14 in Brockwell and Davis [3].

Proof.

(E)) - ((E) - ((5)

Employing that the random variables are independent identically distributed and
centred, we get

Ay = <Var (iq)) = (iVar(q)) = n?o™.

n 2 n n
Ay = Var <Z q) = Var <Z €3+ Z eisj)
j=1

j=1 i#j=1

= Var <i 5?) + Var < i EiEj) + 2 Cov <Z £}, Z ekel> (4.16)
j=1

i#j=1 j=1  k#l=1

Var (Z 8?) = ZV&r(e?) =nVar(e?) =n (E(&?‘ll) — (E(e%))Q)

= nE(e)) —no'. (4.17)
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4 Basic properties of the moving Fourier coefficients

n n n 2
ar(Z siej> = E(Z 51-5]»—E<Z 82‘8]‘))
i#j=1 i#j=1 i#j=1

i;éjfl iti=1k£l=1

Z Z (€igjener) - Li=knj=t)v(i=inj=h)}

i#j=1 k#l=1
(4.18)

= 2 zn: E(e7e5) = 2n(n — 1)o”. (4.19)

(4.20)
Now, with (4.17), (4.19) and (4.20) Equation (4.16) simplifies to
4

Ay =nE(e}) —no* +2n(n — 1)o* + 0 = nE(e}) + 2n°c* — 2no™.

With the knowledge about A; and A, one finally obtains
(Z @) =nE(e}) + 3nc* — 2no* < nE(e]) + 3n?0™.

O

The following Theorem is kept in the notation of Brockwell and Davis [3]|, Theorem
10.3 and is an additional result to their theorem.
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4.1 Technical basics

Theorem 4.1. Let {Z;} ~ I1D(0,0%) and 3, , [¥;|\/|j] < oo. Let further, for
)‘j_ 2 j: 1,...,77,

= n’

1 —i\;S
Y()‘]) = % Z wse A Un,sa
with Uy, s = Z Zye~ it — ZZte_i)‘ft.
t=1—s t=1
Then
" 2
p (zw)e) _ o),
j=1
for n — oo.

Proof. Y (\;) = % S e U, o with Uy, o = Y000 Zie =S Ziem Nt
Uy is a sum of 2|s| independent random variables, if |s| < n. If |s| > n it is a sum
of 2n independent random variables.

We now intend to prove that

E (Z |Y<Aj>\2> - o(),
for n — oc.

Define

{1-s,...,0tU{n—s+1,....,n}, 0<s<n,
T(s):=<11,...,—s}u{n+1,...,n—s}, —-n<s<0,
{1—-s,....,n—s}U{l,...,n}, |s| > n.

This set indicates, which Z; contribute to U, ;. Note that
#T'(s) = min{2|s|, 2n}.

In the following, we will also be concerned with the cardinality of the intersections
of the sets T'(s;) N T'(s;), 4,j = 1,2, 3,4, which is

#1(s;) NT(s;) < min{min{2|s;|, 2n}, min{2|s;|, 2n}} = O(min{n, |s,|, |s;|}).

Further note that

min{n, [si[, [s;]} < v/[sily/ls;l-
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4 Basic properties of the moving Fourier coefficients

We then set §,, s; := 1, depending on which Z,’s contribute to U, ;.
. 2
(Swor)
j=1

o —iX\i, (s1—s —iNi t +iXi t
- ﬁ E E w81w826 71 (s1752) E Sn7817t1Zt16 an E Sn782,t2Zt26 e

J1=1s1,82=—00 t1€T(s1) to€T (s2)
n o
X, (83—54 +iXi t3 —iNi, tg
E E ¢s3¢s4€ i ) E 37%83,25321536 72 E : Sn,34,t4Zt4€ 72
ja=1 83,84=—00 t3€T(s3) ta€T(s4)
%
= E E ¢s1¢32¢s3¢s4 E Sn781,t1Zt1 E Snys2,t2Zt2
k1,k2€Z 51,52,583,54=—00 t1€T(s1) to€T (s2)
’ § : S%SSJBZtS E Sn7547t4Zt4]l{tl*t2+(81*82)=k‘1n}]l{t3*t4+(83734):k2n}-
t3€T(s3) ta€T(s4)

As we are interested in the value of the expectation of this expression, we only
need to look at the cases when F(Z;, Zy,Z;,7;,) # 0. As the fourth moment of
the random variables exists, we may bound it, as well as lower moments by some
arbitrary constant C' > 0. Formally, we get

b (Z \mj)\?)

< C Z %1@/)82%3@/)84 Z Z [1{t1:t2}1{t3:t4}+]l{t1:t3}]l{t2:t4}

§1,82,83,84=—00 k1,ko€Z t,€T(s;),1=1,2,3,4

+1{t1:t4}]1{t2:t3}] : ]l{tl —t2+(81—Sg)ik‘ln}]l{t3—t4+(83—84):k2n} .

We hence encounter the following situations

* [Case 1]

(I) t1 =t
(II) t3=t,
as well as
(III) t; —to+ (51— $2) = kin
(IV) t3—ts+ (83— 54) = kan

With (I) and (I1) we get

S1— S2

(I1I") ki = ,

53 — 5S4

(IV') ky = .
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4.1 Technical basics

k1 and ko are therefore uniquely determined by ss, $o, 83,84 and n and can

therefore be eliminated. Note that £y and ks need to be integers. To be exact,

we would then have to write
S1 — 82

lﬁ: OZ, l{?QZ
n n

S3 — S4

N Z.

Sufficient for an upper bound, however, is to use the whole range of the s;,
i=1,2,3,4.

Y Calaluts, Y, 1 > 1

81,582,583,54 t1€T(s1)NT (s2) t3€T(s3)NT(s4)
< K Yt Paleths, min{n, [s1], [s2]} min{n, |ss], |sa|}
$1,52,53,54
< KBS vtV S Tt VIl VIon
51,52 53,54
— o).
.
(1) t1=t3
(I1) =t
as well as

(III) tl —t2+(81 —82) = k’l’I’L
([V) tl — t2 + (83 — 84) = kgn

With (I) and (I1) we get

t1 —ty+ 81— S2

(III') Ky = ,
n

t1 —ty+ S3 — 84

IV ke = .
vy k ;

k1 and ko are therefore uniquely determined by ss, So, 83, S4, 11,12 and n and
can therefore be eliminated. Note that k; and ky need to be integers. To be
exact, we would then have to write

ti1 —to+5s1—s ti1—1to+583—s
_h 2 1 QOZ7 k2:1 2 3 4ﬂZ.
n n

ki
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4 Basic properties of the moving Fourier coefficients

Now,

Y Calulute Y, 1 > 1

$1,82,53,54 t1€T(s1)NT(s3) t3€T(s2)NT(s4)

K Y et min{n, |sif, [ss]} min{n, |so, [sa]}

51,52,53,54

KD bauIsilVs2l D Gutin, D VIsslV/]sal

51,52 53,54

= 0(1).

IN

IN

° Analogously to Case 2.

Remark 4.1

The condition Yy |91/ |j] < 00 is not very strong. Dahlhaus and Giraitis [12] use
in Corollary 4.1, which is the asymptotic normality of the rescaled spectral mean of
the Fourier coefficients of a stationary time series the assumption that ZjeZ [;]7% <
o00. As we need the result of the above Theorem to consider the rescaled spectral mean
later on, we are on the safe side starting off with a condition not as strong as their
final condition.

Moreover, Grenander and Rosenblatt [21] also use this assumption in Theorem 6,
when they intend to generalize their results from iid white noise to stationary time
Series.

4.2 Linking the locally stationary case to the i.i.d.
case

Lemma 4.2 (Relationship between ]\ﬂ?quTJ and MF, ).

Let X,(u) denote the stationary approzimation of X,p at time |uT .
Let further A(u,\) := >0 a(u,j)e”™. Then forl=1,...,m

j=—oc0

MFiiry () = A (M) MGy (V) + Rl (V).
with sup  sup E|R(Li)TJ,m<)\l)‘4 — 0, as m — oo, (4.21)

and

ER{). (M) =0. (4.22)
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4.2 Linking the locally stationary case to the i.i.d. case

If additionally SUPyefo,1] Z;‘;,w la(u, j)[v/17] < oo,

1
sup sup E|R(uTJ NP =0 <—) : (4.23)

u€el0,1] I=1,....m

as well as

2m+1 2
1
(\/7 Z| uTJ )|2> — 0 as m — oo. (4.24)
=1

Proof. With (ur); = div (LuTj — L%J) — ]I{IZmod(LuTJ—L%J)} it follows that

l+ Curpym—m -+t ‘
CL TJ,l ’]) 6722&)\[

1
—3'X
V2m + 1; t< T

= l+§uT,lm_m+t . —i

tO]

MF (M)

In order to proceed as in Brockwell and Davis [3], we need to free the coefficients
a(-, 7) of their dependence on time. We do this by splitting:

MF@fTJ ()\,)
I+ Qlurjym —m -+t
= Z > o T ¥
t 0 j=—o0
l + C uT]m —m —
- ( CJF I || Bl ury ym—mt—€ P

o0

2m
1 [+ Curjym —m )
+ — a : e et i€ A
V2m 1 ;]Z_:OO ( T J | S im—mti=

2m—j
1 L+ Qurjgm —m .\ —itA
= YuTJ (W) + \/mjz_:ooa ( T ) tZ—j EltCury ym—m+t€

L+ Clur)ym —m 1 2m i
= YuTJ ()‘l) + A ( T 7)‘1 m ; 5l+CLuTJ,lm—m+te !

1 Z a [+ Clurjym —m
V2m+1 2= T

L+ Guriym —m

) j) eiijAl U\_uTJ ,m,J <)\l>
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4 Basic properties of the moving Fourier coefficients

where
2m—j 2m
Ulur)mg (M) = (Z ELtCLry m-mit€ N — Z*fl+qm,lm—m+t6_ml> :
t=—j =0
It is evident, that the expectancy of both terms Y TJ ()\1) and YLuTJ (N\;) equals
zero, implying (4.22) for RLuTJ mN) = YfT(Jl (A) + YfT(JQ (A0)-
It now remains to show that
sup  sup E|YuTJ (M))F = 0 as m — oo, (4.25)
u€l0,1]1=1,...,m
sup  sup E|YuTJ (M)t — 0 as m — oo, (4.26)
u€l0,1]1=1,...,m

with adequate rates in the case of the stronger assumption.
To show the Lj-convergence (4.25) first note that

m6 m
su sup F Y MT=0l—=——7———|=0=—),
ue[opul 1,p, | UTJ ( 2 (T4(2m+ 1)2) (T4)

with the proof basically analogous to the proof of (4.6), however it is slightly more
demanding:

sup  sup E|YuTJ (A)[*
u€l0,1]I=1,...,m

1 2m 00
= sup sup W Z Z

=1,... R
u€l[0,1] 1T t1,t2,t3,t4=0 j1,72,53,j4=—00

( (l+<uTJlm m+t ) (l+C[uTJlm m ))
T yJi1) —a

( (Z—FCLUT“m m + 1o ) (l—l—CuT“m m ))
yJ2 | —a

( (Z+CLulem m + 13 ) (l—l—CuT“m m )
yJ3 ] —a

( (l+€LuTJ1m m + 1y ) <Z+CuTJ,lm m ))
yJa | —a T ) J4

€l+C[uTj ym—m4ts —j1 E14+C ur | im—mtta —j2 E14C ) ym—mAts—jaEl4+C T | ym—mtts—ja

) i(t27t1+t37t4))\l

Just like in the proof of Proposition 4.1, one needs to distinguish between the differ-
ent values the expected value can take and split the above expression accordingly.
Since for v € [0, 1]

. . Klv
sup ‘a<u + U7.71) - a<u7.71)‘ S | |7
u€0,1] I(j1)
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4.2 Linking the locally stationary case to the i.i.d. case

we get for the case of all indices of the innovations being equal an upper bound of

K
E(e})———
(51)(2m+1)2
%itl N O T
Tl(jl) Tl(jg) Tl(jg) Tl(j4) {t1—j1=ta—jo=t3—jz=tsa—ja}

t1,t2,t3,t4=0 j1,j2,73,j4a=—00
K(2m+1)° E(e}) _0 m3
(2m+ 1214 T \T4)

The other possibility is any two indices being equal. There are three cases:
th—gi=1la—j2 # t3—Js=1s—Ja,
th—Jj1=13—Jjs # t2—Ja=1ts—Ja,
=i =ti—js # ta—jo=13—Js.

Exemplarily, we will consider ¢; — j; = t4 — j4 # ta — jo = t3 — j3. For this case, an
upper bound is

2m e’}
K Z 2]

2 Z ' Ol
(2m+1) t1,t2,t3,t4=0 j1,j2,53,j4=—00 Tl(jl)
ty
TG Ltty—ji=ta—justta—jo=ts—ja}

it

' 'thf}g)

2m

K(@2m +1)* L
S e DO SR

t1,t2=0 j1,j2,j3,j4=—00

4
< K(2m +1)° _o(™Y
— (2m+1)2T* T

Finally, collecting the results on the upper bounds in the different cases, we get

mA
sup sup E|YuTJ ) —O(—). (4.27)

u€e[0,1] I=1,...,
Now for the second error term Y ()\1) the Minkowski inequality yields

sup  sup E|YL)U(T(J2 (\)[*
uel0,1] I=1,....,m

1 > l+CuT Jgm—m
< sup sup m(z 'a< L JT aj)'(E|ULuTJ,mJ()\l)\4)
j=—00

IS

)4.

(4.28)

u€l0,1] I=1,....,m
4
Note that for n € N, E (ZJ ) ej> < nE(e}) + 3n? (cf. Proposition 4.3).
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4 Basic properties of the moving Fourier coefficients

As stated before, for |j| < 2m + 1, Ujyr|m,;(Ni) is the sum of 2|j| independent and
centred random variables. For |j| > 2m + 1, Uy m,;(A;) is the sum of 2(2m + 1) =
4m + 2 independent and centred random variables.

sup sup EfUpryng)|' < 2min(|j], 2m + 1) B(el) + 12(min(| ], 2m + 1))°

u€0,1] I=1,...,
= O (min(|j[*, (2m +1)?).

Let uo € N arbitrary but fixed. It follows that

V(min([j[2, (2m +1)?)

1 Z a(l+CLuTJ,lm_m )
v2m+1 = T &

1 ’ (l+§LuTJ m—m )’ :
—— ) a : V]
\/2m+1‘.|< T

[+ Clu .
+ Z ( QL Tsz md)‘-

71> o
Concerning the function a: Note that m is only present in the first component of
the function a. We may therefore exploit the assumption made by Definition 2.1(c):

o0

Z a(u, j)| < oo

_]_700

[e.9]

Z a I+ Curjym —m
T »J

_]_700

(4.29)

< sup
u€(0,1]

sup

m,u,l

We note that now

I+ Curpym —m
sup sup Ny

uel0,1] 1=1,..., \/7 Z ' < T f/(min(|j|2,(2m+1)2)
T > la(@ ), (4.30)

5 7 + sup
m + z€lo, 1]H>M0

with

. [+ C\_uTJ,lm —m
limsup sup sup

e 2 |
—— a

m—oo wel0,1]I=1,...,m 2m+1j=—oo T
< sup Z la (z,7)]

z€[0,1]
\J|>M0

As py is arbitrary and due to the uniform absolute summability of a(u, j) (Definition
2.1(c)), the upper bound of (4.28) converges to zero for T' — oo (and thus m — o0).

44

J) ' /i, @ T 1)



4.2 Linking the locally stationary case to the i.i.d. case

If additionally

sup 3 lafu, VT < oo,

u€(0,1] oo

we get with the same argument as in (4.29) that

sup zz: ' <l+_<“TJﬂn Tn,j)'w43_<100

mul

This then results in a rate of convergence, which we did not get in (4.30):

sup sup E|Y LuTJ ek
uel0,1] I=1,....m

4
1 = I+ Curpym —m |, .1
< C-sup sup —— ‘a( ’ ’ jlz
uel0,1]1=1,...,m (2m +1)2 (J,:ZOO T 7 )|l

()

All'in all, we get for RLuTJ (N) == YuTJ (A) + YfT(JQ (A)

sup  sup E|R(Li)TJ,m()\l)‘4 < 24<sup sup E|Y§f(i)m()\l)|4

u€l0,1] I=1,....,m

u€l0,1]1=1,...,

o)

as the assumptions given in Section 3.1 imply ’;—z =o(1).

+ sup sup E\Y@(T(f ()\l)\‘l)

Now, to finally prove (4.24), we note again that

R(l)

[uT|,m

()\l) = Y\_uTJ ()\l) —|— YuTJ ()\l)

By (4.27)

2,0) 3y m'
sup sup  E|Y, 5. (A)] :O(ﬁ)'
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4 Basic properties of the moving Fourier coefficients

Hence,

(f—% e )2)20(7;5)0(1),

by the assumptions given in Section 3.1.
From Theorem 4.1 we get

<Z|Ym ()] ) =0(1).

m

(4.24) now follows by Cauchy-Schwarz. O
Theorem 4.2 (Relationship between M[f;iTLm and MIf, .,)-
In the situation of Lemma 4.2
M}z ) () = A (u, M) MIFy7y () + Riar ) (N), (4.31)
with sup sup E|Rpur)m(N)[? = 0 for m — oco. (4.32)
u€[0,1] I=1,...,
If additionally sup,epo 1 D= o la(u, 5)]V/[j] < 00
9 1
sup  sup E|Rjur| (M) =0(—]. (4.33)

uel0,1] I=1,....m

Proof. Now, extending the result of Lemma 4.2 to a relationship between the moving
periodograms, one merely needs to consider the remainder R|,r|,()\;), which is of

the form

—

Riurym(N) = A(u, M) MFf,py (\) R (M)

+ A, M) MET 7 (G RnO0) + RO (01

Therefore,

sup  sup E|Rur)m(N)[

u€l0,1] I=1,....m

2
< 22( sup sup |A (u, \)]? }MFuTJ ’R(uTJ )\l)’

u€l0,1] I=1,.,

u€l0,1]1=1,..., )

+ sup sup ’R(uTJ (M)
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4.2 Linking the locally stationary case to the i.i.d. case

According to Lemma 4.2, sup,,¢(o 1) SUp;—1

..... ‘RLuTJ ()\l)) = O (-;), if the stronger
assumption applies. Otherwise this term simply tends to zero. Concerning the other
summand, the application of the Cauchy-Schwarz inequality readily yields the result

when additionally employing Propositions 4.1 and 4.2. O

Lemma 4.3 (Relationship between MF|,r| and MF}, ;).

Under the same assumptions as in Lemma 4.2 and with Ayr(N) == D272 arr(j)e N,
the result (4.21) extends to

MFur) (M) = At ry ymema (M) METyr) (A) + RLuTJ (A1), (4.35)
with RLuTJ (\) = R(Li)TJ m(A) + Riur)m(N) and RLuTJ (A1) as in Lemma 4.2.
Then
ER® . (\)=0 (4.36)
|uT|,m\ "M ’
and
~ m4
sup  sup B[Rz ()| =0 (—4> : (4.37)
uel0,1] 1=1,...,m T
In particular, we get
sup sup E|RLuTJ (M))* = 0 as m — oc. (4.38)

u€el0,1] I=1,....m

If additionally sup,epo 1 Y- oo la(u, j)|\/1j] < 0o, then even
sup sup E|R(uTJ \)[*=0 (%) : (4.39)
uel0,1] I=1,....m m

as well as

2m+1 2
1 2)
\R( v (AP ] =0 as m — oo (4.40)
VT & fen
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4 Basic properties of the moving Fourier coefficients

Proof. We first split MF|,r|(A;) to be able to apply Lemma 4.2:

MFLuTJ(Al) = sziTJ()‘l) + (MFLUTJ()\J) - WéTJ()‘Z))
= A(u, N) MFf ) (N) + R () + (MELury (\) — ME7 (A)
= Ave¢ury mem V) My (N) + R ()

+ <A (u, Ar) — Az+<LuTJ,lm—m,T(Al)> MF 7y (M) + (MFury (A) — M (W)
(4.41)

As already defined in the above Lemma, R is the additional remainder we obtain
when bridging the gap from the stationary approximation to the actual locally sta-
tionary time series. Inspecting (4.41) yields the exact structure of this remainder:

R ym(N) = (AW A) = Aty mom (M) ) MFlzy () + (Ml (M) = MFiC (V).

Here, we can easily see that ER|,r|.(\) = 0. With (4.22), we have ER(@)TJ () =
0.

