

 Karlsruhe Reports in Informatics 2014,8
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Dynamic X10

Resource-Aware Programming for Higher Efficiency

Matthias Braun, Sebastian Buchwald, Manuel Mohr, Andreas Zwinkau

 2014

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Dynamic X10
Resource-Aware Programming for Higher Efficiency

Matthias Braun Sebastian Buchwald Manuel Mohr Andreas Zwinkau
Karlsruhe Institute of Technology

{matthias.braun,sebastian.buchwald,manuel.mohr,andreas.zwinkau}@kit.edu

Abstract
Static resource allocation, as common on supercomputers, de-
creases the overall system efficiency because most applications
exhibit a varying degree of parallelism. Dynamic exclusive re-
source allocation can remedy this issue. For an X10 application,
this means that the number of places can change dynamically at
run-time. In this paper, we propose Dynamic X10, an X10 exten-
sion to support a changing number of places. We present an X10
framework for resource-aware programming, where resources are
managed explicitly by the programmer. We show the necessary
modifications to X10’s runtime and standard library as well as an
implementation of the proposed framework tailored to tiled many-
core architectures. The required adaptions to existing X10 code are
evaluated using applications from numerical mathematics.

Categories and Subject Descriptors D.1.3 [Software]: Program-
ming Techniques—Concurrent programming; D.3.3 [Software]:
Language Constructs and Features—Concurrent programming
structures, frameworks

Keywords X10 Programming Language, Dynamic X10, Invasive
Computing, Resource-Aware Programming

1. Introduction
To run a High-Performance Computing (HPC) application on a su-
percomputer, a user must reserve a time slot with a specific num-
ber of compute nodes. Colloquially, the user “stakes a claim” for
an application. These claims essentially represent an exclusive and
static resource allocation where two applications can never use the
same node at the same time. Most applications do not use all their
claimed resources at every point during their run-time. For exam-
ple, an application using multigrid methods needs fewer resources
while restricted to coarser grids [2]. However, due to the exclu-
sive and static allocation, unused cores just idle. To improve the
efficiency of the system as a whole, the unused resources could
be reallocated to other claims [2]. Moreover, with an ever growing
number of cores on a single chip, proposed many-core architectures
share the characteristics and thus also the problems of supercom-
puters.

On shared memory systems, e.g., within a compute node, CPU
cores are allocated neither exclusively nor statically. Instead, the
operating system (OS) offers virtualized cores called threads to the
programmer. Threads are transparently multiplexed onto the physi-
cal cores, so programmers need not care for their number. However,
this implies overhead due to context switching and cache thrashing,
especially when there are more threads than cores. Additionally,
many HPC algorithms rely on barrier synchronization, so if one
thread is interrupted the other threads cannot make progress. Ex-
clusive core allocation can improve efficiency in such cases [4].
This could be realized by using supercomputer concepts in the

small, which leads to the same problems as described above. In-
stead, the OS should dynamically reallocate cores exclusively to
applications or claims. This applies to both distributed supercom-
puters and shared memory systems.

Dynamic exclusive core allocation can be performed within an
application using the standard Linux API, e.g., through thread pin-
ning [9] or cpusets [3]. However, an application-internal approach
cannot optimize well in a multi-application scenario. An applica-
tion lacks information about other claims and global resource man-
agement is therefore the task of the OS. However, current OSs do
not have enough application-specific information. For example, the
number of runnable threads is not enough information to partition
cores between two applications, as nothing about their scaling be-
havior is known. While embarassingly parallel applications can use
an unlimited amount of cores, most applications exhibit a logarith-
mic scalability curve. Necessarily, we need an API for application
programmers to provide such information to the OS.

If claims are a concept to represent a set of resources, they
implicitly are a resource isolation mechanism. So if claims isolate
resources, this poses the question of how claims interact if multiple
claims exist within the same application. Another problem with
programming with claims is that it requires the application to adapt
to changing resources. For example, data must be redistributed
whenever compute nodes and their local memory are added to
or removed from a claim. Unless the application does not rely
on persistent distributed data, it also follows that claims cannot
change at arbitrary points in time. There are moments where a data
redistribution is possible, and application-specific synchronization
is necessary to exploit them.

