
Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften (Dr.-Ing.)
von der Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)
genehmigte Dissertation von
Dipl.-Inf. Martin Junghans.

Methods for Efficient and Accurate
Discovery of Services

Martin Junghans

Tag der mündlichen Prüfung: 27.11.2013
Referent: Prof. Dr. Rudi Studer

Korreferent: Prof. Dr. Hansjörg Fromm

Karlsruhe 2014

http://www.wiwi.kit.edu/
http://www.kit.edu
http://www.aifb.kit.edu/web/Martin_Junghans/en
mailto:junghans@kit.edu

Abstract

The discovery of services is of one of the most integral parts of a service-oriented system.
Discovery is the problem of identifying services from a pool of service descriptions that fulfill
the requirements of a discovery request. With an increasing number of services developed and
offered in an enterprise setting or the Web, users can hardly verify their requirements manually
in order to find the appropriate services. Automated discovery methods can support users in
discovering appropriate services that they have not been aware of before.

The ability to discover services effectively depends on how services are advertised, how
requirements can be expressed, and how the requirements are verified. It is challenging to
develop service discovery methods that can be applied in a wide variety of use cases, while
providing a good trade-off between expressivity and efficiency.

In this thesis, we develop a method to discover semantically described services. The discovery
method exploits comprehensive service and request descriptions that capture functional and
non-functional properties. In our discovery method, we compute the matchmaking decision
by employing an efficient model checking technique. Our logic-based discovery method
automatically identifies accurate matches for a given request. The proposed method can be
applied to services that describe their complete behavior in the form of executable process
expressions. In addition, we introduce an alteration of the method tailored to discover services
that cannot disclose their complete behavior and provide an interface description instead.

In order to facilitate service discovery in large bodies of offered services, we propose
approaches for more efficient matchmaking. Formal service classes enable an automated and
consistent service classification and induce a class hierarchy, which can be utilized as an offline
index structure. While each class in the index is described by a given request, we also propose
indexing structures that can be automatically populated either offline or online, i.e., during the
processing of incoming requests. The offline indexes accelerate reasoning tasks by materializing
possible propositions in advance. The online index aims at caching frequent requests such that
repetitive requests can be processed faster. Our contributions are based on scenarios from
current fields of research and have been implemented and evaluated in the context of large-
scale research projects.

2

Acknowledgements

This work would not have been possible without the support and guidance of many persons.
First and foremost I want to thank my advisor Prof. Dr. Rudi Studer for giving me the
opportunity and granting the freedom to do this research. It has been an honor to be a
member of his group. He has taught me a lot about research and management, shared his
inspirations and has always been an excellent example of a superior man. Further, without
the support, guidance and patience of Dr. Sudhir Agarwal, this study would not have been
completed. The joy and enthusiasm they both showed for their research were contagious and
motivational for me.

I also want to thank Prof. Dr. Dirk Riehle, who has been a great promoter of my endeavor to
pursue a degree in the area of Semantic Web technologies. Moreover, I would like to thank Prof.
Dr. Hansjörg Fromm and Prof. Dr. Stefan Tai for their interest, many fruitful discussions,
and their consent to serve on the board of examiners.

All the members of the research group Knowledge Management at the AIFB as well as the
colleagues from the KSRI continuously provided inspiration and constructive criticism that
helped to improve my work. I am truly grateful for these valuable discussions and debates in
a relaxed and fun environment.

I would also like to extend my deepest gratitude to my wife Conny for her unconditional
patience and support throughout this time as well as Christel and Werner Junghans, my
parents, who have always supported, encouraged and believed in me, in all my endeavors.

3

http://www.aifb.kit.edu/web/Wissensmanagement/en
http://aifb.kit.edu
http://ksri.kit.edu

Contents

1 Introduction 7
1.1 Main Hypothesis and Research Questions . 9
1.2 Contributions and Outline . 10

2 Scenarios and Requirements 12
2.1 Scenarios . 13

2.1.1 Web Application Development . 13
2.1.2 Provision of Logistic Services . 15
2.1.3 Smart Web Browsing . 16

2.2 Requirements Analysis . 19
2.3 Design Choices and Approaches . 21

3 Preliminaries 24
3.1 Knowledge Representation . 24

3.1.1 First-Order Logic . 25
3.1.2 Description Logics . 27
3.1.3 Ontologies . 31
3.1.4 Terms and Notations . 34

3.2 Services . 34
3.3 Semantic Service Modeling . 36

3.3.1 Service Description Frameworks . 36
3.3.2 Service Behavior Modeling . 38

3.4 Service Discovery . 44
3.4.1 Matchmaking of Functionalities . 45
3.4.2 µ-calculus Model Checking . 46

3.5 Summary . 48

4 Discovery of Services 49
4.1 Description of Services . 50

4.1.1 A Formal Model of Services . 50
4.1.2 Service Description Language . 54
4.1.3 Modeling Example . 56

4

Contents

4.2 Service Request Model . 60
4.2.1 Motivation for a Discrete Request Model 61
4.2.2 A Formal Model of Service Requests . 66
4.2.3 Service Request Language . 67
4.2.4 Modeling Example . 68

4.3 Model Checking Based Matchmaking . 69
4.3.1 Matching Properties . 69
4.3.2 Matching Functionalities . 70
4.3.3 Matching Behaviors . 71

4.4 Implementation and Evaluation . 74
4.4.1 Service Discovery in WisNetGrid . 74
4.4.2 Test Data . 76
4.4.3 Performance Results . 78

4.5 Summary and Conclusions . 79

5 Discovery of Atomic Services 80
5.1 State of the Art . 81

5.1.1 Modeling Functionalities . 81
5.1.2 Discovery of Atomic Services . 85
5.1.3 Limitations of Existing Service Discovery Approaches 88

5.2 Semantic Modeling of Atomic Services . 90
5.2.1 A Formal Model of Functionalities . 91
5.2.2 Description Language . 92
5.2.3 Modeling Example . 94

5.3 Functionalities in Service Requests . 96
5.3.1 A Formal Model of Functionality Constraints 96
5.3.2 Modeling Example . 98

5.4 Discovery of Atomic Services . 98
5.5 Implementation and Evaluation . 101

5.5.1 Service Discovery in SOA4All . 101
5.5.2 Implementation Details . 106
5.5.3 Performance Results . 109

5.6 Related Work . 113
5.7 Summary and Conclusions . 117

6 Classification of Services 119
6.1 Motivation of Meaningful Service Classes . 120
6.2 Classification of Services . 122

6.2.1 Implicit Description of Service Properties 122
6.2.2 Service Classes . 123
6.2.3 Behavior Class Hierarchy . 125

6.3 Annotation of Behavior Descriptions . 126
6.4 Classification-based Service Discovery . 128

6.4.1 Service Classes in Requests . 128
6.4.2 Discovery Based on Offline Classification 129

5

Contents

6.5 Implementation and Evaluation . 131
6.5.1 Implementation . 131
6.5.2 Evaluation . 132

6.6 Related Work . 134
6.7 Summary and Conclusion . 136

7 Index Structures for Efficient Service Discovery 138
7.1 Motivating Use Case . 139

7.1.1 Formalization of End User Browsing Processes 141
7.1.2 Capturing Browsing Processes . 143

7.2 Offline Computable Indexes . 146
7.2.1 Proposition-States Indexes . 146
7.2.2 Action-States Indexes . 148

7.3 A Randomized Online Index . 149
7.3.1 Lookup in the Online Search Index . 149
7.3.2 Maintaining the Size of the Index . 150

7.4 Implementation and Evaluation . 152
7.4.1 Evaluation Setup . 152
7.4.2 Test Data . 153
7.4.3 Performance Results . 154

7.5 Related Work . 155
7.6 Summary and Conclusions . 157

8 Conclusion 158
8.1 Summary of Contributions . 158
8.2 Future Work and Outlook . 161

List of Tables 165

List of Figures 166

Bibliography 167

6

Chapter 1
Introduction

Service-oriented computing is an interdisciplinary paradigm that revolutionizes the very fabric
of distributed software development, including not only complex enterprise applications, but
also scientific, mobile, telecommunication, and embedded system-based applications amongst
others.

Applications that build on services as building blocks of their architecture can adapt
to a changing or unpredictable environment more easily and evolve during their life span.
When implemented properly, services can be discovered and invoked dynamically using non-
proprietary mechanisms, while each service can still be implemented in a black-box manner.
This is important from a business perspective, since each service can be implemented using
any technology, independently of the others. What matters is that everybody agrees on a
common integration technology, and there is a consensus about this in today’s middleware
market: customers want to use Web technologies.

The success encountered by the Web has shown that tightly coupled software systems
require prior agreements and a shared context between communicating systems [Pap08],
whereas loosely coupled software systems can be more flexible, more adaptive and often more
appropriate in practice. Loose coupling makes it easier for a given system to interact with
other systems, possibly legacy systems that do not have a lot in common with it. Web services
lie at the crossing of distributed computing and loosely coupled systems.

Service orientation enables an effective means for offering and consuming functionalities
within and across organizations. Despite the promises of the adoption of services, service
integrators, developers, and providers need to create techniques and tools to support
cost-effective development, as well as the use of dependable services and service-oriented
applications. The discovery of services is just one of the techniques that are required for the
realization of service-oriented applications. Without automated, sometimes called dynamic,
service discovery the loose coupling is restricted to a large extent. The main objectives of
service orientation cannot be achieved without automated service discovery techniques.

From a technical viewpoint, the coupling between different components of a service based
software system is loosened by the potential of Web services to replace them easily. Discovering
other appropriate Web services dynamically is a key challenge and promises to reduce the
tightness of the coupling between the individual components. In the beginning, service

7

Chapter 1 Introduction

directories such as the CORBA Naming Service [Sie00] allow for lookups based on the service
name, which requires the client to know the service name in advance. More dynamic service
discovery services like UDDI [UDD01] provide more flexible but still keyword-based lookups.

As more and more Web services and Web-mediated services have been made public, more
sophisticated discovery mechanisms are required. It is not possible anymore to assume that
client users have prior knowledge about the names, terminologies, or providers of desired
services. Automated service discovery methods aim at reducing the manual effort required to
match requests with available services. Ideally, no manual effort is then required to evaluate
the applicability of discovery results for the intended use. Especially when a large number
of services are offered, any manual effort required for finding and binding services becomes
infeasible.

To foster the automation of any service-related task in service-oriented systems, Semantic
Web Services [SGA07, FFST11] emerged as a combination of Web services [ACKM04, Pap08]
and Semantic Web technologies [HKR09]. A semantic, i.e., machine-interpretable, description
of services allows for automated reasoning about services while resolving data and semantic
heterogeneity using ontologies without dictating a global terminology. The additional semantic
description of the functionality and the behavior of services furthermore allows reasoning over
and finding services based on their properties, which further reduces the human effort of
evaluating the discovery results.

In recent years, Web services gained a lot of attention within the Semantic Web community.
Many formalisms such as DAML-S [BHL+02], OWL-S [MBH+04], and WSMO [dBBD+05]
with varying expressivity and complexity for describing Web services semantically have been
proposed. Many service discovery approaches and systems that built on these description
frameworks have been proposed in the literature. Within the Semantic Web community, the
interest in Semantic Web Services seems to stagnate. This may be due to a focus on traditional
procedure-oriented Web services in service-oriented architectures and the lack of the promised
or expected millions of available Web services on the Web [Abe09, SLB09]. We believe that
certain problems need to be solved before service orientation is not just used in enterprise
systems but also finds a broader adoption on the Web.

In this thesis, we advance the extensive amount of existing works in the area of semantic
service discovery with several novel contributions to the field. We further aim at solving
existing problems such as formally modeling and reasoning over the behavior of atomic service
profiles and services with complex interaction patterns in a unified way. We also aim at an
efficient service discovery framework with the ability to compute logically correct discovery
results in order to enable a high degree of automation for the use of the discovered services in
tasks like service invocation and composition.

In the remainder of the chapter, we introduce in Section 1.1 the main hypothesis and
research questions of our work. We also briefly introduce the approaches taken to address
the individual research questions. In Section 1.2, we outline the structure of this thesis and
give a comprehensive summary of contributions presented in this work.

8

Chapter 1 Introduction

1.1 Main Hypothesis and Research Questions

The goal of this thesis is to develop automated, effective, and efficient service discovery methods
that can be applied in many scenarios using the functionalities offered on the Web. The
development of distributed or component-based systems and Web applications from various
domains benefits from such service discovery methods as the adoption of services, among other
benefits, increases the flexibility of the developed systems and makes economic sense. We
express our overall goal in the main hypothesis as follows.

Main Hypothesis: Services can be automatically, effectively, and efficiently discovered based
on a verification of the constraints of expressive service requests over comprehensive
service descriptions.

Approach: Our service discovery method builds on semantic, i.e., machine-interpretable,
descriptions of services and requests in order to foster automation. The targeted
automated discovery method shall not require human efforts during the matchmaking
phase in which a given request is matched against the available descriptions of services.

The effectiveness of a service discovery method depends on the use case in which discovery
is applied and on how the discovered services are going to be used. In our work, we derive
requirements from scenarios that aim at an automated use of services (e.g., invocation
and composition of services). Therefore, we measured the effectiveness of a discovery
method by the accuracy of the discovery results. The applicability of discovered services
is guaranteed if all constraints of a request are fulfilled, i.e., the results are logically
correct. Therefore, we develop logic-based matchmaking methods that produce correct
discovery results.

An efficient service discovery method is able to deal with large repositories of service
descriptions and delivers results in a reasonable time with the use of commodity hardware.

We substantiate the main hypothesis by the following research questions and give an outline
of how we will approach them in this thesis. Each research question highlights a different
facet of the main hypothesis while being more specific and constraining with respect to the
requirements of service discovery.

Research Question 1: Can we develop a service discovery method that considers functional
and non-functional properties in a unified way as well as detailed and abstract service
behavior descriptions in service descriptions and requests?

Approach: We establish a property-based service model, which captures functional and non-
functional properties, and apply this upper service model to service descriptions and
service requests. Different degrees of detail of a service behavior description are modeled
as characteristics of the functional properties of service descriptions and requests. Then,
the service discovery method treats services of different complexity (with respect to the
degree of detail of behavior descriptions) conceptually equal.

Research Question 2: How can we support the description of the functionality of state-chang-
ing services, which cause effects during their execution, such that reasoning and discovery
based on state changes in descriptions and requests is enabled?

9

Chapter 1 Introduction

Approach: We clarify the semantics of service descriptions and requests in order to capture
the dynamics of services. While a state-based formal model of the service functionality
is a proper means to model state changes caused by services, many existing description
formalisms provide limited support for describing the service effects. We therefore extend
the formalisms such that state changes can be logically modeled in descriptions and, thus,
discovery over state changes is enabled.

Research Question 3: Is it possible to apply an efficient logic-based matchmaking technique
(model checking) to the matchmaking of service interface (profile) descriptions without
losing the ability to model and reason about state changes?

Approach: We introduce a model checking based matchmaking approach to the discovery of
Web service profiles, as the model checking techniques excel in efficiently evaluating the
constraints on the described models. We present a request formalism that allows us to
base our matchmaker on a model checking technique.

Research Question 4: Is it possible to automatically classify services correctly? And can such
a classification be used to increase the efficiency of the discovery approach while the
discovery result accuracy is not compromised?

Approach: We develop a service classification approach that automatically and consistently
classifies services. It derives a classification hierarchy based on formal class definitions. As
a classification of services into formal classes can be used to precompute and materialize
discovery results, the use of classes increases the discovery efficiency while preserving
automation and result accuracy.

Research Question 5: Can index structures be used to reduce the computational complexity
of service discovery during the matchmaking of service requests with available service
descriptions?

Approach: We develop index structures that materialize precomputed intermediate results of
the service discovery. The indexes can be built prior to the matchmaking phase, i.e.,
before the discovery request is processed (i.e., offline), or while requests are processed
(i.e., online). As the reuse of intermediate results from the indexes allows reducing the
computational effort during the query answering time, the results can be computed faster
and the efficiency is increased.

1.2 Contributions and Outline

In this work, we develop a method to discover semantically described services with a model
checking based matchmaking approach, which we apply to atomic services and services with a
complex observable behavior in the same way. The discovery method exploits comprehensive
service and request descriptions that capture functional and non-functional aspects. We
introduce in Chapter 2 three concrete scenarios that require a service discovery method. Our
scenarios comprise (i) the development of service-based Web applications, (ii) the provision of
services in the logistics domain, and (iii) smart Web browsing based on a process centric view

10

Chapter 1 Introduction

of the Web. Based on the individual characteristics of each scenario, we derive design choices
and requirements for the development of our discovery method.

In Chapter 3, we introduce preliminaries from the domains of knowledge representation and
explain the notion of services as we consider them in the scope of this work. We recapitulate the
basic concepts of existing service description frameworks that model the service behavior and
more abstract profile of the behavior. A summary of a process calculi for the formal description
of observable behavior and of a temporal logic for the formal description of behavior properties
are given, before a model checking based matchmaking technique is reviewed.

In Chapter 4, we first introduce our property-based service model to express comprehensive
service descriptions. Then, we develop a request formalism with the appropriate expressivity to
query the properties of a service description. We present a model checking based matchmaking
for both description and request formalisms and report on its implementation, its application
in the context of the WisNetGrid project, and the measured evaluation results.

The discovery approach from Chapter 4 can be applied to services in general. The
matchmaking method considers complex behavior descriptions as functional properties. In
order to extend the applicability of our discovery method to services that cannot disclose
a description of their behavior, we focus in Chapter 5 on the modeling and matchmaking
of the service functionality. We consider the functionality in particular as it is an abstract
profile of the behavior that can be used to describe the functional capabilities of service
interfaces. The functionality of services has gained a lot of attention in previous modeling
and discovery approaches. We present an extension to model state changes logically correct in
service descriptions and requests. An extensive overview of the state of the art in this area is
given in order to highlight the differences of our approach. At the end of Chapter 5, we report
on the implementation, its application in the SOA4All project, and the measured evaluation
results.

Based on the experienced performance of the matchmaking, we develop in Chapter 6 an
offline classification of services in order to gain efficiency in discovery. The developed service
classification builds on formally defined classes, which enables the development of automated
and logically consistent methods for the classification of services and the computation of a class
hierarchy. We show how service classes can also be used to simplify the process of describing
and requesting services as well as describe service properties implicitly. Implicit property
descriptions are an extension to our service description formalism, which allows us to describe
services even if precise property values are not known or shall not be disclosed. At the end of
Chapter 6, we describe how our service classification impacts the discovery performance, and
close with a discussion on the assumption and applicability of the classification-based discovery
method.

In Chapter 7, we introduce two offline and one online index for use within the discovery
method. The offline indexes are precomputed and, in contrast to our classification, do not
require a given classification hierarchy. The online index is an online data structure that we
incorporate to our discovery method in order to collect frequent discovery requests that can
be cached, thus increasing the efficiency when requests are posed repeatedly. We evaluate the
performance gain by the introduction of the index structures.

We conclude this thesis with a summary of the findings and contributions and a discussion
of opportunities for prospective work in Chapter 8.

11

Chapter 2
Scenarios and Requirements

In this chapter, we present three different scenarios where the discovery of services is
fundamental to realize them. The scenarios are carefully chosen to represent a broad range
of use cases of a service discovery method. They also differ in their sets of requirements on
a discovery method and in the emphasis they put on individual requirements. Incorporating
all the requirements identified in the scenarios into our work allows us to develop a discovery
method that can be applied in a multitude of future applications. The applicability of a
discovery method is characterized by its usefulness and adequateness to fulfill the requirements
of the applications.

Our scenarios are presented in Section 2.1. They are based on the research carried out in
several research projects. The first scenario aims at the development of Web applications by
enabling the utilization of existing Web resources and services as envisioned in the SOA4All
project.1 The development process of Web applications is based on software development
principles from service-oriented architectures (SOA). Thus, a service discovery system is a
basic component of the infrastructure for delivering services and Web applications and, thus,
is an integral part of the Web application development process. The service discovery approach
we developed in this project was introduced in [JAS10, JA10].

The second scenario similarly demands for a discovery method, but the requirements are
substantially different in the domain of logistic services. Here, the discovery is an enabler for
the provision of logistic services that combine real-world services with ICT-based services and
have to adhere to the constraints of customers and providers. This scenario was one of the
use cases in the InterLogGrid project.2 Our service discovery method was developed in the
WisNetGrid project,3 presented in [JAS12, AJ11], and successfully applied and evaluated in

1Service Oriented Architectures for All (SOA4All) is a large-scale integrating project funded by the European
Seventh Framework Programme, under the Service and Software Architectures, Infrastructures and
Engineering research area; see http://www.soa4all.eu, retrieved 2013-08-15.

2InterLogGrid is a BMBF-funded German research project that developed grid technologies for logistics
companies and supports planning and scheduling decisions in intermodal and multilateral logistics; see
http://www.interloggrid.org, retrieved 2013-08-15.

3WisNetGrid is a BMBF-funded German research project that created a unified knowledge space in the
grid. Therefore, methods and tools enabling collaborative work in a heterogeneous environment have been
developed; see http://www.wisnetgrid.org, retrieved 2013-08-15.

12

http://www.soa4all.eu
http://www.interloggrid.org
http://www.wisnetgrid.org

Chapter 2 Scenarios and Requirements

Registry

Consumer

find
88

invoke
// Provider

publish
ff

Figure 2.1: SOA triangle: Publish-find-bind pattern for dynamic service discovery and
invocation

the context of both projects.
Our third scenario emerged from an internal research project focusing on the intelligent

management and usage of processes and services (or “suprime” in short). The aim is to align
and integrate several research results in the areas of services and processes from the group at
AIFB in order to, for example, simplify and increase the potential of future Web browsing.
Based on a more formal view of functionalities, services, and processes offered on the Web
(e.g., in the form of programmatic interfaces or Web pages), the browsing experience of users
can be extended to the point of an alternative approach to information search. We presented
our developments within this scenario in [AJ10, JAS12, JA13, AJ13].

We studied the requirements and successfully applied our discovery method in further
scenarios like cyber-physical systems and smart energy [WJSH11] that are part of a future
Internet of Things/Services. The scenarios presented in the following are a representative
selection that allows us to identify general discovery requirements. In Section 2.2, we present
the requirements identified by analyzing each scenario. In Section 2.3, we describe our approach
to address each requirement and discuss our design choices for the discovery approach.

2.1 Scenarios

2.1.1 Web Application Development

In our first scenario, we investigate the development of Web applications based on the reuse
of existing Web-mediated services. We studied this scenario in the context of the SOA4All
research project. One of the goals was to develop a comprehensive framework, infrastructure,
and platform for service delivery using semantic Web technologies and principles from Web 2.0
and service-oriented architectures [KNSP09]. The following project use cases utilized the core
technologies like the service search system to develop new Web applications: an e-government
Web portal, a social Web portal of a telecommunication service provider, and a shopping
application based on the Facebook application platform.

With the trend of shifting focus from static Web pages to more dynamic and interactive
pages that can offer the functionality of applications, software engineering techniques and
especially service orientation became increasingly adopted in the area of Web application
development [Jaz07]. Web applications bridge the back-end information systems to the front-
end hypermedia representation and provide functionality to end users who consume the offered
functionality of the application in commodity Web browsers [Fra99].

13

Chapter 2 Scenarios and Requirements

In Web application development, the service-oriented architecture [NL04, PvdH07] is a
software development pattern, which enables the development of networked systems based on
(Web) services as its building blocks. The services provide certain defined functionality, e.g.,
access to and retrieval of information, simple or complex computations. The SOA triangle in
Figure 2.1 shows the setup implemented in SOAs for dynamically publishing, finding, binding,
invoking, and executing services. Service providers develop and offer services and publish the
descriptions of their services at a registry (service description repository). Consumers in the
client role can discover services at the registry and invoke services of the providers.

Service-based systems that have a loose coupling in comparison to more tight coupled
monolithic systems are easier to enhance and adapt to changing requirements during their
lifetime. Therefore, services abstract from their internal behavior and technical implementation
details, and (semantic) Web technologies are used as a common middleware enabling the
integration of services. The development of Web applications (or apps) can be cost-effective
and quick when existing data sources and functionalities, for instance offered via Web APIs,
REST- or SOAP-based Web services, are reused and integrated into the new application.

Consider, for example, the first use case of the SOA4All project: a platform for the
development of e-government Web portals, which can be easily adapted to the needs of different
public authorities. While the application of a particular city offering such a portal can be
considered to be fairly static over time, a singular design still involves locating appropriate
services from a limited set of available services. The set is limited due to strict regulations in the
public domain. In general, the platform has to be flexible and dynamic enough to support the
adaptation of e-government Web portals to the specific needs of different instantiations. E.g.,
in order to let portal designers dynamically choose which functionalities to include, a discovery
method that reasons about functional properties is required. For example, it has to allow
finding business services from the SAP service catalog and complementary third party services.
In order to simplify the integration process by reducing the manual effort, the discovery method
has to return only accurate results that provide the desired functionality. This feature excludes
keyword-based service discovery methods, because these approaches need to be very restrictive
on service descriptions and requests in order to guarantee such high result accuracy. In the
context of the project, the discovery results, i.e., services providing basic functionality of the
portal, were then combined by a design time composition component. A process editor also
allowed for the manual specification or refinement of control and data flow among the services.
Accurate discovery results were required for the design time composition as well as for the
manual modeling as the editor did not provide facilities to inspect the discovery results to
estimate their applicability for a given purpose.

The other two use cases of the project included more dynamic Web applications that can
be often adapted, refined, or extended. These use cases deal with users being involved
in developing shops upon the Facebook platform and with a telecommunication provider
often extending its offers by adding further functionalities. When existing systems and Web
applications are extended, the additional services should be easily integrated into the existing
service system. Automatic discovery methods have to be used, as an unmanageable number of
services are offered on the Web. Furthermore, multifaceted constraints over the functionality,
the behavior, and the exchanged information need to be considered by a discovery method.

Besides a data integration challenge, the success of the new Web applications also depends on
the ability to find appropriate APIs for accessing external data, services for the transformation

14

Chapter 2 Scenarios and Requirements

Registry

Consumer

find

;;

invoke
// 4th Party

Provider

find

EE

publish

YY

invoke
// Provider

publish

cc

Figure 2.2: The introduction of a fourth-party provider role in logistics scenario

of data, and complementary functionalities like payment services. SOA4All showed that the
integration of third-party services can be simplified and become more flexible by the use of
semantic Web technologies as an integrating middleware.

We can summarize that the service discovery method has to automatically identify matches
from a set of given service descriptions and a given request. Due to the openness of the Web and
the distribution of the development and provision of services, the discovery method shall deal
with heterogeneous descriptions and requests. Additionally, the results have to be accurate,
i.e., they have to provide at least the requested functionality in order to be directly applicable.

2.1.2 Provision of Logistic Services

Logistic services can quickly become very complex. They involve multiple means and modalities
of transportation, many service providers, and intermediaries. In the logistics industry, a
fourth-party provider is a provider that creates new services by composing existing services,
which are provided by actual logistic service providers (third-party providers). A fourth-party
provider only consumes the services by designing solutions on behalf of the customer. The
customer’s requirements are expressed in terms of a contract between customer and fourth-
party provider. In Figure 2.2, we extended the SOA triangle from Figure 2.1 by an additional
role of the fourth-party provider that consumes services by creating service compositions and
also provides these compositions as services to the consumers.

Therefore, it is not sufficient that a fourth-party provider offers uniform services to all
customers. Adaptation of offered services to specific requirements implied by the transported
goods, spatial conditions, legal restrictions and many more are necessary. The possibility to
cost-efficiently and quickly integrate existing services into the business processes and service
value networks [BKCvD09] of a fourth-party logistic provider largely depends on finding
electronic as well as real-world services from this domain [LKS11, KKLF11]. For example,
in order to integrate given services into a service network quickly, i.e., with low manual effort
for adaptation, services that provide a behavior that is compatible to the behavior of the service
network are preferable.

A discovery method has to locate third-party services at the behest of the fourth-party
service provider based on functional and non-functional constraints. For instance, services
that plan and optimize transport routes, track expenses and file invoices, and transport the
goods of certain characteristics frequently occur in processes that fourth-party providers offer

15

Chapter 2 Scenarios and Requirements

to customers. Also, there are many requirements besides the provided functionality that need
to be considered in order to compare similar services with each other [KLS13]. The price,
dispatch time, trust and user rating of a third-party logistic service are just a few examples of
relevant non-functional properties that have to be considered by the discovery method.

In comparison to the previous scenario, it is hard for humans to keep track of providers and
offered services from multiple domains like the actual transportation, accounting, planning and
optimization of routes, et cetera. Automated support for the discovery of services is mandatory.
Furthermore, a distinction of services that provide equivalent functionalities becomes important
in order to be able to select appropriate services which may suit or allow optimizing the overall
business process. Non-functional properties support the selection process and shall be part of
descriptions and considered for discovery. Another observation was that simple services as well
as entire business processes can be integrated by fourth-party providers into new services. In
order apply a discovery method to find any of these services, the varying complexity has to be
supported in a unified way.

2.1.3 Smart Web Browsing

Complex tasks like making travel arrangements or shopping for birthday gifts are conducted
in the Web and often involve several websites. Dealing with such tasks quickly becomes
cumbersome as logical dependencies between the information entered to and received from
different Web pages have to be managed manually. E.g., end users have to enter the dates and
locations of a travel into multiple portals offering flights, hotels, rental cars, etc. It is even more
complex if multiple websites with similar functionality are involved in order to compare prices
or to receive more offers. Logical dependencies, like the pickup time and location of a rental
car that depend on the chosen flight, introduce constraints on the order in which different Web
pages can be queried. As depicted in Figure 2.3a, many interactions between users and the
Web pages are required. Also, the coordination of the pages remains manual effort.

By a Web browsing process we mean the steps users perform in order to interact with the
tremendous amount of functionality hidden in the Deep Web [Ber01]. This functionality is
typically offered to users via dynamically generated Web pages. In order to obtain the desired
functionality in the Deep Web, a user needs to perform certain steps, e.g., submitting Web
forms filled with appropriate information. Thus, Web browsing processes are contrary to the
static and data centric view on Web pages, which has been the main focus of the Semantic
Web community until now.

In order to support users to handle the amount of information and business provided by
websites and Web applications, search engines like Google, Yahoo! and Bing have been
developed. The formal models underlying such search engines mainly consider the content
of the static Web pages for building their respective search indexes. However, they hardly
consider the dynamic aspects of the Web pages (such as the user interactions, data and control
flow in browsing processes) in general. As a result, currently, it is hard to find websites that offer
certain functionality or to find the desired information, which is returned on a page generated
dynamically at some later stage in the process and not on the very first (mostly static) page.
We are aware that search engines aim at integrating the data from Deep Web data sources and
learning to access the data even through Web page interactions [MKK+08]. However, they
capture dynamic information to a very limited extent, e.g., the weather of a given location

16

Chapter 2 Scenarios and Requirements

(a) Document-oriented Web browsing (b) Smart Web browsing

Figure 2.3: Manual interaction effort with present-day and smart Web browser

or information about an actors fetched from a movie database. The limited capability to
integrate dynamic data indicates the lack of a generic model capturing the dynamics of the
functionalities provided by Web pages.

Currently, users have to aggregate results of various Web browsing processes or take care of
entering the same data in multiple forms as well as controlling the data flow between different
Web browsing processes manually, even though most of such mediation work can be automated.
Considering that many tasks that the users accomplish with the help of multiple Web browsing
processes need to be performed again and again, supporting a user with automated techniques
in coordinating the Web browsing processes can save a lot of human effort as well as eliminate
errors.

Modeling the dynamics of browsing processes offers many benefits regarding user support and
automation for further tools. Building on a process-oriented view on the Web functionalities,
a smart Web browser can take advantage of the process descriptions and support end users
in coping with logical dependencies, mediation, control and data flow issues. A smart Web
browser, as depicted in Figure 2.3b, reduces manual efforts by automating the coordination
of Web browsing processes. We gained this automation by computing solution templates, i.e.,
controlling processes that control and interact with the individual Web browsing processes.
Further, we applied automated techniques for composing multiple browsing processes into a
solution template that can handle complex tasks like the ones described above. Our service
composition method is heavily based on an effective discovery method [AJ10], which treats
atomic Web services and services with complex behavior that describe browsing processes,
Web applications, and interactive Web pages alike.

Typically, service composition suffers from state-space explosion, a problem that is caused
by the combinatorial explosion of possibilities of combining services for a given goal. In our
approach in [AJ10], we restricted the number of combinations by dropping completeness of

17

Chapter 2 Scenarios and Requirements

the set of computed solution templates and employing a discovery method that guarantees
that the results provide a minimal functionality. That is, by adding a service returned by the
discovery method to the solution template, we gradually reduce the complexity of the goal
and the composition terminates after only few iterations (depending on the complexity of the
goal).

An Alternative Approach to Information Search

Our smart Web browsing approach based on a process-oriented view on the functionalities
offered on the Web not only simplifies complex end user tasks, it can also be exploited to
develop a novel approach to information search.

Information search on the Web can become tedious if the desired information is scattered
across multiple websites. Static websites can be reached by search engine crawlers and their
content can be indexed to provide end users with efficient search methods. However, in many
cases, end users are still required to do a lot of manual work to compile the required information.
Consider for example an end user who is interested in knowing the names of the chairs of a
particular track at the previous WWW conferences. As of today, Web search engines do not
deliver satisfactory results for queries similar to “track chairs of all WWW conferences”. In
order to obtain the required information, the end user has to pose multiple queries to a search
engine, browse through the hits, and aggregate the required information fragments outside of
the found Web pages. The case of dynamic websites is even more complex. Accessing the
information hidden in the Deep Web is in itself an open challenge for search engines.

Current search engines focus on finding the most relevant Web pages for a given information
need rather than providing the information itself. The ranking of the Web pages is usually
based on the link structure provided by their providers. As a result, a user receives a list of
Web pages with similar content even though the information need of the user might require
pages with complementary information.

End users need help in selecting the pages that are relevant for obtaining the information
scattered across multiple Web pages. Such help must contain at least the set of pages that
the end user should visit, as well as support for easily invoking all the pages of the set. More
advanced help could support the complete end user browsing process including support for
data flow between the user and the pages as well as among the pages, and control flow if there
are data dependencies among inputs and outputs of Web pages in the set. In order to achieve
this, we compute a list of hits for a given information need, where each hit consists of a set
of pages. For each page, we need to know which information need it satisfies and a path that
needs to be executed in order to reach the page.

We apply our service discovery method to search for complex behavior descriptions of
browsing processes. Discovery request criteria describe the desired information to which the
browsing processes lead and the behavior of the browsing process. The latter criterion is
relevant as it allows including or excluding browsing processes that, for example, require
multiple interactions or expect users to provide certain information. In Chapter 7, we will
further examine this scenario as motivation for the development of an efficient discovery
technique for finding Web browsing recipes from large repositories.

In both smart Web browsing and information search scenarios, a discovery method needs
to deal with services with heterogeneous and complex behavior descriptions, non-functional

18

Chapter 2 Scenarios and Requirements

properties to model rating and trust of shared browsing processes. Due to the number of
expected browsing processes, the discovery efficiency becomes crucial.

2.2 Requirements Analysis

From the three scenarios above, we can identify requirements that discovery methods must
fulfill. The main requirements are listed below.

Requirement R1: Automation
Discovering services that provide a desired functionality and may also fulfill further constraints
is a time-consuming and error-prone task if performed manually. Large repositories with an
unmanageable number of service descriptions need to be considered by service discovery in the
above scenarios. Human efforts in service discovery have to be avoided if we want to support
scenarios with potentially many services.

An automated method for service discovery determines and returns services without any
human intervention when a valid request is given. Our work aims at automation of (i) methods
for matching a given request with a given service description and (ii) methods to coordinate the
matchmaking of a set of given service descriptions. Obviously, in order to develop automated
matchmaking methods, machine-readable and machine-interpretable descriptions of service
offers and service requests are necessary.

Our understanding of automated service discovery does not comprise further steps related
to the discovery problem, such as automated requirement and preference elicitation [SS97,
SPM06, MA10]. A discovery method receives and processes given requests.

Requirement R2: Accuracy
Automated discovery (as claimed in R1) is one of the requirements of automated utilization
of the results. The (automated) computation of logically correct results with respect to the
requirements and constraints specified in a request is the prerequisite for enabling automated
techniques, which take the result as an input for further use. That is, automated binding,
invocation, and composition of services in dynamic service systems are possible if the results
provide the expected functionality and behavior, which is the prerequisite for successful
interaction with a dynamically bound and integrated service.

It is important that the discovery result (at least) fulfills any requirements of a request.
That is, results may additionally fulfill further requirements, provide properties, or comply
with constraints that were not specified in a request. Services that do not fully comply with
the constraints specified in a request are not considered to be an accurate match for the request.
Consequently, it needs to be provable that a discovery method produces logically correct (i.e.,
sound) results.

We justify our rather strict choice by the objective of an automated use of results. The
results that do not completely satisfy a request can be helpful to solve a given problem in some
cases. However, then the discovery method would further require the capability of automated
service composition, which is still a challenging task [GNT04, GNT14]. In Section 4.2.1, we
elaborate on our motivation for a strict definition of discovery result accuracy.

Requirement R3: Expressivity
The formalism used to describe services has to be expressive enough such that it facilitates a
precise description of various service properties. A high expressivity allows for comprehensive

19

Chapter 2 Scenarios and Requirements

descriptions of services and their properties, which can be utilized in manifold scenarios and
use cases. Our scenarios from Section 2.1 revealed that various aspects of a service are used
differently or are useful to a different degree in different scenarios. More expressive formalisms
provide a higher flexibility with the potential to model more service properties and to support
more use cases. Hence, there is a higher chance that expressive service description formalisms
are appropriate in many use cases.

Service descriptions have to model the functionality as well as non-functional properties (like
the quality of service, service level agreement expressions, pricing, usage constraints, etc.) in
general. It should also allow for the description of the service behavior. A precise specification
of constraints expressed in a request formalism is subject to the analogous requirements
regarding expressivity. Discovery based on property constraints demands an expressivity of the
formalism used to describe constraints in service requests that is aligned to the expressivity of
the service description formalism. A request comprises combinations of inclusion and exclusion
of properties of a desired service. In addition to that, it is convenient to provide the ability to
express alternative configurations of desired services.

Requirement R4: Heterogeneity
Distributed systems and service-oriented computing inherently have to resolve heterogeneity
issues, often on several levels. Within the context of service discovery, data and semantic
heterogeneity [Hal05] arise when service requests are matched against service descriptions.

Services are developed and provided by different service providers, who can be independent
of each other (especially in open settings like the Web). Therefore, the service providers need
to be able to describe their services with domain-specific vocabulary that can be independent
from the ones used in other descriptions, by other providers or requesters.

Hence, no institutional (global) scheme, vocabulary, or taxonomy to describe services and
service requests can be dictated. It cannot be assumed that a service requester has any
knowledge of existing services in advance. Consequently, there cannot be a prior agreement on
the terminology to be used within requests.

Requirement R5: Efficiency
Last in the sequence but not least in importance is the requirement for efficient discovery
methods. Efficiency means that the discovery method should deliver results quickly (i.e., have
a short query answering time).

Due to the (envisioned) broad applicability of our discovery method to manifold scenarios
with varying characteristics and requirements, it is impossible to specify universal metrics or
constraints on the targeted discovery performance. In discovery use cases like the development
of service-based systems and the composition of services during design phases in the service
life-cycle, a response within a few minutes is justifiable. However, for discovery systems that
target end users, as in our smart Web browsing scenario for example, a response should not
take more than a minute such that the discovery system remains interactive. In other scenarios
that rely on service composition at run-time, e.g., in order to adapt to a changing environment
or to replace a broken service, the discovery results sometimes have to be returned in only a
few seconds or less.

Although the efficiency of a discovery method is determined by the query answering time,
there are further constraints, e.g., on computing resources like memory requirements, that
must be taken into account. Often, the assignment of more computing resources leads to

20

Chapter 2 Scenarios and Requirements

a decreased query answering time and a perceived higher efficiency. However, an efficiency
increase by assigning more computing resources is always limited, as computing resources are
always limited. Therefore, efficiency gains of discovery methods shall rather be achieved by
improvements of used algorithms or the chosen system design than of technical details.

2.3 Design Choices and Approaches

In this chapter, we presented three scenarios that highlight the need for a discovery
method. The scenarios demonstrated that a generic discovery method should address various
requirements in order to be useful and applicable in different settings.

The discovery method that is developed in this work should adhere to all requirements we
gathered from the various use cases, in order to achieve broad applicability. In the remainder of
this chapter, we explain how we approach the requirements. Specifically, we present our design
choices and contributions. Then, we discuss how they fulfill each of the outlined requirements.

Automated service discovery methods. Our work is based on machine-interpretable and
formal descriptions of (i) offered services and (ii) constraints in service requests. Machine
interpretability assumes that the descriptions of offers and requests are serialized in a machine-
readable representation and that there is a relation between this representation and a
corresponding formalism, which assigns a meaning to the described matter.

We apply formalisms to model relevant service properties that are part of service descriptions.
Formalisms are necessary to facilitate automation. Properties that describe static service
properties are commonly modeled with description logics [BCM+03], i.e., decidable fragments
of first-order logics. The semantics of service functionality and behavior cannot be modeled
by knowledge representation formalisms like description logics. We therefore apply a
process calculus, which allows for a description of concurrent systems with interactions and
communications between agents or processes with a few primitives and operators [Hen88]. In
addition, we use description logics again as the formalism for the description of resources within
a process [Aga07a].

Analogously, we apply description logics in service requests in order to formally model static
desired service properties. The desired functionality and behavior is formally described by a
temporal logic, also combined with description logics for a meaningful description of resources
in desired behavior descriptions.

Based on the formal semantics defined for description logics, process calculus, and temporal
logics, we are able to develop automated methods for reasoning over services. Within the
formal interpretation of service descriptions (which is based on labeled transition systems
and model-theoretic semantics of description logic [Rud11]), we evaluate service requests
automatically. Consequently, our discovery method detects matching services for given
constraints autonomously and fulfills requirement R1.

Accuracy of discovery results. Given the formal models that underpin service descriptions,
service properties, and discovery requests, it is possible to develop algorithms that can also
guarantee the accuracy of results. As we identified in requirement R2, only logically correct

21

Chapter 2 Scenarios and Requirements

matches allow immediate, i.e., without the need of further adaptations, and automated use of
the discovery results in different use cases.

Discovery methods and systems that find matching services based on similarities or overlaps
between a request and described services, e.g., using heuristics or structural similarities, aim at
finding potentially useful services while they provide a high flexibility. However, they cannot
guarantee immediate applicability of discovery results in general.

The precision4 of the discovery method should be at 100% in order to be able to fulfill
requirement R2. It means that only logically correct discovery results are returned by the
method. In order to achieve the precision, we use a logic-based matchmaking approach based
on model checking that produces accurate results. The accuracy of model checking was proven
in [Ran01] for the temporal logic µ-calculus in general. Furthermore, we inherit the results on
the logical correctness of behavior model checking results from [Aga07a].

To summarize, in order to achieve the required accuracy, we employ formal models for the
description of properties in service offers and desired properties in requests. Based on these
formalisms, we develop a model checking based service matchmaking method that computes
logically correct results.

Expressive formalisms for comprehensive descriptions of services and discovery requests.
High expressivity, as identified in requirement R3, is on the one hand gained by selecting an
expressive description logic for modeling static service properties and process resources, and,
on the other hand, by the formalism chosen to model the dynamic behavior of services.

The first aspect has been extensively studied by the Semantic Web community. Different
description logics have been developed and studied [BCM+03]. They provide varying
expressivity that is sufficient for the purpose of ontological modeling of services (except for
expressing their dynamics) and their domains with respect to the use cases of discovery. In
this work, we mainly focus on the second issue, which deals with functionality and behavior
modeling. We apply a state-based model to capture the dynamic functional service properties
and develop a discovery method that logically reasons over them. Service dynamics refers to
the ability to change the state of the information space and introduce real-world effects during
the service execution. It does not refer to dynamically changing description of services.

We also develop a property-based service model that unifies the view on service properties
of any type. It allows us to treat functional and non-functional properties equally in service
descriptions and requests. Discovery of services based on comprehensive descriptions and
constraints is a prerequisite for the applicability of our discovery method to many different
scenarios.

Semantic service modeling. We base our work on semantic descriptions of services and
requests as this approach inherently enables machine readability, machine interpretability,
and ability to translate them into formal model that allow for logic-based matchmaking and
retrieval of accurate results.

Beyond these benefits, semantic modeling by means of ontologies copes with the
heterogeneity that arises in decoupled and service-based systems. We use ontologies to describe
service offers, requests, and domain knowledge. We allow resolving the data and semantic

4The precision of a discovery method is the fraction of discovery results that are relevant.

22

Chapter 2 Scenarios and Requirements

heterogeneity, as described by requirement R4, applying existing mediation and ontology
mapping techniques [NVSM07, BHSS09]. As the mediation problem is outside of our scope
of developing a discovery method, we do not further highlight this topic. However, the use of
description logics as the formalisms to model domain knowledge bases, service descriptions,
and requests in the form of ontologies permits to apply existing techniques to mediate between
different vocabularies of various providers and consumers.

Service classification and indexing structures. Requirement R5 demands for efficient
discovery methods that return accurate results within a feasible time frame. It is evident
that requirements such as high expressivity, reasoning within expressive formalisms, and the
demand for accurate results add computational complexity to any methods developed for such
scenarios. Besides the exponential description logic reasoning complexity,5 the verification of
behavioral constraints over service functionalities adds additional complexity to the discovery
problem.

We develop several extensions to the discovery method in order to support all requirements
stated above and still retain a feasible and usable discovery system, which can deal with large
repositories containing comprehensive service offer descriptions. The first contribution in this
context is a classification of services that is used to materialize frequent discovery results by
means of formally defined classes (see Chapter 6). A hierarchy over classes serves as an indexing
structure during discovery.

Second, we develop in Chapter 7 multiple indexing structures that materialize and, thus,
speed up frequent and expensive computations of intermediary results. We propose index
structures that are created offline and reduce the query answering time because an index lookup
is less time consuming than the computation of the result at query time. Furthermore, we
introduce an online index that is continually populated as the discovery requests are processed.
This index also materializes intermediate results in order to reduce the computational effort
of repeated queries. Due to the reduction of the query answering time that we achieve by the
classification as well as the offline and online indexes, we are able to significantly increase the
discovery efficiency. This is achieved without compromising the expressivity or accuracy.

5The problem of reasoning in description logics, depending on the expressivity of the chosen description logic
and the used reasoning tasks, is often in the class of Exptime or even NExptime problems. The complexity
class denotes the theoretical upper bound of computational complexity. The experienced complexity in real
scenarios can be considerably less, which makes the use of ontologies feasible in practice [MW11].

23

Chapter 3
Preliminaries

In this chapter, we summarize the main principles of the technologies and techniques that
are used for the realization of the service discovery method in this work. The machine-
interpretable representation of static information (knowledge) is part of the research in the
area of knowledge representation. We introduce the concepts of first-order logics, description
logics, and ontologies in Section 3.1. One less expressive and one rather expressive description
logic are introduced in more detail as they are applied in the context of service descriptions in
our work.

In Section 3.2, we clarify our notion of services as used in this work in the context of service
discovery. We recapitulate in Section 3.3 existing service description frameworks that formally,
we say semantically, model services on the basis of description logics. The service behavior
is a significant part of service descriptions, which cannot be expressed in description logics.
Hence, we introduce appropriate formalisms to describe the behavior with the π-calculus and
behavior properties with the µ-calculus, before we summarize the findings of the PhD thesis
by Agarwal [Aga07a], in which these calculi have been combined with description logics and
applied for the service discovery problem. The mentioned thesis serves as a starting point of
the present thesis. In Section 3.4, we show how the service discovery problem is solved by
matchmaking and model checking techniques.

3.1 Knowledge Representation

Knowledge representation is a principal to represent knowledge by symbols and allow inferring
new knowledge. The representation has to enable machines to behave as if they would
understand the represented knowledge. Knowledge representation has been broadly studied
in the area of Artificial Intelligence research and is used in all kinds of problem solving
methods [New82]. The underlying formalism consists of knowledge representation languages
in the form of a theoretical model. Formalisms like logics, semantic nets, and rules have been
studied and applied to represent knowledge.

A language is an unambiguous and logically adequate representation of natural language
statements. Each knowledge representation language has to provide a reasoning capability for
inferring knowledge [Woo75]. Reasoning is a capability that infers new statements from given

24

Chapter 3 Preliminaries

statements that represent existing knowledge. However, tractability problems quickly occur
even for reasoning over simple (i.e., less expressive) languages [LB87].

Knowledge representation techniques can be used to describe domain models. The domain
knowledge is a formal representation of the knowledge of a domain expert. Here, it is
challenging to delimit the knowledge of a domain. Representing and allowing others to access
this knowledge can be similarly difficult [IWA91].

While logic means the study of reasoning in philosophy, the area of ontologies focuses on
the study of the state of being. An ontology describes the states of being of a particular
set of entities and defines a part of the domain model on a conceptual level, i.e., describing
the being of instances without including them. Ontologies contain the definition of concepts,
roles, and correct inferences [SS09]. We introduce ontologies in Section 3.1.3. The knowledge
representations of ontologies depend on the concrete language used to express the model. In
Sections 3.1.1 and 3.1.2, we present the fundamentals of first-order and description logics.

3.1.1 First-Order Logic

Philosophically, logic is the study of correct reasoning and can be applied to represent
knowledge [LMP07]. The first-order predicate calculus, or first-order logic (FOL), has been
shown to be undecidable in general by Gödel’s Incompleteness Theorem. In fact, the logical
consequence of FOL is semi-decidable. That means there exist first-order logic statements that
cannot be proven either true or false.

We introduce the first-order logic by an overview of the basic and compound language
elements, and present their interpretation that assigns a truth value to each expression. We
refer to the literature, e.g. [HA28, Fit96], for a list of the inference rules like modus ponens,
resolution, double negation, and so on. The logic inference problem is the problem of deciding
whether a set of formulae (knowledge base KB) semantically entails a formula φ, written as
KB |= φ. This problem is semi-decidable for the first-order logic.

Syntax

In general, a formal language is a recursively defined set of strings on a fixed alphabet. In
first-order logic, the signature Σ = P ∪ F is the union of a set of predicates P and a set of
functions F , where P ∩ F = ∅.

The arity refers to the number of argument places that a predicate or function has. For
every integer n ≥ 0, we have a set Pn of n-place predicates and a set Fn of n-place functions.
We call predicates with an arity of n > 1 relations. Constants are functions with arity 0. In
contrast to predicates that are interpreted by a Boolean-valued function, functions are assigned
to individuals of the domain of discourse.

The set V of individual variables is disjoint to the signature. Variables are singular terms
that can either describe unspecified objects or express generality. Constants and variables are
FOL terms that serve as a building block of FOL formulae.

Atomic formulae have the form V t1, ..., tn, where V ∈ Pn is an n-place predicate, and t1 to
tn are terms. Often, an atomic formula is written as V (t1, ..., tn). Let > and ⊥ be additional
atomic formulae that represent Boolean values True and False, respectively.

25

Chapter 3 Preliminaries

Compound formulae are all the formulae that can be constructed by the following rules.
The formulae can be structured by parenthesis, logical connectives (symbolized ∧,∨,¬,⇒),
the universal quantifier (∀), or the existential quantifier (∃). To disambiguate formulae, the
order of decreasing precedence is (¬,∧,∨,⇒, {∀,∃}).

• All atomic formulae are formulae.

• If φ is a formula, then so is ¬φ.

• If φ and ψ are formulae, then so is φ ∨ ψ.

• If v is a variable and φ is a formula, then ∃v.φ is a formula.

If φ and ψ are formulae, then the conjunction, implication, and universal quantification can
be derived from the above operators.

φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ)

φ⇒ ψ ≡ φ ∨ ¬ψ
∀v.φ ≡ ¬∃v.¬φ

Free and bound variables. In a formula, the occurrence of a variable can be free or bound.
Variables of atomic formulae are free. The connectives do not change the variable status. That
is, if a variable v is free (or bound) in a formula ψ then v is free (or bound) in ¬φ, φ∧ψ, φ∨ψ,
φ⇒ ψ.

Any occurrence of a variable v in a formula φ is bound in the scope of the quantifiers in ∀v.φ
and ∃v.φ. The status of the remaining variables of φ is unchanged. Sentences are formulae
that contain no free variables. Bound variables are used to express generality. Free variables
can be considered as placeholders.

Example 1. Assume an entity represented by a variable v. Let b be a monadic predicate
symbol for “is a book”, w for “is a written work”, and a for “is available”. We can define that
every book is also a written work and that there should be some book available by the following
sentences.

∀v.b(v) ⇒ w(v)

∃v.b(v) ⇒ a(v)

Interpretation

The first-order semantic is defined by the interpretation (∆I , ·I). Let the domain ∆I be
an abstract and non-empty set of objects of the universe (the domain of discourse), which
represent the interpretation of the symbols of the signature Σ.

Terms. The interpretation function ·I assigns to each symbol s ∈ Σ of the signature Σ an
element sI from the domain ∆I .

·I : Σ×∆I

The interpretation functions assign an object cI ∈ ∆I to every constant c ∈ C. For every
n-place predicate symbol p ∈ Pn, an n-ary relation pI ∈ ∆I is assigned.

26

Chapter 3 Preliminaries

Formulae. The meaning [[φ]]I of a FOL formula φ is a truth value, either True or False. It
can be inductively defined as follows.

[[>]]I = True

[[⊥]]I = False

[[p(t1, . . . , tn)]]I = True, iff
(

[[t1]]I , . . . , [[tn]]I
)
∈ pI

[[φ ∧ ψ]]I = True, iff [[φ]]I = True and [[ψ]]I = True

[[φ ∨ ψ]]I = True, iff [[φ]]I = True or [[ψ]]I = True

[[φ⇒ ψ]]I = True, iff [[φ]]I = True or [[ψ]]I = False

[[¬φ]]I = True, iff [[φ]]I = False

[[∀v.φ]]I = True, iff [[φv←c]]
I = True for all c ∈ C

[[∃v.φ]]I = True, iff there exists c ∈ C such that [[φv←c]]
I = True

The interpretation (∆I , ·I) satisfies a formula φ if and only if (iff) [[φ]]I = True, in any other
case [[φ]]I = False. We also say that the interpretation is a model of φ. For a formula with a
quantified variable v, a constant c ∈ C ranging over the domain of discourse substitutes the
variable v, which is denoted by φv←c.

A theory is a set of formulae. An interpretation satisfies a theory Φ, iff the interpretation
satisfies every φ ∈ Φ. Then, the interpretation is a model of Φ. A theory Φ′ is a logical
consequence of a theory Φ iff every model of Φ is also a model of Φ′. We say that Φ′ is entailed
by Φ, denoted by Φ |= Φ′.

3.1.2 Description Logics

Description Logics (DLs) are a family of knowledge representation languages. Their members
vary in their expressivity to represent concepts of a domain of discourse. The performance of
their reasoning capabilities depends on the language complexity and choosing an appropriate
DL for a given task affects the performance of the developed system that uses the DL and the
respective reasoning facilities.

Most description logics are decidable fragments of first-order logic. They provide a formal
semantics that allows specifying a precise meaning of the modeled concepts. Ontological
modeling in the Semantic Web has been based on the earlier results on DLs. KL-One
is considered to be the first system that overcame the problem of semantic ambiguities
in knowledge representation languages like semantic networks [BS85]. Extensive and self-
contained overviews can be found in the literature, among others in [BCM+03, LMP07, Rud11].

We give an overview of the building blocks of DLs and present two concrete description
logics and their semantics in the following. The first description logic that we introduce is
called ALC, which is a very basic DL that has been widely studied and applied. The second
DL is called SHOIN (D), which is underpinning the OWL Web Ontology Language and was
used for the description of services in previous work.

The capability to infer implicit knowledge from the existing knowledge that is explicitly
modeled, e.g., in an ontology, distinguishes DLs from non-logic modeling languages like UML.
A set of inference rules allows us to infer implicit knowledge about the entities (concepts
and individuals) automatically. Standard DL reasoning tasks include instance checking,

27

Chapter 3 Preliminaries

subsumption, and satisfiability [BN03]. Instance checking denotes the task of retrieving
instances of a specified concept. The subsumption task determines whether one description
is more general than another one, which is a subconcept of the former. Satisfiability checks
whether a description is free of contradictions. It is non-contradictory iff there exists a model
of the description.

The analysis of worst-case complexity revealed that the subsumption problem of languages
with a very low expressivity is already intractable, which means that it cannot be computed
in polynomial time [Neb88].