Propositions 4.1 and 4.2 immediately result in

m4

4
sup sup |4 (M) = Avigury i OV) E\meul)r‘:o(ﬁ) (4.42)

uel0,1] I=1,...m

Concerning the difference between the two Fourier transforms MF|,r|(\;) and MFL)ST (A,
we may use the procedure as chosen in the proof of Proposition 4.1, since

sup |a(u,J1) — apur)r(J1)] < -
ue[o,uH ) = a2 () Ti(j1)

Hence, we continue with

sup sup E|W\_uTJ()‘l)_W|_)5TJ()‘l)|4

u€el0,1] I=1,....m

1 2m 0o
< sup supmm Z Z

u€l0, 1] =10 t1,t2,t3,t4=0 j1,j2,j3,ja=—00

|:al+4[uTj,lmm+tl,T<j1) —a (u,jl)] : |:a’l+<LuTJ,lmm+t27T<j2) —a (%Jé)]

’ |:al+CLuT“mm+t3,T(j3) —a <u7 j3) :| ) |:al+CLuT“mm+t4,T<j4) —a <u7 j4> :|

.E(gl‘f’CLuTJ,lm*m‘f’tl*jlgl‘f’C[uTj am—mts—jaEl4-C | ym—m+ts—j3El+( ur) ,szm+t4*j4>

,ei(tQ*t1+t3*t4)>\l

(4.43)
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4.2 Linking the locally stationary case to the i.i.d. case

Considering that X is the stationary approximation at time u, we need to pay a
little attention, though, as

MFur) (M) = MEyry (M)

—it\

= Z Z al+<LuTJ m—m-+t, T(J) —a <U‘7 j) ):| €l+C[uTle*m+t*je
v2m+14= Pt

2m o)
! [( 4 I+ Curjym —m+1
T Pmal Z Z al+<\_1LTJ,lm—m+t7T(j) —a ( j
2m+14= oo T

L+ Curjym —m+t , i
+(a ( LuT] T 7 —a(u,g) ELC ur) ym—m-i—j € A

With Definition 2.1((c)),

sup
m,u,l

l—l—CLuTJ,lm—vat <
T S

CLS,T(j) —a (ia]> ‘ <

a’l‘f'C\_uTJ,lm—m‘f'th(j )—a ( T

sup
S

The second summand an be bounded (see Definition 2.1) by

I+C ) ym—m+t

I+ Curpym —m +t ) . ‘ ‘ T _“‘
a : 7] —a U,j S B S N
‘ ( T (u:9) 1(7) Ti(j)

The next step is now to consider all cases for which the expected value of the errors

for 0 < ¢ < 2m, see (4.43), is not zero. That is either, in the notation of (4.43), that
{t1 — j1 = ta — jo = t3 — j3 = t4 — js} or that one of the three cases

thh—Ji=ta—Jo # t3—J3=1ts— ja,
thh—Jg1=ts—Js # to—Jo=1ts— ju,
hh—ji=ti—Js # ta—Jo=1t3—J3

holds true, because we have defined (|, := div (LuTj — L%J ) _]l{lzmod(LuTJ— (=)}
So, again, we split the sums in sup,cio 1) SUp;—1, _m E|MFlur| (M) — WL)STJ(Al)|4 ac-

cordingly and bound them one by one. For equal indices of the errors, we get the
upper bound

g, > > ([

t1,t2,t3,t4=0 j1,j2,53,ja=—00

Iy
LrmiRece

(

Ti(j2)
()

‘ m

Tl(ja)

) 1 {ti—j1=ta—jo=t3—js=ta—ja}

)
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4 Basic properties of the moving Fourier coefficients

Secondly, we exemplarily consider t; — j; = t4 — j4 # to — jo = t3 — j3 and get a
bound of

m 2Zm i OTZ&)

t1,t2,t3,64=0 j1,j2,73,ja=—00

. 'Tl(jz)
T1(ja)

. ‘TZZZ)
o)

Finally, collecting the results on the upper bounds, we get

) 1 {t1—j1=ta—jaFto—jo=t3—j3}

- 4 1
sup sup E|MFurj(N) — MFip (M) = O (m ) =0 ( ) . (4.44)

4 2
uel0,1] I=1,...,m T m

At last, the proof of (4.37) is completed by putting together the results of (4.42)
and (4.44).

The result (4.39) is then a consequence of the result (4.23) of Lemma 4.2.

Now, to prove (4.24), recall that

RGN = RO () + Riurym(N).

According to Lemma 4.2 Equation (4.24)

2m+1 2
1
" <\/ﬁ Z |R(Li)TJ,m<)\l>|2> — 0, for m — oo.
j=1

We further know from the above proof that

wp s |1 =0 (2.
uel0,1] I=1,....m

Hence,
1 2m+1 2 -
B 2 |RLUTJ,m<Al>|2) ~o(%:).
( 2m+1 4= T4
(4.40) now follows by Cauchy-Schwarz. O

Theorem 4.3 (Relationship between MI .z, and MIf . ,,)-
Under the same assumptions as in Theorem 4.2 and Ay () := Z;’;_OO arr(j)e N,
the result (4.31) extends to

MILUTJ 77”()\1) = |AZ+C\_uTJ,lm—m7T ()\l) |2MITuTJ,m(>‘l) + R/LuTJ,m()‘l% (445)

20



4.2 Linking the locally stationary case to the i.i.d. case

with

sup sup B[R],z ,,(A)]* = 0 for m — occ. (4.46)
uel0,1] I=1,...,m

If additionally SUPye[0,1] Z]O»i,oo \G(U7J)|\/ 7| < oo,

1
wp 5w Bl =0 (). (4.47)
u€l0,1] I=1,...,m m
as well as
1 2m+1 2
E| —— Z |Rr) m()\l)|> — 0 as m — 0. (4.48)
<\/2m +1 =

Proof. This Theorem is an immediate consequence of Lemma 4.3, Propositions 4.1
and 4.2, as well as the application of the Cauchy-Schwarz inequality. The proof is
in analogy to the proof of Theorem 4.2. O
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CHAPTER b

Distributional properties of the moving Fourier coefficients

5.1 Variance

Theorem 5.1.

(¢)
sup sup | Var(MF|ur)(A)) — 27 f(u, A)| = 0.

u€l0,1] I=1,....m

(b) If additionally SUDye(0,1] E;‘;,w la(u, 7)[\/|j] < oo,

sup sup | Var(MF,r)(N)) — 27 f(u, \)| = O <%) .

u€el0,1] I=1,....,m

Proof. Lemma 4.3 provides the following relation

15 2
MPFluz) (M) = Avicyury im—ma (M) MFEr (M) + R (),
[uT|,m

sup sup E|RZ. (\)|* = 0.

If additionally sup,ep1) > 5- o la(u, 7)[v/17] < oo,

1
sup sup E\R(Li)”m()\l)\‘l =0 <—) :

2
u€l0,1] I=1,....,m m
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5 Distributional properties of the moving Fourier coefficients

If we apply Lemma 4.3, we now get

Var(MF|ur| (M) = Aicpur) im—m, 0 (N) At ¢pur) m—mr (M) Var(ME[,7 (A1)
+Ar¢ ) ym—m, (M) Cov(MET . (M), R(\_i)T 1m(A))
+ A ¢y im-mr(O) Cov(RE () MFY2y () + Var(R{y, L (A)
= A+ Ay + Ay + As.

By Proposition 4.1 and Lemma 4.1 it holds
SUPye[0,1] SUPI=1,....m Var(MFfuTJ(Al)) =1

With Proposition 4.2 (b) and (c),

m
sup  sup A g me-mr (M) — Alu, )\l)’ =0 <?> .
u€l0,1] I=1,....m

Hence, with Definition 2.2,
m
Ar = A, N2 Var(MES, 7 (M) + O (—)

T
= 2 f(u,\)+ O <%) :

From Proposition 4.2 it follows that

sup sup ’Al‘FC[uTj,lm*myT()\l)’ < 00.
uel0,1] I=1,...,m

Furthermore, Proposition 4.1 tells us that

2
sup sup E}MFfuTJ()\l)‘ = 1.
u€(0,1] I=1,....m

Finally, the use of Lemma 4.3 and the application of the Cauchy-Schwarz inequality
yield

SUD 0. SUPL 1 At ury o O (MG (M) - By (00)) = o(1).
(5.1)

If the stronger assumptions apply, we have the rate ﬁ

Note, that (4.36) tells us that E(R(Li)”m()\l)) = 0. Due to this and Lemma 4.1,
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5.2 Covariance structure

relation (5.1) entails

sup  sup Arec,p) memr(\) Cov(MFE (), Ry, (M) = of1)

u€l0,1] I=1,....m

sup sup Al+<LuTJ,lm*m7T()\l)COV<R(§L)TJ7m()\l)7W[:UTJ<)\I>> = o(1).

u€l0,1] I=1,....m

If the stronger assumptions apply, we have the rate ﬁ

Lemma 4.3 and the application of the Cauchy-Schwarz inequality yields

sup sup F (R(Li)TJ()\Z) . R(Li)TJ()\_l)) = o(1). (5.2)

u€el0,1] I=1,....m

The rate given the stronger set of assumptions is %
Relation (5.2) now entails

sup sup Var (R(Li)TJ()\l)) = o(1).

u€l0,1] I=1,....m

With the set of stronger assumptions, we can now even get

m 1 1
sup su Var(MF,,r\(N)) =20 f(u, )| =0 =+—=]=0|—|.
ue[OI,)l] l:1,..1:.),m‘ ( L TJ( l)) ﬂ-f( l)‘ (T wm) (\/m)

5.2 Covariance structure

For the next theorems, we define sets Aj;(a,,, v) and A, in order to rule out A;, \;
converging to the same frequency from different sides, as we do not get asymptotic
uncorrelated moving Fourier coefficients in these cases. This phenomenon is not
indigenous to our moving procedure. There are also procedures like the block boot-
strap — procedures which basically mimick the dependence structure but exhibit
some minor exceptions at certain cut off points.

Accordingly, two main questions have to be answered: What are the situations in
the moving case where asymptotic uncorrelation is not fulfilled? And why do the
situations occur in our case?

Ad 1: Looking at the suggestive Figure 3.1, one can see some ’break’ concerning the
indices. For k = L%J + 2 we have the sequence c,,.1,co,c3,. ..,y for the moving
Fourier transform at frequencies A,..., \,,. At frequency Amod(t%ﬁ% |m]) = Ao,

the break occurs. That is, for A\; and A converging to Ay from different sides, we
encounter a situation where the actual frequencies get closer and closer whereas the
indices of the coefficients do not.
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5 Distributional properties of the moving Fourier coefficients

Ad 2: The reason for these situations — getting local moving Fourier coefficients,
which are not asymptotically uncorrelated — is due our very good up-to-dateness
of the procedure. Meaning: We use only m moving Fourier coefficients and then
assume that we have already extracted all information about the second order struc-
ture of the time series. See Remark 3.4 for the explicit argument. Usually, one would
have calculated all 2m + 1 coefficients. We call that the long version of our trans-
formation. We, however, double the coefficients (see Section 3.3) in an adequate
way when going back into time domain. So, having generated the m'* coefficient,
one would start duplexing the newest information when using the long version of
the moving procedure. At that point, our procedure, however, starts updating the
oldest information, that is the oldest coefficient. In the easier understandable non-
moving case this problem corresponds to: Take 2m+-1 real random variables and use
the Fourier transform. This yields m complex coefficients with 'new’ information,
that is 2m real coefficients with new information. So there is a one-to-one relation
between the information carried by the original data and the information carried by
the transformed data.

If one took 2m + 1 real random variables and got 2m + 1 complex coefficients out of
them this would be 4m + 2 real coefficients, all carrying new information and thus
the information in the frequency domain is double the amount of information in the
time domain, with no doubling of information. Not being in the land of milk and
honey we need to pay for this overflowing information — by hiccups in the depen-
dence structure, compared to the long version.

Theorem 5.2. Foru e [0,1], j#1=1,...,m, let

Guryt = div (107) = [ 5 ]) = L 2 )

ll = + QuTle,
7= J+ur,m.
Then,
( Al ) | E(MFF . (AN MFE 7 (V)| =
sup max | ———, 9 9 =
1Sl#j’;m = 5] [uT ]\ L TJ
Remark 5.1

The difference l' — 5’ equals either | —j, l—j4+m orl—j—m, depending on the time
|uT'| we are currently at, as the composition of the local moving Fourier coefficients
of old and new moving Fourier coefficients changes throughout time.
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5.2 Covariance structure

Proof. Lemma 4.1 allows us to write

Cov (MFf,ry (M), MFE 7 /(0))) = B (MFE, 7/ (M) MEFE 7 (A))

2m
1 Z
t1,t2=0

_efi)‘ltl ei}\jtg )

Since E(MF,p (M), MY, (X)) = 0iff L+ Curjym —m+ 1ty = j+ Cur) jm—m+ts,
we get

m N 15 15
sup max (— - J|) |B(MES 7y (M) MFE 7, (A))]

1<I#j<m [ — gl

2m
m ) 1
= 1;;1}[;”1 max (ma I J|) 'Qm 1 n;o E(‘SlJrCLuTJ,lmfm+t1€j+<LuTJ7jmfm+t2)

—iAt1 JiA it
e 1 16 g2, 1{l’+t1:j,+t2}

min{2m,2m+(5'—1')}

= sup Cmax ( ! 1= ‘7|) Z et (=5 |

: =" m
1<I#j<m =7 t1=max{0,(j'~1")}

We define

gl(“a l7.]) =0 = maX{Oa (j/ - ll>}7 . '7min{2m7 2m + (j/ - ll>} =102 = g2(u7l7j)'

Then,

1 1l —J X (U'=3") S —iX—jt1
sup max =7 m € Z €

1<I4j<m =
. g2—g1+1
o 1 ‘l - .]| —i)\l_jtl
= sup max | ——, e )
1<i£j<m =J1" m =

Application of Lemma A.4 in Kirch [27] yields that uniformly in [, j.

g2 it 2r(l — 7) m
Z COS (mt1)| = O(mln <H7|g2—g1|)) .

t1=1

Analogously for the sine. Consequently,
) m

S7

g2—g1+1

§ e—i)\l_jtl

t1=1




5 Distributional properties of the moving Fourier coefficients

On the other hand

g2—g1+1 2m 2m-+1 2m
E e—i)\l_jtl — E e—’i)\l_jtl o E e—’i)\l_jtl E e—’i)\l_jtl
t1=1 t1=0 t1=g2—g1+2 t1=g2—g1+1

using that 2" e~#** = 0 for \ # 27 7Z.
Again, with Lemma A.4 in Kirch [27],

=0 (i (2 2~ (32— 1)) ). (5.4)

g2—g1+1

§ e*i}\l,jtl

t1=1

With (5.4) we get

g2—g1+1

§ €7i>‘l*jt1

t1=1

@)

min

/N
3

=k |92 — g1l,12m — (g2 — 91)0)

(

= 0 (min (22— = 71110 - 11))
= o(m ()
(( (%) )

m
sup max (W | ) ’E WLUTJ()\Z WLUTJ } =

1<i#j<m

@)

Q

@)

All in all, we now have that

Let a,, be a sequence with a,, — oo with a,,/m — 0.

The following set A; (ay,, u) includes all indices of Fourier frequencies who are either
sufficiently far apart or, if they are close to each other, one needs to ensure that
the indices do not relate to coefficients which are very different concerning up-to-
dateness.

Let a,, be a sequence with a,, — 0o, = — (0. Then define

Ai(am,u) = {(l,5) € {1,....mP*|(I# DA =7 < am V1= j| > an]}, (5.5)
with

Gyt = div (107) = [ 5 ]) = L2 )

l/ = l—CLuT“m,
-/

J = j_CLuTJ,jm-

o8



5.2 Covariance structure

Denote by A" (@, u) = {l,j|l # j} \ Ai(am,u). It holds (see Remark 5.2) that

AT (@, u)] = ay,.

Theorem 5.3. Let a,, be a sequence with a,, — oo, % — 0 and A(ay,,u) as in

(5.5) .

(a)

MEF 1 a
sup  Coo(MEF, 1 (N), MEE 1 (\;) = O (_ . m) .
(1,5)EAL (am ) ( LTJ( l) LTJ( j)) o _m ( )
(b)

sup  Cov(MF|yr| (M), MFlur) () — 0. (5.7)

(lvj)EAl (am 7u)

(¢) If additionally sup,ep 1 Z;’;_OO la(u, j)[\/]7] < oo,

1 Am 1
sup  Cov(MFur|(N), MFlur) (X)) = O (— + "+ —) . (5.8)
(L,j)EAL(am,u)
(d)
sup  Covo(MF|ur|(N), MFluri(A))) = O(1). (5.9)

1<i#j<m

Proof. Part (a) is an immediate corollary of Theorem 5.2, substituting the set
{1,...,m} by the special set A;(am,,u).

Concerning parts (b) to (d):
Analogously to the previous proof of Theorem 5.1, we now utilize Lemma 4.3
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5 Distributional properties of the moving Fourier coefficients

sup  Cov (MF\ur|(N), MEur|()))))
(l,j)eA1(am7U)
= sup B (MFlur(\) - MFlur)(;)))
(l,j)EAl(amvu)

sup  Api¢ ) im-m 0 (M) Ajc iy jm—mr (= Aj)
(l,9) €A1 (am,u)

B (MFf7y(\) - MFf2y(A5))

2
+ s A momr(ME (quTJ(Al).Rfu)TW(—Aj)>
(1) As (0 0)

2
TS A (<A E (R ) - MFE (<))
(L) €A (am,u)

2 2
o sup E<REU)TJ7m(Al)'Rfu)TJ,m(_)‘j»
(L) EAL (@m,u)

= Bl+BQ—|—F2—|—B3

IA

Incorporating the result for the errors given by part (a), we get for the term Bj:

With Proposition 4.2 (a) and (c), we get

sup Al+<LuTJ,szm,T()‘l) < 0. (5.10)
1<l#j<m
Hence,
sup ‘Bl‘ < sup ‘AlﬂLCLuTJ,lm*m7T<)‘l)AJ+CLuTJ,jm*m7T(_)‘j>|
(1,5)eA1(am,u) (1,5)eA1(am,u)

sup E (quTJ ()\l)v quTJ ()\J))
(L,j)eA1L(am,u)

- O(i+a—m).
A, m

From (5.10) it follows that

sup Al“l‘CLuTJ,lm_mvT()\l)’ < 0.

(L,7)eA1(am,u)

Furthermore, Proposition 4.1 tells us that

2
sup B |MF[,p /(M) =1,
(Li) €A1 (am,u)

Finally, the use of Lemma 4.3 and the application of the Cauchy-Schwarz inequality
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5.2 Covariance structure

yield

SUD () s o) At ury m-mr B (MF gy (V) < B2y (=2y)) = 0(1)(5.11)

If additionally sup,ep1 2= la(u, 7)[3/]7] < oo we have the rate

1
T

Due to Supg e, (am,u) E<R(Li)TJ,m()\l)) = 0 (4.36) and Lemma 4.1, relation (5.11)
entails

2
SUD Ay memr (M) Cov(MF g (N, Ry, (A) = o(1)
(Li) A (am )

2
WD Ar gy imemr (V) Cov(RE (), MEFpy (V) = o(1).
(l,5)€A1(am,u)

If additionally sup,epo.1 2= o la(u, )[V/[j] < oo

- 1
SUD Ay imemr (M) Cov(MFY 7 (N, Ry L () = O(—)
(L,7)eA1(am,u)

- 1
D A onma O0) CovR (0 MFEr () = 0 ().
(L,7)eA1(am,u)

Lemma 4.3 and the application of the Cauchy-Schwarz inequality yields

sup E (R(Li)ﬂ()\l) : R(\_Z)CI“J(_)\j)> =o(1). (5.12)
(L,7)eA1(am,u)

The rate given the stronger set of assumptions is %
Due to (4.36) relation (5.12) entails

sup  Cov (R(LZ)TJ()V)’ R(Li)TJ(—)\j)) =o(1).
(L,7)eA1(am,u)

If additionally sup,epo,1 2= o la(u, )|V/]j] < o0

sup  Cov <R(@)TJ (M), R(@)TJ (‘AJ)) =
(L,7)eA1(am,u)

|
Q
A/~
3=
~

Remark 5.2
Let x be defined as

r = mod (LuTj - {%J) (5.13)
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5 Distributional properties of the moving Fourier coefficients

The set Ay(am,u) can then also be written as

Ar(am,uw) = {(1,7) € {L,...,m}?[(1 # j) A [(max{|l — [, |7 — x|} > an)
Vz<lLj<z+a,V(r—a, <l j<z)},
(5.14)

which makes the interpretation of the set more obvious. First, we illustrate the
meaning of x: When considering a set of local moving coefficients (see Definition
3.1), we have, depending, what time they refer to, a Fourier frequency A, whose
corresponding cofficient is freshest. The coefficient corresponding to the next Fourier
frequency A,i1 is the oldest one, due to construction. The set Aj(am,u), hence,
contains all pairs of non-equal indices of Fourier frequencies which are either both
smaller or both larger than x or which are, if there is one smaller and one larger,
sufficiently far away from x.

The complementary set to A(apn,,u) includes to following pairs of indices (I, j): Let
w.l.o.g. 1 < j. If one of the to indices is further away from x than a,,, we are no
longer in A°(ay,,u). Thus, the complementary set comprises only of pairs of indices
(I,5) € {1,...,m}* withx — a,, <l <z and v < j < T+ a,, and, not to forget, all
pairs (1,1).

Now, concerning the cardinality of A°(am,,u) : We have m possibilities to choose
and set j = 1. Further, there are a,, possibilities, to choose | such that x—a,, <l < x
and another a,, to choose for each of the lI's an index j, such that v < j < x + ayp,.
Hence, we have

| A (@, u)| = m + a2,

If we are only looking at indices (l,7), with | # j, that is the set A{"(am,u) :=
{(g) e {L.omP|U#H AN =5 < am V|1 = j| = an]}. We have

AT (@, u)| = ag,.

When not considering moving Fourier coefficients centred around the same point at
time |uT'|, but centred around |uT'| and |[uT'| + s, s = 1,...,cm, we are still left
with the problem we have already faced when formulating Theorem 5.3. In that
case we have worked around it with the help of A;(ay,,w). In the situation of the
second point in time being s apart, the work around, however, is slightly changed
and slightly more tricky due to the additional variable s.

For the next result we will therefore first evoke some intuition of how we construct
the set A, used in Theorem 5.4.

Consider the points in time |uT'] and |uT'| + s for some s = 1,...,cm. We use
Fourier frequencies with indices up to =+ L%J around each point. For the sake of
notation needed for the proof of Theorem 5.4 we set

U(s) = {[uT]+s- L%J,...,LuTﬁsﬂ%J}. (5.15)
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5.2 Covariance structure

I |uT | |uT| + s

e —1- i

.. Cm Cm+1 Co2mCam-+1 Cm  C3m+1 --- Cr

Sl SQ

Figure 5.1: Illustrative sketch: The set U(0) — see Equation (5.15) — is marked blue,
the set V(s) is marked

The coefficients in set U(0) correspond to frequencies )\mod( NI )‘mod(LuTJJerJ)'
2 2

Vice versa, when near the time |uT'|, the corresponding moving Fourier coefficient
to frequency A;, [ =1,...,m, is, see (3.12),

Clt-Clur ) im>

with (jur); = div (LuTJ — [%J) — ]l{lzmod(LuTJ—L%J)}' We call the above index of

the moving Fourier coefficient [’.
Analogously,

7 =74 Cur s, im.