For an X10 application, the resource-changing environment
manifests as places appearing and disappearing. Therefore, it
breaks one of X10’s principles from the language specification [8]:
“The set of places available to a computation is determined at the
time that the program is started, and remains fixed through the run
of the program.” This has implications on various concepts. For ex-
ample, how should DistArrays behave when a place disappears?
What are the semantics of a place belonging to another claim? To
support resource-aware programming in X10, some changes to the
language semantics and standard library are necessary.

In this work we present:

• An X10 framework for programming with claims and commu-
nicating resource requirements to the OS.

• An implementation of this framework on a custom OS, which
provides a suitable resource management interface. We espe-
cially discuss necessary changes to the X10 language seman-
tics, runtime system, and standard library.

• An evaluation of the application changes for dynamic exclusive
allocation on a tiled many-core architecture, which has similar
characteristics as supercomputers.

1

We present the X10 framework in section 2 and the OS and archi-
tecture we implemented it on in section 3. Finally, section 4 in-
cludes case studies that show how existing X10 programs have to
be modified in order to use our proposed framework.

2. Claim Framework
In this section, we will describe how claims can be integrated into
the existing X10 language. The framework [11, 12] was developed
within the Invasive Computing project [10], which is driven by
the question of how heterogeneous many-core architectures can
scale to hundreds or thousands of cores on a single chip. Invasive
Computing considers many resources types like communication
links [5] or memory. However, for the purpose of this section, we
will limit ourselves to processor cores as computing resources. We
will first present the integration of claims on a higher level and then
give a more detailed technical explanation of the impact of claims
on X10 and its runtime library.

2.1 Basic Claim Handling
A claim is a set of processor cores. At every point in time, all
existing claims form a partition of the set of cores in a system, i.e.,
each core belongs to exactly one claim. Cores that are not contained
in a claim belonging to a running application are part of a system
claim that serves as a pool for currently available cores. Every non-
empty subset of the set of cores is a valid claim. Hence, claims are
allowed to span multiple shared-memory domains, i.e., nodes in a
supercomputer.

From the viewpoint of the application running inside a claim,
the usual X10 semantics hold. However, the application’s view is
restricted to the resources that are contained in the claim. Thus,
if a claim consists of three cores belonging to a shared-memory
domain, the application only sees a single place. Similarly, if a
claim consists of one core on each of the supercomputer nodes,
the X10 program sees as many places as there are nodes.

Hence, traditional X10 can be embedded naturally into X10
with claims: A traditional X10 program behaves exactly like an
X10 program that runs inside a claim containing all cores in the sys-
tem. Both the operating system and the X10 runtime system must
be claim-aware, so that activities created by an X10 application are
only executed on the cores belonging to the application’s claim (see
subsection 3.2).

Each application runs inside its own claim, initially consisting
of one core. Should the need for more resources arise, one way
to acquire more resources is to enlarge the existing claim. We
call the function to modify an existing claim reinvade. Hence,
reinvade() marks program points where the application’s view
of the resources can change: if the modified claim contains a core
on a shared-memory domain that previously was not part of the
claim, a new place becomes visible. If a whole shared-memory
domain is removed from the claim, its associated place disappears,
too. For example, a multigrid application can use reinvade()
whenever the grid is made coarser (in the restrict step) or finer (in
the interpolate step) as shown in Figure 1.

2.2 Multiple Claims and Isolation Boundaries
Instead of modifying existing claims, it is also possible to acquire
more resources by creating entirely new claims. Having separate
claims inside one application can be useful, because claims provide
isolation with respect to resource changes. For example, suppose
that an application needs to execute two compute-intensive paral-
lel tasks. Both tasks are implemented in a resource-aware manner
and call reinvade() to inform the system of their resource us-
age. If both tasks operated on the same claim, this would cause
multiple problems. First, concurrent updates of the same claim

Constraint

MultipleConstraints

AND
OR

PredicateConstraints

FPUAvailable
LocalMemory

Type
LatencyToMaster

LatencyToMemory

ThisPlace
SetConstraints

PEQuantity

PartitionConstraints

PlaceCoherent
LatencyWithinTeam

TileSharing

Hint

ScalabilityCurve
AppClass

PotentiallyFewerPEs
PotentiallyMorePEs

Figure 2. Constraint hierarchy for describing resources: the boxes
represent abstract base classes, an arrow represents inheritance in
classic object-oriented fashion.

make reasoning about the code very hard. From the perspective of
one task, resource changes can now not only happen on its own
reinvade() calls, but at arbitrary program points because of a
concurrent reinvade() call by the other task. And second, the
type of resources needed by the two tasks might be different, so
contradicting reinvade() calls might be executed.

