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Abstract: Years ago, the World Wide Web (WWW) began as a system for publishing
interlinked hypertext documents. While the protocols on top of which the WWW is
built are almost still the same, the usage, as well as the content have changed signifi-
cantly. Simple delivery of hypertext documents has been expanded by operations, such
as uploading, sharing, and commenting on pieces of content. Online Social Networks
(OSNs) and other IT services provide aggregated views on these pieces of content.
However, the services are often implemented as vendor specific applications on top
of common web technologies, such as HTTP, HTML, JavaScript and CSS. Moreover,
users are locked into these applications of dedicated providers, which prevents sharing
of content across applications and limits the control users have over their data. Most
existing approaches that overcome these issues focus on defining a common HTTP
API or prefer solutions based on peer-to-peer networks. In this paper, we start by
discussing related work and identifying essential requirements for an appropriate so-
lution. Furthermore, we outline the concept and implementation of a Federated Object
Sharing Protocol (FOSP), i.e., a different approach to support today’s common oper-
ations on social content already on a protocol level. We show that services built on
top of this protocol can be federated by default, i.e., users registered with different
providers can easily interact with each other. Finally, we provide an evaluation and
discussion on the proposed approach.

1 Introduction

The World Wide Web started as a system to publish simple, linked documents and the

Hypertext Transfer Protocol (HTTP) was created to transfer these documents. In contrast,

today’s websites are rather complex front ends of powerful applications and documents are

dynamically generated depending on parameters of the HTTP request. Furthermore, ex-

tensions for sending information to a server were implemented and the hyperlinks initially

used to connect documents became methods to invoke actions on servers.

This way, applications were created that allow a user to submit and share pieces of content

with others, such as texts, pictures and videos. Nowadays, many types of websites are

implemented that provide access to user generated content, e.g., weblogs, microblogging

sites, and Online Social Networks (OSNs). However, many features necessary for those



platforms are not supported by HTTP and, therefore, are implemented on top of this proto-

col. In turn, while the protocols and data formats used are open standards, the applications

are not.

As a result, users are unable to share content across platforms and can often access shared

data only with a provider-specific client, although the features of the platforms are often

very similar. This includes, but is not limited to, authentication and authorization, as well

as adding, deleting, rating, and modifying content, or sending notifications. Furthermore,

the structure of shared data shows similarities, i.e., content is often hierarchically stored,

e.g., comments added to a text, video or photo. These features have to be reimplemented

by each provider and the resulting implementations are largely incompatible.

In this paper, we provide the outline of a Federated Object Sharing Protocol (FOSP), i.e.,

a common protocol for applications that allow users to share pieces of content and operate

on this content in the aforementioned manner. On the basis of functionality existing OSNs

provide, this protocol allows users to register an account and log-in to a platform, share

arbitrary kind of content, grant and deny access on content to certain users or groups of

users and to subscribe to streams of content of others. Additionally, to prevent user lock-in

with respect to a single provider, it allows federation of all platforms that implement the

protocol. The novelty of this approach constitutes the handling of common operations, as

well as the federation of platforms already on a protocol level. For reasons of acceptance,

the protocol aims to have low complexity regarding implementation and deployment, as

well as provide users with easy-to-use and familiar features.

In Section 2, we discuss existing protocols and related work. Section 3 presents common

use case scenarios of OSNs and similar applications that are used to compile a list of

requirements. Section 4 describes the new protocol-based approach that is evaluated and

discussed in Section 5. Section 6 concludes the paper and gives an outlook on future work.

2 Related Work

First, we review several protocols that are widely used on the web today. Second, we

examine selected open source projects that aim at supporting users in cross-platform inter-

action. Third, we explore scientific work that focuses on federated sharing of information.

As mentioned, the Hypertext Transfer Protocol (HTTP) forms the protocol basis of to-

day’s WWW. Due to its extensibility, HTTP allows the implementation of new request

methods, response statuses, headers, and content types. Therefore, this protocol can be

used for posting and retrieving almost all kinds of data, as well as for basic authentication.

However, the semantics of provided operations is only partially defined. This results in

systems that misuse operations, e.g., some applications misuse GET operations to delete

a resource even though a DELETE operation exists. Furthermore, as HTTP is state-less,

each request usually opens a new connection, i.e., authentication is required for each re-

quest and authorization is not handled by default. Additionally, a server cannot notify



clients about updates and while workarounds like long-polling, e.g., BOSH1, are avail-

able, it led to the development of the WebSocket protocol [FM11].

