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Zusammenfassung

Intelligente Umgebungen sind in der Lage, Menschen wahrzunehmen und auf ihre Handlun-
gen zu reagieren. Ein Ziel ist es dabei, die Menschen bei ihren Tätigkeiten zu unterstützen.
Dafür soll die Interaktion in und mit solchen Umgebungen möglichst natürlich und intu-
itiv sein, weshalb der Schnittstelle zwischen Mensch und Maschine besondere Bedeutung
zukommt. Um die Aktivitäten von Menschen zu verstehen, ist es in einem ersten Schritt
notwendig, ihre Bewegungen und insbesondere Gesten zu erkennen. In dieser Arbeit wurde
dazu ein System entwickelt, welches die Körperposen von Personen erkennt und dadurch
eine gestenbasierte Interaktion in und mit einer intelligenten Umgebung ermöglicht.

Die Forschungsfrage dieser Arbeit lautet dabei: Wie kann durch Segmentierung als ein
Vorverarbeitungsschritt sowohl der Suchraum als auch die Komplexität bei der Erfassung
der Körperpose reduziert werden? Diese Frage wurde für alle Schritte des im Rahmen dieser
Arbeit entwickelten Systems untersucht.

Im ersten Verarbeitungsschritt werden die Sensordaten durch speziell angepasste Voxel
Carving Verfahren in eine sensorunabhängige Repräsentationsform, die Voxel, umgewandelt.
Dies führt zu einer Flexibilität bezüglich der Sensorauswahl und erlaubt dadurch den
Einsatz in unterschiedlichen Umgebungen. Der Algorithmus ist dabei sehr effizient und
robust gegenüber statischen Verdeckungen durch die Verwendung sogenannter Occlusion
Maps. Zusätzlich dazu wurden im Rahmen dieser Arbeit Superpixel- und Supervoxel-
Segmentierungsalgorithmen untersucht und entwickelt. Insbesondere die Segmentierung in
Supervoxel ermöglicht eine Reduktion des Suchraums für die Algorithmen der folgenden
Verarbeitungsschritte.

Für die Erfassung der 3D Körperpose werden Supervoxel und die Verbindungen des
Supervoxel-Graphen als Grundbausteine verwendet. Dadurch wird sowohl der Suchraum als
auch die Komplexität reduziert und eine Erfassung der Körperpose in Echtzeit ermöglicht.
Zudem führt die Verwendung von Supervoxeln zu einer größeren Flexibilität, da zusätzliche
Informationen auf Supervoxelbasis modelliert werden können ohne eine Modifikation des
Algorithmus zu benötigen. Dies wird am Beispiel der temporalen Supervoxeln gezeigt, mit
welchen Informationen über vergangene Posen in die Zukunft propagiert werden können.
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Das System zur Erfassung der Körperpose wurde sowohl für die Erkennung von statischen als
auch dynamischen Gesten verwendet und seine Eignung in verschiedenen Laboraufbauten,
Ausstellungen und industriellen Umgebungen demonstriert.

Zusammenfassend erlaubt das vorgestellte System eine Erfassung der Körperpose für
die Mensch-Computer-Interaktion in Echtzeit und erreicht eine signifikante Reduktion
sowohl der Komplexität als auch des Suchraums durch die Verwendung von Supervoxel-
Segmentierungen.



Abstract

Smart environments provide natural and intuitive human-computer interaction to support
people in their daily lives. For this functionality, the computers must be able to perceive
people and recognize their actions. In this thesis, a system was developed that enables inter-
actions in and with smart environments by recognizing gestures based on pose estimation
and body tracking.

The main research question of this thesis is: How can segmentation as a preprocessing step
reduce the search space and computational complexity of pose estimation and body tracking?
This question has been investigated for all steps of the system presented in this thesis.

The starting point is a segmentation into voxels with voxel carving to compute a sensor-
independent representation. This provides flexibility as different sensor types are better
suited for various environments. The algorithm is robust to static occlusions through
occlusion maps and achieves a high computational efficiency. Further, both superpixel and
supervoxel segmentation algorithms were developed. Through supervoxels, the large number
of voxels, and therefore the search space, is drastically reduced for following processing
steps.

The 3D pose estimation approach uses supervoxels and connections of the supervoxel
graph as building blocks. This significantly reduces both the search space as well as the
computational complexity and allows for real-time pose estimation. Further, supervoxels
provide an additional flexibility because they can encode diverse information to influence
pose estimation without modifying the approach. This is shown with temporal pictorial
structures that propagate previous poses through time for body tracking.

The system has been applied to static and dynamic gesture recognition and its applicability
was demonstrated in various laboratory settings, exhibitions, and industrial environments.

In conclusion, the presented system allows real-time human-computer interaction based on
pose estimation and body tracking and achieves a significant computational complexity as
well as search space reduction through segmentation techniques.
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1 Introduction

This chapter introduces the topics and research challenges addressed in this thesis. First,
a motivation is given in Section 1.1. Then, an overview of the approach is presented in
Section 1.2. Contributions are summarized in Section 1.3 and an outline is presented in
Section 1.4.

1.1 Motivation

This thesis took place during a thriving time as the interaction between humans and
computers has been undergoing drastic change over the last years. Interaction shifted from
mouse and keyboards to natural interaction with gestures, in particular in combination with
various display types. What a couple of years ago seemed futuristic, is now available for mass
markets. Smart phones are now an integral part of our daily lives and gesture-controlled
interaction in millions of living rooms is no concept of the future anymore.

Smart rooms address a specific topic of human-computer interaction. The research in this
area focuses on how whole rooms can be made smarter with the goal to support humans in
their daily activities. Fundamental research about Computers in the Human Interaction
Loop [169] at the Karlsruhe Insitute of Technology (formerly known as Universität Karlsruhe
(TH)) provided the seeds for smart room research in Karlsruhe. Enabled by this work, the
new research group Visual Perception for Human-Computer Interaction - Interaction in
and with Smart Environments and the SmartControlRoom [10] started at the Fraunhofer
Institute of Optronics, System Technologies and Image Exploitation in Karlsruhe. In this
research environment, this thesis is founded.

To understand humans and their interactions, computers must be able to recognize their
actions. By measuring the poses of people and tracking them over time, the basic informa-
tion required for understanding human interactions is provided. This thesis explores an
approach to estimate and track the poses to provide gesture-based interaction for smart
environments.
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Figure 1.1: System overview.

1.2 Approach

One goal of this thesis was the development of a system for real-time human-computer
interaction with gestures. Therefore, the whole processing pipeline starting from sensor
data acquisition to gesture-based interaction was investigated and addressed in this work.
Figure 1.1 shows an overview of the system.

For human-computer interaction, both robustness and flexibility are desirable properties.
Through voxel carving as the first processing step, a sensor-independent 3D reconstruction
is computed. This approach has the advantage that it supports various sensor types for
improved flexibility.

The resulting voxel reconstruction contains a large number of voxels as input for the
following processing steps. This directly influences the overall runtime. Therefore, super
segmentation methods into superpixels and supervoxels have been investigated. In particular
the segmentation of voxels into supervoxels and the construction of the supervoxel graph is
a fundamental element to achieve a reduction of the search space for pose estimation.
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For 3D pose estimation, supervoxels are applied as building blocks to pictorial structures.
Through this step, both the search space as well as the overall complexity is drastically
reduced and poses can be directly estimated with little prior knowledge. Further, additional
temporal information can directly be integrated for articulated body tracking.

Based on these processing steps, a gesture-based interaction system was developed that
allows for both static as well as dynamic gestures for intuitive and natural human-computer
interaction.

1.3 Contributions

This thesis addresses challenges in four different areas of computer vision and contributes
towards solutions. The research areas are (1) volumetric reconstruction, (2) image and
volume segmentation, (3) pose estimation and body tracking, and (4) interaction application.
The main research question that unifies these contributions is:

How can segmentation as a preprocessing step reduce the search space and computational
complexity of pose estimation and body tracking?

For volumetric reconstruction, an efficient voxel carving algorithm was developed. It is
faster than comparable approaches [91] and offers robustness against static occluders by
incorporating occlusion maps. Further, it supports various sensor types by providing
different carving functions. In this work, it has been applied to multi-view video and both
single and multi-view depth sensors. As different environments can require different sensor
types for optimal operation, this enhances the overall flexibility. Even more so because this
flexibility is transferred over to applications working with these voxels.

Superpixel segmentation is a segmentation technique that partitions an image into compact
and homogeneous regions, the superpixels [181]. The main advantage of superpixels is
that the number of inputs for following algorithms is reduced because similar pixels are
grouped to a single unit, or primitive. In this work, a superpixel segmentation algorithm
was developed based on [19] that works on boundary evolution and that outperforms the
current state-of-the-art. Further, the concept of superpixel compactness was investigated
and a compactness metric developed and introduced.

The 2D superpixel segmentation was further improved to also compute 3D supervoxel
segmentation of volumetric data represented by voxels. In addition, a 3D supervoxel
compactness metric was presented. The algorithm was compared to the currently only
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existing other supervoxel approach for 3D voxels [45] and it was shown that it achieves better
results for segmentation accuracy and undersegmentation error with similar compactness.
In addition, it is computationally more efficient.

In recent years, part detectors have become popular both for 2D [38, 39] and 3D pose
estimation [146]. In particular, 3D pose estimation can be considered solved for depth
sensors and huge amounts of training data [146]. Part detectors steer pose estimation
towards poses that are in accordance with the locations of detected body parts. This
can be used to make pose estimation more accurate and efficient, but also introduces
a bias through the training data. Therefore, this work follows a different approach. It
investigates how the search space of possible poses can be reduced through segmentation
as a preprocessing step to directly estimate the best pose. In particular, it does not rely on
part detectors that can potentially be biased towards the observed appearances. It shows
how pictorial structures can be efficiently used for 3D pose estimation by using supervoxels
as primitives. The resulting search space and complexity reduction allows for very short
computation times that enable real-time human-computer interaction. By using supervoxels
to reduce the search space, poses can be directly estimated with only little prior knowledge.
Further, the concept of supervoxel energies is presented that allows integration of additional
information. In this work, supervoxel energies are used to propagate information through
time for articulated body tracking.

Based on this work, a gesture recognition system was developed that recognizes both
static touch and pointing gestures as well as dynamic gestures. It allows for a natural
and intuitive human-computer interaction. The robustness of this system has been tested
in both laboratory and real-world settings, including various exhibitions and industrial
applications.

1.4 Outline

This work is organized as follows. Related work is discussed in Chapter 2 with a focus
on volumetric reconstruction, super segmentation techniques, and pose estimation and
articulated body tracking.

Chapter 3 presents segmentation techniques developed in this work. This includes a voxel
carving algorithm for 3D reconstruction, superpixel and supervoxel segmentation algorithms
for a reduction of the number of input elements, and supervoxel graphs to model connections
between supervoxels.
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Chapter 4 introduces the pose estimation approach and articulated body tracking. It
achieves a computational complexity reduction by using supervoxels as primitives and
requires very little prior information.

Chapter 5 describes the gesture recognition system that was developed in the context of this
work. Through gesture recognition for human-computer interaction, people can interact
with both static as well as dynamic gestures. The system was used in laboratory setups,
during exhibitions, and in industrial environments.

This work concludes with a discussion in Chapter 6 and an outlook to future work.





2 Background and Related Work

This chapter presents an overview of related work. As the introduction in Chapter 1 showed,
this work contributed to four areas of computer vision, namely (1) volumetric reconstruction,
(2) image segmentation, (3) pose estimation and body tracking, and (4) gesture interaction
for human-computer interaction. As the main topic of this work is on pose estimation with
a focus on search space and complexity reduction through segmentation, the discussion of
related work will focus on the involved topics.

First, methods for volumetric reconstruction with multiple cameras are described in Sec-
tion 2.1. Then, super segmentation methods, i.e., superpixel and supervoxel segmentations
that reduce size of the input data, are discussed in Section 2.2. The chapter concludes with
an overview of pose estimation and body tracking approaches in Section 2.3.

2.1 Volumetric Reconstruction

This section describes methods to obtain an approximation of the 3D shapes of objects
observed by multiple video cameras. In computer vision, these methods are generally
grouped under the name shape-from-X where X specifies the image feature used for
approximation. Examples include shape-from-motion [156, 159], shape-from-shading [79,
184], shape-from-focus [117], shape-from-texture [25], or shape-from-silhouette [103]. In this
work, shape-from-silhouette is considered more closely because it is well-suited for static
multi-camera setups that are commonly used in smart environments. Before introducing
shape-from-silhouette methods in Section 2.1.3, the next two sections give an overview of
camera calibration and foreground segmentation methods that are common requirements
for 3D reconstruction.

2.1.1 Camera Calibration

A camera gives an image of the observed world. The transformations between the 2D
camera image and the 3D world are given by projective geometry. With these equations,
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3D points can be projected into the camera image, image points can be transformed back to
lines in 3D, and points can be converted between coordinate systems of different cameras.
To solve these equations, the camera parameters are required.

The camera parameters are determined by a process called camera calibration. This work
uses the pinhole camera as reference model and the camera is fully described with the
intrinsic parameters, that describe the camera internals, i.e., the lens, and the extrinsic
parameters that describe the camera position relative to a global world coordinate system.
With both intrinsic and extrinsic parameters, transformations between the world and
camera coordinate systems are possible as well as projections from the camera coordinate
system into image space.

The next sections first introduce the required equations to project 3D points into an image
and to convert 3D points between different coordinate systems, thereby also exemplifying
the functions of both intrinsic and extrinsic parameters. Then, the camera calibration is
described for both video cameras and depth sensors.

Intrinsic Parameters for 3D-to-2D Projections

The intrinsic parameters describe the camera internals and are required to project points
from the 3D camera coordinate system into its image. They include the focal lengths 𝑓𝑥

and 𝑓𝑦 given in pixels, the principal point (𝑐𝑥, 𝑐𝑦), and the skewness 𝛾 of the image axes.
In practice, the skew factor can often be neglected because the pixels are almost perfectly
rectangular with a skew factor close to zero. The intrinsic parameters form the camera
matrix 𝐾:

𝐾 =

⎛⎜⎜⎝
𝑓𝑥 𝛾 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

⎞⎟⎟⎠ . (2.1)

Let 𝑝 = (𝑥, 𝑦, 𝑧) be a 3D point in the camera coordinate system with 𝑥′ = 𝑥
𝑧

and 𝑦′ = 𝑦
𝑧
.

The projection to image coordinates (𝑢, 𝑣) with an undistorted lens is then given by⎛⎝𝑢
𝑣

⎞⎠ =
⎛⎝𝑥′ · 𝑓𝑥 + 𝛾

𝑧
+ 𝑐𝑥

𝑦′ · 𝑓𝑦 + 𝑐𝑦

⎞⎠ . (2.2)

This simplified model is not well-suited for most real-world camera lenses because it neglects
lens distortions. Therefore, the nonlinear intrinsic parameters that describe the radial
lens distortion with parameters 𝑘1, 𝑘2, 𝑘3 and tangential lens distortion with parameters
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𝑝1, 𝑝2 are also included. With radius 𝑟2 = 𝑥′2 + 𝑦′2, the correction vector 𝜏 for tangential
distortion is

𝜏 =
⎛⎝2𝑝1𝑥

′𝑦′ + 𝑝2(𝑟2 + 2𝑥′2)
2𝑝2𝑥

′𝑦′ + 𝑝1(𝑟2 + 2𝑦′2)

⎞⎠ . (2.3)

The distortion effects are corrected with:⎛⎝𝑥*

𝑦*

⎞⎠ =
⎛⎝𝑥′

𝑦′

⎞⎠ · (1 + 𝑘1 · 𝑟2 + 𝑘2 · 𝑟4 + 𝑘3 · 𝑟6) + 𝜏. (2.4)

The corrected coordinates 𝑥* and 𝑦* can then be used as input in Equation 2.2 instead of
𝑥′ and 𝑦′.

Extrinsic Parameters for World-To-Camera Transformations

The extrinsic parameters describe the rotation and translation of the camera coordinate
system relative to the origin of the world coordinate system and are required to transform
points between these two coordinate systems. Let 𝑅 be the 3 × 3 rotation matrix and
let 𝑇 be the translation vector. The world coordinates of point 𝑝* = (𝑥, 𝑦, 𝑧) are then
transformed to camera coordinates of point 𝑝 with

𝑝 = 𝑅

⎛⎜⎜⎝
𝑥

𝑦

𝑧

⎞⎟⎟⎠+ 𝑇. (2.5)

Given point 𝑝 in the camera coordinate system, it can then be projected into image
coordinates as explained by Equations 2.2 and 2.4.

Calibration of Video Cameras

A camera is calibrated by solving the projection function for the unknown camera parameters.
To solve these equations, correspondences between points in the world and their images are
required. Methods for calibrating video cameras can be divided depending on how these
point correspondences are acquired.

Methods with an explicit calibration object use an object of well-known size that usually
shows a distinctive pattern from which reference points are extracted. For these points,
either their absolute 3D coordinates or the relative positions between them must be known.
Calibration methods with a calibration object can be further divided into planar and
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noncoplanar methods. Planar methods require that all points lie on a plane. Examples of
planar calibration methods are given by Sturm and Maybank [154] and Zhang [186, 187].
The technique proposed by Zhang [186, 187] is arguably the most often used method for
camera calibration in computer vision research.

Noncoplanar methods require that not all reference points are on the same plane. Examples
include Heikkila [76] where a 3D calibration object is used and Tsai [161] and Weng et
al. [175] where a 2D calibration object is moved to exactly known locations. These methods
are more complex than planar methods because they either require building a 3D object
or measuring multiple reference positions relative to the camera. In contrast, for planar
methods, it is sufficient to freely move a 2D object in front of the camera.

Methods without an explicit calibration object establish point correspondences between
consecutive frames either by moving the camera, by following moving objects, or by
analyzing the scene geometry. Examples include Faugeras et al. [62] and Cipolla et al. [54].
In general, methods that use well-known calibration objects result in more precise camera
calibrations.

Given the intrinsic parameters that allow transformations between the local camera coordi-
nate system and the image plane, the extrinsic parameters can be computed. The extrinsic
parameters describe the position and rotation of the camera relative to a global world
coordinate system. They are estimated by solving Equation 2.5 for the unknown rotation
and translation parameters. The required point correspondences between image points and
calibration object can be established in the same way as for the calibration of the intrinsic
parameters.

Calibration of Depth Sensors

A depth sensor or depth camera gives for every image pixel the distance to the camera.
Examples of depth sensors are stereo cameras, Time-of-Flight cameras, and sensors using
structured light. Often, the intrinsic parameters are already given and the depth of each
pixel can be transformed into the local 3D camera coordinate system. Therefore, this
section focuses on the calibration of the extrinsic parameters.

Basically, the extrinsic calibration is done similarly to video cameras with known reference
points in the world coordinate system. Depending on the depth sensor, these reference
points are extracted with different methods. This work uses the Microsoft Kinect, a depth
sensor based on structured light in infrared, as an example for depth cameras. Therefore,
the methods described here focus solely on the Kinect. However, some of these methods
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(a) Camera image (b) Foreground (c) Camera image (d) Foreground

Figure 2.1: Examples of silhouette images computed with foreground segmentation. The
two left images show examples from the HumanEva-I dataset [148] with ViBe [33] and the
two right images from the UMPM dataset [162] with thresholded background subtraction.

can also be used for Time-of-Flight cameras. For stereo cameras, the same methods as
described for video cameras can be used.

When calibrating infrared sensors, like the Microsoft Kinect, reference points of the calibra-
tion object must also be visible in infrared or distinguishable in the depth image. Smisek
et al. [152] illuminated a checkerboard pattern with a halogen lamp to make the pattern
visible in infrared. Berger et al. [36] used a checkerboard with mirror surfaces for the black
parts. These are not visible in the depth image, thereby generating the binary checkerboard
pattern. Wilson and Benko used retro-reflectors with known 3D coordinates that are visible
in the infrared image [177]. Tirpitz [18] manually selected a calibration object in the depth
image and then estimated the extrinsic parameters. A method without a calibration object
was introduced by Rösch [17] where correspondences between automatically extracted
human joint positions were used to estimate the transformation matrices between multiple
depth cameras.

2.1.2 Silhouettes and Foreground Segmentation

The silhouette of an object describes its projection into an image. In computer vision,
the silhouette is usually visualized in white on a black background. It is computed with
segmentation algorithms of which there is a large variety to choose from. In the context of
this work, silhouettes are computed with foreground segmentation algorithms. Examples of
foreground segmentations are shown in Figure 2.1.

A foreground segmentation is a labeling task where each image pixel is either labeled
as foreground or background. There is a large body of literature and overviews can be
found in [34, 35, 125]. In general, foreground segmentation algorithms can be characterized
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by how they represent the background model and how the distance to the background
model is computed. The background model is typically described on pixel level, e.g.,
with mean values or probabilistic predictions [160], stored samples [33], one or multiple
Gaussians [153, 189] or with non-parametric models [61]. Given the background model,
the difference to the currently observed image can be computed. Then, to decide if a
pixel should be labeled as foreground or background, the difference is compared to either a
threshold, to stored samples, or used as input for a labeling function. In this work, the
expressions silhouette image and foreground segmentation are interchangeable. In general,
the specific foreground segmentation algorithm is not important as long as it computes a
binary foreground mask.

2.1.3 Visual Hull

Shape-from-silhouette approaches compute a 3D reconstruction of an observed object and
generally require two different inputs: fully calibrated cameras as described in Section 2.1.1
and silhouette images of the object of interest that are the result of foreground segmentation
as described in Section 2.1.2.

Martin and Aggarwal introduced one of the earliest shape-from-silhouette examples for
volumetric reconstruction in [103]. With the visual hull concept, Laurentini gave a formal
description of the possibilities and, in particular, limitations of shape-from-silhouette
methods [92]. Laurentini introduced and defined the visual hull as the maximal object that
results in the same silhouette from all viewpoints [92]. Given a set of viewpoints, the visual
hull can be computed by volume intersection. Each viewpoint defines a cone formed by
rays originating from the viewpoint and passing through the silhouette boundaries. By
intersecting the cones of multiple viewpoints, the visual hull is formed. Figure 2.2 shows
an example for two viewpoints. By increasing the number of viewpoints, the accuracy
of the volumetric reconstruction can be increased. With a limited number of viewpoints,
not all possible setups result in a minimal volumetric reconstruction as intersections from
one viewpoint might remove more parts and result in a tighter fit than from another
one. In [144], Shanmukh and Pujari investigated heuristics for optimal viewing directions.
However, even with an unlimited number of views, the main limitation of shape-from-
silhouette is the inability to reconstruct concave surfaces as they are not represented by
the silhouette [92].

There are two main ways [67, 91] to compute and represent visual hulls: either with a
surface-based polyhedron representation or with a volumetric representation based on
voxels.
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Figure 2.2: Volume intersection. By intersecting the camera cones that are defined by the
silhouette boundaries of the observed object, an approximation of the 3D shape can be
reconstructed.

Polyhedral Visual Hulls

A polyhedron is a 3D solid object with flat faces that are connected by straight edges. A
polyhedral visual hull can be thought of as a solid block where parts were cut away by rays
cast from each viewpoint through the silhouette contours.

Martin and Aggarwal [103] approximated the visual hull based on silhouette scan lines that
pass through the silhouette contour. The intersection of scan lines from multiple views
defines the volume segment which is later refined to create the final volume representation.
In another work, Franco and Boyer [67] computed an exact polyhedral visual hull by
connecting viewing edges of the silhouettes to the final mesh.

Visual hulls can also be computed in image space. In [104], Matusik et al. computed
a polyhedral representation of the visual hull in image space for efficient computation.
In [105], Matusik et al. computed the image-based visual hull directly to create a novel
view without an explicit 3D representation.

Li et al. [96] showed that polyhedral visual hulls can be computed quite efficiently and they
utilized hardware acceleration to achieve real-time runtimes.

Polyhedral visual hulls are well suited for visualization purposes [96, 105, 166], but depending
on the silhouettes, their representation and computation can become quite complex. The
continuous nature of this representation also makes it harder to use in certain algorithms
due to the lack of primitive elements inside the volume. Therefore, for each 3D point, it
must first be checked if it is inside the visual hull or not.



14 2 Background and Related Work

Volumetric Visual Hulls

In contrast to polyhedral visual hulls that are defined by their surface, volumetric visual
hulls are defined by volumetric elements called voxels. The name voxel is composed of the
two parts volumetric and pixel. As pixels are the atomic elements of images, voxels are the
atomic elements of volumes. A voxel is usually a cube, but can also be represented with
cuboids.

Volumetric visual hulls are computed by volume or space carving. The idea is to start with
a solid volume for the area of interest and then removing all parts of that volume that do
not belong to the visual hulls of foreground objects. This process is similar to the work
of a sculptor removing parts of a granite block until the statue remains. When voxels are
used as primitives, this process is called voxel carving.

Voxel carving approaches are attractive because they are computationally efficient. The
basic voxel carving algorithm remains the same no matter of the specific algorithm being
used. First, the volume of interest is subdivided into a discrete set of voxels. Then, every
voxel is projected into each image. If a voxel does not fulfill a certain criterium, e.g., project
into the silhouette for all images, it is removed, or carved.

A lot of research focused on how the efficiency of voxel carving can be improved and
several methods have been developed that reduce computations either by using special
data structures, by precomputing voxel projections, or by accelerating computations with
specialized hardware.

Voxel carving can be more efficient by avoiding unnecessary computations. In general, the
silhouette occupies only a relatively small region of the image. This means that the majority
of voxels are being removed and that these voxels are also close to each other. This can be
utilized with an octree representation of the volume [106]. An octree is a tree-based data
structure with the root node representing the whole volume. Each parent has eight child
nodes with each child node having half the side length, or an eight of the volume, of their
parent. The basic idea of octree-based voxel carving is that large volume blocks can be
removed at an early step of the algorithm. If the voxel representing one parent node does
not even partially overlap with the silhouette, it can be removed and all child nodes with
it, thus avoiding a large number of computations. Examples of octree-based voxel carving
can be found in Potmesil [131] and Szeliski [155].

The second approach trades computation time with storage space. One computationally
expensive part of voxel carving is the projection of every voxel into each image. This com-
putation can be mostly avoided by precomputed lookup tables that store these projections.
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The main drawback of lookup tables is that their size grows cubic with the side length of
voxels, i.e., voxels with half the side length result in a lookup table with eight times as
many entries. In addition, they are fixed to a predetermined resolution. Lookup tables can
be used stand-alone or in combination with other approaches. Examples of lookup tables
for voxel carving were shown by Luck et al. [100] and Kehl et al. [87].

The third approach is to reduce the computation time for voxel projections. Voxel carving is
a highly parallelizable process because operations are exactly the same for each voxel. With
access to affordable graphics hardware with highly parallelized processors, computations
can be speeded up significantly. Four examples of GPU-based voxel carving algorithms can
be found in Ladikos et al. [91].

The voxel carving approaches described so far assume perfect silhouettes without any
defects. In reality, this is seldom the case. The next section describes methods to deal with
silhouette defects.

Occlusions and Silhouette Defects

Imperfect silhouettes represent an object only partially and have a severe impact on the
visual hull. Silhouette defects can occur in the presence of static occlusions where parts of
the object are not visible. They can also result from errors in the foreground segmentation,
e.g., due to sensor noise, or because the foreground object is too similar to the background.

There are two strategies to deal with silhouette defects. Either the voxel carving method is
relaxed or the silhouette image is modified.

Kim et al. [89] modeled the reliability of foreground and background pixels. If a voxel
projects only into one background region and this region is marked as not reliable, the
voxel is not carved. However, this still requires reliable foreground segmentations. Ladikos
et al. used manually annotated, binary occlusion masks that were added to the foreground
segmentations [91]. Guan et al. automatically built binary occlusion masks for static
occluders [74]. Voxels projecting onto pixels of the occlusion mask do not result in the voxel
being carved. But binary occlusion masks do not lead to minimal visual hulls, in particular
because it cannot be decided if the voxel is in front or behind the occluder. In [73], Guan et
al. improved the generation of occlusion masks by using a Bayesian sensor fusion approach
that gives 3D information. However, this required long computation times of up to one
minute per frame.

For real-time applications, a mechanism is required to accurately include 3D information of
static occluders to compute minimal visual hulls without slowing down computation speed.
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In this work, such a real-time voxel carving algorithm with 3D occlusion maps will be
presented in Section 3.1. But even with accurate occlusion maps, foreground segmentation
will seldom be perfect and approaches using voxels must be able to deal with imperfect
data.

This concludes the volumetric visual hull computation with colorless voxels. The next
section gives an overview of colored voxels before discussing depth carving.

Voxel Coloring

In the approaches described so far, voxels are colorless volumetric objects and only binary
silhouette images were used. However, voxels can also represent color information. Seitz
and Dyer [142, 143] directly reconstructed a 3D scene by coloring voxels and checking their
consistency across multiple views and Culbertson et al. [56] introduced a generalized voxel
coloring method. Voxels can also be colored after carving. Caillette and Howard [46, 47]
decided for each voxel if it should be carved based on a comparison of a background model
to pixels belonging to the voxel projection. If the voxel is not carved, it is assigned the color
of these pixels. However, even though it might be beneficial to maintain color information
in the volumetric reconstruction, voxel coloring has several drawbacks. It is only meaningful
to color voxels on the surface of the visual hull, not inside the volume. This requires
some form of visibility check for each voxel, e.g., with a z-buffer. Also, colors of the same
object can differ between camera views, e.g., because of varying shutter settings. Further,
depending on the size of voxels and the accuracy of silhouettes, the same voxel can project
onto different regions which leads to washed-out colors for heavily textured objects.

Depth Carving

The visual hull is the maximal shape generating the observed silhouette [92]. With limited
views, this implies that the visual hull is no tight fit to the actual shape. The reason is
the lack of actual depth information for the binary silhouette images. Even though color
carving can result in more accurate reconstructions [142], they encounter similar problems
for non-textured regions.

The voxel carving variations described above project voxels into images that are typically
recorded by video cameras. Besides video cameras, another type of sensor can also be used
for voxel carving: depth sensors. Instead of color information, a depth sensor gives for each
pixel the distance of the closest object at that pixel to the camera center.
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There are various kinds of depth sensors that are based on different principles. Stereo
cameras compute the disparity map of two images with the help of epipolar geometry.
Time-of-Flight cameras measure the time it takes a light pulse emitted by the camera to
return to it. Depth sensors based on structured light project a well-known point pattern
and compute the depth based on the observed offsets. A popular example of this sensor
type is the Microsoft Kinect.

The voxel carving algorithm developed in this work supports both camera as well as depth
images. Section 3.1 compares the two approaches and shows how voxel carving can be
improved with the use of multi-view depth images for tighter visual hulls.

2.2 Superpixel and Supervoxel Segmentation

Image segmentation is a fundamental task in computer vision and many algorithms require
some kind of segmentation as a preprocessing step. The focus of the segmentation methods
described here is on reduction of the input data. In the context of this work, this reduction
will drastically improve the runtimes for human pose estimation. This section first introduces
superpixel segmentation as a way to reduce the number of pixels in an image by grouping
them. Then, supervoxel segmentation is explained as a continuation of superpixels in the
domain of 3D data.

2.2.1 Superpixel Segmentation

The term superpixel segmentation was first described by Ren and Malik [181]. A super-
pixel segmentation partitions an image into a set of equally sized, non-overlapping and
homogeneous regions. The segmentation of the image is guided by a similarity measure by
which the pixels are grouped.

Superpixel segmentations, or short superpixels, have two characteristics in common inde-
pendent of the specific algorithm. First, superpixel segmentations belong to the class of
oversegmentation algorithms, i.e., they partition an image into more segments than there
are objects. Second, superpixels align well with what humans perceive as meaningful object
boundaries. These two properties make superpixels particularly useful for applications that
use them as building blocks or atomic primitives instead of pixels.

Superpixels are, in general, an intermediate representation and the main advantage is the
reduction of the number of pixels for following processing steps. For example, an image
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with VGA resolution with 640 × 480 pixels already has 307, 200 pixels. Grouping these
pixels into only a couple of hundred superpixels reduces the number of inputs by three
orders of magnitude.

Superpixel Algorithms

Superpixels group pixels based on a similarity measure. As there are many ways to measure
the similarity and group pixels, there is a large variety of superpixels algorithms. Each
algorithm has its own specific characteristics that determine its usefulness for certain
application areas. Superpixel segmentations can be classified by how they initialize the
segmentation, measure the similarity, and assign pixels to superpixels.

Ren and Malik [181] applied normalized cuts [101, 145], a graph-based segmentation
technique, guided by features motivated by the Gestalt principles, to compute the superpixel
segmentation. The normalized cuts approach was also used by Mori [114] for superpixel
segmentation. The main drawback of normalized cuts is its high computational complexity
which makes it inefficient, especially for larger images.

Felzenszwalb and Huttenlocher proposed another graph-based image segmentation algorithm
in [63] based on minimum spanning trees. Even though their algorithm computes an
oversegmentation of an image, it does not aim to compute superpixels. In particular,
the shapes, sizes, and numbers of image segments varies greatly which does not match
the definition of superpixels. However, their algorithm is often used for comparison with
superpixel segmentations because of its high segmentation accuracy. Similarly, superpixels
can also be computed with mean shift [55] and watersheds [164] even though they were not
explicitly designed for this task.

