Modeling and Selection

of Software Service Variants

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften
(Dr.-Ing.)
von der Fakultét fiir
Wirtschaftswissenschaften
des Karlsruher Institut fiir Technologie (KIT)
genehmigte
DISSERTATION

von

Dipl.-Wi.-Ing. John Erik Wittern

Tag der miindlichen Priifung: 14. Mai 2014
Referent: Prof. Dr.-Ing. Stefan Tai

Korreferent: Prof. Dr.-Ing. Stefan Jdhnichen

Karlsruhe, Mai 2014

Abstract

Providers and consumers have to deal with variants during the development and the delivery of
software services. Variants are alternative instances of a service’s design, implementation, deploy-
ment, or operation. Making decisions about variants is parts of any software service development
activities. Providers need to deliver variants to address diverse or changing consumer needs, which
are best served by a specific variant. Approaches to deal with variants from software product line
engineering lack desirable capabilities for representing characteristics, collaboration in modeling,
and (participatory) selection of variants, even among services. This thesis presents service feature
modeling, a novel approach consisting of a variability modeling language and a set of methods to
address these challenges in modeling and selecting software service variants.

The service feature modeling language extends standard feature modeling from software product
line engineering. A typology of feature types differentiates their semantics with the goal to utilize
service feature models (SFMs) in novel ways, like realizing comparability of variants across ser-
vices. Attribute types represent concerns common to multiple attributes within an SFM to reduce
modeling efforts and for attribute aggregation. A novel modeling method considers SFMs to be
composed by services, addressing the collaboration of experts in modeling and the integration of
dynamic or complex attribute values.

Making use of SFMs, a structured selection process flexibly combines a set of methods for
decision-makers to determine which variant to develop or deliver. A configuration set determi-
nation method, extending existing approaches with attribute aggregation, produces all valid ser-
vice variants represented by an SFM. Determined configuration sets are narrowed down with a
novel, fuzzy requirements filter. Skyline filtering, adapted from database systems, dismisses ser-
vice variants that are dominated by others. Preference-based ranking applies a well-known multi-
criteria decision making approach to rank service variants based on their fulfillment of preferences.
Through abstractions, it aims to enable participation by involving non-technical decision-makers
in service variant selection.

This thesis presents an evaluation of the outlined concepts, consisting of multiple parts. A proof-
of-concept implementation and a performance evaluation of a SEM tool suite show the realizability
and applicability of service feature modeling, including the composition of SFMs from services
and all outlined usage methods. A first use case concerns the development of public services under
consideration of service variants, whose selection was driven by citizen participation. A second
use case concerns the modeling and selection of Infrastructure as a Service (IaaS) variants and
their automatic consumption and usage. Finally, an empirical evaluation indicates good usability,

expressiveness, and usefulness and interpretability of service feature modeling.

Acknowledgment

This thesis could not have been completed, had it not been for numerous people who supported
and influenced me during the last 4 years.

Firstly, a big thank you to my supervisor, Prof. Dr.-Ing. Stefan Tai. He considerably shaped
the way I think about research and computer science in particular. His contributions to both my
work and my understanding of research always combined deep technical knowledge with the urge
to motivate one’s work based on relevant problems in relevant contexts. Stefan’s approach to
conducting research will always be the gold standard for me.

I further thank Prof. Dr.-Ing. Stefan Jdhnichen, who kindly acted as my Korreferent and pro-
vided me with the opportunity to present and discuss especially the feature modeling aspects of
this work with him and his team at TU Berlin. I also thank Prof. Dr. Rudi Studer and Prof. Dr. Ir.
Marc Wouters, who completed the thesis committee.

Dr. Christian Zirpins helped me shape this work from the beginning. I thank him for the great
time working in the COCKPIT project together, the fantastic journeys we undertook in this context,
and his valuable advice and guidance that expanded beyond his time at our research group.

I started my time at eOrganization writing my Diplomarbeit in 2009. I thank my two supervisors,
Robin Fischer and Dr. Ulrich Scholten, who invoked my scientific curiosity, ensured a smooth
transition into my time as a doctorand, and became dear friends.

I thank my eOrganization colleagues in Karlsruhe, Dr.-Ing. David Bermbach, Bugra Derre, Dr.
Christian Janiesch, Jorn Kuhlenkamp, Markus Klems, Tilmann Kopp, Michael Menzel, Steffen
Miiller, Dr.-Ing. Nelly Schuster, and Raffael Stein for providing such a great environment to work
in and for the various, fruitful collaborations. I thank my FZI colleagues Dr. Gregory Katsaros,
Luise Kranich, Alexander Lenk, David Miiller, Prof. Dr.-Ing. Frank Pallas, and Mandy Schneider
in Berlin, who made the Aussenstelle a great place to work and taught me a lot about Tischfussball.
I further thank all my colleagues from AIFB, FZI/IPE, and KSRI. I am especially thankful for
the great administrative support I received from Heike Dohmer and Rita Schmidt. I thank my
collaborators from the COCKPIT project and the many students I had the pleasure to work with.

I thank my family and friends - they supported me throughout these years and gave me the
strength and perseverance required to finish this work. I especially appreciated the inspiring dis-
cussions about my work and its context with my father, Prof. Dr. Klaus-Peter Wittern, and with
Dr. Timm Gudehus.

Finally, I thank my great love Gesina.

Berlin, May 2014 Erik Wittern

il

Contents

Abstract [
Acknowledgment iii
1 Introduction 1
1.1 Examples for Variants in Software Services 2
1.1.1 Public Service Design 2

1.1.2 Financial Web Service Consumption 4

1.1.3 laaS Configuration 5

1.2 Motivations for Software Service Variants, 7
1.3 Problem Statement 9
1.3.1 Problems Regarding Modeling Service Variants 9

1.3.2 Problems Regarding Selecting Service Variants 11

1.4 Research Design and Contributions 13
1.4.1 Concepts and Methodology 14

1.4.2 ModelinglLanguage 15

143 Methods 15

1.44 Tools 16

1.5 Structure of this Dissertation 17

2 Concepts and Methodology L. 19
2.1 ServiceConcept 19
211 GenericServices 19

2.1.2 Software Services 21

2.2 Software Service Life-Cycle Model 23
2.2.1 Software Life-Cycle Models 23

2.2.2 Service Life-CycleModels 24

2.2.3 Our Software Service Life-Cycle 25

2.3 Service Variants and Variability 0oL 30
2.3.1 Origins of Service Variability 32

2.3.2 Variability Subject 32

2.3.3 Affected ServiceRoles 33

2.3.4 TimeofOccurrence 33

Contents

vi

2.3.5 Realization of Variability 34
2.4 Fundamentalsof Modeling 37
2.4.1 Characteristicsof Modeling 37
2.4.2 Generic ModelingProcess 38
2.5 Methodology of Service Feature Modeling 39
Modeling Service Variants 43
3.1 Standard Feature Modeling 43
3.1.1 Appeal of Feature Modeling 43
3.2 Service Feature Modeling Language 44
3.2.1 Basics of the Service Feature Modeling Language 45
3.2.2 Feature Types in Service Feature Modeling 51
3.2.3 Representation of Service Variability with Feature Types 53
3.2.4 Attribute Types in Service Feature Modeling 55
3.3 Service Feature Modeling Process 57
3.3.1 Involved Stakeholders L. 58
3.3.2 Modeling Procedure 58
3.3.3 Modeling SFMs with Similar Structure 59
3.4 Coordinated Composition of Service Feature Models 61
3.4.1 Composition Model 63
342 Roles 64
3.4.3 CoordinationRules 65
3.4.4 ServiceBinding 66
3.5 Related Work on Modeling Service Variants 67
3.5.1 \Variability Modeling Languages 67
3.5.2 Feature-based Modeling of Service Variability 68
3.5.3 Other Approaches to Represent Service Variability 71
3.5.4 Collaborative Modeling 74
3.6 Discussion 75
Using Service Feature Models 79
41 Usage Process. 79
411 GoalsofUsage 79
4.1.2 UsageOverview 81
4.1.3 Involved Stakeholders L. 82
4.2 Automatic Determination of Variants 83
4.2.1 Mapping of SFMs to Constraint Satisfaction Problems 83
4.2.2 Attribute Aggregation 86
4.3 Requirements Filtering 88

Contents

4.3.1 Stating Requirements. L. 88
4.3.2 Matching Requirementsto Variants 90
4.4 Preference-Based Ranking of Variants 92
441 RankingOverview 93
442 SkylineFiltering 94
443 SFMto Poll Transformation 96
4.4.4 Stakeholder Preferences Collection. 97
4.4.5 Configuration Ranking Determination 98
446 Participatory Ranking 101
4.5 Usage with Multiple SFMso 104
4.6 Related Work on Variant Selection 105
4.6.1 Feature Model Configuration. 106
4.6.2 Variant Selection in Service Development 107
4.6.3 Variant Selection in Service Delivery 110
4.6.4 Service Selection 110
4.7 Discussion 112
Evaluation 115
5.1 Proof of Concept - Design and Implementation 117
5.1.1 Requirements 117
512 SFMMetaModel 118
5.1.3 Architecture 120
5.1.4 Implementation 126
5.1.5 Discussion 128
5.2 Performance Evaluation 129
5.2.1 Design of Performance Evaluation 129
5.2.2 EvaluationModels. 130
5.2.3 Results of Performance Evaluation 131
5.2.4 DISCUSSION 137
5.3 Use Case - Public Service Design 138
5.3.1 Use Case Description 138
5.3.2 Modeling 140
533 Usage. 142
5.3.4 Realization 143
535 Discussion 143
5.4 Use Case - laaS Configuration 144
5.4.1 Use Case Description 144
542 Modeling 145
543 Usage. e 148

vii

Contents

viii

54.4 Realization 149
54.5 Discussion 151
5.5 Empirical Evaluation o oo oL 152
5.5.1 Design of Empirical Evaluation 152
5.5.2 DataCollection 153
5.5.3 Results of Empirical Evaluation 154
5.5.4 Discussion 155
Conclusion 157
6.1 Summary 157
6.2 Futurework 160
Appendix A . . . e 165
A1 Setsof SFMelements 165
A.2 Information about performance evaluation of the skyline filter 166
A.3 Information about performance evaluation of the requirements filter 167
Index 193

1. Introduction

Software services' provide deployed capabilities, which are realized by software, and can be con-
sumed on demand over networks. They play an ever-increasing role in businesses, culture, and per-
sonal life. For example, companies use software services to manage customer relationships [172],
to run business processes like purchasing, production, human resources, or distribution [174], or
to host their IT [1]. Public administrations provide software services to offer public services [207].
Or, end users use software services offered by social networks to communicate or share their pri-
vate lives [74], they consume movies [138] and music [191], or plan and book their holidays [205].
Web services are a common type of software services, which are consumed over the Internet. They
enable interoperation and composition even across organizational borders [147]. Cloud services
are another common type of software services, which provision scalable, abstracted IT infrastruc-
tures, platforms and applications with a pay-per-use model [31].

Stakeholders, acting in the role of either service provider or service consumer, perform differ-
ent activities across a software service’s lifespan. Service development consists of specification,
design, and implementation activities. In general, service providers perform these activities while
consumers are only involved if participatory approaches are used [88]. Service delivery is the com-
bination of provision and consumption activities to fulfill a service request. Provision activities are
performed by the service provider while consumption activities are performed by the consumer.
In some business models, further roles exist associated with additional activities. For example, in
Web service marketplaces a service broker intermediates between consumers and providers [28].
However, we focus here on the two fundamental roles involved in any type of software services.

Both, in the development and the delivery of software services, providers and consumers have
to deal with variants. Variants are alternative instances of a service’s design, implementation, de-
ployment, or operation. Variants exist in parallel and do not supersede each other, in contrast to
versions which are ordered in time [18] and are thus often subsumed as part of change manage-
ment [188]2. Related to the notion of versions, software configuration management (SCM) focuses
on the development and evolution of a system [60], whereas variants are about multiple instances
existing in parallel. Making decisions about variants is part of any software service development
activities. There are alternative designs to evaluate, different technologies exist for implementing a
software service, or it can be deployed in different ways. The definition and subsequent selection of

variants, supporting decision-making regarding the realization of a service, is therefore essential.

'In the following, we use the term service interchangeably for the term software service.

ZNote: Versions which are branches of a software service may exist in parallel and may thus be referred to as
variants [60]. Reversely, variants existing in parallel may have a version history and may thus be referred to as a
version. The important notion for us to denote variants is that they are intended to exist in parallel, cf. section 2.3.

1. Introduction

Neglecting to assess variants during development in a structured way tempts developers to use the
first alternative that comes to mind [184] and increases the risk of causing cost for reversing faulty
design decisions later on [42]. Providers need to deliver variants to address diverse or changing
consumer needs, which are best served by a specific variant [133, 142]. If providers would just
deliver a single variant, they risk addressing only a limited target customer group. Reversely,
consumers need to select suitable variants for consumption that match their specific needs [194].
Neglecting this step can cause (costly) over-delivery [110] or risks service delivery to deviate from
needs [166]. Businesses, thus, cannot neglect dealing with software service variants.

Modeling can be used to define, communicate, experiment, or decide about aspects of a sys-
tem [124, 164], in this case a service’s variants. This thesis proposes a modeling language, allow-
ing to represent service variants, and a set of methods that, utilizing the modeling language, select

a single or a subgroup of variants based on stakeholder requirements and preferences.

1.1. Examples for Variants in Software Services

Within this section, we provide three examples to illustrate that software service variants exist and
are relevant in different contexts. These examples provide furthermore a basis to, in the following

sections, discuss benefits and motivate challenges of variants.

1.1.1. Public Service Design

The Citizens Collaboration and Co-Creation in Public Service Delivery (COCKPIT) project presents
the challenge to define and select variants regarding the design of public services [106]. The project
aims to enable citizens to participate in public service design to increase the fit of the service with
citizens’ needs. The COCKPIT project researches a model-based service design methodology. In
it, multiple models are used to describe certain aspects of the service. A generic model for public
services, for example, captures information like the service’s goals, requirements towards it, or
the resources it involves [70]. Process models describe the service delivery using the Business
Model and Notation (BPMN) [8], or costs are described in models following an activity-based
cost approach [49]. In addition to these models, the methodology includes several approaches to
automatically create parts of the models or to utilize them. For example, policy and law retrieval
methods crawl public databases for relevant information regarding the service, an opinion mining
component reveals opinions stated in Web 2.0 sources about the service in design or similar ser-
vices, or a simulation engine visualizes and analyzes service designs based on the process models.

Within the project, public administrations designed or re-designed actual public services they
offer using the outlined methodology. In this process, experts from the participating administra-
tions concerned with the public service design identified multiple design variants. Typical sources
driving these variants are illustrated in figure 1.1.

In a first scenario, the Greek ministry of interior designed the “access extracts of insurance

records in social security organization” service. It allows citizens to access their insurance records,

1.1. Examples for Variants in Software Services

) sl
2

Alternative technologies / : t] C -

Alternative
access channels

resources
Alternative workflows

Figure 1.1.: Typical sources of variants when designing public services in the COCKPIT project

which is required if they want to check the payment status of their health insurance or if they
apply for a loan or for a new job. The service engineers identified possible design variants of
this service, for example, with regard to triggering the process either via Website, telephone, or by
visiting a social security office. The retrieval of the requested record can be performed manually by
designated clerks, resulting in a delivery of the record via post. Alternatively, the retrieval can be
performed using a database system and the delivery can be performed using email. These variants
impact the service’s properties like the delivery cost, the required execution time, or the validity of
the delivered record - for example, some situations may demand for physical, signed copies of a
record.

In a second scenario, the City of Venice redesigned the “Internet reporting information system”
service. It is implemented as a Web application and accessible to all citizens of Venice. The service
allows citizens to report civic issues, for example, occurrences of vandalism, decay, or unreason-
able regulations, and track how the city addresses them. In this scenario, engineers concerned with
the design identified variants with regard to, for example, designing interfaces to report issues from
different devices, for example, personal computers or mobile phones, whether to open the service
to other cities or not, or whether to notify tracking reports via short messages or not. These variants
impact the service’s properties like costs for the public administration or the frequency of in which
tracking reports are made available.

The consideration of design variants has been proposed in multiple service design methodolo-
gies as means to conceptualize and assess different ways to develop a service [148, 70, 127, 200].
While these works motivate dealing with variants during service design, they do not present spe-
cific approaches on how to pursue it. In COCKPIT, variants result from variable concerns scattered
across models describing processes, resources, or costs. No means exist to explicitly represent
these variants and use them to improve the service design. This challenge is further complicated
due to the multiple stakeholders involved in public service design, including the participation of
citizens. Approaches to represent and assess variants need to enable the participation of these
stakeholders.

Overall, ideally, engineers designing public services would have an approach at hand to model
service design variants, which integrates with other modeling approaches and limits additional

efforts. Based on the resulting models, different stakeholders would be supported in stating their

1. Introduction

preferences and requirements to select the variants to further develop. Section 5.3 provides details

on how we address these issues with this work’s contributions.

1.1.2. Financial Web Service Consumption

Financial data services offer consumers a variety of financial data to use in their applications.
Common types of data include stock quotes or company financial data, which provides an overview
over the financial performance of companies, including information on balance sheets, cash flows,
or income statements. Providers like Xignite [229] or QuoteMedia [156] offer such data via Web
APIs. Web APIs are application programming interfaces that provide consumers data or services
via endpoints accessible in the Web.

Web APIs denote variants regarding, for example, data formats, the interface implementation, or
authentication mechanisms [68]. Common data formats provided by Web APIs include XML and
JSON. The interfaces of Web APIs are typically implemented either using SOAP or in a RESTful
way. Further variants exist with regard to the data provided by the Web API. The provided data
depends on the endpoint that consumers invoke and on the parameters provided in a request to
that endpoint. Data can be historical, here describing past financial situations, or real-time, giving
insights into latest developments.

Figure 1.2 illustrates variants to select by consumers of the Xignite’s Get Companies Financial
service. The corresponding API can be invoked by providing different types of identifiers for
the company whose financial data a consumer is interested in, being for example the company’s
symbol or the Central Index Key (CIK). Provided financial reports can be of different type, for
example, quarterly or annual, and cover a definable time period. In addition, data can be provided
in different data formats like XML, JSON, or CVS.

Request Customize Manage Code Get Help

Identifiers: MSFT, GOOG ?
IdentifierType: | Symbol v| 2

|MGStockNumberindustryID -

ReportType: ’
Latest
Quarterly !
Annual
T™
URL LatestPreliminary
QuarterlyPreliminary Identifiers=MSFT,
GOOG&ldenti AnnualPreliminary ReportType=Quarterly.

TTMPreliminary

QuarterlyRestated
Grid XML JSUN CSV

Figure 1.2.: Screenshot showing variants of Xignite’s financial data service, source: http://www.

xignite.com/product/company-financials/api/GetCompaniesFinancial/, accessed:
4th March 2014

http://www.xignite.com/product/company-financials/api/GetCompaniesFinancial/
http://www.xignite.com/product/company-financials/api/GetCompaniesFinancial/

1.1. Examples for Variants in Software Services

Current descriptions of Web APIs, as illustrated for the case of financial Web APIs in figure 1.2,
are heterogeneous and dispersed in nature [146]. Variants are implicitly included in the descrip-
tions, but not stated in a structured, analyzable way. In consequence, (potential) consumers have to
manually gather and structure this information. One scenario where structured data is required is
the selection among variants, considering for example trade-offs between currentness of data and
cost for invoking an API. As it is the case in the example about consuming IaaS (cf. section 1.1.3),
selection of variants of Web APIs providing financial data ideally spans across comparable services
offered by different providers.

Overall, potential consumers would ideally have a structured representation about the variants
offered by financial Web APIs at hand. Using this representation, the consumers would be sup-
ported in selecting a suitable variant among multiple, competing services based on their require-
ments and preferences. We use this scenario throughout the thesis to illustrate how this work’s

contributions can practically be applied.

1.1.3. laaS Configuration

The consumption of Infrastructure as a Service (laaS) presents consumers with the challenge to
select suitable IaaS variants. laaS provides virtualized hardware to consumers. Consider, for
example, a developer who wants to use a Couchbase® NoSQL datastore on top of IaaS. By doing
so, the developer, acting as an laaS consumer, does not have to physically own infrastructure but
can rent it on-demand.

In this scenario, the [aaS consumer is presented with variants. There are multiple IaaS services
from different providers to choose from, for example Amazon EC2 [1] or Rackspace [2]. While
being independent services, the consumer would like to treat their offers as variants to another as
long as they provide the desired capabilities. If the selection of the provider is not predetermined,
for example, because the consumer already uses one provider in other contexts, the consumer
wants to compare the providers’ offers against each other. Looking at an individual [aaS, it denotes
further variants because it allows consumers to specify a configuration. Here, a configuration is a
set of information, for example, configuration parameters, that determines a service variant within
a pre-defined scope [196]*. A configurable service is capable of taking a configuration as input
and providing a corresponding service variant>.

In the case of IaaS, one source of configuration options is the selection of the type of virtual
machine (VM) to consume. A virtual machine maps arbitrary, software-defined interfaces and

resources on the interface and resources of a physical machine. Offered types of VMs typically

Shttp://www.couchbase.com/

“Note: The field of software configuration management considers a configuration, divergently, as a set of com-
ponents, that can themselves be configurations or configuration items, which are the smallest units of individual
change [202]. The term configuration is thus overloaded and needs to be considered in dependence of the context,
cf. section 3.2.1.

SNote: Service variants can also be realized with alternative methods, for example, through dedicated implementa-
tions (also referred to as customization) or through adaptation, cf. section 2.3.5.

http://www.couchbase.com/

1. Introduction

Instance

Instance Instance Processor Memory
. vCPU ECU . Storage
Family Type Arch (GiB)
(GB)
General . . 1x4
m3.medium 64-bit 1 3 3.75 .
purpose SSD™®
General . 1x32
m3.large 64-bit 2 6.5 7.5 .
purpose SSD™®
General ma3.xlarge 64-bit 4 13 15 2x40
purpose SSD™®
General m3.2xlarge 64-bit 8 26 30 2x80
purpose SSD®
General m1.small 32-bit or il 1 1.7 1x160
purpose 64-bit

Figure 1.3.: Screenshot depicting different virtual machine types offered by Amazon EC2, https://aws.
amazon.com/ec2/instance-types/, accessed: 25th February 2014

differ with regard to the amount of CPU cores, memory, disk space and price [29]. Consumers
chose VM types based on the requirements of the software components or applications to deploy on
the VM. In this case, for example, the NoSQL datastore can profit from large memory to increase
the available cache and therefore avoid random, slow disk I/O. Figure 1.3 illustrates properties of
some of the VM types offered by Amazon EC2.

The number of variants further increases from the choice of images to load onto the rented VM.
Images contain fundamental software to use a VM, including the operating system. Additionally,
images may contain pre-packed software, for example, there are images that already contain the
Couchbase NoSQL datastore. Pre-packed software enables out-of-the box functionality and re-
leases the consumer of having to manually install software. Images vary further with regard to
terms and conditions. Some images, for example, do not allow commercial use or they induce
additional cost. Figure 1.4 illustrates some of the images offered by Amazon EC2 that have the
Couchbase NoSQL datastore pre-pakced.

Finally, the number of variants to consume further increases as consumers may install additional
software on top of an image hosted by a VM. Additional software may include monitoring tools,
the network time protocol (NTP), or configuration management tools.

Currently, IaaS providers communicate the outlined variants only in an unstructured way in
form of HTML descriptions. Correspondingly, consumers select variants based on intuition or
experience. Such approaches, however, fall short when the consumer desires a more structured,
reproducible way to select variants. In the current way of consuming laaS, the consumer does not
explicitly state his requirements and preferences and can thus not document or iteratively revise
them. Automations regarding the selection of variants are currently not supported, thus prohibiting
unexpected or repeated selections. For example, a consumer may also wish support in re-evaluating

his variant selection in reaction to changing offers, which currently requires repeated manual effort.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

1.2. Motivations for Software Service Variants

o Couchbase Server - Enterprise Premium
Version 2.5.0 | Sold by Couchbase
Couchbase $0.74/hr for software + AWS usage fees
Couchbase Server is a distributed NoSQL document database for interactive web
and mobile applications. It has a scale-out architecture that can run in the cloud or
on ...
Linux/Unix, Amazon Linux 2011.09 | 64-bit Amazon Machine Image (AMI)

o Couchbase Server - Community Edition
¥ (2)] Version 2.2.0 | Sold by Couchbase
Couchbase $0.00/hr for software + AWS usage fees
Couchbase Server is a distributed NoSQL document database for interactive web
and mobile applications. It has a scale-out architecture that can run in the cloud or
on ...
Linux/Unix, Amazon Linux 2011.09 | 64-bit Amazon Machine Image (AMI)

Figure 1.4.: Screenshot depicting different Couchbase images offered by Amazon EC2, https:
//aws.amazon.com/marketplace/seller-profile/ref=dtl_pcp_sold_by?7id=
1a064a14-5ac2-4980-9167-15746aabde72, accessed: 25th February 2014

Finally, while consumption of [aaS can be performed automatically with automation tools like
Chef®, these methods are not integrated with means for structured Iaa$ variant selection.

Overall, ideally, the consumer would state his requirements and preferences regarding the con-
sumption of Couchbase on laaS, would be supported in selecting the most suitable variant, and
its consumption would automatically be initiated. Section 5.4 provides details on how we address

these issues with this work’s contributions.

1.2. Motivations for Software Service Variants

The three examples presented in section 1.1 motivate dealing with software service variants. We
differentiate motivations broadly into whether service variants are considered for the development
(cf. example 1.1.1) or for the delivery of software services (cf. examples 1.1.3 and 1.1.2).

In service development, variants are defined by the service provider during specification and
design activities. The purpose of defining variants during development, as it is motivated in the
example about public service design in section 1.1.1 and in related work [70, 148, 127], is to
assess alternative ways of how to further develop and deliver a service. The variant definition
process needs to capture the requirements of the provider and consumer stakeholders involved
with the service. Empirical studies from software engineering show that insufficient consideration
of stakeholder requirements is the single biggest cause for software projects to fail [91]. Following
the basic systems engineering process process [117], design variants can be assessed regarding
objectives and criteria to chose which variant to implement. Variants can thus be used to perform
thorough business case analysis and provide basis for decisions on the service design. In this

sense, the definition and later selection of variants corresponds to design space approaches [184].

®http://www.getchef . com/chef/

https://aws.amazon.com/marketplace/seller-profile/ref=dtl_pcp_sold_by?id=1a064a14-5ac2-4980-9167-15746aabde72
https://aws.amazon.com/marketplace/seller-profile/ref=dtl_pcp_sold_by?id=1a064a14-5ac2-4980-9167-15746aabde72
https://aws.amazon.com/marketplace/seller-profile/ref=dtl_pcp_sold_by?id=1a064a14-5ac2-4980-9167-15746aabde72
http://www.getchef.com/chef/

1. Introduction

Design spaces encompass a set of decisions to choose an artifact, in this case a service design
variant, that best satisfies consumer needs. Not assessing variants tempts developers to stick with
the first variant that comes to mind, it avoids building up knowledge about families of designs, and
it impedes identifying suitable and innovative designs [184]. In addition, neglecting the assessment
of variants increases the risk of having to costly reverse design decisions [42].

Challenges for such approaches result from the negative impacts that considering variants dur-
ing development induces. Variants need to be defined and managed, which creates efforts and
increase complexities in design and implementation activities. Artifacts to support these tasks re-
quire creation and maintenance. Furthermore, corresponding methods need to be learned, applied,
and possibly be supported by dedicated systems.

In service delivery, the provision of variants allows providers to deal with diverse requirements
and preferences of consumers [133, 142]. Providers offer multiple variants of their service and
consumers select those variants that best meet their individual needs. These needs can address
the functionalities or qualities of a service [133]. In the [aaS example from section 1.1.3, differ-
ent consumers will have different requirements regarding the computational performance of VMs,
depending on CPU cores and memory, or the software provided by images. Neglecting the con-
sideration of these requirements to select variants can cause (costly) over-delivery [110] or it risks
service delivery to deviate from needs [166]. In addressing individual consumer needs, the delivery
of service variants is a means for customization. Multiple positive effects of service customization
have been identified, including increased customer satisfaction [212] and perceived quality [150].
These, in consequence, positively impact consumers’ willingness to pay and recommend the ser-
vice, and increase consumer loyalty to the service and its provider [167, 92, 17].

Another motivation for delivering service variants is to react to changes in context. Context,
generically, is ““[...] any information that can be used to characterize the situation of an entity” [69,
page 5]. With regard to services, common context changes concern requirements, preferences,
or environmental conditions, for example, changed competition, technologies, or legal regula-
tions [71]. Service variants allow for reaction to such changes, if consumers are enabled to switch
to variants that are more suitable in light of the changed context while ensuring continuous ser-
vice provision. Switching variants, for the consumer, avoids efforts for adapting systems or even
exchanging services. The provider, in this scenario, can continue provisioning the service to con-
sumers even in the face of contextual change.

As it is the case in development, delivering service variants also induces negative impacts. Mul-
tiple variants need to be deployed in parallel or the adaptation of a single service is required. Again,
variants need to be managed, requiring corresponding artifacts, methods, and systems. In the case
of delivery, these effects not only concern the service provider, but also the consumer who needs
to select the variant to consume.

Overall, both in development and delivery, whether and to what extend considering variants is

beneficial depends on the comparison of the outlined advantages with the outlined disadvantages.

1.3. Problem Statement

1.3. Problem Statement

As already outlined in the motivation in section 1.2, dealing with variants also causes problems,
which we discuss in detail in this section. We consider problems to fall into three major cate-
gories, for each of which extensive related work exists in the context of software engineering: 1)
the definition of variants, using modeling methods [186], 2) the management and selection of vari-
ants [51], and 3) the realization of variants [197]. The main contributions of this thesis focus on
the first two problems. Thus, the problems addressed in this thesis are how to model and select
software service variants. In the following subsections, we outline these problems in more detail

and identify concrete challenges not jet addressed by related work.

1.3.1. Problems Regarding Modeling Service Variants

The first problem concerns the definition of service variants using modeling approaches. The de-
scription of laaS variants is provided unstructured in HTML (cf. images 1.3 and 1.4). Similar, the
descriptions of Web API variants (cf. image 1.2) are typically heterogeneous and dispersed [146].
In the example about public service design, variants result from information contained in different
artifacts like process or resource descriptions. In all examples, no explicit representation of vari-
ants exists, thus impeding efforts to systematically reason about them. Modeling variants results
in a structured representation, which enables automatic analysis and usage [32]. Defining each
service variant independently from another causes redundancies, resulting in maintenance efforts
and fostering inconsistencies. For example, concerns that are common to multiple variants would
be modeled repeatedly and changes to them would require dealing with in multiple instances. In
consequence, dedicated languages and modeling methods are required to efficiently represent ser-
vice variants. To be efficient, these languages and methods need to differentiate between variable
and common concerns of service variants.

The so-far outlined problems, while relevant, are rather generic in nature and are not novel to
software services - they have been addressed in software engineering (SE): variability modeling
is a well-researched [186] and practically applied [35] technique used in SE. It is “[...] the dis-
cipline of explicitly representing variability in dedicated models that describe the common and
variable characteristics of products in a software product line” [35, page 1]. Variability modeling
approaches have already been used for specific types of software services. For example, the vari-
ability of Web services has been represented with feature models [139, 141, 78]. Or, variability
modeling approaches have been applied to support customization of cloud services [133, 34]. How-
ever, the outlined approaches do not address all challenges regarding modeling software service
variants that result from the three examples in section 1.1. Specifically, we identify the following

challenges, which we aim to address in this thesis:

Challenge 1. Representation of characteristics of variants

1. Introduction

All three examples motivate the representation of characteristics of variants. Characteristics
result for consumers or providers from developing or delivering a variant. They are typically mea-
surable, meaning that a number can be assigned to them, or boolean in nature, meaning that they
can either be true or false. When representing [aaS variants, for example, characteristics denote the
number of CPU cores or the disc space of virtual machines. Public service design variants denote
different cost for delivering the service or different execution times. Or, financial Web APIs have
different cost depending on the requested information. The representation of characteristics aims
to document and communicate the capabilities of variants, for example with regards to Quality of
Service (QoS) [83]. Representing this information allows to use it for the selection of software
service variants, as it is already common in approaches to select software services without the con-
sideration of variants, cf. [14, 235]”. In related work, variability modeling approaches like feature
modeling already address the representation of characteristics [33]. In these approaches, however,
characteristics are only used to describe individual model elements, for example features. To obtain
insights into the characteristics of complete variants, aggregation of individual values is required
and currently not addressed. The challenge is thus to introduce means to variability modeling that
enable to represent characteristics of variants. While motivated in this context, such means are not

only relevant for software services, but also with regard to software systems in general.
Challenge 2. Including dynamic or complex characteristics

While the representation of characteristics of variants is important, statically provided char-
acteristics do not suffice to describe service variants. Software services underly an open-world
assumption, in which context is constantly changing [71]. For example, the performance of virtual
machines provided by IaaS is found in related work to considerably change over time [115, 95].
Or, the availability of data-providing APIs is also a function of time and the current availability
status might be of interest to consumers. Many characteristics undergo constant change, impeding
their static definition during modeling activities. Other characteristics are complex in nature, again
impeding their static definition. For example, the cost of IaaS in many cases depend on how it is
consumed - next to the bare fees for renting VMs, additional cost result depending on the amount
of data transferred from or to the VM or the number of input/output operations [1]. In existing
variability modeling approaches, service quality attributes are modeled statically, which does not
suffice to describe their dynamic or complex nature [112]. Thus, the challenge arises to include
dynamic or complex characteristics when representing software service variants. Again, while be-
ing motivated in the context of services, this challenge is also relevant in the context of software

systems in general.
Challenge 3. Support for expert collaboration in defining variants

In the design of public service variants as described in the example in section 1.1.1, we were

confronted with the challenge to enable expert collaboration in defining variants. In service devel-

"Note: This challenge solely addresses the representation of characteristics. Their selection, definition, metrics, or
the means to perform measurements are outside of the scope of this work.

10

1.3. Problem Statement

opment, this need is especially relevant due to the involvement of stakeholders from multiple dis-
ciplines [190]. Collaboration in this context includes the definition and communication of variable
concerns and the definition of dependencies between them. In defining variants, experts involved
in developing software or a service delimit the solution space of the design and express their indi-
vidual concerns in terms of concern-specific variants [221]. These concerns, for example technical,
business-related, or legal ones, may be dependent on another. In the end, variants of the overall
software or service are derived that consider the specified dependencies. The resulting challenge
for variability modeling approaches is to provide methods that enable collaboration by coordinat-
ing the (concurrent) creation or revision of models without conflicts. In related work, we find no
approaches that address the collaborative definition of service variants. Some variability model-
ing approaches address fundamentals for supporting collaboration. For example, feature models
defined by various stakeholders can be composed [11] or stakeholder-specific views on them can
be realized [93]. However, these approaches have so far neither, to our best knowledge, addressed
a conflict-free collaborative modeling process nor have they been applied to the development of
software services specifically. The challenge is thus to enable expert collaboration in the defini-
tion of software service variants. Here, again, we see beneficial applications also for variability

modeling of software in general.

1.3.2. Problems Regarding Selecting Service Variants

The second problem addressed in this thesis concerns the selection of service variants in develop-
ment and delivery. In the examples about IaaS and Web API consumptions, consumers need to
select their desired variant before consumption or if they desire to switch to another variant during
consumption. In the example about variant selection during public service design, providers select
the variant to further develop, i.e., design, implement, or deploy. The fundamental requirement
towards selection methods is to take as input the needs or preferences of decision-makers as well
as possible variants and to output a recommendation of the variant(s) to select. If such methods
are not available, decision-makers who select variants for development or delivery are bound to
their intuitions and experiences only in their manual efforts to find the variant meeting their re-
quirements and preferences. Disadvantages of such approaches are missing documentations of the
decisions made and impeded repeatability. When understanding and having modeled variants to
result from variability in individual concerns, the number of variants grows exponentially when-
ever new variable concerns are added. This introduces the need for selection support methods that
are capable of comparing, filtering and ranking large numbers of variants.

As in the case of modeling variants, related work also exists with regard to selecting them.
Variability modeling encompasses approaches for selecting variants [51, 32]. Again, existing ap-
proaches do not address all challenges regarding selecting software service variants that result from
the three examples in section 1.1. We identify the following challenges, which we aim to address

in this thesis:

11

1. Introduction

Challenge 4. Selection process

For selecting software service variants based on representations fulfilling the above outlined
challenges, a selection process is needed. In the context of services, where selection can be used
to decide among variants for delivery as in the IaaS example in section 1.1.3, the selection process
should be able to perform automatically. Automation in selection enables consumers to switch
between service variants on a request basis®. Similar approaches are proposed in the context of
Web services as dynamic or late binding [19]. Even if selection is not performed for every request,
other triggers to re-perform software service variant selection exist, like periodic assessments or
promoted changes in the offered service variants. To base selection on meaningful information,
requirements and preferences of relevant stakeholders need to be considered in this process. Their
explicit representation allows to revise or document them and is another important factor in en-
abling automation in performing the selection process. In related work, approaches focus either on
requirements-based feature selection, for example in staged configuration [63], or on preference-
based selection, for example in the stratified analytical hierarchy process [22]. These approaches
rely on manual efforts and thus impede automation. In contrast, we see the challenge in providing
a comprehensive, automatically performable selection process, considering both requirements and

preferences.
Challenge 5. Comparability of variants from different services

When consumers select variants of a service to consume, they might not only be interested in the
variants offered by a single provider. If services are comparable, a common problem is to select
among these services. Related approaches address, for example, the selection among functionally
equivalent Web services based on quality of service characteristics [14] or the selection of com-
parable cloud services [160]. Incorporating the concept of variants into this task, consumers are
presented with the challenge of selecting among variants offered by multiple services. Consider,
for example, the consumption of IaaS. A consumer may be agnostic to the provider from which
to consume laaS but only focus on certain requirements and preferences that can be fulfilled by
multiple services of offered by different providers. Or, when consuming financial Web services to
obtain stock quotes, consumers need to select among different services offered, for example, by
Xignite or QuoteMedia that provide the same data but have different interface implementations,
data formats, or prices. A necessary precondition to realize such selections is to ensure compa-
rability between service variants offered by different providers. For representations of variants to
act as basis in such approaches, they need to address the same variable aspects of a service and be
described regarding the same characteristics. Variant selection, then, methodically is performed as
in the case of a single variable service, but considers the superset of all comparable services’ vari-

ants. To our best knowledge, comparability between variability models or the variants represented

8The applicability of this approach depends on whether switching a service variant can be performed without exces-
sive effort, which depends, for example, on required data migration or integration.

12

1.4. Research Design and Contributions

in them has not yet been addressed in related work. The challenge is thus to ensure comparability

of variants offered by different providers and represented in different variability models.
Challenge 6. User participation in variant selection

During development of software services, design variants can be assessed by consumers, al-
lowing for participatory service design [223], which is a positively considered method when de-
veloping services [88]. Empirical studies within the last 30 years report positive impacts of user
involvement in software development on system success [26]. Advantages from user involve-
ment in the design of new services are original solution approaches with higher value for the
consumers [125]. Using variability models for participatory design is promising given their suit-
ability as a communication medium. For example, feature models have a level of abstraction that
is understandable both by technicians and customers [113]. A challenge for participation methods
is to present participants with meaningful and relevant information about software or service vari-
ants but also abstract from technical, deterrent details. Variability modeling needs to be combined
with other abstractions and interaction methods that allow otherwise not involved and potentially
non-technical stakeholders, for example users, to engage in variant selection. We do not find ap-
proaches supporting participation of consumers in software service development that are based
upon variability modeling. This gap is especially evident given that variability modeling’s main
elements, i.e. features, are commonly defined to be characteristics visible to end-users [18], ren-

dering such approaches suitable for end-user integration.

In sum, in this thesis, we address all the outlined challenges regarding modeling and select-
ing software service variants, the ones specific to software service engineering and the ones also
applicable to software engineering in general. The examples in section 1.1 create even further chal-
lenges, concerning for example the mapping of representation of variants to other service-related
artifacts or the automatic realization of selected variants. This work illustrates how we addressed
some of these challenges, presenting for example a mapping of service variant representations with
other models for public service design in section 5.3 or showing how laaS variants can automat-
ically be consumed in section 5.4. Because these approaches are bound to specific use cases and
not necessarily generalizable, however, we do not explicitly mark their underlying challenges to
be addressed in this work.

1.4. Research Design and Contributions

In this work, we apply variability modeling to model service variants and select among them
during development and delivery. We focus on the following activities that make use of variability
modeling:

1. The (collaborative) definition of service variants by providers and consumers during design

activities of development.

13

1. Introduction

2. The selection of service variants for development - selected variants are further considered
in design, implementation, deployment, and operation activities - by providers under partic-

ipation of consumers.

3. The (repeated) selection of service variants by consumers for service delivery.

To address the above-mentioned activities, we introduce service feature modeling. Service fea-
ture modeling is about the representation of service variants in a Service Feature Model (SFM)
and the usage of SFMs to select service variants. Correspondingly, the hypothesis underlying this

thesis is:

Hypothesis 1. Service feature modeling (a) provides an expressive and usable language to repre-
sent service variants, (b) enables experts to collaborate in specifying service variants, (c) provides

useful methods to (participatorily) select service variants.

To satisfy this hypothesis, we conceptualize a modeling language and selection methods utiliz-
ing models based on this language. The conceptualization was initially driven by requirements
from public service providers within the research project about public service design presented in
section 1.1.1. Early within our work, we started developing proof-of-concept tools, implementing
service feature modeling. The concepts and tools were iteratively refined based on the public ser-
vice providers’ feedback and our findings. The research project provided a use case that we used
to evaluate the modeling language and parts of the selection methods. Subsequently, we applied
service feature modeling in other contexts. We performed a second use case, covering again the
modeling language and a more complete set of selection methods, addressing the representation
and selection of laaS variants as motivated in section 1.1.3. The second use case furthermore
provided the possibility to assess the realization of service variants based on models described in
our language. Overall, through this thesis’ contributions, we define a novel approach to model
and select service variants. The approach is rooted in and builds upon software engineering, us-
ing for example classical feature modeling, while considering the characteristics and challenges of

services. We outline the contributions in more detail in the following.

1.4.1. Concepts and Methodology

An initial contribution of this thesis is a specification of concepts related to services and service
variants. Definitions for services and their perceptions are manifold [16] so that the understanding
underlying this thesis needs to be defined. We focus on and present common types of software
services, which we differentiate from generic services. We then discuss service variability, which
we define to be the ability of a service to a) be delivered in one of multiple preplanned ways or
b) adapt in a preplanned manner. We address fundamental questions related to service variability:
who is affected by, controls, benefits or is worse off by service variability? When does it appear?

How can it be realized?

14

1.4. Research Design and Contributions

We furthermore present a software service life-cycle model that is used throughout this thesis to
denote the occurrence and involved stakeholders of service feature modeling activities. Building
upon the so far introduced concepts, we present service feature modeling’s methodology. It uses
a modeling language to represent service variants and combines corresponding methods to model

and select service variants.

1.4.2. Modeling Language

A central contribution of this work is the definition of the service feature modeling language. It is
based upon classical feature modeling from software engineering [99]. The models created with
this language, SFMs, represent multiple variants of a service in a single model. SFMs can represent
diverse variable concerns of a service, including, for example, technical, business-related, or legal
ones. Their inclusion in a single representation allows modelers to interrelate these concerns, for
example, to state dependencies between legal regulations and technical properties. We design the
service feature modeling language to suffice multiple quality properties, which we evaluate within
this thesis.

First, we design the modeling language to be expressive. Expressiveness refers to the capability
of SFMs to capture relevant variable concerns and define dependencies between them. To achieve
expressiveness, we introduce attribute types, containing information common to multiple attributes
of the same type. Attribute types provide the basis for determining characteristics of variants as it is
motivated by challenge 1. Another extension introduced by the service feature modeling language
are feature types to clearly define the semantics of features. Feature types further provide the basis
to define domain models, which enable comparability of variants defined in different SFMs as
motivated by challenge 5.

Furthermore, we assess the usability of the service feature modeling language. Usability refers
to how easy it is to learn and use the service feature modeling language. We assess how service
engineers assess the usability of the service feature modeling language in an empirical evaluation
based upon one of the performed use cases.

Finally, we also address the applicability of service feature modeling in this thesis. Applicability
refers to the ability of our approach to be used in realistic scenarios. Given the possibly large
amount of scenarios in which service feature modeling can be used, we cannot assess applicability
in absolute terms. However, we illustrate applicability exemplarily by applying the language to
model software variants of financial Web APIs throughout this thesis and by applying it to the two

use cases addressing the scenarios outlined in sections 1.1.3 and 1.1.1.

1.4.3. Methods

We present a set of methods to create SFMs and use them to select service variants. A first method
concerns the modeling of SFMs - that is, the process of defining service variants. To ensure that

the combination of different concerns modeled in an SFM remains useful, their abstractions must

15

1. Introduction

be meaningful and compatible. To this end, we exemplarily integrate service feature modeling
into larger service engineering methodologies in two use cases. We define mappings between
service features and artifacts from other methodologies. Examples are work flow elements and
cloud service configuration options. Where possible, based on the mappings, automatic creation
of model parts or reuse of existing parts is used to decrease modeling efforts.

Another method addresses challenge 3 about supporting collaboration of stakeholders, i.e., ex-
perts, in modeling. Methods to realize collaboration include composition of SFMs from services
and corresponding coordination for composition to be efficient and conflict-free. Our approach
renders SFMs to act as central, structure-providing artifacts that compose diverse concerns, which
can be provided by human or software services. Through composition, service feature modeling
further allows modelers to integrate dynamic or complex attributes on-demand, as motivated by
challenge 2.

Another set of methods concerns the usage of SFMs for selecting service variants. We pro-
vide a selection process as motivated by challenge 4 that flexibly combines methods allowing
service providers and consumers to determine service variants that match requirements and pref-
erences. Configuration set determination, which extends existing approaches with attribute aggre-
gation, produces all service variants represented by a given SFM. A novel requirements filtering
approach is used to exclude variants from further consideration that do not meet minimal needs.
Preference-based ranking applies a well-known multi-criteria decision making approach [168]
to rank remaining variants based on stakeholders’ individual preferences regarding modeled at-
tributes. Before preference-based ranking, skyline filtering, adapted from database systems [41],
can be used to dismiss variants that are dominated by others. SFMs represent concerns of, among
other stakeholders, a service’s consumers and can thus support participation in development activ-
ities: service feature modeling’s usage methods allow consumers to participate in development by
selecting service variants to further design, implement, and deploy, thus addressing challenge 6.

The usage methods aim to be useful, which we evaluate in this thesis from the users’ perspective.
Usefulness depends on whether users perceive the selection of variants modeled in an SFMs to be
relevant and its outcomes beneficial. Usefulness needs to be assessed in light of utilizing service
feature modeling in addition to other service engineering approaches and as opposed to other

selection methods.

1.4.4. Tools

The final contribution provided by this thesis are tools implementing service feature modeling’s
modeling language and methods. These tools are available as open source’. The primary intention
behind the tools is to act as a proof-of-concept for the realizability of service feature modeling. In
addition, the tools allow for assessment of the application of service feature modeling to real world

use cases.

‘https://github.com/ErikWittern/sfm-toolsuite

16

https://github.com/ErikWittern/sfm-toolsuite

1.5. Structure of this Dissertation

The SFM designer is an Eclipse-based editor that allows modelers to model SFMs. The SFM
designer furthermore provides capabilities to select service variants specified in an SFM using the
methods for requirements and skyline filtering and preference-based ranking. To enable collab-
orative service feature modeling, the SFM designer interacts with the collaboration server. This
sever stores models that multiple stakeholders work on, composes these models on demand, and
coordinates stakeholders’ activities to edit them. A valuation server exposes the preference-based
ranking method to select variants of an SFM. It transfers given SFMs to evaluations which are
made accessible to diverse stakeholders on a interaction platform. The interaction platform pro-
vides a graphical interface where stakeholders state their preferences regarding service variants
using the evaluations. In combination with the valuation server, a stakeholder’s preferred service
variant can thus be determined.

The tools are combinable to form concrete systems, which can be utilized in specific application
scenarios. For that purpose, the tools denote service interfaces to enable their flexible composition.
The result is a modular architecture where parts can be used independently. Additionally, the

architecture can be extended to fulfill so-far unforeseen needs.

1.5. Structure of this Dissertation

Chapter 2 introduces terms and concepts relevant throughout this thesis, including a service con-
cept and life-cycle model, and concepts related to variants and variability. The chapter also pro-
vides an overview of the service feature modeling methodology. The first chapter thus acts as a
basis for the remainder of this dissertation.

Chapter 3 describes this work’s contributions with regard to modeling software service variants.
It introduces feature modeling, upon which our approach builds, and the extensions denoting the
service feature modeling language. Its modeling elements refer back to the variability concepts
introduced in chapter 2. The modeling chapter further discusses the process for creating service
feature models, both for individuals as well as through composing SFMs from services. At the
end, the chapter presents related work on modeling software service variants before concluding
with a discussion.

Chapter 4 presents methods to use SFMs to select software service variants. Initially, an overview
of the usage process, combining the multiple usage methods introduced by this work, is presented.
The methods are discussed individually in the following sections, including the configuration set
determination, the requirements filter, the preference-based ranking and skyline filter. As in the
previous chapter, at the end, related work on selecting software service variants is presented, fol-
lowed by a discussion.

Chapter 5 presents the evaluation of service feature modeling, consisting of multiple parts. Ini-
tially, the proof-of-concept implementation is described, which shows the realizability of all meth-
ods presented in this dissertation and acts as a basis for further evaluations. Based on the proof-of-

concept implementation, a performance evaluation presents the applicability of the usage methods

17

1. Introduction

to differently sized SFMs. Two use cases are presented, showing how service feature modeling
was applied to realistic scenarios. Finally, an empirical evaluation based on one of the use cases is
presented.

Chapter 6 completes this thesis by summing up and discussing the previous chapters. The
chapter further provides an outlook to future work extending service feature modeling.

The reader should start with the fundamentals chapter 2, which provides a basis for under-
standing the subsequent chapters. Chapter 3 about modeling and chapter 4 about using SFMs
can theoretically be read independently from another or in reverse order. Some usage methods
presented in chapter 4, though, are enabled only by modeling elements presented as part of the
service feature modeling language in chapter 3. For the convenience of readers who skipped chap-
ter 3, corresponding cross-references are provided. The evaluation in chapter 5 and the conclusion

in chapter 6 build upon the previous chapters and should thus only be read subsequently.

18

2. Concepts and Methodology

In this chapter, we present the concepts fundamental to this thesis and the methodology underlying
service feature modeling. This thesis’ service concept differentiates between generic services and
software services as discussed in section 2.1. An important part of service feature modeling’s
methodology is the service life-cycle model, building upon the priorly defined service concept,
presented in section 2.2. It enables to define when, how, and by whom service feature modeling is
utilized. The model is applied to describe the development and delivery of software services with
variants and used throughout this thesis to describe and classify presented methods in a coherent
way. In section 2.3, we present concepts and a discussion of service variants. In section 2.4,
we outline the general purpose of modeling approaches in software and service engineering and
present the generic modeling process. Building upon this generic version, we introduce service

feature modeling’s methodology in section 2.5.

2.1. Service Concept

Within this section we define in detail our understanding of service and related concepts, which
builds upon our previous work [218]. This section thus provides the fundamental understanding
and vocabulary used throughout this thesis. The term service has gained a lot of attention in the
last years. Because of its generality and broad adoption, the understanding of the term depends on
the point of view and context. To depict which services are targeted by service feature modeling,

we discuss relevant service characteristics in this section.

2.1.1. Generic Services

Various generic service definitions have been proposed. For example, the World Wide Web consor-
tium (W3C) defines a service, generically, as “[...] an abstract resource that represents a capability
of performing tasks that form a coherent functionality from the point of view of providers entities
and requesters entities. To be used, a service must be realized by a concrete provider agent.” [210].
Or, from a business perspective, services denote “[...] activities provided by a service provider to
a service consumer to create value for a service consumer” [45, page 17]. The field of service
science, which sets out to reconsider nowadays economic activities under the umbrella of services,
defines a service as “[...] the application of competences for the benefit of another, meaning that
service is a kind of action, performance, or promise that’s exchanged for value between provider
and client.” [190, page 72]. In their generic nature, these definitions aim to incorporate the diverse

views upon services. The range of disciplines involved in generic services is very broad, including

19

2. Concepts and Methodology

for example computer science, operations research, economics and law, industrial engineering, or
even urban planning [189]. The attempt to accommodate all these fields rises the risk of service
definitions to become meaningless. They do neither clearly delimit what services are, nor do they
capture all characteristics of the diverse types of existing services. In consequence, we will not
attempt to provide a concise service definition. Rather, in this section we will present those char-
acteristics common to different kinds of services that influenced the creation of service feature
modeling.

The range of definitions from different disciplines illustrates the multidisciplinary nature of
service engineering for generic services. We perceive service engineering to be the systematic
application of methods and tools for the development and delivery of a service. The diversity
of involved stakeholders creates the need for methods and tools that foster these stakeholders’
collaboration in service engineering.

The above definitions emphasize a universal characteristic of a service, namely the involved
roles. Services involve the service provider and the service consumer. Generically, the service
provider performs activities for the sake of the service consumer. In return, the service consumer
compensates the service provider, for example in form of payments. Some authors identify addi-
tional roles, like service creator in cloud computing [9] or the service broker in Web services [28].
However, because these roles might only be sensible in certain service contexts, we concentrate
on the two fundamental roles of provider (who is also assumed to have developed the service) and
consumer.