Web-based Distributed Authoring and Versioning (WebDAV) is an extension to HTTP

that introduces new methods and semantics for specific resources [Dab09]. It implements

missing functionality regarding resource manipulation for supporting authoring of web-

sites. By adding meta-data to the resources, access control lists, information about re-

source ownerships, and further meta-information of the resources can be stored. Addi-

tional methods for manipulating meta-data allow, for instance, to list children of hierarchi-

cal structured resources. However, WebDAV is also not designed for pushing updates and

to be implemented in a federated network.

SPDY2 constitutes an extension to the way HTTP requests are transferred over TCP and

serves as the working base for HTTP 2.0 [BTP+13]. It allows multiplexing more than one

request over a single connection and the server can even push resources over an existing

connection. While it improves the transfer rate, it does not solve the problems of HTTP or

WebDAV, like pushing notifications or federating access control.

The eXtensible Messaging and Presence Protocol (XMPP) [SA11] was developed as

an instant messaging (IM) protocol. XMPP allows the exchange of structured messages

between multiple network entities and enables the federation of servers. It is designed to

be extensible, i.e., additional functionality can be defined by so called XMPP Extension

Protocols (XEP). Methods for sending files, publishing the location of the user, initiating

video and voice calls, and many more have been implemented. However, it is not designed

for storing data and extensions are possible but lead to defining new protocols.

The Network File System (NFS) [SCR+03] is a protocol commonly used for distributed

file systems in Unix environments. It allows accessing files over the network but does not

support sending notifications about changes. The Glamor research project by IBM aims

to provide a federated file system layer on top of NFS [LNT08]. It works by providing

a virtual file system based on multiple NFS servers but relies on a central configuration.

Therefore, it is not truly a globally federated file system.

Wave [WW11] is a protocol and former Google product for real time collaboration. Users

work on XML-like documents called wavelets and changes on these documents are syn-

chronized over the network. The protocol allows federation of servers so that users can

collaborate on wavelets that are hosted by different providers. However, access control

only works at the level of a single wavelet and content is primarily text based.

In addition to existing protocols, the open source community introduced many projects

dedicated to free users from platform lock-in and to increase privacy3. Next to projects like

StatusNet4 for microblogging and SecureShare5 for peer-to-peer (P2P)-based encrypted

social networking, approaches to implement traditional OSNs over HTTP are invented:

1http://www.xmpp.org/extensions/xep-0124.html
2http://www.chromium.org/spdy/spdy-whitepaper
3https://gitorious.org/social/pages/ProjectComparison
4http://status.net
5http://secushare.org



Diaspora*6 defines an HTTP API for federating OSN servers. The content is formatted

according to the ActivityStreams specification7 and transported using various HTTP-based

protocols8. However, whereas Diaspora* includes sharing of posts, comments and other

content, the API is limited to certain types of content9. Additionally, instead of retrieving

posts that are of interest, i.e., a user-specific or even user-defined preselection of content,

the protocol simply broadcasts new posts to users who are connected with the author.

Buddycloud10 defines an XMPP API and additionally an HTTP API. In the Buddycloud

model, posts, pictures, and other files can be submitted to so called “channels” that users

can subscribe to. This way, content can be shared with users even if they are registered with

other providers. However, the channels restrict the way content can be organized and also

restrict the types of content that can be shared. Additionally, access control only happens

on the channel level, i.e., access to single posts cannot be restricted. While Buddycloud

provides multiple APIs and services for OSNs it does not focus on creating a simple and

versatile way of sharing data, setting access rights and sending notifications.

Besides existing protocols and open source projects, a lot of scientific work on decen-

tralized sharing of social content has been published. Approaches range from connecting

existing OSNs (cf. [KTS11, OP12]) to building new OSNs, for instance, based on P2P

networks (cf. [BH13, BSVD09, BFG+10, NPA10]).

Tramp et al. introduced the Distributed Semantic Social Network (DSSN) [TFE+14]

that exchanges data represented according the Resource Description Framework (RDF)11

and uses the vocabulary of the Friend of a Friend (FOAF)12. Users can discover each other

using WebID13 and publish new content via the PubSubHubbub protocol14. Notifications

about updates are distributed with the Semantic Pingback protocol15 but are not delivered

directly to the user. Access control is implemented by using WebID and by adding support

for access delegation. In contrast to our approach of an integrated single protocol, the

DSSN combines multiple existing protocols and data formats.