Building Blocks

In analogy to the constants, monadic and 2-place predicate symbols of first-order logic, a
description logic considers three basic syntactic building blocks: Individuals, concepts, and
roles. Individual names are symbols that represent individuals of the domain. A DL concept
represents a set of individuals and the roles represent binary relationships between individuals.

A DL ontology represents a state of the domain that is described by a set of ontology axioms
(i.e., DL statements) that are true in this state. In description logics, we distinguish different
types of axioms: terminological axioms (TBox) and assertional axioms (ABox). A knowledge
base (KB) contains the terminology of the TBox and the assertions about individuals of the
ABox.

Interpretation. In addition to the syntactical specification, a well-defined semantics is part
of any formal logics. Based on a model-theoretic semantics of DLs, which assigns the models
of a domain to a syntactical expression, sound and complete reasoning algorithms have been
developed. The key feature of description logics is that they aim at retaining the decidability
of reasoning tasks.

The interpretation (∆I , ·I) of DLs comprises a domain ∆I and the interpretation function ·I .
Similar to FOL, the interpretation function maps individuals, concepts, and roles to the
elements of the domain, subsets of the domain individuals, and binary relationships between
the individuals, respectively.

Hence, the interpretation of a knowledge base assigns truth values to the axioms. I satisfies
a set KB of axioms iff I satisfies each axiom of KB. If I satisfies an axiom (respectively a
KB), then I is a model of this axiom (resp. KB). Axioms can be considered as constraints on
the interpretations. A knowledge base KB entails an axiom α, iff the axiom α is true in any
model of the knowledge base.

Basic Description Logic ALC

The Attributive Language with Complements ALC is a description logic with a rather low
expressivity and a basic set of language constructs. We summarize the specification of the
ALC description logic as it was introduced in [SSS91]. Before we present the terminological
and assertional axioms that can be expressed in ALC, we list the constructors of concept
descriptions in Table 3.1.

The basic language constructs are atomic concepts and atomic roles. Concept constructors
allow for the definition of complex concept and role descriptions inductively.

28

Chapter 3 Preliminaries

Table 3.1: ALC language constructs of concept descriptions

ALC Concept Constructor Syntax Semantics

Universal Concept > ∆I

Bottom Concept ⊥ ∅
Intersection C uD CI ∩DI
Union C tD CI ∪DI
Complement ¬C ∆I − CI
Universal Restriction ∀R.C {c | ∀(c, d) ∈ RI ⇒ d ∈ CI}
Existential Restriction ∃R.C {c | ∃(c, d) ∈ RI ∧ d ∈ CI}

We adhere to the common notation as used in [BCM+03], where capital letters A,B denote
atomic concepts, C,D denote complex descriptions of concepts, and R,S denote atomic
roles. ALC comprises the universal concept (>), bottom concept (⊥), atomic negation (¬),
intersection (u), value restrictions (∀R.C), and existential quantification (∃R.C). In more
expressive DLs, like SHOIN (D) that we introduce below, further constructors can be used
to create complex descriptions.

The given semantics is based on the interpretation (∆I , ·I). The domain ∆I is not empty and
the interpretation function assigns to every concept symbol C a subset CI of the domain and
assigns every role symbolR to a subsetRI of pairs of individuals of the domain (RI ⊆ ∆I×∆I).
Universal and bottom concepts are interpreted as >I = ∆I and ⊥I= ∅, respectively. The
language constructors of ALC are summarized with their semantics in Table 3.1.

Terminological axioms constitute the TBox. In ALC, concept and role equivalences as well
as concept and role subsumption can be expressed in the TBox. We explain their informal and
formal semantics by means of an interpretation (∆I , ·I) in the following.

A concept equivalence axiom C ≡ D defines the concept C. This axiom means that each
individual of the domain either belongs to both sets CI and DI or to none of them. A role
equivalence axiom R ≡ S defines the role R. This axiom means that every pair of individuals of
the domain either belong to both sets RI and SI or to none of them. A concept subsumption
axiom C v D describes the inclusion. If both C and D are atomic concepts, then this axiom
defines a concept hierarchy. This axiom means that if an individual cI of the domain belongs
the set CI , then it belongs to DI . A role subsumption axiom R v S states that every pair
of domain individuals that belongs to RI also belongs to the set SI of individual pairs. Role
subsumption axioms can define a role hierarchy.

Individuals are instances of the concepts and can be defined by assertions in the ABox. ALC
ABox axioms comprise concept assertion, role filter, individual equivalence, and individual
inequivalence. We summarize their syntax and semantics in Table 3.2.

Concept assertions express that an individual is member of a concept. Role assertions specify
a role relationship between two individuals. Individual equivalence asserts that two individuals
are actually the same entity, while inequivalence expresses that two individuals are not equal,
i.e., they do not represent the same entity.

Concrete domains. So far, we have not covered the representation of data objects in
description logics. Instead of a logic axiomatization of data types, concrete domains can

29

Chapter 3 Preliminaries

Table 3.2: TBox and ABox axioms of the ALC description logic

ALC Axiom Syntax Semantics

Concept Equivalence C ≡ D CI = DI

Role Equivalence R ≡ S RI = SI

Concept Subsumption C v D CI ⊆ DI
Role Subsumption R v S RI ⊆ SI
Concept Assertion C(c) cI ∈ CI
Role Assertion R(c, d) (cI , dI) ∈ RI
Individual Equivalence c ≡ d cI = dI

Individual Inequivalence c 6= d cI 6= dI

be integrated in description logics in order to constrain data objects of data types that
represent numbers or strings. Properties, e.g., operators for counting or expressing equality
and inequality, can be defined and included in concrete domains. This feature of concrete
domains is useful for the development of many applications.
ALC(D) symbolizes the logic that integrates concrete domains D into ALC. For a

general overview on the integration of concrete domains to description logics we refer
to [BH91, HLM99].

Concrete domains and its application in the logic ALC(D) are presented in [BH91] in detail.
The basic idea of the authors is to introduce n-ary predicates to the language. The predicate
arguments can be data objects of a concrete domain. Syntax and semantics of expressions
that relate to and constrain data objects were defined formally for ALC(D). It allows to,
e.g., express age restrictions. The example of an ALC(D) concept description shown below,
where D represents integers, was presented in [BH91]. It describes that women are individuals,
which are member of concepts Human and Female and also either an individual of the concept
Mother, or their feature age has a value of at least 21.

Woman ≡ Human u Female u
(
Mothert ≥21 (age)

)
Expressive Description Logic SHOIN (D)

We now turn our attention to a more expressive description logic SHOIN (D) that is the
formal underpinning of the Web Ontology Language OWL-DL. Furthermore, it has been used
in previous works to describes services, e.g. in [Aga07a], which serves as the base of our work.
In Table 3.3, the (additional) constructors for concept and role descriptions, which were not
already presented in Table 3.1, are given. SHOIN (D) extends the ALC DL. That is, the
constructors of ALC are also valid constructors of SHOIN (D) descriptions.

The name SHOIN (D) of the logic already suggests its expressivity: It inherits the
expressivity of ALC and adds the support for role transitivity, role hierarchies, nominals
(individuals in enumerations), inverse roles, cardinality restrictions, and data types [BCM+03].
Based on these language constructors, the set of axioms in SHOIN (D) contains: (i) ALC
axioms (cf. Table 3.2), and (ii) role transitivity axioms R1 ◦ . . . ◦ Rn v S that hold if
RI1 ◦ . . . ◦RIn ⊆ SI .

30

Chapter 3 Preliminaries

Table 3.3: SHOIN (D) concept and role constructs in addition to the ones in ALC
Constructor Syntax Semantics

Qualified Number Restriction ≥ nR {c | #{d|(c, d) ∈ RI} ≥ n}
≤ nR {c | #{d|(c, d) ∈ RI} ≤ n}

Enumeration {c1, . . . , cn} {cI1 , . . . , cIn}
Role R {(c, d) | (c, d) ∈ RI}
Inverse Role R− {(d, c) | (c, d) ∈ RI}
Role Transitivity Trans(R) RI = (RI)+

Role Subsumption R v S RI ⊆ SI

Example 2. In Example 1, we described in first-order logic that every book is also a written
work. For this purpose, we assume that the concepts Book and WrittenWork are specified. The
TBox axiom Book v WrittenWork states that every individual of the concept Book is also an
individual of the concept WrittenWork.

The availability of books can be defined as the concept AvailBook. We specify that individuals
of the concept AvailBook are members of the concept Book and have to be stored at least at one
location. Let storedAt be a role. Then we can define AvailBook as shown in the following.

AvailBook v Booku ≥ 1storedAt.>

3.1.3 Ontologies

Knowledge representation languages can be used to represent ontologies. Description logics
are the latest evolution of formalisms that underpin ontologies. The well-defined semantics
of description logics allow to unambiguously and logically represent domain models in form
of ontologies. Ontology languages are typically based upon description logics and employ the
open world assumption.

In our work, we will use the term ontology in its interpretation from the information science
perspective. An ontology is a formal, explicit specification of a shared conceptualization of a
domain of interest [SBF98]. This definition merges the definitions from [Gru95] and [BAT97].
It means that ontologies are machine-interpretable representations of the objects, concepts,
and relations of a specific domain. Ontologies feature clear (formal) semantics and provide
automatic reasoning procedures. The aspect of sharing is an important aspect of ontologies,
because it implies that different stakeholder agree on the conceptualization and understand it
in the same manner [GOS09].

Ontology Languages

Ontologies constitute an important part of the Semantic Web. They are the basis for
representing knowledge that is formalized and organized by description logics such that an
intelligent and automated retrieval and combination of the information and knowledge in the
Semantic Web is enabled.

The Web Ontology Language (OWL) is a W3C standard for the representation of
ontologies [BvHH+04]. OWL is based on a family of description logics. Different OWL

31

Chapter 3 Preliminaries

language profiles like OWL-Full, OWL-DL, and OWL-Lite exist. Each profile provides a
different degree of expressivity that is provided by the appropriate description logic as the
underlying formalism. An appropriate profile has to be selected for each system that needs
to reason on ontologies. The less expressivity is required and offered by a profile, the less
computational complexity is required for the reasoning.

OWL-DL is an ontology language that is based on the SHOIN (D) description logic. It
features decidability and NExptime worst-case complexity [Don03, MW11]. If nominals are
not included, Exptime worst-case complexity can be achieved. Several reasoning algorithms
have been developed and implemented for this profile.

OWL-Full is even more expressive than OWL-DL. In fact, OWL-Full is the most
expressive ontology language of the OWL family. Although OWL-Full is undecidable and
thus not practical in many applications, it achieves interoperability with RDF [MM04] and
RDF/S [BG04], which does not enforce a separation of classes, properties, individuals and
data values.

OWL 2 [OWL09] is the current evolution of the OWL language definition with an overall
structure that is similar to the first version (OWL or OWL 1 to delimit it from OWL 2).
One of the differences is an increased expressivity. The expressivity of OWL 2 corresponds to
the SHROIQ(D) description logic. In comparison to SHOIN (D), the SHROIQ(D) DL
additionally allows expressing the negation of ABox roles, qualified cardinality restrictions,
further role axioms and adds the self concept as well as a universal role. For the details on the
individual language features of SHROIQ(D), we refer to [GHM+08].

Similarly, the Web Service Modeling Language WSML [dBFK+08] is a family of ontology
languages with varying expressivity and is based on appropriate description logics. As the
name suggests, the WSML ontology languages were originally developed for the description
of Web services. Nevertheless, the WSML language family can be used independently of Web
services, too.

Serialization Formats

The Semantic Web demands that the information and especially the formalized knowledge
can be easily shared and exchanged between different stakeholders. The Resource Description
Format (RDF) is a lightweight representation for data and knowledge on the Web [Pan09].
RDF is a W3C recommendation [MM04] and recent ontology languages like OWL and WSML
provide an RDF serialization.

RDF builds on a graph model to decode entities and their relationships. Resources can be
or refer to anything that has a URI (Uniform Resource Identifier) as a unique identifier and
has to be dereferenceable. Resources can be annotated by properties, which are associated to a
value (e.g., a resource, data object, or literal). RDF represents the properties and relationships
among resources in the form of directed graphs.

An RDF statement presents a fact in the form of subject property object ., see
Listing 3.1. All statements follow the same logical schema. An RDF graph is formed by a
set of statements. Different syntaxes of the RDF serialization exist, most notable RDF/XML,
Turtle, and N3. In this work, we will use the Turtle syntax [BBL11], which is compact and
provides good readability. In Turtle, statements are represented by 〈http://example.org/subject〉
〈http://example.org/predicate〉 〈http://example.org/object〉 ., where URIs representing the resources

32

Chapter 3 Preliminaries

are written in brackets. The prefixes can be abbreviated as shown in the following Listing 3.1.
Quoted literals can be followed by a data type URI that indicates how the lexical form can be
mapped into the literal [MM04].

1 @prefix ex: <http://example.org/> .
2 @prefix xsd: <http://www.w3.org/2001/XMLSchema> .
3

4 ex:subject ex:predicate ex:object .
5 ex:subject ex:anotherPredicate ”a string literal ”ˆˆxsd:string .

Listing 3.1: Basic structure of RDF statements

In order to annotate the same resource in the subject position with several properties, the
following abbreviation can be used (see Listing 3.2).

1 @prefix ex: <http://example.org/> .
2 @prefix xsd: <http://www.w3.org/2001/XMLSchema> .
3

4 ex:subject ex:predicate ex:object ;
5 ex:anotherPredicate ”a string literal ”ˆˆxsd:string .

Listing 3.2: Example of RDF statements

Reification can be problematic in RDF when statements about statements (propositions)
need to be included. One option is to encode the proposition as a string literal. However,
the semantics of the string literal will be lost. The correct way to include the proposition in
the RDF model is to add a resource representing the proposition, which is then referring to
subject, predicate, and object of the proposition by the properties rdf:subject, rdf:property, and
rdf:object.

For a more comprehensive introduction of the RDF language elements like lists, containers,
blank nodes, and typed literals, we refer to the W3C specification [MM04]. For an overview
on the RDF model theory, which provides a semantics to RDF statements as well as RDF/S
ontologies, we refer to [Hay04, Pan09].

RDF/S. RDF allows expressing arbitrary statements about individuals and their properties.
In order to specify the terminological knowledge about resources and their domain, the schema
language for RDF was defined. The RDF Vocabulary Description Language, also called RDF
Schema (RDF/S), is part of the W3C RDF recommendation and defines a data model and a
vocabulary for expressing RDF statements. RDF/S itself is a specific RDF (meta) vocabulary
that can be used to define a semantics of any other RDF vocabulary.

RDF/S allows for the definition of very lightweight ontologies. It allows for the definition
of classes, properties, property restrictions, and hierarchies of classes and properties. The
following example in Listing 3.3 summarizes the definition of the classes ex:Book, ex:Author,
a property ex:hasAuthor and the domain and range restriction of the property, which restricts
the classes of the resources in the property’s subject and object positions.

33

Chapter 3 Preliminaries

1 @prefix rdf : <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix rdfs : <http://www.w3.org/2000/01/rdf−schema#> .
3 @prefix ex: <http://example.org/> .
4

5 ex:Book rdf:type rdfs :Class .
6 ex:Author rdf:type rdfs :Class ;
7 rdfs :subClassOf ex:Person .
8 ex:hasAuthor rdf:type rdf:Property ;
9 rdfs :domain ex:Book ;

10 rdfs :range ex:Author .

Listing 3.3: Example of RDF/S statements

3.1.4 Terms and Notations

In this thesis we will use knowledge representation techniques and ontologies to represent
resources of services within their descriptions. After providing an overview on a broad range of
logics, languages, and their syntax in this section, we now summarize the terms and notations
that we will use throughout the thesis.

Within the literature, the terms used to describe the constructs of description logics and
ontologies have sometimes been different from the ones that are typically used for classic
logics. For instance, concepts and classes represent the same (a set of individuals). As our
work uses ontologies and reasoning algorithms for the underlying description logics, we will in
general stick to the terms ontology classes, ontology properties, and ontology individuals. If
the context allows us to, we omit the term ontology to refer to these concepts, too. We use
sans serif fonts to distinguish ontology concepts from the remaining text.

Classes are denoted with an upper-case first letter. Properties and individuals start with a
lower-case letter. In contrast to individuals, property names typically start with is or has.

We use the predicate notation to describe logical formulae and axioms when they are not
part of an ontological description. As used in Section 3.1.1 for first-order logic expressions,
we write for example ex:Book(ex:b) to express that the individual ex:b is member of the class
ex:Book.

3.2 Services

The development and management of large software systems is challenging from many
perspectives. A few decades ago, the development process was centered on an incremental
(multi-phased) approach [Roy87], often known as the waterfall model. This model best suits
centralized processes of single complex software systems in which the costs for integrating
different components are not included [Lef07, Chapter 2].

More recently, agile software development frameworks and methods for managing the
software projects and the development itself emerged [BBvB+01]. Organization and
management structures that aim at agility also enable the support of less tightly coupled
and service-based software systems, which are more decoupled than traditional monolithic
systems. In fact, the use of agile methods in combination with service orientation has been
investigated in the context of software development [Deb04, KLS05, SAM12] and also in the
context of organizations [OBS06].

34

Chapter 3 Preliminaries

Services are software components that provide a defined feature. They can be developed
independently from the remaining components. With interface definitions that are rarely
altered, services can be integrated and used without knowledge about the underlying
implementation or technology. In an agile development process, the implementation and the
technologies used for the implementation can rapidly change without affecting the remaining
system or other development teams if the interface remains unchanged.

An overall software system that integrates services is called a service-based system. It can
be developed in an agile and flexible manner, as it evolves while the features can be easily
customized by adding, replacing, and removing services to/from the system. The advantages of
service-based software development methods also apply to the development of Web information
systems. In fact, they can be considered as requirements for a cost-effective development
of Web-based applications and systems. The flexibility provided by a loose coupling allows
adapting systems to the ever changing environment of the Web. The distribution of services
that can be developed, provided, and executed by different stakeholders is consistent with the
distributed setting of the Web of pages (HTML documents).

In order to cope with the challenges that arise with the distribution on Web scale, automated
methods are required to help developers, systems, and end users in using the potential that is
offered by the services on the Web. The description of the features that services offer and an
effective service search are fundamental to successfully employ service orientation on a large
scale.

In the following, we introduce and define several terms that are used in this thesis. In
Section 3.3, we introduce the foundations of semantic service modeling and the description of
the service behavior. For this purpose, we give an overview of the π-calculus and µ-calculus.

Terms and Definitions

Various definitions of a service exist in literature. We restrict ourselves to an explanation
of our view on services within the scope of the thesis. Araujo and Spring discussed a more
general view on services including economic aspects in [AS06]. It is based on Hill’s service
definition [Hil77], which is not contradictory to our view on concrete service instances. The
following view on services is based on a collective effort of the Karlsruhe Service Research
Institute to define services from a multitude of perspectives and disciplines. We present the
excerpt of the outcomes that is relevant for the current work.

Definition 1 (Service). A service is a software program that provides a defined and pre-
implemented functionality through a specified interface. It serves as the basis for machine-to-
machine interoperability and communication.

A service is offered by means of an unambiguous, formal, and explicit description of the
provided functionality including the information about the use of the interface and the state
changes caused by the execution.

We call an actor who instantiates the server role, a service provider. A service consumer is
another actor who invokes a service by sending a request signal. With the above interpretation
of a service we intend to state that a service performs or triggers an action upon service
invocation, i.e., the receipt of a request. The action changes the state, i.e., the condition, of
the service provider, which can include some objects that were provided by the consumer with

35

Chapter 3 Preliminaries

the invocation. State changes involve changes in a database, knowledge base, or in knowledge
that is represented in some other way.

The service description allows advertising services. Agents are able to interpret the offer
and, thus, there is an implicit agreement between providing and consuming agents prior to
performing the service.

Our notion of a service includes (i) ICT-based services (e.g., Web and Cloud Services),
(ii) ICT-mediated services, (e.g., Amazon’s Mechanical Turk), and (iii) regular business services
(e.g., product support) . People-to-people services (e.g., pickup and logistics services) can fall
in the second category of ICT-mediated services if the people-to-people services are described
and triggered by the help of ICT. As the term Web services has been widely used in the
literature, we clarify our interpretation of Web services as follows:

Definition 2 (Web Service, based on [LP06]). A Web service is an ICT-based service that
can be requested via standard Internet protocols. It provides (remote) procedures that can be
invoked with a machine-readable and standardized request syntax. The description of Web
services includes at least input and output messages.

Orthogonal to the previous discussion, layers of abstractions need to be considered, too. The
general service is a service for which the provider has not been instantiated. This service may
be defined at various levels of abstraction, depending upon purpose. The particular service is
a service that the provider instantiated. The service instance is a completely specified service
with both the provider and consumer specified. The service execution of a service instance
should cause some change of state to occur according to the service agreement.

A service can offer several operations, where each operation provides a functionality that can
be independent of the other operations. The operations are often related in a sense that they
provide complementary functionalities, but they can be used independent of each other. In
this thesis, we do not distinguish between services and operations. Without loss of generality,
we assume each service provides one operation and refer to it as a service.

3.3 Semantic Service Modeling

After we have defined our view on services, we will now focus on the description of service offers.
We only consider recent approaches for machine-readable and machine-interpretable, i.e.,
formal, description approaches in our overview. As we will develop a service discovery approach
that operates on a logic and abstract level based on descriptions, we do not introduce protocols
(like HTTP), standard representations of exchanged messages (like SOAP [GHM+07]), or
syntactical interface description languages (like WSDL [CCMW01]) that merely focus on
implementation issues.

3.3.1 Service Description Frameworks

With the advent of Semantic Web Services, the Semantic Web community with their focus on
languages developed service description approaches that use DL, as for example in [GCTB01,
SPAS03, LH03, BHL+05]. While static objects like input and output parameters (we say
resources) of a service can be properly described in DL, the dynamic aspects of the service

36

Chapter 3 Preliminaries

functionality cannot be expressed solely using DLs with static signatures. Hence, state-based
service modeling approaches emerged more recently. Assuming the discrete time paradigm,
each state represents a snapshot of the world and the differences between two consecutive
states allow drawing conclusions about the service functionality that caused this state change.

Semantic Markup for Web Services (OWL-S) [MBH+04] and the Web Service Modeling
Ontology (WSMO) [RKL+05] are two recent and most prominent frameworks for semantic
description of services. The commonality of both specifications is that they provide an upper
ontology that provides the basic vocabulary necessary to declare and describe concrete services.
Although there are some conceptual differences between OWL-S and WSMO [LRPF04], both
of them provide means to describe service functionalities by OWL-S Service Profile and
WSMO Capability respectively. The functionality of a service describes what the service
does or provides while abstracting from the internal service implementation and external
communications. Both specifications provide further means to describe the behavior that
reveals internal details of the service implementation and external communications. The
respective elements of the specifications are the OWL-S Service Model and the WSMO Interface
(which further distinguishes Orchestration and Choreography elements). The service behavior
is often described by a process expression to specify how a service is provided and how a
consumer can interact with the service.

OWL-S is an upper ontology to describe Web services semantically and replaces DAML-S.
The OWL-S ontology is expressed in the Web Ontology Language (OWL) and consists of
the following three parts [SPAS03]. The Service Profile describes what a service provides
to prospective clients. The Process Model (also known as Service Model) describes how a
service works and can be used. Possible interactions with a service are described by the
Service Grounding. In order to describe each part of an OWL-S service description, OWL-S
provides further ontology classes and properties. For instance, classes like Input, Output,
Condition, Result and properties like hasInput, hasOutput, hasCondition, hasResult are used
for the description of the functionality as part of the Service Profile. The OWL-S specification
in [MBH+04] contains a book selling service example that shows how OWL-S can be used to
create actual service descriptions. We do not want to repeat the extensive descriptions of such
an example, but recommend looking at the original description in [MBH+04].

WSMO is an alternative approach to OWL-S. Driven by the same goals, both approaches
share commonalities but also differ in some aspects like the support for mediation and
language layering, which are addressed by WSMO only [LRPF04]. The capability element of
WSMO enables the description of the Web service functionality by assumptions, preconditions,
postconditions, and effects. It provides a clear separation of the information space including
inputs and outputs (described by preconditions and postconditions) and the state space
(described by assumptions and effects). Analogously to OWL-S, the upper model is specified
in a WSML ontology that contains respective classes and properties to create structured and
semantic Web service descriptions. We also recommend the example WSMO description of a
train ticket booking service, which has been presented in [FFST11, Chapters 7.4 and 8.4].

In contrast to OWL-S, WSMO specifies Goals that capture the objectives of a user, who for
instance wants to find Web services. Goals are result-oriented as they consist of postconditions
and effects, only. The assumption for omitting preconditions and assumptions is that users
are only interested in the outcomes of a service. However, as the semantic description of Web
services should enable automation in manifold use cases, one has to consider scenarios like

37

Chapter 3 Preliminaries

service composition in which objectives with constraints over preconditions and assumptions
play a similarly important role. Especially when automated methods verify requirements over
service offers in order to compose them, many criteria of desired services must be specified in
a request in order to guarantee their applicability as well as the usability, liveness, and safety
of the composition. Otherwise, human effort will still be required.

Many different service description approaches besides OWL-S and WSMO have been
proposed. WSDL-S provides semantic annotation of the elements of technical service
interface description in WSDL documents [AFM+05]. Additional elements and attributes
(such as wssem:modelReference) extend the Web Service Description Language and allow
to link to a formal description of inputs, outputs, preconditions, effects, and a concept
from a service classification schema. Semantic Annotations for WSDL and XML Schema
(SAWSDL) [KVBF07] extends WSDL-S and provides annotations for the WSDL language in
version 2.0. The language used to represent semantic models of the annotated service elements
is not dictated and can be chosen independently. For example, the WSMO-Lite ontology that
mainly provides the concepts for expressing the service functionality can be used in combination
with SAWSDL [VKVF08].

3.3.2 Service Behavior Modeling

The behavior of a service is a functional property that describes how a service provides the
offered functionality (orchestration) and how to interact with a service in order to access it
successfully (choreography). In the study of computation, state-changing machines are used
to model the behavior of systems formally. Formalisms like abstract state machines [Bör98,
BGG+06], Petri nets [MPPP02, DLC+07], and π-calculus [BWR09, Aga07a] have been applied
for this purpose.

An own process language for OWL-S has been proposed based on the findings and best prac-
tices from planning languages like PDDL (Planning Domain Definition Language [MGH+98]),
process and workflow modeling with PSL (Process Specification Language [SGT+00]), and
the description of distributed systems (π-calculus [Mil99]) among others. However, besides a
specification of the language constructs, a formal semantics of the OWL-S process language
is not part of the W3C Specification [MBH+04]. Abstract state machines [Gur94, Bör98]
“inspired” a framework for WSMO Choreography and Orchestration descriptions [RKL+05].
However, such a framework including a formal semantics never became part of the WSMO
specifications.

In the following, we define a state-based model of service computations, before we introduce
the π-calculus and µ-calculus. Both logics can describe state-based systems that model the
service behavior in our work.

State Transition Systems

A state transition system is a theoretical model of a software system that abstracts from
the concrete processing performed on a computer. Labeled transition systems can be used to
model the behavior of a particular service. A service invocation can trigger a set of actions that
change the state of the service provider with respect to the information within the premises of
the provider.

38

Chapter 3 Preliminaries

Definition 3 (Labeled Transition System). For a set of atomic propositions P and a set of
actions A, a labeled transition system (LTS) is a tuple (S,→, A, λ), where S is a finite set of
states, →⊆ S×A×S a set of labeled transitions between the states, and λ : S → 2P a labeling
function that maps each state s ∈ S to the set of atomic propositions that are true in s.

Atomic propositions are logical formulae, which describe the provider knowledge in a state.
Every state s ∈ S of the LTS is described by a set of propositions that are true in this state.
KB(s) denotes the state knowledge λ(s), such that KB(s) |= λ(s).

Transitions are defined by the ternary relation →. A transition (si, a, sj) ∈→ between the
two states si ∈ S and sj ∈ S is labeled with a description of the action a ∈ A. si is called the
source and sj the target of a transition. We write si →a sj if (si, a, sj) ∈→. The structure
of the labels in A depends on the action type. For example, a channel, the involved actors,
and the exchanged parameters are the main characteristics of a communication action, while
a local (i.e., computational) action is modeled differently.

A transition system that models the behavior of a service will always have a unique state
that not the target state of any transition. We refer to this state as the start state of the
system, even though the definition of an LTS does not make this distinction.

The π-calculus Process Algebra

Process algebras can be used to describe the observable behavior of services by providing
constructs for modeling data and control flow. Here, concrete actions with concrete parameter
values occurring in service instances are aggregated into variables.

The π-calculus is a process calculus and was developed in 1992 by Robin Milner, Joachim
Parrow, and David Walker [MPW92a, MPW92b, Mil99]. As Milner stated in [Mil99],
“communication is a fundamental and integral part of computing, whether between different
computers on a network, or between components within a single computer.”

The π-calculus evolved from the calculus of communicating systems (CCS) [Mil80] and can
be distinguished by its ability to handle mobility. In π-calculus, the names of communication
channels can be communicated along the channels themselves. Moving information inside of
a computer program is treated equally to the exchange of messages and computer programs
across a network. Concurrent computations within networks that can reconfigure themselves
can be described as well.

This calculus provides a simple but powerful language to describe labeled transition systems
that represent the observable behavior of communicating systems. The calculus is Turing
complete; the lambda calculus can be encoded in the π-calculus [Mil92]. Expressions of the
language are named process expressions, which are used to describe the service behavior. We
use the polyadic π-calculus [Mil99, Chapter 9], which is an extension that allows communicating
more than one parameter in a single action.

π-calculus syntax. The set of valid process expressions of the polyadic version can be defined
as follows.

Definition 4. Structure of Process Expressions

π ::= 0 | c[x1, . . . , xn].τ | c〈y1, . . . , yn〉.τ |
γ.τ | τ1 ‖ τ2 | [ω1]τ1 + [ω2]τ2 | @A{y1, . . . , yn}

39

Chapter 3 Preliminaries

The null process 0 denotes a process that does nothing. It is used as termination symbol in
a process expression.

The input process c[x1, . . . , xn].τ is a process that takes inputs at a port with the name c,
which is a communication channel, and binds them to the variables x1, . . . , xn. The subsequent
behavior of this process is defined in the process expression τ .

Analogously, the output process c〈y1, . . . , yn〉.τ denotes a process that outputs the values
y1, . . . , yn at port c and then behaves as defined in τ .

The local process γ.τ , as used in [Aga07a], performs the action γ and then behaves as defined
in τ . In π-calculus, observable, non-observable, internal, and complementary actions can be
modeled. Local actions perform changes in the knowledge base of the system, e.g., state
resources can be changed, added, or deleted.

The composition τ1 ‖ τ2 consists of processes τ1 and τ2 acting in parallel.
The summation [ω1]τ1 + [ω2]τ2 denotes a choice of one of the alternatives τ1 or τ2 guarded

by conditions ω1 and ω2 respectively. Conditions are Boolean queries that can be evaluated
based on the knowledge λ(s) of the current state s.

We write ω?τ1: τ2 for a process [ω]τ1 + [¬ω]τ2 that models an if-then-else construct. It is a
deterministic choice process, whose behavior is determined by the condition ω. If ω is true,
then its subsequent behavior is defined by the expression τ1, otherwise, it will behave as defined
in τ2.

@A{y1, . . . , yn} denotes the invocation of an agent identifier A. With the invocation of an
external process that is identified by the agent, the resources y1, . . . , yn of the current process
are passed to the agent.

A named process expression, as syntactically defined above, is denoted by an Agent Identifier.
A(x1, . . . , xn)

def
= π is the definition of the agent identifier A with invocation parameters

x1, . . . , xn that are passed to the agent along with its invocation.
The operational semantics of π-calculus is defined inductively [MPW92b]. It maps a process

expression to a labeled transition system. Input, output, and local actions are translated into
state transitions of the LTS.

In the following, we summarize the results of the Ph.D. thesis from Agarwal, who combined
the π-calculus with DL in order to describe resources semantically and applied this formalism
for the service behavior description [Aga07a].

Semantic process expressions. In pure π-calculus, the process resources and variables are
represented by names. Names are strings without any structure. As a result, it is hard for
end users to understand which values they should provide for the variables in order to get the
desired result. Also, it is not possible to automatically let machines interpret and reason over
such process expressions.

In order to overcome this limitation and enable automated reasoning techniques, the process
resources and variables are annotated with domain ontology concepts. We assume that a
domain ontology ODω is attached or referenced by each service description Dω and that ODω

comprises the ontological concepts that are used to describe the process resources. That is,
ODω supplies the static TBox knowledge that can be applied throughout the entire process
execution.

40

Chapter 3 Preliminaries

By combining the π-calculus process description language with description logics, one cannot
only describe the types of process resources and variables but also how they relate with each
other. For example, if a process input action receives two parameters of type Person, one
can also describe that both persons are authors and both have co-authored the same book.
Furthermore, it is useful to have information on the type of communication protocol and
messages transmitted over a channel. E.g., a book selling process sends the book via ”HTTP“
as PDF file or via ”surface mail“ as hard copy.

Example 3. Let π
def
= httpCh[a1, a2].τ be the input process that accepts two input parameters a1

and a2 over the communication channel httpCh.
The ontology ODω defines classes ex:Person, ex:Author, ex:Book and a property ex:hasAuthor.

Then, the following logical formulae are attached as a label to the input action httpCh[a1, a2].

∃b.ex:Book(b) ∧ ex:hasAuthor(b, a1) ∧ ex:hasAuthor(b, a2)

∧ ex:Person(a1) ∧ ex:Author(a1) ∧ ex:Person(a2) ∧ ex:Author(a2)

The service itself is the recipient of the service invocation, whereas the invoking client of the
communication is not further specified.

ex:HTTP(httpCh) ∧ ex:hasRecipient(ex:httpCh, ex:service)

In the following, we will directly add types of input and output parameter to the description
of the actions. E.g., we write httpCh[a1 : ex:Person, a2 : ex:Person] to indicate the input
parameter types in the above example.

In general, the invocation, input, and output parameters used in the process expressions are
semantically described analogously. These descriptions are attached to the individual process
language constructs. Note that all the descriptions of the resources cannot be modeled in a
single ontology, as their description may change during the execution, which could lead to logic
inconsistencies.

The local actions are semantically annotated with the knowledge that is affected by these
changes. The changes ∆ of a local action are a set of ontology axioms (class membership,
object property, data property, individual equivalence, and individual inequivalence axioms
are allowed). Every axiom is associated with a ‘+’ or ‘−’ in order to express whether this
change has added or removed an axiom from the provider’s knowledge base.

The unique name assumption for an entire process expression is required in both formalisms.
More details about this formalism and its semantics may be found in [Aga07a, ARA08, ALS09].

Temporal and Modal Properties of Processes

Modal and temporal logics describe processes declaratively. A declarative process description
specifies modal and temporal properties of a process.1 These process property descriptions can
be considered as constraints over processes. Hence, temporal logics can and have been used to
express discovery requests.

1The µ-calculus allows specifying modal and temporal properties of processes. In our work, we use the µ-
calculus-based language to specify properties of the service behavior. Though we will use the term behavior
constraint in order to distinguish it from the properties in service descriptions.

41

Chapter 3 Preliminaries

The modal µ-calculus is used to express modal and temporal properties of labeled transition
systems. It extends the propositional modal logic with least fixpoint µ and greatest fixpoint ν
operators. Like π-calculus, it features a simple language structure, provides formal semantics,
and provides immense power due to the fixpoint operators [BS06]. In the following, we
summarize the syntax and the semantics of the µ-calculus. Extensive introductions, examples,
and further research can be found in the literature [Koz83, Sti01, BS01, BS06].

Syntax. For the purpose of defining the syntax of µ-calculus expressions, we let Ψ denote
temporal and modal properties of an LTS. In the context of service discovery, we often refer
to the properties as constraints.

Definition 5. Basic µ-calculus Syntax

Ψ ::= Ψ ∧µ Ψ | ¬µΨ | µX.Ψ(X) | 〈a〉Ψ | P | true | false

Properties can be combined by the conjunction operator (symbolized ∧µ in contrast to the
Boolean operators). The negation (¬µ) allows excluding properties. Terminals of µ-calculus
expressions are propositions P as well as true and false, which match all or no processes,
respectively. The existence of an action a with the constraint that in the subsequent process
after the action a the property Ψ holds is expressed by 〈a〉Ψ.

Modal equations of the form X
def
= Ψ state that X expresses the same property as the

formula Ψ and allow for the description of perpetual processes. For example, X
def
= 〈tick〉true

means that only processes that immediately execute the action tick have the property X. The
recursive modal equations X

def
= 〈tick〉X describes a clock process that perpetually executes the

tick action. This recursive modal equation has extremal solutions that are least and greatest
fixed points of the monotonic function f [〈tick〉X,X], which represents the evaluation of the
property over an LTS [Sti01]. We will give further insides on the evaluation of µ-calculus
formulae in the end of this section. For an extensive overview on modal equations and fixed
points of the monotonic functions, we refer to [Sti01, Chapters 4.5 and 5]. Syntactically, the
least fixpoint is denoted by µX.Ψ(X) and represents the minimal solution for a constraint Ψ.

Given the basic syntax, further constructs can be added to increase readability without
changing the language expressivity. We summarize them in the extended syntax definition.

Definition 6. Extended µ-calculus Syntax

Ψ ::= Ψ ∧µ Ψ | ¬µΨ | µX.Ψ(X) | 〈a〉Ψ | P | true | false |
Ψ ∨µ Ψ | [a]Ψ | νX.Ψ(X) | Ψ until Ψ | eventually Ψ | always Ψ

As we can see from the extended µ-calculus syntax, alternatives of properties can be
expressed by ∨µ, too. The universal quantification of an action a is expressed by [a]Ψ. The
greatest fixpoint νX.Ψ(X) represents the maximal solution for a temporal constraint Ψ. E.g.,
νX.〈tick〉X expresses with the help of the greatest fixpoint operator that a clock is always
ticking.

Both fixpoint operators allow us to define properties based on recursion. While the
specification and readability of formulae containing fixpoint operators can be difficult for many
users, yet they allow us to define the usual temporal operators. They are introduced as macros

42

Chapter 3 Preliminaries

to the extended syntax as they are often used and can be helpful to conceal the syntactical
complexity.

always Ψ means that Ψ holds on every path. With the help of the greatest fixpoint operator,
it is defined by νX.Ψ ∧µ [−]X. The property X means that Ψ holds in the current state and
X holds recursively in any state succeeding the current state. We consider any state transition
as no constraints ([−]) over the actions are specified.

For example, if a user always has to be authorized in order to interact with a system, then a
proposition Pauth that asserts the user authorization holds in every state of the LTS describing
the system. This example system satisfies νX.Pauth∧µ [−]X since Pauth is immediately satisfied
and in every successor state the property X holds again. The recursive formula asserts that
the proposition Pauth holds in every state of a perpetual process. The state transitions can be
arbitrary (denoted by [−]).

Ψ1 until Ψ2 means that the process will reach some state in which Ψ2 holds, and Ψ1 holds
until this state is reached. A process that must reach a state in which Ψ holds is expressed by
eventually Ψ.

Denotational semantics. The semantics of µ-calculus expressions is defined on a labeled
transition system. Given an LTS L = (S,→, A, λ) as defined in Definition 3, the semantics
maps µ-calculus formulae to sets of states (i.e., elements of 2S). In the following, we summarize
the semantics of the modal µ-calculus as specified in [BS01].

[[true]]V = S

[[false]]V = ∅
[[P]]V = VProp(P)

[[X]]V = V(X)

[[Ψ1 ∧µ Ψ2]]V = [[Ψ1]]V ∩ [[Ψ2]]V
[[Ψ1 ∨µ Ψ2]]V = [[Ψ1]]V ∪ [[Ψ2]]V

[[¬µΨ]]V = S − [[Ψ]]V
[[〈a〉Ψ]]V = {s ∈ S | ∃s.s→a t ∧ t ∈ [[Ψ]]V}
[[[a]Ψ]]V = {s ∈ S | ∀t.s→a t⇒ t ∈ [[Ψ]]V}

[[µX.Ψ(X)]]V =
⋂
{Ŝ ⊆ S | Ŝ ⊇ [[Ψ]]V[X:=Ŝ]}

[[νX.Ψ(X)]]V =
⋃
{Ŝ ⊆ S | Ŝ ⊆ [[Ψ]]V[X:=Ŝ]}

VProp : Prop → 2S is the valuation function of atomic propositions that assigns a set of
states (in which the proposition is true) to each proposition. VProp is called the interpretation
of the propositions.

The valuation function V[X := Ŝ] maps the property X to the set Ŝ of states that have
the property X and allows for the evaluation of recursive modal equations, i.e., to determine
the respective fixed points. Otherwise, this valuation function agrees with the interpretation
V : V ar → 2S of variables [BS01].

true holds in every state of an LTS and thus [[true]]V = S. false does not hold in any state.
The semantics [[P]]V of a proposition P is defined by the set of states VProp(P) ⊆ S in which

43

Chapter 3 Preliminaries

the proposition P holds. The conjunction (disjunction) of individual constraints Ψ1 and Ψ2

is the set of states in which both (either of) the constraint is satisfied. The meaning of the
negation ¬µΨ of a constraint Ψ is the complement of the set of states in which the constraint
Ψ holds.

Variables X express properties and occurs free or bound. We say that variable X is bound
if it is in the scope of a fixpoint operator. Otherwise, say that the variable is free and the
valuation function V determines its meaning. The formula 〈a〉Ψ expresses that there has to
exist an a-transition (from a state s to another state t) and the constraint Ψ is satisfied in
the target state t. The meaning of the formula 〈a〉Ψ is the set of states, which are the origin
of such an a-transition with a following state satisfying Ψ. The formula [a]Ψ requires that Ψ
holds in the following states of any a-transition.

The interpretation of variables ranges over 2S . The semantics of a formula Ψ(X) with a free
variableX is a monotonic function f :2S → 2S . According to the Knaster-Tarski theorem, f has
a unique maximal and a unique minimal fixed point. The semantics of the formula µX.Ψ(X)
is the least fixed point of f . Analogously, the semantics of the maximal fixpoint operator ν is
the greatest fixed point of f . The purpose of the inclusion of recursive formulae in µ-calculus
is the ability to express usual operators of temporal logics such as until, eventually, and
always.

3.4 Service Discovery

The term service discovery has been used with various meanings in the recent service research
efforts including those of the Semantic Web Services community. We therefore will shed light
on different methods that sometimes have been part of the service discovery problem and
provide an interpretation of the terms as they are going to be used in this work.

Definition 7 (Service Discovery). Discovery is a method in service-oriented systems that
automatically locates services for a given request based on their description. In order to allow
users and programs (software agents) to make use of the offered services without continuous
user intervention, common machine-interpretable languages have to be consequently applied for
service offer descriptions and service requests [BLHL01]. The result of service discovery is the
set of services fulfilling the requirements of a request.

Related tasks that are not part of service discovery comprise: crawling, service description
mining and learning, service ranking, service selection, and service composition. Crawling of
services, as well as the mining and learning of service descriptions are tasks prior to discovery.
Service discovery assumes that the service descriptions are already available, accessible, e.g.,
in the form of a repository of service descriptions, and can be read and interpreted.

Ranking of services computes an ordering of a given set of services based on a given definition
of preferences on the ordering. A ranking can be computed after discovery, but it could also
be applied prior to discovery, e.g., to influence the order in which services are considered for
discovery or to prune the set of services to be considered for discovery at all. The former
approach can be helpful for interactive discovery approaches that quickly deliver discovery
results successively and interactively. The latter constellation reduces the search space, i.e.,
the set of services on which the requested requirements have to be evaluated upon. It can lead

44

Chapter 3 Preliminaries

to increased discovery efficiency but it also removes the completeness of the discovery result
set.

Service selection deals with the identification of the best match from a set or an ordered list of
services. Composition creates compound services from a set of individual services. Compound
services then provide a more complex functionality than the individual services. Service search
is a combination of discovery, ranking, and composition techniques. A service search system
therefore can deliver discovery results directly, but also produces ranked results by combining
ranking and discovery. Furthermore, an on-the-fly composition of services can be computed in
order to deliver even more results that match a request.

Matchmaking is a task that compares a request with a service description. If the described
service fulfills the requirements of the request, we say that it matches the request, and so the
service is part of the discovery result set. A service request is an abstract description of the
(functional and non-functional) requirements of the desired service. We often refer to them as
constraints.

In the following, we outline the two main matchmaking techniques that are necessary to
understand the contributions of our work. The first technique is the matchmaking of service
functionalities, e.g., described by the OWL-S Service Profile or WSMO Capability. Here,
we will discuss the conceptual idea of functionality matchmaking. Later in this thesis, we
discuss existing implementations of the matchmaking approach in order to distinguish our
discovery approach from existing works. The second matchmaking approach that we describe
in this section is instantiated by the µ-calculus model checking. It allows evaluating µ-
calculus process properties over existing labeled transition systems, which can be described
by π-calculus process expressions.

3.4.1 Matchmaking of Functionalities

Similar to the behavior descriptions, there exist various approaches to describe the service
functionality. Without being too specific, we want to introduce the basic idea of functionality
matchmaking as it has been widely applied in many service discovery approaches.

The functionality of an offered service ω is interpreted as a set of service instances. The
requested functionality is commonly described by the same structure. Hence, a requested
functionality is also interpreted as a set of service instances (possible solutions of the request).

Within this interpretation of a service and a request, a match is given if there is an
overlap between both sets of service instances. Different matching degrees are commonly
considered: Exact, Plug-in, Subsume, Intersect, and Disjoint. Each degree corresponds to
a subset relationship among them. We diagrammed the matching degree in Figure 3.1. An
exact match is the strongest relationship. It means that the set of instances described by
the offered service is equivalent to the set of instances described by the request. Plug-in and
Subsume are less strict matching degrees, as they require that one set is a proper subset of
the other. The Plug-in match can be particularly useful as the service provides at least the
required functionality. A service that matches a request to the degree of a Subsume match
cannot directly be applied, as the remaining functionality of the request, which is not provided
by the matching service, has to be provided by other means. The Intersect match is even less
strict as it requires a non-empty overlap between the two sets of service instances described

45

Chapter 3 Preliminaries

Intersect
Disjoint, no match

Subsume

Exact

Plug-in

Service D
Request R

Service
Execution

Figure 3.1: Matching degrees between the interpretation of request R and service D

by the service and the request. If both sets do not intersect, i.e., there is no common service
instance, then there is no match.

In our work, we say intersection-based matchmaking to refer to the discovery approaches that
identify matching services based on the Intersect, Plug-in or Subsume relationship between the
sets of service instances that represent the interpretations of service description and request.
The intersection-based matchmaking is realized by checking whether the service description
subsumes the request or vice versa. However, subsumption checks that can be reduced to the
satisfiability problem have a high worst-case complexity of Exptime, even for less expressive
description logics like ALC [DM00, Don03]. Note that our view on matching degrees differs
from original definitions, as in [PKPS02], where these degrees have been defined for individual
input and output parameters. The presented perspective yet can be abstracted from such
definitions.

3.4.2 µ-calculus Model Checking

Model Checking is a technique that automatically and exhaustively checks whether a given
model of a system meets a given specification. Formally, the model checking problem is
described as follows. Let ML be the model of a (labeled transition) system and let R be
the expression of a desired modal or temporal property. Then, model checking decides if the
system satisfies R iff ML |= R under conditions Ω.

46

Chapter 3 Preliminaries

Model checking has been widely applied to the verification of hardware and software systems.
For the purpose of service discovery, model checking is applied to properties expressed in the
formalism obtained by the combination of µ-calculus and description logics as introduced above.
This model checking technique for this particular setting was presented in [Aga07a, ALS09,
Aga07b]. We refer to existing literature for a general overview on model checking [EC80,
BCM+92, CGP01]. In particular, the model checking of µ-calculus properties is described, for
instance, in [EL86, Sti01, BS01].

We now describe how service behavior constraints (i.e., modal and temporal properties) are
automatically verified on a given service behavior description. In order to do so, first an LTS
is created from a given behavior description (i.e., a π-calculus process expression with DL
expressions describing the process resources).

Verification. For a given LTS representation of a behavior, denoted by L, and a given desired
property φ of a request R, the atomic formula φ is verified as follows.

• if φ = true, then all the states of the LTS L are returned.

• if φ = false, then an empty set of states is returned.

• if φ = P then according to the semantics of the request formalism, one needs to find
those states of the LTS L in which the proposition P holds. So, all states of the LTS L
are iteratively checked, and a state s ∈ S is added to the result set if the proposition P
is entailed by the state knowledge KB(s). As the state knowledge is modeled in form
of an ontology and a proposition is an entailment query, the query is executed on the
ontology. If the result set of the query is non-empty, then the proposition holds in the
state, otherwise it does not.

• if φ = 〈a〉φ′, different types of actions a are distinguished (i.e., input, output, or local).
In the model, there are three types of actions, namely, input actions, output actions,
and local actions. If there is a transition of the requested type in the source state s that
also fulfills the desired properties of the action specified in required action a, then the
formula φ′ in the target state t reached from s through this transition is checked. If φ′

holds in t, then state s is added to the result set.

Example 4. Let φ denote a desired input action c[p1 : C1, . . . , pn : Cn]. A behavior τ of a

system L also contains an input action, say τ
def
= c[q1 : D1, . . . , qn : Dn].π.

If for each desired input parameter pi there exists a parameter qj such that Ci v Dj, then
c[q1 : D1, . . . , qn : Dn] models φ. It also holds, if for each pi there exists a qj such that CiuDj 6= ∅
under the condition that

(
typeOf(pi) v CiuDj

)
∈ Ω [Aga07a]. Then, τ matches φ and the state

prior to the first action in τ is added to the result set.

Composite formulae are broken down to atomic formulae and their result is aggregated from
the results of the atomic formulae recursively according to the semantics of the formalism.
When the processing of the complete request R is terminated, it is checked whether the start
state of the process definition is in the set of states representing the results of the request R. If
this is the case, then the process definition is considered a match for the request R, otherwise
it is not.

47

Chapter 3 Preliminaries

3.5 Summary

With a brief overview of first-order logic and description logics we have given a summary on
knowledge representation formalisms and languages. They are relevant with respect to services
and our work as we use these formalisms and languages to model and reason on static aspects
of services (such as non-functional service properties and process resources). We also use logic
formulae to constrain individual states of the behavior model.

We defined our notion of services as they are seen in the remainder of this work. Existing
service description frameworks like OWL-S and WSMO were introduced. Based on them,
extensive research under the umbrella of Semantic Web Services is and has been conducted. As
such, semantic service discovery approaches have been proposed. We introduced intersection-
based matchmaking, which is a technique that is the foundation of many existing semantic
service discovery approaches.

Furthermore, we introduced formalisms to describe the behavior of services and to describe
temporal properties over behavior descriptions. We described extensions for both formalisms
that allow for an additional semantic (DL-based) description of process resources. A summary
of the model checking of semantic behavior descriptions has been given. This model checking
based matchmaking approach is the starting point for the development of our discovery
approach in the following chapters. We will further develop a comprehensive service description
model and discuss the applicability of model checking based matchmaking in the context of
functionality matchmaking. Then, the efficiency of matchmaking and hence of the service
discovery method will be increased by including a service classification and index structures
into the matchmaking technique.

The reader should now be familiar with the concepts of semantic service descriptions
including process descriptions and their counterpart in requests. Furthermore, the given
background on matchmaking of Web services and process expressions should foster the
understanding in the following chapters.

48

Chapter 4
Discovery of Services

In the previous chapters, we detailed the need for service discovery, and outlined fundamentals,
requirements as well as approaches to attain such a mechanism. In this chapter, we introduce
our contributions for the discovery of services. Specifically, we describe an upper model that
we developed for the semantic and comprehensive description of services and their properties.
This model enables a unified view on functional and non-functional service properties and
allows for a practical service discovery utilizing their description. Furthermore, we develop a
declarative query language, which is similarly comprehensive as the description formalism, for
expressing service requests. Based on the semantics of offer and request formalisms, we develop
an automated and model checking based method for the matchmaking of service descriptions.

We start this chapter with an introduction of the formalism that we use to describe service
offers in Section 4.1. An abstract upper model that captures relevant service properties in
service descriptions is presented. Then, we show how individual properties are semantically
described and hooked to the upper model. We focus on the description of the behavior property
in particular, as the functionality and behavior-based service discovery is the most challenging
part of this thesis.

A corresponding formalism for expressing service requests is introduced in Section 4.2. In
Section 4.3, we describe our discovery method that is based on a model checking approach for
behavior properties proposed in [Aga07a]. We extent the existing approach to services and
also consider further service properties besides the behavior. Then, Section 4.4 presents the
implementation and evaluation results of this discovery method.

The semantic modeling of comprehensive descriptions and requests was developed in the
WisNetGrid project and documented in project reports [JA11, WJH11] and publications [AJ10,
JAS12, HJA12, JA13, AJ13]. We briefly summarize their content.

• We synthesized behavior descriptions for the composition of Web-based browsing
processes [AJ10] in order to automate and simplify tedious browsing tasks as we
introduced in Section 2.1.3.

• We applied the formalisms and the discovery method to model and analyze end user
browser behavior [HJA12]. It enables the provision of next step recommendations and
identification of obstacles in the end user browsing process, among others.

49

Chapter 4 Discovery of Services

• With the aim of an efficient service discovery method, we developed classification-
based [JAS12] and index structure based [JA13] discovery approaches for services with
complex behavior.

• In [AJ13], we presented how the semantics of the complex behavior descriptions of
browsing processes is captured.

• In [JA11], we reported on the development of this discovery approach and its suitability
for the service discovery in the Grid context.

• We could also apply this service discovery approach for locating service in the area of
ICT-enabled electric mobility [WJH11].

4.1 Description of Services

We advance state of the art with a formal model of services that establishes a unified view on
service properties, which characterize functional as well as non-functional aspects. Our service
description formalism allows for the description of independent properties and their values.
We consider the behavior and the functionality of a service as just another property with a
complex value. The functionality is a profile of the behavior description and describes what
the service does. It is typically used for describing atomic services or services whose complete
behavior description cannot be disclosed.

In this chapter, we focus on behavior descriptions. We introduce the property-based service
model to describe individual services and the set of properties that characterize them in
Section 4.1.1. In Section 4.1.2, we show how the property-based service model and the values
of individual properties can be semantically modeled. We give an example of a book selling
service description in Section 4.1.3.

4.1.1 A Formal Model of Services

We consider a finite set P of service property types and a finite set V of value sets. Each
property type p ∈ P is associated with a value set Vp ∈ V. We view a service as a finite set of
property instances Q with each property instance q ∈ Q being of a property type tq ∈ P that
is associated with a value vq ∈ Vtq (diagrammed in Figure 4.1).

We explain our terminology that is used throughout the paper in the following and provide
examples.

Definition 8 (Property Type). A property type p ∈ P represents a property that characterizes
a service and can be part of service descriptions.

Example 5. The availability, price, user rating, functionality, and behavior of a service are
examples of property types. The first three property types are instances of non-functional service
properties. The other two property types are instance of functional service properties.

Definition 9 (Property Value). We say property value to refer to the concrete value v ∈ Vp
of a service property type p. The value v is member of the value set Vp ∈ V, i.e., the set of
possible property values of the property type p.

50

Chapter 4 Discovery of Services

Service ω

vq1 ∈ Vtq1

tq1

. . . vqn−1 ∈ Vtqn−1

tqn−1

vqn ∈ Vtqn

tqn

Figure 4.1: Formal property-based model of services

Example 6. Let the availability of a service be 99%. The property value v is 0.99. The
property type p is availability. The set Vavailability of possible property values for this property
instance is specified by the set of all real numbers between 0 and 1, i.e., Vavailability = [0, 1] and
v ∈ Vavailability.

Definition 10 (Property Instance). A property instance q ∈ Q has a key-value structure and
represents a property type tq ∈ P (the key) that is associated to a property value vq ∈ Vtq .

Example 7. Given the property type and property value from the examples above, the following
property instance q represents the availability of a concrete service.

q = (availability, 0.99)

Of particular interest is the service behavior describing how the service provides its
functionality and how to interact with the service. We assume that every service description
has one behavior property at most. Using the above notation, the behavior is a property type
behavior ∈ P with the value set Vbehavior, which is the set of all process expressions that can
describe valid service behaviors. The description Dω of a particular service can contain one
property instance qbehavior ∈ Q. This property instance is associated with a value π ∈ Vbehavior
that denotes the behavior.

