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CHAPTER 1

Introdution

Getting aquainted with loally stationary proesses:

Question: What are loally stationary proesses and why do we need them?

Answer

(Sergides [49℄)

Loally stationary proesses are nonstationary stohasti proesses

whose seond order struture varies smoothly over time. [We need

them to reate a℄ more realisti framework in time series analysis.

Answer

(Martin

and Flandrin

[37℄):

[That's beause in reality℄ the assumption of stationarity fails to be

true: the physial harater of random signals demands a nonsta-

tionary approah suh as in aoustis, speeh, geophysi, biology,

biomediine �elds, et. However, a spetrum of [a℄ nonstationary

proess(...) annot be de�ned by simply generalizing the ordinary

stationary spetrum.

Question: Before we go into a thorough disussion on the historial approah

to model nonstationarity in general, ould you please brie�y point

out the main ideas the subsequent work is based on?

Answer: Introduing a time varying spetral representation similar to sta-

tionary proesses and thus allowing to study proesses with on-

tinuously hanging spetral patterns has �rst been suggested by

Priestley [46℄.

His time dependent spetral funtions are alled evolutionary spe-

tra, whih have a physial interpretation as loal energy distribu-

tions over frequeny.

As pointed out by Dahlhaus [6℄ the approah of Priestley [46℄ does,

however, not allow for meaningful loal asymptoti onsiderations.

In order to overome these di�ulties, Dahlhaus [7℄ suggested to

onsider a triangular array of data.
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1 Introdution

The di�erene of the approah of Dahlhaus [7℄ to the approah

of Priestley [46℄ is, that Dahlhaus [7℄ uses double indexed pro-

esses and makes use of asymptoti onsiderations. His onern

is to provide a representation whih allows for rigorous asymptoti

treatment of statistial inferene problems, whereas Priestley [46℄

intended to gain a stohasti representation of the proess.

Modelling non-stationarity � historial overview

When dealing with time series in appliations, it has already been pointed out that

the assumption of stationarity is more than questionable. Modelling time-dependent

proesses has therefore been dealt with for several deades. There is, of ourse the

possibility to model time-dependent proesses in the time domain as done by Hallin

[23℄ and Subba Rao [51℄. Subba Rao [51℄ onsidered AR-proesses with time-varying

oe�ients represented as expansions of orthogonal polynomials and weighted least

squares estimation of the time-varying oe�ients. However, he also onsidered the

evolutionary spetral approah developed by Priestley [46℄. This onept of an evo-

lutionary spetrum will be disussed later on.

Espeially when enountering the �eld of signal proessing and aoustis the assump-

tion of a stationary signal is not onvining. A stationary signal (in ontinuous time)

an be desribed by the power spetral density

f(ω) =

∫

τ

Cov(Xt+τ , Xt−τ )e
−i2πωτdτ, 0 < ω <∞

(Hlawatsh and Matz [25℄). Contrasting stationary proesses, non-stationary signals

all for time-frequeny methods to aount for the hange of the signal throughout

time in order to provide a omplete and unique desription of the proess' seond

order statistis and spetral properties (f. Hlawatsh and Matz [25℄).

The aim is, thus, to generalize the power spetral density in a way that we get a

natural extension with an expliit time-dependene of the lassial notion of power

spetral density together with most of its "nie" properties (f. Flandrin [19℄).

Unfortunately, there is no hane to obtain suh a time-dependent spetrum whih

is unique and well-de�ned. Whenever hoosing a de�nition, we have to sari�e one

desirable property we would have liked the time-dependent spetrum to have.

There has also been some heated disussion of what onditions are the neessary

ones and when a funtion is allowed to be alled a spetrum (f. Loynes [36℄ and

the disussion of the paper in the appendix).

Priestley [46℄ reviews the researh on the problem of haraterizing non-stationary

proesses via a spetral density: In 1960, Cramér [5℄ onsidered the lass of non-

stationary harmonizable (in the Loève sense) proesses. That is, proesses with the

Cramér representation

Xt =

∫ ∞

−∞
eiωtdZ(ω), −∞ < t <∞.
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The inrement proess Z(ω), however, is not orthogonal anymore, the inrements

an be orrelated. Cramér then de�ned the integrated spetrum of suh a proess

by dF (ω, ν) := E(|dZ(ω)dZ∗(ν)|). A major drawbak of this approah, as pointed

out by Priestley [47℄, is the di�ulty of interpreting this two-dimensional spetral

density funtion.

Another de�nition has been given by Hatanaka and Suzuki (unpublished). They

de�ne the spetral density funtion of non-stationary proesses as the limit of of the

expeted value of the periodogram as sample size tends to in�nity. Both, Cramér and

Hatanaka and Suzuki intended to haraterize the behaviour of the non-stationary

proess over the whole parameter spae with the help of a single funtion.

When onentrating on looking for a loal desription of the spetrum of a non-

stationary proess one inevitably omes to Page [43℄ who was the �rst to be toying

with the idea of a hanging spetrum. He de�nes the instantaneous power spetrum

of a non-stationary proess.

Instantaneous power spetrum (→ Page [43℄) Considering the energy of a

signal to be distributed over time and frequeny, the density of the energy in the

time-frequeny plane is alled ρ(t, f). For some �xed t, this is alled the instanta-

neous power spetrum at time t.

Motivation (f. Priestley [46℄ and Page [43℄):

∫ T
0

∫∞
−∞ ρ(t, f)dfdt is the total energy of the signal output up to time

T . To get the inrease in total power from time T to T + ∆T one

di�erentiates with respet to t. Now di�erentiating with respet to t
yields

∫ ∞

−∞
ρ(T, f)df,

whih is the instantaneous power of the signal at time T . Thus, ρ(T, f)
desribes the di�erene between the energy on the interval (0, T ) to the

interval (0, T + δT ) and is alled the instantaneous power spetrum at

time T . Approximately,

ρ(T, f) ≈ 1

∆T
E

(∣∣∣∣
∫ T+∆T

0

Xte
−iftdt

∣∣∣∣
2

−
∣∣∣∣
∫ T

0

Xte
−iftdt

∣∣∣∣
2
)

≈ 1

∆T

(∫ T+∆T

0

ρ(t, f)dt−
∫ T

0

ρ(t, f)dt

)
.

Integration of the instantaneous power spetrum over time yields the onventional

spetrum (f. Page [43℄). His de�nition of the onventional spetrum is the same as

of Hatanaka and Suzuki.

3



1 Introdution

The reason for Priestley [46℄ to resort to evolutionary spetra is that he is unhappy

with the physial interpretation of Page's instantaneous power spetrum. Priestley

onsidered it far more important to study the spetral ontent of the proess within

the interval (T, T + δT ) than studying the di�erene between the spetral ontents

of the intervals (0, T ) and (0, T + δT ). His evolutionary spetrum at time T an

roughly be understood as

f(t, ω) ≈ E

(∣∣∣∣
∫ T+∆T

T

Xte
−iftdt

∣∣∣∣
2
)
.

For the interpretation of the de�nitions, see the disussions at the end of Priestley

[46℄, pp. 234,235.

Evolutionary spetrum (→ Priestley [46℄,[47℄) Priestley's [47℄ onept is to

generalize the representation of a stationary proess as

Xt =

∫ ∞

−∞
eiωtdZ(ω), −∞ < t <∞,

with dZ(ω) remaining an orthogonal proess. Not giving up on the inrements, i.e.

the random amplitudes, being unorrelated ensures easy interpretation, whih has

not been provided by Cramér [5℄.

In order maintain this unorrelatedness of the inrements, Priestley [46℄ restrits

attention to the lass of proesses for whih there exists a family F of funtions

{φt(ω)} de�ned on the real line, indexed by t, and a measure µ(ω) on the real line,

suh that for eah −∞ < s, t <∞ the ovariane funtion an be written as

Cov(Xt, Xs) =

∫ ∞

−∞
φs(ω)φt(ω)dµ(ω).

Referring to Parzen [45℄, Priestley [46℄ points out that for the parameter spae being

a bounded interval (0 ≤ t ≤ T ) it is always possible to obtain this kind of represen-

tation. Given φt(ω) is quadrati integrable for eah t, Xt admits a representation of

the form

Xt =

∫ ∞

−∞
φt(ω)dZ(ω),

where dZ is an orthogonal proess with E|Z(ω)|2 = dµ(ω). (Note: µ(ω) here mirrors

the role of F (ω) in the stationary ase.) Depending on whih family of funtions

is hosen for φt one gets a wide variety of di�erent representations of the proess.

This again is a result of Parzen [45℄ and has been taken up by Priestley [46℄.

By hoosing φt(ω) = eiωt we get the stationary ase. Aiming to onsider non-

stationary proesses, we ought to hoose another family of funtions. Priestley [46℄

piked out osillatory funtions (as to preserve the physial onept of frequeny):

4



De�nition of an osillatory funtion:

→Priestley [46℄

The funtion of t, φt(ω), will be said to be an osillatory funtion if, for

some (neessarily unique) θ(ω) it may be written in the form φt(ω) =
At(ω)e

iθ(ω)t
, where At(ω) is of the form

At(ω) =

∫ ∞

−∞
eitθdHω(θ),

with |dHω(θ)| having an absolute maximum at θ = 0.

Note: With At(ω) = 1 and θ(ω) = ω the lass of osillatory proesses ertainly

inludes all seond-order stationary proesses.

An osillatory proess whose seond-oder harateristis hange "slowly" over time,

is onsidered by Priestley [46℄ to be a semi-stationary proess. (Of ourse, in Priest-

ley [46℄ the term slowly is de�ned mathematially.)

For a non-stationary proess Xt represented by

Xt =

∫ ∞

−∞
At(ω)e

iωtdZ(ω),

with an orthogonal inrement proess dZ(ω), we an interpret At(ω)dZ(ω) as ran-
dom amplitudes and onsider Xt to be the limit of a sum of many sine and osine

waves with di�erent frequenies and amplitudes At(ω)dZ(ω). Hene, the power that
is ontributed by frequeny ω is

|At(ω)|2dF (ω) = |At(ω)|2|dZ(ω)dZ∗(ω)|.

The evolutionary power spetrum by Priestley [46℄ is then de�ned to be

ft(ω) := |At(ω)|2dF (ω).

F is the spetral distribution funtion of the orresponding stationary proess

Xt =

∫ ∞

−∞
eiωtdZ(ω).

The evolutionary spetrum has the same physial interpretation as the spetrum of

a stationary proess (f. Brusato and Toloi [4℄), namely, it desribes a distribution

of power over frequeny, but whereas the latter is determined by the behaviour of

the proess for all time t, the former represents spei�ally the spetral ontent of

the proess in the neighbourhood of eah time instant t.
Unfortunately, this evolutionary spetrum is by no means unique and depends on

the family F onsidered. Moreover, as pointed out by Dahlhaus [7℄, the approah

of [46℄ does not allow for rigorous loal asymptoti onsiderations. In order to over-

ome these di�ulties, Dahlhaus [7℄ suggested to onsider a triangular array of data.

Subba Rao [51℄ not only onsidered estimation in the time domain, but he also used

5



1 Introdution

the evolutionary spetral approah developed by Priestley to estimate the time-

varying parameters of the time-dependent AR-proesses. Subba Rao's modelling

of non-stationary time series with time-dependent AR-models has been resumed by

Grenier [22℄ and Kitagawa and Gersh [29℄. The latter restrited the time-varying

oe�ients by introduing smoothness priors, that is setting up stohastially per-

turbed di�erene equations for the oe�ients. By doing so, they also reate a loal

time-varying strutural model, whih does not have global strutural time-varying

properties.

Evolutive spetrum (→ Tjostheim [53℄ and Mélard [38℄) The evolutive spe-

trum has independently been proposed by Tjostheim [53℄ and Mélard [38℄. It is

de�ned for disrete time proesses and is a speial ase of Priestley's evolutionary

spetra with respet to some speial family F . This is explained in more detail in

Flandrin [19℄.

Wigner-Ville spetrum (→ Martin and Flandrin [37℄) Another popular de�-

nition of a spetrum of nonstationary proesses is the Wigner-Ville spetrum (f.

Brusato and Toloi [4℄):

When generalizing the lassial ordinary spetrum for stationary time series "un-

der natural onditions" Martin and Flandrin [37℄ �nd the Wigner-Ville spetrum

to be the only time-varying spetrum to su�iently omply with those onditions,

suh as satisfying the linear time-frequeny dualism and reduing to the ordinary

spetral density if the proess is stationary. The major drawbak of the Wigner-

Ville spetrum is the sari�e of the non-negativity, whih does no longer allow for

the physial interpretation of loal energy over time. The Wigner-Ville spetrum is

(uniquely) de�ned as the expeted value of the Wigner-Ville distribution:

fWV (t, ω) := E[Wx(t, ω)] = E

[∫ ∞

−∞
Xt+ τ

2
Xt− τ

2
e−iωτdτ

]
, −∞ < t <∞.

For the disrete ase

fWV (t, ω) := 2
∞∑

τ=−∞
γ(t + τ, t− τ)e−2iωτ

de�nes the disrete Wigner-Ville spetrum. We an see, that this is a representation

similar to the one for stationary proesses.

Time varying spetral density The most reent amendment to the tehniques of

modelling non-stationary time series has been made by Dahlhaus [8℄. He introdues

the lass of loally stationary proesses and along with it, the onept of a time vary-

ing spetral density, whih is the spetral density of the stationary approximations

at di�erent points in time. For this time-varying spetral density, he piks up the

idea of Priestley [46℄ of loally desribing the spetral density, but, as pointed out

6



before, he introdued double-indexed proesses allowing for asymptoti onsidera-

tions. Also ontrasting the evolutionary spetrum, the time varying spetral density

of a loally stationary proess is unique and equals the limit of the Wigner-Ville

spetrum of this proess (see Theorem 2.1).

Aims of this work

Looking at the long list of approahes to onsider deviations from stationarity, one

an see the great relevane of the topi � and also the di�ulties oming along with

it, among them the problem of generalizing the stationary model maintaining the

possibility of asymptoti theory and the di�ulty of generalizing the onept of a

spetrum to the non-stationary ase � not to speak of estimating it. This thesis,

based on the onept of loally stationary time series introdued by Dahlhaus [8℄,

aims to develop a modi�ation of the Fourier transform whih enables us to transfer

the loal struture of the data from the time domain to the frequeny domain, yet

preserving the onvenient property of the resulting Fourier oe�ients being at least

unorrelated in the frequeny domain. This is then the basis for the appliation of

bootstrap tehniques. Of ourse, some appropriate inverse transformation should be

onstruted to allow for the bootstrapped oe�ients to be onverted bak to time

domain data, again, without losing strutural information. The �rst main goal is

thus to generalize the TFT bootstrap by Kirh and Politis [28℄ to loally stationary

time series. This, of ourse, �rst implies to �nd a suitable estimator of the time

varying spetral density as well as proving its onsisteny. It also requires to prove

that the TFT bootstrap for loally stationary time series yields the orret ovari-

ane struture of the bootstrap observations.

The seond objetive is to validate that the new way of Fourier transforming is appli-

able to other state-of-the-art bootstraps. There exist extensions to the wild hybrid

bootstrap (Kreiss and Paparoditis [33℄) as well as the autoregressive periodogram

bootstrap (Kreiss and Paparoditis [31℄) using the loal periodogram. We intend to

generalize these proedures to stationary time series using the periodogram resulting

from our new transform and ompare the performane of our obtained proedures

to the extensions already in existene.

The third aspet is a pratial one as it is intended to implement the new trans-

form as well as the new version of the TFT bootstrap and the two other bootstrap

proedures. We will moreover deal with the question whether there is any way of

reduing the omplexity of the algorithm. As test statistis an often be written as

spetral means, we also aim to struturally investigate those spetral means being

based on the newly introdued periodogram. Naturally, it is also intended to survey

those statistis using simulations. The pratial part even goes to suh lengths as

to introdue uniform on�dene bands for the autoorrelation and to examine them

thoroughly with respet to di�erent error distributions.
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1 Introdution

Agenda

We start with an introdution to loally stationary proesses proposed by Dahlhaus

[8℄. This onept inspired us to extend the ordinary Fourier transform to a moving

version. In Chapter 3, the derivation and onstrution of the transform is presented

and a orresponding transformation to return to the time domain is introdued.

The moving Fourier transform as well as the resulting moving periodogram have

been thoroughly investigated in Chapter 4 and 5 onerning their asymptoti prop-

erties. We have even gone further taking aount of moving spetral means and

their asymptoti harateristis. Chapter 6 inludes some philosophial aspets on

possible modi�ations of the moving Fourier transform. Appliation of the moving

transform to bootstrapping has been disussed in Chapter 7. Chapter 7 also ex-

poses the need for an appropriate estimator for the time varying spetral density.

The onstrution of an estimator as well as the proof of adequateness has been

done in Chapter 8. Finally, Chapter 9 looks at the bootstrap data emerging from

the moving wild TFT bootstrap and disovers that the autoovariane struture

is mimiked well. We have stohasti onvergene to the orret autoovariane

funtion, uniformly in lag h, when h is smaller than the window width used for the

transformation. Chapter 10 is dediated to the investigation whether an analogon of

the Fast Fourier transform an be onstruted to redue numerial omplexity. The

�nal Chapter 11 presents a simulation study inluding the moving Fourier transform

and the bootstrap proedures developed in Chapter 7. We onstrut simultaneous

on�dene bands for the autoorrelation funtion as well as for the autoovariane

funtion of loally stationary data and investigate their performane with respet

to di�erent bootstrap proedures and di�erent data generating proesses.

8



CHAPTER 2

Loally stationary proesses

2.1 The onept of loal stationarity

2.1.1 Asymptoti theory

If X1, . . . , XT are the observations at hand, letting T tend to in�nity whih means

extending the proess into the future, does, in ase of a non-stationary proess,

not yield any more information. Thus, asymptoti onsiderations have to be ade-

quately adapted in the sense that letting T tend to in�nity does indeed reveal more

information on the proess. Exemplarily, the proess

Xt = g∗(t)Xt−1 + εt, εt
iid∼ N (0, σ2), t = 1, . . . , T,

with some funtion g∗ : {1, 2, . . . , T} → R is onsidered. Currently we have informa-

tion on the unknown funtion g∗(t) on the grid {1, 2, . . . , T}. Dahlhaus [6℄,[7℄ and

[8℄ sets down the asymptoti theory not by assuming the funtion g∗ to be observed

for a longer period of time on an extending grid with onstant grid width, but to

be observed on a �ner and �ner grid on the same interval. This is done by resaling

the unknown funtion g∗ to the interval (0, 1] in the way that the resaled funtion

g now reads g∗(t) = g
(
t
T

)
and thus

Xt,T = g

(
t

T

)
Xt−1 + εt, εt

iid∼ N (0, σ2), t = 1, . . . , T. (2.1)

We an see that the larger T grows the �ner the grid on whih we observe the funtion

g gets, but the domain of the resaled funtion g remains to be the interval (0, 1].
This means that more and more information on the funtion g is available as T tends

to in�nity. Still, Dahlhaus [6℄ indiates to exerise aution when interpreting the

asymptotis. The big di�erene to stationary time series is that the approah using
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2 Loally stationary proesses

resaling is purely an abstration for judging statistial inferene. As a onsequene

it makes for example no sense to ask for a real data example that ful�lls the resaling

property introdued in Equation (2.1).

2.1.2 De�nition of loally stationary proesses

Dahlhaus [8℄ introdued the time-varying spetral representation of loally station-

ary proesses in analogy to stationary proesses. Easier to work with, however, is

the equivalent time varying MA(∞)-representation of loally stationary time series

as given by Dahlhaus [10℄, Eq. (11).

Following Sergides [49℄, all forthoming alulations are based on the de�nition, that

a triangular array {XT}T∈N = {Xt,T , t = 1, . . . , T}T∈N is alled loally stationary, if

the proesses have a tvMA(∞)-representation with time varying oe�ients at,T (j)
(ful�lling ertain smoothness onditions stated below):

Xt,T =

∞∑

j=−∞
at,T (j)εt−j,

with {εt}t∈Z being independent, identially distributed random variables with zero

mean and variane 1. Hene, we do only onsider entered time series and fous on

hanges in the autoovariane struture. The exat de�nition used is

De�nition 2.1 (tvMA(∞) representation of loally stationary proesses).

→ Dahlhaus [10℄, Ass. 2.1 , Dahlhaus and Polonik [15℄, Ass. 2.1, Sergides [49℄,

Ass. 1

A sequene of stohasti proesses Xt,T , t = 1, . . . , T, is alled loally stationary if

there exists a representation

Xt,T =
∞∑

j=−∞
at,T (j)εt−j, (2.2)

where the following holds

(a) εt
iid∼ (0, 1) with �nite fourth moment Eε4t <∞,

(b) supt |at,T (j)| ≤ K
l(j)

, and

let {l(j)} be a positive sequene with l(j) :=

{
1, |j| ≤ 1

|j|log1+κ|j|, |j| > 1

for some κ > 0.

() There exist funtions a(·, j) : (0, 1] → R, j ∈ Z, with

(i) supt
∣∣at,T (j)− a( t

T
, j)
∣∣ ≤ K

Tl(j)
.

10



2.1 The onept of loal stationarity

(ii) |a(u, j)− a(v, j)| ≤ K|u−v|
l(j)

(iii) supu

∣∣∣∂
ia(u,j)
∂ui

∣∣∣ ≤ K
l(j)

, i = 0, 1, 2, 3.

Remark 2.1

Throughout this thesis we use K and C as generi positive onstants not depending

on any other quantities if not stated otherwise.

Remark 2.2

.

1. The rather ompliated onstrution using the oe�ients at,T (j) and a(u, j)
is justi�ed in Dahlhaus [10℄, p.454 and Dahlhaus and Polonik [14℄, Remark

2.12 (i). The funtion a(·, j) is needed for resaling and to impose neessary

smoothness onditions in the time diretion, while the additional use of at,T (j)
makes the lass rih enough to over interesting ases, suh as tvAR models.

2. Despite the fat that De�nition 2.1 appears to admit only homosedasti inno-

vations, Dahlhaus and Polonik [14℄, Remark 2.12 (ii) state that a time varying

saling fator of the innovations may be inluded in the oe�ients at,T (j).

Remark 2.3

For Lemma 5.1 we use a slightly di�erent assumption to De�nition 2.1(b): Let {l(j)}
be a positive sequene with

∞∑

k=−∞

∑

j>k

1

l(j)
<∞.

2.1.3 Stationary approximation

Taking up the wording of Sergides [49℄ that a loally stationary proess is a stohasti

proess whose seond order struture varies slowly over time, it feels intuitive to

onsider this proess stationary within a loal neighbourhood of some point in time.

We are now going to formally larify what is meant by 'hanging slowly'.

Based on Sergides [49℄, Dahlhaus and Subba Rao [16℄ and Subba Rao [50℄ we de�ne,

for some u ∈ (0, 1), the stationary proess X̃t(u) by

X̃t(u) :=

∞∑

j=−∞
a(u, j)εt−j, (2.3)

where a(·, j) are the funtions used in the de�nition of a loally stationary proess

and the errors are those of the loally stationary proess

Xt,T =
∞∑

j=−∞
αt,T (j)εt−j .

11



2 Loally stationary proesses

Now, omparing these two proesses yields (f. Sergides [49℄, Equation (1.1.19))

∣∣Xt,T − X̃t(u)| ≤ K

(∣∣∣∣
t

T
− u

∣∣∣∣+
1

T

) ∞∑

j=−∞

|εt−j |
l(j)

,

whih implies

Xt,T = X̃t(u) +OP

(∣∣∣∣
t

T
− u

∣∣∣∣+
1

T

)
. (2.4)

X̃t(u) is a stationary approximation to Xt,T in some loal neighbourhood of u (Note:

u is the time parameter in resaled time). That is, if

t
T
is lose to u � meaning we

are only looking at Xt,T in some loal neighbourhood of u � Xt,T and X̃t(u) are very
lose, and Xt,T is 'basially' stationary.

As it an be seen above, the degree of approximation depends on the resaling fator

T and the deviation

∣∣ t
T
− u
∣∣
(f. Dahlhaus and Subba Rao [16℄, p.4).

To study the behaviour of {Xt,T}, we will follow Sergides [49℄ and use the proess

Zt,T (u) := Xt,T − X̃t(u), whih then has the tvMA(∞)-representation

Zt,T (u) =
∞∑

j=−∞
(at,T (j)− a(u, j)) εt−j, (2.5)

with εt, at,T (j) and a(·, j) from De�nition 2.1.

2.1.4 Time varying spetral density and ovariane

In order to work theoretially with the onept of loally stationary time series,

it needs to be lari�ed what is meant by the spetral density or the ovariane

of a loally stationary proess and how these funtions relate to their stationary

ounterparts.

First, the onepts time varying spetral density and time varying ovariane are

introdued.

De�nition 2.2 (time varying spetral density and ovariane).

→ Dahlhaus and Polonik [15℄

Let Xt,T be a loally stationary proess.

(a) The time varying spetral density of a loally stationary proess is given by

f(u, λ) =
1

2π
|A(u, λ)|2, (2.6)

with A(u, λ) :=
∑∞

j=−∞ a(u, j)e−iλj.

12



2.1 The onept of loal stationarity

(b) The Fourier transform of the time-varying spetral density (at resaled time

u)

c(u, h) :=

∫ π

−π
f(u, λ)eiλhdλ =

∞∑

j=−∞
a(u, h+ j)a(u, j) (2.7)

denotes the time varying ovariane of lag h, h ∈ Z (at resaled time u).

As Sergides [49℄ notes, both the time varying spetral density and the time varying

ovariane are the orresponding funtions of the stationary approximation X̃t(u) of
Xt,T at time u. However, as X̃t(u) does not equal but only serves as an approximation

of Xt,T at any time other than u, the atual autoovariane funtion of Xt,T will

only for

t
T

= u equal the orresponding time varying ovariane. Referring to

Dahlhaus [10℄, Equation (17), we have the following oherene between the time

varying ovariane funtion and the ovariane funtion of the loally stationary

proess.

Cov(X⌊uT ⌋,T , X⌊uT ⌋+h,T ) = c(u, h) +O

(
1

T

)
(2.8)

uniformly in u and h.

Remark 2.4

In the following, the time-varying ovarianes c(u, h) are assumed to be absolutely

summable for every u ∈ [0, 1].

Without asymptotis, one an only identify a �nite number of ovarianes within any

approximative stationary environment of Xt,T and thus, as Dahlhaus [6℄ mentions,

the spetral density is not uniquely determined. Just like in the ase of stationary

proesses this problem an be solved by employing the asymptotis introdued by

Dahlhaus [8℄ as in eah approximately stationary environment more and more data

beomes available. Due to that asymptoti approah Dahlhaus [7℄ is now able to

obtain a uniqueness property of the time varying spetral density. To be more

spei� on this uniqueness we need to onsider the Wigner-Ville spetrum, whih

has already been introdued in the previous setion:

We de�ne, for �xed T , λ ∈ [−π, π] and u ∈ [0, 1] the Wigner-Ville spetrum of a

loally stationary proess {Xt,T} as

fT (u, λ) :=
1

2π

∞∑

s=−∞
Cov(X⌊uT− s

2
⌋,T , X⌊uT+ s

2
⌋,T )e

−iλs. (2.9)

The Wigner-Ville spetrum is a real-valued funtion of time and frequeny. This is,

as disussed before, one possibility of de�ning a time dependent spetrum.

Dahlhaus [7℄ proved that the time varying spetral density f(u, λ) is uniquely de-

termined and equals the limit of the Wigner-Ville spetrum.
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2 Loally stationary proesses

Theorem 2.1 (L2
-onvergene of fT (u, λ) to f(u, λ)).

→ Dahlhaus [7℄, Theorem 2.2

Let Xt,T be a loally stationary proess and A(u, λ) uniformly Lipshitz ontinuous

in both omponents with index α > 1
2
.

We then have for all u ∈ (0, 1):

∫ π

−π
|fT (u, λ)− f(u, λ)|2dλ = o(1).

Remark 2.5

Continuous di�erentiability of A with respet to u and λ is su�ient for A(u, λ)
being uniformly Lipshitz-ontinuous (as in Haug [24℄, De�nition 2.7) with α > 1

2
.

Despite the fat that the spetral representation of a non-stationary proess is not

unique (see Setion 1), the above theorem points out that if there exists a tvMA(∞)-
representation as in De�nition (2.1) of a loally stationary proess with a(u, λ) (and
therefore A(u, λ)) su�iently smooth, the time varying spetral density f(u, λ) is
asymptotially unique. It is determined by the whole triangular array and equals

the limit of the Wigner-Ville spetrum, f. Dahlhaus [7℄, p.143.

2.1.5 Dependene struture of a loally stationary proess

Let Xt,T be a loally stationary proess as in De�nition 2.1. For stationary time

series with absolutely summable autoovariane funtion γ we have |γ(h)| → 0
as |h| → ∞. So it does seem only natural that loally stationary proesses, as

generalizations of stationary proesses, do also have a deaying ovariane struture

as |h| → ∞. From Dahlhaus [15℄, proof of Proposition 5.4, we obtain

cT

(
t

T
, h

)
:= Cov(Xt,T , Xt+h,T ) =

∞∑

j=−∞
at,T (j)at+h,T (j + h). (2.10)

They then prove (Equation (51)) that the above relation yields

sup
t

∣∣∣∣cT
(
t

T
, h

)∣∣∣∣ ≤
∞∑

j=−∞

K

l(j)l(j + h)
≤ K

l(h)
,

with supt |at,T (j)| ≤ K
l(j)

(from De�nition 2.1 (b)). The last inequality results from

the fat that

sup
j∈Z

1

l(j + h)
=

1

l(h)
.
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2.1 The onept of loal stationarity

Considering the de�nition of l in De�nition 2.1 (b), we an see that

K
l(h)

onverges

to zero for |h| → ∞. Thus, the following Lemma results:

Lemma 2.1.

→ Dahlhaus [15℄

The time varying ovariane cT
(
t
T
, h
)
of a loally stationary proess {Xt,T} at time

t = 1, . . . , T onverges to zero for lags |h| → ∞ :

cT

(
t

T
, h

)
= o(1).

The notation cT is borrowed from Neumann and von Sahs [40℄.
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CHAPTER 3

Adapting the Fourier transformation

A loally stationary proess {Xt,T} an, as the name suggests, be loally (i.e. in

a small environment U) approximated by a stationary proess, see Equation (2.4)

for a formal desription. In order to preserve the hanging nature of a loally

stationary time series for the frequeny domain it may therefore seem only natural

to apply the Fourier transformation to eah environment. The loal moving Fourier

transformation is introdued as an intuitive and numerially heap proedure to

meet these needs.

3.1 Prerequisites

Conerning the sample size T and the segments' length 2m + 1, we require the

following onditions to hold:

• m→ ∞ (for T → ∞).

• m
3
2

T
→ 0 (for T → ∞) i.e. the sample size inreases onsiderably faster than

the window size.

For the sake of simpliity, we introdue the following onepts for j ∈ Z:

mod(j) :=





m, if m is a fator of j ∈ Z,

j mod (m) , j > 0 ∧ m | j,
m− [(−j) mod (m)], j < 0 ∧ m ∤ j.

(3.1)

div(j) :=

⌈
j

m

⌉
. (3.2)

Then, j = mod(j) + (div(j)− 1)m. (3.3)
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3 Adapting the Fourier transformation

3.2 The loal moving Fourier transform

In the following, no distintion is made between the atual proess and the realiza-

tion of the proess. We heuristially desribe how the loal moving Fourier transform

is developed. The formal de�nition an be found in De�nition 3.2.

In order to simplify notation, we will from here on assume to not only have {Xt,T}t∈[1,T ]
� our time series of length T we wish to transform � available, but also addition-

ally a su�ient (depending on the window size 2m + 1) number of preeding and

sueeding observations, i.e.

X−m+1,T , . . . , X1,T , . . . , XT,T , . . . , XT+m,T .

The reason is, as already stated above, the advantage of keeping notation simple

enough to be able to fully fous on the new way of transforming {Xt,T}t∈[1,T ].

As a loally stationary proess an loally (in an environment getting larger at some

su�iently slower pae than T ) be onsidered stationary, we an look at

{Xt,T}t∈[t0−C·m,t0+C·m], (3.4)

C > 0, t0 ∈ [1, T ], as an approximately stationary time series. This espeially holds

true for the sequene

Xt0−m,T , . . . , Xt0+m,T . (3.5)

Without taking into aount that there are more observations than those 2m+1we
now apply the usual Fourier transform to the stationary sequene (3.5).

F(Xt0−m,T , . . . , Xt0+m,T ;λk) :=
1√

2m+ 1

2m∑

l=0

Xl+t0−m,T e
−ilλk

=
1√

2m+ 1

t0+m∑

l=t0−m
Xl,Te

−ilλkei(t0−m)λk , (3.6)

with 1 ≤ k ≤ 2m, and λk :=
2πk

2m+1
denoting the Fourier frequenies.

We now onentrate on the shifted streth

Xt0−m+1,T , . . . , Xt0+m+1,T (3.7)

and alulate F(Xt0−m+1,T , . . . , Xt0+m+1,T ;λk), k = 1, . . . , m.

The motive for shifting and doing another Fourier transform of a slightly di�erent

streth beomes more obvious when notiing that the observations (3.7) also fall

within (3.4). Heuristis then indiate that the Fourier oe�ients of (3.5) and (3.7)

should also possess similar statistial properties. Aordingly, Fourier oe�ients

stemming from adjaent strethes may be interhanged without major hanges to
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3.2 The loal moving Fourier transform

statistial inferene.

We use these heuristis to ome up with the following onstrution: Instead of

alulating all 2m+ 1 Fourier oe�ients for every single streth, we alulate just

one Fourier oe�ient per streth and then move on to the next streth. That is,

the entre of the streth onsidered is no longer a �xed t0 as in the transformation

(3.6), but depends on the index k of the Fourier frequeny λk onsidered:

F(Xk−m,T , . . . , Xk+m,T ;λk) =
1√

2m+ 1

k+m∑

l=k−m
Xl,T e

−ilλkei(k−m)λk , 1 ≤ k ≤ m,

(3.8)

with λk :=
2πk

2m+1
denoting Fourier frequenies.

Exemplarily, we alulate, say F(X1−m,T , . . . , X1+m,T ;λ1) for the �rst streth and

then move on to the adjaent streth and alulate F(X2−m,T , . . . , X2+m,T ;λ2). Con-
sequently, as the Fourier oe�ients of adjaent strethes are interhangeable, the

Fourier oe�ients F(X1−m,T , . . . , X1+m,T ;λ1), F(X2−m,T , . . . , X2+m,T ;λ2) are, from
a statistial point of view, as good as F(X1−m,T , . . . , X1+m,T ;λ1),
F(X1−m,T , . . . , X1+m,T ;λ2). We then move on to the next streth, from whih we

alulate F(X3−m, . . . , X3+m;λ3). Again, F(X2−m,T , . . . , X2+m,T ;λ2),
F(X3−m,T , . . . , X3+m,T ;λ3) should, onerning statistial properties, be as good as

F(X2−m,T , . . . , X2+m,T ;λ2), F(X2−m,T , . . . , X2+m,T ;λ3).
So intuitively, instead of

F(X1−m,T , . . . , X1+m,T ;λ1),F(X2−m,T , . . . , X2+m,T ;λ2),F(X3−m,T , . . . , X3+m,T ;λ3),

we an also use

F(Xj−m,T , . . . , Xj+m,T ;λ1),F(Xj−m,T , . . . , Xj+m,T ;λ2),F(Xj−m,T , . . . , Xj+m,T ;λ3),

j = 1, 2, 3, basially without any hange in statistial harateristis. Shifting the

time window of length 2m + 1, m − 1 times (eah time generating an additional

Fourier oe�ient stemming from the atual streth) we �nally obtain m Fourier

oe�ients

F(X1−m,T , . . . , X1+m,T ;λ1),F(X2−m,T , . . . , X2+m,T ;λ2), . . . ,F(X0,T , . . . , X2m,T ;λm)

(3.9)

This is still not a transformation of a time series of length T , but aptures the basi
idea!

Note that the observations used for those Fourier oe�ients are X1−m,T , . . . , X2m,T ,

withX0,T , . . . , X1+m being part of eah of them−1 Fourier transforms. The set (3.9)

therefore onsists of Fourier oe�ients of basially X0,T , . . . , Xm+1, as these are the

most in�uential observations on the oe�ients. When intending to refer to the set

(3.9) as loal moving Fourier oe�ients at some time k, it is thus apparent that we
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3 Adapting the Fourier transformation

should speak of (3.9) as the loal moving Fourier oe�ients at time k = ⌊m
2
⌋+ 1.