We call the function that creates and returns a new claim invade.
For the X10 programmer, a claim is an X10 object of type Claim.
The class Claim offers the static method invade() for construct-
ing new claim objects, as well as non-static methods reinvade()
and retreat() for modifying and destroying exisiting claims.
Hence, invade() acquires new resources and returns them as an
object of type Claim. Conversely, retreat() releases the associ-
ated resources of a claim.

Additionally, Claim has a non-static method infect. By calling
infect() on a claim object C, the programmer can cross claim
boundaries and execute an activity on C’s resources. Thus, the
infect() method behaves analogously to X10’s at construct but
switches between claims instead of places. It takes a closure as an
argument and has the same deep copy semantics as at. infect()
executes the closure as a new activity on one core inside the new
claim. Upon execution, the activity runs in the context of the new
claim and thus only sees the resources that belong to this claim. It
can then use X10’s at and async constructs to switch places inside
the claim or start new activities, respectively. A call to infect()
blocks until execution in the other claim terminates locally.

2.3 Resource Awareness
As mentioned before, the OS needs application-specific informa-
tion to globally optimize resource usage for maximum efficiency in
a scenario with multiple applications. Hence, both invade() and
reinvade() take a description of the requested resources as an ar-
gument. We call these resource descriptions constraints and model
them as a class hierarchy in X10, where all constraints inherit from
an abstract base class Constraint. The class hierarchy is shown
in Figure 2.

The most simple and at the same most important constraint is
PEQuantity, which specifies a range for the number of “process-

2

Resource
Need

Time
restrict restrict interpolate interpolate

Figure 1. The multigrid approach means that the grid is restricted to coarser versions and then interpolated again to the finer variants.
Processing the coarse version takes fewer resources, so during one v-cycle resources are free for other applications. Each simulation step
consists of at least one such cycle.

ing elements”, i.e., processor cores. Several other constraints are
available to further describe resources. For example, LocalMemory
requires a specific amount of local memory to be available per core.
Multiple constraints can be combined using overloaded operators
&& and || for complex constraints.

From a resource management perspective, the most interesting
constraint is ScalabilityCurve. With this constraint, the pro-
grammer can pass application-specific knowledge about the ap-
plication’s scaling behavior to the system. The scaling behavior
is described as approximated speedup depending on the number
of cores in the claim. As shown in Figure 3, the basic constructor
of ScalabilityCurve takes a list of speedup values (in percent),
where the list index (starting at 1) is the number of processor cores.
One way to obtain a scalability curve is by running experiments on
the target platform and hard-code the measured speedup values. An
alternative is to leverage monitoring infrastructure in order to tune
the speedup values at runtime. Combinations of both approaches
are also possible.

v a l c = new PEQuan t i t y (1 , 3) &&
new S c a l a b i l i t y C u r v e ([1 0 0 , 130 , 1 5 0]) ;

v a l c l a i m = Claim . i n v a d e (c) ;
/ / . . . pe r fo rm work . . .
c l a i m . r e t r e a t () ;

Figure 3. Example use of invade() and resource constraints.

In the case of multiple concurrent resource requests, the system
can exploit the information passed via constraints to decide which
resource distribution is optimal for global efficiency. For exam-
ple, if two applications request an additional core via reinvade(),
the system can look at their scaling behavior and give the core to
the application that benefits most. Moreover, constraints enable the
system to choose the most suitable cores on a heterogeneous ar-
chitecture. So a compute-bound simulation gets high-performance
cores, while a memory-bound sorting application gets slower cores
instead.

With the inclusion of logical disjunction and range-based
constraints like PEQuantity, there are multiple possible out-
comes of a resource query. Hence, upon return from invade()
or reinvade(), the programmer has to inspect the returned claim
and find out which resources were granted by the system. If the
system could not fulfill the resource request at all, invade() and
reinvade() throw a NotEnoughResources exception.