The Distributed Platform for Multimedia Communities of Graffi et al. is built on top

of a P2P network that provides a Distributed Hash Table (DHT) [GPM+08]. The DHT is

used to store distributed linked lists that contain and structure the shared content. Several

services form the base of their framework: a storage and replication layer, a storage dis-

patcher for serialization and storage of application specific data, a message dispatcher for

direct communication, etc. Different features of OSNs are then implemented as plug-ins

on top of these services. To implement access control, they use asymmetric public keys

per user and symmetric keys to encrypt content shared with a group of users. However, a

general mechanism to receive notifications about new or changed content is missing.

6https://diasporafoundation.org
7http://activitystrea.ms/
8http://www.salmon-protocol.org/, http://tools.ietf.org/html/draft-ietf-appsawg-webfinger-18
9http://wiki.diasporafoundation.org/Main Page

10http://buddycloud.com
11http://www.w3.org/RDF/.
12http://www.foaf-project.org/
13http://www.w3.org/wiki/WebID
14http://code.google.com/p/pubsubhubbub/
15http://aksw.org/Projects/SemanticPingback.html



Project Architecture # Components Protocols

Diaspora* Federated 1 server HTTP (Salmon, Webfinger)

Buddycloud Federated 3 services HTTP, XMPP

DSSN Federated 1 and more services HTTP (WebID, PubSubHubbub,

Semantic Pingback)

Distributed Platform for Mul-

timedia Communities

P2P 1 (+ framework plugins) DHT (PAST17)

SODESSON P2P 4 framework components DHT

Safebook P2P 1 client + 1 service DHT

Figure 1: Comparison of OSN projects

Another P2P-based approach constitutes SODESSON [BH13] introduced by Baumgart et

al. SODESSON abstracts from users’ devices to be able to directly address the users and

is focused on providing services directly on (mobile) devices while using the social graph

as basis for access control decisions. The framework is divided into multiple components,

such as the connection manager, the distributed data storage, the contact manager, and

the service manager that constitutes the interface to the actual applications. Services that

can be provided are divided into three types, namely direct services between online de-

vices, persistent services stored in a distributed storage and hybrid services as a mix of

both. Similar to our goals, SODESSON enables distributed sharing of data in OSNs but

specializes on providing a transparent access to services on multiple user devices.

Cutillo at al. introduced Safebook, i.e., a P2P-based OSN, too [CMS09]. It is focused on

user privacy and the utilization of multiple techniques to prevent information leakage on

the application layer and on the transport layer as well. In Safebook, each user has a lay-

ered network of peers that forward requests, similar to the Tor network16. The most inner

layer of peers that is directly connected to the user also mirrors profile information and

comments, so that they are available even if the user is offline. To prevent eavesdropping,

all communication is encrypted. While it provides methods for publishing and retrieving

profile information, it lacks the possibility of subscribing and sending notifications and

is limited to certain types of content. Furthermore, an additional service is needed for

creating a new identity and uses out of band mechanisms to verify it.

In summary, existing protocols satisfy a part of the requirements for federated sharing of

social content (cf. Section 3). However, none of them constitutes a “Jack of all trades”

that, additionally, can be easily deployed. HTTP/WebDAV and NFS work well for storing

data and handling access control, whereas XMPP and Wave support federation and include

notifications. Community projects focus on a smaller set of features and prioritize working

software. Diaspora* uses multiple data formats and does not include notifications while

Buddycould uses multiple protocols. Most scientific work prefer solutions on top of P2P

networks and provide security and privacy mechanisms (cf. Fig. 1).

16https://www.torproject.org/



3 Use Cases and Requirements

In this section, we start by introducing several use cases to evaluate a new protocol with

respect to its applicability in real world scenarios. The use cases are derived from func-

tionality provided by existing OSNs extended by federated sharing scenarios.

Use cases: Independently of the provider a user is registered with, she can share content

with users of other providers, as long as they support the API or protocol (UC1). Users

can subscribe to new content of other users and will receive notifications about added or

changed content (UC2). Users can comment on or “like” content, if allowed by the content

author (UC3). Users can publish personal information about themselves, including but not

limited to age, sex, location and personal preferences (UC4). Users should not be limited

in what kind of content they can share (UC5). Users can restrict access to their shared

content on a per-user-basis or on user-defined groups (UC6).

