
Karlsruhe Institute of Technology

Department for Eletrical Engineering

and Information Technology

Institute for Information Processing

Technology - ITIV

A Mobile Robot System for

Ambient Intelligence

Bachelor Thesis of

Matthias Mayr

April the 1st, 2014

Head of Institute: Prof. Dr.-Ing. J. Becker
Prof. Dr. rer. nat W. Stork

Supervisors: Halmstad University:
Roland Philippsen
Wagner De Morais
Nicholas Wickström
Karlsruhe Institute of Technology:
Johannes Schneider
Sven Schmidt-Rohr

Abstract

Over the last years, Ambient Intelligence (AmI) has been pointed out as an alternative
to current practices in home care. AmI supports the concept of Ambient Assisted Living,
which aims to allow older people to remain independent at their own homes for longer.
The integration of a mobile robot into a database-centric platform for Ambient Assisted
Living is described in this thesis. The robot serves as a first-aid agent to respond to
emergencies, such as a fall, detected by the intelligent environment. To accomplish that
the robot must 1) be able to receive tasks from intelligent environment; 2) execute the
task; 3) report the progress and the result of the task back to the intelligent environment.
The system of the robot is built on top of the Robot Operating System, while the existing
intelligent environment on a PostgreSQL database. To receive tasks from the intelligent
environment, the robot maintains an active connection with the database and subscribes
to specific tasks. A task, for example, is to find a person in the environment, which
includes asking if the person is doing well. To find a person a map-based approach and a
face recognition are used. The robot can interact with people in the environment using
text-to-speech and speech recognition. The active connection with the database enables
the robot to report back about the execution of a task and to receive new or abort tasks.
As a conclusion, together with an AAL system, mobile robots can support people living
alone. The system has been implemented and successfully tested at Halmstad University
on a Turtlebot 2. The code is available on Github1.

1 Link to the Github account: http://www.github.com/matthiashh

http://www.github.com/matthiashh

Details

First Name, Surname: Matthias Mayr

E-Mail: matthias.mayr@student.kit.edu

Degree Program: Electrical Engineering and Information Technology

Title of Thesis: A Mobile Robot System for Ambient Intelligence

Thesis ID: Bachelor Thesis ID-1806

Keywords: Robotics, Ambient Intelligence, Ambient Assisted
Living, Robot System, Active Database, Healthcare

License

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 Inter-
national License. To view a copy of this license, visit http://creativecommons.org/

licenses/by-nd/4.0/.

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Bachelorarbeit selbständig und ohne un-
zulässige fremde Hilfe verfasst und keine anderen als die angegebenen Quellen und Hilf-
smittel benutzt habe. Die wörtlich oder inhaltlich übernommenen Stellen habe ich als
solche kenntlich gemacht. Die Satzung des Karlsruher Instituts für Technologie zur
Sicherung guter wissenschaftlicher Praxis in der Fassung vom Mai 2010 habe ich beachtet.

Halmstad, den 1. April 2014

———————————
Matthias Mayr

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Scenario . 3
1.3 Assignment . 3
1.4 Conventions . 3
1.5 Contributions . 4

2 Background and Related Work 5
2.1 Robots in Healthcare and Ambient Assisted Living 5
2.2 Ambient Intelligence and Ambient Assisted Living 6
2.3 Smart Home as an Active Database . 6