Considering services as activities reveals their procedural nature. Services take an input, often
provided by the consumer in the form of information or physical goods and transform it. Corre-
spondingly, procedural methods and tools, for example work flow models based on the Business
Process Model and Notation (BMPN) [8], can be used in designing and operating services.

Services enable consumption on-demand. Service consumers can invoke a service (only) when
they actually need them. This service characteristic induces flexibility. If the need for a service
does not occur, no consumption occurs, and correspondingly no efforts and cost arise.

Services also denote a pay per use model. The amount that the consumer has to reimburse to
the provider depends on the number and type of service invocations. This characteristic creates
potential for cost savings. The consumer can adapt his consumption in reaction to changing re-
quirements. If the demand for an activity is high, consumption can be increased (given sufficient
services are provided). If the demand for an activity is low, consumption can be decreased, avoid-
ing under-utilization of related resources. The advantage of this characteristic becomes especially
clear when a service is used in compensation of otherwise required self-fulfillment. For example,
in cloud computing, consumers use resources as they need them instead of having to acquire them
upfront (i.e., in form of physical hardware) and risking to over- or under-utilize them. Here, the
pay-per-use model creates cost savings 1) by avoiding initial acquisition cost (please note: the
service consumption, however, likely induces set-up costs) and 2) by avoiding opportunity costs in

case of under-utilization and loss in case of over-utilization, which leads eventually to the break-

20

2.1. Service Concept

down of operation.

2.1.2. Software Services

Having presented fundamental characteristics of generic services in section 2.1.1, we here focus
on software services. Software services denote an increasing importance in nowadays service
delivery (cf. chapter 1). The development and delivery of software services involves the utilization
of software engineering techniques, from which service feature modeling stems. Software services
are thus an ideal context for the utilization of service feature modeling. We define software services

in the following way:

Definition 1. A software service is a deployed capability that is realized by software and provided

on-demand over networks.

This conceptual view of software services is illustrated in figure 2.1. Software depicts the im-
plementation of a capability to be provided as a service. This software artifact contains the im-
plementation or specification of interfaces. The interfaces are, however, not accessible before the
software is deployed as a service. The provided capability may be an application, a platform or
even infrastructure. Required is only that these capabilities are realized by software. Our definition
does thus not correspond to definitions that consider software services to be equal to the concept
of Software as a Service (SaaS) solely. To our understanding, SaaS covers only software on the

application level, which is provided to end-users [114].

Execution environment

Software

-
-
&

Figure 2.1.: Software service concept, based on [218]

Through deployment, the capability is made accessible to consumers, transforming software into
a software service. Technically, through deployment the software is packed (for example, within
a Java ARchive (JAR) or an image) and loaded into an execution environment. An execution
environment is software that enables the execution of, in this case, services [10]. Exemplary
execution environments are an operating system, a Web server, or a virtual machine. The interfaces
defined as part of the software are exposed and thus made accessible to consumers by the execution

environment. Furthermore, deployment can be recursive, as indicated in figure 2.1 by the round

21

2. Concepts and Methodology

arrow. For example, a Web service can be packed as a JAR and deployed to a Web server, for
example a Tomcat server. The Web server, again, can then be packed in an image and deployed to
a virtual machine. The necessity of software services to be deployed is important to differentiate
them from classical software products. The latter are typically sold using a license-model, whereas
deployment by the provider implies service characteristics like consumption on-demand and pay-
per-use billing (cf. section 2.1.1). The provision over networks is a logical consequence of software
services being deployed by the provider.

Given our definition, software services denote a set of characteristics that do not necessarily hold
for generic services. Due to the provisioning over networks in combination with the ubiquitous
Web, software services can (theoretically) be accessed globally. Constraints to this capability
are legal frameworks or technical limitations (for example, regarding high latencies for distantly
deployed services). In contrast to traditional software products, software service updates can much
easier be rolled out because the service provider (who we assume to be also the service developer)
controls the deployment and can thus simultaneously update the service for all consumers.

Various types of software services exist that we want to introduce in the following. These types
are neither mutually exclusive nor do they collectively exhaustive cover software services. Rather,
they address different service aspects, for example, their deployment environment or their inter-
faces. Thus, the following definitions cannot be used for clear classification of software services,
but exemplify the changing paradigms and concerns in services computing.

The field of service-oriented computing deals with Web services. Web services denote software
that provides interoperable machine-to-machine interaction over a network [210]. We denote Web
services to be a more specific type of software services in that the network they are provided over
is the Internet. Atomar Web services provide a single functionality, whereas composite services
make use of Web service’s interoperability by composing them. Web service compositions are
commonly captured in business process notations, such as the Business Process Execution Lan-
guage (BPEL) [7] or the Business Process Model and Notation (BPMN) [8]. Composite Web
services can, again, be offered as a service, making composition a recursive operation [61]. While
its definition is rather broad (it includes, for example, cloud services as described below), the term
Web services is nowadays closely related with the usage of technologies from the Web services
stack [214]. For example, we term software services as Web services if they are made available
using SOAP / WSDL.

Another type of of software services are cloud services. Cloud computing is about on-demand
provisioning of scalable, abstracted IT infrastructures, platforms and applications with a pay-per-
use model [31]. Within Cloud computing, different service classes can be distinguished [114]:
Infrastructure as a Service (laaS) provides virtualized hardware to consumers (cf. section 1.1.3).
Typical examples of IaaS include compute or storage services. Infrastructure as a Service can thus
be used to deploy other services on, for example Web services as described above. Platform as a
Service (PaaS) provides integrated development environments on top of virtualized hardware. For

example, Google’s App Engine runs various runtime environments and libraries on top of their

22

2.2. Software Service Life-Cycle Model

infrastructure whose APIs developers can use for building applications [5]. Software as a Service
provides applications to end users (instead of to developers). Other, less commonly used, classes
of Cloud services include, for example, Human as a Service (HuaaS) [114], or Database as a
Service (DBaaS) [152].

2.2. Software Service Life-Cycle Model

Service life-cycle models typically define phases that a service goes through from its earliest con-
ceptualization to its shutdown. The goal of such models is to provide an overview and order of the
relevant activities for developing and delivering a service. Within this thesis, a software service
life-cycle model is used to discuss when service feature modeling can be applied, by whom, and
for what purpose. The life-cycle focuses on engineering activities only. Other activities, concern-
ing for example customer relationship management, marketing, or sales, are left out of the model
to keep it focused. The presented life-cycle model builds upon and extends the one presented in

our previous work [218].

2.2.1. Software Life-Cycle Models

Software life-cycle models (also known as software process models) have been guiding the practice
in the software engineering domain for decades. Software life-cycle models define related activi-
ties that lead to the production of a software product [188]. These models typically split a life-cycle
into phases like specification, design and implementation, validation, and evolution. Sequential,
non-iterative descriptions of software development processes, often referred to as waterfall mod-
els, were first formally described in the 1970ies [165]. Rather than recommending how software
development processes should look like, sequential approaches presented observed (mal-) practice.
On the other hand, recommending approaches commonly depict iterative structures. They foresee
that life-cycle phases are repeatedly entered to refine software or continuously improve and adapt
it. For example, the correspondingly named spiral model [39] is cyclic in nature. The rational
unified process (RUP) includes three perspectives on software development [107]. The dynamic
perspective defines four distinct phases. Each phase as well as the overall process can be iterated.
The static perspective defines the activities performed during the development process, denoted
in RUP as work flows. By separating phases from work flows, it is compliant with the RUP to
perform work flows during any phase, making the model very flexible and capturing the realities
of modern development methods, for example agile development [73]. Finally, the RUP’s practice
perspective describes six recommended software engineering practices.

While software life-cycle models indicate phases relevant also for services (especially software
services), they do not embrace service characteristics (cf. section 2.1) sufficiently to be seamlessly
reused in that context. Software life-cycle models are used by developers and focus on the de-

velopment of software products. In services, the consumer’s activities should also be considered.

23

2. Concepts and Methodology

Moreover, in services the provider does not only have to develop, but also to deploy and operate

the service. Life-cycle models suited for services need to consider these activities.

2.2.2. Service Life-Cycle Models

While the presented software life-cycle models focus on engineering tasks, service life-cycle mod-
els are more diverse in nature as they address different types of services and have a different
scope. Life-cycle models in the context of IT governance of service-oriented architectures (SOA)
include the introduction and enforcement of company-wide policies for adopting and operating
SOA [97]. Thus, they denote a holistic view upon services and related activities. For example, the
SOA service life-cycle management approach presented by IBM includes people, processes, and
technology [128]. In the context of IT service management, the service life-cycle defined in the
Information Technology Infrastructure Library (ITIL) encompasses the phases service design, tran-
sition, and operation as well as a variety of related processes [6]. Other models focus more clearly
on software service engineering. For example, the Web service development life cycle denotes a
methodology to foster analysis, change, and evolution of Web services [148]. It’s phases includes
planning, analysis and design, construction and testing, provisioning, deployment, and execution
and monitoring. Or, the integrated life-cycle for IT services in a cloud environment covers the five
phases requirements, discovery, negotiation, orchestration, and consumption and monitoring [98].
These phases are performed iteratively and imply sub-phases with activities for both providers and
consumers.

Evaluating the presented approaches, we notice some drawbacks:

Mixing of different concerns: The plethora of models from IT governance and management
(e.g., [6, 128, 143]) provide a very holistic view that encompasses also organizational as-
pects. In contrast, we aim to provide a model that focuses on engineering-related aspects of

providing and consuming services.

Rigid order of activities: Service life-cycle models are based on ordered phases, which im-
ply corresponding activities to be performed in this order as well (e.g. [98]). In the case of
sequential phases, corresponding activities can also only be performed sequentially. This ne-
glects the concurrent and dynamic order of activities in real life service engineering. For ex-
ample, design and implementation activities are inseparable in agile development and evolve

iteratively [73], which we aim to be able to express with our life-cycle model.

Coupling activities with service status: Life-cycle phases imply a (single) status in which a
subject, in this case the service, is in at any given time. Correspondingly, in service life-
cycle model that couple status to activities (e.g., [128]), only activities related to this status
can be performed. This capability has advantages when it comes to prescribing activities.
On the other hand, this coupling delimits flexibility to describe that many activities can

be performed independent of the service’s status. For example, while a service’s status is

24

2.2. Software Service Life-Cycle Model

deployed, providers and consumers may perform design activities to evolve the service or,
respectively, plan its consumption. We aim to describe the usage of service feature modeling

with our life-cycle model and thus avoid coupling of activities with the service status.

Implied longevity of service phases: The term “phase” used in many life-cycle models (e.g.,
[188, 39, 6]) implies that a service remains in a corresponding status for long time. However,
what is described as a phase in service life-cycle models may in reality only be short-lived.
For example, deploying a software service on Cloud infrastructure in many cases only takes

a few seconds (i.e., it is a matter of a single command).

To avoid these pitfalls and provide a precise wording, we define our own service life-cycle model

in the following.

2.2.3. Our Software Service Life-Cycle

The software service life-cycle used in this thesis is influenced by approaches from software en-
gineering, especially the rational unified process, and (Web) service engineering. It assumes an
engineering-centric view on software services, leaving out aspects concerning, for example, or-
ganizational operation, strategy, marketing, or controlling. In our model we differentiate 1) two
status, 2) five activities performed by providers and consumers, and 3) the two roles involved in
services. Corresponding with the characteristic roles in services (cf. section 2.1.1), we differenti-
ate providers and consumers. In the following, we offer a more detailed description of the status

and activities in consideration of the two roles.

Status

The two status a service can be in are offfine and deployed. While a service is offline, it is not yet
deployed and can therefore not be consumed. For example, a service might still be in development
before being initially deployed. Both status can be further divided into sub-status. For example,
while offline, a service may be in development or testing, it can be deployed for testing or pro-
duction, it can be temporarily unavailable due to maintenance, or even discontinued. However,
because a further differentiation does not add to the fundamental propositions of our life-cycle
model, we only focus on the two presented status. The two status are mutually exclusive, i.e. a
service may only be in one of them at a given time. The consideration of a service’s status is
relevant in software service engineering because it has impact on how activities are performed.
For example, changing a deployed service requires deployment activities to be performed to en-
sure continuous service availability. A service’s status is global in that it affects both provider and

consumer activities.

25

2. Concepts and Methodology

Activities

We further differentiate five types of activities, namely specification, design, implementation, de-
ployment, and operation. Figure 2.2 illustrates how the dimensions status and activities relate to

the software service concept introduced in section 2.1.2. The gray arrows indicate activities on

Execution environment
Specification,
Specification, _ design, _
design, Softyvarg Deployment Soﬁware implementation,
implementation (status: offline) (status: deployed) deployment,
operation
A A

Figure 2.2.: Relation of status and activities to the software service concept, based on [218]

the service. While the service is offline, specification, design, implementation activities can be
performed. Deployment activities lead to a transition to the deployed status. While the service is
in deployed status, any activities can be performed. Thus, except from operation activities, which
are not possible while the service is offline, any activity can be performed at either service status.
Performing undeployment transfers the software service back into the offline status. We perceive
undeployment to be one of the deployment activities (compare figure 2.3), which explains the
double arrow.

It is important to note that activities are generally not determined by the service’s status. This
characteristic of our model allows it, for example, to depict that a consumer performs design time
activities while a service is deployed, which is only unintuitively possible in existing life-cycle
models. Furthermore, while there is a typical sequence of the type of activities, their timely occur-
rence can be switched or can overlap. For example, considering agile software development meth-
ods, design and implementation activities can be concurrent. When activities occur and whether
they overlap depends on the methods used in them and on the type of service. For example, when
applying participatory design methods, providers and consumers perform design activities. It has
to be noted that not all activities must be pursued when developing or delivering a service. Their
individual utilization depends on the type of service and on the context. An overview of the types
of activities and their typical sequence is provided in figure 2.3. In the following, we will describe
the activities in detail.

Similar to software engineering [188, page 36], specification activities for services aim to de-
fine requirements and constraints on the service provision or consumption. Both, providers and
consumers check the technical and business-related feasibility of offering / consuming the service

and perform requirements analysis, specification, and validation. In these activities, providers will

26

2.2. Software Service Life-Cycle Model

Operation

Consumer
- Invoke service

- Monitor operation (QoS)
- Terminate consumption

Provider
- Customer support
- Monitor & maintain
service
- Ensure QoS
- Discontinue service

Deployment

Consumer

Provider
- Deploy software
- Undeploy service
- Redeploy service

Specification

Consumer
- Feasibility study
- Requirements analysis,
specification, & validation
- Identify service
candidates

Provider
- Feasibility study
- Requirements analysis,
specification, & validation

Design

Consumer
- Select service
- Conceptualize
consumption

Provider
- Define service concept
(e.g., ontology, workflows,
architecture, components,

- Participate in provider's

interfaces)

design

Implementation

Provider
- Implement software
- Test & validate software

Consumer
- Implement client
- Integrate service (e.g.,
migrate data)

Figure 2.3.: Overview of providers’ and consumers’ activities throughout service life-cycle and their typical
sequence [218]

focus on the realizability of a service, while consumers will, for example, analyze whether to con-
sume a service vs. in-house realization. Consumers also perform a service candidate identification
in cohesion with the feasibility and requirements activities. The service candidate identification
allows them to assess the general applicability of service consumption to fulfill the required func-
tionalities.

Using design activities, service providers conceptualize the service and how it will be provided.
For software services, design activities match largely those performed in software design. They
include the description of the service’s architecture, components, data models, interfaces, or al-
gorithms [188, page 38]. In contrast to software design, software service design further includes
design of service interfaces, deployment, and operation methods and tools (for example, how to
monitor or maintain the service). Consumers’ design activities aim to plan and conceptualize ser-
vice consumption. Based on requirements, preferences, and/or optimizable goals (for example,
cost) and the identified service candidates, service selection is performed. The consumers’ design
activities also include the conceptualization of how the service will be used. Required changes
to existing systems that will interact with the service need to be determined. New interfaces or
even systems to work with the service are conceptualized. A special case is participatory service
design, where consumers participate in the design activities usually fulfilled solely by providers.
In an exemplary use case from the public services domain, opinions of citizens (i.e., public service
consumers) expressed in Web 2.0 media and their explicit statements regarding the service design
are considered [104].

Implementation activities of the service providers aim to realize the service based on the pri-

orly defined design. In the case of software services, implementation includes the development of

27

2. Concepts and Methodology

the software artifact, its testing and validation. Depending on the utilized implementation method-
ology, the activities’ order may differ. For example, test-driven development starts with defining
tests before actually implementing. From the consumers’ point of view, the envisioned service
consumption must be realized. Contracting must be performed with the provider, specifying for
example the service’s price or service level agreements (SLAs). In the case of software services,
the consumers’ implementation activities also include the creation of client components. Inte-
gration efforts may be required to utilize a new service with existing services or systems. When
utilizing services to host systems or data, for example cloud infrastructure services, their migration
is required [131].

Deployment activities aim to transfer the service implementation to a deployed status. Exem-
plary deployment activities include the packaging of software artifacts and loading them to execu-
tion environments. We differentiate deployment activities from implementation activities because
they do not necessarily co-occur. For example, recurring deployment of once implemented cloud
services is a common approach to realize horizontal scalability [31, page 2]. Prevalent deployment
approaches are manual, script-based, language-based, or model-based ones [198]. The deployment
of services is performed by service providers alone. For this statement to hold, the service that the
life-cycle model describes and the role of stakeholders regarding that service are fundamental.
For example, if the life-cycle model is applied to an IaaS offer, deployment activities concern the
provider’s setting up of the IaaS, including the installation and configuration of hardware and hy-
pervisors for virtual machines to run on. When an [aaS consumer rents a virtual machine from the
IaaS and loads an image on top of it, this is an operation activity (=invoke service) regarding the
[aaS itself. The IaaS might be used by the consumer to host another service - when applying the
life-cycle service to this other service, the renting of a VM and loading an image on top of it may
be deployment activities. In this case, however, the [aaS consumer acts as the provider of the other
service. In consequence, in our model, deployment activities are only performed by providers.

Operation activities of providers aim to ensure ongoing service provision considering targeted
quality of service (QoS) properties. Providers maintain the service, reacting for example to er-
rors, changing numbers of requests and resulting performance impacts, or adaptation needs. A
typical approach to detect the need for such interventions is monitoring. For example, based on
the monitored development of demand, scaling might be required to cope with rising numbers of
requests or, reversely, to remove sparse resources when the number of requests declines. Addition-
ally, customer support needs to be provided. When the provider decides to discontinue the service
provision, corresponding activities, for example data retrieval or consumer notification, may be
required. Consumers’ operation activities include, foremost, the actual invocation of the service.
Consumers may additionally perform activities to ensure smooth consumption, for example by
monitoring the service. When terminating consumption, consumers may have to retrieve their data

or actively dissolute running contracts.

28

2.2. Software Service Life-Cycle Model

Example

Figure 2.4 shows the service’s status and activities performed by a provider and consumer in de-

pendence of time for an exemplary service.

Status Offline [Deployed

[T'r‘\] [Impl. IDepon.]

[Spec.I Design ¥ I Deploy. I Operation

Provider activities

Spec. | Design
Consumer activities [Spec. IDesign Operation]

l l l »
T T T L

1 1
T T
t=0 t=1 t=2 t=3 t=4 =5 t= t=7 time

Figure 2.4.: Example of our service life-cycle model

At t=0, the service provider starts with specification activities. Subsequently, at t=1, embracing
agile development techniques, the provider simultaneously performs design and implementation
activities. Using the implementation, in t=2 deployment activities are initiated which result in t=3
in an operating service, thus the service status changes to deployed. The provider, from now on,
performs operation activities. At t=4, the consumer initializes his consumption process with spec-
ification activities, followed by design and implementation activities and eventually the service
operation activities. At t=5, the consumer again performs specification and design activities, lead-
ing for example to an adaptation of the service consumption. At t=6, the provider also begins new
design and implementation activities, resulting finally in a (re-) deployment of the service in t=7.
In this example, the service never leaves the deployed status, while diverse activities are repeatedly

performed, some of them concurrently and not necessarily in a predetermined order.

Derived Service Concept Definitions

Based on our service life-cycle model, we define further terms associated with services. First, we

define service development in the following way:

Definition 2. Service development encompasses a service provider’s specification, design, and

implementation activities.
Next, we define service provision in the following way:

Definition 3. Service provision encompasses a service provider’s 1) deployment and operation

activities of a service in general, and 2) operation activities in reaction to a service request.

29

2. Concepts and Methodology

Service provision thus depends on a priorly created service as the subject for deployment and
operation. This definition allows us to explicit reveal the differentiation between software services
and software components: the latter are provisioned by their user (i.e., the consumer).

Similar to provision, we define service consumption in the following way:

Definition 4. Service consumption encompasses a service consumer’s 1) activities of all kind

throughout the service life-cycle, and 2) operation activities concerned with a service request.
Finally, we define service delivery in the following way:

Definition 5. Service delivery encompasses a service provider’s and consumer’s operation activi-

ties concerned with a service request.

This notion corresponds to the idea that value in service delivery depends on co-creation, thus
including providers and consumers [209]. Note that the provider’s part in service delivery can
also be denoted as service provision and the consumer’s part in service delivery can be denoted as

service consumption based on definitions 3 and 4.

2.3. Service Variants and Variability

In this section we aim to define our understanding of service variant and service variability. Again,
the terms introduced here will provide the foundation for subsequent chapters. Furthermore, this
section will allow us to classify this work within and delimit it from related work.

We define service variability in the following way, based on the definitions given in [21, 126]

and making use of our definitions of service development and delivery in section 2.2.3:

Definition 6. Service variability is the ability of a service for a specific context to be developed or

delivered in one of multiple preplanned ways.

We consider service variability to affect both service status, namely offline and deployed. In
contrast to our definition, the definitions found in [21, 126] focus solely on the adaptation of
services. They neglect service variability that is dealt with in development activities while the
service is offline.

Having defined the concept of service variability, we denote the subject it is applied to, a variable

service, in the following way:
Definition 7. A variable service is a service that denotes service variability.

Thus, a variable service can, for a specific context, be consumed or provided in one of multiple
preplanned ways or it can be adapted in a pre-planned manner.

Finally, we define service variant within this thesis in the following way:

Definition 8. Service variants are alternative instances of a variable service’s design, implemen-

tation, deployment, or operation.

30

2.3. Service Variants and Variability

Variants should not be confused with versions (also referred to as revisions [58]). Variants exist
in parallel, while versions are ordered variants over time [18]. Thus, versions refer to different
states in the evolution of software, so that version management is sometimes subsumed as part
of change management [188]. Following our definition, service variants may result from different
development activities and can thus also be referred to as versions, which is also proposed in related
work [60]. In contrast, however, a service that exists in multiple versions does not denote variants if
these versions are not made accessible in parallel. In version management, the concept of branches
exist, which are copies of the same artifact that are maintained separately from another [58]. In
the case that branches exist in parallel, it is feasible to denote them as variants [18]. Consequently,
version control for software that denotes variability and the related field of software configuration
management (SCM) is a topic of research, addressing questions like if it is necessary to introduce
new versions of every variant if their common variation point changes [43]. Research on the
relationship between versions and variants and their evolution, however, is out of scope of this
thesis. Summarizing, versions may be denoted as variants and variants may be denoted as versions
- the important question to ask is whether they are created to exist in parallel or not.

Another important differentiation concerns variability and agile development methods. Agile
development methods were developed in response to traditional engineering methods, which in-
corporate extensive planning, especially with regards to defining requirements before implement-
ing software. Such traditional approaches are infeasible in many scenarios because requirements
only become clear while using software and underly constant change [188, page 57]. In conse-
quence, agile methods aim for an adaptive, flexible, and responsive development approach [73].
They apply an iterative development process, in which requirements engineering and the design
and implementation of software are concurrent [188, page 63]. As a result, agile methods like ex-
treme programming allow developers to rapidly adapt software to changing requirements, leading
to the frequent release of new versions. The differentiation between agile development methods
and variability is relevant, because they both address the reaction to changes in context (cf. sec-
tion 1.2). However, agile methods address this but fostering a fast iteration of versions, while
variability is about the co-existence of variants. Thus, agile development methods do not address
scenarios where multiple consumer groups co-exist with different needs. Overall, agile methods
and variability are not opposites of another but orthogonal to another - agile methods may well be
used when developing variable software services. The exploration of such synergies, however, lies
outside of the scope of this thesis.

Variability of software services is a widely researched problem, also with regard to our focus
on intentionally implemented variability. The understanding of variability and how it is addressed,
however, differs. While the given definition of service variability contributes to our understanding
of the term, it is not suitable to sufficiently classify service feature modeling or delimit it from
other service variability approaches. To obtain a clear understanding of the nature of service vari-
ability and corresponding approaches, we address their individual characteristics in the following

subsections.

31

2. Concepts and Methodology

2.3.1. Origins of Service Variability

A fundamental differentiator of different types of service variability is the question why it appears.
In its general meaning, variability can occur on purpose or by chance. These two kinds of service
variability and the approaches addressing them differ significantly.

Variability by chance is often considered an undesirable characteristic of a service. For example,
variability by chance denotes that the response time of a Web service varies over time. Approaches
addressing variability by chance aim to measure or eliminate it to ensure a uniform service expe-
rience or to be compliant with service level agreements. For example, existing related work in
this area aims to measure the volatility of cloud service performance [95]. Virtual machine pro-
visioning policies are designed to reduce the variability of cloud service performance [38]. Or,
various approaches are researched that aim to diminish the variability of large-scale Web services’
latency [67].

On the contrary, variability on purpose may be a desirable service characteristic, as we already
discussed in section 1.2. Summarizing, in development, it allows for decision-making on alterna-
tive designs, fosters reuse of artifacts, and can drive collaboration and participation. In delivery, it
enables consumption of requirements- and preferences-matching variants and to react to changes
in context. Many approaches aim to implement variability on purpose in a service. For example,
cloud services may offer customization to their consumers [133] or Web services are provided in
variants [141].

In this thesis, we associate the term service variability with variability on purpose. The occur-
rence of uncontrollable service variants, for example due to changing response times, availability,

or generally volatile QoS properties, is excluded from our understanding of service variability.

2.3.2. Variability Subject

Variability can concern different variability subjects or parts of subjects. A variability subject is
“[...] a variable item of the real world or a variable property of such an item” [153, page 60]. For
each variability subject, multiple variability objects exist. A variability object is “[...] a particular
instance of a variability subject” [153, page 60].

Variability that denotes a single service or property of a single service can be denoted as intra-
service variability. In composite services, which compose multiple (atomic) services (cf. sec-
tion 2.1.2), the variability subject may also be the composition itself. In this case, the variability
object can be a specific work flow instance. Such variability, affecting the interactions of multiple
services, can be denoted as inter-service variability. Inter-service variability also encompasses the
selection of a service among multiple candidates from the consumer point of view.

Based on the here made definitions, we outline in detail the variability subject represented by

service feature models in section 3.2.1.

32

2.3. Service Variants and Variability

2.3.3. Affected Service Roles

As outlined in section 2.1.1, services include the roles of provider and consumer. Service providers
have to define and implement service variability and manage it. On the other hand, consumers
resolve service variability by choosing which service variant should be implemented or which
variant to consume. Consumers define the context in which a service is utilized. This context
influences which service variant is consumed, affecting, for example, requirements for the quality
of service properties like security mechanisms or availability rates.

A more detailed breakdown of the providers’ and consumers’ activities with regard to service

variability results from the distinction of the different times when it occurs.

2.3.4. Time of Occurrence

Software services undergo a life-cycle and induce diverse activities as presented in section 2.2. De-
pending on the service status and the activities pursued, service variability creates new challenges
and corresponding activities, extending the ones stated in section 2.2. Figure 2.5 illustrates typical

service variability-related activities for providers and consumers mapped to our life-cycle model.

Operation Specification
Consumer Provider Consumer Provider
- Monitor and assess - Adapt service on demand - Consider impact of - Assess feasibility of
variant consumption variability on service providing service variability
- Switch to consume other consumption
variant
- Trigger service adoption

Deployment Design
Consumer Provider Consumer Provider
- (Re-) deploy selected - Select service, - Define & assess variants
variant considering variability (e.g., utilizing modeling)
- Select service variant - Select variant(s) to
(e.g., by configuration) provide
- Compose service variants

Implementation

Consumer Provider
- Implement variant- - Implement variants to
specific interfaces provide (to any consumer)

- Implement consumer-
specific variants
(customization)

Figure 2.5.: Service variability-related provider and consumer activities throughout the service life-
cycle [218]

During specification activities, providers identify the need for service variability, for example
during the requirements analysis. Reasons may include diverse consumer groups or the need to
provide multiple access channels. Simultaneously, the consumer may consider offered service

variability in the service candidate identification.

33

2. Concepts and Methodology

During design activities, service providers conceptualize which service variants to provide. They
define a set of variants and iteratively expand it or narrow it down. When using participatory design
methods, consumers can be involved in these activities [88]. Consumers, during their design activ-
ities, resolve service variability by determining which variant to consume. This process requires
matchmaking of requirements and preferences with the service variants’ capabilities.

Service providers develop service variants during the implementation activities. Either, the de-
signed service variants are implemented as individual services, or mechanisms are implemented
allowing to transition between variants based on deployment or operation activities (cf. sec-
tion 2.3.5). Simultaneously, consumers perform implementation activities to consume individual
variants or trigger the transition between variants. For example, consumers implement an inter-
face to consume a specific service variant or a monitoring device that dynamically triggers the
consumption of a variant through re-deployment.

The deployment activities regarding service variability are performed by providers and aim to
deploy a (set of) service variant(s). The variant(s) to deploy can either result from prior imple-
mentation activities or can be determined by consumers. Deployment activities regarding service
variability can also include the re-deployment of services or variants, again, potentially on con-
sumer request.

Operation activities regarding service variability concern both providers and consumers. For
providers, they include the transition between service variants utilizing priorly implemented mech-
anisms. Also, the providers’ generic operation activities are affected by service variability: sup-
port, monitoring, and maintenance must address the provided variant(s). For consumers, operation
activities include the monitoring of the consumption. Eventually, consumers initiate the consump-
tion of a different variant or trigger adaptation if possible.

Summarizing, variants induce various new activities to be performed - for example, providers
need to implement, deploy and operate variants and consumers need to select among them or
switch them during operation. Other activities (cf. figure 2.3) need adaptation or extension when
considering variants. For example, the providers’ assessment of feasibility of providing a service
needs to consider multiple variants instead of a single service. Variants overall introduce new or
adapt existing activities, thus emphasizing the need for methods and tools to efficiently support

these activities.

2.3.5. Realization of Variability

A plethora of approaches exists to realize service variability, sometimes referred to as variabil-
ity mechanisms [186]. In this section, we cannot conclusively present all realization approaches.
Rather, we aim to present an overview of and discuss typical approaches. Consolidated character-
istics of these approaches are presented in table 2.1.

Multiple approaches model service variability. Modeling service variability is a design activity.

Service variability models aim to define and communicate service variability. They are used by

34

2.3. Service Variants and Variability

Realization Involved life-cycle activities Involved Goals

approach roles

Modeling ser- Design Provider, Capture, assess, select, com-
vice variants consumer municate variants, provide in-

put for implementation, deploy-

ment, and operation
Customization Specification, design, imple- Provider, = Develop and provide a service
mentation, deployment, oper- consumer variant that meets individual

ation consumer’s requirements and
preferences
Configuration = Deployment, operation Provider, Determine a service variant
consumer through the provision of infor-
mation
Deployment Deployment Provider Provide requested service vari-
ant
Adaptation Operation Provider = Transition between variants
during delivery
Service selec- Design Consumer Determine service that best ful-
tion fills consumer needs
Composition Operation Consumer Determine how a set of ser-

vices collectively best fulfills
consumer needs

Table 2.1.: Overview of service variability realization approaches

providers as a basis for implementation or deployment activities or by consumers to select vari-
ants in specification, design, or operation activities. Thus, modeling is integral part of multiple
other service variability realization approaches and is consequently considered here. Exemplary
approaches capture variability in work flow models. For example, the “Provop” approach allows
users to specify options on a basic process model [85]. These options allow modelers to alter the
work flow model to derive a process variant by deletion, insertion, moving, or modification op-
erations on process elements. Or, variability modeling approaches from software engineering are
commonly used to represent variability. For example, feature models can be used to represent vari-
ability of Web services with regard to their composition and their intra-service variability [140].
Feature models are also used to represent the configuration options that cloud services offer [178].

Customization aims to provide a service that matches requirements and preferences of an in-
dividual consumer or a subset of consumers. Customization can include all activities defined in
our life-cycle model. For example, a service that meets consumer requirements can be designed,
implemented, deployed, and operated. Customization involves both service providers and con-
sumers (who accompany the service provisioning, stating for example requirements or assessing
implementations). An advantage of customization is a high degree of flexibility because providers
and consumers can closely work together to deliver a tailored software service. However, cus-

tomization also induces the risk for the providers to deal with redundant implementations, which

35

2. Concepts and Methodology

complicates testing and maintenance and easily causes inconsistencies.

Configuration aims to determine a service variant through “[...] setting pre-defined parameters,
or leveraging tools to change application functions within pre-defined scope” [196]. In contrast to
customization, configuration does not require to change the service’s implementation [196]. The
actual realization of a configuration by a variant can be based on adaptation or re-deployment
mechanisms. Providers perform configuration in deployment or operation activities to define how
their service will be provided, for example by stating deployment parameters. Providers also
pass on configuration options to their consumers. Consumers provide configuration information,
triggering, for example, the re-deployment of a service. For example, cloud infrastructure services
typically allow consumers in a design activity to configure firewall settings or the preferred pricing
scheme [1] (cf. section 1.1.3). Or, in Software-as-a-Service (SaaS), multi-tenancy allows multiple
consumers to be served by configured variants of the same service without conflicts or mutual
insights in their data [31, 133]. A configurable service is capable of taking a configuration, i.e.
the set of information about pre-determined parameters, as input and providing a corresponding
service variant.

Deployment activities realize variability by deploying multiple service variants in parallel. A
major disadvantage of this approach is that operation activities, for example maintenance, mon-
itoring, or scaling, must be performed for multiple variants instead of a single service. Alter-
natively, redeployment can realize service variability. For example, VMs hosted by laaS can be
redeployed in differently located data centers in reaction to monitored performance changes [100].
Re-deployment is a viable approach to realize variability in reaction to changes in a service’s con-
figuration.

Adaptation is an operation activity provided by the service provider to transition between service
variants during service delivery. Adaptation mechanisms need to be implemented and deployed to
enable transitions. Three common classes of adaptation approaches can be distinguished in soft-
ware services, namely 1) dynamic aspect-oriented programming or delegation models, 2) fractal
components, and 3) implementation replacement [96]. The advantage of utilizing adaptation mech-
anisms instead of, for example, deploying multiple service variants in parallel is that only a single
service must be operated while realizing variability. For example, while a service is in opera-
tion, the combination of model-driven engineering and aspect-oriented development allows users
to transition between service variants that were defined in design activities [135]. Adaptation is
often automatically triggered based on contextual change. For self-adaptive systems, for exam-
ple, control loops are commonly used to collect information about the system and its context and
trigger adaptation if needed [71].

Consumers perform service selection as a design activity performed by consumers to chose a
service that best fulfills their needs. To do so, consumers identify service candidates and evaluate
them, for example using matchmaking of requirements with the candidates’ capabilities. Select-
ing a service is an inter-service variability approach rather than a distinct consumption, if, from

the consumer’s point of view, the service candidates are functionally equal. For example, Web

36

2.4. Fundamentals of Modeling

services, due to their standardized interface abstractions, can dynamically be selected for every
service request to optimize quality of service [15]. Even though this selection is performed while
the candidate services are in operation, we consider it a design activity because it is performed
(immediately) before service consumption.

Consumers perform composition as a design activity to determine how a set of services col-
lectively best fulfills their needs. The result of compositions are composite services that fulfill
complex functionalities. Variability in composition results from service selection approaches that
bind multiple Web services in a composition dynamically based on changing quality of service
attributes, for example, response time or availability [15]. Also, variability in compositions results
from changing the underlying business processes, using for example composition languages that
are extended with variability elements [105].

As seen, there are diverse software service variability realization approaches. Many of these
approaches involve different activities throughout the service life-cycle. Typically, variability is
specified in design activities, corresponding mechanisms are implemented, and the variability is
resolved during consumer design or operation activities. This observation underpins the impor-

tance of methods and tools to represent service variants and select among them.

2.4. Fundamentals of Modeling

Modeling is at the core of service feature modeling. We thus outline characteristics of modeling
and present the generic modeling process. Based on this discussion, we derive service feature

modeling’s methodology in section 2.5.

2.4.1. Characteristics of Modeling

There is no, and cannot be, a generally approved definition of the term “model” due to their
omnipresence throughout human history and their resulting appearance in the most diverse con-
texts [124]. In this section, we focus on models from the software and service engineering perspec-
tive. Even in this specific context various definitions of the term model exist [136], but an absolute
or agreed on definition does not. In the following, we focus on relevant characteristics of models.
An agreed upon characteristic of models is that they abstract from reality. They present a less
detailed view upon a real world entity (for example, a system), making it thus possible to deal
with its complexity [182]. The same real entity can be represented by different models focusing on
different aspects. For example, system modeling languages rely heavily on the Unified Modeling
Language (UML) [144]. Its various sub languages address the structure, behavior, and architecture
of systems, as well as business processes and data structures. In software engineering, correspond-
ingly, different models present different views on a system [188, page 119]. A quality addressing
the abstracting nature of models is their accuracy. Useful models must “[...] provide a true-to-life

representation of the modeled system’s features of interest” [182, page 22].

37

2. Concepts and Methodology

Another agreed upon characteristic of models is that they denote a purpose. Their creation
is driven having a goal in mind. Two generic classes of purpose can be differentiated, namely
models being descriptive or prescriptive [124]. Models that change between these two purposes
during their life-cycle are denoted as transient. In software engineering, transient models are
common [90]. For example, a class diagram is initially used to design a software and later is
reused for documentation.

Descriptive models do not intend to influence the real world entity they represent. A typical
usage of descriptive models is the documentation of systems [188, page 120]. Due to their ab-
stractive nature, models allow users to focus on relevant aspects of a system. An important quality
of descriptive models is their understandability. This characteristic is especially important when
documenting software because of the difficult to parse textual, syntactically complex program-
ming statements they are described in [182]. Descriptive models in consequence rely on graphical
notations that ease their interpretation.

Prescriptive models intend to influence the real world entity they represent. In software engineer-
ing, prescriptive models are typically used in requirements engineering and design activities [188]
(cf. section 2.2). Basing design activities on models is useful because it allows modelers to “[...]
better understand both a complex problem and its potential solution before undertaking the ex-
pense end effort of a full implementation” [182, page 21]. For this argument to hold, prescriptive
models require to be inexpensive. Inexpensiveness is impacted on the one hand by the complexity
of the used modeling language and how its modeling process is designed and on the other hand by

the tools supporting modeling.

2.4.2. Generic Modeling Process

The generic modeling process is depicted in figure 2.6. It consists of three activities, namely

modeling, usage, and realization.

ke}
2
5 (Idea of) system (Adapted) system
)
o
c
9
T
____________________________________ N
©
(4}
o
c
kel
ko] Model
<
@
(%]
e
Q.
)
o

@ g Document

. system
Discuss / reason Y

Figure 2.6.: Generic process of modeling

38

2.5. Methodology of Service Feature Modeling

The basis for any modeling activities are either a real world system or the idea of such a system.
The modeling activity is the process of creating an abstract representation of this system [188,
page 119]. Depending on the modeler’s goals, modeling will concentrate on certain aspects of the
system, for example on requirements, components, interfaces, or work flows. The aspects in focus
will influence which stakeholders are involved in the modeling process. For example, modeling
of requirements likely includes (input of) the intended users of the system. Or, the definition of
a system’s architecture includes the developer, while business analysts might be concerned with
specifying work flows. Modeling in itself can play an important role in the design of a system
because it requires and ideally guides modelers to externalize their ideas about the system.

The created model is used corresponding to its purpose (cf. section 2.4.1). For example, it
provides basis to communicate and discuss aspects of a system or to reason about them. The model
can also be used to document an existing system. A study finds that practitioners consider the four
modeling purposes 1) database design and management, 2) business process documentation, 3)
improvement of internal business processes, and 4) software development to be the most important
ones in software engineering [65].

Prescriptive models provide input for the realization or adaption of the system. Models act as
plans or blueprints for the system or provide input for (automatic) realization methods. An ex-
emplary method is model-driven engineering, where artifacts (for example, software components)
are synthesized from models using transformation engines and generators [177]. An advantage
of this approach is to ensure “[...] consistency between application implementations and analysis

information associated with functional and QoS requirements captured by models.” [177].

2.5. Methodology of Service Feature Modeling

Based on the fundamental characteristics of modeling and the generic modeling process presented
in section 2.4 we here provide an overview of service feature modeling’s goals and methodology.
The outlined service feature modeling methodology closely relates to the basic systems engineer-
ing process [117]. In it, after defining objectives and criteria for assessment, alternative system
designs are created. These designs are evaluated against the objectives and criteria and one (or a
subset) of alternatives is chosen for implementation.

Service feature modeling is designed to address challenges related to service variability and to
foster its advantages (cf. chapter 1). SFMs capture the variants of a service, or, consequently,
service variability. The nature of SFMs is prescriptive (see section 2.4.1) in that they aim to induce
change in the service they represent. Figure 2.7 provides a high-level view on the service feature
modeling methodology to indicate the approach’s different purposes. This view corresponds with
the generic process of modeling depicted in figure 2.6. We aim to enable the utilization of SFMs
during different activities of the software service life cycle defined in section 2.2.

Modeling aims to create an SFM that represents a service’s variants. The process and intention

of modeling depends upon whether the service is already designed or not. If the service is not

39

2. Concepts and Methodology

ke}
=
g (Concept of) service (adapted) service
g variant
[any
c
kS
T
____________________________________ N __
©
(5]
o
c
o
5|
c
@
(D]
o
Q.
)
o

s g

Preferred variant

Figure 2.7.: Generic process of service feature modeling

jet designed, service feature modeling supports the conceptualization of the service’s variants. It
supports the modeler in keeping hold of and sorting out ideas about the variants. Alternatively,
if the service is already designed, service feature modeling is used to document variants. In both
cases, the fundamental reason for modeling SFMs is to use them to select among service variants.
Modeling is performed as a design activity (see section 2.2.3). It is performed primarily by the ser-
vice provider stakeholders (cf. section 3.3.1). These stakeholders can have diverse backgrounds
and correspondingly address diverse concerns in modeling. For example, technicians denote the
interface variants a service offers while business analysis are concerned with work flow variants.
Modeling can either be performed by a single stakeholder or collaboratively by multiple stake-
holders. We present service feature modeling’s language and the (collaborative) modeling process
in chapter 3.

Created SFMs are used to communicate, evaluate, and resolve service variability, that is, to
select service variants. Selection of variants has two purposes depending on the scenario it is

performed in:

e Usage for service development Service providers use SFMs in design activities to determine
a (set of) service variants to further design, implement, deploy and operate. To support
the determination of variants, provider stakeholders state their requirements or preferences
with regard to the service variants to create. Service feature modeling’s usage methods
delimit inappropriate service variants and suggest feasible and preferred ones. Participatory
methods allow future consumers to take part in the provider’s design activities. Here, SFMs
communicate service variants feasible from the providers’ point of view. Consumers state
their requirements and preferences regarding these variants and thus help providers to decide

which variant(s) develop.

e Usage for service delivery Service providers and consumers together use SFMs to cus-

tomize the delivery of a service. Service providers, having priorly modeled the service’s

40

2.5. Methodology of Service Feature Modeling

variants in an SFM, provide this model to consumers. Consumers, in design activities re-
garding the service consumption, use the SFM to determine the service variant best matching
their requirements and preferences. The determined variant is communicated to the provider
and delivery of the variant is initiated. The providers’ communication of variants and receiv-

ing of the consumers’ preferred variants are operation activities.

We present details on service feature modeling’s methods for variant selection in chapter 4.

Given a (set of) service variant(s) has been selected using service feature modeling, either for
development or delivery, these variants need to be realized. Realization in the case of using SFMs
for development encompasses design, implementation, and/or deployment activities. Realization
in the case of using SFMs for delivery encompasses deployment and/or operation activities. Real-
ization for development is performed by providers, whereas realization for delivery includes both,
providers and consumers. Realization of service variants is not in focus in this thesis. We pre-
sented possible realization approaches in section 2.3.5. We further illustrate exemplary realization

of service variants during development in section 5.3.4 and for delivery in section 5.4.4.

41

3. Modeling Service Variants

In this chapter we present the service feature modeling language and modeling process. In sec-
tion 3.1 we introduce standard feature modeling from the software engineering domain, which is
the basis for service feature modeling. In this chapter’s main part, in section 3.2, we present the
service feature modeling language’s elements and their relations. We then present the processes
for creating service feature models in section 3.3. We present a special case of this process in
section 3.4, which addresses the composition of SFMs from services, allowing for collaborative
service feature modeling. In section 3.5, we discuss related work on modeling service variants.

Finally, we sum up and discuss service feature modeling’s language and process in section 3.6

3.1. Standard Feature Modeling

Before presenting service feature modeling’s language, we here introduce standard feature mod-
eling, which is the basis of our approach. Standard feature modeling stems from the software
engineering domain. Feature models were originally used to capture the commonalities and dif-
ferences of a domain [99], which is understood to be a set of related software systems, or system
variants. Typical feature model processes encompass two phases [186]: domain engineering con-
cerns the creation and maintenance of reusable artifacts, denoting a product family, represented as a
feature model. Application engineering concerns the selection and reuse of the reusable artifacts to
create a product, commonly started by configuring a feature model. Nowadays, feature models are
used in various contexts like software development, including model-driven development [206],
feature-oriented programming, software factories, or generative programming [32]. Furthermore,
feature models are increasingly used in non-implementation activities. They are used in require-
ments dependency analysis [236], they denote configuration options for virtual machine image

provisioning [110], or they support Web service customization [139].

3.1.1. Appeal of Feature Modeling

Different characteristics of feature modeling cause its broad uptake. First, feature modeling’s
appeal stems from its applicability to different problem domains. Industrial practitioners value
feature modeling primarily for its application to the management of existing variability, product
configuration, requirements specification, derivation of products, and design / architecture [35].
Another major appeal of feature models is the capability to perform automatic analysis oper-
ations on them. Automatic analysis operations are understood as computer-aided extraction of

information from feature-models [32]. They are important to deal with large productive feature

43

3. Modeling Service Variants

models that can denote hundreds or thousands of features. Further, automatic analysis operations
help in dealing with the numerous and eventually complex feature relations [101]. Consistency
of (especially large) feature models can be ensured using automatic analysis operations, a process
which is error-prone and tedious if performed manually [32]. Various analysis operations have
been introduced [32]. They include, for example, checking the validity of a feature model by en-
suring that no contradictory constraints are specified. Or, they allow to determine the complete set
of system variants captured by a feature model.

Features are an effective communication medium [113]. The term “feature” is used both by
customers as well as engineers. As they are meaningful to different stakeholders, features bear
potential for use in participatory approaches [222].

We use feature models as a basis for our approach due to a combination of factors: feature
models are designed to represent system variants, which goes in line with the intention behind
service feature modeling. The potential of feature modeling to communicate variants renders it
suitable as a basis for participatory approaches. Feature models are widely known and applied in
practice [35], increasing the chances that service or software engineers have some basic familiarity
with the approach before using service feature modeling. Feature models have successfully applied
to different domains [35], indicating their potential to be applied to services as well. The extensive
research existing on feature models [32] has produced various methods and tools that can be used

with service feature modeling as well.

3.2. Service Feature Modeling Language

The service feature modeling language comprises the elements that depict a service feature model
(SFM) and the relationships between them. Service feature modeling’s language builds upon and

extends that of standard feature modeling in the following aspects:
1. It extends the notion of features through feature types

2. Itintroduces attribute types

A language consists of a syntactic notation (the syntax) and the relation of the syntax to a semantic
domain (the semantics) [87]. The syntactic notation consists of syntactic elements. Service feature
modeling is a diagrammatic language (or visual formalism, in contrast to being a textual language)
because its syntactic elements are, next to the models (SFMs) themselves, different boxes and
lines or arrows relating them. The definition of service feature modeling’s syntax is provided in
the English language and mathematical expressions in the following and, for computers to be able
to process it, in a meta model in section 5.1.2. The semantic domain serves as an “[...] abstraction
of reality, capturing decisions about the kinds of things the language should express” [87, page 67].
Service feature modeling’s semantic domain is described in English language in the discussions
of service variability, variable service, service variant, variability subject and object in chapter 2.

The following subsections furthermore provide a semantic mapping between the semantic domain

44

3.2. Service Feature Modeling Language

and syntactic elements. Especially, section 3.2.3 explicitly presents the mapping between service
feature modeling’s feature types and configurations to elements of the semantic domain presented

in chapter 2.

3.2.1. Basics of the Service Feature Modeling Language

In this section, we present the basics of service feature modeling’s language. They correspond to
the language of standard feature modeling as outlined in section 3.1. We also present a formaliza-
tion of this language’s syntax (cf. [108, 219]), which we will extend for service feature modeling
in subsequent sections. The here presented language is based upon the extended feature model

language [33].

Service feature model

Service feature models (SFMs) are the modeling artifact created in service feature modeling. Ser-
vice feature modeling is a variability modeling language, thus representing variability subjects and
variability objects. The variability subject represented by an SFM is a variable service (cf. defini-
tion 7) and the variability object is a particular instance of that service, which we denote as service
variant (cf. definition 8). Each SFM addresses the intra-service variability of a variable service
(cf. section 2.3.2). Using dedicated methods, service feature modeling can also be applied to
inter-service variability, allowing for example to select among service candidates (cf. section 4.5).

An important question is what denotes service variants in contrast to being separate services.
To answer this question, in software product line engineering, domain engineering is concerned
with defining the limits of a domain for which related software products exist. Defining the scope
of a domain involves a trade-off: “The broader the domain of a product line is the larger is the
number of possible stakeholders’ requirements that can be covered in the form of individually
tailored products. However, the broader the domain, the smaller is the set of similarities among
products.” [18, page 20]. Ultimately, there is not (and cannot) be a predefined answer to the ques-
tion of how broad to define the domain. Service providers need to define for themselves what they
consider a service variant and what not. Doing so does not only depend on technical arguments,
but is also driven by business-related (for example, marketing) or economic considerations [44],
product portfolio considerations, competition, organizational, or legal constraints.

As variable services evolve over time, so do the SFMs describing their variants. Modelers need
to adapt or refactor SFMs to keep them in line with the service. Given SFMs are persisted in
textual data formats like XML, their versions can be managed using systems like Subversion [58]
or Git [4]. As with versions in general [18], SFM versions supersede each other and reflect the
evolution of the SFM. Version control for software that denotes variability and the related field
of software configuration management (SCM) (cf. [43]) as well as version management for SFMs

specifically are outside of the scope of this work, as already stated in section 2.3.

45

3. Modeling Service Variants

Another consideration is how to deal with variants of SFMs themselves. Changing the variabil-
ity of a service, typically, requires the SEM describing its variants to be adapted, leading eventually
to a new SFM version (see above). There are, however, situations where variants of an SFM may
occur: consider an SFM that does not describe variants based on alternative deployments of a
variable service. If this service is deployed in multiple instances and the variability of these in-
stances evolves differently, variants of the SFM may result. In such cases, these SFMs can either be
merged to denote the superset of variants [180]. Alternatively, the SFMs can be kept separate and
their commonalities and differences can be managed using, again, variability modeling approaches
like service feature modeling, marking it a recursive operation. Approaches to manage variability
of models with feature modeling have already been presented in related work [20]. Given the very

context-specific nature of this situation, we do not further consider it within the scope of this work.

Feature diagram

Feature diagrams are graphical representations of an SFM. An SFM’s feature diagram SFM®4 is
a directed graph G = (V,E) with the set of vertices V representing features and attributes and the
set of edges E representing relationships between features as well as attributes and features [108].

In a feature diagram, higher level features denote a higher level of abstraction.

Features

Features are the main artifacts to capture multiple system variants in a single model. In their
first appearance in software engineering, in the feature-oriented domain analysis (FODA), features
were defined to represent “[...] a prominent or distinctive user-visible aspect, quality or character-
istic of a software system or systems” [99]. Since this introduction, the meaning of features has
been redefined frequently. A proposed classification of the definitions considers whether features
address a system’s problem space (requirements, goals etc.), its solution space (functionalities, im-
plementations etc.), or a combination of both [55]. An example for an entirely problem-oriented
definition of features states that a feature represents “[...] a product characteristics from user or
customer views, which essentially consists of a cohesive set of individual requirements” [50]. On
the other hand, a solution-oriented definition states that a feature represents an “[...] increment in
product functionality” [30, 32]. As pointed out in studies about different meanings of the term fea-
ture, there is not one correct definition - rather, they make each sense in their specific context [55].

One of service feature modeling’s contributions is a typology of features, which we present in
section 3.2.2. The meaning of features in service feature modeling, correspondingly, depends on
their type. Before going into details about these meanings in section 3.2.2, we here just note that
the meaning of features in service feature modeling is solution-oriented. Features can thus, for
example, represent a service’s work flow activity, a software component used in the service, or a

utilized resource.

46

3.2. Service Feature Modeling Language

We denote the set of features as F C V. A feature model contains a single root feature [€ F

which contains all further features.