Service Behavior Property

In order to support a broad range of services in our service discovery method, we need to model
changes introduced by the service execution. Services that provide information typically do
not cause changes. However, generic services often cause changes in the knowledge base, i.e.,
state, of the service provider. In order to support state changing services, we introduce a
formal model that captures the service dynamics and use it as the formal underpinning of
service functionality and behavior descriptions.

For all intents and purposes, we have to consider a set of actors α identified by a unique
identifier. For each actor a ∈ α, we consider a knowledge base KBa. Furthermore, each actor a
can provide a set of services. A service can use other services (of the same or different actors).
That is, the execution of a service ω provided by an actor a can cause changes not only in the
knowledge base KBa of actor a, but also in the knowledge bases of actors whose services are
used by the service ω. The execution of ω cannot cause any changes in the knowledge bases
of the actors that are not involved in the provision of ω. To the best of our knowledge, no
logic-based service modeling approach that explicitly models the knowledge of different agents
has been presented so far. In our discovery method, we assume that any involvement of actors

51

Chapter 4 Discovery of Services

sw
i // si

[ω1]f1 // s1
[ω2]f2 // ...

[ωn]fn// sn
[ωe]fe // se

Figure 4.2: Formal behavior model of services

is explicitly modeled with the agent invocation process description element (cf. Section 3.3.2).
For a single state transition, we assume that we need to consider only one actor or several
actors whose knowledge bases can be integrated into a single knowledge base of the state. Our
assumption means that we cannot model local actions, which are executed by multiple actors.
Communication actions cannot be executed by multiple actors.

Figure 4.2 illustrates the behavior of a service as a labeled transition system L = (S,→, A, λ)
as defined in Definition 3. Each state of the LTS represents the provider’s knowledge that
holds at the respective state during the service execution. As elaborated in the following, the
execution path (trace) can be seen as a series of connected states:

(1) The start state sw ∈ S represents the knowledge available to the service before the service
is invoked. It is described by the initial knowledge denoted as the propositions λ(sw). The
parameter values passed with the service invocation are not available.

(2) A state si ∈ S comprises the knowledge after the input action i. This state contains
the input parameter values that are bound to the individuals that represent the input
parameters in this state. In addition to that, the knowledge that holds in sw still holds
in si, since the input action does not alter the existing knowledge from sw.

(3) A series of states s1, . . . , sn of length n ≥ 0 represents the knowledge that occurs during the
execution of a service while computing the output values, interacting with external agents,
and performing any changes with actions [ω1]f1, . . . , [ωn]fn. An action fj (with 1 ≤ j ≤ n)
in a state sj ∈ S takes place only if condition ωj is true in the previous state sj−1.

(4) An end state se ∈ S represents the knowledge available to the service after it has performed
all the changes. The values of the output parameters are part of the end state description.

The transitions i, f1, . . . , fn, fe of → can take place only if their respective source state is
consistent. In particular, after the input values are available in state si, the trace continues only
if si is consistent. Any conditions on the input values are available as part of the knowledge
in state si. The transitions are annotated with a description of the respective action of A
that causes the transition. In our behavior model, we focus on the description of valid and
successful traces. If the conditions are not true or a state is inconsistent, we assume that
the service fails. However, additional branches can be added to behavior descriptions such
that alternative continuations are available if a condition does not hold. Inconsistent state
knowledge and the asynchronous appearance of failures and exceptions are not considered in
our current model.

The input transition i is a communication action that receives the input parameter values
passed along with the service invocation by the consumer. The transitions f1, . . . , fn are
either communication actions or local actions performing computations within the knowledge
base as well as adding or deleting facts in the provider’s knowledge base. The complete
LTS representing the behavior of a service may also include branches. That is, there can be

52

Chapter 4 Discovery of Services

alternative paths to successive states. We have omitted them here to improve the readability
of Figure 4.2 and the above description.

Non-Functional Properties

Non-functional properties (NFPs) are part of comprehensive service descriptions and
supplement the functional aspects of services. In contrast to the functional properties like
the service behavior, NFPs describe manifold quality attributes of services. We consider NFPs
that can be expressed independent of each other in a key-value structure. In many scenarios,
like the ones presented in Section 2.1 or in an Internet of Services, there can be multiple services
offering the same or similar functionalities that are suitable for a given purpose. Non-functional
quality attributes of the services enable to differentiate between them, e.g., in service discovery,
ranking, and selection.

We observed that existing service discovery approaches are usually limited to the
matchmaking of functional aspects of services and that non-functional requirements1 are
exclusively considered for computing a ranking over services [ALS09]. Specifically, an external
ranking method is invoked after the functionality has been matched. The ranking methods
evaluate the non-functional requirements and compute an ordering for a given set of services.
These approaches, e.g., [VHA05, DFGC08, GJR+13], limit the functional requirements to hard
constraints and are used to filter the result set computed by the discovery method. However, the
requirements over non-functional properties are often expressed as preferences and perceived
as soft constraints that influence the ordering of the result services returned by the ranking
method.

It is not determined per se whether requested service properties are interpreted as hard
or soft requirements and it is equally valid to perceive non-functional requirements as hard
requirements, too. For example, consider the NFP availability with a value of 0.99 in a service
description. Exploiting this information to filter the result set in the discovery phase allows to
accurately describe desired services and to obtain accurate results from the discovery method.
For that purpose, a request may specify that desired services have to offer an availability of at
least 90%, which is considered to be a hard requirement. That is, non-functional requirements
are also valid filter criteria that can be used for matching services within the discovery phase.
Likewise, a ranking component may also sort services based on a degree of adequateness of
both functional and non-functional requirements.

In order to enable service discovery based on NFPs, the property-based model of service
descriptions is flexible enough to include any kind of independent non-functional properties
that can be expressed by a key-value structure. That is, we assume that the values of NFPs do
not depend on the values of other NFPs. Also, complex property values (similar to the complex
structure of the functional properties) can be included in service descriptions and considered
during matchmaking. While we propose matchmaking semantics for the functionality and
the behavior properties, we refrain from dictating the future approaches that can be used to
match complex NFPs. For example, policies that restrict the usage of services as in [Spe12]
are encapsulated into a complex NFP value with a deferred evaluation by a dedicated policy
compliance checking framework.

1Non-functional requirements are part of service requests and express constraints or preferences on non-
functional properties of a service description.

53

Chapter 4 Discovery of Services

4.1.2 Service Description Language

We now introduce how we express the formal model of services as presented above in a language
using an ontological representation of the model. Because it is not feasible to assume a global set
of property names, we model service properties as properties in a known ontology language, e.g.,
using RDF/S [BG04], OWL 2 [OWL09], or WSML [dBFK+08]. Also, the use of standardized
ontology languages allows us to apply existing ontology reasoners to reason about service
properties while not enforcing a global set of property names. More precisely, we

• define for each property value set V ∈ V an ontology concept V. Furthermore, we assume
a set of common data types either available directly or modeled as ontology concepts as
well.

• define for each service property p ∈ P with an associated value set Vp an ontology object
property p with range Vp if Vp is a set of individuals. Otherwise, if Vp is a data type, we
define an ontology data type property p with range Vp.

Regarding the openness of the Web, semantic service descriptions are considered to be highly
heterogeneous as different actors may use different vocabularies and ontologies. As ontology
languages allow for an alignment of concepts and properties in subclass-of and subproperty-of
relationships respectively, we fulfill requirement R4 and achieve interoperability among the
service properties without demanding a global set of property names. For overviews on the
ontology alignment and mapping problem we refer to existing literature, e.g., [Ehr06, ES07,
RVNLE09].

1 @prefix rdf : <http://www.w3.org/1999/02/22−rdf−syntax−ns#>.
2 @prefix rdfs : <http://www.w3.org/2000/01/rdf−schema#>.
3 @prefix supSvc: <http://suprime.aifb.kit .edu/service/>.
4

5 supSvc:Service a rdfs :Class .
6 supSvc:Property a rdfs:Class .
7 supSvc:FunctionalProperty rdfs:subClassOf supSvc:Property .
8 supSvc:BehavioralProperty rdfs:subClassOf supSvc:FunctionalProperty .
9 supSvc:NonFuntionalProperty rdfs:subClassOf supSvc:Property .

10

11 supSvc:hasProperty a rdf:Property ;
12 rdfs :domain supSvc:Service ;
13 rdfs :range supSvc:Property .
14 supSvc:hasFunctionalProperty rdfs:subPropertyOf supSvc:hasProperty ;
15 rdfs :domain supSvc:Service ;
16 rdfs :range supSvc:FunctionalProperty .
17 supSvc:hasBehavioralProperty rdfs:subPropertyOf supSvc:hasFunctionalProperty ;
18 rdfs :domain supSvc:Service ;
19 rdfs :range supSvc:BehavioralProperty .
20 supSvc:hasNonFuntionalProperty rdfs:subPropertyOf supSvc:hasProperty ;
21 rdfs :domain supSvc:Service ;
22 rdfs :range supSvc:NonFuntionalProperty .

Listing 4.1: RDF/S representation of the property-based service model

The property-based service model introduced in Section 4.1.1 above is easily mapped to
an ontological representation. In Listing 4.1, we present the RDF/S representation of the
upper model using the Turtle RDF serialization format.2 OWL 2 and WSML representations

2Turtle, the Terse RDF Triple Language, is a concrete syntax for RDF. It is specified in http://www.w3.org/
TeamSubmission/turtle, retrieved 2013-06-29.

54

http://www.w3.org/TeamSubmission/turtle
http://www.w3.org/TeamSubmission/turtle

Chapter 4 Discovery of Services

D
O

O
ODω

Service
description
repository D

O
O

Oω
uses

Service
descriptions Domain

ontologies

Figure 4.3: Service description ontologies ODω and domain ontologies Oω

of the upper model can be expressed analogously as the basic concepts (classes, sub-class-of
relationships, properties, and so on) are defined in any of these languages.

We now turn our attention to the ontological modeling of the individual service properties.
We assume that a domain ontology Oω is attached to or referenced by the description of a
service ω and is available to the discovery engine. Oω defines a TBox with static knowledge
about the conceptualization of the domain. The TBox is assumed to be static in our work. It
means that the conceptualization of the domain will remain unchanged during each service
execution. The changes caused by the services are limited to the ABox. It means that
individuals of the ABox and the relationships between them can be changed, created, or
deleted during the execution.

If we would allow for changes in the TBox during the service execution, we could not ‘inherit’
the knowledge of a state from the previous state. For instance, consider that the specification of
an ontology property is changed. The semantics of how it is used before this change is different
from the one after the change. So, the axioms that hold in the states before the change have
to be excluded in the following, which typically does not happen in the implementation of
a service. Within the implementation it is still possible to access the previously computed
results. Simply adding knowledge to the TBox during the service execution may not always
introduce inconsistencies. Regardless of this, in our work we assume that the TBox is already
complete in the beginning.

As depicted in Figure 4.3, the description Dω of service ω refers to a domain ontology Oω that
specifies the static TBox with concepts of the domain of discourse. The service description Dω
utilizes the concepts from Oω in order to describe the service ω. The ontological representation
of the service description Dω is another ontology that is denoted by ODω .

Behavior. The behavior property is described by a process expression π and uses concepts
from the domain ontology Oω to describe the process resources in π semantically. In the service
description ontology ODω , we model the service behavior as an ontology instance of the concept
supSvc:BehavioralProperty. We provide a serialization of the behavior description π using an
additional vocabulary to represent language concepts of the π-calculus (including input action,
input parameter, process invocation, and so forth). In the following examples of behavior
descriptions, this vocabulary is identified by the prefix http://suprime.aifb.kit.edu/process/ or
its abbreviation supProc:.

55

Chapter 4 Discovery of Services

Functionality. The service functionality as a profile of the behavior description is added as
an instance of the concept supSvc:FunctionalProperty to ODω . This instance links to input and
output parameters, a description of the start state and the end state, as well as changes caused
by the service execution. We further elaborate in Section 5.2 on the issue of modeling this
service profile consistently.

Non-functional properties. In our model, NFPs are independent of each other and do not
change during the service execution. Thus, they can be modeled in ODω independently from
the state-based functional description. They can be directly expressed as instances of the
class supSvc:NonFunctionalProperty and a domain specific concept defined in Oω describing
the type of the property value. The use of general purpose data types is already allowed
in many ontology languages. For example, OWL 2 supports data types from XML Schema,
the specification of data ranges and literals [HKP+09]. Ontology reasoners like HermiT3 for
OWL 2 also support the reasoning on OWL 2 data types, which is sufficient for simple NFPs
with a value that can be expressed by a standard data type. Otherwise, specific reasoning
techniques to evaluate complex NFPs can be added as an extension to ontology reasoners.

4.1.3 Modeling Example

We now present an example of a service description using our formalism. Our service ω offers
a book ordering functionality to customers. In addition to selling books, the provider of the
service ω offers further functionalities like querying the availability or the price of given books.
Each functionality is provided by a multi-step interaction with the provider.

The interaction with the service can be accomplished programmatically by a machine in
the customer role. Alternatively, it is also possible that the service provides a more end user
ready user interface that allows humans to interact with the service, e.g., in a Web browser.
Regarding the service description model, both possibilities can be modeled similarly.

After the invocation of the service, the consumer has to provide the search parameters. The
desired book is identified by its author and title. Using the π-calculus syntax, the input action
is expressed by the following process expression.

ex:seq0prefixConn[ex:author, ex:title].π

This expression is part of the overall behavior description. Here, π denotes the remaining
service behavior. The input parameters ex:author, ex:title, and the communication channel
ex:seq0prefixConn are further specified by a set of ontology axioms attached to the input action
description. These axioms are given in Listing 4.2. We introduce the resource :book to the
description in order to explicitly describe that the author and the title actually refer to the
same book. We use an RDF blank node as the individual representing the concrete book that
is not yet identified.

Our example service continues after the input action with a local action that checks the
availability of the specified book. It returns the identified offer to the consumer in an output
action. Based on this information returned to the customer, she has the option to order the
book. In order to do so, the consumer has to continue by providing her log-in credentials in a

3HermiT OWL reasoner – http://hermit-reasoner.com, retrieved 2013-06-11

56

http://hermit-reasoner.com

Chapter 4 Discovery of Services

Table 4.1: Sequential actions of the example trace

Pos. Activity (informal) Process Expression

1 Input of author and title
of a book

ex:seq0prefixConn[ex:author, ex:title]

2 Local action checking
availability

checkAvailability∆

3 Output of the identified
book

ex:seq2prefixConn〈 :book〉

4 Input of log-in creden-
tials

ex:seq3prefixConn[ex:user, ex:password]

5 If user details complete,
output of order

ex:Ready(ex:user)?ex:seq4prefixConn〈ex:order〉

6 Input accept to confirm
the purchase

ex:seq5prefixConn[ex:confirmation]

subsequent input action. If all user information, like preferred payment method, delivery type
and address is already available, the service emits a summary of the order details. Finally, the
costumer can confirm the purchase and payment. The order of actions for this particular trace
is summarized in Table 4.1. As we consider one particular trace only, our description simply
contains a sequence of actions.

1 ex:author a ex:Author .
2 ex: title a ex:Title .
3 :book a ex:Book ;
4 ex:hasAuthor ex:author ;
5 ex:hasTitle ex: title .
6

7 ex:seq0prefixConn a supProc:Connection ;
8 a <http://dbpedia.org/resource/HTTP> ;
9 supProc:hasReceiver ex:bStore .

Listing 4.2: Semantic annotation of the first input action.

The description of the whole service behavior will become more complex (e.g., including
alternatives) if we consider any other traces. E.g., additional traces comprise the cases in
which no corresponding book can be found or is in stock, the payment options have to be
updated, the shipping address was not recorded, and so on. We limit this example service to
the basic functionality. It is sufficient to highlight and illustrate the concepts we develop in
this thesis.

Service description. In Listing 4.3, we show an excerpt of the RDF/S representation ODω of
the service description Dω. The presented listing comprises three non-functional properties and
an excerpt of the behavior description. The service ω is represented by the individual ex:bStore.
In addition to the behavior description represented by the individual ex:bStoreBehavior, the
non-functional properties of the service refer to a rating of the service and specify the average
as well as the maximum delivery time as two and five days, respectively.

57

Chapter 4 Discovery of Services

The behavior description of the service begins with the sequence :seq0 that has the input
action :seq0prefix as its first element. This input action accepts the two parameters ex:author
and ex:title at port ex:seq0prefixConn. The port ex:seq0prefixConn denotes the communication
channel of the input action. It connects the service provider with the invoking service consumer
and is used to establish the communication of the two input parameters. The channel
ex:seq0prefixConn may use any communication protocol. If the service provides a Web-based
end user interface, the HTTP protocol is used to pass ex:author and ex:title to the service.

The input action further specifies ontology axioms that describe the input parameters. The
property supProc:hasSemanticRelation relates a set of OWL 2 ontology axioms to the action.
When the service description is translated into a labeled transition system, these axioms are
added to the subsequent state knowledge.

1 @prefix rdf : <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix rdfs : <http://www.w3.org/2000/01/rdf−schema#> .
3 @prefix owl: <http://www.w3.org/2002/07/owl#> .
4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
5 @prefix supSvc: <http://suprime.aifb.kit .edu/service/> .
6 @prefix supProc: <http://suprime.aifb.kit.edu/process/> .
7 @prefix rev: <http://purl.org/stuff/rev#rating> .
8 @prefix ex: <http://example.com/books#> .
9

10 ex:bStore a supSvc:Service ;
11 supProc:hasOntologyPhysicalIRI ”http://example.com/book−shop−onto.owl” ;
12 rev: rating rev:Excellent ;
13 ex:avgDeliveryTime ”2D”ˆˆxsd:period ;
14 ex:maxDeliveryTime ”5D”ˆˆxsd:period ;
15 supSvc:hasBehavioralProperty ex:bStoreBehavior .
16

17 rev: rating rdfs :subPropertyOf supSvc:hasNonFunctionalProperty .
18 ex:avgDeliveryTime rdfs:subPropertyOf supSvc:hasNonFunctionalProperty .
19 ex:maxDeliveryTime rdfs:subPropertyOf supSvc:hasNonFunctionalProperty .
20

21 ex:bStoreBehavior a supSvc:BehavioralProperty ;
22 supProc:hasBehavior :seq0 .
23

24 :seq0 a supProc:Sequence ;
25 supProc:hasPrefix : seq0prefix ;
26 supProc:hasNext :seq0next .
27

28 : seq0prefix a supProc:Input ;
29 supProc:hasConnection :seq0prefixConn ;
30 supProc:hasVariable :author , : title ;
31 supProc:hasSemanticRelation
32 ”ClassAssertion(<http://example.com/books#Author> :author)” ,
33 ”ClassAssertion(<http://example.com/books#Title> :title)” ,
34 ”ClassAssertion(<http://example.com/books#Book> :book)” ,
35 ”ObjectPropertyAssertion(<http://example.com/books#hasAuthor> :book :author)” ,
36 ”ObjectPropertyAssertion(<http://example.com/books#hasTitle> :book :title)” .
37

38 :author a supProc:Variable ;
39 supProc:hasValue supSvc:Constant1906 .
40 : title a supProc:Variable ;
41 supProc:hasValue supSvc:Constant1907 .

Listing 4.3: Excerpt of ontology ODω describing the example book selling service ω.

58

Chapter 4 Discovery of Services

sw

Input
seq0prefix

ex:author
ex:title

si s1 s2 s3 s4 se

Local
checkAvailability

ex:Availability(ex:availability)
ex:hasAvailability(ex:book, ex:availability)

Output
seq2prefix

ex:book

if ex:Ready(ex:user)
then Output
seq4prefix

ex:order

Input
seq2prefix

ex:user
ex:password

Output
seq5prefix

ex:confirmation

Figure 4.4: LTS representation of the example service

As a single ontology ODω contains multiple actions with multiple axioms that hold in various
states after each action, the axioms can introduce contradictions to ODω . In order to avoid
these problems, we exclude the semantics of the axioms from ODω by adding the axioms as
literals (as shown in Listing 4.3). We could also use stratification, however, the first option
will be sufficient in our use case. The literals contain OWL axioms that are parsed and added
to the respective state knowledge bases during the matchmaking of services.

Labeled transition system. After we explained the general structure of the example service,
we now show how the LTS representation of the behavior is derived from the process expression
and its semantic annotations. The LTS for the transitions shown in Table 4.1 comprises
seven states S = {sw, si, s1, s2, s3, s4, se}. Figure 4.4 depicts the example LTS with an
informal representation of the semantic annotations of state transitions. Since we did not
specify any conditions on the start state and there are no process arguments passed with
the invocation in our example, the state knowledge KB(sw) is empty. With the transition
(sw, :seq0prefix, si) ∈→ modeling the first input action :seq0prefix, we derive the state
knowledge KB(si) of the state si by computing the union of the description of the input
parameters (see Listing 4.2) and the previous state knowledge, i.e., KB(sw).

1 ex:author a ex:Author .
2 ex: title a ex:Title .
3 :book a ex:Book ;
4 ex:hasAuthor ex:author ;
5 ex:hasTitle ex: title ;
6 ex: hasAvailability ex: availability .
7 ex: availability a ex: Availability .

Listing 4.4: State knowledge KB(s1) of state s1.

59

Chapter 4 Discovery of Services

The next state knowledge of the sequential process is derived similarly. Local actions
can add, update, and delete existing knowledge, i.e., of KB(si) in this case. The operation
checkAvailability∆ adds availability information to the existing resource :book. The state
knowledge KB(s1) is shown in Listing 4.4.

We annotate local actions with a set of changes that are caused by the execution of that
local action and introduced to the subsequent state. A change δ is described by its type
chType(δ) ∈ {+,∼,−} that states a fact was either added (symbolized +), updated (∼), or
deleted (−) in the ABox of the state knowledge. The fact itself is an ontology axiom. In our
example, the local action checkAvailability∆ comprises two changes that add the following
two facts to the ABox of KB(s1).

ex:Availability(ex:availability)

ex:hasAvailability(:book, ex:availability)

The availability of the specified book is positive in the trace that we consider in our example.
Therefore, the value of the availability is assumed to be true. For a complete description of
the behavior, a distinction of the cases would be required for the continuation of the process.

In Section 5.4, we discuss the application of our discovery method to atomic services and
focus on the functionality profile exclusively. The functionality description of our example
service will be introduced in this context, too.

4.2 Service Request Model

The formalisms to describe service offers and requests must provide sufficient expressivity
to allow users to create comprehensive descriptions and to precisely formulate constraining
requirements in requests, respectively. Users should rather be limited by their willingness
to invest effort than by any technical limitation. Our service discovery method allows
users and machines to pose requests. Therefore, a formal query language that facilitates
automation is a prerequisite. Furthermore, in order to use services automatically, for instance
in service compositions, the query language must allow for the specification of constraints in
a comprehensive and logically correct manner such that the desired services can be precisely
described. Otherwise, the accuracy of discovery results may be insufficient for many use
cases that require an automated service discovery. We will show that an intersection-based
matchmaking is insufficient to ensure applicability of services for a given request.

Definition 11 (Desired Service). A desired service is a service that is described in the service
repository and provides the desired service properties in its entirety. The desired service
properties are described in the service request by means of constraints (on the property values).
If the request describes alternatives, a desired service fulfills at least one of these alternatives.
In a request, an alternative is a description of a set of desired service properties.

Although formal service requests are used, their use by humans can be simplified by the
provision of an unambiguous and thus comprehensible interpretation of service descriptions
and requests. For example, it needs to be clear to users whether the requested inputs are

60

Chapter 4 Discovery of Services

interpreted as inputs that must or can be accepted by desired services. In the scope of this
work, we do not investigate usability aspects, which could be provided by means like a simple
syntax, a query language for expressing formulae or a supportive user interface. To this extent,
our approach differs from goal driven approaches as in [SHH07] by not focusing on an abstract
and non-technical request (goal) description that a user creates. Such user goals have to be
translated into machine understandable requests. The latter representation of a request is the
starting point of our work.

After we described above how we model comprehensive service descriptions semantically, we
now introduce our model for service requests. The expressivity of the request model coheres
to the expressivity of the service description model. That is, we aim at expressing constraints
over any information captured in service descriptions and the expressivity of requests should
not allow more, because a high expressivity always involves a higher computational complexity
and consequently decreases the efficiency.

We start in Section 4.2.1 with a motivation for the need of a model for service requests,
which differs from the service description model. After that, consistent with the structure
of the previous section, we introduce in Section 4.2.2 the request model on a higher level of
abstraction. This upper level model for requests directly corresponds to the property-based
service model for service descriptions. We focus on the modeling of constraints over individual
properties and their ontological representation in the subsequent Section 4.2.3.

4.2.1 Motivation for a Discrete Request Model

Before introducing our model that is used to express service requests, we discuss the reasons
for having a request model, which is different to the one used in service descriptions. Assume
that we would not introduce a distinct request model, then both descriptions and requests
are declarative. However, declarative service descriptions have to be hand crafted while the
procedural ones can often be generated, at least to a great extent if not completely, from the
code. Because of this, the hand crafted descriptions are also hard to manage since they are not
connected with the code and every time the implementation of a service changes, the service
description has to be manually adapted accordingly.

We discussed in [JAS10, JA10] that the development of a practical service discovery approach
requires expressive service description languages that are non-ambiguous, easy to use as well as
support heterogeneous descriptions. Furthermore, an effective service request formalism used
to query service repositories needs to address these requirements analogously.

Conceptual Mismatch

Although most of prior service discovery approaches developed by the Semantic Web Services
community provide a formal semantics, their pragmatics to describe service requests is
improper since it differs from the user intention. The common problem of most Semantic
Web Service discovery approaches is that they apply the same formalism for describing service
offers and service requests. We investigate the problem of using a single formalism for service
requests and service offer descriptions further in the following paragraphs. In contrast to
existing works, we develop in Section 4.2.3 a request formalism that allows describing a set of
potentially matching services in a service request. The definition of a discovery match and a

61

Chapter 4 Discovery of Services

matching algorithm for effective service discovery based on the given semantics of the request
formalism are presented in Section 4.3.

It is an intuitive interpretation that a service description formalizes the actual values of the
service properties and a service request specifies the acceptable set of values of the respective
properties. Therefore, using the same formalism with same interpretation for both service
description as well as request is counter-intuitive to users requesting services. Such mismatch
between the semantics of formalisms and their intuitive interpretation of the requester makes
these approaches hard to use in practice. Furthermore, the use of the same interpretation of
service descriptions and requests limits the expressivity of service requests, because alternatives
and negation are typically not supported in service description formalisms. It also decreases
the result accuracy if similarity-based matchmaking is applied to increase the flexibility of
matching the requested service description with offers.

A service description (middle layer in Figure 4.5) is an abstract representation of multiple
service instances (bottom layer), i.e., a description aggregates all different service traces that
are possible. For simplicity, only successful traces are often considered in service descriptions.
Service discovery approaches like [PKPS02, LH03, CFB04, dBKZF09, SHF11] that use the
same level of abstraction for the description of a service request therefore describe a (one)
desired service. Such approaches rely on the query-by-example (QBE) paradigm [Ull88,
Chapter 4.4] to retrieve matching services from a repository. Unlike QBE approaches from
the database domain, where the specified sample is translated into a structured query, QBE
service discovery is similar to QBE in the domain of information retrieval. Here, the similarity
between the sample specified in a query and the existing entries is computed. Based on a
similarity metric, matches can be determined and possibly a ranking can be derived from the
degree of similarity [PKPS02, LH03].

The matchmaking based on the similarity between a desired service described in a service
request and the service offers is not appropriate in our settings (considering the requirements
presented in Section 2.2) for the following reasons:

• The correctness of logic-based matchmaking algorithms is favorable for automated tasks
like service invocation or the integration of a replacement service into a given service
system.

• An automated use of similar search results is very complicated. Consider for example that
there are no services matching a given request. Then, available services that are similar
to the request can be of interest and may indicate to the user that the original request can
be reformulated, e.g., such that over-specifications of requested constraints are removed.
Although users posing service requests may appreciate similarity-based matchmaking
under some circumstances, further use cases, e.g., without user involvement, need to be
considered by a service discovery approach as well.

• Existing discovery approaches do not automatically provide an explanation for a match.
That is, the computed similarity and dissimilarities have to be examined manually.

• If a use case targets humans that create and pose the service requests, reasons like
the simplicity of formulating a request by describing a desired service cannot justify
the use of a single formalism. Even worse, the semantic description of a service is a
time-consuming effort that requires at least a basic understanding of the underlying

62

Chapter 4 Discovery of Services

Service
Executions

Behavior

Service
Description

Traces

Temporal
behavior
properties

Service
Request,
our approach

Response times
5ms,
7ms,
12ms

Average
response time
8ms

Response
time
≤ 20ms

Figure 4.5: Different layers of abstraction in requests, descriptions, and executions, whereas
requests are expressed in a different formalism in our approach.

formalisms. Consequently, users or agents posing a request will not benefit from using
service descriptions in requests, as the semantic descriptions of service offers are created
by the provider with expertise about the implementation and the domain.

The use of a dedicated request formalism with defined semantics is common in a plethora of
information systems with a formal underpinning. For instance, SQL is used to query relational
databases, Datalog for deductive databases, SPARQL for RDF data sets, and XQuery and
XPath for XML documents. The wide acceptance of query languages for the retrieval tasks
confirms that they are not counter-intuitive to (technically skilled) users. For inexperienced
end users, simplified user interfaces that guide the specification of a request can be developed
on top of any query language.

The clear definition of a match based on the semantics of query and description languages is
another benefit as it allows implementing algorithms and developing tools in a logically correct
manner. In a QBE approach, there are several ways to define a similarity function, which
always has to accompany the definition of a match. Also, users posing requests and examining
the discovery results constantly have to conceive the implemented similarity function in order
to understand the results.

In summary, we constitute that the use of a dedicated service request formalism for the
targeted scenarios and use cases of service discovery and for the fulfillment of the identified
requirements on our discovery method is advantageous. Yet, we want to examine the differences
and the impact on the matchmaking technique if a dedicated request formalism is used or
not. In Figure 4.5, we depict the informal semantics of the state-based service descriptions
(in the middle layer). Service descriptions abstract from the concrete executions depicted in
the bottom layer. The formalism for the description of the functionality of service profiles
has prevalently been applied for service requests [PKPS02, SPAS03, LH03, CBF05, SHH07,
GLA+04]. That is, a dedicated request model as depicted in the top layer Figure 4.5 can
describe desired properties and specifies the set of desired services. Instead, the description
formalism is used to express requests in existing works that did not introduce such an additional
layer, i.e., a dedicated request model. Then, different degrees of a match (exact, plug-

63

Chapter 4 Discovery of Services

D R

intersection match

R

R2

R1

R3

R4

membership match Dω ∈ R

Figure 4.6: Discovery approaches that use the same formalism for an offer Dω and a request R
are based on intersections (left). Using two different formalisms allows specifying
the (exact) matches in the request (right).

in, subsume, intersect, none) between an offered service and a request are computed by a
matchmaker. However, such an intersection-based matchmaking decision (using the mentioned
different matching degrees) is an impractical and unintuitive approach, because the mismatch
between the semantics of formalisms and the intuitive interpretation of the requester makes
the description, requests, and discovery methods hard to use in practice.

At this stage, we want to highlight that the choice of using a dedicated request formalism
or not is independent from the matchmaking semantics that used for service discovery.
However, all the existing works mentioned above combine the use of a single formalism for
descriptions and request with an intersection-based matchmaking semantics using different
types of matching degrees.

Discovery Result Accuracy

While intersection-based matchmaking (as in [PKPS02, LH03, CBF05, SHH07]) offers more
flexibility, it also requires further effort to evaluate matching services in order to ensure the
applicability for the desired tasks at hand. That is, the search result accuracy of intersection-
based discovery methods is insufficient and does not fulfill our requirement R2 as presented
in Section 2.2. Consequently, the freedom provided by the different matching degrees is not
feasible for the purpose of automated service invocation or composition.

As an example, consider a service that offers to ship goods from a city in the UK to
a city in Germany. A user requests a shipping provider that operates between European
cities. Intersection-based matchmaking methods identify the mentioned service as a match.
However, if the requester uses this service to ship an item from Berlin to Hamburg, then
the matched service offer fails. The reason is that intersection-based matchmaking cannot
guarantee that a matching service can be successfully invoked. Figure 4.6 shows the principle
of intersection-based matchmaking on the left. A service description describes a set of different
service instances, depicted by the dots, where each instance represents a trace for a particular
combination of input parameter values. If the same formalism is applied to service descriptions
and requests, then the service request again describes a set of traces. A service matches a
request if both have at least one instance in common.

In general, if a matching service ω provides some of the requested traces (i.e., intersect
match), then it does not mean that ω is able to provide the requested functionality under

64

Chapter 4 Discovery of Services

any circumstances. It is possible that ω behaves as requested for some specific traces and ω
shows an undesired behavior in other traces. In order to assess the applicability of ω, a user
or a program needs to identify these configurations in which the service behaves as requested
or not [GLA+04]. Such applicability estimation for intersection-based matchmaking was not
considered in existing approaches so far.

It is also possible that, for instance, another service ω’ is an intersection match with a request
if the set of service output parameters intersects the set of desired outputs. Consequently,
additional services to ω’ are required that produce the complete required outputs. Sometimes
these additional services need to be compatible to the behavior of ω’ in order to interact with it.
In order to invoke or integrate ω’ as well as the additional services into a given service system,
automatic planning techniques, which quickly become theoretically challenging [RS04], become
necessary.

The right side of Figure 4.6 shows the matchmaking principle of our matchmaking approach
in contrast to intersection-based techniques. A service description still represents a set of
instances. A request represents a power set of service instances. Each set Ri ∈ R in the
power set describes a potential service that fulfills the requirements of the request. We will
apply a matchmaking technique that checks whether there is an interpretation (model) of the
request that is equivalent to the offered service Dω. Therefore, we apply a model checking
based matchmaking that evaluates whether Dω is a model of R (R |= Dω).

Negations in Requests

If the requester wants to prohibit specific service properties, then it is not possible to ensure
that intersecting services fulfill these constraints, because the excluded property of the request
is not necessarily a part of the intersection. As we aim at the development of an automated
service discovery method (see requirement R1) that (i) delivers accurate discovery results
(requirement R2), and (ii) is expressive enough to cover practical use cases (requirement R3),
the request formalism has to provide the expressivity to specify desired and rule out undesired
service properties.

Efficiency

The efficiency of the service discovery method is also affected by the chosen formalisms used
to describe services and requests. Certainly, the expressivity of the languages correlates to the
computational complexity of reasoning about expressions of these languages. And as a service
discovery for highly expressive descriptions is required in order to support various use cases,
we do not trade off expressivity for efficiency.

Instead, the way that requests are matched against service descriptions impacts the
performance of a service discovery method. That is, choosing a matchmaking technique that
efficiently detects the services that fulfill the constraints of a request impacts the discovery
efficiency.

The existing service discovery approaches referenced above, which use an intersection-based
matchmaking technique, compute the subsumption relationship among service description and
request. In order to identify a match, the matchmaker evaluates if the offered functionality
subsumes the request or vice versa (depending on the matching degree to be computed).

65

Chapter 4 Discovery of Services

Service Request R

VR,tq1
⊆ Vtq1

tq1

. . . VR,tqm−1
⊆ Vtqm−1

tqm−1

VR,tqm
⊆ Vtqm

tqm

Figure 4.7: Formal property-based model of service requests

The satisfiability problem and, thus, the subsumption problem has been shown to be
Exptime-complete [EJ99, Theorem 6.3], i.e., one on the hardest problems in Exptime, even
for one of the least expressive description logics ALC [DM00, Don03]. Exptime complexity of
subsumption can be a significant burden for the development of a practical discovery approach
that can be applied in use cases with large service description repositories. The use of a model
checking based service matchmaking approach is considerably less complex. In [EL86] it has
been shown that the naive µ-calculus model checking is polynomial in the size of the formula
(request specification) and the size of the LTS.

4.2.2 A Formal Model of Service Requests

A service request describes a set of services, which we call desired services. In order to
characterize the desired services, a service request specifies constraints on any service property.
For each property type, i.e., service behavior, functionality, non-functional properties, an
appropriate constraint specification language is used. Regardless of the property type, each
property constraint describes a set of desired property values. That is, in contrast to the
property-based model of service descriptions (cf. Figure 4.1), the key-value-set structure of a
service request features value sets instead of single values. The request model is diagrammed in
Figure 4.7 for comparison. Note that the request model features value-sets VR,p ⊆ Vtq for each
requested property instance. The description of value-set VR,p is a constraint, which defines the
desired property values v ∈ VR,p of desired services. Of course, the number m of constrained
property instances in the request model is independent of the number n of property instances
in the description model.

The interpretation (∆J , ·J) defines the request semantic. The function ·J assigns to each
expression of the request language a set of matching services from the domain ∆J of services
within a repository. For this purpose, ·J maps the key-value-set structure of a request into sets
of desired property instances, i.e., property-value pairs. The latter representation describes a
set of desired services, i.e., each desired service is described by a set of desired property-value
pairs.

The request is interpreted as a power set Q = 2Q of property instances. Each requested
property instance q ∈ Q′, with Q′ ∈ Q, also specifies a property type tq that is assigned to a
value v ∈ VR,tq of the desired value set VR,tq . Desired values VR,tq have to be a subset of the
value range Vtq .

Let q = (p, VR) denote a requested property instance of the user’s concern. VR,p ⊆ Vtp is
the set of acceptable property values of the property p = tq ∈ P . Then, the interpretation of
a requested property is (p, VR,p)

J = {(p, v)|v ∈ VR,p}, which is the set of property-value pairs

66

Chapter 4 Discovery of Services

that is constructed by considering each value v ∈ VR,p that is a member of the set of acceptable
values individually.

Our interpretation function ·J of a service request allows to describe a set of desired services.
It corresponds to a power set of service instances as we depicted in Figure 4.6, and is in contrast
to existing approaches that waive a distinct request formalism.

Example 8. As depicted in Figure 4.5 earlier, a request may specify that a service should have
an average response time of less than 20ms. The property instance (responseTimeMS,≤20),
where responseTimeMS represents the property type in P and ≤20 denotes the set VR,p of
desired values, is part of a request. The interpretation (responseTimeMS,≤20)J depends on the
definition of Vtq . Assuming that Vtq is the set of non-negative integers, the interpretation of
the requested property is as follows:

(responseTimeMS,≤20)J = {(responseTimeMS, v) | 0 ≤ v ≤ 20 ∧ v ∈ N}.

4.2.3 Service Request Language

The ontological representation and its serialization of service requests, as introduced for service
descriptions in Section 4.1.2, is not a necessary aspect of our approach. We assume that service
requests are posed at run-time to a discovery engine. While service descriptions need to be
stored in a repository, the requests are typically not stored and the request representation and
serialization becomes less important.

A request is a combination of constraints over several service properties. Individual
constraints can be combined by using Boolean operators: conjunction (∧), disjunction (∨),
and negation (¬). The semantics of combined expressions is defined as follows. Assume we
have two expressions ϕ1, ϕ2. Each of the expressions constrains the desired values of the
respective service property.

The interpretations ϕJ1 , ϕ
J
2 of the expressions represent sets of services that fulfill constraints

ϕ1, ϕ2, respectively. We gain two sets of matching services S1 := ϕJ1 and S2 := ϕJ2 . Both
S1 ⊆ S and S2 ⊆ S are subsets of the available services S, e.g., in the service repository.

Combinations of expressions are interpreted as follows.

(ϕ1 ∧ ϕ2)J ≡ ϕJ1 ∩ ϕ
J
2 = S1 ∩ S2

(ϕ1 ∨ ϕ2)J ≡ ϕJ1 ∪ ϕ
J
2 = S1 ∪ S2 (4.1)

(¬ϕ1)J ≡ S − ϕJ1 = S − S1

The laws of the Boolean algebra hold and allow evaluating more complex combinations of
constraint expressions, too. In the following, we show how constraints over the functional and
non-functional service properties can be specified.

Behavioral constraints. We use declarative process expressions to constrain the behavior of
desired services. The underlying formalism that combines the temporal logic µ-calculus with
a description logic to semantically specify the resources was introduced in the preliminaries in
Section 3.3.2. For now, the formalism is applied without any modifications.

67

Chapter 4 Discovery of Services

Functionality constraints. We introduce the requests for atomic services in Section 5.3. The
service request model for atomic services instantiates our request model from Section 4.2.2 and
we will introduce request modeling with focus on the functionality property.

Non-functional requirements. As non-functional requirements (NFRs) can be seamlessly
combined with functional requirements in a request, it is also possible to demand alternative
service configurations. For example, the combination allows specifying that a user is willing
to accept a higher price if the convenient credit card payment method is available. Also, more
complex alternatives can be described in a request using our formalism. For example, the
desired inputs or outputs may depend on other functional or non-functional properties and
vice versa.

Constraints over NFP values can be expressed in different ways. Depending on the property
types and the semantics of the NFP values, different means to express desired value sets have
to be used. For many simple data types, like integer or string, there are utility functions with
a defined semantics that can be used to express ranges or sets of values. For example, the
operators ≤, <,≥, and > can be used for the definition of ranges of integer values. For other
and potentially more complex properties, the specification of value sets requires the use of
constraint specification languages for this particular type of values. As these NFRs can be
evaluated by external tools, like a policy compliance checker, the structure of NFR expressions
is not dictated by us.

Summary. Now that we have introduced our service request formalism and have shown how
requests can be expressed in the request languages, we want to recapitulate the benefits of
this approach. Our request model that we applied is depicted in the upper layer of Figure 4.5.
Requests describe a set of (desired) services, whereas each service description represents a set
of service executions. The request model captures functional and non-functional properties
uniformly. Each desired property instance is described by a set of desired values, which avoids
the above mentioned conceptual mismatch.

The accuracy of search results is guaranteed as the description and request formalisms allow
us to apply model checking to verify the requested constraints on service descriptions. The
model checking that we introduce in the next section leads to logically correct results [Ran01],
which fulfill the requirement R2. The existing discovery approaches, which use a single
formalism for descriptions and requests, can also compute accurate results, e.g., if exact and
plug-in matches are considered only. However, their formalisms are not as expressive as the
one we use for requests, and the matchmaking has to be based on satisfiability checks, which
is usually very complex. Model checking is faster than satisfiability-based approaches and thus
has better chances of scaling to Web scale.

4.2.4 Modeling Example

A request for a book selling service can be specified as follows. We request that desired services
have to deliver a book at some point and should have the option to pay with a credit card.
In order to describe the desired behavior Φ, we specify that there has to be an initial action
search, which is an input action as further specified in Listing 4.5, that receives parameters to
search for books.

68

Chapter 4 Discovery of Services

The proposition P poses constraints on the knowledge in the state after the input action.
For instance, P expresses that both input parameters are added to the knowledge base if
P ≡ ex:Author(ex:author), ex:Title(ex:title).

1 ex:search a supProc:InputAction ;
2 supProc:hasParam ex:author , ex:title .
3 ex:author a ex:Author .
4 ex: title a ex:Title .

Listing 4.5: Description of requested action search

Then, eventually in the process there has to be the action delivery that delivers the book.
Similar to Listing 4.5, the action delivery is described as an output action with one parameter
that denotes the book. Furthermore, the proposition Q with constraints on the subsequent
state should assert that the resource representing the book actually has author and title as
specified in the beginning. We specify Q as follows:

Q ≡ ∃ex:book . ex:Book(ex:book),

ex:hasAuthor(ex:book, ex:author), ex:hasTitle(ex:book, ex:title)

In a path with such an action delivery, there has to exist another action that describes the
credit card payment. payment is an input action that receives the credit card details, and
in the proposition R we can constrain the amount to which the credit card can be charged.
Ideally, only the cost of the delivered book should be charged.

Besides the behavioral requirements, non-functional properties of the desired services can be
constrained, too. E.g., in order to express that the delivery time of the service should be less
than ten days, we can add (ex:deliveryTimeDays,≤10) to the request R. The complete request
combines constraints on two property instances:

R := (ex:deliveryTimeDays,≤10) ∧ (ex:behavior,Φ), with

Φ
def
= [search]P ∧µ eventually 〈delivery〉

(
Q ∧µ eventually 〈payment〉R

)
4.3 Model Checking Based Matchmaking

Matchmaking is the core technique of our service discovery method. It compares the service
requests with the available service descriptions from the repository. We use a model checking
based technique to verify the individual constraints over available services. The model checking
approach evaluates if a given service is a correct model of the service request. Services that
fulfill all requested requirements are returned as search results.

4.3.1 Matching Properties

We first investigate how to match properties in general. The subsequent paragraphs discuss
the matchmaking of the behavior in detail.

69

Chapter 4 Discovery of Services

A service description Dω is interpreted as a set Qω of property instances comprising
functional and non-functional properties in a unifying way:

QJω ⊆
⋃
P∈P

P × VP (4.2)

Within the formal model of service descriptions, the property instances q ∈ Q model the
assignment of a property type tq to a value vtq ∈ Vtq .

Constraints on property instances QR in a request R are interpreted as a set of values
assigned to a property:

QR ⊆
⋃
P∈P

P × 2VP (4.3)

QJR ⊆
{
Q : Q ⊆

⋃
P∈P

P × VP
}

(4.4)

As can be easily derived from Equations 4.2 and 4.4, a set of property instances QJω of a
service description Dω matches the desired properties QJR if and only if QJω ∈ QJR.

A service is a match if there exists a set Q′R ∈ QJR of property instances that equals the
set QJω (see right part of Figure 4.6 for an illustration). Then, there also exists a qR ∈ Q′R for
each property instance qω ∈ QJω with qR ≡ qω. This means that the advertised property type
is always subsumed by the requested type (tqω v tqR) and values vqR ≡ vqω are equivalent. Of
course, heterogeneity among property types can be resolved by the use of ontology mapping
and alignment techniques.

Example 9. Given a service ω with an advertised average response time of 8ms. This service
property is expressed by qω = (responseTimeMS, 8) in the service description. A request with a
desired response time of less than 20ms is expressed by qR = (responseTimeMS,≤20) (as shown
in Example 8).

With respect to this non-functional requirement, the service ω is a match because (i) the
advertised property instance (responseTimeMS, 8) is an element of the interpretation of the
requested property

(responseTimeMS, 8) ∈ (responseTimeMS,≤20)J ,with

(responseTimeMS,≤20)J = {(responseTimeMS, v) | 0 ≤ v ≤ 20 ∧ v ∈ N},

and (ii) both property types are equivalent.

If the request R combines constraints over multiple properties, we apply the semantics
of composed constraints as defined in Equation 4.1. That is, each constraint is evaluated
individually and the individual result sets are combined according to Equation 4.1. This
allows us to compute a final result set of services that fulfill R.

4.3.2 Matching Functionalities

At large, the service functionality is treated like any other property. The description of a service
offer specifies its functionality as a service property value. In a request, the set of desired
functionalities is described as values of the functionality property. Although the functionality

70

Chapter 4 Discovery of Services

descriptions of offers and in requests are composed of several sub-properties, the matchmaking
approach is analogous to the above principle for matching properties. The specifics of the
matchmaking of functionalities are presented in Section 5.4 in the context of the discovery of
atomic services.

4.3.3 Matching Behaviors

Creating LTS representation of process expressions. The behavior of a service is described
by an agent identifier. A labeled transition system is generated from a given definition of an
agent identifier A(x1: t1, . . . , xn: tn)

def
= π. In such an LTS, a state corresponds to a knowledge

base while transitions can be input, output or local actions. An agent identifier A contains a
reference to an ontology Oω that describes the domain terminology (TBox) used in the process
expression.

The first state s0 is generated as follows: Create a new ontology for KB(s0) and copy all the
TBox axioms of Oω to KB(s0). Then, add an individual xi of the type ti for every argument
xi : ti of A to the ABox of KB(s0). The object property values and data property values
corresponding to the relations among the individuals x1, . . . , xn are added to the ABox of
KB(s0) as well. The rest of the states and transitions are generated according to the execution
semantics of the process expression π that defines the behavior of the agent identifier A as
follows.

For a sequence π
def
= τ.Q, a transition τ is added from the state sπ to a new state sQ. State

sQ is created from the state sπ by inheriting the knowledge of sπ and applying the changes of τ

to the new state. For a parallel composition π
def
= π1 ‖ . . . ‖ πn, the LTS creation is performed

recursively on the individual component processes π1, . . . , πn as described above. For a choice
π

def
= π1 + . . .+ πn, the LTS creation for π1, . . . , πn is invoked recursively as well.

Choosing the right type of model checking approach. The LTS structures can be
represented in different ways, which affect the matchmaking’s efficiency. In the explicit state
approach, the LTS structure is represented extensionally using conventional data structures
such as adjacency matrices and linked lists so that each state and transition is enumerated
explicitly.

In contrast, in the symbolic approach Boolean expressions denote large LTS implic-
itly [BCM+92]. Typically, the data structure involved is that of Binary Decision
Diagrams (BDDs) [Bry86], which can, in many but not all applications, efficiently manipulate
Boolean expressions denoting large sets of states. To a large extent, the distinction between
explicit state and symbolic representations is an implementation issue rather than a conceptual
one. The naive model checking method was based on an algorithm for fixpoint computation and
was implemented using explicit state representation. The subsequent symbolic model checking
method uses the same fixpoint computation algorithm, but now represents sets of states
implicitly. However, the succinctness of BDD data structures underlying the implementation
can make a significant practical difference. BDD-based model checkers have been remarkably
effective and useful for debugging and verification of hardware circuits. For reasons not well
understood, BDDs are often able to exploit the regularity that is readily apparent even to
the human eye in many hardware designs. Because software typically lacks this regularity,
BDD-based model checking seems much less helpful for software verification.

71

Chapter 4 Discovery of Services

In the monolithic approach, the entire structure of an LTS is built and represented at any
time in computer memory. While conceptually simple and consistent with standard conventions
for judging the complexity of graph algorithms, in practice it may be highly undesirable to
keep the entire structure in computer memory, as it might not fit. In contrast, the incremental
approach (also referred to as the “on-the-fly” or “online” approach) entails building and storing
only small portions of the whole structure at any one time [JJ89].

Complexity. The theoretical complexity of the naive µ-calculus model checking is exponential
in the alternation depth d. The alternation depth of a formula is the maximum length of µ/ν
alternations in a chain of nested fixpoints. For a constraint formula of size m with alternation
depth d and an LTS of size n = |S|, model checking has the time complexity O(m · nd+1)
assuming that the cost of evaluating a proposition (Algorithm 1, line 8) is negligible [EL86].
Formulae of alternation depth higher than 2 are notoriously hard to understand and rarely
produced in practice [Bra98]. As argued in [Aga07a], formulae are typically small and
alternation depths are typically 1 or 2. Also, a chain of polynomial problems of increasing
degree is obtained by stratifying the formulae according to alternation depth.

Evaluation of behavior constraints. The naive model checking algorithm is presented in
Algorithm 1. The procedure evaluateFormula computes a subset S′ of the LTS states S such
that all states in S′ satisfy the behavior constraint Ψ of a request.

In order to verify the constraints of a discovery request, we employ the verification method
introduced in the preliminaries (cf. Section 3.4.2 on page 46). As shown in Algorithm 1, the
recursive structure of Ψ is broken down into its atomic constructs that can be evaluated on
the LTS. For each atomic construct, a set of states in which the atomic constraint holds is
returned. Then, the individual result sets are combined based on the set algebra. For instance,
the µ-calculus conjunction (∧µ) is resolved into an intersection of the intermediate result sets
(cf. line 14 in Algorithm 1).

Propositions are evaluated over individual states by checking whether the knowledge base
implies the proposition. That is, we use an ontology reasoner the check whether the knowledge
KB(s) of a state s subsumes a proposition P (i.e., KB(s) |= P). We also check for subsumption
when we verify the semantic descriptions of actions including, e.g., input parameters and their
semantic annotations, the communication channels, and the changes of local actions. We
derive a separate knowledge base KB(a) from the description of an action a and the TBox of
the domain knowledge. Note that KB(a) does not correspond to the state knowledge bases.
Then, we also evaluate constraints ϕ over an action a by checking the subsumption relationship
KB(a) |= ϕ.

We obtain the final Boolean answer by checking whether the initial states of the LTS are
in S′ or not.4 This means, a service ω matches a requested behavior constraint Ψ if and only
if the start state of the LTS Lω modeling the behavior of ω is in the set of states that satisfy
the constraint Ψ.

4S′ is the set of states of an LTS that match the request and is returned by the model checking algorithm in
Algorithm 1.

72

Chapter 4 Discovery of Services

Algorithm 1: evaluateFormula

Require: Formula Ψ and LTS (S, T,A,V)
1: if Ψ = true then
2: return S
3: else if Ψ = false then
4: return ∅
5: else if Ψ = P then
6: S′ ← ∅
7: for all s ∈ S do
8: if evaluateProposition(P, s) = true then
9: add s to S′

10: end if
11: end for
12: return S′

13: else if Ψ = Ψ1 ∧µ Ψ2 then
14: return evaluateFormula(Ψ1) ∩ evaluateFormula(Ψ2)
15: else if Ψ = ¬µΨ1 then
16: return S \ evaluateFormula(Ψ1)
17: else if Ψ = 〈a〉Ψ1 then
18: S′ ← ∅
19: for all (s1, a

′, s2) ∈ T do
20: if a′ = a and s2 ∈ evaluateFormula(Ψ1) then
21: add s1 to S′

22: end if
23: end for
24: return S′

25: else if Ψ = µZ.Ψ1(Z) then
26: Z ← ∅
27: repeat
28: Z ′ ← Z
29: Z ← evaluateFormula(Ψ1(Z))
30: until Z ′ = Z
31: return Z
32: else if Ψ = Z then
33: return V(Z)
34: end if

73

Chapter 4 Discovery of Services

4.4 Implementation and Evaluation

We implemented the naive model checking approach using conventional Java data structures
and an OWL reasoner. We conducted our performance evaluation on a set of service description
with complex behavior. The behavior expressions were derived from so-called Web scripts that
record the end user browsing processes (at the consumer side with the help of a browser plug-
in). Browsing processes describe how to interact with a Web-mediated service that provides
its functionality to end users via interactive Web pages.

We developed Java APIs for modeling services with their properties and serialized theses
service descriptions in form of ontologies (one ontology for each service). A separate API
allows modeling the executable behavior of a service. For specifying discovery requests, we
developed similar APIs for desired services and processes with desired behavior. We also
developed a Web-based graphical interface to create semantic service descriptions and describe
their behavior (see Figure 4.8).

For the DL part of service descriptions and requests, we use the OWL API5 for semantically
describing simple service properties and the processes resources. During matchmaking, the
HermiT OWL reasoner was used for reasoning about this knowledge.

4.4.1 Service Discovery in WisNetGrid

The goal of WisNetGrid was to develop a common knowledge layer on top of Grid resources
from various communities. In order to establish the knowledge layer, common services with
generic functionalities like information extraction, ontology and service repositories as well as
technologies like unified and secured access to different data sources have been provided to the
Grid infrastructure.

Our service discovery method presented in this chapter was integrated into the WisNetGrid
service repository. The repository provides a REST-based service interface [ECPB13] with
functionalities to retrieve and filter service descriptions that reside in the repository. Grid
communities can either use the centrally provided repository or host their own instance. The
service descriptions are serialized as RDF/S ontologies, as presented in Listing 4.3, and stored
in the Grid.

The service descriptions contain the descriptions of the behavior and the non-functional
properties. Workflows are treated equally. In addition, we defined a meta data schema
to add information about the service description documents. For instance, the creator and
the time of creation of the service description, related services, and descriptive keywords
can be added [JA11]. These meta data are serialized to RDF and can be queried with
SPARQL [W3C13], the RDF query language. The repository allows retrieving service
descriptions based on simple meta data constraints. Complex search requests including non-
functional and behavioral requirements are also possible.

We also provide a graphical user interface to browse existing services in the WisNetGrid
service repository, create new service descriptions, and compose services manually. Elements
of suprimePDL, our behavior description language, can be dragged to the central canvas to
model the behavior. Ontologies can be loaded and used to annotate the process expressions
and non-functional properties. Concepts, relationships, and individuals of loaded ontologies

5OWL API – http://owlapi.sourceforge.net, retrieved 2013-06-11

74

http://owlapi.sourceforge.net

Chapter 4 Discovery of Services

Figure 4.8: Service and workflow modeling in the WisNetGrid project

are displayed in the lower left widget. Dragging selected elements from the ontology widget
and dropping them over the elements of the central modeling canvas or the properties on
the right side of the application adds semantic annotations to the behavior description. The
annotations can be further refined, e.g., by selecting a specific input parameter of an input
action in a separate dialog. The semantic service descriptions can be stored in the repository
for later reuse. The graphical user interface was implemented as a Web application. We
used the open source version of the Signavio Process Editor.6 We added the ability to model
services in the suprimePDL language using graphical elements that can freely be rearranged and
connected according to the language syntax. We added the ability to add semantic annotations
by dragging existing ontology classes and individuals to elements, e.g., communication actions
(to describe parameters) or non-functional properties. We developed an axiom editor within
the process editor in order to model more complex ontology axioms.

