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Early solidification is investigated using two different simulation techniques: the molecular dynamics (MD) and the phase-field
(PF) methods. While the first describes the evolution of a system on the basis of motion equations of particles, the second grounds
on the evolution of continuous local order parameter field.The aim of this study is to probe the ability of themesoscopic phase-field
method tomake predictions of growth velocity at the nanoscopic length scale. For this purpose the isothermal growth of a spherical
crystalline cluster embedded in a melt is considered. The system in study is Ni modeled with the embedded atom method (EAM).
The bulk and interfacial properties required in the PF method are obtained from MD simulations. Also the initial configuration
obtained fromMDdata is used in the PF as input. Results for the evolution of the cluster volume at high andmoderate undercooling
are presented.

1. Introduction

The phase-field is a powerful method to describe solidifi-
cation phenomena [1, 2] on the mesoscopic length scale. It
has been used to model homogeneous and heterogeneous
nucleation, microstructure formation in solids, and motion
of grain boundaries. The phase-field models includes formu-
lations for pure substances [3], for multicomponent systems
[4], and for polycrystalline structure [5] and solidification
in eutectic [6, 7], peritectic [7], and monotectic [8] systems.
Other simulation techniques for dendrite growth are cellular
automata [9] and hybrid methods such as the multiscale
diffusion Monte Carlo (DMC) [10, 11].

The phase-field method requires previous knowledge of
the material properties of the system in study. The input
includes bulk properties such as density, heat capacity and
latent heat, and others such as interfacial and kinetic growth
coefficients, being the latter properties which are hardly
accessible in experiments. Here molecular simulations play a
fundamental role, since they provide a link between an inter-
action potential and all the required properties. Kinetic
coefficients, interfacial free energies, and their dependence
on the crystal orientation, of pure metals and alloys, can be

directly obtained from simulations of inhomogeneous liquid-
crystal systems [12–15].

There are previous phase-field studies in which the
material parameters have been obtained frommolecular sim-
ulations to model dendritic growth in pure Ni [16, 17], CO

2

hydrates [18], and binary alloys. In this work we compareMD
and PF simulation results for the isothermal growth velocity
of a nanoscopic spherical crystalline cluster of Ni embedded
in the melt. For this purpose we use precise thermodynamic
and kinetic data obtained from molecular dynamics and use
equivalent initial configuration in the phase-field simula-
tions.

2. Properties of Ni (EAM)

The properties of Ni obtained from molecular dynamic
simulations are given in this section. The embedded atom
potential of Foiles [19] is used. The thermal dependence of
bulk properties is determined from independent simulations
of equilibrated homogeneous systems at pressure 𝑝 = 0.
Liquid phase is prepared by melting of an initial crystalline
phase, by setting the temperature of the thermostat well above
the melting temperature. Crystalline phase is obtained by
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relaxation of the perfect crystalline phase. The samples are
prepared in NpT simulation runs and the production in NVE
ensemble.

Densities of the bulk phases are fitted to the function
𝜌
𝛼
(𝑇) = 𝑎 + 𝑏 ⋅ 𝑇 + 𝑐 ⋅ 𝑇

2, for the fcc solid phase (𝛼 =

s) 𝑎 = 8901.6 kg/m3, 𝑏 = −0.20379 kg/m3 K, and 𝑐 =

−0.0000614202 kg/m3 K2 while for the liquid phase (𝛼 = ℓ)
𝑎 = 8992.26 kg/m3, 𝑏 = −0.667037 kg/m3 K, and 𝑐 =

0.0000331612 kg/m3 K2.The parameters were obtained in the
temperature intervals 1000K to 3000K for the liquid and
300K to 1900K for the solid. In both cases parts of the
metastable phases are included in the fit procedure.

The latent heat is obtained from the difference between
the enthalpy of the liquid and the solid and fitted to 𝐿̃

0
(𝑇) =

𝑎 + 𝑏 ⋅ 𝑇 + 𝑐 ⋅ 𝑇
2 with 𝑎 = −15980.2 J/kg, 𝑏 = 324.745 J/kg K,

and 𝑐 = −0.0810984 J/kg K2. These values are determined in
the range from 1000K to 1900K. The latent heat expressed
in units of energy per volume of the solid phase is given by
𝐿
s
(𝑇) = 𝐿̃

0
(𝑇) ⋅ 𝜌

s
(𝑇).