I’ and j' can now take values from 1 to 7', depending on the location of |uT'| and
the value of s.

Now consider the following Figure 5.1 with some exemplary |v7'| and [uT'| +s. No
problem arises, as long as j' and !’ remain in the same set, say Sy, with div(j’) =
div(l'), k € Ny. As soon as they sit in different stretches, the possibility of the
problem arises that |I' — j'| — oo, while |mod(l) — mod(j)| = |l — j| does not. The
problem is banned as soon as we require that |mod(j') —mod(l')| > a,,. That is, for
some exemplary I/, j/ must not be within the red area I’+m +a,,. In words, we need
to ensure that we do not use moving Fourier coefficients corresponding to frequencies
that are very near to each other, unless the coefficients themselves are located very
near to each other (with a distance of the indices of less than m). By phrasing very
near to each other, we mean that one can not find a sequence a,, — oo, 4= — 0,
with [l — j| > ap,.

We can now choose a set of indices Aj, for which the moving Fourier coefficients at
the corresponding frequencies are asymptotically uncorrelated.
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5 Distributional properties of the moving Fourier coefficients

Theorem 5.4. Let a,, be a sequence with a,, — oo, “* — 0 and define
Ay(s):={l' e U(0), 5 € U(s)|[div(l') = div(5")] V [[mod(l') — mod(7')| > am]},

with U(0) and U(s) as in (5.15).
Let F7 1 (A, ] Voo s F ), FO(A), oo, FOAn), - oy F2° O\LEJ) denote the mov-

ing Fourier transforms (Definition 3.2 and Remark 3.3) of the innovations. Then

i - w(¢)— 1 A
sup  sup  Cou(FIOTN, i)y FEO TN o)) = O (— + —) . (5.16)
520 p#PeAa(s) Am m

Proof. Due to Lemma 4.1, it is sufficient to consider only

sup  sup B (FEO N niie) - FEO (N oaw) -
520 (p,¥)eA2(s)

Hence,

sup K (f;“”(@‘l()\modw)) 'fgw(w)_l(Amod(w)))

(@7#’)6-/42(5)
1 2m
= —iA t1 A to
- Sup E(€pmttiEpmetty )€ mod@) T g modt) 2,
(pp)eda(s) 2m + 1 tl,go ' ?

The expectancy E(€y_mit,Ep—m+t,) €quals not zero only if ¢ +t; = ¢ + to.
The remaining proof is completely analogous to the proof of Theorem 5.2 and we
end up with

2m
1 —iA t1iX t
sup  sup E(€pmityExpmmity )€ mod@) 1 et Amod(w) 12
50 (p,)EAa(s) 2 + 1 t1,t22=0 % 1 2
0 i (s o= ulf2m— = v
= sup sup min o=, [2m = —
520 (pab)eAs (s) Imod() — mod(v)|
1 QA
= 0 (— + —) . O
Am M

Remark 5.3
Theorem 5.4 can also be formulated using the notation of the local moving Fourier
coefficients. Doing so, one needs another characterisation of the set Ay(s):

AQ(S) = Azl(s) U AQQ(S) U Azg.
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5.2 Covariance structure

These sets Aaq, Aso, Aog are specified below. However, as the whole definition of
Ay(s) is a bit nasty looking, we decided on the neater notation using the moving
Fourier coefficients.

For the alternative definition of As(s), we are concerned with two points in time,
|uT'| and |uT'| + s. Define x as in (5.13) and

Ys = mod([uTj—i—s—{%J), se{-2m,...,2m}.

Then, for .5 € 1,....m, define the conditions
(c1) (<) N[ <ys) V(G Zys) AN(T=j| = am))]
(c2) 1= 2) N[ =ys) AN <) A= J] = am))]
(¢3) I <2) N[ =ys) AT <ys) A= J| = am))]
(c4) U =z)A(j =1 = am)
(¢5) L= j| = ap.
Now define three sets of indices, depending on s: If s =1,....m —x
Aa(s) = {(l.j) € {1,...,m}?|(L # j) A [(c1) V(c2)]}. (5.17)

Ifs=m—-x+1,....2m—=x
An(s) = {(l,j) € {1,...,m}?|(L # j) A [(e3) V(cd)]}- (5.18)
Ifs=2m—x+1,...,2m
Ass(s) = {(l,j) € {1,....m}*|(L # j) A (cB)}. (5.19)

Linking these sets, we get the set of indices which corresponds to the set As(s) when
using the notation of local moving Fourier coefficients.

Lemma 5.1. Let k,l = 1,...,T and denote the Fourier transforms by ci,...,cr
as in Definition 3.2. Further, use the assumption on the function | discussed in
Remark 2.3.

Then

sup sup | Cov(cy, )| = o(1). (5.20)
lk—1|>3m k.l

The proof is based on the concept of weak dependence developed by Doukhan and
Louhichi [18]:

65



5 Distributional properties of the moving Fourier coefficients

Definition 5.1 ((9¥, F,)-weak dependence).
— Doukhan and Louhichi [18], Definition 1

The sequence (X, )nen of r.v.8 is called (9, F,)-weak dependent, if there exists a
class F of real-valued functions, a sequence ¥ = (V,.),en decreasing to zero at infinity,
and a function v with arguments (h, k,u,v) € F? x N? such that for any u-tuple
(i1, ... iy) and any v-tuple (j1,...,7,) with iy < ... <y, < i, +7 < J1 < ... < o,
one has

‘ OOU(h(Xl'l, ce 7Xiu)7 k(le, ce ,va))‘ < "Lp(h,, k,u,v)ﬁr,

for all functions h,k € F that are defined on R* and R", respectively.

In the setting of Doukhan and Louhichi [18] we have £ := {set of bounded Lipschitz
functions R* — R, for some u € N}. Further,

a1~ )
Lipth) = s = =)

denotes the Lipschitz modulus of a function A : R* — R, where R* is equipped with
its ['-norm. Furthermore, £y := {h € L;||h]| < 1}.

We cite subsection 4.3.4 in Nze and Doukhan [41], where the (¢, £, 1)-weak depen-
dence of two-sided sequences is stated. Accordingly, the infinite moving average

[e.9]

Xir= Y ar(j)e,

j=—o00
with J, = 2 Eleo| - 22155 ﬁ and ¢ (h, k,u,v) = (uLip(h) + vLip(k)) is (¥, L, v)-
weak dependent.

Proposition 5.1

A locally stationary process as in Definition 2.1 is (U, L1,)-weak dependent, with
a sequence 0 = (Vom)omen decreasing to zero at infinity, and a function 1 with
arguments (h, k,u,v) € L£1* x N? such that for any u-tuple (i1, ..., i,) and any v-
tuple (41, ..., jv) withip < ... <, <i,+2m <75 < ... <],

| COU(}I,(XZ‘LT, cey Xiu,T>7 /{Z(le,T, e 7va,T>>| < 1/1(;7,, k, u, U)"l?Qm,

with ¥(g, h,u,v) :== (u+v) - max{Lip(h), Lip(k)} and

Dom = Eleg| - Zﬁ : (5.21)

l7]>m

Proof. To prove the (¢, Ly,1)-weak dependence of a locally stationary process as
in Definition 2.1, we follow Nze and Doukhan [41] p.1007 and split X;r in an m-
dependent process Y; r and some process R; 7, being asymptotically negligible with
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5.2 Covariance structure

respect to the L'-norm.

Consequently,

| Cov(h( Xy, 1, .., Xi,
< |Cov(MXiy 1y X,
+| Cov(h(Yi, 1, - - ,quT),
+|Cov(h(Yi, 1y, Yi, 1),

i:‘
=
\_/:_/
3
—~
=
SN
25
S
S
~
=

s’
~

Due to the m-dependence of the process Y r,
| COV( ( i1, Ty« - - 7}/:L'u7T)7 k<Y‘j1,T7 SRR }/}U7T>>| =0.

We may therefore continue with

| COV(h(Xil’T, P aXiu,T s k’(thT, . ,X]U T))|

)
‘ COV( ( i1, Ty~ - 7Xiu,T) — h(YrihT, e ,Y;u T); k( g1, T+ - 7va,T))

< |
+| Cov(h(Yiyr, - - Yiu ), K(Xjiry - Xjor) = k(Y - Y r)]

< 2Lip(W)|klooll(Xiy s - - -, Xiyr) = Yoy Yiur) b
+2Lip(k)||hloo || (X ]1T7--- Xjor) = Vs Yl

< 2Lip(W)[(Riyrs- - -, Riy o) + 2Lip(R)|[(Rjy vy - -+ Ry )l

due to ||h|leo < 1 as well as ||k]|s < 1.

Fort=1,...,T,

ElRyr| < Y lar()Eley| < Eleol | D lar(DI | <C [ > ﬁ
Iy i1>[ %] >[5

This result also holds for every u € [0,1] :

1
sup sup E|R;r| < C Z |
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5 Distributional properties of the moving Fourier coefficients

Thus, X, r is weak dependent with ¢ (g, h, u,v) = (u+v) - max{Lip(h), Lip(k)} and

1
ﬁm = E‘€0| . Z v
i1>] 2] ‘v

Uy — 0 due to the the behaviour of I(j) as given in Definition 2.1. O

Proof of Lemma 5.1. Let |k — 1| > 3m. Then |k —m + j — (I — m +4)| > m, for
ji=0,....2m.
Consider the special case of u = v = 2m, r > m, fi(z) = Z?ZO Ty € mod()]
and fo(x) = Z?:o T pyje” Pmedwd  Both functions f; and f, have a Lipschitz
modulus of 1, as

) P .
>0 Tty = Yromgg ) Amod) ) E T —1

S |kt = Yrm] T Tkt — Yk

We begin with

sup sup | Cov(c, )|

k—1>3m k1l
1 2m 1 2m
= sup sup |Cov | ——= E Xy e Pmedwd | E Xy je Amodnd
- ) ? — s
|k—1|>3m k! V2m +1 par Vom +1 g

= sup sup
k—1|>3m ki 2m+1

2m 2m
COV g kam%»j,TeiZ)\mOd(k)] ) g Xlierj,Te*Z)‘mod(l)]
Jj=0

J=0

= sup sup

hl[>3 Y m + 1| COV(fl(Xk—m,Ta ceey Xk-l—m,T)a fQ(Xl—m,Ta cee aXl+m,T))|

< sup sup
k—1|>3m kil 2m + 1

V(f1, f2,2m, 2m) - Doy,

Eleo| < C (cf. Definition 2.1). Furthermore, Lip(f1) = Lip(fs) = 1, which then
results in

1 2m 1
sup su , f2,2m,2m) - 09, < 2- K - —
S S oL o 2m 2m) e We

Hence, (5.20) follows. O

Remark 5.4
There is also an alternative, more obvious proof of Lemma 5.1:
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5.2 Covariance structure

Proof. First note that

0o 2m

Cov(ck,a) = Z ak,r(J1)ar(J2) Z E(eh—jy 6, E1joity) € Pmode)i1Hidmodt2

J1,j2=—00 t1,t2=0

With E (€k—j,44,E1—jotta) = Ofts=to+i—k+j1—jo}- HOWeVer, as ty is restricted to the range
from 0 to 2m, the expectancy can only be non-zero for |j; — jo| > m, if |k —1| > 3m.
Hence,

sup sup | Cov(cg, )] < C sup sup Z lax r(j1)| - |awr(j2)| = 0. O

lk—1|>3m kil k—1|>3m kil . <
|71—g2|>m

The drawback of this simple proof, however, is that it can not easily extended to
periodograms, as the arguments require a lineare structure.

The following Lemma is an extension of Theorem 5.3 (a) to moving periodograms.
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5 Distributional properties of the moving Fourier coefficients

Lemma 5.2. Forue [0,1], j#k=1,...,m, let

Gy = div (T) = [ F]) = 1))y
' = 14 Qurpm

-/

J = j_'_ CLuTJ,jm-
Then,

: m’
sup {mm (m,max <|l — i3 TP )) }E MI ) () M) (A1) — ‘

I#j=1,...m
1
Var MI; A)=2+0
2, VoM =240 ().
Proof.

E(MI} ) (N M) 1 (A5))
2m
1 -
= m Z E(€l+<LuTJ’lmim+t18l+<LuTle*m+t26 (tl t2) !
t1,t2,t3,t4=0

. . —i(ta—t3)Aj
8]+C[uTj ,jmfm‘f’tgg]“rCLuTJ ’jmfm+t4e )

2m
1 . .
_ 7@(251 7252))\[ 7@(2547153))\]'
= o 1\ E e e
(277?, T 1) t1,t2,t3,64=0

B (El+¢LuTJ am—mAty EV—m+t2€j —m+t3Ej+( ) ’jm—m+t4) .
We now have

U'4+m j'+m
1

(2m + 1)? Yo Y Elencneney)e ety

t1,to=l'—m’ t3,ta=j'—m

For further calculations we need the following case differentiation with respect to

the indices tq,..., 1.

th =1y =13 =14

In this case, we can get the upper bound

S(1,4)E(el)
(2m+1)2

1
E 4
o 1L+

The exact value value of ¥(I, j) is:

Y(l,j) :=min{2m +1',2m+j'} —max{l',j'} +1=2m —|I' — j'| + 1.
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[ ] ‘t1:t2¢t3:t4‘
yields

4 D NE 4
o? Eei Z 1 = 1 ¥) (51).

(2m +1)2  (2m+1)?

t1=ty=t3=ty

[ ] ‘tlztg#tgzlu‘

W.log U' > 7§

1 Jj'+m U'+m
—i(t1—t2)A; Li(t3—ta) N
(2m+1)2 E E E(Et1€t2€t35t4)6 ( € J]l{tlitex#b:m}
t1,ta=j'—mt3,ta=l'—m
2m+]

4
— e~ tl to )\le t1— tg))\ o Eel 1
2m 1)? Z 2m + 1)2 Z
+ t1,ta=l’ ( + ) t1=ta=t3=ty
2
2m—+j’ . 4
_ 1 e~ | X(l,5)E(e])
(2m +1)2 tZy (2m +1)2
1=
Considering the term
2mt' 2
1 § — it A\
5 e 1Al—j ,
2m +1
( + ) t1=l
which equals 1 for [ = j, we write
2m+j’ 2m+jlfl/ o9m
E e—itl)\l_j — E e—’i(tl-i-l’))\l_j + E e—i(tl-l—l/))\l_j
t1=l t1=0 t1:2m+j/,l/+1
2m
_ Z it
t1=2m+j'—1'+1
2m
- _ E efi(tl"'l/))‘lfj
t1=2m-+j'—1'+1
I'—j
- _ E e*i(t1+2m+l,))\l,j
t1=1
From this, we define
ll_jl
i T . L E: —i(t1+2m~+5 )N —;
T:T(l7]7l7]) T el(l m])lja
t1=1
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5 Distributional properties of the moving Fourier coefficients
to which we apply Lemma A.4 in Kirch [27]. This yields

2 1
T = O(min( m—i—. ,|l'—j’\)).
]

Analogously for the sine term. Hence,

1

r_an2
L e < o (L SR T L
G+ 1) T—F m mi=g)
) 1 |l/_jl|2 1
Cmm(|l—j|2’ — +m. (5.23)

° ‘tl =ty #ty =13 ‘ This case is analogous to the case of t; = t3 # t5 = t4 and

yields the same result, which includes 1 4+ O (%) for [ = 7. So note that all in
all

1

Var MI, A)=24+0(—]).
jzll,l.gm ar LuTJ,m( J) + (m)
Continuing for [ # j we can write

€ € . E(&?%)—?) . 1 ‘l/_j,‘z
Cov (MIy7| m(N)s MIE yr) (M) = 5(1,5) - @m 1 172 + O ( min =i m

(5.24)
All in all,

=P m

1 l/_ /|2 1
S Cgmax min . ,| J‘ ) .
=7 m )'m

1P 1
By ). M0~ 11 < Comin (2 Eo T ) e

O

Lemma 5.3. Let ay, be a sequence with a,, — oo, = — 0 and Ai(ap,u) as in
(5.5).
Then,

(a)

1 1 a?
up By WM ) = 1] = 0 (%)
(Lg)EAL (amu) ’ et Lm0 ’ m - a = m?

72



5.2 Covariance structure

(b)

Proof. The set Aj(ay,,u) is defined as
A(am,u) = {(LJ) €{L,....mP|IG#DA ' = <anVIi—jlZan]}. O

(a) In any of the two cases |I' — j'| < a,, or |l — j| > a,,, the result follows from
Lemma 5.2.

(b) Follows immediately from Lemma 5.3.
We introduce the following notation. Let
x%y:@fzo(l),
)
x

r =y —=0(1).
Y

Remark 5.5
If additionally to the assumptions of Lemma 5.3 a,, < v/m,

1
sup | E(MIF ) MM 1) (X)) —1}:0(—).

(L7)E A1 (am ) az,

Corollary 5.1. In the situation of Lemma 5.2 with a,, — oo and a,, < /m,

1
sup COU<M[fuTJ,m()\l)7 M[fuTJ,m()\J)) = 0 <_) :

(1.4)EAL (am ) a2,

Proof. Under the assumptions made, Lemma 5.3 states that

1
sup | E(MIf, ) (M) My (V) =1 = O <—2) ;
(1,5)eAr(am,u) Ay,
As sup,; E(MI} 7 ,,(\)) = 1, see Proposition 4.1, the result follows. O
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5 Distributional properties of the moving Fourier coefficients

Lemma 5.4.

3 OOy (), My, ()] = O1)

Proof. We split the set of indices and then apply Corollary 5.1:

2m
1 6 .
om 1 1 D [BOME ) MM ) (M) = 1
J#I=0
2 . _
B 2m+1 Z }COV(MILUTLM()\Z)) MI\_uTJ,m()\j))}

(lvj)e-Al (am 7“)

(L.7) A1 (amu)

2
— 0(%#’—’").
a2z, m

With a,, = y/m the result follows. Note that the case [ = j can be included into
the sum. 0

Lemma 5.5. Let sup,cio 2o la(u, j)[\/|j] < oo. Then,

j=—o00

2m

1
2m +1 Z

J,k=0

VA om—m () 2+ Cov (MIF ) 1 (A), MIFyz) 1 (Ar)) | = o(1)-

Cov(MI ) m(Aj)s ML ur | m(Ak)) = [Ajsc ury ym—mr (M) |2

Proof. Theorem 4.3 enables us to express the moving periodogram of a locally sta-
tionary time series with the help of the moving periodogram of iid random variables
plus some remainder with vanishing second moment. The properties of the remain-
der are formally stated in Equations (4.47) and (4.48).
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5.2 Covariance structure

We may therefore substitute

COV(MILuTJ,m(Aj)v M]LuTJ,M(Ak)) - |Aj+<\_uTJ,jm_myT ()‘j) |2

.|Ak+<L1LTJ,]€m_m7T ()\k) |2 COV (M]fuTLm()\ ) MI |uT|,m ()\k))

1 2m
Z ‘AjJFC[uTj,jm*m,T (AJ> |2 ‘COV (M[fuTJ,m<)\]>7 R/LuTJ ,m(Ak>)‘

<
2m +1 5
1 2m
+2m Z |Ak+<\_uTJ rm— mT )\k; | }COV uTJ ()\ ) MI luT|,m ()\k‘))}
1 2m
+2m +1 j;o ‘COV (R/LUTJ ,m<)\j>7 /LuTJ ,m<)‘k>) ;

with A, r(\) == E]@fiﬂo apr(j)e ™,

Aj) |? is bounded. More-

.....

over, note that ERL | m ()\1) =0 (4.36) and consequently ERILuTJ,m()\l) =0.

. fjmﬂqmmw V2| (Ml 0y 0O\ Rl gy (W)
< 5 (g 2 Mo 03 [y 0]
S S >>)
< CE <WJZ}MILUTJ W—; (T} m W)
< 0y tE (Y ( M <A>)2- ECf%R’LUTJ,muk))Q

with the Cauchy-Schwarz inequality. Similarly,

1

o1 ; 1B (Rlur ) M) Rl (M) | < (\/7; uTlm )]) :
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5 Distributional properties of the moving Fourier coefficients

We know from Lemma 5.4 that

Var (ﬁZ‘MluTJ ”) = Var (\/7JZ0 [LuTJ )>

With Proposition 4.1,

<\/72‘M[LUTJ >\> =0(1).

And with Theorem 4.3, Equation (4.48), that is

2
1 2m ,
b (W kzzo ‘RLuTj,m<)‘k)‘> = o(1),

the result follows. U
5.3 Spectral means with moving periodograms:
asymptotic characteristics
We define the spectral mean MT" using the local moving periodogram:
MT(u) = )| MF oz (A) 2
Z@ MNF (Xt mms1, s - - X joms ) (5.26)

2m+1

T'(u) denotes the spectral mean statistic as used by Sergides [49], employing the
local periodogram. Here, ¢ is chosen as in Sergides [49], Assumption 4. ¢ is a
complex-valued bounded function. Moreover, it is periodically extended to R with
period 27 and has a bounded second derivative. For 2m > 7 > m, we require

P(Ai) = p(Aam—j)-
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5.3 Spectral means with moving periodograms: asymptotic characteristics

Proposition 5.2

2

2 l_j+]l mod( |uT|—| 2 1m
i Z min L . {tzmod(lur)= | 3])>7} =0 (m_%) )
m |l — 7| m?

Proof.