To ease the understanding of the following de�nition, we will onsider the next

two points in time and look at the loal moving Fourier oe�ients at the time

k =
⌊
m
2

⌋
+ 2 and k =

⌊
m
2

⌋
+ 3:

F(X1,T , . . . , X2m+1,T ;λ1),F(X2−m,T , . . . , X2+m,T ;λ2), . . . , F(X0,T , . . . , X2m,T ;λm)

F(X1,T , . . . , X2m+1,T ;λ1), F(X2,T , . . . , X2m+2,T ;λ2), . . . , F(X0,T , . . . , X2m,T ;λm).

We an see that by moving on in time, the oe�ients, starting at frequeny λ1 get

replaed by more reent oe�ients at the same frequeny. This sheme ontinues

until we get to time k =
⌊
m
2

⌋
+m+ 1:

F(X1,T , . . . , X2m+1,T ;λ1), F(X2,T , . . . , X2m+2,T ;λ2), . . . , F(Xm,T , . . . , X3m,T ;λm),

and then starts anew, substituting F(X1,T , . . . , X2m+1,T ;λ1) by the more reent o-

e�ient F(Xm+1,T , . . . , X3m+1,T ;λ1).
The formal de�nition of the loal moving Fourier oe�ients at time k, MFk(λj), is
as follows:

De�nition 3.1 (Loal moving Fourier oe�ients).

The loal moving Fourier oe�ients at time k for frequenies λl, l = 1, . . . , m, are

given by

MFk(λl) :=
1√

2m+ 1

2m∑

t=0

X
l+

(

div(k−⌊m2 ⌋)−1{l≥mod(k−⌊m2 ⌋)}
)

m−m+t,T
e−itλl .

Furthermore,

MFk(λ2m+1−j) :=MFk(λj), j = 0, . . . , m,

and MFk(λ0) := 0. (3.10)

The operators mod and div are de�ned aording to (3.1) and (3.2).

The reason for de�ning MFk(λ2m+1−j) := MFk(λj), j = 0, . . . , m, and MFk(λ0) := 0
is given in Remark 3.4.

Remark 3.1

The loal moving Fourier oe�ients at time k+
⌊
m
2

⌋
and frequeny λl, l = 1, . . . , m

are depending on

X
l+0−m+[div(k)−1{l≥mod(k)}]m, Xl+1−m+[div(k)−1{l≥mod(k)}]m, . . . , Xl+m+[div(k)−1{l≥mod(k)}]m.

Removing the indiator funtion and using k = mod(k) + [div(k)− 1]m, this is for

l < mod(k)

Xl+k−mod(k), Xl+k−mod(k)+1, . . . , Xl+k−mod(k)+2m

20



3.2 The loal moving Fourier transform

and for l ≥ mod(k)

Xl+k−mod(k)−m, Xl+k−mod(k)−m+1, . . . , Xk−mod(k)+m.

That is, the set

{MF
k+⌊m2 ⌋(λl)}l=1,...,m

inorporates the observations Xk−m, . . . , Xk+2m−1. Of those 3m observations,

Xk−1, . . . , Xk+m

our in all of the loal moving Fourier oe�ients. In other words, the set of loal

moving Fourier oe�ients basially desribes the time series in an environment of

time k +
⌊
m
2

⌋
.

We now extend our onstrution in order to �nally be able to fully transform

{Xt,T}t∈[1,T ]. This is done by starting with X1−m,T , . . . , X1+m,T and shifting the

time window of length 2m + 1 not just m − 1 times, but T − 1 times (eah time

generating an additional Fourier oe�ient stemming from the atual streth). By

doing so, we �nally obtain T Fourier oe�ients. Some attention, however, has to be

paid to the frequenies, as we only alulate the oe�ients for frequenies λmod(k),
whih guarantees the index to remain between 1 and m (see also Remark 3.4).

De�nition 3.2 (Moving Fourier transform).

Let Xt,T be a loally stationary proess as in De�nition 2.1. The moving Fourier

oe�ients ck (1 ≤ k ≤ T ) of Xt,T are then de�ned by

ck := Fdiv(k)−1
(
λmod(k)

)
:= F(Xk−m,T , . . . , Xk+m,T ;λmod(k))

=
1√

2m+ 1

k+m∑

l=k−m
Xl,Te

−ilλmod(k)ei(k−m)λmod(k) ,

(3.11)

with λmod(k) :=
2πmod(k)
2m+1

denoting the Fourier frequenies and the operator mod a-

ording to (3.1).

Following the algorithm (3.11), hene, yields the moving Fourier oe�ients

c1, . . . , cT ,

whih ode the time series X1,T , . . . , XT,T . Due to the ontinuous shifting, loal

strutural information is preserved.
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3 Adapting the Fourier transformation

Remark 3.2

We will speak of moving Fourier oe�ients when referring to c1, . . . , cT , while we

use the term loal moving Fourier oe�ients at time k to indiate that we are lo-

ally, at one point in time, looking at m of the moving Fourier oe�ients and

rearranging them aording to their frequenies. Hene, loal moving Fourier o-

e�ients refers to the set MFk(λ1), . . . ,MFk(λm) of m rearranged moving Fourier

oe�ients at some point in time k. They relate to eah other by

MFk(λl) = c
l+

[

div(k−⌊m2 ⌋)−1{l≥mod(k−⌊m2 ⌋)}
]

m
(3.12)

Remark 3.3

The additional notation Fdiv(k)−1
(
λmod(k)

)
instead of ck in De�nition 3.2 is intro-

dued to ease the understanding of the onept of the moving Fourier transform.

When onstruting loal moving Fourier oe�ients we ombine moving Fourier o-

e�ients loated around the point in time onsidered and do some rearranging. We

might therefore enounter a set of oe�ients whih onsists of the moving Fourier

oe�ients, say, cm+1, . . . , cm+17, c18, . . . , cm. Due to the moving, some oe�ients

are 'older' than others. Sorting with respet to the urrentness of the oe�ients

yields c18, . . . , cm+17. The notation with the alligraphi F is hosen to prominently

display via the supersript where the disontinuity onerning the up-to-dateness of

the oe�ients is. In the example, we would write

F0 (λ1) ,F0 (λ2) , . . . ,F0 (λ17) ,F−1 (λ18) , . . . ,F−1 (λm) .

The notation is used in Theorem 5.4.

Remark 3.4

We have restrited the range of k to {1, . . . , m} . The reason we imply this restrition

is as follows:

The spetral density of a stationary proess (of length 2m+1) is uniquely spei�ed by

values within the interval [0, π]. This means that in order to extrat all information

on the spetral density, only the Fourier oe�ients orresponding to the frequenies

λ0, . . . , λm are needed. The remaining Fourier oe�ients (in the stationary ase

of a time series of length 2m + 1) follow using symmetry arguments and the on-

jugated omplexes of the already alulated oe�ients. In detail: Suppose we are

given a time series of length 2m+1 and have alulated F(X1−m,T , . . . , X1+m,T ;λ1),
F(X2−m,T , . . . , X2+m,T ;λ2), . . . , F(X0,T , . . . , X2m,T ;λm) We may now write

F(Xj−m,T , . . . , Xj+m,T ;λ2m+1−j) = F(Xj−m,T , . . . , Xj+m,T ;λj), for j = 0, . . . , m.

F(X−m,T , . . . , Xm,T ;λ0) arries information on the mean. As we start out with a

time series with mean zero, we may set these to zero in order for the bak trans-

formed time series to be entred as well. This is the reason why we only gather

Fourier oe�ients for frequenies λ1, . . . , λm from the given time series {Xt,T}.
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3.3 Moving inverse Fourier transform

Remark 3.5

The assumption that we have data

X−m+1,T , . . . , XT+m,T

available, i.e. a time series of length T+2m instead of just a time series of length T ,
an easily be abandoned by slightly hanging the sheme of transformation, employing

the ordinary Fourier transform (f. (3.6)) for the �rst and last streth and retrieving

not one, but m Fourier oe�ients.

However, the question is not only how to transform the data to the frequeny do-

main, but how to obtain (bootstrapped) time series data from the moving Fourier

oe�ients. This is where the speial de�nition of the loal moving Fourier oe�-

ients are of great importane. The proedure will be explained in Setion 3.3.

Of ourse, the de�nition of loal moving Fourier oe�ients implies that there is

also a moving periodogram.

De�nition 3.3 (Loal moving periodogram).

Consider a loally stationary proess Xt,T aording to De�nition 2.1 and its lo-

al moving Fourier oe�ients at time k as in De�nition 3.1. The loal moving

periodogram MIk : [0, 2π] → R at time k is then de�ned by

MIk (λj) := |MFk(λj)|2 , (3.13)

with λj :=
2π j
N
, j = 1, . . . , m, denoting the Fourier frequenies and k = 1, . . . , T .

The loal moving periodogram an be periodially extended.

Remark 3.6

The intention of introduing the new term moving periodogram is to reate a sequene

of loal periodograms whih 'move' through the time series. At eah point in time

k, however, the loal moving periodogram equals the loal periodogram I2m+1,X

(
k
T
, ·
)

used by Sergides [49℄. The loal periodogram is de�ned by

I2m+1,X (u, λ) :=
1

2π(2m+ 1)

∣∣∣∣∣

2m∑

l=0

Xl−m+⌊uT ⌋e
−iλl

∣∣∣∣∣

2

(3.14)

and we have 2πI2m+1,X

(
u, λmod(⌊uT ⌋)

)
= |c⌊uT ⌋|2.

3.3 Moving inverse Fourier transform

3.3.1 Priniple of onstrution

In the following setion, we will onstrut a transformation from the frequeny

domain to the time domain.
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3 Adapting the Fourier transformation

We start witha sequene of length T +2
⌊
m
2

⌋
of arbitrary omplex random variables

in the frequeny domain:

c1−⌊m2 ⌋, . . . , c1, . . . , cT+⌊m2 ⌋.

Now, for eah point in time k, we an selet c
k−⌊m2 ⌋, . . . , ck+⌈m2 ⌉−1 and rearrange

them in the manner of Remark 3.2, Equation 3.12. Having done so, we all the

elements of the set

MF
(c)
k (λ1), . . . ,MF

(c)
k (λm).

(We hose the notation like this, beause the onstrution mirrors the onstrution

of the loal moving Fourier oe�ients MF from the moving Fourier oe�ients c.)
Analogously to De�nition 3.1, the de�nition of the loal moving Fourier oe�ients,

we use the omplex onjugated values for the missing frequenies:

0,MF
(c)
k (λ1), . . . ,MF

(c)
k (λm),MF

(c)
k (λm),MF

(c)
k (λm−1), . . . ,MF

(c)
k (λ1).

We now apply the ordinary inverse Fourier transformation of length 2m+1 at time

k to this data.

For all other points in time we proeed analogously.

Summing up, the idea underlying this transformation inludes shifting a window

of length m along the given sequene c1−⌊m2 ⌋, . . . , c1, . . . , cT+⌊m2 ⌋, rearranging the

elements resulting from eah shift to reate the MF (c)
's and applying the ordinary

inverse Fourier transform of length 2m+ 1 at the orresponding time to eah of the

sets, whih results in T elements in the time domain.

The formal de�nition of the new transformation is as follows:

De�nition 3.4 (Moving inverse Fourier transform).

Let c1−⌊m2 ⌋, . . . , cT+⌊m2 ⌋ be elements in the frequeny domain. The transformation

yielding a sample in the time domain is alled moving inverse Fourier transform and

is de�ned by

Xback
t,T := F−1

(
MF

(c)
t (λ1),MF

(c)
t (λ2), . . . ,MF

(c)
t (λm); t

)

:= 0 · eitλ0 + 1√
2m+ 1

m∑

l=1

c
l+

(

div(t−⌊m2 ⌋)−1{l≥mod(t−⌊m2 ⌋)}
)

m
eiλlt (3.15)

+
1√

2m+ 1

m∑

l=1

c
l+

(

div(t−⌊m2 ⌋)−1{l≥mod(t−⌊m2 ⌋)}
)

m
e−iλlt (3.16)

with λk :=
2π k
N
, k = 0, . . . , m, denoting the Fourier frequenies and t = 1, . . . , T .
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k (λ1),MF

(c)
k (λ2), . . . ,MF

(c)
k (λm) MF

(c)
k (λm+1), . . . ,MF

(c)
k (λ2m) Xback

k,T

1 0, c1, . . . , c⌈m2 ⌉, c1−⌊m2 ⌋, c2−⌊m2 ⌋, c3−⌊m2 ⌋ . . . , c0, c0, . . . , c1−⌊m2 ⌋, c⌈m2 ⌉, . . . , c1 ⇒ Xback
1,T

2 0, c1, . . . , c⌈m2 ⌉, c⌈m2 ⌉+1, c2−⌊m2 ⌋, c3−⌊m2 ⌋ . . . , c0, c0, . . . , c2−⌊m2 ⌋, c⌈m2 ⌉+1, . . . , c1 ⇒ Xback
2,T

3 0, c1, . . . , c⌈m2 ⌉, c⌈m2 ⌉+1, c⌈m2 ⌉+2, c3−⌊m2 ⌋, . . . , c0, c0, . . . , c3−⌊m2 ⌋, c⌈m2 ⌉+2, . . . , c1 ⇒ Xback
3,T

.

.

.

.

.

.

.

.

.

.

.

.

1 +
⌊
m
2

⌋
0, c1, . . . , cm, cm, . . . , c3, c2, c1 ⇒ Xback

1+⌊m2 ⌋,T
2 +

⌊
m
2

⌋
0, cm+1, c2, . . . , cm, cm, . . . , c3, c2, cm+1 ⇒ Xback

2+⌊m2 ⌋,T
3 +

⌊
m
2

⌋
0, cm+1, cm+2, c3, . . . , cm, cm, . . . , c3, cm+2, cm+1 ⇒ Xback

3+⌊m2 ⌋,T
.

.

.

.

.

.

.

.

.

.

.

.

m+ 1 +
⌊
m
2

⌋
0, cm+1, . . . , c2m, c2m, . . . , cm+1 ⇒ Xback

m+1+⌊m2 ⌋,T
m+ 2 +

⌊
m
2

⌋
0, c2m+1, cm+2, . . . , c2m, c2m, . . . , cm+2, c2m+1 ⇒ Xback

m+2+⌊m2 ⌋,T
.

.

.

.

.

.

.

.

.

.

.

.

T −
⌈
m
2

⌉
+ 1 0, cT−m+1, cT−m+2, cT−m+3, . . . , cT , cT , . . . , cT−m+3, cT−m+2, cT−m+1 ⇒ Xback

T−⌈m2 ⌉+1,T

T −
⌈
m
2

⌉
+ 2 0, cT+1, cT−m+2, cT−m+3, . . . , cT , cT , . . . , cT−m+3, cT−m+2, cT+1 ⇒ Xback

T−⌈m2 ⌉+2,T

.

.

.

.

.

.

.

.

.

.

.

.

T 0, cT+1. . . , cT+⌊m2 ⌋, cT−⌈m
2
⌉, . . . , cT , cT , . . . , cT−⌈m

2
⌉, cT+⌊m2 ⌋, . . . , cT+1 ⇒ Xback

T,T

Figure 3.1: Illustrating the moving inverse Fourier transform (De�nition 3.4)
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3 Adapting the Fourier transformation

3.3.2 Inverse - quote unquote

The de�nition of the moving inverse Fourier transform enables us to obtain samples

bak in the time domain. We now have the possibility, having applied the moving

Fourier transformation to time domain data, to go bak to the time domain. The

resulting observations will not be the original Xt,T one starts out with, due to the

shifting performed, but some time series with similar harateristis.

We are interested in how many (and whih) of the original observations of the time

series {Xt,T} are used to onstrut one observation Xback
t,T ?

De�nition 3.4 then yields, using the oe�ients ck obtained as in De�nition 3.2 and

the oe�ients MFk as in De�nition 3.1:

Xback
t,T = F−1 (MFt(λ1),MFt(λ2), . . . ,MFt(λm); t) .

Xback
t,T is, thus, onstruted using the loal moving Fourier oe�ients at time t.

Aording to Remark 3.1, the set {MFt(λl)}l=1,...,m inorporates the observations

X
t−⌊m2 ⌋−m, . . . , Xt+⌈m2 ⌉+m−1.

Therefore, in order to onstrut Xback
t,T , we need a streth of observations of length

3m, namely the streth X
t−⌊m2 ⌋−m, . . . , Xt+⌈m2 ⌉+m−1.

Of those 3m observations,

X
t−⌊m2 ⌋−1, . . . , Xt+⌈m2 ⌉

our in all of the loal moving Fourier oe�ients. That is, those m+2 observations
have the main in�uene on Xback

t,T .
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CHAPTER 4

Basi properties of the moving Fourier oe�ients

The following setion is devoted to determining distributional harateristis of the

loal moving Fourier oe�ients. As our De�nition 2.1 of loally stationary pro-

esses assumes errors with mean zero, we may diretly state that the expeted value

of the moving Fourier transform equals zero.

All results also hold for λj , j = 1, . . . , 2m + 1, due to symmetry. The ase of

j = 1, . . . , m is onsidered w.l.o.g. for the sake of readability.

Lemma 4.1. Let Xt,T be a loally stationary proess as in De�nition 2.1. It holds

that

sup
u∈[0,1]

sup
l=1,...,m

E
(
MF⌊uT ⌋(λl)

)
= 0. (4.1)

Aording to De�nition 3.1, with ζk,l := div
(
k −

⌊
m
2

⌋)
− 1{l≥mod(k−⌊m2 ⌋)},

MF ε
k (λl) :=

1√
2m+ 1

2m∑

t=0

εl+ζk,lm−m+te
−itλl

(4.2)

denotes the loal moving Fourier oe�ient at time k of the innovations at frequeny

λl. Analogously, we de�ne for the stationary approximation at time k

MF X̃
k (λl) :=

1√
2m+ 1

2m∑

t=0

X̃l+ζk,lm−m+t

(
k

T

)
e−itλl . (4.3)

For the asymptoti onsiderations we will make use of the resaling as introdued by

Dahlhaus [8℄. However, not only the relationship between the loal moving Fourier
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4 Basi properties of the moving Fourier oe�ients

oe�ients but also between the moving periodograms is relevant for further proofs

throughout this work. If squared, the loal moving Fourier oe�ient at time ⌊uT ⌋
and frequeny λl of the innovations yields the value of the moving periodogram of

the innovations at that frequeny: |MF ε
⌊uT ⌋(λl)|2 =MIε⌊uT ⌋,m(λl).

The following approah is taken:

In a �rst step, the loal moving Fourier transform of a stationary time series is on-

sidered and linked to the loal moving Fourier transform of the innovations. This

is done in Lemma 4.2. To prove this we extend the proof of Theorem 10.3.1 in

Brokwell and Davis [3℄. Lemma 4.3 then is a generalization to loally stationary

time series.

In order to gain analogous results for the moving periodograms, Lemma 4.2 is used

as a basis to prove Theorem 4.2. The ulminating result is Theorem 4.3, whih

links the moving periodogram of a loally stationary time series to the moving pe-

riodogram of the innovations.

In the beginning some tehnial requirements are proved.

4.1 Tehnial basis

Proposition 4.1

Let X̃t(u) denote the stationary approximation of Xt,T at time ⌊uT ⌋.
Let further l = 1, . . . , m. With the De�nitions given by (4.2) and (4.3),

(a)

sup
u∈[0,1]

sup
l=1,...,m

E|MF ε
⌊uT ⌋(λl)|2 = 1. (4.4)

(b)

sup
u∈[0,1]

sup
l=1,...,m

E|MF ε
⌊uT ⌋(λl)|4 <∞. (4.5)

()

sup
u∈[0,1]

sup
l=1,...,m

E|MF X̃
⌊uT ⌋(λl)|4 <∞, (4.6)

sup
u∈[0,1]

sup
l=1,...,m

E|MF⌊uT ⌋(λl)|4 <∞. (4.7)

Proof. Let ζ⌊uT ⌋,l = div
(
⌊uT ⌋ −

⌊
m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)}.
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4.1 Tehnial basis

(a) Beause Eεkεl = δk,l it holds

sup
u∈[0,1]

sup
l=1,...,m

E|MF ε
⌊uT ⌋(λl)|2

= sup
u∈[0,1]

sup
l=1,...,m

1

2m+ 1
E

(
2m∑

t1,t2=0

εl+ζ⌊uT⌋,lm−m+t1εl+ζ⌊uT⌋,lm−m+t2e
−i(t1−t2)λl

)

= sup
u∈[0,1]

sup
l=1,...,m

1

2m+ 1

2m∑

t1,t2=0

E(εl+ζ⌊uT⌋,lm−m+t1εl+ζ⌊uT⌋,lm−m+t2)e
−i(t1−t2)λl

= E(ε21) = 1.

(b) Sine

E(εl+ζ⌊uT⌋,lm−m+t1εl+ζ⌊uT⌋,lm−m+t2εl+ζ⌊uT⌋,lm−m+t3εl+ζ⌊uT⌋,lm−m+t4)

=





E(ε41), if t1 = t2 = t3 = t4,

1, if ∃i1, i2, j1, j2 : ti1 = ti2 6= tj1 = tj2,

0, else,

(4.8)

we get

sup
u∈[0,1]

sup
l=1,...,m

E|MF ε
⌊uT ⌋(λl)|4

= sup
u∈[0,1]

sup
l=1,...,m

1

(2m+ 1)2

∣∣∣∣
2m∑

t1,t2,t3,t4=0

E(εl+ζ⌊uT⌋,lm−m+t1εl+ζ⌊uT⌋,lm−m+t2

·εl+ζ⌊uT⌋,lm−m+t3εl+ζ⌊uT⌋,lm−m+t4)e
i(t2−t1+t3−t4)λl

∣∣∣∣

≤ sup
u∈[0,1]

sup
l=1,...,m

1

(2m+ 1)2

(
K

∣∣∣∣
2m∑

t1,t2=0

1

∣∣∣∣+K

∣∣∣∣
2m∑

t1=0

E(ε41)

∣∣∣∣

)
<∞.

() The same ase di�erentiation as in (4.8) needs to be done, however, note that

instead of just having to onsider ti being equal or not, we need to be on-

erned whether indies ti − ji are equal, as we fae
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4 Basi properties of the moving Fourier oe�ients

sup
u∈[0,1]

sup
l=1,...,m

E|MF X̃
⌊uT ⌋(λl)|4

= sup
u∈[0,1]

sup
l=1,...,m

1

(2m+ 1)2

∣∣∣∣
2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞

a

(
l + ζ⌊uT ⌋,lm−m+ t1 − j1

T
, j1

)
a

(
l + ζ⌊uT ⌋,lm−m+ t2 − j2

T
, j2

)

a

(
l + ζ⌊uT ⌋,lm−m+ t3 − j3

T
, j3

)
a

(
l + ζ⌊uT ⌋,lm−m+ t4 − j4

T
, j4

)

E(εl+ζ⌊uT⌋,lm−m+t1−j1εl+ζ⌊uT⌋,lm−m+t2−j2

·εl+ζ⌊uT⌋,lm−m+t3−j3εl+ζ⌊uT⌋,lm−m+t4−j4)e
i(t2−t1+t3−t4)λl

∣∣∣∣.

Still, sine

sup
u∈[0,1]

|a (u, j1)| ≤
K

l(j1)
,

by De�nition 2.1, we get for the ase of all indies being equal, that is the ase

of t1− j1 = t2− j2 = t3− j3 = t4− j4, an upper bound of the above expression

of

E(ε41)
K

(2m+ 1)2

·
∣∣∣∣

2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞

∣∣∣∣
1

l(j1)

∣∣∣∣
∣∣∣∣

1

l(j2)

∣∣∣∣ ·
∣∣∣∣

1

l(j3)

∣∣∣∣ ·
∣∣∣∣

1

l(j4)

∣∣∣∣1{t1−j1=t2−j2=t3−j3=t4−j4}

≤ K(2m+ 1)E(ε41)

(2m+ 1)2
= O

(
1

m

)
.

The other possibility is any two indies being equal. There are three ases:

t1 − j1 = t2 − j2 6= t3 − j3 = t4 − j4,

t1 − j1 = t3 − j3 6= t2 − j2 = t4 − j4,

t1 − j1 = t4 − j4 6= t2 − j2 = t3 − j3.

Exemplarily, we will onsider t1 − j1 = t4 − j4 6= t2 − j2 = t3 − j3. Hene, the
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4.1 Tehnial basis

upper bound in that ase is

K

(2m+ 1)2

2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞

∣∣∣∣
1

l(j1)

∣∣∣∣ ·
∣∣∣∣

1

l(j2)

∣∣∣∣

·
∣∣∣∣

1

l(j3)

∣∣∣∣ ·
∣∣∣∣

1

l(j4)

∣∣∣∣1{t1−j1=t4−j4 6=t2−j2=t3−j3}

= O (1) .

Finally, we now get

sup
u∈[0,1]

sup
l=1,...,m

E|MF X̃
⌊uT ⌋(λl)|4 = O (1) .

For supu∈[0,1] supl=1,...,mE|MF⌊uT ⌋(λl)|4 we get the same result, as we merely

need to substitute all funtions a
(
t
T
, j
)
by at,T (j). For the new oe�ients the

same bounds apply. See De�nition 2.1.

.

Proposition 4.2

Let X̃t(u) denote the stationary approximation of Xt,T at time ⌊uT ⌋.
Let further l = 1, . . . , m and ζ⌊uT ⌋,l = div

(
⌊uT ⌋ −

⌊
m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)} and

A(u, λ) :=
∑∞

j=−∞ a(u, j)e−iλj, At,T (λ) :=
∑∞

j=−∞ at,T (j)e
−iλj .

Then

(a)

sup
u∈[0,1]

∑

j∈Z

∣∣a⌊uT ⌋,T (j)
∣∣ <∞. (4.9)

(b)

sup
x∈[0,1]

sup
l=1,...,m

|A (x, λl)| <∞. (4.10)

() For z ∈ R>0

sup
m∈N

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣∣A
(
l + ζ⌊uT ⌋,lm−m

T
, λl

)
− A(u, λl)

∣∣∣∣
z

= O

(
mz

T z

)
.(4.11)

(d) For z ∈ R>0

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣∣A
(
l + ζ⌊uT ⌋,lm−m

T
, λl

)
− Al+ζ⌊uT⌋,lm−m,T (λl)

∣∣∣∣
z

= O

(
1

T z

)
.

(4.12)
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4 Basi properties of the moving Fourier oe�ients

For z ∈ R>0

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣A (u, λl)− Al+ζ⌊uT⌋,lm−m,T (λl)
∣∣∣
z

= O

(
mz

T z

)
.

(4.13)

(e) Let j = 1, . . . , 2m.

sup
|u−u′|≤Cm

T

||A(u, λj)|2 − |A(u′, λj)|2| = O

(
m2

T 2
+
m

T

)
= O

(m
T

)
. (4.14)

(f) Let j = 1, . . . , 2m.

sup
|u−u′|≤Cm

T

||A(u, λj)|4 − |A(u′, λj)|4| = O

(
m4

T 4
+
m3

T 3
+
m2

T 2
+
m

T

)
= O

(m
T

)
.

(4.15)

Proof. (a) With De�nition 2.1,

sup
u∈[0,1]

∞∑

j=−∞

∣∣a⌊uT ⌋,T (j)
∣∣ ≤ sup

u∈[0,1]

∞∑

j=−∞

∣∣a⌊uT ⌋,T (j)− a(u, j)
∣∣+ sup

u∈[0,1]

∞∑

j=−∞
|a(u, j)|

≤ K sup
u∈[0,1]

∞∑

j=−∞

∣∣∣∣
⌊uT ⌋
T

− u

∣∣∣∣
1

l(j)
+ sup

u∈[0,1]

∞∑

j=−∞

1

l(j)
<∞.

(b)

sup
x∈[0,1]

sup
l=1,...,m

|A (x, λl)| ≤ sup
x∈[0,1]

sup
l=1,...,m

∞∑

j=−∞
|a (x, j)|

≤
∞∑

j=−∞

K

l(j)
<∞,

f. De�nition 2.1(b).
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4.1 Tehnial basis

() Sine supu∈[0,1] supl=1,...,m

∣∣∣ l+ζ⌊uT⌋,lm−m
T

− u
∣∣∣ ≤ Cm

T
, it holds

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣∣A
(
l + ζ⌊uT ⌋,lm−m

T
, λl

)
−A(u, λl)

∣∣∣∣

≤ sup
u∈[0,1]

sup
l=1,...,m

∞∑

j=−∞

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)
− a(u, j)

∣∣∣∣

≤
∞∑

j=−∞

Km

Tl(j)
= O

(m
T

)
,

f. De�nition 2.1(b) and (). Consequently, (4.11).

(d) Sine

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣∣
l + ζ⌊uT ⌋,lm−m

T
− u

∣∣∣∣ ≤ K
m

T
,

it holds that

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣∣A
(
l + ζ⌊uT ⌋,lm−m

T
, λl

)
−Al+ζ⌊uT⌋,lm−m,T (λl)

∣∣∣∣

≤ sup
u∈[0,1]

sup
l=1,...,m

∞∑

j=−∞

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)
− al+ζ⌊uT⌋,lm−m,T (j)

∣∣∣∣

≤
∞∑

j=−∞

K

Tl(j)
= O

(
1

T

)
,

f. De�nition 2.1(b) and (). Consequently, (4.12).

(e) Results from parts () and (d).

(f) Let |u− u′| ≤ Cm
T

|A(u, λj)|2 =

∣∣∣∣∣

∞∑

k=−∞
a(u, k)e−iλjk

∣∣∣∣∣

2

=
∞∑

k1,k2=−∞
a(u, k1)a(u, k2)e

−iλj(k1−k2).

=
∞∑

k1,k2=−∞
[a(u, k1)− a(u′, k1) + a(u′, k1)][a(u, k2)− a(u′, k2) + a(u′, k2)]

·e−iλj(k1−k2).

Maintaining the di�erene a(u, ki) − a(u′, ki), extrating yields 4 summands

33



4 Basi properties of the moving Fourier oe�ients

with the last one being a(u′, k1)a(u
′, k2). Substrating |A(u′, λj)|2 therefore

merely gets rid of this one summand. The remaining terms an be bounded

by either

m
Tl(ki)

, if we have a di�erene a(u, ki) − a(u′, ki), or
K
l(ki)

in the ase

of a(u, ki) (f. De�nition 2.1). Hene,

sup
|u−u′|≤Cm

T

∣∣|A(u, λj)|2 − |A(u′, λj)|2
∣∣

≤ K

∞∑

k1,k2=−∞

(
m2

T 2l(k1)l(k2)
+

2m

Tl(k1)l(k2)

)

= O

(
m2

T 2
+
m

T

)
.

(g)

|A(u, λj)|4

=

∣∣∣∣∣

∞∑

k=−∞
a(u, k)e−iλjk

∣∣∣∣∣

4

=

∞∑

k1,k2,k3,k4=−∞
a(u, k1)a(u, k2)a(u, k3)a(u, k4)e

−iλj(k1−k2+k3−k4).

=
∞∑

k1,k2,k3,k4=−∞
[a(u, k1)− a(u′, k1) + a(u′, k1)][a(u, k2)− a(u′, k2) + a(u′, k2)]

·[a(u, k3)− a(u′, k3) + a(u′, k3)][a(u, k4)− a(u′, k4) + a(u′, k4)]

·e−iλj(k1−k2+k3−k4).

Maintaining the di�erene a(u, ki) − a(u′, ki), extrating yields 16 summands

with the last one being a(u′, k1)a(u
′, k2)a(u

′, k3)a(u
′, k4). Substrating |A(u′, λj)|4

therefore merely gets rid of this one summand. The remaining terms an be

bounded by either

m
Tl(ki)

, if we have a di�erene a(u, ki) − a(u′, ki), or
K
l(ki)

in

the ase of a(u, ki) (f. De�nition 2.1). Hene,

sup
|u−u′|≤Cm

T

∣∣|A(u, λj)|4 − |A(u′, λj)|4
∣∣

≤ K
∞∑

k1,k2,k3,k4=−∞

(
m4

T 4l(k1)l(k2)l(k3)l(k4)
+

4m3

T 3l(k1)l(k2)l(k3)l(k4)

+
6m2

T 2l(k1)l(k2)l(k3)l(k4)
+

4m

Tl(k1)l(k2)l(k3)l(k4)

)

= O

(
m4

T 4
+
m3

T 3
+
m2

T 2
+
m

T

)
.

34



4.1 Tehnial basis

Proposition 4.3

For a sequene ε1, ε2, . . . of independent identially distributed entred random vari-

ables with variane 0 < σ2 <∞ and existing fourth moment, the following inequality

holds

E

(
n∑

j=1

εj

)4

≤ nE(ε41) + 3n2σ4.

See also Exerise 10.14 in Brokwell and Davis [3℄.

Proof.

E

(
n∑

j=1

εj

)4

= Var

(
n∑

j=1

εj

)2

+


E

(
n∑

j=1

εj

)2



2

=: A1 + A2.

A2

A2 =


E

(
n∑

j=1

εj

)2



2

=



Var

(
n∑

j=1

εj

)
+

(
E

(
n∑

j=1

εj

))2



2

.

Employing that the random variables are independent identially distributed and

entred, we get

A2 =

(
Var

(
n∑

j=1

εj

))2

=

(
n∑

j=1

Var(εj)

)2

= n2σ4.

A1

A1 = Var

(
n∑

j=1

εj

)2

= Var

(
n∑

j=1

ε2j +
n∑

i 6=j=1

εiεj

)

= Var

(
n∑

j=1

ε2j

)
+ Var

(
n∑

i 6=j=1

εiεj

)
+ 2Cov

(
n∑

j=1

ε2j ,
n∑

k 6=l=1

εkεl

)
.(4.16)

Var

(
n∑

j=1

ε2j

)
=

n∑

j=1

Var(ε2j) = nVar(ε21) = n
(
E(ε41)− (E(ε21))

2
)

= nE(ε41)− nσ4. (4.17)
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4 Basi properties of the moving Fourier oe�ients

Var

(
n∑

i 6=j=1

εiεj

)
= E

(
n∑

i 6=j=1

εiεj − E

(
n∑

i 6=j=1

εiεj

))2

= E

(
n∑

i 6=j=1

εiεj

)2

= E

(
n∑

i 6=j=1

n∑

k 6=l=1

εiεjεkεl

)

=

n∑

i 6=j=1

n∑

k 6=l=1

E(εiεjεkεl) · 1{(i=k∧j=l)∨(i=l∧j=k)}

(4.18)

= 2

n∑

i 6=j=1

E(ε2i ε
2
j) = 2n(n− 1)σ4. (4.19)

Cov

(
n∑

j=1

ε2j ,
n∑

k 6=l=1

εkεl

)
=

n∑

j=1

n∑

k 6=l=1

Cov(ε2j , εkεl)

=

n∑

j=1

n∑

k 6=l=1

(E(ε2jεkεl)− E(εj)
2E(εk)E(εl))

=

n∑

j=1

n∑

k 6=l=1

E(ε2jεkεl) =

n∑

j=1

n∑

k 6=l=1

(E(ε2jεkεl)1{k=j∨l=j}

=
n∑

j=1

n∑

l=1, l 6=j
E(ε3j)E(εl) +

n∑

j=1

n∑

k=1, k 6=j
E(ε3j)E(εk) = 0.

(4.20)

Now, with (4.17), (4.19) and (4.20) Equation (4.16) simpli�es to

A1 = nE(ε41)− nσ4 + 2n(n− 1)σ4 + 0 = nE(ε41) + 2n2σ4 − 2nσ4.

With the knowledge about A1 and A2 one �nally obtains

E

(
n∑

j=1

εj

)4

= nE(ε41) + 3n2σ4 − 2nσ4 ≤ nE(ε41) + 3n2σ4.

.

The following Theorem is kept in the notation of Brokwell and Davis [3℄, Theorem

10.3 and is an additional result to their theorem.
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4.1 Tehnial basis

Theorem 4.1. Let {Zt} ∼ IID(0, σ2) and

∑
j∈Z |ψj |

√
|j| < ∞. Let further, for

λj =
2πj
n
, j = 1, . . . , n

Y (λj) =
1√
n

∞∑

s=−∞
ψse

−iλjsUn,s,

with Un,s =

n−s∑

t=1−s
Zte

−iλjt −
n∑

t=1

Zte
−iλjt.

Then

E

(
n∑

j=1

|Y (λj)|2
)2

= O(1),

for n→ ∞.