In Figure 4.8, we depict the modeling area of the Web application. In the shown example,
a workflow for the extraction of knowledge from a secondary source is modeled. On the
left, the available process language elements are provided. In the lower left corner, ontology
classes and individuals are displayed in a tree view. On the right, non-functional service
properties and description meta data can be edited. In the center area, the behavior of the
workflow is modeled. We used our service discovery method to identify appropriate services
that can be integrated into a workflow or bound to the agent invocation elements. We also

6Signavio Process Editor – http://signavio.com/products/process-editor/process-modeling, retrieved 2013-06-29

75

http://signavio.com/products/process-editor/process-modeling

Chapter 4 Discovery of Services

Table 4.2: Behavior characteristics per browsing process

Process Behavior Characteristics Range

Number of actions 3± 1
Number of parameters per I/O action 3± 2
DL Axioms per I/O parameter 3± 2
Behavior class annotations 3± 2

developed an execution engine that executes workflows composed of Web services and REST-
ful services [JA12]. Required input parameter values are entered by the consumer in a dynamic
Web page. The computed outputs are displayed to the consumer.

4.4.2 Test Data

The evaluation of our service discovery approach is based on the above described discovery
system. In this section, we describe how we obtained a large set of semantic service behavior
descriptions that we could use in our evaluation. In the subsequent section, we report on the
conducted experiments measuring the system’s performance.

The test data is derived from given descriptions of processes that coordinate existing Web-
based services. We use CoScripts from the IBM CoScripter repository.7 CoScripts describe
executable processes. As we show below, the script language is directly mapped to our behavior
description language. Our analysis of CoScripts from different domains like travel and real
estate8 resulted in the observation that many end user browsing processes are rather short,
comprising a small number of actions performed sequentially. The reason is that most of the
existing CoScripts automate interactions with only one website. More precisely, scripted travel
processes, e.g., for flight or hotel offers typically involve approximately 3 (mainly input) actions
(with about 3 parameters per input action on average). The desired information within the
returned Web page was often not explicitly extracted for further processing. So, there is only
one parameter per output action on average.

Based on the analysis of the CoScripts, we generated browsing processes with the
characteristics summarized in Table 4.2. The correctness with respect to the content of
existing CoScripts cannot be guaranteed, as we do not focus on automatic learning of browsing
processes. Still, we can argue that the behavior complexity of our test data corresponds to
the complexity of the behavior described by the CoScripts. In our experiments we used 2000
generated descriptions. In average, every input/output parameter is specified by three DL
Axioms (i.e., at least its data type plus its relationship to other process resources).

7The IBM CoScripter repository (http://coscripter.researchlabs.ibm.com/coscripter, retrieved 2012-06-15)
provides approximately 5800 scripts for automating Web processes.

8We used the repository’s keyword-based search facilities, which by no means guarantees the completeness of
the search results.

76

http://coscripter.researchlabs.ibm.com/coscripter

Chapter 4 Discovery of Services

Translation of CoScripts to LTS

In this section, we provide a translation of the CoScripter script language to suprimePDL.
Other Web automation systems, such as iMacros9 or Chickenfoot [BM05, BWR+05], can be
similarly mapped. A CoScript solely consists of a sequence of instructions. Instructions may
contain (i) defined keywords (such as go to, enter, etc.) for the type of action performed,
(ii) a reference to the control of the Web page (e.g., text field, button, etc.), and (iii) values or
variable names for input and output parameters. There are many different ways to reference
the control in instructions. For instance, XPATH expressions, the HTML element’s id or
label are a few possibilities that are valid substitutions for <control> (angle brackets indicate
placeholders).

Concrete values (<value>) and variable names (your <variable>) can be used interchange-
ably. A variable name is replaced during script execution with the concrete value from the
user’s knowledge base. In our translation of a CoScript we build an LTS with a single state s0

containing the static domain knowledge, only. Then, the LTS is enhanced by each CoScript
instruction as follows:

• Input From the current state si, a state transition (si, a, si+1) is added to the LTS.
The transition label a stores the input transition type, semantic description of the input
parameter, and the used HTML control. State si+1 is described by the knowledge from si
extended by the input parameter description. The following CoScript instructions are
translated to input actions:
enter <value> into the <control> <controltype>,
select <value> from the <control> <controltype>,
you <instruction>

The latter command denotes an instruction, which is completely performed by the user.

• Computational Pressing a button, specified by click the <control> button, triggers
a server-side action. As for input actions, a transition (si, a, si+1) is added. State si+1

is described by the knowledge from si applying the changes that this action causes.
So far, changes are not explicitly described in the scripts. However, it is sufficient for
information gathering browsing processes to assume that computational actions can only
add information to the subsequent state.

• Output Output parameters are extracted from the following two instructions: clip the

<control> and put the clipboard into your <variable>. Analogue to input actions,
a transition is added to the LTS and the new state contains the output parameter
description.

• Invocation The instructions go to <url> and click the <control> link denote an
invocation of another page, which is translated to an agent invocation. The description
of the invoked process then produces a separate LTS.

• Conditional Control constructs like the if-then-else instruction if there is a

<CONTROL> <CONTROLTYPE> ... else ... is translated to two additional transitions
(si, a, si+1) and (si, a, si+2). The target states are equivalent to si except for the

9iMacros Web Automation – http://www.iopus.com/imacros/, retrieved 2012-06-29

77

http://www.iopus.com/imacros/

Chapter 4 Discovery of Services

0 1,000 2,000 3,000 4,000 5,000

0

20

40

60

80

100

Number of browsing processes

Q
u

er
y

an
sw

er
in

g
ti

m
e

in
se

co
n

d
s

incremental approach
monolithic approach

Figure 4.9: Performance of the naive model checking based discovery algorithm (incremental
approach vs. monolithic approach)

condition of the if-statement that is added as an assertion to si+1 and as a negated
assertion to si+2.

4.4.3 Performance Results

We created several search queries from 9 simple constraints that were composed by the
operators ∧µ, ∨µ, and ¬µ. A simple constraint can be one of eventually φ, always φ,
where φ is a simple constraint like a proposition P or the existence of an action a (〈a〉P).
Analogously to the descriptions, the complexity of each proposition and parameters of desired
actions is set to an average of 3 ± 2 DL axioms (class and object property assertions, e.g.,
P ≡ Flight(f)∧Time(t)∧departureTime(f, t)).10 A desired action is expressed by its type (class
assertion) and the description of types and relationships between messages.

Figure 4.9 shows our evaluation results for the performance of our naive model checking
implementation. In our evaluation setup, the browsing processes contained 3± 1 actions each,
where each action had 3 ± 2 parameters, and each parameter had 3 ± 2 ontology axioms
as semantic annotations. In the first case (incremental approach), the states are loaded or
modified on-the-fly. As a result, ALC reasoning is done during the model checking time
and total query answering time increases quickly with increasing number of processes. The
satisfiability problem and thus the subsumption problem in ALC have been shown to be
Exptime-complete in [DM00]. In the second case (monolithic approach), we load all the state
ontologies offline, which means the expensive ALC inferencing is done by the ALC reasoner
at loading time before model checking. Thus, we achieve linear time complexity that verifies
the theoretical time complexity of model checking (see Section 3.4.2). Even though browsing
processes are independent of each other it is hard to parallelize the problem because there may
be mappings between the domain ontologies of different browsing processes.

10Travel ontology – http://www.w3.org/2000/10/swap/pim/travelTerms.rdf, retrieved 2013-05-01

78

http://www.w3.org/2000/10/swap/pim/travelTerms.rdf

Chapter 4 Discovery of Services

Even though we achieve linear time complexity, model checking requires 1ms per browsing
process. Considering that end users nowadays are used to extremely fast search engines like
Google, and that we might have millions of browsing processes in a production environment,
the performance achieved in the second case is still not sufficient. Developing a new model
checking algorithm that has theoretically better linear time complexity in the size of LTS is
out of scope of this thesis. Rather, our aim is to develop indexing techniques that reduce the
constant factor in the absolute time required to find matching browsing processes.

4.5 Summary and Conclusions

In this chapter, we introduced our service description and request formalisms, developed a
discovery method suitable for these formalisms, and reported on the experimental performance.

The upper model of service descriptions allows for a comprehensive description of services
including their functionality, behavior, and non-functional properties. By this, we gain the
expressivity to fulfill requirement R3 of our envisioned scenarios.

We developed a corresponding request formalism that furthermore allows for a precise
specification of requirements. We thoroughly discussed the reasons for using a dedicated
request formalism in favor of a single formalism that is used in both service descriptions
and requests. Based on two different formalisms for the description of services and requests,
we developed a matchmaking technique that achieves the required accuracy of search results
(requirement R2).

We also showed how we use ontologies for the domain and service descriptions in order to
overcome the heterogeneity problem, as qualified in requirement R4. We achieved automation
as required in R1 by utilizing formal models for descriptions and requests. Based on
the formalisms, we developed a model checking based discovery method that automatically
identifies correct matches.

The implementation of this discovery method was based on conventional Java data structures
to represent services and their behavior. We observed that the discovery results can be delivered
faster if the data structures are created and populated offline rather than creating them online
and on demand. The development of a more efficient service discovery method will be addressed
later in this thesis in order to address the remaining requirement R5.

Before focusing on efficiency, we apply in the next chapter the presented service discovery
method to atomic services, a subset of services that recently gained a lot of attention. Atomic
services implement a single request-response behavior pattern of message exchange. Due to
the limited observable interaction with external agents (e.g., the invoking service consumer),
it is possible to simplify the behavioral model to a functionality profile.

79

Chapter 5
Discovery of Atomic Services

In this chapter, we develop a discovery method that is tailored to the specific characteristics
of atomic services. Atomic services gained a lot of attention in the Semantic Web community,
for example in [BLHL01, AS04, FFST11], and culminated in several modeling frameworks and
respective discovery approaches.

We apply the approach presented in the previous chapter, which supports and focuses on
services description with complex behavior. However, the provider may not always want to
reveal the entire behavior description. The Semantic Web Services profile is an abstraction to
an interface description. In this chapter, we focus on including this profile in our description,
request, and discovery method. We maintain the presented approach (including service
descriptions, description of requests, and the matchmaking method) with respect to the upper
model and the non-functional properties. These parts are treated equally for complex and
atomic services and we will refrain from repeating them.

Atomic services all feature the same behavior characteristics. This fact allows for the
abstraction of the behavior descriptions in favor of a more compact profile called service
functionality. This profile description can be created and used for any kind of service, e.g., to
hide internal implementation details of the service. However, the functionality is not sufficient
to describe executable services that implement a complex, i.e., multi-stage interaction between
consumer and provider. In the case of atomic services, which implement a single request-
response-pattern, the functionality profile is sufficient to execute the described behavior.
Therefore, we shift our attention in this chapter to the functionality profile that plays a central
role in the description and discovery of atomic services, like traditional Web services and Web
APIs.

Their behavior is characterized by only two means of observable interactions with the
consumer. With the service invocation, input parameters can be passed to the service, and
after successful service execution, the service returns output parameters back to the consumer
who invoked the service. This restriction in the interaction pattern of atomic services allows
abstracting from complex behavior descriptions, as the information about the internal behavior
of a service is no longer required for using and interacting with the service. The internal
behavior cannot be observed externally. Consequently, a profile of the behavior is enough to
reason over the functionality offered by a service.

80

Chapter 5 Discovery of Atomic Services

s C // t

Figure 5.1: State changes caused by a program C expressed by a Hoare triple {P}C{Q} with
s |= {P} and t |= {Q}

We develop a discovery method that matches functionality descriptions of services with the
constraints expressed in a search request. We developed and presented our request model and
the corresponding discovery method for functionality descriptions in [JAS10]. In [JA10], we
extended this approach by adding the property-based service model in order to capture non-
functional properties in addition to the functionality. We evaluated and applied this discovery
method in the context of the SOA4All project [AJN10a]. It has been further applied to solve
the Web service discovery problem in the InterLogGrid [HA12] and MeRegioMobil [WJH11]
project.

Many approaches for the semantic description of atomic services and the automated Semantic
Web Service discovery have been proposed in recent years. So, we start this chapter with an
overview of the state of the art in the area of service discovery in Section 5.1. In Section 5.2, we
introduce the service functionality description that extends our property-based service model
introduced in the previous chapter. We also clarify how the state changes are modeled in
functionality descriptions. Then, we provide a request language for the specification of the
desired functionality in Section 5.3 and develop in Section 5.4 a matchmaking method for the
functionality property. Finally, we present our implementation and evaluation results of the
discovery method for Semantic Web Service profiles in Section 5.5.

5.1 State of the Art

In Section 5.1.1, we have given an overview on the modeling of service functionality. Existing
discovery approaches for atomic services are summarized in Section 5.1.2. In both sections, we
will only briefly mention the limitations of these approaches. In Section 5.1.3, we explain the
limitations and drawbacks of state of the art solutions within our context.

5.1.1 Modeling Functionalities

Software Artifacts

The Floyd-Hoare logic is a formal system developed by Tony Hoare [Hoa69] and is based on
a formal system for reasoning over flowcharts [Flo67]. The purpose of the Floyd-Hoare logic
is to reason over the correctness of software programs. Hoare proposed to use predicate logic
assertions to model preconditions P and postconditions Q of a piece of software C expressed in
form of Hoare triples {P}C{Q}. As illustrated in Figure 5.1, each triple models how a program
changes the state of the computation. That is, P holds in the state before the execution of
C and Q holds afterwards if and only if the execution of C terminates. With the axioms
and inference rules that the Floyd-Hoare logic provides, constructs of imperative programming
languages are covered by the system.

81

Chapter 5 Discovery of Atomic Services

Design by contract [Mey92] is a software design approach that aims at a formal specification
of software interfaces. Based on the Floyd-Hoare logic, the contracts comprise a description
of preconditions, postconditions, side effects, and invariants. Many programming languages
like Eiffel [Mey91] and Vala1 have native support for the design by contract principle, and
consequently the specification of conditions and effects is programming language specific.

The description [Hoa69] and discovery [ZW97] of software artifacts can be seen as the
predecessor of current Semantic Web Service discovery approaches. However, the closed world
assumption does not completely hold for Web-based services and systems because the ability
to model side effects to the world and the notion of background knowledge were not considered
in the specification of software artifacts.

Service Descriptions with Universal Description, Discovery and Integration

Universal Description, Discovery, and Integration (UDDI) [UDD01, CHvRR04] was the first
attempt to provide users with a system for finding Web services. UDDI proposes an
XML-based standardized description format for service interfaces described with the Web
Service Description Language (WSDL) and a platform-independent central registry for service
descriptions. It provides means to describe services that are offered and shared. Based on the
registered descriptions, other actors can explore, find, and utilize new business partners and
their services. For that purpose, UDDI registries consist of White, Yellow, and Green Pages.
White Pages contain information about the provider, such as the address, the business name,
or contact information. Yellow Pages administer a service classification and technical details
like the service binding are filed in the Green Pages.

Although the description format is standardized by UDDI and a standardized service
classification schema can be applied, the remaining syntactic descriptions impede a high
degree of automation in discovering services from UDDI registries. The support for the
use of heterogeneous terminologies and a machine-interpretable description of the service
functionality (beyond a service classification) is lacking.

Semantic Web Services

Since the advent of the Semantic Web [BLHL01], many Semantic Web Service approaches for
the description, discovery, ranking, selection, composition, and execution of services have been
proposed. The use of semantic service descriptions aims at dealing with the heterogeneity in
the terminology used in different service descriptions, e.g., by different providers. Many of
these approaches focus on a logic-based description of the service functionality, which allows
for automated tasks like service discovery and composition.

As elaborated in Section 3.3.1, the Semantic Web community with focus on languages
developed several service description approaches that use description logics to describe service
profiles [BHL+05, GCTB01, SPAS03]. The objects involved in the service execution are
represented as concepts in DL. As done for example in [PS03, LH03], the use of DL is
combined with the DARPA Agent Markup Language for Services DAML-S, the predecessor
of OWL-S, and the Ontology Inference Layer DAML+OIL. These approaches use description
logics to represent the knowledge about a service, e.g., describing input and output parameters,

1Vala programming language – http://live.gnome.org/Vala, retrieved 2013-06-11

82

http://live.gnome.org/Vala

Chapter 5 Discovery of Atomic Services

preconditions and effects. They failed to reason about the dynamics of Web services since DL
reasoners cannot reason about changing knowledge bases. As we will show below, it requires
additional effort to model the dynamics of services. It requires to model knowledge base
changes if the execution of services can cause effects.

The approach in [HZB+06] is limited to Web services that do not change the world. Only
inputs, outputs, and the relationships between them are described. A description of the offered
service functionality can therefore be described with a DL query. As conditions and effects are
not considered by this approach, it is limited to the description of simple information retrieval
services.

More expressive service descriptions are the prerequisite for the development of automated
search methods and the use of discovered services if services that may cause changes are to be
supported, too. An effective service discovery method has to identify services that fulfill the
requirements of a search request. Compared to service discovery methods that are restricted
to input and output matching, the additional matching of conditions and effects of services
leads to a higher accuracy of discovery results, which is mandatory for any automated use of
the discovered services and aimed at by our approach as stated in requirement R2.

Functionality-based semantic service descriptions of atomic services can be regarded as the
minimal information required for automated tasks like service composition. The common model
to describe the functionality of services consists of inputs, outputs, preconditions, and effects,
shortly denoted by IOPE. Inputs describe the set of user-provided message parts at service
invocation. Outputs describe the set of values returned to the invoker after a successful service
execution. While preconditions describe the information state of the service provider before
service execution, the effects list the changes to the information state that are caused by the
service execution. Some discovery approaches however use this description element to describe
the state after execution, i.e., the effects then comprise a description of the postconditions.
Both, preconditions and effects are expressed in logic formulae.

Note that the common approach to describe services by IOPE differs from the formal
description model for software artifacts. In IOPE-based service descriptions, effects are
described instead of postconditions. While effects describe the set of changes introduced by a
service, they do not suffice to describe the information state after the service execution. On
the other hand, the specification of postconditions with description logics is also insufficient to
describe changes of services in general. We will elaborate on this distinction in Section 5.2.

The Unified Service Description Language (USDL) is another service modeling approach
that can be considered as a container description format for comprehensive service
descriptions [CBMK10]. In comparison to the aforementioned approaches, business related
information like pricing and legal details are emphasized. USDL is a normative schema
formalized in UML (Unified Modeling Language) for services descriptions that aims at reduced
integration costs on a business level. Along with business related information, USDL captures
operational and technical information, too. The latter part is designed for IT services only. The
operational perspective describes capabilities and dependencies, which can be used to describe
compositions. USDL can be extended with additional components. In early research efforts,
USDL service discovery is limited to a matchmaking based on functional classifications (e.g.,
using UNSPSC2) or natural language based descriptions [CVW08]. One reason for this choice

2United Nations Standard Products and Services Code – http://unspsc.org, retrieved 2013-06-11

83

http://unspsc.org

Chapter 5 Discovery of Atomic Services

is that USDL does not provide any concrete formalism to model the behavior or functionality.
The next evolutionary step of the language is called Linked USDL.3 As the name suggests,

Linked USDL builds upon Linked Data principles and reuses existing vocabularies like the
minimal service model (MSM).4 While the Linked USDL effort mainly remodels USDL as
an RDF/S vocabulary, the introduction of MSM requires the use of WSMO-Lite service
functionality descriptions. Analogue to USDL, Linked USDL allows for a comprehensive
description of perspectives beyond the service functionality.

Modeling State Changes

A general problem that arises with ontology-based semantic service modeling approaches is
that description logics cannot capture the dynamics of services. The execution of a service
typically changes the knowledge of the service provider. Changes can comprise the creation,
an update, or the deletion of a database entry (or any other storage technology). If third party
providers are involved in the provision of the service, their knowledge bases can be changed by
the service execution, too.

Example 10. In order to review the importance of changes and their impact on modeling
the offered functionality in service descriptions, we list the changes for a simple Web service.
Continuing our example of a service that offers the functionality to buy books electronically
(cf. the service description in Section 4.1.3) a successful service execution causes the following
changes and effects. The book is shipped to the user’s home address after her credit card was
charged. From the provider’s perspective, the amount of available books is reduced, an order
and an invoice are created, and the account balance is increased as a payment is expected.

Using the state-based model of service executions, the change of knowledge of the providers
implies that the original state is changed. A corresponding state transition leads to the
subsequent state with the updated knowledge base. Representing the knowledge, e.g.,
with description logics, allows to model only one state. It leads to the problem that the
representation of knowledge base changes (state changes) in Semantic Web Service modeling
needs to be treated additionally.

The state-based interpretation of service functionality profile descriptions features a clear
state separation. The descriptions of the two states should not be represented in the same
knowledge base, because this would merge the knowledge of both states into a single knowledge
base. This can lead to logic inconsistencies and contradictions. For example, merging the
information that is user is initially not subscribed to a service and that the same user is
subscribed to a service afterward is inconsistent when both statements are part of the same
knowledge base. In order to establish a relation between the states and the state knowledge,
WSMO introduces shared variables that are universally quantified over WSMO assumptions,
preconditions, postconditions, and effects in order to relate preconditions and assumptions
with postconditions and effects [dBBD+05].

Action formalisms like the situation calculus [McC02] and the fluent calculus [Thi98] allow
to model and reason over actions and the state changes caused by these actions. In the scope
of semantic service modeling, the action formalisms have the advantage that they solve the

3Linked USDL – http://www.linked-usdl.org, retrieved 2013-09-23
4MSM – http://iserve.kmi.open.ac.uk/wiki/index.php/Simple vocabulary, retrieved 2013-06-11

84

http://www.linked-usdl.org
http://iserve.kmi.open.ac.uk/wiki/index.php/Simple_vocabulary

Chapter 5 Discovery of Atomic Services

frame problem [MH69]. The basic idea is to explicitly describe all updates (changes of fluents)
for each successor state in addition to the knowledge of each state. Most formalisms define
their own agreements on how to include or exclude state updates explicitly. Consequently,
these action formalisms allow for reasoning over actions and their effects. Recent semantic
service modeling approaches, formalisms, and frameworks focused on the application of FOL
or its fragments like DL for the description of the states. Consequently, it is hard to model
actions and their effects of atomic services correctly, when building upon existing standards or
approaches. In contrast, action formalisms are widely used for, e.g., the automated composition
of Semantic Web Services [SW04, CSHG09, BFM11] and the behavior description [NM02].

5.1.2 Discovery of Atomic Services

After we discussed the state of the art with respect to service descriptions, we now present an
overview on service discovery approaches.

Matching Software Artifacts

In the field of software artifact specification and verification, discovery of software components
is motivated by their reuse and the ability to substitute them. Components are retrieved from
component libraries based on their functionality descriptions. Matching the descriptions of
two components allows computing their relationship, which can indicate the substitutability of
one component by another or the subtyping as used in object-oriented programming. Different
degrees of matches are useful for different tasks. E.g., different matching types based on
the implication relations between preconditions and postconditions are considered in [ZW95,
ZW97]. The most restrictive matching type is the exact match with logically equivalent pre-
and postconditions. Plug-in matches, and more relaxed flavors of the plug-in match, are
defined for the comparison of either two components or one component and a request. The
latter comparison is applicable to retrieve software components from a library.

The plug-in match increases the recall of the result set while the precision decreases
simultaneously. This can be acceptable in the case of computing potential substitutes of
software components, because substitutes do not have to provide the exact same functionality.
It is sufficient that the substituting component provides the same functionality in the context
of the intended software system. The subsume match, where the software component offers less
functionality as requested and the software system needs to be adapted in order to integrate
the identified component, was also considered for matchmaking of software components, e.g.
in [KDJ06].

UDDI Matchmaking

UDDI is the most prominent example for service discovery based on rather syntactical service
descriptions. As already indicated above, missing semantics requires a fairly high amount of
manual interventions for finding the right services, mainly due to its lack of support for use
of heterogeneous terminologies and the lack of formal description of the functionality of Web
services in its underlying model. Even though the API provided by UDDI [UDD01] allows
random searching for businesses, it does not allow for the selection of new business partners
dynamically and automatically by a program. Furthermore, UDDI allows only keyword-based

85

Chapter 5 Discovery of Atomic Services

syntactic search, which is a problem, e.g., when the requester and the provider use different
terminology for describing the same concept or use a common terminology for describing
different things.

Logic-based Matchmaking of Semantic Web Service Profiles

In recent years, many so called Semantic Web Service discovery approaches have been
introduced in order to overcome the drawbacks of UDDI as well as to cope with the ever
increasing need for more automation. Unfortunately, existing SWS discovery approaches still
cannot address the professional needs and are not easily comprehensible for the potential users.

Functionality-based semantic service discovery is the enabler for many automated tasks
in service-oriented systems and architectures. For instance, service composition highly
depends on efficient and effective service discovery methods in order to locate additional
or substituting services and integrate them successfully into larger service networks or
compositions automatically.

Stateless services. In contrast to the state-based modeling and discovery approaches, inputs
and outputs of stateless services can be modeled by description logic concepts in service
descriptions and requests. Then, matching a request against services can be as simple as DL
subsumption checks of the input and output types [GCTB01, PKPS02, BHL+05, HZB+06].
Along this line, Linked Data services [SH11] in its current state of development are similar to
the above approaches as only inputs, outputs, and their relationships are described applying
Linked Data principles [BHBL09].

Stateful services and DL. More recent research activities concentrate on more detailed
formalisms like the state-based perspective on services. It allows separating the information
of distinct states. These models aim at modeling the dynamics of services [PKPS02, LH03,
KFS06, KK06]. Consequently, the service descriptions that are used for discovery are often
similarly structured, such as IOPE service profiles. Since most of the approaches use the same
formalism for service requests, too, matchmaking determines various degrees of the intersection
of service offer and request and is reduced to checking subsumption of input and output types.

OWL-S OWL-S Matchmaker [SPS04] uses OWL-S Profile [SPAS03] for describing Web
service offers as well as requests [PKPS02, MPM+04]. Even though OWL-S Profile has elements
for preconditions and effects, the OWL-S matchmaker [SPS04] uses types of input and output
parameters only. The approach presented in [LH03] models Web services as well as requests
as description logic (DAML+OIL) classes and bases the matchmaking on the intersection of
service offer and request, which is computed by a DL reasoner. These particular approaches
are only applicable to stateless services, as DL reasoners cannot reason about state changes.

The discovery approach presented in [MPM+04] interprets preconditions as a description
element, which only contains constraints on the state of the requester, but not on the provider’s
state. Also, effects are logical formulae describing the end state, while OWL-S effects were
interpreted as side effects of the service execution on the world. The given perspective supports
discovery use cases in which users may search for services based on the requirements that they
have to fulfill. However, the described preconditions cannot be evaluated by the service provider
and, thus, have the purpose to inform consumers.

86

Chapter 5 Discovery of Atomic Services

WSMO Likewise, several service discovery methods based on WSMO service descriptions
have been proposed. Expressing service requests with WSMO Goals differs from OWL-S-based
discovery conceptually. On the one hand, different formalisms are used for service descriptions
and requests and, on the other hand, requests are goal-oriented because they only constrain
the state after the service execution.

Goal-driven approaches like [LCC06, LCC08, SHF11] do not explicitly specify inputs as parts
of the goal. However, a goal needs to be mapped to a request in order to find appropriate Web
services. In such a request, constraints on inputs can be useful, in particular if a user wishes
to exclude a particular input parameter. Inputs are also essential for a formal description of
the desired functionality (as opposed to a description of the desired end state).

An efficient (and logic-based) semantic discovery approach that can deal with the
functionality of Web services is presented in [VKVF08, SHF11]. Although the approach uses
an abstract state space as the underlying formal model of service descriptions [KLS06], the
discovery algorithm relies on the assumption that the precondition φ logically implies the
effect ψ of a Web service execution. However, modeling a service execution as a logical
implication is problematic with respect to the state changes. Logical implications can lead
to inconsistencies if, for instance, the effect specifies the opposite of what is specified in the
precondition. Example 11 on page 89 shows a concrete example in which the implication φ⇒ ψ
introduces a contradiction.

Matching Non-Functional Properties

We now turn our attention to the non-functional properties and their role in service discovery.
The previously mentioned existing discovery approaches did not consider them so far. In
general, non-functional properties are often treated separately and are not part of logic basic
service matchmakers that are limited to the capability of state-based functionality matching.

In OWL-S, NFPs contain unstructured metadata such as the name of a service or the provider
offering ancillary information to humans. O’Sullivan compiled a list of domain-independent
non-functional properties relevant for Web services and categorized them according to
availability (both temporal and spatial), payment, price, discounts, obligations, rights,
penalties, trust, security, and quality [O’S06]. This approach is still limited to keywords.
In order to enable automation of tasks like service selection, the predefined non-functional
properties were partly formalized in a WSMO deliverable [TF06].

The Web Service Modeling Language WSML is used to specify the Web Service Modeling
Ontology WSMO. WSML does not include non-functional properties into the logical model.
Consequently, the ontology reasoners of the WSML2Reasoner framework [WP10] did not
support reasoning on them. Nevertheless, the WSMO specification equips all the WSMO
elements with non-functional properties, e.g., in order to enrich service and goal descriptions.
There is so far no prominent discovery implementation available that considers non-functional
properties.

Service discovery based on non-functional properties, often referred to as quality of service
(QoS) based service selection, is mainly influenced by ontology- or constraint programming-
driven approaches. While the use of ontologies for modeling QoS attributes and their instances
in service descriptions delivers accurate discovery results, the approaches based on constraint
programming typically compute results faster.

87

Chapter 5 Discovery of Atomic Services

If hundreds of services offer equivalent functionality, the sole use of functionality
matchmaking for service discovery is not adequate [KP07]. This problem is solved by selecting
services based on quality of service (QoS) attributes. According to their study [KP07], their
semantic QoS model [KP06] was the first one reported to fulfill the requirements of semantic
service description and discovery. In [KP09, KP12] they apply mixed-integer programming
as a matchmaking technique in order to solve complex problems (complex constraints over
non-functional properties) for a large set of service offers efficiently. As we do in our property-
based service model, the desired property values has been expressed by ranges, while earlier
ontology-based approaches like [FFH+03] used the key-value-structure in offers and requests.

The trust in the description of non-functional properties of service offers has been neglected
so far. Current approaches for describing non-functional properties abstract from the issuer.
To continue our book shop example, every book shop will probably advertise that it has great
atmosphere and very friendly and knowledgeable salespeople, etc. If only service providers
describe their services, a description of the credentials of the services will hardly be of any
practical use from the user’s perspective. Yet, this thesis will focus on the development of
an efficient discovery method for services and their properties in general. At this stage, we
can only acknowledge and reinforce the need for techniques in which parties different from the
providers issue credentials to services, and users can build trust in services on the basis of such
credentials.

5.1.3 Limitations of Existing Service Discovery Approaches

After a broad overview on semantic service modeling and discovery, we continue with a
discussion about the problems and limitation of existing works with a focus on our requirements
and targeted scenarios. In this section, we focus on explaining the problems that we identified
as relevant obstacles and that are tackled in our work. Of course there are many more open
questions and challenges that need to be solved for an envisioned Internet of Services or an
Internet of Things with a high degree of automation.

A common problem of many of the existing service discovery approaches is that they apply
the same formalism for describing service offers and service requests. We briefly summarize
in the following paragraphs why this can be problematic in the context of atomic services for
attaining the requirements from Section 2.2 of our approach. Afterward, we will discuss further
problems of previous works that we will tackle in our approach.

Common formalism for offers and requests. We observed that a single formalism is often
used to model and describe both the offered services and the service requests. We already
thoroughly motivated the need for a dedicated request formalism in Section 4.2.1. The same
line of argumentation is valid for atomic services and the service functionality.

While intersection-based matchmaking (as in [PKPS02, LH03, CBF05, SHF11]) offers more
flexibility, it also requires further effort to evaluate matching Web services in order to assess the
applicability for the desired tasks at hand. Consequently, the freedom provided by the different
matching degrees is not practicable for the purpose of automated service invocation. Another
drawback is the lack of support for the exclusion of certain properties in intersection-based
matchmaking approaches.

88

Chapter 5 Discovery of Atomic Services

Support for state-changing services. We want to develop a discovery method for atomic
services that reasons on the functionality profile description and additionally interprets the
changes such services can cause. Both service descriptions and requests therefore have to
capture the dynamic nature of services.

However, the existing semantic discovery approaches do not support the modeling of the
changes caused by a service execution to the extent that we aim at, nor do they support
specifying desired and undesired changes in requests [SPAS03, LH03, SHH07]. Existing
approaches do not clearly specify how preconditions, postconditions, and effects should be
used and interpreted. E.g., it is not specified whether a client’s state information is included in
OWL-S preconditions or not. Also, some approaches used the effects to include a description
of the state after execution (which actually is the intention behind postconditions). This lack
of specification makes it hard to develop automated search techniques that are comprehensible
for developers and users. Some approaches even use the terms “postconditions” for “effects” or
vice versa, leading to even bigger confusion. However, a commonality in all existing approaches
is that preconditions, effects, and postconditions are modeled as logical formulae.

Regardless of the mixed-up nomenclature, the logical expression representing a postcondition
describes the final state of the service. However, using only postconditions to describe the final
state of the service execution leads to the well-known frame problem [MH69]. The frame
problem states that in order to enable correct deductive reasoning about the functionality
of software operations, preconditions and postconditions of an operation should not only
contain information about which changes an operation causes, but also about which changes
an operation does not cause. This requirement makes it impossible to use only preconditions
and postconditions for specifying the functionality of atomic services. Note the even higher
complexity in the case of atomic services compared to software operations, as the knowledge
about the complete set of all services in the Web cannot be assumed.

Effects of a service execution can hardly be expressed in the same way as postconditions.
In some cases, effects can partially describe the final state of the execution by applying the
effects on the start state description. However, logic formulae are not the proper formalism to
express effects in general.

Example 11. Consider a Web service that removes a user from a mailing list. The
precondition φ of the service could be expressed by the following axioms.

φ ≡ User(u) ∧MailingList(l) ∧memberOf(u, l)

The following effect ψ states that the user is not subscribed to the mailing list anymore.

ψ ≡ ¬memberOf(u, l)

Simply adding the effect ψ to the start state knowledge expressed by the precondition φ will lead
to an inconsistent description of the final state.

Thus, applying the effect on the start state description is not a proper way. In order to
allow a reasoner to construct correct models, the effects need to be specified differently. An
additional specification of the treatment of effect formulae becomes necessary, e.g., by declaring
that the information from a previous state can be assumed to be unchanged (cf. fluents in the
situation calculus for example).

89

Chapter 5 Discovery of Atomic Services

Non-functional properties. Service discovery based on a unified model for the description
and matchmaking of functional as well as non-functional properties has not been developed
so far. Individual approaches for service matchmaking based on the functionality, and service
ranking based on non-functional properties can be combined into a single search framework.
However, filtering services based on non-functional constraints, as it is done with functional
constraints, cannot be achieved if NFPs are only used to compute a ranking. The reason is that
the service ranking methods compute an order of services based on preferences over NFPs. The
formalisms to express preferences are not appropriate for expressing non-functional constraints.
Preferences state which properties are considered as more appropriate and allow for ordering
the services. However, these preference formalisms do not provide the required expressivity
to state which properties are not desired. Consequently, requests based on preferences do
not allow identifying accurate discovery results. However, augmenting functional with non-
functional constraints will allow us to precisely describe the requirements in requests and the
retrieve appropriate search results (see the discussion in Section 4.1.1).

By an incorporation of the non-functional properties into the service discovery process,
consumers are able to specify more expressive requests, e.g., to restrict the search results to
services with high availability. Furthermore, an early incorporation of the evaluation of non-
functional requirements can reduce the search space for further more expensive matchmaking
operations like the verification of complex pre- and postconditions or the computation of a
service ranking.

Feasibility and performance. Aside from issues related to the expressivity and the
underspecification of existing approaches that we already discussed, a practical service
discovery method should be easily implementable. Additionally, in order to be advantageous
and usable, a service discovery system shall exhibit an adequate performance for most common
use cases.

In existing approaches, preconditions and effects are modeled as formulae. Such a formula
specifies the knowledge of a state declaratively. However, for building a repository of service
descriptions that can be directly queried, a declarative specification of states is not very
practical. One reason for this is that formulae are hard (if not impossible) to connect with the
services that are modeled as instances in the repository.

Specifically, matchmaking is implemented as a subsumption check computed by description
logic reasoners (except for the query containment check that was used for state-less
services [HZB+06], which is NP-hard and decidable). Subsumption checking has theoretically
been proven to be very expensive. The worst case complexity of OWL-DL concept satisfiability
and concept subsumption lie within the complexity class NExptime, whereas other techniques
like model checking exhibit better performance. In [EL86, ZSS94], it has been shown that
model checking with negligible costs for the evaluation of propositions is P-complete (cf. end
of Section 4.3.3).

5.2 Semantic Modeling of Atomic Services

For the description of atomic services, we adhere to the property-based service model from
Section 4.1.1 as our upper model. We waive the description of the service behavior and add

90

Chapter 5 Discovery of Atomic Services

the functionality property to the service description instead.

5.2.1 A Formal Model of Functionalities

In this section we first introduce our formal model of atomic services and then present the
formalism to describe service functionality descriptions. The functionality of an atomic service
is described by a set of inputs, a set of outputs, a description of the start and end state,
and a description of the changes caused by the execution. We consider atomic services that
accept user inputs at service invocation time and provide outputs at the end solely. Because
there are no further user interactions amid the execution permitted, the service functionalities
can be described by the states before and after execution without stating anything about the
intermediate behavior and states.

Service functionality property. In Figure 5.2, we show the reduced model of the behavior,
which constitutes the functionality of a service profile description. The functionality is modeled
as a simplified labeled transition system. The states of the service execution still represent
the information state KBα of the agent α providing the service. The first transition sw →i si
denotes the reception of the input parameters. Then, the execution of the services is modeled
by a single operation computation∆ representing the service computation as a black box. It
may cause changes ∆ to the knowledge base KBα of the service provider. Consequently, the
changes by the execution of the operation computation, which is a local action in our original
π-calculus-based behavior model, are encoded into the respective transition label of the LTS.
After the computation, a final transition se →o se represents the output of the results, which
does not change the provider knowledge.

sw
i // si

computation∆
// se o

mm

Figure 5.2: Formal functionality model of atomic services

The service functionality is often explained by its purpose to describe what a service does.
The functionality represents a profile of the behavior description. It typically contains the
description of input and output parameters as well as a description of preconditions and effects
(IOPE).

Based on our formal model of service behavior from above, we introduce a profile describing
the functionality (I,O, φ, ψ,∆) of atomic state changing services. We describe in the following
how each element of the profile can be applied.

Input Parameters I The set of input parameters that is required for (successfully) invoking
and executing the service. A set of variable names specifies the input parameters I.

Start State Description φ After a service has received the invocation (input) parameters, it
is transitioned to the state si, from which the actual execution of the service starts. This
state contains:

91

Chapter 5 Discovery of Atomic Services

• Individuals describing the initial knowledge of the service before the input action
at sw. Again, we assume that the terminological knowledge of the domain of
discourse does not change during the execution and is equal in every state.

• Individuals that represent the input variables. Note that even though the inputs I
are concrete values that are unknown at design time, we can differentiate inputs
from other individuals as the variable names of I mark them as input parameters.

• Formulae (i.e., logic expressions) that are derived as the overall condition from the
conditions ω1, . . . , ωn and actions f1, . . . , fn (from the extensive state-based model
of a service execution as depicted in Figure 4.2).

Output Parameters O Analogue to the input parameter description, the output parameters
of a service are described as a set of individuals, which are sent to the consumer after
the service execution finished.

End State Description ψ After a service has performed all the operations (computing the
outputs and performing changes), the service reaches the end state se.

ψ describes end state se that is obtained after performing the operations f1, . . . , fn to
the state si and the subsequent internal (not observable) states s1, . . . , sn−1.

Changes ∆ The changes caused by the service execution, i.e., updates of the provider’s
knowledge base, are added to the transition label of the local action representing the
service computation.

5.2.2 Description Language

We now turn our attention the concrete description language and the ontological modeling
of the service functionality. Note, that functionality is just another property in our model
of services. That is, there is a property supSvc:hasFunctionalProperty with range concept
supSvc:FunctionalProperty. The vocabulary necessary to describe the service functionality
is inherited from WSMO-Lite [VKVF08], SAWSDL5 [KVBF07], and POSM.6 In addition,
a domain ontology Oω that provides us with the concepts to model service resources in a
description is assumed to be given.

In order to describe a service ω semantically by means of an ontology ODω , the complex
property that describes the service functionality is specified by the following sub-properties.

Input Parameters: Ontology instances that are member of the class posm:Message. The
instance that represents the service itself is related to the input parameters by the
posm:hasInputMessage ontology property.

Output Parameters: Ontology instances that are member of the class posm:Message. The
service instance is related to them by the posm:hasOutputMessage ontology property.

5Semantic Annotations for WSDL – http://www.w3.org/2002/ws/sawsdl, retrieved 2013-08-15
6The Procedure-Oriented Service Model (POSM) ontology is a lightweight approach to the structural

description of procedure-oriented Web services, compatible with WSMO-Lite annotation. See http://www.
wsmo.org/ns/posm/0.1 for the specification, retrieved 2013-08-15.

92

http://www.w3.org/2002/ws/sawsdl
http://www.wsmo.org/ns/posm/0.1
http://www.wsmo.org/ns/posm/0.1

Chapter 5 Discovery of Atomic Services

Start State Description: The state represents the knowledge base KBα from the perspective
of a provider α. It is described by a set of ontology axioms that specify the instances
that represent input parameters and other resources of this state. In ODω , the instances
of the ontology concept wsl:Condition represent the descriptions of a start state. The
service instance is related to them by the sawsdl:modelReference ontology property. The
concept wsl:Condition originates from the WSMO-Lite ontology used for preconditions
of services. The property sawsdl:modelReference is defined in SAWSDL and also equally
used in WSMO-Lite service descriptions.

End State Description: This state is described by a set of ontology axioms that may refer to
the instances that represent input and output parameters. Instances of the WSMO-Lite
ontology concept wsl:Effect represent descriptions of the end state. The service instance
is related to them by the sawsdl:modelReference ontology property.

Changes: Each change is described by its type (using the concepts AddChange, UpdateChange,
and DeleteChange from our process modeling ontology) and an ontology axiom that is
linked to by the property hasChange. The axiom describes results from the change and
holds in the subsequent end state.

The input (analogously output) parameters are modeled as instances of the ontology concept
describing service inputs and the concepts describing the types of the parameters. Latter
concepts are again assumed to be defined in the domain ontology Oω. The start and end states
are described by logical formulae, i.e., statements about the input and output parameters, their
relationships to each other and to other individuals. Individuals different from the input and
output parameters can be additionally added and used to describe the offered functionality.
We denote changes by a logical formula and its change type.

These above properties and concepts assemble the functionality of atomic services. Marking
the instances as input or output parameters allows us to distinguish them from other resources
that are involved in the provision of the service and already exist in the provider’s knowledge
bases.

Modeling changes. Causing changes is an essential feature of useful services, e.g., by creating
a new book order. We need to capture the dynamic nature of services in both service
descriptions and requests. Existing Semantic Web Service discovery approaches provided
limited support to model and reason on the changes caused by a service execution.

Existing approaches do not clearly specify how preconditions, effects (or sometimes referred
to as postconditions) should be interpreted. This makes it very hard to develop automatic
search techniques that are comprehensible for developers and users. A commonality in all
existing approaches is that preconditions, effects (and also postconditions) are expressed
by formulae in a logic like DL or FOL. However, some approaches even use the terms
“postconditions” for “effects” or vice versa leading to even bigger confusion. We now discuss
both options.

If the logical expression is interpreted as a postcondition, then it describes the state after
the service output. However, this suffers from the frame problem. Consequently, it is almost
impossible to only use preconditions and postconditions to specify the functionality of Web

93

Chapter 5 Discovery of Atomic Services

services. It is an even more challenging problem in comparison to software operations because
the knowledge about the complete set of all Web services in the Web cannot be assumed.

If the logical expression is interpreted as the effects of a service, then the end state description
is derived by applying the effects to the preconditions describing the start state. However, logic
formulae are not the right formalism for specifying effects, since it is generally hard to derive
steps required for constructing the state after output from the precondition and effects. For
example, a Web service that removes a user from a mailing list (see Example 11). Then, simply
adding the effect ψ to the precondition φ in order to derive the end state knowledge leads to an
inconsistent state description, because it contains a contradiction. In order to allow a reasoner
to construct correct models efficiently, the effects need to be specified differently.

In our approach, we model the changes ∆ of the service execution in addition to the end
state descriptions ψ. Changes describe the effects of (local) actions that lead to state changes
during the service execution. In some cases, the effects caused by a service execution can be
described implicitly as the “difference” between the start and end state descriptions (φ and ψ,
respectively). However, a simple change like adding instances to the knowledge base cannot be
modeled implicitly due to the underlying open world assumption of ontology reasoners. That
is, from absence of an instance x in the start state and the presence of x in the end state,
we cannot conclude that x was created by the service execution. The same argumentation
applies for changes that update a property of an instance. For example, a product might
have multiple prices (represented by multiple ontology object properties) when the price of
a product is updated in the knowledge base by adding another property value. If we cannot
distinguish between the different price properties, the effect of updating a price cannot be
modeled implicitly. Consequently, we need to explicitly model the effects ∆ of the service
execution.

5.2.3 Modeling Example

We consider an atomic book selling service. The service provides the same functionality as
the example service from Section 4.1.3. However, the behavior is based on the single-request-
response pattern now, which allows us to describe the service functionality using the above
model of a service profile.

Imagine that the atomic service ω requires the following four input parameters with the
invocation: user ID, password, and a book’s author and title. The service creates a shipping
order for the given book. It is shipped to the address that is stored and associated to the
user account. The service finally returns an invoice to the user about the order and the book
details.

The input parameters I and the output parameters O of the service are specified as follows:

I = {ex:id, ex:pwd, ex:author, ex:title}
O = {ex:book, ex:invoice} (5.1)

The description of the start state φ is given below. It states that the described service
requires that the user ex:user with ID ex:id is registered and authenticated by its password
ex:pwd. For a successful execution, the service furthermore requires that the book ex:book
with the specified author ex:author and title ex:title is available.

94

Chapter 5 Discovery of Atomic Services

In addition to these generic features of the book selling functionality, we consider reward
points that the user collects with every purchase. It serves as an example to highlight how
we model changes. In the start state description in Equation 5.2, rwd denotes a data value
representing the number of existing reward points, which will be increased by the amount of
the money spent in every purchase.

φ ≡ ex:Author(ex:author) ∧ ex:Title(ex:title) ∧ ∃ex:book . ex:Book(ex:book)∧
ex:hasAuthor(ex:book, ex:author) ∧ ex:hasTitle(ex:book, ex:title)∧
ex:isAvailable(ex:book) ∧ ex:UserId(ex:id) ∧ ex:Password(ex:pwd)∧
∃ex:user . ex:User(ex:user) ∧ authenticatedBy(ex:id, ex:pwd)∧
ex:hasID(ex:user, ex:id) ∧ ex:hasRewards(ex:user, rwd) (5.2)

The end state description ψ states that there exists an order ex:order for the product ex:book.
The conditions from φ assure that the resource ex:book denotes the desired book with the
specified author and title. The book is shipped to the user’s address ex:address. Furthermore,
it states that there exists an invoice about the order and price, which equals the price of the
book. Also, ψ guarantees that the user receives for each Euro spent for the book another
reward point to its balance after service execution.

ψ ≡ ex:Order(ex:order) ∧ ex:containsProduct(ex:order, ex:book)∧
ex:isShipped(ex:order, ex:address) ∧ ex:Invoice(ex:invoice)∧
ex:containsPrice(ex:invoice, ex:price) ∧ ex:containsOrder(ex:invoice, ex:order)∧
ex:hasPrice(ex:book, ex:price) ∧ ex:hasAddress(ex:user, ex:address)∧
ex:hasValue(ex:price, priceVal) ∧ ex:hasRewards(ex:user, rwd + priceVal) (5.3)

As the changes ∆ caused by the service execution cannot be derived from the difference of
the start and end state descriptions, we explicitly describe them in our example as follows:

∆ = {+ ex:Order(ex:order),

+ ex:Invoice(ex:invoice),

∼ex:hasRewards(ex:user, rwd + priceVal) } (5.4)

The changes ∆ describe that two instances modeling the respective order and the invoice
are created and added to the knowledge base of the end state. Furthermore, the reward points
of the user account have been increased by the service execution. That is, the initial value rwd
was updated to rwd + priceVal. In contrast to [Aga07a], we introduce the update concept,
symbolized ∼. Updates can be modeled by deleting the statement with an old value followed
by adding the statement with an updated value. However, since ∆ is a set of changes, the
order of delete and add statements to simulate an update is not guaranteed by the description
and, hence, the notion of update is required.

Altogether, the functionality description (I,O, φ, ψ,∆) of our example Web service means
that the service requires a valid user identification ex:id, a password authentication ex:pwd as
well as a valid author name ex:author title ex:title for a successful invocation. The service then
creates an order ex:order and returns a description ex:book of the desired book and the invoice
ex:invoice to the invoker after the execution of the service.

95

Chapter 5 Discovery of Atomic Services

5.3 Functionalities in Service Requests

In compliance with our generic model of service requests that we introduced in Section 4.2.2,
we now introduce a formalism to describe the desired service functionality as a property of
the request. Following the paradigm that desired property instances in requests describe a set
of desired property values, we introduce a formal model and a language for the declarative
description of desired functionalities in the subsequent paragraphs. In Section 5.3.2, we will
continue our example and show how this request model for functionalities is applied in practice.

5.3.1 A Formal Model of Functionality Constraints

Within this section, we only consider the constraints on the service functionality. We already
discussed the remaining constraints on any other service property in Sections 4.2.2 and 4.2.3.
It is possible to combine such constraints with the constraints on the functionality by using
the methods presented above.

In a service description, the service functionality (I,O, φ, ψ,∆) comprises five sub-properties
for the description of start and end states along with the description of input and output
parameters and the changes introduced by the service computation.

In a request, the desired functionality is modeled accordingly by five corresponding
constraints (I,O,Φ,Ψ,Λ) on the sub-properties of the functionality description. Each single
constraint is a query that describes a set of desired values of the respective sub-property. We
explain each constraint in the following:

• Constraint I is a query expressed as a logic expression that describes desired sets of input
parameters.

• Constraint O describes the desired set of output parameters. The query O is specified
analogously to constraint I.

• Constraint Φ describes the desired start state description of services.

• Constraint Ψ describes the desired end state description of services.

• Constraint Λ describes the desired changes of a service execution.

Each constraint specifies the set of properties values that are allowed. That is, a matching
service should have properties with values from the requested sets. The I and O describe a set
of desired input and output sets. We allow for the expression of conjunctions, alternatives,
and exclusions of inputs and outputs using Boolean expressions as we already introduced in
Section 4.2.3 for the combination of generic service properties in requests. Analogous to the
constraints on inputs and outputs, Φ and Ψ are queries that express constraints on a set
of desired start and end state descriptions, respectively. The interpretation of both queries
Φ and Ψ is the set of services that fulfill the requested conditions in the states before and
after service execution (respectively described by φ and ψ in the description). The same
interpretation is applied to the constraints Λ on the changes.

A service request expresses conditions over the states by means of logic expressions. The
intention of Φ and Ψ is that both conditions must hold in the start and end state descriptions
of desired services, respectively. Using an expressive logic like first-order logic to specify the set

96

Chapter 5 Discovery of Atomic Services

of desired start and end states not only allows for expressing which conditions are provided by
service offers, but also for excluding services with undesired conditions. In general, first-order
logic expressions can be used within our approach. In a practical realization of the discovery
method that we develop in this thesis as well as in our illustrated examples we restrict the
expressivity to description logics. This restriction is practical as description logic reasoning
remains decidable and existing reasoners implementing the semantics of description logics can
be utilized for realizing our discovery method.

Interpretation of a Request

Intuitively, a service request R is interpreted as the set of desired services, denoted by RI .
(∆I , ·I) remains the interpretation of a request, where ·I maps each requested property
instance, i.e., a property-value-set, into a set of desired property-value pairs. Translated into
the formal model, a request is a power-set of property instances q ∈ Q, each of which is of a
type tq and assigned to a value v ∈ VR,q that is a member of the desired value set VR,q.

Since a request describes a set of services, a set L of labeled transition systems model
several potential services. The set of possible values of the property instance that models the
functionality is the set of all labeled transition systems. Each desired service execution that
fulfills the request R is modeled by one LTS in the set L. The interpretation function assigns
to the requested functionality (I,O,Φ,Ψ,Λ)

1. a set of input parameter sets described by I,
2. a set of output parameter sets described by O,

3. a set of start states sw described by Φ,

4. a set of end states se described by Ψ, and

5. a set of changes ∆ described by Λ.

This interpretation provides us means to formalize the desired value set of the functionality
property as follows. The request R with constraints on the functional property describes
desired sets of input parameters, output parameters, start and end states, and introduced
changes, respectively. The desired functionality (I,O,Φ,Ψ,Λ) is translated into a set L of
labeled transition systems. The set L is used to formally model the set of possible service
functionalities described by (I,O,Φ,Ψ,Λ).

An LTS LR ∈ L models a service functionality in terms of the formal model depicted in
Figure 5.2. We say that LR is an element of the interpretation (I,O,Φ,Ψ,Λ)I of the request.
In other words, LR = (SR,WR,→R) models the functionality of one particular and desired
service configuration R described by the request and is defined as follows:

SR := {sRi , sRe }
WR := {cR}, with cR := (local,∆R)

→R := {(sRi , cR, sRe)}

Because the request R constrains the start and end states of LR, too, the states of LR fulfill
the requirements and constraints of Φ and Ψ.

The LTS LR, which fulfills the requirements of the request, comprises a start state sRi (i.e.,
the state after invocation), one end state sRe , and a transition (sRi , c

R, sRe) ∈→R between the

97

Chapter 5 Discovery of Atomic Services

two states. The label cR ∈ WR with cR = (local,∆R) is associated with the transition and
describes the local action that introduces changes ∆R.

For each state si that entails the requested start state constraint Φ, and for each state se
that entails the requested end state description Ψ, there exists an LTS L ∈ L with a
transition (si, c, se) ∈→ in L. Furthermore, a set of desired changes is attached to the label c of
this transition. That is, there exists an LTS in L for each combination of a particular start and
end state, and a set of changes. A start state si represents a possible answer of the knowledge
base query Φ. Analogously, each knowledge base answer to the requested effect Ψ introduces
one end state se.

5.3.2 Modeling Example

We continue our example of an atomic book selling service. We presented its functionality
description in Section 5.2.3.

A library that frequently places book orders is looking for new and alternative online
retailers that sell and ship books. A service request for such service functionalities may have
the following input specification. Disregarding the remaining request description, the input
specification I corresponds to the set of services that can either identify a book by its ISBN i
or alternatively by the author a and the title t of the book to order. The requested service,
however, should not require any credit card information cc. Coherences between the inputs or
outputs are expressed in the formulae that model requested start and end states, respectively.

I = ¬{cc} ∧
(
{i} ∨ {a, t}

)
O = {inv} (5.5)

The expected outputs shall comprise the invoice inv of the book. The start and end states
are restricted by the following constraints. Within the desired start state description, the
relations among the resources describing the book are specified and no further assumptions
have to hold. After the service execution, the specified book has been sold.

Φ ≡∃book . ex:Book(book) ∧ ex:hasAuthor(book, a) ∧ ex:hasTitle(book, t)∧
ex:Author(a) ∧ ex:isAvailable(book)

Ψ ≡∃inv . ex:Invoice(inv) ∧ ex:hasItem(inv, book) ∧ ... (5.6)

The invoice and the shipped book can be further specified in Ψ, e.g., to express that the
book is shipped to the right address, the invoice is issued to the buyer, and the taxes are shown
separately. However, in order to ensure that the mentioned invoice inv was created for this
particular order, a request has to further describe this change explicitly. It prevents that the
mentioned invoice inv in the end state refers to an object that was previously created for an
order of the same book by the same buyer.

Λ = {+ex:Invoice(inv)} (5.7)

5.4 Discovery of Atomic Services

The discovery of atomic services differs from the model checking based matchmaking technique
for generic services (introduced in Section 4.3) as it applies a matchmaker for the service

98

Chapter 5 Discovery of Atomic Services

functionality instead of the service behavior. We still apply the generic matchmaking method
to match non-functional properties of atomic services and to evaluate combinations of desired
properties of a service request. In comparison to the matchmaking of the behavior, matching
the functionality becomes conceptually easier: only two states need to be considered in
functionality profile descriptions.