2.4 Necessary X10 Runtime Adaptations
To support a dynamically changing number of places, the X10 run-
time library has to be adapted at various points. First, all static fields
that encode information about the number of places have to be
removed and replaced with property functions. Examples include
Place.MAX PLACES and PlaceGroup.WORLD, which must both
query the application’s current claim. Second, also some method
implementations, like Place.places() to retrieve a sequence of
places, have to be changed. Overall, only few explicit changes are
necessary and all of them are trivial like the presented examples.
More fragile is source code which implicitly assumes a constant
number of places.

An important issue is the interaction of X10’s DistArrays with
reinvade(). As reinvade() can lead to new places appearing
and also possibly disappearing, it is initially not clear how this
affects a DistArray that was created before reinvade() was
called. If a new place appears, existing DistArrays can continue
to function normally, as their associated distributions do not map
any Points to the new place. If a program wants to make use of
new places, it has to redistribute its data. Hence, the programmer
must create a new DistArray with an updated distribution and
move the data to the corresponding places. Further details on data
redistribution are described in subsection 2.5.

Handling disappearing places is more difficult. The applica-
tion can find out that a place disappeared only after the call to
reinvade(). At this point, it has already lost access to its data on
this place and cannot move the data over to another place anymore.
One solution to this is to forbid the loss of places: once a claim con-
tains a core on a shared-memory domain D, the system guarantees
that the claim will continue to contain at least one core from D af-
ter all subsequent calls to reinvade(). We call this property sticky
claims. If the number of cores per shared-memory domain is high
and the maximum number of concurrent applications (and therefore
claims) is low, sticky claims can be a viable solution. The advan-
tage of sticky claims is that the programmer never has to deal with
disappearing places. However, their downside is that they severely
restrict the reallocation of resources, therefore possibly decreasing
efficiency.

The alternative is to give the application the opportunity to
redistribute its data before actually removing the cores from the
claim. One possibility to realize this is to split reinvade() into
a request step and a confirmation step. After the request step,
the application’s claim contains both the old and the new cores.
With additional information about which cores the system wants to

3

P1 P2 P3 P4 P’

P1 P2 P3 P4

P1 P2 P’ P3 P4

Figure 4. Redistribution of a DistArray after a new place P ′

was added. White boxes represent places, black boxes represent
DistArray elements. Elements highlighted in green are trans-
ferred between places.

remove from the claim, the application can now redistribute its data
if necessary. After the redistribution, the confirmation step signals
the system that it is now safe to actually update the claim. Another
way of giving the application the chance to redistribute data is by
passing an X10 closure as an additional argument to reinvade().
The closure is called if the system decides to remove cores that
would result in at least one place disappearing. Upon invocation,
the closure is supplied the necessary information about the old and
the new claim and can redistribute the data accordingly. To be able
to do this, the programmer has to capture references to all relevant
DistArrays in the closure body.

2.5 Communication Reduction on Data Redistribution
If the number of places changes, data saved in existing DistArrays
may need to be redistributed. In case a new place appears, data
needs to be moved to this place in order to exploit its additional
processing power. Correspondingly, before a place is removed its
data must be distributed to other places. As this process is generic
and mechanical, it makes sense to offer it as part of a library instead
of replicating the code in each application. Moreover, because
communication is potentially expensive, in the following we will
present ways to reduce the amount of necessary communication.

We will focus on new places appearing, but the dual case of
disappearing places can be handled similarly, where the direction of
all communication operations is reversed. Figure 4 shows a simple
example of a DistArray with a BlockDist distribution, initially
distributed over 4 places. If a new place appears, the position of the
new place relative to the existing places is not fixed yet. It might
make sense to choose the mapping from place ids to physical nodes
in a cluster so that neighboring nodes also have consecutive place
ids. However, in general, the new place can be assigned an arbitrary
id in the allowed range. As we will show in the following, it does
make a difference in terms of communication overhead which place
id is chosen.