Veksler et al. [163] formulated the superpixel segmentation in an energy minimization
framework and solved it with graph cuts. Zhang et al. [185] used pseudo-boolean opti-
mization as an improvement of [163]. TurboPixels, proposed by Levinshtein et al. [95],
guides seeded superpixel growth with geometric flows. The segmentations are accurate,
but due to the many parameters difficult to control. Inspired by TurboPixels, Xiang
et al. [180] introduced a variation using eigen-images and Zeng et al. [183] proposed a
structure-sensitive superpixel segmentation using the geodesic distance. Perbet and Maki
introduced a superpixel segmentation based on random walks in [123] with an extended
version by Maki et al. in [124]. Their algorithm includes a compactness measure to enforce
spatial homogeneity. One drawback of these methods is that their runtime is in the range
of seconds which is too slow to be useful as preprocessing for real-time applications.
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The Entropy Rate Superpixels proposed by Liu et al. [97] achieve very good results on
current metrics. They segment superpixels using an objective function that includes an
entropy rate term for random walks and a balancing term. However, the resulting superpixels
look quite irregular and lack smooth boundaries, even for relatively homogeneous image
parts.

SLIC, simple linear iterative clustering, proposed by Achanta et al. [19] distributes superpixel
seeds with respect to gradient information and clusters pixels based on k-means using color
and Euclidean distance. It is very fast and achieves very good segmentation results which
might be one reason why it inspired many other algorithms, e.g., [121, 172] and [2]. Achanta
et al. introduced variations of SLIC with an extensive comparison to other algorithms
in [20].

In general, the segmentation into superpixels destroys the regular lattice structure of an
image and neighborhood relations must be represented by graphs. This can have a negative
impact on algorithms using superpixels because they cannot exploit the regular image
structure, but must handle more general topologies. Moore et al. introduced Superpixel
Lattices in [112] where the final superpixel segmentation is guaranteed to conform to a
lattice structure. In [111], Moore et al. applied graph cuts to compute the superpixel lattice
as an improvement to the greedy solution in [112].

Superpixel segmentations are not limited to color or grayscale images. Weikersdorfer et
al. [172] applied a variation of SLIC [19] to RGB-D images, i.e., registered color and depth
images, recorded with a Microsoft Kinect. The main advantage is that their depth-adaptive
superpixels have the same size in 3D independent of their position in the image.

In the context of this work, a superpixel segmentation algorithm similar to SLIC, but
based on boundary evolution was developed. It offers a transparent way to control the
compactness of the segmentation in [2]. The term compactness in the context of superpixel
segmentations will be explained in the next section. In addition, the GPU implementation
runs in real-time. The algorithm was extended in [4] to also guarantee that the superpixels
conform to a regular lattice structure.

Superpixel Compactness

Compactness in the context of superpixels means that the superpixels have a regular shape
with smooth boundaries. It is not only an aesthetic property, but also has implications on the
accuracy and usefulness of superpixel segmentations. Many authors agree that compactness
is a desirable property of superpixels and that superpixels should be compact [19, 95, 97, 111,
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163, 183, 185, 123]. However, except Perbet and Maki [123, 124], superpixel compactness
was not measured by other authors.

In [3, 4], the compactness of superpixels was discussed and a metric to measure the
compactness of a given superpixel segmentation developed. These results will be presented
in detail in Section 3.2.1.

Applications of Superpixels

Superpixels are designed to be useful as atomic primitives in applications. By working with
superpixels instead of pixels, the number of inputs is significantly reduced, thus resulting
in improved computational performance.

Given that superpixels originate from the domain of image segmentation, there are many
segmentation applications that benefit from them. Lucchi et al. [99] applied superpixels
to segment medical images and demonstrated a high accuracy labeling cellular structures.
Achanta et al. [19] showed better object recognition results with their superpixel algorithm
SLIC compared to other superpixel algorithms. Kohli et al. [90] applied superpixels
to conditional random fields for image labeling tasks. Fulkerson et al. [69] segmented
and localized objects with superpixels and superpixel neighborhoods. Levinshtein et
al. [95] compressed and restored images with superpixels and showed compelling qualitative
results. All authors argued that superpixels are beneficial for their image segmentation and
recognition applications.

Superpixels have also been applied to analysis of video sequences. Ayvaci and Soatto
segmented motion in videos by minimizing an energy function defined on the superpixel
graph in [31]. Wang et al. demonstrated in [171] that their tracking framework based on
superpixels is able to handle challenging scenarios with large changes in appearance and
motion as well as occlusions.

Highly complex tasks like human pose estimation in images can in particular benefit from
superpixels. Mori et al. [114] detected human half-limbs that are represented by superpixels
to estimate the human pose. In [113], Mori used the superpixel graph to infer articulated
poses. Both approaches are working with challenging sports images.

In the context of this work, superpixels were applied to automatic image segmentation
by using them as building blocks in a segmentation-by-composition framework [7]. In
another work [2], all benchmark foreground segmentation algorithms that were given in a
competition could be improved for all metrics simultaneously by post-processing them with
probabilistic superpixels in Markov random fields.



2.2 Superpixel and Supervoxel Segmentation 21

These examples across various domains of computer vision show the usefulness of superpixels
to improve a wide range of different applications. The next section extends the concept of
superpixels to the domain of 3D data with supervoxels.

2.2.2 Supervoxel Segmentation

Supervoxels are the continuation of superpixels in the domain of 3D data. Most of the ideas
and methods for 2D images described in Section 2.2.1 can be directly applied to volumes
as long as they conform to a regular 3D grid with dense data. There are two main ways of
building these segmentation volumes: either by stacking images or by using 3D data.

The motivation of supervoxel segmentation is analogous to the motivation of superpixels.
The segmentation decreases the number of primitives for following processing steps. In
addition, supervoxels can describe the motion of object parts when applied to videos or
their spatial expansion when applied to 3D data.

Image Stacks

Segmentation volumes can be constructed by stacking single images on top of each other.
The images typically originate from a video sequence [163, 182], but there are also examples
of medical scans at different depths [28, 98]. In both cases, the depth dimension is expressed
in pixels. Typically, the distance between pixels of consecutive frames that are at the same
position is one.

Veksler et al. [163] applied their superpixel algorithm to stacks of video frames and showed
a high temporal coherency of the resulting supervoxels which is useful for tracking objects
over time. In [19], Achanta et al. showed that SLIC can also be applied to supervoxels
for video segmentation. Weikersdorfer et al. advanced the depth-adaptive superpixels
from [172] to depth-adaptive supervoxels in [11]. Even though depth information is incor-
porated into supervoxels, they built the volumes by stacking video frames. An evaluation
of several supervoxel algorithms for video processing was done by Xu and Corso [182].
They also adapted the superpixel measures boundary recall, undersegmentation error,
segmentation accuracy, and the explained-variation metric to supervoxel segmentations of
video sequences.

Supervoxel segmentations have also been applied to medical scans. Andres et al. [28] used
watersheds in 3D to segment neural tissue scans into supervoxels. Lucci et al. [98] used
supervoxels based on SLIC to segment mitochondria in stacks of medical scans.
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3D Data

While the previous section described applications of supervoxels to artificial volumes, they
can also be used directly on 3D data. There are segmentation techniques for 3D point
clouds, for example Rabbani et al. [132] and Rusu et al. [139], but none of them compute
supervoxels. During the time of this writing, there is only one supervoxel segmentation
algorithm available for sparse 3D data.

Papon et al. [121] developed a supervoxel segmentation for 3D point clouds. The point
clouds originate from RGB-D cameras like the Microsoft Kinect. Their algorithm works
directly in 3D and images of multiple calibrated RGB-D camera views can be combined.
The supervoxels are optimized for surface 3D data and the similarity is measured in a 39
dimensional space combining color, Euclidean distance, and normal information represented
by Fast Point Feature Histograms [137]. The final similarity measure is given by a weighted
sum of these three parts. In contrast to SLIC [19], supervoxels are computed flow-based,
similar to a breadth-first search from the supervoxel center, to ensure connectivity. This,
however, places restrictions on a potential GPU implementation.

Even though [121] segments 3D point clouds into supervoxels, that approach is optimized
for 3D surface scans. Further it does currently not run in real-time which is required for
human-computer interaction. Section 3.3 presents a real-time supervoxel segmentation
algorithm for volumes that was developed in this work.

2.3 Pose Estimation and Articulated Body Tracking

This section gives an overview of human pose estimation and articulated body tracking. A
pose describes the configuration of an object and the process to determine the parameters of
a specific configuration is called pose estimation. In the context of this work, a pose always
refers to a human pose unless specified otherwise. Pose estimation is a timeless process
because it does not rely on temporal information. If temporal information is included, it
is commonly referred to as tracking. Tracking human poses that are highly articulated is
called articulated body tracking.

Both pose estimation and articulated body tracking are strongly linked to each other and
therefore reviewed together in the following parts of this section. In Section 2.3.1, an
overview of existing surveys and reviews shows possible classifications and identifies current
challenges. A classification of pose estimation and body tracking approaches is given in
Section 2.3.2. Section 2.3.3 discusses 3D pose estimation and tracking methods in more
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detail before Section 2.3.4 gives an introduction to pictorial structures that are the basis
for the 3D pose estimation and tracking system presented in this work.

2.3.1 Overview of Application Areas and Challenges

Pose estimation and articulated body tracking are active areas of research with many
contributions. Therefore, an overview of existing reviews first shows possible classifications
and taxonomies to group and structure different approaches. In addition, a summary of the
main challenges shows the shortcomings of existing approaches. Based on these insights,
pose estimation and body tracking methods that are related to this work are then examined
in more detail.

Visual Analysis of Human Movement In his survey from 1999, Gavrila [71] divided
methods to analyze full-body movements and hand gestures into 2D approaches with
and without explicit shape models and into 3D approaches. Gavrila mentioned several
applications that can benefit from human motion analysis, among them human-computer
interaction, motion analysis, surveillance systems, but also virtual reality and video-
compression through model-based coding.

Regarding outlook and future work, a number of challenges including the acquisition and
usage of ground truth data for comparison, occlusion handling, and robustness are listed.
Gavrila also highlighted the need for automatic initialization of model parameters, e.g.,
limb lengths, as well as automatic initialization of the starting pose for tracking.

Computer Vision-Based Human Motion Capture Moeslund and Granum [109] pre-
sented a review with focus on human motion estimation in 2001 in which they discussed
approaches from 1980 to 2000. They provided a taxonomy for human motion estimation
based on four successive steps [109]: 1) initialization, 2) tracking, 3) pose estimation, and
4) recognition. Initialization is an important part for many approaches and is required for
autonomous real-world applications, but also necessary for, e.g., failure recovery. Due to
the focus on motion estimation, in contrast to static pose estimation, tracking plays also
an important role in their taxonomy.

Moeslund and Granum [109] identified three major application areas for motion estimation,
namely surveillance, motion analysis, e.g., for sports or medical purposes, and human-
computer interaction. The performance of systems is compared in terms of robustness,
accuracy, and speed. At the time of this review (2001), the field of motion estimation was
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in an early stage of development [109] and challenges included, among others, a reduction of
the number of assumptions and the need to use more training data. Given current systems
that work in real-life scenarios and that use exhaustive amounts of training data [146], at
least the last challenge can be seen as fulfilled. Hence, it could be an interesting direction
to build systems that generalize well without the need of exhaustive training.

In [110], Moeslund et al. published a follow-up to their review in [109] that discusses
approaches in the time between 2000 and 2006. The taxonomy remained the same as in [109]
and consists of the categories initialization, tracking, pose estimation, and recognition.
The same holds for the three application areas. Moeslund et al. [110] identified significant
progress in the field of motion estimation and modified their proposed directions for future
research. Besides a necessary increase in accuracy and robustness, they pointed towards the
need for more general models for motion and behavior understanding. The large progress
in performance was traced back to new part-based approaches for pose estimation, but the
authors also stated that these must become more invariant, e.g., for different viewpoints or
appearances [110].

Vision-Based Human Motion and Action Recognition In 2007, Poppe [129] divided
human motion estimation into model-based and model-free approaches. For model-based
approaches, Poppe further distinguished between two phases: a modeling and an estimation
phase. The modeling phase deals with the construction of a likelihood function that is
then used in the estimation phase to find the most likely pose given this function. These
top-level classifications are then further broken down into more specific and task-dependent
categories.

Poppe sees many applications for human motion analysis, but particularly highlights
surveillance, human-computer interaction, and automatic annotation (for example of
videos) [129]. Similar to Moeslund and Granum [109], he identified machine learning
and reducing the number of assumptions being made for motion analysis approaches as
important future steps.

3D Human Pose Estimation and Activity Recognition In 2012, Holte et al. [78] pre-
sented a review of 3D human pose estimation and tracking approaches that use both
a body model and multi-view video data with focus on recognizing different activities.
They identified four general processing steps for pose estimation and used these in their
taxonomy: 1) capturing vision data to 2) extract useful features, either in 2D or 3D, that
are then 3) used for pose or motion capture to recognize either high level information, e.g.,
a specific activity, or the full pose or motion with 4) an (optional) body model [78]. For
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multi-view pose estimation, they identified common steps consisting of camera calibration
and capturing, followed by voxel reconstruction that is used as input in a cycle of a)
initialization and segmentation, b) modeling and estimation, and c) tracking whereas none
of these three steps is mandatory and can vary from system to system.

Regarding 3D data acquisition, they identified the following shortcomings and challenges [78]:
Volumetric reconstruction with shape-from-silhouette approaches, that are quite common
for 3D pose estimation, is prone to errors due to imperfect silhouettes. Methods must be
made more robust to deal with these kinds of defects. Further, occlusions and self-occlusions
are a problem that can be partially solved with an increasing number of cameras; however,
it is preferable if methods do not rely on too many cameras or high camera resolutions for
good results. Finally, multiple cameras allow useful volumetric reconstructions, but their
installation requires a lot of space. More compact setups would be preferable.

Further Reviews The reviews introduced above are a selection. Other reviews are now
shortly summarized that are either similar to the reviews listed above or that focus on
specific subproblems.

An early review from 1994 by Aggarwal et al. [24] discusses the motion of articulated and
elastic non-rigid objects. They concluded that non-rigid motion estimation is still at a very
early stage. They pointed towards gesture recognition applications, but did not restrict
the motion estimation to humans and also mention applications like material deformation
analysis. A following review from Aggarwal and Cai [23] from 1999 highlights applications
that are more in accordance with other reviews from that time, namely surveillance, sports
analysis, and human-computer interaction, but also content-based video labeling. The
review is structured into three categories: model and non-model based body analysis,
single and multi-view tracking, and recognition with template matching and state-space
approaches. Challenges discussed include the presence of too many assumptions and the
trade-off between runtime and accuracy.

Wang et al. [170] presented a review in 2003 with focus on detecting people, tracking, and
understanding their activities. As major applications areas, surveillance, human-computer
interaction, and motion analysis, e.g., for sports or medical care, are mentioned. Identified
challenges include occlusion handling and improving speed, accuracy, and robustness.

In a review from 2007, Werghi [176] focused specifically on estimating the human body
shape from 3D scan data. In contrast to other reviews and due to the special focus on 3D
scans, Werghi saw potential applications for clothing design and human factor engineering,
but also virtual reality applications and human analysis, e.g., for health care. In general,
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3D scan data give a high-quality full view without occlusions that leads to a different focus
of research. Werghi classified recent work based on landmark detection, scan segmentation,
shape modeling, and tracking [176].

Ji and Liu [84] presented a review on view-invariant motion analysis in 2010 and categorized
approaches by three criteria: detection of humans, view-invariant pose representation
including estimation with and without a body model, and behavior understanding [84].
Specifically mentioned application areas are visual surveillance, motion analysis for sports,
and video retrieval based on recognized actions.

Action and Activity Recognition The focus of this work is on pose estimation. In contrast,
action and activity recognition deal with the problem of recognizing, classifying, labeling,
and categorizing human motion. Most of the reviews mentioned above include a chapter
about this topic because it is a direct application of motion estimation [71, 78, 84, 109, 110].
Other reviews with a stronger focus on action and activity recognition are given, for example,
by Poppe [130] and Weinland et al. [174].

Summary This section presented an overview of reviews between 1999 and 2012 with a
description of the developed and applied taxonomies, application areas, and key challenges.
The key insights will now be summarized.

For pose estimation and body tracking, the most often mentioned application areas remained
largely the same over the years and can be represented by three distinct groups. First,
surveillance applications are very prominent because they benefit strongly from an automatic
analysis of video streams. Here, the 2D pose estimation and tracking approaches are
dominant as very often only one camera is available. The second group is motion analysis,
either for sports or for medical purposes. Motion analysis is a direct application of body
tracking with varying levels of difficulty ranging from coarse estimation of the human
skeleton with 3D scan data to the complex estimation of athlete poses in single-view
videos. Approaches in this group very often follow a model-based approach where a human
body model is actively used. The third group of applications targets human-computer
interaction, mainly with the purpose of actively controlling a system. Specific examples
include entertainment applications and interfaces in smart environments. Here, approaches
usually rely on 3D data and are required to run robustly in real-time.

Regarding taxonomies, the reviews showed that there is a wide range of different criteria to
classify pose estimation and body tracking approaches. However, as Holte et al. showed
in [78], all approaches must follow three to four specific processing steps that can be used
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for classification. First, all approaches must acquire data with sensors. Second, from this
data, features must be extracted. Third, these features are then used to estimate or track
the pose. Fourth, in this process, a body model can optionally be used [78]. These four
processing steps will be the basis for the overview in the next section.

The key challenges identified in the reviews vary over time. During the time of earlier
reviews, the acquisition of ground truth data was more difficult and, consequently, there
existed fewer datasets [71, 109]. Today, this problem seems to be largely solved as there
are many datasets available for various purposes. Also, the lack of training data and
machine learning algorithms was identified as a problem in earlier reviews [109, 129]. Today,
with approaches that train detectors on approximately 500, 000 training images [146],
this problem has been successfully addressed. More timeless challenges are real-time
capabilities and robustness in general, as faster approaches with fewer errors are always
preferable [71, 78, 109]. Occlusions and self-occlusions are seemingly timeless challenges
even for more recent approaches [71, 78, 109, 129]. Further, increasing the invariance of
approaches [110] to allow for fewer assumptions [71, 78] remains still a challenge for todays
state-of-the-art systems.

2.3.2 Classifications of Pose Estimation and Body Tracking

This section gives an overview of specific approaches for pose estimation and tracking. It
roughly follows the classification provided by Holte et al. [78] and categorizes approaches
by four common steps: body model (I), sensor setup (II), features (III), pose estimation
and body tracking algorithms (IV). These steps are then further subdivided and examples
of approaches discussed, partly inspired by the reviews discussed above, in particular [71,
109, 110, 129]. Even though diverse approaches are discussed to give a broad overview,
the focus is on 3D approaches. The overview starts with the body model because it is a
very strong discriminating factor for the different approaches as it not only influences the
estimation itself, but also the output of the system.

I Body Model

A body model describes the parts of the human body and their connections. Pose estimation
approaches can be differentiated by whether or not they use a body model. If they use a
body model, they can further be differentiated by how they represent it to describe a pose
or motion. Also, the model itself must first be acquired and its parameters initialized.
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Approaches without a Body Model Approaches without a body model assign a class
label to the observed data. They are rather rare because they are limited by the number of
classes they can recognize. Also, their accuracy depends on how similar observations are to
stored samples. Howe [80] used lookup tables in the first step of his algorithm to retrieve
the 3D pose for silhouettes and measured the similarity between observed silhouettes and
stored examples. To overcome limitations of pure lookup-table based approaches, Howe
additionally applied temporal smoothing to the predictions with Markov chaining.

Approaches with a Body Model The body model describes the ”flesh and bones”. The
human body can be well described by a set of rigid limbs, i.e., the bones, that are connected
by flexible joints. Depending on the model, it can also include a description of the shape.
The approaches differ in the number of limbs, joint positions and degrees of freedom, and
if and how spatial extent is described. Most approaches use a body model and return its
parameters as output.

The human body can be represented by a volumeless skeleton without any spatial description.
Such a model only contains rigid limbs that are connected by joints and it can both be
used in 2D as well as 3D. Advantages of this model are that it is simple, yet able to capture
the most relevant information. It can also be represented as an acyclic graph which is
beneficial for certain algorithms. Further, it can be used as an anchor in combination with
spatial or volumetric representations as discussed below.

In 2D, the spatial dimension of the model can be described with 2D shapes, e.g., rectangles
or trapezoids. For example, Huang and Huang [81] described the limbs of the 2D body
model with trapezoids that are linked together at the joint positions.

In 3D, the model parts can also describe the volumetric properties of the body. This is
usually done with volumetric primitives, e.g., ellipsoids, or surface representations, e.g.,
polygon meshes. Mikić et al. [108] represented the torso with a cylinder and other body
parts with ellipsoids to match voxel data. The parts are connected based on the twists
body model [116]. In Cheung et al. [53], the body parts are represented by ellipsoids that
are fitted to a surface voxel reconstruction. In another work, Cheung et al. [52] used rigid
limbs that are connected by joints and additionally surrounded the limbs with colored
surface points that originate from the surface of the visual hull. Kehl and Van Gool [88]
used superellipsoids, a special form of superquadrics, to represent body parts. Plänkers
and Fua [127] described the body model in a multi-layered approach. The first layer is a
skeleton. The second layer attaches ellipsoidal metaballs to the skeleton to model muscles
and tissue. The third and last layer, the skin or surface mesh, is computed with B-spline



2.3 Pose Estimation and Articulated Body Tracking 29

patches. The advantage is that skeleton transformations directly affect the other layers
which leads to more realistic animations of movements.

A spatial or volumetric representation can help to reduce the number of potential poses.
For example, there is an infinite number of ways to fit a volumeless skeleton to volumetric
data which can be reduced with volumetric limbs. However, this representation also comes
at the cost of additional parameters that must be initialized or estimated and that lead to
an increased computational complexity.

Number of Parts The number of limbs or body parts and, in particular, the degrees of
freedom vary greatly between different approaches. Usually, the model contains primitives
to represent the torso, head, arms, and legs. However, not all body parts are always
included. For example, some approaches completely neglect the head [45]. Also, even
though most approaches model the arms and legs as two rigid limbs that are connected
by a separate joint, there are also approaches that model the arms and legs as one rigid
limb [53]. The granularity of body pose estimation usually ends at the lower limbs and both
hands and feet are not modeled in detail. The joints typically include the neck, shoulders,
elbows, wrists, pelvis, hips, knees, and ankles. End points without any degrees of freedom
are usually the head, wrists, and ankles. The total number of degrees of freedom for the
whole model varies from approach to approach. For example, Deutscher et al. [59] used a
model with 29 degrees of freedom. In [21, 22], Agarwal and Triggs used a model with 54
degrees of freedom.

It is important that the body model contains sufficient details for the task at hand. However,
an increasing number of parts and degrees of freedom quickly leads to computationally
intractable models.

Model Acquisition and Initialization The human body model can either be given and
fixed or build during pose estimation. Here, model acquisition and initialization refers
to the kinematic structure of the human pose or the geometric objects representing body
parts. This is different from the initialization of the starting pose that will be discussed
later in the context of pose estimation algorithms.

In general, the body model is assumed to be given and fixed. Some approaches allow a
certain flexibility for the sizes of body parts. For example, Mikić et al. [108] refined the
sizes of the body parts in their model until they matched the observed voxel reconstruction.
Mori [113] used occlusion variables to reason about occluded limbs. This helps to avoid
unnatural poses that result from fitting body parts into the observation even though they
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are not visible. It is also possible to use anthropometric ratios [60] to initialize the size of
body parts. With these ratios it is sufficient to estimate the overall size of a person to infer
the specific limb sizes.

There are also approaches that do not require the model to be known in advance but build
it during estimation. For example, Felzenszwalb and Huttenlocher [64] showed that their
pictorial structures approach can also be used to learn the model from training data.

II Sensor Setup

The sensor setup describes how input data is acquired. Approaches can be differentiated
based on the sensor type or modality, the number of sensors, and their mobility.

Sensor Type There are various measuring principles that can be applied in sensors to
acquire image data. Common sensor types are video cameras, depth sensors, and thermal
cameras.

Probably the most common sensor type for pose estimation are video cameras that either
give grayscale or color images. With special filters and sufficient light in the infrared
spectrum, video cameras can also be used in the infrared spectrum. Examples for pose
estimation with video cameras are given by Wren et al. [179], Deutscher et al. [59], and
Felzenszwalb and Huttenlocher [64], to name just a few.

Depth sensors do not give a colored image of the observed scene, but a 2.5D depth scan.
Here, for each pixel the depth information to the closest object is stored. Various modalities
can be used for depth sensors, among them stereo cameras, Time-of-Flight cameras, and
structured light sensors.

Stereo cameras compute a disparity image based on the offsets in two rectified images of
two calibrated cameras. Plänkers and Fua [127] estimated the volumetric pose in 3D and
used a stereo setup to compute 3D features. By using stereo, it is not required to distribute
the cameras across the whole room, but a more compact setup can be used. Nickel and
Stiefelhagen [119] and Nickel et al. [118] used stereo information to track the 3D position
of the hand of a person for human-machine interaction. Azad et al. [32] proposed a system
that tracks the upper body pose for human-robot interaction. Their approach uses both
image and depth features extracted from stereo cameras in a particle filter framework.

Time-of-Flight cameras emit light and measure the time it takes the reflected rays to return
to the sensor. Schwarz et al. [141] computed landmark features, like head and hands, with
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the geodesic distance in depth images recorded with a Time-of-Flight camera. Ganapathi
et al. [70] used data from a single Time-of-Flight camera. In their approach, information
about body part locations is computed with part detectors and propagated upwards along
the kinematic body model to capture the 3D pose.

Structured light sensors, e.g., the Microsoft Kinect, project a well-known pattern of points
and measure their offsets. Shotton et al. [146] developed an algorithm for the Microsoft
Kinect that labels pixels based on depth features that are used as input for randomized
decision forests.

Thermal cameras measure the heat emitted by objects and are not as often used for pose
estimation as other sensor types. One example approach was presented by Iwasawa et
al. [83] where a single thermal camera is used to extract the silhouettes of humans by
thresholding the image.

The choice of the sensor type depends on the environment where the pose estimation
approaches should be applied. Structured light sensors are relatively cheap and give good
depth maps, but have problems in direct sunlight. Similarly, active sensors like Time-of-
Flight cameras can interfere with each other which can be problematic for multi-camera
setups. Video cameras have no problems with multi-view setups, but are sensitive to varying
lighting conditions and shadows. Therefore, it is preferable if pose estimation approaches
can work with different sensor types without modifications and if they are not limited to
one single sensor modality. This would introduce flexibility and allow for various areas of
application.

Sensor Number The number of sensors is also an important criterion for discriminat-
ing pose estimation and body tracking approaches. There are monocular or single-view
approaches that require only one sensor and there are multi-view approaches with two or
more cameras.

Monocular approaches with only one camera are common for 2D pose estimation. Examples
for 2D pose estimation were presented by Mori et al. [114] and Mori [113] based on
superpixels or the pictorial structures approach from Felzenszwalb and Huttenlocher [64].
However, it is also possible to reconstruct a 3D pose based on 2D images. Agarwal and
Triggs [21, 22] estimate the 3D pose directly from monocular single images or image
sequences with nonlinear regression based on features extracted from the silhouettes.
Taylor [157] showed how 3D poses can be estimated from a single image by considering
the foreshortening of body parts. Brauer and Arens [41] presented a modification of [157]
that uses a more realistic camera model and also computes unique solutions. However,
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monocular approaches often suffer from disambiguities, unknown scale, and self-occlusions
that can be resolved with multi-view setups.

Multi-view approaches, for example with voxel carving, typically require calibrated cameras.
Caillette and Howard [47] used between two and four cameras for voxel reconstruction,
Cheung et al. used five cameras in [53] and eight cameras in [52]. Even though calibrated
cameras might be the rule, they are not always a necessity. Rosales et al. [135] presented
an approach with multiple uncalibrated cameras for 3D pose estimation. Hasler et al. [75]
even used multiple moving and unsynchronized cameras to track a 3D mesh. The advantage
of calibrated cameras is that they allow an accurate inference of 3D information. However,
this comes at the cost of reduced mobility and increased sensitivity to disturbances.

Sensor Mobility The sensors can be either fixed to a stationary position or move around
during the estimation process.

Stationary sensors are often required if assumptions are being made about the background or
if the specific position of the camera is important. The latter is often the case for multi-view
approaches where the calibrated cameras cannot be moved. Assumptions about a stationary
background are typical if silhouette information is computed with foreground segmentation.
For example, Brand [40] computed the silhouettes with a background subtraction algorithm
that requires a static background. In particular, approaches that use voxel carving require
that the cameras remain fixed during pose estimation as they are calibrated [47, 53].

Pose estimation with mobile sensors is typical for analysis of video sequences. For example,
Ferrari et al. [65] estimated the body pose in sequences of the Buffy TV series. Dealing with
mobile cameras is mostly an issue of initialization. Approaches that do not need temporal
information and that can initialize themselves automatically can treat pose estimation
with moving cameras as a frame-by-frame estimation problem. However, there are also
multi-view pose estimation approaches that use multiple uncalibrated and moving cameras,
as for example in Hasler et al. [75].

III Features

The features have a great impact on the properties and performance of pose estimation
approaches. The dimensionality of feature vectors can vary, but the origin of the features
can usually be differentiated into 2D and 3D data.
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2D Features Features that are directly extracted from an image are referred to as 2D
features. Examples of 2D features are color, edges, contours, and motion [129].

Color features can be described by different color spaces, e.g., RGB or Lab, as intensities,
or as texture. In their system Pfinder, Wren et al. [178, 179] used colored blobs to represent
and track body parts.

Edge features represent large intensity differences between neighboring pixels. Dalal and
Triggs [57] introduced the HOG descriptor, histograms of oriented gradients, and applied it
to human detection. Ferrari et al. [65] used the HOG descriptor to detect upper bodies
in videos to initialize their estimation algorithm. Wachter and Nagel [168] used edge
information in the update step of an iterated extended Kalman filter to track a 3D person
model.

Contour and silhouette features are usually computed with foreground segmentation. In [80],
Howe used silhouette images to look up reference poses. Iwasawa et al. [83] computed the
distance transform of a silhouette image to get the center of gravity and find candidates for
extremities like hands and feet. Brand [40] used hidden Markov models to learn a direct
mapping from 2D silhouette sequences to 3D models.

Motion features represent the movement of an object and can be measured by establishing
correspondences between features in different images or by computing the difference of
consecutive frames, similar to foreground segmentation. For example, Sminchisescu and
Triggs [151] incorporated optical flow and motion boundaries into their cost metric to
estimate human motion in 3D from monocular sequences.

Single image features can also be combined to more complex descriptors. This is advisable
if features are complementary to each other. However, each additional feature also comes
with increased computational cost and can potentially introduce errors that must be dealt
with, e.g., due to noise in the data.

3D Features Features extracted directly from 3D data or 3D reconstructions are called
3D features. They can be used in combination with 2D features, in particular color. Here,
however, the focus is on features that are specific to the domain of 3D data.

The depth values of pixels can be used as features if depth sensors are used. Ziegler et
al. [188] used a 3D point cloud generated with one or more stereo cameras to track the
upper body. Shotton et al. [146] developed depth features based on the differences between
pixels at various offset positions relative to the classified pixel. These features are then
used in randomized decision forests to estimate human poses when viewed with a Microsoft
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Kinect. Schwarz et al. [141] used the depth information to compute the geodesic distance
on the surface of a human body relative to its center to compute landmark features.

Voxels are often used for multi-view 3D approaches. Cheung et al. [53] used voxel carving
to reconstruct a person in 3D and fit an ellipsoidal body model to the observation. Caillette
and Howard [46, 47] combined color and voxel information to track an articulated body
model represented by colored blobs.

Features in 3D can also include motion information. Weinland et al. [173] introduced motion
history volumes. They capture the change over time for voxel-based 3D reconstructions
and allow view-point invariant action recognition.

IV Pose Estimation and Body Tracking Algorithms

Pose estimation gives the parameters of the body model or the pose class for the cur-
rent observation or time step. Articulated body tracking additionally includes temporal
information and measures the poses over time. Both approaches can also be combined.
For example, pose estimation can be used for tracking initialization and failure recovery.
Therefore, they are discussed together in this section.

The different approaches can be classified by how much a priori knowledge they use, whether
they follow a bottom-up or top-down procedure, and, in particular for tracking approaches,
whether they use single or multiple hypotheses. In case a body model is used, another
differentiating factor is how it is initialized.

A Priori Knowledge Moeslund and Granum [109, 110] distinguished between model-free
approaches and approaches with indirect or direct model use. In their work, the term
model refers to the amount of a priori knowledge that is being used with respect to the
body model. This means that model-free approaches can still output a body model.

Approaches with direct model use apply the model during the estimation process. Deutscher
et al. [59] proposed an annealed particle filter and used it for pose estimation. The particles,
i.e., the body model hypotheses, are directly evaluated in the image. Carranza et al. [50]
estimated parameters of the body model by minimizing an energy function that measures
the overlap of the projected model with the observed silhouettes.

Approaches with indirect model use rather apply the body model as reference, e.g., by
using anthropometric knowledge about limb ratios [60]. Mikić et al. [107, 108], for example,
used templates with expected body part sizes to fit volumetric primitives to voxel data.
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Approaches without a priori knowledge extract features directly from the data without
using a body model for guidance. Howe [80] directly computes the pose candidates with
lookup-tables based on a silhouette. Part-based detectors can also be used without a priori
knowledge. Bourdev and Malik [39] and Bourdev et al. [38] developed poselets to detect
people. A poselet is a part-based descriptor that also includes information about the pose.
Poselets can be used to detect body parts in an image without any a priori knowledge
about the pose.

Using a priori knowledge about the body model to extract features can improve body
tracking. However, then the question arises how the model is initialized and, in particular,
reinitialized if tracking fails.