The specific heat capacity at constant volume is given
by 𝑐
𝛼

V (𝑇) = 𝑎 + 𝑏 ⋅ 𝑇 where 𝑎 = 419.452 J/kg K and 𝑏 =

0.020388 J/kg K2 for the solid and 𝑎 = 563.024 J/kg K and
𝑏 = −0.06952 J/kg K2 for the liquid.

The thermal diffusivity for themodel is 2.1⋅10−7m2/s [20]
while the experimental values range from 120 ⋅ 10

−7m2/s [21]
to the recent value 8.7⋅10−7m2/s [22] (obtained inmicrograv-
ity conditions).The value obtained from simulations is at least
4 times lower than that in experiments, and the difference
is due to the electronic contribution to thermal transport
in metals which are not accounted in classical molecular
dynamics.

The melting temperature of the model is precisely esti-
mated from simulations of inhomogeneous solid-liquid sys-
tem at the point where the velocity of growth is zero. For the
model 𝑇

𝑚
= 1748K.

The kinetic coefficient is estimated from linear relation-
ship between planar growth velocity and undercooling close
to coexistence. Growth velocities are obtained from inde-
pendent simulations for the crystal orientations [100], [110],
and [111]. The kinetic growth coefficient depends also on
the orientation of the crystal. Its orientational dependence is
represented here by the expansion

𝑘 (𝑛)

𝑘
0

= 1 − 3𝜖
𝑘
+ 4𝜖
𝑘
𝑄 + 𝛿

𝑘
(𝑃 + 30𝑆) (1)
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𝑛 = (𝑛
1
, 𝑛
2
, 𝑛
3
) is the unit vector normal to the interface.

The parameter 𝑘
0
is a value of the magnitude of the kinetic

coefficient; 𝜖
𝑘
and 𝛿
𝑘
are the strength of the anisotropy of the

kinetic coefficient. The values for the model EAM F85 are
𝑘
0

= 0.319205m/sK, 𝜖
𝑘

= −0.196511, and 𝛿
𝑘

= 0.230331,
estimated from the kinetic coefficients for different crystal
orientations; 𝑘

100
= 0.33m/sK, 𝑘

110
= 0.23m/sK, and 𝑘

111
=

0.12m/sK.
The interfacial stiffness and interfacial free energy were

obtained from the analysis of capillary waves spectrum of
large solid-liquid interfaces at coexistence (i.e., at 𝑇 = 𝑇

𝑚
for

𝑃 = 0). The orientational dependence of the interfacial free
energy 𝛾 is described by a cubic harmonic expansion

𝛾 (𝑛)

𝛾
0

= 1 + 𝜖
1
(𝑄 −

3

5
) + 𝜖
2
(3𝑄 + 66𝑆 −
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7
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+ 𝜖
3
(5𝑄
2
− 16𝑆 −
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13
)

(2)

with 𝛾
0
being an orientational averaged value of the interfacial

free energy, while the coefficients 𝜖
𝑖
describe the strength of

the anisotropy. Interfacial stiffness is defined as 𝛾
𝛼𝛽

= 𝛾 +

𝜕
2
𝛾/𝜕𝑛
𝛼
𝜕𝑛
𝛽
, where 𝑛

𝛼
and 𝑛
𝛽
indicate unit vectors tangent to

the interface plane [23]. The parameters of (2) are obtained
from the system of equations for the stiffnesses 𝛾

𝛼𝛽
and

their numerical values are obtained from the analysis of the
capillary waves spectrum [14]. Here we consider the crys-
tal orientations [100], [110]

[110]
, [110]

[001]
, and [111]; the

interface energy for the [110] orientation depends on the
parallel direction denoted by the subscripts. In respect to the
four different interface energies we used a cubic harmonic
expansion with four fitting parameters. Accurate values of
these variables and parameters for the model EAM F85 are
𝛾
0

= 0.302 J/m2, 𝜖
1

= 0.10191, 𝜖
2

= −0.00134, and 𝜖
3

=

0.00876.