Proof. Y (λj) =
1√
n

∑∞
s=−∞ ψse

−iλjsUn,s, with Un,s =
∑n−s

t=1−s Zte
−iλjt−∑n

t=1 Zte
−iλjt

.

Un,s is a sum of 2|s| independent random variables, if |s| < n. If |s| ≥ n it is a sum

of 2n independent random variables.

We now intend to prove that

E

(
n∑

j=1

|Y (λj)|2
)2

= O(1),

for n→ ∞.

De�ne

T (s) :=





{1− s, . . . , 0} ∪ {n− s+ 1, . . . , n}, 0 < s < n,

{1, . . . ,−s} ∪ {n+ 1, . . . , n− s}, −n < s < 0,

{1− s, . . . , n− s} ∪ {1, . . . , n}, |s| ≥ n.

This set indiates, whih Zt ontribute to Un,s. Note that

#T (s) = min{2|s|, 2n}.

In the following, we will also be onerned with the ardinality of the intersetions

of the sets T (si) ∩ T (sj), i, j = 1, 2, 3, 4, whih is

#T (si) ∩ T (sj) ≤ min{min{2|si|, 2n},min{2|sj|, 2n}} = O(min{n, |si|, |sj|}).

Further note that

min{n, |si|, |sj|} ≤
√

|si|
√
|sj|.
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4 Basi properties of the moving Fourier oe�ients

We then set In,s,t := ±1, depending on whih Zt's ontribute to Un,s.

(
n∑

j=1

|Y (λj)|2
)2

=
1

n2

n∑

j1=1

∞∑

s1,s2=−∞
ψs1ψs2e

−iλj1 (s1−s2)
∑

t1∈T (s1)
In,s1,t1Zt1e

−iλj1 t1
∑

t2∈T (s2)
In,s2,t2Zt2e

+iλj1 t2

·
n∑

j2=1

∞∑

s3,s4=−∞
ψs3ψs4e

iλj2 (s3−s4)
∑

t3∈T (s3)
In,s3,t3Zt3e

+iλj2 t3
∑

t4∈T (s4)
In,s4,t4Zt4e

−iλj2 t4

=
∑

k1,k2∈Z

∞∑

s1,s2,s3,s4=−∞
ψs1ψs2ψs3ψs4

∑

t1∈T (s1)
In,s1,t1Zt1

∑

t2∈T (s2)
In,s2,t2Zt2

·
∑

t3∈T (s3)
In,s3,t3Zt3

∑

t4∈T (s4)
In,s4,t4Zt41{t1−t2+(s1−s2)=k1n}1{t3−t4+(s3−s4)=k2n}.

As we are interested in the value of the expetation of this expression, we only

need to look at the ases when E(Zt1Zt2Zt3Zt4) 6= 0. As the fourth moment of

the random variables exists, we may bound it, as well as lower moments by some

arbitrary onstant C ≥ 0. Formally, we get

∣∣∣∣∣∣
E

(
n∑

j=1

|Y (λj)|2
)2
∣∣∣∣∣∣

≤ C

∞∑

s1,s2,s3,s4=−∞
ψs1ψs2ψs3ψs4

∑

k1,k2∈Z

∑

ti∈T (si), i=1,2,3,4

[
1{t1=t2}1{t3=t4} + 1{t1=t3}1{t2=t4}

+1{t1=t4}1{t2=t3}
]
· 1{t1−t2+(s1−s2)=k1n}1{t3−t4+(s3−s4)=k2n}.

We hene enounter the following situations

• Case 1:

(I) t1 = t2

(II) t3 = t4

as well as

(III) t1 − t2 + (s1 − s2) = k1n

(IV ) t3 − t4 + (s3 − s4) = k2n

With (I) and (II) we get

(III ′) k1 =
s1 − s2
n

,

(IV ′) k2 =
s3 − s4
n

.
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4.1 Tehnial basis

k1 and k2 are therefore uniquely determined by s2, s2, s3, s4 and n and an

therefore be eliminated. Note that k1 and k2 need to be integers. To be exat,

we would then have to write

k1 =
s1 − s2
n

∩ Z, k2 =
s3 − s4
n

∩ Z.

Su�ient for an upper bound, however, is to use the whole range of the si,
i = 1, 2, 3, 4.

∑

s1,s2,s3,s4

ψs1ψs2ψs3ψs4
∑

t1∈T (s1)∩T (s2)
1

∑

t3∈T (s3)∩T (s4)
1

≤ K
∑

s1,s2,s3,s4

ψs1ψs2ψs3ψs4 min{n, |s1|, |s2|}min{n, |s3|, |s4|}

≤ K
∑

s1,s2

ψs1ψs2
√

|s1|
√

|s2|
∑

s3,s4

ψs3ψs4
√
|s3|
√

|s4|

= O (1) .

• Case 2:

(I) t1 = t3

(II) t2 = t4

as well as

(III) t1 − t2 + (s1 − s2) = k1n

(IV ) t1 − t2 + (s3 − s4) = k2n

With (I) and (II) we get

(III ′) k1 =
t1 − t2 + s1 − s2

n
,

(IV ′) k2 =
t1 − t2 + s3 − s4

n
.

k1 and k2 are therefore uniquely determined by s2, s2, s3, s4, t1, t2 and n and

an therefore be eliminated. Note that k1 and k2 need to be integers. To be

exat, we would then have to write

k1 =
t1 − t2 + s1 − s2

n
∩ Z, k2 =

t1 − t2 + s3 − s4
n

∩ Z.
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4 Basi properties of the moving Fourier oe�ients

Now,

∑

s1,s2,s3,s4

ψs1ψs2ψs3ψs4
∑

t1∈T (s1)∩T (s3)
1

∑

t3∈T (s2)∩T (s4)
1

≤ K
∑

s1,s2,s3,s4

ψs1ψs2ψs3ψs4 min{n, |s1|, |s3|}min{n, |s2|, |s4|}

≤ K
∑

s1,s2

ψs1ψs2
√

|s1|
√

|s2|
∑

s3,s4

ψs3ψs4
∑√

|s3|
√

|s4|

= O (1) .

• Case 3: Analogously to Case 2.

.

Remark 4.1

The ondition

∑
j∈Z |ψj |

√
|j| <∞ is not very strong. Dahlhaus and Giraitis [12℄ use

in Corollary 4.1, whih is the asymptoti normality of the resaled spetral mean of

the Fourier oe�ients of a stationary time series the assumption that

∑
j∈Z |ψj|j2 <

∞. As we need the result of the above Theorem to onsider the resaled spetral mean

later on, we are on the safe side starting o� with a ondition not as strong as their

�nal ondition.

Moreover, Grenander and Rosenblatt [21℄ also use this assumption in Theorem 6,

when they intend to generalize their results from iid white noise to stationary time

series.

4.2 Linking the loally stationary ase to the i.i.d.

ase

Lemma 4.2 (Relationship between MF X̃
⌊uT ⌋ and MF ε

⌊uT ⌋).

Let X̃t(u) denote the stationary approximation of Xt,T at time ⌊uT ⌋.
Let further A(u, λ) :=

∑∞
j=−∞ a(u, j)e−iλj. Then for l = 1, . . . , m

MF X̃
⌊uT ⌋(λl) = A (u, λl)MF

ε
⌊uT ⌋(λl) + R

(1)
⌊uT ⌋,m(λl),

with sup
u∈[0,1]

sup
l=1,...,m

E|R(1)
⌊uT ⌋,m(λl)|4 → 0, as m→ ∞, (4.21)

and

ER
(1)
⌊uT ⌋,m(λl) = 0. (4.22)
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4.2 Linking the loally stationary ase to the i.i.d. ase

If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞,

sup
u∈[0,1]

sup
l=1,...,m

E|R(1)
⌊uT ⌋,m(λl)|4 = O

(
1

m2

)
, (4.23)

as well as

E

(
1√

2m+ 1

2m+1∑

l=1

|R(1)
⌊uT ⌋,m(λl)|2

)2

→ 0 as m→ ∞. (4.24)

Proof. With ζ⌊uT ⌋,l = div
(
⌊uT ⌋ −

⌊
m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)} it follows that

MF X̃
⌊uT ⌋(λl) =

1√
2m+ 1

2m∑

t=0

X̃t

(
l + ζ⌊uT ⌋,lm−m+ t

T
, j

)
e−itλl

=
1√

2m+ 1

2m∑

t=0

∞∑

j=−∞
a

(
l + ζ⌊uT ⌋,lm−m+ t

T
, j

)
εl+ζ⌊uT⌋,lm−m+t−je

−itλl .

In order to proeed as in Brokwell and Davis [3℄, we need to free the oe�ients

a(·, j) of their dependene on time. We do this by splitting:

MF X̃
⌊uT ⌋(λl)

=
1√

2m+ 1

2m∑

t=0

∞∑

j=−∞

[
a

(
l + ζ⌊uT ⌋,lm−m+ t

T
, j

)

−a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)]
εl+ζ⌊uT⌋,lm−m+t−je

−itλl

+
1√

2m+ 1

2m∑

t=0

∞∑

j=−∞
a

(
l + ζ⌊uT ⌋,lm−m

T
, j

)
εl+ζ⌊uT⌋,lm−m+t−je

−itλl

=: Y
X̃,(1)
⌊uT ⌋,m(λl) +

1√
2m+ 1

∞∑

j=−∞
a

(
l + ζ⌊uT ⌋,lm−m

T
, j

)
e−ijλl

2m−j∑

t=−j
εl+ζ⌊uT⌋,lm−m+te

−itλl

= Y
X̃,(1)
⌊uT ⌋,m(λl) + A

(
l + ζ⌊uT ⌋,lm−m

T
, λl

)
1√

2m+ 1

2m∑

t=0

εl+ζ⌊uT⌋,lm−m+te
−itλl

+
1√

2m+ 1

∞∑

j=−∞
a

(
l + ζ⌊uT ⌋,lm−m

T
, j

)
e−ijλlU⌊uT ⌋,m,j(λl)

=: Y
X̃,(1)
⌊uT ⌋,m(λl) + A

(
l + ζ⌊uT ⌋,lm−m

T
, λl

)
MF ε

⌊uT ⌋(λl) + Y
X̃,(2)
⌊uT ⌋,m(λl),

41



4 Basi properties of the moving Fourier oe�ients

where

U⌊uT ⌋,m,j(λl) =

(
2m−j∑

t=−j
εl+ζ⌊uT⌋,lm−m+te

−itλl −
2m∑

t=0

εl+ζ⌊uT⌋,lm−m+te
−itλl

)
.

It is evident, that the expetany of both terms Y
X̃,(1)
⌊uT ⌋,m(λl) and Y

X̃,(2)
⌊uT ⌋,m(λl) equals

zero, implying (4.22) for R
(1)
⌊uT ⌋,m(λl) := Y

X̃,(1)
⌊uT ⌋,m(λl) + Y

X̃,(2)
⌊uT ⌋,m(λl).

It now remains to show that

sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(1)
⌊uT ⌋,m(λl)|4 → 0 as m→ ∞, (4.25)

sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(2)
⌊uT ⌋,m(λl)|4 → 0 as m→ ∞, (4.26)

with adequate rates in the ase of the stronger assumption.

To show the L4-onvergene (4.25) �rst note that

sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(1)
⌊uT ⌋,m(λl)|4 = O

(
m6

T 4(2m+ 1)2

)
= O

(
m4

T 4

)
,

with the proof basially analogous to the proof of (4.6), however it is slightly more

demanding:

sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(1)
⌊uT ⌋,m(λl)|4

= sup
u∈[0,1]

sup
l=1,...,m

1

(2m+ 1)2

2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞(
a

(
l + ζ⌊uT ⌋,lm−m+ t1

T
, j1

)
− a

(
l + ζ⌊uT ⌋,lm−m

T
, j1

))

·
(
a

(
l + ζ⌊uT ⌋,lm−m+ t2

T
, j2

)
− a

(
l + ζ⌊uT ⌋,lm−m

T
, j2

))

·
(
a

(
l + ζ⌊uT ⌋,lm−m+ t3

T
, j3

)
− a

(
l + ζ⌊uT ⌋,lm−m

T
, j3

))

·
(
a

(
l + ζ⌊uT ⌋,lm−m+ t4

T
, j4

)
− a

(
l + ζ⌊uT ⌋,lm−m

T
, j4

))

·E(εl+ζ⌊uT⌋,lm−m+t1−j1εl+ζ⌊uT⌋,lm−m+t2−j2εl+ζ⌊uT⌋,lm−m+t3−j3εl+ζ⌊uT⌋,lm−m+t4−j4)e
i(t2−t1+t3−t4)λl .

Just like in the proof of Proposition 4.1, one needs to distinguish between the di�er-

ent values the expeted value an take and split the above expression aordingly.

Sine for v ∈ [0, 1]

sup
u∈[0,1]

|a (u+ v, j1)− a (u, j1)| ≤
K|v|
l(j1)

,
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we get for the ase of all indies of the innovations being equal an upper bound of

E(ε41)
K

(2m+ 1)2

·
∣∣∣∣

2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞

∣∣∣∣
t1

T l(j1)

∣∣∣∣
∣∣∣∣

t2
T l(j2)

∣∣∣∣ ·
∣∣∣∣

t3
T l(j3)

∣∣∣∣ ·
∣∣∣∣

t4
T l(j4)

∣∣∣∣1{t1−j1=t2−j2=t3−j3=t4−j4}

≤ K(2m+ 1)5E(ε41)

(2m+ 1)2T 4
= O

(
m3

T 4

)
.

The other possibility is any two indies being equal. There are three ases:

t1 − j1 = t2 − j2 6= t3 − j3 = t4 − j4,

t1 − j1 = t3 − j3 6= t2 − j2 = t4 − j4,

t1 − j1 = t4 − j4 6= t2 − j2 = t3 − j3.

Exemplarily, we will onsider t1 − j1 = t4 − j4 6= t2 − j2 = t3 − j3. For this ase, an
upper bound is

K

(2m+ 1)2

2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞

∣∣∣∣
t1

T l(j1)

∣∣∣∣ ·
∣∣∣∣

t2
T l(j2)

∣∣∣∣

·
∣∣∣∣

t3
T l(j3)

∣∣∣∣ ·
∣∣∣∣

t4
T l(j4)

∣∣∣∣1{t1−j1=t4−j4 6=t2−j2=t3−j3}

≤ K(2m+ 1)4

(2m+ 1)2T 4

2m∑

t1,t2=0

∞∑

j1,j2,j3,j4=−∞

1

l(j1)l(j2)l(j3)l(j4)

≤ K(2m+ 1)6

(2m+ 1)2T 4
= O

(
m4

T 4

)
.

Finally, olleting the results on the upper bounds in the di�erent ases, we get

sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(1)
⌊uT ⌋,m(λl)|4 = O

(
m4

T 4

)
. (4.27)

Now for the seond error term Y
X̃,(2)
⌊uT ⌋,m(λl), the Minkowski inequality yields

sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(2)
⌊uT ⌋,m(λl)|4

≤ sup
u∈[0,1]

sup
l=1,...,m

1

(2m+ 1)2

( ∞∑

j=−∞

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣ (E|U⌊uT ⌋,m,j(λl)|4)
1
4

)4

.

(4.28)

Note that for n ∈ N, E
(∑n

j=1 ej

)4
≤ nE(e41) + 3n2

(f. Proposition 4.3).
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4 Basi properties of the moving Fourier oe�ients

As stated before, for |j| < 2m+ 1, U⌊uT ⌋,m,j(λl) is the sum of 2|j| independent and
entred random variables. For |j| ≥ 2m+1, U⌊uT ⌋,m,j(λl) is the sum of 2(2m+1) =
4m+ 2 independent and entred random variables.

sup
u∈[0,1]

sup
l=1,...,m

E|U⌊uT ⌋,m,j(λl)|4 ≤ 2min(|j|, 2m+ 1)E(e41) + 12(min(|j|, 2m+ 1))2

= O
(
min(|j|2, (2m+ 1)2

)
.

Let µ0 ∈ N arbitrary but �xed. It follows that

1√
2m+ 1

∞∑

j=−∞

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣
4
√
(min(|j|2, (2m+ 1)2)

≤ 1√
2m+ 1

∑

|j|≤µ0

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣ ·
√

|j|

+
∑

|j|>µ0

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣ .

Conerning the funtion a: Note that m is only present in the �rst omponent of

the funtion a. We may therefore exploit the assumption made by De�nition 2.1():

sup
m,u,l

∣∣∣∣∣

∞∑

j=−∞
a

(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣∣ ≤ sup
u∈[0,1]

∣∣∣∣∣

∞∑

j=−∞
a(u, j)

∣∣∣∣∣ <∞. (4.29)

We note that now

sup
u∈[0,1]

sup
l=1,...,m

1√
2m+ 1

∞∑

j=−∞

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣
4
√

(min(|j|2, (2m+ 1)2)

≤ K
√
µ0√

2m+ 1
+ sup

x∈[0,1]

∑

|j|>µ0

|a (x, j)| , (4.30)

with

lim sup
m→∞

sup
u∈[0,1]

sup
l=1,...,m

1√
2m+ 1

∞∑

j=−∞

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣
4
√

(min(|j|2, (2m+ 1)2)

≤ sup
x∈[0,1]

∑

|j|>µ0

|a (x, j)|

As µ0 is arbitrary and due to the uniform absolute summability of a(u, j) (De�nition
2.1()), the upper bound of (4.28) onverges to zero for T → ∞ (and thus m→ ∞).
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If additionally

sup
u∈[0,1]

∞∑

j=−∞
|a(u, j)|

√
|j| <∞,

we get with the same argument as in (4.29) that

sup
m,u,l

∞∑

j=−∞

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣
√
|j| <∞.

This then results in a rate of onvergene, whih we did not get in (4.30):

sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(2)
⌊uT ⌋,m(λl)|4

≤ C · sup
u∈[0,1]

sup
l=1,...,m

1

(2m+ 1)2

( ∞∑

j=−∞

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m

T
, j

)∣∣∣∣ |j|
1
2

)4

= O

(
1

m2

)
.

All in all, we get for R
(1)
⌊uT ⌋,m(λl) := Y

X̃,(1)
⌊uT ⌋,m(λl) + Y

X̃,(2)
⌊uT ⌋,m(λl)

sup
u∈[0,1]

sup
l=1,...,m

E|R(1)
⌊uT ⌋,m(λl)|4 ≤ 24

(
sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(1)
⌊uT ⌋,m(λl)|4

+ sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(2)
⌊uT ⌋,m(λl)|4

)

= O

(
1

m2

)
,

as the assumptions given in Setion 3.1 imply

m6

T 4 = o(1).

Now, to �nally prove (4.24), we note again that

R
(1)
⌊uT ⌋,m(λl) := Y

X̃,(1)
⌊uT ⌋,m(λl) + Y

X̃,(2)
⌊uT ⌋,m(λl).

By (4.27)

sup
u∈[0,1]

sup
l=1,...,m

E|Y X̃,(1)
⌊uT ⌋,m(λl)|4 = O

(
m4

T 4

)
.
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4 Basi properties of the moving Fourier oe�ients

Hene,

E

(
1√

2m+ 1

2m+1∑

j=1

|Y X̃,(1)
⌊uT ⌋,m(λl)|2

)2

= O

(
m5

T 4

)
= o(1),

by the assumptions given in Setion 3.1.

From Theorem 4.1 we get

E

(
2m+1∑

j=1

|Y X̃,(2)
⌊uT ⌋,m(λl)|2

)2

= O(1).

(4.24) now follows by Cauhy-Shwarz.

Theorem 4.2 (Relationship between MIX̃⌊uT ⌋,m and MIε⌊uT ⌋,m).
In the situation of Lemma 4.2

MIX̃⌊uT ⌋,m(λl) = |A (u, λl)|2MIε⌊uT ⌋,m(λl) +R⌊uT ⌋,m(λl), (4.31)

with sup
u∈[0,1]

sup
l=1,...,m

E|R⌊uT ⌋,m(λl)|2 → 0 for m→ ∞. (4.32)

If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞

sup
u∈[0,1]

sup
l=1,...,m

E|R⌊uT ⌋,m(λl)|2 = O

(
1

m

)
. (4.33)

Proof. Now, extending the result of Lemma 4.2 to a relationship between the moving

periodograms, one merely needs to onsider the remainder R⌊uT ⌋,m(λl), whih is of

the form

R⌊uT ⌋,m(λ) = A (u, λl)MF
ε
⌊uT ⌋(λj)R

(1)
⌊uT ⌋,m(λl)

+ A (u, λl)MF ε
⌊uT ⌋(λj)R

(1)
⌊uT ⌋,m(λl) + |R(1)

⌊uT ⌋,m(λl)|2.

Therefore,

sup
u∈[0,1]

sup
l=1,...,m

E|R⌊uT ⌋,m(λl)|2

≤ 22
(

sup
u∈[0,1]

sup
l=1,...,m

|A (u, λl)|2 ·
∣∣MF ε

⌊uT ⌋(λj)
∣∣2 ·
∣∣∣R(1)

⌊uT ⌋,m(λl)
∣∣∣
2

+ sup
u∈[0,1]

sup
l=1,...,m

∣∣∣R(1)
⌊uT ⌋,m(λl)

∣∣∣
4
)

(4.34)
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Aording to Lemma 4.2, supu∈[0,1] supl=1,...,m

∣∣∣R(1)
⌊uT ⌋,m(λl)

∣∣∣
4

= O
(

1
m2

)
, if the stronger

assumption applies. Otherwise this term simply tends to zero. Conerning the other

summand, the appliation of the Cauhy-Shwarz inequality readily yields the result

when additionally employing Propositions 4.1 and 4.2.

Lemma 4.3 (Relationship between MF⌊uT ⌋ and MF ε
⌊uT ⌋).

Under the same assumptions as in Lemma 4.2 and with At,T (λl) :=
∑∞

j=−∞ at,T (j)e
−iλlj ,

the result (4.21) extends to

MF⌊uT ⌋(λl) = Al+ζ⌊uT⌋,lm−m,T (λl)MF
ε
⌊uT ⌋(λl) +R

(2)
⌊uT ⌋,m(λl), (4.35)

with R
(2)
⌊uT ⌋,m(λl) := R

(1)
⌊uT ⌋,m(λl) + R̃⌊uT ⌋,m(λl) and R

(1)
⌊uT ⌋,m(λl) as in Lemma 4.2.

Then

ER
(2)
⌊uT ⌋,m(λl) = 0 (4.36)

and

sup
u∈[0,1]

sup
l=1,...,m

E|R̃⌊uT ⌋,m(λl)|4 = O

(
m4

T 4

)
. (4.37)

In partiular, we get

sup
u∈[0,1]

sup
l=1,...,m

E|R(2)
⌊uT ⌋,m(λl)|4 → 0 as m→ ∞. (4.38)

If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞, then even

sup
u∈[0,1]

sup
l=1,...,m

E|R(2)
⌊uT ⌋,m(λl)|4 = O

(
1

m2

)
, (4.39)

as well as

E

(
1√

2m+ 1

2m+1∑

l=1

|R(2)
⌊uT ⌋,m(λl)|2

)2

→ 0 as m→ ∞. (4.40)
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4 Basi properties of the moving Fourier oe�ients

Proof. We �rst split MF⌊uT ⌋(λl) to be able to apply Lemma 4.2:

MF⌊uT ⌋(λl) = MF X̃
⌊uT ⌋(λl) + (MF⌊uT ⌋(λl)−MF X̃

⌊uT ⌋(λl))

= A (u, λl)MF
ε
⌊uT ⌋(λl) +R

(1)
⌊uT ⌋,m(λl) + (MF⌊uT ⌋(λl)−MF X̃

⌊uT ⌋(λl))

= Al+ζ⌊uT⌋,lm−m,T (λl)MF
ε
⌊uT ⌋(λl) +R

(1)
⌊uT ⌋,m(λl)

+
(
A (u, λl)−Al+ζ⌊uT⌋,lm−m,T (λl)

)
MF ε

⌊uT ⌋(λl) + (MF⌊uT ⌋(λl)−MF X̃
⌊uT ⌋(λl)).

(4.41)

As already de�ned in the above Lemma, R̃ is the additional remainder we obtain

when bridging the gap from the stationary approximation to the atual loally sta-

tionary time series. Inspeting (4.41) yields the exat struture of this remainder:

R̃⌊uT ⌋,m(λl) =
(
A (u, λl)− Al+ζ⌊uT⌋,lm−m,T (λl)

)
MF ε

⌊uT ⌋(λl) + (MF⌊uT ⌋(λl)−MF X̃
⌊uT ⌋(λl)).

Here, we an easily see that ER̃⌊uT ⌋,m(λl) = 0.With (4.22), we have ER
(2)
⌊uT ⌋,m(λl) =

0.

Propositions 4.1 and 4.2 immediately result in

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣A (u, λl)− Al+ζ⌊uT⌋,lm−m,T (λl)
∣∣∣
4

E
∣∣MF ε

⌊uT ⌋(λl)
∣∣4 = O

(
m4

T 4

)
. (4.42)

Conerning the di�erene between the two Fourier transformsMF⌊uT ⌋(λl) andMF
X̃
⌊uT ⌋(λl),

we may use the proedure as hosen in the proof of Proposition 4.1, sine

sup
u∈[0,1]

∣∣a (u, j1)− a⌊uT ⌋,T (j1)
∣∣ ≤ K

Tl(j1)
.

Hene, we ontinue with

sup
u∈[0,1]

sup
l=1,...,m

E|MF⌊uT ⌋(λl)−MF X̃
⌊uT ⌋(λl)|4

≤ sup
u∈[0,1]

sup
l=1,...,m

1

(2m+ 1)2

2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞∣∣∣∣
[
al+ζ⌊uT⌋,lm−m+t1,T (j1)− a (u, j1)

]
·
[
al+ζ⌊uT⌋,lm−m+t2,T (j2)− a (u, j2)

]

·
[
al+ζ⌊uT⌋,lm−m+t3,T (j3)− a (u, j3)

]
·
[
al+ζ⌊uT⌋,lm−m+t4,T (j4)− a (u, j4)

]

·E(εl+ζ⌊uT⌋,lm−m+t1−j1εl+ζ⌊uT⌋,lm−m+t2−j2εl+ζ⌊uT⌋,lm−m+t3−j3εl+ζ⌊uT⌋,lm−m+t4−j4)

·ei(t2−t1+t3−t4)λl
∣∣∣∣. (4.43)
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Considering that X̃ is the stationary approximation at time u, we need to pay a

little attention, though, as

MF⌊uT ⌋(λl)−MF X̃
⌊uT ⌋(λl)

=
1√

2m+ 1

2m∑

t=0

∞∑

j=−∞

[(
al+ζ⌊uT⌋,lm−m+t,T (j)− a (u, j)

)]
εl+ζ⌊uT⌋,lm−m+t−je

−itλl

=
1√

2m+ 1

2m∑

t=0

∞∑

j=−∞

[(
al+ζ⌊uT⌋,lm−m+t,T (j)− a

(
l + ζ⌊uT ⌋,lm−m+ t

T
, j

))

+

(
a

(
l + ζ⌊uT ⌋,lm−m+ t

T
, j

)
− a (u, j)

)]
εl+ζ⌊uT⌋,lm−m+t−je

−itλl .

With De�nition 2.1(()),

sup
m,u,l

∣∣∣∣al+ζ⌊uT⌋,lm−m+t,T (j)− a

(
l + ζ⌊uT ⌋,lm−m+ t

T

)∣∣∣∣ ≤ sup
s

∣∣∣as,T (j)− a
( s
T
, j
)∣∣∣ ≤ K

Tl(j)
.

The seond summand an be bounded (see De�nition 2.1) by

∣∣∣∣a
(
l + ζ⌊uT ⌋,lm−m+ t

T
, j

)
− a (u, j)

∣∣∣∣ ≤

∣∣∣ l+ζ⌊uT⌋,lm−m+t

T
− u
∣∣∣

l(j)
≤ K

Tl(j)
.

The next step is now to onsider all ases for whih the expeted value of the errors

for 0 ≤ t ≤ 2m, see (4.43), is not zero. That is either, in the notation of (4.43), that

{t1 − j1 = t2 − j2 = t3 − j3 = t4 − j4} or that one of the three ases

t1 − j1 = t2 − j2 6= t3 − j3 = t4 − j4,

t1 − j1 = t3 − j3 6= t2 − j2 = t4 − j4,

t1 − j1 = t4 − j4 6= t2 − j2 = t3 − j3

holds true, beause we have de�ned ζ⌊uT ⌋,l := div
(
⌊uT ⌋ −

⌊
m
2

⌋)
−1{l≥mod(⌊uT ⌋−⌊m2 ⌋)}.

So, again, we split the sums in supu∈[0,1] supl=1,...,mE|MF⌊uT ⌋(λl)−MF X̃
⌊uT ⌋(λl)|4 a-

ordingly and bound them one by one. For equal indies of the errors, we get the

upper bound

E(ε41)
K

(2m+ 1)2
·

2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞

( ∣∣∣∣
m

Tl(j1)

∣∣∣∣

·
∣∣∣∣

m

Tl(j2)

∣∣∣∣ ·
∣∣∣∣

m

Tl(j3)

∣∣∣∣ ·
∣∣∣∣

m

Tl(j4)

∣∣∣∣
)
1{t1−j1=t2−j2=t3−j3=t4−j4}

= O

(
m3

T 4

)
,
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4 Basi properties of the moving Fourier oe�ients

Seondly, we exemplarily onsider t1 − j1 = t4 − j4 6= t2 − j2 = t3 − j3 and get a

bound of

1

(2m+ 1)2

2m∑

t1,t2,t3,t4=0

∞∑

j1,j2,j3,j4=−∞

( ∣∣∣∣
m

Tl(j1)

∣∣∣∣ ·
∣∣∣∣

m

Tl(j2)

∣∣∣∣

·
∣∣∣∣

m

Tl(j3)

∣∣∣∣ ·
∣∣∣∣

m

Tl(j4)

∣∣∣∣
)
1{t1−j1=t4−j4 6=t2−j2=t3−j3}

= O

(
m4

T 4

)
.

Finally, olleting the results on the upper bounds, we get

sup
u∈[0,1]

sup
l=1,...,m

E|MF⌊uT ⌋(λl)−MF X̃
⌊uT ⌋(λl)|4 = O

(
m4

T 4

)
= O

(
1

m2

)
. (4.44)

At last, the proof of (4.37) is ompleted by putting together the results of (4.42)

and (4.44).

The result (4.39) is then a onsequene of the result (4.23) of Lemma 4.2.

Now, to prove (4.24), reall that

R
(2)
⌊uT ⌋,m(λl) := R

(1)
⌊uT ⌋,m(λl) + R̃⌊uT ⌋,m(λl).

Aording to Lemma 4.2 Equation (4.24)

E

(
1√

2m+ 1

2m+1∑

j=1

|R(1)
⌊uT ⌋,m(λl)|2

)2

→ 0, for m→ ∞.

We further know from the above proof that

sup
u∈[0,1]

sup
l=1,...,m

|R̃⌊uT ⌋,m(λl)|4 = O

(
m4

T 4

)
.

Hene,

E

(
1√

2m+ 1

2m+1∑

j=1

|R̃⌊uT ⌋,m(λl)|2
)2

= O

(
m5

T 4

)
.

(4.40) now follows by Cauhy-Shwarz.

Theorem 4.3 (Relationship between MI⌊uT ⌋,m and MIε⌊uT ⌋,m).

Under the same assumptions as in Theorem 4.2 and At,T (λl) :=
∑∞

j=−∞ at,T (j)e
−iλlj ,

the result (4.31) extends to

MI⌊uT ⌋,m(λl) = |Al+ζ⌊uT⌋,lm−m,T (λl) |2MIε⌊uT ⌋,m(λl) +R′
⌊uT ⌋,m(λl), (4.45)
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4.2 Linking the loally stationary ase to the i.i.d. ase

with

sup
u∈[0,1]

sup
l=1,...,m

E|R′
⌊uT ⌋,m(λl)|2 → 0 for m→ ∞. (4.46)

If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞,

sup
u∈[0,1]

sup
l=1,...,m

E|R′
⌊uT ⌋,m(λl)|2 = O

(
1

m

)
, (4.47)

as well as

E

(
1√

2m+ 1

2m+1∑

l=1

|R′
⌊uT ⌋,m(λl)|

)2

→ 0 as m→ ∞. (4.48)

Proof. This Theorem is an immediate onsequene of Lemma 4.3, Propositions 4.1

and 4.2, as well as the appliation of the Cauhy-Shwarz inequality. The proof is

in analogy to the proof of Theorem 4.2.
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CHAPTER 5

Distributional properties of the moving Fourier oe�ients

5.1 Variane

Theorem 5.1.

(a)

sup
u∈[0,1]

sup
l=1,...,m

|Var(MF⌊uT ⌋(λl))− 2πf(u, λl)| → 0.

(b) If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞,

sup
u∈[0,1]

sup
l=1,...,m

|Var(MF⌊uT ⌋(λl))− 2πf(u, λl)| = O

(
1√
m

)
.

Proof. Lemma 4.3 provides the following relation

MF⌊uT ⌋(λl) = Al+ζ⌊uT⌋,lm−m,T (λl)MF
ε
⌊uT ⌋(λl) +R

(2)
⌊uT ⌋,m(λl),

sup
u∈[0,1]

sup
l=1,...,m

E|R(2)
⌊uT ⌋,m(λl)|4 → 0.

If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞,

sup
u∈[0,1]

sup
l=1,...,m

E|R(2)
⌊uT ⌋,m(λl)|4 = O

(
1

m2

)
.
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If we apply Lemma 4.3, we now get

Var(MF⌊uT ⌋(λl)) = Al+ζ⌊uT⌋,lm−m,T (λl)Al+ζ⌊uT⌋,lm−m,T (λl)Var(MF
ε
⌊uT ⌋(λl))

+Al+ζ⌊uT⌋,lm−m,T (λl)Cov(MF
ε
⌊uT ⌋(λl), R

(2)
⌊uT ⌋,m(λl))

+Al+ζ⌊uT⌋,lm−m,T (λl)Cov(R
(2)
⌊uT ⌋,m(λl)),MF

ε
⌊uT ⌋(λl)) + Var(R

(2)
⌊uT ⌋,m(λl))

=: A1 + A2 + A2 + A3.

A1

By Proposition 4.1 and Lemma 4.1 it holds

supu∈[0,1] supl=1,...,mVar(MF ε
⌊uT ⌋(λl)) = 1.

With Proposition 4.2 (b) and (),

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣Al+ζ⌊uT⌋,lm−m,T (λl)−A(u, λl)
∣∣∣ = O

(m
T

)
.

Hene, with De�nition 2.2,

A1 = |A(u, λl)|2Var(MF ε
⌊uT ⌋(λl)) +O

(m
T

)

= 2πf(u, λl) +O
(m
T

)
.

A2 From Proposition 4.2 it follows that

sup
u∈[0,1]

sup
l=1,...,m

∣∣∣Al+ζ⌊uT⌋,lm−m,T (λl)
∣∣∣ <∞.

Furthermore, Proposition 4.1 tells us that

sup
u∈[0,1]

sup
l=1,...,m

E
∣∣MF ε

⌊uT ⌋(λl)
∣∣2 = 1.

Finally, the use of Lemma 4.3 and the appliation of the Cauhy-Shwarz inequality

yield

supu∈[0,1] supl=1,...,mAl+ζ⌊uT⌋,lm−m,T (λl)E
(
MF ε

⌊uT ⌋(λl) · R
(2)
⌊uT ⌋,m(λ−l)

)
= o(1).

(5.1)

If the stronger assumptions apply, we have the rate

1√
m
.

Note, that (4.36) tells us that E(R
(2)
⌊uT ⌋,m(λl)) = 0. Due to this and Lemma 4.1,

54



5.2 Covariane struture

relation (5.1) entails

sup
u∈[0,1]

sup
l=1,...,m

Al+ζ⌊uT⌋,lm−m,T (λl)Cov(MF
ε
⌊uT ⌋(λl), R

(2)
⌊uT ⌋,m(λl)) = o(1)

sup
u∈[0,1]

sup
l=1,...,m

Al+ζ⌊uT⌋,lm−m,T (λl)Cov(R
(2)
⌊uT ⌋,m(λl),MF

ε
⌊uT ⌋(λl)) = o(1).

If the stronger assumptions apply, we have the rate

1√
m
.

A3 Lemma 4.3 and the appliation of the Cauhy-Shwarz inequality yields

sup
u∈[0,1]

sup
l=1,...,m

E
(
R

(2)
⌊uT ⌋(λl) · R

(2)
⌊uT ⌋(λ−l)

)
= o(1). (5.2)

The rate given the stronger set of assumptions is

1
m
.