Based on these use cases, we derive requirements that must be met by the approach intro-

duced in this paper to allow a simple solution while still providing the necessary features:

Federation (R1): To prevent platform lock-in, the federation of servers must be possible.

Each server must be able to become part of the global network just by implementing the

protocol. Therefore, all users must have a globally unique identifier and their content must

also have globally unique addresses.

Access control model (R2): As users want to limit access to their content, they must

be able to define access rights. Therefore, a discretionary access control (DAC) [SV01]

policy should be preferred. Adding role based access control (RBAC) [SV01] is desirable,

as users likely sort their peers into groups and then grant or deny access to whole groups.

Authentication and authorization (R3): To enable access control, servers must be able

to authenticate and authorize users. Furthermore, as each server can only authenticate

users that are registered with itself, it has to act as an identity provider for other servers.

Content manipulation (R4): Users must have multiple methods available to interact with

content. This includes adding new, as well as changing and deleting existing content. The

type of content that can be shared must not be restricted. Furthermore, the user must be

able to identify content she wants to manipulate and, therefore, each content unit must be

addressable by a URI.

Subscription (R5): A user must be able to express interest in (a set of) specific content and

will be notified if content is added or altered. The information about these subscriptions

must be stored as meta-data, such as access control lists.

4 The Federated Object Sharing Protocol (FOSP)

Subsequently to the presentation of related work and requirements regarding federated

sharing of social content, we provide another contribution in the following, i.e., we outline

the concept and implementation of a new protocol for federated data sharing.



wonderland.lit

alice@wonderland.lit hatter@wonderland.lit

queen@wonderland.lit

realworld.lit

sister@realworld.lit mother@realworld.lit

Figure 2: The network architecture of FOSP. User Alice connects to her home server wonderland.lit

Network Architecture: In a FOSP network, each agent is either a client or a server. Each

server belongs to one provider identified by a domain name. Users connect via a client to

the server of their provider that we call the user’s home server. To retrieve or alter content,

the client sends requests. If the home server is not responsible for the requested content, it

connects to the server that actually stores the content and relays the request (cf. Fig. 2).

Data Structure: We refer to the basic unit of data as an object that consists of key-value

pairs with specific meanings (cf. “Policies”) and adheres to the JSON [Cro06] specifica-

tion. Furthermore, a file can be attached to an object and all objects are stored as nodes

within trees. Each user owns one tree of objects stored on her home server and the root of

the tree is named by her globally unique identifier.

Policies: A set of policies define how the content of the objects is to be interpreted and the

servers must enforce these policies. Some of the key-value pairs store meta-data, such as

the owner of an object, the time it was created, or information about an attached file. An

“acl” field of an object stores the associated access control list. A server then determines

whether or not a user can perform certain operations on the object. A “subscription” field

stores information about users that want to be notified on changes of an object or one of its

descendants, which is evaluated by the server responsible for this object. An example for

the default key-value pairs of an object is shown in Fig. 3. Furthermore, whether a server

can relay a message or accept a relayed message is also subject to policies. For example, a

server must only accept a relayed request if the domain name of the remote server matches

the domain name in the identifier of the user the request originates from.

Messages: The messages that are sent between the servers and clients are divided into

three different types. Clients send requests to retrieve or manipulate objects and requests

have request types, i.e., SELECT, UPDATE, or CREATE that determine how the request

acts upon an object. As an answer to a request, servers send responses that also have a

type, which is either SUCCEEDED or FAILED. Furthermore, if a request changes ob-

jects, the server sends notifications to users that have subscribed to these changes and the

notification includes an event type, i.e., UPDATED that corresponds to the type of change.

All messages carry different information in their first line, depending on their type. Ad-

ditionally, like in HTTP, each message can have headers that modify its meaning and a

body that carries the payload. Messages are serialized as UTF-8 text, except for the body,

which consists either also of UTF-8 text or of arbitrary binary data when sending files.



{ btime: "2007-03-01T13:00:00Z",

mtime: "2008-05-11T15:30:00Z",

owner: "alice@wonderland.lit",

acl: {

owner: ["read-data", "write-data", "read-acl", "write-acl",

"read-subscriptions", "write-subscriptions", "read-children",

"write-children", "delete-children"],

users: { alice@wonderland.lit: [ "read-data", "write-data", ... ] }

},

subscriptions: {

users: { alice@wonderland.lit: { events: [ "created", "updated" ], depth: 1 } }

},

type: "text/plain",

data: "Just plain text" }

Figure 3: An example object owned by alice@wonderland.lit.