2.3.1 Smart Bedroom . 7

3 Materials and Tools 9
3.1 Robot Operating System (ROS) . 9

3.1.1 Building blocks of ROS . 10
3.1.2 Capabilities of ROS . 13

3.2 Robot Turtlebot 2 . 14
3.2.1 Kinect Camera . 14

4 Solution and Implementation 19
4.1 System Overview . 19
4.2 Navigation and Mapping . 19

4.2.1 Requirements . 19
4.2.2 Solutions . 20
4.2.3 Implementation . 22

4.3 Main Robot Control . 23
4.3.1 Requirements . 23
4.3.2 Solutions . 24
4.3.3 Implementation . 25

4.4 Database Connection . 28
4.4.1 Requirements . 28
4.4.2 Solutions . 29
4.4.3 Implementation . 30

4.5 Person Detection . 32

A Mobile Robot System for Ambient Intelligence

4.5.1 Requirements . 32
4.5.2 Solutions . 32
4.5.3 Implementation . 34

4.6 Module for Search Coordination . 42
4.6.1 Requirements . 42
4.6.2 Solutions . 43
4.6.3 Implementation . 43

4.7 Human Interface . 44
4.7.1 Requirements . 44
4.7.2 Solutions . 45
4.7.3 Implementation . 47

5 Results 49
5.1 Setup of the Experiment . 49

5.1.1 Scenarios . 49
5.1.2 Hardware Setup . 51
5.1.3 Reasons for this Distribution . 52

5.2 Results of the Experiment . 53
5.2.1 No Person Scenario . 53
5.2.2 Chair Scenario . 53
5.2.3 Lying Scenario . 54
5.2.4 Wall Scenario . 54

5.3 Main Robot Control . 55
5.4 Database Binding . 55
5.5 Person Detection . 55

5.5.1 Obstacle Approach . 56
5.5.2 Face Recognition . 56

5.6 Module for Search Coordination . 56
5.7 Human Interface . 56
5.8 Hardware . 57

5.8.1 Turtlebot . 57
5.8.2 Laptops . 57

5.9 Overall Result . 58

6 Discussion and Conclusion 59
6.1 Discussion . 59

6.1.1 Main Robot Control . 59
6.1.2 Database Connection . 59
6.1.3 Finding a Person . 60
6.1.4 Module for the Search Coordination 61
6.1.5 Human Interface . 62

6.2 Conclusion . 62
6.3 Outlook . 63

Literature 65

A Source Code 70
A.1 Robot Control Node . 70

A.1.1 Robot Control Simple Client . 74
A.2 Person Detector Node . 78
A.3 Exploration Node . 86
A.4 Human Interface Node . 91
A.5 SQL Database Client . 93

A.5.1 Integration of a Database Binding 93
A.5.2 PostgreSQL Database Header . 94
A.5.3 Return object for tasks . 101

List of Tables

3.1 Selection of Operating Systems (OS) and hardware supported by Robot
Operating System (ROS). 10

3.2 Sensors in the Turtlebot 2 robot [Rob13] 15

4.1 The database channels a robot listens to and the associated actions 24
4.2 States of the search process. 45

5.1 Technical data of the laptops running the software [del14] [asu14] 52
5.2 Splitting of the running software packages during the experiment 52
5.3 Results of the scenario without a person 53
5.4 Results of the chair scenario . 54
5.5 Results of the lying scenario . 54
5.6 Results of the wall scenario . 55

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

List of Listings

3.1 ROS message for an image . 11
3.2 Definition of the confirmation service . 12
3.3 The action file of a task as an example . 13
4.1 Message definition for registering or deregistering of a task type at the

robot controller . 28
4.2 Code to call a function in the database and receive a table of tasks in return 31
4.3 Shortened definition of the class ’returnTasks’ used in 4.2 31
4.4 Detection message of the cob-people-detection package 39
4.5 Confirmation message used to inform the person detection software about

external confirmation of a detection . 42
4.6 Service definition of yes-no-questions . 47
A.1 The header file of the robot controller . 70
A.2 The head file of the ’RobotControlSimpleClient’ utility class 74
A.3 Example code for a module implementing a simple task 76
A.4 Header file of the person detection package 78
A.5 Header file of the search coordination . 86
A.6 Header of the human interface . 91
A.7 Code to integrate a database binding into a module 93
A.8 Header of the modified database binding 94
A.9 Definition of the object returned by the database binding on a call for new

tasks . 101

A Mobile Robot System for Ambient Intelligence

List of Figures

2.1 The proposed architecture of an active database in a smart home 7
2.2 A photo of the ’smart bedroom’ . 8

3.1 Publish and subscribe in ROS . 12
3.2 The interface between an actionserver and an actionclient 13
3.3 States and transitions of goals on the side of an actionlib client 16
3.4 States and transitions of goals on the side of an actionlib server 17
3.5 Picture of the Turtlebot setup . 17
3.6 Available data streams using the Kinect camera 18

4.1 Simplified overview of the hardware and software components 20
4.2 2D maps based on a floor plan and SLAM 22
4.3 Three rooms in the OctoMap 3D representation (taken from [ros14e]) . . . 23
4.4 The design concept of the robot control software 25
4.5 Detailed few on the robot control structure 29
4.6 The simplified pipeline of the ’cob people detection’ 33
4.7 Visualization of incoming data for the obstacle approach 35
4.8 The static map and the inflated map in ROS Visualization (RViz) 36
4.9 Process flow of one cycle in the obstacle approach 38
4.10 Detected face and the published coordinate frame 39
4.11 One cycle in the face detection. 40
4.12 Transformation chain between a detection and the coordinate frame of the

map. 41
4.13 The states of obstacle and face detections. 42
4.14 The state machine of the search process. The states are explained in table