Configurations

Configurations denote valid selections of features from an SFM. Each configuration represents a
variant of the service represented by an SFM. The set of all valid configurations of an SFM is
denoted as the configuration set C, which thus denotes the set of all variants of the represented ser-
vice. A configuration ¢ € C denotes a subset of features F'© € F' so that all relationships R (cf. next
section) of the SFM are fulfilled. It has to be noted that in feature modeling the term configuration
also refers to the process of determining a variant through feature selection [63]. The term config-
uration thus has a different meaning depending on the context: with regard to feature modeling, (1)
it denotes a set of features and (2) it denotes the process of selecting features. Additionally, with
regard to realizing a service variant, it (3) denotes the determination of a service variant through
provision of predetermined information (cf. 2.3.5). In the context of software configuration man-
agement, it (4) denotes a set of components, that can themselves be configurations or configuration

items, which are the smallest units of individual change [202].

Relationships

Relationships express constraints between features. These constraints delimit valid combinations
of features from a feature diagram as part of the configuration process [130]. The set of relation-

ships R is part of a feature diagram’s edges:
RCE 3.1)
A relationship r € R is described by the initial vertex init(r) € F and the terminal vertex ter(r) € F:
r=/{init(r) , ter(r)} (3.2)

We distinguish between two types of relationships [101].

In decomposition relationships R C R we denote the initial vertex init(r) as a parent feature
and the terminal vertex ter(r) as child feature. We differentiate four types of decomposition rela-
tionships (R™" RoP' . RXOR ROR C Rdey.

e Mandatory decomposition relationships R™*(i, j) | i, j € F,i # j state that the relationship’s

child feature j needs to be selected if the relationship’s parent feature i is selected.

e Optional decomposition relationships R°7' (i, j) | i,j € F,i # j state that the relationship’s

parent feature i needs to be selected if the relationship’s child feature j is selected.

47

3. Modeling Service Variants

e Alternative decomposition relationships (also referred to as XOR-decompositions) RXOF | i ¢
F,J C F,i ¢ J state that a parent feature i must be selected if any of the child features of the
relationship j € J is selected. Furthermore, only one child feature j € J can be selected.
Because it involves a set of child features, we classify the alternative decomposition rela-

tionship as a group relationship.

e OR decomposition relationships RO | i € F,J C F,i ¢ J state that a parent feature i must be
selected if a child feature of the relationship j € J is selected. Furthermore, at least one (but
potentially multiple) child features j € J needs to be selected. Because it involves a set of

child features, we classify the OR decomposition relationship as a group relationship.

Cardinality-based feature models enrich decomposition relationships between features with car-
dinalities, thus increasing feature model’s conceptual completeness [63]. While service feature
modeling can be extended to incorporate cardinalities, we focus on standard decomposition rela-
tionships for sake of easiness in the following. Having introduced decomposition relationships, we

can now define that a feature model’s root feature does not have a parent feature:
[€ F : R C R | init(f) Aterm(f") ;Vf € F (3.3)

In cross-tree relationships R C R, the initial vertex init(r) and the terminal vertex ter(r) do
not need to be in a parent-child relationship. Rather, they can be arbitrary features in the feature

diagram. We differentiate two types of cross-tree relationships (R™4%7¢5 (i, j), Re“cludes C Eery:

e Requires cross-tree relationships R4S (i j) | i, j inF,i # j state that if i is selected, j needs

also to be selected.

e Excludes cross-tree relationships RE/“¢s(j j) | i, j inF,i # j state that is i is selected, j

cannot also be selected.

Attributes

Attributes are elements of extended feature models [33]. We define attributes in the following way

based on existing definitions [33]:
Definition 9. Artributes represent characteristics of a feature or configuration.

Attributes can be of different nature: on the one hand, they can express measurable, quantita-
tive characteristics of features and configurations, for example cost, availability, or response time.
On the other hand, they can express qualitative characteristics of features and configurations, for
example accessibility, usability, security. Concrete instances of qualitative characteristics, for ex-
ample “home delivery”, “touch input”, or “encryption”, are either true or not - they are boolean in
nature. The features denoting these characteristics can, for example, represent a work flow activity

“send documents home”, a source code library to enable touch input, or an encryption algorithm.

48

3.2. Service Feature Modeling Language

While features are mappable to entities of the service, attributes describe characteristics induced
by these entities.

Despite the lack of a formalization of attributes and their exact semantics [108], common build-
ing blocks can be identified [32]: attributes have a name that is used to describe, identify, and
reference them [108]. Further, attributes denote a domain. It states the space of possible values
where attributes take their values [33]. Thus, domains restrict the set of valid values. Further, they
provide additional semantics on the attributes. An exemplary domain might state that the value of
an attribute must be a positive integer. Finally, the value denotes the specific characteristic denoted
by an attribute. An exemplary value of an attribute named “cost” might be “5€”.

We define A C V to be the set of vertices representing attributes. Attributes cannot solely define
the set of vertices in a feature diagram because they are bound to features. Every attribute a € A

denotes a belongs-to relationship ar(n,m) € AR to the feature or configuration it describes:
Va e A:3ar(n,m)|n=a;me (FVC) (3.4)

We denote the set of belongs-to relationships as AR. An additional constraint for attributes is that

they cannot belong to multiple features:
Vary s : far(n,m) | f=na#m;i,meF;f,neAT (3.5)

A novelty in service feature modeling is that attributes cannot only describe features, but also
configurations. The motivation for this capability lies in the methods to select configurations (and
thus service variants) which rely on configurations being comparable based on attributes (cf. chap-
ter 4). A resulting challenge, which we address with the notion of attribute types in section 3.2.4,
is how to derive overall values for attributes describing configurations from the values of attributes

describing features (cf. challenge 1 motivated in section 1.3.1).

Formalization of sets

Having introduced the elements of feature diagrams, we can now more clearly define their building
blocks. In a graph G = (V,E), representing a service feature model’s feature diagram SFM®,
the set of vertices V encompasses the set of features and attributes, where a single vertice can only
represent one of those:

V={FUAT} | FNAT =0 (3.6)

Similarly, we can now define the elements of the edges set more clearly to contain relationships

between features and relationships between attributes and features:

E={RUAR} |RNAR=0 3.7)

49

3. Modeling Service Variants

Simple example

A simple example of an SFM utilizing the so far introduced concepts is represented in figure 3.1.
The shown model builds upon the example about variants in financial data Web APIs motivated
in section 1.1.2. The example is used throughout chapter 3 and 4 to illustrate the applicability of

service feature modeling. The SFM in figure 3.1 models variants for delivering a “stock quotes

Stock quotes API

./\

Interface Datoap:ﬁg::\éery
Real time Inclusion of
SOAP REST - “|quote updates quote history
/,‘\ : ’,‘\ :
S FpRGe o] TTRRRTIR T oo R
1 -* \ I Price y V' Price 1 ! ; 1
: specifications: ! :requests: 80.00! :requests: 40.00! : Quo.te h|§tory !
1 1 1 provided: true 1
___tue___n S 2 B U AN\ RN o]
——_———-———, oo |
: Price / 10_k ! |Real time data: !
1 requests: ! | true !
1__100.00€ 1 o ___1
Key: oo
oo TTTTTT T .
Feature ! Attribute R Excludes ---» =Requires :

= mandatory = optional =XOR =0R
: feature feature

Figure 3.1.: Simple example of an SFM

APT”, like the ones offered by Xignite [229] or QuoteMedia [156]. Using such services accessible
via Web APIs, consumers obtain the current or historic stock quotes of specified companies. The
variants that consumers have to deal with in such services are manifold, including data formats or
types of identifiers for the companies of interest (cf. section 1.1.2). We concentrate on a subset of
variable aspects here for illustration purposes. The stock quotes API has variants regarding its “in-
terface”, which is implemented either using “SOAP” or following the “REST” architectural style.
Attributes express characteristics of these variants. The “SOAP” interface allows consumers to
use “WS-* specifications” in conjunction with the API. They include, for example, WS-Security,
addressing integrity and confidentiality of SOAP messages, or WS-ReliableMessaging, addressing
the reliable delivery of messages. The “SOAP” interface further induces a price for every 10,000
requests of 100.00 €. On the other hand, the “REST” interface induces a smaller price for every
100,000 requests of 80.00 €. Variants of the service result furthermore from “data delivery op-
tions”. On the one hand, “real time quote updates” can optionally be selected. They induce a price
of 40.00 €for every 10,000 requests but also set the attribute “real time data” to true. A cross-tree
relationship models that “real time quote updates” can only be delivered via the “REST” inter-
face. Another optional selection concerns the “inclusion of quote history”. An attribute “history

provided” with the value true models the inclusion of historic data on the stock quote.

50

3.2. Service Feature Modeling Language

3.2.2. Feature Types in Service Feature Modeling

The main goal of service feature modeling’s language is to represent service variants. Therefore,
SFMs need to represent a service’s variability subjects and corresponding variability objects (see
section 2.3.2). Both, variability subjects and objects, can concern the design, implementation, de-
ployment, or operation of the service. Variability subjects may appear at different abstraction levels
of a service. Thus, service feature modeling must equally support their representation on different
levels. Additionally, parts of the service that are not subject to variability must be captured in an
SFM. These parts can also be denoted to be common to all, or a set of, service variants. Despite
SFM’s purpose to capture service variants, the representation of common concerns is nonetheless
required because common service parts can denote relations to variability objects. For example,
variants can imply other concerns, which are common to a group of service variants.

The main elements of an SFM, namely features, address the outlined requirements regarding
the representation of variability. In service feature modeling, features act in different roles: they
represent both variability subjects and variability objects. Features have thus a solution-oriented
semantic (cf. 3.2.1), they represent variable concerns of the service’s design, implementation, de-
ployment, or operation. Additionally, features are used to structure an SFM’s feature diagram.
Consider, for example, the root feature “stock quotes API” in figure 3.1. For service feature mod-
eling, we aim to more clearly differentiate these diverse semantics. Thus, as has been proposed
comparably in related work [63], we differentiate three feature types: grouping features, abstract
features, and instance features [219]. The semantics of features becomes clearer through differenti-
ation. These additional semantics do not impact the applicability of automated analysis operations
on SFMs as compared to standard feature models [64]. For example, a standard feature model
analyzer to determine all configurations of an SFM will produce the same result whether feature
types are considered or not. The reasoner will only consider the relationships between features
and ignore the typing. We argue that a clearer semantic increases unambiguous understandability
of SFMs. Additionally, through additional rules on the three feature types, we delimit the number
of valid modeling choices, thus guiding the modeling process. Furthermore, we perceive poten-
tials for better automated processing of SFMs that denote feature types. For example, deriving
the superset of instantiable features only requires selecting all instance features in an SFM. Or, the
superset of abstract features denotes the variability points a represented service possesses. Another
reason for the feature typology is enabling comparability of SFMs. Multiple SFMs that possess the
same structure with regard to their grouping and abstract features, though having diverse instance
features, can be compared to one another. We make use of this capability to model SFMs with
similar structure (cf. section 3.3.3) and use them for requirements filtering and preference-based
ranking across multiple SFMs (cf. section 4.5). In the following, we outline each feature type in
detail.

Grouping features F G C F contain further features, which all address the same concern. We

define grouping features in the following way:

51

3. Modeling Service Variants

Definition 10. A grouping feature represents a category of related variability points and their

variants.

Their purpose is to organize and structure an SFM. Because grouping features contain further
features addressing a similar concern, they provide a comprehensive view for different stakehold-
ers. For example, a grouping feature can be used to contain all other features concerning the
technical implementation of security. The root feature of an SFM is a grouping feature, which
represents the service in focus. The contained features, thus, all concern this service. The parent
features of a grouping feature can be other grouping features or instance features. The child fea-
tures of a grouping feature are either other grouping features, abstract features, or instance features.
Because their purpose is solely to provide structure, grouping features are always mandatory. Cor-
respondingly, grouping features do not increase the number of configurations represented by an
SFM.

Abstract features F C F denote variation points. A variation point is “[...] a representation
of a variability subject within domain artefacts [...]” [153, page 62]. Correspondingly, we define

abstract features in the following way:

Definition 11. An abstract feature represents a variation point with regard to (parts of) the design,

implementation, deployment, or operation of a service.

An abstract feature can, for example, represent an abstract activity of a work flow, a type of
security mechanism like encryption, a type of service to invoke, or an interface to implement. The
parent features of abstract features are grouping features or instance features. The variation point
represented by an abstract feature can be fulfilled by one of potentially multiple ways. Thus, in
the course of a configuration process, abstract features must be instantiated by selecting a child
instance feature.

Instance features F/ C F denote concrete instantiations of a variation point - they represent
variants. Here, a variant is “[...] a representation of a variability object within domain arte-

facts” [153, page 62]. Correspondingly, we define instance features in the following way:

Definition 12. An instance feature represents a variant regarding (parts of) the design, implemen-

tation, deployment, or operation of a service.

In software services, instance features can, for example, represent source code like a module
or an aspect, (a set of) configuration parameters, protocols, or data. In generic services, instance
features can, for example, represent resources (human or physical), work flow elements, activities,
a software component, or a human resource. Instance features do not need to be directly mappable
to a single artifact of the service’s design, implementation, deployment or operation. An instance
feature can also be realized in the service through combination of artifacts or by parts of them. For
example, an instance feature representing a service’s security mechanism may depend on source

code in different service components and the existence of policies. Thus, feature diagrams should

52

3.2. Service Feature Modeling Language

not be confused with part-of hierarchies or the decomposition of software modules [63]. By in-
cluding deployment and operational aspects into the definition of abstract and instance features,
they can also concern the service environment. For example, features can represent legal restric-
tions for using the service, the geographic location a service runs in, or technical properties of the
execution environment.

Collectively, the three types of features denote all features in an SFM:
F={FSUFAUF'} |F°NFANF =0 (3.8)

Table 3.1 presents an overview of the constraints on the three feature types.

Parent feature types Child feature Parent- Child-

types decompositions decompositions
Grouping none (for root feature), grouping, mandatory mandatory,
feature grouping, instance abstract, optional

instance
Abstract grouping, instance instance mandatory, mandatory,
feature optional optional, XOR,

OR
Instance grouping, abstract grouping, mandatory, mandatory
feature abstract optional, XOR,
Or

Table 3.1.: Constraints on service feature modeling’s three feature types

Figure 3.2 extends the simple example from figure 3.1 with feature types. We introduce different
outline styles and text styles to graphically differentiate the feature types. The root feature “stock
quotes API” is a grouping feature whose purpose is solely to unite all further features addressing
the service. “Interface” is an abstract feature, that can be instantiated by one of the two instance
features “SOAP” or “REST”. Similarly, “data delivery options” is an abstract features, which can

be instantiated either by “real time quote updates” or “inclusion of quote history” or both.

3.2.3. Representation of Service Variability with Feature Types

We have now introduced concepts of service variability (see section 2.3) and the representation of
service variability generically and using service feature modeling in section 3.2.2. The relations
between these concepts are illustrated in figure 3.3. These relations thus correspond to the semantic
mapping between the semantic domain (variable services etc.) and syntactic elements in an SFM.

With regard to real-world artifacts, service variability implies the existence of variable services.
Such services denote at least one but potentially many variability subjects, that can be instantiated
by one of multiple variability objects. A service variant of a variable service denotes a specific

combination of variability objects.

53

3. Modeling Service Variants

Stock quotes API

Interface Data d'ellvery
options
Real time Inclusion of
SOAP REST <-4 quote updates quote history
//‘\ | ///‘\ |
_____ 4____| m——membloeoo, ___7_4____| —————le——
: WS-* H t Price/10k | + Price/10k : Quote history !
| specifications: ! :requests: 80.00: :requests: 40.00: | ided: v
! true :\ ! €] ! € n ! pfOVI ed: true :
[P g \ [P b J \ e
7 Price 10Kk prot e
, rice 10_ ! 1Real time data:'
| requests: : | true :
1__10000€ . o]
Key: rrrmmrrrmr s s
: ; pTeeees ~ _ :
: Gfrm:pmg /}bs;‘ract I?st?nce : Attribute : < » =Excludes :
f eature ‘eature eature L__l______1 --» =Requires :

= mandatory = optional =XOR =O0R
: feature feature

Figure 3.2.: Simple example of an SFM with feature types

On a generic representational level, the variable service is represented by a variability model.
In the context of software, such models are, for example, feature models or orthogonal variability
models [153]. Variability subjects and variability objects are represented by variation points or
variants. The relationships between these representational elements reflect those of their real world
counterparts.

Service feature modeling is a concrete instance of a variability modeling approach. Here, the
variability model is denoted as a service feature model. Its abstract features relate to variation
points and its instance features to variants. The real world concept of a service variant is reflected

by a configuration that relates to a selection of instance features.

Variable service | {50) | Variability model ¢:> SFM

0..* 0..* i 0..* : 0..* 0..*
Service variant Variability subject <::|> Variation point <:> Abstract feature Configuration
0..* 0..* : 0..*

Variability object <:> Variant <:> Instance feature

Figure 3.3.: Concepts of service variability and their representation, generically and in service feature
modeling

54

3.2. Service Feature Modeling Language

3.2.4. Attribute Types in Service Feature Modeling

To enhance the usage of attributes in service feature modeling we introduce attribute types. At-
tribute types model properties that are common to all associated attributes. By defining an aggre-
gation rule (see below), attribute types provide the basis to express characteristics in SFMs not
only with regard to features, but also with regard to configurations representing service variants as
motivated by challenge 1 in section 1.3.1. Another motivation for attribute types is to store recur-
ring information centrally, for example, the name of all attributes of a type. Storing information
centrally reduces modeling effort when adding attributes of the same type: they are associated with
an existing attribute type without having to enter the information again. Additionally, changing in-
formation for multiple attributes only has to be performed once for the attribute type. Doing so
avoids potential inconsistencies because changes do not manually have to be executed in multiple
places.

The following information is stored in attribute types in service feature modeling:

e The name of the attributes related to this type. Denoting multiple attributes’ names centrally
secures their consistency throughout an SFM, enabling, for example, their comparison. In
contrast, storing names per attribute might, through typos or miscommunication between
multiple modelers, lead to semantically equivalent but differently named attributes. Such

errors impact and eventually distort automatic operations on feature models.

e An attribute type further denotes the domain of all attributes relating to it. The domain
defines, as in standard feature modeling, the range of values an attribute can take. Continuous
domains are used, for example, for the attributes “cost” or “performance”. Integer domains
are used, for example, for the attributes “‘number of users” or “storage”. Boolean domains
are used, for example, for attributes that denote functional capabilities such as “home access”

or “personal assistance”.

e An attribute type denotes the measurement unit for the attribute values. For example, an
attribute type “cost” defines the measurement unit as “Euro”. The measurement unit supports
interpretability of attribute values for both, human actors and computers. The latter can, for
example, perform conversions as part of automatic operations based on the measurement

unit provided.

e A description is also stored in the attribute type. It is used to capture human-understandable
explanations about the attributes. Capturing such information is especially relevant for
SEMs, whose methods include collaborative modeling (cf. section 3.4). When multiple
stakeholders work on the same model, unambiguous understanding of the semantics of at-
tributes is relevant to ensure their correct utilization. An attribute type’s description fulfills

this purpose.

55

3. Modeling Service Variants

e Attribute types also capture the aggregation rule for attributes. In standard feature model-

ing, attributes only concern individual features. In service feature modeling, however, we
also use attributes to describe configurations (cf. section 3.2.1). The resulting configura-
tion attributes play an important role in the selection among configurations and respectively
service variants (cf. chapter 4). Difficulties of achieving this goal with standard feature
modeling’s language become clear when looking back at the way attributes are represented
in figure 3.1: “price / 10k requests” is defined in multiple features. However, it is not de-
fined how to combine or interpret these values in configurations where multiple attributes
“price / 10k requests” are present. One solution would be to define within each attribute
how its value impacts a configuration’s overall value. However, this solution bears potential
for contradictory statements among similar attributes. Thus, we define an aggregation rule
centrally within an attribute type. The aggregation rule specifies how to aggregate individ-
ual values in cases where configurations contain multiple attributes of the same type. The
resulting value can be associated with the configuration. Possible aggregation rules are sum,
product, minimum, maximum and at least once. For example, the attribute type “cost” has
an aggregation rule sum given that the cost of multiple features are additive. Aggregation
based on the aggregation rule at least once results in true if at least one considered attribute
has a value of true. This aggregation rule is designed to aggregate qualitative attributes. For
the aggregation rules minimum and maximum, the overall value equals the lowest or highest
observed value. We discuss the aggregation of attributes and the aggregation rules in detail

in section 4.2.2.

The so far introduced information is relevant for attributes irrespective of the intended usage of

SFMs. For the sake of completeness, we here introduce additional information stored in attribute

types that is relevant for the preference-based ranking approaches presented in section 4.4.

56

e The scale order defines how to interpret the values of associated attributes in the ranking

process. Higher is better denotes that higher values are considered to be better. Lower
is better denotes that lower values are considered to be better. For example, for attributes
denoting “cost” a lower value is generally considered positive. Finally, existence is better
denotes that a value of true is considered to be better in cases where the attribute type’s

domain is boolean.

The boolean property to be evaluated denotes whether an attribute type should be consid-

ered in the ranking process.

The custom attribute type priority denotes how much better features / configurations are
to be interpreted in the ranking process if they have an attribute with boolean domain whose

value is true compared to if it is false.

3.3. Service Feature Modeling Process

Capturing the stated information, including name and domain, in attribute types rather than
attributes themselves, attributes consequently only denote a value. We denote this value in service
feature modeling as instantiation value. An attribute’s instantiation value depends on the feature
or configuration that the attribute relates to. Thus, values cannot be centrally stored but must
remain with a single attribute. We define the instantiation value as iv(m,at), m € (FV C),a € A.

We define the set of a feature model’s attribute types as AT. Each attribute a € A is associated

with one attribute type ar with an attribute type relationship atr(a,at):

Va€A : Jatr(a,at) |a €A at € AT 3.9

Consequently, we can access the type of an attribute with rype(a) = at.

Figure 3.4 extends figure 3.2 with attribute types'

Stock quotes API

Interface

. The four attribute types contain a richer

AR
Data delivery
options

Real time Inclusion of
| SoAP | | REST |¢ - 1quote updates| | quote history
I___/__I I__;__I I___I__I I___/__I I__;__I I___I__I
| frue 1100.00! 180.00 1 1 40.00 by tue | frue 1
name." ws-* name: Price / 10k i ' . name: Oucl)te history
specifications requests na%%;i?gggi::la provided
domain: boolean domain: real . domain: boolean

measurementUnit: -
agg. rule: atLeastOnce

measurementUnit: €
agg. rule: sum

measurementUnit: -
agg. rule: at least once

measurementUnit: -
agg. rule: at least once

77 K@Y srrrr sy
; Grouping Abstract Instance Attribute type | 1 Attribute !
: feature feature feature | T b T
i | =mandatory = optional = XOR =OR <% =Excludes :
: feature feature --% =Requires |

Figure 3.4.: Simple example of an SFM with feature types and attribute types

set of information compared to the information stored in the attributes in figure 3.2. Attribute type
“price / 10k requests” additionally avoids redundant modeling of this information because multiple

attributes are related to that type.

3.3. Service Feature Modeling Process

In this section, we describe how service feature modeling’s language is used to model service
variants. We discuss involved stakeholders (cf. section 3.3.1) as well as how to perform service
feature modeling (cf. section 3.3.2). We also present an approach of using domain models to

ensure comparability between multiple SFMs (cf. section 3.3.3).

Note that for better readability, we do not show all information stored in an attribute type in the figure.

57

3. Modeling Service Variants

3.3.1. Involved Stakeholders

The stakeholders involved in the creation of SFMs must fulfill requirements. They must obtain
knowledge about the the service’s variability subjects and objects. This knowledge concerns either
the whole service or addresses only certain service aspects, for example technical properties or
access channels. Stakeholders concerned with modeling furthermore require modeling experience.
The degree to which modeling knowledge is necessary is impacted, at least partly, by the support
provided by the utilized modeling tools (cf. section 5.1).

The stakeholders involved in service feature modeling can be diverse, provided they fulfill the
stated requirements. They can thus, for example, include technicians, decision-makers, legal ex-
perts, managers, or marketers. Given that the variability subject represented by SFMs is a variable
service, a service engineer is an obvious stakeholder involved in service feature modeling. The
role of service engineers, however, is only vaguely defined in related work (cf., for example the
definition of generic skills required by service engineers [123]). Service engineers can thus be un-
derstood to be characterized by their involvement in the service development or delivery process,
rather than by their background and qualification or specific tasks they fulfill.

A more concrete group of stakeholders likely to be involved in service feature modeling are
software engineers. Due to the distribution of standard feature modeling in software engineering,
they are likely to be familiar with service feature modeling’s concepts as well. In service feature
modeling, software engineers typically act both as domain and application engineers [197] in that
they define service variants but are also involved in their selection.

In the following, we refer to the creator of a service feature model as modeler. The modeler can

be any of the above-mentioned stakeholders.

3.3.2. Modeling Procedure

Creating SFMs can be performed manually. Given the tree-structure of an SFM, modeling is per-
formed top-down. The modeler identifies and represents with corresponding abstract and instance
features the variability subjects and related variability objects of the service. Iteratively, the mod-
eler also specifies grouping features to structure the feature diagram. If service feature modeling
is performed as part of conceptualizing a new service, the outlined steps are likely to be repeated,
revised, or even reversed. Thus, an SFM is continuously refactored during modeling.

Service feature modeling, similar to standard feature modeling, comprises various challenges
for the modeler: the domain, that is the scope in which variants are considered to belong to the
same service, must be defined (cf. section 3.2.1). Features need to be identified, named and
organized. To ease these tasks, concepts and guidelines have been proposed in related work on
standard feature modeling [113, 199]. These concepts are applicable to manual service feature
modeling as well.

Next to manual service feature modeling, automatic methods ease or complement modeling.

Automatic methods synthesize SFMs based on provided input artifacts. For example, existing

58

3.3. Service Feature Modeling Process

work flow definitions can be used to derive an SFM representing work flow variants [224]. We
provide an example for the automatic modeling of SFMs based on previously defined work flow
variants in section 5.3.2. Automatic modeling methods depend on the service being already (partly)
conceptualized. Thus, the modeling of SFMs in this case does not assist in the initial definition
of service variability, but results in the explicit representation of variability. In the artifact from
which SFMs are derived, in contrast, variability might only be an afterthought. For example,
multiple approaches exist to define work flow variants in a single work flow model [163, 82]. In
these approaches, however, the representation of variability is mixed with the primarily targeted
representation of work flows. Separating these representations by automatically deriving SFMs
that focus on variability result in increased separation of concerns. Furthermore, within SFMs,
cross-tree relationships can be used to constrain variability, which might not be possible in mixed
representations. Automatic modeling reduces modeling effort and can be used to obtain desired
and predictable model structures.

Overall, the exact nature of how modeling SFMs is conducted depends on its integration into
broader service design methodologies. We present two use cases in which SFMs were modeled in

sections 5.3 and 5.4.

3.3.3. Modeling SFMs with Similar Structure

In many applications, a desirable characteristic is that SFMs follow a common structure. Similarly
structured SFMs enable modelers to more easily familiarize themselves with new models. If a
structure is provided to the modeler, he can use it as input for the modeling process, thus reducing
efforts. Additionally, (automatic) comparisons between similarly structured models and their con-
figurations are possible, as motivated in challenge 5 in section 1.3.1. We present methods to select
service variants using different SFMs that are based on the same structure in section 4.5. A similar
structure is achievable for services of types where the same variability subjects and objects appear.
For example, a study of the configuration options of IaaS reveals configuration options that are
common to different providers, allowing for derivation of a shared SFM structure [29, page 31 ft.].
On the other hand, specific contexts might impede the opportunity to create similarly structured
SFMs, for example because a modeled service is unique in its variants.

One way to achieve similar structures are automatic modeling capabilities (cf. section 3.3.2).
For a well-formated input, they synthesize SFMs with a predictable structure. Another approach
to create multiple SFMs with similar structure is to use a blueprint or domain model [219]. The
domain model’s goal is to provide a common structure for other models. It defines the scope
of what to express in other models derived from the domain model and structures of features
in all of these models’ feature diagrams. The domain model thus pre-defines which concerns
and variability subjects to consider in the modeling process. For example, a specific selection of
technical, business-related, legal, or organizational concerns are captured in the domain model. For

this purpose, the feature diagram of a domain model Gp = (Vp, Ep) has a reduced set of vertices

59

3. Modeling Service Variants

and edges. It consists of grouping and abstract features only, it does not include any instance

features or attributes:

Vp=V\FIlUA=FSUFA (3.10)

A domain model does further not contain cross-tree relationships and does not contain relations

between features and attributes (it only contains decomposition relationships):

Ep =E\R"UAR = R% (3.11)

The domain model does further define attribute types for all models derived from it.

The feature diagram of an SFM based on the domain model, Ggry(p) = (VSFM(D),E SFM(D)),
contains the same structure and exhibit attributes of the attribute types defined in the domain model.
It captures service variants with regard to the concerns defined in the domain model. For this

purpose, the SFM contains the same abstract and grouping features as the domain model:

G G p A A
Fsempy © o Nspmp) S o (3.12)

An SFM based on the domain model further contains the same attribute types:

ATgepp) C ATp (3.13)

Additional grouping, abstract, or instance features as well as attribute types can be defined in
the SFM. Thus, the comparability between different SFMs based on the same domain model is
only guaranteed for the structure defined in the domain model. In addition to the domain model,
an SFM based on it contains instance features and attributes, thus denoting the same elements as
any other SFM.

An example of a domain model and two SFMs derived from it is illustrated in figure 3.5. The
domain model defines a grouping feature “Financial API” as the root feature. It also defines the
concerns “interface” and “data delivery options” to be relevant variability points using abstract
features. Three attribute types, “WS-* specifications”, “price / 10k requests”, and “quote history
provided” are defined. The two SFMs derived from this domain model, representing services
“Stock quotes API” and “REST Quotes Service”, denote the same structure. They have, how-
ever, specific instance features and attributes extending the common structure. For example, while
“Stock quotes API” offers two interfaces “SOAP” and “REST”, service “REST Quotes Service”
has “REST” as its mandatory interface. In consequence, service “REST Quotes Service”’s SFM
has no attribute of the type “WS-* specifications”. Due to this attribute type’s aggregation rule of
“at least once”, no configuration of service “REST Quotes Service” offers this characteristic.

Noteworthy is that even though the derived SFMs follow the same structure, their compari-
son based on features is impeded by different naming conventions (consider the feature named

“inclusion of quotes history” in contrast to “include history”). This obstacle to comparability

60

3.4. Coordinated Composition of Service Feature Models

Domain model:
Financial API
Data delivery
options
name: W8-* name: Price/10k "~} | name: Quote history
specifications requests : provided
domain: boolean domain: real domain: boolean
measurementUnit: - measurementUnit: € ! measurementUnit: -
agg. rule: atLeastOnce agg. rule: sum i | agg. rule: at least once

SFM for service B:

SFM for service A:

REST Quotes
Service

Interface

O
Data delivery
options

Q
SOAP REST _] Realtime Inclusion of -] Realime |l 1o history| | Broker bids
quote updates quote history quote updates
JEES | P | | | |
-, I__‘;__I ——d_, e o= PR P - JR P,
| tru 1 1100.001 180.00 ! 140.00 1 | true 1 175.00 1 150.00 1 | true 1
name: WS-* name: Price / 10k name: Quote history name: WS-* name: Price / 10k name: Quote history
specifications requests provided specifications requests provided
domain: boolean domain: real domain: boolean domain: boolean domain: real domain: boolean
measurementUnit: - measurementUnit: € measurementUnit: - measurementUnit: - measurementUnit: € measurementUnit: -
agg. rule: atLeastOnce agg. rule: sum agg. rule: at least once agg. rule: atLeastOnce agg. rule: sum agg. rule: at least once
L G
: Grouping Abstract Instance : Attribute type | | Attribute |
feature feature feature H '
= mandatory = optional =XOR =OR <% =Excludes :
feature feature --+ =Requires

Figure 3.5.: Example domain model for cloud data storage and two SFMs based on it

could be addressed by agreeing on a shared name space across SFMs. Approaches to address this
shortcoming include the definition of namespaces or the utilization of semantic technologies like
ontologies, which lie outside of the scope of this work. We believe, however, that these problem
primarily highlights the necessity to provide usage methods in service feature modeling that rely
on comparable characteristics represented by attributes for variant selection (cf. section 4).
Modeling SFMs with similar structure underpins the important role that feature types play in

service feature modeling: they allow modelers to clearly differentiate the scope of domain models.

3.4. Coordinated Composition of Service Feature Models

The modeling process outlined in section 3.3 is similar to that used for standard feature modeling.
For service feature modeling, however, we propose an extended modeling procedure: the multi-
disciplinary nature of services (cf. section 2.1.1) requires multiple, diverse stakeholders to take
part in service design activities. Here, SFMs are an ideal artifact to interrelate design concerns
because features can represent various variability subjects of a service (see section 3.2.2). Thus,

service feature modeling should allow multiple stakeholders to create a single SFM collaboratively

61

3. Modeling Service Variants

as motivated in challenge 3 in section 1.3.1. Each stakeholder can contribute relevant concerns,
which can be interrelated using relationships in the SFM. We refer to the resulting process, in
which multiple stakeholders as well as software services participate in the creation of an SFM, as
collaborative service feature modeling.

Furthermore, the purpose of SFMs is to select service variants for further development or deliv-
ery. Decision-relevant information needs to be incorporated into an SFM during modeling. Such
information often changes over time or results from complex calculations. For example, attributes
denoting the cost or the performance of a service request vary over time. When using SFMs for
variant selection delayed in time from modeling the SFM, such information is likely to be out-
dated, thus impeding the correctness of the made decision. Thus, we aim to incorporate changing,
complex information into SFMs on demand as motivated in challenge 2 in section 1.3.1.

To realize these requirements, we propose to compose SFMs from services so that the overall
SFM is a combination of model parts, which are contributed by human or software services. For
example, a legal expert provides a SFM branch representing the alternative options with regard to
realizing encryption for a service. Or, a Web service provides the latest benchmark results denoting
the performance of a cloud infrastructure service. The solution approach presented here has been
published in previous work [221].

An example of composing SFMs from services is illustrated in figure 3.6%. A software engineer

” PP
0/\0

Interface Data delivery

Software engineer

options
A
SOAP REST |«-, '
T T :
| ! |
. | Ep——
" Price /10k | | Price/10k | |
! requests | | requests | | ; |
""" TomeT memmEeeee i call
;\7 K A H / LegalExpert

call
PricingService
finterface/soap

call -
PricingService
/interface/rest

Data delivery
options

I Price 710k I Price 710k

Real time Inclusion of
quote updates || quote history

requests = 100 \requests = 80|

Pricing

service Data engineer

Figure 3.6.: Example of composing SFMs from services, based on [221]

ZFor readability of the image, we do not display attribute types.

62

3.4. Coordinated Composition of Service Feature Models

starts modeling the stock quotes API service. He defines a feature “data delivery options”. Because
the software engineer is not responsible for data delivery options in his organization, he requests
a data engineer to provide input. The data engineer defines the service’s options for data delivery
to be “real time quote updates” and “include history”. The software engineer further defines the
two “interface” variants “SOAP” and “REST”, each denoted by an attribute of type “price / 10k
requests”. To retrieve up-to-date pricing information, he includes a “pricing service” that provides
the required information on demand. The overall SFM will eventually be a result of the software
engineer, the data engineer, and the pricing service each providing model parts.

Composing SFMs from services introduces challenges. The contribution of SFM parts must
be coordinated to detect and resolve potential inconsistencies between model parts. Consider the
example illustrated in figure 3.6. The data engineer defines a requires cross-tree relationship be-
tween the features “real time quote updates” and “REST”. However, when the software engineer,
who is responsible for the root part of the SFM, later changes or even deletes the required feature,
inconsistencies or errors may arise. Thus, coordination of the composition is required. To ensure
coordinated composition of SFMs, we introduce a composition model which defines what consti-
tutes a composed SFM. We define roles involved in the creation of composed SFMs. Finally, we

define coordination rules that ensure coordinated composition.

3.4.1. Composition Model

The composition model defines the elements involved in composing SFMs from services. These

elements and their structure are illustrated in figure 3.7.

Service
0...1
. Attribute value

*

Contribution Result
* input 1

* *

output sub result

Figure 3.7.: Service composition model [221]

Services represent human or software services. Services interact through machine-understandable
interfaces. In the case of software services, these interfaces can be invoked through corresponding
clients. In the case of human services, invocation of corresponding software interfaces triggers
human interaction. For example, notification mechanisms like e-mails can be invoked through
software, which again notify the corresponding human about the invocation.

Individual parts of an SFM composed from services relate to results. Results can be instanti-
ated by SFMs themselves. Thus, a feature structure decomposed according to the definitions in

section 3.2 can be a result. The sub result association ensures that results of type SFM can be

63

3. Modeling Service Variants

nested. In the example in figure 3.6, one SFM result is created by the software engineer, con-
taining the root feature “stock quotes API”, features for the “interface” and the feature for “data
delivery options”. The second SFM result contains the features representing the service’s vari-
ability with regard to “data delivery options” and is created by the data engineer. Alternatively,
results can be instantiated as attribute values. These results are used to store individual attribute
values, denoting, for example, a service’s up to date performance or cost information. Attribute
value results themselves must be contained by an SFM result. For example, in figure 3.6, two
attribute value results for “price / 10k requests” are created by the pricing service. They both are
contained in the software engineer’s SFM result. Provision of attribute values is either motivated
by the need to include complexly derived values into a SFM (cf. challenge 2), which cannot solely
be calculated with service feature modeling’s aggregation rules (see section 3.2.4). For example,
values for “cost” frequently derive from a complex calculation scheme, which considers the total
consumption of a service. Alternatively, provision of attribute types is motivated by the need to
include dynamic, temporal values. For example, benchmarking results or usage counts change
over time (cf. section 1.1.3). Results themselves inherit from service elements in the composition
model, allowing them to be offered as a service.

Finally, contributions relate services and results with one another. Contributions denote activi-
ties by a service that produce a result, denoted by the output relationship. Contributions themselves
can rely on existing results provided as input. For example, the data engineer’s contribution in fig-
ure 3.6, which outputs the “data delivery options” SFM result, depends on the “stock quotes API”
result as input as to define the requires relationship between the features “real time quote updates”

and “REST”. A contribution is associated to a service responsible for its completion.

3.4.2. Roles

When composing SFMs from services, participants act in different roles. Each role is defined by a
set of related activities. Every participant can engage in one or multiple roles at the same time or

change roles over time.

e Modelers are concerned with hierarchically decomposing a design concern into features.
Modelers define features, parent-child and cross-tree relationships between them, and their
attributes and corresponding attribute types. The activities performed by modelers thus are
similar to the modeling activities of standard feature modeling (cf. section 3.3.2). Corre-
spondingly, either human actors or software components can perform the role of a modeler.
The result of modelers’ activities are SFMs, which are contributed to the collaborative mod-

eling process.

e Attribute value providers, as their name suggests, provide attribute values to SFMs. As in
the case of modelers, this role can either be fulfilled by human actors or software compo-
nents. Depending on the required frequency of delivering (updated) attribute values, soft-

ware components are more suited to fulfill this role.

64

3.4. Coordinated Composition of Service Feature Models

e Coordinators perform two activities. First, they identify contributions whose results should
be provided by modelers other than themselves and assign modeling tasks for both SFMs
and attribute values to them. This activity requires coordinators to have a basic understand-
ing of the modeling process in order to correctly interpret an SFM. Second, coordinators
assign suited services to the identified contributions. This activity requires coordinators to
possess knowledge about the stakeholders involved with designing the service to be aware of
potential contributors and how to reach them. Services can be assigned either in the role of
modelers or attribute value providers, depending on the nature of the required contribution.
Coordinators can further also delegate coordination activities with respect to a single result.
This allows the assigned participant to further split up and delegate a contribution, depending
on his (possibly concern-specific) knowledge. For example, the participant concerned with
“data delivery options” aspects may be best suited to knowing which participant to involve
with regard to specific sub-concerns regarding data delivery. Additionally, the capability to
assign coordination activities marks composition of SFMs from services a recursive and thus

flexible process.

3.4.3. Coordination Rules

Coordination rules aim to ensure error- and conflict-free composition of SFMs from services. They
are created, updated, and deleted automatically during the composition to denote all constraints
necessary for a specific SFM at a specific modeling stage. Alternatively, they can be instantiated
manually to ensure the adherence of the composition process to specific requirements. Coordina-
tion rules follow the event-condition-action (ECA) pattern, which originally stems from the area
of active database management systems [129]. Coordination rules specify an event upon whose
occurrence a condition is checked. Depending on the outcome of this check, an action specified in
the coordination rule is performed. Coordination rules are expressed in a computer-understandable
way. This allows software components to detect the occurrence of an event, to check the condition,

and to trigger an (automated) action.

Coordinating changes to cross-tree relationships

A first set of coordination rules is concerned with handling inconsistencies resulting from cross-
tree relationships. As defined in section 3.2.1, cross-tree relationships define dependencies be-
tween any features in an SFM, irrespective of their position in the feature diagram. Thus, they
can be defined between features belonging to different results (of types SFM) when composing
SFMs from services. This capability renders cross-tree relationships as potential sources for in-
consistencies or conflicts: consider a cross-tree relationship r € R“" defined in SFM A to target a
feature i = tar(r) defined in SFM B. The modeler of B may not be aware of feature i being part

of a cross-tree relationship and might change or delete it without intention of harm. The validity

65

3. Modeling Service Variants

of r, however, might be impeded by such actions. For example, as the semantics of feature i are
changed, the cross-tree relationship might be obsolete.

To deal with such inconsistencies, upon creation of a cross-tree relationship in SFM A with
tar(r) € FA, a rule is established that triggers a corrective action upon edit or deletion of the
targeted feature. Having defined events FeatureUpdated and FeatureDeleted, the modeler of

the cross-tree relationship can be notified about a potential inconsistency:

EVERY FeatureUpdated(tar(r)) OR FeatureDeleted(tar(r))
DO notify(modeler(r));

Coordinating changes to attribute types

As in the case of cross-tree relationships, composing SFMs from services can result in conflicts
when it comes to attributes and attribute types. Attribute types can be defined in any result of
type SFM. Consider attribute type at € AT being defined in SFM A. Embracing their role to
avoid redundant modeling, however, attributes associated to at can be defined in another SFM. For
example, attribute a € A, defined in SFM B, is associated to ar so that atr(a,at). If the modeler of
A decides to change or even delete at, the association atr(a,at) might be wrong or obsolete.

To deal with such inconsistencies, upon creation of an attribute in SFM A with arr(a,at) : at ¢
F4, arule is established that triggers a corrective action upon edit or deletion of the attribute type.
Having defined events AttributeTypeUpdated and AttributeTypeDeleted, the modeler of the

attribute can be notified about a potential inconsistency:

EVERY AttributeTypeUpdated(at) OR AttributeTypeDeleted(at)
DO notify(modeler(a));

3.4.4. Service Binding

To allow services to contribute results to SFMs, they need to be bound. Figure 3.8 illustrates the
service binding protocol used for this purpose, which is derived from previous work [179, 221].
Initially, the state of the binding is open. When a coordinator assigns a contribution to a service,
the state changes to asked for binding. This request corresponds to asking the service to commit to
contribute a result. Either if this process is aborted by the coordinator or if the service declines the
request, the binding is again open. On the other hand, if the service accepts the binding, its state is
set to accepted. Software services are expected to accept requests for binding automatically. In this
case, the correct selection of services to contribute results relies on the coordinator. Human ser-
vices need to assess their capabilities to deliver the requested result and respond respectively. Once
a service is bound it can deliver results related to assigned contributions. This can be done repeat-
edly to update delivered results. While being bound, the service can additionally be contacted by
the coordinator, for example to send reminders to contribute results. From the accepted state, the

66

3.5. Related Work on Modeling Service Variants

--- delete binding ----- a%?:;;?g d

delete binding

ask for binding
Asked for
binding
abort

Figure 3.8.: Service binding protocol, based on [179]

binding can again be transferred to the open state if either the coordinator or the service deletes the
binding. The coordinator deletes the binding typically upon approving of the contributed results.
To take part in the described interactions, a service must implement the service binding protocol.
As mentioned, software services will implement the protocol in a way so that binding requests are
automatically accepted (or declined based on pre-defined conditions). The interface of the protocol
for services will likely consist of endpoints to invoke by the coordinator. For human services, the
protocol will rely on a user interface that allows the human actor to review requests for binding and
accept or decline them. Details on the implementation of service adapters that realize this protocol

are presented in section 5.1.4.

3.5. Related Work on Modeling Service Variants

Within this section, we present related work on modeling service variants. We outline work on vari-
ability modeling languages in general in section 3.5.1. In section 3.5.2, we focus on the utilization
of feature modeling for services, which denotes the bulk of related approaches. We specifically
address common use cases in related work dealing with feature-based modeling of the variability
of Web and cloud services. For each approach, we present a short discussion as compared to ser-
vice feature modeling. We furthermore present other approaches apart from feature modeling to
represent service variability in section 3.5.3. In section 3.5.4, we present related work with regards

to composing SFM from services, which is a means for collaborative modeling (cf. section 3.4).

3.5.1. Variability Modeling Languages

A set of related work addresses variability modeling approaches in general and their application in

different contexts (not necessarily services).

67

3. Modeling Service Variants

Selected variability modeling approaches for software product line engineering have been clas-
sified [186]. Different types of variability modeling are identified, focusing either on features, use
cases, or (for the rest) other aspects. Six exemplary approaches are selected and classified regard-
ing the categories modeling (considering the language and its abstraction) and tools (considering
tool-support provided with regard to domain and application engineering).

A systematic review of variability management approaches, comprising modeling and reasoning
facilities, in software engineering has been conducted [51]. This study provides a chronological
overview of how variability management approaches have been developed, starting from the earli-
est approach of feature-oriented design-analysis [99]. The authors state the life-cycle phases that
the approaches support and what variability models they utilize. Here, the omnipresent role of
feature modeling is reflected and its utilization by various management approaches throughout the
software life-cycle is illustrated.

Another study addresses the utilization of variability modeling approaches in industrial prac-
tice [35]. The authors present the results of an empirical study sent to 42 industrial practitioners.
The questions asked address typical application scenarios for variability modeling, its perceived
benefits and challenges, used notations and tools, and the scale of industrial models. The authors
find that feature modeling is by far the most utilized variability modeling notation, being used
by nearly three quarters of respondents. Variability modeling approaches are used in a wide field
of applications, including management of existing variability, product configuration, requirements
specification, or design / architecture.

The presented works underpin our choice to utilize feature modeling to represent service vari-
ability: feature modeling is a highly researched and in practice utilized variability modeling ap-
proach. Thus, a strong basis of experience and approaches exists that can beneficially be utilized.
Further, feature modeling’s dissemination in industrial practice lowers entry barriers for using this
technology. Given their broad utilization across application domains, feature modeling-based ap-
proaches seem an suitable starting-point for utilizing variability modeling for service development

and delivery, as we propose in this work.

3.5.2. Feature-based Modeling of Service Variability

Feature modeling approaches, given their broad utilization across domains (cf. section 3.5.1), have
previously been utilized to model service variability. The majority of these approaches addresses
either modeling variability of Web services or of cloud services. We thus present related work for

modeling variants of these types of services in the following.

Modeling Web Service Variability

The use of feature modeling to represent Web service variability has been motivated with fast
and automatic creation of consumer-specific variants [161]. In this approach, exemplary feature

models are presented that address variability of utilized communication technologies, the Web

68

3.5. Related Work on Modeling Service Variants

service itself, or the consumer. However, the complete scope of the models is not exhaustively
discussed, their utilization is only motivated, and more elaborate modeling elements like attributes
are not used.

Feature modeling has been utilized to represent functional characteristics and Quality of Ser-
vice (QoS) attributes of Web services in electronic contracts [75]. A main motivation behind the
approach is to foster structure and reuse of contractual clauses across multiple contracts. How-
ever, Quality of Service characteristics are only represented coarsely using features that represent
QoS levels. No quantitative values, using for example attributes, are considered, thus limiting the
approach’s expressiveness.

Runtime customization of Web services with explicit modeling of the variability has also been
addressed [139]. The authors propose to extend WSDL documents to depict interfaces of service
variants. Variability points and corresponding variants, denoting for example the inclusion of fur-
ther services to fulfill subtasks of the service delivery, are explicitly modeled in a feature model.
In further work, the same authors focus on explicitly modeling variability of Web service compo-
sitions [141]. They consider dependencies between variability in the composition and within the
services used in the composition. Again, feature modeling is used to express variability. Addi-
tionally, a methodology for developing corresponding processes is presented. It uses an extended
version of the Business Process and Model Notation 2.0. However, feature modeling’s capabilities
to model characteristics of features with attributes are not used.

Other approaches focus solely on variability resulting from selecting different services in a ser-
vice orchestration [102]. Here, no variability is considered within individual services or with
regard to the order of abstract tasks in the orchestration, but only with regard to selecting services
to fulfill these abstract tasks. Thus, this approach is comparable to service feature modeling only
in cases where features are used to represent services that collectively denote the overall modeled
service.

Some authors motivate the need for handling variability in Web services primarily by their uti-
lization in dynamic contexts, where variability is a precondition for reusing services [78]. The
authors enumerate Web service specifics, which make dedicated variability handling necessary, in-
cluding a dynamic execution environment, organizational issues, or the relevance of QoS. Different
variability subjects in Web services are identified and shortly discussed. The outlined specifics of
Web services correspond to those we identified for software services in general in section 2.1.2.
The authors outline the handling of Web service variability with (feature-based) variability mod-
eling approaches and extensions of typical Web service artifacts (WSDL or BPEL documents)
with variation points and variants. However, no specifications on how to represent the identified
variability subjects with feature models are made.

The application of feature modeling to model Web service variability has not yet made use of
feature modeling’s full potential. Some approaches focus solely on features and neglect attributes
([161, 75]). Others lack specification of what the feature models should look like ([139, 141]). In

contrast, service feature modeling makes use of recent advances in feature modeling like attributes

69

3. Modeling Service Variants

and even extends its language with feature and attribute types, reflecting the important role quality
attributes play for services [112]. We also propose concrete blueprints that indicate what service
feature models for specific domains like IaaS should look like (cf. section 5.4.2) or integrate the

approach to automatically derive feature structures (cf. section 5.3.2).

Modeling Cloud Service Variability

The utilization of variability modeling approaches for cloud services is motivated by the need
to configure them. Software-as-a-Service (SaaS) frequently utilizes multi-tenancy so that tenant-
specific configurations need to defined. Infrastructure-as-a-Service (IaaS) offers various configura-
tion options when it comes to consuming virtual machines, for example with regard to geographical
placement, machine size, or pricing [29]. Variability modeling approaches can be used to represent
the configuration options and provide the basis for configuration processes by the consumer.

Some authors assume a common reference architecture underlying Software as a Service (SaaS)
applications [199]. The authors propose to capture design decisions regarding applications based
on this architecture in a feature model. The structure of this model is correspondingly described.
On a high level, features represent the layers of the SaaS reference architecture. Within each
layer, features represent (alternative) components, for example “load balancer” or “firewall” in
the “distribution layer”. Each component can be decomposed into further features, representing
sub-components, functionalities, or utilized methods.

Similarly, a collection of cloud service reference architectures represented as feature models has
been published [84]. Considered reference architectures include those of public organizations (for
example, the National Institute of Technology (NIST)), industry (for example, Amazon, Microsoft
or IBM), and research. In the resulting models, features represent various concepts, including
layers, functionalities and non-functionalities, technical properties, or software components. While
this flexibility is in line with what features in service feature modeling can represent, a structure
underlying the various models is missing. As a result, the models are not comparable to another
and express different levels ob abstraction.

In the so far presented approaches, cloud architectures can be derived from the reference archi-
tectures by configuring the feature model. However, the result architecture is merely a basis for
implementing a Cloud solution. In contrast, service feature modeling aims to model the variability
of a concrete service, not its underlying architecture.

Other approaches focus on modeling the variability of individual Cloud services. It has been pro-
posed to utilize feature modeling to support the deployment of applications on cloud services [155].
Feature models represent software components and technologies both of the application to be de-
ployed and of potential cloud services (IaaS or PaaS). Cross-tree constraints between features of
these models denote constraints on the selection of cloud service features for given selections
of application features. For example, if a certain data-base type is selected for the application,

only cloud services that provide this database type can be selected. Attributes are used to express

70

3.5. Related Work on Modeling Service Variants

concerns related to the software components or technologies. For example, “SSL” encryption ad-
dresses the concern for “security”.

Other approaches aim to represent Software as a Service variants using feature models [134].
Here, SaaS applications are assumed to be composed of services that fulfill certain functionalities.
In the feature model, each feature represents one of these services.

The outlined approaches, similar to the modeling subject of service feature modeling, model
variability of concrete services. As in the utilization of feature modeling for Web services, at-
tributes are not utilized in the approaches [199, 84] or their usage is mentioned but not illus-
trated [155]. Some approaches do not prescribe how the feature models should be structured at

all [155], while others prescribe incomparable structures with different levels of abstraction [84].

3.5.3. Other Approaches to Represent Service Variability

While feature-based variability modeling approaches denote the biggest group of related work on
modeling service variability, other modeling approaches have also been suggested.

Orthogonal Variability Modeling (OVM) was created to explicitly model variability in soft-
ware products [153]. The variability defined in orthogonal variability models can be related to
any other software development models, such as feature models, use case models, or component
models, thus providing an orthogonal view of variability across all software development artifacts.
OVM has been applied to model variability of Web services to support their adaptation to different
contexts [103]. Architectural and behavioral variation points are identified, addressing the service
interface, the work flow underlying Web service-based systems, and the service level agreements.
The decision to use OVM is not discussed. OVM is also used to model variability of Software as a
Service applications to enable customization and deployment for multiple tenants [133]. The SaaS
variability model differentiates between external variability, which is visible to service consumers
(for example, the capability to send E-mails, availability) and internal variability, which is visible
only to the provider (for example, the used database). Apart from this differentiation, no further
constraints exist with regard to the structure of the variability model or how it is derived.