The format of a message looks similar to an HTTP request. Each message is then send as

an WebSocket message over a WebSocket connection.

Implementation and performance evaluation: Based on the presented concept, we built

a proof-of-concept implementation of a FOSP server and two FOSP clients both written in

JavaScript [Mau14]. The server is written for the node.js18 runtime environment and uses

the RethinkDB19 as database. One of the clients is implemented as a single page JavaScript

application20 and highlights the ease of deployment that can be achieved. The other client

is a command line client that can be used in a shell. For performance evaluation, we ran

several tests with two instances of the server and up to 800 user clients. While the server

already achieves fast response times and can handle many consecutive requests per minute,

it is not yet optimized for many parallel users due to the chosen programming language

and database. However, FOSP as a protocol can be implemented with almost any language

and backing database. We already work on a Go21 and Postgresql22 implementation that

performs significantly better on concurrent requests, which we plan to make public for

download. Furthermore, while scaling the server of one provider might be more difficult,

scaling by adding providers should be trivial, similar to XMPP and Buddycloud.

5 Evaluation and Discussion

In Section 3, we defined several use cases and requirements that should be supported by a

new protocol for federated sharing of social content. In the following, we show that FOSP

meets all of these criteria. The federation of different networks (UC1 and R1) is achieved

by relaying messages between servers that, additionally, act as identity providers for their

users (R3). Users can share arbitrary content by encoding it as JSON and storing it in an

object or by saving it as a file attached to an object (UC5 and R4). They can also subscribe

to changes on an object and its descendants and will receive notifications about added or

18http://nodejs.org/
19http://www.rethinkdb.com/
20http://singlepageappbook.com/
21http://golang.org/
22http://www.postgresql.org/



altered content (UC2 and R5). Comments can be added as new child objects to existing

objects (UC3). Personal information can also be saved in an object or multiple objects

to allow more granular access control (UC4). Furthermore, an access control list on each

object allows users to share content with a group of peers or even a single user. Access

control is enforced by the server that stores the object and users can grant or deny rights

by setting corresponding entries in the access control list of the object (UC6, R2, and R3).

In this paper, we introduced the first steps towards a new protocol for federated sharing of

social content. However, some limitations remain that require further work on this project

to reach a protocol that can be globally used. First, server to server authentication must

work reliably in order to prevent data leakage in the federated network. This can be done

by using DNS but also with more sophisticated methods, such as dial-back strategies or

SSL certificate verifications. Furthermore, if a user grants access to content to another user

of a different provider, the access is implicitly granted to this provider as well.

However, despite open questions, FOSP could already be used today in specific scenarios

in which trust across participating servers is implicitly given but central infrastructures

are not deployable. For instance, sharing content between members of universities each of

which operates one trustworthy FOSP server would be possible by use of the FOSP version

presented within this paper (cf. necessary trust between identity providers of authentica-

tion and authorization infrastructures, such as within the DFN-AAI23). Furthermore, FOSP

constitutes a basis for further discussion and research on a path completely different com-

pared to existing approaches, i.e., a new protocol for provider independent content sharing.

Moreover, existing approaches can be combined with FOSP and variations or extensions

are imaginable, e.g., just with slight adjustments, FOSP could be used in P2P networks or

objects could be extended to allow encrypted content, versioning or locking.

6 Conclusion and Future Work

In this paper, we analyzed related work and identified use cases and requirements for fed-

erated sharing of social content in order to propose an approach for implementing today’s

common operations already on a protocol level. Furthermore, we introduced the concept

and implementation of the Federated Object Sharing Protocol (FOSP) that is designed to

be simple and deployable while meeting the identified requirements and use cases. FOSP

combines storing data, access control and publish-subscribe mechanisms for future content

sharing. Furthermore, it enables federation of servers that belong to different providers by

default. This way, FOSP can simplify the implementation of traditional social networks

and allows competing but compatible server and clients. In the future, we will refine the

FOSP specification into a document that covers all implementation relevant details and

will add further features, such as content encryption that can remedy remaining security

problems. We also plan to publicly provide our ready-to-use FOSP client and FOSP server

implementation that can handle a large amount of users for download.

23https://www.aai.dfn.de/.
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