Relation (5.2) now entails

sup
u∈[0,1]

sup
l=1,...,m

Var

(
R

(2)
⌊uT ⌋(λl)

)
= o(1).

With the set of stronger assumptions, we an now even get

sup
u∈[0,1]

sup
l=1,...,m

|Var(MF⌊uT ⌋(λl))− 2πf(u, λl)| = O

(
m

T
+

1√
m

)
= O

(
1√
m

)
.

.

5.2 Covariane struture

For the next theorems, we de�ne sets A1(am, u) and A2 in order to rule out λj, λl
onverging to the same frequeny from di�erent sides, as we do not get asymptoti

unorrelated moving Fourier oe�ients in these ases. This phenomenon is not

indigenous to our moving proedure. There are also proedures like the blok boot-

strap � proedures whih basially mimik the dependene struture but exhibit

some minor exeptions at ertain ut o� points.

Aordingly, two main questions have to be answered: What are the situations in

the moving ase where asymptoti unorrelation is not ful�lled? And why do the

situations our in our ase?

Ad 1: Looking at the suggestive Figure 3.1, one an see some 'break' onerning the

indies. For k =
⌊
m
2

⌋
+ 2 we have the sequene cm+1, c2, c3, . . . , cm for the moving

Fourier transform at frequenies λ1, . . . , λm. At frequeny λ
mod(⌊m2 ⌋+2−⌊m2 ⌋) = λ2,

the break ours. That is, for λj and λk onverging to λ2 from di�erent sides, we

enounter a situation where the atual frequenies get loser and loser whereas the

indies of the oe�ients do not.
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5 Distributional properties of the moving Fourier oe�ients

Ad 2: The reason for these situations � getting loal moving Fourier oe�ients,

whih are not asymptotially unorrelated � is due our very good up-to-dateness

of the proedure. Meaning: We use only m moving Fourier oe�ients and then

assume that we have already extrated all information about the seond order stru-

ture of the time series. See Remark 3.4 for the expliit argument. Usually, one would

have alulated all 2m + 1 oe�ients. We all that the long version of our trans-

formation. We, however, double the oe�ients (see Setion 3.3) in an adequate

way when going bak into time domain. So, having generated the mth
oe�ient,

one would start duplexing the newest information when using the long version of

the moving proedure. At that point, our proedure, however, starts updating the

oldest information, that is the oldest oe�ient. In the easier understandable non-

moving ase this problem orresponds to: Take 2m+1 real random variables and use

the Fourier transform. This yields m omplex oe�ients with 'new' information,

that is 2m real oe�ients with new information. So there is a one-to-one relation

between the information arried by the original data and the information arried by

the transformed data.

If one took 2m+1 real random variables and got 2m+1 omplex oe�ients out of

them this would be 4m+ 2 real oe�ients, all arrying new information and thus

the information in the frequeny domain is double the amount of information in the

time domain, with no doubling of information. Not being in the land of milk and

honey we need to pay for this over�owing information � by hiups in the depen-

dene struture, ompared to the long version.

Theorem 5.2. For u ∈ [0, 1], j 6= l = 1, . . . , m, let

ζ⌊uT ⌋,l := div
(
⌊uT ⌋ −

⌊m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)},

l′ := l + ζ⌊uT ⌋,lm,

j′ := j + ζ⌊uT ⌋,jm.

Then,

sup
1≤l 6=j≤m

max

(
m

|l′ − j′| , |l − j|
) ∣∣E(MF ε

⌊uT ⌋(λl)MF
ε
⌊uT ⌋(λj))

∣∣ = O(1).

Remark 5.1

The di�erene l′−j′ equals either l−j, l−j+m or l−j−m, depending on the time

⌊uT ⌋ we are urrently at, as the omposition of the loal moving Fourier oe�ients

of old and new moving Fourier oe�ients hanges throughout time.
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5.2 Covariane struture

Proof. Lemma 4.1 allows us to write

Cov
(
MF ε

⌊uT ⌋(λl),MF
ε
⌊uT ⌋(λj))

)
= E

(
MF ε

⌊uT ⌋(λl)MF
ε
⌊uT ⌋(λj)

)

=
1

2m+ 1

2m∑

t1,t2=0

E(εl′−m+t1εj′−m+t2)

·e−iλlt1eiλjt2 .

Sine E(MF ε
⌊uT ⌋(λl),MF

ε
⌊uT ⌋(λj)) = 0 i� l+ ζ⌊uT ⌋,lm−m+ t1 = j+ ζ⌊uT ⌋,jm−m+ t2,

we get

sup
1≤l 6=j≤m

max

(
m

|l′ − j′| , |l − j|
) ∣∣E(MF ε

⌊uT ⌋(λl)MF
ε
⌊uT ⌋(λj))

∣∣

= sup
1≤l 6=j≤m

max

(
m

|l′ − j′| , |l − j|
) ∣∣∣∣

1

2m+ 1

2m∑

t1,t2=0

E(εl+ζ⌊uT⌋,lm−m+t1εj+ζ⌊uT⌋,jm−m+t2)

·e−iλlt1eiλjt2 · 1{l′+t1=j′+t2}

∣∣∣∣

= sup
1≤l 6=j≤m

Cmax

(
1

|l′ − j′| ,
|l − j|
m

) ∣∣∣∣∣∣

min{2m,2m+(j′−l′)}∑

t1=max{0,(j′−l′)}
e−iλl−jt1+iλj(l

′−j′)

∣∣∣∣∣∣
.

We de�ne

g1(u, l, j) = g1 := max{0, (j′ − l′)}, . . . ,min{2m, 2m+ (j′ − l′)} =: g2 = g2(u, l, j).

Then,

sup
1≤l 6=j≤m

max

(
1

|l′ − j′| ,
|l − j|
m

) ∣∣∣∣∣e
iλj(l′−j′)

g2∑

t1=g1

e−iλl−jt1

∣∣∣∣∣

= sup
1≤l 6=j≤m

max

(
1

|l′ − j′| ,
|l − j|
m

) ∣∣∣∣∣

g2−g1+1∑

t1=1

e−iλl−jt1

∣∣∣∣∣ .

Appliation of Lemma A.4 in Kirh [27℄ yields that uniformly in l, j.

∣∣∣∣∣

g2−g1+1∑

t1=1

cos

(
2π(l − j)

2m+ 1
t1

)∣∣∣∣∣ = O

(
min

(
m

|l − j| , |g2 − g1|
))

.

Analogously for the sine. Consequently,

∣∣∣∣∣

g2−g1+1∑

t1=1

e−iλl−jt1

∣∣∣∣∣ = O

(
min

(
m

|l − j| , |g2 − g1|
))

. (5.3)

57



5 Distributional properties of the moving Fourier oe�ients

On the other hand

∣∣∣∣∣

g2−g1+1∑

t1=1

e−iλl−jt1

∣∣∣∣∣ =
∣∣∣∣∣

2m∑

t1=0

e−iλl−jt1 −
2m+1∑

t1=g2−g1+2

e−iλl−jt1

∣∣∣∣∣ =

∣∣∣∣∣

2m∑

t1=g2−g1+1

e−iλl−jt1

∣∣∣∣∣

using that

∑2m
k=0 e

−ikλ = 0 for λ 6= 2πZ.
Again, with Lemma A.4 in Kirh [27℄,

∣∣∣∣∣

g2−g1+1∑

t1=1

e−iλl−jt1

∣∣∣∣∣ = O

(
min

(
m

|l − j| , |2m− (g2 − g1)|
))

. (5.4)

With (5.4) we get

∣∣∣∣∣

g2−g1+1∑

t1=1

e−iλl−jt1

∣∣∣∣∣ = O

(
min

(
m

|l − j| , |g2 − g1|, |2m− (g2 − g1)|
))

= O

(
min

(
m

|l − j| , |2m− |l′ − j′||, |l′ − j′|
))

= O

(
min

(
m

|l − j| , |l
′ − j′|

))

= O

((
max

( |l − j|
m

,
1

|l′ − j′|

))−1
)
.

All in all, we now have that

sup
1≤l 6=j≤m

max

(
m

|l′ − j′| , |l − j|
) ∣∣E(MF ε

⌊uT ⌋(λl),MF
ε
⌊uT ⌋(λj))

∣∣ = O(1).

.

Let am be a sequene with am → ∞ with am/m→ 0.
The following set A1(am, u) inludes all indies of Fourier frequenies who are either

su�iently far apart or, if they are lose to eah other, one needs to ensure that

the indies do not relate to oe�ients whih are very di�erent onerning up-to-

dateness.

Let am be a sequene with am → ∞, am
m

→ 0. Then de�ne

A1(am, u) := {(l, j) ∈ {1, . . . , m}2|(l 6= j) ∧ [|l′ − j′| ≤ am ∨ |l − j| ≥ am]}, (5.5)

with

ζ⌊uT ⌋,l := div
(
⌊uT ⌋ −

⌊m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)},

l′ := l − ζ⌊uT ⌋,lm,

j′ := j − ζ⌊uT ⌋,jm.
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5.2 Covariane struture

Denote by Acu
1 (am, u) := {l, j|l 6= j} \ A1(am, u). It holds (see Remark 5.2) that

|Acu
1 (am, u)| = a2m.

Theorem 5.3. Let am be a sequene with am → ∞, am
m

→ 0 and A1(am, u) as in

(5.5) .

(a)

sup
(l,j)∈A1(am,u)

Cov(MF ε
⌊uT ⌋(λl),MF

ε
⌊uT ⌋(λj)) = O

(
1

am
+
am
m

)
. (5.6)

(b)

sup
(l,j)∈A1(am,u)

Cov(MF⌊uT ⌋(λl),MF⌊uT ⌋(λj)) → 0. (5.7)

() If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞,

sup
(l,j)∈A1(am,u)

Cov(MF⌊uT ⌋(λl),MF⌊uT ⌋(λj)) = O

(
1

am
+
am
m

+
1√
m

)
. (5.8)

(d)

sup
1≤l 6=j≤m

Cov(MF⌊uT ⌋(λl),MF⌊uT ⌋(λj)) = O(1). (5.9)

Proof. Part (a) is an immediate orollary of Theorem 5.2, substituting the set

{1, . . . , m} by the speial set A1(am, u).

Conerning parts (b) to (d):

Analogously to the previous proof of Theorem 5.1, we now utilize Lemma 4.3
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5 Distributional properties of the moving Fourier oe�ients

sup
(l,j)∈A1(am,u)

Cov
(
MF⌊uT ⌋(λl),MF⌊uT ⌋(λj))

)

= sup
(l,j)∈A1(am,u)

E
(
MF⌊uT ⌋(λl) ·MF⌊uT ⌋(λj))

)

≤ sup
(l,j)∈A1(am,u)

Al+ζ⌊uT⌋,lm−m,T (λl)Aj+ζ⌊uT⌋,jm−m,T (−λj)

·E
(
MF ε

⌊uT ⌋(λl) ·MF ε
⌊uT ⌋(λj)

)

+ sup
(l,j)∈A1(am,u)

Al+ζ⌊uT⌋,lm−m,T (λl)E
(
MF ε

⌊uT ⌋(λl) · R(2)
⌊uT ⌋,m(−λj)

)

+ sup
(l,j)∈A1(am,u)

Aj+ζ⌊uT⌋,jm−m,T (−λj)E
(
R

(2)
⌊uT ⌋,m(λl) ·MF ε

⌊uT ⌋(−λj)
)

+ sup
(l,j)∈A1(am,u)

E
(
R

(2)
⌊uT ⌋,m(λl) · R

(2)
⌊uT ⌋,m(−λj)

)

=: B1 +B2 + B2 +B3.

Inorporating the result for the errors given by part (a), we get for the term B1:

B1 With Proposition 4.2 (a) and (), we get

sup
1≤l 6=j≤m

∣∣∣Al+ζ⌊uT⌋,lm−m,T (λl)
∣∣∣ <∞. (5.10)

Hene,

sup
(l,j)∈A1(am,u)

|B1| ≤ sup
(l,j)∈A1(am,u)

|Al+ζ⌊uT⌋,lm−m,T (λl)Aj+ζ⌊uT⌋,jm−m,T (−λj)|

· sup
(l,j)∈A1(am,u)

E
(
MF ε

⌊uT ⌋(λl),MF
ε
⌊uT ⌋(λj)

)

= O

(
1

am
+
am
m

)
.

B2 From (5.10) it follows that

sup
(l,j)∈A1(am,u)

∣∣∣Al+ζ⌊uT⌋,lm−m,T (λl)
∣∣∣ <∞.

Furthermore, Proposition 4.1 tells us that

sup
(l,j)∈A1(am,u)

E
∣∣MF ε

⌊uT ⌋(λl)
∣∣2 = 1.

Finally, the use of Lemma 4.3 and the appliation of the Cauhy-Shwarz inequality
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yield

sup(l,j)∈A1(am,u)Al+ζ⌊uT⌋,lm−m,T (λl)E
(
MF ε

⌊uT ⌋(λl) ·R
(2)
⌊uT ⌋,m(−λj)

)
= o(1).(5.11)

If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞ we have the rate

1√
m
.

Due to sup(l,j)∈A1(am,u)E(R
(2)
⌊uT ⌋,m(λl)) = 0 (4.36) and Lemma 4.1, relation (5.11)

entails

sup
(l,j)∈A1(am,u)

Al+ζ⌊uT⌋,lm−m,T (λl)Cov(MF
ε
⌊uT ⌋(λl), R

(2)
⌊uT ⌋,m(λj)) = o(1)

sup
(l,j)∈A1(am,u)

Al+ζ⌊uT⌋,lm−m,T (λl)Cov(R
(2)
⌊uT ⌋,m(λl),MF

ε
⌊uT ⌋(λj)) = o(1).

If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞

sup
(l,j)∈A1(am,u)

Al+ζ⌊uT⌋,lm−m,T (λl)Cov(MF
ε
⌊uT ⌋(λl), R

(2)
⌊uT ⌋,m(λj)) = O

(
1√
m

)

sup
(l,j)∈A1(am,u)

Al+ζ⌊uT⌋,lm−m,T (λl)Cov(R
(2)
⌊uT ⌋,m(λl),MF

ε
⌊uT ⌋(λj)) = O

(
1√
m

)
.

B3 Lemma 4.3 and the appliation of the Cauhy-Shwarz inequality yields

sup
(l,j)∈A1(am,u)

E
(
R

(2)
⌊uT ⌋(λl) · R

(2)
⌊uT ⌋(−λj)

)
= o(1). (5.12)

The rate given the stronger set of assumptions is

1
m
.

Due to (4.36) relation (5.12) entails

sup
(l,j)∈A1(am,u)

Cov

(
R

(2)
⌊uT ⌋(λl), R

(2)
⌊uT ⌋(−λj)

)
= o(1).

If additionally supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞

sup
(l,j)∈A1(am,u)

Cov

(
R

(2)
⌊uT ⌋(λl), R

(2)
⌊uT ⌋(−λj)

)
= O

(
1

m

)
.

.

Remark 5.2

Let x be de�ned as

x := mod
(
⌊uT ⌋ −

⌊m
2

⌋)
. (5.13)
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5 Distributional properties of the moving Fourier oe�ients

The set A1(am, u) an then also be written as

A1(am, u) := {(l, j) ∈ {1, . . . , m}2|(l 6= j) ∧ [(max{|l − x|, |j − x|} ≥ am)

∨ (x ≤ l, j ≤ x+ am)∨ (x− am ≤ l, j < x)]},
(5.14)

whih makes the interpretation of the set more obvious. First, we illustrate the

meaning of x: When onsidering a set of loal moving oe�ients (see De�nition

3.1), we have, depending, what time they refer to, a Fourier frequeny λx whose

orresponding o�ient is freshest. The oe�ient orresponding to the next Fourier

frequeny λx+1 is the oldest one, due to onstrution. The set A1(am, u), hene,

ontains all pairs of non-equal indies of Fourier frequenies whih are either both

smaller or both larger than x or whih are, if there is one smaller and one larger,

su�iently far away from x.

The omplementary set to A(am, u) inludes to following pairs of indies (l, j): Let

w.l.o.g. l ≤ j. If one of the to indies is further away from x than am, we are no

longer in Ac(am, u). Thus, the omplementary set omprises only of pairs of indies

(l, j) ∈ {1, . . . , m}2 with x− am < l < x and x ≤ j < x+ am, and, not to forget, all

pairs (l, l).
Now, onerning the ardinality of Ac(am, u) : We have m possibilities to hoose l
and set j = l. Further, there are am possibilities, to hoose l suh that x−am < l < x
and another am to hoose for eah of the l′s an index j, suh that x ≤ j < x+ am.
Hene, we have

|Ac(am, u)| = m+ a2m.

If we are only looking at indies (l, j), with l 6= j, that is the set Acu
1 (am, u) :=

{(l, j) ∈ {1, . . . , m}2|(l 6= j) ∧ [|l′ − j′| ≤ am ∨ |l − j| ≥ am]}. We have

|Acu
1 (am, u)| = a2m.

When not onsidering moving Fourier oe�ients entred around the same point at

time ⌊uT ⌋, but entred around ⌊uT ⌋ and ⌊uT ⌋ + s, s = 1, . . . , cm, we are still left

with the problem we have already faed when formulating Theorem 5.3. In that

ase we have worked around it with the help of A1(am, u). In the situation of the

seond point in time being s apart, the work around, however, is slightly hanged

and slightly more triky due to the additional variable s.
For the next result we will therefore �rst evoke some intuition of how we onstrut

the set A2 used in Theorem 5.4.

Consider the points in time ⌊uT ⌋ and ⌊uT ⌋ + s for some s = 1, . . . , cm. We use

Fourier frequenies with indies up to ±
⌊
m
2

⌋
around eah point. For the sake of

notation needed for the proof of Theorem 5.4 we set

U(s) :=
{
⌊uT ⌋+ s−

⌊m
2

⌋
, . . . , ⌊uT ⌋+ s+

⌊m
2

⌋}
. (5.15)
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| ×
⌊uT ⌋

| ×
⌊uT ⌋+ s

|
c1 . . . cm cm+1 c2mc2m+1 c3m c3m+1 . . . cT

S1 S2

o

l′

)(

[ ℄[ ℄

Figure 5.1: Illustrative sketh: The set U(0) � see Equation (5.15) � is marked blue,

the set V (s) is marked green.

The oe�ients in set U(0) orrespond to frequenies λ
mod(⌊uT ⌋−⌊m2 ⌋), . . . , λmod(⌊uT ⌋+⌊m2 ⌋).

Vie versa, when near the time ⌊uT ⌋, the orresponding moving Fourier oe�ient

to frequeny λl, l = 1, . . . , m, is, see (3.12),

cl+ζ⌊uT⌋,lm,

with ζ⌊uT ⌋,l = div
(
⌊uT ⌋ −

⌊
m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)}. We all the above index of

the moving Fourier oe�ient l′.
Analogously,

j′ := j + ζ⌊uT ⌋+s,jm.

l′ and j′ an now take values from 1 to T , depending on the loation of ⌊uT ⌋ and

the value of s.
Now onsider the following Figure 5.1 with some exemplary ⌊uT ⌋ and ⌊uT ⌋+ s. No
problem arises, as long as j′ and l′ remain in the same set, say Sk, with div(j

′) =
div(l′), k ∈ N0. As soon as they sit in di�erent strethes, the possibility of the

problem arises that |l′ − j′| → ∞, while |mod(l)−mod(j)| = |l − j| does not. The
problem is banned as soon as we require that |mod(j′)−mod(l′)| ≥ am. That is, for
some exemplary l′, j′ must not be within the red area l′+m ±am. In words, we need

to ensure that we do not use moving Fourier oe�ients orresponding to frequenies

that are very near to eah other, unless the oe�ients themselves are loated very

near to eah other (with a distane of the indies of less than m). By phrasing very

near to eah other, we mean that one an not �nd a sequene am → ∞,

am
m

→ 0,
with |l − j| ≥ am.

We an now hoose a set of indies A2, for whih the moving Fourier oe�ients at

the orresponding frequenies are asymptotially unorrelated.
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5 Distributional properties of the moving Fourier oe�ients

Theorem 5.4. Let am be a sequene with am → ∞, am
m

→ 0 and de�ne

A2(s) := {l′ ∈ U(0), j′ ∈ U(s)|[div(l′) = div(j′)] ∨ [|mod(l′)−mod(j′)| ≥ am]},

with U(0) and U(s) as in (5.15).

Let F−1
ε (λ1−⌈m2 ⌉), . . . ,F

−1
ε (λm),F0

ε (λ1), . . . ,F0
ε (λm), . . . , F

T
m
ε (λ⌊m2 ⌋) denote the mov-

ing Fourier transforms (De�nition 3.2 and Remark 3.3) of the innovations. Then

sup
s≥0

sup
ϕ 6=ψ∈A2(s)

Cov(Fdiv(ϕ)−1
ε (λmod(ϕ)),Fdiv(ψ)−1

ε (λmod(ψ))) = O

(
1

am
+
am
m

)
. .(5.16)

Proof. Due to Lemma 4.1, it is su�ient to onsider only

sup
s≥0

sup
(ϕ,ψ)∈A2(s)

E
(
Fdiv(ϕ)−1
ε (λmod(ϕ)) · Fdiv(ψ)−1

ε (λmod(ψ))
)
.

Hene,

sup
(ϕ,ψ)∈A2(s)

E
(
Fdiv(ϕ)−1
ε (λmod(ϕ)) · Fdiv(ψ)−1

ε (λmod(ψ))
)

= sup
(ϕ,ψ)∈A2(s)

1

2m+ 1

2m∑

t1,t2=0

E(εϕ−m+t1εψ−m+t2)e
−iλmod(ϕ)t1eiλmod(ψ)t2 .

The expetany E(εϕ−m+t1εψ−m+t2) equals not zero only if ϕ+ t1 = ψ + t2.
The remaining proof is ompletely analogous to the proof of Theorem 5.2 and we

end up with

sup
s≥0

sup
(ϕ,ψ)∈A2(s)

1

2m+ 1

2m∑

t1,t2=0

E(εϕ−m+t1εψ−m+t2)e
−iλmod(ϕ)t1eiλmod(ψ)t2

= O

(
sup
s≥0

sup
(ϕ,ψ)∈A2(s)

min

(
m

|mod(ϕ)−mod(ψ)| , |ϕ− ψ|, |2m− ϕ− ψ|
))

= O

(
1

am
+
am
m

)
.

Remark 5.3

Theorem 5.4 an also be formulated using the notation of the loal moving Fourier

oe�ients. Doing so, one needs another haraterisation of the set A2(s):

A2(s) := A21(s) ∪A22(s) ∪ A23.
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These sets A21,A22,A23 are spei�ed below. However, as the whole de�nition of

A2(s) is a bit nasty looking, we deided on the neater notation using the moving

Fourier oe�ients.

For the alternative de�nition of A2(s), we are onerned with two points in time,

⌊uT ⌋ and ⌊uT ⌋+ s. De�ne x as in (5.13) and

ys := mod
(
⌊uT ⌋+ s−

⌊m
2

⌋)
, s ∈ {−2m, . . . , 2m}.

Then, for l, j ∈ 1, . . . , m, de�ne the onditions

(1) (l < x) ∧ [(j < ys) ∨ ((j ≥ ys) ∧ (|l − j| ≥ am))]

(2) (l ≥ x) ∧ [(j ≥ ys) ∧ ((j < ys) ∧ (|l − j| ≥ am))]

(3) (l < x) ∧ [(j ≥ ys) ∧ ((j < ys) ∧ (|l − j| ≥ am))]

(4) (l ≥ x) ∧ (|j − l| ≥ am)

(5) |l − j| ≥ am.

Now de�ne three sets of indies, depending on s: If s = 1, . . . , m− x

A21(s) := {(l, j) ∈ {1, . . . , m}2|(l 6= j) ∧ [ (c1)∨(c2)]}. (5.17)

If s = m− x+ 1, . . . , 2m− x

A22(s) := {(l, j) ∈ {1, . . . , m}2|(l 6= j) ∧ [ (c3)∨(c4)]}. (5.18)

If s = 2m− x+ 1, . . . , 2m

A23(s) := {(l, j) ∈ {1, . . . , m}2|(l 6= j) ∧ (c5)}. (5.19)

Linking these sets, we get the set of indies whih orresponds to the set A2(s) when
using the notation of loal moving Fourier oe�ients.

Lemma 5.1. Let k, l = 1, . . . , T and denote the Fourier transforms by c1, . . . , cT
as in De�nition 3.2. Further, use the assumption on the funtion l disussed in

Remark 2.3.

Then

sup
|k−l|≥3m

sup
k,l

|Cov(ck, cl)| = o(1). (5.20)

The proof is based on the onept of weak dependene developed by Doukhan and

Louhihi [18℄:
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5 Distributional properties of the moving Fourier oe�ients

De�nition 5.1 ((ϑ,F , ψ)-weak dependene).

→ Doukhan and Louhihi [18℄, De�nition 1

The sequene (Xn)n∈N of r.v.s is alled (ϑ,F , ψ)-weak dependent, if there exists a

lass F of real-valued funtions, a sequene ϑ = (ϑr)r∈N dereasing to zero at in�nity,

and a funtion ψ with arguments (h, k, u, v) ∈ F2 × N2
suh that for any u-tuple

(i1, . . . , iu) and any v-tuple (j1, . . . , jv) with i1 ≤ . . . ≤ iu < iu + r ≤ j1 ≤ . . . ≤ jv,
one has

|Cov(h(Xi1 , . . . , Xiu), k(Xj1, . . . , Xjv))| ≤ ψ(h, k, u, v)ϑr,

for all funtions h,k ∈ F that are de�ned on Ru
and Rv

, respetively.

In the setting of Doukhan and Louhihi [18℄ we have L := {set of bounded Lipshitz

funtions Ru → R, for some u ∈ N}. Further,

Lip(h) := sup
x 6=y

|h(x)− h(y)|
||x− y||

denotes the Lipshitz modulus of a funtion h : Ru → R, where Ru
is equipped with

its l1-norm. Furthermore, L1 := {h ∈ L; ‖h‖∞ ≤ 1}.
We ite subsetion 4.3.4 in Nze and Doukhan [41℄, where the (ϑ,L, ψ)-weak depen-

dene of two-sided sequenes is stated. Aordingly, the in�nite moving average

Xt,T =

∞∑

j=−∞
at,T (j)et−j ,

with ϑr = 2 · E|ε0| ·
∑

|j|≥m
1
l(j)

and ψ(h, k, u, v) = (uLip(h) + vLip(k)) is (ϑ,L, ψ)-
weak dependent.

Proposition 5.1

A loally stationary proess as in De�nition 2.1 is (ϑ,L1, ψ)-weak dependent, with

a sequene ϑ = (ϑ2m)2m∈N dereasing to zero at in�nity, and a funtion ψ with

arguments (h, k, u, v) ∈ L1
2 × N2

suh that for any u-tuple (i1, . . . , iu) and any v-
tuple (j1, . . . , jv) with i1 ≤ . . . ≤ iu < iu + 2m ≤ j1 ≤ . . . ≤ jv

|Cov(h(Xi1,T , . . . , Xiu,T ), k(Xj1,T , . . . , Xjv,T ))| ≤ ψ(h, k, u, v)ϑ2m,

with ψ(g, h, u, v) := (u+ v) ·max{Lip(h), Lip(k)} and

ϑ2m := E|ε0| ·


∑

|j|≥m

1

l(j)


 . (5.21)

Proof. To prove the (ϑ,L1, ψ)-weak dependene of a loally stationary proess as

in De�nition 2.1, we follow Nze and Doukhan [41℄ p.1007 and split Xt,T in an m-

dependent proess Yt,T and some proess Rt,T , being asymptotially negligible with

66



5.2 Covariane struture

respet to the L1
-norm.

Yt,T :=

⌊m2 ⌋∑

j=−⌊m2 ⌋
at,T (j)εt−j Rt,T :=

∑

|j|>⌊m2 ⌋
at,T (j)εt−j .

Consequently,

|Cov(h(Xi1,T , . . . , Xiu,T ), k(Xj1,T , . . . , Xjv,T ))|
≤ |Cov(h(Xi1,T , . . . , Xiu,T )− h(Yi1,T , . . . , Yiu,T ), k(Xj1,T , . . . , Xjv,T ))|

+|Cov(h(Yi1,T , . . . , Yiu,T ), k(Yj1,T , . . . , Yjv,T ))|
+|Cov(h(Yi1,T , . . . , Yiu,T ), k(Xj1,T , . . . , Xjv,T )− k(Yj1,T , . . . , Yjv,T ))|

Due to the m-dependene of the proess Yt,T ,

|Cov(h(Yi1,T , . . . , Yiu,T ), k(Yj1,T , . . . , Yjv,T ))| = 0.

We may therefore ontinue with

|Cov(h(Xi1,T , . . . , Xiu,T ), k(Xj1,T , . . . , Xjv,T ))|
≤ |Cov(h(Xi1,T , . . . , Xiu,T )− h(Yi1,T , . . . , Yiu,T ), k(Xj1,T , . . . , Xjv,T ))|

+|Cov(h(Yi1,T , . . . , Yiu,T ), k(Xj1,T , . . . , Xjv,T )− k(Yj1,T , . . . , Yjv,T ))|
< 2Lip(h)‖k‖∞‖(Xi1,T , . . . , Xiu,T )− (Yi1,T , . . . , Yiu,T )‖1

+2Lip(k)‖h‖∞‖(Xj1,T , . . . , Xjv,T )− (Yj1,T , . . . , Yjv,T )‖1
≤ 2Lip(h)‖(Ri1,T , . . . , Riu,T )‖1 + 2Lip(k)‖(Rj1,T , . . . , Rjv,T )‖1

due to ‖h‖∞ ≤ 1 as well as ‖k‖∞ ≤ 1.

For t = 1, . . . , T ,

E|Rt,T | ≤
∑

|j|≥⌊m2 ⌋
|at,T (j)|E|εt−j| ≤ E|ε0|




∑

|j|≥⌊m2 ⌋
|at,T (j)|


 ≤ C




∑

|j|≥⌊m2 ⌋

1

l(j)


 .

This result also holds for every u ∈ [0, 1] :

sup
u∈[0,1]

sup
t∈Bu

E|Rt,T | ≤ C




∑

|j|≥⌊m2 ⌋

1

l(j)


 .
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5 Distributional properties of the moving Fourier oe�ients

Thus, Xt,T is weak dependent with ψ(g, h, u, v) = (u+ v) ·max{Lip(h), Lip(k)} and

ϑm := E|ε0| ·




∑

|j|≥⌊m2 ⌋

1

l(j)


 .

ϑm → 0 due to the the behaviour of l(j) as given in De�nition 2.1. .

Proof of Lemma 5.1. Let |k − l| ≥ 3m. Then |k − m + j − (l − m + i)| ≥ m, for
j, i = 0, . . . , 2m.
Consider the speial ase of u = v = 2m, r ≥ m, f1(x) :=

∑2m
j=0 xk−m+je

−iλmod(k)j

and f2(x) :=
∑2m

j=0 xl−m+je
−iλmod(l)j

. Both funtions f1 and f2 have a Lipshitz

modulus of 1, as

∣∣∣
∑2m

j=0(xk−m+j − yk−m+j)e
−iλmod(k)j

∣∣∣
∑2m

j=0 |xk−m+j − yk−m+j|
≤
∑2m

j=0 |xk−m+j − yk−m+j|∑2m
j=0 |xk−m+j − yk−m+j|

= 1.

We begin with

sup
|k−l|≥3m

sup
k,l

|Cov(ck, cl)|

= sup
|k−l|≥3m

sup
k,l

∣∣∣∣∣Cov
(

1√
2m+ 1

2m∑

j=0

Xk−m+j,Te
−iλmod(k)j,

1√
2m+ 1

2m∑

j=0

Xl−m+j,Te
−iλmod(l)j

)∣∣∣∣∣

= sup
|k−l|≥3m

sup
k,l

1

2m+ 1

∣∣∣∣∣Cov
(

2m∑

j=0

Xk−m+j,Te
−iλmod(k)j ,

2m∑

j=0

Xl−m+j,Te
−iλmod(l)j

)∣∣∣∣∣

= sup
|k−l|≥3m

sup
k,l

1

2m+ 1
|Cov(f1(Xk−m,T , . . . , Xk+m,T ), f2(Xl−m,T , . . . , Xl+m,T ))|

≤ sup
|k−l|≥3m

sup
k,l

1

2m+ 1
ψ(f1, f2, 2m, 2m) · ϑ2m,

E|ε0| ≤ C (f. De�nition 2.1). Furthermore, Lip(f1) = Lip(f2) = 1, whih then

results in

sup
|k−l|≥3m

sup
k,l

1

2m+ 1
ψ(f1, f2, 2m, 2m) · ϑ2m ≤ 2 ·K · 2m

2m+ 1

∑

|j|≥m

1

l(j)
.

Hene, (5.20) follows.

Remark 5.4

There is also an alternative, more obvious proof of Lemma 5.1:
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5.2 Covariane struture

Proof. First note that

Cov(ck, cl) =

∞∑

j1,j2=−∞
ak,T (j1)al,T (j2)

2m∑

t1,t2=0

E (εk−j1+t1εl−j2+t2) e
−iλmod(k)t1+iλmod(l)t2 ,

with E (εk−j1+t1εl−j2+t2) = δ{t1=t2+l−k+j1−j2}. However, as t1 is restrited to the range

from 0 to 2m, the expetany an only be non-zero for |j1− j2| > m, if |k− l| ≥ 3m.
Hene,

sup
|k−l|≥3m

sup
k,l

|Cov(ck, cl)| ≤ C sup
|k−l|≥3m

sup
k,l

∑

|j1−j2|>m
|ak,T (j1)| · |al,T (j2)| → 0.

The drawbak of this simple proof, however, is that it an not easily extended to

periodograms, as the arguments require a lineare struture.

The following Lemma is an extension of Theorem 5.3 (a) to moving periodograms.
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5 Distributional properties of the moving Fourier oe�ients

Lemma 5.2. For u ∈ [0, 1], j 6= k = 1, . . . , m, let

ζ⌊uT ⌋,k := div
(
⌊uT ⌋ −

⌊m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)},

l′ := l + ζ⌊uT ⌋,lm

j′ := j + ζ⌊uT ⌋,jm.

Then,

sup
l 6=j=1,...,m

[
min

(
m,max

(
|l − j|2, m2

|l′ − j′|2
)) ∣∣E(MIε⌊uT ⌋,m(λj)MIε⌊uT ⌋,m(λl))− 1

∣∣
]
= O(1);

sup
j=1,...,m

VarMIε⌊uT ⌋,m(λj) = 2 +O

(
1

m

)
.

Proof.

E(MIε⌊uT ⌋,m(λl)MI
ε
⌊uT ⌋,m(λj))

=
1

(2m+ 1)2

2m∑

t1,t2,t3,t4=0

E
(
εl+ζ⌊uT⌋,lm−m+t1εl+ζ⌊uT⌋,lm−m+t2e

−i(t1−t2)λl

εj+ζ⌊uT⌋,jm−m+t3εj+ζ⌊uT⌋,jm−m+t4e
−i(t4−t3)λj)

=
1

(2m+ 1)2

2m∑

t1,t2,t3,t4=0

e−i(t1−t2)λle−i(t4−t3)λj

·E
(
εl+ζ⌊uT⌋,lm−m+t1εl′−m+t2εj′−m+t3εj+ζ⌊uT⌋,jm−m+t4

)
.

We now have

1

(2m+ 1)2

l′+m∑

t1,t2=l′−m′

j′+m∑

t3,t4=j′−m
E(εt1εt2εt3εt4)e

−i(t1−t2)λlei(t3−t4)λj

For further alulations we need the following ase di�erentiation with respet to

the indies t1, . . . , t4.

• t1 = t2 = t3 = t4

In this ase, we an get the upper bound

1

2m+ 1
E(ε41) +

Σ(l, j)E(ε41)

(2m+ 1)2
(5.22)

The exat value value of Σ(l, j) is:

Σ(l, j) := min{2m+ l′, 2m+ j′} −max{l′, j′}+ 1 = 2m− |l′ − j′|+ 1.
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5.2 Covariane struture

• t1 = t2 6= t3 = t4

yields

σ2 − Eε41
(2m+ 1)2

∑

t1=t2=t3=t4

1 = 1− Σ(l, j)E(ε41)

(2m+ 1)2
.