The Configuration in Industrial Product Families Variability Modeling Framework (CO-
VAMOF) was developed to explicitly represent variability in software product families [187].
In contrast to feature modeling, COVAMOF allows for n-to-n dependencies between represented
variants and to model relations between dependencies. COVAMOF has been applied to model
the variability of Web service-based systems [195]. The approach uses an UML profile, which is
compatible with COVAMOF, to represent architectural variability of Web service-based systems.
Architectural variability includes replacing services with the same or with different interfaces,
changing service parameters, changing the composition of services, and creating complex depen-
dencies between them. A runtime management method allows for performing these changes while

the service is deployed, resulting in adaptation of the service delivery.

71

3. Modeling Service Variants

Both, OVM and COVAMOF, in contrast to service feature modeling, do not support the notion
of attributes, which we consider fundamental for services. While OVM is motivated by separating
variability modeling from other concerns, feature modeling can and is often used equally for the
sole purpose of modeling variability [62]. Furthermore, feature modeling is much more used in
practice [35] and denotes a much richer set of related work [51]. We thus consider the choice to
utilize feature modeling as a basis for our approach feasible.

Goal modeling approaches from the field requirements engineering (RE) are typically used in
early software development activities [52]. They aim to capture relevant goals and support rea-
soning about goal achievement strategies [111]. Goal models capture objectives of diverse stake-
holders for a system in design. Goals can be either functional (denoted as hard) or non-functional
(denoted as soft / fuzzy). Functional goals have different levels of abstractions, allowing for de-
composition by defining sub goals. Goal models also capture alternative ways on how to achieve
goals, for example by specifying that sub goals are alternatives to one another. In some languages,
corresponding variability points are explicitly modeled [233]. Between functional goals and soft
goals, contribution links capture the impact of the functional goal on the soft goal. The extent
of positive or negative impact on a soft goal can be expressed using values (for example, “++7,
“47, " and “- -7). Typical languages include i*, which is designed to “[...] model and analyze
stakeholder interests and how they might be addressed, or compromised, by various system-and-
environment alternatives” [231]. Similar to goal models, SFMs can be used in early service design
activities. Attributes with boolean domains, denoting functional characteristics induced by fea-
tures, are comparable to goals in goal modeling. Decompositions of attributes cannot be expressed
as in goal modeling. Dependencies between attributes can be expressed only by defining dependen-
cies between their containing features. Attributes representing non-functionalities are comparable
to soft goals in goal modeling. In goal modeling, soft goals are only specified once and distribu-
tion links denote the extend of impact functionalities have on them. In contrast, in service feature
modeling, multiple attributes of the same type can be defined whose overall value results from
aggregation. This approach allows SFMs to express more fine-granularly how service variants
perform with regard to soft goals. Another difference between the approaches is that configura-
tions in service feature modeling relate to realizable service variants. Thus, no further integration
between goal models that typically capture the problem domain and approaches that capture the
solution domain (for example, software product line engineering approaches) is required, which is
a common challenge in goal modeling [233, 111].

As part of the WS-* stack, Web service policies are used to express conditions on an interaction
between two Web service endpoints [228]. Policies denote multiple alternatives, which are (poten-
tially empty) sets of policy assertions. Each assertion represents a requirement, capability, or other
property of a service’s behavior. The existence of multiple alternatives implies a choice in require-
ments or capabilities expressed through assertions. Thus, policies denoting multiple alternatives
model variability where alternatives correspond to different service variants. In contrast to fea-

ture modeling-based approaches, expressibility of WS policies is low. No dependencies between

72

3.5. Related Work on Modeling Service Variants

assertions can be expressed above them being contained in the same alternative. If assertions are
contained within multiple alternatives, they must repeatedly be specified. Extensions of standard-
ized WS policies have been proposed that focus on customization of Web services [119]. Here,
providers state customization options for Web services in customization policies. Using these poli-
cies, consumers select their desired customization, which leads to the deployment of a correspond-
ing service variant. As in standard WS policies, the expressiveness of this approach is limited.
Overall, some policy-related approaches include the notion of variability. However, the expres-
siveness of these approaches is, again, limited, lacking means to express XOR or OR relationships
or more complex dependencies between variants. Each variant of how to use a service is repre-
sented by an alternative. With a rising number of variants, this representation mechanism results in
increased workloads and is error-prone if changes are required that address multiple variants. Fur-
thermore, variability is not modeled explicitly, but integrated with other modeling subjects. This
makes the explicit handling of variability more difficult, for example when checking the validity
of variants, which is especially important if the number of variants rises.

A common source of variability in the context of Web services is their composition. Compo-
sition approaches typically define an abstract process in which multiple Web services are invoked
to collectively accomplish a task [15]. The binding of Web services is performed for each invo-
cation of this process, typically in reaction to a service request. The Web services to bind are
then selected based on request-specific quality requirements, current availability of functionally
matching services, and their recent fulfillment of desired qualities. Many approaches to deal with
variability resulting from Web service composition do not model this variability. Rather, they de-
note algorithms that select Web services from a set of candidates considering Quality of Service
goals (cf. [15]). Or, modeling is understood as applying mixed integer linear programming or loops
peeling [19]. Some approaches introduce variability into the definition of abstract work flows or
compositions. It has been proposed to represent alternative compositions using variability model-
ing approaches [151]. The resulting variability models can be used to communicate composition
options to consumers. Selection of the services to fulfill the abstract tasks in the compositions,
however, is not supported. The Business Process Execution Language (BPEL) is extended in
VxBPEL to incorporate variability [105]. VxBPEL allows modelers to specify variation points,
variants, and realization relations by extending standard BPEL documents. While dependencies
between variants can be expressed, the mix of variability with other concerns in the BPEL diagram
delimits means for automatic processing. The utilization of service feature modeling to represent
work flow variants (cf. 5.3) is similar to the here presented approaches. In contrast to VXBPEL,
service feature modeling explicitly models variability, allowing its users to perform dedicated rea-
soning on the models and fostering separation of concerns. Service feature modeling can be used
to represent work flow variants (cf. section 5.3), however, its main focus lies on representing
the variability of a single service. Service feature modeling additionally can be used to represent
variable concerns beyond work flows, allowing for a broader application of the approach.

Another method to model variability of Web services proposes to extend common Web service

73

3. Modeling Service Variants

artifacts [48]. The authors identify four types of variability relevant for Web services, namely
work flow variability, composition variability, interface variability, and logic variability. Variability
concerning interfaces is represented by extending the Web Service Description Language (WSDL).
These extensions enable different work flow variants, compositions, or interfaces to be used while
a service is operating based on changing context. Variability is not explicitly modeled separately
from other modeling subjects and no dependencies between variable objects in different artifacts

can be expressed.

3.5.4. Collaborative Modeling

The creation of SFMs based on their coordinated composition as presented in section 3.4 is a means
for expert collaboration in defining service variants. This related work section is an extension of
the one presented in previous work [221].

The need for collaborative approaches for software engineering projects has been attested to
their inherent cooperative nature [216]. The authors characterize collaboration in software engi-
neering to be frequently driven by engineering artifacts, for example models. This goes in line with
collaboration enabled by composition of SEMs from services, where the SFM is the artifact driv-
ing collaboration. Collaboration methods are presented, addressing different activities throughout
a service life-cycle. However, no approaches based on feature-modeling are presented even though
feature modeling is named as a future area in which collaboration could beneficially be applied.

Regarding collaborative modeling, some approaches discuss the creation of models in the com-
puter aided design (CAD) domain where several experts work together to derive a graphical model
of a product. For instance, the authors of [37] present an approach for collaborative editing of a
central model maintained on a server, also addressing basic coordination problems, for example
concurrency and synchronization. They do not consider a human coordinator or the creation of
model parts by services. In contrast, we aim to allow a coordinator to split the model into parts to
be delegated to responsible experts. We thus provide a coordination mechanism on an application
level.

Several works address how multiple feature models can be combined. [11] proposes to compose
feature models that address specific domains, aiming to better deal with rising complexity for large
feature models, to foster the models’ evolution, and to engage diverse stakeholders in modeling.
In [23], a representation of feature models using description logics and a corresponding configura-
tion method are presented to allow multiple experts to model and configure feature models. Graph
transformations, based upon a catalog of merging rules, are utilized to support the automatic merg-
ing of feature models [180]. However, the implied semantics of the presented merging rules to
solve conflicts between two models do not account for special cases presented in our approach,
for example continuously updated attribute values. All presented works focus on how to combine
multiple models but do not address the coordinated creation of models or the integration of up-to-

date values. Methodologies addressing the modeling of modular feature models are named as an

74

3.6. Discussion

intended future work. In contrast, we focus on the coordination of creating modular feature models
collaboratively.

In software engineering, an approach to realize collaborative modeling with the unified model-
ing language (UML) has been presented [66]. It allows software engineers to decompose UML
diagrams into fine-grained design model parts that can be modified by distributed participants. The
approach has some similarities to our approach, for example, it hierarchically breaks down models
into parts, it uses event-based notifications and coordination mechanisms to manage concurrent
access and dependencies between model parts. In [237] a model and tool are presented that en-
able software architects to collaboratively capture architectural decision alternatives and decision
outcomes in a specialized Wiki. In the modeling phase, architects can define dependencies be-
tween decisions. Alternatives are used to ensure consistent and correct decision-making during
the configuration phase. Despite some similarities, both presented approaches do not (yet) support
delegation of modeling parts through a coordinator and do not enable the integration of content
provided by software services into the models.

Flexible composition of services through end-users has been discussed in the mashups area [232].
Mashups allow end-users to easily compose and integrate (Web) services into artifacts. In addi-
tion, approaches for the integration of human-provided services into collaboration exist [176].
However, we are not aware of any approach that allows participants to create models through a
mashup mechanism.

Overall, having analyzed related work in various research areas, we believe that our approach
uniquely combines coordination and service-composition concepts to support the participation of

various experts in defining variability models.

3.6. Discussion

Service feature modeling’s language sets out to capture the variants for developing or delivering
a service. Various approaches exist that equally aim to represent service variability (cf. sec-
tion 3.5.3). Many of them, while addressing variability of services, mix statements about variabil-
ity with other concerns (cf. [119, 48, 105]). This impedes a clear separation of concerns, making
communication of variants and reasoning about them harder. Service feature modeling focuses
on representing variability with the purpose of allowing modelers to design, communicate and
reason about it. If required, artifacts addressing other concerns can be associated with SFMs (cf.
section 5.3 and 5.4).

Given the dissemination of feature modeling, we consider it to be an ideal basis for service
feature modeling as well (cf. section 3.5.1). Feature modeling has successfully been applied in
various domains and provides a large base of related work. Using feature modeling to represent
services, most notably Web and cloud services, has already been proposed (cf. section 3.5.2).
However, we find that service feature modeling is different from these approaches in multiple

regards.

75

3. Modeling Service Variants

The utilization of feature modeling approaches for services frequently focuses on specific as-
pects. For example, feature models are used to represent work flow or composition variants of
Web services (cf. [151, 105]) or architectures of cloud services (cf. [166, 178, 84]). Narrowing
down the variability subject under consideration has advantages: it allows us to define concrete
mappings to artifacts of the solutions design, for example other models, source code, or configura-
tion parameters. This enables the automatic creation, update, or validation of feature models based
on these artifacts. Further, the realization of service variants profits from relationships between
feature modeling elements (features, attributes etc.) and other design artifacts. With service fea-
ture modeling, however, we aim to provide more flexibility regarding the variability subject. We
illustrate how service feature models can relate to other design elements like work flow variants
(cf. section 5.3.3) or deployment configurations (cf. section 5.4.3). Not limiting service feature
modeling to one of these contexts allows its broader application. This flexibility has already led
classical feature modeling, where it is reflected by the generic definition of what a feature is, to
be beneficially utilized in various contexts (cf. [35]). Service feature modeling should similarly be
applied to represent variability of diverse subjects in the context of services, and add mappings to
specific artifacts where needed.

In contrast to many of the presented approaches [161, 75, 139, 141, 199, 134], service feature
modeling makes use of the notion of attributes from feature modeling. They allow to specify func-
tional or non-functional characteristics that result from the inclusion of features in a service variant.
Attributes play an important role for selection among service variants (cf. section 4) and should
thus be considered. Different from all other feature modeling approaches, we introduce attribute
types. Typing of attributes has been proposed in previous work, but only concerned the data type
of an attribute’s value [64]. In contrast, attribute types in service feature modeling contain much
richer information, including descriptions, scale orders, or measurement units. Attribute types re-
duce efforts in specifying similar attributes. They further specify aggregation rules. They allow to
determine instantiation values for attributes describing configurations by aggregating the instanti-
ation values of the attributes describing features in a configuration as motivated in challenge 1 in
section 1.3.1. This novel approach enables the annotation of configurations with attributes, thus
supporting the comparison between configurations in service feature modeling’s usage methods
(cf. chapter 4).

Service feature modeling further introduces feature types. In related work, a comparable typing
of features has been proposed [63]. Here, features are typed as concrete (being realized by indi-
vidual components), aspectual (being realized by a number of components or modularized using
aspect technologies), abstract (representing requirements mapped to component and or aspects),
and grouping (representing variation points or having a pure organizational purpose). We find
the semantics of this typing unclear, especially with regard to the double role played by grouping
features. In contrast, we aim to make clear how service feature modeling’s feature types relate to
variability concepts like variability subject and variability object (cf. section 3.2.3). We also clearly

separate solution-oriented semantics of features from problem-oriented attributes. Our introduc-

76

3.6. Discussion

tion of feature types aims to increase the understandability of SFMs and the modeling process,
guiding modelers on how to define features. Furthermore, feature types in service feature model-
ing support unambiguous (automatic) interpretation of SFMs, enabling for example requirements
filtering for multiple SFMs (cf. section 4.5).

Our approach for composing SFMs from services (cf. section 3.4) is novel and unique. En-
abling expert collaboration in service feature modeling, as motivated in challenge 3 in section 1.3.1,
through composing SFMs from services is directly derived from the identified need for such mech-
anisms in service development (cf. section 1.2). Existing approaches addressing collaborative
variability modeling outline how to combine, for example, feature models [11, 23, 180]. The re-
quired methods for performing collaborative modeling, however, are either neglected or mentioned
as future work. Other approaches address the methods for collaborative modeling, but focus on
different types of models [37, 66, 237].

Another advantage of composing SFMs from services is the possibility to include attribute val-
ues provided by services as motivated in challenge 2 in section 1.3.1. A limitation of any feature
modeling-based approach is how to deal with dynamic or complexly derived values. Here, com-
position from services enhances service feature modeling’s capabilities to consider such values

compared to standard feature modeling approaches.

77

4. Using Service Feature Models

In this chapter, we describe the intended usage of service feature models within software service
engineering. We assume an SFMs as input that depict the variants of a service, either deployed
or not. Within this chapter, to illustrate the usage methods, we rely on the SFM illustrated in
figure 3.4, representing a financial data service motivated in section 1.1.2 and used throughout
chapter 3. First, we outline the goals of using service feature modeling and the proposed usage
process in section 4.1. Next, we discuss in detail the individual methods denoting the usage pro-
cess: we start with the automatic determination of service variants from an SFM in section 4.2.
We then discuss means for requirements filtering to reduce the set of variants to ones adhering to
minimal consumer needs in section 4.3. We discuss our approach to rank remaining variants based
on preferences in section 4.4. We show how the presented methods can be applied to select service
variants from multiple SFMs in section 4.5. We discuss related approaches for variant selection in

section 4.6. Finally, we summarize and discuss service feature modeling’s usage in section 4.7.

4.1. Usage Process

In this section, we present the process of using SFMs. The process directly addresses the cor-
responding challenge 4 motivated in section 1.3.2. We outline the goals of the usage process in
section 4.1.1. Usage methods are applied in two scenarios, either for variant selection during
development or for variant selection for delivery. We further present an overview of the usage
procedure in section 4.1.2. It encompasses the different usage methods and illustrates their recom-

mended flow. Finally, we discuss the stakeholders involved in the usage process in section 4.1.3.

4.1.1. Goals of Usage

It can be argued that infention is a first-class property in the modeling process [136]. Correspond-
ingly, service feature modeling’s appeal and usefulness will only show in the usage of SFMs.
The intention and thus goal of using SFMs is to select one or a subset of the service variants it
represents. Selecting service variants can have different purposes depending on the scenario it is

performed in:

e Variant selection for development Variant selection for development is a design activity
performed by the service provider. The goal is to determine a (subset of) service variant(s)
from those represented in an SFM that should further be developed. In this sense, usage is

similar to approaches in goal modeling that aim to support reasoning about goal achievement

79

4. Using Service Feature Models

strategies [111]. Another way to look at this use of service feature models is the design-time
approach of handling of variability in consumer requirements [139]: because requirements
differ among consumers, suiting service variants to address a majority of them need to be
provisioned. Or, usage in this context is comparable to the dealing with design spaces,
which encompass a set of decisions to choose an artifact (service design variant) that best
satisfies needs [184]. In this usage scenario, potential for participation of future consumers
arises. They can specify their needs and wishes while the provider develops the service.
The provider can consider this input to develop (the) variant(s) that best satisfy consumers,

leading eventually to higher profits.

e Variant selection for delivery On the other hand, variant selection for delivery is performed
as a consumer design activity. The goal is to determine a service variant to deliver that
best matches consumer needs. The assumption here is that a candidate service to consume
denotes variants and that these variants can be realized in delivery. The realization of variants
for in delivery can be achieved by providing one single customizable service (e.g., [139]) or

by deploying individual service variants on-demand (e.g., [110]).

The selection of service variants adheres to sub goals. A functional subgoal for the usage pro-
cess is to provide consider consumer requirements. Requirements define what stakeholders like
users, customers, suppliers, developers, or businesses want from a system [94], in our case from
service variants. If a variant does not fulfill requirements, its consumption is not feasible from the
consumer point of view. Thus, requirements in the following denote necessary prerequisites for
designing or consuming service variants. The usage process needs to provide means to 1) iden-
tify whether variants adhere to consumer requirements or not and 2) exclude variants not fulfilling
requirements from further consideration. Another functional subgoal for the usage process is to
incorporate consumer preferences. Preferences relate to desirable, but not inevitable characteris-
tics of a service variant. The adherence to preferences is thus, in contrast to that of requirements,
negotiable. Typically, multiple preferences denote trade-off relationships to another: if the ad-
herence to one preferred characteristics is increased enough, certain dismissal of other preferred
characteristics is acceptable in return. Another subgoal of the usage process is to provide the right
amount of structure. Providing structure reduces the risk of dismissing relevant steps in service
variant selection. On the other hand, too narrow structure can restrict benefits or applicability of
the usage process. The process should thus offer structure to assist, while not restricting users.
Finally, another subgoal for the selection process is automation. Given the required input (i.e., an
SFM, requirements and preferences), the selection should be performed automatically and thus be
repeatable. Automation increases the applicability of using SFMs for variant selection in scenarios
where manual intervention cannot be guaranteed. For example, automation is necessary if selec-
tion needs to be performed unexpectedly, like in the case of a disaster. Performing selection again
instead of just relying on previous selection results is necessary in light of eventually changed

attributes composed into SFMs (cf. section 3.4).

80

4.1. Usage Process

4.1.2. Usage Overview

The usage process in service feature modeling consists of multiple steps, which are illustrated in

figure 4.1.

{I[]E Requirjments

SFM

Requirements

| -
¢ ' filtering
Configuration set % % I&
determination ’ — >0 O

Confi ti Reduced
onfiguration 4 C
get »-| Skyline filtering conflgzzatuon

>0«

- Key: ---o-eoee
§ -OR ! ¢
l : Preference- 1A’ ZA'

. =XOR Preferences — | asedranking [» Configuration
ranking

Figure 4.1.: Overview of the usage process of service feature models

Usage starts with an SFM, whose feature structure, cross-tree relationships, attribute types and
attributes are defined. The SFM does not need to be completed - the usage process can also be
performed on intermediary SFMs. The first step of the usage is the configuration set determina-
tion. It produces a set of all configurations valid according to the SFM. Depending on the size
and structure of the model, this set can contain thousands of configurations. Configuration set
determination can be repeated on-demand, for example in reaction to changes in the SFM. Having
determined the configuration set, requirements filtering and / or skyline filtering can be applied.
Requirements filtering, based on the notion of requirements as necessities, dismisses configura-
tions that do not fulfill stated requirements from the configuration set. To perform this step, a
priorly defined set of configurations and specified requirements are necessary input. Skyline filter-
ing compares configurations based on their attributes and releases the configuration set of ones that
are strictly dominated by others. Skyline filtering is especially relevant to reduce the problem size
when performing preference-based ranking. Requirements and skyline filtering can be performed
in combination or repeatedly, for example, in reaction to changes in requirements. Preference-
based ranking produces a ranking of configurations based on provided preferences. Thus, as in-
put it requires a set of configurations, either produced by the configuration set determination or
a reduced one resulting from the skyline and / or requirements filtering, and stated preferences.
Again, preference-based ranking can be performed repeatedly, for example in reaction to changes
in preferences. The resulting configuration ranking has to be evaluated in light of the previously

performed steps. If requirements filtering was performed, it denotes a ranking of feasible config-

81

4. Using Service Feature Models

urations only. Otherwise, it denotes a ranking of any configuration, feasible or not. The ranking
can either be assessed manually by human actors, who consider it as a recommendation for the
service variants to develop, deploy and operate from a provider’s point of view or to consume from
a consumer’s point of view. Alternatively, the ranking can be automatically processed, selecting
for example the highest ranked service variant for development or delivery.

Depending on the utilization in either provider or consumer design activities (cf. section 4.1.1),
additional sub steps are required. To enable participation, SFM need to be transformed and trans-
fered to make them available to participants in dedicated abstractions. We discuss the necessary
steps as part of the participatory preference-based ranking approach in section 4.4.6. When usage
addresses variant selection for delivery, SFMs stating realizable service variants need to be send
from the provider to consumers. In reverse, selected variants need to be communicated from the

consumer to the provider for realization.

4.1.3. Involved Stakeholders

The stakeholders involved in service feature modeling’s usage process depend on the pursued goals
(cf. section 4.1.1). When usage addresses variant selection during development, it is likely per-
formed by the same stakeholders who modeled the SFM. Thus, typical users are service or software
engineers (cf. section 3.3.1). Next to requiring background in modeling to be able to deal with
SFMs, these stakeholders need to be capable and authorized to state requirements and preferences
for variant selection, for example as representatives of the institution developing the service. In
the case that SFMs are used for participatory development, stakeholders who are typically not
involved in software service development also perform usage activities. These stakeholder in-
clude, for example, citizens in case of public services [88] or end users [173]. Given they may be
non-technicians, dedicated abstractions from technical details are required to enable their involve-
ment in the development process. When usage addresses variant selection for delivery, involved
stakeholders are consumers or prospect consumers. If they interact directly with SFMs for variant
selection, for example using skyline or requirements filtering, they require knowledge in model-
ing. Other required skills depend on the concerns modeled in an SFM based upon which variant
selection is performed. The SFM may contain technical, business, legal, or other concerns, which
require corresponding knowledge and decision-making powers. For example, a consumer’s legal
department may have to check the compatibility of terms of services represented by features with
their own regulations.

In every case, stakeholders apply usage methods to select service variants, in other words, to
decide among them. In the following, we thus refer to a stakeholder involved with the usage

process as decision-maker.

82

4.2. Automatic Determination of Variants

4.2. Automatic Determination of Variants

The automatic determination of variants produces the set of all valid configurations for a given
SFM. It consists of two steps: first, it transfers the SFM to a constraint satisfaction problem (CSP)
and solves it as described in section 4.2.1. Second, it aggregates the attributes for each configura-

tion, as described in section 4.2.2.

4.2.1. Mapping of SFMs to Constraint Satisfaction Problems

To automatically determine the configurations of an SFM, similar to standard feature models, it
needs to be represented in a computer-understandable way. Various formalization approaches have
been proposed for this purpose [32]. The most common approaches are to represent feature mod-
els as constraint satisfaction problems (CSP) [33], in terms of propositional logic [30], or using
description logic [213]. While the formalization using propositional logic builds upon binary vari-
ables only, the formalization as a CSP includes integer and interval ones [154]. Propositional
logic-based formalizations make use of binary decision diagrams (BDD) or satisfiability solvers
(SAT) to perform analysis operations. One differentiator between these approaches is their ex-
pressiveness with regard to the supported analysis operations but also with regard to the specific
feature model language, for example, cardinality-based, extended [32]. Another factor for using
one approach over the other is the performance of corresponding solvers with regard to computa-
tional effort. Extensive studies have been performed to determine each approaches performance
in different contexts, i.e., different model sizes, different analysis operations [154]. The authors
find that CSP solvers perform especially good for “small” model sizes, defined as having up to
100 configurations, and in scenarios where the solver is called frequently. Based on the good per-
formance with small models and due to their capability to be extended to use integer and interval
variables, we choose constraint satisfaction problems (CSP) as the formalization to use for service
feature modeling.

The mapping of an SFM to a CSP follows the rules defined in related work [101]. The formal-
izations for decomposition and cross-tree relationships are outlined in section 3.2.1. Table 4.1 lists
the corresponding constraints to be created in the CSP depending on the type of node traversed,
based on [101]. The notion .selected indicates that a feature is selected.

Our mapping algorithm is described in listing 1. It iterates a given SFM twice. In the first
iteration, for every feature f € SFM, a binary variable is created in an object CSP representing
the constraint satisfaction problem. In addition, the mapping between every feature and the cor-
responding binary variable is stored in a map. In the second iteration, for every relationship r,
depending on this relationship’s type, constraints between the binary variables are created. The
constraints adhere to our definitions in table 4.1. To create the constraints, the mapping between
features and priorly created binary variables is conducted as to identify the correct variables in the

constraint satisfaction problem. In the end, the completely modeled CSP object is returned.

83

4. Using Service Feature Models

Algorithm 1 Mapping SFM to CSP

1. procedure MAPSFMTOCSP(SFM)

—_— = =
bl

—_ = =
AN

17:
18:
19:

20:
21:

22:
23:

24:

R A ATl o

H
@

CSP+0 > variable to hold constraint satisfaction problem
fv—{} > map to store relationship between features and CSP variables
for all Feature f € SFM do

X <— new BinaryVariable()

fv.put(f, x)

CSP.addVariable(x)

for all Relationship r € SFM do
switch type(r) do
case R"""
CSP.addConstraint(fv.get(ter(r)).selected < fv.get(init(r)).selected)

case RV
CSP.addConstraint(fv.get(ter(r)).selected = fv.get(init(r)).selected)

case ROR
cf < ter(r) > array to store all child features of OR relationship
CSP.addConstraint(
fv.get(cf0]).selected \ ...V
fv.get(cfn]).selected < fv.get(init(r)).selected)

case RXOR

cf < ter(r) > array to store all child features of XOR relationship
CSP.addConstraint(
(fv.get(cf]0]).selected <
(—fv.get(cf[l]).selected A ...
A= fv.get(cfn]).selected A fv.get(init(r)).selected))
VAVIAN
(fv.get(cfn]).selected <
(—fv.get(cf|0]).selected A ...
N—fv.get(cfln—1]).selected N fv.get(init(r)).selected))
case Rrequires
CSP.addConstraint(fv.get (init (r)).selected = fv.get(ter(r)).selected)

case Rexcludes
CSP.addConstraint(fv.get (init(r)).selected N fv.get(ter(r)).selected)

return CSP

84

4.2. Automatic Determination of Variants

SFM element CSP constraint
Mandatory feature P is a parent feature and C is a child feature in a mandatory relation-
ship. Then: C.selected < P.selected

Optional feature P is a parent feature and C is a child feature in a mandatory relation-
ship. Then: C.selected = P.selected

OR constraint P is a parent feature and Cy,C;...C, are child features in a OR re-
lationship. Then: Cj.selected V Cy.selected \ ...\ Cy.selected <
P.selected

XOR constraint P is a parent feature and C;,(;...C, are child features in a

XOR relationship. Then: (Cj.selected < (—Cj.selected A ... N
—Cp.selected N\ P.selected)) N...\ (Cy.selected < (—C).selected N
.. N=Cy, — l.selected N P.selected))

Requires relation- X and Y are features in a requires relationship R"?“"*S(XY'). Then:

ship X .selected = Y .selected
Excludes relation- X and Y are features in an excludes relationship R/“des(X Y).
ship Then: —(X.selected \Y.selected)

Table 4.1.: CSP constraints for SFM elements, based on [101]

Having mapped a SFM in this way to a CSP, it can be solved. Solving results in any possible
(if existent) combination of setting all binary variables to true or false that adheres to all defined
constraints. Each combination is a valid solution of the CSP and represents one valid configuration
of the SFM. Empirical analyses of the performance of different CSP solvers applied to feature
modeling have been presented in related work [154].

Id Selected instance features WS-* spec- Price / 10k Real time Quote
ifications requests data history
provided
c1 SOAP 1 100.00 0 0
¢z SOAP, inclusion of quote history 1 100.00 0 1
c3 REST 0 80.00 0 0
c4 REST, real time quote updates 0 120.00 1 0
¢s REST, inclusion of quote history 0 80.00 0 1
ce REST, real time quote updates, 0 120.00 1 1

inclusion of quite history

Table 4.2.: Configurations of example in figure 4.2

Table 4.2 lists all valid configurations from the example presented in image 3.4. Specifically,
column two states the selected instance features for each configuration. The root feature “stock
quotes API” and abstract feature “interface” are selected in every configuration. Abstract feature
“data delivery options” is selected given that either “real time quote updates” or “inclusion of quote
history” is also selected.

85

4. Using Service Feature Models

4.2.2. Attribute Aggregation

Having determined an SFM'’s valid configurations, attributes are aggregated for each one. The
service feature modeling language, as described in section 3.2.4, allows multiple attributes in an
SFM to be associated with the same attribute type. The attribute type, among other things, defines
the aggregation rule AR(at) for attributes of that type ar. Table 4.3 provides an overview of the

available aggregation rules.

Name Aggregation rule

Sum If the aggregation rule AR (ar) of attribute type ar equals sum, the overall
aggregated attribute’s instantiation value iv(c,a) for configuration ¢ € C
is calculated as follows:
v(c,a) =Y i(ar), Var €A suchthat3ar, r,f€c

Product If the aggregation rule AR(at) of attribute type at equals product, the
overall aggregated attribute’s instantiation value iv(c,a) for configuration
¢ € C is calculated as follow:
iv(c,a) =li(ax), Vax €A suchthat3ar, s, f€c

Minimum If the aggregation rule AR(ar) of attribute type at equals minimum, the
overall aggregated attribute’s instantiation value iv(c,a) for configuration
¢ € C is calculated as follows:
iv(c,a) = min(i(ay)), Vax €A suchthat3ar, r,f€c

Maximum If the aggregation rule AR(at) of attribute type at equals maximum, the
overall aggregated attribute’s instantiation value iv(c, a) for configuration
¢ € C is calculated as follows:
iv(c,a) = max(i(ax)), Vai € Asuchthat Jar,, s, f€c

At least once If the aggregation rule AR(at) of attribute type at equals at least
once, the overall aggregated attribute’s instantiation value iv(c,a) for
configuration ¢ € C is calculated as follows:

1, if Jay = 1 such that Jar, ¢, f € ¢

v(c,a) = { 0 , else.

Table 4.3.: Overview of aggregation rules

The aggregation of attributes is dependent on the provision of aggregation rules, which is a major
capability that attribute types add to service feature modeling. Listing 2 illustrates the procedure.
It takes as input an SFM whose configuration set C is already determined. Initially, a values map
is created that contains additional maps for every attribute type. The SFM’s attributes are iterated
and for every one of them, the feature they describe and their instantiation value iv(f,a) are stored
in the map of the corresponding attribute type. The values data structure thus represents a matrix
whose rows are the SFM’s attribute types and whose columns are the features contained in the
SFM. The entries of this matrix are the instantiation values (if existent) that the column’s feature
has regarding the row’s attribute type. The purpose of creating the values data structure is to
speed up look-ups for instantiation values, which would otherwise require expensive iterations of

the SFM. In consequence, the SFM’s configuration are iterated per attribute type. Depending on

86

4.2. Automatic Determination of Variants

the aggregation rule and using the values data structure, each configuration’s instantiation value
iv(c,a) is calculated and stored.

After attribute aggregation, every configuration denotes exactly one attribute of each type, whose
instantiation value iv(c,a) is the result of the aggregation for that attribute type: Vc € C Aat € AT :

Na,atr(a,at),iv(c,a).

Algorithm 2 Attribute aggregation
1. procedure AGGREGATEATTRIBUTES(SFM)

2: values + { }
3: for all ar € AT do
4: values.put(at,{}) > put empty hashmap per attribute type
5: for all a € SFM do
6: f<atr(f,a) > obtain the feature containing attribute a
7: values.get(type(a)).put(f,iv(f,a)) > store f’s instantiation value in attribute a in
values
8: for all Configuration ¢ € C do
9: for all AttributeType at € AT do
10: switch AR(at) do
11: case sum
12: v+ 0.0
13: for all Feature f € c do
14: v < v+values.get(at).get (f)
15: case product
16: v+ 0.0
17: for all Feature f € c do
18: v < v values.get(at).get(f)
19: case maximum
20: v < Double. MIN_VALUE > start with smallest value possible
21: for all Feature f € c do
22: if values.get (at).get(f) > v then
23: v < values.get(at).get (f)
24: case minimum
25: v <— Double. MAX_VALUE > start with largest value possible
26: for all Feature f € c do
27: if values.get (at).get(f) < v then
28: v < values.get(at).get(f)
29: case atleastonce
30: v+ 0.0
31: for all Feature f € c do
32: if values.get (at).get(f) = 1.0 then
33: v+ 1.0
34: break
35: v(c,a) v > assign calculated instantiation value

In the example from figure 3.4, the aggregated attributes for each configuration are described in

87

4. Using Service Feature Models

columns 3 to 6 in table 4.2. For example, configuration c¢ contains instance features “REST” with
an instantiation value for “price / 10k requests” of 80.00 and “real time quote updates” with an
instantiation value for “price / 10k requests” of 40.00. In result, based on the aggregation rule of
“price / 10k requests” being “sum”, these values are added up, resulting in an instantiation value
of iv(ce, price / 10k requests) = 120.00.

4.3. Requirements Filtering

Requirements filtering allows decision-makers to dismiss configurations from a configuration set
that do not fulfill certain minimum requirements. To realize this mechanism, we present a way to
state and represent requirements in section 4.3.1. We then discuss how such statements are applied

to the configuration set of an SFM in section 4.3.2.

4.3.1. Stating Requirements

Requirements req € Req can be stated within an SFM as we propose in previous work [219]. Re-
quirements Req/ C Req concern the existence of features in configurations. Alternatively, require-
ments Req® C Req concern the instantiation values of configurations’ attributes. These are the only
two types of requirement: Reqg = Req’ UReq®. They do not overlap: Req/ NReq® = 0. The number
of all requirements is denoted as |Req| and the number of feature and attribute requirements is,
correspondingly, denoted as |Req/ | and |Req|.

Requirements for features req/ € Req/ are represented by marking the corresponding features
as required. This information can, for example, be captured in a boolean property added to each

feature. The following statements are possible:

e Requiring an instance feature A requirement regarding an instance feature req(f!) € Req’
states that the instance feature f’ is required. Thus, only configurations containing this
feature fulfill this requirement. The value v(req(f!),c) of such a requirement regarding a

configuration c is calculated as follows:

. [
v(req(f’),c>={1 e (4.1)

0 , else.

Thus, v(req(f!),c) = 1 means that the requirement is fulfilled while v(req(f"),c) = 0 means
that the requirement is not fulfilled by configuration c¢. Using this approach, for example,
optional features can be required so that only configurations remain that denote this feature.
Or, a certain instance feature within an XOR or OR grouping decomposition can be set as
required. For example, in the SFM from figure 3.4, the instance feature “SOAP” can be

required.

88

4.3. Requirements Filtering

e Requiring an abstract feature A requirement regarding an abstract feature req() € Req’
states that it must be instantiated (in any way). Thus, at least one child instance features of
the required abstracted feature must be present in a configuration to fulfill this requirement.
The value v(req(f*),c) of such a requirement regarding a configuration c is calculated as

follows:

1, if 3r | init(r) = fA A ter(r) = fI, re R%, fA flcc

4.2
0 , else. *+2)

v(req(f*),c) = {

Again, v(req(f*),c) = 1 means that the requirement is fulfilled while v(req(f4),c) = 0
means that the requirement is not fulfilled by configuration c¢. For example, in the SFM
from figure 3.4, the abstract feature “data delivery options” can be required. In consequence,
either the “real time data updates” or “inclusion of quote history” need to be present in

requirements-fulfilling configurations.

Requirements for attributes req® € Req” can be set by defining the valid instantiation values of
an attribute. Requirements for attributes always relate to the instantiation values of the aggregated
attributes in configurations. The requirements can be modeled, for example, within a property

“required values” added to each attribute type'. The following statements are possible:

e Requiring a specific value A requirement regarding a specific attribute value req(a,x) €
Req? states that the attribute must denote value x. Configurations fulfill this requirement
only if their value for attribute a equals x. The value v(reg(a,x),c) of such a requirement
regarding attribute a and configuration c is calculated as follows:

1, ifiv(c,a) =
v(req(a,x),c) = iv(c,a) =x 4.3)
0 , else.
For example, in the SFM from figure 3.4, “WS-* specifications” can be required to equal 1

(= true) to delimit configurations that do not denote this qualitative characteristic.

e Requiring a threshold for an attribute value A requirement regarding a threshold for
an attribute value req(a,o,x) € Req” states that the attribute’s instantiation value must lie
within the range specified by the threshold. The value v(reg(a,<,x),c) of such a requirement
regarding attribute a and configuration c is calculated as follows:

1, ifiv(c,a) ox, oe{<,<,>,>}

v(reg(a,o,x),c) = 0 else (4.4)

Note: after aggregation, each configuration denotes only one attribute per attribute type, expressing the aggregated
instantiation value. Thus, attribute types are a suited place to state requirements valid for all configurations of an
SEM centrally.

89

4. Using Service Feature Models

If a threshold is required, configurations fulfill this requirement if they denote an instantiation
value within the interval specified by this threshold. For example, in the SFM from figure 3.4,
“price / 10k requests” can be required to be smaller than 100.00 to delimit configurations that

are more expensive .

A requirement is further specified with a weight w,,, that expresses its importance. Weights lie
between wy, = 0, meaning that the requirement req does not matter to the decision-maker at all,
and w;; = 1, meaning that the requirement req denotes a hard constraint. Weights in between 0
and 1 thus express a relative importance. Similar to requirements, weights can be represented in

dedicated properties of features and attribute types.

4.3.2. Matching Requirements to Variants

To process configuration sets against stated requirements, we propose a matchmaking approach.
Our approach performs goal-based matchmaking to determine solutions that satisfy specified con-
straints [13], in this case the requirements specified as described in section 4.3.1. It works by
assessing every configuration in a configuration set regarding the stated requirements. The idea
behind our matchmaking method is to be fuzzy. In fuzzy sets, elements are assessed gradually
to be member of a set, typically by use of a membership function valued in the real unit interval
[0, 1] [149]. Instead of just denoting binary whether a configuration fulfills all requirements stated
in Req or not, we aim to express their degree of fulfillment. The degree of fulfillment results from
summing up the fulfillment gaps that express to what extend an individual requirement req € Req
is not met. The algorithmic procedure of the requirements matchmaking method to achieve this
goal is described in listing 3.

For all requirements for features, the requirements filtering algorithm checks the current config-
uration for the existence of required features, resulting in v(req/, ¢) being 0 or 1. Using this value,

we define the fulfillment gap for requirement req’ as follows:
gap(req’) =1—v(req’ ,c) 4.5)

Thus, gap(req’) = 1 if the requirement req’ is not met and gap(req’) = 0 if it is met. The
fulfillment gap of every feature requirement is stored in a map multiplied by the weight w,, s for
that requirement.

Similarly, for all requirements for attributes, the requirements filtering algorithm checks the cur-
rent configuration for the value of attributes regarding which requirements were specified, resulting
in v(req®,c) being 0 or 1. The fulfillment gap gap(req(a,o0,x),iv(c,a)) to which the required value
x is not met by the actual value iv(c,a) of configuration c in attribute a is calculated as follows:

0 , ifv(req®,c) =1
gap(req(a,o0,x),iv(c,a)) = { —iv(ea)| (req”,c) (4.6)

, else.

90

4.3. Requirements Filtering

Algorithm 3 Filtering requirements
1: procedure FILTERREQUIREMENTS(SFM, Req)

2: degList > list of deg(c,Req) values
3 for all Configuration ¢ € SFM do
4 fv > map of non-fulfilled feature requirements
5: aMap > map of non-fulfilled attribute requirements
6: deg(c,Req) <0 > degree deg(c,Req) to which ¢ differs from requirements
7 for all FeatureRequirement req/ € Req do
8 calculate v(req')
9: if v(req’,c) = 1 then

10: gap(req’) <0

11: else

12: gap(req’) + 1

13: fv.add(req’, Wireq! x gap(req’))

14: for all AttributeRequirement req“ € Req do

15: calculate v(req“)

16: if v(req?,c) = 1 then

17: gap(req(a,o0,x),iv(c,a)) <0

18: else

19: calculate gap(req(a,o0,x),iv(c,a))

20: aMap.add(req(a,0,x), wyeqa * gap(req(a,o,x),iv(c,a)))

21: calculate deg(c,Req) > uses aMap and fv as input

22: degList.add(deg(c,Req))

For example, a requirement states that the attribute value for “development cost” needs to be equal
or smaller than 800, so that req(“developmentcost”,<,800). A configuration has “development
cost” of “700”. In this case, because the requirement is met, the fulfillment gap is 0. Another
configuration has “development cost” of “1000”. In this case, the fulfillment gap equals |(800 —
1000)|/800 = 0.25. The fulfillment gap of every attribute requirement is stored in a map multiplied
by the weight w4« for that requirement.

Having assessed every feature and attribute requirement for a configuration, the overall degree
of fulfillment deg(c, Req) is calculated and stored. The calculation of the degree of fulfillment uses
simple additive weighting (SAW) [230]. In SAW, an evaluation score is calculated as a weighted
average for each alternative. The evaluation score results from multiplying an alternative’s value
for a criteria with the weights of relative importance directly assigned by decision-maker to that
criteria. The products are in consequence summed up. For every configuration c, the degree
of fulfillment deg(c,Req) results from summing up the fulfillment gaps for required features or
attributes, multiplied by their weights. The resulting value is normalized by dividing it with the

number of requirements. Subtracting this value from 1, one obtains the degree of fulfillment:

91

4. Using Service Feature Models

1 :
deg(c,Req) = © (1 — m [Z gap(req’) * Wiegf + Z gap(req“,iv(c,a)) *wreqa])
eq req/ €Req/ req“cReq

4.7)
The factor o denotes whether there exists a requirement reqg that is not fulfilled but that is
weighted to be mandatory to the decision-maker, so that w,,, = 1.0. If that is the case, the overall

degree of fulfillment is set to 0.

(4.8)

{ 0 ,if Jreq € Req: v(req,c) =0 A Wyq =1.0

1 , else.

Factor o acts as a safety mechanism to avoid consideration of infeasible configurations.

An advantage of our fuzzy approach is to avoid cases in which no configurations fulfill re-
quirements. When no configuration fulfills all requirements, strict (or in terms of fuzzy logic
crisp [149]) matchmaking approaches produce no result. In contrast, fuzzy matchmaking reveals
which configuration come closest to fulfilling requirements. Furthermore, decision-makers can be
presented with the requirements that were not fulfilled (using fv and aMap from listing 3), allow-
ing them to revise and eventually lighten them. The decision-maker can also define a threshold for
the degree of fulfillment stating until what point a configuration is still relevant enough to further
consider it.

In the SFM from figure 3.4, consider requirements Req exist for abstract feature “data delivery
options” to be realized, so that req := req(“data delivery options”) € Reg with a weight of wy.,, =
0.9. A second requirement states that attribute “price / 10k requests” needs to be smaller than
or equal to 60.00, so that req, := req(“price / 10k requests”, <,60.00) € Req with a weight of
Wreg, = 0.5. For configuration c3, the degree of fulfillment calculated with equation 4.7 results in
deg(c3,Req) = 1% (1—1[1x0.9 + (]60.00 —80.00|/60.00) x0.5]) = 0.467. For configuration
cs, the degree of fulfillment calculated with equation 4.7 results in deg(cs,Req) = 1 (1 — % [0 *
0.9 + (|60 —80[/60) x0.5]) = 0.917. This example illustrates that, while both configurations do
not completely fulfill the stated requirements, c¢s does come much closer in doing so, because it

fulfills the highly weighted requirement for a “data delivery options”.

4.4. Preference-Based Ranking of Variants

Requirements filtering allows decision-makers to delimit configurations that do not meet what is
needed. However, there may remain multiple configurations that all fulfill requirements and among
which still a selection needs to be made. We aim to make use of the comparability of configurations
that results from their annotation with attributes (cf. section 3.2.1). Given that each configuration
is characterized by one attribute for every defined attribute type, multi-criteria decision making
(MCDM) approaches can be applied. In them, multiple decision alternatives are compared and

assessed in the presence of multiple, usually conflicting criteria or objectives [158]. When ap-

92

4.4. Preference-Based Ranking of Variants

plying MCDM approaches to service feature modeling, an SFM’s configurations cj...c,, are the
MCDM problem’s decision alternatives, denoting the problem space D := C = {c,...,c,}. On
the other hand, the SFM’s attribute types at;...at,, are the MCDM problem’s conflicting objectives
or criteria, denoting the solution space O := AT = {at,...,at,,}. Every decision alternative has a
value regarding each criteria, which in service feature modeling is the instantiation value iv(c,a) of
configuration c regarding attribute a of type at; (cf. section 3.2.4). As in any MCDM method, we
aim to apply a mapping of the decision space to the solution space that allows for the assessment
of every alternative regarding the value of every objective [158]. For preference-based ranking of
configurations, we use the analytical hierarchy process (AHP) [168]. 1t is heavily researched [211]
and frequently used in practice [208].

4.4.1. Ranking Overview

An overview of the preference-based ranking process’s three steps is illustrated in figure 4.2.

SFM 2. Stakeholder

Preference Collection
1. SFM to Poll

. Poll
o Transformation
Interface Data delivery WS-* Price / 10k
options specifications requests
WS-* Real time

Inclusion of specifications ¢ data

soap REST - Realtime :
quote history

quote updates

Price / 10k o Real time
P2 \ JR LA , requests data
| true ! :100.00: :80.00: :40.00: | true !

Ws+ U Brice 70k - ; A .
specifications | | requests P Real time data
3. Configuration

Ranking
Determination

Rank 2: Rank 3:

]]

Dala delivery
options

Real time Tnclusion of
sonp ‘ ‘ Hest }"‘{qume updales‘ ‘qucts history

Data delivery
options

Real tme Tnciusion of Real ime Tnciusion of
‘ so ‘ ‘ REST “’{ﬂum&umam‘ ‘qnmshisiory ‘ SoAR ‘ ‘ REST ““{qumsupdeﬂss‘ ‘qumshiswry

Interface.

Interface.

Price 7 10k
requests

Price / 10k
requests

Price / 10k

{ | Realtimedata |
requests i i

| | Realtimedata | | | Realtimedata |

- Key:

: ; !) PP - ;
: | Grouping | Abstract Instance | 4 puibute ype |1 Attribute |
: feature feature feature H e [

: = mandatory = optional =XOR =0R <» =Excludes :
feature feature --% =Requires

Figure 4.2.: Process of (participatory) configuration ranking, based on [224]

The input for the method is a an SFM, including feature decompositions, cross-tree relationships,

attribute types, and attributes. To derive decision alternatives from this SFM, its configuration set

93

4. Using Service Feature Models

must have been determined. The configuration set may already have been released of configura-
tions that do not fulfill requirements (cf. figure 4.1). To reduce the number of decision alternatives
to consider in preference-based ranking, skyline filtering can be applied. It dismisses configura-
tions that are dominated by others and can thus not achieve a high ranking in preference-based
ranking. The first step of preference-based ranking is to transform the SFM into a poll. A poll
consists of pairwise comparisons of the attribute types defined in the SFM. Polls thus provide an
interface for preference-statement regarding an SFM. Using the poll, decision-makers state their
preferences for the SFM’s attribute types using the pairwise comparisons. Interaction with polls
can be realized outside of SFM modeling tools, bearing potential to make polls accessible to non-
experts and thus using them as a vehicle to enable participation (cf. section 4.4.6). Preferences
stated by multiple stakeholders can be aggregated to obtain an insight into majority preferences.
Using collected preferences, a ranking is determined reflecting how much the decision-maker(s)
prefer the the attribute types relative to another. Similarly, rankings of configurations expressing
their fulfillment of each attribute type are created. By combining these rankings, the relative fulfill-
ment of the decision-maker’s preferences for attribute types by configurations is determined. The
higher the rank of a configuration, the better it meets the decision-maker’s preferences as com-
pared to all other configurations. The highest ranked configuration(s) can be selected for service
development or delivery.

The following subsections outline the involved steps in detail. The content of the following

subsections includes material currently under review [224].

4.4.2. Skyline Filtering

Skyline filtering aims to reduce the number of alternatives to consider in preference-based ranking.
It is based on the concepts of dominance [158], which can be applied to service feature modeling
in the following way: a configuration ¢; dominates another configuration c; if the following con-
ditions both hold:

e Every instantiation value of ¢; is equal or larger than the corresponding instantiation value
of of ¢; for all attribute types whose scale order is “higher is better” or “existence is bet-
ter”. Formally: iv(c;,a) > iv(cj,a), Va : 3atr(a,at),scaleOrder(at) = “higher is better” Vv

scaleOrder(at) = “existence is better”.

e Every instantiation value of ¢; is equal or smaller than the corresponding instantiation value
of of ¢; for all attribute types whose scale order is “lower is better”. Formally: iv(c;,a) <

iv(cj,a), Ya : Jatr(a,at),scaleOrder(at) = “lower is better”.

We denote the dominance of configuration ¢; over configuration c; as ¢; = cj. If ¢; is strictly
larger/smaller (and not equal) in every instantiation value, the dominance is referred to as strong,
otherwise it is referred to as weak. A decision alternative that is not dominated by any other

decision alternative belongs to the skyline of the problem space D [185].

94

4.4. Preference-Based Ranking of Variants

The most basic approach to determine the skyline, also referred to as basic loop [41], is to
perform complete enumeration by comparing each decision alternative against every other one with
regard to every decision objective. To improve performance, presorting can be performed [53]. The
assumption behind presorting is that decision alternatives with a high sum of normalized objective
values are likely to dominate others, while decision alternatives with a low sum are likely to be
dominated. Sorting based on the sums allows skyline filters to more easily dismiss dominated
decision alternatives. Further approaches presort based on the number of objectives, in which
decision alternatives dominate others [185]. Skyline filtering approaches apart from the basic loop
one include block-nested loop (BNL) algorithms, divide and conquer algorithms, or binary tree
algorithms [41].

Algorithm 4 Block-nested loop skyline filtering for service feature modeling

1: procedure SKYLINEFILTERING(C) > C is the list of configurations
2: window < 0 > window of objects not yet dominated
3 for all pc Cdo > go through all configurations, denoted as p
4 window.add(p)
5 for all g € window \ {p} do
6: if p < g then
7 window.remove(p)
8 break
9 else if p > g then

10: window.remove(q)

11: return window

We utilize a modified version of the BNL algorithm for service feature modeling as illustrated
in listing 4. The algorithm works by defining a window, which stores not yet dominated config-
urations. Every additional configuration from the original configuration list is compared with the
ones already in the window. If the new configuration is dominated by one from the window, the
former is dismissed and comparison continues with the next configuration. If the new configu-
ration dominates one from the window, the latter is dismissed and the comparison continues with
remaining configurations in the window. If neither configuration dominates the other, both are kept
in the window. In contrast to typical BNL algorithms, our algorithm refrains from writing results
temporarily to disk [41] because we assume memory of today’s computers to be able to handle the
required dataset sizes. The algorithm reveals the advantage of presorting: if configurations that are
likely to dominate others are added early to the window, additional configurations from the orig-
inal configuration list are likely to be dominated and dismissed early on. This reduces necessary
comparisons.

The advantage of selecting skyline configurations is to reduce the problem size for subsequent
preference-based ranking, which leads to two advantages: first, a reduced problem size results in
more expressive results. In the configuration rankings determined in preference-based ranking,

every configuration is ranked as compared to all other configurations. If the number of configura-

95

4. Using Service Feature Models

tions is high, ranking values are likely to be similar. Additionally, the decision-maker has to assess
a large number of ranking values. Second, reducing the number of decision alternatives has posi-
tive impact on the performance of preference-based ranking implementations, as our performance
evaluation shows, presented in section 5.2.

Applying skyline filtering to the configurations of the example SFM presented in figure 3.4
(cf. table 4.2), 3 configurations are dominated: c¢; is dominated by c¢;, which realizes “quote
history provided” while having equal instantiation values for all other attributes. Additionally,
¢s dominates c3 because the former has “quote history provided” information while having equal
instantiation values for all other attributes. Finally, cq dominates c4, again, based on the provision
of quote history. Overall, skyline filtering emphasizes that providing quote history is beneficial in
any case because the feature realizing this characteristic does not induce any negative impacts on

the resulting service variant.