4.2. 46

5.1 Positions of the person in the different scenarios 50
5.2 Person sitting at a chair (chair scenario) and a person lying on the ground

(lying scenario) . 50
5.3 A person sitting at a wall (wall scenario) 51
5.4 A running exploration task. 57

A Mobile Robot System for Ambient Intelligence

Chapter 1

Introduction

In the thesis the approach of a mobile robot as part of a home assisted living system is

examined. As part of this system the robot receives and executes the task to search for a

human and asks a found person for its wellbeing.

It is assumed that an occupancy map of the operation area is provided. The map has to

include static obstacles. The home assisted living system provides places to search for a

person.

The approach has been tested in scenarios with lying, sitting and standing humans.

1.1 Motivation

These days the most societies in the world are becoming older [Nat01] and a high per-

centage of elderly live at home and would like to stay there instead of going to a nursing

home. But as they are often living alone and are just receiving visitors a few times a day

this comes with additional risks. Incidents like a fall or a stroke often stay undetected for

hours and cause avoidable health problems.

Home assisted living systems try to close that gap by monitoring the acitivities and

offering the possibility to perform emergency calls. But most of these systems need either

a huge effort to install them, like a system of cameras and appearance sensors or rely on

the discipline of the users like wearable emergency buttons. In this thesis the approach of

a mobile robot as an agent and sensor of a smart home is examined. With a mobile robot

it is possible to turn a normal appartment into an assisted living appartment without the

overhead of the installation of various sensors. A small mobile robot can be a personal

care giver and help provider. It can be an affordable solution which is small enough to be

taken whereever one goes.

Furthermore mobile robots can also be used in other applications like retirement homes

and hospitals. With various appartments, sensor types and multiple robots these agents

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

1.2. SCENARIO 3

can investigate unclear situations and fulfill tasks given by a coordination system.

1.2 Scenario

The developed system should be able to fulfill a defined scenario based on the existing

’smart bedroom’ [dMW13]. This bedroom can detect when a person leaves the bed and

is part of an Ambient Assisted Living (AAL) system.

If a person leaves the bed at night and does not return after a certain timeframe, the

AAL system can assign the task to search for the person to one of the connected robot.

The robot receives the task and can query for a list of places to search for the person. If

the robot finds the person, it should ask for the well-being of that person. At the end of

the search the robot should report the results to the AAL system.

1.3 Assignment

The robot has to be connected to the smart home approach presented in [dMW13] and

presented in section 2.3. This approach is using an active database which is implemented

with a PostgreSQL database. The robot should be able to report its status to the database

and offer the execution of the tasks the robot can perform. It should be possible to receive

tasks from the database and to manage the execution of several tasks. Furthermore the

robot should be able to query for task specific information and report sensor information

demanded by the database. Within this context, the applied system should be extensible

with other tasks and should also avoid shutdown times if a new kind of task like ’jump-

on-a-table’ is installed or updated.

Based on this system the robot should be able to search for a person in an appartment.

It is assumed that there is a static map available and the robot receives a list of places

where the home assisted living system assumes the position of the person to be. If the

search succeeds the robot should investigate the wellbeing of the person and inform the

database about the situation.

1.4 Conventions

For the development of this approach the base of a Turtlebot 2 robot should be used. This

platform is equipped with a Kinect depthcamera and navigation sensors. The execution

of the search should not be based on the existance of other static sensors. It should be

possible to find a human person after an incident happened. It can not be assumed that

the robot observes the actual event.

A Mobile Robot System for Ambient Intelligence

4 CHAPTER 1. INTRODUCTION

1.5 Contributions

The contribution of this thesis is a setup to use a robot with Ambient Intelligence (AmI)

and send an robot to search for a person in a known environment. It shows that a

robot can be part of the AmI and can execute tasks to enhance the capabilities of such a

system. Unlike other projects focusing on bigger and more expensive robots this setup is

an affordable solution showing good results.