• t1 = t3 6= t2 = t4

W.l.o.g. l′ > j′

1

(2m+ 1)2

j′+m∑

t1,t2=j′−m

l′+m∑

t3,t4=l′−m
E(εt1εt2εt3εt4)e

−i(t1−t2)λlei(t3−t4)λj1{t1=t3 6=t2=t4}

=
1

(2m+ 1)2

2m+j′∑

t1,t2=l′

e−i(t1−t2)λlei(t1−t2)λj − Eε41
(2m+ 1)2

∑

t1=t2=t3=t4

1

=
1

(2m+ 1)2

∣∣∣∣∣

2m+j′∑

t1=l′

e−it1λl−j

∣∣∣∣∣

2

− Σ(l, j)E(ε41)

(2m+ 1)2
.

Considering the term

1

(2m+ 1)2

∣∣∣∣∣

2m+j′∑

t1=l′

e−it1λl−j

∣∣∣∣∣

2

,

whih equals 1 for l = j, we write

2m+j′∑

t1=l′

e−it1λl−j =

2m+j′−l′∑

t1=0

e−i(t1+l
′)λl−j +

2m∑

t1=2m+j′−l′+1

e−i(t1+l
′)λl−j

−
2m∑

t1=2m+j′−l′+1

e−i(t1+l
′)λl−j

= −
2m∑

t1=2m+j′−l′+1

e−i(t1+l
′)λl−j

= −
l′−j′∑

t1=1

e−i(t1+2m+l′)λl−j .

From this, we de�ne

T := T (l′, j′, l, j) :=

l′−j′∑

t1=1

e−i(t1+2m+j′)λl−j ,
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5 Distributional properties of the moving Fourier oe�ients

to whih we apply Lemma A.4 in Kirh [27℄. This yields

T = O

(
min

(
2m+ 1

|l − j| , |l
′ − j′|

))
.

Analogously for the sine term. Hene,

1

(2m+ 1)2
|T |2 ≤ Cmin

(
1

|l − j|2 ,
|l′ − j′|2
m2

,
|l′ − j′|
m|l − j|

)
+

1

m

= Cmin

(
1

|l − j|2 ,
|l′ − j′|2
m2

)
+

1

m
. (5.23)

• t1 = t4 6= t2 = t3 This ase is analogous to the ase of t1 = t3 6= t2 = t4 and

yields the same result, whih inludes 1 +O
(

1
m

)
for l = j. So note that all in

all

sup
j=1,...,m

VarMIε⌊uT ⌋,m(λj) = 2 +O

(
1

m

)
.

Continuing for l 6= j we an write

Cov

(
MIε⌊uT ⌋,m(λj),MI

ε
⌊uT ⌋,m(λl)

)
= Σ(l, j) · E(ε

4
1)− 3

(2m+ 1)2
+O

(
min

(
1

|l − j|2 ,
|l′ − j′|2
m2

))
.

(5.24)

All in all,

|E(MIε⌊uT ⌋,m(λl),MIε⌊uT ⌋,m(λl))− 1| ≤ C1min

(
1

|l − j|2 ,
|l′ − j′|2
m2

)
+ C2

1

m
.

≤ C3max

(
min

(
1

|l − j|2 ,
|l′ − j′|2
m2

)
,
1

m

)
.

.

Lemma 5.3. Let am be a sequene with am → ∞,

am
m

→ 0 and A1(am, u) as in

(5.5).

Then,

(a)

sup
(l,j)∈A1(am,u)

∣∣E(MIε⌊uT ⌋,m(λl)MIε⌊uT ⌋,m(λj))− 1
∣∣ = O

(
1

m
+

1

a2m
+
a2m
m2

)
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5.2 Covariane struture

(b)

sup
l 6=j=1,...,m

E(MIε⌊uT ⌋,m(λl)MI
ε
⌊uT ⌋,m(λj)) = O(1).

Proof. The set A1(am, u) is de�ned as

A1(am, u) := {(l, j) ∈ {1, . . . , m}2|(j 6= l) ∧ [|l′ − j′| ≤ am ∨ |l − j| ≥ am]}.

(a) In any of the two ases |l′ − j′| ≤ am or |l − j| ≥ am, the result follows from

Lemma 5.2.

(b) Follows immediately from Lemma 5.3.

We introdue the following notation. Let

x ≻ y :⇔ x

y
= o(1),

x < y :⇔ x

y
= O(1).

Remark 5.5

If additionally to the assumptions of Lemma 5.3 am 4
√
m,

sup
(l,j)∈A1(am,u)

∣∣E(MIε⌊uT ⌋,m(λl)MIε⌊uT ⌋,m(λj))− 1
∣∣ = O

(
1

a2m

)
.

Corollary 5.1. In the situation of Lemma 5.2 with am → ∞ and am 4
√
m,

sup
(l,j)∈A1(am,u)

Cov(MIε⌊uT ⌋,m(λl),MI
ε
⌊uT ⌋,m(λj)) = O

(
1

a2m

)
.

Proof. Under the assumptions made, Lemma 5.3 states that

sup
(l,j)∈A1(am,u)

∣∣E(MIε⌊uT ⌋,m(λl)MIε⌊uT ⌋,m(λj))− 1
∣∣ = O

(
1

a2m

)
,

As supu,lE(MI
ε
⌊uT ⌋,m(λl)) = 1, see Proposition 4.1, the result follows.
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5 Distributional properties of the moving Fourier oe�ients

Lemma 5.4.

1

2m+ 1

∑

j,l=0,...,2m

∣∣
Cov(MIε⌊uT ⌋,m(λl),MI

ε
⌊uT ⌋,m(λj))

∣∣ = O(1).

Proof. We split the set of indies and then apply Corollary 5.1:

1

2m+ 1

2m∑

j 6=l=0

∣∣E(MIε⌊uT ⌋,m(λl)MIε⌊uT ⌋,m(λj))− 1
∣∣

=
2

2m+ 1


 ∑

(l,j)∈A1(am,u)

∣∣
Cov(MIε⌊uT ⌋,m(λl),MI

ε
⌊uT ⌋,m(λj))

∣∣

+
∑

(l,j)6∈A1(am,u)

∣∣
Cov(MIε⌊uT ⌋,m(λl)MI

ε
⌊uT ⌋,m(λj))

∣∣



= O

(
m

a2m
+
a2m
m

)
.

With am =
√
m the result follows. Note that the ase l = j an be inluded into

the sum.

Lemma 5.5. Let supu∈[0,1]
∑∞

j=−∞ |a(u, j)|
√
|j| <∞. Then,

1

2m+ 1

2m∑

j,k=0

∣∣∣∣Cov(MI⌊uT ⌋,m(λj),MI⌊uT ⌋,m(λk))− |Aj+ζ⌊uT⌋,jm−m,T (λj) |2

·|Ak+ζ⌊uT⌋,km−m,T (λk) |2 · Cov
(
MIε⌊uT ⌋,m(λj),MI

ε
⌊uT ⌋,m(λk)

) ∣∣∣∣ = o(1).

Proof. Theorem 4.3 enables us to express the moving periodogram of a loally sta-

tionary time series with the help of the moving periodogram of iid random variables

plus some remainder with vanishing seond moment. The properties of the remain-

der are formally stated in Equations (4.47) and (4.48).
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5.2 Covariane struture

We may therefore substitute

1

2m+ 1

2m∑

j,k=0

∣∣∣∣Cov(MI⌊uT ⌋,m(λj),MI⌊uT ⌋,m(λk))− |Aj+ζ⌊uT⌋,jm−m,T (λj) |2

·|Ak+ζ⌊uT⌋,km−m,T (λk) |2Cov
(
MIε⌊uT ⌋,m(λj),MI

ε
⌊uT ⌋,m(λk)

) ∣∣∣∣

≤ 1

2m+ 1

2m∑

j,k=0

|Aj+ζ⌊uT⌋,jm−m,T (λj) |2
∣∣
Cov

(
MIε⌊uT ⌋,m(λj), R

′
⌊uT ⌋,m(λk)

)∣∣

+
1

2m+ 1

2m∑

j,k=0

|Ak+ζ⌊uT⌋,km−m,T (λk) |2
∣∣
Cov

(
R′

⌊uT ⌋,m(λj),MI
ε
⌊uT ⌋,m(λk)

)∣∣

+
1

2m+ 1

2m∑

j,k=0

∣∣
Cov

(
R′

⌊uT ⌋,m(λj), R
′
⌊uT ⌋,m(λk)

)∣∣ ,

with At,T (λl) :=
∑∞

j=−∞ at,T (j)e
−iλlj

.

Aording to Proposition 4.2 supj=1,...,m |Aj+ζ⌊uT⌋,jm−m,T (λj) |2 is bounded. More-

over, note that ER
(2)
⌊uT ⌋,m(λl) = 0 (4.36) and onsequently ER

′

⌊uT ⌋,m(λl) = 0.

1

2m+ 1

2m∑

j,k=0

|Aj+ζ⌊uT⌋,jm−m,T (λj) |2
∣∣E
(
MIε⌊uT ⌋,m(λj)R

′
⌊uT ⌋,m(λk)

)∣∣

≤ E

(
1√

2m+ 1

2m∑

j=0

|Aj+ζ⌊uT⌋,jm−m,T (λj) |2
∣∣MIε⌊uT ⌋,m(λj)

∣∣

· 1√
2m+ 1

2m∑

k=0

∣∣R′
⌊uT ⌋,m(λk)

∣∣
)

≤ CE

(
1√

2m+ 1

2m∑

j=0

∣∣MIε⌊uT ⌋,m(λj)
∣∣ 1√

2m+ 1

2m∑

k=0

∣∣R′
⌊uT ⌋,m(λk)

∣∣
)

≤ C

√√√√ 1

2m+ 1
E

(
2m∑

j=0

∣∣∣MIε⌊uT ⌋,m(λj)
∣∣∣
)2

·

√√√√ 1

2m+ 1
E

(
2m∑

k=0

∣∣∣R′
⌊uT ⌋,m(λk)

∣∣∣
)2

with the Cauhy-Shwarz inequality. Similarly,

1

2m+ 1

2m∑

j,k=0

∣∣E
(
R′

⌊uT ⌋,m(λj)R
′
⌊uT ⌋,m(λk)

)∣∣ ≤ E

(
1√

2m+ 1

2m∑

k=0

∣∣R′
⌊uT ⌋,m(λk)

∣∣
)2

.
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5 Distributional properties of the moving Fourier oe�ients

We know from Lemma 5.4 that

Var

(
1√

2m+ 1

2m∑

j=0

∣∣MIε⌊uT ⌋,m(λj)
∣∣
)

= Var

(
1√

2m+ 1

2m∑

j=0

MIε⌊uT ⌋,m(λj)

)

=
1

2m+ 1

2m∑

j,k=0

Cov

(
MIε⌊uT ⌋,m(λj),MI

ε
⌊uT ⌋,m(λk)

)

= O(1).

With Proposition 4.1,

E

(
1√

2m+ 1

2m∑

j=0

∣∣MIε⌊uT ⌋,m(λj)
∣∣
)2

= O(1).

And with Theorem 4.3, Equation (4.48), that is

E

(
1√

2m+ 1

2m∑

k=0

∣∣R′
⌊uT ⌋,m(λk)

∣∣
)2

= o(1),

the result follows.

5.3 Spetral means with moving periodograms:

asymptoti harateristis

We de�ne the spetral mean MT using the loal moving periodogram:

MT (u) :=
1

2m+ 1

2m∑

j=0

ϕ(λj)|MF⌊uT ⌋(λj)|2 (5.25)

T (u) :=
1

2m+ 1

2m∑

j=0

ϕ(λj)|F(X⌊uT ⌋−m+1,T , . . . , X⌊uT ⌋+m,T ;λj)|2 (5.26)

T (u) denotes the spetral mean statisti as used by Sergides [49℄, employing the

loal periodogram. Here, ϕ is hosen as in Sergides [49℄, Assumption 4. ϕ is a

omplex-valued bounded funtion. Moreover, it is periodially extended to R with

period 2π and has a bounded seond derivative. For 2m ≥ j > m, we require

ϕ(λj) = ϕ(λ2m−j).
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Proposition 5.2

1

m

2m∑

l,j=0, l>j

min




1

|l − j|2 ,

∣∣∣l − j + 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)>j}m
∣∣∣
2

m2


 = O

(
m− 1

3

)
.

Proof.

1

m

∑

l>j

min




1

|l − j|2 ,

∣∣∣l − j + 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)>j}m
∣∣∣
2

m2




≤ 1

m

∑

l>j

min

(
1

|l − j|2 ,
|l − j|2
m2

)
+

1

m

∑

l≥j+m
1
3

1

|l − j|2

+
C

m

mod(⌊uT ⌋−⌊m2 ⌋)−1∑

j=mod(⌊uT ⌋−⌊m2 ⌋)−m 1
3

j+m
1
3∑

l=mod(⌊uT ⌋−⌊m2 ⌋)
1

The splitting is hosen aording to the di�erent possible values of the indiator

funtion: The �rst ase is assuming that 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)>j} = 0, the seond one

assumes that the indiator funtion equals 1, but l > j + m
1
3
, and the third ase

assumes the inditor being 1 and all values of l and j not inluded in the seond ase.

With Kreiss and Neuhaus [30℄, Equation (A.11),

1

m

∑

l>j

min

(
1

|l − j|2 ,
|l − j|2
m2

)
=

1

m

∑

1≤|h|≤O(m)

(2m− |h|)min

(
1

h2
,
h2

m2

)

≤ O(1)

∣∣∣∣∣∣

∑

|h|≤√
m

h2

m2
+
∑

|h|>√
m

1

h2

∣∣∣∣∣∣
= O

(
1√
m

)
.

Analogously,

1

m

∑

l≥j+m
1
3

1

|l − j|2 =
1

m

∑

O(m)≥|h|≥m
1
3

2m− |h|
h2

=
∑

|h|≥m
1
3

1

h2
= O

(
m− 1

3

)
.
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And �nally,

1

m

mod(⌊uT ⌋−⌊m2 ⌋)−1∑

j=mod(⌊uT ⌋−⌊m2 ⌋)−m 1
3

j+m
1
3∑

l=mod(⌊uT ⌋−⌊m2 ⌋)
1

=
1

m

mod(⌊uT ⌋−⌊m2 ⌋)−1∑

j=mod(⌊uT ⌋−⌊m2 ⌋)−m 1
3

(
j +m

1
3 −mod

(
⌊uT ⌋ −

⌊m
2

⌋)
+ 1
)

=
1

m

m
1
3∑

k=1

k = O

(
m

2
3

m

)
= O

(
m− 1

3

)
.

Theorem 5.5. With MT as in (5.25), for every u ∈ [0, 1] it holds that

Var

(√
2m+ 1 [MT (u)−E(MT (u))]

)
=

=
8π2

2m+ 1

2m∑

j=0

|ϕ(λj)|2f 2(u, λj) + (E(ε41)− 3)

(
8π2

(2m+ 1)3
·

·
2m∑

j 6=l=0

ϕ(λj)ϕ(λl)f(u, λj)f(u, λl)|Σ(l, j)|
)

+ o(1).

with

Σ(l, j) := 2m− |l′ − j′|+ 1,

ζ⌊uT ⌋,k := div
(
⌊uT ⌋ −

⌊m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)},

l′ := l + ζ⌊uT ⌋,lm,

j′ := j + ζ⌊uT ⌋,jm.

Remark 5.6

Σ(l, j) is bounded from above by 2m+ 1. In the ase of loal periodograms, as seen

in Sergides [49℄, it equals 2m+ 1, as we do not do any shifting.
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Proof.

With Lemma 5.5, De�nition 2.2 and ϕ bounded

1

2m+ 1

∑

j 6=l
ϕ(λj)ϕ(λl)Cov(MI⌊uT ⌋,m(λj),MI⌊uT ⌋,m(λl))

=
4π2

2m+ 1

∑

j 6=l
ϕ(λj)ϕ(λl)f(u, λj)f(u, λl)Cov(MI

ε
⌊uT ⌋,m(λj),MI

ε
⌊uT ⌋,m(λl)) + o(1).

From this,

Var

(√
2m+ 1 [MT (u)−E(MT (u))]

)

=
1

2m+ 1

2m∑

j=0

ϕ(λj)ϕ(λj)Var
(
MI⌊uT ⌋,m(λj)

)

+
1

2m+ 1

2m∑

j 6=l=0

ϕ(λj)ϕ(λl)Cov
(
MI⌊uT ⌋,m(λj),MI⌊uT ⌋,m(λl)

)

=
1

2m+ 1

2m∑

j=0

ϕ(λj)ϕ(λj)Var
(
MI⌊uT ⌋,m(λj)

)

+
2

2m+ 1

∑

j 6=l
ϕ(λj)ϕ(λl)Cov

(
MI⌊uT ⌋,m(λj),MI⌊uT ⌋,m(λl)

)

=
1

2m+ 1

2m∑

j=0

ϕ(λj)ϕ(λj)Var
(
MI⌊uT ⌋,m(λj)

)

+
8π2

2m+ 1

∑

j 6=l
ϕ(λj)ϕ(λl)f(u, λj)f(u, λl)Cov(MI

ε
⌊uT ⌋,m(λj),MI

ε
⌊uT ⌋,m(λl))

+o(1)

=: A1 + A2 + o(1),

A1

By slightly modifying Theorem 4.3, we get with Propositions 4.1 and 4.2

MI⌊uT ⌋,m(λj) = |A (u, λj)|2MIε⌊uT ⌋,m(λj) +R′′
⌊uT ⌋,(λj).

R′′
⌊uT ⌋,m(λj) ful�lls (4.46) and, under the additional assumption of

sup
u∈[0,1]

∞∑

j=−∞
|a(u, j)|

√
|j| <∞,

(4.47) holds.
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5 Distributional properties of the moving Fourier oe�ients

With the above modi�ation of Theorem 4.3

Var

(
MI⌊uT ⌋,m(λj)

)
= |A (u, λj)|4Var

(
MIε⌊uT ⌋,m(λj)

)
+ Var

(
R′

⌊uT ⌋(λj)
)

+2 |A (u, λj)|2Cov
(
MIε⌊uT ⌋,m(λj), R

′
⌊uT ⌋(λj)

)
.

Now,

sup
u∈[0,1]

sup
l=1,...,m

Var

(
R′

⌊uT ⌋(λj)
)
≤ sup

u∈[0,1]
sup

l=1,...,m
E|R′

⌊uT ⌋(λj)|2 = o(1)

Under the assumption that supu∈[0,1]
∑∞

j=−∞ a(u, j)
√
|j| <∞, we get O

(
1
m

)
.

Hene, with Cauhy-Shwarz and Propositions 4.1 and 4.2, we also have that

sup
u∈[0,1]

sup
l=1,...,m

|A (u, λj)|2Cov
(
MIε⌊uT ⌋,m(λj), R

′
⌊uT ⌋(λj)

)
= o(1).

Again, with the additional assumption, this yields a rate of O
(

1√
m

)
.

From Lemma 5.2 we have that

sup
j=1,...,m

Var

(
MIε⌊uT ⌋,m(λj)

)
= 2 +O

(
1

m

)
.

Thus,

1

2m+ 1

2m∑

j=0

ϕ(λj)ϕ(λj)Var
(
MI⌊uT ⌋,m(λj)

)
=

2

2m+ 1

2m∑

j=0

|ϕ(λj)|2 |A (u, λj)|4 + o(1).

With the de�nition of the time-varying spetral density, f(u, λ), De�nition 2.2,

Var(MI⌊uT ⌋,m(λj)) = 8π2f 2(u, λj) + o(1). (5.27)

With the additional assumption we get

Var(MI⌊uT ⌋,m(λj)) = 8π2f 2(u, λj) +O

(
1√
m

)
. (5.28)

And, hene,

A1 =
1

2m+ 1

2m∑

j=0

ϕ(λj)ϕ(λj)Var
(
MI⌊uT ⌋,m(λj)

)

=
8π2

2m+ 1

2m∑

j=0

|ϕ(λj)|2f 2(u, λj) + o(1).
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A2

From the proof in Lemma 5.2, we obtain Equation (5.24), that is

Cov

(
MIε⌊uT ⌋,m(λj),MI

ε
⌊uT ⌋,m(λl)

)
= Σ(l, j) · E(ε

4
1)− 3

(2m+ 1)2
+O

(
min

(
1

|l − j|2 ,
|l′ − j′|2
m2

))
.

Hene, by Proposition 5.2,

A2 =
8π2

2m+ 1

2m∑

j 6=l=0

ϕ(λj)ϕ(λl)f(u, λj)f(u, λl)Cov
(
MIε⌊uT ⌋,m(λj),MI

ε
⌊uT ⌋,m(λl)

)

= (E(ε41)− 3)

(
1

(2m+ 1)3

2m∑

j 6=l=0

ϕ(λj)ϕ(λl)f(u, λj)f(u, λl)Σ(l, j)

)
+O

(
m− 1

3

)
.

and therefore the result follows.
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CHAPTER 6

Alternative Fourier transformations

In Chapter 5 we have looked at the ovariane of loal moving oe�ients. In

the easiest ase, the oe�ients referred to and were based on a sequene of i.i.d.

random variables εt. We will restrit ourselves in the following to this ase in order

to understandably onvey our point. The results an, of ourse, analogously to the

proedure in Chapter 4 be extended to the ase of stationary, as well as loally

stationary time series.

We look at the statement made by Theorem 5.3:

In the situation of Lemma 5.2 with am → ∞ and am/
√
m→ 0,

sup
(l,j)∈A1(am,u)

Cov(MIε⌊uT ⌋,m(λl),MI
ε
⌊uT ⌋,m(λj)) = O

(
1

a2m

)
.

Here, one might ask oneself if the restrition to the set A1(am, u) introdued to

maintain the orret ovariane struture is indeed neessary or whether it an be

irumvented by slightly hanging the transform in some way. For the de�nition of

the set A1(am, u) see Equation (5.5).

Note that in the following setions, we will refer to the oe�ients

MF ε
k (λl) :=

1√
2m+ 1

2m∑

t=0

ε
l+

(

div(k−⌊m2 ⌋)−1{l≥mod(k−⌊m2 ⌋)}
)

m−m+t,T
e−itλl ,

(De�nition 3.1) as the original loal moving Fourier oe�ients in ontrast to the

below-mentioned alterations MF
ε,(1)
k (λl), MF

ε,(2)
k (λl), and MF

ε,(3)
k (λl).
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6 Alternative Fourier transformations

Further, we de�ne two alternative operators to mod and div for j ∈ Z:

MOD(j) :=





2m+ 1, if 2m+ 1 is a fator of j ∈ Z,

j mod (2m+ 1) , j > 0 ∧ (2m+ 1) | j,
2m+ 1− [(−j) mod (2m+ 1)], j < 0 ∧ (2m+ 1) ∤ j.

(6.1)

DIV (j) :=

⌈
j

2m+ 1

⌉
. (6.2)

Then, j =MOD(j) + (DIV (j)− 1)(2m+ 1).

Those operators arise from the de�nition of mod and div by substituting m by

2m+ 1.

6.1 Loal moving Fourier transform (Alt 1) -

adding some rearranging

Motivated by the proedure hosen for the transformation from frequeny to time

domain (De�nition 3.4), one might also want to onsider the rearranging of the

input data in this ase. We have already done this in the frequeny domain where

it seems very intuitive, as one would want to link the Fourier oe�ient cl (referring
to frequeny λl to the exponential funtion eiλlt. Simply speaking, one would like

to have

εt =
2m∑

l=0

cle
iλlt,

just like we do for the ordinary global Fourier transform. Note, however, that we

do move through the sequene c1, c2, . . . , cT when performing the inverse moving

Fourier transform. Hene, we would, in the next step, link cl with e
−iλl−1t

, as the set

of Fourier oe�ients we started with would be not c1, . . . , cm, but c2, . . . , cm+1. Now

c2 would be multiplied by eiλ1·, whih does not make any sense, as it orresponds to

frequeny λ1. Hene, in the frequeny domain the reason why we do the rearranging,

whih is thoroughly desribed in Chapter 3, is obvious.

We now asked ourselves the question whether we may either get rid of or redue

the ardinality of the set A1(am, u) by doing the same rearranging in the time

domain, ensuring that some random variable εt will always, when ouring in any

seleted streth of data be linked with e−iλlt (inorporating the same index t and
not inorporating just some index used for summing up the 2m + 1 elements).

Without rearranging, the random variable ε16, for example, whih is used in 2m+1
transformations, is always linked to a di�erent value of the index of summation. By

rearranging, we ensure that the random variable ε16 is always in position 16 of our

set of length 2m+ 1. That's the idea so far, now omes the theory.
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6.1 Loal moving Fourier transform (Alt 1) - adding some rearranging

What happens formally, when adding rearranging to the original loal moving Fourier

transform? Starting out with the time series ε0, . . . , εT , we intend to always link ε0
to the �rst position in the set, ε1 to the seond position, up to ε2m, whih is linked

to the position 2m+ 1. ε2m+1 shall then be again linked to the �rst position in the

sample and so on. We an see that this way the orresponding positions result from

using the atual indies MOD(2m+ 1).

Now onsider the exemplary set of

ε4, ε5, . . . , ε2m+1, ε2m+2, ε2m+3, ε2m+4.

The �rst step is to �nd out, what the inherent position of the last element is:

MOD(2m+ 4). This equals 3. Now, the set is rearranged to

ε2m+2, ε2m+3, ε2m+4, ε4, ε5, . . . , ε2m+1,

plaing ε2m+4 in position 3. The number MOD(2m + 4) will be referred to as the

splie of the streth of random variables onsidered.

Assuming we want to alulate the Fourier oe�ient at frequeny 1 ≤ l ≤ m, the

splie in the sequene of indies an be written as

ξl :=MOD(l + ζ⌊uT ⌋,lm+m)

That is

MF
ε, (1)
⌊uT ⌋ (λl) :=

1√
2m+ 1

ξl∑

t=1

εl+ζ⌊uT⌋,lm−m+2m+t+1e
−iλlt

+
1√

2m+ 1

2m+1∑

t=ξl+1

εl+ζ⌊uT⌋,lm−m+te
−iλlt.

Now, with similar arguments as in the proof of Theorem 5.2,

E(MF
ε, (1)
⌊uT ⌋ (λl)MF

ε, (1)
⌊uT ⌋ (λj))

= E

((
1√

2m+ 1

ξl∑

t=1

εl+ζ⌊uT⌋,lm−m+2m+te
−iλlt +

1√
2m+ 1

2m+1∑

t=ξl+1

εl+ζ⌊uT⌋,lm−m+te
−iλlt

)

·


 1√

2m+ 1

ξj∑

t=1

εj+ζ⌊uT⌋,jm−m+2m+te
iλjt +

1√
2m+ 1

2m+1∑

t=ξj+1

εj+ζ⌊uT⌋,jm−m+te
iλjt






=
O(1)

m




min(ξl,ξj)∑

t1=1

e−i(λl−λj)t1 +
2m+1∑

t2=max(ξl,ξj)+1

e−i(λl−λj)t2




=
O(1)

m


−

max(ξl,ξj)∑

t=min(ξl,ξj)+1

e−i(λl−λj)t


 = O

(
min

( |ξl − ξj|
m

,
1

l − j

))
.
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6 Alternative Fourier transformations

Here, we an see that for |l − j| small, that is for Fourier frequenies λl and λj
lose to eah other, we annot guarantee |ξl − ξj | to be of an order less than m. An

example would be l + ζ⌊uT ⌋,lm = m+ 3 and j + ζ⌊uT ⌋,jm = 2, l = 2, j = 3.

6.2 Loal moving Fourier transform (Alt 2) -

formally irumventing the stumbling bloks

To takle the question, whether the introdution of the set A1(am, u) an be irum-

vented, one might also want to look ritially at the fat that we arti�ially reate

some kind of break in the sequene of Fourier oe�ients. What we are urrently

doing is as follows: We alulate the moving Fourier oe�ients by shifting along

the time series and for eah streth of data we alulate the Fourier transform for

one single frequeny λl and then move on to the next streth, with l = 1, . . . , m.

Having reahed λm, we start anew with l = 1.
The following alternative transformation di�ers from our original one by the fat

that we generate Fourier oe�ients orresponding to the whole set of Fourier fre-

quenies {λ1, . . . , λ2m+1} before ontinuing with λ1. In the original proedure we

generated oe�ients for frequenies λ1, . . . , λm and then started again with λ1. To
adapt the original method, we need to use the two operators MOD and DIV .

The ruial point, however, is that for the proedure to work, we need to get rid

of all Fourier oe�ients belonging to frequenies λm+1, . . . , λ2m+1. To illustrate

the onept: Having generated c1, . . . , cT , we throw away cm+1, . . . , c2m+1, as well as
c3m+2, . . . , c4m+2 and so on, that is in the end we have a gapped streth of oe�ients,

beause every m times we have thrown away a streth of length m. If we didn't, the

same problem as in Chapter 5 and the resulting need for the set A1(am, u) would
emerge.

Hene,

MF
ε,(2)
⌊uT ⌋(λl) :=

1√
2m+ 1

2m∑

t=0

ε
l+[DIV (⌊uT ⌋−m)−1{l≥MOD(⌊uT⌋−m)}](2m+1)−(2m+1)+te

−iλlt1 ,

with l = 1, . . . , m. De�ne

ζ̃⌊uT ⌋,l :=
[
DIV (⌊uT ⌋ −m)− 1{l≥MOD(⌊uT ⌋−m)}

]
.

We now propose that

sup
l 6=j=1,...,m

E(MF
ε,(2)
⌊uT ⌋(λl)MF

ε,(2)
⌊uT ⌋(λj)) = o(1).
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6.2 Loal moving Fourier transform (Alt 2) - formally irumventing the stumbling bloks

The formal proof that this works an be seen in the following:

E(MF
ε,(2)
⌊uT ⌋(λl)MF

ε,(2)
⌊uT ⌋(λj))

=
1

2m+ 1

2m∑

t1,t2=0

E(εl+ζ̃⌊uT⌋,l(2m+1)−(2m+1)+t1
εj+ζ̃⌊uT⌋,j(2m+1)−(2m+1)+t2

)e−iλlt1eiλjt2 .

This equals not zero only if l + ζ̃⌊uT ⌋,l(2m+ 1)− t1 = j + ζ̃⌊uT ⌋,j(2m+ 1) + t2, that
is l′ + t1 = j′ + t2.
Note, that MOD(l′) = l and MOD(j′) = j.

We thus hoose to substitute t2 by (l′− j′)+ t1 and, hene, have to orret the range

of t1 to

g1(u, l, j) = g1 := max{0, (j′ − l′)}, . . . ,min{2m, 2m− (l′ − j′)} =: g2 = g2(u, l, j).

Let w.l.o.g. j′ > l′.

E(MF
ε,(2)
⌊uT ⌋(λl)MF

ε,(2)
⌊uT ⌋(λj))

=
1

2m+ 1
e−iλjg1

[ 2m∑

t1=g1

eiλl−jt1
]

=
1

2m+ 1
e−iλjg1

[ 2m∑

t1=g1

(
cos

(
2π(l − j)

2m+ 1
t1

)
− i sin

(
2π(l − j)

2m+ 1
t1

))]
.

Appliation of Lemma A.4 in Kirh [27℄ yields that

2m−j′+l′∑

t1=0

cos

(
2π(l − j)

2m+ 1
t1

)
= O

(
min

(
2m+ 1

|l − j| , |2m+ 1− j′ + l′|
))

.

Analogously for the sine term.

2m−j′+l′∑

t1=0

eiλl−jt1 =
2m∑

t1=0

eiλl−jt1 −
2m∑

t1=2m−j′+l′+1

eiλl−jt1

=

j′−l′−1∑

t1=0

e−iλl−j(t1+2m−j′+l′+1) = e−iλl−j(l
′−j′)

j′−l′−1∑

t1=0

eiλl−jt1 .

For this sum, we get, again by Lemma A.4 in Kirh [27℄,

j′−l′−1∑

t1=0

eiλl−jt1 = O

(
min

(
2m+ 1

|l − j| , |l
′ − j′|

))
.
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Putting the two results together, one gets

E(MF
ε,(2)
⌊uT ⌋(λl)MF

ε,(2)
⌊uT ⌋(λj)) = O

(
min

(
1

|l − j| ,
|l′ − j′|
2m+ 1

,
|2m+ 1− j′ + l′|

2m+ 1

))

We know that |l− j| is between 0 and m− 1. The di�erene ζ̃⌊uT ⌋,j − ζ̃⌊uT ⌋,l is either
±1 or 0, depending on the position of l and j with regard to MOD(⌊uT ⌋−m). We

have assumed that j′ > l′. Hene, the ase that the di�erene equals −1 an not

our.

Now onsider the ase ζ̃⌊uT ⌋,j − ζ̃⌊uT ⌋,l = 0. In this ase, j′ − l′ = j − l. Hene,

E(MF
ε,(2)
⌊uT ⌋(λl)MF

ε,(2)
⌊uT ⌋(λj)) = O

(
min

(
1

|l − j| ,
|l − j|
2m+ 1

))
= O

(
1√
m

)
.

On the other hand, if ζ̃⌊uT ⌋,j− ζ̃⌊uT ⌋,l = 1, j′− l′ = j− l+2m+1. In this ase, again,

E(MF
ε,(2)
⌊uT ⌋(λl)MF

ε,(2)
⌊uT ⌋(λj)) = O

(
min

(
1

|l − j| ,
|l − j|
2m+ 1

))
= O

(
1√
m

)
.

Thus, the phenomenon whih ourred in Chapter 3 an not our here. And we do

not need to make any exeptions to values of j and l.

The reason why we do not get a problem here, is that from a streth of T real

random variables we have reated T/2 omplex random variables, that is T real

random variables. In our original transformation, we have used T real random

variables to reate T omplex variables, that is 2T real random variables. By doing

so, we ertainly have to pay a prie and this prie is this dependene oming in �

dependene of oe�ients whih belong to frequenies with index not in A1(am, u).
This prie, however, is not too high to pay as the ardinality of the set of indies not

in A1(am, u) is of an order less than m, whih makes it negotiable when speaking

of spetral means, ratios et. Using the �rst amendment to the list of alternative

transformations introdued above, we, however, have to pay the prie of atually

wasting information on the time series or, putting it in other words, being too slow

with olleting information. Whih is not important for stationary time series, but

very well important for loally stationary time series. In reality, strutural hanges

an happen quite fast, and if one had the hoie between a method whih uses

a streth of data double the size for the same information avoiding a negligible

additional dependeny, one would most ertainly go for the information whih is

denser in time.

We have �nally extrated the oneptual problem of why we get this restrition to

A1(am, u): By applying the original loal moving Fourier transform we gain double

the information whih is present. Whih ought to ost something.

The altered loal moving Fourier transform has been the �rst try to onstrut a

transform in a way that we get a 1-1 relation between the information ontained in

the time domain and the information ontained in the frequeny domain.
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6.3 Loal moving Fourier transform (Alt 3) - ustomized to �t the needs

A further approah is taken in the following setion.

6.3 Loal moving Fourier transform (Alt 3) -

ustomized to �t the needs

A further amendment to the list of transformations is to use the original transform

with the adaption that for the �rst m times we obtain not the omplex Fourier

oe�ient, but only the real part. The seondm times we generate the orresponding

imaginary parts. Then the m real parts and m imaginary parts are stuk together

as m omplex Fourier oe�ients to frequenies λ1, . . . , λm. We then ontinue with

the transformation of our time series. The following m strethes serve as data to

obtain real parts and the orresponding imaginary parts are generated by the next

but one set of m transforms. All in all, having moved through the time series we

end up with T/2 real parts and T/2 imaginary parts, that is T/2 moving Fourier

oe�ients. One ould think of this method as a more adapted method than Alt 2,

better apturing the aspet of loally hanging time series as the information at all

times is inorporated in the sample and hene, the hange is mirrored more losely.

Still, of ourse, this method su�ers from the same �aw as Alt 2, to obtain m Fourier

oe�ients, we need a number of observations in the time domain whih would have

generated 2m oe�ients using the original method.

For l = 1, . . . , m, de�ne

MF
ε,(3)
⌊uT ⌋(λl) :=

1√
2m+ 1

2m∑

t=0

ε
l+[DIV (⌊uT ⌋−m)−1{l≥MOD(⌊uT⌋−m)}](2m+1)−(2m+1)+t cos(λlt1).