4.4.3. SFM to Poll Transformation

Taking as input an SFM whose configuration set is determined and potentially reduced through
requirements and/or skyline filtering, the preference-based ranking requires a poll for stakeholders
to state their preferences regarding the capabilities of the configurations. The idea of a poll is to
enable stakeholders to rank criteria (= attribute types) based on their preferences, thus enabling
to rank decision alternatives (= configurations) high that perform well with regard to important
criteria. As proposed in the analytical hierarchy process (AHP), our polls make use of pairwise
comparisons to order attribute types [168]. Thus, for poll creation, each attribute type is opposed

to every other attribute. We define the set of attribute types to consider in pairwise comparisons as:

AT = {aty, ...,at,} (4.9)

where at; represents an individual attribute type to be evaluated. A poll considers only those
|AT€V“1} attribute types of an SFM whose fo be evaluated property is set to true (cf. section 3.2.4).
The order of the pairwise comparisons is random. The resulting number K of pair-wise compar-

isons is:

B |ATeval} *(‘ATeval’ o 1)
k= 2

Being able to exclude attribute types from an evaluation using the fo be evaluated property is

(4.10)

useful considering that high numbers of comparisons likely discourage stakeholders from stating
their preferences thoroughly.

In the example SFM presented in figure 3.4, only the 3 attribute types “WS-* specifications”,
“price / 10k requests”, and “real time data” are considered in preference-based ranking. The to
be evaluated property of “quote history provided” is set to “false”, because the inclusion of quote

history is without negative impacts, as already identified in the skyline filtering (cf. section 4.4.2).

96

4.4. Preference-Based Ranking of Variants

A poll of the selected attribute types results in the 3 comparisons “WS-* specifications” vs. “price
/ 10k requests”, “WS-* specifications” vs. “real time data”, and “price / 10k requests” vs. “real

time data”.

4.4.4. Stakeholder Preferences Collection

We use the fundamental scale of absolute values for stakeholders to compare their preference
among attribute types [170]. For each pairwise comparison of attribute type at; and at; (at;,at; €
AT, a stakeholder’s preference for one of the attribute types is expressed in terms of the in-
tensity of importance I(at;,atj). Values range from 1, meaning that attribute types a; and a; are
considered equally important, to 9, meaning that attribute type at; is considered extremely more
important than attribute type at;. A precise definition of the meaning of different values, following
related work [170], is given in table 4.4. Reciprocal values indicate reverse importance. A com-
mon validation of collected preferences is to evaluate their consistency. In a consistent preference
statement, transitivity between statements holds. The typical approach to ensure consistency is to

calculate and evaluate the consistency index (CI) [171].

I(at;,at;) Definition
-9 at; is considered extremely more important than az;
-7 at; is considered very strongly more important than at;
-5 at; is considered strongly more important than at;
-3 at; is considered slightly more important than ar;

1 atj and at; are considered equally important

3 at; 18 considered slightly more important than az;
5 at; 18 considered strongly more important than az;
7
9

at; is considered very strongly more important than at;
at; is considered extremely more important than at;

Table 4.4.: Meaning of intensity of importance values, following the scale of absolute values [170]

In the case that preferences of multiple stakeholders are of interest, an aggregation of their
individual preferences is required. To do so, the geometric mean of the all stated intensity of

importance values can be determined:

=

I(at;,at;) = HI ati,at;); 4.11)

where W is the resulting mean intensity of importance value for comparing attribute types
at; and at, I(at;, at); is a single intensity of importance value for stakeholder /, and L is the number
of stakeholders.

In the example SFM illustrated in figure 3.4, sample intensity of importance values of a stake-
holder who considers “WS-* specifications” to be very important, are:

29 46

I(“WS-* specifications”, “price / 10k requests”) = 5,

97

4. Using Service Feature Models

I(“WS-* specifications”, “real time data”) = 3,

29 ¢

I(“price / 10k requests”, “real time data”) = 3.

4.4.5. Configuration Ranking Determination

The determination of the configuration ranking consists of three sub-steps. First, the attribute
type priority vector war 1s determined. It represents the order of attribute types by stating how
much stakeholders value each attribute type if compared to all other attribute types. Because the
attribute type priority vector is derived from the stakeholders’ stated preferences, it needs to be
recalculated each time a stakeholder submits new preferences. Second, configuration comparison
ranking vectors are determined. They state how configurations perform compared to each other
with regard to each attribute type. These vectors need only to be calculated once because they
depend on the modeled configurations and not on the stated preferences. Third, the previously
calculated vectors are aggregated to determine the configuration ranking based on the stakeholders’

preferences. The following subsections present details on the three steps.

Determination of attribute type priority vector

To determine a ranking for the attribute types based on the received preference values, the follow-
ing K by K matrix of pairwise comparisons is determined from the intensity of importance values

that a stakeholder provides in a vote. K denotes the number of collected intensity of importance

values:
1 e wln] eee Wl,‘AT‘
MPC=| 5= 1 Wi |AT| (4.12)
1 ' :
1 . 1 1
W1,AT| Wi |AT|
where:

1 (4.13)

o I(ati,atj) if I(ati,atj) >0
o if I(at,at;) <0

Matrix MPC has positive values everywhere and is reciprocal. Thus, for every entry g; ; the
following is true: a; j = aL,l The principal eigenvector of matrix MPC corresponds to a priority
vector that ranks the importance of each attribute type for the stakeholder [169]. The principal
eigenvector can be calculated by first squaring the matrix MPC. For the squared matrix the rows
are summed to result in an eigenvector whose elements are normalized to sum up to 1.0 by dividing
them by the rows total. Starting with the squared matrix this process is repeated iteratively until
the difference between the latest calculated eigenvector and the priorly calculated one is € (=

sufficiently close to 0).

98

4.4. Preference-Based Ranking of Variants

In the example SFM illustrated in figure 3.4, and based on the sample intensity of importance

values given in section 4.4.4, matrix MPC is:

WS-* specifications price / 10k requests real time data

WS-* specifications 1 5 3
MPC = price / 10k requests 1/5 1 3
real time data 1/3 1/3 1

(4.14)

Calculating the normalized principal eigenvector war of matrix MPC results in:

war = {“WS-* specifications” : 0.651,“price / 10k requests” : 0.223, “real time data” : 0.127}
(4.15)

Determination of configuration comparison ranking vectors

Next, for every attribute type at;, a configuration comparison ranking vector wy; is determined
based on a matrix MPC (at;) of pairwise comparisons for every attribute type. In matrix MPC(at;),
the instantiation value of every configuration ¢; € C as compared to another configuration ¢; € C
is captured for attribute type at;. In the case of a continuous attribute type at; (defined in the corre-

sponding attribute type’s domain property, see section 3.2.4) this matrix is obtained as follows:

1 ... V17k e v17|C‘
i , if domain(at;)
MPC(at;) = | 3 1 Vijc| | is continuous (4.16)
: | Lo
s |
Vic| Vi|c|

where v, is a result of relating the instantiation values iv(c;,a) and Iv(c,a) of configuration

¢; and ¢ with regard to attribute a of type type(a) = at; in the following way:

;:((f—]’(’;)) , if scaleOrder(type(a)) = “higher is better”
ik = (4.17)
% , if scaleOrder(type(a)) = “lower is better”

In the above case, configurations can easily be related because of the comparability of attribute
with numerical domain, for example “cost” or “throughput”. In the case of an attribute type with

boolean domain, matrix MPC(a;) is obtained as follows:

99

4. Using Service Feature Models

1 e vl./k .o v17|c‘
. , if domain(at;)
MPC(ati) = | 55 1 vic| is boolean (4.18)
: 1 :
1 ... 1 ...
Vic| Vi|c| !

where v; x depends on the instantiation values iv(c;,a) and iv(cg,a) of configuration ¢; and cy
with regard to attribute a of type type(a) and cp(a) is the custom attribute type priority (see sec-
tion 3.2.4) that defines how much better a service configuration is if iv(c,a) = 1 compared to a

configuration where iv(c,a) = 0:

(1 ,if iv(cp,a) = iv(cg,a)
vig =1 cpla;) ,ifiv(c;,a) =1 Aiv(cg,a) =0 (4.19)
\ CPgai) Jif iv(e,a) = 0Aiv(ek,a) =1

For every attribute type, the priority vector for the configurations can be determined using the
eigenvector method. As mentioned earlier, the determination of configuration comparison rank-
ing vectors needs only to be performed once within a preference-based ranking process, even if
attribute type ranking vectors are determined multiple times based on repeated statement of pref-
erences by one or multiple decision-makers.

In the example SFM illustrated in figure 3.4, in the following, we only consider the skyline
configurations c;, ¢s, and cg (cf. section 4.4.2). The matrix MPC(“WS-* specifications”), given a

custom attribute type priority for “WS-* specifications” is 3, is:

2 ¢s Co
cf 1 3 3

MPC(“platform ind”) = ¢s| 1/3 1 1 (4.20)
ce\1/3 1 1

Calculating the normalized principal eigenvector wws.x specifications Of matrix MPC (“WS-* specifications”)
results in: wyyg_x specifications = {CQ 006, ¢5:0.2, cq: 0.2}.
The matrix MPC(“price / 10k requests”) is (consider: the domain of “price / 10k requests” is

100

4.4. Preference-Based Ranking of Variants

lower is better):

1) Cs C6

c2 1 80/100=0.8 120/100=1.2

MPC(“price / 10k requests”) = c¢s| 100/80 =1.25 1 120/80=1.5
ce \ 100/120 = 0.833 80/120 = 0.667 1

(4.21)
Calculating the normalized principal eigenvector Wprice / 10k requests Of matrix MPC(“price / 10k requests”)
results in: Wprice / 10k requests = 1¢2 1 0.324, ¢5:0.405, c6:0.270}.
Finally, the matrix MPC(“real time data”), given a custom attribute type priority for “real time
data” is 5, is:
¢y C5 Co
o1 1 1/5
MPC(“location-based inf.”) = ¢4 1 1 1/5 (4.22)
Cq 5 5 1

Calculating the normalized principal eigenvector Wyey time data Of matrix MPC(“real time data”)
results in: Wreal time data = 1¢2 : 0.143, ¢5:0.143, ¢4 :0.714}.

Calculation of overall configuration ranking

After calculating one attribute type priority vector and |AT | configuration comparison ranking vec-
tors for the attribute types, these vectors can be combined to determine the configuration ranking
for the stated preferences. The ranking of a single configuration is calculated by summing up its
ranking values from all configuration comparison ranking vectors, weighted by the corresponding
attribute type priority within the respective vector. The rankings of all configurations sum up to 1.
The configuration with the highest value relatively best matches the stakeholder preferences with
regard to the attribute types in focus.

In the example SFM illustrated in figure 3.4, the ranking of ¢, for the exemplary preferences
from section 4.4.4 results in ¢c; = 0.651%0.64-0.223%0.324 +0.127 % 0.143 = 0.481. The ranking
of ¢s results in ¢5 = 0.651 % 0.2 40.223 % 0.405+40.127 % 0.143 = 0.238. The ranking of c¢ results
in cg =0.651%0.24+0.223%0.270+0.127%0.714 = 0.281. As a result, configuration ¢, is most
preferred compared to the other configurations. The result is driven by the high importance of

“WS-* specifications” stated in the preferences, which is only addressed by configuration c;.

4.4.6. Participatory Ranking

Preference-based ranking provides means for participation in selecting variants, addressing chal-

lenge 6 motivated in section 1.3.2. We understand participation as “[...] a set of behaviours or

101

4. Using Service Feature Models

activities performed by users in the system development process” [27, page 53]%. As this defini-
tion suggests, participation concerns the usage of SFMs for service development (cf. section 4.1).
The goal of participatory preference-based ranking is to allow users to rank configurations based
on their preferences. The ranking information drives the subsequent design, implementation, de-
ployment, and operation of highly preferred service variants.

Advantages of user participation in early stages of service design have been proposed in related
work [125]. They include integration of more original ideas with greater value for the users. These
ideas can be used directly to impact service design, they help to better understand user needs,
and they provide inspiration for the experts concerned with designing the service. Participation
in service design is additionally argued to increase the fit between service offer and consumer
needs [192]. While user participation in service design leads to original, highly valued solutions,
the realizability of participatory designs is simultaneously found to be lower than if services are
designed by experts only [125]. The here presented participatory preference-based ranking, rather
than collecting novel ideas, focuses on receiving input from users on service variants that are
actually realizable. It can be combined with other approaches that enable more open participation
(cf. section 5.3.1).

In this section, we present how preference-based ranking is used to enable participation in ser-
vice development. As described in the previous section, the concept of polls allows users to state
their preferences regarding the characteristics of services variants, represented as attribute types.
Polls thus abstract from concerns about a service’s design, implementation, deployment, or op-
eration, which are represented by features. Thus, polls enable also non-technical or non-experts
to state their preferences. We introduce the concepts required for participatory preference-based
ranking. We furthermore discuss the life-cycle of an evaluation, which is the main artifact of

participatory ranking.

Concepts of Service Design Alternative Ranking

Participatory ranking incorporates different elements as illustrated in figure 4.3.

An evaluation is the main artifact of the ranking approach. Semantically, an evaluation reflects
the assessment of the service variants modeled in an SFM regarding one stakeholder group, for ex-
ample consumers. Thus, an evaluation is associated with a single SFM and encompasses all further
artifacts used throughout one ranking process. An evaluation is described by a set of properties,
including its name, description, the stakeholder group it addresses or its current state. Details
about the state of an evaluation are provided in section 4.4.6. An evaluation is associated to a
single poll, which provides the interface for stakeholder participation. A poll is created from the
SEFM associated to the evaluation SFM as explained in section 4.4.3. The reason for separating the

evaluation from the poll is that both can exist in and be controlled by different components (cf.

2We follow the authors’ suggestion to differentiate participation from involvement, which is “[...] a subjective psy-
chological state reflecting the importance and personal relevance of a system to the user” [27, page 53].

102

4.4. Preference-Based Ranking of Variants

SFM
1
0..* [SingleVote | Vote
Evaluation [voderld : Strin — id : Long _
id : Long lastUpdate : Tlmestamp
i 0.." > stakeholderGroup : String
lastUpdate : Timestamp desoription - String
serviceld : String singleVotes :
name : String Poll 1
version : String 1 T
description : String . 1 ;joilgg:dgune - Date preferences
stakeholderGroup : String aggregatedVotes 0..*
state : State Preference
. id : Long
<<enumeration>> 0... IastUpdatel : Timestamp _
State AggregatedVote featureAttributeType1 : String
Created aggregationType : String featureAttributeType2 : String
Running clusterld : String preferencelover2 : Integer
Aborted
Finished

Figure 4.3.: Meta model of service feature modeling’s participatory ranking concepts

section 5.1.3). A vote is a set of preferences regarding the importance of attribute types stated in a
poll. A single vote is associated with a single stakeholder, whereas an aggregated vote results from
the combination of multiple single votes. Aggregated votes, for example, reflect the preferences
of all individual stakeholders belonging to a stakeholder group. Details about the collection of
votes and their aggregation are presented in section 4.4.4. A preference is a statement made by
a stakeholder about how much he values one attribute type if compared to another attribute type.
Preferences thus reflect intensity of importance values. The set of preferences for all pairwise

comparisons for one SFM’s attribute types is combined in a vote.

Evaluation Lifecycle

An evaluation is created at the beginning of the participatory ranking process and typically ends
with the decision-maker retrieving the evaluation results after the corresponding poll has com-
pleted. The existence of data objects representing evaluations is implementation-dependent. To
control validity of the interactions that stakeholders can perform with an evaluation’s poll, evalua-
tions denote the four states created, running, aborted, and finished. The states and the transitions
between them are illustrated in figure 4.4.

After an evaluation has been created, its properties can be updated or an SFM corresponding
to the evaluation can be created, updated or deleted without impacting the state. In addition, the
evaluation can be deleted. During all these actions, no poll is created. By setting an evaluation’s
state to running, a poll corresponding to the evaluation is created and published, for example on
an interaction platform (cf. section 5.1.3). This poll remains visible and active (meaning that
stakeholders can state their preferences) as long as the evaluation is kept in state running. The
poll becomes deactivated, meaning that stakeholders can no longer submit new votes but still view
existing ones, if the end date specified in the evaluation’s properties is reached. To reactivate an
evaluation’s poll, a new, future end date can be provided, thus extending the evaluation. While the

evaluation is running, configuration rankings can be retrieved without changing the visibility or

103

4. Using Service Feature Models

put e%

created (0),
enddate>now

post/put/del
model

post/put/del vote,
get config

put/del vote
get config

aborted (2),
enddate>now

running (1), aborted (2)
enddate<now enddate<now
put/del vote
put/del vote get config
put/del vote get config
get config

running (1),
enddate>now

Y ommee ey
: . = no correspondin = corresponding poll
: = eval state = eval creation . p 9 L P g p :
: poll exists visible & deactivated :
: © = end state l = eval operation . = corresponding poll . = corresponding poll :
: visible & active invisible :

Figure 4.4.: States of an evaluation

accessibility of the corresponding poll. If an evaluation’s state is changed from running to aborted,
the corresponding poll becomes invisible on the interaction platform. If the end date passes, an
aborted evaluation can be reactivated by providing a new, future end date. In the aborted state,
votes can be updated, retrieved, this is important to retrieve the latest aggregated vote, and deleted.
However, no new votes can be created. Configuration rankings can still be retrieved. To make a
completed poll visible, its evaluation’s state can be set to finished, thus allowing stakeholders to
use it as illustrative material for future evaluations or to continue discussing the service variants.
In the finished state, similar to the aborted state, votes can be updated or deleted and configuration
rankings can be retrieved. The finished state is an end state that cannot be left without deleting the
evaluation.

Overall, the presented concepts and lifecycle provide the basis for participatory ranking. An
exemplary implementation of these concepts, defining for example how to present stakeholders

with polls or how to retrieve evaluation results, is presented in section 5.1.3.

4.5. Usage with Multiple SFMs

The selection of service variants by consumers for delivery can be based not only on a single
variable service, but also on multiple ones. In this case, the selection of a variant corresponds to
two decision: 1) the selection of the variable service among a set of candidates and 2) the selection
of a variant of the service selected in 1). To enable such selection with service feature modeling,

multiple SFMs are required, each representing the variants of one candidate service.

104

4.6. Related Work on Variant Selection

A problem for using multiple SFMs is that they need to be comparable as motivated in chal-
lenge 5 in section 1.3.2. In section 3.3.3, we describe how comparability across SFMs is achieved
by basing them on the same domain model. As a result, all derived models denote the same struc-
ture of grouping and abstract features as well as attribute types. The similarity of feature structure
and names in SFMs based on the same domain model enables filtering regarding features require-
ments R/ across these SFMs. In this case, the requirements filtering procedure shown in listing 3
takes as input a combined list of all SFMs’ configurations instead of a single ones. Abstract fea-
tures are named and placed equally across SFMs based on the same domain model, making this
approach feasible. On the other hand, instance features in multiple SFMs can follow different
naming conventions, despite a shared domain model. Here, problems from semantically equal but
syntactically different instance features may result. For example, the fulfillment of an instance
feature requirement req(“Encryption”) by a configuration ¢ may mistakingly be considered false,
because ¢ only contains a feature “encryption mechanism”, which does not match syntactically.
To avoid such pitfalls, vocabularies across SFMs can be prescribed, semantic technologies can
be applied to detect synonyms, or implementations can promote naming conventions, for example
through auto-completion mechanisms. The similarity of attribute types in SFMs based on the same
domain model enables filtering regarding attribute requirements R* across these SFMs. Again, the
requirements filtering procedure needs to be provided with a combined list of configurations from
multiple SFMs. The instantiation values for attributes are comparable across SFMs because they
relate to the same attribute types specified in the domain model. For the same reason, skyline
filtering and preference-based ranking can be performed across SFMs, given they as well receive
a combined configuration list as input.

Ultimately, using domain models as basis and thus ensuring comparability, service feature mod-

eling’s usage methods can be applied to multiple SFMs at the same time.

4.6. Related Work on Variant Selection

In this section, we present work related to service feature modeling’s usage methods. In stan-
dard feature modeling, multiple approaches have been presented for configuration, meaning in this
context the selection of features. This part of related work is characterized by the similarity to
service feature modeling’s usage methods. We discuss feature modeling configuration approaches
in section 4.6.1. In addition, we select related work based on similar intention. We consider ap-
proaches for selecting variants during service development in section 4.6.2. This related work
includes requirements engineering approaches as well as service development methodologies. We
also discuss selecting variants for service delivery in section 4.6.3, focusing on selection in ser-
vice variability approaches. Finally, we present related work with regard to service selection in
section 4.6.4.

105

4. Using Service Feature Models

4.6.1. Feature Model Configuration

The determination of a configuration is a common and well researched task in feature modeling.
In software product line engineering, configuration is performed as an initial step in application
engineering, which is about selection and reuse of the reusable artifacts to create a product [186].
The application of feature model configuration methods for services, thus, is best suited for variant
selection during development. The here presented discussion of related work is based on and
extends previous contributions [224].

A widespread approach to determine a feature model configuration is staged configuration [63].
It proposes step-wise specialization of a feature model by representing each specialized stage in a
separate feature model. Specialization is performed by selecting features, which eventually causes
further selections due to cross-tree relationships. One goal of staged configuration is to enable
different decision-makers to participate in different stages of the configuration process. Meth-
ods to support staged configuration through automated reasoning, for example utilizing constraint
satisfaction problems, have been presented [215]. Staged configuration does not depend on deter-
mining the configuration set but rather derives a single configuration from a feature model. Our
usage methods differ because they are not based on directly selecting features. Rather, the re-
quirements and preferences of the decision-maker in conjunction with features and attributes in
configurations drive selection. Service feature modeling’s ranking approach selects features based
on preferences for their characteristics, represented by attributes. This abstraction enables to hide
complexity from the decision-maker who focuses solely on characteristics, thus also enabling less
experienced or non-technical decision-makers to participate in the ranking process. Furthermore,
we allow multiple decision-makers to perform configuration and to aggregate their preferences as
described in section 4.4.4 to obtain an overall ranking of configurations.

Another approach for feature model configuration is optimization [33, 204]. In optimization a
configuration is chosen that optimizes a given objective function, for example, minimizes cost or
maximizes throughput. For optimization to be applicable, numeric characteristics about features
or configurations needs be stored in a feature model. In consequence, optimization approaches
address extended feature models that include attributes [32]. In this work we present some of the
concepts also required for optimization, for example the aggregation of attributes and the speci-
fication of an objective function which we perform by means of pairwise comparison of attribute
types to derive ranking vectors as discussed in section 4.4.5.

Multi-criteria decision making approaches have been proposed for feature model configura-
tion [22]. Fuzzy linguistic variables are attached to features to state their impact on business
concerns (for example, “security”’) being, for example, “high”, “medium” or “low”. Using strat-
ified analytical hierarchy process, first, business objectives are ranked via pairwise comparisons
and second, features are ranked with regard to their impact on the business concerns, again via
pairwise comparisons. To reduce the number of pairwise comparisons, the second step only con-

siders highly ranked business concerns. Similar to attributes in our approach business concerns

106

4.6. Related Work on Variant Selection

abstract characteristics from features. The impact of features on these concerns is expressed lin-
guistically. In contrast, we allow attributes to express capabilities quantitatively using numeric
values and qualitatively using Boolean values. Doing so allows decision-makers to efficiently
compare configurations against each other without additional pairwise comparisons of configu-
rations and thus also without having to dismiss concerns. Building on staged configuration, the
same authors present a semi-automatic configuration method [24]. Features are, again, annotated
with their impact on concerns. Based on stakeholders’ hard constraints, annotated feature models
are configured, reducing variability. Configuration options remaining are then assessed in light of
soft constraints, where the proposed method recommends a final feature selection, which can be
revised by the decision-maker if desired. The authors motivate the problems of multiple experts
aiming to select different, contradicting features (for example, selecting ones that exclude each
other) and how to select features that maximize intended and minimizes unintended consequences.
In service feature modeling’s selection methods, the validity of configurations to consider is en-
sured by the automatic configuration set determination and selection of configurations best meeting
requirements and preferences is ensured.

It has been proposed to allow stakeholders to collaboratively configure feature models [130].
The challenge here is to handle decision conflicts, which appear if locally valid configuration deci-
sions are invalid globally. For example, configuring a branch of a feature model that has cross-tree
relationships to another branch, which is configured by another stakeholder, can cause such con-
flicts. The proposed collaborative product configuration aims to avoid conflicts by planning the
configuration process with work flows. The specified work flow avoids conflicts resulting from
concurrent decisions by different stakeholders. Building upon a work flow definition, however,
decreases flexibility in the configuration process. For example, already performed configurations
of parts of the feature model might need to be revised in consequence of configurations in other
parts. In service feature modeling, requirements can be stated as properties within an SFM (cf.
section 4.3.1), allowing decision-makers to define requirements using service feature modeling’s
collaborative modeling approach presented in section 3.4. Service feature modeling’s preference
ranking allows for aggregation of different stakeholder preferences, resulting in an overall configu-
ration ranking. However, we do not support the collaborative configuration where each stakeholder

addresses only parts of an SFM.

4.6.2. Variant Selection in Service Development

The selection of software service variants during development is performed in requirements en-
gineering (RE). RE addresses the development of software under consideration of stakeholder
requirements and preferences. RE, stemming from the systems engineering domain, is the process
of identifying, analyzing, documenting, and checking the requirements (in the sense of capaci-
ties) and constraints for systems [188, page 101]. Requirements encompass needs and wishes of

stakeholders on the one hand and detailed descriptions of a system’s functionality on the other

107

4. Using Service Feature Models

hand [94]. RE is typically performed as an early activity in software development. The tasks of
RE can be classified as elicitation, modeling, analysis, validation and verification, and manage-
ment [52]. Elicitation is concerned with discovering the goals and motives behind the creation
of a software system and identifying requirements that must be fulfilled to achieve these goals.
Elicitation approaches aim to identify relevant stakeholders [183] and support them in precisely
and accurately stating their requirements, using, for example, use cases [56] or specifying the in-
tentions behind systems [117]. Modeling aims to specify elicitated requirements more formally.
While modeling techniques can also be used in elicitation, the modeling task focuses more at pre-
cision and completeness. For example, i* allows modelers to capture the domain of a system in
terms of its stakeholders, their objectives and relationships, resulting in current processes that mo-
tivate the need for new systems [231]. Analysis approaches (automatically) assess requirements
with regard to trade-offs, conflicts, variability, ambiguity, completeness, or risks. Approaches aim,
for example, to reveal potential interdependencies between requirements [46]. Validation aims to
ensure at the more informal level that modeled / specified requirements reflect actual stakeholder
needs. Verification aims to check that a developed system meets priorly stated requirements, using
for example model checking approaches [47]. Finally, management is concerned with the evolu-
tion of requirements, their application to products of the same family, or dealing with very large
numbers of requirements.

Within requirements engineering, multiple approaches address the selection of variants. The
specification of software in requirements engineering has been described in a basic systems engi-
neering process [117]. It starts with the identification of objectives and criteria, based upon which
alternative designs are generated. These alternative designs are then evaluated against objectives
and criteria, resulting in the selection of one alternative to implement. While no specifics on how to
perform the selection are provided, the process underlines the central role that alternative selection
plays in requirements engineering. Goal-oriented analysis concerns the exploration and evaluation
of system design alternatives regarding goals, for example, business or technical objectives [137].
The basis for goal-oriented analysis are goal models, in which functional goals and non-functional
goals (softgoals) are decomposed into alternatives. For example, the non-functional requirements
(NFR) framework allows modelers to capture and decompose non-functional requirements and
to define design alternatives to meet them [54]. Goals can be interrelated and the trade-offs be-
tween them can be made explicit. The positive or negative impact of alternatives on non-functional

[I3R24

goals is expressed qualitatively, using “-” or “+” symbols (cf. section 3.5.3). In these approaches,
the evaluation and subsequent selection of alternatives is informally described and is a manual
process. Manual selection can become infeasible in light of large numbers of alternatives and de-
limits repeated variant selection for delivery. Other approaches propose to quantify the impact of
alternatives on goals by numerical weights. They support selection of alternatives by assessing
how they satisfy goals based on weighted average of the degree of satisfaction of subgoals [162].
In more recent quantitative goal models, partial degrees of goal satisfaction are stated and the

quantitative impact of alternatives on high-level goals can be derived [116]. Selection support is

108

4.6. Related Work on Variant Selection

based on computing objective functions of higher level goals for each alternative by bottom-up
propagation of probabilistic distribution of non-functionalities. Similar ideas influenced service
feature modeling’s requirements filtering method that quantitatively measures the degree to which
requirements with different weights are met by a service variant. Other techniques for selection
from requirements engineering are, for example, feedback techniques to collect and elicit positive
and negative statements about early system representations using models, animations, simulations,
or storyboards [52].

The application of requirements engineering approaches, in general, for software service de-
velopment is hindered by differences as compared to software products [121, 157, 36, 25]. For
example, means for selecting services, the notion of services being black-boxes from consumers’
point of view, or the important role of quality attributes need to be addressed by dedicated ap-
proaches [77]. The requirements of providers, that deploy and operate services, need to be consid-
ered in addition to those of consumers [36]. Or, for cloud services, RE approaches require a higher
degree of automation and need to be remotely applicable [203]. Considering the selection of vari-
ants, the manual effort required in requirements engineering approaches hinders their application
for delivery in many scenarios. The manual utilization of more complex methods can be feasible
only if the intended consumption of a service is long lasting.

Multiple service development methodologies consider the definition and selection of variants.
The service-oriented design and development methodology defines a life-cycle model with differ-
ent phases [148]. In the analysis and design phase, multiple business processes are defined. The
methodology proposes to perform business case analysis to select the business process to imple-
ment. However, no specifics about the selection process are given. In the model for designing
generic services, the modeling of design variants is motivated by faster derivation of service so-
lutions from variants [70]. Again, no specifics about the variant selection process are provided.
The design methodology for real services considers variability to be a key factor for service design
methodologies [127]. Variants address the different goals and preferences of stakeholders and are
expressed in alternative control flows. The methodology mentions the expression of preferences in
terms of soft goals to reason about and ultimately select variants as future work. It has been pro-
posed to model and reason about Software as a Service reference architectures to faster derive new
application architectures [200]. Feature modeling is used to represent the reference architecture.
The derivation of an application feature model, and thus the selection of a architecture variant, is
based on feature selection. The specifics of how to perform feature selection are not presented. In
sum, we find that service development methodologies promote the definition of variants. However,
we also find that they lack in supporting variant selection with concrete methods. Service feature

modeling’s selection process and methods address this gap.

109

4. Using Service Feature Models

4.6.3. Variant Selection in Service Delivery

In related work, service variability approaches address the realization of matching service de-
livery to stakeholder needs. Two fundamental approaches can be differentiated for dealing with
varying consumer requirements [139]: in design-time approaches, multiple instances of the same
service are deployed, each addressing a specific consumer’s needs. For example, in Web services,
customization options can be specified in customization policies [119]. After the consumer cus-
tomizes the Web service based on this policies, a corresponding service implementation is derived
and deployed for consumption. Or, cloud services are redeployed in configurations that best match
user experiences with regard to latency [100]. In runtime-approaches, service instances can be
adapted to meet requirements and preferences. For example, in multi-tenancy cloud services, only
one service instance is deployed that serves multiple consumers, each having a tenant-specific
configuration [31, 133, 166]. Other approaches realize variability through exchanging the imple-
mentation of Web services at runtime [96]. Compositions of Web services can be formed based on
requirements for Quality of Service [15]. Or, the work flows underlying a service can be enhanced
with configuration options [82, 85].

One challenge that service variability approaches need to address is how to select variants for de-
livery. Service variability approaches that make use of feature modeling frequently propose simple
feature selection to derive variants, for example [110, 166]. The usage of optimization techniques
has been proposed for selecting feature-based configurations of Infrastructure as a Service that
minimize energy consumption [72]. Overall, we notice a gap in service variability approaches with
regard to the resolution of variability, i.e., variant selection. If variability modeling approaches are
used, selection is frequently not addressed at all (cf. [161]), mentioned as a necessary step without
providing details on how to perform it (cf. [140]), or only discussed vaguely, stating for example
that features need to be selected (cf. [139, 194]).

4.6.4. Service Selection

Service selection is a field similar to service variant selection for delivery. Consumers perform
service selection to chose a service that best matches their requirements and preferences from a set
of candidates. Selection approaches assume candidate services as given input, being, for example,
based on the same functionality. Service selection approaches are relevant related work because
they apply methods comparable to those used in service feature modeling and because usage of
multiple SFMs (cf. section 4.5) allows decision-makers to select service variants from different
services.

In Web services, matchmaking is performed to select services for delivery by matching con-
sumer requirements with service capabilities [227, 119]. Matchmaking approaches aim to apply a
sorting to multiple service contracts, for example expressed as policies, regarding requested con-
tractual terms [59]. Several approaches focus on Quality of Service (QoS) aspects expressed in

numeric values. For example, a framework has been proposed that matches policies consisting

110

4.6. Related Work on Variant Selection

only of generic as well as domain specific quality criteria against user requirements [122]. Simi-
lar to scale orders in service feature modeling’s attribute types, the impact of rising values being
positive or negative can be considered. Also similar to service feature modeling’s requirements
filtering, the fulfillment of requirements is not only binary but graded. Or, the QoS-based selection
problem can be mapped to smaller sub-problems, which can be heuristically solved to increase
performance [14]. Extending the so-far presented approaches, semantic technologies are used to
correctly deal with differing vocabulary and data models [59]. However, these approaches take
as input a single QoS vector for every service. In service feature modeling, different variants of
a service are ranked and variants of multiple services can be considered given their SFMs are
comparable (cf. section 4.5). Qualities of variants, expressed in SFMs using attributes, are fur-
thermore aggregated from feature characteristics (cf. section 4.2.2), allowing modelers to model
their origin fine-granularly. Overall, policies are typically designed to be used by computers and
thus expressed in XML, making them difficult to utilize for human users. No means are presented
that support humans in expressing their needs, which requires a higher level of abstraction. Ser-
vice feature modeling’s preference-based ranking, in contrast, abstracts from technical details and
bases variant selection on characteristics represented by attributes.

Cloud service selection approaches typically make use of multi-criteria decision making meth-
ods. Cloud service selection can be formulated as a multi-criteria decision making problem [159].
Cloud services are defined as alternatives, which are assessed regarding multiple criteria. Selection
is based on requirements, stating thresholds on criteria if they are measurable, and weights, stat-
ing the importance of criteria. One proposed selection method compares cloud services regarding
cost and gains, for example response time, traffic volume, or storage price [235]. The approach
uses simple additive weighting (SAW) to either minimize cost or maximize one gain. In other
approaches, SAW is used to assess service candidates based on weights provided for criteria by the
decision-maker [175]. Or, the analytical hierarchy process is utilized to support decision-makers in
ranking criteria and consequently service candidates [80, 79]. Other cloud service selection frame-
works combine multi-criteria decision making approaches with prior requirements filtering [132].
The filtering, however, considers requirements only to be mandatory constraints and excludes alter-
natives immediately given they do not fulfill a requirement. In contrast, service feature modeling’s
requirements filter allows decision-makers to define the importance of requirements and calculates
a degree of fulfillment, allowing for more differentiated assessment of requirements. A comparison
of cloud service providers based on monitored performance and cost has also been proposed [118].
The authors propose various performance metrics, depending on the type of cloud service, and de-
scribe how to measure them. While no structured means are presented to select a service based
on the measured criteria, the approach is relevant because it describes how attribute values can be
obtained that can be integrated into SFMs through composition (cf. section 3.4). A methodology
for cloud service selection that considers QoS history has been proposed [160]. The underlying
assumption is that qualities of cloud services change over time, weakening the validity of selec-

tion decisions that only consider qualities at a single point in time. Multi-criteria decision making

111

4. Using Service Feature Models

approaches are used to rank service candidates based on decision-makers’ preferences at different
time periods. These approaches use parallel algorithms to increase performance. In the end, results
for all periods are aggregated to obtain an insight into the long-term fulfillment of the consumer’s
preferences. The application of the outlined approaches to cloud service selection, most notably
in the case of IaaS, can be explained by the difference in consumption as compared to Web ser-
vices. While Web services, enabled by their uniform interface abstractions, can be re-selected or
exchanged for each request, cloud service utilization is typically longer lasting. Exchanging infras-
tructure services causes considerable migration efforts, for example regarding re-deployment or
data transfer [131]. The resulting consumption longevity makes the application of rather complex
multi-criteria decision making approaches feasible. A hurdle of many multi-criteria decision mak-
ing approaches is the required manual effort for performing pairwise comparisons. Approaches
that purely based on such methods thus denote limitations with regard to the number of criteria
that can be assessed with feasible effort. Service feature modeling’s usage approach addresses this
shortcoming by combining a set of methods. The problem size can be reduced using weighted
requirements and skyline filtering before preference-based ranking, using as well pairwise com-

parisons, is applied.

4.7. Discussion

Service feature modeling’s usage methods aim to support the selection of service variants, repre-
sented as configurations in an SFM. The methods can flexibly be combined in a usage process (cf.
section 4.1.2), addressing challenge 4 motivated in section 1.3.2.

The automatic determination of configurations translates an SFM into a constraint satisfaction
problem. Solving this problem produces the set of all valid feature combinations, or configu-
rations, representing service variants. Constraint satisfaction problems are commonly used for
feature models [35] and our translation builds upon established rules [101]. The subsequent at-
tribute aggregation is based upon the aggregation rules defined in attribute types (cf. section 3.2.4).
Denoting configurations with comparable characteristics that result from attribute aggregation is
prerequisite for their subsequent selection. A drawback from determining all possible configura-
tions upfront and then narrowing them down are large problem sizes if many configurations exist.
To address this problem, skyline and requirements filtering aim to reduce configuration sets.

Service feature modeling’s requirements filtering dismisses configurations that do not meet the
decision-makers needs. While requirements filtering in related work is frequently understood bi-
nary (cf. [132, 227]), our method calculates a degree to which requirements are fulfilled. The
degree allows decision-makers to be more flexible with regard to dismissing configurations, which
is especially relevant if no configuration can completely fulfill requirements. Here, our method
reveals configurations that come closest to meeting requirements, allowing to consider the revision
of requirements. The requirements filter emphasizes the advantage of feature types in the service

feature modeling language. Requiring an abstract feature means that any of its child instance fea-

112

4.7. Discussion

tures needs to be selected to fulfill this requirement. We are not aware of approaches to state such
requirements based on the standard feature modeling language.

In skyline filtering, configurations that are dominated by others are dismissed from the configu-
ration set. Dominance is based on the comparable characteristics of configurations determined in
attribute aggregation. It has to be noted, though, that skyline filtering should be used with attention
because it can dismiss configurations based on their attributes despite these configurations being
desirable based on the features they contain.

While requirements filtering dismisses inadequate configurations, preference-based ranking or-
ders configurations depending on how well they fulfill preferences. The multi-criteria decision
making method it uses considers configurations’ attributes as decision criteria. The preference col-
lection is based on polls derived from SFMs, abstracting from their technicalities. Thus, preference-
based ranking is an ideal candidate for including consumer preferences into variant selection, en-
abling participation in service development as motivated in challenge 6 in section 1.3.2. We support
this approach with a set of concepts that drive participatory preference-based ranking. We further-
more present a method to aggregate preferences stated by multiple stakeholders (see section 4.4.4).

Enabled by the differentiation of feature types (cf. section 3.2.2), usage methods can be applied
to multiple SFMs, given they are based on the same domain model. This capability paves the way
to use service feature modeling for service selection and to compare variants across services as
motivated in challenge 5 in section 1.3.2.

Comparing service feature modeling’s usage methods and the complete usage process against
related work, we find the following: some related approaches for feature-based variant selection
focus on requirements (cf. [63]) while others only consider preferences (cf. [22]). In contrast,
service feature modeling’s usage methods are combinable to address requirements and skyline fil-
tering as well as preference-based ranking (cf. section 4.1). One of the most cited feature model
configuration approaches, staged configuration, is a manual process that requires repeated input by
the decision-maker [63]. In contrast, service feature modeling’s usage methods can be performed
automatically and repeatedly given the required input in terms of requirements and preferences
is available. This capability allows for variant selection to be performed, for example, to react
to changes in context in service delivery. Or, when using service feature modeling’s methods to
incorporate dynamic attribute values (cf. section 3.4), re-selections can repeated to consider latest
values. Participation of non-technical stakeholders is basically enabled by the abstractions from
feature models in some related work (for example, [22, 24]), but not explicitly addressed or dis-
cussed. Service feature modeling thus provides a new perspective on the utilization of variability
modeling for participatory service development. Existing service selection approaches (including
policy-based approaches) consider each service to be a single alternative (cf. [15, 79, 122, 132]).
Service feature modeling’s usage methods, in contrast, allow decision-makers to select individual
variants from multiple services, each described by one SFM [219]. In related work about consider-
ing variants in service development (for example, [70, 127]) and delivery (for example, [72, 110]),

selection is mentioned but no specifics on how to perform it are presented. Here, service feature

113

4. Using Service Feature Models

modeling’s usage methods provide a novel way of selecting service variants.

114

5. Evaluation

The evaluation of service feature modeling builds upon different elements as illustrated in table 5.1.

We denote the evaluated contribution, the evaluation method, and the specific instrument used for

the evaluation.

Contribution Evaluation Evaluation instrument & section
method
Modeling language Proof of concept Meta model (section 5.1.2), SFM designer
(POC) (section 5.1.3)
Use case Public service development (section 5.3.2), IaaS
configuration and deployment (section 5.4.2)
Empirical Service engineer survey (section 5.5)
Determining SFM POC SEFM designer (section 5.1.3)
configurations
Performance Benchmark (section 5.2)
Composition of SFMs ~ POC Collaboration server (section 5.1.3)
Skyline filtering POC SEM designer (section 5.1.3)
Requirements filtering POC Requirements filter component (section 5.1.3)
Use case laaS configuration and deployment
(section 5.4.3)
Preference-based POC Preference-based ranking component
ranking (section 5.1.3)
Performance Benchmark (section 5.2)
Use case Public service development (participatory
approach, section 5.3.3), [aaS configuration and
deployment (section 5.4.3)
Empirical Citizen survey (section 5.5)
Variant realization POC IaaS deployment middleware (interaction
service component, section 5.1.3)
Use case IaaS configuration and deployment

(section 5.4.4)

Table 5.1.: Overview of how contributions of service feature modeling were evaluated

The evaluation is based on four methods, each addressing different aspects of the overall evalu-

ation:

e Proof of concept (POC): We present the architecture and a prototypical implementation of
a service feature modeling tool suite in section 5.1. It aims to illustrate the realizability of the

envisioned concepts, showing that models based on the service feature modeling language

115

5. Evaluation

can be created, that they can be composed from services, and that they can be used with
the conceptualized usage methods. We thus denote the evaluation based on implemented
components as proof of concept (POC). Another reason for implementing a prototype is to
enable further evaluation methods like the use cases or the empirical evaluation. It further,
being developed early within our research, provided basis to assess design options for sys-
tems realizing service feature modeling and to collect knowledge about them [188, page
45].

e Performance evaluation: We evaluate the performance of the implementation for performance-
critical tasks in section 5.2. The performance evaluation is based on benchmarks with SFMs
from the use cases and synthetic models of varying sizes. The performance evaluation aims

to show the applicability of the usage methods (cf. chapter 4) to models of varying sizes.

e Use cases: We use the prototypical implementation as a basis to apply service feature mod-
eling to two use cases in sections 5.3 and 5.4. We define a use case, as proposed in software
product line engineering, as “[...] a description of system behaviour in terms of scenarios
illustrating different ways to succeed or fail in attaining one or more goals.” [153, page 93].
We assume a scenario to be “[...] a concrete description of system usage which provides a
clear benefit for the actor of the system.” [153, page 93]. The service feature modeling eval-
uation is based upon two scenarios, namely the application to public service design within
the COCKPIT project and the application for [aaS configuration. The use cases aim to show
applicability of service feature modeling, in this context with regard to applying it in real-life

contexts [226, page 14].

e Empirical evaluation: We present an empirical evaluation in section 5.5. It is based on
surveys answered by users within the COCKPIT project, which is an established method
to evaluate software [89]. The intent of the empirical evaluation is to assess the perceived
quality of exemplary targeted users of service feature modeling. Perceived quality is bro-
ken down into usability, expressiveness, and usefulness and interpretability, addressing the
characteristics stated in this work’s hypothesis. We thus use surveys in a descriptive manner,
where they aim to assert the distribution of these characteristics based on the interviewers’

perceptions [226, page 13].

Overall, the evaluation aims to assess the realizability of service feature modeling and its ap-
plicability, first with regard to models of different sizes and second with regard to two real use
cases. The evaluation aims, furthermore, to draw inferences about the perceived quality of the

characteristics of service feature modeling described in the hypothesis (cf. section 1.4).

116

5.1. Proof of Concept - Design and Implementation

5.1. Proof of Concept - Designh and Implementation

The foundation for service feature modeling’s evaluation is a proof of concept implementation.
The proof of concept’s purpose is to demonstrate the realizability of feature modeling’s concepts.
One main artifact created as part of the proof of concept implementation is the service feature
modeling meta model described in section 5.1.2. It prescribes the syntax that SFMs, based on this
meta model, have. The architecture of the service feature modeling tool suite is described in sec-
tion 5.1.3. Its parts - the SFM designer, the valuation server, and the collaboration server - make
use of the previously defined meta model to create or edit SFMs and perform usage methods. Fi-
nally, we discuss the prototypical implementation of the architecture in section 5.1.4. This section
includes and extends previously published work about individual parts of the tool suite, presented
in [225, 221] and under review in [224].

5.1.1. Requirements

We identify a set of requirements for the implementation of the service feature modeling tool suite.
A functional requirement for the tool suite is to support all activities and methods foreseen in ser-
vice feature modeling’s methodology. On a high level, they include the modeling of SFMs as
described in chapter 3 and the selection of variants as described in chapter 4. Modeling requires
tools that support single modelers to create and edit SFMs. The tools need to support all elements
contained in an SFM and be aware of the restrictions among them (cf. section 3.2). Modeling tools
should support model persistence, copy and paste, model validation, and integration with version
control tools. Graphical tools ease the modeling process. Modeling should further support the
composition of SFMs from services (cf. section 3.4). The introduced coordination mechanisms
need to be implemented and central supervision of their compliance needs to be guaranteed. To
enable shared access to SFM results and asynchronous modeling, results need to be made avail-
able independent from whether their modelers are currently active. With regard to usage of SFMs,
the configuration set determination is required, including attribute aggregation. It needs to be per-
formed automatically because SFMs, similar to feature models, can become large, making manual
reasoning on them infeasible [32]. Information about the configuration set, like the number of
configurations and their aggregated attributes, should be made available to modelers on-demand
to allow them to immediately react to this feedback. Skyline and requirements filtering need to
be integrated with the modeling tools for modelers to apply these filters to determined configura-
tion sets. Similarly, preference-based ranking needs to be integrated with the modeling tools. To
enable participation, polls derived from SFMs need to be made available within evaluations (cf.
section 4.4.6). Evaluations can potentially be long running so that they need to be made available
independent from interactive modeling sessions. To support different types of participants, differ-
ent user interfaces should be implementable. Further, retrieval of evaluation results back into the

modeling tools needs to be enabled.

117

5. Evaluation

Apart from the outlined functional requirements, we identify further non-functional ones. The
tool suite needs to be customizable and extensible. Customization allows the application of SFMs
to different domains, while extensibility allows to add previously unforeseen capabilities. In ad-
dition, the integration with other service or software engineering artifacts needs to be enabled.
Exemplary approaches to implement integration are model mappings or transformations. Finally,
the performance of the implementation needs to be sufficient to handle realistically sized SFMs.

5.1.2. SFM Meta Model

A meta model is the model of another model [109] and defines a diagrammatic language’s syn-
tax [87]. The term “meta” implies the double application of an operation (for example, a meta-
discussion is a discussion about a discussion), in this case modeling. An SFM is an instance of the
SFM meta model. Service feature modeling’s meta model defines which elements are contained in
an SFM and how they relate to another. The SFM meta model is illustrated in figure 5.1.

The meta model is specified as an Eclipse Modeling Framework (EMF) model [193]. EMF
itself is a subset of UML. EMF models consist of classes, attributes! to describe these classes, and
references between classes [193, page 124]. The parts of the SFM meta model which relate to basic
feature modeling elements were inspired by related work [76]. These parts are complemented on
the one hand by service-specific elements and on the other hand by service feature modeling’s
extensions, compared to standard feature modeling, presented in section 3.2.2 and 3.2.4.

The highest level element of each SFM is a single service element. It corresponds to the overall
variable service that an SFM represents and groups all further elements of the SFM. The properties
name, id and description capture corresponding details about the service. It possesses containment
references to the feature digram, the configurations, and the attribute types.

The feature diagram contains all features of an SFM. As in standard feature modeling, feature
diagrams are tree structures whose nodes are features and attributes. This structure is represented
by the corresponding containment relationship. Differing from the diagram, the overall SFM con-
tains additional information (cf. [63]) like configurations.

Features are described, again, by the properties name, id, and description. Their type (grouping,
abstract, or instance) is denoted by an enumerable property. Within an SFM, it can be stated that
a feature is required and the weight of this requirement can be stated using requirement weight.
Features possess a self-containment reference, which enables their decomposition into tree struc-
tures. They can further require or exclude other features, representing cross-tree relationships.
The feature class itself is defined as abstract. The two concrete classes mandatory feature and
optional feature inherit from it. This differentiation allows automated reasoners to assess whether
the feature must be contained in each configuration or not.

Features may also contain a single group relationship, being either instantiated as XOR (an al-

ternative group relationship) or OR. A group relationship contains at least two optional features.

'We refer to them as “properties” in the following to avoid confusions with attributes in service feature modeling.

118

5.1. Proof of Concept - Design and Implementation

Service
" name : String .
f D T
‘eatureDiagram o|id : String . attribute Types
description : String \l, 0.+
* AttributeType
name : String
id : String

description : String
measurementUnit : String
domain : AttributeDomain

*

suoneinbyuod

1 0...

FeatureDiagram Configuration aggregationRule : AggregationRules
nams : String name : String scaleOrder : ScaleOrders
id : String , id : String | attributes toBeEvaluated : boolean
description : String description : String [® customAttribute TypePriority : Int
? required : String
requirementWeight : double
— 1
[0 .
features gé ofAttributeType
3 0..* :
) Attribute
id : String
Mandatory airbutes 0 instantiationValue : String
Feature * N
u 0... 0... . -
4[> Feature ®
T B : (0]
Optional name : String 2 .
Feature id : String *g <<enumeration>>
2..* _ | description : String _ - . ScaleOrders
| featureType : FeatureType |~ HigherlsBetter
RS required : boolean - LowerlsBetter
S 2 requirementWeight : double ExistencelsBetter
Qo
o g ! 1 % <<enumeration>>
¢ group E. ° ° £ AggregationRules
Group- Relationship o 5 5 o Sum
Relationship 0...1 54 54 Product
/\ 0..* a a 0..* AtLeastOnce
| Requires | ———o{ Excludes] winimum
[XOR | OR
minFeatures : Int <<enumeration>>
maxFeatures : Int <<enumeration>> FeatureType
AttributeDomain Grouping
Continuous Abstract
Boolean Instance

Figure 5.1.: The meta model underlying service feature modeling, based on [224]

In the case of a XOR group relationship, exactly one of these features can be selected for a config-
uration. In the case of an OR group relationship, the minimum and maximum numbers of features
to select for a configuration can be specified in corresponding properties.

Attributes are referenced from a feature. They denote a an id and an instantiation value property.
All other information describing the attribute are defined in the referenced attribute type. 1t defines,
as discussed in section 3.2.4, common properties of multiple attribute of the type. Correspondingly,
information like the name, description, measurement unit, or domain are defined here. One of the
aggregation rules predefined in a corresponding enumeration can be selected, corresponding to
the description in table 4.3. The properties scale order, to be evaluated, and custom attribute
type priority are used for preference-based ranking as described in section 4.4. As in the case
of features, requirements regarding attributes can be stated in an SFM. The required property is

of type String, allowing to state requirements regarding the range of attribute values, using for

119

5. Evaluation

example “< x” or “=y”. Again, the weight of a requirement can be stated using requirement
weight.

The service node references to configurations with a containment reference. A configuration
references to a selection of service features. Configurations further contain attributes, specifying
characteristics that result from aggregating the attributes of the configuration’s features.

The SFM meta model provides the basic structure to derive SFMs from. Additional constraints,
restricting for example parent and child feature depending on the feature type, cannot easily be
defined within the meta-model without cluttering it or creating ambiguity. These constraints are
thus defined within the implemented logic. The meta model provides the basis for addressing
the requirement to support all elements and their relations defined for service feature modeling as

described in section 5.1.1.

5.1.3. Architecture

An overview of the service feature modeling tool suite’s architecture is illustrated in figure 5.2.

Service Feature Model Designer Valuation server
A/ A
% <> ul <« SFM model & edit »| Bualuation oo manager SFM model & edit
Manager <
Modelers, t
decison- R | .| Arificial SFM -
n?:l:ii; Skyline filter [<——» generator Preference-based Interaction Platform
coordinators ranking
» Polling manager

Collaboration server

Requirements filter [«—— Evaluation wizards |« t

H inati Polling interface
Preferenc_e Leesc <> Soocatioy < » SFM manager [«—| SFM model & edit 2
ranking adapter
Interaction _ | | Configuration set |, Coordination Service & user Q
Services ~ 7| determination engine repository

X

Decision-makers
(non-experts,
consumers,
citizens etc.)

Figure 5.2.: Overview of the architecture of the SFM tool suite

The architecture consists of four parts marked by white boxes, namely the SFM designer, the val-
uation server, the collaboration server, and the interaction platform. Every part consists of further
components marked by gray boxes, which contain subcomponents as illustrated in figures 5.3, 5.4,
and 5.5. Arrows indicate communication between parts and components within them. Components
that stand out from their containing parts indicate service interfaces or clients to such interfaces.