The detection software is storing detections with the assigned name, place and time for the

whole runtime of the robot. Additionally detections can be verified using human robot

interaction. The developed software for human robot interaction as well as the robot

managing software have been offered as an easy to use interface for further purposes. The

human robot interface as well as the person detection software can be used as standalone

software on any robot.

The whole new written software is available on Github1

1 Link to the Github repository: http://www.github.com/matthiashh

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

http://www.github.com/matthiashh

Chapter 2

Background and Related Work

This chapter presents the state of the art of the fields of the thesis and introduces the

existing Ambient Assisted Living (AAL) system based on an active database.

2.1 Robots in Healthcare and Ambient Assisted Living

In the recent years major steps in healthcare robotics have been achieved. In Japan robots

lift people from a bed [MHN+10]. In hospitals mobile robots manage the transportation

of surgery equipment [OFD+09] or successfully assist at operations [BWB+].

The robot Care-O-Bot1 is specially designed [GRH+09] for elderly care. But although it

consists of state of the art hardware and has good set of capabilities this robot is still to

expensive to be used as a common solution. The project Mobility Aid for Handicapped

Persons (MAID) [mai] follows the idea of an motordriven wheeled walker. This approach

has the advantage that such a helper instrument will have a higher acceptance by the

elderly than a robot.

An overview of robots in health and social care will be given by [DB13]. But whereas

a lot of prototypes and research projects exist in that field the commercial products are

limited to telepresence robots.

Nowadays affordable service robots like vacuum cleaners and lawnmowers reduce prices

of small robot platforms and pave the way to affordable personal service robots.

Recent developments in sensing and computing make it possible to build reasonably

priced, small and autonomous robots with an increasing set of capabilities. Even cheap

platforms come with gyrometer and depthsensors and first attempts of low-cost manipu-

lators2 are developed.

1 The website of the Care-O-Bot project. http://www.care-o-bot.de/en/care-o-bot-3.html

2 Link to the Turtlebot arm: http://wiki.ros.org/turtlebot_arm

A Mobile Robot System for Ambient Intelligence

http://www.care-o-bot.de/en/care-o-bot-3.html
http://wiki.ros.org/turtlebot_arm

6 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 Ambient Intelligence and Ambient Assisted Living

Ambient Intelligence (AmI) is the concept of ’using input from sensor systems distributed

throughout the environment, computing devices could personalize themselves to their

current user, adapt their behaviour according to their location, or interact to their sur-

roundings’. [CVBK11] A discrete system can be built upon the devices to manage the

behaviour and to adapt the enviroment.

Ambient Assisted Living (AAL) supports older adults in order to enable them to stay

longer at home. The fact that populations of industrial societies are aging [Nat01] is a

great motivation for the development of ambient assisted living technologies.

Starting with simple systems like emergency buttons this branch is developing towards

aware smart homes.

A review of existing system is provided in [ARA12] and [RM13] and shows that the field

has great opportunities especially for the support of the elderly.

In [SFR11] it is shown how robots could support and assist older adults. An overview of

robots in home automation and their needs is given in [HTK+05].

A mobile robot can be a sensor as well as an actor for these systems. Whereas all other

components of the system are stationary, the robot can be sent to interesting places.

Furthermore, the robot is an additional communication channel to the person and gives

the possibility to address a person directly.

2.3 Smart Home as an Active Database

In [dMW13] an architecture of an AAL system based on an active database is proposed.

An active database is a relational database with active rules. Active rules allow reasoning

based on the incoming and stored data. As shown in figure 2.1 multiple sensors and

actuators can be connected to a database using resource adapters. This middleware

builds the connection to the database and queries for information to connect with the

attached hardware. The abstraction layer of the resource adapters makes it possible to

connect a large number of devices to the database. Once a device is connected it can call

a User Defined Function (UDF) to insert or access data.

The active database is enhanced with the techniques of big data analysis and machine

learning of the MADlib3. This makes it possible to react to the stored data and incoming

data. For example, to detect if a person is lying in the bed the value of the standard

deviation of load cells under the beds legs is used. Based on active rules the database can

also react to events and for example trigger the resource adapter of a lamp to turn on/off

the light.

3 Website of the MADlib project: http://madlib.net/

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

http://madlib.net/

2.3. SMART HOME AS AN ACTIVE DATABASE 7

Figure 2.1: The proposed architecture of an active database in a smart home. Every

resource is connected through a resource adapter. The active database components are

examined in and the figure is taken from [dMW13].