Top-Down and Bottom-Up Approaches can also be classified by how they begin the
estimation process. They can either start from a top-down perspective or use bottom-up
information to estimate the body pose.

Top-down approaches take the body model and measure how well it fits to the observation.
They often use a given pose, e.g., the track from a previous time step, and adjust it to
the new observation. For example, Delamarre and Faugeras [58] used physical forces to
push the model until it matched the observed silhouette. After initialization, the Pfinder
system [178, 179] uses the predicted model to update blob statistics given the current
image.

Bottom-up approaches, on the other hand, start with information extracted from the image
and use it to estimate pose parameters. The implicit shape model proposed by Leibe et
al. [93, 94] can be used to learn object parts and detect them in the image. Müller and
Arens [115] showed how these implicit shape models can then be used to estimate the
human pose. In following work, Brauer et al. [42] showed how the 3D pose can be retrieved
by comparing the detected 2D landmark features with projected 3D joint positions of a
stick figure model. Mori et al. [114] used segmentation into superpixels as a preprocessing
step and then used torso and half-limb detectors to find body part candidates. In [64],
Felzenszwalb and Huttenlocher presented their pictorial structures approach for object
recognition. An object is represented by single parts that are then assembled with the
pictorial structures approach. Another part-based approach was presented by Sigal et
al. [149] where parts are assembled through inference over a graphical model.

Both strategies have their advantages and disadvantages. Top-down approaches generally
require that an initial pose is available. Then, the search space can be drastically reduced.
Bottom-up approaches often do not need any information about previous poses. However,
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if the part detectors yield too many hits at ambiguous locations, it is difficult to obtain the
correct solution.

Single and Multiple Hypotheses This classification is mostly relevant for body tracking
approaches. It differentiates algorithms based on the number of hypotheses that are used.

Single-hypothesis trackers only maintain one hypothesis. This can be more efficient than
keeping track of multiple hypotheses, but then failure recovery is generally harder. Usually,
a re-initialization is required if tracking fails. For single hypothesis tracking, the Kalman
filter can be used as in Kakadiaris and Metaxas [85].

Multi-hypotheses trackers maintain many tracks simultaneously. The key idea is that if one
track gets lost or stuck in a local minimum, the other tracks can still be used to infer the
correct estimation. A famous multi-hypotheses tracker is the particle filter [30] proposed
by Gordon et al. [72], and in particular the condensation algorithm by Isard and Blake [82].
Deutscher et al. [59] proposed an annealed particle filter and showed that it is well suited
to cope with the high number of dimensions involved in human pose estimation.

Initialization Here, initialization refers to the free model parameters, e.g., joint angles and
body part positions, and not the model structure itself, which has already been discussed
above. Initialization is particularly relevant for tracking-based approaches and plays an
important role for real-world systems. It determines their degree of autonomy and how they
can recover from tracking failures. An initialization can either be manual, semi-automatic,
or automatic.

Manual initialization requires input by the experimenters. These approaches are the least
autonomous and cannot recover by themselves from tracking failures. Cheng and Trivedi [51]
required manual initialization at the beginning of evaluation. Perales and Torres [122]
offered an interactive mode where users can match the model with the observation for all
frames. Manual initialization is mainly necessary for systems that focus on tracking or
that require a very precise initialization. Most current approaches usually offer at least a
semi-automatic initialization method.

Semi-automatic approaches require some form of interaction, but are otherwise automatic.
For example, tracking can require the use of a key pose to initialize the first pose. Caillette
and Howard [47] required that the user assumes a starfish position for initialization. Bernier
et al. [37] initialized their tracker by detecting the face. They further assumed that the
starting pose is facing the camera with the arms along the sides.
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Automatic initialization is the most flexible solution and is required for autonomous real-
world applications. Often, these are pose estimation approaches that also incorporate
temporal information to improve the frame-based estimations. As approaches like the one
proposed by Shotton et al. [146] and Taylor et al. [158] showed, systems with automatic
initialization can successfully operate under real-world conditions.

Summary

This concludes the overview of pose estimation and body tracking approaches. Based
on previous reviews summarized at the beginning of Section 2.3.1, in particular [71, 78,
109, 110, 129], selected approaches were discussed following four characteristics [78]: body
model, sensor setup, features, and estimation and tracking algorithms. Even though there
is a large variety of different approaches, these categories are well suited to capture their
main characteristics.

Even though there are approaches that recover 3D poses from single images, multi-view
setups are more typical for 3D pose estimation. This is in particular the case if a high
computational efficiency is required [46, 53]. In case of multi-view approaches with calibrated
and stationary cameras, many approaches compute an intermediate 3D reconstruction with
voxels as a preprocessing step [46, 51, 52, 108], as was also done in this work. Here, however,
pose estimation is based on supervoxel segmentations that reduce the number of voxels to
further increase computational efficiency. Both multi-view 3D pose estimation algorithms
and voxel-based approaches will be discussed in more detail in the following section.

In recent years, it was shown that real-time 3D pose estimation is possible with part detectors
that were trained on exhaustive amounts of training data [146, 158]. Part detectors also
play an important part in current 2D pose estimation approaches [38, 39, 93, 115]. However,
the main drawback of such detectors is that they are generally biased through the training
data. In contrast, this work will require little prior information by using segmentation as
basis for pose estimation.

The pictorial structures approach has proven to be very powerful [45, 64, 65], in particular
for 2D pose estimation approaches and in combination with part detectors. As this work
will show an efficient solution for pictorial structures in 3D, it will be further discussed in
Section 2.3.4.
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2.3.3 Multi-View 3D Pose Estimation and Tracking

This section focuses on pose estimation and articulated body tracking in 3D, in particular on
multi-view approaches. The approaches are classified by whether they combine information
from multiple 2D images to compute a 3D pose or if they estimate the 3D pose directly on
3D data.

Combining Multiple 2D Pose Estimations

The approaches discussed in this section use information and features gathered from multiple
views to infer the 3D pose. They either match a 3D body model to observed image evidence
or combine multiple 2D pose estimates in 3D.

Hofmann and Gavrila [77] combined information from multiple 2D images to infer 3D poses
in challenging scenarios. For each single image, first the silhouettes of persons are computed
and then used to retrieve 3D pose candidates from a lookup table. The candidates of all
views are then projected back into the single views and evaluated. The poses that best
match the observations and that are temporally consistent with previous estimates, are
then selected as output. While this approach achieves good results, it is relatively slow and
takes approximately 30 to 40 seconds per frame [77].

Another approach that also uses image features was presented by Amin et al. [26]. They
directly estimated the 2D poses in multiple views using a pictorial structures approach.
Based on these multiple 2D estimates, they then recovered the 3D pose by triangulation.
The drawbacks are that the detector performance relies on good training data and that
they must be executed for each additional camera image.

Hasler et al. [75] estimated the 3D pose by aligning a 3D mesh with the observed 2D data
from multiple camera views. They used multiple unsynchronized cameras and calibrated
them based on structure-from-motion. This also allowed them to reconstruct the static
background. Then, they minimized the difference between the observed contours and the
contours of the projected surface mesh. Due to the high flexibility, the computational
complexity is rather large. Further, the algorithm requires a mesh of the person as input,
e.g., by scanning them in advance.

Approaches that rely on features or estimations that are directly based on 2D images
are generally more flexible in terms of the number, placement, and mobility of cameras.
However, the feature extraction or pose evaluation is usually computationally expensive
and, therefore, every additional view leads to an increase of computation time. Compared
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to this, 3D reconstruction is computationally less expensive. Therefore, it often is beneficial
for real-time approaches to directly work on 3D data.

Pose Estimation with 3D Data

Multi-view pose estimation can also be done directly on 3D data. These approaches generally
use multiple calibrated cameras to reconstruct the observed scene in 3D, often with voxel
carving (Section 2.1.3). The poses are then either estimated by growing volumetric body
parts, by tracking volumetric primitives, i.e., body parts, or by extracting volumetric
features.

Growing Volumetric Primitives Given the 3D voxel reconstruction, the positions of body
parts can be estimated by ”growing” volumetric primitives based on the data. For example,
Mikić et al. [107, 108] represented body parts as cylinders and ellipsoids and estimated
their sizes by fitting them to a voxel reconstruction. They started this procedure by first
detecting the head. This is done by fitting a spherical head template within expected head
sizes to the voxels. Then, the torso template is connected to the neck and fitted to the
voxels beneath it. A similar procedure is done with the four limbs for the largest remaining
clusters.

An advantage of fitting approaches is that they often do not require an explicit initialization
step. However, there are several drawbacks. For example, it is problematic to deal with
body parts that are too close to the body. Such parts are likely to be incorporated into
other and larger parts, e.g., in case of arms and torsos. Further, a fitting approach relies
on certain assumptions about the seed points. Here, for example, the whole approach relies
on finding the head based on a spherical head template.

Tracking Volumetric Primitives The approaches described here initialize a body model
with volumetric body parts to match the observed data and then track them over time.

Cheung et al. [52] fit ellipsoids, that represent body parts, to colored surface voxels. The
body parts are then tracked over time. This system requires an initialization step where
people are asked to move specific body parts to initialize the surface points of the model.
A separate initialization phase is a common drawback if the tracking system relies too
strongly on appearance information. Further, color-based appearance models are likely to
change in case of varying lighting.
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Caillette and Howard [46, 47] fit a body model to colored voxels and then track it over
time. Their approach attaches colored blobs to a skeleton and tracks them using an
expectation-maximization algorithm based on voxel data. Similar to [52], the model is
initialized in a semi-automatic way, here by assuming a starfish pose. This is problematic
in case the track gets lost because no automatic initialization is provided. Also, color-based
approaches are prone to failure due to appearance changes.

Cheng and Trivedi [51] proposed to model volumetric body parts with Gaussian mixture
models that are connected by a kinematic model. Their approach also uses voxel data and
gives good results, but requires a precise manual initialization of the body model. This
is a severe drawback for a real-world system where manual initialization is not an option.
Further, the system does not run in real-time as a result of the complex model [78].

Canton-Ferrer et al. [48] proposed a tracking approach with an annealed particle filter.
Body parts are modeled with truncated cones. A pose, i.e., a particle, is evaluated using
volumetric as well as surface features. Their body model has 27 degrees of freedom. This
requires a large number of simultaneously tracked hypotheses, in their case 3, 600 particles,
which is computationally expensive.

A common drawback of approaches that track volumetric body parts is the initialization
phase. Most approaches follow either a manual or a semi-automatic procedure. For most
real-world systems, however, it is crucial that they operate autonomously without requiring
user cooperation or manual input.

Extracting 3D Descriptors It is also possible to extract information directly from voxels
to get information about the current pose. For example, Sagawa et al. [140] proposed
a system that uses a feature vector computed in the cylindrical region around the voxel
reconstruction to look up pose candidates in a database. While this approach is fast, it is
limited by the exemplar poses stored in the database. Further, assumptions are required
about the orientation of persons as the axis of the cylinder passes upwards through the
center of mass.

Summary Voxels are very popular for multi-view 3D pose estimation with stationary
cameras and are used by all approaches discussed above. With voxels, the body model usually
consists of volumetric primitives that are either automatically fitted to the data [107, 108] or
initialized based on the data [46, 47, 48, 52]. As discussed, both approaches have drawbacks
as they either rely on assumptions or require some form of user input. Both are problematic
for real-world applications.
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Most of the discussed approaches follow a tracking scheme using common algorithms
like expectation-maximization [47, 51], Kalman filters [107, 108], or particle filters [48].
Regarding the tracking framework, it is important that the hypotheses can be evaluated
quickly. This is not the case if the primitives are too complex or if too many hypotheses
must be evaluated simultaneously.

Outlook The pose estimation algorithm presented in this work is designed for volumetric
data (Section 2.1), but does not require volumetric body part representations. It uses a
skeleton model in combination with supervoxels as primitives (Section 2.2) which implicitly
encodes volumetric information. By using supervoxels, the search space is effectively
reduced to a tractable dimension which allows for real-time single frame pose estimation.
Also, the search space reduction allows to directly estimate the best pose without any
specific initialization step.

As an additional benefit, the presented system does not rely on trained detectors or stored
examples. Nevertheless, it provides a way to directly integrate additional information if it
is available. This process can also be used to integrate temporal information for articulated
body tracking in a seamless way, as will be discussed in Section 4. The algorithm is based
on pictorial structures that will be explained in the next section.

2.3.4 Pictorial Structures

This section introduces the pictorial structures framework for pose estimation. It is the
basis for many 2D pose estimation approaches. In this work, it will be extended to 3D with
a focus on supervoxels.

A pictorial structure is a simplified representation of an arbitrary object. This representation
consists of two elements: object parts and connections between these parts. For example, a
pictorial representation of the face [64] could consist of five single elements representing
the two eyes, two mouth corners, and the nose together with four connections between the
nose and each of the other parts. The pictorial representation of an object is by no means
unique and can be adjusted as necessary.

A pictorial representation is helpful to reduce an object to its core elements. Based on such
a pictorial structures representation, Fischler and Elschlager [66] proposed a framework
to match and find objects in images. They represented objects as single parts that are
connected with springs. The optimal solution is given by the configuration that minimizes
an energy function. The energy function combines an appearance term for each single part
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and a binary term that describes the cost of modeling the connections between two parts.
Their approach is very general which leads to a high computational complexity.

An efficient framework for pose estimation with pictorial structures was proposed by
Felzenszwalb and Huttenlocher [64] and the overview given below follows their explanation
in [64]. Their framework is based on [66], but requires that the pictorial structures are
described by a tree graph, i.e., the graph cannot have any cycles. Then, the energy
minimization can be efficiently solved with dynamic programming. They also proposed
solutions to automatically build the model using training data and to compute multiple
good hypotheses instead of just one optimal one. For applications using pose estimation,
it is desirable to have a specific human body representation and not an automatically
generated one. Therefore, the model used in this work is not automatically estimated, but
given. However, the proposed approach also allows to estimate multiple hypotheses.

The next two sections first describe the mathematical formulation of pose estimation with
pictorial structures before giving example applications where pictorial structures have been
used for pose estimation.

Mathematical Formulation

This section introduces the mathematical basis to formulate the task of pose estimation
in the pictorial structures framework. It closely follows the work of Felzenszwalb and
Huttenlocher [64] and largely adopts their notations.

Pictorial structures represent objects by atomic parts and connections between them. Let
the object be represented by graph 𝐺 = (𝑉,𝐸) with vertices 𝑉 representing parts and edges
𝑒𝑖𝑗 ∈ 𝐸 representing connections between two parts. A specific pose is then represented by
the part configuration 𝐿 = (𝑙1, 𝑙2, · · · , 𝑙𝑛) where each 𝑙𝑖 represents the location of a part
𝑣𝑖 ∈ 𝑉 . The body model itself is given by model parameters 𝜃 that describe, for example,
the part appearances or the connections between parts.

The problem of finding the specific configuration that best describes the data can then be
formulated in a statistical framework. The posterior distribution 𝑝(𝐿|ℐ, 𝜃) describes how
likely it is to observe configuration 𝐿 given image evidence ℐ and the model parameters 𝜃.
With Bayes’ rule, it can be written as

𝑝(𝐿|ℐ, 𝜃) ∝ 𝑝(ℐ|𝐿, 𝜃) · 𝑝(𝐿|𝜃). (2.6)
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The distribution 𝑝(ℐ|𝐿, 𝜃) describes how likely it is to observe image evidence given a
configuration and the model parameters, i.e., it describes how well the appearance of the
configuration fits to the image. The prior distribution 𝑝(𝐿|𝜃) describes the likelihood of a
specific configuration given the model parameters, i.e., it describes how well the connections
between parts fit to the model.

The problem of finding the optimal configuration 𝐿* is then given by

𝐿* = argmax
𝐿

(︁
𝑝(ℐ|𝐿, 𝜃) · 𝑝(𝐿|𝜃)

)︁
. (2.7)

With the simplifying assumption that the image evidence for a part is independent from
the image evidences of all other parts, which is true as long as no occlusions occur, the
distribution describing the image formation can be written as

𝑝(ℐ|𝐿, 𝜃) ∝
𝑛∏︁

𝑖=1
𝑝(ℐ|𝑙𝑖, 𝜃). (2.8)

By using the fact that the model is described by a tree structure and by focusing only on
relative positions between parts, the prior can be written as

𝑝(𝐿|𝜃) =
∏︁

(𝑖,𝑗)∈𝐸

𝑝(𝑙𝑖, 𝑙𝑗|𝜃). (2.9)

Inserting Equations 2.8 and 2.9 into Equation 2.6 then leads to the final equation for the
posterior distribution:

𝑝(𝐿|ℐ, 𝜃) ∝
𝑛∏︁

𝑖=1
𝑝(ℐ|𝑙𝑖, 𝜃)

∏︁
(𝑙𝑖,𝑙𝑗)∈𝐸

𝑝(𝑙𝑖, 𝑙𝑗|𝜃). (2.10)

The formulation of Equation 2.10 is a typical starting point for energy minimization
approaches. The energy function is given by taking the negative logarithm of Equation 2.10.
The optimal configuration 𝐿* is then the configuration that minimizes this energy. Let
𝑚𝑖(𝑙𝑖) = −𝑙𝑜𝑔 𝑝(ℐ|𝑙𝑖, 𝜃) describe the energy for each single part, i.e., its appearance, and let
𝑑𝑖𝑗(𝑙𝑖, 𝑙𝑗) = −𝑙𝑜𝑔 𝑝(𝑙𝑖, 𝑙𝑗|𝜃) describe the energy of the connection between two parts. Then,
the optimal configuration 𝐿* is given by

𝐿* = argmin
𝐿

(︁ 𝑛∑︁
𝑖

𝑚𝑖(𝑙𝑖) +
∑︁

(𝑙𝑖,𝑙𝑗)∈𝐸

𝑑𝑖𝑗(𝑙𝑖, 𝑙𝑗)
)︁
. (2.11)
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Equation 2.11 represents the maximum a posteriori (MAP) estimate and can be efficiently
solved with dynamic programming if the possible locations of parts can be restricted for
the binary term. This is the second requirement for an efficient solution, in addition to the
tree-structure of the object model [64].

In general, the computation of the prior, i.e., term 𝑑𝑖𝑗, poses the most problems from a
computational perspective for approaches using pictorial structures. Let 𝑛 be the number
of parts in the model and ℎ be the number of candidates for these parts in the image. The
complexity to compute appearance term 𝑚𝑖 is then linear in the number of candidates,
i.e., its computational complexity is in 𝒪(𝑛ℎ). However, the binary term 𝑑𝑖𝑗 requires,
in principle, that the connections between all pairs of candidates are evaluated, i.e., its
complexity is in 𝒪(𝑛ℎ2). Even though Felzenszwalb and Huttenlocher [64] reduced this
complexity by limiting the possible numbers of locations, it still is very time consuming.
In this work, it will be shown how special segmentation techniques can be used to further
reduce the overall complexity.

The next section discusses current approaches that use pictorial structures in the context
of human pose estimation and focuses on how the energy terms are evaluated and the
complexity reduced.

Example Approaches

In addition to the efficient solution for the pictorial structures framework itself, Felzenszwalb
and Huttenlocher [64] also presented two applications: face detection with Gaussian deriva-
tive filters to model the appearance of facial landmark features and human pose estimation
with silhouette images. Both approaches are used for 2D images and demonstrated how
the pictorial structures framework can be used in an efficient way for two quite different
tasks.

Ferrari et al. [65] presented a pose estimation for 2D video sequences. They initialized the
upper body position with a detector based on Histograms of Oriented Gradients [57]. Then,
they limited the positions of body parts by using a GrabCut segmentation [136]. After
estimating the first pose, they used both the appearance of the body parts as well as the
joint angles for tracking. The problem with such multi-stage approaches is that there is
potential for failure in each step. Further, the initialized appearance model is sensitive to
changing conditions. For evaluation, Ferrari et al. [65] used a score that is often used in
the context of pose estimation with pictorial structures: the percentage of correct parts
(PCP). A part is considered correct if both estimated end joints are within a distance of at
most half of the limb size. Their reported average PCP score for the upper body was 56.
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Another application of pictorial structures to pose estimation in 2D was presented by
Andriluka et al. [29]. They learned both the part appearances as well as the connection
prior from training data. In particular, their appearance model is strongly specialized for
the various body parts to compute part evidence maps. Their reported PCP scores for
the upper body on two different datasets are 55.2 and 73.5. As with all training-based
approaches, they introduce an implicit bias through the training data.

In another work, Amin et al. [26] used pictorial structures for multi-view pose estimation.
The unary part evaluation term is based on learned image features and connections between
parts are evaluated using learned Gaussian distributions. The first step is estimating the
2D pose in each single image. The 3D pose is then estimated by triangulating the 2D joint
positions in 3D. Using all available constraints and features, they achieve an average joint
position error of 54.5 mm on selected scenes of the HumanEva-I dataset [148].

Pictorial structures have mostly been used for 2D pose estimation. The reason is that
the combination of parts is even more complex in 3D. Burenius et al. [45] addressed this
problem by proposing a 3D pictorial structures approach. The unary appearance term is
evaluated by using weakly trained part detectors. To compute the binary connection term,
they enforced three kinds of constraints. First, skeleton constraints to fix the limb sizes
and to avoid a tolerance for the joint positions. Second, view constraints that limit the
positions of parts to locations where the part detector found sufficient evidence. And third,
joint angle constraints by limiting possible rotations to a uniformly sampled space of fixed
rotations. Their reported PCP scores on a custom dataset with two different settings are
70 and 77. While they showed a significant complexity reduction, this reduction is mostly
due to a discretization of the search space. Burenius et al. [45] is one of the few works that
also report runtimes. There, the reported runtimes are between 1 second and 69 minutes
depending on the granularity of the translation and rotation spaces.

The algorithms discussed above generally rely on trained part detectors to limit the search
space. In contrast, the algorithm presented in this work shows how segmentation as a
preprocessing step can be used to effectively reduce the search space. In addition, this
reduction is meaningful in that it respects the observed data and adequately represents
body parts. Further, the approach presented in Section 4 achieves real-time runtimes.





3 Volume and Super Segmentations

This chapter presents the contributions on segmentation methods in this thesis with a focus
on computational efficiency through a reduction of the number of elements. In the context
of this work, segmentation serves two purposes. First, it provides a unique representation
for various sensor types through volumetric segmentation and reconstruction. Second,
through super segmentation techniques, the number of inputs and, therefore, the search
space for following processing steps is reduced.

First, Section 3.1 introduces a real-time voxel carving algorithm that is designed to compute
a volumetric reconstruction of the environment with both video cameras as well as depth
sensors. For video cameras, it also addresses the challenge of static occlusions. For depth
sensors, it provides a way to compute volumetric data even with only one sensor. Then,
super segmentation techniques are introduced. Section 3.2 presents a superpixel algorithm
with a focus on compactness. This algorithm is the basis for 3D supervoxel segmentation
presented in Section 3.3 that works on voxels and that provides the building blocks for
pose estimation.

3.1 Voxel Carving

This section introduces the voxel carving algorithm developed in this thesis. Voxel carving
provides a 3D reconstruction of the observed scene represented by voxels, small volumetric
cubes that act as atomic units, similar to pixels of an image. The algorithm presented here
combines efficiency and robustness with flexibility. In addition, it provides a solution to
deal with static occlusions by introducing 3D occlusion maps. In addition, it is flexible
because it can work with various sensor types for different environments, e.g., video cameras
and depth sensors, and with a variable number of sensors. This allows for a variety of
supported environments where this voxel carving algorithm can be used. Because the voxel
carving is the first step of the system presented in this work, this flexibility carries over to
all following steps, in particular pose estimation.
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3.1.1 General Voxel Carving

The proposed voxel carving algorithm approximates a 3D reconstruction of a scene with
voxels. The scene is observed with multiple calibrated cameras. The volume of interest
is given by the user and fixed. Section 2.1.1 provides details on camera calibration and
projection functions.

A voxel 𝑣 is a solid 3D cube with fixed side length. The set of voxels V, the voxel grid,
partitions the given volume of interest. The voxel cell of voxel 𝑣 ∈ V is occupied (𝑣 = 1) in
case it belongs to the visual hull and empty (𝑣 = 0) if the corresponding voxel is carved.
Let 𝐶 be the set of calibrated cameras and ℐ𝑐 the corresponding image of camera 𝑐 ∈ 𝐶.
ℐ𝑐(𝑢) gives the pixel value of image ℐ𝑐 at coordinates 𝑢. The function 𝑝(𝑣, 𝑐) projects the
center of voxel 𝑣 to image coordinates of camera 𝑐. Further, let the general carving function
𝛿𝑐(ℐ𝑐, 𝑣) be true if image ℐ𝑐 does not support the existence of voxel 𝑣, e.g., because the
voxel projects into the background. Then, a voxel only remains in the voxel grid, i.e., is
not carved, if the carving function is false for all images.

The occupancy for each voxel is then given by

𝑣 =

⎧⎪⎨⎪⎩1 if ∀𝑐 ∈ 𝐶 : 𝛿𝑐(ℐ𝑐, 𝑣) = 𝑓𝑎𝑙𝑠𝑒

0 otherwise
(3.1)

Algorithm 1 shows pseudo-code for an implementation of the generic voxel carving algorithm.
Adapting this algorithm to specific use cases, e.g., multi-view video or depth images with
and without occlusion maps, requires only a modification of the carving function 𝛿. Similar
to [89], it is possible to relax the carving function by allowing a fixed number of silhouette
misses before carving the voxel, but this is not required in this work.

Multi-View Video

This section describes the application of voxel carving to multi-view videos. For each image
ℐ, a foreground segmentation 𝐹 is computed. Details of foreground segmentation can be
found in Section 2.1.2. A voxel is carved if it projects outside the silhouette and into the
background for at least one image. The carving function 𝛿𝑐(𝐹𝑐, 𝑣) then is

𝛿𝑐(𝐹𝑐, 𝑣) =

⎧⎪⎨⎪⎩𝑡𝑟𝑢𝑒 if 𝐹𝑐(𝑝(𝑣, 𝑐)) = 0
𝑓𝑎𝑙𝑠𝑒 otherwise

(3.2)
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Algorithm 1 Generic Voxel Carving
1: Input: camera configurations 𝐶
2: Input: ∀𝑐 ∈ 𝐶 : load ℐ𝑐

3: Output: voxel grid V

4:

5: Initialize voxel grid V

6: for all Voxel 𝑣 ∈ V do
7: 𝑣 ← 1
8: for all Camera 𝑐 ∈ 𝐶 do
9: if 𝛿𝑐(ℐ𝑐, 𝑣) = 𝑡𝑟𝑢𝑒 then

10: 𝑣 ← 0
11: end if
12: end for
13: end for

Figure 3.1 illustrates reconstructed volumes for an increasing number of cameras. As
described in Section 2.1, voxel carving cannot reconstruct concave surfaces. In addition, the
reconstruction can be too coarse when too few cameras are used (Section 2.1.3). Another
challenge are shadow effects or hallucinated visual hulls when more than one object are
present. The reason is that the rays cast for volumetric carving can intersect more than
once when multiple objects are present. Because the silhouettes only represent binary
information, it cannot be decided which intersection is the correct one. This leads to
additional reconstructed volumes as Figure 3.2 shows. These problems are not as severe
when using depth sensors as will be discussed in the next section.

Depth Images

This section describes the application of voxel carving to depth images for multi-view and
single-view setups. Voxel carving with multi-view depth images is a direct extension of
the multi-view video case. In contrast to binary silhouette images, the pixels of depth
images 𝐷 give the distance of the closest object to the camera at their position. This
additional information can be used to improve the computation of the visual hull by moving
the reconstructed surface closer to the actual surface of the object. Figure 3.1 shows
reconstructed volumes with depth cameras. By using depth information, it is also possible
to reconstruct observed concave surfaces as Figure 3.3 shows. In addition, the problem of
hallucinated visual hulls, as discussed above, is not as severe as for the multi-view video
setup as Figure 3.2 shows.
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(a) Sensor setup

(b) Voxel carving with video cameras

(c) Voxel carving with depth sensors

Figure 3.1: Voxel carving for multi-view video and depth sensors with an increasing number
of cameras. (a) shows the camera configurations. (b) shows results for voxel carving for
multi-view video. Reconstruction accuracy increases with more cameras, but remains an
overestimation of the original object. (c) shows voxel carving with multi-view depth sensors.
By using the depth information in addition to the intersections, the visual hull boundaries
are closer to the object boundaries.



3.1 Voxel Carving 51

(a) Multi-view video cameras (b) Visual hulls with video
cameras

(c) Hallucinated visual hulls

(d) Multi-view depth sensors (e) Visual hulls with depth
sensors

(f) Hallucinated visual hulls

Figure 3.2: Hallucinated visual hulls. Too few cameras and poor camera placement leads
to the reconstruction of volumes that are not supported by real objects. This effect occurs
due to multiple intersections of camera rays during the volume intersection. This effect is
more severe for multi-view video cameras. In case of depth sensors, the depth information
helps to avoid hallucinated visual hulls in front of objects. Occluded areas, however, are
still affected by this effect.
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(a) Sensor setup (b) Video cameras (c) Depth sensors

Figure 3.3: Voxel carving of objects with concavities. (a) shows the placement of the video
cameras or depth sensors. (b) illustrates that concave surfaces cannot be reconstructed
with video cameras whereas (c) shows that this is possible with the additional information
provided by depth sensors.

The additional information given by the depth images 𝐷 can be used in the carving function
𝛿𝑐(𝐷𝑐, 𝑣) as follows. Let 𝑑(𝑣, 𝑐) give the distance of voxel 𝑣 to camera 𝑐. A voxel is carved
if the observed distance at the corresponding pixel in at least one depth image is greater
than the distance of this voxel to the camera, i.e., the voxel is in front of the closest object
in at least one view. Thus, the carving function for depth images is

𝛿𝑐(𝐷𝑐, 𝑣) =

⎧⎪⎨⎪⎩𝑡𝑟𝑢𝑒 if 𝑑(𝑣, 𝑐) < 𝐷𝑐(𝑝(𝑣, 𝑐))
𝑓𝑎𝑙𝑠𝑒 otherwise

(3.3)

Single-View Depth Image

Depth sensors give a 2.5D reconstruction by providing the depth maps of observed surfaces.
The surface points can be converted to 3D, but the reconstruction still only considers
the visible surface. As explained above, multi-view depth carving gives a volumetric 3D
reconstruction. However, there are cases where only one depth sensor is available, but
a volumetric reconstruction is required. An example is the pose estimation algorithm
presented in this work that uses the additional information provided by the occupied
volumes and therefore requires volumetric information.

Accurate volumetric reconstruction is not possible with only one depth sensor. However,
it can be approximated by limiting the penetration depth, i.e., the maximum allowed
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(a) One depth sensor (b) Original voxel carving (c) Voxel carving with penetra-
tion threshold Δ

Figure 3.4: Voxel carving with a single depth camera. (a) Only one depth sensor is available
which leads to (b) a severe overestimation of the volume. (c) By limiting the penetration to
a fixed depth with threshold Δ, the size of the reconstructed volume can be limited. This
is particularly useful if the expected depth of the object is approximately known.

distance Δ of voxels to their closest surface point along the camera rays. The modified
carving function then is

𝛿𝑐(𝐷𝑐, 𝑣) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑡𝑟𝑢𝑒 if 𝑑(𝑣, 𝑐) < 𝐷𝑐(𝑝(𝑣, 𝑐)) ∨

𝐷𝑐(𝑝(𝑣, 𝑐)) + Δ < 𝑑(𝑣, 𝑐)
𝑓𝑎𝑙𝑠𝑒 otherwise

(3.4)

Figure 3.4 gives an example of an approximate volumetric reconstruction with penetration
threshold Δ.

3.1.2 Occlusion maps

For voxel carving with multi-view videos, occlusions caused by static objects are a common
source of errors. Static occluders typically become part of background models used in
foreground segmentations which leads to missing foreground parts in the silhouettes of
objects. Due to the nature of voxel carving, an error in only one silhouette is sufficient to
cause severe defects in the visual hull.

The discussion of related work in Section 2.1 showed that methods to handle static occlusions
either do not result in minimal visual hulls or are computationally too expensive. The
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solution which was first published in [6] gives a minimal visual hull without imposing severe
computational overhead:

Let 𝑂 be the set of occlusion maps for foreground segmentations 𝐹 . The occlusion maps
store for each pixel the distance of the closest occluder to the camera along the ray passing
through it or infinite in case of no occlusion. In fact, the occlusion maps are similar to
images of depth sensors as discussed above. The occlusion maps can either be manually
annotated by defining geometric objects and projecting them into the image or generated
by scanning the environment with depth sensors. Given the occlusion maps, the modified
carving function is then given by

𝛿𝑐(𝐹𝑐, 𝑂𝑐, 𝑣) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑡𝑟𝑢𝑒 if 𝐹𝑐(𝑝(𝑣, 𝑐)) = 0 ∧

𝑑(𝑣, 𝑐) < 𝑂𝑐(𝑝(𝑣, 𝑐))
𝑓𝑎𝑙𝑠𝑒 otherwise

(3.5)

This solution is very efficient. It only requires the computation of the distance between
voxels and cameras and an additional lookup in the precomputed occlusion maps. It
effectively cancels the effects of static occlusions by not carving occluded voxels. And it
results in minimal visual hulls because the carving function is only relaxed for voxels behind
occluders. In contrast, approaches with binary occlusion maps would also keep voxels in
front of occluders resulting in larger visual hulls.