3. Phase-Field Model for Pure Material

Isothermal crystal growth for purematerial is modeled by the
variables of the internal energy density 𝑒 and of two phase-
fields 0 ≤ 𝜙s ≤ 1 (solid) and 0 ≤ 𝜙

ℓ
≤ 1 (liquid). The

phase-field variables fulfill the constraint 𝜙s + 𝜙
ℓ

= 1, so a
single phase-field variable 𝜙 = 𝜙s is sufficient to describe the
evolution of the phase boundaries in the system. Note that
𝜙
ℓ
= 1 − 𝜙. The variable 𝜙(𝑥⃗, 𝑡) denotes the local fraction at 𝑥⃗

of the considered phase at time 𝑡.
The phase-field model is based on an entropy functional

to ensure consistency with classical irreversible thermody-
namics

S (𝑒, 𝜙) = ∫
Ω

𝑠 (𝑒, 𝜙) − (𝜖𝑎 (𝜙, ∇𝜙) +
1

𝜖
𝑤 (𝜙)) 𝑑𝑥. (3)

The bulk entropy density 𝑠 depends on the internal energy
density 𝑒 and the phase-field variable 𝜙(𝑥⃗, 𝑡). The functions
𝑎(𝜙, ∇𝜙) and 𝑤(𝜙) reflect the thermodynamics of the inter-
faces and 𝜖 = 4 is a small length scale parameter related to
the thickness of the diffuse interface.

In detail the gradient entropy with anisotropy is adopted
from (2) andmodeled by the factor (𝐴(𝑛))

2 depending on the
orientation of the interface. Consider the following:

𝑎 (𝜙, ∇𝜙) =
𝛾
0

𝑇
(𝐴 (𝑛))

2󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨
2

= 𝛾 (𝑛)
󵄨󵄨󵄨󵄨∇𝜙

󵄨󵄨󵄨󵄨
2

, (4)

where 𝑛 = −∇𝜙/|∇𝜙| is the normalized gradient vector.
The function𝜔(𝜙) = (16/𝜋

2
)(𝛾
0
/𝑇)𝜙(1−𝜙) is the obstacle

potential. It is set that𝜔(𝜙) = ∞ for 𝜙 ∉ [0, 1]. Note that 𝛾
0
/𝑇

is the interface entropy density.
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From (3) one derives the equations for the nonconserved
phase-field variable 𝜙 by taking the functional derivatives in
the form

𝜏𝜖
𝜕𝜙

𝜕𝑡
=

𝛿S

𝛿𝜙
, (5)

where 𝜏 = 𝜏(𝜙, ∇𝜙) is an anisotropic relaxation parameter
dependant on temperature, 𝜏(𝑛) = 𝐿(𝑇)/𝑇𝑇

𝑚
𝑘(𝑛) with (1),

and it is related to the kinetic coefficient 𝑘
0
.

The evolution of the phase-field variables is described by

𝜏𝜖
𝜕𝜙

𝜕𝑡
= 𝜖(∇ ⋅

𝜕𝑎 (𝜙, ∇𝜙)

𝜕∇𝜙
−

𝜕𝑎 (𝜙, ∇𝜙)

𝜕𝜙
) −

1

𝜖

𝜕𝑤 (𝜙)

𝜕𝜙

+
𝜕𝑠 (𝑒, 𝜙)

𝜕𝜙
.

(6)

The thermodynamic relation 𝑒 = 𝑓+𝑇𝑠 gives us 𝜕𝑠(𝑒, 𝜙)/𝜕𝜙 =

−(1/𝑇)(𝜕𝑓(𝑇, 𝜙)/𝜕𝜙), detailed in [24]. Here is the bulk free
energy density

𝑓 (𝑇, 𝜙) = ∑

𝛼∈{s,ℓ}
𝐿
𝛼
(𝑇)

𝑇 − 𝑇
𝑚

𝑇
𝑚

ℎ (𝜙
𝛼
)