The database allows to define UDFs and can manage access rights on functions and

tables. Access management is based on user accounts which can have different roles

assigned. Based on the roles a user can access different kind of data. For example an

informal caretaker should not be able to access sensitive data, whereas a doctor should

have access to health information.

A mobile robot can be a resource adapter for the database. In this context the robots

acts both as actuator and sensor.

2.3.1 Smart Bedroom

An ’smart bedroom’ has been developed as a demonstrator of this proposal. Based on

the data of load cells in and under the bed, the active database can

• detect whether a person is in the bed

• calculate the heart rate and

• compute the breath rate.

Additional infrared sensors allow to estimate the position of the person in the room and

actuators like the lamps can be turned on or off according to the situation.

A Mobile Robot System for Ambient Intelligence

8 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.2: A photo of the ’smart bedroom’

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

Chapter 3

Materials and Tools

This chapter introduces the blocks of the robot setup. It will give an overview of the

existing hardware and software components used in this thesis. The chosen and developed

components to solve the scenario are explained in chapter 4.

3.1 Robot Operating System (ROS)

The ROS is a software framework for the development of robot related software.

The roots of this robotic middleware go back to 2007 when the Stanford Artificial Intel-

ligence Laboratory build a system for their robot STAIR [QBN07]. Today it is an open

source project developed under the lead of the Open Source Robotics Foundation1 with

contributers all over the world. The software is released under Berkley Software Distri-

bution (BSD) Licence which allows the integration in proprietary software projects. ROS

comes with support for different operation systems2 and a lot of robots3 - a selection can

be seen in table 3.1.

The ROS framework works as a distributed client server system. It works via network

and allows to start client programs on every connected computer. The infrastructure is

transparent and can be easily monitored by various debugging tools.

1 Website of the Open Source Robotics Foundation http://osrfoundation.org/

2 Supported operation systems: http://wiki.ros.org/ROS/Installation

3 Supported robots: http://wiki.ros.org/Robots

A Mobile Robot System for Ambient Intelligence

http://osrfoundation.org/
http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/Robots

10 CHAPTER 3. MATERIALS AND TOOLS

Table 3.1: Selection of Operating Systems (OS) and hardware supported by ROS.

Operating Systems

Official

Ubuntu Linux

Experimental

Mac OS X

Ubuntu ARM

Microsoft Windows

Hardware

Willow Garage PR2

Lego NXT

Turtlebot 1 & 2

Shadow Hand

AscTex Quadrocopter

Care-O-bot

3.1.1 Building blocks of ROS

ROS Master and Parameter Server

Every ROS system needs one master. The master must be reachable from every node

and acts as a nameserver. Every program in the ROS system registers at the server. If

different nodes want to connect to each other, the master provides them with connection

information and the nodes build a direct connection to each other. Multiple robots can

share one master and therefore share information as long as the namespaces of the topics,

for example the driver for the mobile base, are seperated.

The master is started together with the parameter server. This server allows the central

storage and editing of attributes. For example in this project the connection information

for the database is stored in the parameter server to allow modules to build up an own

connection.

ROS Nodes

A node is a running program which is connected to the ROS environment. On startup

every ROS node registers at the master using a unique name. Examples for nodes are:

• Robot Control Software

• Camera Driver

• Motor controller

A setup for navigation has usually about 30 registered nodes whereas a full setup can

easily have 70 or more nodes interacting with each other. As it will be described in

section 4.3.3.1 programs which implement the execution of a specific task like ’jump-on-

the-table’ are called modules. But these modules are still ROS nodes as they are programs

which are connected to the ROS environment.

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

3.1. ROBOT OPERATING SYSTEM (ROS) 11

ROS Messages

Messages are objects sent over network allowing different nodes to provide Inter Process

Communication (IPC). For example the camera driver publishes Red Green Blue (RGB)

images in the message type ’sensor msgs/Image.msg’ which can be seen in listing 3.1.1.

ROS comes with various common messages, but it is also easily possible to create an

tailored message based on the specific needs. Messages are defined in a programming

language agnostic way. On the compilation of the package defining the message ROS

creates header files for every supported programming language. Together with the network

transparency of ROS this allows to connect a sender written in C++ to a client written

in Python and running on another machine.