For l = m+ 1, . . . , 2m+ 1, de�ne

MF
ε,(3)
⌊uT ⌋(λl) :=

1√
2m+ 1

2m∑

t=0

ε
l+[DIV (⌊uT ⌋−m)−1{l≥MOD(⌊uT⌋−m)}](2m+1)−(2m+1)+t sin(−λlt1)

Now, for l = 1, . . . , m and j = m+ 1, . . . , 2m+ 1

E(MF
ε,(3)
⌊uT ⌋(λl),MF

ε,(3)
⌊uT ⌋(λj))

=
1

2m+ 1

2m∑

t1,t2=0

E(εl+ζ̃⌊uT⌋,l(2m+1)−(2m+1)+t1
εj+ζ̃⌊uT⌋,j(2m+1)−(2m+1)+t2

)

· cos
(

2πlt1
2m+ 1

)
sin

(
− 2πjt2
2m+ 1

)
.

This equals not zero only if l + ζ̃⌊uT ⌋,l(2m+ 1) + t1 = j + ζ̃⌊uT ⌋,j(2m+ 1) + t2, that
is l′ + t1 = j′ + t2. Note, that MOD(l′) = l and MOD(j′) = j.

We thus hoose to substitute t2 by (l′− j′)+ t1 and, hene, have to orret the range
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6 Alternative Fourier transformations

of t1 to

g1(u, l, j) = g1 := max{0, (j′ − l′)}, . . . ,min{2m, 2m− (l′ − j′)} =: g2 = g2(u, l, j).

Let w.l.o.g. j′ > l′.

E(MF
ε,(3)
⌊uT ⌋(λl),MF

ε,(3)
⌊uT ⌋(λj))

=
1

2m+ 1

2m∑

t1=(j′−l′)
cos

(
2πlt1
2m+ 1

)
sin

(
−2πj(t1 + l′ − j′)

2m+ 1

)
.

Simulations have lead to the onlusion that the above sum onverges to 0 for all

possible ombinations of j and l.

6.4 Summary

Conerning Alt 1, we an say: Rearranging uni�es the proedures applied for bak

and forth transform, but does not have any e�et on the set A1(am, u). Looking

loser at why the need for this exeption arises, one mathematially �nds out that

if |j′ − l′| → ∞ always implied |l − j| → ∞, we would be done. This has been

ahieved by developing Alt 2. Looking loser at this transformation we have now

been able to detet the kernel of the brute. The need for set A1(am, u) was due to

the fat that we overindulged in information. We had m random variables at hand,

and reated out of them 2m random variables. These 2m random variables an not

possibly all be unorrelated, eah arrying di�erent information, as this information

ould not all have been stored in the m variables we started with. Getting this

bonus of double the random variables with our transform, we need to pay the prie

of some of them not being unorrelated. As long as this 'some' is of less than order

m, though, all is well. Both, Alt 2 and Alt 3 su�er from the problem of needing to

use wider strethes of input data, whereas the loal moving Fourier transform uses

strethes half as wide, resulting in a more loal proedure. Alt 2 and 3 both, of

ourse, get rid of the set A1(am, u), with Alt 3 de�nitely being superior to Alt 2.

Alt 2 grabs some information, waits some time without getting information, then

again grabs another piee of information and so on. By doing so, Alt 2 will miss

out on the gradual hange in information. Alt 3, however, meets the riterion of

onstantly updating its information while moving through time, as does the loal

moving Fourier transform.

Remark 6.1

As we have notied, rearranging the data strethes does not e�et the seond order

struture of the Fourier oe�ients. This leaves room for the onjeture that there

is no hange of the distributional properties of Fourier oe�ients in the station-

ary ase when using shifted data. That is that F(X1, X2, . . . , Xn;λ1) is as far as
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6.4 Summary

distributional harateristis are onerned, equal to F(Xn, X1, . . . , Xn−1;λ1).
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CHAPTER 7

Appliation of the moving Fourier transformation

A loally stationary proess {Xt,T} desribes a time series with slow hanges. In

Chapter 3 we have developed a method to transfer the hanging information on-

tained in the time series to the frequeny domain using the moving Fourier trans-

formation (De�nition 3.2). Further, we have also found a way to onvert these

oe�ients bak to some time series with the same strutural harateristis as the

original one.

Now, seeing that the loal moving Fourier oe�ients at time t (De�nition 3.1),

whih are basially a set of 2m+ 1 speially reated Fourier oe�ients assigned to

some time t, as well as the orresponding periodogram ordinates exhibit an asymp-

totially dereasing ovariane, one is reminded of the ordinary Fourier oe�ients

whih are asymptotially iid.

Taking up this disovery that loal moving Fourier oe�ients asymptotially be-

have similarly to Fourier oe�ients, we extend bootstrap methods in the frequeny

domain from the stationary to the loally stationary setting.

7.1 Bootstrap methods in the frequeny domain

7.1.1 Wild bootstrap

→ Kirh and Politis [28℄

We apply the standard bootstrap method of wild bootstrap as desribed in Kirh and

Politis [28℄ to the moving Fourier oe�ients (De�nition 3.2). In order to perform the

wild bootstrap, we need an estimator of the time varying spetral density (De�nition

2.2), meeting the requirement

max
k∈{⌊uT ⌋−⌈m2 ⌉+1,...,⌊uT ⌋+⌊m2 ⌋}

∣∣∣∣f̂
(
k

T
, λmod(k)

)
− f

(
u, λmod(k)

)∣∣∣∣ = oP (1).
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7 Appliation of the moving Fourier transformation

See Chapter 8 for existene and onstrution of suh an estimator.

We now proeed as follows

Step 1:

Split eah ck into real and imaginary part ck := xk + iyk.
Step 2:

Let Gk, Gk+T , k = 1, . . . , T, be independent identially standard normal random

variables. Generate the bootstrap samples c∗k aording to

x∗k :=

√
πf̂

(
k

T
, λmod(k)

)
Gk,

y∗k :=

√
πf̂

(
k

T
, λmod(k)

)
Gk+T ,

c∗k := x∗k + iy∗k.

7.1.2 Residual based bootstrap

→ Kirh and Politis [28℄

The initial requirement is just like in the ase of the wild bootstrap: In order to

be able to apply the standard bootstrap method of residual based bootstrap as

desribed in Kirh and Politis [28℄ to the moving Fourier oe�ients (De�nition 3.2)

we need an estimator of the time varying spetral density (De�nition 2.2) with

max
k∈{⌊uT ⌋−⌈m2 ⌉+1,...,⌊uT ⌋+⌊m2 ⌋}

∣∣∣∣f̂
(
k

T
, λmod(k)

)
− f

(
u, λmod(k)

)∣∣∣∣ = oP (1).

Step 1:

Split eah ck into real and imaginary part ck := xk + iyk.

Step 2:

Estimate residuals of real and imaginary part and put them in a vetor {s̃j}1≤j≤2T

s̃k :=
xk√

πf̂
(
k
T
, λmod(k)

) , s̃T+k :=
yk√

πf̂
(
k
T
, λmod(k)

) .

Step 3:

Standardization yields

sk :=
s̃k − 1

T

∑2T
l=1 s̃l

1
2T

∑2T
t=1

(
s̃t − 1

2T

∑2T
l=1 s̃l

)2 .
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7.1 Bootstrap methods in the frequeny domain

Step 4:

Ordinary iid resampling with replaement in order to get s∗1, . . . , s
∗
2T .

Step 5:

De�ne bootstrap Fourier oe�ients

x∗k :=

√
πf̂

(
k

T
, λmod(k)

)
s∗k,

y∗k :=

√
πf̂

(
k

T
, λmod(k)

)
s∗T+k,

c∗k := x∗k + iy∗k.

7.1.3 Loal bootstrap

→ Kirh and Politis [28℄, Paparoditis and Politis [44℄

Step 1:

Selet a symmetri, nonnegative kernel K(·) with
∫
K(t)dt = 1. Speial assumptions

on the kernel K are made in Chapter 8.

Moreover, one needs to selet a bandwidth h, ful�lling h→ 0, but mh→ ∞.

Step 2:

De�ne iid random variables J1,T , . . . , J2T,T on Z, with

ps,T = P (Jj,T = s) =
K(2πs/((2m+ 1)h))∑∞

l=−∞K(2πl/((2m+ 1)h))

Independent of these, de�ne 2T iidBern(1/2)-distributed random variablesB1, . . . , B2T .

Step 3:

The bootstrap is performed as follows:

x̃∗k :=

{
xk+Jk,T , if Bk = 0,

yk+Jk,T , if Bk = 1,

ỹ∗k :=

{
yk+JT+k,T

, if BT+k = 0,

xk+JT+k,T
, if BT+k = 1.

This onstrution exploits the fat that for a smooth spetral density, the distribu-

tion of the moving Fourier oe�ients in a small environment should approximately

be the same.

The �nal bootstrap oe�ients are then obtained after entering with the weighted
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7 Appliation of the moving Fourier transformation

mean of the original series and are thus given by

x∗k := x̃∗k −
1

2

∑

s∈Z
ps,T (xk+s + yk+s),

y∗k := ỹ∗k −
1

2

∑

s∈Z
ps,T (xk+s + yk+s),

c∗k := x∗k + iy∗k.

7.2 Bootstrapping time domain data

7.2.1 Moving TFT-bootstrap

As soon as one is provided with some suitable method of transforming bak and

forth from time to frequeny domain the most natural thought when intending to

use bootstrapping is to do so in the frequeny domain as it allows for iid bootstrap

methods. For the �rst time, this has been done by Kirh and Politis [28℄ using the

ordinary Fourier transformation of length T . With the new method of the moving

Fourier transformation at hand, we an now extend the onept to loally stationary

proesses, perform loal iid bootstrap methods in the frequeny domain and return

to the time domain.

Thus, the moving TFT-bootstrap an essentially be viewed as a three step proedure.

Step 1:

The observed time series is transformed using the so alled moving Fourier transform

(3.11):

ck = F(Xk−m,T , . . . , Xk+m,T ;λmod(k)) =
1√

2m+ 1

k+m∑

l=k−m
Xl,T e

−ilλmod(k)ei(k−m)λmod(k) ,

with λmod(k) := 2πmod(k)
2m+1

denoting the Fourier frequenies and the operator mod
aording to (3.1).

We now fae the T moving Fourier oe�ients c1, . . . , cT .

Step 2:

In a seond step, the resulting moving Fourier oe�ients are bootstrapped by a

loalized standard method of hoie, suh as the wild, the loal or the residual

bootstrap. See Setion 7.1. This results in

c∗1, . . . , c
∗
T .
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7.2 Bootstrapping time domain data

Step 3:

The moving bootstrap oe�ients gained are then transformed bak using a moving

version of the inverse Fourier transform (3.15).

X∗
t,T =

1√
2m+ 1

m∑

l=1

c∗
l+

(

div(t−⌊m2 ⌋)−1{l≥mod(t−⌊m2 ⌋)}
)

m
eiλlt

+
1√

2m+ 1

m∑

l=1

c∗
l+

(

div(t−⌊m2 ⌋)−1{l≥mod(t−⌊m2 ⌋)}
)

m
e−iλlt

with λk :=
2π k
N
, k = 0, . . . , m, denoting the Fourier frequenies and t = 1, . . . , T .

This �nally yields a bootstrap repliate X∗
1,T , X

∗
2,T , . . . , X

∗
T,T of the original time se-

ries in the time domain.

Basially all bootstrap methods involving the frequeny domain whih are used for

stationary time series an be adapted to the loally stationary situation using the

moving Fourier transformation and the moving periodogram, as de�ned in De�ni-

tion 3.3. There are also other ways of loalizing bootstrap proedures using peri-

odograms, for example the use of the loal periodogram as done by Sergides [49℄

and Kreiss and Paparoditis [32℄. We will now modify these two proedures using

our moving periodogram and ompare their performane.

7.2.2 Moving autoregressive-aided periodogram bootstrap

The loal autoregressive-aided periodogram bootstrap by Sergides [49℄ ombines a

parametri bootstrap in the time domain with a loal nonparametri orretion in

the frequeny domain. It is an extension of the autoregressive-aided periodogram

bootstrap by Kreiss and Paparoditis [31℄ to loally stationary time series and essen-

tially works as follows: The part onerned with the parametri bootstrap is based

on loally �tting an AR(p)-model to the data, alulating the residuals and gen-

erating bootstrap errors from the empirial distribution funtion of the residuals.

The bootstrap observations then result from using the estimated AR(p)-oe�ients

and the bootstrap errors. Up to now, we just have, as Sergides [49℄ point out, a

loal version of the autoregressive bootstrap. In order to loosen the restrition of

an underlying AR(p)-proess, a nonparametri orretion is added to the bootstrap

AR(p)-periodogram. It serves the purpose to orret the bootstrap periodogram of

the time varying AR(p)-proess for struture of the data that an not be explained

by some autoregressive model. The orretion is a smoothed version of the loal

periodogram divided by an estimate of the loal spetral AR(p)-density.

Using the autoregressive-aided periodogram bootstrap by Kreiss and Paparoditis

[31℄ as a fundament, Sergides [49℄ has reated a loal bootstrap method. We pro-

vide a further adaption of the autoregressive-aided periodogram bootstrap of Kreiss

and Paparoditis [31℄ to loally stationary time series. The parametri bootstrap
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7 Appliation of the moving Fourier transformation

is mainly mimiked, exept for the fat that we draw the bootstrap errors loally

using iid resampling. To alulate the bootstrap periodogram, however, we use the

moving periodogram.

The next setion displays our algorithm for the moving autoregressive-aided peri-

odogram bootstrap. The alterations to Sergides [49℄ are in the use of the moving

periodogram, the remaining parts, however, are borrowed from Sergides [49℄. For

the sake of simpliity, we restrit ourselves w.l.o.g. to an AR(1) model.

We therefore assume

Let X1,T , X2,T , . . . , XT,T be a loally stationary time series as in De�nition 2.1. In

order to keep the algorithm as simple as possible, we will assume that there is

a su�ient number of preeding and sueeding observations available. Namely,

X1−3m,T , . . . , X0,T and XT+1,T , . . . , XT+3m,T . If applied to a real set of data, we need

to slightly adapt the proedure by settling for a blokwise approah in the beginning

and in the end of the time series.

We also assume that (Sergides [49℄, Assumption 2.2) the stationary approximation

of Xt,T at time u ∈ [0, 1] has the AR(∞)-representation

X̃t(u) =
∞∑

k=1

βk(u)X̃t−1(u) + a(u, 0)εt,

where 1 +
∑∞

k=1 a(u, k)z
k = (1 −∑∞

k=1 βk(u)z
k)−1

,

∑∞
k=1 k|βk(u)| < ∞ and 1 −∑∞

k=1 βk(u)z
k 6= 0 for all omplex z with |z| ≤ 1.

Step 1: Loal �t of AR(1)-model

For every point in time 1 ≤ t ≤ T we �t an autoregressive model of order 1 to

the data Xt−m,T , . . . , Xt+m,T and alulate the estimated parameter â(t) := β̂1
(
t
T

)
.

This leaves us with the estimated oe�ients â(1), â(2), . . . , â(T ) and the estimated

standard deviations of the errors σ̂(1), . . . , σ̂(T )
.

(The exat formula to alulate the standard deviation using Yule-Walker estima-

tors on the stationary approximations is given by Sergides [49℄, Setion 2.3, page 14.)

Step 2: Estimation of the entered and resaled errors ε̂1,T , . . . , ε̂T,T

Consider the resaled residuals

ε̃t,T :=
1

σ̂(t)

(
Xt,T − â(t)Xt−1,T

)
, t = 2, . . . , T.

These resaled residuals are then entered by ε̂t,T := ε̃t,T − 1
T

∑T
τ=1 ε̃τ,T , so we �nally

get ε̂1,T , . . . , ε̂T,T .

Step 3: Generation of the bootstrap errors ε+1,T , . . . , ε
+
T,T

For every t ∈ {1, . . . , T} onsider the streth ε̂t−m,T , . . . , ε̂t+m,T with equal probabil-

ity assigned to eah residual, and draw one residual. This sample is named ε+t,T .
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7.2 Bootstrapping time domain data

Step 4: Generation of the bootstrap observations X+
1,T , . . . , X

+
T,T

Having reated all bootstrap errors ε+1,T , . . . , ε
+
T,T , we an now alulate the bootstrap

observations by using the loally �tted AR(1)- models (f. Step 1). We set X+
1,T :=

X1,T and

X+
t,T := â(t)X+

t−1,T + σ̂(t)ε+t,T , t = 2, . . . , T.

Step 5: Calulation of moving periodogram.

Appliation of the moving Fourier transform (as in De�nition 3.2) to the bootstrap

observations X+
1,T , . . . , X

+
T,T yields

c+1 , c
+
2 , . . . , c

+
T .

Using the loal moving oe�ients as in De�nition 3.1 at eah time t results in T
sets

MF+
t (λ1), . . . ,MF

+
t (λm)

The moving periodogram MIt,m(λj) is de�ned in De�nition 3.3 and, thus, analo-

gously

MI+t,m(λj) :=
∣∣MF+

t (λj)
∣∣2 .

Step 6: Loal orretion

Computation of the loal kernel estimator. The assumptions on the kernel are given

by (K)(i)-(v) in Chapter 8.

q̂

(
t

T
, λ

)
:=

1

2m+ 1

2m∑

j=−m
Kh(λ− λj)

MI+t,m(λj)

f̂
(t)
AR

(
t
T
, λj
) ,

where

f̂
(t)
AR

(
t

T
, λj

)
:=

(σ̂(t))2

2π
· 1

|1− â(t)e−iλj |2
.

Step 7: Constrution of moving bootstrap periodogram

The moving bootstrap periodogram is then given by

MI∗t,m(λj) := q̂

(
t

T
, λj

)
·MI+t,m(λj),

j = 1, . . . , m, and t = 1, . . . , T.
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7 Appliation of the moving Fourier transformation

7.2.3 Moving wild hybrid bootstrap

The hybrid bootstrap by Kreiss and Paparoditis [32℄ ombines a wild bootstrap in

the time domain with a nonparametri approah in the frequeny domain. It is

an extension of the wild hybrid bootstrap by Kreiss and Paparoditis [33℄ to loally

stationary time series.

It uses two major ideas: Firstly, that the observations Xt,T an approximately be

written as

Xt,T ≈ 1

T

T−1∑

j=0

√
f

(
t

T
, λj

)
Jε(λj)e

itλj ,

with Jε(λj) := 1
T

∑T−1
l=0 εle

−ilλj . This is heuristially dedued from the relation

|JX(λj)|2 ≈ f(λj)|Jε(λj)|2 in Brokwell and Davis [3℄, Theorem 10.3.1, and has,

for a time-independent density, already been used by Kreiss and Paparoditis [33℄.

In the moving version this approximating expression is slightly hanged to

Xt,T ≈ 1

2m+ 1

2m∑

j=0

√
f

(
t

T
, λj

)
Fdiv(t)−1
ε (λj)e

itλj ,

inorporating the moving Fourier transform instead of the original Fourier transform

of the errors, see also Remark 3.3.

The seond nip is, as already done in Kreiss and Paparoditis [33℄, to estimate the

fourth order umulant of the innovations by using the relation

Cov(Xt
2(u), Xt+k

2(u)) = κ4

∞∑

j=−∞
ψj

2(u)ψj+k
2(u)

+ 2 · Cov2(Xt(u), Xt+k(u)), u ∈ [0, 1]. (7.1)

Here, Xt(u) =
∑∞

j=−∞ ψj(u)εt−j is the stationary approximation of Xt,T at time

⌊uT ⌋. Equation (7.1) then yields,

κ4(u) :=

∑∞
k=−∞ (c2(u, k)− 2c2(u, k))

c2(u, 0)
, u ∈ [0, 1],

with c2(u, k) being the autoovariane funtion of the squared stationary approx-

imation X2
t (u) at time ⌊uT ⌋. Contrasting Kreiss and Paparoditis [32℄, we refrain

from integrating over time in a next step in order to avoid evening out hanges in

the fourth order struture, but to be able to mimik them.

The next paragraph desribes the bootstrap algorithm for the moving hybrid boot-

strap. Note that just like for the previous proedure in Setion 7.2.2, we will also

assume that su�ient observations preeding time t = 1 and sueeding time t = T
are available in order to straighten out notation.
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7.2 Bootstrapping time domain data

Step 1: Estimating the loal fourth order umulant κ̂4
(
t
T

)
at time t

We follow Kreiss and Paparoditis [32℄ de�ning an estimator of the fourth order

umulant. However, we do allow κ4 to loally vary and aount for that variation

by loal estimation:

κ̂4

(
k

T

)
:=

Ĝ1

(
k
T

)
− Ĝ2

(
k
T

)

Ĝ3

(
k
T

) .

The funtions Ĝ1, Ĝ2 and Ĝ3 are de�ned in the following.

Ĝ1

(
k

T

)
:=

2m∑

j=−m
Kh(0− λj) · MI(2),k,m(λj),

where

MI(2),k,m(λj) :=
1

(2m+ 1)

∣∣∣∣∣

2m∑

l=0

(
X2
j+ζk,jm−m+l,T − 1

2m+ 1

2m∑

r=0

X2
j+ζk,jm−m+r,T

)
e−iλj l

∣∣∣∣∣

2

denotes the loal moving periodogram of the squared and loally entered time series

X2
t,T . The smoothing kernelKh(·) ought to ful�ll the assumptions given by (K)(i)-(v)

in Chapter 8.

Ĝ1

(
k
T

)
is an estimator for (a multiple of) the spetral density of the squared time

series X2
t,T at time 1 ≤ k ≤ T and frequeny zero. The seond estimator Ĝ2

(
k
T

)

estimates the sum of the squared autoovarianes of the stationary approximation

of Xt,T at time k:

Ĝ2

(
k

T

)
:=

2m∑

l=0

(MIk,m(λl))
2 .

And, at last, Ĝ3

(
k
T

)
is an estimator for the squared autoovariane funtion of the

stationary approximation of Xt,T at time k and lag zero:

Ĝ3

(
k

T

)
:=

(
2m∑

l=0

MIk,m(λl)

)2

.

Having alulating κ̂4
(
1
T

)
, . . . , κ̂4

(
T
T

)
, we aim (see Kreiss and Paparoditis [32℄) to

get estimates for the fourth moment of the errors, by setting

κ̃t4 := κ̂4

(
t

T

)
+ 3,
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7 Appliation of the moving Fourier transformation

and thus obtain loal estimates κ̃14, κ̃
2
4, . . . , κ̃

T
4 of the fourth order moment struture

of the errors εt.

Step 2:

Knowing about the �rst seond and fourth order moment struture of the errors,

one an now generate bootstrap residuals aording to the following sampling rule:

Generate a sample ε∗1, . . . , ε
∗
T of length T of iid random variables meeting

P (ε∗t =
√
κ̃t4) = P (ε∗t = −

√
κ̃t4) =

1

2κ̃t4
,

P (ε∗t = 0) = 1− 1

κ̃t4
,

for 1 ≤ t ≤ T .

Step 3:

Calulation of the moving Fourier transform of the bootstrap errors ε∗1, . . . , ε
∗
T , re-

sulting in

cε
∗

1 , c
ε∗

2 , . . . , c
ε∗

T

Step 4: The loal moving Fourier oe�ients at eah time t = 1, . . . , T, are then

given by the T sets

MF ε∗

t (λ1), . . . ,MF
ε∗

t (λm)

Step 5: Generation of the bootstrap observations by

X∗
t,T :=

1√
2m+ 1

m∑

j=0

√
f̂

(
t

T
, λj

)(
MF ε∗

t (λj)e
itλj +MF ε∗

t (λj)e
−itλj

)
,

where f̂ is an estimator of the spetral density, ful�lling

max
k∈{⌊uT ⌋−⌈m2 ⌉+1,...,⌊uT ⌋+⌊m2 ⌋}

∣∣∣∣f̂
(
k

T
, λmod(k)

)
− f

(
u, λmod(k)

)∣∣∣∣ = oP (1).

See Chapter 8 for existene and onstrution of suh an estimator.
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CHAPTER 8

Moving spetral density estimation

8.1 Approahes to estimate the time-varying

spetral density

There are basially two fundamental approahes in literature, how to estimate the

time varying spetral density of a loally stationary proess.

Loalized periodogram

The �rst is alulating the lassial periodogram only loally over a segment of length

N << T . This estimator, alled "loalized periodogram", has been introdued by

von Sahs and Shneider [54℄. It uses a streth of length N of tapered data with

some midpoint ⌊uT ⌋ to obtain an estimate for the spetral density at this point in

time ⌊uT ⌋.

IN(u, λ) =
1

H2,N

∣∣∣∣∣

N−1∑

s=0

h
( s
N

)
X⌊uT−N

2
+s+1⌋e

−i2πλs

∣∣∣∣∣

2

,

with h : [0, 1] → [0, 1] being a su�iently smooth tapering funtion and H2,N being

the appropriate norming fator as in Dahlhaus [8℄, Setion 3.

This is what Sergides [49℄ basially alls the tapered loal periodogram. For h ≡ 1
it is the loal periodogram. He is not doing any tapering, though and uses another

notation of the Fourier transformation. In order to get an estimator for the spetral

density at all times, von Sahs and Shneider [54℄ alulate IN(u, λ) on possibly

overlapping segments of Xt,T of length N . Denote the shift from segment to segment

by S, 1 ≤ S ≤ N . The resulting number of segments is alled M . Hene, IN(u, λ)
is evaluated at M timepoints ui =

ti
T
, where ti = S · i+ N

2
, 0 ≤ i ≤M − 1.
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8 Moving spetral density estimation

The drawbak of this proedure is for one the omputational ost, whih is the

ost of M times a Fourier transformation of length N , i.e. O(NM log(N)). For

another it is the additional parameter N . Dahlhaus and Neumann [13℄ niely and

understandably pose the problem, whih is twofold: First, this parameter delivers

a ut-o� point, from whih on ovarianes of higher lags than k are exluded from

the estimation, whih indues a bias in time domain, if N is small.

For the seond aspet one needs to bear in mind the so-alled unertainty priniple,

whih says (in the more general ase of evolutionary spetra):

unertainty priniple

→ Priestley [46℄, p. 217

In determining evolutionary spetra, one annot obtain simultaneously

a high degree of resolution in both the time domain and the frequeny

domain.

Now, when using the estimator

f̂(u, λ) =
1

bf

∫
Kf

(
λ− µ

bf

)
IN(u, µ)dµ,

with Kf being a symmetri kernel with

∫
Kf(x)dx = 1 and bf the bandwidth in

frequeny diretion (f. Dahlhaus [11℄), there is already inluded some smoothing in

the time domain, whih is not obvious at �rst glane. That is, as part of the loaliza-

tion of the lassial periodogram made by von Sahs and Sheider [54℄ was obtained

by summation over ertain time points in segments of hosen length N . Dahlhaus

[11℄ provides in Equation (83) the exat kernel estimate in the time domain, whih

is impliitly ontained and possesses a bandwidth of bt =
N
T
. Thus, inherently a

lower bound for the resolution in the time domain is �xed. This lower bound for

the resolution in the time domain immediately results in an upper bound for the

resolution in frequeny domain, due to the unertainty priniple (f. Neumann and

von Sahs [40℄).

Dahlhaus and Neumann [13℄ draw the following onlusion: Loal periodograms

therefore lak the possibility to ontrol for the whole amount of smoothing expliitly

� in an additional smoothing step. A possible remedy an be to ontrol the smooth-

ing in time domain purely by the hoie of N and perform the seond smoothing

step for smoothing only in the frequeny domain. Also, when using a higher degree

of smoothing in the seond step, for example, a kernel with a bandwidth bt >>
N
T
,

the use of the loal periodogram is reasonable.

Preperiodogram

The seond approah taken to estimate the time-dependent spetral density is the

use of the so-alled preperiodogram, whih does not inorporate any impliit smooth-

ing. The preperiodogram for a loally stationary time series {Xt,T} at frequeny

λ ∈ [0, π] has been introdued by Neumann and von Sahs [40℄:
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8.2 Prerequisites

De�nition 8.1 (Preperiodogram).

→ Neumann and von Sahs [40℄, Equation (3.7)

It,T (λ) =
1

2π

∑

s:1≤⌊t− s
2⌋,⌊t+ s

2⌋≤T
X⌊t− s

2⌋,TX⌊t+ s
2⌋,T e

−iλs.

Neumann and von Sahs [40℄ point out that the preperiodogram an serve as a

preliminary estimate of the spetral density, whih is even more �utuating than

the lassial periodogram. Asymptotially, its expeted value equals the evolution-

ary spetrum (introdued by Priestley [47℄, see Setion 1). For �xed length T , its
expeted value equals the Wigner-Ville spetrum (Martin and Flandrin [37℄, see

Setion 1).

There is a nie relation of the preperiodogram to the lassial periodogram over the

whole streth of data, whih is shown by Dahlhaus [9℄. It eases the interpretation of

the preperiodogram: The lassial periodogram is the average of the preperiodogram

over time, that is IT (λ) =
1
T

∑T

t=1 It,T (λ). The preperiodogram uses only the produt

X⌊t− k
2⌋,TX⌊t+ k

2⌋,T to estimate the ovariane at time t, while the periodogram is the

Fourier transformation of the ovariane estimator of lag k over the whole segment

(see Neumann and von Sahs [40℄, Setion 2.1).

We base our estimator on the �rst approah. However, instead of smoothing the

loal periodogram in frequeny diretion, we do so with our moving periodogram

as in De�nition 3.3. The di�erene to the loal periodogram is explained in the

subsequent Remark 3.6.

We look for an estimator for the time varying spetral density whih is still lose to

the true spetral density at time t, even when we estimate at a time slightly earlier

or later than t. In formulae: For every u ∈ [0, 1],

sup
k∈{⌊uT ⌋−⌈m2 ⌉+1,...,⌊uT ⌋+⌊m2 ⌋}

∣∣∣f̂ (k)− f
(
u, λmod(k)

)∣∣∣ = oP (1). (8.1)

Before we introdue our estimator, we state the assumptions made on the time

varying spetral density.

8.2 Prerequisites

(F) Assumptions on the time varying spetral density

(i) f is uniformly Lipshitz ontinuous in both arguments.

(ii) f is uniformly bounded from above and below: ∃c, C with 0 < c ≤ |f(u, λ)| ≤
C for all u ∈ [0, 1], λ ∈ [0, 2π].

105



8 Moving spetral density estimation

Remark 8.1

The existene of an upper bound in (F)(ii) follows from De�nition 2.1 and De�nition

2.2, sine

|f(u, λ)| =
1

2π

∣∣∣∣∣

∞∑

j=−∞
a(u, j)e−iλj

∣∣∣∣∣

2

≤ 1

2π

∞∑

j,k=−∞
|a(u, j)| |a(u, k)|

≤ C
∞∑

j=−∞

1

l(j)

∞∑

k=−∞

1

l(k)
≤ C.

De�nition 8.2 (Uniformly Lipshitz ontinuous).

→ Haug [24℄ De�nition 2.7

A funtion g : D ⊂ R×R → R is uniformly Lipshitz ontinuous of order α in both

omponents (with Lipshitz onstants M1 and M2), if for all u, v ∈ D

|g(u, µ)− g(v, µ)| ≤M1|u− v|α ∀µ ∈ R,

and for all λ, µ ∈ R

|g(u, λ)− g(u, µ)| ≤ M2|λ− µ|α ∀ u ∈ D.

Based on Sergides [49℄, we use a loal kernel density estimator to estimate f . Never-

theless, modi�ations are needed to adapt to our way of loally Fourier transforming

a time series. The kernel K ought to be hosen aording to the following riteria

(K) Assumptions on the kernel

(i) K is a nonnegative, symmetri funtion with ompat support.

(ii)

∫
K(x)dx = 1, |K(x)| ≤ const.,

2π

(2m+ 1)h

∑

j∈Z
K

(
2πj

(2m+ 1)h

)
=

∫
K(x)dx+ o(1) = 1 + o(1).

(iii) K is uniformly Lipshitz ontinuous.

(iv) h→ 0 (T → ∞) and hm
1
4 → ∞.

(v) |Kh(x)| = O
(
1
h

)
, with Kh(·) := 1

h
K
( ·
h

)
.
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8.3 De�nition of the estimator: The smoothed moving periodogram

8.3 De�nition of the estimator: The smoothed

moving periodogram

De�nition 3.3 provides the onept of the moving periodogram and it is (see Remark

3.6) ompared to the onept of the loal periodogram as used by Sergides [49℄. The

new terminology introdued in the hapter's heading also underlines the di�erene

in onept and intended use of the moving periodogram: moving spetral density

estimation.

We do not intend to loally estimate the spetral density at one point and then do

the same estimation again and again in neighbouring points in time like Sergides

[49℄: He uses the loal periodogram on window of width N to de�ne a loal spetral

density estimator by

f̂ (u, λ) :=
1

N

⌊N2 ⌋∑

j=−⌊N2 ⌋
Kh(λ− λj)IN,X(u, λj). (8.2)

The loal (unsaled and untapered) periodogram is given by

IN,X(u, λj) =
1

N

∣∣∣∣∣

2m∑

t=0

X⌊uT ⌋−m+te
−iλjt

∣∣∣∣∣ . (8.3)

Note, that Sergides' original results are all obtained for the loal periodogram

resaled by the fator

1
2π
. When referring to his results, however, we will always

refer to the unsaled version (8.3).

Contrasting the de�nition of the loal estimator of the spetral density and the loal

periodogram, we de�ne the smoothed moving periodogram, whih is e�etively just

a funtion of one argument � of time.

De�nition 8.3 (Smoothed moving periodogram).

Consider a loally stationary proess Xt,T aording to De�nition 2.1 and a funtion

K ful�lling (K)(i) � (K)(v).

The smoothed moving periodogram f̂ : {1, . . . , T} → R is then de�ned by

f̂ (k) :=
1

m

2m∑

t=−m
Kh

(
λmod(k) − λt

)
MIk,m (λt) , (8.4)

with MIk,m (λt) being the loal moving periodogram as in De�nition 3.3.
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8 Moving spetral density estimation

8.4 Loally uniform onsisteny of the estimator

The following Theorem mathematially formalizes the aim indiated in (8.1).

Theorem 8.1 (Loally uniform onvergene).

Let Xt,T be a loally stationary time series as in De�nition 2.1 with time varying

spetral density f meeting (F)(i) and (ii). Further assume that (K)(i)-(v) hold.

Then, for every u ∈ [0, 1], the estimator f̂ as in Equation (8.4) ful�lls ondition

(8.1), that is

sup
k∈{⌊uT ⌋−⌈m2 ⌉+1,...,⌊uT ⌋+⌊m2 ⌋}

∣∣∣f̂ (k)− f
(
u, λmod(k)

)∣∣∣ = oP (1).

Preliminary work

We have seen in the de�nition of f̂ that the moving spetral density estimator is a

funtion of only one variable k whih tells us to use frequeny λmod(k) at time k. We

have not yet disussed, though, how to speify the point in time we need to onsider

when intending to estimate the moving spetral density at a ertain frequeny ω.
This problem is addressed in the following:

For the sake of simpliity, de�ne Bu :=
{
⌊uT ⌋ −

⌈
m
2

⌉
+ 1, . . . , ⌊uT ⌋+

⌊
m
2

⌋}
. With

s′(ω) := min

{
l ∈ {1, . . . , m}

∣∣∣∣λl −
π

2m+ 1
< ω ≤ λl +

π

2m+ 1

}
(8.5)

the frequenies λs′(ω), λs′(ϑ) are the Fourier frequenies losest (in absolute value) to

0 < ω, ϑ < π (f. Brokwell and Davis [3℄, De�nition 10.3.1).

Note that as pointed out in Remark 3.2, the relation between the moving and the

loal moving Fourier oe�ients is as follows:

MFk(λl) = c
l+

[

div(k−⌊m2 ⌋)−1{l≥mod(k−⌊m2 ⌋)}
]

m
(8.6)

c
k−⌊m2 ⌋ =MFk

(
λ
mod(k−⌊m2 ⌋)

)
. (8.7)
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8.4 Loally uniform onsisteny of the estimator

Lemma 8.1. Using the assumptions of Theorem 8.1 and with Theorem 5.5,

1

2π(2m+ 1)

2m∑

j=1

MI⌊uT ⌋,m(λj)

f(u, λj)

P→ 1.

Proof. Note that with ϕ(λj) =
1

f(u,λj)
,

1

(2m+ 1)

2m∑

j=1

1

f(u, λj)
MI⌊uT ⌋,m(λj) =MT (u) .

in the notation of (5.25). We an thus use the results of Theorem 5.5 and have that

for every u ∈ [0, 1] it holds that

Var

(√
2m+ 1 [MT (u)−E(MT (u))]

)
=

=
4π2

2m+ 1

2m∑

j=0

|ϕ(λj)|2f 2(u, λj) + (E(ε1)
4 − 3)

(
8π2

(2m+ 1)3
·

·
2m∑

j 6=l=0

ϕ(λj)ϕ(λl)f(u, λj)f(u, λl)Σ(l, j)

)
+ o(1).

with

Σ(l, j) := max{2m− l′, 2m− j′, 2m} −min{0,−l′,−j′}+ 1,

ζ⌊uT ⌋,l := div
(
⌊uT ⌋ −

⌊m
2

⌋)
− 1{l≥mod(⌊uT ⌋−⌊m2 ⌋)},

l′ := l + ζ⌊uT ⌋,lm,

j′ := j + ζ⌊uT ⌋,jm,

with Σ(l, j) bounded from above by 2m+ 1.