+ ∑

𝛼∈{s,ℓ}
(∫

𝑇

𝑇
𝑚

𝑠
𝛼

V (𝑇̃) 𝑑𝑇̃−𝑇∫

𝑇

𝑇
𝑚

𝑠
𝛼

V (𝑇̃)
𝑑𝑇̃
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) ℎ (𝜙

𝛼
) ,

(7)

where ℎ(𝜙) is a monotonous function on [0, 1] with ℎ(0) =

0, ℎ(1) = 1 and ℎ
󸀠
(0) = ℎ

󸀠
(1) = 0. We chose ℎ(𝜙) =

𝜙
3
(6𝜙
2
− 15𝜙 + 10). 𝐿𝛼(𝑇) is the latent heat and 𝑠

𝛼

V (𝑇) =

𝜌
𝛼
(𝑇)𝑐
𝛼

V (𝑇) is the volumetric heat capacity both depending
on the temperature 𝑇. 𝑇

𝑚
is the melting temperature.

For the isothermal case we can define two constants
𝑓(𝑇, 𝜙) =: ∑

𝛼∈{s,ℓ} 𝐶
𝛼

𝑇
ℎ(𝜙
𝛼
) and consider here that the

free energy contribution to the equation of motion (6) is a
constant term 𝜕𝑓/𝜕𝜙 = (𝐶

s
𝑇

− 𝐶
ℓ

𝑇
)ℎ
󸀠
(𝜙); note that ℎ

󸀠
(𝜙s) =

−ℎ
󸀠
(𝜙
ℓ
).

Equation (6) is solved by a time dependent forward euler
schemewith a second order spatial discretisation on a regular
Cartesian grid.

4. Initial Configuration and Calibration

4.1. Preparation of the Sample. Growth simulations begin
from a configurationmade of a stabilized crystalline spherical
cluster embedded in the melt. The preparation of the initial
configuration involves a sequence of NpT simulation runs.
First the crystalline solid phase is equilibrated at 𝑝 = 0

starting from atoms arranged in a perfect fcc structure in a
cubic box with an initial density close to the experimental
value at room temperature (𝜌 = 8.9 g/cm3). The temperature
in this step is chosen equal to the one used later in the sim-
ulation of growth. In the second step two regions are defined
in the simulation box: the melting zone and the atoms in the
crystalline phase (which is chosen here as a sphere of radius
𝑟 = 25 Å). The region outside the crystalline zone is melted

by increasing the temperature well above the melting point
while the atoms in the solid region are constrained to remain
at fixed positions.The temperature is linearly increased while
an isotropic barostat is applied. In the next step, the stable
melt at high temperature is cooled down to the temperature
of the crystal. The melt reaches a metastable (undercooled)
state. At the end of this run, a crystalline cluster embedded in
the liquid phase at the same temperature is obtained. In the
last step, the relaxation of the atoms at the interface ismade by
anNpT simulation of some picoseconds in which all particles
are allowed to move.

4.2. Local Order Parameter. At microscopic level a configu-
ration is described by positions and velocities of particles at
a given time. The crystalline and liquid regions in this con-
figuration can be identified by a suitable definition of the
local order parameter, a function of the coordinates of a
particle and its neighbors which adopts different values in the
crystalline and in the disordered liquid phases. Here we use
the bond local order parameter 𝑞

6
𝑞
6
[25, 26]

𝑞
6
𝑞
6
(𝑖) :=

1

𝑍
𝑖

𝑍
𝑖

∑

𝑗=1

q
6
(𝑖) ⋅ q
6
(𝑗) . (8)

The inner product in this sum is given by

q
6
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6
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(𝑗)
∗ (9)

with

𝑞
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6𝑚

(𝑖) (

6

∑
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2

)

−1/2

, (10)

where 𝑄
6𝑚

(𝑖) = (1/𝑍
𝑖
) ∑
𝑍
𝑖

𝑗=1
𝑌
6𝑚

(𝜃( ⃗𝑟
𝑖𝑗
), 𝜙( ⃗𝑟
𝑖𝑗
)), 𝑍
𝑖
is the

number of neighboring atoms within a cut-off radius of
3.36 Å, and 𝑌

6𝑚
are 6th order spherical harmonic functions.

In order to obtain an equivalent initial configuration for
the PFmethod, the local order parameter values given at atom
positions are mapped on a regular grid with cell-width of
1 Å. The order parameter in a given grid point is given by
the average of all particles contained in cell u = (𝑖, 𝑗, 𝑘) and
its first two neighbor cells k = (𝑚, 𝑛, 𝑙) with |u − k| < 2.