1 Header header # Header timestamp should be a c q u i s i t i o n time o f image

2 # Header f rame id should be o p t i c a l frame o f camera

3

4 uint32 he ight # image height , that i s , number o f rows

5 uint32 width # image width , that i s , number o f columns

6 s t r i n g encoding # Encoding o f p i x e l s −− channel meaning , order ing ,

s i z e

7 # taken from the l i s t o f s t r i n g s in in c lude /

sensor msgs / image encodings . h

8 uint8 i s b i g e n d i a n # i s t h i s data bigendian ?

9 uint32 step # Ful l row length in bytes

10 uint8 [] data # actua l matrix data , s i z e i s (s tep ∗ rows)

Listing 3.1: ROS message for an image. One message of this type is sent for every captured

frame.

ROS Topics

ROS follows a topic based publish/subscribe pattern. ’Topics are named buses over which

nodes exchange messages.’ [ros14h]. The topics names are usually composed of the send-

ing part and the type of information. For example the cameras RGB-Image is by default

published on the topic ’/camera/rgb/image color’. It is possible to have multiple pub-

lishers as well as multiple subscribers to one topic as long as they use the same type of

message. During startup a publisher informs the master about the topics name. A sub-

scriber queries the master for connection information to a specified topic name and builds

up a direct connection to the publisher. The system of topics is very robust and sup-

ports subscribing before a publisher announced it as well as adding additional subscribers

during runtime.

A Mobile Robot System for Ambient Intelligence

12 CHAPTER 3. MATERIALS AND TOOLS

ros

master

parameter

server

cameracamera

image
viewer
image
viewer

image_color

pu
bli
sh

"im
ag
e_c

olo
r" subscribe

"image_color"

frames

Figure 3.1: ROS Nodes for the camera publishes the topic ’image color’ and the image

viewer subscribes to the topic. After the subscription the viewer receives frames directly.

ROS Service

In contrast to the unidirectional messages a ROS service provides request-reply interaction

by Remote Procedure Call (RPC). Services can be defined in the same way as messages

and are programming language agnostic. An example for a service is listing 3.1.1. A

service is blocking on the client and based on the server implementation usually using the

main thread of the server.

1 Header header # Carying a sequence number and a timestamp

2 s t r i n g [] name array # an array o f p o s s i b l e names

3 −−−
4 bool s u c c e s s f u l l # was the r i g h t name in the array ?

5 bool answered # did someone answer ?

6 s t r i n g l a b e l # r i g h t name , i f s u c e s s f u l l

Listing 3.2: . The first part is the request. The second part the response of a call of that

service.

Actionlib

The actionlib4 is a widely used extension of the ROS core components. The concept of

the actionlib is examined in [LPP+11] and is mainly used for long executing tasks like

driving to a specific point. In addition to the request-reply concept of services, these tasks

benefit from frequent feedback as well as from the possibility to abort a task. Both is not

offered by the services.

The actionlib offers a standarized interface for a task state machine. The possible inter-

action between the server and the client can be seen in figure 3.2.

4 The actionlib in the ROS wiki: http://wiki.ros.org/actionlib

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

http://wiki.ros.org/actionlib

3.1. ROBOT OPERATING SYSTEM (ROS) 13

Action
Client

Action
Server

goal

cancel

status

feedback

result

From Client

From Server

Figure 3.2: The interface between an actionserver and an actionclient

An action is a predefined object consisting of a goal, a result and a feedback section. An

example for an action can be seen in listing 3.3. An action is sent by an actionclient to

the corresponding actionserver and is non-blocking for the client.

Whenever a goal is sent to an actionserver two goalhandles are created:

• A server goalhandle on the server side and a

• A client goalhandle on the client side.

Goalhandles are objects, that allow to access a task in order check the state of the task,

cancel the task or receive feedback. The state of a goal follows different state patterns

on the client side (figure 3.3) and the server (figure 3.4) side in order to allow a clean

implementation of the management.