E (MT (u)) = 2π +O

(
1√
m

)
,

by Theorem 5.1. Hene, an appliation of the Markov inequality yields

1

2m+ 1

2m∑

j=1

1

f(u, λj)
MI⌊uT ⌋,m(λj) = 2π + oP (1).

.
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8 Moving spetral density estimation

Proof of Theorem 8.1. The spetral density estimator is given by

f̂ (k) =
1

m

2m∑

t=−m
Kh

(
λmod(k) − λt

)
MIk,m (λt) ,

see De�nition 8.3. The set of loal moving periodograms inorporated an also

be written in the notation introdued in Remark 3.3 � as a set of moving Fourier

oe�ients. We estimate the spetral density at k ∈ {⌊uT ⌋−
⌈
m
2

⌉
, . . . , ⌊uT ⌋+

⌊
m
2

⌋
}.

Note that, depending on the time u, the set of moving Fourier oe�ients inludes

a "jump" in the supersripts, whih ours at frequeny λ
mod(⌊uT ⌋−⌊m2 ⌋):

Now, for some �xed time u, the orresponding set of moving Fourier oe�ients is

Fdiv(⌊uT ⌋)(λ1), . . . ,Fdiv(⌊uT ⌋)(λ
mod(⌊uT ⌋−⌊m2 ⌋)−1),

Fdiv(⌊uT ⌋)−1(λ
mod(⌊uT ⌋−⌊m2 ⌋)), . . . ,F

div(⌊uT ⌋)−1(λm).

If we restrit the range of k tom
(
div
(
⌊uT ⌋ −

⌈
m
2

⌉)
− 1
)
≤ k ≤ mdiv

(
⌊uT ⌋ −

⌈
m
2

⌉)
,

we ensure that � for small h and due to the ompat support of the kernel � only

moving Fourier oe�ients "after the jump" are used for estimation, whih then

enables us to reformulate the spetral density estimator:

f̂(k) =
1

m

2m∑

t=−m
Kh

(
λmod(k) − λt

)
|Fdiv(⌊uT ⌋−⌈m2 ⌉)−1(λt)|2.

With z := div
(
⌊uT ⌋ −

⌈
m
2

⌉)
− 1,

f̂(k) =
1

m

2m∑

t=−m
Kh

(
λmod(k) − λt

)
|F z(λt)|2. (8.8)

For mdiv
(
⌊uT ⌋ −

⌈
m
2

⌉)
+ 1 ≤ k ≤ m

(
div
(
⌊uT ⌋ −

⌈
m
2

⌉)
+ 1
)
, we ensure that only

moving Fourier oe�ients "before the jump" are used, hene,

f̂(k) =
1

m

2m∑

t=−m
Kh

(
λmod(k) − λt

)
|F z+1(λt)|2. (8.9)

Using restrited values of k allows for a handier representation of the spetral density

estimator. In order to be able to use these representations (8.8) and (8.9), we need

to perform at the beginning of the proof a split of the term

sup
⌊uT ⌋−⌈m2 ⌉<k≤⌊uT ⌋+⌊m2 ⌋

∣∣∣f̂ (k)− f
(
u, λmod(k)

)∣∣∣

onerning the range of k:
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8.4 Loally uniform onsisteny of the estimator

sup
⌊uT ⌋−⌈m2 ⌉<k≤⌊uT ⌋+⌊m2 ⌋

∣∣∣f̂ (k)− f
(
u, λmod(k)

)∣∣∣

= max


 sup

⌊uT ⌋−⌈m2 ⌉<k≤mdiv(⌊uT ⌋−⌈m2 ⌉)

∣∣∣f̂ (k)− f
(
u, λmod(k)

)∣∣∣

+ sup
mdiv(⌊uT ⌋−⌈m2 ⌉)+1≤k≤⌊uT ⌋+⌊m2 ⌋

∣∣∣f̂ (k)− f
(
u, λmod(k)

)∣∣∣




≤ sup
m (div(⌊uT ⌋−⌈m2 ⌉)−1)≤k≤mdiv(⌊uT ⌋−⌈m2 ⌉)

∣∣∣f̂ (k)− f
(
u, λmod(k)

)∣∣∣

+ sup
mdiv(⌊uT ⌋−⌈m2 ⌉)+1≤k≤m (div(⌊uT ⌋−⌈m2 ⌉)+1)

∣∣∣f̂ (k)− f
(
u, λmod(k)

)∣∣∣

:= A+B. (8.10)

The treatment of A and B is basially analogous.

In the following we use the same idea as in the proof of Theorem A1 in Franke and

Härdle [20℄, as well as

αm := h

m
1
4
, µm :=

⌊
1
αm

⌋

Part I: A = oP (1)

With z := div
(
⌊uT ⌋ −

⌈
m
2

⌉)
− 1,

A = sup
l=1,...,m

∣∣∣∣∣
1

m

2m∑

t=−m
Kh (λl − λt) |F z(λt)|2 − f (u, λl)

∣∣∣∣∣

≤ sup
j≤µm

∣∣∣∣∣
1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
|F z(λt)|2 − E

(
1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
|F z(λt)|2

)∣∣∣∣∣

+ sup
j≤µm

∣∣∣∣∣E
(

1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
|F z(λt)|2

)
− f(u, λj)

∣∣∣∣∣

+ sup
|l−j|≤αm(2m+1)

π

∣∣∣∣∣
1

m

2m∑

t=−m

[
Kh

(
λ
s′( πjµm )

− λt

)
−Kh

(
λ
s′( πl

µm
) − λt

)]
F z(λt)|2

∣∣∣∣∣

+ sup
|l−j|≤αm(2m+1)

π

|f(u, λl)− f(u, λj)|

=: A1 + A2 + A3 + A4. (8.11)
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8 Moving spetral density estimation

A4

The �rst thing one noties is A4 = o(1) as |l − j| ≤ αm(2m+1)
π

⇔ |λj − λl| ≤ 2αm,
f is uniformly Lipshitz ontinuous in both arguments, see assumption (F)(i), and

αm → 0.

A1

Note that from the assumptions (K) on the kernel funtion

1
m

∑
j∈ZKh(λj) = O(1),

as well as K2
h(·) ≤ 1

h
Kh(·).

We are interested in

sup
j 6=l

Cov

(
|F z(λj)|2, |F z(λl)|2

)
.

Being in the situationA, we always have |l′−j′| = |l−j|, due to the supersripts being
the very same z for both arguments. That is, the set A1(u, am) equals {1, . . . , m}2.
Hene, with Lemma 5.3, we get

sup
j 6=l

Cov

(
|F z,ε(λj)|2, |F z,ε(λl)|2

)
= O

(
1

m

)
,

and, with the Cauhy-Shwarz inequality and Theorem 4.3,

sup
j 6=l

Cov

(
|F z(λj)|2, |F z(λl)|2

)
= O

(
1√
m

)
. (8.12)

We need this result (8.12) when onsidering

P (A1 > ε) ≤
µm∑

j=1

1

m2ε2
Var

(
2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
|F z(λt)|2

)

=

µm∑

j=1

1

m2ε2

2m∑

t=−m
K2
h

(
λ
s′( πjµm )

− λt

)
Var

(
|F z(λt)|2

)

+

µm∑

j=1

1

m2ε2

2m∑

t6=τ=−m
Kh

(
λ
s′( πjµm )

− λt

)
Kh

(
λ
s′( πjµm )

− λτ

)

·Cov
(
|F z(λt)|2, |F z(λτ )|2

)

=: A11 + A12.

Now, A12 is with the above arguments of order O
(
µm√
m

)
= O

(
1

m
1
4 h

)
= o(1), as

hm
1
4 → ∞. With (5.28), A11 = O

(
1

m
3
4 h

)
= o(1), as hm

1
4 → ∞.

A3

Making use of the kernel being uniformly Lipshitz ontinuous (see assumptions

(K)),
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8.4 Loally uniform onsisteny of the estimator

sup
|l−j|≤αm(2m+1)

π

∣∣∣∣∣
1

m

2m∑

t=−m

[
Kh

(
λ
s′( πjµm )

− λt

)
−Kh

(
λ
s′( πl

µm
) − λt

)]
|F z(λt)|2

∣∣∣∣∣

≤ 1

m

2m∑

t=−m
|F z(λt)|2O

(αm
h2

)
.

Note that due to Lemma 8.1,

1
m

∑2m
t=−m |F z(λt)|2 = OP (1), and therefore, as

hm
1
4 → ∞,

A3 = OP

(
1

hm
1
4

)
= oP (1).

A2

With Theorem 5.1 and, again,

1
m

∑
j∈ZKh(λj) = O(1),

sup
j≤µm

∣∣∣∣∣E
(

1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
|F z(λt)|2

)
− f(u, λj)

∣∣∣∣∣

= sup
j≤µm

∣∣∣∣∣
1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)

·


f



s′
(
πj

µm

)
+m

(
div
(
⌊uT ⌋ −

⌈
m
2

⌉)
− 1
)

T
, λt


− f(u, λt)



∣∣∣∣∣∣

+ sup
j≤µm

∣∣∣∣∣
1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
f(u, λt)− f(u, λj)

∣∣∣∣∣ + o(1)

:= A21 + A22 + o(1).

Using the uniform Lipshitz ontinuity of f yields A21 = o(1).

A22 ≤ sup
j≤µm

1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
|f(u, λt)− f(u, λj)|+ o(1)

≤ sup
j≤µm

1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
|λt − λj |+ o(1)

≤ sup
j≤µm

1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
1{|λt−λj |≤Ch}|λt − λj |+ o(1)

≤ Ch
1

m

2m∑

t=−m
Kh

(
λ
s′( πjµm )

− λt

)
+ o(1) = o(1).
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8 Moving spetral density estimation

Part II: B = oP (1)

The treatment of B is analogous to A, exept for a minor alteration in the splitting

up (f. (8.11)) in four analogue terms to Ai, i = 1, 2, 3, 4. Instead of using the

supersript z, we have to use the supersript z+1. The following proof is, after the

hange in the supersript, again, ompletely analogous to part I for the analogue

terms to A1, A3 and A4. When onsidering the analogon to A2, we merely have to

bear in mind that instead of looking at time s′
(
πj

µm

)
+m

(
div
(
⌊uT ⌋ −

⌈
m
2

⌉)
− 1
)
, as

we did in A21, the point of time onerned is s′
(
πj

µm

)
+mdiv

(
⌊uT ⌋ −

⌈
m
2

⌉)
, whih

does not make any di�erene to the behaviour of the analogue term to A2, as the

two times are only m apart.
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CHAPTER 9

Covariane struture of the bootstrap sample

This hapter is devoted to proving that the moving TFT-Bootstrap maintains the

seond order struture of the original proess.

W.l.o.g. only lags h ≥ 0 are onsidered. A distintion is made between some �xed

integer h and h inreasing withm in the way that

h
m

→ α form→ ∞ and 0 < α < 1.
In the ase of α > 1 or

h
m

→ ∞ the bootstrap observations X∗
t,T and X∗

t+h,T are

independent, due to the m-dependene of the bootstrap sheme.

(B) Assumptions on the loal bootstrap Fourier oe�ients

(i) E∗(c∗k) = 0, ∀k = 1, . . . , T.

(ii) Independene of c∗l and c
∗
k (k 6= l). for any k, l = 1, . . . , T.

(iii)

sup
k∈{⌊uT ⌋−⌈m2 ⌉+1,...,⌊uT ⌋+⌊m2 ⌋}

∣∣∣Var*(Re(c∗k))− πf(u, λk)
∣∣∣ = oP (1).

sup
k∈{⌊uT ⌋−⌈m2 ⌉+1,...,⌊uT ⌋+⌊m2 ⌋}

∣∣∣Var*(Im(c∗k))− πf(u, λk)
∣∣∣ = oP (1).

(iv) Independene of Re(c∗k) and Im(c∗k).

Remark 9.1

Due to Theorem 8.1, assumption (iii) is ful�lled for the wild bootstrap. (B)(i),(ii),(iv)

are true due to onstrution of the bootstrap repliates.
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9 Covariane struture of the bootstrap sample

Theorem 9.1 (Seond order struture of bootstrap repliate).

Let Xt,T be a loally stationary time series with time varying spetral density f
meeting (F)(i) and (ii). Further assume that (K)(i)-(iv) as well as (B)(i)-(iv) hold.

X∗
t,T is the bootstrap time series reated aording to the sheme in Setion 7.2.1

using the wild bootstrap.

Then

sup
|h|≤m

∣∣∣Cov*(X∗
⌊uT ⌋,T , X

∗
⌊uT ⌋+h,T )− c(u, h)

∣∣∣ = oP (1).

Proof. To simplify notation we set t := ⌊uT ⌋−
⌊
m
2

⌋
. The �nal result is then adjusted

by shifting. Note that

E

∗(c∗kc
∗
l ) = E

∗(Re(c∗k)Re(c
∗
l) + iRe(c∗k)Im(c∗l) + iIm(c∗k)Re(c

∗
l) + Im(c∗k)Im(c∗l)).

Due to Assumption (B)(ii),

E

∗(Re(c∗k)Im(c∗l)) = E

∗(Re(c∗k))E(Im(c∗l)) = 0,

for k 6= l. Analogously, E∗(Im(c∗k)Re(c
∗
l)) = 0, for k 6= l.

(2m+ 1)Cov*(X∗
t+⌊m2 ⌋,T , X

∗
t+⌊m2 ⌋+h,T )

= E

∗
[( m∑

l=1

c∗
l+(div(t)−1{l≥mod(t)})m

eiλl(t+⌊m2 ⌋) +
m∑

l=1

c∗
l+(div(t)−1{l≥mod(t)})me

−iλl(t+⌊m2 ⌋)
)

·
( m∑

l=1

c∗
l+(div(t+h)−1{l≥mod(t+h)})me

−iλl(t+h+⌊m2 ⌋)

+
m∑

l=1

c∗
l+(div(t+h)−1{l≥mod(t+h)})m

eiλl(t+h⌊m2 ⌋)
)]

=

( m∑

l,k=1

E

∗
(
c∗
l+(div(t)−1{l≥mod(t)})m

c∗
k+(div(t+h)−1{k≥mod(t+h)})m

)
eiλl(t+⌊m2 ⌋)e−iλk(t+h+⌊m2 ⌋)

m∑

l,k=1

E

∗
(
c∗
l+(div(t)−1{l≥mod(t)})m

c∗
k+(div(t+h)−1{k≥mod(t+h)})m

)
eiλl(t+⌊m2 ⌋)eiλk(t+h+⌊m2 ⌋)

m∑

l,k=1

E

∗
(
c∗
l+(div(t)−1{l≥mod(t)})mc

∗
k+(div(t+h)−1{k≥mod(t+h)})m

)
e−iλl(t+⌊m2 ⌋)eiλk(t+h+⌊m2 ⌋)

m∑

l,k=1

E

∗
(
c∗
l+(div(t)−1{l≥mod(t)})mc

∗
k+(div(t+h)−1{k≥mod(t+h)})m

)
e−iλl(t+⌊m2 ⌋)e−iλk(t+h+⌊m2 ⌋)

)

As the bootstrap oe�ients are assumed to be independent for di�erent indies

aording to (B)(ii), we need to larify when the indies of c∗
l+(div(t)−1{l≥mod(t)})m

and
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c∗
k+(div(t+h)−1{k≥mod(t+h)})m

are equal.

Let w.l.o.g. h ≥ 0. We are hene only onerned with h = 0, . . . , m, as for larger h,
the bootstrap ovariane equals zero.

Aordingly, we always have t ≤ t + h.

The following situations an our:

Case 1: {div(t) = div(t+ h)} =: A

As h ≤ m, we an de�nitely say that mod(t) ≤ mod(t + h). In this ase, the fol-

lowing �gure exemplarily states the situation. The shaded area marks the intervals

in whih the indies of c∗
l+(div(t)−1{l≥mod(t)})m

and c∗
k+(div(t+h)−1{l≥mod(t+h)})m

are equal.

We get mathes for l = 1 . . .mod(t)− 1 and l = mod(t) + h, . . . , m

We an also write the ondition of ase 1 in a di�erent way. A = {t+h ≤ div(t)m}.

Case 2: {div(t) = div(t+ h)− 1} =: B

In this ase, again, as h ≤ m, we know for sure, that mod(t + h) ≤ mod(t).

We get mathes for l = mod(t+h), . . . , mod(t)−1 = mod(t)+h−m, . . . ,mod(t)−1

We an also write the ondition of ase 2 in a di�erent way: B = {div(t)m < t+h ≤
(div(t) + 1)m}

With |h| ≤ m, there is no possibility of getting into the situation of |div(t)−div(t+
h)| ≥ 2.

The Fourier oe�ients are onstruted using the estimated time varying spetral

density. Now, using the result of Chapter 8 onerning the spetral density estimator
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9 Covariane struture of the bootstrap sample

and the assumption (B)(iii), we may write:

Cov

*(X∗
t+⌊m2 ⌋,T , X

∗
t+⌊m2 ⌋+h,T )

=
2π

2m+ 1
1A



mod(t)−1∑

l=1

(f(u, λl) + oP (1))e
−iλlh +

m∑

l=mod(t)+h

(f(u, λl) + oP (1))e
−iλlh




+
2π

2m+ 1
1B

mod(t)−1∑

l=mod(t)+h−m
(f(u, λl) + oP (1))e

−iλlh

+
2π

2m+ 1
1A

(mod(t)−1∑

l=1

(f(u, λl) + oP (1))e
+iλlh +

m∑

l=mod(t)+h

(f(u, λl) + oP (1))e
+iλlh

)

+
2π

2m+ 1
1B

mod(t)−1∑

l=mod(t)+h−m
(f(u, λl) + oP (1))e

+iλlh

+
1

2m+ 1
1A

(mod(t)−1∑

l=1

oP (1)e
−iλl(h+2t+2⌊m2 ⌋) +

m∑

l=t+h−m
oP (1)e

−iλlh
)

+
1

2m+ 1
1B

mod(t)−1∑

l=mod(t)+h−m
oP (1)e

−iλl(h+2t+2⌊m2 ⌋)

+
1

2m+ 1
1A

(mod(t)−1∑

l=1

oP (1)e
+iλl(h+2t+2⌊m2 ⌋) +

m∑

l=t+h−m
oP (1)e

+iλl(h+2t+2⌊m2 ⌋)
)

+
2π

2m+ 1
1B

mod(t)−1∑

l=mod(t)+h−m
oP (1)e

+iλlh.

Treating all sums involving the term oP (1) as oP (1) is possible, as these sums an

at most have 2m+1 summands and we then get the uniform asymptoti behaviour

of

2m+1
m

· oP (1) = oP (1). We an thus simplify to

2π

2m+ 1
Cov

*(X∗
t+⌊m2 ⌋,T , X

∗
t+⌊m2 ⌋+h,T )

=
2π

2m+ 1
1A



mod(t)−1∑

l=1

f(u, λl)e
−iλlh +

m∑

l=mod(t)+h

f(u, λl)e
−iλlh




+
2π

2m+ 1
1A

(mod(t)−1∑

l=1

f(u, λl)e
+iλlh +

m∑

l=mod(t)+h

f(u, λl)e
+iλlh

)

+
2π

2m+ 1
1B




mod(t)−1∑

l=mod(t)+h−m
f(u, λl)e

−iλlh +

mod(t)−1∑

l=mod(t)+h−m
f(u, λl)e

+iλlh


 + oP (1)
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=
2π

2m+ 1
1A



mod(t)−1∑

l=1

f(u, λl)e
−iλlh +

m∑

l=mod(t)+h

f(u, λl)e
−iλlh




+
2π

2m+ 1
1A

( 2m∑

l=2m+2−mod(t)
f(u, λ2m+1−l)e

−iλlh +

2m+1−mod(t)−h∑

l=m+1

f(u, λ2m+1−l)e
−iλlh

)

+
2π

2m+ 1
1B




mod(t)−1∑

l=mod(t)+h−m
f(u, λl)e

−iλlh +

3m+1−h−mod(t)∑

l=2m+2−mod(t)
f(u, λ2m+1−l)e

−iλlh


+ oP (1),

noting symmetry of the spetral density we substitute f(u, λl) = f(u, λ2m+1−l).

We readily get that Cov

*(X∗
t+⌊m2 ⌋,T , X

∗
t+⌊m2 ⌋+h,T ) = OP (

m−h
m

), as the number of

summands is part A as well as in part B is equal to m− h.

We an now ontinue with ompleting the fragments in part A as well as in part B
to a sum from 1 to 2m+ 1:

Cov

*(X∗
t+⌊m2 ⌋,T , X

∗
t+⌊m2 ⌋+h,T )

=
2π

2m+ 1
1A

( 2m+1∑

l=1

f(u, λl)e
−iλlh−

mod(t)+h−1∑

l=mod(t)

f(u, λl)e
−iλlh − f(u, λ2m+1)e

−iλ2m+1h

−
2m+1−mod(t)∑

l=2m+2−mod(t)−h
f(u, λl)e

−iλlh
)

+
2π

2m+ 1
1B

( 2m+1∑

l=1

f(u, λl)e
−iλlh−

mod(t)+h−m−1∑

l=1

f(u, λl)e
−iλlh

−
2m+1−mod(t)∑

l=mod(t)

f(u, λl)e
−iλlh −

2m+1∑

l=3m+2−h−mod(t)
f(u, λ2m+1−l)e

−iλlh
)
+ oP (1)

=
2π

2m+ 1
1A

( 2m+1∑

l=1

f(u, λl)e
−iλlh +

2π

2m+ 1
1B

2m+1∑

l=1

f(u, λl)e
−iλlh + oP (1)

− 2π

2m+ 1
1A

(mod(t)+h−1∑

l=mod(t)

f(u, λl)e
−iλlh + f(u, λ2m+1)e

−iλ2m+1h

+

2m+1−mod(t)∑

l=2m+1−mod(t)−h
f(u, λl)e

−iλlh
)
− 2π

2m+ 1
1B

(
+

mod(t)+h−m−1∑

l=1

f(u, λl)e
−iλlh

+

2m+1−mod(t)∑

l=mod(t)

f(u, λl)e
−iλlh +

2m+1∑

l=3m+2−h−mod(t)
f(u, λ2m+1−l)e

−iλlh
)

=: A1 +B1 + oP (1) + A2 +B2.
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9 Covariane struture of the bootstrap sample

Note that with De�nition 2.2 we get the following relation between the time-varying

spetral density at time u and frequeny λl and the time-varying autoovariane

funtion.

f(u, λl) =
1

2π
|A(u, λl)|2 =

1

2π

∞∑

j,k=−∞
a(u, j)a(u, k)e−i(λl(j−k))

=
1

2π

∞∑

j=−∞

∞∑

n=−∞
a(u, j)a(u, j − n)e−iλln =

1

2π

∞∑

n=−∞
c(u, n)e−iλln.

Hene,

2π

2m+ 1

(
1A

2m+1∑

l=1

f(u, λl)e
−iλlh + 1B

2m+1∑

l=1

f(u, λl)e
−iλlh

)

=
1

2m+ 1
1A

( ∞∑

n=−∞
c(u, n)

2m+1∑

l=1

e−iλl(h+n)
)

+
1

2m+ 1
1B

( ∞∑

n=−∞
c(u, n)

2m+1∑

l=1

e−iλl(h+n)
)
.

The �rst two sums equal zero exept for the ase when h+n = Z · (2m+1). In this

ase,

∑2m+1
l=1 e−iλl(h+n) = 2m+ 1. Therefore, due to the absolute summability of the

autoovariane funtions (f. Remark 2.4),

A1 +B1 = 1A

(
c(u, h) +

∑

|k|≥1

c(u, h+ k(2m+ 1))

)

+1B

(
c(u, h) +

∑

|k|≥1

c(u, h+ k(2m+ 1))

)

= c(u, h) +
∑

|k|≥1

c(u, h+ k(2m+ 1)).

The last sum an, as |h| ≤ m, be bounded by

∑

|k|≥1

c(u, h+ k(2m+ 1)) ≤
∑

|l|≥m
c(u, l) = o(1).

With this knowledge, we may now write

sup
|h|≤m

∣∣∣Cov*(X∗
⌊uT ⌋,T , X

∗
⌊uT ⌋+h,T )− c(u, h)

∣∣∣

= sup
|h|≤m

|A2 +B2|+ oP (1).

As the term A2 is only non-zero for the inditor 1A being equal to 1, we do not need
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to onsider all 0 ≤ h ≤ m, but only those that result in div(t) = div(t+h), t := ⌊uT ⌋.
We have noted before that we an also write the set A as {t + h ≤ div(t)m}. This
ondition an be reformulated as h ≤ div(t)m− t and, with the de�nition of div and
mod, we get h ≤ m−mod(t). We therefore need to onsider only 0 ≤ h ≤ m−mod(t)
when looking at A2. Similarly, we only need to onsider m ≥ h > m−mod(t) when
looking at B2.

To treat sup|h|≤m |A2 +B2|, �rstly, onsider

sup
0≤h≤m−mod(t)

|A2| =
1

m
sup

0≤h≤m−mod(t)

∣∣∣∣∣∣

mod(t)+h−1∑

l=mod(t)

f(u, λl)e
−iλlh

+

2m+1−mod(t)∑

l=2m+1−mod(t)−h
f(u, λl)e

−iλlh

∣∣∣∣∣∣
+O

(
1

m

)

Hene,

sup
0≤h≤m−mod(t)

|A2| = O

(
1

m

)
+ sup

0<h≤m−mod(t)

1

m

∞∑

n=−∞
|c(u, n)|

(∣∣∣∣∣

h−1∑

l=0

e−iλl+mod(t)(n+h)

∣∣∣∣∣

+

∣∣∣∣∣

h∑

l=0

e−iλl+2m+1−mod(t)−h(n+h)

∣∣∣∣∣

)

= O

(
1

m

)
+ sup

0<h≤m−mod(t)

1

m

∞∑

n=−∞
|c(u, n)|O

(
min

(
2m+ 1

|n+ h| , |h|
))

by Lemma A.4 in Kirh [28℄. We ontinue with

sup
0<h≤m−mod(t)

1

m

∞∑

n=−∞
|c(u, n)|O

(
min

(
2m+ 1

|n+ h| , |h|
))

= sup
0<h≤m−mod(t)

∞∑

n=−∞
|c(u, n)|O

(
min

(
1

|n+ h| ,
|h|
m

))

= sup
0<h≤m−mod(t)

∑

|n|<
√
h

|c(u, n)|O
(
min

(
1

h
,
|h|
m

))

+ sup
0<h≤m−mod(t)

∑

|n|≥
√
h

|c(u, n)|O
(
min

(
1,

|h|
m

))
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9 Covariane struture of the bootstrap sample

≤ O

(
sup
h≤m

min

(
1

h
,
|h|
m

))
+O


sup
h≤m

min


 |h|
m
,
∑

|n|≥
√
h

|c(u, n)|






≤ O

(
1√
m

)
+O


max


 1√

m
,
∑

|n|≥√
m

|c(u, n)|






= o(1).

Seondly, we look at

sup
m−mod(t)<h≤m

|B2| ≤ sup
m−mod(t)<h≤m

1

m



∣∣∣∣∣∣

mod(t)+h−m−1∑

l=1

f(u, λl)e
−iλlh

∣∣∣∣∣∣

+

∣∣∣∣∣∣

2m+2−2mod(t)∑

l=1

f(u, λl+mod(t)−1)e
−iλl+mod(t)−1h

∣∣∣∣∣∣

+

∣∣∣∣∣∣

−m+h+mod(t)∑

l=1

f(u, λl+3m+1−h−mod(t))e
−iλl+3m+1−h−mod(t)h

∣∣∣∣∣∣




≤ sup
m−mod(t)<h≤m

1

m

∞∑

n=−∞
|c(u, n)|



∣∣∣∣∣∣

mod(t)+h−m−1∑

l=1

e−iλl(h+n)

∣∣∣∣∣∣

+

∣∣∣∣∣∣

2m+2−2mod(t)∑

l=1

e−iλl+mod(t)−1(h+n)

∣∣∣∣∣∣
+

∣∣∣∣∣∣

−m+h+mod(t)∑

l=1

e−iλl+3m+1−h−mod(t)(h+n)

∣∣∣∣∣∣




With Lemma A.4 in Kirh [28℄ we an ontinue analogously as for the term A2:

sup
m−mod(t)<h≤m

1

m

∞∑

n=−∞
|c(u, n)|

(
O

(
min

(
2m+ 1

|n+ h| , |mod(t) + h−m− 1|
))

+ O

(
min

(
2m+ 1

|n+ h| , |2m+ 2− 2mod(t)|
)))

= sup
m−mod(t)<h≤m

[ ∑

|n|<
√
h

|c(u, n)|
(
O

(
min

(
1

h
,
|mod(t) + h−m− 1|

m

))

+ O

(
min

(
1

h
,
|2m+ 2− 2mod(t)|

m

)))

+
∑

|n|≥
√
h

|c(u, n)|
(
O

(
min

(
1,

|mod(t) + h−m− 1|
m

))

+ O

(
min

(
1,

|2m+ 2− 2mod(t)|
m

)))]
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As mod(t) ≤ m and mod(t) + h − m ≥ 0, we an bound |mod(t) + h − m| by h.
Moreover, as also h > m−mod(t), we may bound |2m+2− 2mod(t)| by 2h as well.

Hene,

sup
m−mod(t)<h≤m

|B2| ≤ O

(
sup
h≤m

min

(
1

h
,
h

m

))
+O

(
sup
h≤m

min

(
1

h
,
2h

m

))

+O


sup
h≤m

min


 h

m
,
∑

|n|≥
√
h

|c(u, n)|






≤ O

(
1√
m

)
+O


max


 1√

m
,
∑

|n|≥√
m

|c(u, n)|






Thus,

sup
0≤h≤m

|A2 +B2| = o(1).

So all in all,

sup
0≤h≤m

Cov

*(X∗
t+⌊m2 ⌋,T , X

∗
t+⌊m2 ⌋+h,T ) = oP (1).
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CHAPTER 10

De�ieny of the Adapted Fast Fourier Transformation (AFFT)

As the moving Fourier transformation of T values X1, . . . , XT with window width

N := 2m + 1 is of order O(mT ), one might think of exploiting the bene�ts of

developing an algorithm in the style of the ordinary fast Fourier transform to redue

omputing time. This is, unfortunately, not possible without ompromises. The

�rst setion shortly displays the algorithm of the fast Fourier transform. In the

seond part, we adapt the fast Fourier transform to �t our needs. And in the next

step, we then give the reasons of why we an't possibly ahieve any improvement in

omputing time. Finally, an algorithm is suggested whih � to a previously hosen

extent � ompromises on 'loality' for the bene�t of speed.

10.1 The fast Fourier transform

This Setion follows losely Chapter 3.7 in Shwarz and Koekler [48℄.

Assume we have N values X0, . . . , XN−1. For reasons of simpliity, we assume that

N = 2q, whih overs the most popular algorithm. There are also algorithms for

N being a power of other bases, for example Boor [17℄, Brigham [2℄ and Winograd

[55℄. Nowadays, software pratially allows for any N , the amount of omplexity

depending on the prime fatorization of N .

We employ the standard notation and use ωjN := e−
2πij
N = e−iλj , j = 0, . . . , N − 1,

to refer to the j-th unit root. The Fourier oe�ient at frequeny λk =
2πk
N

is then

given by

ck :=
1√
N

N−1∑

j=0

Xje
−ijλk .

For the fast Fourier transform one needs to distinguish between odd and even indies.
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10 De�ieny of the Adapted Fast Fourier Transformation (AFFT)

Let, for the �rst step to beome more illustrating m := N
2
= 2q−1

.

k = 2l, l = 0, . . . , m− 1

As ω
2l(m+j)
N = ω2lj

N ω2lm
N = ω2lj

N and ωm = ω2
N , we get

c2l =
1√
N

N−1∑

j=0

Xje
−ijλ2l =

1√
N

N−1∑

j=0

Xjω
2lj
N =

1√
N

m−1∑

j=0

(Xj +Xm+j)ω
2lj
N

=
1√
N

m−1∑

j=0

(Xj +Xm+j)(ω
2
N)

lj =
1√
N

m−1∑

j=0

zjω
lj
m. (10.1)

We have now redued the Fourier transform of the N = 2m values X1, . . . , XN to a

Fourier transform of the m auxiliary variables

zj,e := Xj +Xm+j , j = 0, . . . , m− 1.

k = 2l + 1, l = 0, . . . , m− 1

As ω
(2l+1)(m+j)
N = ω

(2l+1)j
N ω

(2l+1)m
N = −ω(2l+1)j

N and ωm = ω2
N , we get

c2l+1 =
1√
N

N−1∑

j=0

Xjω
(2l+1)j
N =

1√
N

m−1∑

j=0

(
Xjω

(2l+1)j
N +Xm+jω

(2l+1)(m+j)
N

)

=
1√
N

m−1∑

j=0

(Xj −Xm+j)ω
(2l+1)j
N =

1√
N

m−1∑

j=0

(
(Xj −Xm+j)ω

j
N

)
ω2lj
N

=
1√
N

m−1∑

j=0

zj+mω
lj
m. (10.2)

Again, we have redued the Fourier transform of the N = 2m values X1, . . . , XN to

a Fourier transform of m auxiliary variables

zj+m,o := (Xj −Xm+j)ω
j
N , j = 0, . . . , m− 1.

This at of reduing the Fourier transform of 2m values to a Fourier transform of m
values e�etively osts m omplex multipliations (for alulating the zj+m).
Note, that for eah k = 2l, we have the same auxiliary variables zj , j = 0, . . . , m−1.
Analogously, for eah k = 2l + 1, we have the same auxiliary variables zj+m, j =
, . . . , m − 1. This is atually the key to why we lose omplexity - the auxiliary

variables remaining unhanged in eah group.

The next step is then to redue both of the new formulae (10.1) and (10.2) to Fourier

transforms of

m
2
values, whih osts 2 · m

2
= N

2
omplex multipliations. That is, a

Fourier transform of order N = 2q an in q steps be redued to N Fourier transforms

of order 1, whih are the desired oe�ients. Eah of the steps requires

N
2
omplex
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10.2 Proedure

multipliations and thus, the total omplexity is

N

2
· q = O(N log2N).

Compared to the straight alulation ofN Fourier oe�ients, eah of them resulting

from a Fourier transform of N values, we have redued the omplexity from O(N2)
to O(N log2N) by using this speial algorithm, the Fast Fourier Transformation.

10.2 Proedure

As the moving Fourier transformation performs a Fourier transform of length 2m
on eah streth of data, one might think of employing the FFT-algorithms to speed

things up. However, one has to note that we don't atually alulate all frequenies

for eah streth, but alulate one frequeny only and then shift to the next streth.

The point of matter, therefore, is whether the shift still allows for a su�ient 'reuse'

of the auxiliary variables zj and zj+ N
2q

in eah group j = 0, . . . , N
2q

− 1, q = 1, . . . , p.

The parameter q denotes the redution step we are urrently at. To �nd out, whether

shifting auses the algorithm to lose its omputational advantage (whih it has

ompared to the ordinary DFT) ompared to the straight alulation of the moving

Fourier transform, we need to write it down �rst.

Note that the width of the hosen window for our transformation has been 2m+ 1
in the previous hapters. For reasons of simpliity, as pointed out before, we selet

a window width of N := 2m = 2q, q ∈ N . Further, we assume m|T .
The proedure of the adapted fast Fourier transform is analogous to the ordinary

ase. We redue the transform of N values to 2 transforms of m := N
2
values eah

(distinguishing odd and even indies, as usual).

Note that we want to look at the omplexity of transforming a time series of length

T , whih normally only yields T −m moving Fourier oe�ients. As m is so muh

smaller than T , we an very well onsider the oe�ients cj , 1 ≤ j ≤ T, when being

interested in omplexity only.