With the modified carving function, voxels that are occluded in all views are not carved.
Consequently, voxels inside occluding objects are not removed. To avoid this effect, the
voxel carving algorithm is modified to ensure that there is at least one true silhouette hit for
existing voxels, i.e., they are in front of an occluding object in at least one view. An example
of occlusion maps are shown in Section 3.1.4 in Figure 3.9. There, an example image with
static occlusion and the corresponding occlusion map together with voxel carving results
with and without occlusion maps are shown.

3.1.3 Computational Complexity

For human-computer interaction, real-time processing is crucial. For a good user experience,
the system reaction should be below 50 ms, as stated by Von Hardenberg and Bérard [167]
based on Card et al. [49]. In this work, voxel carving is one of the first preprocessing steps.
Therefore, it has to be computationally efficient to not act as a bottle neck. This section
describes the design considerations for the proposed voxel carving algorithm. The algorithm
design favors parallel execution on the GPU of a graphics board.
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Minimizing Projection Computations

Voxels are volumetric objects and, if they are close enough to the camera, do not project on
one single pixel. Therefore, all eight voxel corners must be projected into the image to get
the correct bounding area. Even when using integral images [165], this is very inefficient and
requires about one order of magnitude more computations. Ladikos et al. [91] circumvent
this problem by scaling the foreground segmentations so that each voxel projects only on
one pixel. This, however, is only an approximate solution.

The voxel carving algorithm used in this work projects only the centers of voxels with
function 𝑝(𝑣, 𝑐). This can potentially lead to an overestimation of the visual hull. For
example, if the voxel center projects directly on a silhouette edge, parts of the voxel are
actually outside the object, thus leading to an overestimation. However, when considering
the full 2D projection area, this voxel would be carved resulting in an underestimation
of the reconstructed volume. This implies that both approaches are only approximations
due to the space discretization related to the voxel size. Therefore, this work uses the
computationally less expensive approach and only projects voxel centers. It tolerates a
certain overestimation of reconstructed volumes and offers finer precision by adjusting the
voxel size. The accuracy of projecting all eight voxel corners can then be approximated by
using voxels with half the original side length.

Parallel Design

Efficient GPU implementations favor computations over memory access and conditional
statements. On the GPU, it is often beneficial for the overall runtime to prefer redundant
computations over storing results in memory. Due to the increasing power of parallel
processors on off-the-shelf graphics boards, GPU implementations have proven advantageous
for real-time applications [91], as is the case in this work.

Algorithm 1 is designed to follow a very linear execution structure. It has only one
conditional statement that is very deep within the program flow chart. The decision to
project only voxel centers and to not use an octree representation supports this design
because it eliminates additional conditional statements.

The operations used for the projection in Algorithm 1 are the same for all cameras and fall
into the single instruction, multiple data (SIMD) class of algorithms that are well suited
for execution on the GPU. In addition, due to the spatial proximity of neighboring voxels
in the grid, their projections are also close in image space which is beneficial for cached
memory lookups.
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Complexity Analysis

This section analyzes the time and space complexity of the proposed voxel carving algorithm
shown in Algorithm 1 and its variations for multi-view video and depth sensors with and
without occlusion maps.

The time complexity is linear in the number of voxels and cameras. Let |V| give the
number voxels and |𝐶| the number of cameras. In the worst case, each voxel has to be
projected into every camera image resulting in a time complexity in 𝒪(|V| · |𝐶|). The time
complexity remains the same for all variations of this algorithm introduced above, even
with the addition of occlusion maps. This is because occlusion map lookups are constant in
the number of cameras and do not change the complexity class.

Regarding the worst case for space complexity, this algorithm requires storing the full
voxel grid of size |V| and all camera images. Let |ℐ| be the number of entries of an image,
either a foreground segmentation or a depth image. The space complexity is then in
𝒪(|V|+ |𝐶| · |ℐ|). Again, the space complexity remains the same for all variations.

3.1.4 Evaluation

This section provides an evaluation of the voxel carving algorithm with both synthetic
as well as real-world examples. The evaluation includes qualitative results as well as a
runtime analysis. It uses the camera matrices and room definition provided by the UMPM
dataset [162] that is also used for pose estimation in Section 4.

Synthetic Examples

This section shows synthetic examples for multi-view video and depth sensors. Given
the camera matrices, objects are rendered into the images to simulate observations. The
scenario in Figure 3.5 shows a box with the dimensions 1 𝑚 × 1 𝑚 × 1 𝑚 placed at the
room center with an accurate approximation of the box volume for both multi-view video
as well as depth images. Figure 3.6 shows the shadow effects that can occur during voxel
carving without a sufficient number of cameras and poor camera placement.

The examples show that a sufficient number of cameras should be placed with opposing
views for good voxel carving results. This is the case for the datasets used in this work
where at least four cameras are used that are placed near the room corners.
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(a) Synthetic foreground
segmentation

(b) Voxel carving (distant view) (c) Voxel carving (close view)

(d) Synthetic depth rendering (e) Voxel carving (distant view) (f) Voxel carving (close view)

Figure 3.5: Voxel carving with synthetic images. The 1 𝑚× 1 𝑚× 1 𝑚 box at the room
center is rendered as foreground segmentations (top row) and as depth images (bottom
row) with a voxel size of 2.5 cm. (a+d) show one of the four camera views, (b+e) the voxel
carving results including the camera setup from a distance and (c+f) from a close view
with the edges of the box shown in green. (c) shows that the reconstruction is slightly
convex due to the volume intersection and that it extends outside the original box whereas
(f) shows an underestimation of the box volume due to depth discretization and because
the algorithm only projects the centers of the voxels.
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(a) Synthetic foreground
segmentation

(b) Voxel carving (distant view) (c) Voxel carving (close view)

(d) Synthetic depth rendering (e) Voxel carving (distant view) (f) Voxel carving (close view)

Figure 3.6: Voxel carving with synthetic images, showing too few cameras and poor camera
placement. Three pillars with dimensions 0.3 𝑚 × 0.3 𝑚 × 1.0 𝑚 are placed 1 𝑚 apart
along the x-axis. The top row shows results for foreground segmentations and the bottom
row for depth images. The voxel size is 2.5 𝑐𝑚. The green lines represent the ground truth
pillar edges. Using only two cameras that are mounted to the same side of the room, leads
to very poor voxel carving results with foreground images. The top row shows shadow
or hallucinated visual hulls as well as large overestimations of the volumes. With depth
information (bottom row), the reconstruction quality is strongly improved.
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(a) Camera image (b) Foreground
segmentation

(c) Voxel carving
(frontal view)

(d) Voxel carving
(side view)

Figure 3.7: Voxel carving with multi-view video. (a) shows one of the four views from a
sequence of the UMPM dataset [162] together with the foreground segmentation in (b). A
frontal view of the 3D reconstruction is shown in (c) and a side view in (d).

Real-World Examples

This section shows voxel carving results for recorded video sequences. For multi-view voxel
carving, four camera views from the UMPM dataset [162] are used. For voxel carving with
depth images, recorded views of one Kinect camera are used.

Real-world examples are shown in Figures 3.7 and 3.8. Figure 3.7 shows voxel carving
results with data from the UMPM dataset [162]. The voxel carving is based on foreground
segmentations for four camera views. The reconstructed visual hull corresponds to the
shape of the person. Figure 3.8 shows voxel carving results with one Microsoft Kinect
depth sensor. The reconstruction shows that a similar performance is possible with fewer
cameras given the additional depth information.

Occlusion Maps

This section shows voxel carving results in the presence of static occlusions with and
without occlusion maps. For the UMPM dataset [162], the occlusion maps have been
generated manually by defining the 3D coordinates of the occluding objects. Figure 3.9
shows an example with and without an occlusion map under the presence of heavy occlusions.
Without occlusion maps, there are severe defects in the visual hull and large parts of the
legs are removed. With occlusion maps, the legs are correctly reconstructed and are part
of the visual hull. However, the relaxation of the voxel carving function also leads to
hallucinated voxels near to the occluding object.
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(a) Color image (b) Depth image

(c) Frontal view (d) Side view

Figure 3.8: Voxel carving with a single depth camera. The images show that accurate
voxel carving results can be computed even with only a single depth camera. Here, the
penetration depth was set to 20 cm.
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(a) Camera image (b) Foreground segmen-
tation

(c) Occlusion map

(d) Voxel carving without occlu-
sion map

(e) Voxel carving with occlusion
map

Figure 3.9: Voxel carving with occlusion maps. This sequences includes occlusions by
a table. The red lines show the table edges. (a) shows one camera view and (b) the
corresponding foreground segmentation. Occluded regions are not part of the foreground.
(c) shows the occlusion map. (d) shows voxel carving without occlusion maps. There are
severe defects in the visual hull. (e) shows results with occlusion maps. The legs are part
of the visual hull at the cost of hallucinated voxels close to the occluding object.
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Runtime Evaluation

This section gives quantitative runtime results for the voxel carving algorithm. The
example images used for runtime measurements are the synthetic box images introduced
in Section 3.1.4 as well as worst and best case images. For better comparison to other
work, the number of voxels was set to 643, 1283, and 2563. With room dimensions of
6.0 𝑚 × 9.2 𝑚 × 2.2 𝑚, this resulted in voxel sizes of approximately 7.6 cm, 3.8 cm,
and 1.9 cm.

The evaluation included three scenarios: 1) the cube from the synthetic examples at the
beginning of this section in order to represent a normal scenario, 2) best case scenario
with black images where all voxels are removed (i.e., all background), and 3) worst case
scenario with white images where all voxels remain (i.e., all foreground). The runtimes were
measured for one to four cameras. The experimental system was an Intel Pentium Intel(R)
Core(TM) i7-3770 CPU with 3.40 GHz and a NVIDIA GeForce GTX 660 Ti. Tables 3.1
and 3.2 show measurements for both multi-view video and depth sensors.

For the worst case scenario, the runtimes increase with the number of cameras. The reason
is that in the worst case scenario, all voxels must be evaluated in all cameras. This is not the
case for the other scenarios where the algorithm stops evaluating a voxel for the remaining
cameras, as soon as there is evidence that it should be carved. In typical scenarios, most of
the image is background and voxels get carved relatively soon. Therefore, the runtimes
for the normal and best case scenario are very close and do increase only slightly with the
number of cameras. A comparison of voxel numbers to runtimes shows that the algorithm
scales linearly in the number of voxels. Voxel carving with multi-view video is slightly
faster than depth carving.

When comparing the results to the algorithms proposed by Ladikos et al. [91], the different
graphics boards must be considered. In [91], a NVIDIA 8800 GTX was used that has a
significantly lower number of cores (128 compared to 1344, approximately one tenth). The
algorithm most comparable to this work, GPU2, achieves runtimes of 18.60 ms, 113.88 ms,
and 870.06 ms for 643, 1283, and 2563 voxels, respectively and is approximately 15 to 40
times slower. They used 16 cameras, but distributed the algorithm across 4 PCs which
evens out the workload for each PC. Their optimized version, GPU2 OT, achieves runtimes
of 15.24 ms, 25.91 ms, and 73.53 ms is still about 15 times slower for lower voxel numbers,
but scales better for larger numbers. However, this algorithm uses precomputed rescaled
silhouette images to imitate octree behavior. While this is possible for binary silhouette
images, it cannot be applied in the same way to depth images. Therefore, the presented
algorithm is not only faster, but also more flexible than [91].
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Table 3.1: Voxel carving runtimes for multi-view video. The table shows runtimes for
varying voxel sizes and resolutions and for different numbers of cameras. The best and worst
case runtimes are the result of empty voxel grids for black images (i.e., only background)
and full voxel grids for white images (i.e., only foreground).

Voxels Voxel size Cameras Synthetic cube Best case Worst case
[𝑁𝑢𝑚𝑏𝑒𝑟] [𝑐𝑚] [𝑁𝑢𝑚𝑏𝑒𝑟] [𝑚𝑠] [𝑚𝑠] [𝑚𝑠]

CPU GPU CPU GPU CPU GPU
643 7.6 1 17.8 0.7 17.9 0.7 18.0 0.7
643 7.6 2 19.5 0.8 17.8 0.8 26.8 0.9
643 7.6 3 18.6 0.9 17.8 0.9 34.4 1.1
643 7.6 4 19.5 1.1 17.8 1.0 42.5 1.3
1283 3.8 1 145.1 3.0 145.1 3.1 152.0 3.1
1283 3.8 2 158.8 3.3 156.5 3.1 215.0 3.8
1283 3.8 3 152.0 3.4 145.1 3.2 281.4 4.6
1283 3.8 4 153.3 3.6 151.3 3.3 345.4 5.3
2563 1.9 1 1178.5 20.0 1171.8 19.1 1191.9 20.0
2563 1.9 2 1213.2 19.6 1174.8 20.2 1818.7 22.5
2563 1.9 3 1225.8 19.9 1172.8 20.3 2238.7 26.3
2563 1.9 4 1239.8 20.3 1225.7 22.1 2772.4 30.0

3.1.5 Conclusion

This section introduced the voxel carving algorithm developed in this work. It is com-
putationally very efficient which is necessary for real-time human-computer interaction
applications. It circumvents defects caused by static occlusions with occlusion maps.

Further, the algorithm is designed to work with interchangeable carving functions for
different sensor types. This introduces flexibility for algorithms working on top of the voxel
representation. They can be used without modifications in various environments and with
different sensor setups by choosing an appropriate carving function.
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Table 3.2: Voxel carving runtimes for multi-view depth sensors. The tables shows runtimes
for varying voxel sizes and resolutions and for different numbers of cameras. The best and
worst case runtimes are the result of empty voxel grids for images without depth values
and full voxel grids for images that simulate objects right in front of the camera lenses.

Voxels Voxel size Cameras Synthetic cube Best case Worst case
[𝑁𝑢𝑚𝑏𝑒𝑟] [𝑐𝑚] [𝑁𝑢𝑚𝑏𝑒𝑟] [𝑚𝑠] [𝑚𝑠] [𝑚𝑠]

CPU GPU CPU GPU CPU GPU
643 7.6 1 16.7 1.0 16.5 1.0 17.0 1.0
643 7.6 2 17.2 1.2 16.6 1.2 22.9 1.3
643 7.6 3 17.3 1.4 16.6 1.3 28.3 1.6
643 7.6 4 17.5 1.6 20.3 1.5 35.9 2.3
1283 3.8 1 135.4 3.7 136.6 3.6 138.8 3.8
1283 3.8 2 142.2 4.0 135.5 3.9 184.3 5.0
1283 3.8 3 140.1 4.3 135.5 4.0 226.3 6.1
1283 3.8 4 141.3 4.4 165.1 4.2 286.4 7.0
2563 1.9 1 1092.7 25.0 1090.8 21.6 1119.5 23.7
2563 1.9 2 1118.6 22.6 1091.3 23.1 1481.4 28.7
2563 1.9 3 1129.2 23.2 1091.2 22.0 1813.6 34.5
2563 1.9 4 1177.5 23.8 1334.4 23.4 2312.7 39.7

3.2 Superpixel Segmentation

Superpixel segmentation is an oversegmentation technique that partitions an image into a
large number of connected segments, the superpixels, based on a similarity measure and a
grouping criterion. The main purpose of superpixels is a reduction of the number of pixels
and, consequently, the number of input elements for following processing steps. An overview
about superpixels and superpixel segmentation algorithms was given in Section 2.2.1.

This section introduces the superpixel segmentation algorithm and the metric to measure
the compactness of a given segmentation that were developed during this thesis. The
superpixel segmentation is the basis of the supervoxel segmentation that later provides
the building blocks for 3D pose estimation. In the first part of this section, the concept of
superpixel compactness and a metric to measure the compactness of a given superpixel
segmentation are introduced. The second part of this section presents the superpixel
algorithm and a comparison to other segmentation algorithms.
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(a) 𝛼 = 0 (b) 𝛼 = 0.9 (c) 𝛼 = 0.98 (d) 𝛼 = 1

Figure 3.10: Superpixel segmentations with various degrees of compactness. The compact-
ness parameter 𝛼 increases from no emphasis on compactness (left) to full compactness
(right). The most compact segmentation is actually identical to a grid.

3.2.1 Compactness

Compactness is a measure of shape. As Section 2.2.1 showed, there is an agreement
between authors of superpixel segmentation algorithms that compactness is a desirable
property [19, 95, 97, 111, 123, 163, 183, 185]. For visual reference, Figure 3.10 shows
examples of superpixel segmentations with varying degrees of compactness.

Compactness is not only preferable from an aesthetic point of view. Compact superpixels
are a better representation of spatially coherent information than superpixels that stretch
across the image. Also, it is computationally less expensive to extract information from
compact superpixels with regular boundaries simply because the overall boundary length
is shorter and easier to traverse. Further, the size of the superpixels defines the level of
detail they should capture. Non-compact superpixels with highly irregular boundaries that
try to capture every minor image detail can then be compared to overfitting in machine
learning.

In mathematics, measuring the compactness of a shape is a well-known task that is related
to the isoperimetric problem: for a given shape with boundary length 𝐿, find the 2D shape
with the same boundary length that maximizes the area [128]. In 2D, the solution is the
circle. The compactness of a shape can then be quantified with the isoperimetric quotient
that is given by the area of the shape divided by the area of a circle with the same boundary
length.
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The notion of the isoperimetric quotient can be directly applied to measure the compactness
of a superpixel. Let 𝐴𝑆 be the area 𝐴 of superpixel 𝑆 and let 𝐿𝑆 be its boundary length.
The radius of the circle with the same boundary length is then given by 𝑟 = 𝐿𝑆

2𝜋
. With 𝐴𝐶

being the area of a circle with radius 𝑟, the isoperimetric quotient 𝑄 of superpixel 𝑆 is

𝑄𝑆 = 𝐴𝑆

𝐴𝑐

= 4𝜋𝐴𝑆

𝐿2
𝑆

. (3.6)

The compactness of a superpixel segmentation represented by a set of superpixels 𝒮 is then
given by the sum of the isoperimetric quotients of all superpixels 𝑆 ∈ 𝒮 normalized with
their size |𝑆| relative to the full segmentation size |𝒮|. Normalizing with the superpixel size
instead of the number of superpixels is important to avoid that many small, but perfectly
compact, superpixels dominate the overall score. The compactness CO of superpixel
segmentation 𝒮 then is

𝐶𝑂(𝒮) =
∑︁
𝑆∈𝒮

(︁
𝑄𝑆 ·

|𝑆|
|𝒮|

)︁
. (3.7)

This compactness measure is used to quantify the compactness of superpixel segmentations.
The next section introduces an algorithm that offers a transparent way to control the
superpixel compactness. An evaluation to other superpixel segmentation algorithms and
an investigation of the impact of compactness on the segmentation quality is presented in
Section 3.2.3.

3.2.2 Superpixel Segmentation of Images

The superpixel segmentation algorithm presented here is motivated by SLIC [19]. SLIC is
an iterative algorithm that groups pixels with k-means clustering using superpixel centers
as seeds. Its similarity measure combines a weighted sum of color differences in Lab color
space and Euclidean distances in pixels. However, only the Euclidean distance term is
weighted. Further, due to this clustering, the connectivity of pixels cannot be guaranteed
and superpixels can be ripped apart. This requires a final postprocessing step to restore
connectivity.

The algorithm presented here overcomes these drawbacks by weighting both distance terms
in a transparent way. Also, connectivity is maintained during segmentation by applying the
similarity measure only to boundary pixels. In this way, the superpixels remain connected
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and cannot be ripped apart. Additionally, the algorithm is very efficient because the
similarity measure is only applied to boundary pixels.

Algorithm

The superpixel segmentation algorithm developed in this work is an iterative algorithm
that refines the boundaries of an initial superpixel segmentation by evolving them towards
the final segmentation. The algorithm requires only two parameters: the size of the initial
superpixels and the compactness weight 𝛼 that controls the superpixel compactness. One
key aspect is that all operations are strictly limited to boundary pixels and only require
information of the immediate neighborhood around them. The advantage of this local
design will be discussed later.

The segmentation is initialized with a rectangular grid of superpixels that is given by the
superpixel size as Figure 3.11a shows. Then, in each iteration, the similarity of every
boundary pixel to each superpixel in its immediate 4-neighborhood is computed. Then, the
pixel is assigned to the most similar superpixel. This is repeated for a given number of
iterations or until the segmentation converges (Figure 3.11d). By iteratively modifying the
boundaries, the algorithm can ensure that the superpixels remain connected and are not
ripped apart during segmentation as will be shown after introducing the algorithm.

The similarity between a pixel 𝑝 and a superpixel 𝑆 is expressed by the dissimilarity term 𝜓.
The more similar a pixel is to a superpixel, the smaller is the corresponding dissimilarity
measure 𝜓. The term 𝜓 combines the color space distance 𝑑𝑟𝑔𝑏(𝑝, 𝑆) in RGB color space
with the Euclidean distance 𝑑𝑥𝑦(𝑝, 𝑆) measured in pixels. Both terms are weighted with
compactness parameter 𝛼 ∈ [0, 1] leading to the following dissimilarity term:

𝜓(𝑝, 𝑆) = (1− 𝛼) · 𝑑𝑟𝑔𝑏(𝑝, 𝑆) + 𝛼 · 𝑑𝑥𝑦(𝑝, 𝑆). (3.8)

The color space distance 𝑑𝑟𝑔𝑏 is given by the Euclidean distance in RGB space with

𝑑𝑟𝑔𝑏(𝑝, 𝑆) =
√︁

(𝑝𝑟 − 𝑆𝑟)2 + (𝑝𝑔 − 𝑆𝑔)2 + (𝑝𝑏 − 𝑆𝑏)2 (3.9)

where 𝑝𝑟/𝑔/𝑏 and 𝑆𝑟/𝑔/𝑏 are the values of the red, green, and blue color channels. The color
of a superpixel S is the mean color of all pixels assigned to it. As boundary evolution is
sensitive to strong image gradients, this effect is reduced by low-pass filtering the images.
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(a) Initialization (b) One Interation (c) Five Iterations (d) Convergence

Figure 3.11: Iterative superpixel boundary evolution. The images show segmentation
results with an increasing number of iterations from left to right. The segmentation was
initialized with compactness parameter 𝛼 = 0.98 and 486 superpixels.

The Euclidean distance 𝑑𝑥𝑦 between pixel coordinates 𝑝𝑥/𝑦 and superpixel center 𝑆𝑥/𝑦 is
normalized by the initial superpixel size 𝑟:

𝑑𝑥𝑦(𝑝, 𝑆) =

√︁
(𝑝𝑥 − 𝑆𝑥)2 + (𝑝𝑦 − 𝑆𝑦)2

𝑟
. (3.10)

Equation 3.8 shows the function of compactness parameter 𝛼. For 𝛼 = 0, the boundary
evolution is solely based on color information and completely ignores spatial relationships,
leading to very irregular shapes. In contrast, with 𝛼 = 1, the segmentation uses only the
spatial distance while ignoring appearance information. This leads to very regular shapes,
but without any correlation to the image content. Figure 3.10 gives qualitative examples of
segmentations with varying degrees of 𝛼.

Local Design

One key aspect of the presented algorithm is its strongly local design. Computing the
similarity measure requires only information about the boundary pixel 𝑝 and its immediate
superpixel neighbors. This information is accessible within the 3×3 area, or 8-neighborhood,
around pixel 𝑝. The segmentation algorithm can modify the boundaries on this local scale
and does not require any information about the global segmentation as long as superpixels
remain connected. To guarantee for the global segmentation that superpixels are not split,
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(a) (b)

Figure 3.12: Local boundary evolution during superpixel segmentation. The 3 × 3 grid
shows the local 8-neighborhood around pixel 𝑝. The superpixels are represented by different
colors. The shading represents the similarity between pixels. In (a), pixel 𝑝 is more similar
to the upper superpixel than to its current one and, therefore, assigned to it. The assignment
is valid because all superpixels remain connected. In (b), the similarity of pixel 𝑝 to three
superpixels is computed. However, even though 𝑝 would fit better to the upper superpixel,
it cannot be assigned to it because this would split the blue superpixel.

it is sufficient to ensure that they are not split on the local level. This means that connected
pixels that belong to the same superpixel in the 3× 3 window must remain connected if
pixel 𝑝 is reassigned. Figure 3.12 shows examples of a valid and an invalid reassignment.

The local design has several advantages. First, it reduces computations because the
similarity term does not have to be computed for all pixels, but only for the subset of
boundary pixels. Second, by checking connectivity on the local level, the global connectivity
of superpixels is maintained. Third, it allows a parallel implementation on the GPU because
the local operations are independent of each other. In this way, every boundary pixel is
processed simultaneously to increase execution speed.

Algorithm 2 shows pseudo-code for an implementation of this superpixel segmentation.
In case the algorithm is executed in parallel, there are two necessary implementation
requirements. First, the processes modifying the boundary pixels must be started in
non-overlapping windows to avoid that two neighboring pixels are modified at exactly the
same time. Second, the mean color and position of superpixels have to be updated during
segmentation with atomic operators to avoid that updates are overwritten.

Complexity Analysis

The presented superpixel algorithm is very efficient in terms of time and space as the
complexity analysis will now show.
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Algorithm 2 Superpixel Segmentation
1: Input: image ℐ
2: Output: superpixel segmentation 𝒮
3: Define 𝑛4(𝑝): 4-neighborhood around 𝑝

4: Define 𝑚(𝑝): supervoxel that 𝑝 belongs to
5: Define 𝑐(𝑝): true, if connectivity around 𝑝 maintained
6:

7: Initialize superpixel segmentation 𝒮
8: while not converged do
9: for all Pixel 𝑝 ∈ ℐ do

10: if 𝑝 is boundary pixel then
11: 𝑑← 𝜓(𝑝,𝑚(𝑝))
12: for all 𝑆 ∈ 𝒮: ∃𝑞 ∈ 𝑛4(𝑝) ∧𝑚(𝑞) = 𝑆 do
13: if 𝜓(𝑝, 𝑆) < 𝑑 then
14: if 𝑐(𝑝) then
15: 𝑚(𝑝)← 𝑆

16: 𝑑← 𝜓(𝑝, 𝑆)
17: end if
18: end if
19: end for
20: end if
21: end for
22: end while
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In the worst case, the superpixel algorithm computes the similarity measure for all pixels
in each iteration. Let |ℐ| be the size of an image an let 𝐾 be the number of iterations. The
time complexity then is in 𝒪(|ℐ| ·𝐾). Given a constant number of iterations, the algorithm
is linear in the number of pixels.

Regarding space complexity, the algorithm requires storing the image and the set of
superpixels 𝒮. This leads to a space complexity in 𝒪(|ℐ|+ |𝒮|). Because the number of
superpixels is lower or equal to the number of pixels, the space complexity is linear in the
number of pixels.

For superpixel segmentation in general, every pixel needs to be processed. Therefore,
a linear time complexity is optimal. Regarding space complexity, every pixel must be
assigned to a superpixel. Therefore, a linear space complexity is optimal. There are more
efficient representations, e.g., by only storing boundary pixels, but this does not change the
complexity class.

3.2.3 Evaluation

The evaluation compares the superpixel algorithm from Section 3.2.2 to six segmentation
algorithms by using the new compactness metric in addition to the established metrics.

Experimental Setup

The evaluation used the full Berkeley segmentation dataset (BSDS) [102]. It contains
300 images with a total of 1, 633 human ground truth annotations. The images cover a
broad variety of scenes including humans, animals, landscapes, and buildings. The image
resolutions are 481× 321 pixels and 321× 481 pixels.

The superpixel segmentation algorithms used in this evaluation are the normalized cuts
implementation (NC) from [114], SLIC [19], TurboPixels (TP) [95], Superpixel Lattices
(LATTICE) [112], and entropy rate superpixels (ERS) [97]. Parameters were set according
to the values recommended by the authors. The evaluation of SLIC also included the
maximum range of the weighting parameter by setting it to 𝑚 = 0 and 𝑚 = 𝑀𝐴𝑋𝐼𝑁𝑇 .
The segmentation algorithm proposed by Felzenszwalb and Huttenlocher (FH) [63] served
as an additional benchmark algorithm. It does not aim to compute superpixels, but it
achieves very accurate image segmentations and is commonly used in superpixel evaluations.
By adjusting the parameters of FH, the number of image segments, i.e., superpixels, can
be controlled.
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The evaluation compares the segmentation performance with four metrics. Besides the
compactness metric (CO) introduced in Section 3.2.1, the following metrics were used.

Boundary recall (BR) measures the fraction of ground truth boundaries overlapping
with superpixel boundaries. It is well suited for superpixel segmentations because it does
not penalize the redundant boundaries resulting from oversegmentation. Consequently,
the boundary recall metric is the most often used metric in the context of superpixels.
When computing boundary recall, some authors allow a certain tolerance for the boundary
overlap. This evaluation does not use such a tolerance.

The beneficial property of not penalizing redundant boundaries is at the same time the
main drawback of this metric. The boundary recall tends to improve with an increase of
boundary pixels. It achieves a perfect score of 1 if the whole image consists of superpixel
boundaries. Clearly, this would not be a good segmentation. Therefore, it is important to
use another metric that penalizes excess boundaries and that acts as a balancing factor.
The discussion will show that the compactness metric is well-suited for this task.

A pixel 𝑝 is called a boundary pixel if one of its 4-neighbors belongs to another segment.
Let 𝑏𝐺(𝑝) and 𝑏𝒮(𝑝) be true if pixel 𝑝 of image ℐ is a boundary pixel in the ground truth
segmentation 𝐺 or the superpixel segmentation 𝒮 and let | · | give the number of pixels.
The boundary recall 𝐵𝑅(𝒮, 𝐺) then is

𝐵𝑅(𝒮, 𝐺) = |{𝑝 ∈ ℐ : 𝑏𝒮(𝑝) ∧ 𝑏𝐺(𝑝)}|
|{𝑝 ∈ ℐ : 𝑏𝐺(𝑝)}| . (3.11)

Undersegmentation error (UE) measures the ”bleeding” [95] caused by undersegmen-
tation. Superpixels are meant to oversegment an image, i.e., each ground truth object
should be partitioned by a set of superpixels and each superpixel should belong to only one
ground truth segment. If superpixels overlap with more than one ground truth segment,
undersegmentation occurred. This metric measures the overlap of superpixels with more
than one ground truth segment and was introduced by Levinshtein et al. [95]. It is often
used for superpixel evaluation, e.g., by [19, 97, 163, 180, 183].

Let 𝑔𝑖 be a ground truth segment of ground truth segmentation 𝐺 and | · | give the number
of pixels. Then, following [95], the undersegmentation error of superpixel segmentation 𝒮
with respect to one ground truth segment 𝑔𝑖 is

𝑈𝐸(𝒮, 𝑔𝑖) =

(︁∑︀
𝑆∈𝒮|𝑆∩𝑔𝑖 ̸=∅ |𝑆|

)︁
− |𝑔𝑖|

|𝑔𝑖|
. (3.12)
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The undersegmentation error for the whole superpixel segmentation is then

𝑈𝐸(𝒮, 𝐺) =
∑︁

𝑔𝑖∈𝐺

(︃
𝑈𝐸(𝒮, 𝑔𝑖) ·

|𝑔𝑖|
|𝐺|

)︃
. (3.13)

Note that, in contrast to the other metrics, the undersegmentation error can become greater
than 1.

Achievable accuracy (AA) measures the accuracy of the best possible segmentation of
ground truth objects when using the given superpixels as building blocks. Therefore, it
measures one of the core functions of superpixels: their utility to act as atomic primitives.
This metric was introduced by Nowozin et al. [120] and also used by Liu et al. [97].

Let 𝑔𝑖 be a ground truth segment of ground truth segmentation 𝐺 and | · | give the number
of pixels. Let 𝑀(𝒮, 𝑔𝑖) be the set of superpixels that has the largest overlap with 𝑔𝑖. Then,
following [120] and [97], the achievable segmentation accuracy for one ground truth segment
is given by

𝐴𝐴(𝒮, 𝑔𝑖) =
∑︀

𝑆∈𝑀(𝒮,𝑔𝑖) |𝑆 ∩ 𝑔𝑖|
|𝑔𝑖|

(3.14)

and for all ground truth segments by

𝐴𝐴(𝒮, 𝐺) =
∑︁

𝑔𝑖∈𝐺

(︃
𝐴𝐴(𝒮, 𝑔𝑖) ·

|𝑔𝑖|
|𝐺|

)︃
. (3.15)

Results and Discussion

In this section, the evaluation results are presented and discussed. A visualization of the
results is given in several figures. The graphs in Figure 3.13 show quantitative results for
all four metrics. Figure 3.14 shows the correlation between compactness and the other
metrics. Figure 3.15 gives example segmentations of all algorithms and Figure 3.16 shows
additional qualitative examples of the presented algorithm.

The results in Figure 3.13 show that the performance of the presented algorithm can
be effectively controlled by adjusting compactness parameter 𝛼. The higher 𝛼, the more
compact the segmentation becomes. But there is a negative correlation between compactness
and the other metrics, in particular boundary recall, as Figure 3.14 shows. The more
compact a segmentation, the lower is its boundary recall. This is a strong correlation with
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(d) Achievable segmentation accuracy

Figure 3.13: Evaluation of superpixel segmentations with the four metrics boundary recall,
compactness, undersegmentation error, and achievable segmentation accuracy. The left
graphs show comparisons to the six benchmark segmentations. The right graphs show
variations of parameter 𝛼 compared to the full parameter range of SLIC [19].
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Figure 3.14: Correlation between compactness and the other superpixel metrics. There is
a strong correlation between compactness and boundary recall with a correlation coefficient
of −0.93.

a correlation coefficient of −0.93 and holds for all evaluated segmentation algorithms. It is
also in accordance with the definition of compactness: for more accurate segmentations,
the superpixels have to adapt better to image boundaries which leads to a decreased
compactness, and vice versa. For the other metrics, the correlation coefficient is still
negative, but does not support a significant correlation (UE: −0.38, AA: −0.69).