1 # Def ine the goa l

2 uint32 t a s k i d

3 s t r i n g task name

4 uint32 p r i o r i t y

5 −−−
6 # Def ine the r e s u l t

7 bool s u c c e s s

8 s t r i n g e n d r e s u l t

9 −−−
10 # Def ine a feedback message

11 uint8 percentage

12 s t r i n g i n t e r m e d i a t e r e s u l t

Listing 3.3: The action file of a task as an example

3.1.2 Capabilities of ROS

The ROS framework supports robot programmers with various implemented functionali-

ties. The main ones are:

A Mobile Robot System for Ambient Intelligence

14 CHAPTER 3. MATERIALS AND TOOLS

• Drivers for cameras, Intertial Measurement Unit (IMU), laserscanner and other

sensors

• Image processing as well as a bridge to Open Source Computer Vision Library

(openCV)

• 3D processing with pointclouds and depthimages

• Support for robot platforms

• Coordinate transformation and mangement of coordinate systems

• Motion planning for manipulators and navigation

• A robot simulation software

Programming paradigms and guidelines for enhancements of ROS are summarized in

ROS Enhancement Proposals (REP).

The implementation of this system is based on the version ’hydro’.

3.2 Robot Turtlebot 2

The Turtlebot 2 is the second generation of a small and lowcost robot developing platform

assembled from popular hardware components. The hardware specifications are released

under the FreeBSD Documentation Licence and the software is fully open-source software.

The robot is well integrated into ROS which allows rapid prototyping and gives the

possibility to adjust the software to the projects needs. The delivered sensors can be seen

in table 3.2 and mainly support navigation purposes. The Turtlebot can be used as an

personal robot and can be purchased with a docking station. The robot can automatically

connect to the docking station and charge itself as well as the delivered laptop. This allows

continuous operation.

With the differential drive the robot can operate in smooth indoor environments but own

experiences show, that it is not able to pass tresholds higher than 2 cm.

The platform offers an payload of 5 kg [Rob13] which is enough to cary a standard laptop

and several sensors. With a maximum velocity of 0.65 m s−1 the robot can operate fast

enough for real time applications.

3.2.1 Kinect Camera

The availability of Kinect cameras at the end of 2010 revolutionized the sensing in

robotics. Although similar sensors like the Swissranger have been available before, the

prices dropped to a tenth. In addition to an RGB image depth sensors offer a depthimage

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

3.2. ROBOT TURTLEBOT 2 15

Table 3.2: Sensors in the Turtlebot 2 robot [Rob13]

Type Model / Detail

3D Vision Sensor Microsoft Kinect

Wheel Encoders 11.5 ticks/mm

Gyrometer factory calibrated, 100 deg/s

Bump Sensors front, front right, front left

Cliff Sensors front, front right, front left

Wheel Drop Sensors one each wheel

allowing to locate every point in 3D space. This made it affordable to use this 3D data

without the high effort of calibrating a stereo camera system or the use of a rotating

laserscanner [SD03].

Within the ROS framework three kinds of raw data streams and another three processed

streams are available. The streams are shown in figure 3.6. It has to be noted that the

infrared image and the RGB image can not be accessed at the same time.

A Mobile Robot System for Ambient Intelligence

16 CHAPTER 3. MATERIALS AND TOOLS

Figure 3.3: States and transitions of goals on the side of an actionlib client (taken from

[ros14a])

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

3.2. ROBOT TURTLEBOT 2 17

Figure 3.4: States and transitions of goals on the side of an actionlib server (taken from

[ros14a])

Figure 3.5: Picture of the Turtlebot setup

A Mobile Robot System for Ambient Intelligence

18 CHAPTER 3. MATERIALS AND TOOLS

a b c

d e f

Figure 3.6: Available data streams using the Kinect camera

a: RGB image stream

b: Infrared image stream; the pattern of the infrared emitter can be seen

c: Depthimage; the grayscale represents the distance of the point

d: Pointcloud calculated from the Depthimage

e: Registered pointclound; every point has the color of the RGB image assigned

f: Calculated laserscanner data is shown as red dots

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

Chapter 4

Solution and Implementation

In this chapter different methods for a solution of the given assigment are evaluated

and the implementation is presented. Each section starts with the requirements of the

problem, leads to an overview over the possible methods to solve it and ends with the

explanation of the implementation.

4.1 System Overview

The whole system consists of an existing active database, the hardware of the robot and

the programs running on the robot. It can be seen in figure 4.1.

The resources of the robot are managed by the robot controller. This program implements

the resource adapter (explained in 2.3) for the active database and grants modules access

to the resources. Modules are programs which implement a specific task the robot can

execute for the AmI. In the figure the component ’Coordination of the Search’ is such a

module and implements the task ’find person’.