In the present section, we focus on matching the requested with the offered functionality of
services. That is, we introduce an automated method for the matchmaking of one particular
service property.

Assume that we have a service repository D that contains a finite number of semantic
descriptions of atomic services and the domain ontologies used to describe each of the services.
Our discovery approach employs a logic-based matchmaking technique in order to compare
each offered service functionality description with a desired functionality description. As there
are no dependencies between different services with respect to the offered functionality, each
service can be matched individually against the request. Hence, a matchmaker can check the
services in D sequentially or in parallel. The discovery result for each service request R is
a set of services that fulfill all requirements expressed by R. The logic-based matchmaking
algorithm produces Boolean decisions, that is, a service is considered to be a match or not.

We use the presented semantics of the description and request formalisms. Based on the
labeled transition systems as their common formal model, the requests are evaluated over the
LTS representation of each service description. The matchmaker checks for a membership
relation between the interpretations of service descriptions and requests, as we consistently
modeled each property of a request as a set of desired values. This applies to all property-value
pairs including the LTS-based formal interpretation of offered and requested functionalities. If
the offered service is in the set of desired services described by the request, our matchmaker
can confirm that all the constraints of the request are fulfilled in the LTS of the offered service
and adds the service to the set of matches.

Model Checking Based Functionality Matchmaking

We define a match between an offered service functionality (I,O, φ, ψ,∆), which is considered
to be a value of the functionality property of a service description, and a functionality
request (I,O,Φ,Ψ,Λ), which is considered to be a value set.

Let Lω denote the LTS interpretation of the functionality description (I,O, φ, ψ,∆) of
service ω, i.e., Lω is the value of the functionality property. Also, let the set L of LTS denote the
interpretation of the requested functionality (I,O,Φ,Ψ,Λ). Analogously, L corresponds to the
set of desired values of the service functionality property. Then, a service functionality matches
a requested functionality if and only if Lω ∈ L. That is, service ω matches a request R if and
only if Lω is a model of RI . In order to define a match, we first clarify the relation between
the behavior descriptions and requests and the functionality descriptions and requests. If we
can translate functionality descriptions and requests into behavior descriptions and properties
(requests), then we can apply the same model checking based matchmaking approach to both
complex and atomic services. Then, the accuracy of the results guaranteed by the logic-based
matchmaking is conserved.

99

Chapter 5 Discovery of Atomic Services

Applicability of model checking. In our approach, every functionality description is also a
valid behavior expression. In both cases we use labeled transition systems as the underlying
structure. The formal model of functionality (cf. Figure 5.2) consists of an input action, a
local action causing effects, and an output action.

A similar relation between requested behavior and functionality exists. Functionality
requests are a subset of behavior properties in requests. A functionality request (I,O,Φ,Ψ,Λ)
can be translated to the following behavior constraints:

• There has to be an initial input action i with the parameters specified in I. We specify
the start state, i.e., the state subsequent to the input action and denoted by si in our
model depicted in Figure 5.2, by the proposition λ(si) = Φ. It is translated into the
following behavior constraint [i]Φ, where i is an input action.

• The requested changes Λ are modeled as a property that demands the existence of a local
action si →c se. In conjunction to the previous constraint, we specify the constraints as
follows:

[i]
(
Φ ∧µ [cΛ]true

)
It states that the condition Φ holds in the state after input action i. Further, we specify
that the local action c with the changes Λ has to take place in the state after the input
action. There are no constraints (expressed by true) on the desired end state after any
local action c.

• After the changes have been performed, the service reaches its end state that is described
by λ(se) = Ψ and performs an output action o, which returns O. After the output, the
condition Ψ remains true. We combine the above developed constraints with the end
state constraints by replacing true with Ψ ∧µ [o]Ψ. We obtain the following single
behavior constraint specification:

[i]
(

Φ ∧µ [cΛ]
(
Ψ ∧µ [o]Ψ

))
(5.8)

Note that we do not make assumptions about the initial state sw before the input action i,
and the output action o does not change the end state se. Consequently, the condition Ψ holds
subsequent to the local action and the output action.

Because the functionality descriptions are behavior descriptions, too, and we can translate
functionality requests into behavior constraint specifications, we can also apply the presented
model checking based matchmaking technique of the previous chapter to atomic services. We
can simplify the model checking process since both the LTS and the request structures are
very restricted.

Matchmaking semantics. The correct order of input, local, and output actions does not have
to be evaluated. The formal model of the functionality of atomic services already defines the
structure. Consequently, we only need to evaluate the set of input and output parameters,
start and end state propositions, and the changes.

Input and output parameters in descriptions and requests refer to the parameter names, i.e.,
without any semantic annotations like types and properties. We check if there is a variable

100

Chapter 5 Discovery of Atomic Services

mapping between the names used for the parameters in a request and the ones used in the
service description. The variables V considered in a mapping are either free variables V , inputs,
or outputs. For every possible mapping m, with

m : V ∪ I ∪O→ V ∪ I ∪O,

we have to evaluate the start and end states and changes as follows.
The start state proposition Φ holds iff the start state si of a service entails the proposition.

Similarly, the end state proposition Ψ holds iff the end state knowledge entails the propositions.
We apply the mapping m to all the parameters in the request.

KB(si) |= Φ[∀x∈I:x←m(x)]

KB(se) |= Ψ[∀x∈I∪O:x←m(x)]

∀δ ∈ Λ : ∃δ′ ∈ ∆ : type(δ) ≡ type(δ′) ∧KB(δ′) |= KB(δ[∀x∈I∪O:x←m(x)]) (5.9)

The changes have to be checked in another knowledge base, as they are not included in the
end state. For every requested change δ ∈ Λ and a mapping m, we create a knowledge base
KB(δ[∀x∈I∪O:x←m(x)]). We check for change type equivalence (type(δ) ≡ type(δ′)) and evaluate
whether there exists a proper change δ′ caused by the service for every requested change δ.

An atomic service matches a requested functionality if there exists a mapping such that the
matching conditions in Equation 5.9 are fulfilled. That is, matching services fulfill the specified
constraints.

5.5 Implementation and Evaluation

We developed, implemented, applied, and evaluated our discovery method for atomic services
in the context of the SOA4All project. We report in Section 5.5.1 on the integration of
the discovery engine into the developed service platform including the alignment to the
used Semantic Web technologies. In Section 5.5.2, we present technical details of the
implementation. We explain how the knowledge bases of a given set of semantically described
Web service descriptions are created, imported into a description logic reasoner, and used
during matchmaking. Based on the implementation of our discovery method, we have
conducted several experiments to measure the performance of the engine. In Section 5.5.3,
we present and discuss the measured performance results.

5.5.1 Service Discovery in SOA4All

The presented discovery method for atomic services has been implemented and evaluated using
the techniques, tools, languages, and data sets given by the project. For instance, we built our
discovery engine on top of the WSML reasoner framework.7 Therefore, descriptions and queries
are bound to the syntax of the Web Service Modeling Language WSML [dBFK+08]. More
precisely, we used the WSML-Flight language dialect [BFH+09] for Web service descriptions
within the project. Of course, our discovery method is not restricted to this choice. It is
possible to use different description logic reasoners and syntaxes.

7WSML reasoner framework – http://tools.sti-innsbruck.at/wsml2reasoner, retrieved 2013-06-16

101

http://tools.sti-innsbruck.at/wsml2reasoner

Chapter 5 Discovery of Atomic Services

WSML-Flight is a language based on WSML-Core, with an extension towards logic
programming. WSML-Core was extended by a rule language that allows efficient and decidable
reasoning and supports Datalog rules with locally stratified negation [LdBPF05]. The basic
WSML-Core covers the intersection of description logic and Horn logic [GHVD03]. The WSML
reasoner that we used also supports data types, which is useful for practical applications of
the discovery engine.

The semantic discovery component is developed as a Web service so that it can be used
by other SOA4All components with standard Web protocols. The discovery service interface
offers a range of operations for various purposes related to the discovery of Web services.

Use of service discovery. The service ranking and selection component ranks the relevant
services that were identified by the service discovery system and selects the most appropriate
results. From an architectural perspective, service discovery is expected to return a set
of services whose service descriptions match the request. The service discovery solution
also enables the construction of services using dynamic and adaptive composition, and the
reconfiguration of constructed services in reaction to environmental changes. At binding time,
parametric templates that represent service compositions as well as the composition optimizer
require concrete services that are identified by the service discovery engine.

Also, all use cases directly depend on service discovery. We already presented how service
discovery was applied, e.g., to locate relevant services within enterprise and e-government
service portals or to dynamically locate and offer complementary third party functionalities
(like sending SMS) in geographical regions in which a telecommunication provider does not
operate (see Section 2.1.1).

Service descriptions. Semantic Web Service descriptions use the WSMO-Lite service
ontology [VKVF08] in conjunction with the Procedure-Oriented Service Model (POSM).
POSM is a service model that represents the structure of a service description containing
concepts like Service, Operation, etc. POSM refers to the concepts provided by WSMO-Lite.
By this, POSM allows us to describe services semantically using WSMO-Lite Annotations
without annotating a WSDL document. In order to bridge the gap between the formal
models on a theoretical level that were introduced above and the concrete implementation,
we provide the mapping between the two levels as depicted in Table 5.1 (posm : and wsl :
abbreviate the namespaces of POSM and WSMO-Lite, respectively). Consequently, we aligned
the vocabulary of the property-based service model to the given concepts from WSMO-Lite
and POSM ontologies.

We decided to attach the end state description ψ to the effect element of the WSMO-Lite
service ontology, because WSMO-Lite effects are specified as conditions that hold in a state
after the service invocation [FFK+10]. The changes of the service descriptions could not be
linked to the service instance using existing service modeling ontologies. Therefore, we used
own vocabulary (such as supProc:hasChange) from the suprime behavior modeling ontology.

Integration with SOA4All service repository. The semantic descriptions are stored in the
SOA4All service repository. Each service is described by one ontology document (denoted

102

Chapter 5 Discovery of Atomic Services

Table 5.1: Mapping between the sub-properties of the formal model and representation in
service descriptions

Formal Model Semantic Service Description

Inputs I posm:hasInputMessage and posm:Message

Outputs O posm:hasOutputMessage and posm:Message

Start state φ posm:hasCondition and wsl:Condition

End state ψ posm:hasEffect and wsl:Effect

Changes ∆ supProc:hasChange and supProc:Change

NFPs wsl:NonFunctionalParameter

by ODω earlier). The external storage location of the domain ontologies (Oω) are referenced
in the header of the service description.

Semantic service descriptions can be created by means of the SOA4All Studio: Given
OWL-S Profile, SAWSDL, and WSDL service descriptions can be imported. Semantic service
descriptions within the SOA4All service repository are modeled using the minimal service
model, which is the vocabulary supported by the repository. The slightly different POSM-based
service descriptions, which are used by the discovery and the remaining SOA4All components,
were easily derived from MSM-based descriptions.

Service descriptions are retrieved from the repository in the form of WSML ontologies
serialized in RDF. We use the RESTful service interface of the service description repository in
order to obtain a list of currently registered Web service descriptions. Each service description
retrieved from the repository is parsed using the wsmo4j API,8 which is a Java API and object
model for WSMO-Lite service descriptions. This then allows us to serialize the parsed service
description into an RDF representation of the WSML ontology using the POSM service model.

Integration with WSML2Reasoner. To achieve the requirement for accurate results, the
discovery solution must integrate and use the reasoning support. A clearly defined interaction
that results in a well-defined interface between the two components was employed. The service
discovery component uses the reasoner to provide an automated method for the matching
of requests and services. Different reasoning functionalities, such as subsumption reasoning,
satisfiability checking, and instance retrieval, are used by the discovery component.

The translated service description ontologies retrieved from the service repository are
imported into the WSML reasoner instance using the reasoner’s RDF parser functionality.
These ontologies build the knowledge base on which reasoning tasks are later performed. In
order to separate the different states of the functionality, we create two knowledge bases. Each
knowledge base is loaded into a separate reasoner instance. By this, we avoid introducing
logic inconsistencies by contradicting state descriptions caused by the changes of a service. We
elaborate this approach when we present the implementation details in Section 5.5.2.

Service templates. A simple graphical interface allows users to formulate and submit service
requests. The requests can combine constraints on the desired NFPs, inputs, outputs,

8wsmo4j – http://wsmo4j.sourceforge.net, retrieved 2013-06-11

103

http://wsmo4j.sourceforge.net

Chapter 5 Discovery of Atomic Services

1 @prefix rdf : <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix st : <http://www.wsmo.org/ns/service−template/0.1#> .
3

4 st :ServiceTemplate rdf:type rdfs :Class.
5 st :hasFunctionalCategory rdf:type rdfs:Property.
6 st :hasInput rdf:type rdfs :Property.
7 st :hasOutput rdf:type rdfs:Property.
8 st :hasPreference rdf :type rdfs :Property.
9 st :hasRequirement rdf:type rdfs:Property.

Listing 5.1: RDF Schema for service template

and start and end states. The request information is encapsulated into a so-called service
template object. A service template is defined by an RDF/S ontology (see [KDPS10], though
the definition has evolved) and contains the elements inputs, outputs, requirements, and
preferences. These elements of a service template are defined by the respective properties
as summarized in Listing 5.1 taken from [KDPS10].

1 @prefix rdf : <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix rdfs : <http://www.w3.org/2000/01/rdf−schema#> .
3 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
4 @prefix wsml: <http://www.wsmo.org/wsml/wsml−syntax#> .
5 @prefix wsl: <http://www.wsmo.org/ns/wsmo−lite#> .
6 @prefix st : <http://www.wsmo.org/ns/service−template/0.1#> .
7 @prefix sf : <http://www.service−finder.eu/ontologies/ServiceCategories#> .
8 @prefix sr : <http://seekda.com/ontologies/RankingOntology#> .
9 @prefix pref : <http://www.wsmo.org/ontologies/nfp/preferenceOntology#> .

10 @prefix bs: <http://www.example.com/bookselling#> .
11 @prefix ex: <http://localhost:8081/DisCloud/serviceTemplates/BSS#> .
12

13 ex:stBSS a st:ServiceTemplate ;
14 st :hasFunctionalCategory sf:BookSellingService ;
15 st :hasInput bs:isbn , bs:id ;
16 st :hasOutput bs:book , bs:inv ;
17

18 st :hasRequirement [
19 rdf :type wsl:Condition ;
20 rdf :value ”?isbn memberOf \”http://www.example.com/bookselling#ISBN\” and ?user[\”http://www.

example.com/bookselling#hasRewards\” hasValue ?rpre] memberOf \”http://www.example.com/
bookselling#User\””ˆˆwsml:AxiomLiteral

21] ;
22

23 st :hasRequirement [
24 rdf :type wsl: Effect ;
25 rdf :value ”?book[\”http://www.example.com/bookselling#hasISBN\” hasValue ?isbn] memberOf \”http://

www.example.com/bookselling#Book\” and ?inv memberOf \”http://www.example.com/bookselling#
Invoice\” and ?user[\”http://www.example.com/bookselling#hasRewards\” hasValue ?rpost] and ?rpre
[\”http://www.example.com/bookselling#lessThan\” ?rpost]”ˆˆwsml:AxiomLiteral

26] ;
27

28 st :hasRequirement rdf:value ”?s[\”http://www.example.com/bookselling#hasDeliveryTime\” hasValue ?dt] and
?dt[\”http://www.example.com/bookselling#lessThan\” int(\”7\”)]]”ˆˆwsml:AxiomLiteral] ;

29

30 st :hasRequirement rdf:value ”?s[\”http://www.example.com/bookselling#acceptCreditCard\” hasValue boolean
(\”true\”)]”ˆˆwsml:AxiomLiteral] .

31

32 ...

Listing 5.2: Example of a service template

104

Chapter 5 Discovery of Atomic Services

Obviously, inputs I and outputs O of a service request are captured by the respective elements
within a service template. Desired start and end state descriptions as well as non-functional
requirements are encapsulated in the requirements field of service templates by using multiple
instances of the hasRequirement property. Start and end state descriptions are logical formulae
and encoded as string representations of WSML axioms. The preferences are used for service
ranking. The functional category is used for a simple classification-based discovery, as presented
in [AJF+09] and depicted in Figure 5.4a.

We give an example of a request serialized as an RDF/S ontology using the service template
schema in the following Listing 5.2. Here, an instance ex:stBSS of the service template
represents the request for a book selling service. A desired service should accept two input
parameters bs:isbn and bs:id, which represent the desired book and a user log-in, respectively.
The first requirement in line 18ff. (Listing 5.2) encodes the description of the start state. It
specifies input parameter types using the concepts of the domain ontology and refers to the
user’s account balance. The end state description in line 23ff. is the second requirement listed
in the example service template and specifies that an invoice for the ordered book is created
and reward points are collected.

The remaining two requirements in Listing 5.2 specify non-functional requirements. It states
the service accepts credit card payments and the service promises to deliver in less than seven
days.

User interface. The service discovery component of SOA4All comes with a Web-based
graphical user interface. In Figure 5.3, the discovery interface is shown for a hotel search
service request. In this shown example, it is specified that desired services should return hotels
that are located in a specified city. Figure 5.4b shows the widget for the functional requirements
in detail.

The discovery user interface is an integrated module of the SOA4All Studio and was
implemented using the Google Web Toolkit (GWT). The user interface allows users to enter a
request for service functionalities by specifying:

• The functional classification of the service. Classification-based discovery was introduced
in [AJF+09]. It allows selecting a set of classes displayed to the user as depicted in
Figure 5.4a. Service descriptions contain an assignment to a subset of available classes.
Each class is represented by a human-readable name and also defined by an ontology
class. These classes can be organized in the form of a hierarchy by defining sub-class-of
relationships between them. However, no semantics with respect to the functionality is
considered in such class definitions.

• The desired functional and non-functional properties of a request. It includes the fields for
inputs, outputs, start state conditions (preconditions), end state conditions (effects), and
non-functional requirements. In order to support users in expressing these conditions,
concepts and properties of registered (domain) ontologies are automatically suggested
for completion as depicted in Figure 5.4b. The suggestions also provide help with the
syntax, e.g., by suggesting applicable operators.

• Preferences that are used to rank the set of results according to what the user describes
in this field. In our fuzzy logic based service ranking approach presented in [AJN10b,

105

Chapter 5 Discovery of Atomic Services

Figure 5.3: SOA4All service discovery user interface: The request is specified on the left and
the search results are displayed on the right.

GJR+13], we allow for fuzzy preferences that combine preferences over multiple service
properties.

After passing the request in form of a service template to the discovery service, the user
interface retrieves a set of services (in fact, we used the notion of operations in SOA4All) that
fulfill the request. If preferences were specified, then the displayed result set is an ordered list
with descending adherence to the preferences. In addition, some further information about a
selected service and operation are displayed on the right side of the Web interface, which is
omitted in Figure 5.3 to improve the readability.

If the requesting user is logged on to the SOA4All Studio with an OpenID account, the
discovered services and operations can be added to the personal list of favorite services. This
favorites list, which is another module of the SOA4All Studio, can then be used in other
modules like the SOA4All Process Editor and allows binding abstract process activities to one
of the elements on the user’s list of favorites.

5.5.2 Implementation Details

As shown above, a simple user interface allows specifying a request. After submission, two
reasoners compute the list of matching services from the repository of Web service descriptions.

106

Chapter 5 Discovery of Atomic Services

(a) Selection of classes from a given classifica-
tion

(b) Specification of functional and non-functional
requirements

Figure 5.4: Request specification in the SOA4All user interface

In the following, we explain how the two knowledge bases are constructed from the service
descriptions and how the matchmaker uses them. Services that were identified as match by
both reasoners are results of the request and are thus displayed to the user.

Knowledge base construction. The functionality of a service ω describes two states. We
create two knowledge bases KB(si), KB(se) that model the state before and after execution,
respectively. Service properties are modeled as properties of the service instance within the
respective knowledge bases.

The input parameters, described in I, are modeled as ontology instances and added to both
knowledge bases. Output variables in O are also modeled as instances but only added to
KB(se). Adding the inputs to KB(se) allows us to reason on the relationships between input
and output parameters.

The start state description φ is added as an axiom to KB(si), which models the state before
the service execution, and the end state description ψ is added as an axiom to KB(se). The
same procedure is applied for adding further service descriptions to the same two knowledge
bases KB(si), KB(se).

We prevent inconsistencies due to adding multiple service instances to the same knowledge
bases by assuming and ensuring unique names of individuals. That is, it is not possible that
the same ontology instance is used in multiple service descriptions. In case of any conflicts, a
substitution by renaming the instances resolves a clash without altering the semantics of the
service description. Aside from these two knowledge bases, we create a knowledge base KB(δ)
for every change δ ∈ ∆ of a service.

107

Chapter 5 Discovery of Atomic Services

KB(se) KB(δj)KB(si)

R Service Request

W

qi qe qΛ

Wi We WΛ

Results W = Wi ∩We ∩WΛ

...

KB(∆)

KB(δi)

Figure 5.5: Decomposition of a service request R into knowledge base queries

Matchmaking. The discovery engine receives a request from the user interface and translates
it into two queries qi and qe expressed in the WSML query language syntax. Figure 5.5 depicts
the decomposition of the request into the knowledge base queries. The query qi is created
from the requested inputs I and the requested start state description Φ. It is sent to the first
reasoner instance that models KB(si). The query qe is created from the requested outputs O
and end state description Ψ. The query may also comprise input parameters from I within the
formula Ψ. This query is sent to the second reasoner instance that models KB(se).

Both reasoner instances execute the respective queries qi, qe on their knowledge bases that
contain several services. In order to answer the query qi, the first reasoner determines for each
service ω modeled in KB(si), whether required inputs with appropriate parameter types and
the condition Φ holds in the start state. That is, the reasoner checks whether the requested
start state Φ of a request is fulfilled by the facts in the ABox that were introduced by the
start state description φ of the service ω. In order to do this, the reasoner checks all potential
variable mappings between query and service description including input variables. If there is a
variable mapping that fulfills the constraints on the start state descriptions and the requested
set of I, a match is identified. Query qe is processed analogously by the second reasoner
instance with KB(se).

Below, a fragment of an example query that is sent to the first reasoner instance is presented
in WSML syntax. The example query is shown in the syntax that is also accepted by the
WSML-Flight reasoner for retrieving instances. The instance retrieval reasoning task is used
to ask for services (?w) in the knowledge base that fulfill any requirement specified in the
remaining query. In WSML syntax, the question mark denotes variables.

108

Chapter 5 Discovery of Atomic Services

?w memberOf posm#Service and ?w[posm#hasCondition hasValue ?p] and

?w[posm#hasInputMessage hasValue ?t] and ?t memberOf ex#Title and

?w[posm#hasInputMessage hasValue ?a] and ?a memberOf ex#Author and

?p[posm#hasVariable hasValue ?b] and ?b memberOf ex#Book and

?b[ex#hasTitle hasValue ?t] and ?b[ex#hasAuthor hasValue ?a] and ...

The shown query contains the specification of requested inputs, their types, and the start
state. In WSML syntax, posm# abbreviates the POSM namespace. The shown query asks
for services that have two inputs ?a and ?t of type Author and Title of an example domain
ontology with the prefix ex#, respectively. The inputs describe a book ?b of type Book. The
continuation of the example may also specify further conditions on the book ?b et cetera.

After sending the queries qi and qe to the corresponding reasoners, the reasoners bind the
variable ?w to ontology instances that represent services and fulfill the queries qi and qe,
respectively. We aggregate the intermediate result sets Wi ⊆ D and We ⊆ D, i.e., bindings
for ?w, by computing the intersection of the set. The query qΛ is sent to the box on the right
of Figure 5.5. Here, each reasoner models in KB(δi) a single change δi of a service. If the
requested changes in qΛ match the all the changes caused by a services, then this service is
part of the intermediate results WΛ ∈ D. A service is a match for a given request, if the service
is an answer to for all queries qi, qe, and qΛ, i.e., the service is identified as a match by the
reasoners. The user interface of the discovery engine receives the list of matching services and
displays them to the user.

The above described prototypical implementation was published by the SOA4All consortium
under an open source license.

5.5.3 Performance Results

We performed several tests of the implementation of the semantic service discovery method.
As the presented formal approach already guarantees the result accuracy and therefore the
applicability of discovered services for a given task at hand and described by the request, it
is not necessary to assess the result quality, e.g., based on precision and recall. Instead, we
tested the performance of the discovery implementation in order to examine its feasibility
and tractability. That is, we measured the query answering time, specifically the time
between submitting a request and the retrieval of the discovery results. Typically, semantic
matchmaking highly depends on the performance of the reasoner and the reasoner performance
again depends, among other things, on the size of the knowledge base. In [WP10], the
performance of the WSML reasoner was evaluated.

In the context of the SOA4All project, the Web service description repository was
populated by seekda, a company that crawls the Web for Web services. However, given
that service descriptions crawled by seekda mainly represent the information derived from
WSDL service descriptions, we decided to synthesize rich semantic service descriptions in a
fairly large scale to carry out our evaluation experiments. The SOA4All service description
repository also did not provide a large number of semantic service descriptions at that time.
Therefore, we created a set of randomly generated service descriptions with varying size
ranging from 1,000 to 30,000 descriptions, which is approximately the number of currently
available Web services according to seekda.9 We used the Semantic Web for Research

9Trends available at http://webservices.seekda.com/about/web services, retrieved 2013-08-15

109

http://webservices.seekda.com/about/web_services

Chapter 5 Discovery of Atomic Services

Community (SWRC) ontology [SBH+05] as domain knowledge to model service descriptions.
It provides terminological knowledge (TBox) comprising ontology concepts and properties. We
use this domain ontology to model types of instances (like input and output parameters) and
to express the conditions used to describe the states. We measured the reasoner’s mean query
answering time of 100 repetitive runs.

As we abstract from the distinction between services and operations, the synthetic semantic
service descriptions provide one operation each. An operation expects 1 to 8 inputs and returns
1 to 8 outputs. The precise numbers were chosen randomly. Note that we refer to message parts
of the input or output message of the service operation. Each input and output is assigned
to a random concept of the SWRC ontology within the description of start and end states,
respectively. Then, we randomly generated up to 8 further variables for each state description.
Each variable or input/output parameter can be related with other ones within the start or
end state. Further, we generated up to 6 non-functional properties per service. Non-functional
properties are modeled by an instance of an ontology concept, which is associated with a
random precise value within the range of property values. The service description generator is
available at http://sf.net/p/svcgenerator/.

We conducted these experiments on two different machines and examined the ability to
handle as many service descriptions as possible. The measured query answering time provides
us information about the feasibility of the discovery method. As we stated in Section 2.2, the
matching services have to be delivered by the discovery engine in a time frame that will not
hamper the software development process, e.g., of Web applications. We deployed our system to
a commodity laptop in Setup 1. As we quickly experienced that the ontology reasoner requires
more main memory to load and reason over large ontologies, which is required to support large
service repositories, we deployed the discovery engine to a more powerful computer in Setup 2.

Setup 1

Both queries qi and qe are sent in parallel to the reasoners, which compute the answers on a
commodity laptop with dual core 2.4GHz CPU and 4GB of main memory. Both knowledge
bases contain 1000, 2000, 3000, 4000, and 5000 Web service descriptions. Queries of three
different sizes are sent to each knowledge base. Small (S1), medium (M1), and large (L1)
queries with 1, 2, 3 instances and 2, 4, 6 properties on those instances are issued, respectively.
Figure 5.6 shows the mean time in milliseconds for different knowledge base and query sizes.

Although the curves presenting our measurements in Figure 5.6 almost indicate a linear
relationship within the tested range, we cannot assume linear or polynomial discovery
complexity. The upper bound complexity of description logic reasoning is often Exptime-
hard or even worse [Don03]. Therefore, we cannot claim scalability based on the observed
measurements. However, we can derive that the feasibility of the presented approach applied to
rather small service repositories can be observed. The figure reveals that the query complexity
and the number of Web service descriptions loaded into the knowledge bases of both reasoner
instances affects the time to compute the search results. However, the main memory usage
of the ontology reasoners did not allow increasing the number of service descriptions further.
Therefore, we repeated this experiment on a more powerful computer in Setup 2.

110

http://sf.net/p/svcgenerator/

Chapter 5 Discovery of Atomic Services

1,000 2,000 3,000 4,000 5,000

200

400

600

800

1,000

1,200

Number of Web services

Q
u

er
y

an
sw

er
in

g
ti

m
e

in
m

s S1

M1

L1

Figure 5.6: Setup 1: Mean query answering time with increasing number of Web service
descriptions for three query sizes

Table 5.2: Query sizes tested in the experiment (setup 2)

Small (S2) Medium (M2) Large (L2)

Variables 6 9 12

Relations 9 12 15

NFRs 2 4 6

Setup 2

We measured the mean query answering time of the reasoners on a quad core Xeon
CPU (2.33GHz) powered machine with 48GB main memory. We were able to load and reason
over 30,000 Web service descriptions on this machine.

We also increased the query complexity in order to measure query answering times for
even more complex use cases. Queries of three different sizes were sent to each knowledge
base, as listed in Table 5.2. Small (S2), medium (M2), and large (L2) conjunctive queries with
respectively 6, 9, and 12 variables and 9, 12, and 15 properties within the desired start and end
state descriptions. Furthermore, each of the queries contained 2, 4, and 6 NFRs, respectively.
As depicted in Figure 5.7, the time to answer these queries ranges from 2.8s, 4.2s, and 5.0s for
5,000 service descriptions to 17s, 23s, and 33s for 30,000 descriptions for small, medium, and
large sized queries, respectively.

Note, the purpose of Figures 5.6 and 5.7 is to show the feasibility of the presented discovery
approach. It is clear that the query answering time highly depends on size and structure of
the used domain ontologies, size and complexity of the query and service descriptions.

111

Chapter 5 Discovery of Atomic Services

0.5 1 1.5 2 2.5 3

·104

0

10

20

30

Number of Web services

Q
u

er
y

an
sw

er
in

g
ti

m
e

in
s S2

M2

L2

Figure 5.7: Setup 2: Mean query answering time with increasing number of Web service
descriptions for three query sizes

Discussion

In order to assess the results of our experiments, we want to provide some references to related
semantic discovery approaches that provide performance results. Such results comprise time
measures for the computation of the desired service functionalities. We want to emphasize
that results, especially the query answering time, cannot be easily compared. The usage of
different hardware, the varying size of semantic service descriptions, requests, and domain
ontologies are technical reasons that lead to the incomparability of different approaches, at
least with respect to the query answering times. The use of standardized benchmarks or so-
called discovery challenges, e.g., the Semantic Web Service Challenge,10 [GCGPP+08] can often
overcome these problems. However, the use of different models, expressivity, and complexities
disallows the comparison of different discovery approaches based on their query answering
times. Approaches that differ in this sense provide different capabilities and probably aim
at different use cases. However, at this stage, we can show the feasibility of the presented
discovery approach.

Clearly, the measured query answering time depends on size and structure of the used domain
ontologies as well as size and complexity of the query and service descriptions. The current
implementation did not focus on efficiency and scalability, yet. Nevertheless, these results can
be significantly improved by various options, such as introducing indexing structures, increasing
the computational power, and distributing the reasoning process [Boc08].

In related works, the measured query answering time of alternative Semantic Web Service
discovery approaches were reported. For example, [KMP06] provides experimental results from
a test bed related to the European INFRAWEBS project. The authors conclude that matching
a WSML Goal against semantic service descriptions scales up to 1,000 service descriptions while
it returns results within 5 seconds.

10Semantic Web Service Challenge – http://sws-challenge.org, retrieved 2013-06-15

112

http://sws-challenge.org

Chapter 5 Discovery of Atomic Services

Stollberg et al. report mean query answering times of 72 seconds against 2,000 Web service
descriptions when using a naive approach that they reduced to 0.3 seconds by using semantic
discovery caching (SDC) [SH07]. As we will further discuss in the related work section of
this chapter, the SDC technique relies on a precomputed caching structure within a global
hierarchy of goals. The query is answered by a simple lookup which leads to the fairly fast
response time.

Another example for an approach that relies on a precomputation phase is provided
in [Lar06]. An experiment shown in [Lar06] with 2,000 Web service descriptions measured
a classification phase with more than 160 seconds and query answering time of about 20ms.

5.6 Related Work

The development of automated methods for the discovery of services is a fundamental enabler
for the development of intelligent systems based on services. Quite a few semantic service
modeling and discovery approaches have been proposed in the past. Although extensive
research has been carried out in the field of Semantic Web Service discovery, we initially
identified requirements on a discovery method that are not completely fulfilled by existing
approaches. The inadequacies of existing Semantic Web Service discovery approaches can
be best observed when considering our scenarios and the requirements that can be derived
from them. Often, the related approaches were developed for human use, which benefits from
more flexible matchmaking methods and less expressive request languages that can be easier
presented to end users. Other discovery approaches that were intended for automated use,
e.g., for an automated service composition, often provide less expressive formalisms for service
descriptions and requests than our approach, and aim at the development of tractable solutions
of the composition problem. It is important to keep in mind that when we relate our approach
to existing ones, we will also highlight why they are not the best solution applicable to our
scenarios.

Service Profile Descriptions

Service profile descriptions haven been broadly applied to describe the functionality of Web
services. We explain how different approaches or service modeling frameworks describe the
functionality, including state changes if applicable.

The Semantic Web community with focus on languages provides description logic based
approaches [BHL+05, SPAS03, GCTB01]. The approach by Li et al. in [LH03] represents
objects like inputs and outputs as concepts in description logics. This approach further
combines the use of DL with DAML+OIL and DAML-S and defines different matching
degrees. Service description and request are similarly structured comprising inputs, outputs,
preconditions, and effects. Discovery, i.e., matchmaking, is based on the intersection of service
offer and request and is reduced to checking subsumption of input and output types. However,
DL-based approaches fail to reason about the dynamics of Web services, since DL reasoners
cannot reason about changing knowledge bases. Consequently, more recent research activities
concentrate on more detailed formalisms, for instance the state-based perspective on Web
services that is discussed below. These models allow modeling the dynamics of Web services.

113

Chapter 5 Discovery of Atomic Services

The OWL-S Service Profile comprises three pieces of information describing (i) the service
provider organization, (ii) the function that the service computes, and (iii) a host of features
that specify characteristics of the service [MBH+04]. Within the scope of this chapter, we
focused on information that can be expressed by the OWL-S functional description of a service.
OWL-S proposes to model Web services semantically with inputs, outputs, preconditions and
effects [MBH+04, SPAS03]. The set of inputs is required for (successful) execution, and the
precondition must be true from the provider’s perspective in order to (successfully) execute
the service. The expected effects result from the execution, e.g., stating that a credit card
was charged. The parameters and the condition and effect expressions can be described in
the process model and referenced in the Service Profile. Preconditions and effects are logical
formulae that can be expressed in any language. The Service Profile represents both service
offers and requests [MBH+04]

Changes caused by the service executions are described in the effects element. However,
as changes are expressed by logic expressions (e.g., using KIF conditions, SWRL rules, etc.),
it can be expressed that a fact can be assumed to be true after the execution. However, it
remains unclear if this fact was true before the execution or not. Furthermore, it is hard to
use logic formulae to state that something was updated or deleted by the execution. In order
to overcome this problem, we added a type to each change description. Each change in our
model can either add, update, or delete instances in the knowledge base. We furthermore
describe the end state of the service execution by the expression ψ in our model of the service
functionality. An end state can become relevant in the discovery phase. This is because
it models the relationships between input and output parameters and relationships between
outputs and other parameters that were created during the execution. End states cannot be
derived completely from the OWL-S Service Profile description due to the frame problem.

In addition, OWL-S allows describing under what conditions the outputs are returned. For
this, the concept process:Result is used and alternative traces of a service can be expressed. We
did not consider alternative configurations, traces, and failure handling in our model of service
descriptions. Still, our approach can be extended to embrace conditional outputs as proposed
in OWL-S.

The Web Service Modeling Ontology WSMO provides four aspects related to Semantic Web
Services: Web services, ontologies, goals, and mediators. WSMO Web service capabilities are
part of the service descriptions. They describe the functionality of a service as capabilities of
the provider and are modeled by the preconditions, assumptions, postconditions, and effects.
Preconditions and assumptions describe the requirements for a correct service execution, which
then causes that postconditions and effects result from it [ABK+04]. WSMO introduces
shared variables that are universally quantified over WSMO assumptions, preconditions,
postconditions, and effects in order to relate preconditions and assumptions with postconditions
and effects.

According to the WSMO specification in [dBBD+05], the precondition corresponds to the
start state description from the perspective of the service provider. The assumption describes
the start state of the world in general. Although it can be problematic to describe the world,
this description element can capture the conditions on the consumer side for a correct execution.
While the consumer perspective can be useful for a requester, these conditions cannot be
validated by the provider, because providers cannot access the consumer’s knowledge. In our
approach, we therefore omit the description of conditions on the consumer’s side. Instead, we

114

Chapter 5 Discovery of Atomic Services

express such constraints in the start state description, too, if the service provider checks the
correctness of the assumptions on the input parameters of a service invocation. The WSMO
postconditions describe the provider knowledge after the execution. This view corresponds to
our end state description ψ. Furthermore, the WSMO “effects describe the state of the world
after the execution of the Web service” [dBBD+05]. Apart from the possibility to describe
the effects on the consumer’s knowledge, which is captured by the end state description ψ in
our model, the changes caused by a service execution cannot be entirely reflected by a state
description. In order to highlight this distinction to our model, we used the term ‘changes’ and
modeled changes differently. In comparison to the WSMO model, we additionally describe
how the service execution led to the conditions that hold in the end state. It allows for a
description and interpretation of more details of the service functionality.

Recently, WSMO-Lite has been proposed for describing Web services as the next evolutionary
step after SAWSDL. WSMO-Lite fills SAWSDL annotations with concrete semantic service
descriptions [VKVF08]. The WSMO-Lite ontology is on one side lightweight and provides
on the other side elements for modeling the functionality of Web services. WSMO-Lite does
not contain ontology elements for adding input and output parameters to service descriptions
explicitly. Instead, the free variables in preconditions and effects are considered to be input
and output parameters, respectively. Note that such a derivation is not possible if a formula
does not have any free variables but the Web service has inputs or outputs.

Semantic Web Service Discovery

The matchmaking of DL-based service discovery approaches that were only considering input
and output parameter types in service descriptions and requests is computed by subsumption
reasoning. A matching technique for stateless Web services is proposed in [HZB+06]. This
approach is restricted to conjunctive queries, since the query containment problem is decidable
for such queries. The OWL-S matchmaker [PKPS02] uses OWL-S Service Profile for describing
offers as well as requests. However, these approaches have in common that a dynamic world is
modeled with static languages and logics. Consequently, they cannot model the functionality
of state changing services, which is required in realistic service discovery use cases. The OWL-S
Matchmaker [SPS04] as well as other known Semantic Web Service discovery approaches also
lack support for the specification of desired and undesired changes in requests.

The discovery approach in [MPM+04] is based on OWL-S and describes service function-
alities semantically by inputs, outputs, preconditions, and effects. This approach interprets
preconditions as constraints that need to be satisfied for the service requester only and effects as
side effects of the service execution on the world. The given perspective supports the discovery
use cases in which users may search for services based on the requirements that they have to
fulfill. However, it can be argued whether client-side conditions are relevant as they cannot be
evaluated during service invocation and execution time (by a provider or an execution engine
with limited access to the client’s knowledge base). Additional conditions that have to hold
on the requester’s side can support users, but service providers cannot rely on them. In our
approach, we model conditions that hold at the service provider’s side since those conditions
can be evaluated during service invocation and execution time.

The state-based service discovery approach in [SHH07, SHF11] uses a state-based formal
model of service descriptions [KLS06]. The functionality of a Web service is formally described

115

Chapter 5 Discovery of Atomic Services

by the set of possible Web service executions while each normal execution of a Web service is
determined by its start and end state. Preconditions and effects constrain the start and end
states, respectively. A state describes how the world is perceived by an external observer. This
implies that preconditions and effects may contain all observations that can be made. In their
works, they only restrict the amount of information to those relevant for the use of the formal
model.

Their discovery approach applies the WSMO description framework. In [SHF11], they
substitute the shared variables in the precondition with their pre-variant. The pre-variant
variables are fluents, which can have different values in different states, and are obtained by
substituting the original variable name by a new unique name. It is claimed that this approach
allows for reasoning with traditional model-theoretic semantics. However, the relationship
between dynamic symbols in effects and their pre-variant in preconditions still needs to be
managed on top of a (description) logic reasoner. Although [SHH07, SHF11] addresses changes
in the knowledge bases by the introduction of dynamic symbols, the discovery approach
presented in [SHH07, SHF11] fails to reason about the dynamics of Web services. The
discovery algorithm relies on the assumption that the precondition φ logically implies the
effect ψ of a Web service execution. Modeling a transition as a logical implication φ⇒ ψ can
be problematic, e.g., in case of a Web service that deletes a certain fact, the existence of the
fact would imply nonexistence of the fact, e.g., a user subscription would imply that the user
is not subscribed anymore (as discussed Section 5.1.2 and shown in Example 11).

As dynamic symbols are used in the logical formulae φ and ψ, the (model-theoretic)
implication semantics of φ⇒ ψ is not wrong for changing knowledge bases during Web service
execution. However, the state changing semantics of the service description is compromised
due to the use of different symbols representing (consequently different) individuals in different
states. For instance, if the balance balance(acc) of an account acc changes during Web service
execution to balanceψ(acc), then a withdrawal of an amount of 150 can be expressed by the
relationship between both balance values equal(balance(acc), balanceψ(acc)− 150). However,
by the introduction of a second symbol balanceψ to the knowledge base, the uniqueness of the
symbol balance is lost.

Hybrid matchmakers like the ones presented in [KFS09, KK12] employ logic-based
matchmaking techniques in conjunction with information retrieval techniques. The latter
techniques promise to improve the discovery process with faster results and also increase the
precision and recall of the discovery results. However, the result accuracy that we aim at is
not given.

Service Request Specification

Goal-driven approaches like [KLL+05, SHH07, LCC08, SHF11] do not explicitly specify inputs
as parts of the goal. However, a goal needs to be mapped to a request for finding appropriate
Web services. In such a request, constraints on inputs can be useful, in particular if a user
wants to relate the produced outputs to the provided input parameters or wants to exclude
a particular input parameter. In goal-based approaches, goals are mapped to predefined goal
templates that are used to find appropriate Web services. One major difference between our
approach and goal-based approaches is that we interpret inputs, outputs, start and end state

116

Chapter 5 Discovery of Atomic Services

descriptions differently from descriptions of changes and requests. Namely, we interpret the
former as a pair of states and the latter as a pair of queries.

Non-Functional Properties

The discovery approaches that we mentioned so far did not consider non-functional properties
for Web service discovery. In OWL-S, non-functional properties are considered as human-
readable metadata, e.g., a service name.

The need for the inclusion of non-functional requirements expressed in a request has
been discussed by the group developing the WSMO specification [ABK+04, OLPL04].
WSML [dBFK+08] does not include non-functional properties into the logical model.
Consequently, no reasoning on them is possible. The WSMO specification defined non-
functional properties. So far, however, there is no prominent implementation available that
considers them. O’Sullivan et al. [O’S06] described a set of non-functional properties relevant
for Web services and their modeling, which were formalized in a WSMO deliverable [TF06].

Semantic modeling [KP07] and matchmaking [KP09] of non-functional properties of services
has been studied. An extension of existing service description models to provide semantics for
the non-functional service parameters in order to overcome the limitations of the syntactical
quality of service descriptions was suggested. The mentioned works focused on the modeling
of the non-functional property structure, e.g., the entire metric with units, value types, and
information about the conducted measurements, which is beyond the focus of our work.
However, in [KP07] the authors give recommendations in order to extend existing discovery
techniques based on the requirements on a service description model they identified. In [KP09],
they introduce NFP-aware service matchmaking based on mixed integer programming, which
leads to the separation of a logic-based capability matchmaking and the evaluation of non-
functional requirements. Such separation is not desired in our approach, as we target rich
requests that embrace functional and non-functional requirements uniformly.

5.7 Summary and Conclusions

In this chapter, we focused on the application and extension of the discovery method developed
in the previous chapter to atomic service. Our aim was to support the modeling of the service
functionality, which can be considered as a profile of more generic service behavior descriptions.
The service functionality is a central property of atomic services that implement a single-
request-response pattern. Examples for atomic services are classic Web services and Web APIs
that constitute the central element of service-oriented architectures and the center of attention
in the Semantic Web Services community.

We applied our property-based service model from Section 4.1.1 in order to establish a
comprehensive model for service descriptions including a high flexibility for a future extension
by further properties. Following the model checking driven matchmaking approach, we
developed a model to express constraints on the functionality of atomic services in requests.

The developed discovery method for atomic services builds on the description and request
models. We presented a formal interpretation of each sub-property of the requested
functionality and presented the matchmaking technique that evaluates the requests over the
state-based representation of service functionalities.

117

Chapter 5 Discovery of Atomic Services

In Section 5.5, we presented details on the implementation of the discovery method. We also
showed how the developed service discovery engine was integrated and aligned to existing Web
technologies that were used within the SOA4All framework. Based on this implementation,
the performance of the developed method was measured and its feasibility for discovery over
up to 30,000 Web service descriptions was verified.

Appropriate formalisms for the description and discovery of atomic services have been
provided. However, the evaluation results clearly showed that such an expressive approach
might not scale up for millions of services as envisioned in [Abe09, DFD+09, Zuc10]. Because
scalability and efficiency are crucial to enable Semantic Web Service discovery on a large scale
in the Web, we will further focus on improving the discovery performance. By the introduction
of index structures and a materialization of discovery results, we expect to handle larger
sets of Semantic Web Service descriptions. More specifically, we identified parameters that
influence the complexity adversely and propose a classification-based technique to reduce the
complexity of service discovery in the next chapter. The main idea is to assume a classification
of functionalities and precompute whether a service is a match for a class. We will examine
the potential to scale for a large number of services in further performance evaluations of
subsequent chapters.

With respect to the existing works in the area of Semantic Web Service discovery, we
have shown that we can apply a matchmaking technique that is based on model checking.
We presented a discovery method for atomic services that seems more practical as it relies
on a request formalism that is close to the intuitive interpretation of a search request. It
further allows for a precise specification of wanted and unwanted properties. Both features
are in contrast to intersection-based matchmaking approaches. Therefore, we investigated the
problem of using the same formalism for service descriptions and requests, especially in the
context of atomic services, in Section 5.1 thoroughly.

In order to fulfill the requirement for the accuracy of search results, our discovery method
does not compute relaxed matching degrees that correspond to certain degrees of intersection
of the set of service execution runs as illustrated in Figure 4.6. Instead, we provided formalisms
that allow users to clearly specify a query with unambiguous interpretation. If a query does
not deliver any results, then query relaxation or manual query refinement can be applied. The
former method can thus simulate a subsume or intersect match since a less restrictive query
will be able to return services that would match a query by subsume or intersect match.

118

Chapter 6
Classification of Services

Prominent service modeling frameworks such as WSDL-S, SAWSDL, OWL-S, WSMO, and
WSMO-Lite have proposed to model a classification of services explicitly as an efficient mean
to retrieve services and for implementing the service matchmaking, which can become very
complex otherwise. However, these frameworks only provide a reference element without
specifying how these classes are defined. Hence, the relation of a service classification to
other explicitly modeled service properties remains unclear.

In this chapter, we present a formal underpinning of service classes by viewing them as a
set of services that fulfill a logical combination of constraints on functional and non-functional
properties. A hierarchy of service classes is automatically derived from their formal definition
and can be exploited for an efficient service discovery. In addition, we show in this chapter
how service classes can be used (i) to create service descriptions without specifying precise
property values and (ii) to create service requests that can use service classes to easily express
ranges of desired property values.

A service classification aims at improving the discovery efficiency by an early reduction of
the search space. The number of properties that are verified at query time and the number
of expensive DL reasoning tasks of a matchmaker are reduced. Hence, our discovery method
is able to evaluate requests faster in comparison to the same method that does not exploit a
classification. As a consequence, our discovery method can treat larger service repositories,
while maintaining an acceptable query answering performance, which is required for the aimed
use cases. At the end of this chapter, we investigate the expected performance gain of the
classification-based discovery approach.

The classification of services promises a significant performance gain for the discovery task,
especially when rather complex services, i.e., Web-mediated services with complex interaction
patterns, are included. Here, the discovery efficiency becomes even more critical, because
(i) there are a considerable number of complex services available that is typically used by end
users, and (ii) evaluating the constraints of a request on services with complex behavior is
computationally more complex. Therefore, we will apply the concept of meaningful service
classes, which provide a formally specified semantics, not only to atomic services but also to
complex services. We focus in this chapter on the behavioral properties of services and their
representation in service classes. Non-functional properties can be used in a similar fashion,

119

Chapter 6 Classification of Services

but as non-functional properties with a simple structure (like the price of a service) can be
efficiently matched anyway, this chapter focuses on the service behavior, as the performance
gain by the introduction of a classification is more decisive for this aspect.

Our approach of a service classification with meaningful classes has been presented
in [AJ11, JAS12]. The former publication introduces classes of atomic services and considers
the functionality as well as non-functional properties. In [JAS12], we focused on the
classification of the behavior of complex services.

6.1 Motivation of Meaningful Service Classes

In the Web there are a large number of (business) services with complex behavior, such as
e-commerce websites that require multiple interactions with the user, as well as an increasing
number of Web automation scripts to coordinate the execution of multiple complex services.
However, while there are quite a few search techniques for atomic services, search techniques
for complex services are still rare and only foundational. In this section, we present behavior
classes that have formal semantics as well as human comprehensible names in order to
foster the usability of specification of constraints, and the efficiency of search for complex
services and processes. Our approach enables automated methods for (i) assigning behavior
classes to complex behavior descriptions, (ii) checking consistency of such a classification, and
(iii) computing behavior class hierarchies. Furthermore, human comprehensible names for the
behavior classes increase usability by allowing for shorter service descriptions and requests.
Our evaluation results prove that a behavior class hierarchy can be exploited as an indexing
structure and show a significant improvement of the achieved search performance.

A large number of services are offered in the form of websites that have complex behavior
(multiple user interactions that may even depend on the user input at previous interactions of
the same process run etc.). Furthermore, there are often multiple websites offering the same
or similar functionalities and information. In order to gain a broader overview of the desired
product, information, or functionality, a user often needs to follow several paths on various
websites by providing the required inputs at appropriate time, and accepting the (intermediary)
outputs.

Different websites offer different granularity of information and functionalities and
have heterogeneous navigation paths. Logical dependencies between the information and
functionalities provided by different websites affect the order in which they are executed by a
user. This makes it difficult for end users to coordinate the execution of various websites, and
aggregate the information gathered from them. Web automation scripts, originally developed
for the purpose of testing websites by developers, are turning out to be promising for end users
as well, since they can automate this tedious process to a large extent. However, finding and
composing Web automation scripts remains very difficult, since it requires a lot of manual effort
due to the huge gap between the user requirements and the functionality offered by existing
search techniques. In order to find and compose complex executable models, users need to
be able to search by constraining the behavior of the models as well as the information they
require and deliver at various stages during their execution. The search for websites and Web
automation scripts is typically based upon syntactic matching of keywords with the content at
the surface Web (as opposed to the Deep Web [Ber01]), or with manually added tags of the

120

Chapter 6 Classification of Services

script respectively. Even though the tags could hint at the functionality of a script, tagging
requires manual effort and is often faulty [BW99]. In order to equip users with the power of
finding, creatively combining, and executing websites for emerging more and more sophisticated
use cases, a process-oriented view on websites is required. Even if the syntactic keyword-based
approaches were extended to support the process-oriented view, they would still be restricted to
support end users only. If an execution engine encounters problems like a failing service during
runtime, it is often desired that it finds and composes an alternative solution automatically,
and resumes the execution. However, the requirements for an alternative are known to the
system in the form of structural constraints that have a formal semantics in the first place,
and not as ambiguous natural language keywords. Formalisms available for modeling complex
distributed processes and automated reasoning about them, including our work of the previous
chapters, are neither easy to use for end users, nor do they exhibit acceptable performance
and scalability for practical purposes. In this chapter, we propose a way out of this problem
by introducing the notion of service classes that have human comprehensible names as well as
formal definitions.

Most service description frameworks include the concept of service classifications in
their model. E.g., the OWL-S Service Profile has the notion of ServiceCategory and
serviceClassification, WSDL-S provides the element category, and the WSMO-Lite ontology
defines a class named FunctionalClassificationRoot, which is used as a super-class of any domain-
specific service class. The common approach is to link the ontology individual representing the
service to one or more externally defined classes.

The service description frameworks assume that a taxonomy of service classes is given.
Standardized classifications like the UNSPSC, for instance, were recommended for this purpose
by UDDI, OWL-S, and WSDL-S [UDD01, MBH+04, AFM+05]. Services can be assigned to
these classes by annotating their service descriptions accordingly. This approach is attractive
because it is as easy as tagging and provides the advantage that it can be exploited for an
efficient service discovery, as a request formalism composed out of desired class identifiers
remains trivial.

Although the classes can be embedded formally in a taxonomy, for example defined in an
RDF/S ontology that provides the formal subclass-of relationship to define class hierarchies,
the classes do not provide a formal meaning regarding the behavioral, functional, or non-
functional description of a service that is implied by such a classification. That is, assigning
a service to a class ideally implies that certain functional or non-functional service properties
fulfill the constraints, which are represented by the actual (informal) meaning of the class.
However, the meaning is often not explicit.

For instance, if a service is assigned to the class of book selling services, which is named
BookSales, nothing is stated about the common functionality of book selling services like the
provision of a book at the end. Only users can interpret the meaning of classes by their
name. Similarly, assume that the class BookSales is in a subclass-of relationship to another
class named Sales. The subclass-of relationship makes explicit that BookSales is a refined
class of Sales and that services of the class BookSales fulfill equal or more constraints than
the services in Sales. However, as the classes are not defined, machines cannot automatically
classify services or detect inconsistencies of a classification or the subclass-of relationships.
The service class semantics is not machine-interpretable and human intervention is required in
order to assign services to classes or to find desired classes.

121

Chapter 6 Classification of Services

Executions

Process Expression

Descriptions
/w Classes

Traces

Behavioral Properties

Requests
/w Classes

Average
response
time 8ms

Response
time ≤ 20ms

Classes

5ms
25ms

12ms

40ms

Response
time

0.99
0.990.99

Availability
0.99

ReliableService
FastService

FastService

Classes

Value Ranges

Value

BookSales

Values

Figure 6.1: Service classes in different layers of abstraction: Discovery requests (top layer),
service descriptions using explicit and implicit values (intermediate layer), and the
formal interpretation of the service model (bottom layer).

6.2 Classification of Services

Although it can be more intuitive for end users and service developers to annotate
services with given service classes compared to creating logical descriptions of the behavior
or the functionality, service classifications cannot replace explicit descriptions in general.
The accuracy of service discovery may suffer from classifications with coarse-grained class
definitions, which is the case if not all specifics of a particular service are expressed by the given
classes. This is due to the intrinsic nature of classes to represent commonalities of services
and, so, classes of a classification have to be created for general purpose use. Otherwise, there
has to be a separate class for every service. Nevertheless and as we will show, classes can
effectively complement comprehensive service descriptions and requests.

6.2.1 Implicit Description of Service Properties

The property-based service model is used to formally describe services when concrete values
of the functional or non-functional properties are known and the service description modeler
is willing to publish them. However, in many cases the concrete value of a service property
is not known or not supposed to be mentioned explicitly. However, it may still be possible or
desired to specify a range of concrete values.

Furthermore, an explicit description of property values does not support negations, which
means that an explicit description does not allow for an exclusion of properties. Therefore,
since ontology languages have open world semantics, an ontology reasoner (e.g., HermiT) will
not find any matching service descriptions if the request specifies the negation of some service
property.

We introduce the notion of a service class to address the above drawbacks of explicit service
descriptions. First, we show what a service class means formally by relating it to the formal
model of a service. Then, we present how service classes can be described with OWL. We
will then discuss how properties of services can be specified implicitly with the help of service
classes.

122

Chapter 6 Classification of Services

Our contribution can be outlined with the support of Figure 6.1. Our formal model of
services corresponds to the bottom layer of the figure and represents the interpretation of
service descriptions with service instances, their executions runs (traces), and observed values
of the non-functional properties. For example, in this figure, explicit service descriptions can be
created using these models for the capability expression and the concrete value of the property
“Availability”. We introduce the service class formalism that is used to create implicit service
descriptions that are reflected by the service class named FastService in the middle layer of
Figure 6.1. A request, as depicted in Figure 6.1, describes a set of services, where each one
may have different characteristics, e.g., a particular property value, if the request specifies a
range of desired property values. As we will show, we apply the service class formalism to
service requests. Then, we further present an implementation of our approach.