Given the trade-off between compactness and boundary recall, the recommended parameters
for the presented algorithm are 𝛼 = 0.9 for accurate and 𝛼 = 0.98 for compact segmentations.
With 𝛼 = 0.9, the superpixel algorithm achieves better boundary recall than all other
algorithms for all superpixel sizes with similar or better performance for undersegmentation
error and achievable segmentation accuracy (Figure 3.13).

A comparison of results in Figure 3.13 with qualitative results in Figure 3.15 shows that
segmentations that receive a higher compactness score appear to be visually more compact
as well. An additional analysis of the implications of compactness including an example
application is given in [3, 4]. In this work, however, the focus regarding superpixels is its
extension to supervoxels in 3D.

3.2.4 Conclusion

This section introduced a superpixel segmentation algorithm and showed that it performs
equally or better than existing algorithms. In addition, a compactness metric was introduced
that measures the compactness of superpixel segmentations. This metric is an additional
tool to evaluate superpixel algorithms. In the context of this work, it was shown that there
is a significant correlation between boundary recall and compactness.
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(a) TP [95] (b) LATTICE [112] (c) SLIC [19]

(d) FH [63] (e) NC [113, 114] (f) ERS [97]

(g) Ours𝛼=0.90 (h) Ours𝛼=0.98

Figure 3.15: Qualitative examples of the evaluated superpixel algorithms. The segmenta-
tions consist of 400 to 500 superpixels and show the different qualitative properties of the
algorithms.
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Figure 3.16: Additional qualitative example segmentation with the presented superpixel
algorithm. The top row shows results for the recommended compactness parameter 𝛼 = 0.9
and the bottom row for 𝛼 = 0.98. The superpixel numbers from left to right are: 216, 486,
805, and 1107.

In this thesis, the superpixel algorithm serves two purposes. First, it can be used to improve
the foreground segmentation for voxel carving with video images as was demonstrated in [2].
Second, it can directly be extended to supervoxels for segmentation of 3D voxel volumes.
The next section will show how the properties of the image-based algorithm pass over to
volume-based supervoxel segmentation. Additionally, a metric to measure the compactness
of 3D supervoxel segmentations will be presented as well.

3.3 Supervoxel Segmentation

This section shows how the concepts of superpixel segmentation and the algorithm intro-
duced in the previous section can be continued in 3D and applied to supervoxel segmentations
of voxels. First, a metric is introduced to measure the compactness of supervoxel seg-
mentations. Then, the supervoxel segmentation algorithm is described which is a direct
continuation of the superpixel algorithm presented in the previous section. After an evalua-
tion of the algorithm, this section concludes with the introduction of supervoxel graphs
that are the basis for the estimation of body parts.

The main contribution presented in this section is an efficient segmentation method for
3D voxel data into supervoxels. By using supervoxels instead of voxels, the number of
input elements for the following algorithms is significantly reduced. In the case of pose
estimation, for example, the search space will be reduced by several orders of magnitude
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as will be shown in Section 4. An additional contribution is a 3D compactness metric for
supervoxel segmentations. Further, the supervoxel graph, that is presented in this work, is
a special representation that uses the volumetric nature of supervoxels to form connections
between them.

3.3.1 Compactness

The concept of compactness, that was introduced for superpixels in Section 3.2, can also
be applied to supervoxels. As for superpixels, compactness is a desirable property for
supervoxels, too. The reasoning follows the argument for superpixel compactness. Elements
of compact supervoxels are close to each other with smooth supervoxel surfaces. Therefore,
spatially coherent information is better represented by more compact supervoxels. Also,
operations involving the surface voxels of a supervoxel are more efficient because the
number of surface voxels and visible voxel faces is smaller for more compact supervoxels
with smoother surfaces.

The compactness of a shape in 3D can be measured by setting its volume in relationship to
its surface. The more compact, the higher becomes the volume-to-surface ratio of a shape.
Bribiesca developed a compactness measure that specifically targets volumes represented
by voxels [43, 44] that will be the basis for the supervoxel compactness metric.

Bribiesca measures the compactness of an object composed of voxels based on comparing
its inner contact area to the maximum inner contact area of an object that has the same
volume [44]. The inner contact area 𝐴𝑐 is equal to the number of voxel faces inside the
volume and can be computed using the number of voxels and the outer surface area. The
surface area 𝐴 is given by the visible voxel faces on the surface of the object. Let 𝑛 be the
number of voxels and let the surface area of a voxel face be equal to one. Then, the inner
contact surface 𝐴𝑐 is given by [43]:

𝐴𝑐 = 6𝑛− 𝐴
2 . (3.16)

Equation 3.16 expresses that the inner contact surface area is given by the total number of
voxel faces 6𝑛 without the visible voxel faces 𝐴 divided by 2 because each inner contact
area is shared by two voxels.

Due to the discretization through voxels, the object with the maximum contact area for a
given volume is a cube as was shown in [43]. Then, following Equation 3.16, the maximum
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contact area 𝐴𝑐𝑚𝑎𝑥 of a cube with side length 𝑚 consisting of 𝑛 = 𝑚3 voxels and with a
surface area of 𝑚2 for each side is given by [43]:

𝐴𝑐𝑚𝑎𝑥 = 6𝑚3 − 6𝑚2

2 = 3(𝑚3 −𝑚2) = 3(𝑛− 𝑛 2
3 ). (3.17)

The compactness 𝐶 of a 3D object consisting of 𝑛 voxels with visible surface area 𝐴 is then
given by the ratio of its contact surface area to the maximum contact surface area of an
object with the same volume [44]:

𝐶 = 𝐴𝑐

𝐴𝑐𝑚𝑎𝑥

=
3𝑛− 𝐴

2

3(𝑛− 𝑛 2
3 )

=
𝑛− 𝐴

6

𝑛− 𝑛 2
3
. (3.18)

Similar to the compactness of superpixels, this compactness measure can now be used to
formulate a compactness metric for supervoxels. Let 𝒱 be a set of supervoxels and let 𝐶𝑉

be the compactness of supervoxel 𝑉 as given by Equation 3.18 with | · | giving the number
of voxels. Then, the compactness 𝐶𝒱 of a supervoxel segmentation 𝒱 is

𝐶𝒱 =
∑︁
𝑉 ∈𝒱

(︃
𝐶𝑉 ·

|𝑉 |
|𝒱|

)︃
. (3.19)

This metric is easy to calculate because it only involves counting the number of voxels and
visible surface areas. By normalizing with the size of the supervoxels relative to the sum of
all voxels, the metric is robust to variations of the sizes of supervoxels.

3.3.2 Supervoxel Segmentation of Volumes

The supervoxel segmentation for voxel volumes is the continuation of the superpixel
segmentation for images that was introduced in Section 3.2. Instead of working on 2D
pixels of an image lattice, it segments 3D voxels arranged in a regular grid. The basic
principles remain the same and the properties of the superpixel segmentation are carried
over to the domain of 3D segmentation.
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Algorithm

The supervoxel algorithm initializes the segmentation with a regular grid of cuboids. The
size of the cuboids is given by the initial supervoxel size. The grid partitions the voxel
volume into equally sized cells and each voxel is assigned to its corresponding supervoxel.
Then, after initialization, the supervoxel segmentation iteratively evolves the surfaces of the
initial segmentation towards convergence. In each iteration, the similarity of each surface
voxel to its immediate six neighboring supervoxels is computed. If it is more similar to a
neighboring supervoxel, it is assigned to it, thereby improving the overall segmentation.
This process is repeated for a given number of iterations or until convergence.

The boundary evolution is guided by the dissimilarity measure 𝜓(𝑣, 𝑉 ) between voxel 𝑣
and supervoxel 𝑉 . In each iteration, it is applied to all supervoxels in the 6-neighborhood
around voxel 𝑣. It measures the dissimilarity based on spatial proximity 𝑑𝑥𝑦𝑧 and difference
between normals 𝑑𝑛 weighted with compactness parameter 𝛼 ∈ [0, 1]:

𝜓(𝑣, 𝑉 ) = (1− 𝛼) · 𝑑𝑛(𝑣, 𝑉 ) + 𝛼 · 𝑑𝑥𝑦𝑧(𝑣, 𝑉 ). (3.20)

The compactness parameter 𝛼 serves the same purpose as for superpixels. It weights the
influence of spatial proximity on surface evolution. With 𝛼 = 0, only the surface voxels are
modified and the supervoxel surfaces can stretch out leading to less compact supervoxels.
With 𝛼 = 1, the supervoxel segmentation is identical to k-means clustering and leads to
very compact supervoxels. However, in contrast to image segmentation, where every pixel is
occupied and 𝛼 = 1 leads to meaningless segmentations, this is not the case for supervoxels.
Here, the presence of a voxel carries meaning in itself because it describes the existence
of an object at this position. Therefore, 𝛼 = 1 is indeed a viable option for supervoxel
segmentations.

The spatial similarity 𝑑𝑥𝑦𝑧 is given by the Euclidean distance between voxel 𝑣 and super-
voxel 𝑉 with center coordinates 𝑣𝑥/𝑦/𝑦 and 𝑉 𝑥/𝑦/𝑦 normalized by the initial supervoxel
size 𝑟:

𝑑𝑥𝑦𝑧(𝑣, 𝑉 ) =

√︁
(𝑣𝑥 − 𝑉 𝑥)2 + (𝑣𝑦 − 𝑉 𝑦)2 + (𝑣𝑧 − 𝑉 𝑧)2

𝑟
. (3.21)

The similarity 𝑑𝑛 is based on normals. It compares the normals of surface voxels with
the mean supervoxel normal in Euclidean space. Only surface voxels contribute towards
this measure as inner voxels have no normals. A surface voxel is a voxel with at most
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(a) Full view (b) Zoomed view

Figure 3.17: Voxel normals. The images show the normals of the surface voxels originating
at the voxel centers.

five neighboring voxels, i.e., at least one of the six sides must be visible. Examples of
voxel normals are shown in Figure 3.17. The mean supervoxel normal is the sum of all
surface voxel normals normalized by the number of surface voxels. The length of the mean
supervoxel normal does not necessarily have to be 1. In contrast to the color distance used
for superpixels, it is measured in the same space as the spatial similarity and comparison to
the spatial distance is more meaningful. With voxel normal 𝑣𝑛𝑥/𝑛𝑦/𝑛𝑧 and mean supervoxel
normal 𝑉 𝑛𝑥/𝑛𝑦/𝑛𝑧, the similarity 𝑑𝑛 is given by

𝑑𝑛(𝑣, 𝑉 ) =
√︁

(𝑣𝑛𝑥 − 𝑉 𝑛𝑥)2 + (𝑣𝑛𝑦 − 𝑉 𝑛𝑦)2 + (𝑣𝑛𝑧 − 𝑉 𝑛𝑧)2. (3.22)

In contrast to the superpixel algorithm, this algorithm does not include color information.
Most of the voxels are inside the volume and, therefore, colorless. Also, the surface voxels
are generally not colored during voxel carving. However, it would be possible to use color
information only for surface voxels instead of normals in Equation 3.22. However, as
discussed in Section 2.1.3, color representations can differ between cameras leading to
non-reliable information and are not considered in the context of this work.

Similar to the superpixel segmentation, the supervoxel segmentation only works on the
surface of supervoxels. This reduces the number of computations required in each iteration
substantially. Further, it guarantees that connected supervoxel parts remain connected
during segmentation and cannot be ripped apart. Algorithm 3 shows a pseudo-code
implementation of the supervoxel segmentation.
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Algorithm 3 Supervoxel Segmentation
1: Input: voxel grid V

2: Output: supervoxel segmentation 𝒱
3: Define 𝑛6(𝑣): 6-neighborhood around 𝑣

4: Define 𝑚(𝑣): supervoxel that 𝑣 belongs to
5: Define 𝑐(𝑣): true, if connectivity around 𝑣 maintained
6:

7: Initialize supervoxel segmentation 𝒱
8: while not converged do
9: for all Voxel 𝑣 ∈ V do

10: if 𝑣 is boundary voxel then
11: 𝑑← 𝜓(𝑣,𝑚(𝑣))
12: for all 𝑉 ∈ 𝒱 : ∃𝑞 ∈ 𝑛6(𝑣) ∧𝑚(𝑞) = 𝑉 do
13: if 𝜓(𝑣, 𝑉 ) < 𝑑 then
14: if 𝑐(𝑣) then
15: 𝑚(𝑣)← 𝑉

16: 𝑑← 𝜓(𝑣, 𝑉 )
17: end if
18: end if
19: end for
20: end if
21: end for
22: end while
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(a) Valid change

(b) Invalid change

Figure 3.18: Boundary evolution for supervoxel segmentation. The similarity between
boundary voxel 𝑣 and the supervoxels in its 6-neighborhood is computed. Then, 𝑣 is
assigned to the most similar supervoxel. Colors represent supervoxels and the voxel shading
the similarity between voxels. In (a), voxel 𝑣 fits better to the blue supervoxel and is
assigned to it. This is a valid reassignment because both supervoxels remain connected in
the 26-neighborhood around 𝑣. In (b), even though voxel 𝑣 would fit better to the green
supervoxel, it cannot be reassigned because this would locally split the blue supervoxel.

Local design

Like the superpixel segmentation, the algorithm strictly follows a local design and only
works on boundary voxels. The advantages are the same as for the superpixel segmentation:
reduction of similarity measurements because only a subset of voxels is evaluated in each
iteration, connected supervoxels remain connected, and a parallel implementation on the
GPU is possible because neighborhoods can be evaluated independently of each other.

To guarantee that supervoxels remain connected, it is sufficient to enforce connectivity in
the local neighborhood around boundary voxel 𝑣. If supervoxels remain connected in the
local neighborhood, they also remain connected in the global segmentation. Connectivity
means that all voxels in the 26-neighborhood around voxel 𝑣, which belong to the same
supervoxel, must be connected even if 𝑣 is reassigned. Figure 3.18 shows two examples of
valid and invalid reassignments.
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3.3.3 Supervoxel Graphs

Similar to superpixels, there is no predetermined structure for supervoxel segmentations. In
particular, given a particular supervoxel, its neighborhood is not deterministic. Neighbor-
hoods, however, are often important for algorithms because they introduce structure into
the segmentation. This structure can then be used by algorithms to, for example, iterate
over the segmentation.

The relationships between supervoxels can be represented by adjacency graphs that connect
neighboring supervoxels [121]. An adjacency graph is well-suited to structure supervoxel
segmentations, but it is limited to the immediate neighborhood around supervoxels. In this
work, the connectivity between two supervoxels follows a different criterion that is based on
the volumetric nature of supervoxel segmentations. This leads to a different representation:
the supervoxel graph.

The supervoxel graph is not limited to the neighborhoods around supervoxels, but it
connects supervoxel centers across arbitrary distances as long as the connection remains
completely inside the segmented volume. This is important because the connections of the
supervoxel graph will later be used as candidates for rigid body parts in the pose estimation
algorithm described in Section 4.

Let the vertices of the supervoxel graph be represented by supervoxels 𝑉 ∈ 𝒱 with edges
𝑒𝑖𝑗 ∈ 𝐸 that are the connections between centers of supervoxels 𝑉 𝑖 and 𝑉 𝑗. Let 𝑐(𝑉 𝑖, 𝑉 𝑗)
be the set of voxels 𝑣 that lie on edge 𝑒 in voxel grid V, both carved (𝑣 = 0) and existing
(𝑣 = 1) ones. Then, the existence of an edge between two supervoxels is given by

𝑒𝑖𝑗 ∈ 𝐸 ⇐⇒ ∀𝑣 ∈ 𝑐(𝑉 𝑖, 𝑉 𝑗) : 𝑣 = 1. (3.23)

Equation 3.23 is rather strict in that it requires that the whole connection between two
supervoxels is fully within the carved volume. For real data, however, there are often small
defects in the visual hull, especially for thinner limbs like the arms. Following this strict
formulation, many edges would be removed only because one single voxel is not occupied.
Consequently, these removed edges would also not be potential candidates for body parts.

The probabilistic, or weighted, supervoxel graph relaxes the strict formulation in Equa-
tion 3.23 by weighting the connection. The weight is equivalent to the fraction of the
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(a) Strict supervoxel graph (b) Weighted supervoxel
graph

(c) Weighted supervoxel graph with anno-
tations

Figure 3.19: Supervoxel and weighted supervoxel graph. The circles represent supervoxel
centers inside a volume (gray) and the black lines connections between supervoxels. (a) shows
only connections between supervoxels if the connection is fully inside the gray volume
(e.g., between 3 and 2, but not between 3 and 5). The thickness of the dashed lines in (b)
represent the weight of connections for the fully connected weighted supervoxel graph. (c) is
similar to (b), but additionally shows example numbers for the connection weights.

connection that is within the volume. Let | · | give the number of voxels. Then, the weight
𝑤(𝑒𝑖𝑗) of an edge is given by

𝑤(𝑒𝑖𝑗) = |
⋃︀
𝑣 ∈ 𝑐(𝑉 𝑖, 𝑉 𝑗) : 𝑣 = 1|
|⋃︀ 𝑣 ∈ 𝑐(𝑉 𝑖, 𝑉 𝑗)|

. (3.24)

Figure 3.19 shows a visual explanation for both versions of the supervoxel graph. Figure 3.20
shows a voxel segmentation together with supervoxel centers and the resulting strict and
weighted supervoxel graphs for an example from the UMPM dataset [162].

Another potential representation form that will not be further discussed in the context of
this work are supervoxel grids. Similar to superpixel lattices for images, a supervoxel grid
maintains the regular structure analogous to voxel grids. In particular, each supervoxel can
be assigned an unique identifier that determines its position in the grid and its neighbors.
This representation can more easily be traversed than a general graph. Similar to our work
about superpixel lattices in [4], it would be possible to extend the supervoxel segmentation
to guarantee a grid structure; however, this is not required here.
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(a) Voxels with supervoxel centers (b) Strict supervoxel graph (c) Weighted supervoxel graph

Figure 3.20: Supervoxel graph examples. (a) shows the white voxel centers together with
colored supervoxel centers. (b) shows the strict supervoxel graph. The outer supervoxels
are not connected to any other supervoxel because the connection would partially be outside
the bounding volume. (c) shows a fully connected weighted supervoxel graph with lighter
colors indicating a higher weight.
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Complexity Analysis

This section presents the complexity analysis of the supervoxel segmentation and for the
supervoxel graph algorithms, both for time and space complexity.

Supervoxel Segmentation Let |V| be the total number of voxels in the voxel grid and
let 𝐾 be the number of iterations. In the worst case, the similarity of every voxel to all
neighboring supervoxels has to be computed in each iteration. The similarity computation
involves at maximum six neighbors and is constant. It then follows that the time complexity
of the supervoxel segmentation is in 𝒪(|V| ·𝐾). With a constant number of iterations, the
algorithm is linear in the number of voxels.

For real-world scenarios, the actual complexity is much lower. This is because the compu-
tation of the similarity term, which is the most expensive part in the algorithm, must only
be done for boundary voxels. In general, the number of boundary voxels is significantly
smaller than the total number of voxels.

Regarding memory requirements, the algorithm requires storing both the voxel grid V and
the supervoxels 𝒱 . This leads to a space complexity in 𝒪(|V|+ |𝒱|).

Supervoxel Graphs The time and space complexity for the supervoxel graph is quadratic
in the number of supervoxels |𝒱|. In the worst case, there is a connection between every
pair of supervoxels that must be computed and stored. Therefore, the time and space
complexities are both in 𝒪(|𝒱|2). This complexity class applies to the normal as well as
the weighted supervoxel graphs.

3.3.4 Evaluation

This section presents the evaluation of the supervoxel algorithm developed during this
thesis and the supervoxel algorithm presented by Papon et al. [121]. The first part discusses
metrics based on their applicability to supervoxels before presenting the evaluation results
in the second part.

Metrics

There is a set of well-established metrics for superpixel segmentation, namely boundary
recall, undersegmentation error, and achievable segmentation accuracy, that can also be
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applied to supervoxel segmentation of volumes as Xu and Corso [182] showed. Even though
these metrics target fully occupied volumes created by stacking images, they can also be
applied to sparse volumes created by voxel carving as will be discussed in this section.
These metrics are complemented by the 3D compactness metric for supervoxels presented
in Section 3.3.1.

In contrast to [182], Papon et al. [121] followed a different evaluation method. They
projected the supervoxels back into the image plane and applied conventional boundary
recall and undersegmentation error metrics. This, however, is only well-suited for surfaces
as it does not capture information inside of volumes.

3D Boundary Recall (3D BR) The 3D boundary recall measures the overlap of seg-
mentation boundaries with ground truth boundaries. A boundary voxel has at least one
neighbor in its 6-neighborhood that belongs to a different supervoxel or ground truth
segment. In the sparse voxel grid, surface voxels, i.e., voxels with at least one free voxel
face, are also counted as boundary voxels.

While boundary recall is an excellent measure for superpixels, its usefulness for sparse
voxel grids is limited. The surface voxels represent a large portion of the ground truth
boundaries. They are always correctly classified by definition, thus biasing the metric. In
addition, boundaries inside of volumes are not as clearly marked as is the case for images
or image stacks. With the absence of color and normal information inside volumes, it is
hard to segment the boundaries correctly. For example, it is difficult to decide where the
shoulder ends and the arm begins. Given these reasons, the 3D boundary recall should be
treated only as an indicator of segmentation accuracy.

Let 𝑏𝐺(𝑣) and 𝑏𝒱(𝑣) be true if voxel 𝑣 ∈ V is a boundary voxel in the ground truth
segmentation 𝐺 or the supervoxel segmentation 𝒱 and let | · | give the number of voxels.
Following [182], the 3D boundary recall 𝐵𝑅(𝒱 , 𝐺) then is

𝐵𝑅(𝒱 , 𝐺) = |{𝑣 ∈ V : 𝑏𝒱(𝑣) ∧ 𝑏𝐺(𝑣)}|
|{𝑣 ∈ V : 𝑏𝐺(𝑣)}| . (3.25)

3D Undersegmentation Error (3D UE) The 3D undersegmentation error measures how
much supervoxels overlapping with one ground truth segment reach out into other ground
truth segments. It faces a similar problem as the 3D boundary recall. Due to non-existent
color and normal features inside volumes, it is hard to correctly classify boundaries, thus
leading to an increased error. This effect can be quite severe. If only one voxel reaches into
another ground truth segment, the whole supervoxel contributes to the error.
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Following [182] based on [95], let 𝐺 be the set of ground truth segments 𝑔 represented by
voxels and let 𝒱 be the set of supervoxels 𝑉 with | · | giving the number of voxels. Then,
the 3D undersegmentation error 𝑈𝐸(𝒱 , 𝑔𝑖) of ground truth segment 𝑔𝑖 is

𝑈𝐸(𝒱 , 𝑔𝑖) =

(︁∑︀
𝑉 ∈𝒱|𝑉 ∩𝑔𝑖 ̸=∅ |𝑉 |

)︁
− |𝑔𝑖|

|𝑔𝑖|
. (3.26)

The undersegmentation error for the whole segmentation is then

𝑈𝐸(𝒱 , 𝐺) =
∑︁

𝑔𝑖∈𝐺

(︃
𝑈𝐸(𝒱 , 𝑔𝑖) ·

|𝑔𝑖|
|𝐺|

)︃
. (3.27)

Similar to the 2D undersegmentation error, the 3D undersegmentation error can be greater
than 1, as well.

3D Achievable Segmentation Accuracy (3D AA) The 3D achievable segmentation
accuracy is probably the best-suited metric for supervoxel segmentations in sparse voxel
grids. It measures the basic function of supervoxels without relying on boundaries alone:
how accurately objects can be represented with supervoxels as building blocks.

Let 𝑀(𝒱 , 𝑔𝑖) be the set of supervoxels that have the largest overlap with ground truth
segment 𝑔𝑖 and let | · | give their size in voxels. Following [182] based on [120], the 𝐴𝐴(𝒱 , 𝑔𝑖)
of one ground truth segment is given by

𝐴𝐴(𝒱 , 𝑔𝑖) =
∑︀

𝑉 ∈𝑀(𝒱,𝑔𝑖) |𝑉 ∩ 𝑔𝑖|
|𝑔𝑖|

(3.28)

and for all ground truth segments by

𝐴𝐴(𝒱 , 𝐺) =
∑︁

𝑔𝑖∈𝐺

(︃
𝐴𝐴(𝒱 , 𝑔𝑖) ·

|𝑔𝑖|
|𝐺|

)︃
. (3.29)

3D Compactness (3D CO) The compactness metric described in Section 3.3.1 is specifi-
cally designed for supervoxel segmentations of sparse voxel grids and suffers no drawbacks
from absent features inside volumes. It accurately measures the shape of supervoxels and
describes the regularity of their surface.
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Dataset

There are datasets available for supervoxel segmentation of video sequences [182], of image
stacks from medical scans [98], and of RGB-D images [150]. However, the data are either
not sparse [98, 182] as is the case of voxels computed with voxel carving or they are
only annotated in image space [150] which makes it difficult to evaluate 3D compactness.
Therefore, the evaluation uses examples based on the ground truth from the Utrecht
Multi-Person Motion (UMPM) dataset [162].

The UMPM dataset [162] is well suited for this work because it contains multi-view video
sequences of humans together with ground truth labels of human body parts. These
body part labels are used to generate ground truth labels for supervoxel evaluation in the
following way. First, two voxel representations are acquired, the first one with voxel carving
and the second one by synthetically converting body parts into voxels. The synthetic voxels
are sampled from cylinders with fixed widths and the body parts as center axes. Then,
each voxel is assigned with the label of the ground truth body part that is closest to it.
Figure 3.21 shows examples of voxel carving and synthetic volumes with ground truth
labels.

Experimental Setup

The evaluation shows results for the sequence p1 orthosyn 1 of the UMPM dataset [162]
that consists of 2480 frames. In addition, the synthetic cube from Section 3.1.4 is used for
runtime evaluation.

The evaluation includes both the presented supervoxel segmentation as well as the voxel
cloud connectivity segmentation (VCCS) algorithm presented by Papon et al. [121] that is
implemented in the PCL library [138]. The evaluation includes several initial supervoxel
sizes ranging from approximately 10 cm to 50 cm with voxel sizes of 2.5 cm. VCCS uses a
similarity measure that combines distances in color space, Euclidean space, and between
features based on normals. All three parts can be weighted with a separate parameter:
𝜆 for color, 𝜇 for spatial distance, and 𝜖 for normals. Due to the colorless voxels, the color
weight was set to 𝜆 = 0. Then, three parameter sets were used. One that only respects
spatial distance (𝜇 = 1, 𝜖 = 0), one that uses only normals (𝜇 = 0, 𝜖 = 1), and one with
equal weights as presented in [121] (𝜆 = 1, 𝜇 = 1). The supervoxel algorithm developed
during this work only requires compactness parameter 𝛼. The evaluation includes three
variations of 𝛼 that are similar to the variations used for VCCS: 𝛼 = 0 for non-compact
segmentations that only use normals, 𝛼 = 1 for very compact segmentations, and 𝛼 = 0.9
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as a setting with a good trade-off between accuracy and compactness. In contrast to VCCS,
the presented algorithm is an iterative algorithm and the number of iterations was set to 10
for all experiments.

Results and Discussion

Figure 3.22 shows results for the four metrics 3D boundary recall, 3D compactness, 3D
undersegmentation error, and 3D achievable segmentation accuracy. Figure 3.23 shows
correlations between compactness and the other three metrics.

Figure 3.22 shows that the performance of the presented algorithm on the four metrics can
effectively be controlled with compactness parameter 𝛼. The graphs in Figure 3.23 show
the correlation between the three metrics and compactness. The correlation coefficient for
boundary recall over compactness is negative (correlation coefficient −0.59 for synthetic
and −0.68 for real data), but not as significant as for superpixels. However, the correlation
analysis shows a significant correlation between undersegmentation error and compactness
(synthetic: −0.95, real: −0.95) and segmentation accuracy and compactness (synthetic:
0.89, real: 0.91). While the effect of compactness on boundary recall and undersegmentation
error is similar for both superpixel and supervoxel segmentations, it is different for achievable
segmentation accuracy. For supervoxels, an increase of compactness also leads to an increase
of segmentation accuracy. This positive effect can be attributed to the compactness of body
parts in the ground truth. As a consequence, this work will use parameters for a compact
segmentation (𝛼 = 1) because it gives the best results in the context of pose estimation.

In comparison to VCCS, the presented algorithm achieves similar results for comparable
settings (for example, VCCS with 𝜇 = 1 and 𝜖 = 0 is similar to 𝛼 = 1). VCCS achieves
the best results for boundary recall, whereas the presented algorithm achieves the lowest
undersegmentation error and highest segmentation accuracy (with 𝛼 = 1). Both algorithms
achieve equally high best values for compactness.

The comparison in Figure 3.22 between synthetic voxels and the result of data from voxel
carving shows no apparent differences.

Figure 3.24 shows qualitative results for various numbers of iterations. A qualitative com-
parison of the various parameter settings for both algorithms is presented in Figure 3.25.
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(a) Video image (b) Voxel carving (2.5 𝑐𝑚) (c) Ground truth labels

(d) Video image (e) Synthetic voxels (2.5 𝑐𝑚) (f) Ground truth labels

Figure 3.21: Ground truth examples for the evaluation of supervoxel segmentations. The
left images show one of the four views of the video sequence from the UMPM dataset [162]
with ground truth poses. The middle images show 3D reconstructions with (b) voxel carving
and (e) synthetically generated voxels. The right images show voxels colored according to
the ground truth label of the body part they are assigned to.
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(a) 3D Boundary recall for synthetic (left) and real voxels (right)
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(b) 3D Compactness for synthetic (left) and real voxels (right)
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(c) 3D Undersegmentation error for synthetic (left) and real voxels (right)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 1003
D

 S
e

g
m

e
n

ta
ti

o
n

 a
cc

u
ra

cy

Supervoxels

VCCS (μ=1 ε=0)

VCCS (μ=0 ε=1)

VCCS (μ=1 ε=1)

Ours (α=1.0)

Ours (α=0.9)

Ours (α=0.0)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 1003
D

 S
e

g
m

e
n

ta
ti

o
n

 a
cc

u
ra

cy

Supervoxels

VCCS (μ=1 ε=0)

VCCS (μ=0 ε=1)

VCCS (μ=1 ε=1)

Ours (α=1.0)

Ours (α=0.9)

Ours (α=0.0)

(d) 3D Achievable segmentation accuracy for synthetic (left) and real voxels (right)

Figure 3.22: Evaluation of supervoxel segmentations with the four metrics 3D boundary
recall, 3D compactness, 3D undersegmentation error, and 3D achievable segmentation
accuracy. The graphs show comparisons of the proposed algorithm to VCCS [121] using
data from the UMPM dataset [162]. The left side shows results with synthetic voxels and
the right side with real voxel carving data as the basis for the supervoxel segmentations.
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(a) 3D boundary recall over 3D compactness
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(b) 3D undersegmentation error over 3D compactness
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(c) 3D achievable segmentation accuracy over 3D compactness

Figure 3.23: Correlation analysis for supervoxel compactness. The graphs show, from top
to bottom, the correlation of boundary recall, undersegmentation error, and achievable
segmentation accuracy with compactness. The left column shows results for synthetic
voxels and the right column for multi-view voxel carving. There is a strong correlation for
undersegmentation error (−0.95 and −0.95) and segmentation accuracy (0.89 and 0.91),
for synthetic and real voxel reconstructions, respectively.
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(a) Initialization (b) One iteration (c) Five iterations (d) Ten iterations

Figure 3.24: Supervoxel segmentation iterations. The images show from left to right an
increasing number of iterations for a supervoxel size of 15 cm with compactness parameter
𝛼 = 1. The top row shows voxels colored according to their supervoxels. The rectangular
structure of the initial grid in (a) continuously converges towards more equally sized
supervoxels in (d). Note that the partially irregular structure in (a) is the result of not
fully filled supervoxel cells. The bottom row shows the centers of supervoxels.
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(a) Ours (𝛼 = 0) (b) Ours (𝛼 = 0.9) (c) Ours (𝛼 = 1)

(d) VCCS (𝜇 = 0.0, 𝜖 = 1.0) (e) VCCS (𝜇 = 1.0, 𝜖 = 1.0) (f) VCCS (𝜇 = 1.0, 𝜖 = 0.0)

Figure 3.25: Qualitative comparison of various parameter settings. The top row shows
qualitative results of the presented algorithm and the bottom row of VCCS [121] based on
data from the UMPM dataset [162]. The voxel size was set to 2.5 cm and the supervoxel size
to 15 cm. The segmentations show results for various parameter setting from least compact
(left) to most compact (right). The parameter settings in each column correspond to each
other, in particular for the least compact (a+d) and most compact (c+f) segmentations.
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Runtime Analysis

This section discusses the runtime analysis for both the supervoxel segmentation as well as
the strict and weighted supervoxel graph computations.

Both evaluations include the following two scenarios: First, the synthetic cube scenario
that was also used for the voxel carving evaluation in Section 3.1.4. This synthetic scenario
is used as a benchmark with controlled conditions. Second, the UMPM scenario that shows
the first frame of the UMPM dataset sequence 𝑝1 𝑜𝑟𝑡ℎ𝑜𝑠𝑦𝑛 1 with one person. The UMPM
scenario is most similar to the main topic of this thesis and will be the basis to determine
the supervoxel sizes, and therefore their number, for pose estimation in Section 4. The
supervoxel segmentation evaluation includes two additional scenarios: the best and worst
case scenarios from Section 3.1.4 that use empty and full voxel grids.