2

1 ‘l_j—i_]l mod( |uT|—| 2 1m
_me = {zmod(lur)—| % |)>i}

m2
>7
1 , 1 )l—4) 1 1
— min —, + — ;
m; <|l—J\2 m? m Zlu—ﬂz
[>j4+m3
mod( [uT|— L%J)—l j—l—m%

+% > > 1

j=mod(|uT|~| 2 |)—m5 l=mod(([vT]-| % |)

The splitting is chosen according to the different possible values of the indicator
function: The first case is assuming that ]1{l>mod<\_uTJ—LmJ)>j} = 0, the second one
= 2

assumes that the indicator function equals 1, but [ > 7 + m%, and the third case
assumes the indictor being 1 and all values of [ and j not included in the second case.

With Kreiss and Neuhaus [30], Equation (A.11),

1 , R 1 (1 h?
EZmln<”_ﬂ2, — = Z (2m — |h|) min il

1> 1<||<O(m)
h? 1 1
< o Y. —+ —2:0(—m)
Ihl<vim Ih|>im
Analogously,
1 1 1 |h| 1
— — = = =0 (m_ﬁ) .
S S T > 4
1>j+m3 O(m)>|h|>m3 |h|>m3
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5 Distributional properties of the moving Fourier coefficients

And finally,
X ,
— 1
- 2

= % Z <j+m%—mod(LuTJ—{%J>+l)

j:mod( |[uT']— L%J )fm%

- aSkeo(2) <o) =

k=1

Theorem 5.5. With MT as in (5.25), for every u € [0,1] it holds that

Var <\/2m T1[MT(u) — E(MT(u))]) -

872

- HZW P ) + (B =) s

Y e f (u, Ag) f (u, Az)lﬂh]’)\) +o(1).

JA=0
with
X(l,7) == 2m—|I'—j|+1,
. m
Gurya = div (1T) = | F]) = L))
' = 1+ (urpm,
jo= J + CQur)jm-
Remark 5.6

(1, 7) is bounded from above by 2m + 1. In the case of local periodograms, as seen
in Sergides [49], it equals 2m + 1, as we do not do any shifting.
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5.3 Spectral means with moving periodograms: asymptotic characteristics

Proof.
With Lemma 5.5, Definition 2.2 and ¢ bounded

J#l
= QmH e (1, A7) f (1, At) Cov (M) (Ag)s MTE iy () + 0(1).
J#l

From this,

Var (Wm FTMT(u) - B(MT(w))

- 2m+1z‘p ¢(Ay) Var (M ur) m())))
R _
to— > PPN Cov (MIury m (), MIjury m(M)
§£1=0
= QmHZ@ o(\) Var (MI |z m(A;))

2 +1 Z Q’O )\l Cov (MILUTJ ()\j)v MILuTJ,m(Al))

By slightly modifying Theorem 4.3, we get with Propositions 4.1 and 4.2

M urym(Ay) = A ()] MIEury (Ag) + Rlury ().

R 7 m(A;) fulfills (4.46) and, under the additional assumption of

sup Z la(u, 7)|\/1j] < oo,

u€[0,1] ]—foo

(4.47) holds.
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5 Distributional properties of the moving Fourier coefficients

With the above modification of Theorem 4.3

Var (MIjurym(X;)) = |A(u,\)[* Var (M7, (A)) + Var (R,z (A;))
+2 1A (u, \j))? Cov (M 1 (), Rl () -

Now,

sup sup Var (Rl,p(A;) < sup sup E|R|,p (N)|* = o(1)
uel0,1] I=1,...,m u€el0,1] I=1,...,m

Under the assumption that sup,ecpo 1 2 5- o @(u, 3)/|j] < 00, we get O (L).

Hence, with Cauchy-Schwarz and Propositions 4.1 and 4.2, we also have that

sup sup A (u, A; )\ Cov (M[LUTJ ()‘j)vRILuTJ()‘j)) =o(1).

u€l0,1] I=1,...m

Again, with the additional assumption, this yields a rate of O (ﬁ)
From Lemma 5.2 we have that

1
sup Var (leuTJ,m()‘j)) =2+0 (E) .

Thus,

Qmﬂzw 200) Var (Ml (A QmHZw 1A AN+ o(1),

With the definition of the time-varying spectral density, f(u, A), Definition 2.2,
Var(MIur)m(N;)) = 872 f2(u, A;) + o(1). (5.27)

With the additional assumption we get

1
Var(Ml | yr|.m(N;)) = 87° £ (u, A;) + O <ﬁ) : (5.28)
And, hence,
A = Z e(\)e(\) Var (MIur)m(N)

2m+1

= Z\ AP, ) + o(1).

2m+1

80



5.3 Spectral means with moving periodograms: asymptotic characteristics

From the proof in Lemma 5.2, we obtain Equation (5.24), that is

] . E(eh) -3 . L= 4P

Hence, by Proposition 5.2,

Ay = 5 S OO A) £ ) Cov (M, O0), Mo, )
J#1=0
= (E(s]) —3) (ﬁ > o)) f(u, Ag) f (u, M) (L, )>+o( )
J#1=0

and therefore the result follows. 0
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5 Distributional properties of the moving Fourier coefficients
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CHAPTER 6

Alternative Fourier transformations

In Chapter 5 we have looked at the covariance of local moving coefficients. In
the easiest case, the coefficients referred to and were based on a sequence of i.i.d.
random variables ;. We will restrict ourselves in the following to this case in order
to understandably convey our point. The results can, of course, analogously to the
procedure in Chapter 4 be extended to the case of stationary, as well as locally
stationary time series.

We look at the statement made by Theorem 5.3:

In the situation of Lemma 5.2 with a,, — oo and a,,/v/m — 0,

1
sup COV(M[fuTJ,m()\l)7 M[fuTJ,m()\J)) = 0 ( ) :

(1.5) €A1 (am ) az,

Here, one might ask oneself if the restriction to the set A;(a,,,u) introduced to
maintain the correct covariance structure is indeed necessary or whether it can be
circumvented by slightly changing the transform in some way. For the definition of
the set A;(a,, u) see Equation (5.5).

Note that in the following sections, we will refer to the coefficients

2m
1 .
MF (A ——) 5 I N
k‘( l) 2m+1 ; l+<dzv(k_L7J)_ﬂ{lZmod(kfL%J)})m_m—’—t’T

(Definition 3.1) as the original local moving Fourier coefficients in contrast to the
below-mentioned alterations MFC ™ (\), MFO®()), and MFS® ().
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6 Alternative Fourier transformations

Further, we define two alternative operators to mod and div for j € Z:

2m + 1, if 2m + 1 is a factor of j € Z,
MOD(j) =<7 mod (2m+1), J>0 A (2m+1)]7,
2m+1—-[(—j) mod 2m+1)], <0 A (2m+1){J.
(6.1)
: J
DIV (j) = [2m+ 1-‘ . (6.2)

Then, j= MOD(j)+ (DIV(j) —1)(2m +1).

Those operators arise from the definition of mod and div by substituting m by
2m + 1.

6.1 Local moving Fourier transform (Alt 1) -
adding some rearranging

Motivated by the procedure chosen for the transformation from frequency to time
domain (Definition 3.4), one might also want to consider the rearranging of the
input data in this case. We have already done this in the frequency domain where
it seems very intuitive, as one would want to link the Fourier coefficient ¢; (referring
to frequency ); to the exponential function e”*. Simply speaking, one would like
to have

2m

_ it
€ = g ce

=0

just like we do for the ordinary global Fourier transform. Note, however, that we
do move through the sequence cy,cs,...,cr when performing the inverse moving
Fourier transform. Hence, we would, in the next step, link ¢; with e **-1%, as the set
of Fourier coefficients we started with would be not ¢y, ..., ¢y, but o, ..., ¢pny1. Now
c5 would be multiplied by e, which does not make any sense, as it corresponds to
frequency A\;. Hence, in the frequency domain the reason why we do the rearranging,
which is thoroughly described in Chapter 3, is obvious.

We now asked ourselves the question whether we may either get rid of or reduce
the cardinality of the set Aj(a,,,u) by doing the same rearranging in the time
domain, ensuring that some random variable ¢, will always, when occuring in any
selected stretch of data be linked with e~™! (incorporating the same index ¢ and
not incorporating just some index used for summing up the 2m + 1 elements).
Without rearranging, the random variable 14, for example, which is used in 2m + 1
transformations, is always linked to a different value of the index of summation. By
rearranging, we ensure that the random variable €44 is always in position 16 of our
set of length 2m + 1. That’s the idea so far, now comes the theory.
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6.1 Local moving Fourier transform (Alt 1) - adding some rearranging

What happens formally, when adding rearranging to the original local moving Fourier
transform? Starting out with the time series €, ..., er, we intend to always link &,
to the first position in the set, £ to the second position, up to es,,, which is linked
to the position 2m + 1. €9, 41 shall then be again linked to the first position in the
sample and so on. We can see that this way the corresponding positions result from
using the actual indices MOD(2m + 1).

Now consider the exemplary set of

€4,E5, - -+, E2m+1) E2m+2; €2m+3; E2m+4-

The first step is to find out, what the inherent position of the last element is:
MOD(2m + 4). This equals 3. Now, the set is rearranged to

Eoam+2, E2m+3;E2m+4,€4, €55 - - -, E2m+1,

placing €9, 14 in position 3. The number MOD(2m + 4) will be referred to as the
splice of the stretch of random variables considered.

Assuming we want to calculate the Fourier coefficient at frequency 1 <[ < m, the
splice in the sequence of indices can be written as

& == MOD(l + (ur)ym + m)

That is
(1) 1 gl

) I

ME ) (\) \/7 Z ELHC g et 2mb 1€
1 2m+1

i\

\/7 Z El4C ur) ym—m+t€ e

t=€,+1

Now, with similar arguments as in the proof of Theorem 5.2,

E(MF5) (MMFSE) (M)

(( . ¢ 1 2m+1
= B | == _ctrcpuryum- e+ NoES > ¢ e
LT m—m2mtt lCLury gm—mtt
V2m 41 p— t=€+1
1 & 2m—+1
mz 3+CLur ) M= mtom i€’ \/71&;1 I+t M= meie”
O(]_) min v )
_ e~ tu=A)t e~ =A )t
= > + D
t1=1 ta=max(§;,£;5)+1
max(&ly&j)
= O(1) _ Z e ti=At | — 0 (mm (|§l Sl L)) .
m m l—j

t=min(&;,£;)+1
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6 Alternative Fourier transformations

Here, we can see that for |l — j| small, that is for Fourier frequencies \; and ),
close to each other, we cannot guarantee |, — &;| to be of an order less than m. An
example would be [ + (jyr)ym =m + 3 and j + (ur);m =2,1=2,j = 3.

6.2 Local moving Fourier transform (Alt 2) -
formally circumventing the stumbling blocks

To tackle the question, whether the introduction of the set A;(a,,, u) can be circum-
vented, one might also want to look critically at the fact that we artificially create
some kind of break in the sequence of Fourier coefficients. What we are currently
doing is as follows: We calculate the moving Fourier coefficients by shifting along
the time series and for each stretch of data we calculate the Fourier transform for
one single frequency A; and then move on to the next stretch, with [ = 1,... m.
Having reached \,,, we start anew with [ = 1.

The following alternative transformation differs from our original one by the fact
that we generate Fourier coefficients corresponding to the whole set of Fourier fre-
quencies {1, ..., Aoyi1} before continuing with A;. In the original procedure we
generated coefficients for frequencies Ay, ..., \,, and then started again with A\;. To
adapt the original method, we need to use the two operators MOD and DIV.

The crucial point, however, is that for the procedure to work, we need to get rid
of all Fourier coefficients belonging to frequencies \,,11,..., Aome1. To illustrate
the concept: Having generated cq, ..., cp, we throw away ¢, 11, ..., Comi1, as well as
C3m42, - - -, Camo and so on, that is in the end we have a gapped stretch of coefficients,
because every m times we have thrown away a stretch of length m. If we didn’t, the
same problem as in Chapter 5 and the resulting need for the set A;(a,,,u) would

emerge.
Hence,
1 2m
87(2) L —iAt1
WLUTJ <)\l) T /2m _'_ 1 ; gl-i-[DIV(\_uTJ—m)—ﬂ{lZNIOD(LuTJ_m)}](2m+1)—(2m+1)+te )

with [ = 1,...,m. Define

gtuTJJ = [D[V (luT] —m) — ]l{leOD([uTJ—m)}] .
We now propose that

s B )M = o).
71=1,....m
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6.2 Local moving Fourier transform (Alt 2) - formally circumventing the stumbling blocks

The formal proof that this works can be seen in the following:
e,(2 e,(2
(M) () MFE ()

2m
—iAit1 eiAjtg ]

1
2m + 1 ttZOE(€l+<~LuTLl(2m+l)(2m+1)+t1 €j+§[uTj,j(2m+1)7(2m+1)+t2)6
1,02=

This equals not zero only if [ + ELUTJJ@m +1)—ti1 =7+ fLuTij@m + 1) + to, that
iS ll+t1 :j/+t2.
Note, that MOD(l') =1 and MOD(j') = j.

We thus choose to substitute t; by (I'—j’) 4+t and, hence, have to correct the range
of t; to

g1(u,l,j) = g1 :=max{0, (' =) },...,min{2m,2m — (I' = j")} =: g2 = go(u, L, j).

Let w.lo.g. j/ > [

E(MF]5) () MFS5 (A)

2m
1 N .
— = ,TiAj; iA_jt1
2m + 1° l Z ‘ ]

t1=g1

2m . .
1 , 2m(l — 27 (l —
= — W g cos Mtl —78in Mtl )
2m +1 2m+1 2m+1

t1=g1

Application of Lemma A.4 in Kirch [27] yields that

2m—j'+1’ .
2m(l — 2 1
g cos Mtl = O ( min i,|2m+1—j'+l'| :
2m +1

= L= J

Analogously for the sine term.

2m—j'+U’ 2m 2m
Z ei}\l,jtl — Z ei}\l,jtl o Z ei)\l,jtl
t1=0 t1=0 t1=2m—j'+1'+1
G —1'—1 j=1-1
_ Z e (tit2m—j'+'+1) _ —ih—;(1'=j") Z eMi—jt1
t1=0 t1=0

For this sum, we get, again by Lemma A.4 in Kirch [27],

§'=U=1
. 2 1
-t — ) (min ( |;n +.| ’|l/ _j/|)> .
E : —J

t1=0
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6 Alternative Fourier transformations

Putting the two results together, one gets

, 1 | —41 2m+1—5 +|
B 5(2 £,(2) _

We know that |l — j| is between 0 and m — 1. The difference fLuTJ i gLuTJJ is either
+1 or 0, depending on the position of [ and j with regard to MOD(|uT | —m). We
have assumed that j° > [’. Hence, the case that the difference equals —1 can not
occur.

Now consider the case gLuTJJ — iuTJ,l = 0. In this case, j/ — ' = j — [. Hence,
. 1 |l — 7 1
E(MFECI ) MFER (),) = O —0(—=).
(ME 7 (M) ME| 7y (45)) AT 2m e 1 Jm
On the other hand, if Qum _5LuTJJ =1,j—1U'=7—14+2m+1. In this case, again,

suegorion-o om (715 £24)) -0 (c5)

Thus, the phenomenon which occurred in Chapter 3 can not occur here. And we do
not need to make any exceptions to values of j and I.

The reason why we do not get a problem here, is that from a stretch of 7' real
random variables we have created 7'/2 complex random variables, that is 7" real
random variables. In our original transformation, we have used T real random
variables to create T' complex variables, that is 27" real random variables. By doing
so, we certainly have to pay a price and this price is this dependence coming in —
dependence of coefficients which belong to frequencies with index not in A;(a,,, u).
This price, however, is not too high to pay as the cardinality of the set of indices not
in Aj(a,,u) is of an order less than m, which makes it negotiable when speaking
of spectral means, ratios etc. Using the first amendment to the list of alternative
transformations introduced above, we, however, have to pay the price of actually
wasting information on the time series or, putting it in other words, being too slow
with collecting information. Which is not important for stationary time series, but
very well important for locally stationary time series. In reality, structural changes
can happen quite fast, and if one had the choice between a method which uses
a stretch of data double the size for the same information avoiding a negligible
additional dependency, one would most certainly go for the information which is
denser in time.

We have finally extracted the conceptual problem of why we get this restriction to
Ai(an,,u): By applying the original local moving Fourier transform we gain double
the information which is present. Which ought to cost something.

The altered local moving Fourier transform has been the first try to construct a
transform in a way that we get a 1-1 relation between the information contained in
the time domain and the information contained in the frequency domain.
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6.3 Local moving Fourier transform (Alt 3) - customized to fit the needs

A further approach is taken in the following section.

6.3 Local moving Fourier transform (Alt 3) -
customized to fit the needs

A further amendment to the list of transformations is to use the original transform
with the adaption that for the first m times we obtain not the complex Fourier
coefficient, but only the real part. The second m times we generate the corresponding
imaginary parts. Then the m real parts and m imaginary parts are stuck together
as m complex Fourier coefficients to frequencies Ay, ..., \,,. We then continue with
the transformation of our time series. The following m stretches serve as data to
obtain real parts and the corresponding imaginary parts are generated by the next
but one set of m transforms. All in all, having moved through the time series we
end up with 7'/2 real parts and 7'/2 imaginary parts, that is 7/2 moving Fourier
coefficients. One could think of this method as a more adapted method than Alt 2,
better capturing the aspect of locally changing time series as the information at all
times is incorporated in the sample and hence, the change is mirrored more closely.
Still, of course, this method suffers from the same flaw as Alt 2, to obtain m Fourier
coefficients, we need a number of observations in the time domain which would have
generated 2m coefficients using the original method.

Forl=1,...,m, define

MFSS (A

2m
1
MTJ( l) = 42m 1 Z ElJr[DIV(L“Tme)fn{lZMOD(LuTJ7m)}](2m+1)7(2m+1)+t COS()\ltl)-
t=0

Forl=m+1,...,2m + 1, define

MFS)

2m

1 .

[uT <)\l> = 2m + 1 Z €l+[DIV(LUTJ—m)—ﬂ{LZMOD(LuTJ—m)}](2m+1)—(2m+1)+t Sln(_)\ltl)
t=0

Now, forl=1,...,mand j=m-+1,...,2m+1

B(MF;S) (), ML (M)

[uT]
1 2m
= 2m+1 Z E(ElJrELuTJ’l(2m+1)7(2m+1)+t1€j+§[uTJ’j(2m+1)7(2m+1)+t2)
t1,t2=0

27Tlt1 . 27Tjt2
- COS sin | — )
2m +1 2m +1
This equals not zero only if [ + QHTJJ(Qm +)+t1=7+ QHTM(Qm + 1) + to, that
)

is I’ +t; = j' + to. Note, that MOD(I') =1 and MOD(j') = j.
We thus choose to substitute t5 by (I’ —j') +¢; and, hence, have to correct the range
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6 Alternative Fourier transformations

of t; to

gl(“a l7j) =0 = maX{Oa (j/ - ll>}7 . '7min{2m7 2m — (l/ _.7/>} =102 = g2<u7 l7.7)

Let w.lLo.g. j/ > I'.

E(MFES) (), MFES (M)

2m . .
B 1 27lty , 2rj(ty + 1 —7')
= il 2 )COS(2m+1)Sm(_ om + 1 '

ti=('=

Simulations have lead to the conclusion that the above sum converges to 0 for all
possible combinations of j and [.

6.4 Summary

Concerning Alt 1, we can say: Rearranging unifies the procedures applied for back
and forth transform, but does not have any effect on the set A;(a,, u). Looking
closer at why the need for this exception arises, one mathematically finds out that
if |7/ — I'| = oo always implied |l — j| — oo, we would be done. This has been
achieved by developing Alt 2. Looking closer at this transformation we have now
been able to detect the kernel of the brute. The need for set A;(a,,,u) was due to
the fact that we overindulged in information. We had m random variables at hand,
and created out of them 2m random variables. These 2m random variables can not
possibly all be uncorrelated, each carrying different information, as this information
could not all have been stored in the m variables we started with. Getting this
bonus of double the random variables with our transform, we need to pay the price
of some of them not being uncorrelated. As long as this 'some’ is of less than order
m, though, all is well. Both, Alt 2 and Alt 3 suffer from the problem of needing to
use wider stretches of input data, whereas the local moving Fourier transform uses
stretches half as wide, resulting in a more local procedure. Alt 2 and 3 both, of
course, get rid of the set A;(a,,u), with Alt 3 definitely being superior to Alt 2.
Alt 2 grabs some information, waits some time without getting information, then
again grabs another piece of information and so on. By doing so, Alt 2 will miss
out on the gradual change in information. Alt 3, however, meets the criterion of
constantly updating its information while moving through time, as does the local
moving Fourier transform.

Remark 6.1

As we have noticed, rearranging the data stretches does not effect the second order
structure of the Fourier coefficients. This leaves room for the conjecture that there
is no change of the distributional properties of Fourier coefficients in the station-
ary case when using shifted data. That is that F(Xq, Xa, ..., Xp; A1) is as far as
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6.4 Summary

distributional characteristics are concerned, equal to F (X, X1, ..., Xpn_1;A1).
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CHAPTER [/

Application of the moving Fourier transformation

A locally stationary process {X; 7} describes a time series with slow changes. In
Chapter 3 we have developed a method to transfer the changing information con-
tained in the time series to the frequency domain using the moving Fourier trans-
formation (Definition 3.2). Further, we have also found a way to convert these
coefficients back to some time series with the same structural characteristics as the
original one.

Now, seeing that the local moving Fourier coefficients at time ¢ (Definition 3.1),
which are basically a set of 2m + 1 specially created Fourier coefficients assigned to
some time t, as well as the corresponding periodogram ordinates exhibit an asymp-
totically decreasing covariance, one is reminded of the ordinary Fourier coefficients
which are asymptotically iid.

Taking up this discovery that local moving Fourier coefficients asymptotically be-
have similarly to Fourier coefficients, we extend bootstrap methods in the frequency
domain from the stationary to the locally stationary setting.