6.2.2 Service Classes

A class formally describes a set of services that have certain service properties within a common
range. The classes can be based upon functional and non-functional property constraints
uniformly. We now introduce the notion of service classes. We advance state of the art
approaches with a hybrid description formalism for classes and highlight the benefits while
discussing their use in service modeling and discovery.

A service class is formally defined by a constraint Φc and a class name (label) c. The class
represents a set of services that share common properties, e.g., behavioral properties, declared
by the class definition Φc. The name is a human comprehensible textual representation of the
asserted attributes and is solely used for the purpose of increasing usability. Named classes
have been widely used in taxonomies of products and services (e.g., UNSPSC) and are a
fundamental concept in ontologies [SS09] in order to abstract from particular ontology concept
and role definitions.

In contrast to service class taxonomies without formal class definitions, our formal service
classes allow for an automated and consistent classification of service descriptions into existing
classes. Also, tools are able to reason about the attributes asserted by a manual class
assignment. The formalism used to define service classes corresponds to the request model
that we introduced in Section 4.2. In short, it allows expressing combinations of desired
functional and non-functional properties, where a set of acceptable values is attached to each
property.

Definition 12 (Service Class Definition). Based on the property-based service model, a service
class c is a finite set Pof service properties, with each property p ∈ P associated with a set Vp
that denotes the range for the values of the property p.

Informally, a service class describes a set of services by specifying constraints that are satisfied
by the values of functional and non-functional properties. More formally, a service class as
defined in Definition 12 describes a set of values assigned to a property. It is interpreted in the
same way as a service request, see Equation 4.4 on page 70.

Due to its complexity, we want to introduce service classes with the focus on the service
behavior in the following. We use the term behavior class in order to highlight this restriction.

Definition 13 (Behavior Class Syntax). The specification of behavior classes is based on
the property specification language introduced in the preliminaries in Section 3.3.2. For class

123

Chapter 6 Classification of Services

definitions, we extend the given syntax of property constraints by a choice for the inclusion of
class names (C) as follows. Of course, every class name c ∈ C has its defining formula Φc.

Φ ::= C | Φ ∧µ Φ | ¬µΦ | µX.Φ(X) | 〈a〉Φ | P | true | false

The above definition shows the minimal syntax. Disjunction (∨µ), greatest fixed point
(νX.Φ(X)), and universal quantification of actions ([a]Φ) can be derived from the above
language constructs. Of course, we keep the extension to add DL expression to the property
specifications such that the variables and resources can be semantically described.

Example 12. A class named “WebBookSelling” describes the generic behavior of Web-based
book selling services. The class definition expresses that author and title or the ISBN of the
desired book have to be provided by the consumer, i.e., for any traces, one of the following two
input action must take place.

ϕinitial
def
= [http[author : ex:Author, title : ex:Title]]P ∨µ [http[isbn : ex:ISBN]]P

The proposition P describes input parameters and their relation to an individual repre-
senting the desired book. P may comprise the following propositions ex:Book(product),
ex:hasAuthor(product, author), and ex:hasISBN(product, isbn). We furthermore define in ϕresult
that it should be possible that a book is eventually returned.

ϕresult
def
= eventually 〈ch〈product : ex:Product〉〉ϕfinal

Members of the behavior class WebBookSelling must eventually return the specified book product
via a communication channel ch. After the output took place, the following proposition ϕfinal
must hold.

ϕfinal
def
=
(

ex:DropShiftDelivery(delivery) ∨ ex:OnlineDelivery(delivery)
)
∧

ex:DeliveryItem(delivery, product)

It states that the product is either shipped via surface mail or email. In summary, we can
define the overall behavior of the class by Φcwbs

in the following.

Φcwbs

def
= ϕinitial ∧µ ϕresult ∧µ ϕfinal

Definition 14 (Behavior Class Semantics). The semantics [[c]]V of a class c in a constraint is
defined over the LTS L = (S,→, A, λ) of a behavior description and corresponds to the set of
states that fulfill the constraint Φc. That is, [[c]]V = [[Φc]]V . We say that a service or process ω
is member of a behavior class c, iff the start state s0 ∈ S of the LTS Lω is in the set of
states [[Φc]]V that comply with the constraints of Φc under the valuation function V.

The use of formal service classes provides the following benefits to our discovery method.

(1) A formal class definition allows for automated categorization of semantically described
services into given classes. The class hierarchy can be automatically derived from
the definition of individual classes. Inconsistencies in existing service categorizations
and contradictions between semantic service descriptions and their classification can be
automatically detected and prevented.

124

Chapter 6 Classification of Services

(2) Service classes can be used to express service requests. A request either formalizes
requirements from scratch or alternatively reuses given class definitions. As available
service descriptions can be classified automatically due to formal service class definitions,
the classification of services can be precomputed and services of a requested class can be
directly retrieved, which in turn leads to a more efficient service retrieval task as the search
space can be reduced.

(3) Service classes can also be used to create service descriptions when precise property values
are not known or should not be revealed. For instance, if the precise response time of a
service cannot be determined, a class FastService can be defined such that a service of this
class features a response time of less than a second, and the service can be classified into
this class to express the responsiveness implicitly.

6.2.3 Behavior Class Hierarchy

A class hierarchy T = (C,H) is a graph structure with a finite set of behavior classes C and
the subclass relationship H ⊆ C×C over classes as the only relation. A class ci ∈ C is subclass
of cj ∈ C, we say (ci, cj) ∈ H, if all services that are member of class ci (i.e., model of the
formal definition Φci) are also member of class cj (i.e., model of Φcj). H is a partial order that
is not limited to a tree structure; meshes are possible. The most generic service class is a class
that poses no constraints and contains all services.

Given a set of behavior classes C, a hierarchy T is derived automatically based on class
definitions Φc of each class c ∈ C. The most abstract class that describes any service represents
the root node of the hierarchy. The more specific a class is, i.e., the more constraints a
class definition contains, the further the node representing the specific class will be from the
root. We compute the relation H ⊆ C × C by comparing pairs of class definitions Φci , Φcj

and determining the subclass relationship by adopting the Kozen’s axiomatization technique
from [Koz83]. The axiomatization provides the basis for checking whether a formula is a sub-
formula of another formula. We make use of these rules in order to compute the subclass
relationship H and keep the classification hierarchy consistent.

First, we replace class names in Φci and Φcj with their formal definition. Then, µ-calculus
expressions are transformed into the positive normal form and the relationship between both
expressions is determined. In fact, a syntactical containment relationship between µ-calculus
expressions is computed by this method. It was shown that this method determines whether
any model of one expression Φci is also model of another expression Φcj , which consequently
means that class ci is a subclass of cj . In [Wal96], the completeness of the axiomatization of
the proposition µ-calculus presented in [Koz83] has been shown. As this method is applicable
to plain µ-calculus expressions only, we extended it such that the DL-based descriptions of
variables and resources in the property descriptions of the class definitions are considered
accordingly.

First of all, we apply the unique name assumption to the variables and resources. It allows
us to refer to equivalent (ontology) individuals by their unique names. Then, for any semantic
expressions about actions, their parameters, or state propositions of a class definition, we
check whether it is the consequence of, i.e., is entailed by, the corresponding expressions of
the other class definition. That is, we check if a proposition Pi from Φci is entailed by the

125

Chapter 6 Classification of Services

corresponding proposition Pj from Φcj . If so, (ci, cj) ∈ H holds. As we can determine the
subclass relationship between service classes, we can compute the service class hierarchy based
on the relation H over classes automatically.

Updates like the insertion of new classes to or the deletion of existing classes from an existing
hierarchy are automatically managed due to the formal class definitions. New classes are
automatically inserted by computing the subclass relationship to existing classes in depth first
search. During this process, visited classes need to be marked to avoid redundant checks due
to the meshes in the hierarchy. This way, the sub- and super class relationships between the
new and existing classes are determined. Then, a new class is inserted as a subclass of the most
specific super classes of the hierarchy. Also, the inserted class can be super class of existing
classes. These relationships are identified by comparing the new class to classes from the
bottom of the hierarchy. Changes in class definitions are treated analogously to inserting new
classes. When a class is removed from a hierarchy, all its subclasses become direct subclasses
of its super classes.

6.3 Annotation of Behavior Descriptions

One of our contributions in this chapter is the extension of the behavior description formalism
with the ability to annotate behavior descriptions with further constraints that cannot be
expressed in suprimePDL process expressions (using π-calculus combined with DL). We start
motivating the need for behavior annotations and present their semantics afterwards.

Motivation. Behavior descriptions are suitable to describe complete processes. All observable
details of the modeled system need to be known in order to describe an executable process
expression based on the closed world assumption. This can be done by the provider, e.g., of an
enterprise system, who can derive the detailed facts from the implementation. However, it is
not realistic that any implementation details are known to other users or consumers. E.g., it is
not important and perhaps not possible to state which particular SSL certificate a book selling
service uses for the payment process. However, the information that the service supports SSL
encrypted communication is relevant, but cannot be expressed at the ABox level of process
models where concrete certificate instances can be described. Rather, it needs to be expressed
on a logical level by using existential quantifiers, e.g., declaratively expressed in the constraint
formalism.

In contrast to behavior descriptions, the constraint language allows for the exclusion of
behavioral properties. Side effects that are not observed by a user during execution can also
be expressed by the constraint formalism. E.g., our π-calculus-based behavior descriptions
cannot express that a service will never pass user-provided payment information to any other
party.

Because it is typically impossible to observe complete service behaviors in the Web and as
there are behavioral properties that cannot be captured by a process algebra, we extend the
behavior description formalism by declarative constraints. Note that modeling these properties
is relevant because it allows service consumers to search for services based on these properties.

126

Chapter 6 Classification of Services

Annotation. We allow for annotating behavior descriptions with a set of behavior constraints
using the constraint formalism introduced in Section 3.3.2. An ordinary behavior description π1

is interpreted by an LTS Lπ1 . Let π2 be a behavior description that is annotated with a behavior
constraint Φ, we say Φ(π2). Then π2 is interpreted by Lπ2 ∈ LΦ, where LΦ denotes the set of
LTS that fulfill the constraint Φ. That is, the set of start states of the LTS in LΦ equals the
set of start states identified by [[Φ]].

Using our model checking based matchmaking technique, as introduced in Chapter 4, to
check whether the constraints of a class are fulfilled by a behavior description, the consistency
of class annotations is automatically assured if no contradictions exist.

A behavior description π can be annotated with several behavior class constraints Φ1, . . . ,Φn,
where n ≥ 1, simultaneously. The semantics is defined as follows.

Φ1(π), . . . ,Φn(π)⇔ Lπ ∈
⋂

1≤i≤n
LΦi

Example 13. In Section 4.1.3, we presented an example description of a book selling service
including its behavior. We considered six transitions during the execution, for instance, the
input of a book’s author and title in the beginning.

A provider who wants to offer a similar book selling service needs to create a behavior
description in one of the following ways. If she can disclose the complete behavior, then
the description may be automatically derived from the implementation. Alternatively, the
description is manually created from scratch. Another alternative is introduced through a
given service classification. The provider searches for appropriate classes in the hierarchy
by inspecting the class names and, if available, a documentation. The service class
WebBookSelling as shown in Example 12 is a good candidate to annotate her service.

She annotates the service ω by adding the axiom WebBookSelling(w) to the service description
ontology ODω , where w is the individual that represents the service ω in ODω . The provider
also aligns the variable names of the class definition to the names she uses in her own explicit
behavior description. For instance, she could reuse the descriptions of the desired book, author,
title, and delivery options from the class definition.

Given the alignment of variables between explicit behavior descriptions and the class
definitions, contradictions can be automatically detected by our matchmaking approach and,
thus, prevented. If the properties of class definitions can be positively evaluated on the explicit
behavior description, then the class annotations are consistent.

Simplification of Behavior Modeling

Modeling complex behavior as presented in our example in Section 4.1.3 can become tedious.
The complexity and length of behavior descriptions as well as the modeling effort are reduced
by the use of classes without compromising on the expressivity. In fact, as we described in
Section 6.2.1, we gain the expressivity that allows describing properties implicitly by annotating
service descriptions with service classes. As shown in the previous example, users who model
the behavior can reuse existing classes in service descriptions to express that the service
provides the property described by the class. Instead of a possibly very complex behavior
specification, the service class annotations can be mixed with further explicit refinements for
a specific behavior description.

127

Chapter 6 Classification of Services

In collaborative service modeling, only domain or modeling experts will have the skills to
model the service specifics beyond the scope of behavior classes. Since users are able to
identify classes from a hierarchy by their descriptive name without the need to understand
its formal definition, behavior descriptions can be created without any knowledge about the
underlying formalisms. Discovery of appropriate classes currently remains a manual task,
including browsing of the hierarchy or keyword-based search, which is an additional but less
challenging effort for users. Then, the identified classes can be further inspected in order to
verify that they match the user’s intention. In our prototype that we introduce below, the
keyword-based search for class names is made more flexible by searching also for class names
containing hypernyms and hyponyms of the given keywords. Therefore, we use WordNet as
dictionary. Beyond this point, we will not further focus on matching class names since it is not
related to the contribution of this work and was subject to extensive research in the domain
of information retrieval, e.g., in [TGEM07, LT11].

6.4 Classification-based Service Discovery

6.4.1 Service Classes in Requests

The µ-calculus-based behavior constraint specification language constrains a desired behavior
and, by this, spans a space of desired services. An offered behavior matches a request if the
offer equals a member of the set of desired behaviors. A reduction of the request modeling
effort and the simplification of request expressions is achieved by the reuse of behavior classes.
The benefits we listed for the simplification of behavior descriptions apply to requests, too.

In order to reuse existing behavior classes for expressing requests, the requesting actor has
to identify appropriate behavior classes from the hierarchy. Then, after inspecting the service
class or classes, additional properties can be modeled explicitly and combined with the classes.
The combined request comprising selected classes and explicit properties can be submitted to
the discovery method. We use the extended behavior class syntax presented in Definition 13
to formulate requests. That is, in contrast to the discovery method presented in Chapter 4,
the requests can include and combine desired service classes (referenced by their class names)
just like any other desired property instance. The semantics of the request formalism remains
unchanged as the class names can be replaced by their service class definition.

Example 14. We show an example request R for a desired book selling behavior with an
additional constraint on the acceptance of a credit card payment. Parts of the desired behavior
are inherited from the class definition Φwbs of an existing WebBookSelling behavior class shown
above.

We extend the class WebBookSelling by adding the additional constraint that the shipping is
free. The new class is named WebBookSellingFreeShipping and is defined by Φwbsfree as follows:

Φwbsfree
def
= WebBookSelling ∧µ ex:hasPrice(delivery, 0)

The individual delivery was already used in the definition of the class WebBookSelling. So,
we use the same identifier in the definition of the class WebBookSellingFreeShipping and in
further constraints in order to refer to the same individual. In the following example request R,
it becomes evident how much more complex the request would be if no classes could be reused

128

Chapter 6 Classification of Services

for expressing the same set of constraints (that is, the definitions of WebBookSelling and
WebBookSellingFreeShipping would be needed instead of the class name in the request below).
Therefore, we argue that using classes can tremendously simplify and accelerate the specification
of requests. As shown, the request can be further refined if the search result set is too coarse-
grained. Note, ∧ denotes the logic conjunction with DL semantics while ∧µ was defined by the
µ-calculus.

R := eventually
(

ex:Seller(seller)∧

acceptsPaymentMethod(seller, payMethod)∧

ex:CreditCard(payMethod)
)
∧µ WebBookSellingFreeShipping

6.4.2 Discovery Based on Offline Classification

Now we exploit the behavior classes for an efficient search for complex service behaviors.
Besides the advantages of the hybrid behavior class formalism we have already shown, this
section presents how the search performance is increased by formal behavior classes.

A discovery engine verifies constraints for each offered behavior individually and determines
whether the offer fulfills them or not. For each behavior description with or without behavior
class annotations, the discovery engine creates the corresponding LTS. We assume that the
engine keeps an LTS representation of each behavior description in the repository D.

It is further assumed that a classification hierarchy T = (C,H) with formal class definitions
and the precomputed hierarchic ordering over classes exists. During the initialization phase
of the discovery engine, existing behavior descriptions are classified into existing classes
automatically. In order to achieve this, the model checking technique presented in Chapter 4
determines whether behavior descriptions fulfill the constraints of a class or not and assigns
them to behavior classes accordingly. Descriptions with class annotations are also directly
assigned to the respective classes.

The discovery engine materializes the classification information for its later use as an indexing
structure I ⊆ C × D. For each behavior description Dω ∈ D, we add (c,Dω) to the index I
if the behavior of ω was determined to be a member of the behavior class c ∈ C. The task
of building a hierarchy and classifying the behavior descriptions into the behavior classes is
done offline and is not considered as a part of the query answering task. The classification
index I allows to retrieve behavior descriptions of desired classes immediately. By this, it saves
expensive model checking and DL reasoning at query answering time.

Let a request R specify constraints by means of desired behavior classes CR ⊆ C of the
hierarchy. In addition, R contains further constraints, which are explicitly modeled and not
captured by the classes CR (as in our example above). In a first step, the engine retrieves the
behavior descriptions I(CR) from the index structure I. This first step returns all behavior
descriptions that are member of all desired classes in CR.

Composed expressions over desired classes (using ∧, ∨, ¬) are evaluated by following De
Morgan’s laws and applying the set theoretic semantics as presented in Equation 4.1 when we
introduced the service request language. If a request contains no behavior classes, the first
step returns all descriptions from D. Algorithm 2 shows the procedure in which the services
W of the desired classes are retrieved from the index. Members of a single class are retrieved

129

Chapter 6 Classification of Services

Algorithm 2: retrieveClassMember: Retrieves services of desired classes.

Require: Desired service classes expression CR, Index I
1: if CR is a ServiceClass then
2: W ← getMember(CR)
3: end if
4: if CR is a Conjunction then
5: W1 ← retrieveClassMember(CR.leftTerm)
6: W2 ← retrieveClassMember(CR.rightTerm)
7: W ←W1 ∩W2

8: end if
9: if CR is a Disjunction then

10: W1 ← retrieveClassMember(CR.leftTerm)
11: W2 ← retrieveClassMember(CR.rightTerm)
12: W ←W1 ∪W2

13: end if
14: if CR is a Negation then
15: W1 ← retrieveClassMember(CR.term)
16: W ← D−W1

17: end if
18: if CR is empty then
19: W ← D
20: end if
21: return W

with the method getMember (line 2). Complex expressions are recursively decomposed. The
evaluation of the individual terms of CR return sets of services that are then combined into
the final result by applying the respective set operations.

The result of the method retrieveClassMember then serves as input for the second step,
where further explicit requirements from R (that were not captured by the classes) are verified.
As shown in the method discovery in Algorithm 3, the model checking method that we
described in Section 4.3 evaluates the remaining constraints of R without the classes (i.e.,
removeClasses(R) in Algorithm 3) only on the results W0 of the previously invoked method
retrieveClassMember.

The model checking is only applied to the services of the desired classes. As a result of the
model checking, a subset of the given set is returned. Consequently, all the services that are
returned by the matchmaker are member of the desired classes, fulfill the explicit constraints,
and hence are matches for the request.

By the introduction of the index structure I and the use of behavior classes, the number of
behavior descriptions considered in the second step for expensive model checking operations is
reduced. Further, the number of constraints evaluated at query time is reduced. Therefore, we
assume that retrieving instances that are member of a class or of several classes simultaneously
is faster than verifying all constraints at query time. Obviously, many factors like the
complexity of class definitions, the size of the classification, and the number of behavior

130

Chapter 6 Classification of Services

Algorithm 3: discovery

Require: Request R
1: CR ← extractClasses(R)
2: W0 ← retrieveClassMember(CR)
3: W ← modelChecking(W0, removeClasses(R))
4: return W

descriptions have to be considered to let this assumption hold.

6.5 Implementation and Evaluation

In this section, we describe the implementation of the presented approach and report on
the evaluation results. The implementation is an integral part of the suprime framework1

for intelligent usage and management of services and processes and was also applied in the
WisNetGrid project as the component to locate Grid-based services. We describe the setup
of the experiments conducted in order to evaluate our claims regarding the performance gain
and discuss the impact of the granularity of service class definitions.

6.5.1 Implementation

We used the aforementioned Java APIs for modeling and annotating executable behaviors
and for specifying search queries for services with matching behavior. For the DL parts of
the service descriptions, we use the OWL API for semantically describing the resources, and
HermiT OWL reasoner for reasoning about them. We extended the APIs such that service
descriptions can be annotated with service classes and requests can include desired service
classes. For modeling behavior classes graphically, we provide an assisted Web form based
input mask that allows the user to easily enter constraints like the existence of an input action.
Existing classes are displayed in a tree-shaped structure and can be selected for reuse.

We modeled the hierarchy of service classes in an OWL repository ontology OD that is part
of the service description repository D. For a given hierarchy and a set of service descriptions,
the ontology OD represents (i) each service class by an OWL class with the name of the service
class, (ii) the hierarchical relationships between service classes by OWL subclass relationships
between the respective ontology classes, and (iii) each described service as an individual, which
is member of the respective service classes.

The definitions of service classes are maintained externally, as DL reasoners cannot interpret
these expressions anyway. Given a service class name, the discovery engine can load the service
class definition and then, for instance, evaluate the definition on given service descriptions in
order to automatically classify services using the model checking based matchmaking method
that we introduced in Chapter 4.

Discovery. With the initialization of the discovery engine, the repository ontology OD is
loaded and existing service descriptions are automatically classified into the service classes, if

1suprime framework – https://km.aifb.kit.edu/projects/suprime, retrieved 2013-06-11

131

https://km.aifb.kit.edu/projects/suprime

Chapter 6 Classification of Services

Table 6.1: Different levels of behavior class granularity

Class Granularity Fine Medium Coarse

Number of behavior classes 60 40 20
Simple constraints per class 3 2 1

it has not been computed before. New classification information is added to OD by introducing
ontology individuals, which represent the services, and defining them as members of the
matching service classes.

The given discovery requests are passed to the discovery engine. In a first step, the search
space is reduced by retrieving services from requested classes. This is done by invoking a
HermiT Reasoner instance with the repository ontology OD.

Then, further explicit constraints are verified on the service descriptions, which were
retrieved in the previous step. The results of the second step, i.e., services that fulfill all
the constraints of the request, are displayed to the user in the implementation of our graphical
search interface.

6.5.2 Evaluation

We conducted several experiments that show the benefits of the presented approach with
respect to the search performance. In our experiments we examine the impact of the
classification hierarchy on the search performance. As we apply logic-based model checking
and classification techniques, it is not necessary to evaluate the quality (soundness and
completeness) of search results. Instead, we compare the query answering times for equivalent
queries with and without the use of behavior classes. Further, we differentiate between various
class complexities and class hierarchy sizes. We developed a class hierarchy with formal
class definitions and measured the search performance for varying behavior class granularity.
This means, given a fixed number of services or processes, applying a hierarchy with coarse-
grained classes corresponds in average to a small hierarchy (number of classes) and few formal
constraints per class. In contrast, fine-grained classes lead to a larger hierarchy and more
constraints per class. The different levels of class granularity are summarized in Table 6.1.

Test data. The test data is derived from given descriptions of end user browsing processes that
coordinate existing Web-based services. We use the same approach to gain semantic service
descriptions with executable behavior descriptions derived from the CoScripts of the IBM
CoScripter repository. In our experiments we used 2000 synthesized descriptions. On average,
our behavior descriptions describe each input/output parameter with three DL axioms, i.e., at
least its data type plus its relationship to other process resources. In Table 4.2, the number
of classes is related to the number of simple constraints. A simple constraint can be one of
eventually φ or always φ, where φ is a simple constraint like a proposition P or the existence
of an action a (〈a〉P).

Just as in the previous experiments in Section 4.4, we created several search queries
composed (∧µ, ∨µ, ¬µ) out of 9 simple constraints. Analogously to the descriptions, the
complexity of each proposition and parameters of desired actions is set to an average of 3±2 DL

132

Chapter 6 Classification of Services

axioms (class and object property assertions, e.g., P ≡ Flight(f)∧Time(t)∧departureTime(f, t)).
A desired action is expressed by its type (class assertion) and the description of types and
relationships between messages.

Results. In Tables 6.2 and 6.3 we show the measured query answering time for varying class
granularity and proportion of behavior classes used in the queries for 1,000 and 2,000 behavior
descriptions respectively. The baseline is Q3, which represents queries without behavior classes.
The opposite extreme is Q0 which consists of a combination of classes only. The relative search
performance gain is expectedly high. The query Q2 was derived from the query Q3 by replacing
one of three explicit constraints with respective references to service classes. Q1 was similarly
derived by replacing two out of three constraint of the query with classes.

Table 6.2: Query answering time and relative gain for 1,000 behavior descriptions

Class Granularity Fine Medium Coarse

time [s] gain time [s] gain time [s] gain

Q0 (classes only) 0.010 99% 0.009 99% 0.009 99%
Q1 (66% classes) 3.32 61% 3.21 64% 3.35 63%
Q2 (33% classes) 5.46 37% 6.10 32% 6.28 30%
Q3 (no classes) 8.63 0 9.02 0 9.05 0

Table 6.3: Query answering time and relative gain for 2,000 behavior descriptions

Class Granularity Fine Medium Coarse

time [s] gain time [s] gain time [s] gain

Q0 (classes only) 0.012 99% 0.018 99% 0.019 99%
Q1 (66% classes) 10.47 67% 11.83 65% 11.21 68%
Q2 (33% classes) 19.22 39% 22.06 34% 24.01 31%
Q3 (no classes) 31.32 0 33.40 0 34.98 0

An interesting outcome of this experiment is that the class granularity is not crucial to
the absolute query answering times and the relative gains. Although a slight but steady
performance decrease is measured for coarse grained classes, it shows that the overhead of
fine grained classes (i.e., having many classes in a hierarchy) does not add significant penalty
with respect to search performance. This observation is attributed to the efficient instance
retrieval provided by ontology reasoners in case of a relatively large ABox as compared to the
TBox. Consequently, the experiments show that growing hierarchies, which can be expected
for a Web of services, does not significantly affect the search performance. This argument is
underpinned by applicable optimizations that exist for this particular reasoning task [HM08].
The offline computation of behavior class memberships further reduces the instance retrieval
time. Furthermore, the query answering time increases significantly for larger numbers of
available behavior descriptions. The query answering takes up to 3.9 times longer for 2000
descriptions than for 1000 descriptions if no classes are used (Q3). If only classes are used (Q0),
the factor can be reduced to 1.2. Thus, the importance of the performance gain by classes
becomes even more important when the number of behavior descriptions increases.

133

Chapter 6 Classification of Services

6.6 Related Work

The concept of classifying services in order to provide simple methods to locate appropriate
services has been broadly proposed and used. In this section, we give an overview on such
approaches stemming from the domains of business processes, Semantic Web Services, and
services in general. Note that since we aim at developing discovery methods, we do not
include a delimitation of our work with classification-based approaches that use heuristics or
machine learning in this context. Such methods can provide effective means to classify services
without depending on complex formalisms to model service properties. However, as they aim
at different use cases, they would not fulfill the requirement for accurate discovery results.

(Semantic) Business Processes

The process query language (PQL) introduced in [KB04] is based on an interpretation of process
models as entity-relationship diagrams. A query is a regular expression that allows the usage
of ‘*’ for the occurrence of sub-task relationships. Apart from the lack of temporal operators
needed for reasoning about the process behavior, the pattern matching based query answering
algorithm cannot find answers (process models) that use syntactically different terminology
than the one used in the query.

BPMN-Q [ADW08] is a graphical query language using concepts and notations from BPMN.
A query graph pattern is matched against a process graph and the control flow and activity
names are considered. This approach can be compared to our model checking technique except
for the ability of our model checking technique to reason about the data flow and resources as
well.

The Business Process Execution Language for Web Services (BPEL4WS) [OAS07] can be
compared to our language for describing executable observable behavior. In this chapter, our
focus was on the usage and impact of behavior classes on process descriptions and search.
Therefore, our constraint specification formalism (with or without classes) can be used for
compliance checking and search for BPEL4WS process models if the latter could be interpreted
as an LTS.

A process algebra for modeling process behavior using ontologies for semantically describing
the process resources was proposed in [ARA08]. However, models described with process
algebras need to be treated with closed world semantics, which is often an unrealistic restriction
in case of Web-based processes. Therefore, we advanced this approach by the capability to
add declarative constraints to process models.

Semantic Web Services

The OWL-S Service Profile aims at the description of atomic services and also implements the
concept of a service classification [SPAS03]. However, the relation between service classification
and the rest of the service description is not exploited in existing OWL-S based matchmakers
(e.g., [SPS06]). The OWL-S Process Model supports specification of complex behavior. In
contrast to the Service Profile, the Process Model does not directly support the use of
classification. Even though a service classification can be introduced by adding subclasses
to the class Service, it is not possible to reason about the dynamics of complex service behavior
due to missing formal execution semantics of the OWL-S Process Model.

134

Chapter 6 Classification of Services

WSMO [RKL+05] supports the semantic description of both atomic and complex services.
WSMO-Lite [VKVF08] is a vocabulary for annotating WSDL [KVBF07] service descriptions
with semantically described service properties, e.g., a subclass of FunctionalClassificationRoot.
However, as in OWL-S Profile, functional classification is unrelated from other functional
properties such as preconditions and effects. Thus, service classifications contradicting the
remaining service description are possible. An approach presented in [SHF11] uses functional
classifications to achieve efficient discovery of atomic services. However, the formal class
definitions are not allowed to be used in combination with formal query parts in requests.

Further Service Modeling Approaches

UDDI [UDD01] was the first attempt to provide users with a system for finding Web services.
Each entity of the information model can be annotated with classification meta data. Thus, it
allows for coarse-grained service discovery based on the classification meta data. UDDI’s Yellow
Pages administer a service classification that allows concluding the provided functionality of
a service. Industry standards like UNSPSC provide a taxonomy for service, product, and
business classification and can be used to classify a service by means of the Yellow Pages.
While UDDI can deal with multiple taxonomic classification systems simultaneously, it leaves
out a specification of the meaning of the classes. It suffers from underspecified classes of
standardized or proprietary classifications and also from an XML-based data model which lacks
explicit semantics. Thus, it is for instance not clear how to interpret multiple annotations and
the system cannot prevent contradicting classifications.

These drawbacks similarly apply to other discovery approach that do not provide a semantics
of classes and consequently do not allow interpreting the restrictions on the service properties
implied by a classification. For instance, classification taxonomies like UNSPSC were combined
with the OWL-S service matchmakers [SPS06]. Then, a matchmaker simply evaluates class
assignments to determine matches without any class semantics.

In [CC06], the authors also indicate the potential of service classifications that offer an
intuitive and coarse-grained service retrieval mechanism by investigating how services can
be semi-automatically classified based on the similarities to previously classified services. A
Bayes-based method to classify services automatically [LZLG07] also promises high accuracy
but lacks support for logical consistency checking since the classes were only described by class
identifiers and not formally defined.

Based on the assumption that matchmaking of a desired service classification with offered
service classifications is less expensive than the DL-based matchmaking of the functionality
description, a service discovery approach using formally defined service classes (specified in
WSML-DL+) was presented in [LCC06]. In our approach, we can use classes in service
descriptions when concrete property values are not known or cannot be revealed. Furthermore,
we allow usage of classes in a request together with further constraints, whereas the approach
presented in [LCC06] supports only predefined classes in a request.

Our modeling approach is similar to the state transition system based process modeling
approach for BPEL4WS presented in [PTBM05], as well as to the finite state machines (FSM)
based approach for modeling Web services presented in [HTN08]. [MMWvdA11] presents a
linear temporal logic based approach for verifying business constraints at runtime. In contrast
to our approach, in which we describe and reason about the data content of a state semantically

135

Chapter 6 Classification of Services

with description logics, none of these approaches allows reasoning about the data objects
involved in a process. Still, our behavior classes can be used to classify and find BPEL4WS
processes and Web services as well, given that a semantics as a mapping to an LTS is provided.

A pragmatic temporal logic for reasoning about time intervals of events by proposing a set of
relationships between time intervals was introduced in [All83]. Even though there are no results
about the expressivity of the interval relationships to the best of our knowledge as well as the
fact that µ-calculus is point-based, we believe that the interval relationships can be expressed
by µ-calculus. While the interval relationships due to their pragmatic meaning could serve as
a good basis for obtaining the end user query language, there are differences in the semantics
that need to be taken care of while defining the translation of an interval relationship to a
µ-calculus formula. An example for such a difference is “negation”. In interval logic, negation
of “before” is “after”, while in µ-calculus negation of “before” is “not before”, which has a
different meaning than “after”.

Our query specification formalism falls in the category of DL with modal operators [AF00].
Since we use constant domain terminologies (expressed as DL TBox), we are able to use a more
expressive temporal logic than the ones discussed in [AF00] while still ensuring decidability.

6.7 Summary and Conclusion

The classification-based service discovery approach presented in this chapter was primarily
motivated by our observation that despite the fact that most of the interesting services are
not atomic but rather have complex behavior, there are hardly any convenient specification
and search techniques available for such services. Handling a large amount of complex services
quickly leads to high query answering times as the computational complexity of matchmaking
hampers the development of efficient discovery methods.

In order to address the efficiency problem, we introduced an offline classification of services
that has been shown to be effective in reducing the discovery complexity at query time. In
contrast to most existing service classifications, we added formal definitions to service classes,
which allow us to guarantee the consistent classification of services based on their descriptions.

Orthogonally, we have seen that service descriptions can be annotated with implicit property
descriptions when class annotations are added manually to the service descriptions. We also
extended the discovery request formalism such that existing service classes can be reused in
requests. Classes can seamlessly be combined with explicit property specifications. Based on
a reuse of service classes in service requests, we exploit the class hierarchy for precomputing
and caching class memberships of descriptions in order to save online query time. We have
implemented the presented specification and search approach and showed with our evaluation
results the positive impact of behavior classes on the search performance.

While our service classification promises to increase the discovery efficiency and introduces
simplifications to the process of modeling services and requests by reused service classes with
human readable names instead of logical formulae, it was based on the following assumptions.
A set of service classes should exist and they should be reused in requests when applicable.
Therefore, users have to find and assess service classes effectively. However, we cannot verify
the validity of these assumptions, because it would comprise the study of information retrieval,
usability evaluations, and user studies, which is beyond the scope of the thesis. Nevertheless,

136

Chapter 6 Classification of Services

in the next chapter we introduce offline and online indexes that are automatically constructed.
While they do not provide human readable names like service classes, they do not depend on
existing classes and potentially human effort to maintain the hierarchy of classes.

137

Chapter 7
Index Structures for Efficient Service
Discovery

In this chapter, we present a technique that precomputes (intermediate) matchmaking results
in order to accelerate the model checking phase. Model checking becomes expensive if a large
number of services is considered for the matchmaking or if their behavior is rather extensive,
because the model checking complexity depends on the number of states of a model (among
others). Therefore, we will adapt the use case of our discovery method to a setting in which a
large number of available services with rather complex behavior descriptions can be expected.

We introduce offline indexing techniques to the model checking technique from above,
integrate the classification-based discovery for complex services into an online index and
evaluate the achieved performance. The offline indexes allow us to apply the presented model
checker to scenarios with larger numbers of available service descriptions. The online caching
algorithm can further serve as a means to automatically create service classes (service class
definitions) for a classification hierarchy.

Before we propose our indexing techniques, we introduce in Section 7.1 the use case and our
example used throughout this chapter. With a process-oriented view on the Web as outlined
in Section 2.1.3, we search for Web-mediated services that offer their functionality via Web
pages typically intended for end user interaction (browsing processes). This use case obviously
demands for an efficient search as a very large number of functionalities are offered by Web
pages and constitute Web-mediated services with complex behavior and interaction patterns.
Although other use cases as well as the one used so far benefit from the indexing techniques
developed in this chapter, the new use case highlights how our service discovery method can
be applied to other use cases, too.

We aim at providing the end users with a list of browsing processes that are relevant for
a given information need instead of a list of links to Web pages. Each browsing process in
the list of hits will lead the end user to the required information. Such a list of appropriate
browsing processes is computed by searching existing end user browsing processes.

In order to be able to search appropriate browsing processes automatically, we show in
Section 7.1.1 how user browsing processes (consisting of link selection, form inputs, and
information extraction steps) can be formalized and automatically verified with a model

138

Chapter 7 Index Structures for Efficient Service Discovery

checking approach. Section 7.1.2 shows how formal descriptions of browsing processes are
captured. In our approach, we can leverage Web page annotations, but we do not require
pages to be previously annotated. Explicit end user browsing processes provide the end users
with a place for adding the semantic annotations to the Web pages they contain in a bottom
up fashion. Until now, semantic annotation of Web pages by end users has been hard since the
end users cannot change the Web pages. Then, we show how end user browsing processes can
be efficiently searched from a collection of browsing processes so that users can save browsing
time by reusing them for their complex information gathering needs. Our search technique is
based on monolithic and explicit state representation model checking.

We develop various offline indexes in Section 7.2 and a randomized online index in Section 7.3
to achieve significant gains in the search performance. We present results of performance
tests and complexity proofs to demonstrate their impact on search performance by presenting
evaluation results. In Section 7.4 we provide implementation details and details on our
experimental setup. After discussing related work in Section 7.5, we conclude in Section 7.6
by summarizing our work and giving some future directions.

The vision of our motivating use case is summarized in [Jun13]. The modeling, acquisition,
and discovery of end user browsing processes have been presented in [JA13]. We refer to the
end user browsing processes as Web browsing recipes in order to highlight that they represent
instructions, which describe how to access information and functionalities. In [AJ13], we
elaborated our work on this scenario by proposing how Web pages can be derived from the
recipes and how recipes with similar functionalities can be identified.

7.1 Motivating Use Case

We consider Web-mediated end user browsing processes as services that provide their
functionality to end users by a human-centric Web interface. These user interfaces allow
for complex interactions, which reflect the complex behavior of the Web applications.

For many practical purposes end users need information that is scattered across multiple
websites. Certainly, the information search in the Web can become cumbersome if the desired
information is scattered across websites. For instance, even though there are pages listing track
chairs of the past WWW conferences and Web accessible bibliography databases, compiling
the list of recent books or journal publications of the WWW track chairs with the help of
existing search engines is still a time consuming task. It is even harder to find information
from the Deep Web as it requires user interactions that are hard to simulate by automatic
crawlers.

The websites that provide information can be static or dynamic. Static websites can be
crawled by current search engines, and their content can be indexed to provide end users with
efficient search over documents. However, in many cases, end users still have to do a lot of
work manually to compile the required information. For instance, consider an end user who is
interested in the track chair names of previous WWW conferences. As of today, Web search
engines like Google and Bing do not even deliver satisfactory results for queries like “track
chairs of all WWW conferences”.

One reason for this lack of support is that the sets of links returned by document-centric
Web search engines often contain similar information whereas the complex information need

139

Chapter 7 Index Structures for Efficient Service Discovery

requires fractions of complementary information that, if combined, satisfy the information
need. In order to obtain the required information, the end user has to pose multiple queries to
a search engine, browse through the results, and extract and aggregate the required information
fragments outside of the found Web pages.

The case of dynamic websites is even more complex. Accessing the information lying in the
Deep Web [Ber01] is already an open challenge for search engines. It is not trivial for automatic
crawlers to sensibly interact with the dynamic websites in order to access the underlying
information. Furthermore, indexing such information is not a suitable technique since the
information underlying dynamic websites can change so rapidly that the index becomes quickly
outdated.

Current search engines focus on finding the most relevant Web pages for a given information
need rather than providing the information. The ranking of the pages is usually based on the
link structure. As a result, a user receives a list of Web pages with similar content even though
the information need of the user might require pages with complementary information.

End users need help in selecting the pages that are relevant for obtaining the information
scattered over multiple Web pages. Such help must contain at least the set of the pages that
the end user should visit, and support for easily invoking the pages in the set. More advanced
help could comprise the complete end user browsing process including support for data flow
between the user and the pages as well as among the pages, and control flow if there are data
dependencies among inputs and outputs of Web pages in the set. Formally, the simpler case
means that for a given information need formalized as a query Q we want to compute a list
of hits H1, . . . ,Hn, where each hit Hi consists of a set of pages P i1, . . . , P

i
mi

, and a hit Hi has
higher or equal relevance1 than another hit Hj for each i < j. The advanced case means
that for each page P ij there is a path path(P ij) that needs to be executed in order to reach

the page P ij . Such a path is a sequence of user actions, which can be of three types, namely
input actions, output actions, or local actions. Furthermore, a data flow among the paths of
the pages of a hit is defined by connecting an input action of a path with an output action
of another path. In order to compute such hits, we need to know which information need a
page P ij satisfies and how this page P ij can be reached.

Semantic search based on structured data aims at efficiently answering information needs but
relies on the cooperation of providers to be able to access their data. We provide an alternative
solution to the information search problem. Our approach builds on goal-oriented end user
browsing processes containing instructions for accessing, extracting, and merging (dynamic)
information from various websites. These processes are sharable and reusable Web-based
services so that users can benefit from the efforts of other users, e.g., to access and integrate
information from multiple websites. Search techniques for efficiently finding browsing processes
that describe the paths that lead to the requested information are the main prerequisite for
effective sharing and reusing of browsing processes.

In the remainder of this chapter, we develop an efficient search technique for finding browsing
recipes from large repositories. We augment explicit state representation based model checking
techniques by indexing structures tailored to the requirements of information search based on
the recipes. The performance evaluation of our approach reveals the impact of the indexing
structures on the overall recipe search efficiency.

1The relevance of a hit can be determined by an additional ranking method.

140

Chapter 7 Index Structures for Efficient Service Discovery

7.1.1 Formalization of End User Browsing Processes

In this section, we present how end user browsing processes can be described formally with
suprimePDL combining the π-calculus process algebra with the description logic ALC. We
restrict ourselves to a less expressive description logic like ALC, as a description of navigational
paths leading to Web pages with semantic annotations of the displayed information is sufficient
for the purpose of information search. More expressive description logics can be employed later
if necessary. The formalization of browsing processes is based on the approach presented
in [HA10]. We repeat the basic concepts of this approach in order to show how formal
descriptions of browsing processes are related to individual Web pages and the Web form
based interactions that they offer.

Constraints on such end user browsing processes can be specified in our request language
based on the combination of the temporal logic µ-calculus with description logic. Analogue to
the process descriptions, we will likewise use the ALC description logic in requests. In contrast
to our imperative descriptions of browsing processes, declarative behavior constraints in search
requests express desired properties of the behavior of a browsing process. End user browsing
processes can be automatically checked against constraints with a model checking approach.

To illustrate the formalization of end user browsing processes, we use the example of
collecting the track chairs of previous WWW conferences and then query their articles from
a bibliography database. In the example browsing process, static conference Web pages are
visited and the names of track chairs are marked as relevant outputs. Next, a Web page like
DBLP is visited, author names are entered sequentially or in parallel into the input form of
the page and the corresponding articles are extracted from the result pages.

A single Web page is a message sent by its hosting server to an end user. In addition to the
information content, a Web page may contain the description of a choice process. The choice
process consists of a set of links and a set of forms. Formally, the output action y〈v〉 of the
server that produces a Web page with values v1, . . . , vl (denoted by v), links l1, . . . , lm and
forms f1, . . . , fn is described by:

y〈v1, . . . , vl〉.@L1{x1}+ . . .+ @Lm{xm}
+ @F1{y1}+ . . .+ @Fn{yn},

where L1, . . . , Lm denote the base URLs of the links l1, . . . , lm, x1, . . . ,xm denote their
parameters if any, F1, . . . , Fn denote the action URLs of the forms f1, . . . , fn, and y1, . . . ,yn

denote their submission parameters. In our view, a URL is equivalent to an agent identifier,
whereas the selection of a link, which is a usage of a URL, is equivalent to an agent invocation
(denoted by an @ preceding an identifier) with concrete values for the arguments. The
mapping between the major elements of Web pages to the elements of our behavior formalism
is summarized in Table 7.1. Furthermore, we model the arguments of a link as concepts in the
ontology associated with the suprimePDL process expression describing its base URL, and the
values of the arguments as individuals of the ontology class corresponding to the arguments.
We model the identifiers of display elements that contain output values as ontology classes.
A form corresponds to a complex ontology class. The names of the input elements of the
form correspond to the properties of the complex class. The name of the ontology class
corresponding to the range of a property can often be derived from the label of the input field
(see e.g. [MKK+08]). Some types of input elements provide a set of values from which one

141

Chapter 7 Index Structures for Efficient Service Discovery

Table 7.1: Mapping between Web artifacts and elements of suprimePDL

Web Artifact Element of the Process Description Language

URL Agent identifier

Web page Output action and a choice from a set of links and forms

Selection of a link Invocation of an agent identifier

Submission of a form Input action

CGI script Execution of a local action

Table 7.2: Correspondence between page content and ontology

Element Maps to

Base URL of Web page / link Logical URI of ontology

Display element id Ontology class

Content of a display element Ontology instance of the class corresponding
to the display element id

Variable name of link Ontology class

Variable value of link Ontology instance of the class corresponding
to the variable

Form name Complex ontology class

Form field id Property of the class corresponding to the
form name

Form field name Ontology class representing the range of the
property corresponding to the field id

Form field value Ontology instance

or more values can be selected. In these cases, the provided values are modeled as ontology
individuals, while the concept representing the range of an input field is modeled as an RDF/S
container class instead of a normal class. Table 7.2 lists the ontology concepts used to represent
the Web page elements.

An end user browsing process is equivalent to an agent identifier that is defined as a parallel
composition of the invocations of the agent identifiers P1, . . . , Pn corresponding to the websites
visited in the browsing process and a coordinating process C. Such a browsing process is
defined as

@C{} ‖ @P1{} ‖ . . . ‖ @Pn{}.

Example 15. The 2013 WWW conference website at URL u1 links among many other options
to the “call for research papers” Web page denoted by the process CFPwww13. The process
provides a Web page listing all research tracks tracks denoted by the output action u1〈tracks〉.

CFPwww13()
def
= u1〈tracks〉.

∑
t∈tracks

@CFPt{}

Selecting one of the provided links, say @CFPbridging{}, returns the page about one specific
track and lists topics, track chairs, and PC members.

CFPbridging()
def
= u1〈topics, chairs,pcs〉.0

142

Chapter 7 Index Structures for Efficient Service Discovery

WWW13

ex:Conference(www13)

Research Tracks
ex:Track(t1)
ex:partOf(t1,www13)
ex:Conference(www13)
ex:Track(t2) . . .

Track
ex:Track(t2)
ex:partOf(t2,www13)
ex:Conference(www13)
ex:title(t2, “Bridging . . . ”)
ex:trackChair(t2,KChang)
ex:trackChair(t2,PMika)
. . .

u1〈tracks〉

@CFPt2{}
u1〈chairs〉

Figure 7.1: Excerpt of the LTS of an example script collecting track information

Figure 7.1 shows the corresponding LTS representation of the end user browsing process for
accessing the track information of the 2013 WWW conference. The second website to be
considered in this example is DBLP at URL u2 in order to search for publications. Among
other information x on the entry Web page retrieved by the invocation of DBLP (), the Web
form Search takes the author name obtained from the input action as single input value.

DBLP()
def
= u2〈x〉.u2[author].@Search{author}

The form submission generates a dynamic page listing the publications of the specified author.
Although this page contains many further links, we restrict our example and terminate the
process at this stage with the Null process.

Search(author)
def
= u2〈articles,authors, . . .〉.0

The whole browsing process Recipe then combines both information sources by invoking both
components in parallel and coordinating the flow of the track chair names from CFPresearch

to DBLP. This is achieved by means of a controlling process C that runs in parallel to both
component websites, receives the outputs of the WWW conference website, provides the author
names to DBLP, and receives a list of publications pubs of each track chair c ∈ chairs.

Recipe()
def
= C ‖ @CFPwww13{} ‖

∏
c∈chairs

@DBLP{}

C
def
= u1[chairs].

∏
c∈chairs

u2〈c〉.u2〈pubs〉.0

7.1.2 Capturing Browsing Processes

A major advantage of our approach is that it ensures that the capturing of end user browsing
processes does not require unnecessary extra manual effort from the end users. There are
quite a few browser plug-ins, e.g., the open source plug-in CoScripter and the commercial
plug-in iMacros that can record a user’s browsing actions and save them as an executable
script. Furthermore, rather than the top-down approach of ontologies in the Semantic Web,
we advocate a bottom-up approach beginning with websites and the end users who browse
them using standard browsers. Website owners are not involved, and annotations consist of

143

Chapter 7 Index Structures for Efficient Service Discovery

exactly those necessary for a particular application. Once a user has tediously found the right
path through a sequence of websites for a particular goal, she should be able to find it much
faster and easier the next time. Saving and sharing the process consisting of these steps in a
reusable way is thus valuable. Therefore, such an approach not only easily captures the end
user browsing processes but also incentivizes end users to extract the relevant information from
the Web pages and share their browsing processes with others.

Incentives for end user information extraction. We do not have any information about
what information a user has extracted from which website. One reason for the lack of such
information is that currently there are hardly any tools that create added value for the users
from the extracted information. Benefits of having such information are for example the
following:

• End users will be able to find the previously extracted and aggregated information much
more easily than searching it all over again in the Web. Currently, end users can either
copy the information they want to remember in an application of their choice or create
a bookmark. In our approach, the extracted information can be stored as RDF and
searched with SPARQL. An example could be searching for publications relevant for a
user’s own research.

• End users will be able to integrate and use the extracted information more easily in other
applications such as calendars and task lists.

Learning semantics of navigation paths. Having a formalism for semantically describing the
navigation paths, we now turn our attention to obtaining the semantic descriptions. Of course,
we can simply require end users to annotate their scripts with formal ontologies before sharing
them with others. But, this would be against our bottom-up principle and is similar the
early top-down Semantic Web approach that, in some aspects, has fallen short of expectations.
Therefore, our aim is to demand minimum manual effort from users for those tasks that do
not bring any direct added value for the end users. We developed an approach for learning the
semantics of data involved in user actions. It is important to note that the actions we use for
learning are the ones that these users perform anyway for their own information need. Thus,
no overhead is imposed on the users. Our approach is based on the findings in [HA10].

Learning semantics of inputs. Concepts and relationships of the domain ontology of a Web
page can be directly extracted from the structure of the forms and links on the page with the
help of the mapping shown in Table 7.2. For doing so, we view a form as a tree with fields as
nodes. While the nodes at the same level may not necessarily have a direct relationship, they
are usually related with their respective parent nodes. For each field we create an ontology
concept for denoting the set of values the field can take, and an ontology relation to relate
it to the concept corresponding to its parent node. This method is of course a heuristic and
based upon parsing HTML code which is often noisy. As a result, the ontologies learned
in this manner are subject to manual review and corrections. Figure 7.2 shows an example
form of a car rental Web form along with the ontology derived by our method. The semantic

144

Chapter 7 Index Structures for Efficient Service Discovery

OK

Location

Period

Rental Car Type

Root

Location

PickUp

Green
Collection

Period

Return

Rental Car Type

PickUp
Date

Return
Date

Fun
Collection

Prestige
Collection

YearMonth TimeDay

Green Collection

Fun Collection
Prestige Collection

PickUp Date:

PickUp: Return:

Return Date:

hasPickUp hasReturn

hasPickupDt hasReturnDt

hasTime

hasYear

hasMonth
hasDay

YearMonth TimeDay

isA
isA

isA

hasTime

hasYear
hasMonth

hasDay

3 10:00Feb 2010

6 10:00Feb 2010

instanceOf
instanceOf

instanceOf

Figure 7.2: Example semantic description of the inputs of a form [HA10]

annotations of an input action describe constraints on the input values and are part of the
semantic description of the input action.

When an end user enters some values in a form automatically, i.e., from her local knowledge
base (KB), mappings between the domain ontology of the local KB and that of the Web
page are derived. For example, if the local KB of a user contains a concept u:C with
instances u:c1, . . . , u:cn, and the user selects u:c1, . . . , u:cn as values for a form field p:D, then
we derive u:C v p:D.

Learning semantics of outputs. Learning semantics of outputs is a bit more complex than
learning semantics of inputs. In this case, we first need to identify the outputs of navigation
paths before we turn our attention to learning their semantics. In order to identify outputs,
we search for the data extraction operations in a navigation path. With a data extraction
operation, an end user is able to copy some useful information from a Web page to her local KB.
Usage of data extraction operations gives us the hint that the end user is interested in the
extracted information, hence the information is one of the significant outputs (information
goal) of the navigation path. When an end user extracts some information from a Web page
and copies it into her local KB, she needs to provide the information where the new information
should be added to the local KB. The locations in the local KB correspond to ontology
classes, and we automatically infer that the extracted information (seen as ontology individuals)
are instances of the corresponding selected concepts in the local KB. When an end user
extracts some values from a Web page, individuals are created in her local KB. In addition
to the extraction of information and their representation as instances of appropriate ontology
concepts, the user may add further structure to the newly added instances in order to be able
to search for them better at a later stage. This additional structure can be added to the
semantic annotation of the outputs in addition to the already inferred type information of the
outputs. For example, if an end user extracts two information values a and b and adds them
to her local KB as instances of concepts u:A and u:B respectively, we create u:a and u:b as
instances of the concepts u:A and u:B respectively in the local KB. When the end user adds
a relation u:r between u:a and u:b, the semantic annotation u:r(u:a, u:b) can be added. The

145

Chapter 7 Index Structures for Efficient Service Discovery

ontology derived in this manner describes the types and relationships of the outputs (extracted
information) of a Web page and is part of the semantic description of the extraction (output)
action.

Deriving ontology mappings from script compositions. Apart from deriving semantics of
input and output actions of a script, we exploit script compositions for deriving mappings
between domain ontologies of different scripts. Script composition is performed by an end
user in order to achieve complex tasks, parts of which can be solved by existing scripts, such
as aggregation of flight offers. Technically, script composition consists of defining data flow
among the scripts, i.e., wiring outputs of one script with the inputs of another script. When
an end user defines such a wiring, we can automatically derive that the concepts and relations
describing the outputs of a script are sub-concepts and sub-relations of those describing the
inputs of the other script.

7.2 Offline Computable Indexes

After we presented the motivating use case, we introduce an efficient approach for the discovery
of services based on index structures. While model checking provides a basic technique, it is
not sufficient to perform model checking of each browsing process for a given query specified in
the constraint specification language because the naive model checking of large sets of browsing
process remains very time consuming.

7.2.1 Proposition-States Indexes

One of the main problems of naive model checking is that it requires a lot of time for evaluating
the description logic (DL) propositions. This is mainly due to the following three problems:
(i) The DL reasoning itself is not efficient, (ii) the naive approach checks the same proposition
for the same state multiple times, and (iii) the states are checked in sequence. While optimizing
description logic reasoning is out of the scope of this work, we present in the following how we
address the latter two problems.

It is easy to see from Algorithm 1 in Section 4.3.3 that it takes a lot of time to iterate over
all the states and check whether they satisfy a given proposition (see lines 7 to 11). This
takes O(n) time, where n is the number of states in the entire LTS. In order to save time for
proposition evaluation, we build the proposition-states (PS) indexes.

An atomic proposition is a triple (s, p, o), with subject s, object o, and predicate p. A
proposition-states index is a list of (ϕ, S) pairs, where ϕ is a proposition and S the set of states
that satisfy ϕ. A PS index contains the propositions that can be directly derived from the
axioms that describe the states. Therefore, it can be built offline by extracting the propositions
from the states and the actions described by the transitions.

Algorithm 4 describes how the proposition-states indexes can be built. The algorithm iterates
over every state of every LTS behavior description. For each proposition ϕ ∈ λ(s) that describes
a state s, we add the proposition ϕ and the label ns:s of the state s to the table I. If the
proposition was already added, we add s to the list of states in the right column of the table I.
Then, four versions PSO, POS, SPO, and OPS of table I are created by rearranging predicate p,
subject s, and object o of each proposition in I, respectively.