We describe the SFM tool suite’s four parts in the following subsections.

120

5.1. Proof of Concept - Design and Implementation

SFM Designer

The SFM designer is the modeling environment to create and edit SFMs. It further integrates
service feature modeling’s usage methods and provides means to interact with other parts of the
tool suite. The SFM designer is intended to be used by technically skilled stakeholders who use
it in the roles of modeler (cf. section 3.3.1) or decision-maker (cf. section 4.1.3). An overview of
the SFM designer’s architecture is provided in figure 5.3. Components are illustrated in gray and
subcomponents in white. Subcomponents that stand out from their containing component, again,

indicate service interfaces or clients of such interfaces.

SFM designer

Evaluation wizards User interface(Ul) SFM model & edit Interaction services
A4
Evaluation _ < . - SFM instance
| management | > SFM Editor < Item providers Model SFM persistency > accessor
wizard nEE
I
Evaluation Requirements
"| results wizard | | filter wizard Coordination
| |
|, Skyline filter | Coordination |
Requirements filter wizard Preference-based ranking interface
_P_f_l_ I
X reference- "
Requl_rement_s - based ranking (T N> Valuation H AHPengine H SFM to AHP > Model interface |«
calculation engine . controller adapter
wizard
|
Skyline filter Artificial SFM Configuration set determi
—denerator
. . o SFM generation | | | SFMtoCSP | | || Attribute | | Configuration
Skyline engine |« engine [> mapper CSP solver Aggregator builder

Valuation server Collaboration
server

Evaluation
interface Model interface |«

L

Coordination
interface

Figure 5.3.: Architecture of the SFM designer

The SFM model & edit component implements the meta model underlying service feature mod-
eling described in section 5.1.2, thus providing the modeling facilities. The model subcomponent
provides all classes with attributes and relationships as described in the meta model. Item provider
classes enable access to a model instance’s elements. The SFM persistency stores and retrieves
SFMs on the hard disk. The SFM model & edit component is used in every part of the SFM tool
suite. Furthermore, the item providers are used by every component or subcomponent that inter-
acts with SFMs within the SFM designer. To keep the architecture diagrams readable, we do not
illustrate all relationships between the item provider and all other components.

Driven by the modeling facilities, the user interface (UI) component provides means for mod-
elers, decision-makers, and coordinators to interact with SFMs. The heart of the UI is the SFM
editor, which provides capabilities for creating and editing SFMs. The editor is furthermore the

starting point for invoking wizards for interacting with SFMs.

121

5. Evaluation

Invoking the configuration set determination component results in multiple actions: the SFM
to CSP mapper transfers the SFM currently in focus into a constraint satisfaction problem as de-
scribed in listing 1. A CSP solver component determines all valid solutions of the CSP. The
attribute aggregator component determines attribute values for every CSP solution as described in
listing 2. Finally, the configuration builder component uses the information resulting from the CSP
solver and the attribute aggregator to create corresponding configuration elements and attributes
(cf. meta model in figure 5.1) in the SFM.

The requirements filter component is invoked via the requirements filter wizard. The user
selects the SFM to apply the filter to and another SFM stating the requirements as described in
section 4.3.1. The requirements filter component implements the algorithm described in listing 3.

Similarly, the skyline filter component is invoked by the skyline filter wizard. The skyline filter
component implements the block-nested loop algorithm described in listing 4. The user selects the
SEM to apply the filter to and confirms the dismissal of dominated configurations.

The preference-based ranking component is invoked by the preference-based ranking wizard.
The user, acting in the role of a decision-maker (cf. section 4.1.3), performs pairwise comparisons
of attribute types in the wizard. The valuation controller initiates the SFM to AHP adapter to
create a multi-criteria decision making problem from a given SFM as described in section 4.4.3.
The AHP engine component determines the ranking of configurations for the stated preferences.
Results are presented in the wizard and can be fed back into the SFM.

The evaluation wizards allow to interact with the valuation server part of the SFM tool suite.
The evaluation management wizard allows users to create, retrieve, update, and delete evaluations
on the valuation server. For example, the evaluation’s state can be changed with this wizard. The
evaluation results wizard allows to retrieve (aggregated) results form an evaluation and to display
them to the decision-maker.

The SFM designer denotes a coordination adapter for composition of SFMs from services.
The coordination interface allows users to define new results and assign them to services through
interacting with the collaboration server’s coordination interface. The model interface allows to
post and retrieve model results to, and respectively from, the collaboration server.

The artificial SFM generator allows to create synthetic, randomized SFMs. Their purpose is
primarily to drive performance evaluations with differently sized models (cf. section 5.2). The
creation of the artificial SFMs is based on an algorithm described in related work [201].

Finally, the interaction services component provides an SFM interaction accessor. It allows

further editing tools, outside of the SFM designer, to access and eventually edit SFMs.

Collaboration Server

The collaboration server implements the logic required for composing SFMs from services as
described in section 3.4, thus enabling collaboration in modeling SFMs. The description of the

collaboration server is based on previously published work [221].

122

5.1. Proof of Concept - Design and Implementation

Collaboration server
SFM model & edit

Coordination engine

Item providers

Event interface

A\

Model
———
S —

SFM persistency

- @@

Rule
repository

\4

Rule interface Rule creator

\4

Y

A

SFM manager

Y

Contribution
A f v

Service & A
user
repository ~
/ Service
Model Integrator mapping
Y Coordination
interface

\4 \4

Protocol engine |« Rule engine |«

\/

Model interface |« T

Adapter “/
—| Coordination Web services
> interface <
I :
»| Model interface :

| SFM designer

Figure 5.4.: Architecture of the collaboration server, based on [221]

Similar to the SEM designer, the collaboration server contains the SFM model & edit compo-
nent. It allows all other components to interact with and persist SFMs to hard disk. Again, the
relationships to all other components using it are not illustrated in figure 5.4 to keep it readable.

The SFM manager stores contributed results, namely SFMs and attribute values, in the SFM
persistency component. Using the model interface, any service bound via adapters (cf. description
below) can create, retrieve, update or delete results - thus, for both SFM and attribute value results,
CRUD methods are provided. Results sent or requested pass through the model integrator. 1t
checks committed results for a) model elements that require coordination rules to be defined - for
example, attributes relating to attribute types outside of the result - and b) changes with regard
to model elements that require coordination - for example, changes to cross-tree relationships. In
such cases, the model integrator triggers the coordination engine to create rules or trigger events.
Further, if a result from the collaboration server is requested, the model integrator composes it by
integrating all sub results into one coherent SFM.

The coordination engine contains the coordination logic. The coordination interface allows
services to participate in the coordination via adapters. A coordinator consults the service & user
repository to find an adequate service to associate with a contribution. The association is stored
in the contribution / service mapping. The protocol engine controls the binding and the service

request / response protocol of the service based on information found in both the contribution /

123

5. Evaluation

service mapping and the service & user repository. The rule interface triggers the rule creator
when new model elements are contributed that require creation of a new coordination rule. Addi-
tionally, it can be used by any coordinator to manually define rules. Rules are stored in the rule
repository. Through the event interface, events are sent to the rule engine. On receiving an event,
the rule engine checks existing rules and, where appropriate, triggers an action. For example, if
an attribute type is changed, the “AttributeTypeUpdated” event triggers a previously specified rule
which notifies all depending modelers. Notifications are sent via the protocol engine that commu-
nicates with the respective service adapters via the coordination interface.

The collaboration server foresees numerous adapters that allow services to participate in the
collaboration. Adapters ensure compatibility of the service interfaces and the collaboration server’s
interfaces - for example, they implement the coordination protocols described in section 3.4. For
every service interface, a dedicated adapter is required. Adapters have two interfaces to commu-
nicate with our system: via the coordination interface, services are asked for binding and then are
requested to contribute or update results. The model interface is used to retrieve existing results
of the model in focus and to contribute (create, update, or delete) results. The adapter of the SFM

designer, the coordination adapter, is described in section 5.1.3.

Valuation Server

The valuation server exposes preference-based ranking (cf. section 4.4) for participatory usage. Its
architecture is illustrated in figure 5.5.

The evaluation manager is responsible for creating, controlling, accessing, and ultimately
deleting evaluations (cf. section 4.4.6). SFM designers communicate with the valuation manager
using the evaluation interface to create, update or delete evaluations or to retrieve their results.
The evaluation interface is connected to the evaluation controller. It drives the valuation man-
ager’s logic in reaction to user commands received via the evaluation interface or due to events
fired by the life-cycle manager. The life-cycle manager triggers actions in the evaluation controller
based on events defined within the evaluation. These events are most notably state changes that
are defined in an evaluation (cf. section 4.4.6). For example, if an end date is specified in an
evaluation, the life-cycle manager will trigger the interaction manager to end the evaluation at the
given date. The evaluation controller stores information about the evaluation in the poll data store
component (cf. below) upon creation. If evaluation results are requested via the evaluation inter-
face, the evaluation controller forwards this request to the poll manager and delivers the received
results back through the evaluation interface.

The poll data store denotes a collection of persistence components to store artifacts required
for evaluations. The SFM persistence is responsible for storing SFMs on the valuation server and
accessing them if required. It uses the EMF SFM meta model & edit component also used within
the SFM designer (cf. section 5.1.3) to process SFMs. The evaluation persistence stores meta

information about evaluations. This information includes the stakeholder who initiated the eval-

124

5.1. Proof of Concept - Design and Implementation

Valuation server
Poll data store SFM model & edit
Eva!uation Prefgrence ltem providers | Model SFM persistency
persistency persistency
A A A A
Preference-based
ranking
AHP engine
Evaluation manager Poll manager ¢
\ A \ A \4 Y
Evaluation Evaluation P - - Valuation
- oll generator Poll controller |« >
interface controller < 9 controller
Life-cycle Poll interface 0p|n|or.1 SFM to AHP
manager — aggregation adapter
[
SFM designer Interaction
platform
Evaluation .
» management (€T - .
wizard E | —(Polling manager
: |
Evaluation
> results wizard [*7
[

Figure 5.5.: Architecture of the valuation server

uation, its creation date, its defined end-date, and its current state. A complete description of the
information is provided in section 4.4.6. The preference persistence stores votes from stakeholders
about their preferences and aggregated votes.

The poll manager is responsible for managing polls on the interaction platform (cf. sec-
tion 5.1.3) and for reacting to requests for configuration rankings. The poll interface allows for
communication with the interaction platform and the evaluation manager. The poll generator is
responsible for creating the poll for a given SFM. It stores the poll to the poll data store. If trig-
gered by the evaluation manager, the poll interface posts new polls to the interaction platform. The
poll controller handles the logic required to determine a configuration ranking. If the poll interface
receives a vote from the interaction platform or a request for evaluation results from the evaluation
manager, the poll controller performs all actions necessary to provide the required configuration
ranking using the preference-based ranking component (cf. below). The poll controller triggers
the valuation service component to determine the ranking for the given vote and corresponding
evaluation and returns the result to the poll interface. If the evaluation manager requests an aggre-
gated configuration ranking (cf. section 4.4.4), the poll controller requests the opinion aggregator
to derive an aggregated vote before triggering the valuation service with this vote.

The preference-based ranking component is responsible for determining the configuration rank-
ing. It functions similar to the same component in the SFM designer (cf. section 5.1.3). The

resulting ranking is fed back to the poll manager.

125

5. Evaluation

The collaboration server denotes, again, the SFM model & edit component to edit and persist
SFMs.

Interaction Platform

The interaction platform provides user interfaces allowing stakeholders to express their preferences
with respect to an SFM’s attribute types. Stakeholders (most importantly consumers) express their
preferences by means of interactive surveys that we refer to as polls.

The interaction platform includes a poll manager component that provides services for the
valuation server to define and control polls. The poll manager also implements a protocol to send
tentative poll results to the valuation server and in turn receive feedback information including a
representation of the highest ranked configuration.

A polling interface is responsible for presenting valuation polls and interacting with stakeholders
including input of their poll answers and output of feedback information. Different application
scenarios pose different requirements on the realization of the user interface for service consumer
participation. Likely variants include Web, desktop or mobile applications that can be stand-alone
or integrated into other applications. For this reason, the SFM tool suite does not include a specific

UI implementation.

5.1.4. Implementation

The SFM tool suite is implemented in Java. Thus, if not stated otherwise in the following, plain
Java is used to implement components.

We implemented the SFM designer based on the Eclipse Modeling Framework (EMF), which
is part of the Eclipse Modeling Project’>. For a given data model - in this case the meta model
underlying service feature modeling as described in section 5.1.2 - EMF generates Java classes
for the model, adapter classes for viewing and command-based editing of the model (the item
providers described in section 5.1.3), and a basic Eclipse-based editor (the SFM editor described
in section 5.1.3). The generated model and adapter classes act as the SFM model & edit compo-
nent used throughout the SFM tool suite’s parts. The SFM persistency is XMI-based. The editor
provides capabilities to create and edit SFMs within Eclipse, making use of many other capabil-
ities provided in Eclipse like plug-ins for version control (cf. section 3.2.1) or for collaboration,
thus addressing this requirement from section 5.1.1. Figure 5.6 illustrates a screenshot of the basic
SFM designer’s Ul. Features are decomposed in tree structures and properties can be changed in
dedicated property-views, illustrated at the bottom of the screen.

The user interface’s wizards for invoking further components are implemented as JFace wiz-
ards3. All service interfaces and clients, for example, the evaluation wizards and the collaboration

adapter, are implemented in a RESTful way, using the Jersey framework that implements the Java

*http://projects.eclipse.org/projects/modeling.emf
Shttp://wiki.eclipse.org/JFace

126

http://projects.eclipse.org/projects/modeling.emf
http://wiki.eclipse.org/JFace

5.1. Proof of Concept - Design and Implementation

800 Resource - CAISE evaluation/Amazon_EC2.sfm - Eclipse Platform e

Fia Amazon_EC2.sfm 53 = [

|7 Resource Set

¥ S platform: /resource/ CAISE evaluation/Amazon_EC2.sfm
v {03 Service
¥ £, Service Feature Diagram
v ‘ Amazon (CroupingFeature)
v ‘ Virtual machine (AbstractFeature)

v A XOR - choose 1

> 6 AWS M1 Small Instance {InstanceFeature)

P % AWS High-CPU Extra Large Instance (InstanceFeature)

> 6 AWS M1 Large Instance (InstanceFeature)
» & AWS M1 Extra Large Instance (InstanceFeature)
» & AWS M1 Medium Instance (InstanceFeature)
» & Basic image (AbstractFeature)
(3 ‘ Software environment (GroupingFeature)
» . Configurations

Attribute Types

CPU Cores (number)
Memory capacity (in GB)
Disc space (in GB)
ir4Cost per hour (in §)

Selection | Parent | Li5r|Tree ‘Table | Tree with Columns

| Tasks =l Properties 53 = E s |
Property Value

Description I=[VM],AWS High-CPU Extra Large Instance

Feature Type stanceFeature

Name I'=AWS High-CPU Extra Large Instance
Required g false

Selected Object: AWS High-CPU Extra Large Instance (InstanceFeature)

Figure 5.6.: Screenshot of the SFM designer

API for RESTful Services (JAX-RS API) specification*. Tmplementing service interfaces in a
RESTful way promotes the customizability and extensibility of the tool suite as required in sec-
tion 5.1.1. The configuration set determination component uses the CHOCO solver as the CSP
solver”. It has been used extensively in related work, for example, [72, 130, 215], and has been
found to perform well for feature model analysis [154]. The preference-based ranking component
uses the aotearoalLib for solving Analytical Hierarchy Process problems .

The collaboration server is implemented using Grails Web application framework’ and REST-
ful design principles. The server components are implemented both with Java and Groovy®.
The service repository, rule repository and contribution/service mapping persist data in a MySQL
database. The rule engine is implemented using ESPER®. Correspondingly, the coordination rules
described in section 3.4.3 are expressed with the ESPER Event Processing Language (EPL).

The valuation server is implemented as a set of RESTful Web services. The evaluation manager
and the poll manager are mapped on resource sets of evaluations, models and votes described in

section 4.4.6. In terms of infrastructure, the server uses a JPA-based persistence layer on top of

“https://jersey.java.net/
Swww.emn.fr/z-info/choco-solver/
“https://github.com/mugglmenzel/aotearoalib/
"http://www.grails.org
$http://groovy.codehaus.org/
‘http://esper.codehaus.org/

127

https://jersey.java.net/
www.emn.fr/z-info/choco-solver/
https://github.com/mugglmenzel/aotearoaLib/
http://www.grails.org
http://groovy.codehaus.org/
http://esper.codehaus.org/

5. Evaluation

a Derby database!®. Furthermore, it uses the JAX-RS API provided by Jersey'! resulting in a
servlet-based Web application hosted in a Tomcat container!2.

In terms of the interaction platform, the service feature modeling tool suite is technology agnos-
tic. Different application scenarios are likely to pose very different requirements on the realization
of the user interface for service consumer participation. Based on the service under consideration,
the consumer group might differ in size and/or preferred interface style. Likely variants include
Web, desktop or mobile applications that can be stand-alone or integrated into other applications.
For this reason, the service feature modeling tool suite only contains a definition of the interac-
tion platform service interface that is offered to the valuation server as well as its client API. This
interface denotes RESTful Web service interfaces on poll resources. A concrete example of a

Web-based interaction platform is presented in section 5.3.

5.1.5. Discussion

The here presented proof of concept implementation allows us to assert the realizability and func-
tionality of the methods of the service feature modeling methodology. The meta model, repre-
senting the syntax of the service feature modeling language presented in section 3.2, and the SFM
editor derived from it allow the modeling of SFMs as described in section 3.3.2. Using the collab-
oration server, the coordinated composition of SFMs as described in section 3.4 is equally feasible.
The SFM designer’s coordination adapters allow modelers to assign contributions to human-based
and Web services. For SFM results, corresponding resources are created, updated, retrieved, and
deleted by the SFM manager on the collaboration server. On updating SFMs, the model integrator
triggers the creation of rules and triggers events with regard to existing rules as conceptualized in
section 3.4.3. Notifications in case of detected inconsistencies are sent to humans acting as ser-
vices services via e-mail. Thus, the SFM designer in combination with the collaboration server
enables collaborative service feature modeling (cf. challenge 3) and the integration of dynamic or
complex attribute values (cf. challenge 2). Regarding usage methods, all methods denoting the
selection process (cf. challenge 4) were implemented. The proof of concept shows that the deter-
mination of configurations described in section 4.2 including the attribute aggregation described
in section 4.2.2 is feasible (cf. challenge 1). A more detailed analysis of the performance of this
step is provided in section 5.2. The requirements filtering described in section 4.3 and the skyline
filtering described in section 4.4.2 function as conceptualized. Preference-based ranking of con-
figurations, using the transfer of SFMs to polls described in section 4.4.3 and the determination
of rankings described in section 4.4.5, produces the expected results. For participatory ranking,
the concepts and the corresponding evaluation life cycle, both described in section 4.4.6, were im-

plemented in the valuation server. Polls can be made accessible with the interaction platform to

103b . apache.org/derby/
https://jersey.java.net
2tomcat. apache.org

128

db.apache.org/derby/
https://jersey.java.net
tomcat.apache.org

5.2. Performance Evaluation

stakeholders and results can be fed back to the SFM designer using the evaluation wizards. Thus,
the participatory ranking of configurations is feasible.

In sum, the proof of concept implementation shows that all conceptualized methods of service
feature modeling’s methodology can be implemented and used. In the following sections, we
present a performance evaluation, two use cases, and an empirical evaluation from one of the use

cases to further assess the quality of service feature modeling.

5.2. Performance Evaluation

To assess the applicability of the implementation to SFMs of different sizes, we conduct a perfor-
mance evaluation. It assesses the performance of parts of the implementation critical with regard
to computation times using SFMs created within use cases (cf. section 5.3 and 5.4) and synthetic
SFMs created with the artificial SFM generator (cf. section 5.1.3). The here presented performance

evaluation is based upon and extends work currently under review in briefer form [224].

5.2.1. Design of Performance Evaluation

We consider four main scenarios that depend on performance. Firstly, the automatic determination
of an SFM’s configuration set, i.e. the represented service variants, is time-critical. If this step
takes too long, it impairs the modeling process, where the determination of the configuration set
is a common task. Secondly and thirdly, the skyline and the requirements filter need to perform
sufficiently because they are, again, eventually performed multiple times upon model changes.
Fourthly, the determination of the configuration ranking needs to perform well, because we require
to provide immediate feedback for stakeholders voting on the interaction platform.

The performance of configuration set determination depends on three steps: first, the SFM is
translated from its EMF representation to a constraint satisfaction problem (CSP). In this step, all
features in the SFM are iterated and corresponding constraints are created as described in related
work [101]. The performance of this step thus depends on the number of features and constraints
in the SFM. Second, the CSP is solved. This step, as described above, is performed by the CHOCO
off-the-shelf CSP solver. Its performance, again, depends on the number of features and constraints
in the SFM. Third, based on the CSP’s solutions, configurations are created, including the attribute
aggregation. In this step, all solutions found for a CSP (corresponding to configurations of an SFM)
are iterated and for each attribute type, an aggregation of the corresponding attributes is performed.
Thus, the performance of this step depends on the one hand on the number of configurations and
on the other hand on the number of attribute types in the SFM.

The skyline filter’s single critical step is the block nested loop algorithm presented in listing 4.
This algorithm’s performance depends on the size of the configuration set that needs to be iterated.
In addition, it depends on the number of attribute types because they are considered in every

comparison of two configurations to check for dominance.

129

5. Evaluation

Similar to the skyline filter, the requirements filter’s single critical step is the matching algorithm
presented in listing 3. The algorithm depends on the number of configurations and on the number
of requirements.

The performance of the configuration ranking depends on two steps: first, the SFM is translated
to the domain model of the utilized AHP implementation aotearoaLib. The performance of this step
depends upon the number of configurations and attribute types in the SFM. Second, aotearoal.ib
performs the actual ranking based on the input model and the preferences stated in form of a vote
(see section 4.4.6). Again, this step’s performance depends upon the number of configurations and
attribute types in the SFM.

We ran the performance benchmarks on a notebook with a 2.4Ghz Core 15 Processor and 8 GByte
memory. Every run for every model was repeated 100 times and the mean values of these runs are

presented in section 5.2.3.

5.2.2. Evaluation Models

Table 5.2 presents information about the SFMs created in the use cases (“GRO1” and “IRISO1”
as described in section 5.3.2 and “Amazon EC2” and “Rackspace” as described in section 5.4.2).
This information indicates realistic dimensions of SFMs when used in practice. The comparatively
small size of the SFMs “GRO1” and “IRISO1” with regard to the number of configurations results

from the model’s focus on selected work flow variants which the decision-makers desired to select

among.
Model ID Features Cross-tree Configurations Attribute types Attributes
GRO1 32 0 9 5 35
IRISO1 94 0 18 4 24
Amazon EC2 45 4 1280 4 20
Rackspace 32 2 896 4 28
Model 98 conf. 10 1 98 4 20
Model 952 conf. 20 2 952 4 20
Model 9450 conf. 30 3 9450 4 20
Model 21168 conf. 40 4 21168 4 20

Table 5.2.: Descriptions of use case and synthetic SFMs with rising number of configurations, based
on [224]

Additionally, we created artificial models of varying sizes. These models are designed corre-
sponding to the considerations described in section 5.2.1 to test the limits of our implementation
with regard to varying model dimensions that impact performance. The artificial models have a) an
increasing number of configurations but fixed number of attribute types and attributes (described
in table 5.2) and b) an increasing number of attribute types and attributes, while the number of con-
figurations remains fixed (described in table 5.3). The models were defined based on the method

proposed in [201]. The probabilities for added child nodes being either mandatory, optional, XOR

130

5.2. Performance Evaluation

or OR nodes are each 25%. We defined a maximum branch factor of 5, meaning that every service
feature has 5 children at most. Similar to [201], we defined 1 cross-tree relationship per 10 service
features. We also randomly defined attribute types and attributes, similar to the method described

in [181]. The instantiation value per attribute is uniformly distributed between 0 and 100.

Model ID Features Cross-tree Configurations Attribute types Attributes
Model 2 att. 20 2 952 2 10
Model 4 att. 20 2 952 4 20
Model 6 att. 20 2 952 6 30
Model 8 att. 20 2 952 8 40
Model 10 att. 20 2 952 10 50
Model 12 att. 20 2 952 12 60

Table 5.3.: Performance test models with rising number of attribute types and attributes [224]

With regard to evaluating the requirements filter, we defined requirements in two ways. First,
to assess the performance with regard to SFMs with rising configuration sets, we defined the same
number of requirements for every SFM. We required 2 instance feature and 1 abstract feature to
be required with weight 1.0. The features were selected randomly. In addition, we required for
2 attribute types to have values below or above a randomly selected value. Second, to assess
the performance with regard to a rising number of requirements, we defined varying numbers of
requirements for attribute types in SFM “Model 12 att.”. Table A.3 provides details on the numbers

of requirements for every model.

5.2.3. Results of Performance Evaluation

The processing times for determining configurations of the test models with rising numbers of
configurations are illustrated in figure 5.7 (note: the axis scale is logarithmic for better visibility of
the values). The results show that a higher number of features and constraints, resulting in more
configurations in the test models, does not considerably impact processing times for transferring
the SFM to a CSP. This step’s very small impact on the overall performance of the configuration
set determination renders it negligible. For both, the CSP solving and the attribute aggregation
steps, the processing time increases approximately linear with an increasing number of configura-
tions. Because the performance of the CSP solver lies outside our area of influence, we will not
further discuss its performance. In general, we found that the performance of the CSP solving step
corresponds to that reported in related work for this step [154]. With regard to the aggregation of
attributes, our findings are sensible because every configuration must be traversed to calculate its
overall attribute value for every attribute type.

The processing times for determining configurations of the test models with rising attribute
types and attributes are illustrated in figure 5.8. Attribute types and attributes neither play a role
in the transfer of the SFM to a CSP nor in solving the CSP, which is also reflected in our findings.

However, the processing times for attribute aggregation rises linear with an increasing number of

131

5. Evaluation

)
© 500
Q
(&)
[0}
@
E
o 50
£
c
el
5|
=] 5
Q.
IS
o
o
1
Figure 5.7.

843
14
41 26
20 20
10
A 4 S o 4 5
O 5 5 2 : 3 5 e}
3 N Vv 2 & & s A
®Q9 \%Q Q’Z’o & & & &
<& & @ & v & &
& be ® \Q’ Q)b‘ a
N d ¥ Q N
el @O Ob b@
< Q°
OSFM to CSP B CSP Solving B Attribute Aggregation

: Processing times for determining the configuration set of models with rising number of config-
urations, based on [224]

attribute types and attributes. This finding is sensible because for each additional attribute type, an

additional

aggregation of its attributes has to be performed for every configuration.

86
78

62

46

100
7y
©
5 80
[&]
(0]
@2
E 60
[0
£
5 40
I
3
I 20
o
&)

Figure 5.8.

Overall

mination.

132

> X X X NS X
) N o2 \Q)rb \be \,Lrb
Q @ @ @ N
& & & & ¥ ¥
N\ < A\ N\ ° °
OSFM to CSP B CSP Solving B Attribute Aggregation

: Processing times for determining the configuration set of models with rising number of attribute
types and attributes [224]

, the aggregation of attributes is the most expensive step of the configuration set deter-

Its complexity is &'(n*m), where n denotes the number of configurations and m the

5.2. Performance Evaluation

number of attribute types.

The processing times for applying the skyline filter to the use case SFMs and ones with rising
number of configurations is illustrated in figure 5.9. As can be seen, the computation time is highly
dependent on the number of configurations. Our findings reflect discussions of the complexity of
the block-nested loop algorithm in related work [41]. The complexity ranges from &'(n) to €' (n?),
where n denotes the number of configurations. The best performance is achieved if the skyline
is small, because in this case the window in the logarithm stays small and many configurations
are immediately dismissed. Table A.2 in the appendix illustrates this case: models that denote
a comparatively small skyline, for example “Model 952 conf.” with only 4 configurations out
of 952 in the skyline, require a small number of comparisons, thus resulting in comparatively
small computation times. On the other hand, the models “Amazon EC2” and “Rackspace” do not
denote any skyline configuration'3. In consequence, n* (n — 1) comparisons need to be performed,

resulting in high computation times.

10000,00 5345,20

1055,91 RN
—_— 52948 4.4.9-49. A, U
) 1000’00 [DLL 40 g1L82 W
ho] e, e,
5 D R RN NN
(8] Rty ey e]
E 10,00 NN R R N
© S T S RN
£ RN R 1,96 R A
= e AR o, S [
g 'O S\ B AR \
- 0.06 o, Sy S, e AR, oy I
€ R R R
8 0.01 R B e JER .

N ‘v
S S 9)
& o <
9 & &
&
&
v

B Skyline filter

Figure 5.9.: Processing times for skyline filtering of use case models and ones with increasing numbers of
configurations

The processing times for applying the skyline filter to SFMs with rising numbers of attribute
types and attributes are illustrated in figure 5.10 (note: the axis scale is logarithmic for better vis-
ibility of the values). In general, there is a trend for computation times to increase with rising
number of attribute types and attributes. This trend can be explained by each comparison between
two configurations becoming more complex for every additional attribute type. Looking at ta-

ble A.2 in the appendix, however, reveals also a reverse impact: more attribute types, in this case,

3This is caused by the pricing of the TaaS providers: VMs with high attribute values for “CPU cores”, “memory”,
and “disk space” have equally higher “cost per hour”.

133

5. Evaluation

result in a smaller skyline, thus reducing the number of comparisons. For example, “Model 2 att.”
with a skyline including 48 configurations requires 3160 comparisons while “Model 12 att.” with
a skyline including only 1 configuration requires just 951 comparisons. In this case, the increased
complexity for each comparison in the latter model even overcompensates the gainings from the

smaller number of comparisons.

500 4,50
")
4,00 3 \z [;%;Q‘
= X
g a0 o \ P \ A
=35) 2,43 20 Q“\‘:\:"__ }"\Q\-.Q ‘&\
g 8 R 1,99 "‘S:tt s&b\ h{}:‘ *3.:%
% 8 2,00 £ LRI %SE \\'\.\\\\.\\ \s%:‘: S%s %335 \33%
5.2 s) i R N b
22 1,00 bR R B R R
—_ 4 \\..\ \.\.\\ \.\.\ \.\\‘\. \\\,,\ \\\\
ST o O RY RN RN W =
N
N\ N N NS
$° ¥ & ¥)

B Skyline filter

Figure 5.10.: Processing times for skyline filtering of models with rising numbers of attribute types and
attributes

The processing times for applying the requirements filter to the use case SFMs and ones with
rising numbers of configurations are illustrated in figure 5.11. The processing times grow roughly
linearly with rising number of configurations. As illustrated in table A.3 in the appendix, the
number of requirements was left fixed for this analysis.

On the other hand, figure 5.12 illustrates the processing times for applying the requirements
filter to “Model 12 att.” with different numbers of attribute type requirements. The processing
times rise linear with the rising numbers of requirements.

Overall, these findings confirm that the complexity of the requirements filter is &'(n,m), where
n denotes the number of configurations and m denotes the number of requirements.

The processing times for ranking configurations of the test models with rising configurations
are illustrated in figure 5.13 (note: the axis scale is logarithmic for better visibility of the val-
ues). The results indicate that the biggest part of the processing time depends upon the transfer
of the SFM to an AHP problem. Specifically, the creation of the matrices MPC and MPC(a;) is
expensive. Every matrix MPC(a;) obtains an additional row and column for every configuration.
In consequence, SFMs with many configurations result in very large matrices. Thus, processing
times for the model with 9450 configurations are just over two minutes, making it impossible to
perform the complete calculation, for example, in Web applications where immediate response to
user requests 1s important. In the case of the test model with 21168 configurations, a calculation
was not possible due to memory limitations on the test machine. This performance bottleneck,

however, can easily be addressed: the SFM to AHP translation needs only be performed once for

134

5.2. Performance Evaluation

200,00
162,71
S 150,00 N
£ 100,00 N
(0] S
£
C
£ 50,00
®
>
g
0,27
@] ,
o 0,00 .
N
Q
OQ~

B Requirements filter

Figure 5.11.: Processing times for requirements filtering of use case models and ones with rising numbers

of configurations
10,00
1"
8,00 673 7,39 i’ﬁ
@ 600 g St N\ S N
— N . A A A
S8 400 4 R R R R R
5 5 N
= O 2,00 A o A, [[, i SRR
S0 e C“&Q o ey R L
S8 R 3 N SR AN SRR
g. % 0,00 T T T T T)
o= &Q @o @o @o @Q @Q
o X X X X X
N N N N N
? ? ? ? ? ?
\‘1, \b& \‘b Re) O NZ
N N X >
? ? ? ? & N
NS NS NS NS K K
Q Q Q > N
& & & &S ¥ ¥
o o
N\) \ \ & &

BIRequirements filter

Figure 5.12.: Processing times for requirements filtering depending on different numbers of requirements

every preference-based ranking process. The required times in the use of Web applications, thus,
depends only on solving the AHP, which is sufficiently fast. Furthermore, also the determination of
configuration comparison ranking vectors needs only to be performed once for every preference-
based ranking process (cf. section 4.4.5). This calculation produces one vector for every attribute
type, each of them having one element for every configuration. When pre-calculating them, only
the attribute type priority vector needs to be determined repeatedly, which is comparatively small as
it contains only one element for every attribute type. Considering these performance optimization

potentials, preference-based ranking can be applied also to large SFMs to be used, for example, in

Web applications.

135

5. Evaluation

100000 122263
@ 10000 R
S 1698 1044 D
8 1000 = 189 Riee
o, o v ey
£ 00 WA N N
qé 10 15 :\‘%‘3‘\ — :‘f}‘ 2 13 9 ?‘?E 17 k%%
S 10 s N SR X D
Q. o e o T s Wy
g X R X N X N X
8 0 o, vy . froman i v S
S S v & & & & &
Q) Q} 9Q q)O (1/0 QC) Q)()
N S S K K O o8
N < & R N NZ
v AN\ o O L
\} I Q°

BSFM to AHP OAHP solving

Figure 5.13.: Processing times for ranking configurations of use case models and ones with rising numbers
of configurations, based on [224]

The processing times for ranking configurations of the test models with rising numbers of at-
tribute types and attributes are illustrated in figure 5.14. The processing time for the transfer
of the SFM to an AHP problem increases linearly for increasing numbers of attribute types and
corresponding attributes. This result is sensible because for each additional attribute type a;, an
additional matrix MPC(a;) needs to be created. The processing time for solving the AHP problem

merely increases sublinearly for increased numbers of attribute types and attributes.

3500 3194
fr]
3000 2616 ?{:3\
R Y
0] 2500 1173 }s\ o
5T 2000 N X
c S 1585 N R gg\\\
o 0) S
59 1500 T648 %’% ‘\ﬁ § \s\\\
32 1000 R 3 W
£E 500 il \:“‘\3 33\1:: t% {Q\:\‘ t%\‘
— T oy *,) .
8 . ffmo 817 W2 3:\3 30 %38 @46
& & & & & &
\‘l/ \b‘ \6 \‘b ,\Q ,\‘1/
be’ 60 60 be’ b®\ b@

BSFM to AHP OAHP solving

Figure 5.14.: Processing times for ranking configurations of models with rising numbers of attribute types
and attributes [224]

136

5.2. Performance Evaluation

5.2.4. Discussion

The performance evaluation indicates the limits with regard to size of the SFMs to be applicable
in real-life scenarios.

For determining the configuration set of an SFM, even the largest model with regard to config-
urations (21168) can be processed in under one second. While rising numbers of attribute types
and attributes also increase processing times of the attribute aggregation, the impact is linear. We
thus conclude that our approach is capable of handling considerably large models in a reasonable
amount of time.

The performance of the skyline filter is hard to determine due to its dependence on the skyline
size. Comparatively small skylines result in little numbers of comparisons while the other way
round, large skylines can induce considerable performance impacts. Looking especially at the use
case models, their skylines are all calculated in at most one second, with only the model with the
most configurations requiring over 5 seconds. We thus consider the performance good enough to
apply skyline filtering repeatedly during modeling.

The performance of the requirements filter is directly impacted, on the one hand, by the num-
ber of configurations and, on the other hand, by the number of requirements. In both cases, the
processing time rises linearly with a linear increase in these numbers alone. For every assessed
model, the processing times remained well under 200 ms, making the approach perform well even
if it needs to be applied repeatedly.

For the configuration ranking, our evaluation shows that reasonable processing times are reach-
able for models with up to 1000 configurations. Beyond that, processing times and demand for
memory increase disproportionately. While the impact of rising numbers of attribute types is linear,
it can push processing times into unfeasible heights. We already presented potential optimization
approaches, based on pre-calculating configuration priority vectors, in section 5.2.3. Alternatively,
before applying preference-based ranking to an SFM’s configurations, decision-makers should en-
sure appropriate model size. This argument is not only driven by performance considerations, but
also by general usability of the approach: too many configurations will result in very similar rank-
ing values, thus complicating the interpretation of results. Additionally, the number of attribute
types should be low for the number of necessary pairwise comparisons to remain manageable (n
attribute types result in 0.5 xn (n — 1) comparisons). The realistic SFMs “GR01”, “IRIS01”,
“Amazon EC2”, and “Rackspace” generated in the use cases illustrate that service feature model-
ing is applicable despite the performance boundaries. Decision-makers can use the participatory
approach to focus on specific aspects of the service on which to obtain preferences from stake-
holders, thus keeping models reasonably sized. For larger models, approaches like the proposed

skyline filter can be used to decrease model size.

137

5. Evaluation

5.3. Use Case - Public Service Design

To illustrate the applicability of modeling service variants with service feature modeling, we here
present two use cases. The first use case addresses the design of public services considering vari-
ants, as motivated in section 1.1.1. Modeling SFMs was performed to represent service design
alternatives for public services in the COCKPIT EU project [57]. The goal of COCKPIT is to
enable citizens to participate in the (re-) design of public services. Public services, here, are not
limited to mere software services but also include human actors performing manual tasks. This

use case is part of work currently in review [224].

5.3.1. Use Case Description

Service feature modeling was applied to two scenarios about public service design in the COCK-
PIT project [106].

The redesigning social security record retrieval service scenario was provided by the Greek
Ministry of Interior. It aims to redesign the “Access extracts of insurance records in social security
organization” service, abbreviated GR0OI. The background of the service is that in Greece, as in
other EU countries, social security is paid for in part by employees and in part by employers.
Employers retain part of their employees’ income and pay it to the social security organization.
Service GRO1 allows employees to view their employer’s payments. Doing so is needed on the one
hand to ensure that employers perform the required payments. On the other hand, employees need
statements about their social security fees being paid if they want, for example, to prove their work
experience when applying for a job, to apply for permits to exercise professions that require work
experience, or if they want to apply for loans. GRO1 is provided to 6 Million employees across
Greece. The existing service provides two variants: in the “conventional” service variant, citizens
visit a department of the Social Security Institute, where they are provided with the latest excerpt
from their social security record. Alternatively, citizens use the “electronic” service variant, where
they have to register at a Social Security Office. Registration currently takes about 4 working days.
Once registered, citizens can access their social security records on a Web site. The primary goal
of the redesign is, for both service variants, to decrease execution times of the service.

The Internet reporting information system scenario was provided by the city of Venice. It aims
to redesign the accordingly named service (abbreviated “IRIS”). IRIS allows citizens to submit
and track civic issues, for example defect street lights, potholes, vandalism, or breaching of park-
ing regulations. In IRIS, citizens use the Multimedia Messaging Service (MMS) from their smart
phones or IRIS’ portal to submit evidence of such issues. IRIS has to cope with approximately
3000 requests per year. One goal of the redesign is to improve the transparency on how the public
administration processes submitted issues. Another goal is for the responsible public administra-

tion to react faster to submitted issues.

138

5.3. Use Case - Public Service Design

Service Feature Modeling in Public Service Design

We here outline the service engineering methodology in which service feature modeling was in-
tegrated. It has already been briefly introduced in section 1.1.1. The COCKPIT project’s overall
methodology, as illustrated in figure 5.15, encompasses a set of integrated methods. To illustrate
the context in which service feature modeling was applied, we will roughly outline the different

methods and their interactions.

(2\ (

Public service Public service delivery modeling Citizen deliberation engagement

information
extraction

Policy and legal
information
retrieval

Citizens' opinion
mining

Public service
modeling

2

—~

Cost estimation J

Workflow
definition

NS

-

Service feature
modeling

Public service
simulation and
visualization

2

o
Service design J

evaluations

Discussion
forums

NS

-

Sentiment /
rating
mechanisms

Figure 5.15.: Overview of COCKPIT’s methodology, methods directly concerned with service feature mod-
eling are marked in gray [224]

Public service information abstraction aims to collect existing information relevant for the (re-)
design of a public service. Policy and legal information is automatically extracted from corre-
sponding Web sources, for example EUR-Lex !4 and national legal texts, for example the German

“Gesetze im Internet”!d,

Citizens’ stated opinions about the service are mined from Web 2.0
sources and structured, using for example sentiment analysis.

Public service delivery modeling is concerned with conceptualizing the public service using
modeling techniques. Generic public service modeling allows modelers to capture information
like involved stakeholders, requirements, goals, involved resources, or cost figures of the service.
Together with the generic modeling, work flows are defined that specify the actions performed by
different stakeholders to deliver the service. Work flow definitions are specified in the Business
Process Model and Notation (BPMN) [8]. Work flow definitions make use of information con-
tained in generic public service models. For example, defined stakeholders or resources are used
as actors in the work flows. Cost estimation provides methods to determine the estimated mean
cost of an individual service invocation for the service provider.

Citizen deliberation engagement aims at participation of citizens during the (re-) design process.

Simulation and visualizations are used to communicate (preliminary) results of the public service

“http://eur-lex.europa.eu/en/index.html
Bhttp://www.gesetze-im-internet.de/

139

http://eur- lex.europa.eu/en/index.html
http://www.gesetze-im-internet.de/

5. Evaluation

design. Based on these findings, in discussion forums, citizens can state requirements or proposals
on how to improve the service design. Sentiment and rating mechanisms allow for more formalized
provision of feedback.

Service feature modeling is tightly integrated in this methodology in two ways: modeling is
performed to capture design alternatives of the public service, and the modeled design alternatives

are used in citizen deliberation engagement as a basis for citizens to evaluate service designs.

5.3.2. Modeling

Service feature modeling is tightly integrated with other methods of COCKPIT’s public service
design methodology, most notably with the method to define work flows. The work flow definition

method provides two mechanisms to represent service design variants [217]:

e Inter-process variability means that for a single request, multiple work flows exist describ-
ing the service delivery. As a design activity, one of these work flows is selected to deliver

the service during operation.

e Intra-process variability means that within a single work flow, multiple flows are speci-
fied. To realize intra-process variability, design-time decision gateways extend the BPMN.
A design-time decision gateway specifies more than one outgoing path, similar to standard
BPMN decision gateways. However, as the name suggests, within a design activity, one
of these paths is chosen to be implemented and only this path operates once the service is
deployed. In contrast, standard BPMN decision gateways dynamically result in an outgoing

path while the work flow is executed, based on the fulfillment of certain conditions.

A mapping between these two variability mechanisms and service feature modeling allows mod-
elers to automatically create an SFM that represents the public service’s work flow variants. Rep-
resenting work flow variants with an SFM allows modelers to specify dependencies between them
using cross-tree relationships (cf. section 3.2.1). Attributes can be used to specify characteristics
of work flow variants. Finally, service feature modeling’s usage methods can be used to select
work flow variants to implement (cf. chapter 4).

An exemplary mapping between the described work flow variability and SFMs is illustrated in
figure 5.16. Upon triggering the automatic creation of an SFM for a given work flow, a feature
grouping all work flows is created. It contains all further features addressing work flow variability.
Underneath, for every specified service request, an abstract feature is created. The abstract feature
must be instantiated by one instance feature, each representing a work flow defined for the service
request. Per work flow feature, for every design-time decision gateway within the work flow (if
any), an abstract feature represents an alternative flow. In the alternative flow, a feature grouping
all tasks within the flow, represented using instance features, is defined. Using this mapping,
SFMs representing work flow variability can automatically, and thus repeatedly, be created. This

capability is highly important to delimit the effort for creating SFMs.

140

5.3. Use Case - Public Service Design

Work flows for service request "deliver record": Derived SFM:

Work flows

Deliver record

Work flow x:

Work flow y:

Deliver
record per
mail

Print record

| Work flow x

|Workflowy |
Decision
Gateway
—
Alternative 0 Alternative 1
Tasks Tasks

Work flow z: e >
Print record Deliver record Send record
per mail per e-mail

Grouping Abstract Instance
feature feature feature

= mandatory =XOR
feature

Public Administration
f o))

| Send record T
| per e-mail

Figure 5.16.: Exemplary mapping of work flow elements to SFM

Figure 5.17 illustrates an excerpt from the SFM modeled while redesigning the GRO1 service.
Within one of the work flows, a design-time decision gateway denoted “way of submission” is
specified. Originating from it are flows that describe different ways of how citizens can request
and obtain their social security records. Four flows originate, which are correspondingly denoted
by the instance features “alternative 0 to “alternative 3”. These alternatives, following the map-
ping between work flows and SFMs described above, contain features named “tasks”, which group
the flow’s tasks. For example, one way is for citizens to request and obtain the record within the
ERMIS portal'®, which acts as an unique access point for various public services in Greece. In an
alternative service design, citizens contact an existing call center to request the record. The subse-
quent delivery of the record can either be performed by the Hellenic postal service (Greece’s postal
service) or by handing out the record to citizens in a service center. This structure is automatically
created based on a previously defined work flow. As illustrated in figure 5.17, the modelers defined
attribute types and associated corresponding attributes to the created features. Attribute types and
attributes are the basis for using the SFM for selecting (a set of) service variants to implement (cf.
chapter 4). A boolean attribute represents the capability for the citizens to submit the application
for a social security record from home. Features (representing tasks) that realize this capability
contain a corresponding attribute. Similarly, the capability to deliver the record to citizens’ homes
is represented with an attribute type and attributes. The “application time” denotes in minutes how
long certain tasks approximately take. This attribute type is directly related to the main goal of the

service redesign to reduce execution time (cf. section 5.3.1).

1oNamed after the Olympian god “Hermes” who acted as a messenger of the gods.

141

5. Evaluation

»

Way of
submission

/

Alternative 1

o

.ZL_

Alternative 0

P

Alternative 2 Alternative 3

Log in ERMIS, Call 1500 Provide Call center
submit application call center Requested delivery
and retrieve record Information method
e = B mmm - g SRR, N p——
1 1 1 [1 1 1
pofue v (2 g e L2 Alternative 0 Alternative 1
Lo] 4] S S

=3

[aste |

™

Go to citizen service
center

Receive and
Authenticate by
Hellenic Postal

Service

name: Submit application

from home
domain: boolean
measurementUnit: -

name: Home delivery
domain: boolean
measurementUnit: -
agg. rule: at least once

name: Application time
domain: integer
measurementUnit: minutes
agg. rule: sum

agg. rule: at least once

Attribute type --» =Requires

r Key:-—==--=--=--=--=--------“- - m e m—m——m——m— - — - .
|) 1
! Grouping Abstract Instance = mandatory =optional !
! feature feature feature feature feature :
| <> =Excludes i
| i
' |

Figure 5.17.: Excerpt of SEM for service GRO1 created in the public service use case, based on [224]

5.3.3. Usage

Within this use-case, participatory preference-based ranking was performed to obtain decision-
makers’ (in this case citizens’) opinions about the alternative designs. On the implemented valu-
ation server, evaluations were created for each of the two SFMs created in the use case scenarios
by the corresponding public administrations. On the evaluation server, corresponding polls were
automatically created as described in section 4.4.3. The public administrations, using SFM design-
ers, activated the polls to make them accessible on the interaction platform. Figure 5.18 illustrates
a screen shot of the poll for the GROI service displayed on the evaluation platform.

Using this poll, citizens stated their preferences regarding the attribute types defined in the
SFMs. 59 citizens stated their preferences regarding GRO1 and 43 regarding IRIS. The collected

preferences were, at the end of the evaluation, aggregated using the method described in sec-

142

5.3. Use Case - Public Service Design

0 00 /4 rois = -
€& S € | [paris.atc.gr/cockpit/Polls.aspx?service=101&pol =64
Preferences for Accessing Extracts of Social Security Whgol MoAmmiv
Record
Please provide your preferences using the sliders below (favouring what you ***"1
value more important). You can choose comparatively between: - Lower Cost for takiant
the Citizen (max=you prefer lower cost for the ditizen) - Personal Assistance (max
= you prefer face-to-face/direct interaction with an empioyee) - Submit ik
Application from Home (max = you prefer submission via a PC or via Phone) - Djibrilg
Shorter Application Time (max = you prefer shorterduration) - Home Delivery of
Resuits (max = you prefer delivery electronically or via post/courrier service)
dfourt
Lower Cost for Personal
the Citizen Assistance m
stylianos
| | | | | | | | |
] 7 5 3 1 3 5 7 9
stylianos
Lower Cost Submit
for the Application _
Citizen from Home stylianas
I | | | | | | | | *k’ K
] 7 5 3 1 3 5 7 3 ckpkonas
c Shorter ey
Lower Cost Application tonionio
for the Citizen
Time e
| | | | | | | | | vegmar
9 7 5 3 1 3 5 7 9 e
Lower Cost for Home mgian
the Citizen Delivery Srirdrdr
\ I | I \ I | I | ATESEAGS
3 7 5 3 1 3 5 7 9 *

Figure 5.18.: Screenshot of the GRO1 poll on the interaction platform [224]

tion 4.4.4 and retrieved from the valuation server via the SFM designer.

5.3.4. Realization

To realize service variants based on the ranked configurations, decision-makers of the public ad-
ministrations assessed highly ranked ones. They ultimately manually selected a single configu-
ration based on the evaluation’s input, reflecting a work flow alternative of the public service in
design. The decision-makers form the public administrations transferred this configuration to the
work flow design by manually resolving the design time decision gateway: they removed 1) the
gateway itself and 2) all flows originating from this gateway that were not present in the selected
configuration. As a result, a work flow remains that only contains elements found in standard
BPMN [8]. This work flow was then used in further design activities, which in the COCKPIT
methodology (cf. section 5.3.1) include simulation and visualization of the service design and

ultimately implementing, deploying, and operating the service.

5.3.5. Discussion

The here presented modeling use case illustrates the applicability of service feature modeling to
represent service variants during service development. The utilization of service feature modeling
within a larger service engineering methodology and the presented mapping of features to work
flow elements show how service feature modeling can be utilized in combination with established

service engineering approaches. The mapping between features and work flow elements further

143

5. Evaluation

enables automatic generation of SFMs for given work flow definitions, illustrating how automatic
model creation can be performed. Representing work flow variants explicitly in SEMs allows to
define dependencies between them or their elements (i.e., activities) or to specify their character-
istics with attributes as motivated in challenge 1. Regarding the usage, this work flow shows the
applicability of preference-based ranking, specifically in a participatory manner as motivated in
challenge 6. In both scenarios, evaluations and corresponding polls were successfully created and
operated and actual citizen preferences were selected. We discuss the assessment of the collected
preferences and their impact on the latter service design activities in section 5.5.3. Regarding the
realization of service variants in this use case, only manual methods were applied. The here pre-
sented use case further provided the basis for an empirical evaluation of service feature modeling,

which is presented in section 5.5.

5.4. Use Case - laaS Configuration

In the second use case, we use SFMs to configure Infrastructure as a Service (IaaS) and automat-
ically deploy a Web application on top of it, as motivated in section 1.1.3. Configuration in this
context refers to, as we describe in section 2.3.5, an approach to realize service variability through
the provision of pre-determined information. This use case addresses the consumer of IaaS, who
uses service feature modeling for IaaS configuration and subsequent automatic deployment of the
Web application on top of [aaS. This use case further illustrates exemplarily the realization of ser-
vice variants based on the variant selection made using an SFM. This use case is part of work

currently under review [220].

5.4.1. Use Case Description

[aaS provides consumers with abstracted, virtualized hardware, for example for compute or storage
purposes [31]. IaaS consists of virtual machines (VMs) that are hosted on the IaaS provider’s
physical infrastructure. Consumers rent VMs in different configurations (regarding, for example,
number of CPU cores or memory size) and load images on them. Images can contain either only
basic operating systems or include complete software stacks, depending on the intended use of the
VM. On top of the image, consumers install additional software if required. These options result in
a complex decision problem for consumers to solve when consuming IaaS. Descriptions of these
options are currently provided in HTML (cf. [1, 2]), impeding automated analysis and structured
decision-making.

In this use case, SFMs represent the configuration options offered by different [aaS offers (also
referred to as clouds in the following), for example the VM sizes and available images. The
configuration options for each cloud are modeled in a single SFM. These SFMs can be modeled
by the providers, to communicate their configuration options to consumers and allow them to
select among them using the SFM, or by the consumers themselves. The SFMs are used by laaS

consumers in design activities to configure the IaaS based on their requirements and preferences.

144

5.4. Use Case - [aaS Configuration

The requirements and preferences are driven by the intended use of the IaaS by the consumer, in
this case the deployment of a Web application that consists of multiple components, each imposing
unique requirements on the IaaS. The usage of SFMs is based upon the methods described in
chapter 4. In this use case, we exemplarily show how actual service variants, selected through using
SFMs, can be realized. Realization is performed though automatically consuming the selected
[aaS configuration with the help of a deployment model and middleware and by deploying the
Web application on top of it.