This results in

T
2
odd and

T
2
even indies.

k = 2l, l = 0, . . . , m− 1

Analogously to the stationary ase,

c2l =
1√
N

m+2l∑

j=2l−m+1

Xjω
2lj
N =

1√
N

2l∑

j=2l−m+1

(Xj +Xj+m)ω
lj
m

=
1√
N

2l∑

j=2l−m+1

zj, eω
lj
m,

with zk, e := Xk +Xk+m.
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10 De�ieny of the Adapted Fast Fourier Transformation (AFFT)

Analogously,

k = 2l + 1, l = 0, . . . , m− 1

c2l+1 =
1√
N

m+2l+1∑

j=2l−m+2

Xjω
(2l+1)j
N =

1√
N

2l+1∑

j=2l−m+2

[
(Xj −Xj+m)ω

j
N

]
ωljm

=
1√
N

2l+1∑

j=2l−m+2

zj, oω
lj
m,

with zj, o := (Xj −Xj+m)ω
j
N .

10.3 Complexity and the reason there is no 'fast'

transform

As k ranges from 1 to T , T Fourier oe�ients need to be alulated. Let p designate
the 'splitting' step we look at. The �rst splitting step (p = 1) is performed in the

previous setion for odd as well as even indies of the Fourier oe�ients. With the

de�nitions zk, e := Xk +Xk+m and zk, o := (Xk −Xk+m)ω
k
N , we an then write eah

of the Fourier oe�ients as a sum of length m of either zo's (if the index k is odd)

or ze's (if the index k is even).

Hene, a oe�ient, for example, c1 with a sum of only zo's is followed by a oe�-

ient, c2 with a sum of only ze's and so on.

We now ontinue the onstrution priniple of the fast Fourier transform � the split-

ting of sums and reduing to Fourier transforms of lower order. For the sake of

simpliity, we onsider only the ase of k being odd. The even ase works analo-

gously.

As we ontinue splitting, eah sum of length m of zo's is split and then rearranged

to a sum of length

m
2
= N

4
of either zo,e's or zo,o's, where

zk,o,e := zk,o + zk+m
2
,o, zk,o,o := (zk,o − zk+m

2
,o)ω

k
m
2
,

depending on whether

(k−1)
2

is even (�rst ase) or odd (seond ase). Figure 10.1

symbolizes the possible ombinations of evens and odds for the �rst 4 steps:
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10.3 Complexity and the reason there is no 'fast' transform

p = 1 p = 2 p = 3 p = 4
c1 o oe oee oeee

c2 e eo eoe eoee

o oo ooe ooee

· e ee eeo eeoe

· o oe oeo oeoe

· e eo eoo eooe

o oo ooo oooe

e ee eee eeeo
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e eo eoe eoeo

o oo ooe ooeo

e ee eeo eeoo

o oe oeo oeoo

e eo eoo eooo

o oo ooo oooo

e ee eee eeeo

o oe oee oeee

e eo eoe eoee
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e ee eeo eeoe
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e eo eoo eooe
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.
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cT e ee eee eeee

Figure 10.1: Suggestive graphi of the indies used for zk,·, k = 1, . . . , T .

The more splitting steps we perform, the longer it takes for a ombination to repeat

itself. In the seond splitting step, for example, the ombination oe is repeated every

22 times, whereas, in the third step, the ombination oee is repeated every 23 times.

The number of di�erent outomes is 2p.
Let's say we are urrently at step p and interested in all Fourier oe�ients that

an be split in a way that only ze,e,e,...e's remain (p× e). In this group, there is the

Fourier oe�ient cm, as well as cm+2p, cm+2·2p , cm+3·2p, . . . . All in all, there should

be

T
2p

Fourier oe�ients in this group.

Now, to determine the number of alulations to be done to obtain all Fourier

oe�ients for this group in step p, we start with the easiest ase (p = 1):
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10 De�ieny of the Adapted Fast Fourier Transformation (AFFT)

Eah of the m alulations of ze's in the even ase osts one omplex addition,

whereas eah of the m alulations of a single zo in the odd ase osts � at �rst

glane � one omplex addition and one omplex multipliation.

In Figure 10.2 all summands involved in the alulation of two subsequent odd-

indexed Fourier oe�ients c2l0+1 and c2l0+3 (l0 �xed) are expliitly listed.

Given z2l0−m+2, o, . . . , z2l0+1, o, we an see from Figure 10.2 that we only need to in-

vest 2 further omplex multipliations (and omplex additions) in order to obtain

all the zo's needed to onstrut c2l0+3. For the very �rst odd oe�ient, however,

we need to alulate all zo's, whih osts

N
2
omplex multipliations (and the same

amount of omplex additions).

The number of omplex multipliations needed to alulate all zo's totals

N

2
+ 2 ·

(
T

2

)
=
N

2
+ T

Same applies of ourse, for the omplex additions. That was for the �rst step p = 1.

Now, for the p-th step, the idea remains the same, but we have already notied, that

the Fourier oe�ients yielding the same output (i.e. sums of z's with the same in-

dex) � �guratively spoken (in view of Figure 10.1)� 'move further and further apart'

with every splitting step. As we don't use the same data for eah transformation,

but shift, the number of ommon elements of two Fourier oe�ients yielding the

same output gets less and less. Aounting for this the number of z's to be al-

ulated additionally in eah further step is no more only 2 (as in step p = 1), but
depends on p and is equal to 2p � whih is the reason why we fail to reate a faster

algorithm.

For our onveniene, we will refer to Fourier oe�ients, whih � splitted p-times �

in a way that they an be expressed with sums ontaining only ze,e,e,...e's (p× e) as
Fourier oe�ients of group eeeee....e.
The p-th letter is an e, indiating that the z's are reated solely by one omplex

addition (without omplex multipliation)
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√
Nc2l0+1 =

[
(X2l0−m+2 −X2l0+2)ω

(2l0−m+2)
N

]

︸ ︷︷ ︸
=z2l0−m+2, o

ωl0(2l0−m+2)
m +

[
(X2l0−m+3 −X2l0+3)ω

(2l0−m+3)
N

]

︸ ︷︷ ︸
=z2l0−m+3, o

ωl0(2l0−m+3)
m

+
[
(X2l0−m+4 −X2l0+4)ω

(2l0−m+4)
N

]
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[
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N
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N
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N

]

.

.

.
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(2l0)
N

]

︸ ︷︷ ︸
=z2l0, o

ωl0(2l0)m +
[
(X2l0+1 −X2l0+m+1)ω

(2l0+1)
N

]

︸ ︷︷ ︸
=z2l0+1, o

ωl0(2l0+1)
m

√
Nc2l0+3 =

[
(X2l0−m+4 −X2l0+4)ω

(2l0−m+4)
N

]
ω(l0+1)(2l0−m+4)
m +

[
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]
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m
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]
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m +
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ω(l0+1)(2l0+3)
m

Figure 10.2: Comparison of summands used for alulation of two sueeding odd indexed moving Fourier oe�ients

1

3

1



10 De�ieny of the Adapted Fast Fourier Transformation (AFFT)

If we now exemplarily onsider the number of omplex multipliations needed to

onstrut all elements of group oooo...o, we end up with

N

2p
+ 2p ·

(
T

2p

)

• N
2p
=̂ number of initially to be alulated z's, when no element of group oooo...o

has been alulated yet.

• 2p =̂ number of z's that have yet to be alulated, given we have already

alulated an element of group oooo...o

• T
2p
=̂ number of Fourier oe�ients in group oooo...o

omplex multipliations and the same number of additions in the p-th step.

Putting the results together, we obtain the following:

• T Fourier oe�ients (i.e. sums of length N = 2q) need to be alulated.

• We split eah sum p times, in order to be �nally left with only one summand

� the Fourier oe�ient. So q = log2N is the number of splitting steps.

• We have 2p di�erent oe-index-ombinations after the p−th step.

• For the p-th step, the osts for one group total

(
N

2p
+ 2p ·

(
T

2p

))
(multipliation only)

As we split q times, we have to aept a ost of

q∑

p=1

2p
(
N

2p
+ 2p ·

(
T −N

2p

))
= O(NT ).

So it doesn't atually help to exploit the bene�t of 'reusable' (in the sense

of: already alulated) elements. If we would have been able to detet an

advantage at this point, we would also have had to numerially take into on-

sideration, that the number of ommon elements (of Fourier oe�ients in one

group) dereases steadily and thus, at some step p, we don't have any over-

lapping anymore and have to alulate all

N
2p
z's for eah Fourier oe�ient in

eah group.

Though we didn't get a omputational advantage, we will write down the

general formula for the sake of ompleteness.
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10.4 A ompromise between speed and loality

If the last step with overlapping elements is p = x, the formula yielding the

orret ost is

x∑

p=1

2p
(
N

2p
+ 2p ·

(
T −N

2p

))
+

q∑

p=x+1

2p
(
N

2p
·
(
T −N

2p

))
= O(NT ).

Referring bak to Setion 10.1, we have now seen that the reason we fail to get

a numerial advantage to the straight alulation of the moving Fourier trans-

form by applying fast Fourier tehniques, is the shifting. The ordinary Fourier

transform, after having alulated the summands for the �rst two Fourier

oe�ients in one group, ompletely reuses the summands z for the remain-

ing oe�ients in this step and there is no exponentially growing amount of

summands to be additionally alulated as in the previous proedure of the

adapted fast Fourier transform.

10.4 A ompromise between speed and loality

As we have �gured out the problem that ours when intending to adapt the idea of

the fast Fourier transform, one might want to try out an alternative, whih bene�ts

from the redution of omplexity by reating reusable summands, but at the same

time doesn't give up on the aspet of shifting.

Basi idea

Let again 1 ≤ j ≤ T . The proposed algorithm of the moving Fourier transform

implies that, after the alulation of one Fourier oe�ient based on N data values,

for example X1, . . . , XN , the 'window' shifts and the next Fourier oe�ient is al-

ulated based on only almost the same data X2, . . . , XN+1. So what we are doing

is that we are, in a sense, shifting the athment area of the Fourier transform by 1

unit after the alulation of eah oe�ient.

The idea of the ompromising algorithm is not to shift by 1 unit, but by L units

� and also not after the alulation of every single Fourier oe�ient, but the shift

ought to our after having alulated L Fourier oe�ients on the basis of the same

data values.

Formulae

Choose L := L(N) in a way that

L(N)
N

→ 0 and L(N) → ∞ for N → ∞. The

alulation of the Fourier transform in this adapted way is suggestively displayed in

Figure 10.3.

Note: If

T
L

is not an integer, the last blok is shorter and omplexity somewhat

smaller.

Now what we have is basially

T
L
times a Fourier transform of N values.
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10 De�ieny of the Adapted Fast Fourier Transformation (AFFT)

Case 1: L ≥ 2p As long as L ≥ 2p, whih means that eah possible outome of the

p-th step is overed at least one, we an refer to the ordinary Fourier transform of

N values. For simpliity let L := 2x and we get, for p ≤ x

T

L

x∑

p=1

2p
N

2p
= O

(
TN log2 L

L

)
.

Case 2: L < 2p However, as soon as L is no longer overing all outomes, whih

means as soon as p > x, we an no longer resort to the idea of

T
L
separate Fourier

transforms, but we have to revisit the previous proedure:

• 2p di�erent groups

• T
2p

elements in eah group

• Taking into onsideration the shift on indies: Having alulated one element

of the group, we need, for any other element of the group,

⌊
2p

L

⌋
·L operations.

q∑

p=x+1

2p
(
N

2p
+

⌊
2p

L

⌋
· L · T

2p
− 1

)

So the omplexity is now

T

L

(
x∑

p=1

2p
N

2p

)
+

q∑

p=x+1

(
2p
(
N

2p
+

⌊
2p

L

⌋
· L · T

2p
− 1

))

= O

(
TN log2 L

L
+ (log2N − log2 L)N +

NT

L

)
.

This enloses the ases of

• L = 1 (maximal loality, high omplexity) � the moving Fourier transform

(→ O(NT )), and

• L = N (minimal loality, low omplexity) � the original Fourier transform of

T
N

bloks of length N (→ O(T log2N)).

Therefore, this method ahieves a redution in omplexity for L > 1 � to the ost

of loality.
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1st blok of length L :

c1 =
1√
N

N+1∑

k=1

Xk−N
2
ω1·k
N , c2 =

1√
N

N+1∑

k=1

Xk−N
2
ω2·k
N , . . . , cL =

1√
N

N+1∑

k=1

Xk−N
2
ωL·kN

2nd blok of length L :

cL+1 =
1√
N

N+1+L∑

k=1+L

Xk−N
2
ω
(L+1)k
N , cL+2 =

1√
N

N+1+L∑

k=1+L

Xk−N
2
ω
(L+2)k
N , . . . , c2L =

1√
N

N+1+L∑

k=1+L

Xk−N
2
ω
(2L)k
N

.

.

.

T
L
th blok of length L :

cT−L+1 =
1√
N

T∑

k=T−N+1

Xk−N
2
ω
(T−L+1)k
N , cT−L+2 =

1√
N

T∑

k=T−N+1

Xk−N
2
ω
(T−L+2)k
N ,

. . . , cT =
1√
N

T∑

k=T−N+1

Xk−N
2
ω
(T )k
N

Figure 10.3: Constrution of moving Fourier oe�ients with shift L

1

3
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10 De�ieny of the Adapted Fast Fourier Transformation (AFFT)
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CHAPTER 11

Simultaneous on�dene bands for the autoorrelation

When estimating statistial quantities, one does also want, as Neumann and Polzahl

[39℄ put it, to give a visual impression of the adequay and variability of the estima-

tion. This an be done by the presentation of on�dene intervals for the values of

interest. When estimating funtions, however, it does not su�e to provide point-

wise on�dene intervals for eah funtion value, as the main fous is most of the

time on the overall shape of the urve and not the reliabilities of single values. Vi-

sualizations of suh pointwise on�dene bands will most likely also lead to a wrong

interpretation by the user of statistial evaluations. It is therefore of great interest

to provide uniform or simultaneous on�dene bands when estimating funtions to

o�er an easy and intuitive understanding of the preiseness of the estimation.

Why would one want to study autoorrelation funtions? Autoorrelation of a time

series means that values yet to ome depend on past values. Autoorrelation some-

times eases preditions, indiating some persistane in systems meaning that some

states perservere for additional time-units as the system is quite inertial. Some ex-

amplary time series an be seen in the �eld of hydrometerology: Garen and Pagano

[42℄ analyze April � September stream�ow volume data from 141 unregulated basins

in the western United States for trends in persistene. Deadal time-sale hanges

in lag-1-year autoorrelation (persistene) were observed. The 1930s � 50s was a

period of low variability and high persistene, the 1950s � 70s was a period of low

variability and antipersistene, and the period after 1980 was highly variable and

highly persistent. In partiular, regions from California and Nevada to southern

Idaho, Utah, and Colorado have reently experiened an unpreedented sequene of

onseutive wet years along with multiyear extreme droughts.

Paying attention to autoorrelation funtions is not only of major interest against

physial bakground, but also in eonomi settings: Autoorrelation in stok returns

is used as one important measure of seurities market priing. To monitor the au-

toorrelation of stok returns losely is important, as it may be a sign of genuine
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11 Simultaneous on�dene bands for the autoorrelation

priing ine�ieny (see Anderson [1℄).

Building on the example of autoorrelation � estimating the autoorrelation funtion

and onstruting on�dene bands for the �rst order autoorrelation � we point out

the pratial relevane of estimators grasping the time-varying strutures ourring

in time series. We advertise our method of the moving Fourier transform, the mov-

ing periodogram and orrespondingly adapted bootstrap proedures to meet these

needs.

11.1 Design of simultaneous on�dene bands for

the autoorrelation

Con�dene bands for a time varying autoorrelation funtion have hardly been stud-

ied in literature.

Sergides [49℄ onstruts pointwise on�dene bands for the time varying autoorrela-

tion funtion of a tvMA(1)-proess. These pointwise intervals are of variable width

and are alulated by adding (and substrating) the bootstrap estimate of the stan-

dard deviation times the theoretial quantiles of the standard normal distribution

to the estimated autoorrelation funtion.

Kreiss and Paparoditis [32℄ do also onstrut pointwise on�dene bands by using the

same approah as Sergides [49℄ employing their hybrid bootstrap method. However,

they do not provide any further simulation study but merely apply their bootstrap

method to give a numerial example.

As pointed out before, it would be far more reasonable and also more intuitive

from a pratitioner's point of view to provide simultaneous on�dene bands for

estimated funtions. This is a problem, whih is, up to now, mainly addressed

in nonparametri regression, where simultaneous on�dene bands are onstruted

for the regression funtion (see Sun and Loader [52℄ and Neumann and Polzehl [39℄).

There are two basi approahes to onstrut simultaneous on�dene bands: either

with �xed or with variable width. For the situation of nonparametri regression, an

easy to understand desription of how to proeed in either ase is given by Neumann

and Polzehl [39℄. There is also a fairly good manual of how to onstrut simultaneous

on�dene bands with variable width using bootstrapping in Lenho� et al. [34℄.

We now desribe two methods of onstruting simultaneous on�dene bands for

the autoorrelation ρ(u, h), u ∈ [0, 1], of the loally stationary time series {Xt,T}.
W.l.o.g. we will restrit ourselves to h = 1, that is the 1-lag autoorrelation.

Firstly, the onstrution of a on�dene band of variable width is onsidered. We

aim to use bootstrapping in order to mimi the behaviour of the proess

{
ρ(u, 1)− ρ̂(u, 1)

σ̂ρ(u)

}

u∈[0,1]
.
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11.1 Design of simultaneous on�dene bands for the autoorrelation

This proess spei�es the maximal weighted deviation of the autoorrelation from

the estimate ρ̂(u, 1), for all u ∈ [0, 1].

Step 1: Choose a suitable lattie L[0, 1] on the interval [0, 1]. For example, {t/T, t =
1, . . . , T}. For every �xed u ∈ L[0, 1] alulate an estimate ρ̂(u, 1) of the

autoorrelation funtion.

Step 2: Generate B bootstrap time series by employing a moving bootstrap. For eah

time series

{
X∗,b
t,T

}
, b = 1, . . . , B, estimate the autoorrelation ρ̂b(u, 1) for

every u ∈ L[0, 1].

Step 3: Use all B time series to estimate the standard deviation σ̂ρ̂(u) of ρ̂ for every

u ∈ L[0, 1].

Step 4: Choose Cboot > 0 suh that

1

B

B∑

b=1

1

{
max
u∈L[0,1]

ρ̂(u, 1)− ρ̂b(u, 1)

σ̂ρ(u)
≤ Cboot

}
≥ 1− α,

for some presribed α, 0 < α < 1.

The simultaneous α · 100% on�dene band for ρ(u, 1), 0 ≤ u ≤ 1, is then given by

CBvariable := [ρ̂(u, 1)− Cboot · σ̂ρ(u), ρ̂(u, 1) + Cboot · σ̂ρ(u)].

In order to maintain uniform size of the on�dene band, one simply omits the

third step of the above algorithm and adapts the fourth step. Doing so, we hene

mimi the proess of the maximal deviation of the autoorrelation from the estimate

ρ̂(u, 1), for all u ∈ [0, 1].

{ρ(u, 1)− ρ̂(u, 1)}u∈[0,1] .

Step 1: Create a suitable lattie L[0, 1] on the interval [0, 1]. For every �xed u ∈ L[0, 1]
alulate an estimate ρ̂(u, 1) of the autoorrelation funtion.

Step 2: Generate B bootstrap time series by employing a moving bootstrap. For eah

time series

{
X∗,b
t,T

}
, b = 1, . . . , B, estimate the autoorrelation ρ̂b(u, 1) for

every u ∈ L[0, 1].

Step 4': Choose C ′
boot > 0 suh that

1

B

B∑

b=1

1

{
max
u∈L[0,1]

{
ρ(u, 1)− ρ̂b(u, 1)

}
≤ Cboot

}
≥ 1− α,

for some presribed α, 0 < α < 1.

139



11 Simultaneous on�dene bands for the autoorrelation

The simultaneous α · 100% on�dene band for ρ(u, 1), 0 ≤ u ≤ 1, is then given by

CBfixed := [ρ̂(u, 1)− C ′
boot, ρ̂(u, 1) + C ′

boot].

In our simulations, the moving bootstrap method, as referred to in Step 2, will

either be the moving TFT-bootstrap, the moving autoregressive aided periodogram

bootstrap or the moving wild hybrid bootstrap.

11.2 Simulation study

The study is strutured as follows: At �rst, we will simulate di�erent types of loally

stationary proesses. Those proesses vary with respet to the model struture

and the distribution of the white noise. We will onsider a tvAR(1)-proess with

linearly hanging oe�ients, as well as a tvMA(1)-proess as used by Sergides [49℄.

Conerning the white noise, we will study standard normal errors, standardized

χ2
- as well as standardized exponentially distributed errors. De�nition 2.1 merely

presribes that Eεt = 0, Eε2t = 1, as well as Eε4t < ∞ whih is ful�lled after

appropriate entering and resaling of the errors.

DGP 1 (time-varying AR(1)-proess)

Xt,T = at,T ·Xt−1,T + εt,

with at,T =
(
1− t

T

)
· (−0.6) + t

T
· 0.6 and εt independent and identially

distributed for all t = 1, . . . , T .

DGP 2 (time-varying MA(1)-proess)

Xt,T = 1.1 · cos
(
1.5− cos

(
4π i

T

))
· εt−1 + εt,

with εt independent and identially distributed for all t = 1, . . . , T .

The following arrangements will be onsidered:

Error distribution

N (0, 1) 5 · Exp(5)− 1
χ2
3−3√
6

Model

tvAR(1) DGP1a DGP1b DGP1

tvMA(1) DGP2a DGP2b DGP2
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11.2 Simulation study

Figure 11.1: A realization of DGP 1

Figure 11.2: A realization of DGP 2a

To aount for the boundary e�ets whih our as we don't use the moving versions

of the bootstrap for the very �rst and the very last N = 201 observations, we only

evaluate the simulations in between t = 200 and t = 800, that is at 601 points

in time. This is in agreement with Sergides [49℄. The following graphis, though,

display the whole range of t = 1 to t = 1000. One an learly see � for example in

Figure 11.3 � the e�et of the blokwise bootstrap in the beginning and at the end.

We have onstruted the on�dene bands to a overage of 95%. In order to verify

whether the on�dene bands atually meet the intended overage probability, we

alulate the empirial overage probability using R = 200 repetitions. As we work

with simultaneous on�dene bands, the question is how to haraterize a urve to
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11 Simultaneous on�dene bands for the autoorrelation

lie in between two other urves. Should we require all points of the urve to be in

between, do we allow for some perentage of points that an be outside?

The �rst hek is whether the empirial overage is dependent on the data. This

is done by looking at di�erent seeds. The resulting empirial overage probability

of the theoretial autoorrelation funtion at lag 1 of a time-varying AR(1)-proess

with standard normal iid errors (DGP 1a) is given in the following table. The theo-

retial urve ρ(1) is onsidered to lie within the on�dene band if all values between

t = 200 and t = 800 are within the on�dene band.

Width Type of bootstrap

variable �xed mTFT mAAPB mH

Seed

1:200 x 0.960 0.99 1.000

1:200 x 0.970 0.995 1.000

201:400 x 0.980 0.995 1.000

201:400 x 0.985 0.995 1.000

We an see that for di�erent seeds, the moving version of the TFT-bootstrap is the

most volatile. We should as a rule of thumb onsider random deviations of ±0.01
before drawing onlusions.

Having mentioned the di�ult question of larifying when the theoretial urve ρ(1)
is onsidered to lie within the on�dene band, we onsider di�erent numbers of

points we allow to deviate. The �rst riterion is that all 601 points do have to lie

within the bounds, seondly, only 590 of the 601 points need to be in the band. The

most is a miss by 100 points, whih is 17% of the urve.

Empirial overage probability based on DGP1a

Width Type of bootstrap

variable �xed mTFT mAAPB mH

≥ bound

601 x 0.96 0.99 1.00

601 x 0.97 1.00 1.00

590 x 0.97 0.99 1.00

590 x 0.98 1.00 1.00

560 x 0.98 1.00 1.00

560 x 0.99 1.00 1.00

500 x 1.00 1.00 1.00

500 x 1.00 1.00 1.00
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11.2 Simulation study

We now perform the autoregressive-aided periodogram bootstrap as given by Sergides

[49℄, still with a window width of N = 201, but alulating all N Fourier oe�ients

at eah point in time u. Thus, for eah u bootstrap replia of IN(u, λj) for eah

j = 1, . . . , N are produed. From those we obtain ρ(u, 1) for every u ∈ [0, 1]. How-
ever, instead of onstruting pointwise on�dene bands as done by Sergides [49℄,

we now onstrut uniform on�dene bands proeeding as in Setion 11.1. The al-

gorithm of obtaining the bootstrap repliates has a omplexity of O(N2T ) and thus

takes up muh more time than onstrution of simultaneous on�dene bands using

the moving Fourier transform, whih is only of order O(NT ). Given the omputa-

tional ressoures available, we have performed the autoregressive-aided periodogram

bootstrap B = 200 times for eah of the 56 trials in order to alulate the empirial

overage probability. For the standard normal iid errors, both, the �xed and the

variable on�dene band exhibit an empirial overage of 100%.

A visual omparison of the moving version of the autoregressive-aided periodogram

bootstrap and the original version an be found in Figure 11.3.

0 0.2 0.4 0.6 0.8 1

−
0
.6

−
0
.3

0
0
.3

0
.6

Figure 11.3: Con�dene band of the mAAPB (solid) and the AAPB (dotted)

The resulting on�dene bands have a mean width of 0.484 with a standard deviation

of 0.023 ompared to the mean width of 0.485 with standard deviation of 0.022 of

the moving version. Both with an empirial overage of 100%.
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Figure 11.4: Con�dene bands (variable width) of moving version of (a) TFT boot-

strap, (b) AAP bootstrap and () wild hybrid bootstrap for DGP1a for

di�erent realizations
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11.2 Simulation study

Empirial overage probability based on DGP1 with di�erent error distributions

Width Type of bootstrap

variable �xed mTFT mAAPB mH

DGP1b ≥ bound

601 x 0.95 0.99 1.00

601 x 0.97 0.99 1.00

590 x 0.96 0.99 1.00

590 x 0.98 0.99 1.00

560 x 0.99 0.83 1.00

560 x 1.00 1.00 1.00

500 x 1.00 1.00 1.00

500 x 1.00 1.00 1.00

DGP1 >bound

601 x 0.97 0.99 1.00

601 x 0.98 0.99 1.00

590 x 0.99 0.99 1.00

590 x 0.99 0.99 1.00

560 x 1.00 1.00 1.00

560 x 1.00 1.00 1.00

500 x 1.00 1.00 1.00

500 x 1.00 1.00 1.00

Empirial overage probability based on DGP2a

Width Type of bootstrap

variable �xed mTFT mAAPB mH

≥ bound

601 x 0.02 0.86 0.41

601 x 0.04 0.72 0.56

590 x 0.04 0.91 0.49

590 x 0.07 0.80 0.66

560 x 0.19 0.97 0.80

560 x 0.26 0.97 0.88

500 x 0.58 1.00 0.97

500 x 0.78 1.00 1.00
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Figure 11.5: Con�dene band of moving version of (a) TFT bootstrap, (b) AAP

bootstrap and () wild hybrid bootstrap

146



11.2 Simulation study

.

Empirial overage probability based on DGP2 with di�erent error distributions

Width Type of bootstrap

variable �xed mTFT mAAPB mH

DGP2b ≥ bound

601 x 0.01 0.90 0.23

601 x 0.01 0.78 0.39

590 x 0.02 0.94 0.32

590 x 0.03 0.85 0.49

560 x 0.07 0.99 0.71

560 x 0.08 0.97 0.83

500 x 0.18 1.00 0.95

500 x 0.27 1.00 0.98

DGP2 ≥ bound

601 x 0.02 0.91 0.32

601 x 0.03 0.76 0.49

590 x 0.03 0.95 0.43

590 x 0.06 0.82 0.58

560 x 0.16 0.99 0.75

560 x 0.26 0.98 0.82

500 x 0.61 1.00 0.95

500 x 0.76 1.00 0.99

One might also want to hek, how the pointwise asymptoti on�dene bands per-

form (see Figure 11.6). From a simple look at one realization of the asymptoti

95%-on�dene band ompared to the true autoorrelation ρ(u, 1) one an readily

tell that this band will not be likely to get anywhere near an empirial overage of

95%.
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11 Simultaneous on�dene bands for the autoorrelation
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Figure 11.6: Pointwise asymptoti 95%-on�dene band for DGP1a

A exemplary visual omparison of the variable and �xed width on�dene band in

the ase of a χ3
2-distribution of the errors onstruted using the moving version of

the TFT-bootstrap shows that there is not muh di�erene between the two ways,

though the table hints a higher empirial overage rate of the method using a �xed

width.
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Figure 11.7: DGP 1: Comparison of the simultaneous on�dene bands of �xed

(solid) and variable (dotted) width obtained via the moving TFT

bootstrap
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11.2 Simulation study

We have seen that the wild hybrid bootstrap exhibits a overage of 100% for DGP1a.

This is also re�eted in the width of the on�dene bands. We will now ompare the

on�dene bands with �xed width and present the average width and the standard

deviation of the widths of eah proedure in the ase of DGP1a and DGP2a.

Width of on�dene bands

(width)

DGP1a DGP2a

mean std mean std

mTFT 0.4659180 0.01825032 0.4569330 0.01950276

mAAPB 0.4837308 0.02309174 0.7110781 0.04509634

mHB 0.6538740 0.06472582 0.6432225 0.03435888
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Figure 11.8: DGP 2a: Com-

parison of the

simultaneous on-

�dene bands

of �xed width

obtained via the

moving TFT boot-

strap (solid), the

moving AAP boot-

strap (dotted) and

the moving wild

hybrid bootstrap

(dashed)
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Figure 11.9: DGP 1a: Com-

parison of the

simultaneous on-

�dene bands

of �xed width

obtained via the

moving TFT boot-

strap (solid), the

moving AAP boot-

strap (dotted) and

the moving wild

hybrid bootstrap

(dashed)
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11 Simultaneous on�dene bands for the autoorrelation

Figure 11.10: DGP 1a: Simultaneous 95% on�dene bands of �xed width with

two realizations eah using (a) the moving TFT bootstrap (solid), (b)

the moving AAP bootstrap (dotted) and () the moving wild hybrid

bootstrap (dashed)
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11.2 Simulation study

We onlude with a look at the autoovariane funtion. In Chapter 5, we have

seen that the variane of the spetral mean inorporating the moving periodogram

still depends on the fourth order umulant. The moving TFT bootstrap has not

been designed to bootstrap the fourth order umulant of the data. However, we

were interested in how well the bootstrap still works deviating from the standard

normal distribution of the errors. In the following study we have used �xed width

on�dene bands of the autoovariane funtion of lag 1 (i.e. of the spetral mean

with weight funtion ϕ(λ) = eiλ). First, using standard normally distributed errors

and, seond, using standardized exponentially distributed errors. In the �rst ase,

we get an exess urtosis of zero, in the seond of 6. The empirial overage of the

bands has been surprisingly good in the ase of the high exess kurtosis.

DGP1a DGP1b

≥ 601 0.88 0.75

≥ 590 0.92 0.82

≥ 560 0.97 0.92

≥ 500 0.99 0.96

Exemplary on�dene bands an be seen in the following �gures.
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Figure 11.11: Exemplary simultaneous 95% on�dene bands of �xed width with the

moving TFT bootstrap for DGP1a (solid) and DGP1b (dashed)
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Figure 11.12: Bootstrap versions of simultaneous 95% on�dene bands of �xed

width with the moving TFT bootstrap for DGP1b

We eye the assumption that κ4 := E(εt)
4 − 3 is unhanged throughout time. We

don't see any reason for κ4 to remain unhanged while the variane of the time series

hanges. Assuming that there is a hange in κ4, would the moving spetral density

estimation help to mimik this hanging κ4? Or would it fail, just like the proedure

in Kreiss and Paparoditis [32℄. They estimate a single value of κ4 using all data.

It is quite hard to onsistently estimate the fourth moment. So what we did was to

estimate the time varying autoovariane at lag 1, whih is a spetral mean. The

asymptoti ovariane struture, both in our ase (see Theorem 5.5) as well as in

the situation when using the loal periodogram as an estimator (Lemma 2.4.2 in

Sergides [49℄) is dependent on κ4. We now estimate the autoovariane funtion

of iid data with a fourth moment of m1 := 3 for t = 1, . . . , 499 and then swith

to iid data with a fourth moment of 18 for t = 500, . . . , 1000. For onstruting

the data, the onstrution made by Kreiss and Paparoditis [31℄ is used: E.g. for

t = 1, . . . , 499, P (εt =
√
m1) = P (εt = −√

m1) = 1
2m1

and P (εt = 0) = 1 − 1
m1

.

Being interested in how well the hange in κ4 is mimiked, we need to look at the

variane of the estimated autoovarianes.

When estimating the autoovariane using the moving Fourier transform for 200

di�erent but identially distributed sets of iid random variables, we get 200 values

at eah time t. The estimated variane at eah time an be seen in Figure 11.13.

For illustrative reasons the average variane of the �rst 300 observations as well as

of the last 300 observations is marked. It an learly be seen that the variability of

the estimation hanges as time passes.
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11.2 Simulation study
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Figure 11.13: Sample variane of 200 realizations of the estimated autoovariane of

lag 1 using the moving periodogram

Changes of the fourth moment are ompletely omitted by Kreiss and Parparoditis

[32℄. Their bootstrap proedure is therefore only appliable in the restrited setting

of onstant fourth moment of the innovations. Still, the bootstrap is able to opy

the information on the fourth moment. We therefore propose the moving hybrid

bootstrap as presented in Setion 7.2.3 in order to be able to over hanges in the

fourth moment.
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CHAPTER 12

Conlusion and outlook

The new aspet of this thesis is the idea of shifting a loal Fourier transform along

a time series. It re�nes in an elegant and e�ient way the ommon idea of apply-

ing a loal Fourier transform to the data: At eah time t, only one of the Fourier

oe�ients is updated. For slow hanges, whih are harateristial for loally sta-

tionary time series, this is an e�etive way to mirror strutural hanges. The very

last setion of Chapter 11 exemplarily shows that even hanges in fourth moments

an be traed. This interesting aspet of how hanging fourth order umulants an

be monitored will ertainly be of future interest. We ontribute by proposing the

moving wild hybrid bootstrap (see Setion 7.2.3).

Using the moving Fourier transform, we have been able to develop a well-behaved

and numerially heap estimator for the time varying spetrum, whih is loally

uniform onsistent, whih means that the spetral density estimator at some time k
in the neighbourhood of t onverges to the true spetral density at time t, uniformly

in k. This is the loal equivalent to the ondition required in the stationary set-

ting. We may therefore extend all proedures involving spetral density estimation

in the stationary setting to the loally stationary setting. This has expliitly been

done for three bootstrap proedures in Chapter 8. We now have two methods, the

moving TFT-bootstrap, as well as the moving wild hybrid bootstrap, to generate

bootstrap observations of loally stationary data not just in the frequeny domain,

but also in the time domain. The moving autoregressive aided periodogram boot-

strap only generates repliates in the frequeny domain. Adapting the extension

made by Jentsh and Kreiss [26℄ to the moving ase, however, one ould also obtain

a moving autoregressive aided Fourier oe�ient bootstrap whih is able to generate

bootstrap observations in the time domain.

The maintaining of the orret ovariane struture of the bootstrap data has been

proved in Chapter 10 exemplarily for the TFT-bootstrap. We have also investigated

whether there is a possibility of being more e�ient onerning the alulation of
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12 Conlusion and outlook

the moving Fourier transform by introduing some kind of adapted fast Fourier

transform. However, it turned out that when intending to redue omplexity, the

transform needs to spend a longer period of time without shifting to the next streth

of data. It would therefore be desirable to investigate further methods of speeding

up omputations.

Referring to the aspet of only transforming a small set of data at a time, the ques-

tion arises whether the hoie of the window width an somehow be loally adapted

to the degree of strutural hange. The question of an optimal hoie of the window

width has also not been answered yet. Conerning the spetral density estimation,

future work will inlude the examination of the hoie of kernel and bandwidth.

In Chapter 5 we have turned our attention to spetral means and provided asymp-

toti expetation and variane of those statistis. The next step will now be to

expliitly prove the asymptoti normality, as explorative simulations have hinted

that normal distribution is most likely. In a further step, one should look at ratio

statistis and their properties. The simulation part of this thesis has already turned

to solve this problem by bootstrapping. The loal autoorrelation funtion of loally

stationary proesses is studied and we provide uniform bootstrap on�dene bands,

omparing di�erent bootstrap approahes.
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