The evaluations included four supervoxel sizes: 10 cm, 15 cm, 20 cm, and 25 cm. In
addition, two voxel sizes were used: 1.9 cm, the finest granularity used for voxel carving in
Section 3.1.4, and 2.5 cm, which is a whole-number divider of the supervoxel resolutions
and leads to an equal number of voxels assigned to each supervoxel. The compactness
parameter of the proposed algorithm was set to 𝛼 = 0.9 to include both spatial distance
as well as normal information in the computation time. The number of iterations was set
to 10. The experimental system for all evaluations was an Intel Pentium Intel(R) Core(TM)
i7-3770 CPU with 3.40 GHz and a NVIDIA GeForce GTX 660 Ti.

Supervoxel Segmentation Table 3.3 shows the runtimes for the presented supervoxel
segmentation algorithm for both the CPU and GPU implementation as well as for the
PCL [138] implementation of VCCS [121]. The parameters for VCCS were set to match
the parameters of the algorithm developed in this work (𝜆 = 0, 𝜇 = 1, 𝜖 = 1 which is
comparable to 𝛼 = 0.9).

First, the improvements of the GPU over the CPU implementation will be discussed. The
GPU implementation gives a speedup of up to 15 times (e.g., cube example with supervoxel
sizes of 10 cm). In general, the runtime improvements for the GPU implementation
relative to the CPU implementation become better for a higher number of supervoxels
or, equivalently, smaller supervoxel sizes. The reasons are twofold. First, the GPU
implementation requires a certain number of parallel tasks for maximum efficiency. Second,
the number of boundary voxels is larger for smaller supervoxels which is also in favor for
the GPU implementation that processes these boundary voxels in parallel.
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VCCS [121] achieves good runtimes and scales well with the number of supervoxels. Com-
pared to the CPU version of the presented algorithm, it is in particular faster for examples
with smaller supervoxel numbers, as is the case for the UMPM example. With an increasing
number of supervoxels, however, the CPU version is slightly faster and both are comparable
to each other for the worst case scenario. Compared with the GPU version of the presented
algorithm, VCCS [121] is generally slower. While the speedup for the UMPM example is
at most 4 times, it becomes larger for an increasing number of supervoxels with a speedup
between 5 and 20 times for the cube example. This is important for this work because too
large supervoxels will lead to inaccurate results for pose estimation, as Section 4 will show.
Therefore, smaller supervoxels are preferable. Also, VCCS [121] does not achieve runtimes
that are fast enough to be useful as a preprocessing step for real-time pose estimation as
Table 3.3 shows.

Supervoxel Graphs Table 3.4 gives the runtime analysis for the computation of the
supervoxel graph and Table 3.5 for the computation of the weighted supervoxel graph.
Similar to the supervoxel segmentation, the GPU implementation achieves a significant
reduction of computation time compared to the CPU implementation.

The computation times for the cube scenario are worse than for the UMPM scenario because
the graph is almost fully connected. This corresponds to the worst case scenario. However,
the computation times for graph construction of one person in the UMPM scenario are in
the lower one-digit millisecond range. This low computation time is required for this work
because the supervoxel graphs will be used to extract body part candidates for real-time
pose estimation in Section 4.

The computation times for the weighted supervoxel graph are slightly higher than for the
normal supervoxel graph for the UMPM scenario. The reason is the increased number
of connections for the fully connected weighted supervoxel graph. For the cube scenario,
however, both graphs are (almost) fully connected. Here, the implementation for the normal
supervoxel graph, which is optimized for not fully connected graphs, is slower than the
weighted supervoxel graph implementation, which is optimized for fully connected graphs.

3.3.5 Conclusion

This section presented an algorithm to compute the supervoxel segmentation of a volumetric
voxel representation. In addition, it introduced the concept of the supervoxel graph
that builds on top of this volumetric representation. Further, a metric to measure the
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compactness of supervoxel segmentations was presented and the correlation with other
metrics evaluated.

The presented supervoxel algorithm achieves very good results in comparison to the state-of-
the-art, both in terms of segmentation quality as well as runtime. It is therefore well suited
as a preprocessing step for pose estimation. By providing the supervoxel segmentation and
graph computation in real-time, the number of voxels, and therefore the search space, can
be effectively reduced for human pose estimation and body tracking that will be presented
in the next section.
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Table 3.3: Supervoxel segmentation runtimes. The table shows runtimes for the presented
algorithm (both CPU and GPU implementations) as well as for VCCS [121]. Two voxel
sizes and four different supervoxel sizes were used with four scenarios: a synthetic cube
with side lengths 1 m, one example frame of the UMPM dataset [162] showing a single
person, and best and worst case scenarios with empty and full voxel grids.

Size Supervoxel Scenario Voxel size: 1.9 cm Voxel size: 2.5 cm
[𝑐𝑚] number CPU GPU VCCS CPU GPU VCCS

[𝑚𝑠] [𝑚𝑠] [𝑚𝑠] [𝑚𝑠] [𝑚𝑠] [𝑚𝑠]
10 1519 Cube 741.4 43.3 885.9 371.9 23.5 356.4
10 361 UMPM 186.6 16.2 70.9 97.9 9.8 27.1
10 0 Best case 69.5 2.0 0.0 41.5 1.4 0.0
10 56259 Worst case 26419.6 1993.2 24319.8 13375.7 878.4 9682.5
15 506 Cube 646.4 64.3 995.9 309.0 32.0 387.1
15 154 UMPM 159.0 29.5 80.3 77.4 16.9 28.8
15 0 Best case 52.9 1.7 0.0 25.7 1.1 0.0
15 16407 Worst case 21947.4 1989.8 27655.3 10638.9 870.4 10595.0
20 238 Cube 610.5 106.2 1089.2 286.1 45.4 428.0
20 82 UMPM 149.9 64.5 85.8 70.2 29.3 30.9
20 0 Best case 50.9 1.7 0.0 23.7 1.0 0.0
20 7411 Worst case 21230.9 2100.0 29484.1 10233.5 864.9 11549.7
25 148 Cube 650.1 188.3 1202.7 302.9 88.6 470.5
25 48 UMPM 142.9 119.2 94.4 63.8 60.3 33.4
25 0 Best case 50.1 1.6 0.0 22.9 1.0 0.0
25 3543 Worst case 18814.8 1979.0 33067.1 8789.2 851.7 12800.9
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Table 3.4: Supervoxel graph runtimes. The table shows runtimes to compute the supervoxel
graph for two voxel and four supervoxel sizes, both for the CPU as well as the GPU
implementation. Two scenarios were used: a synthetic cube with side lengths 1 m and one
example frame of the UMPM dataset [162] showing a single person.

Size Supervoxel Scenario Voxel size: 1.9 cm Voxel size: 2.5 cm
[𝑐𝑚] number CPU GPU CPU GPU

[𝑚𝑠] [𝑚𝑠] [𝑚𝑠] [𝑚𝑠]
10 1519 Cube 2157.3 112.7 1650.8 82.2
10 361 UMPM 36.7 2.8 27.1 2.1
15 506 Cube 240.7 15.0 186.1 10.8
15 154 UMPM 7.4 0.6 5.5 0.6
20 238 Cube 55.8 3.4 42.6 2.5
20 82 UMPM 2.6 0.3 1.9 0.3
25 148 Cube 24.4 1.4 17.2 0.9
25 48 UMPM 1.1 0.4 0.7 0.4

Table 3.5: Weighted supervoxel graph runtimes. The table shows runtimes to compute
the weighted supervoxel graph for two voxel and four supervoxel sizes, both for the CPU
as well as the GPU implementation. Two scenarios were used: a synthetic cube with side
lengths 1 m and one example frame of the UMPM dataset [162] showing a single person.

Size Supervoxel Scenario Voxel size: 1.9 cm Voxel size: 2.5 cm
[𝑐𝑚] number CPU GPU CPU GPU

[𝑚𝑠] [𝑚𝑠] [𝑚𝑠] [𝑚𝑠]
10 1519 Cube 1675.6 95.1 1199.0 69.1
10 361 UMPM 106.2 5.5 71.5 3.0
15 506 Cube 184.3 12.6 135.8 8.8
15 154 UMPM 21.0 0.9 13.9 0.5
20 238 Cube 43.3 2.8 31.3 2.0
20 82 UMPM 6.4 0.4 4.1 0.3
25 148 Cube 18.5 1.1 12.7 0.8
25 48 UMPM 2.6 0.4 1.6 0.3





4 Pose Estimation and Body Tracking

This section introduces the pose estimation and body tracking algorithm developed in this
thesis. The main contribution described here is an investigation of how the search space
and computational complexity of pose estimation can be reduced by using segmentation
as a preprocessing step. This is demonstrated with the example of estimating the high-
dimensional configuration of a human pose in real-time by using supervoxels as building
blocks.

The presented system requires only two parameters to be fully specified and is computa-
tionally very efficient. Further, it does not rely on large amounts of training data, but
extracts all relevant information directly from observed data with little prior knowledge.
These characteristics make it very useful for real-world applications.

The pose estimation approach described here combines all elements introduced in the
previous sections. It works directly on voxels that were computed with voxel carving
as presented in Section 3.1. Therefore, it can be used with different sensor types, like
multi-view video cameras and one or more depth sensors, and is thus applicable for a wide
range of environments. Motivated by superpixels presented in Section 3.2, the number of
voxels and, consequently, the number of input elements is reduced by grouping through
supervoxel segmentation, as presented in Section 3.3. Further, body parts are directly
sampled from the supervoxel graph introduced in Section 3.3.3.

Figure 4.1 gives an overview of the whole pose estimation process. The volume of the voxel
reconstruction is shown in Figure 4.1a and the supervoxel segmentation in Figure 4.1b
with the supervoxel graph in Figure 4.1c. The remaining parts will be explained in the
following sections: First, the body model and the procedure to sample body parts will be
introduced in Section 4.1. Then, the pose estimation system, that is based on the pictorial
structures framework, will be explained in Section 4.2. Following the frame-based pose
estimation, the extension to the temporal domain for articulated body tracking will be
introduced in Section 4.3 including a complexity analysis in Section 4.4. After the system
has been introduced, the evaluation on two datasets will be presented in Section 4.5 before
concluding in Section 4.6.
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4.1 Supervoxel Body Model

This section introduces the body model based on supervoxels that will be used in this work.
The body model is represented by a skeleton with twelve rigid limbs that are connected by
15 joints. A visualization of the body model is shown in Figure 4.2.

Estimating the configuration of such a model in 3D is a highly complex task. Each joint
location is fully specified by three coordinates leading to a total of 45 degrees of freedom
that must be estimated. In principle, each 3D point is a potential candidate for the position
of a joint leading to an intractable problem. However, by using supervoxels, this search
space can be significantly reduced.

Motivated by Mori’s 2D pose estimation with superpixels in [113], the key idea in the
presented pose estimation approach is to reduce the search space by limiting joint positions
to centers of supervoxels. Thereby, the continuous 3D search space for each joint position
is limited to a significantly smaller number of supervoxels.

The search space can be further decreased by reducing the number of potential limbs. With
the assumption that joint positions are constrained to supervoxel centers, the rigid limbs
are then implicitly restricted to connections between supervoxel centers. However, not any
arbitrary connection between two supervoxels is a valid limb candidate. Because limbs
are inside the body, the same must also hold for connections between supervoxels. This
is in accordance with the definition of the supervoxel graph presented in Section 3.3.3.
Therefore, valid body part candidates can directly be sampled from the set of edges of the
supervoxel graph.

In summary, by restricting joint positions to centers of supervoxels and by further restricting
limbs to connections of the supervoxel graph, the space of valid body configurations is
significantly reduced. As the evaluation in Section 4.5 will show, this will later allow for
real-time pose estimation. But first, the next section will introduce an efficient estimation
algorithm based on pictorial structures.

4.2 3D Pictorial Structures with Supervoxels

This section introduces the pictorial structures approach for 3D human pose estimation
with supervoxels. It is based on the work of Felzenszwalb and Huttenlocher [64] and
motivated in part by Burenius et al. [45] who presented one of the few efficient approaches
for pictorial structures in 3D. Their algorithm uses a discretization of the search space
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(a) Volumetric reconstruction (b) Supervoxel segmentation (c) Supervoxel graph

(d) Energy visualization (e) Best pose estimate (f) Temporal information

Figure 4.1: Pose estimation and body tracking process overview. The images show all steps
of the pose estimation and body tracking system. (a) The bounding volume is computed
with voxel carving and then (b) segmented into supervoxels with the circles representing
their centers. (c) The supervoxel graph connects supervoxels if the connection is inside
the volume (not all connections are shown). (d) Depending on the lengths of graph edges,
their fitness to represent body parts is measured (here the torso fitness is shown with green
representing the best fit). (e) The final pose is estimated by minimizing the overall energy
of all parts and connections. (f) Previous estimates can be propagated through time and
used as additional weights for body tracking.
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(a) Kinematic tree (b) Connecting joints

Figure 4.2: Supervoxel Body Model. The body model consists of twelve rigid body parts,
the limbs, that are connected by ten joints. The circles are supervoxel centers. Black
circles indicate end joints and white circles indicate connecting joints. Connections between
supervoxels are limbs. (a) shows the kinematic tree with limbs as nodes and arrows as
directed edges and (b) shows the connecting joint names.
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and certain constraints to reduce the overall complexity. In contrast to their work, the
approach presented in the following sections shows how pictorial structures can be solved
even more efficiently when using supervoxels as building blocks.

Following Felzenszwalb and Huttenlocher [64], as explained in Section 2.3.4, the problem of
pose estimation can be formulated as an energy minimization problem. Given a body model
𝜃 and a configuration 𝐿 that consists of 𝑁 body parts 𝑙1, 𝑙2, · · · , 𝑙𝑁 , the task is to find the
optimal configuration 𝐿* that minimizes a given energy function. The energy function
measures the quality of a configuration based on two parts. First, the unary appearance
term 𝑚𝑖 evaluates the appearance of body parts 𝑖 represented by 𝑙𝑖. Second, the binary
term 𝑑𝑖𝑗 evaluates the connection between two parts 𝑙𝑖 and 𝑙𝑗 , while connections are defined
by the body model and represented by set 𝐸. The optimal configuration minimizes the
overall energy:

𝐿* = argmin
𝐿

(︁ 𝑁∑︁
𝑖

𝑚𝑖(𝑙𝑖) +
∑︁

(𝑖,𝑗)∈𝐸

𝑑𝑖𝑗(𝑙𝑖, 𝑙𝑗)
)︁
. (4.1)

As explained in Section 2.3.4, the energy minimization originates from a statistical formula-
tion. The energy terms are the result of taking the negative logarithm over the respective
probability distributions. Given an expected mean value �̄� and standard deviation 𝜎, they
follow the general form

𝑝(𝑥) = 1
𝜎
√

2𝜋
𝑒−0.5 (𝑥−�̄�)2

𝜎2 . (4.2)

Therefore, by taking the negative logarithm over the square root of this function and further
simplifying by removing constant parts, the energy terms are of the form

𝑚(𝑥) = |𝑥− �̄�|
𝜎

(4.3)

While the distributions are chained with multiplication, the energy terms are chained by
summation. The same holds for distributions that consist of more than one term. Now,
the specific energy terms will be explained in more detail, starting with the unary term.

4.2.1 Evaluating Parts

This section introduces the evaluation of the unary energy term 𝑚𝑖 of Equation 4.1. This
term is also called the data term because it measures how well a specific part 𝑙𝑖 fits to the
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data, i.e., the observation. In other approaches, the appearance term is usually trained
with annotated ground truth data to model the appearances of single parts. However, this
implicitly introduces a bias because new observations must fit to the training data. For
example, the part detector in [146] uses relative offsets in specific directions. Therefore,
they do not work anymore if the camera is rotated. In this work, the appearance term
will be evaluated with only little prior knowledge about part appearances and no explicit
training, thus being more generally applicable.

Here, body parts 𝑙𝑖 are directly sampled from the 3D supervoxel graph. As its connections
are inside the segmented voxel volume, it is already guaranteed that they are valid candidates.
Therefore, only the lengths of these connections have an influence on the appearance term.
The more similar the connection lengths are to the expected body part lengths, the better
is their match and, consequently, the lower is their energy. The only required information
are the expected lengths of the respective body parts. These can easily be computed by
using anthropometric ratios.

In anthropometrics, one task is to measure the limb lengths of people and to provide general
ratios for body part sizes compared to the overall posture height. Figure 4.3 shows an
example of a body model with ratios from Drillis and Contini [60] cited by Fromuth and
Parkinson [68]. These ratios allow to compute the expected sizes for all limbs with just
an estimate of the overall posture height. For example, if a person’s height is 1.8 m, their
expected shoulder width is 1.8 m · 0.259 ≈ 0.47 m. The overall posture height can either be
assumed to be given or directly estimated by taking the largest expansion of the observed
data. In case of calibrated cameras and a fixed ground plane, this can even further be
simplified by just taking the maximum height from the ground plane.

It will now be explained how body parts are sampled from both the strict as well as the
weighted supervoxel graph and how the corresponding graph energies are computed.

Sampling from the Supervoxel Graph

The body parts 𝑙𝑖 are directly sampled from the supervoxel graph, as was explained above.
This means that every connection is a candidate for each body part. To measure how well
a connection represents a part, its length is compared to the expected part lengths that
are given by applying the anthropometric ratios. The unary energy term can then directly
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Figure 4.3: Anthropometric ratios. Assuming a total posture height of 1, the lengths of
the body parts are given as fractions. The ratios are from [60] and the drawing is based
on [68].

be computed by comparing the length of a body part, given by ||𝑙𝑖||, with the expected
length ||�̂�𝑖||:

𝑚𝑎
𝑖 (𝑙𝑖) =

⃒⃒⃒
||𝑙𝑖|| − ||̂𝑙𝑖||

⃒⃒⃒
||𝑙𝑖||

. (4.4)

Equation 4.4 is normalized by the expected length. This will also be done for all following
energy terms to allow for a comparison between them without the need of additional
weighting.

Equation 4.4 is evaluated for all connections of the supervoxel graph and for all 𝑁 body
parts. This can be done very efficiently because only lengths must be compared. It can
also be parallelized because all limbs can be evaluated independently. As visual reference,
Figure 4.1d shows color-coded energies of connections, in this case for the torso.

Sampling from the Weighted Supervoxel Graph

The previous section described sampling from the strict supervoxel graph where all edges
reside fully within the segmented volume. As explained in Section 3.3.3, this strict
formulation can lead to the removal of correct body part candidates due to errors in
the segmentation. If only one voxel on a connection was erroneously carved, the whole



110 4 Pose Estimation and Body Tracking

connection is discarded. Therefore, the weighted supervoxel graph provides additional
robustness through weighted edges that indicate what fraction resides inside the volume.

The weights provided by the weighted supervoxel graph can either be used as an unary
energy term similar to Equation 4.4 with an expected value of 1 or by filtering edges that
fall below a certain threshold. When using the weight directly as energy, the problem is
that it is measured with a different unit than body lengths and, thus, normalization is more
difficult. Therefore, this work follows the second approach and filters edges that fall below
a certain threshold 𝛾. Let 𝑤(𝑙𝑖) give the weight of body part 𝑙𝑖. Then, the modified unary
term is given by

𝑚𝜏
𝑖 (𝑙𝑖) =

⎧⎪⎪⎨⎪⎪⎩
⃒⃒⃒
||𝑙𝑖||−||̂𝑙𝑖||

⃒⃒⃒
||𝑙𝑖||

if 𝑤(𝑙𝑖) ≥ 𝜏

∞ otherwise
(4.5)

In the remainder of this work, Equation 4.5 will be used to measure part appearances, i.e.,
𝑚𝑖 = 𝑚𝜏

𝑖 , if not specified otherwise. In case the strict supervoxel graph is used, Equation 4.5
is equivalent to Equation 4.4 by setting the threshold to 𝜏 = 1.

The unary term is also well suited to model additional knowledge about part positions, e.g.,
given by part detectors, and also to include temporal information for body tracking. Both
extensions will be addressed in Section 4.3.

This concludes the section about the unary energy term that measures part appearances.
It can directly be computed given the data with very little prior knowledge and it works
with both strict and weighted supervoxel graphs. The next section will explain how the
connections between parts are evaluated.

4.2.2 Evaluating Connections

This section explains how connections between parts are evaluated given the body model.
Evaluating all possible connections is one of the computationally more expensive parts
when using pictorial structures. By using supervoxels, however, the number of possible
connections can be significantly reduced. Also, evaluating connections requires modeling
the pose prior which is usually done through training with labeled ground truth data. In
this work, the prior is modeled directly and merely expresses that parts should not overlap
as will now be explained.
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Restricting Possible Connections

In principle, each pair of body parts can be connected. This is in particular the case if
connecting joints are modeled with spring-like connections that allow a certain variability
in the relative positions of joints. This leads to a large number of possible connections that
must be evaluated when searching for the best configuration. By using supervoxels, this
search space can be drastically reduced.

At the beginning of this section, one key assumption of this approach was explained: joint
positions are restricted to supervoxel centers. Therefore, two body parts that are defined
by their starting and end joints can only be connected if they share the same supervoxel as
their connecting joint. Let 𝑐𝑖𝑗(𝑙) give the supervoxel at the connecting joint of parts 𝑖 and
𝑗. Then, the binary term 𝑑𝑠, that restricts possible connections based on supervoxels, is
given by

𝑑𝑠
𝑖𝑗(𝑙𝑖, 𝑙𝑗) =

⎧⎪⎨⎪⎩0 if 𝑐𝑖𝑗(𝑙𝑗) = 𝑐𝑖𝑗(𝑙𝑖)
∞ otherwise

(4.6)

With Equation 4.6, it is possible to remove a large number of connections that do not share
the same connecting supervoxel, thereby reducing the overall complexity. However, as long
as a connection exists between two parts, its energy is uniform. The next section shows
how this can be modified in order to consider overlap between parts as well.

Evaluating Part Overlap

When using a skeleton model for pose estimation with volumetric data, it is particularly
important to ensure that parts do not overlap. Otherwise, the skeleton model could
theoretically be folded very tightly to fit into almost arbitrarily small volumes because
the skeleton itself has no volumetric expansion. Other approaches address this problem,
for example, by using learned joint angle distributions or volumetric primitives. Then,
however, it must still be ensured that body parts cannot overlap. Depending on the
volumetric primitives used, this can be nontrivial and computationally expensive. Further,
such primitives additionally introduce the problem of how to initialize their parameters.

This work follows a rather direct approach to ensure that parts do not overlap with each
other. As the evaluation in Section 4.5 will show, this is sufficient to achieve state-of-the-art
results on challenging datasets. The basic assumption is that connected body parts overlap
the least if they are fully extended.
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Let 𝑑𝑒
𝑖𝑗(𝑙𝑖, 𝑙𝑗) be the energy that measures the overlap between body parts 𝑙𝑖 and 𝑙𝑗. Let

𝑔𝑖𝑗(𝑙𝑖, 𝑙𝑗) give the distance between the end joint of 𝑙𝑗 to the end joint of 𝑙𝑖. Further, let
𝑔𝑖𝑗(𝑙𝑖, 𝑙𝑗) be the expected distance between their end joints if both limbs would be perfectly
extended. Then, the energy term is given by

𝑑𝑒
𝑖𝑗(𝑙𝑖, 𝑙𝑗) = 1

𝑔𝑖𝑗(𝑙𝑖,𝑙𝑗)
𝑔𝑖𝑗(𝑙𝑖,𝑙𝑗)

= 𝑔𝑖𝑗(𝑙𝑖, 𝑙𝑗)
𝑔𝑖𝑗(𝑙𝑖, 𝑙𝑗)

. (4.7)

It is also possible to define the part overlap score to simultaneously consider multiple parts,
if they are already known. This ensures that all parts of the skeleton have a minimal
overlap and not only connected parts. Let 𝐿 be the configuration with parts 𝑙𝑖 and let all
parts 𝑗 < 𝑖 be known. Then,

𝑑𝑒
𝑖 (𝑙𝑖, 𝐿) =

𝑗∑︁
𝑘=1

𝑑𝑒
𝑖𝑘(𝑙𝑖, 𝑙𝑘). (4.8)

The binary term models the pose prior. By preferring non-overlapping parts as described
above, the prior favors straight poses. However, this bias is relaxed by enforcing that body
parts must be inside the volumetric reconstruction through the supervoxel graph. If the
volume is too small, e.g., because the legs are bent, straight poses do not fit into it and,
therefore, the next best pose, e.g., with bent legs, is preferred.

This concludes the sections about the unary and binary energy terms. The next section
shows how these terms are used in an algorithm to compute the optimal pose configuration.

4.2.3 Pose Estimation Algorithm

Given a set of parts that were sampled from the supervoxel graph and both unary and
binary energy terms to evaluate these parts and their connections, all required information
is available to compute the optimal pose. Because the body model follows a tree structure
with no cycles and connections between parts can easily be computed, the overall estimation
can be solved with dynamic programming [64]. Here, the min-sum algorithm is used with
an algorithm layout similar to [45].

The min-sum algorithm follows the dynamic programming strategy by breaking down
the complex problem of estimating a human pose into less complex subproblems. Here,
the subproblems are finding pairs of connected limbs. The estimation is separated into
two phases that follow a message passing pattern. During the first phase, messages, i.e.,
accumulated energies, are passed up starting from the leaf nodes up to the root. Then, the
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best root, i.e., the one with the lowest accumulated energy, is selected. In the following
second phase, messages are passed down starting from the selected root node and the
optimal child nodes are successively selected. Both parts will now be explained in more
detail. Algorithm 4 shows pseudo code for this procedure.

Algorithm 4 Min-sum pose estimation with supervoxels
1: Input: supervoxel graph 𝐺 = (𝒱 , 𝐸)
2: Output: pose configuration 𝐿*

3: Define 𝑝(𝑖): return parent node of body part 𝑖
4:

5: // Initialization
6: ∀𝑙 ∈ 𝐸 ∀𝑛 ∈ {1, · · · , 𝑁} : initialize part scores 𝑚𝑛(𝑙𝑛)
7: // Passing messages up
8: for 𝑛 := 𝑁 𝑡𝑜 2 do
9: for 𝑙𝑝(𝑛) ∈ 𝐸 do

10: 𝑚 := min
𝑙𝑛

(𝑑𝑠
𝑛,𝑝(𝑎)(𝑙𝑛, 𝑙𝑝(𝑛)) +𝑚𝑛(𝑙𝑛))

11: 𝑚𝑝(𝑛) := 𝑚𝑝(𝑛) +𝑚

12: end for
13: end for
14: // Passing messages down
15: 𝑙*1 := argmin

𝑙1

(𝑚1(𝑙1))

16: 𝐿*(1) := 𝑙*1
17: for 𝑛 := 2 𝑡𝑜 𝑁 do
18: 𝑙*𝑛 := argmin

𝑙𝑛

(𝑑𝑒
𝑛(𝑙𝑛, 𝐿*) +𝑚𝑛(𝑙𝑛))

19: 𝐿*(𝑛) := 𝑙*𝑛
20: end for

Up Path

During the first part, messages are passed up from child nodes to their respective parents.
The paths are specified by connections in the body model. For example, at the beginning,
messages are passed from all lower arm parts to all upper arm parts. The messages represent
energies and combine both part appearances of child nodes as well as connections between
child and parent nodes.

For each parent node, only one message is accepted from its child nodes, namely the one
with the lowest energy, and added to its own energy. The reason is as follows. If this parent
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node would be selected as body part for the final pose estimate, it would select the child
with minimum energy. By adding the child’s energy to its own, this information is thereby
propagated to the parent’s parent and available when it selects its optimal child node.

At the end, the accumulated energies of the root node represent the overall energy of a pose
if only the best children are selected starting from this root node. Therefore, the optimal
root node is the one with the lowest accumulated energy. Here, the root node of the body
model is the torso. This is the starting point for the down path.

Down Path

Starting from the selected torso, i.e., the root node of a pose hypothesis, messages are
passed down. Similar to the up path, messages represent energies. They are given by the
(accumulated) energy of the child node and the energy of the connection between child and
parent. On the down path, the children are selected that have a minimal overall energy.
This is significantly faster than the up path because now, one part is already fixed for each
connection.

In the original pictorial structures approach, the binary term evaluating connections between
parts is the same for both parts. Here, different terms are used. During the up path,
the binary term in Equation 4.7 is used that gives a uniform energy as long as parts are
connected. This ensures that the optimal parts are selected based on their appearance
terms. During the down path, the binary term of Equation 4.8 is used that also models
part overlap. The reason is that only during the down path the overall overlap between
all parts can be computed. During the up path, this would only be possible for connected
parts. The result of this procedure is the final pose estimate for the current time step.
Figure 4.1e shows an example of a selected pose.

In general, the min-sum algorithm computes the optimal pose. Due to the two different
binary energy terms used in this work, the pose estimation becomes a greedy algorithm and
there is the potential for suboptimal solutions. However, sampling only a small number of
poses (Section 4.3.4) is sufficient for stable results, as the evaluation will show.

The algorithm presented here estimates the pose solely based on information available in
the current time step. Besides the anthropometric ratios and an estimate of the posture
height, it requires no additional prior information. Nevertheless, additional information,
e.g., through tracking or detectors, can be seamlessly integrated as the next sections will
show.
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4.3 Articulated Body Tracking

This section introduces the articulated body tracking algorithm. In particular, it introduces
a mechanism for integration of arbitrary information into the pose estimation process by
using supervoxel energies. This mechanism will be demonstrated with two examples: first,
including temporal information to track body parts over time and second, integrating
knowledge about part positions available through part detectors.

4.3.1 Supervoxel Energies

This section introduces the concept of supervoxel energies. It can be used to integrate
available information about the pose directly on the level of supervoxels. These supervoxel
energies are then used as additional unary energy terms in the pose estimation algorithm
introduced in Section 4.2.3 without any modifications. This demonstrates that supervoxels
not only reduce the search space for pose estimation, but also allow to incorporate pose
knowledge.

The supervoxel energy expresses how well a supervoxel is suited to represent a certain
joint. It is a general concept and there are various ways to compute specific supervoxel
energies, as the next two sections will show. The purpose of supervoxel energies is that
they directly affect the unary energy terms for body parts. This means that body parts
with two supervoxels as joints that have a low energy will consequently also have a lower
overall energy and, thus, be preferred during pose estimation.

The supervoxel energies are propagated to limbs by averaging them. Let 𝑘 be a joint in
the body model 𝜑 and let 𝑉 be a supervoxel. The energy of supervoxel 𝑉 for joint 𝑘 is
then given by 𝜙𝑘(𝑉 ). Further, let body part 𝑙𝑖 have start joint 𝑠(𝑖) and end joint 𝑒(𝑖) and
let 𝑠(𝑙𝑖) and 𝑒(𝑙𝑖) give the supervoxels at the start and end joints, respectively. Then, the
unary supervoxel energy 𝑚𝑠

𝑖 (𝑙𝑖) combines both supervoxel energies and is given by

𝑚𝑠
𝑖 (𝑙𝑖) = 𝜙𝑠(𝑖)(𝑠(𝑙𝑖)) + 𝜙𝑒(𝑖)(𝑒(𝑙𝑖))

2 . (4.9)

In the case that supervoxel energies are used, the unary term is given as a combination of
Equations 4.5 and 4.9:

𝑚𝑖(𝑙𝑖) = 𝑚𝜏
𝑖 (𝑙𝑖) +𝑚𝑠

𝑖 (𝑙𝑖). (4.10)
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The advantage of supervoxel energies is that additional information can be modeled on
supervoxel level without modifications of the overall algorithm. The next two sections will
show how the concept of supervoxel energies can be used to track body parts with temporal
pictorial structures and how to included part detectors.

4.3.2 3D Temporal Pictorial Structures

Frame-based pose estimation, as described above, uses only information available in the
current time step. In particular, estimation starts anew without knowledge about previous
poses. In contrast, body tracking relies on past information, in particular about the previous
poses. Typically, tracking approaches, like the Kalman filter or particle filters, consist of
two steps: first, based on previously observed poses, the new pose for the current frame
is predicted. Then, this prediction is adjusted based on currently observed features. One
drawback of such approaches is that they fail if their tracks get stuck in a local minimum
or are lost. For these cases, additional mechanisms for detection of tracking failures and
recovery are required.

The tracking algorithm described in this section follows a different approach. Instead of
utilizing a separate mechanism for tracking, it integrates temporal information directly
into pose estimation using the concept of supervoxel energies. Previously estimated poses
propagate their energies to supervoxels in the current time step if they are close enough.
The better the pose, the lower is its energy and, consequently, the supervoxel energy.
Therefore, these supervoxels will be preferred when computing the current pose estimate.

Let ℒ𝑠:𝑡 = {𝐿𝑠, · · · , 𝐿𝑡} be optimal configurations, i.e., pose estimates, from previous
time steps 𝑠 to 𝑡. Let 𝑘 be a joint and let 𝑉 be a supervoxel of the current supervoxel
segmentation 𝒱 . Further, let 𝜙𝑘(𝐿) give the minimum energy of body parts 𝑙 ∈ 𝐿 that share
joint 𝑘 and let 𝑗𝑘(𝐿) give the 3D joint coordinates, i.e., the supervoxel center, of joint 𝑘.
Joints of past poses propagate their energies to supervoxels if their distance 𝑑(𝑗𝑘(𝐿), 𝑉 ) is
below threshold Δ. Then, the supervoxel tracking energy is

𝜙𝑡
𝑘(𝑉 ) =

⎧⎪⎪⎨⎪⎪⎩
min

𝐿∈ℒ𝑠:𝑡
𝜙𝑘(𝐿), if ∃𝐿 ∈ ℒ𝑠:𝑡 : 𝑑(𝑗𝑘(𝐿), 𝑉 ) < Δ

max
𝐿∈ℒ𝑠:𝑡

𝜙𝑘(𝐿), if @𝐿 ∈ ℒ𝑠:𝑡 : 𝑑(𝑗𝑘(𝐿), 𝑉 ) < Δ
. (4.11)

Equation 4.11 basically states that, for each joint, each supervoxel is assigned the minimum
energy of limbs from previous poses if their corresponding joints are sufficiently close. If no
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such pose exists, the maximum limb energy with respect to this joint is assigned. Figure 4.1f
visualizes this assignment for an arm joint.