146

Chapter 7 Index Structures for Efficient Service Discovery

Algorithm 4: Build proposition-states indexes

Require: an LTS L = (S,→, A, λ), empty table I
for all states s ∈ S do

Let ns denote the prefix of s
for all propositions ϕ ∈ λ(s) do

add a new row to I and let r denote this row
insert ϕ into first column of r
add ns:s to the entries in the second column of r

end for
end for
PSO ← table I sorted by p, s, o of the first column
POS ← table I sorted by p, o, s of the first column
SPO ← table I sorted by s, p, o of the first column
OPS ← table I sorted by o, p, s of the first column

Different orderings (denoted by PSO, POS, SPO, and OPS) of the serialization of
propositions allow us to process queries with propositions that contain variables, e.g.,
ex:partOf(?x,www13) where ?x denotes the variable in the subject position. Here, the POS
or OPS index may be used to syntactically match predicate and object positions and retrieve
matching states efficiently. The subject position is left out as the variable ?x will syntactically
not match an actual subject from the index. The orderings SOP and OSP are not indexed, as
propositions with unspecified predicates (hence the trailing p) are only relevant for rare cases
in search queries.

Whenever during the model checking of a browsing process we need to retrieve the set
of states that satisfy a given proposition, we perform a lookup in the PS index instead of
iterating over all the states of the entire model containing the LTS representations of each
browsing process. This means, we replace in Algorithm 1 the lines 6 to 12 with the statement
“return lookupPS (P)”. Since the PS index is sorted by proposition, such a lookup in possible
in O(log n) time where n denotes the number of distinct propositions derived from the states.

Example 16. Propositions λ(sR.Tracks) of a state sR.Tracks are derived from the axioms in the
state knowledge base KB(sR.Tracks). For instance, the second state in Figure 7.1 contains the
axioms ex:Track(t1), ex:Conference(www13), and ex:partOf(t1,www13) with named instances t1
and www13. All axioms of KB(sR.Tracks) are directly added as propositions to λ(sR.Tracks).

The domain knowledge OD of the search system defines super classes and super prop-
erties by additional axioms ex:Conference v ex:Event and ex:partOf v ex:colocated.
Based on KB(sR.Tracks) and OD, we can derive further propositions ex:Event(www13),
ex:colocated(t1,www13) and add them both to λ(sR.Tracks).

Table 7.3 shows the populated PS index in PSO ordering for our example. String
concatenation (◦) is used to serialize the propositions as a single key in the index. The
propositions of each state of a browsing process are added to the index. Then, all the states
of the browsing process that satisfy a proposition from the index are stored in the respective
rows of the right column.

147

Chapter 7 Index Structures for Efficient Service Discovery

Table 7.3: Proposition-states index in the PSO ordering

Proposition φ (serialized to p ◦ s ◦ o) States {s|s ∈ S ∧ s |= φ}
rdf:type ◦ ex:Conference ◦ www2013 sWWW13, sR.Tracks, sTrack

rdf:type ◦ ex:Event ◦ www2013 sWWW13, sR.Tracks, sTrack

ex:partOf ◦ www2013 ◦ t sR.Tracks, sTrack

ex:colocated ◦ www2013 ◦ t sR.Tracks, sTrack
...

...

7.2.2 Action-States Indexes

Model checking as presented in Algorithm 1 consumes a lot of time for iterating over all the
transitions and checking whether they satisfy the constraints of a requested action (see lines 19
to 23). This takes O(n) time with n being the number of transition in the entire LTS. In
order to save time for the evaluation of actions, we build the action-states indexes. An action-
states (AS) index is a list of (A,S2) pairs, where A is an action, and S2 the set of states
pairs that are connected via the action A. An action-states index contains all actions that are
modeled as transitions of the LTS. Therefore, it can be built offline by extracting the actions
from the transitions.

Algorithm 5: Build action-states indexes

Require: an LTS L = (S,→, A, λ), empty table I
for all transition t = (s1, a, s2) ∈→ do

Let ns denote the prefix of s1

add a new row to I and let r denote this row
insert ns:a into first column of r
add (ns:s1, ns:s2) to the entries in the 2nd column of r

end for
TCP ← table I sorted by t, c, p of the first column
CTP ← table I sorted by c, t, p of the first column

Algorithm 5 describes how the action-states indexes are built. The algorithm iterates
over every transition of every LTS behavior description. Actions are characterized by their
type t (input, output, or local), a communication channel c, and the parameters p. For each
transition t, we add the action label ns:a and the corresponding pair of states (ns:s1, ns:s2) to
the table I. Analogue to the proposition-states indexes, no duplicate keys are added. Instead,
a list of entries can be stored in the right column of I. Then, the algorithm computes two
versions TCP and CTP of table I

A requested action further contains constraints (propositions) on the parameters, which are
verified by means of the proposition-states indexes. An action is a match if the state s2 satisfies
the propositions of an input or a local action. Since output actions do not change the state
knowledge, the original state s1 and the subsequent state s2 can be used likewise to verify the
propositions. The action parameters are necessary to ensure that the requested propositions

148

Chapter 7 Index Structures for Efficient Service Discovery

Table 7.4: Action-states index in the TCP ordering

Action a (serialized to t ◦ c ◦ p) {(s1, s2)|s1, s2 ∈ S ∧ ∃a : s1 →a s2}
supProc:output ◦ u1 ◦ tracks (sWWW13, sR.Tracks)
supProc:output ◦ u1 ◦ chairs (sR.Tracks, sTrack)
...

...

hold for the action parameters and not for other process resources. Hence, p is in the rightmost
position of the concatenated entries in the first column (i.e., TCP, CTP).

Whenever during the model checking process we need to retrieve all the states that have
a transition with a given action, we perform a look up in an action-states index instead of
iterating over all the transition of the entire LTS. That is, we replace in Algorithm 1 the
lines 18 to 24 by the statement “return lookupAT (a)”. Since the action-states indexes are
sorted by action types and channels, such a lookup in possible in O(log n) time, where n
denotes the number of transitions in the LTS.

Example 17. Table 7.4 shows the action-states index. Two output actions were depicted
in our example browsing process in Figure 7.1. The first action returns a vector tracks of
conference tracks and the second action returns a vector chairs of track chairs. These output
parameters are part of the Web pages that are returned by a Web server and displayed in the
client browser.

7.3 A Randomized Online Index

The computation of set intersection (see line 14 of Algorithm 1), and set difference (line 16)
of sets of size n takes O(n) time. It is not possible to compute and index all the conjunctions
and negations a priori as there can be infinitely many. However, often end users pose queries
that have been posed already. So, if the system caches the answers of the queries when they
are posed for the first time, it can retrieve the answers for recurring queries much faster.
In Section 7.3.1, we show how a cache of previously posed search queries can be utilized.
Since there can be an infinite number of queries but the cache cannot be infinitely long, we
need to incorporate a caching technique that guarantees certain performance even though the
maximum size of the cache is fixed. In Section 7.3.2, we apply the Marking algorithm to
maintain the cache size and discuss the performance guarantees of our online index.

7.3.1 Lookup in the Online Search Index

A page in the cache corresponds to a complex formula (behavior constraint) together with the
set of states that satisfy the formula. The purpose of this index is to accelerate the computation
of conjunction and negation in the model checking algorithm (lines 14 and 16 of Algorithm 1).

Definition 15 (Subformula). We say that a formula ψ is a subformula of a formula φ provided
that ψ, when viewed as a sequence of symbols, is a substring of φ. A subformula ψ of φ is
said to be proper provided that ψ is not φ itself. A top-level (or immediate) subformula is a
maximal proper subformula. We use SF (φ) to denote the set of subformulae of φ.

149

Chapter 7 Index Structures for Efficient Service Discovery

Algorithm 6: Online index lookup

Require: A formula φ
repeat

find one of the largest subformulae ψ of φ
retrieve the set I(ψ) of states associated with ψ
replace each occurrence ψ in φ by a variable Xψ

set the value of Xψ to I(ψ).
until φ contains only variables or it is not possible to find any subformulae of φ
return φ

Algorithm 6 illustrates the lookup procedure. It returns a formula in which all available
subformulae of φ have been replaced with variables along with the valuations of the variables.
Model checking the new formula by considering the valuations of the variables is equivalent
to model checking φ, as (i) µ-calculus formulae can be decomposed and verified independently
and (ii) the order of the composition of the individual results is irrelevant (cf. Algorithm 1).

Example 18. Suppose the index contains formulae φ1∧µ φ2 and φ2∧µ φ3 along with the set of
states that satisfy them. Suppose the formula that needs to be evaluated is φ1∧µφ2∧µφ3. Since
it is not in the index, Algorithm 6 searches for its subformulae. Without loss of generality, let
us assume that the algorithm finds φ1 ∧µ φ2 first. Let the set of states associated with it be S1.
The algorithm then replaces the occurrence of φ1 ∧µ φ2 in φ1 ∧µ φ2 ∧µ φ3 by X1 and assigns S1

as value of X1. So, the original formula becomes X1∧µφ3. It is not possible to find any further
subformulae of X1 ∧µ φ3 in the index. So the algorithm returns X1 ∧µ φ3. Then, our online
index based model checker evaluates X1 ∧µ φ3 by an online index lookup for X1, applies model
checking to φ3, and computes the result as the intersection of both result sets.

Finding an immediate subformula takes O(log n) where n denotes the size of the index.
Replacing each occurrence of ψ in φ is linear in the length of φ and is negligible. Because the
number of non-variable terms decreases by at least one in each iteration, the loop runs at most
m − 2 times, where m denotes the number of terms in φ. This means that the complexity of
the lookup algorithm is O(m2 log n).

When during a model checking process a formula of type conjunction or negation is evaluated,
at first an index lookup is performed. If the formula returned by the lookup algorithm
(Algorithm 6) consists of one variable only, it means that the original formula was found
in the index. Otherwise, we add the original formula to the index according to the Marking
algorithm that is described in the following section.

7.3.2 Maintaining the Size of the Index

We use a randomized online algorithm called the Marking algorithm for building an index for
complex search queries. The Marking algorithm is easy to implement and is optimal to a factor
of 2Hk. It was introduced in [FKL+91].

The paging problem is the problem of deciding which page from a cache of limited size is
ejected into a slower memory if all pages are used. A request to a page is satisfied if it resides in
the cache; otherwise a page fault occurs. It is the goal to reduce costs by reducing the number

150

Chapter 7 Index Structures for Efficient Service Discovery

Algorithm 7: Marking

if p is not in the cache then
if there are no unmarked pages in the cache then

unmark all pages.
end if
if p does not fit in the cache then

evict a randomly chosen unmarked page
end if
bring p into the cache
mark p

end if

of page faults for a sequence of requests. An online paging algorithm decides which pages
to eject without knowledge of future requests. The competitiveness of an online algorithm
compares its costs to an offline algorithm that knows the entire request sequence in advance
(optimum).

The Marking algorithm (see Algorithm 7) associates a bit with each page in the cache.
When the corresponding bit of a page is set, we say that the page is marked, otherwise it is
unmarked. Whenever a requested page is brought into the cache it is marked, that is, its bit
is set. Whenever room is supposed to be made for a requested page that is not in the cache,
an unmarked page is chosen uniformly at random and evicted.

Definition 16 (randomized competitiveness). Given a request sequence σ. Let CA(σ) and
CB(σ) denote the cost for the sequence σ incurred by a randomized online algorithm A and an
offline algorithm B respectively. A is called c-competitive against B, if there exists a constant
α such that CA(σ) ≤ c ·CB(σ)+α. The constant α is independent of the number of requests σ.

Theorem 1. Let A be any randomized online caching algorithm for uniform page sizes. Let k
denote the maximum number of pages the cache can contain at a time. The competitiveness of
A is greater than or equal to Hk (where Hk is the kth harmonic number), if the slow memory
contains N ≥ k + 1 pages.

Proof. We refer to [FKL+91] for proof.

The kth number in the harmonic series is Hk = 1 + 1
2 + 1

3 + . . .+ 1
k , which is roughly ln(k).

In comparison, deterministic online algorithms cannot be guaranteed to be in a factor smaller
than k of the optimum.

Theorem 2. The Marking algorithm is 2Hk-competitive. This means, that the total time taken
by the Marking algorithm for serving any arbitrarily long sequence of requests is at most 2Hk

times the total time needed by an optimal offline algorithm for serving the same sequence of
requests.

Proof. We refer to [FKL+91] for proof.
The Marking algorithm divides the whole request sequence σ in rounds of size k. The first

round begins with the first request σ1. A round starting with σi ends with σj , such that

151

Chapter 7 Index Structures for Efficient Service Discovery

σi, σi+1, . . . , σj contains requests to k distinct pages and σi, σi+1, . . . , σj+1 contains requests
to k + 1 distinct pages. An exception is the last round, which may contain requests to less
than k distinct pages. At the beginning of a round, all the pages are unmarked.

Consider requests in any round. A page is called clean if it was not requested in the previous
and the current round. Let l denote the number of requested clean pages during the current
round. The proof establishes the claim that the expected number of faults incurred by marking
during a round is at most l ·Hk.

Let SO denote the set of items in the optimal offline algorithm’s cache and SM denote the
set of items in the Marking algorithm’s cache. Let dI be the value of |SO \SM | at the beginning
of the round and dF be the value of |SO \ SM | at the end of the round. The dI and dF terms
for all rounds (except for the first and the last round) telescope, so that the amortized number
of faults of this round is at least l

2 .
Each of the l requests to clean pages adds one fault to the costs of the Marking algorithm.

For the remaining k − l requests, the expected costs correspond to the probability that the
requested page is not in the cache. In the case when the l requests to clean pages precede the
remaining k− l pages, this probability is maximal. More precisely, the probability that the ith
request (1 ≤ i ≤ k − l) incurs a fault is

l

k − i+ 1
.

Summing over all i ∈ {1, . . . , k− l}, we obtain the expected number of total faults in this round
as follows:

k−l∑
i=1

l

k − i+ 1
= l ·

k−l∑
i=1

1

k − i+ 1
= l · (Hk −Hl).

That is, the total number of faults is l + l · (Hk − Hl) ≤ l · Hk. Consequently, the Marking
algorithm is 2Hk-competitive. For further details, we refer to [FKL+91, Aga01].

The model checking complexity of a discovery system that incorporates our online index
structure mainly depends from the request sequence. As for any online data structure, the
actual request sequence impacts the data structure, i.e., the set of elements in the index in
our system. Because it is hard to estimate the requests of the proposed system and, thus,
to evaluate the performance in experiments, we discussed the theoretical complexity. The
randomized algorithm is 2Hk-competitive, which means that for any sequence of queries it
requires at most 2Hk more time than an optimal algorithm for serving the sequence of queries.

7.4 Implementation and Evaluation

This section provides details about the evaluation settings, the origin of the test data, and
the used search queries. We report on the performance results obtained in the experiments to
reveal the impact of the indexes on the discovery efficiency.

7.4.1 Evaluation Setup

We developed Java APIs for modeling semantic browsing processes and constraints of
search requests. Process descriptions and their LTS representations are serialized in the

152

Chapter 7 Index Structures for Efficient Service Discovery

form of RDF/S statements based on appropriate RDF/S vocabularies we developed. LTS
representations and domain ontologies used by processes are stored in the OWLIM-SE
semantic repository that provides a SPARQL query interface and optimized owl:sameAs
handling [BKO+11]. SPARQL2 is the query language used to query the repository of LTS.
OWLIM supports RDF/S reasoning and allows us to directly reason over heterogeneous LTS
descriptions based on the domain ontologies.

Search queries are decomposed by our µ-calculus reasoner developed as a Java component
that is flexible enough to provide the incremental, monolithic, and index-based model checking
capabilities. Our model checking component, the µ-calculus reasoner, is placed on top of the
locally installed OWLIM-based LTS repository. During the experiments we allocated 1GB
of main memory for OWLIM including its internal index structures. The index structures
introduced in the present chapter are implemented as Java data structures (TreeMap) within
the µ-calculus reasoner.

In the evaluation experiments shown above, we examined the search performance by means
of measuring the query answering time with different model checking approaches. Except for
the monolithic approach without indexes, we did not experience any shortage of main memory
while we conducted the experiments on commodity hardware with an Intel Core2Duo 2.6GHz
CPU and 4GB main memory.

7.4.2 Test Data

As in our previous experiments, existing Web browsing processes from the IBM CoScripter
repository serve as the basis of the large test collection used in our experiments. We generated
semantic browsing process descriptions with the characteristics summarized in Table 4.2
(page 76). In our experiments we loaded up to 20,000 generated browsing processes into
the repository. On average, they describe each input and output parameter by three axioms
(i.e., at least the data type of the parameter plus its relationship to other process resources).

On average, the search queries of the experiments are conjunctive and disjunctive
compositions of 4 propositions and one existential action query that eventually occurs in desired
recipes. Each µ-calculus proposition describes 2 instances and further 3 DL axioms on average.
For instance, the following proposition P of a search request contains two class membership
axioms and an object property specifying the relation between the two instances (here, ?x
denotes a variable).

P ≡ ex:Chair(?x), ex:chairs(?x,www13), ex:Conference(www13)

An example of a tested request is Ψ, where P1, . . . , P4 denote propositions with complexity
similar to the complexity of P .

Ψ
def
= (P1 ∨µ P2) ∧µ (eventually P3 ∨µ eventually P4)

The chosen domain ontologies used to describe the process resources in requests belong to the
same set of RDF/S ontologies used for the description of browsing processes. We used 4 public
ontologies such as the Semantic Web Research Community ontology [SBH+05]. The largest
ontology contains 70 classes and 48 object properties.

2SPARQL – http://www.w3.org/TR/sparql11-overview, retrieved 2013-08-15

153

http://www.w3.org/TR/sparql11-overview

Chapter 7 Index Structures for Efficient Service Discovery

0 0.2 0.4 0.6 0.8 1

·104

0

5

10

Number of browsing processes

Q
u

er
y

an
sw

er
in

g
ti

m
e

in
se

co
n

d
s

without any index
with offline indexes

Figure 7.3: Comparison of search performance of the monolithic model checking approach with
and without offline indexes

7.4.3 Performance Results

Figure 7.3 shows the performance of the so obtained search approach. The monolithic model
checking approach, as described in Section 4.3.3 on page 71, is used as the baseline as it
performed considerable better in comparison to the incremental approach. As we discussed
earlier, the monolithic approach suffers from a high memory demand. Hence, we can introspect
the performance gain of our index structures for a test repository with up to 5,000 browsing
processes only.

The query answering time is tremendously reduced. E.g., the query answering time is reduced
by the factor 63 for 5,000 browsing process descriptions (from 12.8 seconds to 0.205 seconds).
Even for 20,000 processes, the index-based approach returns matching processes in less than
1.2 seconds. The performance difference between both approaches increases with an increasing
repository size. During our evaluation with up to 20,000 processes we did not experience a
sudden performance regression. Thus, we can conclude that our offline index based model
checking technique scales better than the monolithic and incremental approaches.

These results show that the (computational) efforts for building and maintaining offline
indexes expedites the model checking phase such that results can be computed in a reasonable
time frame. Also, the memory consumption of the index based model checking approach is
considerably less as we allocated only 1GB of main memory for the index structures. The main
memory consumption of the monolithic approach without index was not limited, so that more
than 2GB of main memory could be used by the program before an out-of-memory-exception
was thrown.

154

Chapter 7 Index Structures for Efficient Service Discovery

7.5 Related Work

The Semantic Web [BLHL01] as well as the Linked Data community [BHBL09] addresses the
issue of semantic descriptions of Web page content but not of the path to be executed in order
to reach pages. Search engine crawlers have been refined such that they can index the Web
pages behind forms by learning and entering suitable values into the form elements [MKK+08].
However, gaining access to these pages is insufficient to collect actual user browsing paths.
Therefore, some companies collect user browsing behavior with the help of browser plug-ins
such as toolbars.

Information retrieval [MRS08] has focused on analyzing such browsing paths or click trails
of millions of users mainly for the purpose of improving Web search results. Click trails can be
used as endorsements to rank search results more effectively [SWH10], trail destination pages
can themselves be used as search results [WH10], and the concept of teleportation can be used
to navigate directly to the desired page [TAAK04]. The statistics-based click analysis methods
typically fail to consider semantics of user queries and pages. Furthermore, the models cannot
differentiate whether a frequently used path actually satisfies the information need or not.

The Semantic Web has proposed the annotation of Web pages in order to describe the
information content. Apart from the fact that still most of the Web pages are not annotated,
it is hard to build a server-sided semantic information search engine, since a crawler will
be unable to reach and index the semantic annotations within Deep Web pages. Linked Data
separates the structured data from the traditional Web (and as a result also from the end users)
completely. The Linked Data approach is primarily useful for application developers since end
users cannot be expected to consume RDF directly. That is, end users still require human
understandable applications to interact with, and furthermore the providers would continue to
protect their valuable data by controlling access, e.g., with the help of user interaction elements
such as Web forms.

Semantic search over RDF and Linked Data as in [LT10] enables querying Linked Data by
traversing the Web of Linked Data. The completeness of query answering over Linked Data
has been studied in [HS12]. Even if Linked Data query approaches were extended to support
dynamic data, e.g., by integrating so-called Linked Data Services [SH11], the suitability of
the approaches will remain limited to the publicly available free data only. That is, semantic
search approaches (i) heavily rely on the availability of structured data, and (ii) providers are
expected to provide access to their data through APIs. But, many providers do not follow this,
and (iii) even if access to data is provided, the data of one provider is often not semantically
aligned with data from other providers.

Navigational plans for data integration by Friedman et al. [FLM99] are related to our
approach with respect to information need driven search for Web scripts. As the navigational
paths are stored and returned as search results, this approach can deal with dynamic
information published within Web pages. It presents a sound and complete algorithm for
computing navigational paths for a given information query and set of source descriptions.
Computed navigational paths are however subsets of the Web graph only. The algorithm
cannot compute paths that consist of data flow between Web pages, which are not connected
in the Web graph. Consider our running example with a Web page A listing the track chairs,
and another page B listing publications of a given author. Assume that A is not linking to B.
For a query for publications of track chairs, the algorithm presented in [FLM99] is not able to

155

Chapter 7 Index Structures for Efficient Service Discovery

compute the wiring of outputs of A and inputs of B. Further, the proposed use of a mediated
schema is hardly applicable to the Web. It is also not possible to define temporal constraints
over navigational plans that answer the information need.

Search engine providers collect user click trails as well as the data they fill in the forms,
e.g., with toolbar-like browser plug-ins. There exists a plethora of work, e.g., [BW08, SWH10],
on predicting next step or the target Web page by analyzing click trails. Click trails can be
seen as simple browsing processes as they are sequences without variables and without data
flow. The major difference is that click trail analysis aims at helping users to find the relevant
pages faster mostly based on syntactic analysis of pages that the user has visited in the current
session. But users still have to know which pages are relevant and have to figure out what to
do with which pages once they have been found. In contrast, in our approach each browsing
process has a purpose, and we aim at finding the appropriate browsing processes for the current
need. Another difference is in the acceptance of the underlying technology. End users often do
not see any direct added value of a toolbar plug-in, which is a reason why toolbars are often
delivered as part of some other software. In our approach, end users have direct incentives for
sharing their browsing processes as well as full control on whether and with whom they share
them.

Existing µ-calculus model checkers such as nuSMV3 typically support symbolic model
checking based on BDD and/or SAT. To the best of our knowledge there is no ready to
use µ-calculus reasoner based on explicit state representation. The µALCQ logic introduced
in [GL97] extends ALC by fixpoint constructs and qualified number restrictions. It has been
shown in [GL97] that µALC is equivalent to µ-calculus. However, there does not exist any
implementation of a µALC reasoner that we could have used. Our implementation of a µ-
calculus model checker was also necessary in order to have a common platform for comparing
different model checking approaches.

An index over partially ordered complex behavioral constraints for the classification of
complex services was introduced in [JAS12]. Constraints are mapped to entire services as
opposed to a mapping to states as used in the present approach. Both approaches are
complementary as (i) behavior classes from [JAS12] provide another offline index for complex
constraints and (ii) our indexing structures allow to compute class memberships more efficiently
and are still required for the verification of any constraints that were not covered by the service
classification.

A metric to quantify process similarity based on behavioral profiles [KWW11], which is
grounded in the Jaccard coefficient, leverages behavioral relations between process model
activities. The metric is successfully evaluated towards its approximation of human similarity
assessment. So far, we did not consider similarity of browsing processes. In general, if a
process p simulates another process q and it is known that p is a match for a formula φ, then q
can be directly added to the set of matches for φ. Incorporating such an index may bring
further search performance gains.

3nuSMV symbolic model checker – http://nusmv.fbk.eu, retrieved 2013-08-15

156

http://nusmv.fbk.eu

Chapter 7 Index Structures for Efficient Service Discovery

7.6 Summary and Conclusions

Sophisticated use cases have complex information needs. Information needs that require
information from various websites are not served satisfactorily by the state of the art search
engines. This leaves end users spending a lot a time for searching and compiling required
information from various Web pages. In this chapter, we targeted this problem from a
completely new perspective. We build on a bottom-up approach that proposes capturing
and sharing of end user browsing processes [AP12], as opposed to the top-down approach that
requires annotated websites in the first place.

When the number of such Web browsing processes increases, efficient techniques for finding
browsing processes suitable for an information need will be required. In this chapter, we
presented an efficient logic-based technique for searching end user browsing processes. We
have shown how they can be modeled with suprimePDL, which was developed and used for
modeling complex Web services in the previous chapters. One of the major advantages of
such a modeling approach is that it does not require manual semantic annotation of the whole
browsing process. This makes the capturing of browsing processes easier, and does not demand
users to do extra manual work before sharing their browsing processes. suprimePDL process
descriptions can be mapped to an LTS representation. Therefore, known model checking
methods can be used directly to check whether a given browsing process fulfills the given
constraints.

In this chapter, our main focus was to develop an efficient search technique based on the
known model checking techniques. We have presented offline and online indexes on top of
the underlying model checking algorithm to achieve a scalable and efficient search for browsing
processes. Regarding offline computable indexes, we have shown that indexing propositions and
the states in which they hold, as well as indexing which actions are possible in which states
brings significant performance gains. While the offline indexes only cover atomic formulae,
the online index caches complex formulae that are used in a search query posed by an end
user. Since the number of such queries is potentially infinite, we have incorporated a well-
known randomized algorithm for deciding which answers should be kept in the index. The
randomized algorithm is 2Hk-competitive, which means that for any sequence of queries it
requires at most 2Hk more time than an optimal algorithm for serving the sequence of queries.
We have developed a lookup procedure for efficiently searching the formula or its subformulae
in the online index, which brings further performance gains, as well as presented how the index
can be maintained.

The online index structure favors requests that are posed frequently to be cached over
time. This allows identifying frequent requests, which represent candidates for the introduction
of new service classes. These new classes are likely to be used in many requests, as they
encapsulate frequently requested service properties. Introducing new service classes triggered
by frequent requests might even affect the usability of the discovery method by making it easier
to formulate requests with the help of classes.

157

Chapter 8
Conclusion

In this thesis, we presented a holistic service discovery method that identifies services that
accurately match the requirements specified in a discovery request. We employed a logic-
based matchmaking technique that allows us to automatically and efficiently retrieve matching
services based on a comprehensive set of properties. We introduced formalisms to describe and
request different kinds of service properties. These formalisms provide the ability to include
any domain specific properties. We focused on the modeling and reasoning over functional
service properties that are applied to uniformly describe complex behavior and Web service
profiles without altering their semantics with respect to discovery.

In the following, we summarize in Section 8.1 our contributions of this thesis and discuss
how they answer the research question. In Section 8.2, we present an outlook on prospective
extensions of our work.

8.1 Summary of Contributions

Service discovery is a fundamental technique that is applied in the development of service-based
systems. It is not only required in traditionally centralized settings of software development,
but also in the more modern trend of Web-based application development. There is a shift from
the shipment of software systems that can be installed locally on computers to the provision of
software as a service. We studied three different scenarios that require and assume the existence
of automated and efficient service discovery methods that deliver logically matching services
such that they can be easily used, e.g., as an integral part of a new system. We identified
the requirements for automated and efficient discovery methods so that a large amount of
services can be considered effectively. Furthermore, the logically correct search results enable
developers and end users to use them without extensive human intervention, e.g., in order to
evaluate the applicability of a discovered service for a given use case.

We also identified that the heterogeneity of service providers in open ecosystems demands for
methods to address the data heterogeneity between service providers and consumers. For this
reason, we employed formal representations of descriptions and requests. This design choice is
also one of the drivers for enabling automation of the service discovery method. With existing
works in the areas of ontology alignment and mapping, the data heterogeneity can be resolved.

158

Chapter 8 Conclusion

While the use of logics and ontologies is merely a design choice, we extended the state of
the art in the area of discovery of semantically described services by the following aspects.
We proposed the use of a property-based service model, which provides the concepts of an
upper service model. It allows us to combine functional and non-functional service properties
in a unified way. In particular, it specifies a key-value structure of properties in service
descriptions and accommodates a broad range of property types that we do not further
constrain. Analogously, we proposed a structurally similar model for requests. It allows
formulating requests that combine requirements on multiple properties. In contrast to many
existing works, we propose the use of a distinct request formalism, which is different to the
service description formalism. That is, the requests in our approach specify a set of desired
values for each requested property.

We developed a discovery method that exploits comprehensive descriptions and expressive
constraints on described properties. We developed a logic-based service matchmaker that
builds on the µ-calculus model checking technique. While this has been used for the discovery
of behavior descriptions before, we successfully applied it to the discovery of atomic services.
By this, we introduced a novel approach to the problem of Semantic Web Service discovery. In
general, model checking excels in (i) its computational complexity, which is considerably lower
than the complexity of subsumption-based Semantic Web Service matchmakers, and (ii) its
ability to treat service profiles and complex behavior descriptions equally.

Regarding the handling of Semantic Web Services in our discovery method, we proposed a
method to capture knowledge base changes caused by the service execution. We clarified how
descriptions and requests can include changes properly. Based on our modeling approach, we
can discover services based on desired changes.

In order to increase the efficiency of the developed discovery method, we further extended
the state of the art by introducing a formal service classification and index structures to speed
up the discovery process. The proposed approach of a classification is novel in the sense that
we include formal class definitions that can constrain the service behavior. The automated and
consistent classification of services and the consistency of the induced classification hierarchy
are features that cannot be provided by existing classification-based discovery approaches
without formal class definitions. We even gain a higher expressivity of the service description
formalism, as we allowed for an additional annotation of descriptions with classes. This
classification increases the efficiency of our discovery method. This is due to an early reduction
of the search space by materializing intermediate results in the form of classes.

The offline index structures we introduced also benefit from the precomputation of
intermediate matchmaking results with respect to the semantic annotations of states and
actions. At query answering time, we perform index lookups instead of ontology and µ-
calculus reasoning. The online index materializes more intermediate results of more complex
constraints. It is related to the service classes, as both can maintain the results of arbitrary
constraints on the functionality, behavior, and non-functional properties. Whereas we assumed
that the classification is given, the online index is automatically populated while processing
a series of discovery requests. As the frequent requests are favored for caching, it allows
identifying frequent requests, which represent candidates for the introduction of new service
classes.

159

Chapter 8 Conclusion

Review of the Research Questions

The development of our discovery method was driven by the requirements we identified in
the motivating scenarios. Different use cases of a service discovery method implied various
requirements. In order to provide an appropriate solution to the problem, we framed the open
challenges in five research questions. The proposed discovery method answers all research
questions. In the following, we review these questions and explain how we addressed them in
this thesis. At the end of this section, we verify the main hypothesis.

Research Question 1. Can we develop a service discovery method that considers functional
and non-functional properties in a unified way as well as detailed and abstract service behavior
descriptions in service descriptions and requests?

We introduced in Section 4.1.1 a property-based model for service descriptions and an
analogous model for requests in Section 4.2.2. It allows expressing any service property that
can be reduced to a key-value structure, without dictating the concrete property types. The
latter model enables us to precisely specify desired services by expressing desired combinations
of different properties. We have shown in Section 4.3, how our discovery method exploits
comprehensive descriptions and requests in order to identify services that fulfill various selection
criteria. Hence, our method can discover services based on functional and non-functional
requirements. In Chapter 5, we applied the same property-based models of descriptions and
requests to atomic services. The matchmaking technique is applicable to both atomic services
and services with complex behavior descriptions.

Research Question 2. How can we support the description of the functionality of state-
changing services, which cause effects during their execution, such that reasoning and discovery
based on state changes in descriptions and requests is enabled?

We focused on the functionality of services in Chapter 5. We developed a profile description
of the service behavior with a state-based interpretation. We explicitly modeled the effects
as changes in the provider knowledge in addition to the conditions that hold at the end of
the service execution. We also considered the types of changes since logical formulae cannot
express changes by itself. By the introduction of changes, our approach differs from previous
Web service modeling approaches that describe a profile of the service functionality.

Research Question 3. Is it possible to apply an efficient logic-based matchmaking technique
(model checking) to the matchmaking of service interface (profile) descriptions without losing
the ability to model and reason about state changes?

We provided in Section 5.4 a model checking based matchmaking technique for the
functionality of services, which is used to discover atomic services. Hence, it is also applicable
to the Semantic Web Services discovery problem. We keep the strict separation of states from
the descriptions and requests in the matchmaking technique. Furthermore, we considered the
explicitly modeled changes to the state knowledge during matchmaking. It allows discovering
services based on desired changes, which cannot be achieved by only taking the start and end
states into account.

160

Chapter 8 Conclusion

Research Question 4. Is it possible to automatically classify services correctly? And can such
a classification be used to increase the efficiency of the discovery approach while the discovery
result accuracy is not compromised?

We introduced in Chapter 6 a service classification, which is founded on formally described
service classes. That is, each class features a defining constraint formula, which describes the
functional or non-functional properties of the class members. Due to a formal class definition,
we can use our matchmaking approach to consistently classify services into given classes
automatically. A consistent hierarchy of service classes is also automatically derived. Given
the classification of services, we can exploit it as an index structure to retrieve discovery results
more efficiently if the discovery requests reuse existing classes. The semantics of the consistent
classification that is used in the extended matchmaking method preserves the required accuracy
of the discovery results. We have evaluated in Section 6.5 how the discovery performance is
increased by the use of service classes.

Research Question 5. Can index structures be used to reduce the computational complexity
of service discovery during the matchmaking of service requests with available service
descriptions?

The service classification presented in Chapter 6 already induces an offline index. Service
classes are the index entries. In Chapter 7, we presented offline indexing structures that are
automatically populated. That is, the index structures materialize intermediate discovery
results that can be computed offline, i.e., before service requests are processed. It is possible
to compute them offline as the number of propositions is finite. At query answering time, the
precomputed results are reused by an index lookup. As a consequence, which was evaluated
in Section 7.4, the efficiency of the discovery method was increased, because we cut down on
costly reasoning tasks for the evaluation of state propositions and annotations of the action.
The online index presented in Section 7.3 was introduced as an additional index structure
that caches more complex constraints from the discovery requests. Only frequent requests are
cached in the index structure, due to its limited size. The stream of incoming discovery requests
is the main factor for the expected performance, which is therefore hard to estimate. The index
structure populated online can be used to identify frequent discovery requests, which allows
us to match repeated requests more efficiently by an index lookup. They can also trigger the
creation of new service classes, which might even affect the usability of the discovery method.

Main Hypothesis. Services can be automatically, effectively, and efficiently discovered based
on a verification of the constraints of expressive service requests over comprehensive service
descriptions.

In this thesis we developed a discovery method that verifies our main hypothesis as we have
argued above for the five research questions.

8.2 Future Work and Outlook

We now provide an overview on the topics and open challenges that are closely related to our
work on service discovery but have not been within our scope. They provide a starting point
for extending this work or for applying our work in end user ready scenarios.

161

Chapter 8 Conclusion

End User Ready Request Language

The development of the discovery method was motivated by use cases in which service discovery
is used by a machine or by an end user. It is easy to let machines, i.e., software programs,
create structured service requests as we considered them in this work. End users may encounter
problems in specifying service requests in such a way, because they are used to search systems,
which either accept keyword-based queries or provide a supportive user interface.

So far, we did not consider how users can formulate requests. An end user ready request
language should be able to abstract from the underlying formalisms while retaining the
formalism’s expressivity to a large extent. Otherwise, if an end user request cannot express
the complete set of requirements, it is often hard to discover services that can be immediately
used. In order to tackle this challenge, automated methods to elicit requirements, e.g., from
the user profile or her context, can help to suggest request completions in a discovery interface.
The use of forms and menus can guide users in expressing their requirements while abstracting
from the concrete syntax.

Cost Benefit Analysis of the Service Classification

With a focus on developing methods and tools that allow end users to use our discovery
method more easily, it becomes possible to evaluate the impact of the classification presented
in Chapter 6 on the usability. The economy of time with respect to the reuse of service classes in
requests can be opposed to the search for classes based on their name or a full-text description.

It is possible to increase the efficiency gains of using a service classification even when a
request is specified without the use of classes. Query rewriting techniques can be developed
in order to replace as many explicit constraints as possible by existing classes. Furthermore,
the variable mappings between the explicit constraints and a set of replacement classes have
to be integrated. Once the classes replace explicit constraints of a request, the matchmaking
time for the evaluation of the request using classes is lower than for the one without classes.
In Section 6.2.3, we described how the subclass relationship between classes is computed. This
method can be the starting point for query rewriting techniques. The complexity of comparing
explicit constraints in requests with a large set of classes can considerably increase the query
answering time, if the substitution requires too much time. Then, the class hierarchy can be
exploited to prune the number of class comparisons.

Integration of Ranking

In our work, we used the principle that a request is verified for all service descriptions of a
repository. In a discovery system, a global ranking of the services in the repository can be
computed offline. It means that an ordering of services based on objective preferences is added
to the repository. The discovery method can then be extended such that the ordering from
the repository determines the order in which the request is verified. The matching services can
be immediately returned to the user. That is, a stream of discovery results is produced and
matching services are returned while the complete set of results is continued to be computed.
Thus, the user receives first results quickly. So far, we could not consider a global ranking in
our discovery method, as the underlying ontology reasoners do not allow to influence the order
of execution of reasoning tasks. They also do not return result streams.

162

Chapter 8 Conclusion

It is an even more interesting aspect to combine ranking and matchmaking in a more
sophisticated way to build a search system. Given global and user specific preferences that
imply an ordering of services, the computational complexity of evaluating different kinds of
preference terms varies. The individual steps for computing a ranking for different preferences
dovetails the set of matchmaking operations. One goal can be to provide search results to a user
in an interactive search interface as fast as possible. Alternatively, search results can be passed
to a machine, which continues its computation every time a new search result is returned.
In order to determine how ranking integrates best with matchmaking, the complexities of
evaluating different preference terms and the selectivity of individual discovery constraints
have to be estimated. It allows creating an execution plan that specifies the order of preference
term evaluation steps and constraint verification steps. Such a plan, which is also known as
query execution plan in database systems, is a workflow that, if explicitly described, can be
easily deployed on external systems and stored for later reuse.

Instead of using a ranking of services to influence the order in which a request is evaluated,
it is also possible to extend our discovery method to only consider top-k ranked services for the
matchmaking. That is, only the most promising candidates are considered for matchmaking.
In comparison to our method, such top-k based discovery methods will lose completeness of the
result set, but it can be a further step towards the development of scalable discovery methods.

Knowledge Base Identification

We already mentioned in Section 4.1.1 the lack of an ability to distinguish the knowledge
bases of different providers within existing service modeling frameworks. Representing the
knowledge, e.g., using description logics, allows modeling only one state and only one actor at
the same time. In complex service systems, where multiple actors can be involved in the service
provision, the knowledge of each actor in a common state should be disconnected. Otherwise,
logic inconsistencies can occur and it is not possible to reason about the knowledge of each
actor.

In our approach, we either have to assume that only one actor provides the functionality
or that all actors and their behavior are explicitly described. In a behavior description, the
agent invocation describes the invocation of external processes, which can be provided by
other actors. However, a separation of the actors’ knowledge bases is required when a local
action is executed by multiple actors. Adding provenance annotations to each statement in
the knowledge of each state can be one approach to make the separation explicit. Ontology
reasoners can then be used to reason over the provenance information.

Outlook

We observe that the initial Semantic Web vision [BLHL01] with autonomous agents browsing
the Web and utilizing Semantic Web Services automatically is shifting. Currently, more
data-centric trends culminating in Linked Data and Big Data related research efforts can be
perceived. Nevertheless, services remain an integral part of these research efforts and emerge,
e.g., as potential enablers of a read-write access to Linked Data in a layer on top of the data
sets.

163

Chapter 8 Conclusion

We believe that service orientation and especially the Web-mediated functionalities designed
for end users will gain momentum in the near future. In order to empower end users with
the capability to organize, customize, accelerate, reuse, and share their personal and business
activities carried out in the Web, the functionalities and browsing processes need to be modeled
explicitly. Based on their description, the user efforts can be reduced tremendously by applying
automated methods like discovery, composition, and execution.

Service composition is one of the most appealing and, thus, prominently aimed at use cases of
service discovery. Automated composition methods, e.g., based on AI planning, are not suitable
in every scenario as often too many unusable plans are computed. Often it can be more efficient
to manually specify templates of processes and workflows that contain abstract activities, which
can be instantiated by a binding to concrete services. This approach still provides the flexibility
to customize the templates later for a use case at hand or to react to a changing environment by
adapting the process. For example, in the domain of scientific workflows, a workflow designer
has to manually determine the overall structure of the workflows. Then, the resulting template
uses service discovery to automatically bind single workflow activities to services.

In this thesis, we provided a service discovery method that treats services with complex
behavior and atomic services uniformly, and produces accurate results enabling their immediate
use. Our approaches increase the efficiency of discovery and allow us to utilize large service
description repositories. Our method is applicable in current scenarios like the ones we
introduced above and also provides features for the support of upcoming scenarios. We have
shown in Chapter 7 that our discovery method can even be used to tackle open challenges of the
information search problem in the Web. The presented service discovery method enables the
development of service-oriented systems and also aids in tasks like composition and execution.

164

List of Tables

3.1 ALC language constructs of concept descriptions 29
3.2 TBox and ABox axioms of the ALC description logic 30
3.3 SHOIN (D) concept and role constructs in addition to the ones in ALC . . . 31

4.1 Sequential actions of the example trace . 57
4.2 Behavior characteristics per browsing process 76

5.1 Mapping between the sub-properties of the formal model and representation in
service descriptions . 103

5.2 Query sizes tested in the experiment . 111

6.1 Different levels of behavior class granularity . 132
6.2 Query answering time and relative gain for 1,000 behavior descriptions 133
6.3 Query answering time and relative gain for 2,000 behavior descriptions 133

7.1 Mapping between Web artifacts and elements of suprimePDL 142
7.2 Correspondence between page content and ontology 142
7.3 Proposition-states index in the PSO ordering 148
7.4 Action-states index in the TCP ordering . 149

165

List of Figures

2.1 SOA triangle: Publish-find-bind pattern . 13
2.2 The introduction of a fourth-party provider role in logistics scenario 15
2.3 Interactions in current and smart Web browsers 17

3.1 Matching degrees between the interpretation of request R and service D 46

4.1 Formal property-based model of services . 51
4.2 Formal behavior model of services . 52
4.3 Service description ontologies ODω and domain ontologies Oω 55
4.4 LTS representation of the example service . 59
4.5 Different layers of abstraction in requests, descriptions, and executions, whereas

requests are expressed in a different formalism in our approach. 63
4.6 Comparison of intersection-based and membership-based matches 64
4.7 Formal property-based model of service requests 66
4.8 Service and workflow modeling in the WisNetGrid project 75
4.9 Performance of the naive model checking based discovery algorithm 78

5.1 State changes caused by a program . 81
5.2 Formal functionality model of atomic services 91
5.3 SOA4All service discovery user interface . 106
5.4 Request specification in the SOA4All user interface 107
5.5 Decomposition of a service request R into knowledge base queries 108
5.6 Evaluation results of setup 1 . 111
5.7 Evaluation results of setup 2 . 112

6.1 Service classes in different layers of abstraction 122

7.1 Excerpt of the LTS of an example script collecting track information 143
7.2 Example semantic description of the inputs of a form 145
7.3 Comparison of search performance with and without offline indexes 154

166

Bibliography

[Abe09] Sven Abels. SOA4All: Enabling a Web of billions of services. International
Journal of Interoperability in Business Information Systems (IBIS), 8:35–37,
2009.

[ABK+04] Sinuhé Arroyo, Christoph Bussler, Jacek Kopecký, Rubén Lara, Axel Polleres,
and Michael Zaremba. Web service capabilities and constraints in WSMO.
Technical report, Digital Enterprise Research Institute (DERI), Aug. 2004.
http://www.w3.org/2004/08/ws-cc/wsmo-20040903, retrieved 2013-08-15.

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web
Services: Concepts, Architectures and Applications. Data-Centric Systems and
Applications. Springer, 2004.

[ADW08] Ahmed Awad, Gero Decker, and Mathias Weske. Efficient compliance checking
using BPMN-Q and temporal logic. In Marlon Dumas, Manfred Reichert, and
Ming-Chien Shan, editors, Proc. of 6th International Conference on Business
Process Management (BPM), Milan, Italy, Sept. 2-4, 2008, volume 5240 of
LNCS, pages 326–341. Springer, 2008.

[AF00] Alessandro Artale and Enrico Franconi. A survey of temporal extensions of
description logics. Annals of Mathematics and Artificial Intelligence, 30(1-
4):171–210, 2000.

[AFM+05] Rama Akkiraju, Joel Farrell, John Miller, Meenakshi Nagarajan, Marc-Thomas
Schmidt, Amit Sheth, and Kunal Verma. Web service semantics - WSDL-S.
W3C member submission, W3C, Nov. 2005. http://www.w3.org/Submission/
WSDL-S, retrieved 2013-08-15.

[Aga01] Sudhir Agarwal. Algorithms for general caching problems. Diploma thesis,
Universität Dortmund, 2001.

[Aga07a] Sudhir Agarwal. Formal Description of Web Services for Expressive
Matchmaking. PhD thesis, Universität Karlsruhe (TH), Fakultät für
Wirtschaftswissenschaften, 2007.

167

http://www.w3.org/2004/08/ws-cc/wsmo-20040903
http://www.w3.org/Submission/WSDL-S
http://www.w3.org/Submission/WSDL-S

BIBLIOGRAPHY

[Aga07b] Sudhir Agarwal. A goal specification language for automated discovery and
composition of Web services. In Proc. of IEEE/WIC/ACM International
Conference on Web Intelligence (WI), Silicon Valley, CA, USA, Nov. 2-5,
2007, pages 528–534. IEEE Computer Society, 2007.

[AJ10] Sudhir Agarwal and Martin Junghans. Swapping out coordination of Web
processes to the Web browser. In Antonio Brogi, Cesare Pautasso, and
George Angelos Papadopoulos, editors, Proc. of 8th IEEE European Conference
on Web Services (ECOWS), Ayia Napa, Cyprus, Dec. 1-3, 2010, pages 115–
122. IEEE Computer Society, 2010.

[AJ11] Sudhir Agarwal and Martin Junghans. Meaningful service classifications
for flexible service descriptions. In Proc. of World Congress on Services
(SERVICES), Washington, DC, USA, July 4-9, 2011, pages 85–86. IEEE
Computer Society, 2011.

[AJ13] Sudhir Agarwal and Martin Junghans. Towards simulation-based similarity
of end user browsing processes. In Florian Daniel, Peter Dolog, and Qing Li,
editors, Proc. of 13th International Conference on Web Engineering (ICWE),
Aalborg, Denmark, July 8-12, 2013, volume 7977 of LNCS, pages 216–223.
Springer, 2013.

[AJF+09] Sudhir Agarwal, Martin Junghans, Olivier Fabre, Ioan Toma, and Jean-Pierre
Lorre. First service discovery prototype. Deliverable D5.3.1, SOA4All, Sept.
2009. http://www.soa4all.eu/file-upload.html?func=fileinfo&id=123, retrieved
2013-08-15.

[AJN10a] Sudhir Agarwal, Martin Junghans, and Barry Norton. Second service discovery
prototype. Deliverable D5.3.2, SOA4All, Sept. 2010. http://www.soa4all.eu/
file-upload.html?func=fileinfo&id=236, retrieved 2013-08-15.

[AJN10b] Sudhir Agarwal, Martin Junghans, and Barry Norton. Second service ranking
prototype. Deliverable D5.4.2, SOA4All, Aug. 2010. http://www.soa4all.eu/
file-upload.html?func=fileinfo&id=237, retrieved 2013-08-15.

[All83] James F. Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832–843, 1983.

[ALS09] Sudhir Agarwal, Steffen Lamparter, and Rudi Studer. Making Web services
tradable: A policy-based approach for specifying preferences on Web service
properties. Journal of Web Semantics: Science, Services and Agents on the
World Wide Web, 7(1):11–20, 2009.

[AP12] Sudhir Agarwal and Charles J. Petrie. An alternative to the top-down semantic
Web of services. IEEE Internet Computing, 16(5):94–97, 2012.

[ARA08] Sudhir Agarwal, Sebastian Rudolph, and Andreas Abecker. Semantic
description of distributed business processes. In AI Meets Business Rules

168

http://www.soa4all.eu/file-upload.html?func=fileinfo&id=123
http://www.soa4all.eu/file-upload.html?func=fileinfo&id=236
http://www.soa4all.eu/file-upload.html?func=fileinfo&id=236
http://www.soa4all.eu/file-upload.html?func=fileinfo&id=237
http://www.soa4all.eu/file-upload.html?func=fileinfo&id=237

BIBLIOGRAPHY

and Process Management, Papers from the 2008 AAAI Spring Symposium,
Technical Report SS-08-01, Stanford, CA, USA, Mar. 26-28, 2008, pages 1–11.
AAAI, 2008.

[AS04] H. Peter Alesso and Craig F. Smith. Developing Semantic Web Services. A K
Peters/CRC Press, 2004.

[AS06] Luis Araujo and Martin Spring. Services, products, and the institutional
structure of production. Industrial Marketing Management, 35(7):797–805,
2006.

[BAT97] Pim Borst, Hans Akkermans, and Jan L. Top. Engineering ontologies.
International Journal of Human-Computer Studies, 46(2):365–406, 1997.

[BBL11] David Beckett and Tim Berners-Lee. Turtle - terse RDF triple language.
W3C team submission, W3C, Mar. 2011. http://www.w3.org/TeamSubmission/
turtle/, retrieved 2013-08-15.

[BBvB+01] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt,
Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken
Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto for agile software
development. http://agilemanifesto.org/, retrieved 2013-08-15, 2001.

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and
L. J. Hwang. Symbolic model checking: 1020 states and beyond. Information
and Computation, 98(2):142–170, 1992.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[Ber01] Michael K. Bergman. The Deep Web: Surfacing hidden value. Journal of
Electronic Publishing, 7(1), 2001.

[BFH+09] Barry Bishop, Florian Fischer, Pascal Hitzler, Markus Krötzsch, Sebastian
Rudolph, Yiorgos Trimponias, and Gulay Unel. Defining the features of
the WSML-DL v2.0 language. Deliverable D3.1.3, SOA4All, Sept. 2009.
http://www.soa4all.eu/file-upload.html?func=fileinfo&id=82, retrieved 2013-08-
15.

[BFM11] Meghyn Bienvenu, Christian Fritz, and Sheila A. McIlraith. Specifying and
computing preferred plans. Artificial Intelligence, 175(7-8):1308–1345, 2011.

[BG04] Dan Brickley and Ramanathan V. Guha. RDF vocabulary description language
1.0: RDF Schema. W3C recommendation, W3C, Feb. 2004. http://www.w3.
org/TR/rdf-schema, retrieved 2013-08-15.

169

http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/turtle/
http://agilemanifesto.org/
http://www.soa4all.eu/file-upload.html?func=fileinfo&id=82
http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/rdf-schema

BIBLIOGRAPHY

[BGG+06] Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi
Zavattaro. Choreography and orchestration conformance for system design.
In Paolo Ciancarini and Herbert Wiklicky, editors, Proc. of 8th International
Conference on Coordination Models and Languages (COORDINATION),
Bologna, Italy, June 14-16, 2006, volume 4038 of LNCS, pages 63–81. Springer,
2006.

[BH91] Franz Baader and Philipp Hanschke. A scheme for integrating concrete domains
into concept languages. In John Mylopoulos and Raymond Reiter, editors,
Proc. of 12th International Joint Conference on Artificial Intelligence. Sydney,
Australia, Aug. 24-30, 1991, pages 452–457. Morgan Kaufmann, 1991.

[BHBL09] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - the story so
far. International Journal on Semantic Web and Information Systems, 5(3):1–
22, 2009.

[BHL+02] Mark H. Burstein, Jerry R. Hobbs, Ora Lassila, David L. Martin, Drew V.
McDermott, Sheila A. McIlraith, Srini Narayanan, Massimo Paolucci, Terry R.
Payne, and Katia P. Sycara. DAML-S: Web service description for the Semantic
Web. In Ian Horrocks and James Hendler, editors, The Semantic Web: Proc.
of 1st International Semantic Web Conference (ISWC), Sardinia, Italy, June
9-12, 2002, volume 2342 of LNCS, pages 348–363. Springer, 2002.

[BHL+05] Boualem Benatallah, Mohand-Said Hacid, Alain Léger, Christophe Rey, and
Farouk Toumani. On automating Web services discovery. VLDB Journal,
14(1):84–96, 2005.

[BHSS09] Saartje Brockmans, Peter Haase, Luciano Serafini, and Heiner Stuckenschmidt.
Formal and conceptual comparison of ontology mapping languages. In Heiner
Stuckenschmidt, Christine Parent, and Stefano Spaccapietra, editors, Modular
Ontologies: Concepts, Theories and Techniques for Knowledge Modularization,
volume 5445 of LNCS, pages 267–291. Springer, 2009.

[BKCvD09] Benjamin Blau, Jan Kramer, Tobias Conte, and Clemens van Dinther. Service
value networks. In Birgit Hofreiter and Hannes Werthner, editors, Proc. of
IEEE Conference on Commerce and Enterprise Computing (CEC), Vienna,
Austria, July 20-23, 2009, pages 194–201. IEEE Computer Society, 2009.

[BKO+11] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov, Zdravko
Tashev, and Ruslan Velkov. OWLIM: A family of scalable semantic repositories.
Semantic Web Journal, 2(1):33–42, 2011.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web: a new
form of Web content that is meaningful to computers will unleash a revolution
of new possibilities. Scientific American, 5(284):34–43, 2001.

[BM05] Michael Bolin and Robert C. Miller. Naming page elements in end-user Web
automation. ACM SIGSOFT Software Engineering Notes, 30(4):1–5, 2005.

170

BIBLIOGRAPHY

[BN03] Franz Baader and Werner Nutt. Basic description logics. In Franz Baader,
Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors, The Description Logic Handbook: Theory, Implementation,
and Applications, pages 43–95. Cambridge University Press, 2003.

[Boc08] Jürgen Bock. Parallel computation techniques for ontology reasoning. In
Amit Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard,
Timothy W. Finin, and Krishnaprasad Thirunarayan, editors, The Semantic
Web: Proc. of 7th International Semantic Web Conference (ISWC), Karlsruhe,
Germany, Oct. 26-30, 2008, volume 5318 of LNCS, pages 901–906. Springer,
2008.

[Bör98] Egon Börger. High level system design and analysis using abstract state
machines. In Dieter Hutter, Werner Stephan, Paolo Traverso, and Markus
Ullmann, editors, Proc. of International Workshop on Current Trends in
Applied Formal Methods (FM-Trends), Boppard, Germany, Oct. 7-9, 1998,
volume 1641 of LNCS, pages 1–43. Springer, 1998.

[Bra98] Julian C. Bradfield. The modal µ-calculus alternation hierarchy is strict.
Theoretical Computer Science, 195(2):133–153, 1998.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691, 1986.

[BS85] Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE
knowledge representation system. Cognitive Science, 9(2):171–216, 1985.

[BS01] Julian Bradfield and Colin Stirling. Modal logics and mu-calculi: an
introduction. In Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors,
Handbook of Process Algebra, pages 293–330. Elsevier, 2001.

[BS06] Julian Bradfield and Colin Stirling. Modal mu-calculi. In Patrick Blackburn,
Johan van Benthem, and Frank Wolter, editors, Handbook of Modal Logic,
pages 721–756. Elsevier, 2006.

[BvHH+04] Sean Bechhofer, Frank van Harmelen, James Hendler, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL Web
ontology language. W3C recommendation, W3C, Feb. 2004. http://www.w3.
org/TR/owl-ref, retrieved 2013-08-15.

[BW99] Rebecca F. Bruce and Janyce Wiebe. Recognizing subjectivity: A case study
of manual tagging. Natural Language Engineering, 5(2):187–205, 1999.

[BW08] Mikhail Bilenko and Ryen W. White. Mining the search trails of surfing crowds:
identifying relevant websites from user activity. In Jinpeng Huai, Robin Chen,
Hsiao-Wuen Hon, Yunhao Liu, Wei-Ying Ma, Andrew Tomkins, and Xiaodong
Zhang, editors, Proc. of 17th International Conference on World Wide Web
(WWW), Beijing, China, Apr. 21-25, 2008, pages 51–60. ACM, 2008.