The order parameter values obtained from MD simula-
tion were scaled so that the volume of the crystal cluster is
equal in the coarse-grained and in the original initial config-
urations. The distribution of the order parameter in the bulk
phases is Gaussian centered at 𝜇 with standard deviation 𝜎.
The definition of order parameter in the phase-field method
is as follows: 𝜙 = 0 if 𝑞

6
𝑞
6

< 𝑎 := 𝜇
ℓ
− 2𝜎
ℓ
, and 𝜙 = 1 if

𝑞
6
𝑞
6
> 𝑏 := 𝜇s + 2𝜎s and 𝜙 = (𝑞

6
𝑞
6
− 𝑎)/(𝑏 − 𝑎) otherwise.

4.3. Planar Growth. An analytic formulation of the phase-
field method in the sharp interface limit assumes a temper-
ature gradient at the interface. The formulation reads

Δ𝑇 = 𝛽V + 𝜅Γ; (11)
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Table 1: Kinetic coefficient of Ni inm/sK frommolecular-dynamics
simulations and phase-field simulation.

Interface From (1) PF Sun et al. [12]
[100] 0.33 0.32 0.358 ± 0.022

[110] 0.23 0.21 0.255 ± 0.016

[111] 0.12 0.11 0.241 ± 0.04

here Δ𝑇 denotes the undercooling in the interface, V is the
velocity, and 𝛽 is a kinetic coefficient. The curvature 𝜅 of a
two dimensional interface is the sum of the two principal
curvatures 1/𝑟

1
, 1/𝑟
2
; so 𝜅 = 2/𝑟 if 𝑟

1
= 𝑟
2

= 𝑟. The Gibbs-
Thomson-coefficient Γ = 𝜎𝑇/𝐿 with 𝜎 surface tension and 𝐿

being the latent heat.
In equilibrium, that is, for V = 0, (11) reads as Δ𝑇 = 𝜅Γ =

Γ/𝑟 (in 2D). It follows that the critical radius 𝑟
𝑐

= Γ/Δ𝑇. A
small spherical cluster with radius 𝑟

𝑐
is in equilibrium. For

example, at𝑇 = 1550K the critical radius 𝑟
𝑐
= 9.7 Å. A cluster

smaller than 𝑟
𝑐
melts.Thephase-field simulations corroborate

this result: for 𝑇 = 1550K the nucleus grows for 𝑟 = 10 Å and
melts for 𝑟 = 9.5 Å.

For a planar interface (11) is simplified to Δ𝑇 = 𝛽V, taking
account of the absence of curvature. The kinetic coefficient
adapted from MD is 𝑘 = 1/𝛽. So the phase-field relaxation
parameter is

𝜏 (𝑛) =
𝐿 (𝑇)

𝑇𝑇
𝑚
𝑘 (𝑛)

=
𝜏
0

𝑘 (𝑛)
. (12)

Simulations of a planar front in comparison to the
analytic solution and molecular dynamics simulations are
shown in Figure 1. Additionally we list the kinetic coefficient
in Table 1. Both methods converge at low undercooling to
the solution given by (11). At higher undercooling velocities
obtained from PF simulations still exhibit a linear depen-
dence with undercooling Δ𝑇; this is given in the range from
1400K to 𝑇

𝑚
; the fit of the kinetic coefficient is made in this

range and agrees with the expected kinetics from (1).
The MD simulations indicate that this linearity is not

more valid; the velocity is lower than that expected from
extrapolation of the linear relation V

𝐼
= 𝑘Δ𝑇. This effect can

also be recognized in the results of Hoyt et al. [15]. Many
effects influence the growth velocity of MD at higher under-
cooling, with the increase of order in the liquid bulk being
the most important which leads to the formation of small
crystalline clusters in the bulk liquid. The phase-field shows
this nonlinearity only for very high undercoolings Δ𝑇 >

500K.