Limbs are connections between two supervoxels. Therefore, the energies of single supervoxels
have to be combined for body parts. The unary tracking energy 𝑚𝑡

𝑖(𝑙𝑖) for part 𝑙𝑖 is then
given analog to Equation 4.9 by

𝑚𝑡
𝑖(𝑙𝑖) =

𝜙𝑡
𝑠(𝑖)(𝑠(𝑙𝑖)) + 𝜙𝑡

𝑒(𝑖)(𝑒(𝑙𝑖))
2 (4.12)

and the final unary energy term by

𝑚𝑖(𝑙𝑖) = 𝑚𝜏
𝑖 (𝑙𝑖) +𝑚𝑡

𝑖(𝑙𝑖). (4.13)

Due to the modified unary energy term in Equation 4.13, limbs that are close to their
corresponding positions in past time steps will be preferred in the next time step. This
has the advantage that pose estimation and tracking are not two separate steps but are
combined in the same approach. Further, getting stuck in local minima is avoided because
then all supervoxels would get an equally low energy resulting in no preference at all.

4.3.3 Integrating Part Detectors

Part detectors or appearance-based descriptors are popular for pose estimation because
they reduce the number of positions of potential body parts and, therefore, the space of
possible poses, as was also discussed in Section 2.3. The approach described here does
not require such detectors because it achieves a search space reduction through supervoxel
segmentation. However, this section shows how such information can be directly integrated,
if it is available.

The mechanism follows the concept of supervoxel energies presented in Section 4.3.1. It
can either use an energy based on the appearance similarity or a binary score to activate or
deactivate supervoxels as joint candidates. These are just two examples and there are no
limitations of how such an energy can be computed. Assuming detector energy 𝜙𝑑

𝑘(𝑉 ) is
given for supervoxel 𝑉 and joint 𝑘, the unary limb energy term 𝑚𝑑

𝑖 (𝑙𝑖) is computed as in
Equation 4.9. An evaluation with a simulated part detector will be shown in Section 4.5.

This concludes this section that has shown how both temporal as well as further available
information about part positions can be directly integrated into the supervoxel-based pose
estimation framework.
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4.3.4 Sampling Poses

The min-sum algorithm computes a pose estimation for the given observation. However,
it is sometimes preferable to sample more than one pose hypothesis for a given frame. In
this work, multiple hypotheses are sampled by taking multiple paths for the down phase of
Algorithm 4.

As was explained in Section 4.2.3, the down path and, consequently, the pose is determined
by the selected torso. Therefore, by selecting different torsos, different paths are taken which
results in various pose estimates. To ensure good starting hypotheses for the down path,
torsos are sampled by selecting the ones with the lowest accumulated overall energies.

Due to the modified binary energy term 𝑑𝑒
𝑖 that is used during the down path, the torso

with the lowest energy does not necessarily result in the optimal pose. Therefore, given all
pose hypotheses after completing all down paths, the one with the lowest energy is chosen
as the final result of the pose estimation process.

4.4 Complexity Analysis

This section analyzes the complexity of the presented pose estimation algorithm, both for
time as well as space complexity.

Time Complexity Regarding time complexity, both message passing phases of Algorithm 4
as well as initialization must be considered.

Let 𝑁 be the number of body parts and |𝒱| the number of supervoxels. Then, the number
of potential body parts, i.e., connections of the supervoxel graph, is in the worst case |𝒱|2.
It then follows that initialization is in 𝒪(|𝒱|2).

The up phase is generally the computationally most expensive one. Other approaches
typically require that the connections between all pairs of body parts are evaluated. For
the presented algorithm, this would result in a time complexity of 𝒪(|𝒱|4). However, by
enforcing that connected body parts must share the same supervoxel as connecting joint,
this complexity is reduced to 𝒪(|𝒱|3). This is one key characteristic that leads to the
efficiency of the presented algorithm.

The down phase is computationally significantly less expensive than the up phase. The
reason is that for each connection, one body part including the connecting joint has already
been fixed resulting in a complexity in 𝒪(|𝒱|).
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The additional use of supervoxel energies, e.g., for tracking, does not change the overall
complexity class. The information must only be propagated to supervoxels. Therefore, the
complexity is in 𝒪(|𝒱|).

The overall time complexity of the pose estimation algorithm is determined by the up phase
and therefore in 𝒪(|𝒱|3).

Most similar to the presented algorithm are the two approaches proposed by Burenius et
al. [45]. They reduced the complexity by a discretization of both body part translations
and rotations. Let |𝑇 | be the size of the translation space and |𝑅| the number of possible
rotations. Then, their two proposed algorithm variations have a complexity of 𝒪(|𝑇 | · |𝑅|)
and 𝒪(|𝑇 | · |𝑅|2), respectively. For good results, a search space discretization of 323 for
translations 𝑇 and between 83 and 163 for rotations 𝑅 was required. Assuming that
approximately 100 supervoxels are used for pose estimation, the achieved complexity
reduction in the presented system compared to [45] is up to several orders of magnitude.

Space Complexity Regarding space complexity, the presented algorithm requires to store
the energies for all connections of the supervoxel graph and for all body parts. This leads
to a storage complexity in 𝒪(|𝒱|2).

As a comparison, the algorithm proposed by Burenius et al. [45] has a storage complexity
of 𝒪(|𝑇 | · |𝑅|). Similar to time complexity, the proposed algorithm based on supervoxels
achieves a complexity that is several orders of magnitude lower.

This concludes the introduction of the pose estimation algorithm developed in this thesis.
The next section will show an evaluation of this approach.

4.5 Evaluation

This section presents the evaluation of the pose estimation and body tracking algorithm
described in the previous sections. It is organized as follows. First, the two datasets used
for evaluation and the experimental setup are explained. In order to acquire a better
understanding of the impact of the various parameters, they are systematically evaluated
for pose estimation. It follows an evaluation of supervoxel energies for body tracking as
well as part detectors. Then, an evaluation with synthetic voxels follows before showing
qualitative example results of estimated poses. The section concludes with an analysis of
runtimes and a comparison to state-of-the-art approaches.
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4.5.1 Datasets

This section introduces the two datasets that were used in the evaluation. Both datasets
are suitable for pose estimation with multi-view video.

HumanEva-I Dataset

The HumanEva-I dataset was introduced by Sigal and Black in 2006 [148] with an extended
discussion by Sigal et al. in 2010 [147]. It is one of the commonly used datasets for
multi-view human pose estimation. The dataset shows sequences of three actors (S1 - S3)
performing various actions. There are three trials for each action: the first contains video
data and ground truth for training and validation, the second only contains videos for
evaluation, and the third only ground truth (e.g., to train pose priors). Each sequence
shows one actor at a time and consists of several hundreds of frames. The action names
are Box (B), Gestures (G), Jog (J), ThrowCatch (T), and Walking (W). Each sequence
was recorded with seven calibrated cameras: three color cameras with a resolution of
640× 480 pixels and four grayscale cameras with a resolution of 644× 484 pixels. Ground
truth was measured with a marker-based Vicon system and 3D joint positions are available.
Example images are shown in Figure 4.4.

The dataset also contains images to train models for foreground segmentation, but their
quality is rather poor. Therefore, foreground images were computed with GrabCut [136]
segmentation using a bounding box of the person in combination with ground truth body
part locations. Figure 4.5 shows example segmentations.

In this evaluation, all five sequences for actors S1 and S2 were used. As the proposed
algorithm requires no training data, all video frames were used for evaluation.

In addition to the HumanEva-I dataset, the HumanEva-II dataset [147, 148] contains an
additional Combo sequence for two actors (S2 and a new actor, S4), but it was not used in
this evaluation as the HumanEva-I dataset provided sufficient data.

Utrecht Multi-Person Motion (UMPM) Benchmark

The Utrecht Multi-Person Motion (UMPM) benchmark was presented by Van der Aa et
al. [162] in 2011. It shows between one to four persons performing various actions. In
contrast to the HumanEva dataset, the sequences also contain large objects like chairs
and tables that pose an additional challenge. It is a very large dataset with several
thousands of frames that were recorded with four calibrated color cameras with a resolution
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(a) Camera 1, S1 Box (b) Camera 2, S2 Gestures

(c) Camera 3, S2 ThrowCatch

(d) Camera 4, S2 Jog (e) Camera 5, S1 Walking

(f) Camera 6, S2 Box (g) Camera 7, S1 Gestures

Figure 4.4: HumanEva-I dataset examples. The images show the three color and four
grayscale camera views with examples of all five actions performed by actors S1 and S2.
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(a) Camera 3, S2 Gestures (b) Camera 6, S1 Walking

Figure 4.5: HumanEva-I foreground segmentations. The images show foreground segmen-
tation results computed with the GrabCut [136] algorithm.
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of 644× 486 pixels. Ground truth for 3D joint positions was measured with a Vicon system
and is available for up to two persons. Figure 4.6 shows example images of the dataset.

The UMPM dataset contains high-quality background images that can be used for foreground
segmentation. In this evaluation, a simple background subtraction algorithm trained on
the first ten images with a threshold of 25 was used in combination with morphological
open and close operators. This leads to errors in the foreground segmentation, especially
due to shadows around the person, but resembles quite realistic images that are suitable
for evaluation. Figure 4.7 shows example foreground segmentations including errors due to
static objects.

In this evaluation, all five sequences with the first person (p1) were used. Each sequence
contains approximately 2, 500 frames resulting in a total of more than 12, 500 frames. The
sequence names are Chair (C), Grab (G), Orthosyn (O), Table (Ta), and Triangle (Tr).
While the Orthosyn and Triangle sequences do not contain static objects that occlude the
person, the other three sequences do. In addition, the person interacts with these objects,
e.g., by sitting on a chair in various poses, grabbing objects, or even lying on a table. The
Orthosyn sequence mainly shows various arm gestures and the Triangle sequence shows
walking motions.

Evaluation Metrics

For evaluation, two metrics were used: the percentage of correct parts (PCP) that was
introduced by Ferrari et al. [65] and the 3D joint localization error that was introduced
Sigal and Black [148] and Sigal et al. [147].

Percentage of Correct Parts This metric measures the fraction of correctly estimated
parts. A part is counted as correctly classified if the estimated joints at both ends have a
distance of at most half the limb length from the corresponding ground truth joints. For
example, if a lower arm has a length of 20 cm, both wrist and elbow must be closer than
10 cm to the ground truth joints. This metric has been applied to many pictorial structures
approaches as discussed in Section 2.3.4. It is particularly well suited for approaches
with supervoxels because it does not penalize inaccuracies that are introduced due to the
supervoxel granularity. For comparison to other work, the evaluated body parts include
torso, head, upper and lower arms and legs.

In particular for the UMPM dataset, there is an offset in the ground truth and the skeleton
is not always inside the body. As this does directly affect PCP measures, the relative



124 4 Pose Estimation and Body Tracking

(a) Camera 1, Orthosyn (b) Camera 2, Table

(c) Camera 3, Grab (d) Camera 4, Chair

(e) Camera 3, Triangle

Figure 4.6: Example images of the UMPM dataset. The images show the five action
sequences used for evaluation from four camera views.
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(a) Camera 2, Triangle (b) Camera 2, Table

Figure 4.7: Foreground segmentation for the UMPM dataset. The foreground segmenta-
tions were computed with a basic background subtraction algorithm and post-processed
with morphological open and close operators. Due to the simple algorithm, shadows are
included in the silhouettes. Further, silhouette defects occur because of static occluders.
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comparison of joint positions is used as introduced for the HumanEva dataset in [147] in
Equation 6. Here, the root of the body model is the torso center and all differences are
computed relative to it.

Evaluation on the UMPM dataset does not always include all sequences. If this is the
case, it will be explicitly mentioned. Further, for the three scenes with static occluders,
occlusions maps will be used for voxel carving that have been introduced in Section 3.1.2.

3D Joint Localization Error This metric measures the average difference between es-
timated and ground truth joint positions in millimeters. It was proposed by Sigal and
Black [148] and Sigal et al. [147] for evaluation with the HumanEva datasets as it allows
for a direct comparison between different approaches. Following [147, 148], let 𝐿 be the
estimated pose and �̂� the ground truth pose with 𝑗𝑖(𝐿) giving the 3D position of joint 𝑖.
Let 𝐽 be the number of joints and let || · || give the Euclidean distance. The 3D error for
one frame is then given by

𝐷(𝐿, �̂�) = 1
𝐽

𝐽∑︁
𝑖=1
||𝑗𝑖(𝐿)− 𝑗𝑖(�̂�)||. (4.14)

The 3D error of a sequence with 𝑇 frames with poses 𝐿𝑡 ∈ ℒ and ground truth poses �̂�𝑡 ∈ ℒ̂
then is

𝐷(ℒ, ℒ̂) = 1
𝑇

𝑇∑︁
𝑡=1

𝐷(𝐿𝑡, �̂�𝑡). (4.15)

Similar to the PCP metric discussed above, the relative joint localization error is used
(Sigal et al. [147], Equation 6) with the torso center being the origin of the pose to account
for offsets of the marker positions.

Experimental Setup

The same system was used for all experiments, in particular for runtime evaluation. The
system was an Intel Pentium Intel(R) Core(TM) i7-3770 CPU with 3.40 GHz with a
NVIDIA GeForce GTX 660 Ti for GPU computations. The pose estimation algorithm is
available both as CPU as well as GPU implementation.
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4.5.2 Pose Estimation Parameter Evaluation

This section presents the evaluation of various parameter settings. One advantage of the
presented system is the low number of parameters that are required. The pose estimation
algorithm is determined by only two parameters: the threshold 𝜏 to filter connections of the
supervoxel graph and the number of pose hypotheses 𝐾. The preprocessing segmentation
algorithms require only four parameters: voxel size 𝑐𝑣, supervoxel size 𝑐𝑉 , supervoxel
segmentation iterations 𝑖, and compactness 𝛼. Following the results of supervoxel evaluation
in Section 3.3.4, the number of segmentation iterations is fixed to 𝑖 = 10 and the compactness
parameter to 𝛼 = 1.0. This leaves a total of only four free parameters for the whole pose
estimation algorithm.

The limb sizes in the provided ground truth of the two datasets is different from the
anthropometric ratios. Because the PCP measure is based on these part sizes, even correctly
estimated poses would then not always be counted as correctly classified. Therefore, the
ground truth limb sizes were used for initialization instead of anthropometric ratios.

The evaluation includes parameter values in the following ranges. The voxel sizes 𝑐𝑣 are
between 2 cm and 4 cm and the supervoxel sizes between 10 cm and 20 cm. The weight
threshold for supervoxel graph connections varies between 0.1 and 1 and the number of
pose hypotheses is between 1 and 100.

First, it will be evaluated how many pose hypotheses are required for best estimation
results. Then, for the determined number of hypotheses, the impact of voxel and supervoxel
sizes will be evaluated. It follows an evaluation of various connection weight thresholds for
the determined best voxel and supervoxel sizes.

Number of Pose Hypotheses

The number of pose hypotheses determines the number of sampled poses during the down
path in Algorithm 4, as discussed in Section 4.2.3. The more poses are sampled, the higher
is the likelihood that a good pose is contained in the sample set. The following experiment
determines the number of samples for which the classification scores converge.

This evaluation uses voxels with a fixed size of 2 cm and three supervoxel sizes: 10 cm,
15 cm, and 20 cm. The supervoxel graph connection weight threshold was set to 1.0. The
sample size for pose hypotheses is increased from 1 to 100.

The results are shown in Figure 4.8. The PCP scores quickly increase for an increasing
number of hypotheses. For more than 50 samples, the PCP scores increase very little and
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(b) UMPM (Orthosyn sequence)

Figure 4.8: Evaluation of the number of pose hypotheses. For both datasets, good results
are achieved starting with approximately 50. Smaller supervoxel sizes (sv) lead to better
results. The voxel size (v) was constant.

it converge for a sample size of approximately 75. The supervoxel sizes have an effect on
the overall PCP results, as will be further investigated in the next section, but they do not
influence convergence behavior.

In general, a sample size between 25 and 50 is sufficient for good results. For optimal
results, a sample size of 75 or greater is recommended.

Voxel and Supervoxel Sizes

The next evaluation investigates the effect of voxel and supervoxel sizes on part classification.
The voxel size determines the accuracy of the 3D reconstruction. The supervoxel size
directly influences the pose estimation accuracy. Joints are constrained to supervoxel
centers, as explained in Section 4.1. Therefore, the larger the supervoxels, the larger can the
potential deviation from the ground truth joint position be - even if the best supervoxel was
chosen. For example, with supervoxel sizes of 20 cm, the distance of an optimal supervoxel
to the corresponding ground truth can be up to 10 cm.

For this evaluation, the number of pose hypotheses was set to 50 and the supervoxel graph
connection weight threshold to 1.0. The voxel sizes were increased in 0.5 cm increments
between 2 cm and 4 cm and three supervoxel sizes were used: 10 cm, 15 cm, and 20 cm.

The results in Figure 4.9 show that voxel sizes have a low influence on the overall PCP
results. The PCP results are best for the smallest voxel sizes and decrease only slightly for
larger voxels. This shows that the supervoxels are suitable as joint candidates independently
of voxel sizes.
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(b) UMPM (Orthosyn sequence)

Figure 4.9: Evaluation of voxel and supervoxel sizes. The PCP scores are best for the
smallest voxel sizes and decrease for larger voxels. The same hold for supervoxels sizes and
best results are achieved for the smallest supervoxels.

The supervoxel sizes have a stronger impact on PCP results as Figure 4.9 shows. The
lower the supervoxel size, the better are the results. The reason is that the supervoxel sizes
directly affect the possible deviations from ground truth joint locations as discussed above.
For optimal results, the smallest supervoxels should be used. However, supervoxel sizes
also determine the search space of the algorithm, as discussed in Section 4.4. Therefore, if
computational efficiency is important, a larger supervoxel size can be used.

Supervoxel Graph Connection Weights

The weight of the supervoxel graph edges represents their fraction inside the volume,
as explained in Section 3.3.3. For example, an edge contained inside the volumetric
reconstruction by 40 % has a weight of 0.4. This threshold is intended to introduce a
certain robustness against voxel carving errors. For example, if only one voxel on a graph
edge is erroneously carved, e.g., due to noise, the whole connection would be removed.
The lower the weight threshold, the more connections does the supervoxel graph have and,
consequently, the higher is the number of limb candidates.

For this evaluation, the voxel size was set to 2 cm and the supervoxel size to 10 cm. The
number of pose hypotheses was 50. The connection weight threshold was varied between
0.0 and 1.0.

Figure 4.10 shows the results for this evaluation. As Figure 4.10a shows for the HumanEva-I
dataset, the PCP results converge for a threshold of 0.8 or larger. The lower the threshold,
the worse the results. The reason is that too many candidates are available for pose
estimation, including many poor candidates that are largely outside the actual volumetric
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Figure 4.10: Evaluation of supervoxel graph connection weights. (a) shows that relaxing
the connection weight threshold is not required for the HumanEva-I dataset. (b) shows
that best results are achieved with a threshold of 0.95 for the UMPM dataset sequence
Chair with static occlusions.

reconstruction. These excess candidates negatively affect pose estimation. Also, the
foreground segmentations are quite good due to the GrabCut algorithm [136] and because
there are no static occlusions. Therefore, relaxing the connection weight threshold is not
necessary.

As Figure 4.10b shows, this is different for the UMPM dataset with worse foreground
segmentations and static occluders. Here, a slight relaxation of the connection weight to
0.95 leads to better overall results.

4.5.3 Body Tracking Evaluation

This section shows the evaluation of the body tracking algorithm with temporal pictorial
structures as introduced in Section 4.3. For tracking, the limb scores of the best previous
poses are propagated to the current frame. This influences pose estimation and steers poses
into the direction of previously selected poses. For tracking, there is only one free parameter
which is the size of the tracking history. This parameter determines the maximum time
difference to the current frame for propagation of information about previous poses.

For evaluation, the voxel size was set to 2 cm and the supervoxel size to 10 cm, as it gives
the best results. Varying the voxel size does not significantly affect pose estimation as long
as it is below 3 cm, as shown in Section 4.5.2. The supervoxel graph connection weight
threshold was set to 1 for evaluation on the HumanEva dataset and to 0.95 for the UMPM
dataset. The number of pose hypotheses was set to 50. For the sole tracking parameter,
i.e., the history size, three settings were evaluated: 10, 20, and 30 frames.
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Table 4.1: Tracking results for HumanEva-I. The table shows tracking results for three
different tracking history sizes on the HumanEva-I dataset with a voxel size of 2 cm, a
supervoxel size of 10 cm, and connection threshold 1.

No tracking History: 10 History: 20 History: 30
Head 0.96 0.97 0.97 0.97
Upper arms 0.54 0.57 0.57 0.56
Lower arms 0.27 0.29 0.29 0.29
Torso 1.00 1.00 1.00 1.00
Upper legs 0.97 0.98 0.98 0.98
Lower legs 0.93 0.94 0.94 0.94
Average 0.78 0.79 0.79 0.79

Table 4.1 shows the results of the tracking evaluation for HumanEva-I and Table 4.2 for
UMPM. In general, tracking has a positive effect on the percentage of correctly classified
parts. This effect is stronger for more difficult sequences with lower recognition rates. Best
results are achieved for the Table sequence of the UMPM dataset with an PCP increase
from 0.61 to 0.69. All parts benefit from tracking, e.g., torso recognition rates increase
from 0.92 to 0.95 for the UMPM Chair sequence. Results are best for tracking history sizes
of 10 and 20. Overall improvements through tracking are lower for HumanEva-I. However,
the most difficult parts, i.e., the arms, have the highest increase by up to three percent.

4.5.4 Part Accuracy Evaluation

The previous sections showed average classification rates for all body parts. Here, the
classification rates of specific parts will be discussed. For evaluation, three voxel and
supervoxel sizes were used. The supervoxel graph connection weight was set to 1 for
HumanEva-I and 0.95 for UMPM. The number of pose hypotheses was 50.

The results for both datasets are shown in Table 4.3. As typical for pose estimation, the
classification rates decrease for limbs that are lower in the kinematic chain of the body
model. The reason is that poorly estimated parent limbs directly influence their child limbs,
as can be seen for upper and lower arms.

The torso, upper legs, and lower legs show high classification rates, in particular for smaller
voxel and supervoxel sizes. The torso is recognized best and is classified correctly for at
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Table 4.2: Tracking results for the UMPM dataset. The table shows tracking results on the
UMPM dataset with a voxel size of 2 cm, a supervoxel size of 10 cm, and connection weight
threshold 0.95. Two sequences with occlusions, Chair (C) and Table (Ta), are compared
for three tracking history sizes to results without tracking.

No tracking History: 10 History: 20 History: 30
C Ta C Ta C Ta C Ta

Head 0.68 0.55 0.72 0.62 0.73 0.64 0.72 0.64
Upper arms 0.64 0.57 0.67 0.63 0.68 0.65 0.67 0.66
Lower arms 0.42 0.40 0.44 0.45 0.43 0.46 0.43 0.47
Torso 0.92 0.88 0.95 0.94 0.95 0.98 0.96 0.97
Upper legs 0.84 0.70 0.87 0.77 0.87 0.78 0.88 0.78
Lower legs 0.69 0.58 0.71 0.61 0.71 0.62 0.71 0.62
Average 0.70 0.61 0.73 0.67 0.73 0.69 0.73 0.69

least 95 % of all evaluated sequences and sizes. The lowest scores are achieved for the upper
and lower arms, in particular for the HumanEva-I dataset. There are three reasons. First,
the arms are the most flexible parts and therefore harder to classify than other body parts.
This is also the case in other approaches, e.g., [29, 45, 134]. Second, they are relatively
small. Therefore, inaccuracies introduced due to supervoxel sizes have a higher impact on
their PCP scores, which are defined based on part lengths. Third, the arms are in particular
poorly recognized for sequences where they are close to the body and bent, e.g., in the
Box or Jog sequences. This is difficult to recognize for the proposed approach because the
pose prior favors extended and non-overlapping limbs. However, as the results for improved
voxel data will later show, even these difficult sequences can be recognized reliably.

In the remainder of this section, the single action sequences will be discussed. It will be
shown that arms are significantly better recognized for sequences with gestures, i.e., where
they are not too close to the body. Further, the next sections will show improved results
for better voxel reconstructions (here: synthetic voxels) and by using part detectors.

The previously discussed results focused on average recognition rates over all sequences.
Now, the recognition rates for single sequences will be discussed. For this evaluation, the
voxel size was set to 2 cm and the supervoxel size to 10 cm. The number of pose hypotheses
was 50 and the connection weight threshold 1 for HumanEva-I and 0.95 for UMPM.
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Table 4.3: Part classification evaluation for the HumanEva-I (HE) and UMPM datasets.
The table shows the PCP results for each body part and three voxel and supervoxel sizes.
The connection threshold was 1 for HumanEva-I and 0.95 for UMPM.

Voxel size: 2 cm Voxel size: 3 cm Voxel size: 4 cm
SV size: 10 cm SV size: 15 cm SV size: 20 cm

[𝑃𝐶𝑃 ] [𝑃𝐶𝑃 ] [𝑃𝐶𝑃 ]
HE UMPM HE UMPM HE UMPM

Head 0.96 0.73 0.92 0.67 0.80 0.68
Upper arms 0.55 0.70 0.41 0.53 0.24 0.39
Lower arms 0.28 0.48 0.11 0.30 0.05 0.15
Torso 1.00 0.96 0.99 0.95 0.96 0.95
Upper legs 0.98 0.88 0.95 0.82 0.86 0.80
Lower legs 0.93 0.78 0.86 0.68 0.71 0.63
Average 0.78 0.75 0.71 0.66 0.60 0.60

Table 4.4 shows results for single sequences of the HumanEva-I dataset. Except for the
arms, the classification rates are generally above 90 %. When examining the classification
scores for the upper and lower arms, the worst results are achieved for sequences where
they are close to the body, i.e., Box (B) and Jog (J). The other sequences, in particular
the Gestures (G) and Walking (W) sequence, achieve significantly better results. This is
important for this work which focuses on human-machine interaction. Here, arms must
generally be recognized if they are extended, e.g., for gesture interaction. In these cases,
the presented approach achieves good results.

Similar observations can be made for the UMPM dataset results shown in Table 4.5. Here,
however, the arms are recognized better, but still significantly worse than larger parts
like torso and legs. For the UMPM dataset, the challenging scenarios are the ones with
occlusions, like Chair and Grab, but in particular the Table sequence. Here, the voxel
reconstructions contain too many errors that have a negative impact on pose estimation.
Results for synthetic voxel data in Section 4.5.6, however, will show that without these
errors, PCP scores increase up to 0.98.
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Table 4.4: Classification results for single sequences of the HumanEva-I dataset.

Actor S1 Actor S2 Average
B G J T W B G J T W

Head 0.95 0.97 0.97 0.93 0.99 0.94 0.96 0.98 0.95 0.99 0.96
Upper arms 0.33 0.73 0.25 0.46 0.82 0.51 0.64 0.34 0.67 0.73 0.54
Lower arms 0.14 0.62 0.09 0.15 0.42 0.09 0.33 0.10 0.36 0.45 0.27
Torso 1.00 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00
Upper legs 1.00 0.98 0.94 0.97 0.98 0.99 0.97 0.97 0.98 0.98 0.97
Lower legs 0.97 0.90 0.81 0.87 0.93 0.99 0.96 0.91 0.98 0.97 0.93
Average 0.73 0.87 0.67 0.73 0.86 0.75 0.81 0.72 0.82 0.85 0.78

Table 4.5: Classification results for single sequences of the UMPM dataset.

Chair Grab Orthosyn Table Triangle Average
Head 0.68 0.68 0.90 0.55 0.85 0.73
Upper arms 0.64 0.67 0.79 0.57 0.80 0.70
Lower arms 0.42 0.36 0.61 0.40 0.63 0.48
Torso 0.92 1.00 1.00 0.88 1.00 0.96
Upper legs 0.84 0.92 0.99 0.70 0.96 0.88
Lower legs 0.69 0.79 0.97 0.58 0.87 0.78
Average 0.70 0.73 0.88 0.61 0.85 0.75



4.5 Evaluation 135

Table 4.6: Part detector evaluation on the HumanEva-I (HE) and UMPM datasets. This
table shows the classification improvements when using (simulated) part detectors.

Voxel size: 2 cm Voxel size: 3 cm Voxel size: 4 cm
SV size: 10 cm SV size: 15 cm SV size: 20 cm

Body part [𝑃𝐶𝑃 ] [𝑃𝐶𝑃 ] [𝑃𝐶𝑃 ]
HE UMPM HE UMPM HE UMPM

Head 1.00 0.98 0.99 0.96 0.98 0.93
Upper arms 0.92 0.93 0.71 0.80 0.51 0.62
Lower arms 0.67 0.87 0.36 0.67 0.20 0.39
Torso 1.00 1.00 1.00 1.00 1.00 1.00
Upper legs 0.97 1.00 0.95 0.98 0.91 0.96
Lower legs 0.95 0.98 0.89 0.95 0.81 0.91
Average 0.92 0.96 0.82 0.89 0.74 0.80

4.5.5 Part Detector Evaluation

One advantage of the pose estimation approach presented here is that it requires very
little prior information. In particular, it does not need training data for part appearances,
as is the case for part-detector based approaches. However, part detectors can be very
useful in certain situations. As Section 4.3.3 has shown, such information can be directly
integrated into the pose estimation algorithm by using supervoxel energies. This will now
be evaluated.

In this evaluation, part detectors are simulated to measure their impact on pose estimation.
Therefore, for each joint, energies of supervoxels are set accordingly to their distance to
the corresponding ground truth joint. If a supervoxel is within a radius given by the limb
size, which is twice the size used in the PCP measure, it is directly assigned its distance as
energy. If it is farther away, its energy is set to infinity.

For evaluation, three voxel and supervoxel size combinations were used. The number of
pose hypotheses was set to 50 and the connection weight threshold of the supervoxel graph
to 1 for HumanEva-I and 0.95 for UMPM.

Table 4.6 shows that using additional information through part detectors has the potential
to significantly improve the percentage of correctly classified parts for both datasets. This
is in particular the case for upper and lower arms as a comparison with Table 4.3 shows.
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Table 4.7: Pose estimation with synthetic voxel data on the HumanEva-I (HE) and UMPM
datasets. The table shows the accuracy of the pose estimation algorithm when no voxel
carving errors are present.

Voxel size: 2 cm Voxel size: 3 cm Voxel size: 4 cm
SV size: 10 cm SV size: 15 cm SV size: 20 cm

Body part [𝑃𝐶𝑃 ] [𝑃𝐶𝑃 ] [𝑃𝐶𝑃 ]
HE UMPM HE UMPM HE UMPM

Head 1.00 1.00 1.00 0.98 0.97 0.97
Upper arms 0.96 0.99 0.87 0.95 0.76 0.85
Lower arms 0.78 0.94 0.64 0.79 0.49 0.64
Torso 1.00 1.00 1.00 1.00 1.00 1.00
Upper legs 1.00 0.99 1.00 0.99 0.98 0.98
Lower legs 1.00 0.98 0.99 0.96 0.97 0.93
Average 0.96 0.98 0.92 0.95 0.86 0.89

The average PCP scores for the smallest voxel and supervoxel size is 0.92 for HumanEva-I
and 0.96 for UMPM.

In this work, one question is how to estimate a human pose with a minimal amount of
prior knowledge. The results in the previous sections showed that one solution is by using
supervoxel segmentation as a preprocessing step. With the results in this section, it was
shown that through additional information, e.g., by using trained part detectors, the overall
recognition rates can further be improved. This is a potential direction for future work.

4.5.6 Synthetic Voxels

The pose estimation presented here works with voxels as the smallest unit of operation.
Any errors introduced through voxel carving have an impact on pose estimation. As the
presented evaluations with two challenging datasets showed, the algorithm is robust and
works well with video data.

However, in the following evaluation, the potential maximal performance of the presented
algorithm is evaluated that would be achievable if there were no errors and inaccuracies
through voxel carving. Based on the ground truth body parts, synthetic voxels were
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generated. This has been done in the same manner as for the supervoxel evaluation in
Section 3.3.4.

For this evaluation, three voxel sizes were used in combination with three supervoxel sizes.
The supervoxel graph connection threshold was set to 1 because there are no voxel carving
errors for synthetic data. The number of pose hypotheses was set to 50.

Table 4.7 shows that the accuracy for the pose estimation algorithm is very high for
both datasets if there are no voxel carving errors. For small voxel and supervoxel sizes,
the average PCP score is 0.96 for HumanEva-I and 0.98 for UMPM and decreases with
increasing voxel and supervoxel sizes. These results show that the pose estimation algorithm
is able to accurately estimate human poses.

4.5.7 Evaluation of the 3D Joint Localization Error

The 3D joint localization error is the average distance between estimated and ground
truth joint positions in 3D space. It is well suited for evaluation because it allows a direct
comparison between different approaches based on their accuracy. Following [147, 148], the
3D error is measured in millimeters.