We will assume that all communication operations have equal
cost, independent of source and destination place, and we will
only focus on the number of DistArray elements that have to
be transferred. Let p be the number of places before a new place
is added and m the number of DistArray elements per place.
For ease of presentation, let us assume that m is also divisible by
p + 1, so all array elements mp can also be evenly distributed over
p + 1 places. The amount of data that has to be moved per place is
d := m − mp

p+1
. If the new place is added at the end of the place

list, as shown in the upper half of Figure 4, the first place has to
copy one element, the second two elements, etc. Thus, the total

communication costs are

c = d · Σp
i=1i = d

p(p + 1)

2
= d

p2 + p

2
.

As the number of places p approaches infinity, c can be approxi-
mated by the term dp2

2
.

However, if the new place is added in the middle as shown in
the lower half of Figure 4, the new place receives half its data from
the left p

2
places and half its data from the right p

2
places (assuming

p is even). Following the same reasoning as above, we find that

c′

2
= d · Σ

p
2
i=1i = d

p
2
(p
2

+ 1)

2
.

Hence, c′ = d p2+2p
4

, which approaches dp2

4
as p approaches

infinity. This shows that asymptotically, inserting the new place in
the middle can save up to 50% of communication operations.

3. Hardware Architecture and Operating System
This framework was developed within the Invasive Computing
Project [10] for a specific OS [7] and hardware architecture [6].
Invasive Computing is driven by the question of how many-core
architectures can scale to hundreds or thousands of cores on a
single chip and how these chips can be programmed. For scalability
reasons, invasive computing looks at tiled many-core architectures.

3.1 Hardware Architecture
Tiled many-core architectures are a way to arrange a large number
of cores on a single chip. They provide a traditional multi-core
architecture within a tile and a simple scalable interconnection
between tiles.

Figure 5 shows an example of a tiled many-core architecture.
The building block of such an architecture is a tile. In our pro-
totype hardware, a tile is a group of 4 processor cores that share
some resources, like an L2 cache or possibly a small tile-local
memory. Most importantly, cache coherence is guaranteed between
the per-processor L1 caches inside a tile. Hence, from a program-
mer’s point of view, a single tile behaves exactly like a common
shared-memory multiprocessor system. Multiple such tiles can be
combined to create a tiled many-core architecture, where the tiles
are connected via a network-on-chip. The tiles are also allowed to
be heterogeneous and can, for example, contain memory instead of
processor cores.

It is long known that cache coherence protocols do not scale
beyond a certain number of participants. Therefore, in such a tiled
many-core architecture, no cache coherence is provided between
different tiles. This makes partitioning the global memory and thus
the PGAS model the most viable method to program the system.
Hence, X10 is a perfect fit and maps naturally to these architec-
tures: each tile is presented as a separate place to the programmer.
As X10 semantics demand that data must be serialized and deseri-
alized when switching places via at, the missing cache coherence
across tile boundaries does not cause problems.

3.2 Operating System
The operating system used within Invasive Computing, Invasive
Run-time Support System (iRTSS), promotes the claim to a cen-
tral data structure of the OS. Hence, X10 claim objects are just
thin wrappers of OS claims, which fully support the operations
invade(), infect() and retreat(). For a discussion of the
overhead of these operations, see [7]. The iRTSS scheduler is
claim-aware and takes care that newly created activities are only
executed on cores that belong to the respective claim. Furthermore,
its thread model is designed to provide very lightweight threads.
Hence, X10’s activities can be mapped directly to OS threads, with-
out any need for a user-level scheduler as part of the X10 runtime

4

Global
Memory

20

Core Core Core Core

Local Memory
21

Core Core Core Core

Local Memory
22

Core Core Core Core

Local Memory
10

Core Core Core Core

Local Memory
10

Core Core Core Core

Local Memory
12

Core Core Core Core

Local Memory
00

Core Core Core Core

Local Memory
01

Global
Memory

02

Figure 5. An example of a tiled many-core architecture. The
shown example has 9 tiles, arranged in a 3×3 mesh and connected
by a network-on-chip. 7 of the tiles contain processor cores and 2
tiles contain external memory.

library. Additionally, the iRTSS includes a resource manager that
can make use of the resource constraints provided by applications.

4. Evaluation
We have adapted two existing X10 applications, a heat simulation
and a numerical integration application, to the resource-aware pro-
gramming style presented in this paper. Both applications exhibit a
varying degree of parallelism that depends on the input data, mak-
ing it natural to use reinvade() to inform the system of the ap-
plication’s current resource needs. In this section, we will focus
on software engineering aspects and evaluate the necessary mod-
ifications to the applications. Hence, we will not present runtime
measurements; see [1, 2] for discussions of performance and effi-
ciency.