We perform the above-mentioned steps to ultimately deploy the Web application of the German
start-up Barcoo!” on IaaS. Barcoo provides community-enriched data on a plethora of products,
for example, packaged groceries or cosmetics. Using a mobile application and the cameras of their
smart phones, consumers scan the bar codes of products they are interested in. Barcoo provides
information about the scanned product, including alternative prices, nutrition information, user rat-
ings, and comments. Though only in operation since 2009, Barcoo reached 10 Million application
downloads in April 2013 [3].

To provide their mobile applications with product information, Barcoo runs a Web application

whose architecture with regard to the different components is illustrated in figure 5.19. The load

Application I

server

MySQL
datastore

Load balancer

NoSQL
datastore

Figure 5.19.: Overview of Barcoo’s architecture [220]

balancer allocates requests to one of multiple application servers. Barcoo’s architecture enables
horizontal scaling by switching application servers on and off in reaction to changing workloads.
This is, for example, done every night because request amounts regularly drop at that time of day.
The information to be sent to consumers is persisted in a MySQL database. For better performance,
an additional in-memory NoSQL database caches the results of common queries to external ser-
vices. These four components are currently hosted on Amazon Web Services. The motivation
for Barcoo to model its Web application is to automatically re-deploy it, for example in case of a
desaster. In such cases, Barcoo has to ensure fast delivery of a compensatory back-end to ensure

ongoing service to avoid the loss of users.

5.4.2. Modeling

Modeling, in this use case, aims to represent the configuration options of laaS offers. The config-
uration options of every laaS offer to consider are represented by a single SFM. We first present

a domain model for representing laaS, enabling comparability between models as described in

"http://www.barcoo.com

145

http://www.barcoo.com

5. Evaluation

section 3.3.3. We then describe how we used this domain model to model the IaaS offers of two

common providers.

laaS Domain Model

We propose a domain model for [aaS feature models that captures the configuration options of
IaaS to consider. An IaaS feature model represents the configuration options offered by one cloud,
for example the AWS Elastic Compute Cloud [1]. A domain model serves multiple purposes:
first, it prescribes the structure and relevant variation points to consider when modeling [aaS with
service feature modeling. This decreases modeling effort because modelers use the structure as a
starting point instead of beginning from scratch. Second, the domain model ensures comparability
between different [aaS feature models as discussed in section 4.5. Comparability makes it easier to
communicate different IaaS feature models and eventually allows for their (automatic) comparison.

The domain model is based on findings in previous work we performed to identify typical [aaS
configuration options by assessing 11 IaaS offers [29]. Initially, for every individual IaaS offer, all
configuration parameters were collected and grouped. In the following, the collected parameters
were filtered to contain only parameters that are present in at least two laaS offers. Additionally,
for every parameter, it was determined whether a) the parameter is controllable by the user, b)
whether the user can select among variants for the parameter, ¢) what the range of the parameter is
(alternative selection, interval, free choice), and d) whether the parameter is dependent on other pa-
rameters. In the following, every laaS offer was described based on this scheme. Consolidating the
11 derived schemes provides an overview of the parameters in which laaS offers are configurable
and of the nature of the configuration options.

The thus obtained information was the basis for deriving two SFM domain models: one rep-
resenting standard IaaS configuration options and one representing extended laaS configuration
options. The selection of configuration parameters to consider in every domain model is based on
the frequency in which they are available in the assessed [aaS offers. To derive SFMs, mapping
rules between the identified parameters and features were defined so that a) groups of parameters
are represented by grouping features, b) independent parameters are represented by abstract fea-
tures (with instance features representing the choices for the parameter), and ¢) dependent parame-
ters are represented as feature bundles underneath a grouping feature. Additionally, for dependent
parameters whose options are numeric, attributes and corresponding attribute types are created.

Figure 5.20 illustrates the proposed domain model for standard IaaS configuration options. The
first configuration option concerns the virtual machine, which can be of different types, for exam-
ple referred to as “small” or “large” [1]. Attributes characterize each virtual machine type, stating
its memory, disk size, cost / hour, and CPU cores. These values are either added manually by the
modeler or they could be provided dynamically through composition of SFMs (cf. section 3.4).
The next configuration concerns the selection of a basic image. Prepacked software of the image

is modeled in a mandatory abstract feature. Potential dependencies or incompatibilities between

146

5.4. Use Case - [aaS Configuration

Cloud n
—Virtgal_/. . Software
. Basic image -
machine environment

Type 1 Type X Basic Basic Installation Installation
P P image1 | ™| imageY task 1 | taskZ
Packaged
software
name: CPU cores name: Memory name: Hard disk . name: Depl. time
o S L name: Cost/ hour .
domain: integer domain: integer domain: integer i domain: double
. . . domain: double .
measurement unit: measurement unit: measurement unit: b measurement unit:
measurement unit: €
cores GByte GByte X sec.
. R i agg. rule: sum)
agg. rule: sum agg. rule: sum agg. rule: sum agg. rule: sum
LGS :
Grouping Abstract Instance) [
Feature Feature Feature Atribute type :L o :o‘ft?tiu_tf __ _: :

= mandatory = optional =XOR =OR <> =Excludes
: feature feature ---+ =Requires

Figure 5.20.: Proposed domain model to represent IaaS [220]

VMs and images are expressed using requires and excludes relationships. Potential costs of images
are stored in attributes cost / hour. The software environment contains features representing instal-
lation tasks for software that can be installed on top of images. Both, images and installation tasks
can be annotated with attributes stating deployment times, allowing decision-makers to consider

these values in configuration.

Modeling laaS Offers

Based on the presented domain model, we modeled two exemplary IaaS offers, namely those of
Amazon EC2 [1] and Rackspace [2]. Figure 5.21 illustrates an excerpt for the SFM representing
Amazon EC2.

In both SFMs, we modeled VMs of different sizes for the two IaaS providers, 6 for Amazon EC2
and 7 for Rackspace, as instance features. For each VM, we captured the number of CPU cores,
the memory in GByte, the hard disk size in GByte, and the cost per hour in Euro using attributes
associated with the attribute types defined in the domain model. The models values were derived
from the publicly available descriptions of the IaaS services [1, 2]. We further modeled basic
images with correspondingly named instance features, 6 for Amazon EC2 and 3 for Rackspace.
We use additional instance features to represent the prepacked software of the image, for example
the operating system. In both SFMs, we modeled 6 software installation tasks, including MySQL,
Git version control, or the Network Time Protocol (NTP). Cross-tree relationships are used to
exclude redundant installation of software. For example, if an image is selected that already comes
with MySQL installed, additional selection of the MySQL installation task is prohibited. Attributes

147

5.

Evaluation

Virtual .
. Basic image
machine

AWS High-
CPU Extra
Large Instance

AWS M1 Small
Instance

P -
v/ looesi !
/ \ LS

rN I
/Ny 1048
/ A 1

i

1
VAR B
1375 11 410 1}

P
H

Amazon EC2

AWS Ubuntu

(Lucid Lynx)

10.04 LTS

AWS MySQL (& ------

Software
environment

Prepacked |\
software | \

Ubuntu
10.04

[
:63.5|

-a-

name: CPU cores
domain: integer
measurement unit: cores
agg. rule: sum

name: Memory
domain: integer

measurement unit: GByte
agg. rule: sum

name: Hard disk
domain: integer
measurement unit: GByte
agg. rule: sum

name: Cost / hour
domain: double
measurement unit: €
agg. rule: sum

name: Depl. time
domain: double
measurement unit: sec.
agg. rule: sum

IS (o :

Grouping || | Abstract | Attribute | 'r-A;tr-lk; -t“: = mandatory = optional =XOR =OR <% =Excludes
Feature Feature i ute |

type i feature feature --» =Requires :

Instance
Feature

Figure 5.21.: Excerpt of the laaS feature model representing Amazon EC2 [220]

represent the deployment time in seconds measured for starting VMs with selected images and for
installing software on top of VMs. These attributes were derived from our own measurements
of these times. Overall, the SFMs denote 1280 configurations for AWS and 896 for Rackspace.

Details about the two models are provided in table 5.2.

5.4.3. Usage

The usage of the outlined SFMs followed the usage process described in section 4.1. The con-
figurations for both SFMs were determined and narrowed down with requirements filtering, and
ultimately preference-based ranking was used to select the configuration to consume. No skyline
filter was applied because of how the IaaS offers are constructed: no configurations are dominated
(cf. section 5.2.3). The Web application to deploy on IaaS, however, consists of multiple compo-
nents as described in section 5.4.1. Every component requires a different configuration based on
the functionalities it aims to fulfill and the non-functionalities. The usage methods are thus applied
once for every component of the Web application, resulting possibly in different configurations for
every component.

We defined exemplary requirements and preferences for the IaaS configuration for every com-
ponent. In every case, we require the software responsible for delivering the required functionality
to be present. For example, for the MySQL component, an instance feature “MySQL” is required.
Additionally, for the application server and load balancer components, which are logic intensive,
we required more than 8 CPU cores and for the two database components we required more than

1000 GByte disk space and more or equal to 8 GByte memory. The application server further re-

148

5.4. Use Case - [aaS Configuration

quires installation of an Amazon Simple Storage Solution (S3) client, GIT for version control, and
running the Network Time Protocol. All requirements have a weight of 1.0 assigned, indicating
their non-negotiable nature. Filtering the configuration set for the stated requirements, we derived
a reduced configuration set as depicted in column two in table 5.4. We stated exemplary prefer-
ences for the used attribute types. For the application server and load balancer components, we
denoted the number CPU cores as most important, followed by low cost, memory, disk size, and
lastly deployment time. For the database components, we prefer low cost, followed by CPU cores,
memory, disk space, and lastly deployment time. Performing the preference-based ranking, we de-

termined the highest-ranked configuration per component and fed it back into the [aaS deployment

model.
Component Configurations Mean deployment time [sec] Depl.
meeting req.[#] overall instance start installation steps
App. server 10 AWS, 0 Rackspace 801 63 738 8
MySQL DB 96 AWS, 48 Rackspace 122 62 60 3
NoSQL DB 64 AWS, 0 Rackspace 135 65 70 3
Load balancer 160 AWS, 0 Rackspace 93 63 30 3

Table 5.4.: Overview of characteristics for configuration and deployment use case [220]

5.4.4. Realization

In this use case, we exemplarily show the realization of selected service variants. Realization
includes the automatic consumption of the selected VMs, loading the selected images on them,
and installing software on top of these images, in this case resulting in the deployment of the
Barcoo Web application. To automate these steps, we utilize an IaaS deployment model presented
in previous work currently under review [220]. The deployment model’s meta model is illustrated
in figure 5.22.

The TaaS deployment model’s application part models a distributed system, for example a Web
application, to be deployed on IaaS. A distributed system consists of a set of components, rep-
resenting, for example, a Web application’s Web server or load balancer. A requires relationship
models potential dependencies between components. Each component can be realized in multi-
ple instances, running a configured operating system with predefined software stacks. Using the
component element to group instances ensures they all have the same virtual machine type, image,
and software stack. The varying numbers of instances deployable for each component results in
horizontal scalability. The dynamic deployment or undeployment of instances in reaction to or in
anticipation of changing load is outside of the scope of our approach and typically performed by a
load balancer component.

The TaaS deployment model’s federation part abstracts from underlying laaS offers. This ab-

straction allows the modeler to specify that the distributed system’s components run on different

149

5. Evaluation

; Distributed

- System

8

i 4

L2 . :

- 8 1. & requires

a

=3 Instance e & Component

5

B = Federated Federated

'8 a Virtual Machine Image

L ©

: L

. 1.* 1.*

3 Virtual 5 Image

: Machine bt 9

' c

: N 2

F . A

L Q

e

: % Basic " Configured

2 Image MR Image

L% .

. © .

E 1.

. {» *
Cloud Installation Task

Figure 5.22.: Meta model of the IaaS deployment model [220]

[aaS offers. Components are assigned to federated virtual machines, grouping similar VMs, and a
federated image, grouping functionally equivalent images.

Finally, the infrastructure part contains information about different [aaS offers to run the appli-
cation on. Each IaaS offer is represented by a cloud, which is operated by a single provider. Every
component from the application part runs on a cloud. Clouds contain a set of virtual machines
and a set of basic images. Basic images contain an operating system and packages software. A
configured image represents a basic image with additional installation tasks to be executed dur-
ing deployment. Configured images thus present increased deployment efforts, resulting in longer
deployment times.

For our use case, we defined the application and the infrastructure part of the IaaS deployment
model. As in the laaS feature models, we defined 5 VMs and 6 basic images for Amazon AWS
and 7 VMs and 3 basic images for Rackspace. We defined 6 software installation tasks to perform
on top of basic images.

Having the IaaS deployment model in place and having obtained the information about the se-
lected configuration for every component from the IaaS feature model, we defined the federation
layer of the deployment model. Federated virtual machine elements were created for the selected
VM and federated images were created for the selected basic image and additional software instal-

lation tasks for every component.

150

5.4. Use Case - [aaS Configuration

Using the thus completed deployment model, we ran the automatic deployment 10 times for ev-
ery component to assert its proper functioning and reliably measure required times for the deploy-
ment. The deployment was performed using a deployment middleware as described in previous
work [220]. It takes as input the completely modeled IaaS deployment models and performs de-
ployment, including VM startup, image loading, and software installation via Secure Shell (SSH)

commands. The measured mean times for deploying every component are illustrated in table 5.4.

5.4.5. Discussion

The application of model-based approaches to the configuration of IaaS and the deployment of
a Web application on top of it has multiple advantages: the large number of configuration op-
tions (1280 for AWS and 896 for Rackspace) emphasizes the complexity of the decisions to be
made, which we address with systematic support through requirements filtering and preference-
based ranking. The application of service feature modeling and the IaaS deployment model allows
users further to automate consumption of the selected laaS configuration and deployment on top
of it. This allows systems, for example, to deploy Web applications unexpectedly in reaction
to a disaster. Given that requirements and preferences are stated, selection can automatically be
re-performed on demand, based on service feature modeling’s selection process, as motivated in
challenge 4. If varying attributes are composed into the IaaS feature models (cf. section 3.4),
re-selection of variants just before deployment might lead to different results and is thus desirable.
Table 5.4 illustrates the many involved steps - for instance start up, updates, or installation of soft-
ware - that produce effort and are error-prone if performed manually. Using the IaaS deployment
model, we a) capture all relevant information for the deployment and b) perform it automatically
with regard to starting selected VMs and images and installing the required software on top of
them. While the measured execution times per component are high in some cases, we argue that
the execution time of manual performance, requiring reactions and provision of input, is likely to
be even higher.

In this use case, the representation of IaaS with SFMs allows the user to capture the many
configuration options it offers. The use case does, though, also reveal limitations of applying
service feature modeling [29]: features and attributes are suitable to represent distinct concerns or
values. However, when variable objects are very fine-granular and / or manifold, representation
via features and attributes becomes cumbersome. For example, if memory or hard disk space is
configurable on a megabyte level, an overwhelming and unfeasible number of features to represent
the resulting variants is required. We discuss possible approaches to address this shortcoming in
section 6.2.

This use case further exemplifies the role domain models play in service feature modeling. We
want to make configuration decisions, regarding virtual machine types, images, and installed soft-
ware, across clouds (cf. challenge 5). Thus, we require a common structure to make these decisions

comparable among clouds. Furthermore, the domain model allows the user to map laaS feature

151

5. Evaluation

models to the [aaS deployment model. Using the mapping, [aaS feature models can automatically
be created from an [aaS deployment model, given it already contains information about laaS offers.
This automatic SFM generation significantly decreases manual modeling efforts. It is enabled by
a correspondingly designed interaction service within the SFM designer (cf. section 5.1.3). Based
on the mapping, after using the IaaS feature model for configuration, the decisions made can be
fed back into the TaaS deployment model. This results in the creation of federated virtual machines

and federated images elements in the deployment model.

5.5. Empirical Evaluation

In addition to the so far outlined evaluation types, we performed an empirical evaluation. While
the proof-of-concept implementation illustrates the realizability of service feature modeling and
the use cases show its applicability to realistic scenarios, the empirical evaluation aims to provide
insights into the perceived quality of our approach. The empirical evaluation was performed in
the context of the use case presented in section 5.3. It consists of two surveys that address a) how
the modelers and decision-makers from the public administrations (in the following denoted as
service engineers for simplicity) who modeled and used SFMs perceived the approach and b) how
the citizens participating in the preference-based ranking by answering the polls on the interaction
platform perceived this method. Surveys of this kind are an established method to evaluate software
or designs [89]. In this section, we describe how we designed the surveys, we discuss the data we
collected, and the results we draw from this data. The empirical evaluation is described in work

currently in review [224].

5.5.1. Design of Empirical Evaluation

The first survey was distributed to the service engineers from the use case partners. Its results thus
provide a focused set of expert insights from a select group of highly suitable respondents (the
backgrounds of the respondents can be seen in figure 5.5). A first set of attitude questions (with
standardized ordinal scale of strongly agree, somewhat agree, somewhat disagree and strongly dis-
agree), indicated with A in figure 5.23, addresses the usability of service feature modeling, namely,
whether the approach was understood by the service engineer and what effort was required to adopt
this new approach. A second set of attitude questions, indicated with B, addresses the expressibil-
ity of SFMs. Expressibility is addressed generically (is it possible to model all desired service
alternatives?) and specifically with regard to attribute types for modeling properties of alternatives
and dependencies for delimiting the set of valid alternatives. A third set of attitude questions,
indicated with C, addresses the interpretation and usefulness of the rankings of service alterna-
tives for the subsequent service design. The overall question addressed is whether the information
on the ranking of service alternatives enables decision-makers to incorporate citizens’ preferences
into public service design. The individual questions aim to determine whether the presented rank-

ings allow decision-makers to determine the preferences by the citizens. Further, it was asked

152

5.5. Empirical Evaluation

whether properties of relevance for the citizens can be derived from the collected data. Finally, the
comprehensibility and (from the service engineer’s perspective) reasonableness of the determined
suggestions is addressed. The service engineer survey further allowed service engineers to provide
open feedback on service feature modeling to state concerns or comments that are not addressed
by the attitude questions.

The second survey, consisting entirely of attitude questions, addresses the citizens who partic-
ipated in the polls on the interaction platform. We have to note that, while addressing the SFM
approach, these questions are biased by the created SFMs and by the design and implementation
of the interaction platform, which in the COCKPIT project lay outside of our control area. How-
ever, the questions try to focus on those aspects that depend on the SFM approach per se and not
its presentation on the interaction platform. A set of questions, indicated with D in figure 5.24,
addresses the usability of the pairwise comparison method to state preferences on public service
design variants. These questions address, on the one hand, how easy it was for citizens to perform
these tasks, its effectiveness, and number of comparisons. A second set of questions, indicated with

E, addresses the usefulness of stating preferences and evaluating public service design alternatives.

5.5.2. Data Collection

We collected 6 filled out service engineer surveys from the use case partners. Information on the
background of the involved service engineers is provided in table 5.5. The collected data contained
6 missing values that we dealt with by mean imputation, meaning that we used the arithmetic mean

to replace the missing value [81].

User Experience in service Experience with ICT Confidence w.r.t. the
design (years) tools (*) provided answers (*)

Greece 1 2 5 4

Greece 2 2.5 3 3

Greece 3 1 2 3

Greece 4 2 4 4

Greece 5 4 4 4

Venice 0 3 3

Mean 1.92 3.5 3.5

Table 5.5.: Information on service engineers participating in evaluation; *: 5=expert, 4=high, 3=medium,
2=low, 1=none [224]

We made the citizens survey available on the interaction platform. The survey was available in
English, Italian and Greek to increase its reach. We collected overall 25 filled out surveys from
citizens, 5 for the English, 11 for the Italian and 9 for the Greek version. The collected data

contained 12 missing values that we dealt with, again, by mean imputation.

153

5. Evaluation

5.5.3. Results of Empirical Evaluation

The data collected from the service engineers hints, overall, at how useful service feature modeling
is for usage in public service design. However, the data is, of course, the result of the individual
experiences of the questioned service engineers. As table 5.5 illustrates, having on average around
1.9 years of experience in service design and self-assessing their experience with ICT tools and
their confidence with regard to the provided answers both between medium and high, the consulted

service engineers can be considered suitable for collecting data on service engineering.

A1: | found it easy to model service alternatives with SFM

A2: | was quickly able to understand SFM

A3: | found it easy to identify the attribute types to model +

B1: SFM allowed me to model all desired service alternatives

B2: Attribute types allowed me to specify all relevant
properties of service alternatives

B3: Dependencies (i.e. requires and excludes) allowed me to
delimit the possible service alternatives

Questions

C1: The ranking of service alternatives revealed to me the
citizens’ preferences

C2: The ranking of service alternatives helped me identify
which service properties the citizens prefer

C3: | could clearly understand why the top-ranked service
configuration was suggested

C4: The ranking of service alternatives matches with my
assessment of the service alternatives

Assessment
1 = strongly agree 2 = somewhat agree
3 = somewhat disagree 4 = strongly disagree

Figure 5.23.: Evaluation results of the service engineer survey [224]

With regard to the usability of service feature modeling, the service engineers found it takes
getting used to the new approach - as indicated by the results for questions Al to A3 that stagger
between moderate agreement and moderate disagreement. The perception of how easy the model-
ing of SFMs is with the provided tools seems to depend on the experience with ICT tools: those
service engineers that state to have “high” or “expert” experience with ICT tools found modeling
of service alternatives rather easy, while those that assessed themselves as having lower ICT expe-
rience did not agree. To make service feature modeling usable also for service engineers with little
ICT experience, its integration into larger service design methodologies, dedicated training, and

strong user documentation, for example in the form of help mechanisms within the SFM designer,

154

5.5. Empirical Evaluation

are fundamental.

The answers to questions Bl to B3 show in each case moderate to strong agreement with the
claims that service feature modeling is expressive when it comes to capturing service design al-
ternatives and their properties. The capability to delimit the set of alternatives using requires or
excludes dependencies is considered especially useful.

The answers to questions indicated with C, addressing the interpretation and usefulness of the
ranking of service alternatives for the subsequent service design, are quite homogeneous. All 6
service engineers moderately to strongly agree that the provided information on ranking of service
alternatives and attribute types is useful. Especially interesting is how the approach helped service
engineers to determine not only the most preferred alternative, but also the subsequent ones in
the form of a ranking. As one service engineer states in the open comments: “I think it is very
useful indeed to be able to get the citizens’ preferences automatically and sorted. It is not so much
about the first choice as the order of the choices, especially if you have many votes.". Another
service engineer agrees: “[...] it’s not only the top ranked option but also all the order of the
preferred configurations.”. These answers indicate that it is advantageous to consider multiple
service design alternatives, as advocated by service feature modeling. Again, a service engineer
supports this notion: “I think the ability to have all alternatives in the same model is quite useful.”.

The mean values for all answers indicate in all questions moderate agreement of the citizens with
statements about the usability and usefulness of expressing opinions on service design alternatives
with the service feature modeling approach. Figure 5.24 illustrates the results. These findings are
not fully satisfactory and need to be taken seriously because they show how applicable service
feature modeling’s ranking approach is for participatory service design. It has to be noted, though,
that the presented perceptions depend on how service feature modeling was utilized (for example,
how well the meaning of attribute types was communicated to the citizens) and on the performance
of the interaction platform in presenting the polls and their results.

To improve the means of allowing citizens to state preferences on service design alternatives,
more efficient statement techniques could be used, for example relying on spider diagrams [12] or
by using iterative AHP to reduce the number of required pairwise comparisons [120]. Further, by
means of checking hard constraints, for example that a certain budget threshold must be consid-
ered, the number of possible configurations could be reduced prior to evaluations on the interaction

platform, thus allowing to present only very distinct service design alternatives.

5.5.4. Discussion

The results of the empirical evaluation have to be considered with caution, most notably due to
the small sample size of answers by both service engineers and citizens. Due to this small size,
the results should be perceived as indications or hints on how the utilized service feature modeling
methods are perceived rather than as facts. We perceive the results relevant nonetheless in that

they, especially the qualitative statements, hint on whether our original design goals were reached

155

5. Evaluation

D1: | could understand the meaning of each presented service RN RRORRODRRNE
property R

D2: | could easily understand what to do to express my preferences

D3: Pairwise comparison is an effective method for stating my
preferences among service alternatives

D4: The number of pairwise comparisons was adequate I‘ I

E1: | could express all my essential concerns regarding the public [
service design with the presented service properties Lo

Questions

E2: The service alternative presented after initially sending IRRRS!
preferences reflected my preference regarding the service design [

E3: The service alternative presented after subsequently sending
preferences reflected my preference regarding the service design

Assessment
1 = strongly agree 2 = somewhat agree
3 = somewhat disagree 4 = strongly disagree

Figure 5.24.: Evaluation results of the citizen survey, based on [224]

and what areas of future research might be of interest'®. Another potential threat to the validity
of the results is that the questioned service engineers may have been biased when providing their
answers. This can be ruled out however, as they are affiliated with different institutions from
different countries. Furthermore, the polled service engineers are unrelated to the authors of this
thesis and were not part of the COCKPIT project in which this evaluation was performed.
Overall, service engineers with minor experience in ICT tools found service feature modeling
rather demanding to get into, while those with more experience had less problems in this regard.
All service engineers polled the approach good expressibility and rank the interpretation and use-
fulness of the information provided by service feature modeling as especially good, which supports
corresponding claims in this work’s hypothesis. This can be taken to show that service feature
modeling was a valuable addition to established service design instruments in the context of public
service design. Within the polled sample, citizens’ assessment of usability and usefulness was only
moderate. As discussed in section 5.5.3, these results may depend on the implementation of the
interaction platform, which lay outside of our control. Thus, to obtain reliable results, further anal-
yses need to be conducted, which we consider to be a relevant field for future work, as discussed

in section 6.2.

"8For example, in the course of the COCKPIT project, we received feedback that not only the participation of con-
sumers through ranking in service design, but also the collaboration of experts in defining SFMs would be of value.
This feedback largely motivated our approach to compose SFMs from services (cf. section 3.4).

156

6. Conclusion

To conclude this thesis, we summarize the presented contributions, especially with respect to the
challenges presented in section 1.3 and the hypothesis presented in section 1.4. We furthermore

provide an overview of future research directions that we identified throughout or work.

6.1. Summary

Within this thesis, we present our research regarding the modeling and selection of software service
variants. Service feature modeling provides a modeling language and a set of methods to address
the claims made in our hypothesis. The hypothesis consists of multiple parts that we address in the

following:

e Service feature modeling provides an expressive and usable language to represent service
variants, presented in chapter 3. To address this goal, feature modeling from software prod-
uct line engineering acts as a basis for designing the service feature modeling language. Fea-
ture modeling is both well researched [32] and widely applied in practice [35]. This makes
it more likely that users of service feature modeling feel already familiar with basic concepts
of the language, for example the hierarchical decomposition into features and the types of
relationships between them. Its foundation in feature modeling thus increases service feature
modeling’s usability. It furthermore allows modelers and decision-makers to make use of and
build upon a broad set of related methods, addressing the extension of the language, for ex-
ample with attributes [33] or cardinalities [64], or related usage methods, for example staged
configuration [63] or the utilization of multi-criteria decision making methods [22]. Service
feature modeling extends standard feature modeling via its addition of feature types. Feature
types introduce more fine-grained semantics to features, which are generally understood in
a solution-oriented way in service feature modeling. We specify how features of different
types relate to service variants in section 3.2.3. The differentiated semantics of features based
on their type positively impacts the understanding of SFMs and eases their creation. Feature
types also play an important role for requirements filtering. They allow decision-makers to
specify requirements regarding abstract features, whose fulfillment through the selection of
a child instance feature cannot be expressed without differentiating between types. Finally,
feature types allow to define domain models as described in section 3.3.3. They act as a com-
mon basis to derive similarly structured, comparable SFMs, enabling use cases like variant
selection across SFMs, thus increasing the applicability of the language. Domain models

thus address challenge 5 regarding comparability of variants from different services, which

157

6. Conclusion

158

is motivated in section 1.3.2. We furthermore extended standard feature modeling with at-
tribute types to capture information that is common to multiple attributes associated to that
type. Attribute types increase the usability of modeling SFMs because they avoid redundant
specification of information, which creates efforts and is error-prone. Attribute types further-
more increase the expressiveness of SFMs as compared to standard feature models, in that
they allow the capturing of before unregarded information like standard aggregation rules or
scale orders. Through the definition of aggregation rules, attribute types provide basis for
expressing characteristics of service variants represented by configurations. Attribute types
thus address challenge 1 regarding expressing characteristics of variants motivated in sec-
tion 1.3.1. Overall, in contrast to languages from related work, service feature modeling is
applicable to a broad set of services, makes use of advanced elements like attributes and even
extends them with attribute types, and introduces feature types to differentiate the semantics

of features and enable new usage methods.

Service feature modeling enables experts to collaborate in specifying service variants. While
service feature modeling is well capable of being used similarly to standard feature modeling
(cf. section 3.3), it furthermore provides means to compose SFMs from services as presented
in section 3.4. Through a composition model, specified roles, and coordination rules, this
method allows services to contribute results to an SFM while detecting and triggering the
resolution of conflicts. Dedicated service adapters allow humans to act as services in this
process, being notified for example via e-mail about potential conflicts to resolve. Thus,
composition of SFMs from services enables collaborative modeling, addressing the corre-
sponding challenge 3 motivated in section 1.3.1. In addition, otherwise static elements of
an SFM like attribute values can dynamically be provided on-demand through this method.
For example, at the beginning of a usage process, up to date performance values describing
service non-functionalities can be contributed. Composition of SFMs from service thus also
addresses challenge 2 regarding the inclusion of dynamic or complex characteristics in SFMs
as motivated in section 1.3.1. This composition method, in contrast to related work, does not
only address the composition of SFMs but also the process of coordinating stakeholders in

doing so.

Service feature modeling provides a set of useful methods to use SFMs with the goal of (par-
ticipatorily) selecting service variants, presented in chapter 4. The methods are subsumed
by a service feature modeling usage process that allows to flexibly combine them for variant
selection. The usage process addresses challenge 4 regarding a structured selection process
motivated in section 1.3.2. Initially, the process starts with the determination of an SFM’s
configuration set. Each configuration represents a variant of the variable service modeled in
the SFM. The mapping of SFMs to constraint satisfaction problems and their solving follow
established approaches from related work [101]. Extending existing approaches, attributes

for each attribute type are aggregated for every configuration as defined by the corresponding

6.1. Summary

aggregation rule. A novel requirements filter allows decision-makers to delimit the config-
uration set of configurations that do not fulfill desired functionalities or non-functionalities.
Requirements can be stated regarding the existence of features in a configuration as well
as regarding the values of the configuration’s attributes. In contrast to many requirements
filters presented in related work, this filter performs matchmaking between configurations
and requirements in a fuzzy way. It determines the degree of fulfillment of configurations
regarding weighted requirements. A fuzzy approach is especially useful where no configura-
tion completely fulfills stated requirements. Service feature modeling furthermore provides
a method for preference-based ranking of configurations. It applies a well-known multi-
criteria decision making approach to service feature modeling. SFMs are transferred to polls
consisting of pairwise comparisons among defined attribute types. Such comparisons re-
sult in a ranking of the importance of attribute types for stakeholders. In combination with
a ranking of configuration performances regarding attribute types, an overall stakeholder
preference ranking is derived. To decrease the number of configurations to consider in the
preference-based ranking, prior skyline filtering dismisses dominated configurations from
the configuration set. The description of the skyline filter, which is adapted from database
systems, includes the mapping of SFMs to the skyline operator and the procedure on how
to perform it. Preference-based ranking provides the basis for participatory service variant
selection because it abstracts from (technical details defined in) SFMs. The concepts of
evaluations, polls, votes, and preferences as well as an evaluation life-cycle lay the founda-
tions for the participatory ranking of configurations. Participatory preference-based rank-
ing addresses challenge 6 regarding user participation in variant selection as motivated in
section 1.3.2. In contrast to approaches from related work, service feature modeling thus

presents a comprehensive set of combinable methods for service variant selection.

To assess the outlined contributions, this thesis presents multiple evaluation methods in chap-
ter 5. A proof-of-concept implementation of the SFM tool suite illustrates that the outlined meth-
ods, addressing in sum all challenges outlined in section 1.3, are realizable. The proof-of-concept
includes the design of the SFM tool suite’s architecture. It consists of an SFM designer that mod-
elers and decision-makers use to create and edit SFMs and apply the different usage methods to
it. Composition of SFMs from services is enabled by a collaboration server that stores results and
ensures coordination of their contribution. The valuation server exposes polls for preference-based
ranking to potentially non-technical stakeholders to allow them to participate in service variant
selection. These parts of the architecture implement RESTful service interfaces, allowing their
loose coupling and extension with novel, unforeseen components. A performance analysis of our
implementation shows that it performs sufficiently to be utilized with SFMs of varying sizes. Both
for realistic SFMs created in use cases as well as synthetic models of different sizes, configura-
tion set determination, skyline and requirements filter, and preference-based ranking perform fast

enough to be used in practice. Two use cases illustrate the applicability of service feature modeling,

159

6. Conclusion

both regarding the modeling language and the selection methods. The first use case addresses the
modeling and selection of variants during public service design. Here, modeling strongly builds
upon a mapping between work flows defining the public service in design and SFM elements.
Configuration set determination and participatory preference-based ranking are the usage methods
applied in this use case. In participatory preference-based ranking, citizens state their preferences
leading to the selection of a best-matching configuration and thus service variant. The second use
case addresses the modeling, selection, and realization of IaaS variants. Multiple SFMs, based
on the same [aaS domain model, are modeled to represent the configuration options offered by
laaS, which drive the realization of [aaS variants. The usage methods configuration-set deter-
mination, requirements filtering, and preference-based ranking are applied to select suitable IaaS
configurations for every component of a Web application. This use case furthermore illustrates
the realization of laaS variants through automatic consumption of the configured variants and the
subsequent automatic deployment of the Web application on top of them. Based on the first use
case, an empirical evaluation presented in section 5.5 assesses how service feature modeling is
perceived on the one hand by service engineers and on the other hand by citizens participating in
variant selection through preference-based ranking. Results indicate that service feature modeling
is easier to adopt for engineers with longer experience. The results underpin that the service fea-
ture modeling language is usable. Good expressibility of the service feature modeling language
and usefulness of the preference-based ranking are attested both in survey ratings as well as in
qualitative comments by the service engineers. The citizens on average judge the usability and
usefulness of the preference-based ranking moderately positively. This is to be addressed in future
work.

Overall, we find that service feature modeling is realizable with sufficient performance, is ap-
plicable to realistic scenarios, and is a strong method to model and select service variants. Service
feature modeling thus constitutes a meaningful novel contribution that is beneficial to both model-

ers and decision-makers.

6.2. Future work

The research presented in this thesis can be extended into different directions.

e Representing configuration parameters with a large range: A shortcoming of feature-
based representation is how to deal with configurable parameters that denote a large range, in
the mathematical sense of the set of values a parameter may take. Representing every value
of such a range with a dedicated instance feature and corresponding attributes would create
an unfeasibly large SFM with an equally large configuration set. For example, laaS offer-
ings like that from ProfitBricks allow users to select [aaS configurations very fine-granularly.
Users can, for a VM, select any number of CPU cores ranging from 1 to 48, any number of
memory ranging from 1 up to 240 GBytes, and any number of GByte for storage up to
5000. Representing these options each with individual features would require 5288 features,

160

6.2. Future work

and the resulting configuration set would include over 56 million configurations, consider-
ing these options alone. To address this expressibility issue, two solution strategies come
to mind. On the one hand, solution approaches that aim to represent a reduced number of
variants in an SFM have been presented [29]. Here, experts are asked to delimit features and
their combinations based on domain knowledge. For example, a VM with 48 cores but only
1 GByte of memory might be theoretically realizable but practically infeasible. A related
approach is to narrow down variability based on profiles derived from best practices. For
example, if a VM is intended to host a database, certain constraints on the variants might be
deducible. Finally, clustering techniques or segmentation may be applied to combine multi-
ple variants, thus reducing variability. On the other hand, different selection methods may be
used that avoid having to represent every variant within an SFM. For example, parameters
with a large range may be specified in artifacts used in conjunction with SFMs. Selection
methods in this scenario, however, need to address potential dependencies between the pa-
rameter configuration and the SFM-based variant selection. This may lead to an iterative
selection process that switches between parameter configuration and SFM-based variant se-
lection. Both solution strategies are currently only roughly thought out and further research
on their individual advantages and disadvantages, or even their combinability, needs to be

conducted.

Representing complex attributes: Attribute values in feature modeling as well as in service
feature modeling are deterministic in nature and modeled independently from one another.
In the variants of a variable service, however, dependencies between attribute values may
exist. For example, attributes denoting “cost” induced by a feature may change in reaction
to other features also being selected, in the case of discounts complex pricing functions. One
approach to address dependencies between attributes are modify relationships [108]. Based
on a generic definition of modify relationships [76], in this context, they capture the effect
that the change of an attribute value has on another feature’s attribute value [108]. Mod-
ify relationships are cross-tree relationships that model value influences between features
and attributes, allowing, for example, to state that the selection of a feature induces a lin-
ear transformation on a specific attribute value. Modify relationships have been formalized,
a graphical syntax for them has been presented, analysis operations have been adapted to
make use of them, and tool support exists in form of a proof-of-concept implementation.
Existing shortcomings of the approach include dealing with cyclic modify relationships or
representing influences that result from more complex triggers (for example, modifications
are applied only if a set of features is selected). Another approach for dealing with depen-
dencies between attributes is to make use of composing SFMs from services as presented in
section 3.4. Rather than attempting to represent dependencies within an SFM, services are
used to provide attribute values on demand, implementing arbitrary functionality to derive

the required values. While this thesis lays the foundations for this approach, extensions can

161

6. Conclusion

162

be considered in future work. For example, the contribution of results may be integrated
into the determination of configurations as part of attribute aggregation. For every con-
figuration, services could be invoked to provide configuration-specific, aggregated attribute
values. Such an approach would lift configuration determination to be an orchestration of

service invocations, driven by an SFM.

Aggregation of multiple preferences: In participatory preference-based ranking, when
multiple stakeholders state their individual preferences for attribute types, service feature
modeling currently uses the geometric mean to aggregate the preferences. However, using
mean values for the aggregation has limitations: in a worst case scenario, opposite opinions
level each other out, producing a meaningless result. The utilization of alternative preference
aggregation methods is thus future work. It has been proposed to verify that decision-makers
have similar views as a precondition to aggregating individual preferences [145]. However,
given the potentially open nature of participatory approaches, including a diverse group of
decision-makers, this precondition cannot necessarily be fulfilled. Another approach to deal
with this problem is consensus voting, where every stakeholder needs to be present for all
of them to agree to a shared set of preferences [40]. Given the potentially long-running
nature of evaluations, the required presence of all participating stakeholders cannot be guar-
anteed. Again another approach to look into when the assumption that preferences within
a group are homogeneous does not hold is cluster analysis [234]. Cluster analysis, as is
its generic purpose [86, page 383], produces different sets (i.e., clusters) of stakeholders so
that the preferences between any stakeholders within a set are similar to one another while
the ones from stakeholders across sets are dissimilar. When using service feature model-
ing during development, depending on the size of clusters (relative to the overall number
of stakeholders), cluster analysis provides insights into the number of variants that should
be further developed and delivered. For example, if one cluster is significantly the largest,
a single service variant might suffice, whereas multiple clusters of roughly the same size

might correspondingly demand for delivering multiple variants.

SFM-based realization of service variants: Service feature modeling is a prescriptive mod-
eling approach, aiming to induce change in the subject (i.e., a variable service) it represents
(cf. section 2.5). This thesis focuses on modeling and selection of service variants, two
activities which are fundamental in a larger methodology before change can be applied. The
actual realization of service variants is illustrated in a use case when it comes to automati-
cally consuming IaaS variants and deploying a Web application on top of it (cf. section 5.4).
In future work, further realization methods in conjunction with service feature modeling
should be assessed. An overview of common service variant realization methods is provided
in section 2.3.5. Various approaches from related work already address the realization of
service variants based on feature models. They include the automatic deployment of Web

service variants [139], the tenant-specific customization of SaaS [166], or the configuration

6.2. Future work

of TaaS [110]. These approaches, on the one hand, provide a basis for researching further
variant realization techniques to use with service feature modeling. On the other hand, these
approaches could benefit especially from service feature modeling’s usage methods, as they

currently address selection only peripherally (cf. section 4.6).

e Implementation of own interaction platform: As outlined in section 5.1.4, we did not
within the scope of this thesis implement our own interaction platform. The results of the
empirical evaluation provided by the citizens participating in polls through the interaction
platform, however, indicates an only moderately positive assessment (cf. section 5.5.3). To
obtain less biased results, an implementation controlled by us directly rather than a third
party would allow for a better understanding of the reasons behind the assessment and for
the iterative adaption of the implementation to improve it. Based on an own implementation,

a rerun of this part of the empirical implementation would be desirable.

This thesis presents service feature modeling to model and select service variants. Modeling is
based on an extend feature modeling language and includes means for expert collaboration and
integration of results from services. Selection consists of a set of flexibly combinable methods
that consider requirements and preferences of decision-makers. Thus, in sum, service feature
modeling provides a set of contributions that would function on their own, but are here integrated
into a comprehensive approach. The research directions outlined in this section, however, show
that significant challenges remain to be addressed in future work. Solving these challenges will
play an important role in further establishing the consideration of variants as a natural component

in the development and delivery of software services.

163

A. Appendix A

A.1. Sets of SFM elements

Table A.1 provides an overview of the sets of SFM elements:

Element Set

Service Feature Model SFM = {F,A,AT,C,R,AR}

Service feature diagram SFM%e¢ = [V E}

Vertices in a service feature dia- V ={F,A}

gram

Features F={FCUFAUF FCNFANF =0
Attribute types AT

Attribute type relationships AR

Attributes ACV,YacA:Jar(nym)|n=a,me (FVC)
Edges in a service feature diagram E = {R,AR}

Relationships R={R¥UR“}R¥NR" =0
Decomposition relationships RI¢ = {R™" JRP' URXORURORY C R
Configurations C

Table A.1.: Sets of SFM elements

165

A. Appendix A

A.2. Information about performance evaluation of the skyline filter

Table A.2 provides an overview of detailed information about the performance evaluation of the

skyline filter.

Model ID Configurations Skyline config- Dominated Performed
uration configurations comparisons

GRO1 9 5 4 54
IRISO1 18 6 12 42
Amazon EC2 1280 1280 0 1637120
Rackspace 896 896 0 801920
Model 98 conf. 98 2 96 112
Model 952 conf. 952 4 948 960
Model 9450 conf. 9450 288 9162 530538
Model 21168 conf. 21168 504 20664 12215844
Model 2 att. 952 48 904 3160
Model 4 att. 952 8 944 1000
Model 6 att. 952 4 948 960
Model 8 att. 952 1 951 951
Model 10 att. 952 1 951 951
Model 12 att. 952 1 951 951

Table A.2.: Information about the results of applying the skyline filter to the performance evaluation models

166

A.3. Information about performance evaluation of the requirements filter

A.3. Information about performance evaluation of the requirements filter

Table A.3 provides an overview of detailed information about the performance evaluation of the

requirements filter.

Model ID Configurations Requirements Degree of fulfillment deg
reg. req® reqg™ 1.0 1 >deg>0 0.0
GRO1 9 2 1 2 0 1 8
IRISO1 18 2 1 2 1 10 7
Amazon EC2 1280 2 1 2 0 160 1120
Rackspace 896 2 1 2 80 0 816
Model 98 conf. 98 2 1 2 13 15 70
Model 952 conf. 952 2 1 2 44 220 688
Model 9450 conf. 9450 2 1 2 72 1818 7560
Model 21168 conf. 21168 2 1 2 864 5184 15120
Model 12 att2req 952 2 1 2 112 119 721
Model 12 att4req 952 2 1 4 0 231 721
Model 12 att 6req 952 2 1 6 0 231 721
Model 12 att 8 req 952 2 1 8 0 231 721
Model 12 att 10req 952 2 1 10 0 231 721
Model 12 att 12req 952 2 1 12 0 231 721

Table A.3.: Information about the results of applying the requirements filter to the performance evaluation
models

167

List of Figures

1.1
1.2

1.3

1.4

2.1
2.2
2.3

2.4
2.5

2.6
2.7

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4

Typical sources of variants when designing public services in the COCKPIT project 3
Screenshot showing variants of Xignite’s financial data service, source: http://
www.xignite.com/product/company-financials/api/GetCompaniesFinancial/,
accessed: 4th March 2014 L L 4
Screenshot depicting different virtual machine types offered by Amazon EC2,
https://aws.amazon.com/ec2/instance-types/, accessed: 25th February 2014 6
Screenshot depicting different Couchbase images offered by Amazon EC2, https:
//aws.amazon.com/marketplace/seller-profile/ref=dtl_pcp_sold_by?
id=1a064a14-5ac2-4980-9167-15746aabde72, accessed: 25th February 2014 . 7

Software service concept, basedon [218] oL 21
Relation of status and activities to the software service concept, based on [218] . . 26
Overview of providers’ and consumers’ activities throughout service life-cycle and

their typical sequence [218]o 27
Example of our service life-cyclemodel 29

Service variability-related provider and consumer activities throughout the service

life-cycle [218] L 33
Generic process of modeling 38
Generic process of service feature modeling 40
Simple example of an SFM 50
Simple example of an SFM with feature types L 54
Concepts of service variability and their representation, generically and in service

feature modeling L 54
Simple example of an SFM with feature types and attribute types 57
Example domain model for cloud data storage and two SFMs based onit 61
Example of composing SFMs from services, based on [221]. 62
Service composition model [221] Lo 63
Service binding protocol, basedon [179]o 67
Overview of the usage process of service feature models 81
Process of (participatory) configuration ranking, based on [224] 93
Meta model of service feature modeling’s participatory ranking concepts 103
States of an evaluation Lo 104

169

http://www.xignite.com/product/company-financials/api/GetCompaniesFinancial/
http://www.xignite.com/product/company-financials/api/GetCompaniesFinancial/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/marketplace/seller-profile/ref=dtl_pcp_sold_by?id=1a064a14-5ac2-4980-9167-15746aabde72
https://aws.amazon.com/marketplace/seller-profile/ref=dtl_pcp_sold_by?id=1a064a14-5ac2-4980-9167-15746aabde72
https://aws.amazon.com/marketplace/seller-profile/ref=dtl_pcp_sold_by?id=1a064a14-5ac2-4980-9167-15746aabde72

List of Figures

170

5.1
5.2
5.3
54
5.5
5.6
5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16
5.17

5.18
5.19
5.20
5.21
5.22
5.23
5.24

The meta model underlying service feature modeling, based on [224] 119
Overview of the architecture of the SFM tool suite 120
Architecture of the SFM designer L Lo 121
Architecture of the collaboration server, basedon [221] 123
Architecture of the valuationserver 125
Screenshot of the SFM designer L. 127

Processing times for determining the configuration set of models with rising num-
ber of configurations, basedon [224] L. 132
Processing times for determining the configuration set of models with rising num-
ber of attribute types and attributes [224] Lo 132
Processing times for skyline filtering of use case models and ones with increasing
numbers of configurationso 133
Processing times for skyline filtering of models with rising numbers of attribute
types and attributes Lo L 134
Processing times for requirements filtering of use case models and ones with rising
numbers of configurationso Lo 135
Processing times for requirements filtering depending on different numbers of re-
QUITEIMENES v v v v et e e e e e e e e e e e e e e 135
Processing times for ranking configurations of use case models and ones with rising
numbers of configurations, basedon [224] Lo 136

Processing times for ranking configurations of models with rising numbers of at-

tribute types and attributes [224] Lo L 136
Overview of COCKPIT’s methodology, methods directly concerned with service

feature modeling are marked in gray [224] 139
Exemplary mapping of work flow elementstoSFM 141
Excerpt of SFM for service GROI created in the public service use case, based

on [224] . . . L 142
Screenshot of the GRO1 poll on the interaction platform [224] 143
Overview of Barcoo’s architecture [220] 145
Proposed domain model to represent laaS [220] 147
Excerpt of the [aaS feature model representing Amazon EC2 [220] 148
Meta model of the IaaS deployment model [220] 150
Evaluation results of the service engineer survey [224] 154
Evaluation results of the citizen survey, basedon [224] 156

List of Tables

2.1

3.1

4.1
4.2
4.3
4.4

5.1
5.2

5.3

54
5.5

A.l
A2

A3

Overview of service variability realization approaches
Constraints on service feature modeling’s three feature types

CSP constraints for SFM elements, basedon [101].
Configurations of example in figure 4.2 L.
Overview of aggregationrules,

Meaning of intensity of importance values, following the scale of absolute val-
ues [170] e e e

Overview of how contributions of service feature modeling were evaluated
Descriptions of use case and synthetic SFMs with rising number of configurations,
based on [224] e
Performance test models with rising number of attribute types and attributes [224] .
Overview of characteristics for configuration and deployment use case [220]
Information on service engineers participating in evaluation; *: S=expert, 4=high,

3=medium, 2=low, 1=none [224]

Setsof SFMelements L
Information about the results of applying the skyline filter to the performance eval-
uvationmodels Lo
Information about the results of applying the requirements filter to the performance

evaluation models e

171

Bibliography

[1] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/. (ac-
cessed January 11th, 2013).

[2] Cloud Servers by Rackspace. http://www.rackspace.com/cloud/servers/. (accessed
November 5th, 2013).

[3] Die Konsum-Revolution! barcoo durchbricht 10 Millionen-Marke bei Downloads. http:
//www.barcoo.com/blog/2013/04/15/. (accessed May 6th, 2013).

[4] Git. http://git-scm.com. (accessed April 8th, 2014).

[5] Google App Engine. https://developers.google.com/appengine/. (accessed March
Ist, 2013).

[6] ITIL: Service Design. Technical report, The Stationary Office, 2007.

[7] Web Services Business Process Execution Language (BPEL). http://docs.oasis-open.
org/wsbpel/2.0/0S/wsbpel-v2.0-0S.html, 2007. (accessed September 19th 2013).

[8] Business Process Model and Notation (BPMN). http://www.omg.org/spec/BPMN/2.0/
PDF/, 2010. (accessed February 26th 2013).

[9] Getting cloud computing right. White paper, IBM Global Technology Services, Armonk,
NY, US, April 2011.

[10] Unified Modeling Language (OMG UML), Superstructure. http://www.omg.org/spec/
UML/2.4.1/,2011. (accessed February 4th, 2014).

[11] M. Acher, P. Collet, P. Lahire, and R. France. Composing Feature Models. In M. van den
Brand, D. Gasevic, and J. Gray, editors, Software Language Engineering, volume 5969 of
LNCS, pages 62-81. Springer, Berlin / Heidelberg, 2010.

[12] B. Agarski, I. Budak, J. Hodolic, and D. Vukelic. Multicriteria Approach for Assessment of
Environmental Quality. International Journal for Quality Research, 4(2):131-137, 2010.

[13] S. Agarwal. Formal Description of Web Services for Expressive Matchmaking. PhD thesis,
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, May 2007.

173

http://aws.amazon.com/ec2/
http://www.rackspace.com/cloud/servers/
http://www.barcoo.com/blog/2013/04/15/
http://www.barcoo.com/blog/2013/04/15/
http://git-scm.com
https://developers.google.com/appengine/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0/PDF/
http://www.omg.org/spec/BPMN/2.0/PDF/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

174

M. Alrifai, T. Risse, P. Dolog, and W. Nejdl. A Scalable Approach for QoS-Based Web
Service Selection. In G. Feuerlicht and W. Lamersdorf, editors, Service-Oriented Comput-
ing — ICSOC 2008 Workshops, volume 5472 of Lecture Notes in Computer Science, pages
190-199. Springer Berlin Heidelberg, 2009.

M. Alrifai, D. Skoutas, and T. Risse. Selecting skyline services for QoS-based web service
composition. In Proceedings of the 19th International Conference on World Wide Web
(WWW ’10), pages 11-20, 2010.

S. Alter. Service system fundamentals: Work system, value chain, and life cycle. IBM
Systems Journal, 47(1):71-85, 2008.

E. W. Anderson, C. Fornell, and R. T. Rust. Customer satisfaction, productivity, and prof-
itability: Differences between goods and services. Marketing Science, 16(2):129-145, 1997.

S. Apel, D. Batory, C. Kistner, and G. Saake. Feature-Oriented Software Product Lines:
Concepts and Implementation. Springer Berlin / Heidelberg, 2013.

D. Ardagna and B. Pernici. Adaptive Service Composition in Flexible Processes. Software
Engineering, IEEE Transactions on, 33(6):369-384, 2007.

O. Avila-Garcia, A. E. Garcia, and E. V. S. Rebull. Using Software Product Lines to Manage
Model Families in Model-driven Engineering. In Proceedings of the 2007 ACM Symposium
on Applied Computing (SAC ’07), pages 1006-1011, New York, NY, USA, 2007. ACM.

F. Bachmann and P. C. Clements. Variability in Software Product Lines. Technical report,

Software Engineering Institute, Carnegie Mellon University, Sept. 2005.

E. Bagheri, M. Asadi, D. Gasevic, and S. Soltani. Stratified Analytic Hierarchy Process:
Prioritization and Selection of Software Features. In Software Product Lines: Going Be-
yond, volume 6287 of Lecture Notes in Computer Science, pages 300-315. Springer Berlin
/ Heidelberg, 2010.

E. Bagheri, F. Ensan, D. Gasevic, and M. Boskovic. Modular Feature Models: Represen-
tation and Configuration. Journal of Research and Practice in Information Technology,
43(2):109-140, 2011.

E. Bagheri, T. D. Noia, D. Gasevic, and A. Ragone. Formalizing interactive staged feature
model configuration. Journal of Software: Evolution and Process, 24(4):375-400, 2012.