The parameters were chosen according to Section 4.5.4: The connection weight of the
supervoxel connection graph was set to 1 for the HumanEva-I and to 0.95 for UMPM
dataset. The number of pose hypotheses was 50. The voxel sizes were 2 cm, 3 cm, and 4 cm
with supervoxel sizes of 10 cm, 15 cm, and 20 cm. The results for both datasets are shown
in Table 4.8. Table 4.9 shows detailed results for all single sequences of the HumanEva-I
dataset and Table 4.10 for the UMPM dataset.

The evaluation results are in accordance with Section 4.5.4. The 3D error is lowest for smaller
voxel and supervoxel sizes and increases with larger voxels and supervoxels (Table 4.8).
The results on the UMPM dataset are, on average, slightly worse than on the HumanEva-I
dataset (Table 4.8). However, as Table 4.10 shows this is due to the Table sequences, the
most challenging sequence in the evaluation. The 3D errors of the other sequences are
comparable to the HumanEva-I results.

The accuracy for joints near the torso is better than for joints that are closer to the end of
the kinematic chains. In particular the wrist joints are difficult to estimate. The accuracy
for the other parts is significantly better. This is the case for both datasets as Tables 4.9
and 4.10 show.
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Table 4.8: 3D joint localization error for the HumanEva-I (HE) and UMPM datasets.

Voxel size: 2 cm Voxel size: 3 cm Voxel size: 4 cm
SV size: 10 cm SV size: 15 cm SV size: 20 cm

Joint [𝑚𝑚] [𝑚𝑚] [𝑚𝑚]
HE UMPM HE UMPM HE UMPM

Head 92 137 116 157 194 158
Neck 59 65 63 76 84 74
Shoulder 82 95 88 111 124 116
Elbow 148 162 179 216 214 252
Wrist 272 226 340 315 376 368
Pelvis 59 65 63 76 84 74
Hip 71 94 74 105 98 108
Knee 81 144 97 164 145 178
Ankle 106 161 144 190 216 213
Average 115 135 139 167 181 185

The results presented here will be further discussed in Section 4.5.10 with a comparison to
other approaches.

4.5.8 Qualitative Results

This section shows qualitative results of the presented pose estimation algorithm. First,
images are shown for the successive steps of the algorithm starting with voxel carving and
supervoxel segmentation to the final pose estimate. Figure 4.11 shows examples for the
HumanEva-I dataset and Figure 4.12 for the UMPM dataset. Then, examples of pose
estimates are shown for various voxel and supervoxel sizes. Results for the HumanEva-I
dataset are shown in Figure 4.13 and for the UMPM dataset in Figure 4.14. In addition,
images are shown for pose estimation with a single depth-sensor in Figure 4.15.

4.5.9 Runtime Evaluation

This section presents the runtime evaluation of the pose estimation algorithm. Runtime
measurements are given for both CPU as well as GPU implementation. In addition to the
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Table 4.9: 3D joint localization error for single sequences of the HumanEva-I dataset. The
voxel size was 2 cm and the supervoxel size 10 cm.

Actor S1 Actor S2 Average
B G J T W B G J T W

Head 93 84 89 100 74 100 104 83 105 88 92
Neck 58 56 58 53 58 63 61 58 63 63 59
Shoulder 87 76 78 76 74 97 80 82 83 82 82
Elbow 204 122 191 158 87 164 127 191 129 109 148
Wrist 480 207 264 337 167 417 241 255 200 155 272
Pelvis 58 56 58 53 58 63 61 58 63 63 59
Hip 68 69 70 68 69 76 73 70 75 74 71
Knee 76 76 97 88 71 83 80 78 80 82 81
Ankle 87 107 155 134 101 96 101 102 89 91 106
Average 147 101 128 129 89 140 109 117 103 93 115

Table 4.10: 3D joint localization error for single sequences of the UMPM dataset. The
voxel size was 2 cm and the supervoxel size 10 cm.

Chair Grab Orthosyn Table Triangle Average
Head 151 125 91 222 97 137
Neck 83 48 40 111 45 65
Shoulder 109 80 67 141 77 95
Elbow 169 161 152 201 127 162
Wrist 247 242 208 277 156 226
Pelvis 83 48 40 111 45 65
Hip 111 80 63 134 84 94
Knee 154 125 88 239 112 144
Ankle 170 132 98 293 114 161
Average 149 124 101 201 102 135
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(a) Camera image (b) Foreground segmentation

(c) Voxel carving (d) Supervoxel segmentation

(e) Supervoxel graph (f) Supervoxel centers with pose

(g) Result (h) Pose projected into image

Figure 4.11: Pose estimation process on HumanEva-I dataset. The images show all steps
of the pose estimation process.
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(a) Camera image (b) Foreground segmentation

(c) Voxel carving (d) Supervoxel segmentation

(e) Supervoxel graph (f) Supervoxel centers with pose

(g) Result (h) Pose projected into image

Figure 4.12: Pose estimation process on UMPM dataset. The images show all steps of the
pose estimation process.
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(a) S1 ThrowCatch, voxel size: 2 cm, supervoxel size: 10 cm

(b) S2 Gestures, voxel size: 3 cm, supervoxel size: 15 cm

(c) S1 Walking, voxel size: 4 cm, supervoxel size: 20 cm

(d) S2 Jog, voxel size: 2 cm, supervoxel size: 10 cm, synthetic voxels

Figure 4.13: Qualitative pose estimation results on HumanEva-I dataset for various voxel
and supervoxel sizes.
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(a) Chair, voxel size: 2 cm, supervoxel size: 10 cm

(b) Grab, voxel size: 3 cm, supervoxel size: 15 cm

(c) Triangle, voxel size: 4 cm, supervoxel size: 20 cm

(d) Table, voxel size: 2 cm, supervoxel size: 10 cm, synthetic voxels

Figure 4.14: Qualitative pose estimation results on UMPM dataset for various voxel and
supervoxel sizes.
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(a) One depth sensor, voxel size: 2 cm, supervoxel size: 10 cm

(b) One depth sensor, voxel size: 2 cm, supervoxel size: 10 cm

Figure 4.15: Qualitative pose estimation results with a single depth sensor.
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Table 4.11: Pose estimation part numbers. This table shows the numbers of candidates for
joints, i.e., supervoxels, and limbs, i.e., supervoxel graph connections, for three supervoxel
sizes.

SV size: 10 cm SV size: 15 cm SV size: 20 cm
[𝑁𝑢𝑚𝑏𝑒𝑟] [𝑁𝑢𝑚𝑏𝑒𝑟] [𝑁𝑢𝑚𝑏𝑒𝑟]

Joints candidates 182 77 46
Limbs candidates 20, 556 3, 382 1, 358

overall runtime, the runtimes for up and down paths of Algorithm 4 and for sampling the
body parts, i.e., limbs, are analyzed separately. The voxel size was fixed as it does not have
a direct influence on pose estimation runtimes. It was set to 2 cm because this achieved
the best results. The three supervoxel sizes were 10 cm, 15 cm, and 20 cm. The supervoxel
graph connection weight threshold was set to 1 and the number of pose hypotheses was 50.
The measurements were taken for the first sequence of the HumanEva-I dataset, i.e., Box
with subject S1.

The main factor for runtime is the numbers of supervoxels because they determine the
number of parts and connections used for pose estimation. The numbers of parts and
connections for three different supervoxels sizes are shown in Table 4.11. The runtimes for
pose estimation are shown in Table 4.12, again for three different supervoxel sizes. This
table also includes runtimes for body tracking.

As expected, the runtimes increase with an increasing number of supervoxels. Here, both
CPU and GPU implementation are significantly below 100 ms for all sizes. However, the
GPU implementation does not lead to an improved runtime. The reason is that due to the
search space reduction through supervoxels, the actual number of parts is not sufficiently
high to fully use the power of parallel processing. One exception is a supervoxel size of
10 cm where the GPU is faster. However, the saved time gets consumed by copying data to
and from the GPU. This overhead is not required for the CPU implementation.

The runtimes in Table 4.12 for the down path are for sampling 50 poses. This shows how
efficient this particular step is. As a result, sampling a larger number of poses for better
results would only lead a small increase in computation time.

Interestingly, in contrast to the worst case complexity discussed in Section 4.4, the overall
runtimes seem to be linear in the number of supervoxels. This can be seen when comparing
supervoxel numbers in Table 4.11 with runtimes in Table 4.12. Approximately half the
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Table 4.12: Pose estimation runtimes. The table shows runtimes for both CPU and GPU
implementations of the pose estimation algorithm. The runtimes are given for the single
parts of the algorithm as well as the total time.

SV size: 10 cm SV size: 15 cm SV size: 20 cm
CPU GPU CPU GPU CPU GPU

Algorithm part [𝑚𝑠] [𝑚𝑠] [𝑚𝑠] [𝑚𝑠] [𝑚𝑠] [𝑚𝑠]
Limb candidates 17 13 1 2 1 1

Up path 37 26 2 2 < 1 1
Down path (50 poses) 16 17 4 5 1 3

GPU overhead − 34 − 4 − 1
Body tracking < 1 < 1 < 1 < 1 < 1 < 1

Total 71 91 8 14 4 7

number of supervoxels leads to half the computation time. The reason is that, in contrast
to the worst case complexity, not all limbs are connected in the supervoxel graph.

Even with the additional computation time required for voxel and supervoxel segmentation,
as discussed in Sections 3.1.4 and 3.2.3, the system runs in real-time with a supervoxel size
of 15 cm or larger.

4.5.10 Comparison to the State-of-the-Art

This section compares the results of the presented pose estimation algorithm with state-of-
the-art approaches. First, a comparison based on the PCP measure is presented followed
by a comparison based on the 3D joint localization error.

Comparison based on Percentage of Correct Parts

The pose estimation algorithm is closest to Burenius et al. [45], proposed in 2013, which is
one of the few 3D pose estimation approaches with pictorial structures. Their approach
achieves average PCP scores of up to 0.77. However, a direct comparison of PCP results
is difficult because only selected frames of a special dataset have been evaluated in [45].
But as one of their main contributions was a reduction of the overall complexity, the
runtimes can be compared. (The complexity was already compared in Section 4.4.) For
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their recommended discretization sizes of translation space (|𝑇 | = 323) and rotation space
(|𝑅| = 83 ∨ 163), Burenius et al. [45] reported runtimes that are between 1 second and
69 minutes. In contrast, even with the lowest voxel and supervoxel resolutions, the runtimes
presented here are below 100 milliseconds.

In 2013, Ramakrishna et al. [134] reported results on the HumanEva-I dataset using the
PCP measure. Their tracking approach explicitly uses the symmetric structure of human
bodies and works on single images by using part detectors. They reported results for the
first 250 frames of the following sequences: S1 Walking, S1 Jog, and S2 Jog. Their reported
PCP results are between 0.98 and 1.00 for all parts except lower arms which achieve a PCP
score of 0.53. Their results are better than the results reported in this work, in particular
for the arms. However, with (simulated) part detectors, the differences diminish and a
comparable performance is achieved (Table 4.6). A comparison of runtimes is not possible
as they were not reported.

Comparison based on 3D Joint Localization Error

This section compares the presented pose estimation approach with other approaches. The
presented pose estimation approach achieves a 3D joint localization error of 115 mm with
voxel sizes of 20 mm and supervoxel sizes of 100 mm on the HumanEva-I dataset. Detailed
results were presented in Section 4.5.7. The comparison to other approaches focuses mostly
on the HumanEva datasets because there are currently no published results for comparable
approaches on the UMPM dataset. However, given the more challenging sequences of the
UMPM dataset, a 3D error of 135 mm is comparable to the results on the HumanEva-I
dataset.

Canton-Ferrer et al. [48] evaluated their tracking approach based on an annealed particle
filter on the HumanEva-I dataset. Similar to the presented approach, they also used a
voxel reconstruction as input with voxel sizes of 20 mm. As discussed in Section 2.3.3, their
approach is computationally expensive as a large number of hypotheses must be tracked
and evaluated simultaneously. The reported 3D joint localization error 121.18 mm.

Cheng and Trivedi [51] also used a voxel representation. They applied Gaussian mixture
models to represent body parts and voxel data as input. This system requires a precise
initialization and is computationally complex (see Section 2.3.3). It achieved a 3D error of
159 mm on the HumanEva-II dataset.

Amin et al. [26] infer the 3D pose from multiple 2D poses that were estimated based on a
pictorial structures approach. They evaluated their algorithm on different subsets of the
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HumanEva dataset and report 3D errors between 47.7 mm and 62.4 mm. This approach
achieves lower 3D errors than the presented work, but relies on trained appearance-based
part detectors for 2D pose estimation. The runtime has not been evaluated.

Kanaujia et al. [86] trained a part-based detector directly on voxel data. As one of their
contributions, they applied the basic idea used in the Microsoft Kinect [146] to voxels.
After adjusting the orientation of the visual hull, the system classifies voxels with a Support
Vector Machine trained with 3D Shape Context Histogram features. The system was
evaluated on various sequences of the HumanEva dataset and the reported 3D error is in the
range of 71.261 mm and 90.952 mm. The runtime of the system has not been reported.

4.6 Conclusion

This concludes the pose estimation and body tracking section. An approach was presented
that uses supervoxels as building blocks for frame-based pose estimation. By restricting
joints to supervoxel centers and limbs to connections of the supervoxel graph, the complexity
as well as search space was significantly reduced. Further, the approach requires little
prior knowledge and does not rely on large training datasets. In addition, extensions to
articulated body tracking and part detectors were introduced that can be directly integrated
into the pose estimation system through the concept of supervoxel energies.

The evaluation on two datasets showed that the presented approach can estimate the
articulated poses of humans. For the smallest supervoxel size of 10 cm, the average PCP
scores for the HumanEva-I dataset are 0.78 and 0.75 for the UMPM dataset with 3D joint
localization errors of 11.5 cm and 13.5 cm, respectively. Results are further improved with
body tracking by up to eight percent for sequences of the UMPM dataset. Evaluations with
simulated part detectors and with synthetic data showed that the average performance can
be further increased to 0.92 and 0.96, respectively. Due to the computational complexity
and search space reduction through supervoxels, the runtimes are in the range of 71 ms for
supervoxel sizes of 10 cm and down to 4 ms for supervoxel sizes of 20 cm, thus enabling
real-time interaction.
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This work was developed in the context of human-machine interaction in smart environ-
ments [10, 169]. All algorithms described in the previous sections were combined to a
system that allows natural and intuitive interaction in and with these smart environments.
The main challenge was to develop a system that allows for real-time interaction with a
robustness that not only allows applications in laboratory settings, but also in real-world
industrial environments.

The next sections show three example applications that recognize both static and dynamic
gestures based on the algorithms developed in this work. While static gestures are the result
of classifying a specific static pose, dynamic gestures also include temporal information
through following the arm trajectories.

Section 5.1 first introduces the basic gesture recognition system that is also the basis for
all following applications. This system recognizes static gestures, in particular pointing.
It was developed for interaction with large displays in the SmartControlRoom [10] at the
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB
in Karlsruhe. Then, Section 5.2 shows how this system was enhanced to also recognize
arbitrary dynamic gestures which is demonstrated with mid-air handwriting recognition.
The third application described in Section 5.3 uses pointing gesture recognition in an
industrial setting. Here, workers are enabled to directly interact with real-world objects
through gestures for an improved quality assurance process.

5.1 Pointing Interaction with Large Videowalls

This section describes the pointing gesture recognition system. It was the first application
developed in the context of this work and is the basis for all following applications. The main
challenge was to build a real-time system that allows both touch and pointing interaction
with large videowalls. Figure 5.1 shows images of both modalities. This system was first
published in [8] with an additional investigation of specific interaction techniques in [1].
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(a) Pointing interaction (b) Touch interaction

Figure 5.1: Touch and pointing interaction. The left image shows the selection of a distant
object through pointing. The right image shows how interaction can seamlessly be continued
with direct touch. The images were first published in [8].

The system was also displayed during the SmartControlRoom demonstration at the CeBIT
2011, as shown in Figure 5.2, which was one of the top-10 exhibitions.

5.1.1 Arm Segmentation

The gesture recognition system directly works on voxels resulting from the voxel carving
algorithm introduced in Section 3.1. In fact, with limiting assumptions about the envi-
ronment, pointing gesture recognition does not necessarily require the whole body pose.
However, given a pose estimate, gesture recognition can be further improved. First, the
original system will be introduced. Then, the improvement through pose estimation will be
shown.

The system consists of two parts. The first part segments and recognizes extended arms that
are pointing towards the videowall. The second part tracks the arm over time and recognizes
clicking events, similar to mouse clicks, that can be used as input for applications.

The arms are recognized by clustering and analyzing the voxels belonging to the visual
hull. Let V be the voxel grid after carving with remaining voxels 𝑣 ∈ V with side length 𝑐.
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(a) (b)

Figure 5.2: Pointing interaction at CeBIT 2013. The images show the pointing gesture
system as part of the SmartControlRoom demonstration.

Further, let 𝑑(𝑣, 𝑤) give the Euclidean distance between voxel centers of 𝑣 and 𝑤. Then,
there exists a path 𝑝(𝑣, 𝑤) between two voxels if the following condition is met:

𝑝(𝑣, 𝑤) ⇐⇒ 𝑑(𝑣, 𝑤) = 𝑐 ∨ ∃𝑢 ∈ V : 𝑝(𝑣, 𝑢) ∧ 𝑝(𝑢,𝑤). (5.1)

Based on the definition of a path, voxel clusters 𝐶𝑣 are defined as groups of voxels where a
path exists between all voxels. These clusters are initialized with voxels that are closest
to the videowall. Their maximum length along the orthogonal axis of the videowall is
restricted to the size 𝑐𝑚𝑎𝑥. Then, a cluster with seed voxel 𝑣 is defined by

𝐶𝑣 = {𝑤 ∈ V : 𝑝(𝑣, 𝑤) ∧ 𝑑(𝑣, 𝑤) < 𝑐𝑚𝑎𝑥}. (5.2)

This clustering procedure requires that the direction of interaction is known, which in this
case is the videowall. Further, only arm-shaped clusters are valid candidates for pointing
gestures. Therefore, clusters with a higher width than length are filtered. The remaining
clusters are then treated as arm candidates. Figure 5.3 shows an example camera image
with foreground segmentation and a 3D view of the voxels with the segmented arm.

Based on the extracted and filtered clusters, the pointing direction is determined. Because of
the assumption that gestures are pointing towards the videowall, the 3D vector representing
the pointing direction can be computed with a double linear regression along the axis
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(a) Camera view (b) Foreground segmentation (c) Voxels with segmented arm

Figure 5.3: Arm detection based on 3D reconstruction. Using the camera view and
foreground segmentation, the 3D reconstruction is computed with voxel carving. Through
clustering the voxels, the pointing arm is segmented. The images were first published in [8].

orthogonal to the videowall. With the assumption that the 𝑦-axis is orthogonal to the
videowall, the 3D pointing vector 𝑙 is given by

𝑙𝑣 =

⎛⎜⎜⎝
𝑥

𝑦

𝑧
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0
𝑏2

⎞⎟⎟⎠+
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𝑎1

1
𝑎2

⎞⎟⎟⎠ 𝑦 (5.3)

and parameters 𝑎1, 𝑎2, 𝑏1, 𝑏2 can be estimated through linear regression with voxels of
cluster 𝐶𝑣. The pointing location in display coordinates is then given by intersecting
vector 𝑙 with the known 3D plane of the display.

The arm segmentation presented above works in restricted environments where assumptions
about the direction of interaction can be made. Given a pose estimate, as described in
Section 4, the clustering can be improved by directly assigning voxels to the closest body
parts. Figure 5.4 shows example images for pose-based voxel clustering. The advantage is
not only a more robust segmentation process, but also fewer assumptions. Here, arbitrary
pointing directions are possible without limiting the direction of interaction, as is required
above.
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Figure 5.4: Clustering voxels based on pose estimation. The images show examples were
voxels are clustered with respect to the closest body part. The different colors represent
the clusters. Arbitrary pointing directions can be recognized which would not be possible
with the pure voxel-based clustering approach.

5.1.2 Tracking

The system described above segments arms in voxel data and determines the pointing
direction and location on the display. Generally, applications not only require a location,
but also an interaction event. In the simplest form, this is a clicking event. As the example
of the mouse shows, such a simple event already allows quite complex applications.

In this work, a clicking event is triggered if the arm remains still for a certain time threshold,
also called dwell time. Other clicking modalities were also investigated and published in [9],
but are not relevant for this work. Detecting when an arm remains still, requires tracking
over time.

In this application, tracking is done by assigning clusters 𝐶𝑡 of the current frame 𝑡 to the
closest cluster from previous time step 𝑡− 1. A clicking event is then triggered if the arm
remains still, i.e., its movement is below a certain distance threshold, for the specified dwell
time. For real-world applications, the dwell times were chosen to be between 0.5 and 1
seconds.

5.1.3 Evaluation

The pointing gesture recognition system was evaluated both from a technical viewpoint
as well as in the context of a user study. Here, only the accuracy results are presented.
Additional evaluations can be found in [1, 8].

All experiments were done in the SmartControlRoom at the Fraunhofer IOSB. The experi-
mental setup included a videowall for interaction with a screen resolution of 4096× 1536
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(a) Touch accuracy (b) Pointing accuracy

Figure 5.5: Accuracy evaluation of touch and pointing gestures. The left image shows the
error distribution for touch and the right image for pointing interaction across the videowall.
The error values are measured in pixels. Black areas indicate that no interaction took place.
These results and images were first published in [8].

pixels and a display size of 4× 1.5 m with the highest point at 2.3 m. Two RGB network
cameras mounted to the walls next to the videowall with a resolution of 640× 480 pixels
were used as input.

For the experiment to evaluate the accuracy of the pointing recognition, five users were
asked to point at or touch 128 evenly distributed targets on the videowall. The participants
did not receive any feedback at all during this experiment. Based on their gestures, the
mean error and standard deviation of the estimated and actual pointing location were
computed. Figure 5.5 shows the error distributions across the videowall. As expected,
touch is more accurate than pointing. One reason is that with increasing distance, even
small arm movements lead to an increasingly larger offset of the pointing direction. Further,
users did not receive any feedback at all. However, as following work showed [1], users can
interact with objects down to 25 pixels side length, which is approximately 2.5 cm, if they
receive feedback, e.g., in form of a cursor.

This concludes the introduction of the touch and pointing gesture recognition system
developed in this work. It allows for real-time human-machine interaction and can both be
used directly with voxels or based on pose estimation results. The next sections shows how
this base system can be applied to two additional applications.
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Figure 5.6: Handwriting recognition in mid-air. The system recognizes characters and
words that are written in front of the videowall. This image was published in [5].

5.2 Handwriting Recognition in Mid-Air

The previous section described the recognition of static gestures for pointing interaction.
The challenge addressed in this section is the recognition of arbitrary dynamic gestures
based on arm movements. This is demonstrated with an example application that allows
writing characters and words in mid-air. The system was developed during the diploma
thesis of Daniel Morlock [15] and published in [5]. An example of the system is shown in
Figure 5.6. Basis and motivation for this application was the wearable air writing system
presented by Amma et al. [27].

Handwriting recognition is well suited as a use case for general gesture recognition. The single
characters represent arbitrary dynamic gesture symbols and words are concatenations of such
symbols. The recognition follows established handwriting recognition approaches [126] and
uses Hidden Markov Models (HMM) [133] for both character as well as word recognition.

The system starts gesture recognition as soon as an extended arm is recognized by the
system described in Section 5.1. It then extracts features from the arm trajectory that are
used for character and word recognition. The gesture recognition stops if the arm is moved
to a resting position.

The features used for recognition are the connecting vectors between sampled points of
the hand trajectory that were projected onto the videowall surface. The videowall and, in
particular, the feedback displayed on the videowall is not necessary and the system can
also work with virtual planes in front of the users. The extracted features are shown in
Figure 5.7 as well as varying trajectories for one example letter. The left-to-right HMMs
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(a) Feature extraction from arm trajectory (b) Writing style variations

Figure 5.7: Features and trajectories for handwriting recognition in mid-air. (a) shows
the features represented by connecting vectors between points sampled from the hand
trajectories. (b) shows an example of the variations when different people write the same
character, here E. The images were also published in [5].

were trained in a person-independent way. The training dataset for characters contained all
characters of the English alphabet written by five people for five times, resulting in a total
of 25 samples for each character. For word recognition, 40 words were written by 16 users
for one time. The HMMs for word recognition were created by concatenating the single
character HMMs with an additional refinement step based on the recorded word samples.

The evaluation of the character recognition system followed a leave-one-out cross-validation
scheme and achieved recognition rates of up to 86.15 %. The confusion matrix for character
recognition can be seen in Figure 5.8. The word recognition evaluation also followed a
leave-one-out cross-validation scheme and achieved recognition rates of 97.54 %. It can be
assumed that the recognition rate would be lower for a larger number of words. However,
as an example for general dynamic gesture recognition, 40 words using 26 characters are
sufficient to cover most real-world use cases.

This section explained how dynamic gestures can be recognized based on the system
introduced in Section 5.1. The task of recognizing characters and words based on arm
movements is quite complex. There is a large variability how different users write each
character. Further, there is a large number of possible character combinations. By
demonstrating that characters and words can be reliably recognized, it was shown that the
system is suitable for general gesture recognition, which concludes this section.
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Figure 5.8: Confusion matrix for handwriting recognition. The matrix shows that most
characters are recognized reliably. The confusion between F and G is due to the continuous
writing style. This image was also published in [5].

5.3 Gesture Recognition for Quality Assurance

This section presents the last of the three applications that were developed in this work:
gesture interaction in an industrial environment to mark errors on painted bumpers. The
challenges that were addressed with this application are two-fold. First, the application
was developed to work not in a laboratory setting, but in an industrial environment. This
requires a high degree of robustness and mechanisms for autonomous operation. Second,
users are not interacting with displays that give direct feedback and that are stationary at
well-known positions, but with real-world moving objects. These objects must consequently
also be tracked and recognized in 3D.

As a difference to the applications presented in the previous sections that used video
cameras, this system is based on two calibrated depth sensors, here two Kinect cameras.
The 3D surface points are combined in one world coordinate system determined through
calibration. This leads to a representation that is similar to surface voxels.

The application domain was quality assurance. Here, painted bumpers are inspected by
workers. If any errors are detected, they must manually be documented at a separate
terminal. This costs time and forces workers to shift their focus of attention from the current
task to the terminal. To improve the overall process, the pointing gesture recognition
system, which was introduced in Section 5.1, was applied to enable workers to directly
document errors by pointing at them. This removes the need to leave the work place
for documentation and, therefore, improves the overall interaction between humans and
computers.
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(a) 3D reconstruction (b) Integration in quality accurance system

Figure 5.9: Pointing recognition for quality assurance. (a) shows the 3D reconstruction
of the workplace with tracker bumper model (white), segmented person (green), and
recognized pointing gesture (red). (b) shows the integration into the quality assurance
system ANABEL where the location of the error is marked with a red dot.

In contrast to the pointing gesture recognition with known display coordinates, the bumper
has to be tracked as well. The tracking is based on a set of reference points that were
sampled from the bumper’s CAD model. Tracking is initialized by matching 3D feature
points of the bumper model with the observation. As 3D feature descriptors, Fast Point
Feature Histograms [137] were used. After initialization, the bumper is tracked by using
the iterative closest point algorithm for the 3D surface points.

The pointing gesture recognition follows the description in Section 5.1. The 3D points are
clustered based on points that do not belong to the tracked bumper model and the main
axis for recognition of the pointing gesture is specified during calibration. When the bumper
remains in a resting position, workers can mark errors by pointing at them for a dwell time
of one second. Example images of the gesture recognition system are shown in Figure 5.9.
The system has already been installed at an industrial workshop and workers could try it
in their daily work. The overall reception was very positive as it improved the general way
of how humans are interacting with machines. The system was also demonstrated during
the Hannover Messe 2013 where it was one of the selected highlight exhibitions, as shown
in Figure 5.10. In addition, it won the Industriepreis 2013 in the category ”research and
development” of the Initiative Mittelstand.
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(a) Exhibition at Hannover Messe 2013 (b) Installation in industrial environment
c○Zentsch, Fraunhofer IOSB

Figure 5.10: Pointing gesture recognition for quality assurance in challenging environments.
(a) shows the exhibition at Hannover Messe 2013 and (b) shows the trial installation in an
industrial environment.

5.4 Conclusion

This concludes the section about applications that were developed in this work. A general
pointing gesture recognition system was described in Section 5.1. It can be used directly on
a reconstructed voxel volume as well as in combination with pose estimation. Based on this
system, a general dynamic gesture recognition system was presented in Section 5.2. The
example application, handwriting in mid-air, demonstrated the flexibility of this system.
The high robustness of the pointing gesture recognition was shown with the example of an
industrial application in Section 5.3 where workers can directly interact with bumpers in
the context of quality assurance. All applications demonstrated that the real-time gesture
recognition system is well suited for human-machine interaction in various contexts and
application domains.
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This concludes the presented thesis about human pose estimation with supervoxels. All
processing steps of a system for human-computer interaction have been addressed and
contributions presented, starting from sensor data acquisition to gesture interaction appli-
cations. For all steps of such a system, the thesis showed how the respective challenges
can be addressed and the overall complexity reduced by segmentation techniques. The
final result is a pose estimation and body tracking system with a low overall computational
complexity that requires very little prior knowledge. In the following, the highlights of the
various processing steps will be summarized.

The segmentation algorithms were introduced in Chapter 3. The voxel carving algorithm
discussed in Section 3.1 creates a sensor-independent 3D representation of the input data.
By changing the carving function, various sensor types and modalities are supported which
leads to a flexibility with respect to different application areas and environments. Through
the integration of occlusion maps, the approach is robust to static occlusions. In addition,
it is computationally very efficient.

The superpixel segmentation algorithm in Section 3.2 provided the basis for the supervoxel
segmentation algorithm in Section 3.3. Both superpixel and supervoxel algorithms achieved
very good results when compared to other approaches. Further, both allow a precise control
of the compactness which was demonstrated with evaluations of the presented compactness
metrics. The concept of compactness was discussed in detail and the correlation to other
metrics shown. Supervoxels and the presented supervoxel graphs provide the building
blocks for pose estimation.

The approach introduced in Chapter 4 applies supervoxels to pictorial structures for 3D pose
estimation. It achieves a significant reduction of both the search space of valid poses as well
as the computational complexity and requires very little prior information. Further, through
the concept of supervoxel energies, additional information can be seamlessly integrated as
was shown for articulated body tracking and the integration of part detectors.

Chapter 5 introduced a gesture recognition system for both static touch and pointing gestures
for interaction with large videowalls as well as dynamic gestures, as was demonstrated
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with the example of handwriting recognition in mid-air. This system works both directly
with voxels as well as estimated poses. The system is robust and suitable for real-world
human-computer interaction applications, as was demonstrated on various exhibitions and
in industrial environments.

In conclusion, this thesis investigated how both the number of input elements as well as
the computational complexity can be reduced through segmentation while simultaneously
improving the overall flexibility. Within this thesis, a system was developed that allows for
real-time human-computer interaction. It achieves flexibility through voxel carving that can
be applied to various sensor types and modalities. Based on the concept of superpixels, the
size of the input data is reduced through supervoxel segmentation. Applying supervoxels as
building blocks to the pictorial structures framework leads to a significant computational
complexity and search space reduction that allows for real-time 3D pose estimation with
little prior information. Further, the system has proven its functionality for static and
dynamic gesture recognition for human-computer interaction in various laboratory and
real-world applications.

Future Work

Voxel carving algorithms have been largely addressed and efficient solutions have been
proposed. The major drawback of video-based voxel carving, however, are defects in the
visual hull that are introduced through errors in the foreground segmentation. These
errors either originate from static or dynamic occlusions or due to imperfections in the
segmentation algorithms. While these issues have been addressed, image segmentation still
remains a challenging topic, in particular if runtime is a limiting factor.

Superpixel segmentation has become an established image segmentation technique and
there are many algorithms available that focus on different characteristics. In addition,
there are various metrics available to evaluate the resulting segmentations, including
the presented compactness metric. It would now be interesting to systematically apply
superpixel segmentations to different application areas to evaluate which characteristics are
important. In particular, the trade-off between boundary recall and compactness should be
further investigated which is now possible with the presented compactness metric.

Supervoxels are relatively new compared to superpixels, in particular for sparse volume
segmentations like voxel carving reconstructions. Similar to superpixels, it must now be
evaluated for which applications they are most beneficial. In this context, it could also be
investigated what effect compactness has on the performance of these applications.
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The pose estimation approach presented in this thesis explored solutions that require little
prior knowledge. In particular, no trained appearance-based part detectors were required.
The system is computationally very efficient and achieves results that are comparable
to other approaches. However, the estimation of the arms still poses challenges. The
reason is that with a pure segmentation based approach, there are no anchors for the arm
positions and due to their highly articulate nature, they can fit into various parts of the 3D
reconstruction. However, possible solutions have been presented in this work, among them
(simulated) part detectors. The next step could therefore be a hybrid system that uses
both 3D segmentation into supervoxels to reduce the search space of possible poses as well
as additional part detectors to further limit the positions of body parts. As was already
shown, this information can be seamlessly integrated into the supervoxel-based pictorial
structures approach to also benefit from the computational complexity reduction.

The human-computer interaction techniques presented in this work have already been
applied to challenging real-world scenarios. However, the user experience can be further
enhanced by improving the accuracy and robustness of the gesture recognition system. One
solution could be the integration of smart interface elements that are designed to work
with gesture-based input modalities that are inherently less accurate than, for example, the
computer mouse. Another possible direction is the integration of hand gestures to reduce
the dependence on static pointing gestures to trigger interaction events.
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