7.1 Bootstrap methods in the frequency domain

7.1.1 Wild bootstrap

— Kirch and Politis [28]

We apply the standard bootstrap method of wild bootstrap as described in Kirch and
Politis [28] to the moving Fourier coefficients (Definition 3.2). In order to perform the
wild bootstrap, we need an estimator of the time varying spectral density (Definition
2.2), meeting the requirement

max ’f( Amod k)) f (U‘7 )‘mod(k))’ = op(1).

ke{(uT]—[ % ]+1,..., [uT |+ | %
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7 Application of the moving Fourier transformation

See Chapter 8 for existence and construction of such an estimator.

We now proceed as follows

Step 1:

Split each ¢, into real and imaginary part ¢ := xp + iyp.

Step 2:

Let Gi, Gy, K = 1,...,T, be independent identically standard normal random
variables. Generate the bootstrap samples ¢; according to

~(k
= —, A
7y, \/Wf (T’ mod(k))Gka
. ~(k
Y = mf Ta)\mod(k) Gryr,

* * ok
C = T Y.

7.1.2 Residual based bootstrap
— Kirch and Politis [28]

The initial requirement is just like in the case of the wild bootstrap: In order to
be able to apply the standard bootstrap method of residual based bootstrap as
described in Kirch and Politis [28] to the moving Fourier coefficients (Definition 3.2)
we need an estimator of the time varying spectral density (Definition 2.2) with

~(k
max / (_a)‘mod(k)) — I (u, )‘mod(k))’ = op(1).
ke{luT)— [ 2] 41 [uT )+ 2 |} ’ T

Step 1:

Split each ¢, into real and imaginary part ¢ := xp + iyp.

Step 2:

Estimate residuals of real and imaginary part and put them in a vector {5;}1<j<or

- Tk Yk

Sk = = s STk 1= = .
\/ Tf (5 Amod)) \/ Tf (5, Amod(k))

Step 3:
Standardization yields
Sk — % 212:1 51

1 2T (~ 1 2T ~)2'
oT 2ut=1 \5t T 2u1=1 51

Sk - —
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7.1 Bootstrap methods in the frequency domain

Step 4:

Ordinary iid resampling with replacement in order to get s7,..., s5p.

Step 5:

Define bootstrap Fourier coefficients

* sk *
l‘k, = \/ﬂ-f (f) )\mod(k)) Sk"
* sk *
Y = 7T.f Ta )‘mod(k) ST k>

7.1.3 Local bootstrap

— Kirch and Politis [28], Paparoditis and Politis [{4]

Step 1:

Select a symmetric, nonnegative kernel K (-) with [ K (¢)dt = 1. Special assumptions

on the kernel K are made in Chapter 8.
Moreover, one needs to select a bandwidth h, fulfilling h — 0, but mh — oc.

Step 2:

Define iid random variables J; r, ..., Jor on Z, with

_ K(2ms/((2m + 1)h))
S K@rl/((2m + 1)h))

psr = P(Jjr =5)

Independent of these, define 27" iid Bern(1/2)-distributed random variables By, . ..

Step 3:
The bootstrap is performed as follows:
x LhtJg,1s if By =0,
l‘k, — .
yk—l—Jk’Ta if Bk = ]-7
~x yk—l—JT_,_k’Ta if BT-i—k = Oa
Y = .
':L‘]‘H‘JT-HC,T’ if BT+k =1.

This construction exploits the fact that for a smooth spectral density, the distribu-
tion of the moving Fourier coefficients in a small environment should approximately

be the same.

The final bootstrap coefficients are then obtained after centering with the weighted
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7 Application of the moving Fourier transformation

mean of the original series and are thus given by

1
Ty = Iy — > ZPS,T($k+s + Ykts):
SEZL
* ~ %k 1
Ye = Yp— 2 ZP&T(%HS + Ykts),
SEZL
. = xp+iy;.

7.2 Bootstrapping time domain data

7.2.1 Moving TFT-bootstrap

As soon as one is provided with some suitable method of transforming back and
forth from time to frequency domain the most natural thought when intending to
use bootstrapping is to do so in the frequency domain as it allows for iid bootstrap
methods. For the first time, this has been done by Kirch and Politis [28| using the
ordinary Fourier transformation of length 7. With the new method of the moving
Fourier transformation at hand, we can now extend the concept to locally stationary
processes, perform local iid bootstrap methods in the frequency domain and return
to the time domain.

Thus, the moving TFT-bootstrap can essentially be viewed as a three step procedure.

Step 1:
The observed time series is transformed using the so called moving Fourier transform
(3.11):

k+m
1

cL = -F(Xk—m,T, ooy Xkt T )‘mod(k)) - \/ﬁ Z XLTe—il)\mod(k) e’i(k—m)Amod(k)’
1=

k—m

2w mod(k

with Aodr) == =5, ) ) denoting the Fourier frequencies and the operator mod

according to (3.1).
We now face the T" moving Fourier coefficients cq, ..., cp.

Step 2:
In a second step, the resulting moving Fourier coefficients are bootstrapped by a

localized standard method of choice, such as the wild, the local or the residual
bootstrap. See Section 7.1. This results in

% %
Cl""’CT'
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7.2 Bootstrapping time domain data

Step 3:
The moving bootstrap coefficients gained are then transformed back using a moving
version of the inverse Fourier transform (3.15).

= e
’ om + 1 - (div(t=| 2 ) =11z moa(e— )} )™
1

=1
+ C_* A N e*i}\lt
o + 1 2 r (div (=[5 ]) = g moae— 3 )y )

with A\, := %, k=0,...,m, denoting the Fourier frequencies and t =1,...,T.
This finally yields a bootstrap replicate X7 7, X3 7, ..., X7 7 of the original time se-
ries in the time domain.

Basically all bootstrap methods involving the frequency domain which are used for
stationary time series can be adapted to the locally stationary situation using the
moving Fourier transformation and the moving periodogram, as defined in Defini-
tion 3.3. There are also other ways of localizing bootstrap procedures using peri-
odograms, for example the use of the local periodogram as done by Sergides [49]
and Kreiss and Paparoditis [32]. We will now modify these two procedures using
our moving periodogram and compare their performance.

7.2.2 Moving autoregressive-aided periodogram bootstrap

The local autoregressive-aided periodogram bootstrap by Sergides [49] combines a
parametric bootstrap in the time domain with a local nonparametric correction in
the frequency domain. It is an extension of the autoregressive-aided periodogram
bootstrap by Kreiss and Paparoditis [31] to locally stationary time series and essen-
tially works as follows: The part concerned with the parametric bootstrap is based
on locally fitting an AR(p)-model to the data, calculating the residuals and gen-
erating bootstrap errors from the empirical distribution function of the residuals.
The bootstrap observations then result from using the estimated AR(p)-coefficients
and the bootstrap errors. Up to now, we just have, as Sergides [49]| point out, a
local version of the autoregressive bootstrap. In order to loosen the restriction of
an underlying AR(p)-process, a nonparametric correction is added to the bootstrap
AR(p)-periodogram. It serves the purpose to correct the bootstrap periodogram of
the time varying AR(p)-process for structure of the data that can not be explained
by some autoregressive model. The correction is a smoothed version of the local
periodogram divided by an estimate of the local spectral AR(p)-density.

Using the autoregressive-aided periodogram bootstrap by Kreiss and Paparoditis
[31] as a fundament, Sergides [49] has created a local bootstrap method. We pro-
vide a further adaption of the autoregressive-aided periodogram bootstrap of Kreiss
and Paparoditis [31] to locally stationary time series. The parametric bootstrap
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7 Application of the moving Fourier transformation

is mainly mimicked, except for the fact that we draw the bootstrap errors locally
using iid resampling. To calculate the bootstrap periodogram, however, we use the
moving periodogram.

The next section displays our algorithm for the moving autoregressive-aided peri-
odogram bootstrap. The alterations to Sergides [49] are in the use of the moving
periodogram, the remaining parts, however, are borrowed from Sergides [49]. For
the sake of simplicity, we restrict ourselves w.l.o.g. to an AR(1) model.

We therefore assume

Let Xy 7, Xor, ..., Xrr be alocally stationary time series as in Definition 2.1. In
order to keep the algorithm as simple as possible, we will assume that there is
a sufficient number of preceding and succeeding observations available. Namely,
Xi—gmm, .-, Xorand Xpyir, ..., Xoygm 1. If applied to a real set of data, we need
to slightly adapt the procedure by settling for a blockwise approach in the beginning
and in the end of the time series.

We also assume that (Sergides [49], Assumption 2.2) the stationary approximation
of X;r at time u € [0, 1] has the AR(co)-representation

Xi(w) = Br(w)Xi1(u) + a(u, )y,

where 14 Y77 a(u, k)zF = (1 = D07, Be(u)zF)=1, Y207 k|Bk(u)| < oo and 1 —
Sore . Br(u)z® # 0 for all complex z with |z| < 1.

Step 1: Local fit of AR(1)-model

For every point in time 1 < ¢t < T we fit an autoregressive model of order 1 to

the data X;_,,,7,..., Xiymr and calculate the estimated parameter a® = Bl (%) )
This leaves us with the estimated coefficients a(V, a®, ..., a™) and the estimated
standard deviations of the errors 61, ... &),

(The exact formula to calculate the standard deviation using Yule-Walker estima-
tors on the stationary approximations is given by Sergides [49], Section 2.3, page 14.)

Step 2: Estimation of the centered and rescaled errors é; p,...,érp

Consider the rescaled residuals

- 1 R
&7 = % (Xt,T — (l(t)Xt_LT) s t = 2, ey T.

. A ~ T ~
These rescaled residuals are then centered by &, 7 := &, 17— % > o1 Erm, s0 we finally
get e11,...,E1T"

Step 3: Generation of the bootstrap errors 51+,T, e ,8;77«

For every t € {1,...,T} consider the stretch &,_,, 1, ..., m With equal probabil-
ity assigned to each residual, and draw one residual. This sample is named &;.
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7.2 Bootstrapping time domain data

Step 4: Generation of the bootstrap observations X, ..., X},

Having created all bootstrap errors efT, e ,5}1, we can now calculate the bootstrap
observations by using the locally fitted AR(1)- models (cf. Step 1). We set X{} :=
Xi,r and

X = d(t)Xttl,T + &(t)ngv t=2,....T.

Step 5: Calculation of moving periodogram.

Application of the moving Fourier transform (as in Definition 3.2) to the bootstrap
observations X, ..., X; . yields

Using the local moving coefficients as in Definition 3.1 at each time ¢ results in T
sets

ME} (), -, ME ()

The moving periodogram MI,; ,,();) is defined in Definition 3.3 and, thus, analo-
gously

ML}, () = |MEF ()]

Step 6: Local correction

Computation of the local kernel estimator. The assumptions on the kernel are given
by (K)(i)-(v) in Chapter 8.

2m
[t 1 [t+m<)\])
q (—,)\) = S KA ) adn(A)
T 2m+1 2= i (5 0)

where

o (). (1) 1
AT V)T 21— aein |

Step 7: Construction of moving bootstrap periodogram

The moving bootstrap periodogram is then given by

. T
MIt,m()\j) =q (T’ )‘]) ’ MIt—t_m()\])a

j=1,....m,andt=1,...)T.
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7 Application of the moving Fourier transformation

7.2.3 Moving wild hybrid bootstrap

The hybrid bootstrap by Kreiss and Paparoditis [32] combines a wild bootstrap in
the time domain with a nonparametric approach in the frequency domain. It is
an extension of the wild hybrid bootstrap by Kreiss and Paparoditis [33] to locally
stationary time series.

It uses two major ideas: Firstly, that the observations X, can approximately be
written as

1 T-1 ¢ A
Xt,T ~ ? jzo f (T, )\j) Ja()\j)elt)\j,

with J.(\;) = %Z;‘ZOI gie”®i. This is heuristically deduced from the relation
|Jx(M\))? =~ f(N\)|J-(A))]? in Brockwell and Davis [3|, Theorem 10.3.1, and has,
for a time-independent density, already been used by Kreiss and Paparoditis [33].
In the moving version this approximating expression is slightly changed to

T Z ( )fdw(t ()\j)eit)‘f,

incorporating the moving Fourier transform instead of the original Fourier transform
of the errors, see also Remark 3.3.

T~

The second nip is, as already done in Kreiss and Paparoditis [33], to estimate the
fourth order cumulant of the innovations by using the relation

Cov(X;*(u), Xix?(u)) = Ka Z by (W) * (u)

]_700

+ 2-Cov?(Xy(u), Xppr(w)), u € [0,1]. (7.1)

Here, X;(u) = 3372 ¥j(u)e;—; is the stationary approximation of X;r at time
|uT'|. Equation (7.1) then yields,

Z;;“;_oo (62(u7 k) - 202(“? k)) w

Ka(u) == (0. 0) € [0, 1],

with ¢y (u, k) being the autocovariance function of the squared stationary approx-
imation X?(u) at time |uT|. Contrasting Kreiss and Paparoditis [32], we refrain
from integrating over time in a next step in order to avoid evening out changes in
the fourth order structure, but to be able to mimick them.

The next paragraph describes the bootstrap algorithm for the moving hybrid boot-
strap. Note that just like for the previous procedure in Section 7.2.2, we will also
assume that sufficient observations preceding time ¢ = 1 and succeeding time ¢t =T
are available in order to straighten out notation.
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7.2 Bootstrapping time domain data

Step 1: Estimating the local fourth order cumulant iy (%) at time ¢
We follow Kreiss and Paparoditis [32] defining an estimator of the fourth order
cumulant. However, we do allow k4 to locally vary and account for that variation

by local estimation:

T

(B Gl o)

R4 ~
Gy (1)

The functions Gl, Gz and C?g are defined in the following.

R k 2m
Gy (T) = Z Kn(0=A5) - M) pm(As),

j=—m
where
1 2m 1 2m 2
A 2 2 —iA;l
M[(z)vlﬁm()\j) T (277?, + 1) Z (ijLCk,jmerl,T - om + 1 ZXjJer,jmerr,T) e
=0 r=0

denotes the local moving periodogram of the squared and locally centered time series
X?p. The smoothing kernel Kj(-) ought to fulfill the assumptions given by (K)(i)-(v)
in Chapter 8.

Gy (%) is an estimator for (a multiple of) the spectral density of the squared time

series Xt%T at time 1 < k£ < T and frequency zero. The second estimator Gg (%)
estimates the sum of the squared autocovariances of the stationary approximation
of Xy at time k:

G (%) = % (M, m (M)

=0

And, at last, Gs (%) is an estimator for the squared autocovariance function of the
stationary approximation of X, at time £k and lag zero:

G (;) = (j:io Mlhm()\l)) 2 .

Having calculating &4 (1) ,..., 44 (%), we aim (see Kreiss and Paparoditis [32]) to
get, estimates for the fourth moment of the errors, by setting

- . t
/'it4 = R4 (T) + 3,
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7 Application of the moving Fourier transformation

and thus obtain local estimates &}, 52,..., %] of the fourth order moment structure
of the errors ¢;.

Step 2:
Knowing about the first second and fourth order moment structure of the errors,
one can now generate bootstrap residuals according to the following sampling rule:

Generate a sample €7, ...,5 of length 7" of iid random variables meeting
* ~t _ * )
P(ey = VR = Pl =-— “4)—2—%7
Ple;=0) =1 1
t RZ’
for1 <t <T.
Step 3:
Calculation of the moving Fourier transform of the bootstrap errors €7, ..., &7, re-
sulting in
eI
Step 4: The local moving Fourier coefficients at each time ¢t = 1,...,7T, are then

given by the 7' sets
MFE (M), ..., MEF (M)

Step 5: Generation of the bootstrap observations by

; 1 — [t N N\t 1 T O it
Xir :ZW;W(T,&) (MFE ()™ + NFF O™

where f is an estimator of the spectral density, fulfilling

(k
max f (_7 Amod(k)) - f u, )‘mod(k) ’ = 0P<1>-
ke{uT )~ [ 2] 41 [uT |+ | 2 |} ’ T ( )

See Chapter 8 for existence and construction of such an estimator.

102



CHAPTER 8

Moving spectral density estimation

8.1 Approaches to estimate the time-varying
spectral density

There are basically two fundamental approaches in literature, how to estimate the
time varying spectral density of a locally stationary process.

Localized periodogram

The first is calculating the classical periodogram only locally over a segment of length
N << T. This estimator, called "localized periodogram", has been introduced by
von Sachs and Schneider [54]. It uses a stretch of length N of tapered data with
some midpoint |uT'| to obtain an estimate for the spectral density at this point in
time |uT].

2
1

IN(u7 )‘) = H2N

)

N-1 s
—12mAs
> h (ﬁ) XY 4s1)€

s=0

with A : [0, 1] — [0, 1] being a sufficiently smooth tapering function and Hs y being
the appropriate norming factor as in Dahlhaus [8], Section 3.

This is what Sergides [49] basically calls the tapered local periodogram. For h = 1
it is the local periodogram. He is not doing any tapering, though and uses another
notation of the Fourier transformation. In order to get an estimator for the spectral
density at all times, von Sachs and Schneider [54| calculate Iny(u, A) on possibly
overlapping segments of X, r of length N. Denote the shift from segment to segment
by S, 1 < S < N. The resulting number of segments is called M. Hence, In(u, \)
is evaluated at M timepoints u; = %, where t; = S-i+ 5, 0<i < M — 1.
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8 Moving spectral density estimation

The drawback of this procedure is for one the computational cost, which is the
cost of M times a Fourier transformation of length N, i.e. O(NM log(N)). For
another it is the additional parameter N. Dahlhaus and Neumann [13] nicely and
understandably pose the problem, which is twofold: First, this parameter delivers
a cut-off point, from which on covariances of higher lags than k& are excluded from
the estimation, which induces a bias in time domain, if N is small.

For the second aspect one needs to bear in mind the so-called uncertainty principle,
which says (in the more general case of evolutionary spectra):

UNCERTAINTY PRINCIPLE
— Priestley [46], p. 217

In determining evolutionary spectra, one cannot obtain simultaneously
a high degree of resolution in both the time domain and the frequency
domain.

Now, when using the estimator
5 1 A— [
Fun =5 [ 5 (252 vt
f f

with K being a symmetric kernel with [ K¢(z)dz = 1 and by the bandwidth in
frequency direction (cf. Dahlhaus [11]), there is already included some smoothing in
the time domain, which is not obvious at first glance. That is, as part of the localiza-
tion of the classical periodogram made by von Sachs and Scheider [54] was obtained
by summation over certain time points in segments of chosen length N. Dahlhaus
[11] provides in Equation (83) the exact kernel estimate in the time domain, which
is implicitly contained and possesses a bandwidth of b, = % Thus, inherently a
lower bound for the resolution in the time domain is fixed. This lower bound for
the resolution in the time domain immediately results in an upper bound for the
resolution in frequency domain, due to the uncertainty principle (cf. Neumann and

von Sachs [40]).

Dahlhaus and Neumann [13] draw the following conclusion: Local periodograms
therefore lack the possibility to control for the whole amount of smoothing explicitly
—in an additional smoothing step. A possible remedy can be to control the smooth-
ing in time domain purely by the choice of N and perform the second smoothing
step for smoothing only in the frequency domain. Also, when using a higher degree
of smoothing in the second step, for example, a kernel with a bandwidth b, >> %,
the use of the local periodogram is reasonable.

Preperiodogram

The second approach taken to estimate the time-dependent spectral density is the
use of the so-called preperiodogram, which does not incorporate any implicit smooth-
ing. The preperiodogram for a locally stationary time series {X,;r} at frequency
A € [0, 7] has been introduced by Neumann and von Sachs [40]:
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8.2 Prerequisites

Definition 8.1 (Preperiodogram).
— Neumann and von Sachs [{0], Equation (3.7)

1 —iAs
Lo =50 20 X|egaX|ug)ae™

2T
s1<|t—5 ], |t+5 ] <T

Neumann and von Sachs [40] point out that the preperiodogram can serve as a
preliminary estimate of the spectral density, which is even more fluctuating than
the classical periodogram. Asymptotically, its expected value equals the evolution-
ary spectrum (introduced by Priestley [47], see Section 1). For fixed length T, its
expected value equals the Wigner-Ville spectrum (Martin and Flandrin [37], see
Section 1).

There is a nice relation of the preperiodogram to the classical periodogram over the
whole stretch of data, which is shown by Dahlhaus [9]. It eases the interpretation of
the preperiodogram: The classical periodogram is the average of the preperiodogram
over time, that is Ip()) = ZtT:1 I 7()\). The preperiodogram uses only the product
XV*%J vTXU*%J 7 to estimate the covariance at time ¢, while the periodogram is the
Fourier transformation of the covariance estimator of lag k over the whole segment
(see Neumann and von Sachs [40], Section 2.1).

We base our estimator on the first approach. However, instead of smoothing the
local periodogram in frequency direction, we do so with our moving periodogram
as in Definition 3.3. The difference to the local periodogram is explained in the
subsequent Remark 3.6.

We look for an estimator for the time varying spectral density which is still close to
the true spectral density at time ¢, even when we estimate at a time slightly earlier
or later than ¢t. In formulae: For every u € [0, 1],

sup ’f u Amod k) ’ =op(1). (8.1)
ke{[uT |- [ 2] +1,....[uT |+ | 2 |}

Before we introduce our estimator, we state the assumptions made on the time
varying spectral density.

8.2 Prerequisites

(F) Assumptions on the time varying spectral density
(i) f is uniformly Lipschitz continuous in both arguments.

(ii) f is uniformly bounded from above and below: ¢, C' with 0 < ¢ < |f(u, A)| <
C for all w € [0,1], A € [0, 27].
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8 Moving spectral density estimation

Remark 8.1
The existence of an upper bound in (F)(ii) follows from Definition 2.1 and Definition
2.2, since

2

o0 [e.9]

PN = o [ 3 awie ™| <o S lau, )l la(u, k)
j=—o00 Jjk=—00

Definition 8.2 (Uniformly Lipschitz continuous).