4.1 Heat Simulation
This application simulates a laser engraving text onto a metal plate
and computes the heat distribution on the plate using a multigrid
solver. It comprises about 2500 lines of code and is described in
more detail in [2]. Compared to the normal version, the version us-
ing Dynamic X10 required two changes. The first change is to add
reinvade() calls during restriction and interpolation steps (see
Figure 1). The second change is to redistribute the data according
to changed resources.

If reinvade() calls are added to an application, this requires
the programmer to consider the constraints to use. Our application
is not optimized for any specific hardware, so the constraints are es-
sentially the desired number of cores and the scalability curve. The
desired number of cores is computed from the dimensions of the
grid that the solver uses, i.e., more cores for a fine grid and fewer
cores for a coarse grid. The scalability curve was initially guessed
as slightly sub-linear and will be refined according to actual mea-
surements. As the multigrid approach itself determines the points
of changing resource needs, choosing the correct program points to
insert reinvade() calls was straightforward. There was no need
for additional resource isolation inside the application, thus besides
resizing the initial claim, no additional claims are created.

After each reinvade(), the grid data, which is held in DistArrays,
must potentially be redistributed. In our prototype, we used sticky
claims, so the code did not have to cope with disappearing places.
We plan to support place removal in our framework with one of
the alternatives presented in subsection 2.4 and plan to investigate
the necessary programming effort. The actual redistribution code
was written specifically for this application. However, it is planned
to generalize it and move into the framework as there is nothing
application-specific about the code. All in all, modifying the multi-
grid application to support Dynamic X10 required less than 50 lines
of additional code.

4.2 Numerical Integration
This application approximates a definite integral of a given func-
tion. The integration range is split into smaller intervals, which can
be viewed as “jobs” that can be processed independently. Depend-
ing on the behavior of the function, a varying number of jobs is
created and thus also the size of the claim is adjusted dynamically
via reinvade(). Since a job can be described using two Double
values and the result of a job is another Double value, there is no
need for using DistArrays and data redistribution. However, from
the viewpoint of global resource management, this application is
interesting because it is both purely compute-bound and embarass-
ingly parallel. Hence, it can serve to “fill gaps” in case resources
would be otherwise unused.

5. Conclusion
In this paper, we showed that a resource-aware programming style
using dynamic exclusive core allocation is feasible in X10. We in-
troduced the concept of claims as sets of exclusively granted com-
puting resources and presented an X10 framework for program-
ming with claims. To cope with changing claims during run-time,
we extended X10 to support a dynamically changing number of
places and presented the necessary modifications to runtime and
standard library. We argued that optimizing the global resource dis-
tribution is only possible with application-specific information and
showed how this information can be transported and exploited in
our framework. We presented one implementation of our frame-
work tailored to tiled many-core architectures. An evaluation using
suitable HPC applications showed that Dynamic X10 is practical
and that it has moderate impact on programming effort.

Acknowledgments
This work was supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Center
“Invasive Computing” (SFB/TR 89).

References
[1] M. Bader, H.-J. Bungartz, and M. Schreiber. Invasive computing on

high performance shared memory systems. In R. Keller, D. Kramer,
and J.-P. Weiss, editors, Facing the Multicore-Challenge III, volume
7686 of Lecture Notes in Computer Science, pages 1–12. Springer
Berlin Heidelberg, 2013. ISBN 978-3-642-35892-0. . URL http:
//dx.doi.org/10.1007/978-3-642-35893-7_1.

[2] H.-J. Bungartz, C. Riesinger, M. Schreiber, G. Snelting, and
A. Zwinkau. Invasive computing in HPC with X10. In Proceedings of
the third ACM SIGPLAN X10 Workshop, X10 ’13, pages 12–19, New
York, NY, USA, 2013. ACM. . URL http://doi.acm.org/10.
1145/2481268.2481274.

[3] S. Derr, P. Jackson, C. Lameter, P. Menage, and H. Seto. Cpusets,
2004. URL https://www.kernel.org/doc/Documentation/
cgroups/cpusets.txt.