M. Bano and N. Ikram. Issues and Challenges of Requirement Engineering in Service
Oriented Software Development. In Proceedings of the 5th International Conference on
Software Engineering Advances (ICSEA ’10), pages 64—69. IEEE Computer Society, 2010.

Bibliography

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

M. Bano and D. Zowghi. User involvement in software development and system success: a
systematic literature review. In Proceedings of the 17th International Conference on Eval-
uation and Assessment in Software Engineering (EASE '13), New York, New York, USA,
Apr. 2013. ACM.

H. Barki and J. Hartwick. Rethinking the concept of user involvement. Mis Quarterly,
13(1):53, Mar. 1989.

A. Barros and M. Dumas. The Rise of Web Service Ecosystems. IT Professional, 8(5):31
=37, September 2006.

S. Bartenbach. Einsatz von Variabilitits-Modellen zur Absicherung von Cloud Infrastruk-
turen. Master’s thesis, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, June
2013.

D. Batory. Feature models, grammars, and propositional formulas. In Proceedings of the
9th international conference on Software Product Lines, SPLC’05, pages 7-20, Berlin, Hei-
delberg, 2005. Springer-Verlag.

C. Baun, M. Kunze, J. Nimis, and S. Tai. Cloud Computing. Web-Basierte Dynamische
IT-Services. Springer-Verlag New York Incorporated, Mar. 2011.

D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature models 20

years later: A literature review. Information Systems, 35(6):615-636, 2010.

D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated reasoning on feature models.
In Advanced Information Systems Engineering, volume 3520 of Lecture Notes in Computer

Science, pages 381-390. Springer Berlin / Heidelberg, 2005.

A. Benlachgar and F.-Z. Belouadha. Review of Software Product Line Models used to
Model Cloud Applications. In Proceedings of the ACS International Conference on Com-
puter Systems and Applications (AICCSA), pages 1-4, 2013.

T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki, and A. Wasowski. A
survey of variability modeling in industrial practice. In Proceedings of the Seventh Inter-
national Workshop on Variability Modelling of Software-intensive Systems (VAMOS ’13),
page 7. ACM, 2013.

M. Berkovich, S. Esch, J. M. Leimeister, and H. Krcmar. Towards Requirements Engineer-
ing for “Software as a Service”. In Multikonferenz Wirtschaftsinformatik (MKWI *10), pages
517-528, Gottingen, 2010.

R. Bidarra, E. V. D. Berg, and W. F. Bronsvoort. Collaborative Modeling with Features.
In Proc. of the 2001 ASME Design Engineering Technical Conferences (DETC ’01), Pitts-
burgh, Pennsylvania, 2001.

175

Bibliography

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

176

M. Bjorkqvist, S. Spicuglia, L. Chen, and W. Binder. QoS-Aware Service VM Provisioning
in Clouds: Experiences, Models, and Cost Analysis. In S. Basu, C. Pautasso, L. Zhang, and
X. Fu, editors, Service-Oriented Computing, volume 8274 of Lecture Notes in Computer

Science, pages 69—83. Springer Berlin Heidelberg, 2013.

B. W. Boehm. A Spiral Model of Software Development and Enhancement. Computer,
21(5):61-72, 1988.

N. Bolloju. Aggregation of Analytic Hierarchy Process Models based on Similarities in
Decision Makers’ Preferences. European Journal of Operational Research, 128(3):499—
508, 2001.

S. Borzsonyi, D. Kossmann, and K. Stocker. The Skyline Operator. In Proceedings of
the 17th International Conference on Data Engineering, pages 421-430, Washington, DC,
USA, 2001. IEEE Computer Society.

J. Bosch. Software Product Line Engineering. In R. Capilla, J. Bosch, and K.-C. Kang,
editors, Systems and Software Variability Management: Concepts, Tools and Experiences,

chapter 1, pages 3—24. Springer Berlin / Heidelberg, Berlin / Heidelberg, 2013.

S. Biihne, K. Lauenroth, and K. Pohl. Why is it not sufficient to model requirements vari-
ability with feature models. In Proceedings of Workshop: Automotive Requirements Engi-
neering (AUREO4), pages 5-12, Los Alamitos, CA, USA, 2004. IEEE Computer Society

Press.

R. Capilla. Variability Scope. In R. Capilla, J. Bosch, and K.-C. Kang, editors, Systems
and Software Variability Management: Concepts, Tools and Experiences, chapter 3, pages
43-56. Springer Berlin / Heidelberg, Berlin / Heidelberg, 2013.

J. Cardoso, K. Voigt, and M. Winkler. Service Engineering for the Internet of Services. In
J. Filipe, J. Cordeiro, W. Aalst, J. Mylopoulos, M. Rosemann, M. J. Shaw, and C. Szyperski,
editors, Enterprise Information Systems, volume 19 of Lecture Notes in Business Informa-

tion Processing, pages 15-27. Springer Berlin Heidelberg, 2009.

P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. Natt och Dag. An industrial sur-
vey of requirements interdependencies in software product release planning. In Proceedings

of the 5th IEEE International Symposium onRequirements Engineering, pages 84-91, 2001.

W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J. D. Reese.
Model Checking Large Software Specifications. IEEE Transactions on Software Engineer-
ing, 24(7):498-520, July 1998.

Bibliography

[48] S. H. Chang and S. D. Kim. A Variability Modeling Method for Adaptable Services in
Service-Oriented Computing. In Proceedings of the 11th International Software Product
Line Conference (SPLC "07), pages 261-268, Kyoto, Japan, 2007. IEEE Computer Society.

[49] Y. Charalabidis and D. Askounis. eGOVSIM: A Model for Calculating the Financial Gains
of Governmental Services Transformation, for Administration and Citizens. In 43rd Hawaii

International Conference on System Sciences (HICSS), pages 1-10, 2010.

[50] K. Chen, W. Zhang, H. Zhao, and H. Mei. An approach to constructing feature models based
on requirements clustering. In Proceedings of the 13th IEEE International Conference on
Requirements Engineering (RE ’05), pages 31-40. IEEE, 2005.

[51] L. Chen, M. Ali Babar, and N. Ali. Variability management in software product lines: a sys-
tematic review. In Proceedings of the 13th International Software Product Line Conference,

pages 81-90. Carnegie Mellon University, 2009.

[52] B. H. C. Cheng and J. M. Atlee. Current and Future Research Directions in Requirements
Engineering. Design Requirements Engineering: A Ten-Year Perspective, 14(Chapter 2):11—
43, 2009.

[53] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with Presorting. In Proceedings of
the 19th International Conference on Data Engineering (ICDE "03), pages 717-719, 2003.

[54] L. Chung and J. C. Prado Leite. On Non-Functional Requirements in Software Engineering.
In A. T. Borgida, V. K. Chaudhri, P. Giorgini, and E. S. Yu, editors, Conceptual Modeling:
Foundations and Applications, pages 363-379. Springer Berlin / Heidelberg, 2009.

[55] A. Classen, P. Heymans, and P.-Y. Schobbens. What’s in a Feature: A Requirements Engi-
neering Perspective. In Fundamental Approaches to Software Engineering, volume 4961 of

Lecture Notes in Computer Science, pages 16-30. Springer, 2008.
[56] A. Cockburn. Writing effective use cases. Addison-Wesley Professional, 2001.

[57] COCKPIT Project. Citizens Collaboration and Co-Creation in Public Service Delivery,
September 2012. (accessed September 9th, 2012).

[58] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato. Version Control with Subversion -
Next Generation Open Source Version Control. O’Reilly Media, 2004.

[59] M. Comerio, F. Paoli, M. Palmonari, and L. Panziera. Web Service Contracts: Specification
and Matchmaking. In A. Bouguettaya, Q. Z. Sheng, and F. Daniel, editors, Advanced Web
Services, pages 121-146. Springer New York, 2014.

[60] R. Conradi and B. Westfechtel. Version Models for Software Configuration Management.
ACM Computing Surveys (CSUR), 30(2):232-282, June 1998.

177

Bibliography

[61] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana. The next step in Web services.
Communications of the ACM, 46(10):29-34, Oct. 2003.

[62] K. Czarnecki, P. Griinbacher, R. Rabiser, K. Schmid, and A. Wasowski. Cool features
and tough decisions: a comparison of variability modeling approaches. In Proceedings
of the Sixth International Workshop on Variability Modeling of Software-Intensive Systems
(VaMoS ’12), pages 173—-182, Jan. 2012.

[63] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration using feature models.
In R. Nord, editor, Software Product Lines, volume 3154 of Lecture Notes in Computer
Science, pages 162—-164. Springer Berlin / Heidelberg, 2004.

[64] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing Cardinality-Based Feature Models
and Their Specialization. Software Process: Improvement and Practice, 10(1):7-29, 2005.

[65] I. Davies, P. Green, M. Rosemann, M. Indulska, and S. Gallo. How do practitioners use
conceptual modeling in practice? Data & Knowledge Engineering, 58(3):358-380, Sept.
2006.

[66] A.De Lucia, F. Fasano, G. Scanniello, and G. Tortora. Enhancing collaborative synchronous
UML modelling with fine-grained versioning of software artefacts. Journal of Visual Lan-
guages and Computing, 18(5):492-503, 2007.

[67] J. Dean and L. A. Barroso. The Tail at Scale. Commun. ACM, 56(2):74-80, Feb. 2013.

[68] V. D. A. Devis Bianchini and M. Melchiori. A Multi-perspective Framework for Web API
Search in Enterprise Mashup Design. In C. Salinesi, M. Norrie, and O. Pastor, editors,
Advanced Information Systems Engineering, number 7908 in Lecture Notes in Computer

Science, pages 353—-368. Springer Berlin Heidelberg, May 2013.

[69] A. K. Dey. Understanding and Using Context. Personal and Ubiquitous Computing, 5:4-7,
2001.

[70] K. A. Dhanesha, A. Hartman, and A. N. Jain. A Model for Designing Generic Services. In
2009 IEEE International Conference on Services Computing, pages 435—442. IEEE Com-
puter Society, 2009.

[71] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl. A journey to highly
dynamic, self-adaptive service-based applications. Automated Software Engineering, 15(3-
4):313-341, Sept. 2008.

[72] B. Dougherty, J. White, and D. C. Schmidt. Model-driven auto-scaling of green cloud
computing infrastructure. Future Generation Computer Systems, 28(2):371-378, Feb. 2012.

178

Bibliography

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

T. Dyba and T. Dingsoyr. What Do We Know about Agile Software Development? [EEE
Software, 26(5):6-9, 2009.

Facebook.com. Facebook.com. https://www.facebook.com. (accessed November 6th,
2013).

M. Fantinato, I. de S Gimenes, and M. de Toledo. Supporting QoS negotiation with fea-
ture modeling. In Proceedings of the 5th International Conference on Service-Oriented
Computing (ICSOC ’07), pages 429-434, 2007.

D. Fey, R. Fajta, and A. Boros. Feature Modeling: A Meta-Model to Enhance Usability and
Usefulness. In G. J. Chastek, editor, Software Product Lines, Lecture Notes in Computer
Science, pages 198-216. Springer Berlin / Heidelberg, 2002.

F. Flores, M. Mora, F. Alvarez, L. Garza, and H. Durdn. Towards a Systematic Service-
oriented Requirements Engineering Process (S-SoRE). In J. Quintela Varajao, M. Cruz-
Cunha, G. Putnik, and A. Trigo, editors, ENTERprise Information Systems, volume 109
of Communications in Computer and Information Science, pages 111-120. Springer Berlin
Heidelberg, 2010.

M. Galster and P. Avgeriou. Variability in Web Services. In R. Capilla, J. Bosch, and
K.-C. Kang, editors, Systems and Software Variability Management: Concepts, Tools and
Experiences, chapter 18, pages 269-277. Springer Berlin / Heidelberg, Berlin / Heidelberg,
2013.

S. K. Garg, S. Versteeg, and R. Buyya. A framework for ranking of cloud computing ser-
vices. Future Generation Computer Systems, 29(4):1012 — 1023, 2013.

M. Godse and S. Mulik. An Approach for Selecting Software-as-a-Service (SaaS) Prod-
uct. In 2009 IEEE International Conference on Cloud Computing, pages 155-158. IEEE
Computer Society, 2009.

S. Gothlich. Zum Umgang mit fehlenden Daten in grofzahligen empirischen Erhebungen.
In S. Albers, D. Klapper, U. Konradt, A. Walter, and J. Wolf, editors, Methoden der em-
pirischen Forschung, pages 119—135. Deutscher Universitits-Verlag, Wiesbaden, Germany,
3rd edition, 2009.

F. Gottschalk, W. M. Van Der Aalst, M. H. Jansen-Vullers, and M. La Rosa. Configurable
workflow models. International Journal of Cooperative Information Systems, 17(02):177-
221, 2008.

Q. Gu and P. Lago. Exploring service-oriented system engineering challenges: a systematic

literature review. Service Oriented Computing and Applications, 3(3):171-188, 20009.

179

https://www.facebook.com

Bibliography

[84] S. Gudenkauf, M. Josefiok, O. Norkus, and U. Steffens. Cloud-Computing Referenzkontext.

Technical report, acatec - Deutsche Akademie der Technikwissenschaften, 2013.

[85] A. Hallerbach, T. Bauer, and M. Reichert. Capturing variability in business process models
- the Provop approach. Journal of Software Maintenance and Evolution: Research and
Practice, 22(6):519-546, 2010.

[86] J. Han and M. Kamber. Data Mining - Concepts and Techniques. The Morgan Kaufmann

series in data mangement systems. Morgan Kaufmann, San Francisco, 2nd edition, 2006.

[87] D. Harel and B. Rumpe. Meaningful modeling: what’s the semantics of “semantics”? Com-
puter, 37(10):64-72, 2004.

[88] A. Hartman, A. Jain, J. Ramanathan, A. Ramfos, W. Van der Heuvel, C. Zirpins, S. Tai,
Y. Charalabidis, A. Pasic, and T. Johannessen. Participatory design of public sector services.

Electronic Government and the Information Systems Perspective, pages 219-233, 2010.

[89] R. Henderson, J. Podd, M. Smith, and H. Varela-Alvarez. An Examination of Four User-
based Software Evaluation Methods. Interacting with Computers, 7(4):412-432, 1995.

[90] W. Hesse. More matters on (meta-) modelling: remarks on Thomas Kiihne’s “matters”.
Software and Systems Modeling, 5(4):387-394, Oct. 2006.

[91] H. F. Hofmann and F. Lehner. Requirements engineering as a success factor in software
projects. IEEE Software, 18(4):58-66, 2001.

[92] C. Homburg, N. Koschate, and W. D. Hoyer. Do satisfied customers really pay more? A
study of the relationship between customer satisfaction and willingness to pay. Journal of
Marketing, pages 84-96, 2005.

[93] A. Hubaux, M. Acher, T. T. Tun, P. Heymans, P. Collet, and P. Lahire. Separating Concerns
in Feature Models: Retrospective and Support for Multi-Views. In Domain Engineering,
pages 3—28. Springer Berlin Heidelberg, Berlin, Heidelberg, May 2013.

[94] E. Hull, K. Jackson, and J. Dick. Requirements Engineering. Springer, 2011.

[95] A.Iosup, N. Yigitbasi, and D. Epema. On the Performance Variability of Production Cloud
Services. In Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM Interna-
tional Symposium on, pages 104 —113, may 2011.

[96] F. Irmert, T. Fischer, and K. Meyer-Wegener. Runtime adaptation in a service-oriented com-
ponent model. In Proceedings of the 2008 international workshop on Software engineering
for adaptive and self-managing systems (SEAMS ’08), pages 97-104. ACM, 2008.

180

Bibliography

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

C. Janiesch, M. Niemann, and R. Steinmetz. The TEXO governance framework. Technical
report, SAP Research, 2011.

K. P. Joshi, T. Finin, and Y. Yesha. Integrated Lifecycle of IT Services in a Cloud Envi-

ronment. In Proceedings of The Third International Conference on the Virtual Computing
Initiative (ICVCI *09), Research Triangle Park, NC, 2009.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented
domain analysis (FODA) feasibility study. Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, November 1990.

Y. Kang, Y. Zhou, Z. Zheng, and M. Lyu. A User Experience-Based Cloud Service Rede-
ployment Mechanism. In IEEE International Conference on Cloud Computing (CLOUD
'11), pages 227 —234, july 2011.

A. Karatas, H. Oguztiiziin, and A. Dogru. Mapping Extended Feature Models to Constraint
Logic Programming over Finite Domains. In J. Bosch and J. Lee, editors, Software Product
Lines: Going Beyond, volume 6287 of LNCS, pages 286—299. Springer Berlin / Heidelberg,
2010.

A. Kattepur, S. Sen, B. Baudry, A. Benveniste, and C. Jard. Variability Modeling and QoS
Analysis of Web Services Orchestrations. In Web Services (ICWS), 2010 IEEE International
Conference on, pages 99-106, 2010.

Y. Kim and K.-G. Doh. Adaptable Web Services Modeling Using Variability Analysis.
In Convergence and Hybrid Information Technology, 2008. ICCIT "08. Third International
Conference on, pages 700-705. IEEE Computer Society, 2008.

P. Kokkinakos, S. Koussouris, D. Panopoulos, D. Askounis, A. Ramfos, G. Georgousopou-
los, and E. Wittern. Citizens Collaboration and Co-Creation in Public Service Delivery: The
COCKPIT Project. International Journal of Electronic Government Research, 8(3):44-62,
2012.

M. Koning, C. a. Sun, M. Sinnema, and P. Avgeriou. VXxBPEL: Supporting variability for
Web services in BPEL. Information and Software Technology, 51(2):258-269, 2009.

C. Koutras, S. Koussouris, P. Kokkinakos, and D. Panopoulos. COCKPIT Public Service
Scenarios. COCKPIT project deliverable 1.1, National Technical University of Athens
(NTUA), Athens, Greece, June 2010.

P. Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley, 3rd edition,
2004.

181

Bibliography

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

182

J. Kuhlenkamp. Service Feature Models: Conceptualization of and Automated Reason-
ing on Feature Attribute Relationships. Master’s thesis, Karlsruhe Institute of Technology
(KIT), Karlsruhe, Germany, September 2011.

T. Kiithne. Matters of (Meta-) Modeling. Software and Systems Modeling, 5(4):369-385,
July 2006.

T. Le Nhan, G. Sunyé, and J.-M. Jézéquel. A Model-Driven Approach for Virtual Machine
Image Provisioning in Cloud Computing. Service-Oriented and Cloud Computing (ESOCC
'12), pages 107-121, 2012.

J. Lee, K. C. Kang, P. Sawyer, and H. Lee. A holistic approach to feature modeling for
product line requirements engineering. Requirements Engineering, pages 1-19, 2013.

J. Lee and G. Kotonya. Service-Oriented Product Lines. In R. Capilla, J. Bosch, and
K.-C. Kang, editors, Systems and Software Variability Management: Concepts, Tools and
Experiences, chapter 19, pages 279-285. Springer Berlin / Heidelberg, Berlin / Heidelberg,
2013.

K. Lee, K. C. Kang, and J. Lee. Concepts and guidelines of feature modeling for product line
software engineering. In Software Reuse: Methods, Techniques, and Tools: Proceedings of
the Seventh Reuse Conference (ICSR7), pages 62—77. Springer, 2002.

A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm. What’s inside the Cloud? An ar-
chitectural map of the Cloud landscape. In Proceedings of the 2009 ICSE Workshop on
Software Engineering Challenges of Cloud Computing (CLOUD °09), pages 23-31, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

A. Lenk, M. Menzel, J. Lipsky, and S. Tai. What are you paying for? Performance bench-
marking for Infrastructure-as-a-Service offerings. In Proceedings of the 4th IEEE Interna-
tional Conference on Cloud Computing (CLOUD 2011), pages 484-491, Washington, D.
C., Juli 2011. IEEE Computer Society.

E. Letier and A. Van Lamsweerde. Reasoning about partial goal satisfaction for require-
ments and design engineering. In Proceedings of the 12th ACM SIGSOFT twelfth inter-
national symposium on Foundations of software engineering (SIGSOFT ’04), volume 29,
pages 53-62. ACM, 2004.

N. G. Leveson. Intent specifications: an approach to building human-centered specifications.
IEEE Transactions on Software Engineering, 26(1):15-35, 2000.

A. Li, X. Yang, S. Kandula, and M. Zhang. CloudCmp: comparing public cloud providers.
In IMC ’10: Proceedings of the 10th annual conference on Internet measurement. ACM,
Nov. 2010.

Bibliography

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

H. Liang, W. Sun, X. Zhang, and Z. Jiang. A Policy Framework for Collaborative Web Ser-
vice Customization. In Proceedings of the 2nd IEEE International Symposium on Service-
Oriented System Engineering (SOSE’06), pages 197-204. IEEE, Oct. 2006.

K. H. Lim and S. R. Swenseth. An iterative procedure for reducing problem size in large
scale AHP problems. European Journal of Operational Research, 67(1):64 — 74, 1993.

L. Liu, E. Yu, and H. Mei. Guest Editorial: Special Section on Requirements Engineer-
ing for Services - Challenges and Practices. IEEE Transactions on Services Computing,
2(4):318-319, Oct. 20009.

Y. Liu, A. H. Ngu, and L. Z. Zeng. QoS Computation and Policing in Dynamic Web Service
Selection. In Proceedings of the 13th International World Wide Web Conference on Alter-
nate Track Papers and Posters (WWW Alt. *04), pages 66—73, New York, NY, USA, 2004.
ACM.

H. Luczak and G. Gudergan. The Evolution of Service Engineering - Toward the Imple-
mentation of Designing Integrative Solutions. In Introduction to Service Engineering, pages
545-575. John Wiley & Sons, Inc., 2010.

J. Ludewig. Models in software engineering - an introduction. Software and Systems Mod-
eling, 2(1):5-14, Mar. 2003.

P. R. Magnusson. Benefits of involving users in service innovation. European Journal of
Innovation Management, 6(4):228-238, 2003.

S. Mahdavi-Hezavehi, M. Galster, and P. Avgeriou. Variability in quality attributes of
service-based software systems: A systematic literature review. Information and Software
Technology, 55(2):320-343, 2013.

A. Marchetto, C. D. Nguyen, C. Di Francescomarino, N. A. Qureshi, A. Perini, and
P. Tonella. A Design Methodology for Real Services. In Proceedings of the 2nd Inter-
national Workshop on Principles of Engineering Service-Oriented Systems, pages 15-21.
ACM, 2010.

G. McBride. The Role of SOA Quality Management in SOA Service Lifecycle Manage-
ment. http://www.ibm.com/developerworks/rational/library/mar07/mcbride/.
(accessed February 22nd, 2013).

D. McCarthy and U. Dayal. The Architecture of an Active Database Management System.
In Proceedings of the 1989 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’89), pages 215-224, May 1989.

183

http://www.ibm.com/developerworks/rational/library/mar07/mcbride/

Bibliography

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

184

M. Mendonca and D. Cowan. Decision-making coordination and efficient reasoning tech-
niques for feature-based configuration. Science of Computer Programming, 75(5):311-332,
May 2010.

M. Menzel and R. Ranjan. CloudGenius: Decision Support for Web Server Cloud Migra-
tion. In Proceedings of the 21st International Conference on World Wide Web (WWW ’12),
pages 979-988, Lyon, France, March 2012.

M. Menzel, M. Schonherr, and S. Tai. (MC2) 2: criteria, requirements and a software proto-
type for Cloud infrastructure decisions. Software: Practice and Experience, 43(11):1283—
1297, 2011.

R. Mietzner, A. Metzger, F. Leymann, and K. Pohl. Variability modeling to support cus-
tomization and deployment of multi-tenant-aware Software as a Service applications. Pro-
ceedings of the 2009 ICSE Workshop on Principles of Engineering Service Oriented Sys-
tems, pages 18-25, 2009.

H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, and F. De Turck. Developing and
managing customizable Software as a Service using feature model conversion. In /EEE Net-

work Operations and Management Symposium (NOMS), pages 1295—-1302. IEEE Computer
Society, 2012.

B. Morin, O. Barais, J. Jézéquel, F. Fleurey, and A. Solberg. Models@ run. time to support
dynamic adaptation. Computer, 42(10):44-51, 2009.

P.-A. Muller, F. Fondement, B. Baudry, and B. Combemale. Modeling modeling modeling.
Software and Systems Modeling, 11(3):347-359, Aug. 2010.

J. Mylopoulos, L. Chung, S. Liao, H. Wang, and E. Yu. Exploring alternatives during
requirements analysis. /IEEE Software, 18(1):92-96, 2001.

Netflix Inc. Netflix - Watch TV Shows Online, Watch Movies Online. http://www.
netflix.com/. (accessed November 6th, 2013).

T. Nguyen and A. Colman. A Feature-Oriented Approach for Web Service Customization.
In Proceedings of the 2010 IEEE International Conference on Web Services, ICWS 10,
pages 393—400, Washington, DC, USA, 2010. IEEE.

T. Nguyen, A. Colman, and J. Han. Modeling and Managing Variability in Process-Based
Service Compositions. In G. Kappel, Z. Maamar, and H. Motahari-Nezhad, editors, Service-
Oriented Computing, pages 404—420. Springer Berlin / Heidelberg, 2011.

T. Nguyen, A. Colman, and J. Han. Comprehensive Variability Modeling and Management
for Customizable Process-Based Service Compositions. In A. Bouguettaya, Q. Z. Sheng,

and F. Daniel, editors, Web Services Foundations, pages 507-533. Springer New York, 2014.

http://www.netflix.com/
http://www.netflix.com/

Bibliography

[142] T. Nguyen, A. Colman, M. A. Talib, and J. Han. Managing Service Variability: State of the
Art and Open Issues. Proceedings of the 5th Workshop on Variability Modeling of Software-
Intensive Systems, pages 165-173, 2011.

[143] D. Oberle, D.-I. N. Bhatti, S. Brockmans, D.-W.-I. M. Niemann, and C. Janiesch. Coun-
tering service information challenges in the internet of services. Business & Information
Systems Engineering, 1(5):370-390, 2009.

[144] Object Management Group. UML Resources Page. http://www.uml.org/. (accessed
March 13th, 2013).

[145] D. E. O’Leary. Determining Differences in Expert Judgment: Implications for Knowledge
Acquisition and Validation*. Decision Sciences, 24(2):395-408, 1993.

[146] L. Panziera, M. Comerio, M. Palmonari, F. De Paoli, and C. Batini. Quality-driven extrac-
tion, fusion and matchmaking of semantic web API descriptions. Journal of Web Engineer-
ing, 11(3):247-268, Sept. 2012.

[147] M. Papazoglou. Service-oriented computing: concepts, characteristics and directions. In
Web Information Systems Engineering, 2003. WISE 2003. Proceedings of the Fourth Inter-
national Conference on, pages 3 — 12, 2003.

[148] M. P. Papazoglou and W.-J. Van Den Heuvel. Service-oriented design and development
methodology. [International Journal of Web Engineering and Technology, 2(4):412—442,
2006.

[149] C. P. Pappis, C. I. Siettos, and T. K. Dasaklis. Fuzzy Sets, Systems, and Applications. In
S. I. Gass and M. C. Fu, editors, Encyclopedia of Operations Research and Management
Science, pages 609-620. Springer US, 2013.

[150] L. Peters and H. Saidin. IT and the mass customization of services: the challenge of imple-

mentation. International Journal of Information Management, 20(2):103 — 119, 2000.

[151] K. Petersen, N. Bramsiepe, and K. Pohl. Applying Variability Modeling Concepts to Sup-
port Decision Making for Service Composition. In Service-Oriented Computing: Conse-
quences for Engineering Requirements (SOCCER ’06), pages 1-1, Los Alamitos, CA, USA,
2006. IEEE Computer Society.

[152] L. Pizette and T. Cabot. Databse as a Service: A Marketplace Assessment. Technical report,
The MITRE Corporation, 2012.

[153] K. Pohl and G. B. und Frank von der Linden. Software Procut Line Engineering. Springer-
Verlag Berlin Heidelberg, 2005.

185

http://www.uml.org/

Bibliography

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

186

R. Pohl, K. Lauenroth, and K. Pohl. A performance comparison of contemporary algorith-
mic approaches for automated analysis operations on feature models. In Automated Software
Engineering (ASE), 2011 26th IEEE/ACM International Conference on, pages 313-322.
IEEE Computer Society, 2011.

C. Quinten, L. Duchien, P. Heymans, S. Mouton, and E. Charlier. Using Feature Modelling
and automations to select among cloud solutions. In Proceedings of the 3rd International
Workshop on Product Line Approaches in Software Engineering (PLEASE), pages 17-20,
2012.

QuoteMedia, Inc. Stock Quotes and Market Data Provider > QuoteMedia. http://www.
quotemedia.com/. (accessed March 4th, 2014).

N. Qureshi and A. Perini. Requirements Engineering for Adaptive Service Based Applica-
tions. In Proceedings of the 18th IEEE International Requirements Engineering Conference
(RE), pages 108—111. IEEE Computer Society, 2010.

R. Ramesh and S. Zionts. Multi-Criteria Decision Making (MCDM). In S. Gass and M. Fu,
editors, Encyclopedia of Operations Research and Management Science, pages 1007-1013.
Springer US, 2013.

Z. u. Rehman, F. K. Hussain, and O. K. Hussain. Towards Multi-Criteria Cloud Service
Selection. In Proceedings of the 5th International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing (IMIS), pages 44-48. IEEE Computer Society,
2011.

Z. u. Rehman, O. K. Hussain, and F. K. Hussain. Parallel Cloud Service Selection and
Ranking Based on QoS History. [International Journal of Parallel Programming, pages
1-33, Oct. 2013.

S. Robak and B. Franczyk. Modeling Web Services Variability with Feature Diagrams.
In Web, Web-Services, and Database Systems, volume 2593 of Lecture Notes in Computer
Science, pages 120-128. Springer Berlin / Heidelberg, 2003.

W. Robinson. Negotiation behavior during requirement specification. In Proceedings of the
12th International Conference on Software Engineering (ICSE 90), pages 268-276, 1990.

M. Rosemann and W. M. van der Aalst. A configurable reference modelling language.
Information Systems, 32(1):1-23, 2007.

J. Rothenberg. The Nature of Modeling. In L. E. Widman, K. A. Loparo, and N. R. Nielsen,
editors, Artificial Intelligence, Simulation & Modeling, pages 75-92. John Wiley & Sons,
Inc., New York, NY, USA, 1989.

http://www.quotemedia.com/
http://www.quotemedia.com/

Bibliography

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

W. W. Royce. Managing the Development of Large Software Systems. In Proceedings of
IEEE WESCON, pages 1-9, August 1970.

S. T. Ruehl and U. Andelfinger. Applying Software Product Lines to Create Customiz-
able Software-as-a-Service Applications. In Proceedings of the 15th International Software
Product Line Conference, Volume 2, SPLC ’11, pages 1-4, New York, NY, USA, 2011.
ACM.

R. T. Rust and T. S. Chung. Marketing Models of Service and Relationships. Marketing
Science, 25(6):560-580, Nov. 2006.

T. Saaty. How to Make a Decision: The Analytic Hierarchy Process. European Journal of
Operational Research, 48(1):9-26, Sept. 1990.

T. Saaty and G. Hu. Ranking by eigenvector versus other methods in the analytic hierarchy
process. Applied Mathematics Letters, 11(4):121 — 125, 1998.

T. L. Saaty. Decision making with the analytic hierarchy process. International Journal of
Services Sciences, 1(1):83, 2008.

T. L. Saaty. Analytic Hierarchy Process. In Encyclopedia of Operations Research and
Management Science, pages 52—64. Dec. 2013.

Salesforce.com, inc. CRM and Cloud Computing To Grow Your Business. http://www.

salesforce.com/. (accessed November 6th, 2013).

D. Sangiorgi and B. Clark. Toward a Participatory Design Approach to Service Design. In
Proceedings of the Participatory Design Conference (PDC "04), pages 148—151, 2004.

SAP AG. Cloud = Suite. http://www.sap.com/pc/tech/cloud/software/

cloud-applications/enterprise-suite.html. (accessed November 6th, 2013).

P. Saripalli and G. Pingali. MADMAC: Multiple Attribute Decision Methodology for Adop-
tion of Clouds. In Proceedings of the 4th International Conference on Cloud Computing
(CLOUD ’11), pages 316-323, 2011.

D. Schall, H.-L. Truong, and S. Dustdar. Unifying human and software services in web-scale
collaborations. IEEE Internet Computing, 12(3):62—68, May 2008.

D. C. Schmidt. Model-Driven Engineering. IEEE Internet Computing, 39(2):25-31, 2006.

J. Schroeter, P. Mucha, K. J. Muth, and M. Lochau. Dynamic configuration management of
cloud-based applications. In Proceedings of the 16th International Software Product Line
Conference (SPLC ’12), pages 171-178. ACM, 2012.

187

http://www.salesforce.com/
http://www.salesforce.com/
http://www.sap.com/pc/tech/cloud/software/cloud-applications/enterprise-suite.html
http://www.sap.com/pc/tech/cloud/software/cloud-applications/enterprise-suite.html

Bibliography

[179] N. Schuster, C. Zirpins, and U. Scholten. How to balance flexibility and coordination?
Service-oriented model and architecture for document-based collaboration on the Web. In
Service-Oriented Computing and Applications (SOCA), 2011 IEEE International Confer-
ence on, pages 1-9. IEEE Computer Society, 2011.

[180] S. Segura, D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated Merging of Feature
Models Using Graph Transformations. In Post-proceedings Summer School on Generative
and Transformational Techniques in Software Engineering (GTTSE’07), volume 5235 of
LNCS, pages 489-505, Braga, Portugal, 2008. Springer.

[181] S. Segura, J. A. Galindo, D. Benavides, J. A. Parejo, and A. Ruiz-Cortés. BeTTy: bench-
marking and testing on the automated analysis of feature models. In Proceedings of the Sixth
International Workshop on Variability Modeling of Software-Intensive Systems, VaMoS *12,
pages 6371, New York, NY, USA, January 2012. ACM.

[182] B. Selic. The Pragmatics of Model-Driven Development. IEEE Software, 20(5):19-25,
2003.

[183] H. Sharp, A. Finkelstein, and G. Galal. Stakeholder identification in the requirements en-
gineering process. In Proceedings of the 10th International Workshop on Database and
Expert Systems Applications, pages 387-391. IEEE Computer Society, 1999.

[184] M. Shaw. The Role of Design Spaces. IEEE Software, 29(1):46-50, 2012.

[185] M. A. Siddique and Y. Morimoto. K-dominant skyline computation by using sort-filtering
method. In T. Theeramunkong, B. Kijsirikul, N. Cercone, and T.-B. Ho, editors, Advances
in Knowledge Discovery and Data Mining, volume 5476 of Lecture Notes in Computer

Science, pages 839-848. Springer Berlin Heidelberg, 2009.

[186] M. Sinnema and S. Deelstra. Classifying variability modeling techniques. Information and
Software Technology, 49(7):717-739, 2007.

[187] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COVAMOF: A Framework for Modeling
Variability in Software Product Families. Software Product Lines, pages 197-213, 2004.

[188] I. Sommerville. Software Engineering. Addison-Wesley, 9th edition, 2011.

[189] J. Spohrer. Services Sciences, Management, and Engineering (SSME) and Its Relation
to Academic Disciplines. In B. Stauss, K. Engelmann, A. Kremer, and A. Luhn, editors,

Services Science, pages 11-40. Springer Berlin / Heidelberg, 2008.

[190] J. Spohrer, P. Maglio, J. Bailey, and D. Gruhl. Steps toward a science of service systems.
Computer, 40(1):71-77, 2007.

188

Bibliography

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

Spotify USA Inc. Music for every moment - Spotify. https://www.spotify.com/. (ac-
cessed November 6th, 2013).

M. Steen, M. Manschot, and N. De Koning. Benefits of co-design in service design projects.
International Journal of Design, 5(2):53-60, 2011.

D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF - Eclipse Modeling Frame-
work. Addison-Wesley Professional, 2nd edition, December 2008.

M. Stollberg and M. Muth. Service customization by variability modeling. In Proceed-
ings of the 2009 international conference on Service-oriented computing, pages 425-434,
Stckholm, Sweden, 2010. Springer.

C.-a. Sun, R. Rossing, M. Sinnema, P. Bulanov, and M. Aiello. Modeling and managing the
variability of Web service-based systems. Journal of Systems and Software, 83(3):502-516,
Mar. 2010.

W. Sun, X. Zhang, C. J. Guo, P. Sun, and H. Su. Software as a Service: Configuration and
Customization Perspectives. In IEEE Congress on Services Part Il (SERVICES-2), pages
18-25. IEEE Computer Society, 2008.

M. Svahnberg, J. Van Gurp, and J. Bosch. A Taxonomy of Variability Realization Tech-
niques. Software: Practice and Experience, 35(8):705-754, 2005.

V. Talwar, D. Milojicic, Q. Wu, C. Pu, W. Yan, and G. Jung. Approaches for Service
Deployment. /EEE Internet Computing, 9(2), 2005.

B. Tekinerdogan and K. Ozturk. Feature-Driven Design of SaaS Architectures. In Z. Mah-
mood and S. Saeed, editors, Software Engineering Frameworks for the Cloud Computing
Paradigm, Computer Communications and Networks, pages 189-212. Springer London,
2013.

B. Tekinerdogan, K. Ozturk, and A. Dogru. Modeling and Reasoning about Design Alterna-
tives of Software as a Service Architectures. In Proceedings of the 9th Working IEEE/IFIP
Conference on Software Architecture (WICSA), pages 312-319. IEEE Computer Society,
2011.

T. Thum, D. Batory, and C. Kistner. Reasoning about edits to feature models. In Software
Engineering, 2009. ICSE 2009. IEEE 31st International Conference on, ICSE °09, pages
254-264, 2009.

W. E. Tichy. Software Configuration Management. In Encyclopedia of Computer Science,
pages 1601-1604. John Wiley and Sons Ltd., Chichester, UK, 2003.

189

https://www.spotify.com/

Bibliography

[203] I. Todoran, N. Seyff, and M. Glinz. How cloud providers elicit consumer requirements: An
exploratory study of nineteen companies. In Proceedings of the 21st IEEE International
Requirements Engineering Conference (RE ’13), pages 105-114, Rio de Janeiro, Brasil,
2013. IEEE Computer Society.

[204] P. Trinidad and A. Ruiz-Cortés. Abductive Reasoning and Automated Analysis of Feature
Models: How are they connected? In Proc. of the 3rd Int. Workshop on Variability Mod-
elling of Software-Intensive Systems (VAMOS ’09), pages 145-153, 2009.

[205] TripAdvisor LLC. Reviews of Hotels, Flights and Vacation Rentals - TripAdvisor. http:

//www.tripadvisor.com. (accessed November 6th, 2013).

[206] S. Trujillo, D. Batory, and O. Diaz. Feature oriented model driven development: A case
study for portlets. In 29th International Conference on Software Engineering (ICSE ’07),
pages 44-53. IEEE Computer Society, 2007.

[207] U.S. government. Get It Done Online! U.S. Government Online Services. http://www.

usa.gov/Citizen/Services.shtml. (accessed November 6th, 2013).

[208] O. S. Vaidya and S. Kumar. Analytic hierarchy process: An overview of applications.
European Journal of Operational Research, 169(1):1 — 29, 2006.

[209] S. L. Vargo, P. P. Maglio, and M. A. Akaka. On value and value co-creation: A service
systems and service logic perspective. European Management Journal, 26(3):145-152,
2008.

[210] W3C Working Group. Web Services Glossary. http://www.w3.org/TR/ws-gloss/,
2004. (accessed Februrary 21st, 2013).

[211] J. Wallenius, J. S. Dyer, P. C. Fishburn, R. E. Steuer, S. Zionts, and K. Deb. Multiple Criteria
Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies
Ahead. Management Science, 54(7):1336—1349, 2008.

[212] G. Wang, J. Wang, X. Ma, and R. G. Qiu. The effect of standardization and customization

on service satisfaction. Journal of Service Science, 2(1):1-23, June 2010.

[213] H. Wang, Y. F. Li, J. Sun, H. Zhang, and J. Pan. A semantic web approach to feature

modeling and verification. In Workshop on Semantic Web Enabled Software Engineering
(SWESE’05), 2005.

[214] S. Weerawarana, editor. Web services platform architecture: SOAP, WSDL, WS-policy, WS-
addressing, WS-BPEL, WS-reliable messaging, and more. Pearson Education, Upper Saddle
River, NJ, 5. print. edition, 2008.

190

http://www.tripadvisor.com
http://www.tripadvisor.com
http://www.usa.gov/Citizen/Services.shtml
http://www.usa.gov/Citizen/Services.shtml
http://www.w3.org/TR/ws-gloss/

Bibliography

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

J. White, B. Dougherty, D. C. Schmidt, and D. Benavides. Automated reasoning for
multi-step feature model configuration problems. In Proceedings of the 13th International
Software Product Line Conference (SPLC '09), pages 11-20, Pittsburgh, PA, USA, 2009.

Carnegie Mellon University.

J. Whitehead. Collaboration in Software Engineering: A Roadmap. Future of Software
Engineering (FOSE °07), pages 214-225, 2007.

E. Wittern. Public Service Cost and Valuation Model, 2nd Version. COCKPIT project
deliverable 3.2.2, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, January
2012.

E. Wittern and R. Fischer. A Life-Cycle Model for Software Service Engineering. In Pro-
ceedings of the 2nd European Conference on Service-Oriented and Cloud Computing (ES-
OCC ’13), LNCS 8135, pages 164—171. Springer Berlin / Heidelberg, 2013.

E. Wittern, J. Kuhlenkamp, and M. Menzel. Cloud Service Selection Based on Variability
Modeling. In Proceedings of the 10th International Conference on Service Oriented Com-
puting (ICSOC ’12), Lecture Notes in Computer Science, pages 127-141. Springer Berlin /
Heidelberg, 2012.

E. Wittern, A. Lenk, S. Bartenbach, and T. Braeuer. Feature-based Configuration and Cloud-
independent Deployment on IaaS. Under review in: 18th International Enterprise Comput-
ing Conference (EDOC ’14), 2014.

E. Wittern, N. Schuster, J. Kuhlenkamp, and S. Tai. Participatory service design through
composed and coordinated service feature models. In ICSOC’12: Proceedings of the 10th

international conference on Service-Oriented Computing. Springer-Verlag, Nov. 2012.

E. Wittern and C. Zirpins. On the use of feature models for service design: the case of value

representation. Towards a Service-Based Internet. ServiceWave 2010 Workshops, pages
110-118, 2011.

E. Wittern and C. Zirpins. Validating Service Value Propositions Regarding Stakeholder
Preferences. In 2011 IEEE Fourth International Conference on Software Testing, Verifica-
tion and Validation Workshops (ICSTW), pages 294-297, Berlin, May 2011. IEEE.

E. Wittern and C. Zirpins. Service Feature Modeling: Modeling and Participatory Ranking
of Service Design Alternatives. Under review in: Software and Systems Modeling (SoSyM),
2014.

E. Wittern, C. Zirpins, N. Rajshree, A. N. Jain, I. Spais, and K. Giannakakis. A Tool Suite
to Model Service Variability and Resolve It Based on Stakeholder Preferences. In The 9th
International Conference on Service Oriented Computing (ICSOC), pages 1-2, 2011.

191

Bibliography

[226] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslén. Experimen-
tation in Software Engineering. Springer Berlin / Heidelberg, 2012.

[227] E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvellou, and P. Devanbu. GlueQoS: Middleware
to sweeten quality-of-service policy interactions. Proceedings of the 26th International
Conference on Software Engineering (ICSE ’04), pages 189-199, 2004.

[228] World Wide Web Consortium (W3C). Web Services Policy 1.5 - Framework. http://www.
w3.org/TR/ws-policy/, September 2007. (accessed October 1st, 2013).

[229] Xignite, Inc. Market Data Feed and API - Financial Web Service - On-Demand. http:
//www.xignite.com. (accessed March 4th, 2014).

[230] K. P. Yoo and C.-L. Hwang. Multiple Attribute Decision-Making: An Introduction. Sage
University Publications, California, 1995.

[231] E. S. Yu. Towards modelling and reasoning support for early-phase requirements engineer-
ing. In Proceedings of the Third IEEE International Symposium on Requirements Engineer-
ing, pages 226-235. IEEE Computer Society, 1997.

[232] J. Yu, B. Benatallah, F. Casati, and F. Daniel. Understanding Mashup Development. /EEE
Internet Computing, 12(5):44-52, Sept. 2008.

[233] Y. Yu, J. C. S. do Prado Leite, A. Lapouchnian, and J. Mylopoulos. Configuring features
with stakeholder goals. pages 645-649, Mar. 2008.

[234] S.Zahir. Clusters in a group: Decision making in the vector space formulation of the analytic

hierarchy process. European journal of operational research, 112(3):620-634, Feb. 1999.

[235] W.Zeng, Y. Zhao, and J. Zeng. Cloud Service and Service Selection Algorithm Research. In
Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation
(GEC "09), pages 1045-1048, New York, NY, USA, 2009. ACM.

[236] W.Zhang, H. Mei, and H. Zhao. Feature-driven requirement dependency analysis and high-
level software design. Requirements Engineering, 11(3):205-220, June 2006.

[237] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and N. Schuster. Managing Architec-
tural Decision Models with Dependency Relations, Integrity Constraints, and Production
Rules. Journal of Systems and Software, 82(8):1249-1267, Aug. 2009.

192

http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/ws-policy/
http://www.xignite.com
http://www.xignite.com

B. Index

A
adaptation 36
aggregationrule 55
agile development 31
attribute ... 48
domain 55
measurement unit 55
attribute aggregation 86
attribute type ... 55
C
cloudserviceooiinnn.. 22
Infrastructure as a Service (IaaS)22
Platform as a Service (PaaS) 22
Software as a Service (SaaS) 23
collaboration server 122
composition
service feature models 61
variability realization mechanism37
Web services ..., 22
configurationcoiiia.... 5
process of selecting features 47
service feature modeling 47
variability realization mechanism36
constraint satisfaction problem 83
consumption, ServiCe 30
contribution 64
coordinationrules 65
custom attribute type priority 56
customization 35

D
decision-maker 82
delivery, service 30
deployment 21
variability realization mechanism36
deployment activities 28
design activities 27
development, service 29
domainmodel 59
E
evaluation, 102
F
feature 46, 51
abstract feature 52
grouping feature 51
instance feature 52
feature diagram 46
G
ZENETIC SETVICEvvvvineeennnnn.. 19
I
implementation activities 27
instantiation value 56
inter-service variability 32
interaction platform 126
intra-service variability 32
L
language ...l 44

life-cycle model

193

Index

SEIVICE & eeeiiiiiiiieeeeeennns 24
service feature modeling 25
software, 23
M
metamodel 118
model 37
model-driven engineering 39
modeler 58
modeling 37
ZENETIC PrOCESS .o vveeeeenn. 38

variability realization mechanism34

0
on-demand, 20
operation activities 28
|
participationoa.... 101
PAY PET USE oo vviiieeeeeenn. 20
poll ... 102
preference 103
preference aggregation 97, 162
preference-based ranking 92
PrOViSION, SEIVICEcvveeeeeenn... 29
R
relationship 47
CrOSS-tI€ecovveeeeeennnnnnn. 48
decomposition 47
requirements filtering 88
result ... 63
TEVISION .ottt ettt 31
roles
CONSUMET .. .vvvveeeeeeeennnnnnnn. 20
provider 20
SFM composition 64
S
scaleorder il 56
SErvice engineer 58

194

service engineering 20
service feature model 44, 45
serviceroles 33
service selection

service feature modeling 104

variability realization mechanism36
Service Statuscoeiiiineiinnn.. 25
service variability 30
service varianteeeeaaa.. 30
SEM designer 121
skyline filtering 94
software Service 21
specification activities 26
A\
valuation server 124
variability object 32
variability subject 32
variable service 30
VEISION o\ttt iee e iiie e iiee s 31
VO ottt ettt 103
w
Webservicecooiiiiiiiit. 22

Eidesstattliche Versicherung

gemdl § 6 Abs. 1 Ziff. 4 der Promotionsordnung
des Karlsruher Instituts fiir Technologie

fur die Fakultit fiir Wirtschaftswissenschaften.

1. Bei der eingereichten Dissertation zu dem Thema Modeling and Selection of Software Ser-

vice Variants handelt es sich um meine eigenstindig erbrachte Leistung.

2. Ich habe nur die angegebenen Quellen und Hilfsmittel benutzt und mich keiner unzulédssigen
Hilfe Dritter bedient. Insbesondere habe ich wortlich oder sinngemif3 aus anderen Werken

tibernommene Inhalte als solche kenntlich gemacht.

3. Die Arbeit oder Teile davon habe ich bislang nicht an einer Hochschule des In- oder Aus-

lands als Bestandteil einer Priifungs- oder Qualifikationsleistung vorgelegt.
4. Die Richtigkeit der vorstehenden Erkldrungen bestitige ich.

5. Die Bedeutung der eidesstattlichen Versicherung und die strafrechtlichen Folgen einer un-
richtigen oder unvollstindigen eidesstattlichen Versicherung sind mir bekannt. Ich ver-
sichere an Eides statt, dass ich nach bestem Wissen die reine Wahrheit erklirt und nichts

verschwiegen habe.

Karlsruhe, 2014

Curriculum Vitae — John Erik Wittern

Work Experience

08.12 — today FZI Research Center for Information Technology, Au3enstelle Berlin
Research Associate

06.13 — 08.13 IBM Thomas J. Watson Research Center, New York, USA
Research Intern

08.10 — 08.12 Karlsruhe Institute of Technology, Institute AIFB
Research Associate

12.09 — 03.12 Karlsruhe Institute of Technology, Institute AIFB
Student Assistant

04.09 — 07.09 Deutsche Bank AG, Frankfurt am Main
Internship in Inhouse Consulting

03.08 — 07.08 IBM Deutschland GmbH, Diisseldorf
Internship in Global Business Services

07.04 — 09.04 Drom international Pry. Ltd., Sydney, Australia
Internship

Education

04.11 — today Karlsruhe Institute of Technology, Institute AIFB
PhD Candidate

10.04 — 07.10 Karlsruhe Institute of Technology
German Diplom in Business Engineering [MSc. equivalent]
Thesis: Business Intelligence in Service Value Networks: Clustering
Service Quality Vectors

09.07 — 12-07 City University London, UK
Study Abroad Student

09.95 — 06.04 Gymnasium Blankenese an der Kirschtenstrale, Hamburg

08.91 — 07.95 Grundschule Gorch-Fock-Schule, Hamburg

	Abstract
	Acknowledgment
	Introduction
	Examples for Variants in Software Services
	Public Service Design
	Financial Web Service Consumption
	IaaS Configuration

	Motivations for Software Service Variants
	Problem Statement
	Problems Regarding Modeling Service Variants
	Problems Regarding Selecting Service Variants

	Research Design and Contributions
	Concepts and Methodology
	Modeling Language
	Methods
	Tools

	Structure of this Dissertation

	Concepts and Methodology
	Service Concept
	Generic Services
	Software Services

	Software Service Life-Cycle Model
	Software Life-Cycle Models
	Service Life-Cycle Models
	Our Software Service Life-Cycle

	Service Variants and Variability
	Origins of Service Variability
	Variability Subject
	Affected Service Roles
	Time of Occurrence
	Realization of Variability

	Fundamentals of Modeling
	Characteristics of Modeling
	Generic Modeling Process

	Methodology of Service Feature Modeling

	Modeling Service Variants
	Standard Feature Modeling
	Appeal of Feature Modeling

	Service Feature Modeling Language
	Basics of the Service Feature Modeling Language
	Feature Types in Service Feature Modeling
	Representation of Service Variability with Feature Types
	Attribute Types in Service Feature Modeling

	Service Feature Modeling Process
	Involved Stakeholders
	Modeling Procedure
	Modeling SFMs with Similar Structure

	Coordinated Composition of Service Feature Models
	Composition Model
	Roles
	Coordination Rules
	Service Binding

	Related Work on Modeling Service Variants
	Variability Modeling Languages
	Feature-based Modeling of Service Variability
	Other Approaches to Represent Service Variability
	Collaborative Modeling

	Discussion

	Using Service Feature Models
	Usage Process
	Goals of Usage
	Usage Overview
	Involved Stakeholders

	Automatic Determination of Variants
	Mapping of SFMs to Constraint Satisfaction Problems
	Attribute Aggregation

	Requirements Filtering
	Stating Requirements
	Matching Requirements to Variants

	Preference-Based Ranking of Variants
	Ranking Overview
	Skyline Filtering
	SFM to Poll Transformation
	Stakeholder Preferences Collection
	Configuration Ranking Determination
	Participatory Ranking

	Usage with Multiple SFMs
	Related Work on Variant Selection
	Feature Model Configuration
	Variant Selection in Service Development
	Variant Selection in Service Delivery
	Service Selection

	Discussion

	Evaluation
	Proof of Concept - Design and Implementation
	Requirements
	SFM Meta Model
	Architecture
	Implementation
	Discussion

	Performance Evaluation
	Design of Performance Evaluation
	Evaluation Models
	Results of Performance Evaluation
	Discussion

	Use Case - Public Service Design
	Use Case Description
	Modeling
	Usage
	Realization
	Discussion

	Use Case - IaaS Configuration
	Use Case Description
	Modeling
	Usage
	Realization
	Discussion

	Empirical Evaluation
	Design of Empirical Evaluation
	Data Collection
	Results of Empirical Evaluation
	Discussion

	Conclusion
	Summary
	Future work

	Appendix A
	Sets of SFM elements
	Information about performance evaluation of the skyline filter
	Information about performance evaluation of the requirements filter

	Index