— Haug [24] Definition 2.7

A function g : D C R xR — R is uniformly Lipschitz continuous of order o in both
components (with Lipschitz constants My and M), if for all u,v € D

lg(u, 1) — g(v, p)] < Mylu—v|* VpeR,
and for all \,p € R

|g(u,)\)—g(u,,u)|§M2|)\—,u|0‘ Yue D.

Based on Sergides [49], we use a local kernel density estimator to estimate f. Never-
theless, modifications are needed to adapt to our way of locally Fourier transforming
a time series. The kernel K ought to be chosen according to the following criteria

(K) Assumptions on the kernel

(i) K is a nonnegative, symmetric function with compact support.

(ii) [ K(z)dx =1, |K(z)| < const.,

2m+1hz (2m+1) /K )z + o(1) = 1 + o(1).

(iii) K is uniformly Lipschitz continuous.
(iv) h— 0 (T — o) and hmi — .

(v) |Kn(@)| =0 (3), with K,(-) :== 1 K (5).
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8.3 Definition of the estimator: The smoothed moving periodogram

8.3 Definition of the estimator: The smoothed
moving periodogram

Definition 3.3 provides the concept of the moving periodogram and it is (see Remark
3.6) compared to the concept of the local periodogram as used by Sergides [49]. The
new terminology introduced in the chapter’s heading also underlines the difference
in concept and intended use of the moving periodogram: moving spectral density
estimation.

We do not intend to locally estimate the spectral density at one point and then do
the same estimation again and again in neighbouring points in time like Sergides
[49]: He uses the local periodogram on window of width NV to define a local spectral
density estimator by

1]

Z K= M) Iy x(u, A)). (8.2)

ﬂ
2

1
N

The local (unscaled and untapered) periodogram is given by

2m
1 s
IN7)((U, )\]) = N E XLuTJ,mJFtG_MJt . (83)
t=0

Note, that Sergides’ original results are all obtained for the local periodogram
rescaled by the factor i When referring to his results, however, we will always

refer to the unscaled version (8.3).

Contrasting the definition of the local estimator of the spectral density and the local
periodogram, we define the smoothed moving periodogram, which is effectively just
a function of one argument — of time.

Definition 8.3 (Smoothed moving periodogram).

Consider a locally stationary process X, according to Definition 2.1 and a function

K fulfilling (K)(i) — (K)(v). A
The smoothed moving periodogram f :{1,..., T} — R is then defined by

1 m
=— > Kn (o) = M) Mg (A1), (8.4)

t=—m

with My, ., (M) being the local moving periodogram as in Definition 3.3.
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8 Moving spectral density estimation

8.4 Locally uniform consistency of the estimator

The following Theorem mathematically formalizes the aim indicated in (8.1).

Theorem 8.1 (Locally uniform convergence).

Let Xy 1 be a locally stationary time series as in Definition 2.1 with time varying
spectral density f meeting (F)(i) and (ii). Further assume that (K)(i)-(v) hold.
Then, for every u € [0,1], the estimator f as in Equation (8.4) fulfills condition
(8.1), that is

sup )f(k) — f (u, )\mod(k))) =op(1).
ke{luT ][ 2]+, luT]+| 2 |}

Preliminary work

We have seen in the definition of f that the moving spectral density estimator is a
function of only one variable k£ which tells us to use frequency o4k at time k. We
have not yet discussed, though, how to specify the point in time we need to consider
when intending to estimate the moving spectral density at a certain frequency w.
This problem is addressed in the following:

For the sake of simplicity, define B, := {{uT| — [2] +1,..., [uT] + | 2| }. With

T
— < .
2m+1<w_)\l+2m+1} (85)

l

§'(w) = min{l e {1,...,m}\

the frequencies Ay (., Ay (9) are the Fourier frequencies closest (in absolute value) to
0 < w, ¥ <7 (cf. Brockwell and Davis [3], Definition 10.3.1).

Note that as pointed out in Remark 3.2, the relation between the moving and the
local moving Fourier coefficients is as follows:

MF(N) = (8.6)

C . m
I+ [dw(k* L@J )*B{LZmod(k—L%J)}]m

Cucl1) = M (Meate- 1)) (87)
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8.4 Locally uniform consistency of the estimator

Lemma 8.1. Using the assumptions of Theorem 8.1 and with Theorem 5.5,

2m
M[uTJ P
—>1.
2m—|— Z flu

Proof. Note that with p()\;) = —f(ul,\v),

2m

1 1
(2m +1) ; fu, Aj)

M) m () = MT (u) .

in the notation of (5.25). We can thus use the results of Theorem 5.5 and have that
for every u € [0, 1] it holds that

Var (\/Qm FI[MT () - E(MT(w)]) =

- Zw I P2 A + <E<el>4—3>(( i

2m +1 om + 1)3'
2m
Y )P f (u, Ag) £ (u, /\z)Z(Z,j)) +o(1),
J#I=0
with
Y(l,7) = max{2m —1,2m —j',2m} — min{0, -0',—j'} + 1,

Gurpa 5= i (107) = |5 ]) = L))

l/ = l"‘CLuTJ,lma
-/

7= J A+ Qurym
with 3(I, j) bounded from above by 2m + 1.

E(MT(u)) = 2W+O(ﬁ),

by Theorem 5.1. Hence, an application of the Markov inequality yields

2m
1 1
E MI i) =2 1
2m+1j:1f(u,)\) et (A5) ™+ or(l).
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8 Moving spectral density estimation

Proof of Theorem 8.1. The spectral density estimator is given by

) 1 2m
f(k) = — Z Kn (Mmod(e) — At) ML m (M)

t=—m

see Definition 8.3. The set of local moving periodograms incorporated can also

be written in the notation introduced in Remark 3.3 — as a set of moving Fourier

coefficients. We estimate the spectral density at k € {{uT|—[2],..., [uT]+|2]}.

Note that, depending on the time u, the set of moving Fourier coefficients includes
"3 " s 3 3 .

a "jump" in the superscripts, which occurs at frequency A a(jur)—| 2 |)’

Now, for some fixed time u, the corresponding set of moving Fourier coefficients is

‘/—_-div(LuTJ)()q)’ o ,fdiv(LuTJ)O‘mod(LuTJ—L%J)—1)’
f’dw(LuTJ)—l(AmOd( LuTJ,L%J))a o ’J—_'dw(\_uTJ)—l()\m).

If we restrict the range of k to m (div ([uT] — [2]) — 1) < k < mdiv ([uT] — [2]),
we ensure that — for small A~ and due to the compact support of the kernel — only
moving Fourier coefficients "after the jump" are used for estimation, which then
enables us to reformulate the spectral density estimator:

fk) = % z’”: K Aoy — Ae) [FATI=T2 D=0 2

t=—m

With 2 := div ([uT] — [2]) — 1,

fk) = % Z K (Amodeky — Ae) [FZ ()] (8.8)

t=—m

For mdiv ([uT| — [2]) +1 <k <m (div ([uT] — [2]) + 1), we ensure that only
moving Fourier coefficients "before the jump" are used, hence,

f(k) = % Z Ky, ()\mod(k) - )\t) |‘FZ+1<)\t)‘2- (89)

t=—m

Using restricted values of &k allows for a handier representation of the spectral density
estimator. In order to be able to use these representations (8.8) and (8.9), we need
to perform at the beginning of the proof a split of the term

sup £ () = f (0 Mot
[T |~ [ 2] <k<|uT )+ | 2 |

concerning the range of k:
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8.4 Locally uniform consistency of the estimator

sup ’f (k) — f (u, )\mod(k))’
[T |~ [ 2] <k<|uT]+| 2 |

— max sup R = (10 Aot
|uT|— [%—‘ <k§mdiv<|_uTJ— [%—‘ )

+ sup )f(k) —f (u, )‘mod(k)))
mdiv([uT|-[2])+1<k< [ul |+ | 2 |

sup ‘f (k) - f (u7 Amod(k)))
m (div([uT]—[2])-1)<k<mdiv([uT|-][2])

IN

+ sup
mdiv([uT]—[ 2] )+1<k<m (div(|uT |- [ 2])+1)

= A+ B. (8.10)

f(k:) - f (U, )‘mod(k))’

The treatment of A and B is basically analogous.
In the following we use the same idea as in the proof of Theorem Al in Franke and
Hirdle [20], as well as

Part I: A = op(1)
With z := div (|uT] — [2]) — 1,

A

IN

% Z Kn (0= M) [FPO) P = f (u, Nr)

sup
=1,...m ——m
2m 2m
1 Z 2 1 ) Z 2
sup Et:ZmKh (As/(ﬁ) - )\t> | F2(\)]° — B (mt;nKh (As/(ﬁ) )‘t> |FZ ()] >|
1 2m
- ) _ Z 2 _ )
+jSSlem E (m t:ZmKh ()\s,(%) )\t> | FZ(\)] ) flu, ;)
2m
]‘ Z 2
E s 2 [ (e =) = gy =) [P0
+ sup |f(u, \) — f(u, )]
ji—j| < amEmtl)
Ay + Ay + As + Ay (8.11)
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8 Moving spectral density estimation

The first thing one notices is Ay = o(1) as |l — j| < M & [N — N < 20y,
f is uniformly Lipschitz continuous in both arguments, see assumption (F)(i), and
a,, — 0.

Note that from the assumptions (K) on the kernel function - >iez Kan(Aj) = O(1),
as well as K7 () < +Kj(-).
We are interested in

sup Cov (|F*(\) %, | F*(\)) -

i
Being in the situation A, we always have |I'—j’| = |I—j|, due to the superscripts being
the very same z for both arguments. That is, the set A;(u, a,,) equals {1,...,m}%

Hence, with Lemma 5.3, we get

1
sup Cov (‘FZ’E()\J‘)P, |]:Z’€()\l)|2) =0 (—) )

i#l m

and, with the Cauchy-Schwarz inequality and Theorem 4.3,

e e o1
sup Cov (100 1700 = 0 (). (5.12)

We need this result (8.12) when considering

P(A > <) < flm252Var(ZKh (utar) =) ‘f“m‘?)

-1 =
A
= Z m2g2 Z 2 ()\ ( ) — )\t> Var (|fz()\t)|2)
j=1 =
Hm 2m
j=1 t#;m Ky, (AS/(%) — )\t> K, (AS’(:—T{L) B )\T)
-Cov (|7 (AP, 172 (A1)

= Ay + A

Now, Ajs is with the above arguments of order O (’&—%) =0 (%) = o(1), as
hmi — oo. With (5.28), Ay = O ( 1§h) = 0(1), as hm1 — oo.

Making use of the kernel being uniformly Lipschitz continuous (see assumptions

(K)),
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8.4 Locally uniform consistency of the estimator

2m

1
— K<)\,w‘ —)\)—K ()\,,r —A)] ()12
“_MSL?MH) thm [ A\ () T A I el
1 2m o
< = 2(A,)[2 <_m) .
< o 2 F0Iro (3
Note that due to Lemma 8.1, - | FA(M)]? = Op(1), and therefore, as
hmi — oo,
1
AgIOp ( l) IOp(l).
hm

With Theorem 5.1 and, again, - > iz Kn(Aj) = 0(1)

Y

sup |E (i > Ki (As/(ﬂ) - )‘t) |]:z<)‘t)\2> — fu, A))

<tm m pm

= o |53 K (g =)
s’ :—i +m (div ([uT] — [2]) = 1)
f < ) ; { W) A | = fu Ar)
bp | S0 K (A = M) £ ) = S )| + o)

= A21 + A22 + O(l)

Using the uniform Lipschitz continuity of f yields As; = o(1).

2m
1
Ay < sup — S Ky (A (m) = M) L M) = F(, A)] + (1)
j<llzm m ——m Hm
1 2m
< sup — K, <)\s,(Lj) —)\t> IAr — Aj| + o(1)
_]Sll/m m ——m Hm
1 2m
< sup — K, <)\s,(ﬂ~) - )\t> Tyn - 1<onyl e — Aj 4 o(1)
_]<H/m m ——m Hm
2m
1
< — mj ) T = :
< Ch- tzm Kn (Au(z) =) +0(1) = o(1) O
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8 Moving spectral density estimation

Part Il: B = op(1)

The treatment of B is analogous to A, except for a minor alteration in the splitting
up (cf. (8.11)) in four analogue terms to A;, i = 1,2,3,4. Instead of using the
superscript z, we have to use the superscript z + 1. The following proof is, after the
change in the superscript, again, completely analogous to part I for the analogue
terms to Ay, A3 and Ay. When considering the analogon to As, we merely have to

bear in mind that instead of looking at time s’ (:—i) +m (div ([uT] —[2]) — 1), as

we did in Ay, the point of time concerned is s’ (:—]> +mdiv ([uT] — [2]), which
does not make any difference to the behaviour of the analogue term to A,, as the
two times are only m apart.
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CHAPTER 9

Covariance structure of the bootstrap sample

This chapter is devoted to proving that the moving TFT-Bootstrap maintains the
second order structure of the original process.

W.l.o.g. only lags h > 0 are considered. A distinction is made between some fixed
integer h and h increasing with m in the way that % —aform —»ocoand 0 < a < 1.
In the case of @ > 1 or 2 — oo the bootstrap observations X{pr and X[, 1 are

independent, due to the m-dependence of the bootstrap scheme.

(B) Assumptions on the local bootstrap Fourier coefficients
(i) E*(c}) =0, Vk=1,... T
(ii) Independence of ¢ and ¢ (k #1). for any k,l=1,...,T.
(iii)

sup ‘Var*(Re(cZ)) —7f(u, )\k)) = op(1).
ke{(uT]=[ % |+1,..., [T ]+ 2 |}
sup ‘Var*(lm(CZ)) —7f(u, )\k)) = op(1).

he{ Tl =[5 ]+t T )+ 3 ]}

(iv) Independence of Re(c;) and Im(cj).

Remark 9.1
Due to Theorem 8.1, assumption (iii) is fulfilled for the wild bootstrap. (B)(i),(ii),(iv)
are true due to construction of the bootstrap replicates.
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9 Covariance structure of the bootstrap sample

Theorem 9.1 (Second order structure of bootstrap replicate).

Let Xyr be a locally stationary time series with time varying spectral density f
meeting (F)(i) and (ii). Further assume that (K)(i)-(iv) as well as (B)(i)-(iv) hold.
X[ is the bootstrap time series created according to the scheme in Section 7.2.1
using the wild bootstrap.

Then

sup Oov*(XruTLT’ fuTHh,T) — c(u, h)’ = op(1).

|h|<m

Proof. To simplify notation we set ¢t := |uT'| — [%J . The final result is then adjusted
by shifting. Note that

E*(cicr) = B*(Re(ci)Re(T) + iRe(ci) Im(c) + ilm(ct)Re(c®) + Im(ct)Im(cw)).
Due to Assumption (B)(ii),

E*(Re(c)Im(c71)) = E*(Re(c;)) E(Im(c)) =0,
for k # 1. Analogously, E*(Im(c;)Re(c7)) = 0, for k # L.

(2m + 1) Cov' (X}, | 3 X, o)

n m
* in(t+] 2 = —iA (t+] 2
(Zcl+<di”(t>‘1{12mod<m)me s +ZC*l+(dw(t)—nuzmod<t>})me o3
=1
c* —in(trht | 2
'(ZC*H(di”(t+h)_1{lzmod(t+h)})me 1 )

) in(t+h|2])
+ Z CH(dw(t+h)*ﬂ{zzmod<t+h>})me 2

*

m
* *
o ( Z E <Cl+(div(t),ﬂ{l2mod(t)})mc k‘+(diU(t“l‘h)_ﬂ{ernod(t-Fh)})m

* in(t+] 2 ]) ide (t+ht | 2]
C+(div(t)—1{zzmod(t)})mck-‘r(div(t+h)—1{kzmod(t+h)})m> € e ’

NE
=1
VS

. C .
I+ (dw(t)*n{IZmOd(t)} )m k+ (dlv(t+h)_1{k2mod(t+h)})m

J))

)

SE(E : ) ez gnlesns 7))

m
* (% — —in (] 2 ]) =i (Rt | 2
Z E <C*l+(div(t)_1{l2mod(t)})mc*k-f—(diU(t+h)_1{k2mod(t+h)})m> e (%] >€ K( 1%

1k=1

As the bootstrap coefficients are assumed to be independent for different indices

according to (B)(ii), we need to clarify when the indices of C (io(6) -1 r3moaty) ) and
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*

c ' are equal.
k+(dlv(t+h)_]l{k2mod(t+h)})m a

Let w.l.o.g. h > 0. We are hence only concerned with h = 0,...,m, as for larger h,
the bootstrap covariance equals zero.
Accordingly, we always have ¢t <t + h.

The following situations can occur:

Case 1: {div(t) =div(t+h)} =1 A
As h < m, we can definitely say that mod(t) < mod(t + h). In this case, the fol-
lowing figure exemplarily states the situation. The shaded area marks the intervals

in which the indices of ¢ , and ¢ are equal.
l+(dlv(t)_ﬂ{l2mod(t)})m

X
k+ (div(t+h)—ﬂ{zzmod(t+h)})m

We get matches for | =1...mod(t) — 1 and [ = mod(t) + h,...,m

We can also write the condition of case 1 in a different way. A = {t+h < div(t)m}.

Case 2: {div(t) =div(t+h)—1} = B
In this case, again, as h < m, we know for sure, that mod(t + h) < mod(t).

We get matches for | = mod(t+h),...,mod(t)—1 = mod(t)+h—m, ..., mod(t)—1

We can also write the condition of case 2 in a different way: B = {div(t)m < t+h <
(div(t) + 1)m}

With |h| < m, there is no possibility of getting into the situation of |div(t) — div(t +
h)| > 2.

The Fourier coefficients are constructed using the estimated time varying spectral
density. Now, using the result of Chapter 8 concerning the spectral density estimator
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9 Covariance structure of the bootstrap sample

and the assumption (B)(iii), we may write:

_ 2 —iNh —iNh
= 5ol Z Flu, \) +op(1))e™ ™0 4 Z fu, \) + op(1))e™™

l=mod(t)+

)—1

mod(t
=1
o mod
to 1p Z (f(u, A) + op(1))e~"NP

(t
l=mod(t)+h—m

2m +1

9 mod(t)—1

7T .
+2m+1]l,4( Z (f(u, \) +op(1))et™h 4 Z (1, ) +0P(1))6+mlh>

=1 l=mod(t)+h
o mod(t)—1
+i\h

T omt1le > (fluh) +op(1))et™

I=mod(t)+h—m

mod(t)—1 m
1 ‘ . A
T ﬂA( Z op(1)e- (22| 5 ]) o Z OP(l)e—z)\lh)

=1 l=t+h—m

mod(t)—1
1 —in(h m
1 1 in(ht2t+2] 2 |)
fpgls > onlie

l=mod(t)+h—m

mod(t)—1 m
+ 1 ]1A( Z OP(1)6+iAz(h+2t+2L%J)+ Z 0P<1)€+i>\l(h+2t+2t%p)
" =1 I=t+h—m
o mod(t)—1

1 D)etiNh
1t 2. orlle

I=mod(t)+h—m

+

Treating all sums involving the term op(1) as op(1) is possible, as these sums can
at most have 2m + 1 summands and we then get the uniform asymptotic behaviour

of 22 . op(1) = op(1). We can thus simplify to
2m *
C X X*
PTES R ) oLz
9 mod(t)—
— 1 )\ 72)\lh )\ 7@)\[}1
om+1 4 Z flu, + Z f(u e
l=mod(t)+
9 mod(t)—
™
_|_2 ( Z f u, )\ +Mlh_'_ Z f(u )\) +z)\lh)
m+1 l=mod(t)+h
97 mod(t)—1 mod(t)—1
togle | fae ™ 3T f e |+ op(D)
l=mod(t)+h—m l=mod(t)+h—m
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mod(t)—

2m
= om 1 ]_HA Z f u, )\ —iNh + Z f(u )\) —iNh
l=mod(t)+
o 2m 2m+1—mod(t)—h
+Qm +1 La ( Z f(u, )\2m+1—l)672)\lh + Z f(u, )\2m+1_l)62)\lh>
[=2m+2—mod(t) l=m+1
o mod(t)-1 3m+1—h—mod(t)
‘|—2m T 1]13 Z f(u’ )\l)efz)\lh 4 Z f(u, )\2m+17l>€7@>\lh + 0P<1)7
l=mod(t)+h—m 1=2m+2—mod(t)

noting symmetry of the spectral density we substitute f(u,\;) = f(u, Aama1-1)-

We readily get that COV*(X’:FL%J’T’X:+L%J+h7T) Op(™="), as the number of

summands is part A as well as in part B is equal to m — h.