5

http://dx.doi.org/10.1007/978-3-642-35893-7_1
http://dx.doi.org/10.1007/978-3-642-35893-7_1
http://doi.acm.org/10.1145/2481268.2481274
http://doi.acm.org/10.1145/2481268.2481274
https://www.kernel.org/doc/Documentation/cgroups/cpusets.txt
https://www.kernel.org/doc/Documentation/cgroups/cpusets.txt

[4] P. Flick, P. Sanders, and J. Speck. Malleable sorting. IEEE 27th In-
ternational Symposium on Parallel and Distributed Processing, pages
418–426, May 2013.

[5] J. Heisswolf, A. Zaib, A. Zwinkau, S. Kobbe, A. Weichslgartner, J. Te-
ich, J. Henkel, G. Snelting, A. Herkersdorf, and J. Becker. CAP: Com-
munication Aware Programming. In Design Automation Conference
(DAC), 2014 51th ACM / EDAC / IEEE, 2014. Accepted.

[6] J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hubner, R. Pujari,
A. Grudnitsky, J. Heisswolf, A. Zaib, B. Vogel, V. Lari, and S. Kobbe.
Invasive manycore architectures. In 17th Asia and South Pacific De-
sign Automation Conference (ASP-DAC), pages 193–200, Jan 2012.
.

[7] B. Oechslein, J. Schedel, J. Kleinöder, L. Bauer, J. Henkel,
D. Lohmann, and W. Schröder-Preikschat. OctoPOS: A Parallel Op-
erating System for Invasive Computing. In R. McIlroy, J. Sventek,
T. Harris, and T. Roscoe, editors, Proceedings of the International
Workshop on Systems for Future Multi-Core Architectures (SFMA’11),
volume USB Proceedings, pages 9–14, 2011. URL http://www4.
cs.fau.de/~benjamin/documents/octopos_sfma2011.pdf.

[8] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove.
X10 language specification. Technical report, IBM, February
2014. URL http://x10.sourceforge.net/documentation/
languagespec/x10-latest.pdf.

[9] O. Tardieu, B. Herta, D. Cunningham, D. Grove, P. Kambadur,
V. Saraswat, A. Shinnar, M. Takeuchi, and M. Vaziri. X10 and APGAS
at petascale. In Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’14, pages
53–66, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2656-8.
. URL http://doi.acm.org/10.1145/2555243.2555245.

[10] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel,
W. Schröder-Preikschat, and G. Snelting. Invasive computing: An
overview. In M. Hübner and J. Becker, editors, Multiprocessor System-
on-Chip – Hardware Design and Tool Integration, pages 241–268.
Springer, Berlin, Heidelberg, 2011.

[11] A. Zwinkau. Resource awareness for efficiency in high-level program-
ming languages. Technical Report 12, Karlsruhe Institute of Tech-
nology, 2012. URL http://digbib.ubka.uni-karlsruhe.de/
volltexte/1000028712.

[12] A. Zwinkau, S. Buchwald, and G. Snelting. Invadex10 documen-
tation v0.5. Technical Report 7, Karlsruhe Institute of Technology,
2013. URL http://pp.info.uni-karlsruhe.de/~zwinkau/
invadeX10-0.5/manual.pdf.

6

http://www4.cs.fau.de/~benjamin/documents/octopos_sfma2011.pdf
http://www4.cs.fau.de/~benjamin/documents/octopos_sfma2011.pdf
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
http://doi.acm.org/10.1145/2555243.2555245
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028712
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000028712
http://pp.info.uni-karlsruhe.de/~zwinkau/invadeX10-0.5/manual.pdf
http://pp.info.uni-karlsruhe.de/~zwinkau/invadeX10-0.5/manual.pdf

	2014,8_Titelbl.pdf
	dynamicx10-final.pdf
	Introduction
	Claim Framework
	Basic Claim Handling
	Multiple Claims and Isolation Boundaries
	Resource Awareness
	Necessary X10 Runtime Adaptations
	Communication Reduction on Data Redistribution

	Hardware Architecture and Operating System
	Hardware Architecture
	Operating System

	Evaluation
	Heat Simulation
	Numerical Integration

	Conclusion