171

http://www.w3.org/TR/owl-ref
http://www.w3.org/TR/owl-ref

BIBLIOGRAPHY

[BWR+05] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C.
Miller. Automation and customization of rendered Web pages. In Patrick
Baudisch, Mary Czerwinski, and Dan R. Olsen, editors, Proc. of 18th Annual
ACM Symposium on User Interface Software and Technology (UIST), Seattle,
WA, USA, Oct. 23-26, 2005, pages 163–172. ACM, 2005.

[BWR09] Adam Barker, Christopher D. Walton, and David Robertson. Choreographing
Web services. IEEE Transactions on Services Computing, 2(2):152–166, 2009.

[CBF05] Ion Constantinescu, Walter Binder, and Boi Faltings. Flexible and efficient
matchmaking and ranking in service directories. In Proc. of IEEE International
Conference on Web Services (ICWS), Orlando, FL, USA, July 11-15, 2005,
pages 5–12. IEEE Computer Society, 2005.

[CBMK10] Jorge Cardoso, Alistair P. Barros, Norman May, and Uwe Kylau. Towards a
unified service description language for the Internet of services: Requirements
and first developments. In Proc. of IEEE International Conference on Services
Computing (SCC), Miami, FL, USA, July 5-10, 2010, pages 602–609. IEEE
Computer Society, 2010.

[CC06] Miguel Ángel Corella and Pablo Castells. Semi-automatic semantic-based
Web service classification. In Johann Eder and Schahram Dustdar, editors,
Proc. of Business Process Management Workshops: BPM 2006 International
Workshops, BPD, BPI, ENEI, GPWW, DPM, semantics4ws, Vienna, Austria,
Sept. 4-7, 2006, volume 4103 of LNCS, pages 459–470. Springer, 2006.

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weer-
awarana. Web services description language (WSDL) 1.1. W3C note, W3C,
Mar. 2001. http://www.w3.org/TR/wsdl, retrieved 2013-08-15.

[CFB04] Ion Constantinescu, Boi Faltings, and Walter Binder. Large scale, type-
compatible service composition. In Proc. of IEEE International Conference
on Web Services (ICWS), San Diego, CA, USA, June 6-9, 2004, pages 506–
513. IEEE Computer Society, 2004.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT
Press, 2001.

[CHvRR04] Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers. UDDI spec
technical committee draft, version 3.0.2. OASIS committee draft, OASIS, Oct.
2004. http://uddi.org/pubs/uddi v3.htm, retrieved 2013-08-15.

[CSHG09] Viorica R. Chifu, Ioan Salomie, Ioana Harsa, and Marius Gherga. Semantic
Web service composition method based on fluent calculus. In Stephen M. Watt,
Viorel Negru, Tetsuo Ida, Tudor Jebelean, Dana Petcu, and Daniela Zaharie,
editors, Proc. of 11th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), Timisoara, Romania, Sept.
26-29, 2009, pages 325–332. IEEE Computer Society, 2009.

172

http://www.w3.org/TR/wsdl
http://uddi.org/pubs/uddi_v3.htm

BIBLIOGRAPHY

[CVW08] Jorge Cardoso, Konrad Voigt, and Matthias Winkler. Service engineering for
the internet of services. In Joaquim Filipe and José Cordeiro, editors, Proc.
of 10th International Conference on Enterprise Information Systems (ICEIS),
Barcelona, Spain, June 12-16, 2008, volume 19 of Lecture Notes in Business
Information Processing, pages 15–27. Springer, 2008.

[dBBD+05] Jos de Bruijn, Christoph Bussler, John Domingue, Dieter Fensel, Martin Hepp,
Uwe Keller, Michael Kiffer, Brigitta König-Ries, Jacek Kopecký, Rubén Lara,
Holger Lausen, Eyal Oren, Axel Polleres, Dimitru Roman, James Scicluna, and
Michael Stollberg. Web service modeling ontology (WSMO). W3C member
submission, W3C, June 2005. http://www.w3.org/Submission/WSMO, retrieved
2013-08-15.

[dBFK+08] Jos de Bruijn, Dieter Fensel, Mick Kerrigan, Uwe Keller, Holger Lausen, and
James Scicluna. Modeling Semantic Web Services: The Web Service Modeling
Language. Springer, Berlin, 2008.

[dBKZF09] Jos de Bruijn, Mick Kerrigan, Michael Zaremba, and Dieter Fensel. Semantic
Web services. In Staab and Studer [SS09], pages 617–636.

[Deb04] Sumanta Deb. Designing the agile enterprise - managed migration to SOA holds
the key. In Hamid R. Arabnia, Olaf Droegehorn, and S. Chatterjee, editors,
Proc. of International Conference on Internet Computing (IC), Volume 2 &
Proc. of the International Symposium on Web Services & Applications (ISWS),
Las Vegas, Nevada, USA, June 21-24, 2004, pages 749–756. CSREA Press,
2004.

[DFD+09] John Domingue, Dieter Fensel, John Davies, Rafael González-Cabero, and
Carlos Pedrinaci. The service Web: a Web of billions of services. In Georgios
Tselentis, John Domingue, Alex Galis, Anastasius Gavras, David Hausheer,
Srdjan Krco, Volkmar Lotz, and Theodore Zahariadis, editors, Towards the
Future Internet - A European Research Perspective, pages 203–216. IOS Press,
2009.

[DFGC08] John Domingue, Dieter Fensel, and Rafael González-Cabero. SOA4All,
enabling the SOA revolution on a world wide scale. In Proc. of 2th IEEE
International Conference on Semantic Computing (ICSC), Aug. 4-7, 2008,
Santa Clara, CA, USA, pages 530–537. IEEE Computer Society, 2008.

[DLC+07] Xinguo Deng, Ziyu Lin, Weiqing Chen, Ruliang Xiao, Lina Fang, and Ling
Li. Modeling Web service choreography and orchestration with colored Petri
nets. In Wenying Feng and Feng Gao, editors, Proc. of 8th ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), Qingdao, China, July 30-Aug. 1,
2007, pages 838–843. IEEE Computer Society, 2007.

[DM00] Francesco M. Donini and Fabio Massacci. EXPTIME tableaux for ALC.
Artificial Intelligence, 124(1):87–138, 2000.

173

http://www.w3.org/Submission/WSMO

BIBLIOGRAPHY

[Don03] Francesco M. Donini. Complexity of reasoning. In Franz Baader, Diego
Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors, The Description Logic Handbook: Theory, Implementation,
and Applications, pages 96–136. Cambridge University Press, 2003.

[EC80] E. Allen Emerson and Edmund M. Clarke. Characterizing correctness
properties of parallel programs using fixpoints. In Jaco W. de Bakker and
Jan van Leeuwen, editors, Proc. of 7th International Colloquium on Automata,
Languages and Programming (ICALP), Noordweijkerhout, The Netherlands,
July 14-18, 1980, volume 85 of LNCS, pages 169–181. Springer, 1980.

[ECPB13] Thomas Erl, Benjamin Carlyle, Cesare Pautasso, and Raj Balasubramanian.
SOA with REST - Principles, Patterns and Constraints for Building Enterprise
Solutions with REST. The Prentice Hall Service Technology Series. Pearson,
2013.

[Ehr06] Marc Ehrig. Ontology Alignment: Bridging the Semantic Gap. PhD thesis,
Universität Karlsruhe (TH), Fakultät für Wirtschaftswissenschaften, 2006.

[EJ99] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata
and logics of programs. SIAM Journal on Computing, 29(1):132–158, 1999.

[EL86] E. Allen Emerson and Chin-Laung Lei. Efficient model checking in fragments of
the propositional mu-calculus (extended abstract). In Proc. of Symposium on
Logic in Computer Science (LICS), Cambridge, MA, USA, June 16-18, 1986,
pages 267–278. IEEE Computer Society, 1986.

[ES07] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer, 2007.

[FFH+03] Christian Facciorusso, Simon Field, Rainer Hauser, Yigal Hoffner, Robert
Humbel, René Pawlitzek, Walid Rjaibi, and Christine Siminitz. A Web services
matchmaking engine for Web services. In Kurt Bauknecht, A. Min Tjoa,
and Gerald Quirchmayr, editors, Proc. of 4th International Conference on E-
Commerce and Web Technologies (EC-Web), Prague, Czech Republic, Sept.
2-5, 2003, volume 2738 of LNCS, pages 37–49. Springer, 2003.

[FFK+10] Dieter Fensel, Florian Fischer, Jacek Kopecký, Reto Krummenacher, Dave
Lambert, and Tomas Vitvar. WSMO-Lite: Lightweight semantic descriptions
for services on the Web. W3C member submission, W3C, Aug. 2010. http:
//www.w3.org/Submission/2010/SUBM-WSMO-Lite-20100823, retrieved 2013-
08-15.

[FFST11] Dieter Fensel, Federico Michele Facca, Elena Simperl, and Ioan Toma. Semantic
Web Services. Springer, 2011.

[Fit96] Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer,
1996.

174

http://www.w3.org/Submission/2010/SUBM-WSMO-Lite-20100823
http://www.w3.org/Submission/2010/SUBM-WSMO-Lite-20100823

BIBLIOGRAPHY

[FKL+91] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic
Sleator, and Neal E. Young. Competitive paging algorithms. Journal of
Algorithms, 12(4):685–699, 1991.

[FLM99] Marc Friedman, Alon Y. Levy, and Todd D. Millstein. Navigational plans for
data integration. In James Hendler and Devika Subramanian, editors, Proc. of
16th AAAI National Conference on Artificial Intelligence, Orlando, FL, USA,
July 18-22, 1999, pages 67–73. AAAI Press / The MIT Press, 1999.

[Flo67] Robert W. Floyd. Assigning meanings to programs. In Jacob T. Schwartz,
editor, Mathematical Aspects of Computer Science, Proc. of Symposia in
Applied Mathematics, volume 19, pages 19–32, 1967.

[Fra99] Piero Fraternali. Tools and approaches for developing data-intensive Web
applications: A survey. ACM Computing Surveys, 31(3):227–263, 1999.

[GCGPP+08] Raul Garcia-Castro, Asunción Gómez-Pérez, Charles J. Petrie, Emanuele Della
Valle, Ulrich Küster, Michal Zaremba, and M. Omair Shafiq, editors. Proc.
of 6th International Workshop on Evaluation of Ontology-based Tools and the
Semantic Web Service Challenge (EON-SWSC), Tenerife, Spain, June 1-2,
2008, volume 359. CEUR, 2008.

[GCTB01] Javier González-Castillo, David Trastour, and Claudio Bartolini. Description
logics for matchmaking of services. In Günther Görz, Volker Haarslev,
Carsten Lutz, and Ralf Möller, editors, Proc. of Workshop on Applications
of Description Logics, Vienna, Austria, Sept. 18, 2001, volume 44. CEUR,
2001.

[GHM+07] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau,
Henrik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. SOAP version 1.2
part 1: Messaging framework (second edition). W3C recommendation, W3C,
Apr. 2007. http://www.w3.org/TR/soap12-part1/, retrieved 2013-08-15.

[GHM+08] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter F.
Patel-Schneider, and Ulrike Sattler. OWL 2: The next step for OWL. Journal
of Web Semantics, 6(4):309–322, 2008.

[GHVD03] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker.
Description logic programs: combining logic programs with description logic. In
Gusztáv Hencsey, Bebo White, Yih-Farn Robin Chen, László Kovács, and Steve
Lawrence, editors, Proc. of 12th International World Wide Web Conference
(WWW), Budapest, Hungary, May 20-24, 2003, pages 48–57. ACM, 2003.

[GJR+13] José Maŕıa Garćıa, Martin Junghans, David Ruiz, Sudhir Agarwal, and
Antonio Ruiz Cortés. Integrating semantic Web services ranking mechanisms
using a common preference model. Knowledge-Based Systems, 49(0):22–36,
2013.

175

http://www.w3.org/TR/soap12-part1/

BIBLIOGRAPHY

[GL97] Giuseppe De Giacomo and Maurizio Lenzerini. A uniform framework for
concept definitions in description logics. Journal of Artificial Intelligence
Research, 6:87–110, 1997.

[GLA+04] Stephan Grimm, Steffen Lamparter, Andreas Abecker, Sudhir Agarwal, and
Andreas Eberhart. Ontology based specification of Web service policies. In
Peter Dadam and Manfred Reichert, editors, Beiträge der 34. Jahrestagung
der Gesellschaft für Informatik e.V., Band 2, Ulm, Germany, Sept. 20-24,
2004, volume 51 of LNI, pages 579–583. GI, 2004.

[GNT04] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory
& Practice. Morgan Kaufmann, San Francisco, CA, USA, 2004.

[GNT14] Malik Ghallab, Dana Nau, and Paolo Traverso. The actor’s view of automated
planning and acting: A position paper. Artificial Intelligence, 208:1–17, 2014.

[GOS09] Nicola Guarino, Daniel Oberle, and Steffen Staab. What is an ontology? In
Staab and Studer [SS09].

[Gru95] Thomas R. Gruber. Toward principles for the design of ontologies used for
knowledge sharing. International Journal of Human-Computer Studies, 43(5-
6):907–928, 1995.

[Gur94] Yuri Gurevich. Evolving algebras. In Bjorn Pehrson and Imre Simon, editors,
Proc. of IFIP 13th World Computer Congress on Technology and Foundations -
Information Processing, Hamburg, Germany, Aug. 28-Sept. 2, 1994, volume 1,
pages 423–427. North-Holland, 1994.

[HA28] David Hilbert and Wilhelm Ackermann. Grundzüge der theoretischen Logik.
Springer, 1928.

[HA10] Julia Hoxha and Sudhir Agarwal. Semi-automatic acquisition of semantic
descriptions of processes in the Web. In Jimmy Xiangji Huang, Irwin King,
Vijay V. Raghavan, and Stefan Rueger, editors, Proc. of IEEE/WIC/ACM
International Conference on Web Intelligence (WI), Toronto, Canada, Aug.
31-Sept. 3, 2010, pages 256–263. IEEE Computer Society, 2010.

[HA12] Julia Hoxha and Sudhir Agarwal. Datenintegration und Verwaltungskompo-
nente für Logistik-Dienste. Deliverable M4.7, InterLogGrid, Jan. 2012.

[Hal05] Alon Y. Halevy. Why your data won’t mix: Semantic heterogeneity. ACM
Queue, 3(8):50–58, 2005.

[Hay04] Patrick J. Hayes. RDF semantics. W3C recommendation, W3C, Feb. 2004.
http://www.w3.org/TR/rdf-mt, retrieved 2013-08-15.

[Hen88] Matthew Hennessy. Algebraic Theory of Processes. Foundations of Computing.
MIT Press, 1988.

176

http://www.w3.org/TR/rdf-mt

BIBLIOGRAPHY

[Hil77] Peter Hill. On goods and services. Review of Income and Wealth, 23(4):315–
338, 1977.

[HJA12] Julia Hoxha, Martin Junghans, and Sudhir Agarwal. Enabling semantic
analysis of user browsing patterns in the Web of data. In Proc. of 2nd
International Workshop on Usage Analysis and the Web of Data (USEWOD),
Lyon, France, Apr. 17, 2012, 2012.

[HKP+09] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and
Sebastian Rudolph, editors. OWL 2 Web Ontology Language: Primer. W3C
Recommendation, Oct. 2009. http://www.w3.org/TR/owl2-primer, retrieved
2013-08-15.

[HKR09] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of
Semantic Web Technologies. Chapman & Hall/CRC, 1st edition, 2009.

[HLM99] Volker Haarslev, Carsten Lutz, and Ralf Möller. A description logic with
concrete domains and a role-forming predicate operator. Journal of Logic and
Computation, 9(3):351–384, 1999.

[HM08] Volker Haarslev and Ralf Möller. On the scalability of description logic instance
retrieval. Journal of Automated Reasoning, 41(2):99–142, 2008.

[Hoa69] Charles A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

[HS12] Andreas Harth and Sebastian Speiser. On completeness classes for query
evaluation on Linked Data. In Jörg Hoffmann and Bart Selman, editors, Proc.
of 26th AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, July
22-26, 2012. AAAI Press, 2012.

[HTN08] Ramy Ragab Hassen, Farouk Toumani, and Lhouari Nourine. Web services
composition is decidable. In Proc. of 11th International Workshop on the Web
and Databases (WebDB), Vancouver, BC, Canada, June 13, 2008, 2008.

[HZB+06] Duncan Hull, Evgeny Zolin, Andrey Bovykin, Ian Horrocks, Ulrike Sattler,
and Robert Stevens. Deciding semantic matching of stateless services. In
Proc. of 21st National Conference on Artificial Intelligence and 18th Conference
on Innovative Applications of Artificial Intelligence Conference, Boston, MA,
USA, July 16-20, 2006, pages 1319–1324. AAAI Press, 2006.

[IWA91] Neil Iscoe, Gerald B. Williams, and Guillermo Arango. Domain modeling for
software engineering. In Les Belady, David R. Barstow, and Koji Torii, editors,
Proc. of 13th International Conference on Software Engineering (ICSE),
Austin, TX, USA, May 13-17, 1991, pages 340–343. IEEE Computer Society
/ ACM Press, 1991.

[JA10] Martin Junghans and Sudhir Agarwal. Web service discovery based on unified
view on functional and non-functional properties. In Proc. of 4th IEEE

177

http://www.w3.org/TR/owl2-primer

BIBLIOGRAPHY

International Conference on Semantic Computing (ICSC), Pittsburgh, PA,
USA, Sept. 22-24, 2010, pages 224–227. IEEE Computer Society, 2010.

[JA11] Martin Junghans and Sudhir Agarwal. Wissensnetzwerke im Grid - Evaluierung
der Suchfunktion. Deliverable D3.2.6, WisNetGrid, June 2011. (German).

[JA12] Martin Junghans and Sudhir Agarwal. Wissensnetzwerke im Grid -
Entwicklung von Methoden und Werkzeugen für Workflowmodellierung und
-Ausführung. Deliverable D3.3.2, WisNetGrid, Mar. 2012. (German).

[JA13] Martin Junghans and Sudhir Agarwal. Efficient search for Web browsing
recipes. In Proc. of IEEE International Conference on Web Services (ICWS),
Santa Clara, CA, USA, June 27-July 2, 2013, page to be published. IEEE
Computer Society, 2013.

[JAS10] Martin Junghans, Sudhir Agarwal, and Rudi Studer. Towards practical
semantic Web service discovery. In Lora Aroyo, Grigoris Antoniou, Eero
Hyvönen, Annette ten Teije, Heiner Stuckenschmidt, Liliana Cabral, and Tania
Tudorache, editors, The Semantic Web: Research and Applications, Proc. of
7th Extended Semantic Web Conference (ESWC), Part II, Heraklion, Crete,
Greece, May 30-June 3, 2010, volume 6089 of LNCS, pages 15–29. Springer,
2010.

[JAS12] Martin Junghans, Sudhir Agarwal, and Rudi Studer. Behavior classes for
specification and search of complex services and processes. In Carole A. Goble,
Peter P. Chen, and Jia Zhang, editors, Proc. of IEEE International Conference
on Web Services (ICWS), Honolulu, HI, USA, June 24-29, 2012, pages 343–
350. IEEE Computer Society, 2012.

[Jaz07] Mehdi Jazayeri. Some trends in Web application development. In Lionel C.
Briand and Alexander L. Wolf, editors, Proc. of Workshop on the Future of
Software Engineering (FOSE), Minneapolis, MN, USA, May 23-25, 2007, pages
199–213, 2007.

[JJ89] Claude Jard and Thierry Jéron. On-line model checking for finite linear
temporal logic specifications. In Joseph Sifakis, editor, Proc. of International
Workshop on Automatic Verification Methods for Finite State Systems,
Grenoble, France, June 12-14, 1989, volume 407 of LNCS, pages 189–196.
Springer, 1989.

[Jun13] Martin Junghans. A process-oriented view of website mediated functionalities.
In Craig A. Knoblock, Kai-Uwe Sattler, and Rudi Studer, editors, Proc.
of Dagstuhl Seminar 13252 on Interoperation in Complex Information
Ecosystems, Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), 2013.

[KB04] Mark Klein and Abraham Bernstein. Toward high-precision service retrieval.
IEEE Internet Computing, 8(1):30–36, 2004.

178

BIBLIOGRAPHY

[KDJ06] Sofien Khemakhem, Khalil Drira, and Mohamed Jmaiel. SEC: A search engine
for component based software development. In Hisham Haddad, editor, Proc.
of ACM Symposium on Applied Computing (SAC), Dijon, France, Apr. 23-27,
2006, pages 1745–1750. ACM, 2006.

[KDPS10] Reto Krummenacher, John Domingue, Carlos Pedrinaci, and Elena Simperl.
SOA4All: Towards a global service delivery platform. In Georgios Tselentis,
Alex Galis, Anastasius Gavras, Srdjan Krco, Volkmar Lotz, Elena Simperl,
Burkhard Stiller, and Theodore Zahariadis, editors, Towards the Future
Internet - Emerging Trends from European Research, pages 161–172. IOS Press,
2010.

[KFS06] Matthias Klusch, Benedikt Fries, and Katia P. Sycara. Automated semantic
Web service discovery with OWLS-MX. In Hideyuki Nakashima, Michael P.
Wellman, Gerhard Weiss, and Peter Stone, editors, Proc. of 5th International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS),
Hakodate, Japan, May 8-12, 2006, pages 915–922. ACM, 2006.

[KFS09] Matthias Klusch, Benedikt Fries, and Katia P. Sycara. OWLS-MX: A hybrid
semantic Web service matchmaker for OWL-S services. Journal of Web
Semantics, 7(2):121–133, 2009.

[KK06] Frank Kaufer and Matthias Klusch. WSMO-MX: A logic programming based
hybrid service matchmaker. In Proc. of 4th IEEE European Conference on Web
Services (ECOWS), Zurich, Switzerland, Dec. 4-6, 2006, pages 161–170. IEEE
Computer Society, 2006.

[KK12] Matthias Klusch and Patrick Kapahnke. The iSeM matchmaker: A flexible
approach for adaptive hybrid semantic service selection. Journal of Web
Semantics: Science, Services and Agents on the World Wide Web, 15:1–14,
2012.

[KKLF11] Christopher Klinkmüller, Robert Kunkel, André Ludwig, and Bogdan
Franczyk. The logistics service engineering and management platform:
Features, architecture, implementation. In Witold Abramowicz, editor, Proc.
of 14th International Conference on Business Information Systems (BIS),
Poznan, Poland, June 15-17, 2011, volume 87 of LNBIP, pages 242–253.
Springer, 2011.

[KLL+05] Uwe Keller, Rubén Lara, Holger Lausen, Axel Polleres, and Dieter Fensel.
Automatic location of services. In Asunción Gómez-Pérez and Jérôme Euzenat,
editors, The Semantic Web: Research and Applications, Proc. of 2nd European
Semantic Web Conference (ESWC), Heraklion, Crete, Greece, May 29-June 1,
2005, volume 3532 of LNCS, pages 1–16. Springer, 2005.

[KLS05] Pal Krogdahl, Gottfried Luef, and Christoph Steindl. Service-oriented agility:
An initial analysis for the use of agile methods for SOA development. In Proc.

179

BIBLIOGRAPHY

of IEEE International Conference on Services Computing (SCC), Orlando, FL,
USA, July 11-15, 2005, pages 93–100. IEEE Computer Society, 2005.

[KLS06] Uwe Keller, Holger Lausen, and Michael Stollberg. On the semantics of
functional descriptions of Web services. In York Sure and John Domingue,
editors, The Semantic Web: Research and Applications, Proc. of 3rd European
Semantic Web Conference (ESWC), Budva, Montenegro, June 11-14, 2006,
volume 4011 of LNCS, pages 605–619. Springer, 2006.

[KLS13] Paul Karänke, Jörg Leukel, and Vijayan Sugumaran. Ontology-based QoS
aggregation for composite Web services. In 11. Internationale Tagung
Wirtschaftsinformatik, Leipzig, Germany, Feb. 27-Mar. 1, 2013, pages 1343–
1357, 2013.

[KMP06] László Kovács, András Micsik, and Peter Pallinger. Two-phase semantic
Web service discovery method for finding intersection matches using logic
programming. In M. Omair Shafiq, editor, Proc. of Workshop on Semantics
for Web Services (SemWS), Zurich, Switzerland, Dec. 4-6, 2006, volume 316.
CEUR, 2006.

[KNSP09] Reto Krummenacher, Barry Norton, Elena Simperl, and Carlos Pedrinaci.
SOA4All: Enabling web-scale service economies. In Proc. of 3rd IEEE
International Conference on Semantic Computing (ICSC), Berkeley, CA, USA,
Sept. 14-16, 2009, pages 535–542. IEEE Computer Society, 2009.

[Koz83] Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27:333–354, 1983.

[KP06] Kyriakos Kritikos and Dimitris Plexousakis. Semantic QoS metric matching. In
Proc. of 4th IEEE European Conference on Web Services (ECOWS), Zurich,
Switzerland, Dec. 4-6, 2006, pages 265–274. IEEE Computer Society, 2006.

[KP07] Kyriakos Kritikos and Dimitris Plexousakis. Requirements for QoS-based
Web service description and discovery. In Proc. of 31st Annual International
Computer Software and Applications Conference (COMPSAC), Beijing, China,
July 24-27, 2007, pages 467–472. IEEE Computer Society, 2007.

[KP09] Kyriakos Kritikos and Dimitris Plexousakis. Mixed-integer programming
for QoS-based Web service matchmaking. IEEE Transactions on Services
Computing, 2(2):122–139, 2009.

[KP12] Kyriakos Kritikos and Dimitris Plexousakis. Towards optimal and scalable
non-functional service matchmaking techniques. In Carole A. Goble, Peter P.
Chen, and Jia Zhang, editors, Proc. of IEEE International Conference on Web
Services (ICWS), Honolulu, HI, USA, June 24-29, 2012, pages 327–335. IEEE
Computer Society, 2012.

180

BIBLIOGRAPHY

[KVBF07] Jacek Kopecký, Tomas Vitvar, Carine Bournez, and Joel Farrell. SAWSDL:
Semantic annotations for WSDL and XML Schema. IEEE Internet Computing,
11(6):60–67, 2007.

[KWW11] Matthias Kunze, Matthias Weidlich, and Mathias Weske. Behavioral similarity
- a proper metric. In Stefanie Rinderle-Ma, Farouk Toumani, and Karsten Wolf,
editors, Proc. of 9th International Conference on Business Process Management
(BPM), Clermont-Ferrand, France, Aug. 30-Sept. 2, 2011, volume 6896 of
LNCS, pages 166–181. Springer, 2011.

[Lar06] Rubén Lara. Two-phased Web service discovery. In Prashant Doshi, Richard
Goodwin, and Amit Sheth, editors, Proceedings of AI-Driven Technologies for
Services-Oriented Computing Workshop, Boston, MA, USA, July 16, 2006.
AAAI Press, 2006.

[LB87] Hector J. Levesque and Ronald J. Brachman. Expressiveness and tractability in
knowledge representation and reasoning. Computational Intelligence, 3:78–93,
1987.

[LCC06] Rubén Lara, Miguel Ángel Corella, and Pablo Castells. A flexible model
for Web service discovery. In Proc. of International Workshop on Semantic
Matchmaking and Resource Retrieval: Issues and Perspectives, Seoul, Korea,
Sept. 11, 2006, 2006.

[LCC08] Rubén Lara, Miguel Corella, and Pablo Castells. A flexible model for locating
services on the Web. International Journal of Electronic Commerce, 12(2):11–
40, 2008.

[LdBPF05] Holger Lausen, Jos de Bruijn, Axel Polleres, and Dieter Fensel. WSML - a
language framework for semantic Web services. In Proc. of W3C Workshop on
Rule Languages for Interoperability, Washington, DC, USA, Apr. 27-28, 2005.
W3C, 2005.

[Lef07] Dean Leffingwell. Scaling Software Agility: Best Practices for Large
Enterprises. The Agile Software Development. Addison-Wesley, 2007.

[LH03] Lei Li and Ian Horrocks. A software framework for matchmaking based on
semantic Web technology. In Gusztáv Hencsey, Bebo White, Yih-Farn Robin
Chen, László Kovács, and Steve Lawrence, editors, Proc. of 12th International
World Wide Web Conference (WWW), Budapest, Hungary, May 20-24, 2003,
pages 331–339. ACM, 2003.

[LKS11] Jörg Leukel, Stefan Kirn, and Thomas Schlegel. Supply chain as a service: A
cloud perspective on supply chain systems. IEEE Systems, 5(1):16–27, 2011.

[LMP07] Vladimir Lifschitz, Leora Morgenstern, and David Plaisted. Knowledge
representation and classical logic. In Frank van Harmelen, Vladimir Lifschitz,
and Bruce Porter, editors, Handbook of Knowledge Representation, chapter 1,
pages 3–88. Elsevier Science, 2007.

181

BIBLIOGRAPHY

[LP06] Heiko Ludwig and Charles J. Petrie. Session summary - “cross cutting
concerns”. In Francisco Cubera, Bernd J. Krämer, and Michael P.
Papazoglou, editors, Proc. of Dagstuhl Seminar 05462 on Service Oriented
Computing, Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), 2006.

[LRPF04] Rubén Lara, Dumitru Roman, Axel Polleres, and Dieter Fensel. A conceptual
comparison of WSMO and OWL-S. In Liang-Jie Zhang, editor, Proc. of
European Conference on Web Services (ECOWS), Erfurt, Germany, Sept. 27-
30, 2004, volume 3250 of LNCS, pages 254–269. Springer, 2004.

[LT10] Günter Ladwig and Thanh Tran. Linked Data query processing strategies. In
Peter F. Patel-Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang,
Jeff Z. Pan, Ian Horrocks, and Birte Glimm, editors, The Semantic Web,
Proc. of 9th International Semantic Web Conference (ISWC), Part I, Shanghai,
China, Nov. 7-11, 2010, volume 6496 of LNCS, pages 453–469. Springer, 2010.

[LT11] Günter Ladwig and Thanh Tran. Index structures and top-k join algorithms
for native keyword search databases. In Craig Macdonald, Iadh Ounis, and
Ian Ruthven, editors, Proc. of 20th ACM Conference on Information and
Knowledge Management (CIKM), Glasgow, United Kingdom, Oct. 24-28, 2011,
pages 1505–1514. ACM, 2011.

[LZLG07] Gexin Li, Wenjie Zhang, Huxiong Li, and Junfang Guo. An efficient way to
accelerate service discovery and invocation. In Proc. of IEEE International
Conference on Systems, Man and Cybernetics (SMC), Montréal, QC, Canada,
Oct. 7-10, 2007, pages 1304–1309. IEEE Computer Society, 2007.

[MA10] Carolin Michels and Sudhir Agarwal. Elicitation of preferences for Web service
compositions. In Klaus-Peter Fähnrich and Bogdan Franczyk, editors, Beiträge
der 40. Jahrestagung der Gesellschaft für Informatik e.V.: Service Science -
Neue Perspektiven für die Informatik, Band 2, Leipzig, Germany, Sept. 27-
Oct. 1, 2010, volume 176 of LNI, pages 103–108. GI, 2010.

[MBH+04] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew V. McDermott,
Sheila A. McIlraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry
Payne, Evren Sirin, Naveen Srinivasan, and Katia Sycara. OWL-S: Semantic
markup for Web services. W3C member submission, W3C, Nov. 2004. http:
//www.w3.org/Submission/OWL-S/ (accesses Aug. 15, 2013).

[McC02] John McCarthy. Actions and other events in situation calculus. In Dieter
Fensel, Fausto Giunchiglia, Deborah L. McGuinness, and Mary-Anne Williams,
editors, Proc. of 8th International Conference on Principles and Knowledge
Representation and Reasoning (KR), Toulouse, France, Apr. 22-25, 2002,
pages 615–628. Morgan Kaufmann, 2002.

[Mey91] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1991.

182

http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/

BIBLIOGRAPHY

[Mey92] Bertrand Meyer. Applying “design by contract”. IEEE Computer, 25(10):40–
51, 1992.

[MGH+98] Drew V. McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin
Ram, Manuela Veloso, Daniel Weld, and David Wilkins. PDDL - the planning
domain definition language. Technical Report TR-98-003, Yale Center for
Computational Vision and Control, 1998.

[MH69] John McCarthy and Patrick J. Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In Machine Intelligence, volume 4, pages
463–502. Edinburgh University Press, 1969.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of LNCS.
Springer, 1980.

[Mil92] Robin Milner. Functions as processes. Mathematical Structures in Computer
Science, 2(2):119–141, 1992.

[Mil99] Robin Milner. Communicating and mobile systems: the π-calculus. Cambridge
University Press, 1999.

[MKK+08] Jayant Madhavan, David Ko, Lucja Kot, Vignesh Ganapathy, Alex Rasmussen,
and Alon Y. Halevy. Google’s Deep Web crawl. Proc. of VLDB Endowment
(PVLDB), 1(2):1241–1252, 2008.

[MM04] Frank Manola and Eric Miller. RDF primer. W3C recommendation, W3C,
Feb. 2004. http://www.w3.org/TR/rdf-primer, retrieved 2013-08-15.

[MMWvdA11] Fabrizio M. Maggi, Marco Montali, Michael Westergaard, and Wil M. P.
van der Aalst. Monitoring business constraints with linear temporal logic:
An approach based on colored automata. In Stefanie Rinderle-Ma, Farouk
Toumani, and Karsten Wolf, editors, Proc. of 9th International Conference on
Business Process Management (BPM), Clermont-Ferrand, France, Aug. 30-
Sept. 2, 2011, volume 6896 of LNCS, pages 132–147. Springer, 2011.

[MPM+04] David L. Martin, Massimo Paolucci, Sheila A. McIlraith, Mark H. Burstein,
Drew V. McDermott, Deborah L. McGuinness, Bijan Parsia, Terry R. Payne,
Marta Sabou, Monika Solanki, Naveen Srinivasan, and Katia P. Sycara.
Bringing semantics to Web services: The OWL-S approach. In Jorge Cardoso
and Amit Sheth, editors, Proc. of 1st International Workshop on Semantic Web
Services and Web Process Composition (SWSWPC), San Diego, CA, USA, July
6, 2004, volume 3387 of LNCS, pages 26–42. Springer, 2004.

[MPPP02] Massimo Mecella, Francesco Parisi-Presicce, and Barbara Pernici. Modeling
e-service orchestration through Petri nets. In Alejandro P. Buchmann, Fabio
Casati, Ludger Fiege, Meichun Hsu, and Ming-Chien Shan, editors, Proc. of
3rd International Workshop on Technologies for E-Services (TES), Hong Kong,
China, Aug. 23-24, 2002, volume 2444 of LNCS, pages 38–47. Springer, 2002.

183

http://www.w3.org/TR/rdf-primer

BIBLIOGRAPHY

[MPW92a] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, I. Information and Computation, 100(1):1–40, 1992.

[MPW92b] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, II. Information and Computation, 100(1):41–77, 1992.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to Information Retrieval, volume 1. Cambridge University Press,
2008.

[MW11] Francisco Mart́ın-Recuerda Moyano and Dirk Walther. Towards understanding
reasoning complexity in practice. In Patrick De Causmaecker, Joris Maervoet,
Tommy Messelis, Katja Verbeeck, and Tim Vermeulen, editors, Proc. of 23rd
Benelux Conference on Artificial Intelligence (BNAIC), Ghent, Belgium, Nov.
3-4, 2011, pages 144–151, 2011.

[Neb88] Bernhard Nebel. Computational complexity of terminological reasoning in
BACK. Artificial Intelligence, 34(3):371–383, 1988.

[New82] Allen Newell. The knowledge level. Artificial Intelligence, 18(1):87–127, 1982.

[NL04] Eric Newcomer and Greg Lomow. Understanding SOA with Web Services
(Independent Technology Guides). Addison-Wesley, 2004.

[NM02] Srini Narayanan and Sheila A. McIlraith. Simulation, verification and
automated composition of Web services. In David Lassner, Dave De Roure, and
Arun Iyengar, editors, Proc. of 11th International World Wide Web Conference
(WWW), Honolulu, HI, USA, May 7-11, 2002, pages 77–88. ACM, 2002.

[NVSM07] Meenakshi Nagarajan, Kunal Verma, Amit Sheth, and John A. Miller.
Ontology driven data mediation in Web services. International Journal of
Web Services Research, 4(4):104–126, 2007.

[OAS07] OASIS WSBPEL TC. Web services business process execution language version
2.0. OASIS standard, OASIS, Apr. 2007. http://docs.oasis-open.org/wsbpel/2.
0/wsbpel-v2.0.html, retrieved 2013-08-15.

[OBS06] Eric Overby, Anandhi S. Bharadwaj, and V. Sambamurthy. Enterprise
agility and the enabling role of information technology. European Journal of
Information Systems, 15(2):120–131, 2006.

[OLPL04] Daniel Olmedilla, Rubén Lara, Axel Polleres, and Holger Lausen. Trust
negotiation for semantic Web services. In Jorge Cardoso and Amit Sheth,
editors, Proc. of 1st International Workshop on Semantic Web Services and
Web Process Composition (SWSWPC), San Diego, CA, USA, July 6, 2004,
volume 3387 of LNCS, pages 81–95. Springer, 2004.

[O’S06] Justin O’Sullivan. Towards a Precise Understanding of Service Properties.
PhD thesis, Queensland University of Technology, Faculty of Information
Technology, 2006.

184

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

BIBLIOGRAPHY

[OWL09] W3C OWL Working Group. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation, Oct. 2009. http://www.w3.org/TR/
owl2-overview, retrieved 2013-08-15.

[Pan09] Jeff Z. Pan. Resource description framework. In Staab and Studer [SS09].

[Pap08] Michael P. Papazoglou. Web Services - Principles and Technology. Prentice
Hall, 2008.

[PKPS02] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara.
Semantic matching of Web services capabilities. In Ian Horrocks and James
Hendler, editors, The Semantic Web: Proc. of 1st International Semantic Web
Conference (ISWC), Sardinia, Italy, June 9-12, 2002, volume 2342 of LNCS,
pages 333–347. Springer, 2002.

[PS03] Massimo Paolucci and Katia P. Sycara. Autonomous semantic Web services.
IEEE Internet Computing, 7(5):34–41, 2003.

[PTBM05] Marco Pistore, Paolo Traverso, Piergiorgio Bertoli, and Annapaola Marconi.
Automated synthesis of composite BPEL4WS Web services. In Proc. of IEEE
International Conference on Web Services (ICWS), Orlando, FL, USA, July
11-15, 2005, pages 293–301. IEEE Computer Society, 2005.

[PvdH07] Michael P. Papazoglou and Willem-Jan van den Heuvel. Service oriented
architectures: approaches, technologies and research issues. VLDB Journal,
16(3):389–415, 2007.

[Ran01] Francesco Ranzato. On the completeness of model checking. In David
Sands, editor, Programming Languages and Systems, Proc. of 10th European
Symposium on Programming (ESOP), Genova, Italy, Apr. 2-6, 2001, volume
2028 of LNCS, pages 137–154. Springer, 2001.

[RKL+05] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara,
Michael Stollberg, Axel Polleres, Cristina Feier, Christoph Bussler, and Dieter
Fensel. Web service modeling ontology. Applied Ontology, 1(1):77–106, 2005.

[Roy87] Winston W. Royce. Managing the development of large software systems:
Concepts and techniques. In William E. Riddle, Robert M. Balzer, and
Kouichi Kishida, editors, Proc. of 9th International Conference on Software
Engineering, Monterey, CA, USA, Mar. 30-Apr. 2, 1987, pages 328–339. ACM
Press, 1987.

[RS04] Jinghai Rao and Xiaomeng Su. A survey of automated Web service
composition methods. In Jorge Cardoso and Amit Sheth, editors, Proc.
of 1st International Workshop on Semantic Web Services and Web Process
Composition (SWSWPC), San Diego, CA, USA, July 6, 2004, volume 3387 of
LNCS, pages 43–54. Springer, 2004.

185

http://www.w3.org/TR/owl2-overview
http://www.w3.org/TR/owl2-overview

BIBLIOGRAPHY

[Rud11] Sebastian Rudolph. Foundations of description logics. In Axel Polleres,
Claudia d’Amato, Marcelo Arenas, Siegfried Handschuh, Paula Kroner, Sascha
Ossowski, and Peter F. Patel-Schneider, editors, Reasoning Web, Tutorial
Lectures of 7th International Summer School on Semantic Technologies for the
Web of Data, Galway, Ireland, Aug. 23-27, 2011, volume 6848 of LNCS, pages
76–136. Springer, 2011.

[RVNLE09] Marcos Mart́ınez Romero, José Manuel Vázquez-Naya, Javier Pereira Loureiro,
and Norberto Ezquerra. Ontology alignment techniques. In Juan R. Rabuñal,
Julian Dorado, and Alejandro Pazos, editors, Encyclopedia of Artificial
Intelligence, pages 1290–1295. IGI Global, 2009.

[SAM12] Majlesi Shahrbanoo, Mehrpour Ali, and Mohsenzadeh Mehran. An approach
for agile SOA development using agile principals. International Journal of
Computer Science and Information Technology, 4(1):237–244, 2012.

[SBF98] Rudi Studer, V. Richard Benjamins, and Dieter Fensel. Knowledge engineering:
Principles and methods. Data & Knowledge Engineering, 25(1-2):161–197,
1998.

[SBH+05] York Sure, Stephan Bloehdorn, Peter Haase, Jens Hartmann, and Daniel
Oberle. The SWRC ontology - semantic Web for research communities. In
Carlos Bento, Amı́lcar Cardoso, and Gaël Dias, editors, Progress in Artificial
Intelligence, Proc. of 12th Portuguese Conference on Artificial Intelligence
(EPIA), Covilhã, Portugal, Dec. 5-8, 2005, volume 3808 of LNCS, pages 218–
231. Springer, 2005.

[SGA07] Rudi Studer, Stephan Grimm, and Andreas Abecker. Semantic Web Services.
Springer, 2007.

[SGT+00] Craig Schlenoff, Michael Gruninger, Florence Tissot, John Valois, Joshua
Lubell, and Jintae Lee. The Process Specification Language (PSL): Overview
and Version 1.0 Specification. U.S. Department of Commerce, Technology
Administration, National Institute of Standards and Technology, 2000.

[SH07] Michael Stollberg and Martin Hepp. Semantic discovery caching: Prototype
and use case evaluation. Technical Report DERI-2007-03-27, Digital Enterprise
Research Insitute (DERI), Apr. 2007.

[SH11] Sebastian Speiser and Andreas Harth. Integrating Linked Data and services
with Linked Data services. In Grigoris Antoniou, Marko Grobelnik, Elena
Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De Leenheer, and Jeff Z.
Pan, editors, The Semantic Web: Research and Applications, Proc. of 8th
Extended Semantic Web Conference (ESWC), Part I, Heraklion, Crete, Greece,
May 29-June 2, 2011, volume 6643 of LNCS, pages 170–184. Springer, 2011.

[SHF11] Michael Stollberg, Jörg Hoffmann, and Dieter Fensel. A caching technique
for optimizing automated service discovery. International Journal of Semantic
Computing, 5(1):1–31, 2011.

186

BIBLIOGRAPHY

[SHH07] Michael Stollberg, Martin Hepp, and Jörg Hoffmann. A caching mechanism
for semantic Web service discovery. In Karl Aberer, Key-Sun Choi,
Natasha Fridman Noy, Dean Allemang, Kyung-Il Lee, Lyndon J. B. Nixon,
Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus
Schreiber, and Philippe Cudré-Mauroux, editors, The Semantic Web, Proc. of
6th International Semantic Web Conference (ISWC) and 2nd Asian Semantic
Web Conference (ASWC), Busan, Korea, Nov. 11-15, 2007, volume 4825 of
LNCS, pages 480–493. Springer, 2007.

[Sie00] Jon Siegel. CORBA 3 Fundamentals and Programming. Wiley Computer
Publishing. Wiley Press, 2nd edition, 2000.

[SLB09] Nathalie Steinmetz, Holger Lausen, and Manuel Brunner. Web service search
on large scale. In Luciano Baresi, Chi-Hung Chi, and Jun Suzuki, editors,
Proc. of 7th International Joint Conference on Service-Oriented Computing
(ICSOC/ServiceWave), Stockholm, Sweden, Nov. 24-27, 2009, volume 5900 of
LNCS, pages 437–444, 2009.

[SPAS03] Katia P. Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen
Srinivasan. Automated discovery, interaction and composition of semantic Web
services. Journal of Web Semantics, 1(1):27–46, 2003.

[Spe12] Sebastian Speiser. Usage Policies for Decentralised Information Processing.
PhD thesis, Karlsruhe Institute of Technology (KIT), 2012.

[SPM06] Shirin Sohrabi, Nataliya Prokoshyna, and Sheila A. McIlraith. Web service
composition via generic procedures and customizing user preferences. In
Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe,
Peter Mika, Michael Uschold, and Lora Aroyo, editors, The Semantic Web,
Proc. of 5th International Semantic Web Conference (ISWC), Athens, GA,
USA, Nov. 5-9, 2006, volume 4273 of LNCS, pages 597–611. Springer, 2006.

[SPS04] Naveen Srinivasan, Massimo Paolucci, and Katia Sycara. Adding OWL-S to
UDDI, implementation and throughput. In Jorge Cardoso and Amit Sheth,
editors, Proc. of 1st International Workshop on Semantic Web Services and
Web Process Composition (SWSWPC), San Diego, CA, USA, July 6, 2004,
volume 3387 of LNCS. Springer, 2004.

[SPS06] Naveen Srinivasan, Massimo Paolucci, and Katia P. Sycara. Semantic Web
service discovery in the OWL-S IDE. In Proc. of 39th Hawaii International
International Conference on Systems Science (HICSS), Kauai, HI, USA, Jan.
4-7, 2006. IEEE Computer Society, 2006.

[SS97] Ian Sommerville and Peter Sawyer. Viewpoints: Principles, problems
and a practical approach to requirements engineering. Annals of Software
Engineering, 3:101–130, 1997.

[SS09] Steffen Staab and Rudi Studer, editors. Handbook on Ontologies. International
Handbooks on Information Systems. Springer, 2nd edition, 2009.

187

BIBLIOGRAPHY

[SSS91] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions
with complements. Artificial Intelligence, 48(1):1–26, 1991.

[Sti01] Colin Stirling. Modal and Temporal Properties of Processes. Springer, New
York, NY, USA, 2001.

[SW04] Murray Shanahan and Mark Witkowski. Event calculus planning through
satisfiability. Journal of Logic and Computation, 14(5):731–745, 2004.

[SWH10] Adish Singla, Ryen White, and Jeff Huang. Studying trailfinding algorithms for
enhanced Web search. In Fabio Crestani, Stéphane Marchand-Maillet, Hsin-
Hsi Chen, Efthimis N. Efthimiadis, and Jacques Savoy, editors, Proc. of 33rd
International ACM Conference on Research and Development in Information
Retrieval (SIGIR), Geneva, Switzerland, July 19-23, 2010, pages 443–450.
ACM, 2010.

[TAAK04] Jaime Teevan, Christine Alvarado, Mark S. Ackerman, and David R. Karger.
The perfect search engine is not enough: a study of orienteering behavior in
directed search. In Elizabeth Dykstra-Erickson and Manfred Tscheligi, editors,
Proc. of ACM Conference on Human Factors in Computing Systems (CHI),
Vienna, Austria, Apr. 24-29, 2004, pages 415–422. ACM, 2004.

[TF06] Ioan Toma and Douglas Foxvog. Non-functional properties in Web services.
WSMO Deliverable D28.4v0.1, Digital Enterprise Research Insitute (DERI),
Oct. 2006. http://www.wsmo.org/TR/d28/d28.4/v0.1/, retrieved 2013-08-15.

[TGEM07] Raquel Trillo, Jorge Gracia, Mauricio Espinoza, and Eduardo Mena.
Discovering the semantics of user keywords. Journal of Universal Computer
Science, 13(12):1908–1935, 2007.

[Thi98] Michael Thielscher. Introduction to the fluent calculus. Electronic Transactions
on Artificial Intelligence, 2:179–192, 1998.

[UDD01] UDDI.org. UDDI executive white paper. Technical report, UDDI.org, Nov.
2001. http://uddi.org/pubs/UDDI Executive White Paper.pdf, retrieved 2013-
08-15.

[Ull88] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems,
Volume I. Computer Science Press, 1988.

[VHA05] Le-Hung Vu, Manfred Hauswirth, and Karl Aberer. QoS-based service selection
and ranking with trust and reputation management. In Robert Meersman,
Zahir Tari, Mohand-Said Hacid, John Mylopoulos, Barbara Pernici, Özalp
Babaoglu, Hans-Arno Jacobsen, Joseph P. Loyall, Michael Kifer, and Stefano
Spaccapietra, editors, On the Move to Meaningful Internet Systems, Proc. of
OTM Confederated International Conferences CoopIS, DOA, and ODBASE,
Part I, Agia Napa, Cyprus, Oct. 31-Nov. 4, 2005, volume 3760 of LNCS, pages
466–483. Springer, 2005.

188

http://www.wsmo.org/TR/d28/d28.4/v0.1/
http://uddi.org/pubs/UDDI_Executive_White_Paper.pdf

BIBLIOGRAPHY

[VKVF08] Tomas Vitvar, Jacek Kopecký, Jana Viskova, and Dieter Fensel. WSMO-Lite
annotations for Web services. In Sean Bechhofer, Manfred Hauswirth, Jörg
Hoffmann, and Manolis Koubarakis, editors, The Semantic Web: Research
and Applications, Proc. of 5th European Semantic Web Conference (ESWC),
Tenerife, Canary Islands, Spain, June 1-5, 2008, volume 5021 of LNCS, pages
674–689. Springer, 2008.

[W3C13] W3C SPARQL Working Group. SPARQL 1.1 overview. W3C recommendation,
W3C, Mar. 2013. http://www.w3.org/TR/sparql11-overview/, retrieved 2013-
08-15.

[Wal96] Igor Walukiewicz. A note on the completeness of Kozen’s axiomatisation of the
propositional µ-calculus. Bulletin of Symbolic Logic, 2(3):349–366, 1996.

[WH10] Ryen W. White and Jeff Huang. Assessing the scenic route: measuring the
value of search trails in Web logs. In Fabio Crestani, Stéphane Marchand-
Maillet, Hsin-Hsi Chen, Efthimis N. Efthimiadis, and Jacques Savoy, editors,
Proc. of 33rd International ACM Conference on Research and Development in
Information Retrieval (SIGIR), Geneva, Switzerland, July 19-23, 2010, pages
587–594. ACM, 2010.

[WJH11] Andreas Wagner, Martin Junghans, and Andreas Harth. Simulation des
dynamischen Abgleichs von Dienstbeschreibungen. Deliverable AP7.3.2,
MeRegioMobil, Sept. 2011. (German).

[WJSH11] Andreas Wagner, Martin Junghans, Sebastian Speiser, and Andreas Harth.
Privacy-aware semantic service discovery for the smart energy grid. In Grigoris
Antoniou, Marko Grobelnik, Elena Simperl, Bijan Parsia, Dimitris Plexousakis,
Pieter De Leenheer, and Jeff Z. Pan, editors, The Semantic Web: Research
and Applications, Proc. of 8th Extended Semantic Web Conference (ESWC),
Part I, Heraklion, Crete, Greece, May 29-June 2, 2011, volume 6643 of LNCS.
Springer, 2011.

[Woo75] William A. Woods. What’s in a link: Foundations for semantic networks. In
Daniel Bobrow and Allan Collins, editors, Representation and Understanding:
Studies in Cognitive Science, pages 35–82. Academic Press, 1975.

[WP10] Daniel Winkler and Matthias Pressnig. Second prototype for description logic
reasoner for WSML DL v2.0. Deliverable D3.2.7, SOA4All, Aug. 2010.

[ZSS94] Shipei Zhang, Oleg Sokolsky, and Scott A. Smolka. On the parallel complexity
of model checking in the modal mu-calculus. In Proc. of 9th Annual Symposium
on Logic in Computer Science (LICS), Paris, France, July 4-7, 1994, pages
154–163. IEEE Computer Society, 1994.

[Zuc10] Maurilio Zuccalà. SOA4All in action: Enabling a Web of billions of services. In
Elisabetta Di Nitto and Ramin Yahyapour, editors, Towards a Service-Based
Internet, Proc. of 3rd European Conference ServiceWave, Ghent, Belgium, Dec.
13-15, 2010, volume 6481 of LNCS, pages 227–228. Springer, 2010.

189

http://www.w3.org/TR/sparql11-overview/

BIBLIOGRAPHY

[ZW95] A. Moormann Zaremski and Jeannette M. Wing. Signature matching: A tool
for using software libraries. ACM Transactions on Software Engineering and
Methodology, 4(2):146–170, 1995.

[ZW97] A. Moormann Zaremski and Jeannette M. Wing. Specification matching
of software components. ACM Transactions on Software Engineering and
Methodology, 6(4):333–369, 1997.

nothing nothing

190

	1 Introduction
	1.1 Main Hypothesis and Research Questions
	1.2 Contributions and Outline

	2 Scenarios and Requirements
	2.1 Scenarios
	2.1.1 Web Application Development
	2.1.2 Provision of Logistic Services
	2.1.3 Smart Web Browsing

	2.2 Requirements Analysis
	2.3 Design Choices and Approaches

	3 Preliminaries
	3.1 Knowledge Representation
	3.1.1 First-Order Logic
	3.1.2 Description Logics
	3.1.3 Ontologies
	3.1.4 Terms and Notations

	3.2 Services
	3.3 Semantic Service Modeling
	3.3.1 Service Description Frameworks
	3.3.2 Service Behavior Modeling

	3.4 Service Discovery
	3.4.1 Matchmaking of Functionalities
	3.4.2 -calculus Model Checking

	3.5 Summary

	4 Discovery of Services
	4.1 Description of Services
	4.1.1 A Formal Model of Services
	4.1.2 Service Description Language
	4.1.3 Modeling Example

	4.2 Service Request Model
	4.2.1 Motivation for a Discrete Request Model
	4.2.2 A Formal Model of Service Requests
	4.2.3 Service Request Language
	4.2.4 Modeling Example

	4.3 Model Checking Based Matchmaking
	4.3.1 Matching Properties
	4.3.2 Matching Functionalities
	4.3.3 Matching Behaviors

	4.4 Implementation and Evaluation
	4.4.1 Service Discovery in WisNetGrid
	4.4.2 Test Data
	4.4.3 Performance Results

	4.5 Summary and Conclusions

	5 Discovery of Atomic Services
	5.1 State of the Art
	5.1.1 Modeling Functionalities
	5.1.2 Discovery of Atomic Services
	5.1.3 Limitations of Existing Service Discovery Approaches

	5.2 Semantic Modeling of Atomic Services
	5.2.1 A Formal Model of Functionalities
	5.2.2 Description Language
	5.2.3 Modeling Example

	5.3 Functionalities in Service Requests
	5.3.1 A Formal Model of Functionality Constraints
	5.3.2 Modeling Example

	5.4 Discovery of Atomic Services
	5.5 Implementation and Evaluation
	5.5.1 Service Discovery in SOA4All
	5.5.2 Implementation Details
	5.5.3 Performance Results

	5.6 Related Work
	5.7 Summary and Conclusions

	6 Classification of Services
	6.1 Motivation of Meaningful Service Classes
	6.2 Classification of Services
	6.2.1 Implicit Description of Service Properties
	6.2.2 Service Classes
	6.2.3 Behavior Class Hierarchy

	6.3 Annotation of Behavior Descriptions
	6.4 Classification-based Service Discovery
	6.4.1 Service Classes in Requests
	6.4.2 Discovery Based on Offline Classification

	6.5 Implementation and Evaluation
	6.5.1 Implementation
	6.5.2 Evaluation

	6.6 Related Work
	6.7 Summary and Conclusion

	7 Index Structures for Efficient Service Discovery
	7.1 Motivating Use Case
	7.1.1 Formalization of End User Browsing Processes
	7.1.2 Capturing Browsing Processes

	7.2 Offline Computable Indexes
	7.2.1 Proposition-States Indexes
	7.2.2 Action-States Indexes

	7.3 A Randomized Online Index
	7.3.1 Lookup in the Online Search Index
	7.3.2 Maintaining the Size of the Index

	7.4 Implementation and Evaluation
	7.4.1 Evaluation Setup
	7.4.2 Test Data
	7.4.3 Performance Results

	7.5 Related Work
	7.6 Summary and Conclusions

	8 Conclusion
	8.1 Summary of Contributions
	8.2 Future Work and Outlook

	List of Tables
	List of Figures
	Bibliography