We can now continue with completing the fragments in part A as well as in part B
to a sum from 1 to 2m + 1:

Cov (Xt*+ | 2|1 t*+ k3 +h,T)

2m

2m—+1 mod(t)+h—
= m +1“<wa Z 0 A =

l=mod(t
2m~+1—mod(t)
- Z f(LL )\) Mﬂz)
1=2m+2—mod(t)—h
mod(t)+h—m—1

2m+1
+o— +1 (me TR flu e

=1

2m~+1—mod(t) 2m+1

S e Y e ™) on()
l=mod(t) 1=3m+2—h—mod(t)
2m+1 o 2m+1
— —iA h —iAh
= (me Mt o ﬂBqu)\ "+ op(1)
9 mod(t)+h—
i —i\ih —iA2m
72m + 1]1A< = z;( t) f(u A ) A + f(u /\2777,-5—1)6 Aol

2m~+1—mod(t) mod(t)+h—m—1

+ Z flu, A\e L/\lh> 2m27—T|— 1]13 ( + Z f(u, )\l)efi)‘lh

=2m+1—mod(t)—h =1
2m+1—mod(t) 2m+1
—iNh —i\ih
+ E f(u, )\1)6 A 4 E f(u, >\2m+1—l)€ P )
l=mod(t) 1=3m~+2—h—mod(t)

= A1+ By +op(l) + Ay + Bo.
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9 Covariance structure of the bootstrap sample

Note that with Definition 2.2 we get the following relation between the time-varying
spectral density at time u and frequency A; and the time-varying autocovariance
function.

oo

1 1

- 2 _ - ; —i(M(—k))
fld) = gl WP =52 37 alual K
J,R=—00
_ L f: i a(u, j)a(u, j —n)e N = L i c(u, n)eMm,
27T j=—00on=—00 ’ ’ 27T n=—oo ’

Hence,

27T 2m+1 2m+1
(]IA Z f(u, )\l)eizAlh + ]lB Z f(u, )\l)GZAlh>
=1 =1

2m +1

00 2m+-1
_ 1 —iA (h+n)
= 2m—|—1]1A( E c(u,n) lgl e "

n=—oo

00 2m+-1
1 —iA;(h+n)
+ 2m—i—1]lB( E c(u,n) lgl e M :

n=—oo

The first two sums equal zero except for the case when h+n =Z- (2m+1). In this
case, Z?;”lﬂ e~ M(htn) — 99 4 1. Therefore, due to the absolute summability of the
autocovariance functions (cf. Remark 2.4),

A +B = ]IA(c(u, h)+ Z c(u, h+ k(2m + 1)))

|k|>1

+1p (c(u, h)+ ) e(u,h+k(2m+ 1)))

|k|>1

= c(u,h)+ Y clu,h+k(2m +1)).

[k|=>1

The last sum can, as |h| < m, be bounded by

> cluh+E@m+1) < Y e(u,l) =o(1).

k| =1 lt|>m

With this knowledge, we may now write

Sup )COV*(XE(uTJ,Ta tur|+nr) = c(u, )

[h|[<m
= sup |As + Bs| + op(1).
|h|<m

As the term A, is only non-zero for the indictor 1 4 being equal to 1, we do not need
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to consider all 0 < h < m, but only those that result in div(t)

= div(t+h), t = |uT].

We have noted before that we can also write the set A as {t + h < div(t)m}. This
condition can be reformulated as h < div(t)m —t and, with the definition of div and
mod, we get h < m—mod(t). We therefore need to consider only 0 < h < m—mod(t)
when looking at A,. Similarly, we only need to consider m > h > m — mod(t) when

looking at B,.

To treat supy,<,, | Az + Ba, firstly, consider

mod(t)+h—1

1
sup |4y = —  sup
0<h<m—mod(t) m 0<h<m—mod(t)
2m+1—mod(t)

D

I=2m~+1—mod(t)—h

Hence,

) 1
+ sup —

0<h<m—mod(t) T

Sl=

sup | As| = 0(

0<h<m—mod(t)

_I_

E

l

:o(

by Lemma A.4 in Kirch [28]. We continue with

sup —Z|un|0

0<h<m—mod(t) T n——o0

3= L

0<h<m—mod(t) T

e~ N+ 2mA1—mod(t)—h (n+h)

> flu e

l=mod(t)

m

h—1

=0

5 3 vt

)

)+ sup  — Z| un|0<mm<

n=—oo

(o (1)

1 |h| ))
= su c(u,n)] O | min
0<h§mfpmod( t) Z | | ( (‘n + h‘

n=—oo

— sup Z le( un|0(m1n( |:1|))

0<h<m-—mod(t

\|<f
+ sup Z|un|0

0<h<m—mod(t)
< O S

(1)

f(u, )\l)e’”‘lh + O (i

)

2m +1

In +

g e_iAl-kmod(t)(n"'h)

1nl))
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9 Covariance structure of the bootstrap sample

. 1 |h| . |h|
< - -
O (supmln <h’ m)) + O | sup min o E |c(u,n)|

h<m h<m
- - In|>vh

IN

0(%)“) max % > le(u,n)|

In|=v/m
= o(1).

Secondly, we look at

1 mod(t)+h—m—1

sup |Bs| < sup — Z f(u, )\l)e_i)‘lh

m—mod(t)<h<m m—mod(t)<h<m T =1

2m+2—2mod(t)

+ Z f(u, )‘lerod(t)fl)6_i>\l+m0d(t)—lh

=1
—m-~+h+mod(t)

—iA Che h
+ E J (U Nt 3m1—hemod() )€ F3m 1= med®
=1

mod(t)+h—m—1

< il E | c(u, TL E e—i)\l(h-l-n)
m— mod(t Y<h<m T e — o0 =1
2m+2—2mod(t) —m-+h+mod(t)

+ E e_i)‘l+mod(t)—1(h+n) + E e_i)‘l+3m+1—h—mod(t)(h+n)
=1 =1

With Lemma A.4 in Kirch [28] we can continue analogously as for the term As:

2 1
sup h<m— Z| c(u,n) ( (min(%,|mod(t)+h—m—l\))

m—mod(t)< e

+0 (i (% m-+2 = 2m0a(0)] ) ) )

|mod(t) +h —m — 1\))
= su E c(u,m) min
m— mod(tp<h<m |: | ( ( (h m

In|<vh

Lo (mm (h \2m+2;n2mod( )|)))

+ 3 lefw,n) (o (mm (1, mod() +h—m 1\))

In|>vh

)
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As mod(t) < m and mod(t) + h — m > 0, we can bound |mod(t) + h — m| by h.
Moreover, as also h > m —mod(t), we may bound |2m + 2 — 2mod(t)| by 2h as well.
Hence,

L h 1 2h
sup By < O (sup min <—, —)) +0 (Sup min <—, —))
m—mod(t)<h<m h<m h™m h<m h'm

[ h
+O | sup min - Z le(u, n)|

h<m
B In|>vh

< O(ﬁ)+0 max % > Je(u,n)|

In|>v/m
Thus,
sup |As + Bs| = o(1).
0<h<m
So all in all,
b Cov G oo X ) = or(L) -
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CHAPTER 10

Deficiency of the Adapted Fast Fourier Transformation (AFFT)

As the moving Fourier transformation of T values X, ..., X7 with window width
N = 2m + 1 is of order O(mT), one might think of exploiting the benefits of
developing an algorithm in the style of the ordinary fast Fourier transform to reduce
computing time. This is, unfortunately, not possible without compromises. The
first section shortly displays the algorithm of the fast Fourier transform. In the
second part, we adapt the fast Fourier transform to fit our needs. And in the next
step, we then give the reasons of why we can’t possibly achieve any improvement in
computing time. Finally, an algorithm is suggested which — to a previously chosen
extent — compromises on ’locality’ for the benefit of speed.

10.1 The fast Fourier transform

This Section follows closely Chapter 3.7 in Schwarz and Koeckler [48].

Assume we have N values X, ..., Xy_1. For reasons of simplicity, we assume that
N = 2% which covers the most popular algorithm. There are also algorithms for
N being a power of other bases, for example Boor [17]|, Brigham [2] and Winograd
[55]. Nowadays, software practically allows for any N, the amount of complexity
depending on the prime factorization of N. -

We employ the standard notation and use w{v = e N = e, j=0,...,N—1
to refer to the j-th unit root. The Fourier coefficient at frequency A\, = %
given by

)
is then

N-—1

- 1 X .o~k

Cr .= \/N j€ .
Jj=0

For the fast Fourier transform one needs to distinguish between odd and even indices.
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10 Deficiency of the Adapted Fast Fourier Transformation (AFFT)

Let, for the first step to become more illustrating m := % = 24-1,
k=21,1=0,...,m—1

As witmH) — 26 g2m — 20 and w,, = w2, we get
S LNE: e _ Z W2 — Lmzf X+ Xy )oY
JN 2 JN 2 metj )W
. LM(X F X)) (W Zz 4 (10.1)
JN < m+j W :
We have now reduced the Fourier transform of the N = 2m values X7,..., Xy to a

Fourier transform of the m auxiliary variables

Zje = X;j+Xpmij, 7=0,...,m—1.

k=21+11=0,....m—1|

As w}(\?l+1)(m+j) _ (2l+1) w](\?lJrl)m _ _w](\?lJrl)j and wp, = wl, we get
T ;| mel
(2l4+1)5 (21+1)j (2l+1)(m+3)
Ca+1 = —= Xjwy = —= (Xj + Xy jw )
N =0 VN §=0
1 m—1 1 m—1
20+1); i\ 2l
= T (Xj - Xm+j)wj(v = — ((XJ - Xm+j) N) wNj
N “= N “=
7=0 7=0
1 m—1 y
= v ZitmWys. (10.2)
=0
Again, we have reduced the Fourier transform of the N = 2m values X;,..., Xy to
a Fourier transform of m auxiliary variables
Zitmo = (X; — Xm+j)wf\,, j=0,...,m—1.

This act of reducing the Fourier transform of 2m values to a Fourier transform of m
values effectively costs m complex multiplications (for calculating the z;;.,).

Note, that for each k& = 2[, we have the same auxiliary variables z;, j = 0,...,m—1.
Analogously, for each k = 2] + 1, we have the same auxiliary variables z;n,, 7 =
,...,m — 1. This is actually the key to why we lose complexity - the auxiliary
variables remaining unchanged in each group.

The next step is then to reduce both of the new formulae (10.1) and (10.2) to Fourier

transforms of % values, which costs 2- % = % complex multiplications. That is, a

Fourier transform of order NV = 29 can in ¢ steps be reduced to N Fourier transforms
of order 1, which are the desired coefficients. Each of the steps requires % complex
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10.2 Procedure

multiplications and thus, the total complexity is

N

5 4= O(N log, N).
Compared to the straight calculation of NV Fourier coefficients, each of them resulting
from a Fourier transform of N values, we have reduced the complexity from O(N?)

to O(N log, N) by using this special algorithm, the Fast Fourier Transformation.

10.2 Procedure

As the moving Fourier transformation performs a Fourier transform of length 2m
on each stretch of data, one might think of employing the FFT-algorithms to speed
things up. However, one has to note that we don’t actually calculate all frequencies
for each stretch, but calculate one frequency only and then shift to the next stretch.
The point of matter, therefore, is whether the shift still allows for a sufficient 'reuse’
of the auxiliary variables z; and Zi N in each group 7 =0,..., 2% —1,q=1,...,p.
The parameter ¢ denotes the reduction step we are currently at. To find out, whether
shifting causes the algorithm to lose its computational advantage (which it has
compared to the ordinary DFT) compared to the straight calculation of the moving
Fourier transform, we need to write it down first.

Note that the width of the chosen window for our transformation has been 2m + 1
in the previous chapters. For reasons of simplicity, as pointed out before, we select
a window width of N :=2m = 29, ¢ € N. Further, we assume m|T.

The procedure of the adapted fast Fourier transform is analogous to the ordinary
case. We reduce the transform of N values to 2 transforms of m := % values each
(distinguishing odd and even indices, as usual).

Note that we want to look at the complexity of transforming a time series of length
T, which normally only yields 7' — m moving Fourier coefficients. As m is so much
smaller than T, we can very well consider the coefficients ¢;, 1 < j < T, when being
interested in complexity only.

This results in % odd and % even indices.

k=21,1=0,... m—1]|

Analogously to the stationary case,

1 m+21 oL 1 21 y
Ca = —= Z Xjwy' = —= Z (X + Xjum)wy)
VN j=2l-m+1 VN j=2l—m+1

1 21
_ E lj
= ZieW
/N J,€m>

j=2—m+1

with ke = Xk + Xker.
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10 Deficiency of the Adapted Fast Fourier Transformation (AFFT)

Analogously,
k=21+11=0,... .m—1|

m+2041

1 @+ _ 1 il
Cal+1 Z Xjwn = Z [(Xj - Xj+m)WN] Wiy,
VN j=21—m+2 VN j=2l—m+2
1 20+1
_ lj
= = D B
VN j=21—m+2
with Zj o = (X] - X]er)w%/v

10.3 Complexity and the reason there is no 'fast’
transform

As k ranges from 1 to T, T Fourier coefficients need to be calculated. Let p designate
the ’splitting’ step we look at. The first splitting step (p = 1) is performed in the
previous section for odd as well as even indices of the Fourier coefficients. With the
definitions z; . := Xj + Xjim and 25 , := (X — Xppm)wh, we can then write each
of the Fourier coefficients as a sum of length m of either z,’s (if the index k is odd)
or z.'s (if the index k is even).

Hence, a coefficient, for example, ¢; with a sum of only z,’s is followed by a coeffi-
cient, co with a sum of only z.’s and so on.

We now continue the construction principle of the fast Fourier transform — the split-
ting of sums and reducing to Fourier transforms of lower order. For the sake of
simplicity, we consider only the case of k being odd. The even case works analo-
gously.

As we continue splitting, each sum of length m of z,’s is split and then rearranged
to a sum of length % = % of either z,.’s or z,,’s, where

- - k
Zk0e = Zko + szr%,oa Zk,0,0 +— (Zk:,o - Zk+%,o)w%7

depending on whether (k;” is even (first case) or odd (second case). Figure 10.1

symbolizes the possible combinations of evens and odds for the first 4 steps:
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10.3 Complexity and the reason there is no ’fast’ transform

p=1 p=2 p=3 p=4
c1 0 oe oee oeee
Co e €o eoe  eoee
0 00 ooe  ooee

e ee eeo  eeoe

0 oe oeo  oeoe

e €o €00  eooe

0 00 000  000€

e ee eee eeeo

0 oe oee  oeeo

e €o eoe  eoeo

0 00 00e  00€eo

e ee eeo  eeoo

0 oe 0e0  0e00

e €o €00 €000

0 00 000 0000

e ee eee eeeo
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0 00 0oe  ooee
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0 00 000 0000
cr e ee eee eeee

Figure 10.1: Suggestive graphic of the indices used for 2., k =1,...,T.

The more splitting steps we perform, the longer it takes for a combination to repeat
itself. In the second splitting step, for example, the combination oe is repeated every
22 times, whereas, in the third step, the combination oee is repeated every 22 times.
The number of different outcomes is 27.

Let’s say we are currently at step p and interested in all Fourier coefficients that
can be split in a way that only z... .’s remain (p X e). In this group, there is the
Fourier coefficient c¢,,, as well as ¢, 90, Cnio.90, Cuigoor, - - .. All in all, there should
be ZZP Fourier coefficients in this group.

Now, to determine the number of calculations to be done to obtain all Fourier
coefficients for this group in step p, we start with the easiest case (p = 1):
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10 Deficiency of the Adapted Fast Fourier Transformation (AFFT)

Each of the m calculations of z.’s in the even case costs one complex addition,
whereas each of the m calculations of a single z, in the odd case costs — at first
glance — one complex addition and one complex multiplication.

In Figure 10.2 all summands involved in the calculation of two subsequent odd-
indexed Fourier coefficients g, 11 and cg 13 (I fixed) are explicitly listed.

Given 2ojy—m+42 0, - - - 5 229+1,0, We can see from Figure 10.2 that we only need to in-
vest 2 further complex multiplications (and complex additions) in order to obtain
all the z,’s needed to construct cg,43. For the very first odd coefficient, however,
we need to calculate all z,’s, which costs % complex multiplications (and the same
amount of complex additions).

The number of complex multiplications needed to calculate all z,’s totals

N+2 I —N+T
2 2) 2

Same applies of course, for the complex additions. That was for the first step p = 1.

Now, for the p-th step, the idea remains the same, but we have already noticed, that
the Fourier coefficients yielding the same output (i.e. sums of z’s with the same in-
dex) — figuratively spoken (in view of Figure 10.1)- 'move further and further apart’
with every splitting step. As we don’t use the same data for each transformation,
but shift, the number of common elements of two Fourier coefficients yielding the
same output gets less and less. Accounting for this the number of z’s to be cal-
culated additionally in each further step is no more only 2 (as in step p = 1), but
depends on p and is equal to 27 — which is the reason why we fail to create a faster
algorithm.

For our convenience, we will refer to Fourier coefficients, which — splitted p-times —
in a way that they can be expressed with sums containing only z... .'s (p X e) as
Fourier coefficients of group eeeee....e.

The p-th letter is an e, indicating that the z’s are created solely by one complex
addition (without complex multiplication)
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Figure 10.2: Comparison of summands used for calculation of two succeeding odd indexed moving Fourier coefficients
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10 Deficiency of the Adapted Fast Fourier Transformation (AFFT)

If we now exemplarily consider the number of complex multiplications needed to
construct all elements of group oooo...o, we end up with

N T

_ .|

> (3)
N

7 = number of initially to be calculated z’s, when no element of group oooo...o

has been calculated yet.

2P = number of 2’s that have yet to be calculated, given we have already
calculated an element of group oooo...o
T -~

o5 = number of Fourier coefficients in group oooo...o

complex multiplications and the same number of additions in the p-th step.

Putting the results together, we obtain the following:
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T Fourier coefficients (i.e. sums of length N = 27) need to be calculated.

We split each sum p times, in order to be finally left with only one summand
— the Fourier coefficient. So ¢ = log, IV is the number of splitting steps.

We have 2P different oe-index-combinations after the p—th step.

For the p-th step, the costs for one group total

N T
(— + 2P (—)) (multiplication only)

o o

As we split ¢ times, we have to accept a cost of
d N T-N
P __ D, —
22 (2p+2 ( o ))_O(NT).
=

So it doesn’t actually help to exploit the benefit of ’reusable’ (in the sense
of: already calculated) elements. If we would have been able to detect an
advantage at this point, we would also have had to numerically take into con-
sideration, that the number of common elements (of Fourier coefficients in one
group) decreases steadily and thus, at some step p, we don’t have any over-
lapping anymore and have to calculate all 2% z’s for each Fourier coefficient in
each group.

Though we didn’t get a computational advantage, we will write down the
general formula for the sake of completeness.



10.4 A compromise between speed and locality

If the last step with overlapping elements is p = z, the formula yielding the
correct cost is

;Qp (%H”' (T;,,N))+ i . (2_]\;(T2—p]\7)) o)

p=z+1

Referring back to Section 10.1, we have now seen that the reason we fail to get
a numerical advantage to the straight calculation of the moving Fourier trans-
form by applying fast Fourier techniques, is the shifting. The ordinary Fourier
transform, after having calculated the summands for the first two Fourier
coefficients in one group, completely reuses the summands z for the remain-
ing coefficients in this step and there is no exponentially growing amount of
summands to be additionally calculated as in the previous procedure of the
adapted fast Fourier transform.

10.4 A compromise between speed and locality

As we have figured out the problem that occurs when intending to adapt the idea of
the fast Fourier transform, one might want to try out an alternative, which benefits
from the reduction of complexity by creating reusable summands, but at the same
time doesn’t give up on the aspect of shifting.

Basic idea

Let again 1 < j < T. The proposed algorithm of the moving Fourier transform
implies that, after the calculation of one Fourier coefficient based on N data values,
for example Xy, ..., Xy, the 'window’ shifts and the next Fourier coefficient is cal-
culated based on only almost the same data Xs,..., Xy.;. So what we are doing
is that we are, in a sense, shifting the catchment area of the Fourier transform by 1
unit after the calculation of each coefficient.

The idea of the compromising algorithm is not to shift by 1 unit, but by L units
— and also not after the calculation of every single Fourier coefficient, but the shift
ought to occur after having calculated L Fourier coefficients on the basis of the same
data values.

Formulae

Choose L := L(N) in a way that % — 0 and L(N) — oo for N — oo. The
calculation of the Fourier transform in this adapted way is suggestively displayed in
Figure 10.3.

Note: If % is not an integer, the last block is shorter and complexity somewhat
smaller.

T

Now what we have is basically 7 times a Fourier transform of N values.
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10 Deficiency of the Adapted Fast Fourier Transformation (AFFT)

Case 1: L > 2P| As long as L > 2P, which means that each possible outcome of the
p-th step is covered at least once, we can refer to the ordinary Fourier transform of
N values. For simplicity let L := 2% and we get, for p < x

T N TN log, L
—N = —222 ).
Xy o ()

‘Case 2: L < 2”‘ However, as soon as L is no longer covering all outcomes, which
means as soon as p > xr, we can no longer resort to the idea of % separate Fourier
transforms, but we have to revisit the previous procedure:

e 2P different groups
° le elements in each group

e Taking into consideration the shift on indices: Having calculated one element
of the group, we need, for any other element of the group, L%J - L operations.

q
N op T
P _ | . L
> 2 (m+|7| Lt 5-1)

p=x+1
So the complexity is now
T (<~ _ N I N |or T
— 2P 2P [ — — |- L -——=1
) S G T s )

TN log, L NT

This encloses the cases of

e L = 1 (maximal locality, high complexity) — the moving Fourier transform
(— O(NT)), and

e L = N (minimal locality, low complexity) — the original Fourier transform of
L blocks of length N (= O(T'log, N)).

Therefore, this method achieves a reduction in complexity for L > 1 — to the cost
of locality.
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Figure 10.3: Construction of moving Fourier coefficients with shift L
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CHAPTER 11

Simultaneous confidence bands for the autocorrelation

When estimating statistical quantities, one does also want, as Neumann and Polzahl
[39] put it, to give a visual impression of the adequacy and variability of the estima-
tion. This can be done by the presentation of confidence intervals for the values of
interest. When estimating functions, however, it does not suffice to provide point-
wise confidence intervals for each function value, as the main focus is most of the
time on the overall shape of the curve and not the reliabilities of single values. Vi-
sualizations of such pointwise confidence bands will most likely also lead to a wrong
interpretation by the user of statistical evaluations. It is therefore of great interest
to provide uniform or simultaneous confidence bands when estimating functions to
offer an easy and intuitive understanding of the preciseness of the estimation.