5. Spherical Cluster Growth

Growth simulations starting from the samples prepared
as described in Section 4.1 are performed using both MD
and PF methods. At microscopic level NpT simulations
are performed at 𝑝 = 0 using the Andersen thermostat and
barostat. The number of particles is 𝑁 = 256000 which
corresponds to a cubic box of length of about 145 Å. The
initial radius of the spherical crystalline cluster is 25 Å which
corresponds to about 5.5 ⋅ 10

3 particles (see Figure 2(a));

that is much larger than the size of the critical cluster at
𝑇 = 1500K which is made of about 103 particles [27]. For
𝑇 ≥ 1600K the initial size of the cluster is lower than the
critical value and it melts as expected. PF simulations are
performed imposing the isothermal condition starting with
the same configuration as in MD but converted as described
in Section 4.2. Results for the evolution of the cluster volume
are shown in Figure 3; snapshots from the MD and PF
simulations are shown in Figure 2. Atmoderate undercooling
(𝑇 > 1550K) the MD and PF show comparable growth rates.
For higher undercooling the growth in the phase-field model
is notably faster than in the MD method. The discrepancy
becomes more pronounced at lower temperature and higher
simulation time. Assuming that the cluster conserves its
spherical shape during the first stage of growth we define
the radius as 𝑟 = (3𝑉/4𝜋)

1/3 and the radial velocity as V =

𝑑𝑟/𝑑𝑡. Figure 4 shows the evolution of radial velocity in the
MD simulation; three regimes can be identified; initially the
velocity tends to decrease, then exhibits a linear increase,
and finally decreases again. The first decrease is due to the
preparation method of the sample; the system relaxes while
the interface is formed. Growth and relaxation cannot be
decoupled; both occur simultaneously in this initial regime.
In the second regime the growth velocity increases linearly
in time. The decrease of velocity in the last regime is due to
the finite size of the sample; when the cluster is large enough
it interacts with its periodic images through the periodic
boundaries of the simulation box and loses its spherical
shape. In the PF simulation no extra relaxation regime is
observed; the dynamic is determined by the initial definition
after the interface is relaxated. Moreover, in the PF the cluster
is not affected by finite size effects as in the MD simulation
since no periodic boundaries are required. In comparison the
PF exhibits an apparent linear increase from the beginning.
This means that the starting radius of the nucleus is not the
same for both simulation methods, so a comparison for the
same radius instead of the time is more adequate. Figure 5
shows the radial velocity versus cluster radius at different
temperatures. Results obtained from PF simulations are well
described by Gibbs-Thomson equation (11). The analytical
velocity is V = 𝑘avg(Δ𝑇 − 2Γ/𝑟). So we use 𝑉

𝑇
(𝑟) = 𝑎

𝑇
+

𝑏
𝑇
/𝑟 to fit the data with the parameters 𝑎

𝑇
and 𝑏
𝑇
for each

temperature 𝑇. We applied the fit in the region starting
with 𝑟 = 30 Å, where the PF has relaxated the interface.
These fits are also applied for the MD results in the second
regime of growth, that is, for crystalline clusters of size of
about 40 Å ≾ 𝑟 ≾ 60 Å (the points in Figure 5). According
to the Gibbs-Thomson equation the radial velocity reaches an
asymptotic value (V

𝑇,∞
= V
𝑇,𝑟→∞

), an ideal situation where
the cluster is large enough and conserves its shape. This limit
cannot be directly obtained from simulations first because
the simulations are performed in a finite volume and also
because the crystalline cluster would adopt a nonspherical
shape due to the anisotropy of the interfacial energy and
growth coefficient. We estimate this hypothetical limit as a
basis of comparison between the PF andMD simulations. For
this purpose we extrapolate the fit and obtain V

𝑇,∞
= 𝑎
𝑇
;

one value is obtained at each temperature. The asymptotic
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Figure 1: Growth velocity of a planar front at different temperatures for the interface orientations (a) [100], (b) [110], and (c) [111] in com-
parison to molecular dynamic results. The values of the kinetic coefficient can be found in Table 1. (d) shows the phase-field results for all
orientations.

radial velocities obtained from the PF and MD simulations
are shown in Figure 6. The results of both methods lie
between the linear relations V

100
= 𝑘
100

Δ𝑇 and V
111

=

𝑘
111

Δ𝑇. For the MD the results show a similar behavior
as observed in the planar growth case; the deviation from
the linear relation at high undercooling observed in the PF
simulations is due to the correction introduced in the kinetic
coefficient. As shown in Section 4.3 the crystal grows in
different crystal orientations with a different velocity. In the
PF the kinetic anisotropy is responsible for this. The planar
front simulations fromFigure 1 show that the kinetics are very

well reproducible from the PF simulations. If we assume that
we have a perfect sphere the mean kinetic can be calculated
as a surface area integral of the unit sphere over the kinetic
coefficient; we get 𝑘avg = ∫

𝑆
2
𝑘(𝑛)𝑑𝐴/ ∫

𝑆
2
1𝑑𝐴 ≈ 0.175. So

V(Δ𝑇) = 𝑘avgΔ𝑇 is the excepted growth velocity for a sphere;
it is shown as the solid line in Figure 6.

At this early stage of growing the crystal is very similar to
a sphere. The preferred growing in [100] directions and the
surface anisotropy formed the crystal to its equilibrium
shape; for Ni this is similar to an octahedron; in the limit
this shape has only [111] directions. So the area of the [100]
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Snapshots of the simulations at 1550K. MD simulations at (a) initial time 80 ps, (c) 100 ps, and (d) 220 ps. The evolution of the
crystalline cluster from PF simulations with the same volume is shown in the sequence from (e) to (h).
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Figure 3: Evolution of the crystalline cluster volume at different
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lation runs.

orientations shrinks and the area of the [111] orientations
increases; it follows that the growth rate is between 𝑘avg and
𝑘
111

, specially below 𝑘avg.
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Figure 4: Evolution of the radial velocity at different temperatures
obtained fromMD simulations.

We use the sphericity 𝑠 as the measure for the sphericality
of the crystal as follow. For a given volume 𝑉 and a given
surface area 𝑆 of the crystal we calculate the radius 𝑟

3
=

3𝑉/4𝜋 from the volume assuming a sphere and calculate the
surface area 𝑆

𝑉
= 4𝜋𝑟

2 for a sphere. Then 𝑠 := 𝑆
𝑉
/𝑆 [28].

The volume of the crystal is defined as 𝑉 := ∫
Ω
𝜙𝑑𝑉

and the surface area as 𝑆 := ∫
Ω
‖∇𝜙‖𝑑𝑉; this surface
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Figure 5: Evolution of the radial velocity at different temperatures. Molecular dynamic (a) and phase-field (b). In lines the fits V
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Figure 6: Asymptotic radial velocity versus temperature. Values
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Figure 5.

area measurement method assumes a smooth nondeformed
interface; this is not given for PF interfaces if there are driving
forces like curvatures and undercoolings. We use a factor
estimated for a sphere of radius 25 Å to correct this. The
surface area is multiplied by this factor 1.089.

Figure 7 shows the sphericity over the radius; the crystal
becomes non spherical for longer growing and faster for
higher undercoolings.Thismeans that the velocity of growing
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Figure 7: Sphericity of the crystal for different undercoolings. The
contour shows the shape of the [100] cutting plane through the
center of the crystal for 𝑇 = 1400K and 1550K.

is below 𝑘avg especially for higher undercoolings. The non-
spherical shape is shown in Figure 2(h).

6. Conclusion

Many have shown the linking between MD and PF [16, 17].
So it is a common way to obtain MD parameters for PF
simulations. The PF simulations on the natural PF scale, for
example, mesoscopic scale, produce correct results compared
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with experiments [29, 30]. We have confirmed that a PF with
MD parameters is correct even on the atomistic scale. This is
not surprising, since we are very close to the sharp interface
limits.Themesoscopic view at the atomistic scale provides the
same growth rates as an atomic simulation method, although
the atoms are not resolved in the PF. The fluctuations of the
interface on the atomistic length scale will be investigated in
a consecutive work.

However, you will not simulate too high undercooled
melts, where the mesoscopic view of the PF will not consider
all the nonlinearity from the MD interface. We have used the
sphericity to measure the shape and explain the discrepancy
to the analytic linear velocity.

While it is known that PF works correctly on mesoscopic
scale and with this study it is shown that PF also works on
the atomistic scale, one is able to do multiscale simulations
starting on the atomistic scale with one simulation method.
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