Why would one want to study autocorrelation functions? Autocorrelation of a time
series means that values yet to come depend on past values. Autocorrelation some-
times eases predictions, indicating some persistance in systems meaning that some
states perservere for additional time-units as the system is quite inertial. Some ex-
amplary time series can be seen in the field of hydrometerology: Garen and Pagano
[42] analyze April — September streamflow volume data from 141 unregulated basins
in the western United States for trends in persistence. Decadal time-scale changes
in lag-1-year autocorrelation (persistence) were observed. The 1930s — 50s was a
period of low variability and high persistence, the 1950s — 70s was a period of low
variability and antipersistence, and the period after 1980 was highly variable and
highly persistent. In particular, regions from California and Nevada to southern
Idaho, Utah, and Colorado have recently experienced an unprecedented sequence of
consecutive wet years along with multiyear extreme droughts.

Paying attention to autocorrelation functions is not only of major interest against
physical background, but also in economic settings: Autocorrelation in stock returns
is used as one important measure of securities market pricing. To monitor the au-
tocorrelation of stock returns closely is important, as it may be a sign of genuine
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11 Simultaneous confidence bands for the autocorrelation

pricing inefficiency (see Anderson [1]).

Building on the example of autocorrelation — estimating the autocorrelation function
and constructing confidence bands for the first order autocorrelation — we point out
the practical relevance of estimators grasping the time-varying structures occurring
in time series. We advertise our method of the moving Fourier transform, the mov-
ing periodogram and correspondingly adapted bootstrap procedures to meet these
needs.

11.1 Design of simultaneous confidence bands for
the autocorrelation

Confidence bands for a time varying autocorrelation function have hardly been stud-
ied in literature.

Sergides [49] constructs pointwise confidence bands for the time varying autocorrela-
tion function of a tvMA(1)-process. These pointwise intervals are of variable width
and are calculated by adding (and substracting) the bootstrap estimate of the stan-
dard deviation times the theoretical quantiles of the standard normal distribution
to the estimated autocorrelation function.

Kreiss and Paparoditis [32] do also construct pointwise confidence bands by using the
same approach as Sergides [49] employing their hybrid bootstrap method. However,
they do not provide any further simulation study but merely apply their bootstrap
method to give a numerical example.

As pointed out before, it would be far more reasonable and also more intuitive
from a practitioner’s point of view to provide simultaneous confidence bands for
estimated functions. This is a problem, which is, up to now, mainly addressed
in nonparametric regression, where simultaneous confidence bands are constructed
for the regression function (see Sun and Loader [52] and Neumann and Polzehl [39]).

There are two basic approaches to construct simultaneous confidence bands: either
with fixed or with variable width. For the situation of nonparametric regression, an
easy to understand description of how to proceed in either case is given by Neumann
and Polzehl [39]. There is also a fairly good manual of how to construct simultaneous
confidence bands with variable width using bootstrapping in Lenhoff et al. [34].
We now describe two methods of constructing simultaneous confidence bands for
the autocorrelation p(u, h), u € [0,1], of the locally stationary time series {X;7}.
W.l.o.g. we will restrict ourselves to h = 1, that is the 1-lag autocorrelation.

Firstly, the construction of a confidence band of variable width is considered. We
aim to use bootstrapping in order to mimic the behaviour of the process

{p(% 1;;“/3(% 1) }uem _
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11.1 Design of simultaneous confidence bands for the autocorrelation

This process specifies the maximal weighted deviation of the autocorrelation from
the estimate p(u, 1), for all u € [0, 1].

Step 1: Choose a suitable lattice L[0, 1] on the interval [0, 1]. For example, {¢t/T,t =
1,...,T}. For every fixed u € L[0,1] calculate an estimate p(u, 1) of the
autocorrelation function.

Step 2: Generate B bootstrap time series by employing a moving bootstrap. For each
time series {X:;f}, b = 1,...,B, estimate the autocorrelation p’(u,1) for
every u € L[0, 1].

Step 3: Use all B time series to estimate the standard deviation ¢;(u) of p for every
u € L]0, 1].

Step 4: Choose Chyor > 0 such that

1 o(u, 1) — pP(u, 1

B
B =" {ueLlo] Gp(u)

for some prescribed o, 0 < a0 < 1.

The simultaneous « - 100% confidence band for p(u, 1), 0 < u < 1, is then given by
CBvariable = [ﬁ(u, 1) - Cboot : a-p(u)a ﬁ(u, ]-) + CYboot : 6;}(”)]

In order to maintain uniform size of the confidence band, one simply omits the
third step of the above algorithm and adapts the fourth step. Doing so, we hence
mimic the process of the maximal deviation of the autocorrelation from the estimate
p(u, 1), for all u € [0, 1].

{p(u, 1) - ﬁ(uv 1)}u€[0,1] :

Step 1: Create a suitable lattice L]0
calculate an estimate p(u, 1

, 1] on the interval [0, 1]. For every fixed u € L[0, 1]
) of the autocorrelation function.

Step 2: Generate B bootstrap time series by employing a moving bootstrap. For each
time series {X:Tb}, b = 1,...,B, estimate the autocorrelation p’(u,1) for
every u € L[0, 1].
Step 4’: Choose C},,, > 0 such that
B

éZ]l { max {p(u, 1) — pb(u, 1)} < C’bwt} >1-a,

L[0,1
1 u€L[0,1]

for some prescribed a, 0 < a0 < 1.
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11 Simultaneous confidence bands for the autocorrelation

The simultaneous « - 100% confidence band for p(u, 1), 0 < u < 1, is then given by
CBfized = [ﬁ<u7 1) - Céoot’ ﬁ<u7 1) + Cll)oot]'

In our simulations, the moving bootstrap method, as referred to in Step 2, will
either be the moving TFT-bootstrap, the moving autoregressive aided periodogram
bootstrap or the moving wild hybrid bootstrap.

11.2 Simulation study

The study is structured as follows: At first, we will simulate different types of locally
stationary processes. Those processes vary with respect to the model structure
and the distribution of the white noise. We will consider a tvAR(1)-process with
linearly changing coefficients, as well as a tvMA (1)-process as used by Sergides [49].

Concerning the white noise, we will study standard normal errors, standardized

x?- as well as standardized exponentially distributed errors. Definition 2.1 merely

prescribes that Ee, = 0, Fe? = 1, as well as Ee} < oo which is fulfilled after
appropriate centering and rescaling of the errors.

DGP 1 (time-varying AR(1)-process)

Xer =apr - Xo11 + &,

with a; 7 = (1 — %) - (=0.6) + % - 0.6 and ¢; independent and identically
distributed for all ¢t =1,...,T.

DGP 2 (time-varying MA(1)-process)

414
Xy =1.1-cos (1.5 — CoS (T)) “€¢-1 + &y,

with &; independent and identically distributed for all t =1,. ..

The following arrangements will be considered:

Error distribution

X3-3

tvAR(1) | DGPla| DGPIb | DGPlc
tvMA(1) | DGP2a | DGP2b | DGP2c

Model
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11.2 Simulation study

200 400 600 800 1000
Figure 11.1: A realization of DGP 1c
I I I I I
200 400 600 800 1000

Figure 11.2: A realization of DGP 2a

To account for the boundary effects which occur as we don’t use the moving versions
of the bootstrap for the very first and the very last N = 201 observations, we only
evaluate the simulations in between ¢ = 200 and ¢t = 800,
in time. This is in agreement with Sergides [49]. The following graphics, though,
display the whole range of ¢t = 1 to ¢ = 1000. One can clearly see — for example in
Figure 11.3 — the effect of the blockwise bootstrap in the beginning and at the end.
We have constructed the confidence bands to a coverage of 95%. In order to verify
whether the confidence bands actually meet the intended coverage probability, we
calculate the empirical coverage probability using R = 200 repetitions. As we work
with simultaneous confidence bands, the question is how to characterize a curve to

that is at 601 points
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11 Simultaneous confidence bands for the autocorrelation

lie in between two other curves. Should we require all points of the curve to be in
between, do we allow for some percentage of points that can be outside?

The first check is whether the empirical coverage is dependent on the data. This
is done by looking at different seeds. The resulting empirical coverage probability
of the theoretical autocorrelation function at lag 1 of a time-varying AR(1)-process
with standard normal iid errors (DGP 1a) is given in the following table. The theo-
retical curve p(1) is considered to lie within the confidence band if all values between
t =200 and t = 800 are within the confidence band.

Width Type of bootstrap
variable fixed || mTFT | mAAPB | mH
1:200 X 0.960 0.99 1.000
1:200 X 0.970 0.995 1.000
Seed
201:400 X 0.980 0.995 1.000
201:400 X 0.985 0.995 1.000

We can see that for different seeds, the moving version of the TE'T-bootstrap is the
most volatile. We should as a rule of thumb consider random deviations of +0.01
before drawing conclusions.

Having mentioned the difficult question of clarifying when the theoretical curve p(1)
is considered to lie within the confidence band, we consider different numbers of
points we allow to deviate. The first criterion is that all 601 points do have to lie
within the bounds, secondly, only 590 of the 601 points need to be in the band. The
most is a miss by 100 points, which is 17% of the curve.

Empirical coverage probability based on DGP1a

Width Type of bootstrap

variable fixed || mTFT | mAAPB | mH

601 X 0.96 0.99 1.00

> bound 601 X 0.97 1.00 1.00
590 X 0.97 0.99 1.00

590 X 0.98 1.00 1.00

560 X 0.98 1.00 1.00

560 X 0.99 1.00 1.00

500 X 1.00 1.00 1.00

500 X 1.00 1.00 1.00
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11.2 Simulation study

We now perform the autoregressive-aided periodogram bootstrap as given by Sergides
[49], still with a window width of N = 201, but calculating all N Fourier coefficients
at each point in time u. Thus, for each u bootstrap replica of Iy(u, A;) for each
j=1,..., N are produced. From those we obtain p(u, 1) for every u € [0,1]. How-
ever, instead of constructing pointwise confidence bands as done by Sergides [49],
we now construct uniform confidence bands proceeding as in Section 11.1. The al-
gorithm of obtaining the bootstrap replicates has a complexity of O(N?T') and thus
takes up much more time than construction of simultaneous confidence bands using
the moving Fourier transform, which is only of order O(NT). Given the computa-
tional ressources available, we have performed the autoregressive-aided periodogram
bootstrap B = 200 times for each of the 56 trials in order to calculate the empirical
coverage probability. For the standard normal iid errors, both, the fixed and the
variable confidence band exhibit an empirical coverage of 100%.

A visual comparison of the moving version of the autoregressive-aided periodogram
bootstrap and the original version can be found in Figure 11.3.

0.3
|

I I I I I I
0 0.2 0.4 0.6 0.8 1

Figure 11.3: Confidence band of the mAAPB (solid) and the AAPB (dotted)
The resulting confidence bands have a mean width of 0.484 with a standard deviation

of 0.023 compared to the mean width of 0.485 with standard deviation of 0.022 of
the moving version. Both with an empirical coverage of 100%.
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0 200 400 600 800 1000

0 200 400 600 800 1000

Figure 11.4: Confidence bands (variable width) of moving version of (a) TFT boot-
strap, (b) AAP bootstrap and (c¢) wild hybrid bootstrap for DGP1a for
different realizations
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11.2 Simulation study

Empirical coverage probability based on DGP1 with different error distributions

Width Type of bootstrap

variable fixed || mTFT | mAAPB | mH

601 X 0.95 0.99 1.00

DGPIb | > bound 601 X 0.97 0.99 1.00
590 X 0.96 0.99 1.00

590 X 0.98 0.99 1.00

560 X 0.99 0.83 1.00

560 X 1.00 1.00 1.00

500 X 1.00 1.00 1.00

500 X 1.00 1.00 1.00

601 X 0.97 0.99 1.00

DGP1e | >bound 601 X 0.98 0.99 1.00
590 X 0.99 0.99 1.00

590 X 0.99 0.99 1.00

560 X 1.00 1.00 1.00

560 X 1.00 1.00 1.00

500 X 1.00 1.00 1.00

500 X 1.00 1.00 1.00

Empirical coverage probability based on DGP2a
Width Type of bootstrap

variable fixed | mTFT | mAAPB | mH

601 X 0.02 0.86 0.41

> bound 601 X 0.04 0.72 0.56
590 X 0.04 0.91 0.49

590 X 0.07 0.80 0.66

560 X 0.19 0.97 0.80

560 X 0.26 0.97 0.88

500 X 0.58 1.00 0.97

500 X 0.78 1.00 1.00
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Figure 11.5: Confidence band of moving version of (a) TFT bootstrap, (b) AAP
bootstrap and (¢) wild hybrid bootstrap
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11.2 Simulation study

Empirical coverage probability based on DGP2 with different error distributions

Width Type of bootstrap

variable fixed || mTFT | mAAPB | mH

601 X 0.01 0.90 0.23

DGP2b | > bound 601 X 0.01 0.78 0.39
590 X 0.02 0.94 0.32

590 X 0.03 0.85 0.49

560 X 0.07 0.99 0.71

560 X 0.08 0.97 0.83

500 X 0.18 1.00 0.95

500 X 0.27 1.00 0.98

601 X 0.02 0.91 0.32

DGP2 | > bound 601 X 0.03 0.76 0.49
590 X 0.03 0.95 0.43

590 X 0.06 0.82 0.58

560 X 0.16 0.99 0.75

560 X 0.26 0.98 0.82

500 X 0.61 1.00 0.95

500 X 0.76 1.00 0.99

One might also want to check, how the pointwise asymptotic confidence bands per-
form (see Figure 11.6). From a simple look at one realization of the asymptotic
95%-confidence band compared to the true autocorrelation p(u, 1) one can readily
tell that this band will not be likely to get anywhere near an empirical coverage of

95%.
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11 Simultaneous confidence bands for the autocorrelation
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Figure 11.6: Pointwise asymptotic 95%-confidence band for DGP1a

A exemplary visual comparison of the variable and fixed width confidence band in
the case of a y3-distribution of the errors constructed using the moving version of
the TFT-bootstrap shows that there is not much difference between the two ways,
though the table hints a higher empirical coverage rate of the method using a fixed
width.

0.6

-0.3
l

I I I I I I
0 0.2 0.4 0.6 0.8 1

Figure 11.7: DGP 1c: Comparison of the simultaneous confidence bands of fixed
(solid) and variable (dotted) width obtained via the moving TFT
bootstrap
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11.2 Simulation study

We have seen that the wild hybrid bootstrap exhibits a coverage of 100% for DGP1a.
This is also reflected in the width of the confidence bands. We will now compare the
confidence bands with fixed width and present the average width and the standard
deviation of the widths of each procedure in the case of DGPla and DGP2a.
Width of confidence bands

DGPla DGP2a
(width)
mean std mean std
mTFT 0.4659180 | 0.01825032 || 0.4569330 | 0.01950276
mAAPB || 0.4837308 | 0.02309174 || 0.7110781 | 0.04509634
mHB 0.6538740 | 0.06472582 || 0.6432225 | 0.03435888

Figure 11.8: DGP 2a: Com-
parison of  the
simultaneous con-
fidence bands
of fixed width
obtained via the
moving TFT boot-
strap (solid), the
moving AAP boot-
strap (dotted) and
the moving wild
hybrid bootstrap
(dashed)
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Figure 11.9: DGP 1la: Com-
parison  of the
simultaneous con-
fidence bands
of fixed width
obtained via the
moving TFT boot-
strap (solid), the
moving AAP boot-
strap (dotted) and
the moving wild
hybrid bootstrap
(dashed)

0.6
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11 Simultaneous confidence bands for the autocorrelation

Figure 11.10: DGP 1la: Simultaneous 95% confidence bands of fixed width with
two realizations each using (a) the moving TFT bootstrap (solid), (b)
the moving AAP bootstrap (dotted) and (¢) the moving wild hybrid
bootstrap (dashed)
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11.2 Simulation study

We conclude with a look at the autocovariance function. In Chapter 5, we have
seen that the variance of the spectral mean incorporating the moving periodogram
still depends on the fourth order cumulant. The moving TFT bootstrap has not
been designed to bootstrap the fourth order cumulant of the data. However, we
were interested in how well the bootstrap still works deviating from the standard
normal distribution of the errors. In the following study we have used fixed width
confidence bands of the autocovariance function of lag 1 (i.e. of the spectral mean
with weight function ¢()\) = e*). First, using standard normally distributed errors
and, second, using standardized exponentially distributed errors. In the first case,
we get an excess curtosis of zero, in the second of 6. The empirical coverage of the
bands has been surprisingly good in the case of the high excess kurtosis.

DGP1la | DGP1b
> 601 0.88 0.75
>590 | 0.92 0.82
> 560 | 0.97 0.92

> 500 | 0.99 0.96

Exemplary confidence bands can be seen in the following figures.

1.0

0.0
|

-0.5
|

-1.0

0 200 400 600 800 1000

Figure 11.11: Exemplary simultaneous 95% confidence bands of fixed width with the
moving TFT bootstrap for DGP1a (solid) and DGP1b (dashed)
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Figure 11.12: Bootstrap versions of simultaneous 95% confidence bands of fixed
width with the moving TFT bootstrap for DGP1b

We eye the assumption that k4 := F(g;)* — 3 is unchanged throughout time. We
don’t see any reason for x4 to remain unchanged while the variance of the time series
changes. Assuming that there is a change in k4, would the moving spectral density
estimation help to mimick this changing k4,7 Or would it fail, just like the procedure
in Kreiss and Paparoditis [32]. They estimate a single value of x4 using all data.

It is quite hard to consistently estimate the fourth moment. So what we did was to
estimate the time varying autocovariance at lag 1, which is a spectral mean. The
asymptotic covariance structure, both in our case (see Theorem 5.5) as well as in
the situation when using the local periodogram as an estimator (Lemma 2.4.2 in
Sergides [49]) is dependent on k4. We now estimate the autocovariance function
of iid data with a fourth moment of m; := 3 for t = 1,...,499 and then switch
to iid data with a fourth moment of 18 for ¢ = 500,...,1000. For constructing
the data, the construction made by Kreiss and Paparoditis [31] is used: E.g. for

t=1,...,499, P(e, = \/m1) = P(e, = —/m1) = 5— and P(g, = 0) = 1 — .
Being interested in how well the change in x4 is mimicked, we need to look at the
variance of the estimated autocovariances.

When estimating the autocovariance using the moving Fourier transform for 200
different but identically distributed sets of iid random variables, we get 200 values
at each time ¢. The estimated variance at each time can be seen in Figure 11.13.
For illustrative reasons the average variance of the first 300 observations as well as
of the last 300 observations is marked. It can clearly be seen that the variability of

the estimation changes as time passes.
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Figure 11.13: Sample variance of 200 realizations of the estimated autocovariance of
lag 1 using the moving periodogram

Changes of the fourth moment are completely omitted by Kreiss and Parparoditis
[32]. Their bootstrap procedure is therefore only applicable in the restricted setting
of constant fourth moment of the innovations. Still, the bootstrap is able to copy
the information on the fourth moment. We therefore propose the moving hybrid
bootstrap as presented in Section 7.2.3 in order to be able to cover changes in the
fourth moment.

153
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CHAPTER 12

Conclusion and outlook

The new aspect of this thesis is the idea of shifting a local Fourier transform along
a time series. It refines in an elegant and efficient way the common idea of apply-
ing a local Fourier transform to the data: At each time ¢, only one of the Fourier
coefficients is updated. For slow changes, which are characteristical for locally sta-
tionary time series, this is an effective way to mirror structural changes. The very
last section of Chapter 11 exemplarily shows that even changes in fourth moments
can be traced. This interesting aspect of how changing fourth order cumulants can
be monitored will certainly be of future interest. We contribute by proposing the
moving wild hybrid bootstrap (see Section 7.2.3).

Using the moving Fourier transform, we have been able to develop a well-behaved
and numerically cheap estimator for the time varying spectrum, which is locally
uniform consistent, which means that the spectral density estimator at some time k
in the neighbourhood of ¢ converges to the true spectral density at time ¢, uniformly
in k. This is the local equivalent to the condition required in the stationary set-
ting. We may therefore extend all procedures involving spectral density estimation
in the stationary setting to the locally stationary setting. This has explicitly been
done for three bootstrap procedures in Chapter 8. We now have two methods, the
moving TFT-bootstrap, as well as the moving wild hybrid bootstrap, to generate
bootstrap observations of locally stationary data not just in the frequency domain,
but also in the time domain. The moving autoregressive aided periodogram boot-
strap only generates replicates in the frequency domain. Adapting the extension
made by Jentsch and Kreiss [26] to the moving case, however, one could also obtain
a moving autoregressive aided Fourier coefficient bootstrap which is able to generate
bootstrap observations in the time domain.

The maintaining of the correct covariance structure of the bootstrap data has been
proved in Chapter 10 exemplarily for the TF'T-bootstrap. We have also investigated
whether there is a possibility of being more efficient concerning the calculation of
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12 Conclusion and outlook

the moving Fourier transform by introducing some kind of adapted fast Fourier
transform. However, it turned out that when intending to reduce complexity, the
transform needs to spend a longer period of time without shifting to the next stretch
of data. It would therefore be desirable to investigate further methods of speeding
up computations.

Referring to the aspect of only transforming a small set of data at a time, the ques-
tion arises whether the choice of the window width can somehow be locally adapted
to the degree of structural change. The question of an optimal choice of the window
width has also not been answered yet. Concerning the spectral density estimation,
future work will include the examination of the choice of kernel and bandwidth.

In Chapter 5 we have turned our attention to spectral means and provided asymp-
totic expectation and variance of those statistics. The next step will now be to
explicitly prove the asymptotic normality, as explorative simulations have hinted
that normal distribution is most likely. In a further step, one should look at ratio
statistics and their properties. The simulation part of this thesis has already turned
to solve this problem by bootstrapping. The local autocorrelation function of locally
stationary processes is studied and we provide uniform bootstrap confidence bands,
comparing different bootstrap approaches.
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