Furthermore a module needs utilities in order to be able to execute the task. Utilities

do not implement a full task but can provide specific capabilities. For example ’Human

Interface’,’Navigation’ and the ’Person Detector’ are utilities.

Modules and the robot controller can have an integrated database binding if it is necessary

to exchange information with the AmI.

4.2 Navigation and Mapping

4.2.1 Requirements

The robot has to be able to reach points on a given map. It should be easily possible

to create a new map in order to use the robot at different places. The map must have a

A Mobile Robot System for Ambient Intelligence

20 CHAPTER 4. SOLUTION AND IMPLEMENTATION

Database
Binding

Robot Control

Coordination of the Search

D
a
ta

b
a
se

B
in

d
in

g

Reasoning about

Navigation Goals

and Detections

Turtlebot 2

MotorsCamera

Person Detector

Human Interface

Places t
o explore

Resu
lt o

f th
e se

arch

Goals, Start, Stop
Feedback and Results

Detections

Te
x
t

to
 S

p
e
e
ch

Ye
s-

N
o
-Q

u
e
st

io
n
s

A
n
w

e
rs

V
e
ri

fi
ca

ti
o
n
 o

f

D
e
te

ct
io

n
s

Verification of
Detections

Detection
Algorithms

Navigation

Localization

Path Planning

Navigation Goals

Commands

Text-to-speech

Speech Recognition

Microphone

Speaker

C
o
lo

r
Im

a
g
e
s

D
e
p
th

 D
a
ta

Task Execution

Management

Resource Management

Block and Unblock

Active Database

G
o
a
l

Fe
e
d
b
a
ck

,
R

e
su

lt

Figure 4.1: Simplified overview of the hardware and software components

coordinate system which makes it possible to exchange defined points on the map between

the database and the robot. The map representation should furthermore support the

calculation of a difference map between the current situation and the static map as a

chosen method to find additional objects (shown later in section 4.5.2.3).

4.2.2 Solutions

4.2.2.1 2D Navigation and Mapping

Two dimensional maps are the traditional representation of map data. In ROS this type

is represented as an occupancy map. The data is stored in a pixel image where every

pixel can be

• occupied,

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

4.2. NAVIGATION AND MAPPING 21

• free space

• or unknown.

Through this simple representation and the storage as a pixelgraphic these maps can be

easily created from a lot of data sources. Figure 4.2 shows a map from a Simultanious

Location and Mapping (SLAM) process and a converted map of a floor plan. Among the

pixelgraphic a file with metadata about the scale and the origin is stored.

One drawback of the 2D navigation software is the missing possibility to update maps.

Once a map is created the current implementation of the 2D navigation software in ROS

can not update the map. The second drawback is mandatory expectation of a laserscanner

as navigation sensor. As the Turtlebot does not come with a laserscanner this data is

calculated by slicing out the horizontal line of a depthimage1. This means that every

obstacle being lower than the mounting height of the Kinect of 32 cm (own measurement)

is neither mapped nor recognized during runtime.

On the other hand, debugging this kind of map is far easier and the two dimensional

representation does not need a lot of computation during runtime. As the system should

be easily adaptable and a 2D representation allows an easier implementation of a map

based approach evaluated in section 4.5.2.3, this method has been chosen.

4.2.2.2 3D Navigation and Mapping

In the last years the concept of OctoMap [HWB+13] has been introduced. This represen-

tation is using the memory saving Octree format. The approach comes with implemented

packages for mapping, visualization and the use of maps4. A visualization of a 3D map

can be seen in figure 4.3.

An advantage of this set of packages is the possibility to update an existing map during

runtime. Furthermore the drawback of using the Kinect as a substitute for the laserscanner

does not exist.

But OctoMap comes with a higher effort of computation . This is hard to fulfill with a

small robot. Furthermore the implementation of map based approach to find additional

obstacles becomes more difficult.

1 By default the 10 middle rows of each column are taken and the closest point is used as the laserscan-

ner result for that angle. See http://docs.ros.org/hydro/api/depthimage_to_laserscan/html/

classdepthimage__to__laserscan_1_1DepthImageToLaserScan.html

3 gmapping is one of the most used SLAM implementations. The gmapping website: https://openslam.

org/gmapping.html

4 OctoMap in the ROS wiki: http://wiki.ros.org/octomap

A Mobile Robot System for Ambient Intelligence

http://docs.ros.org/hydro/api/depthimage_to_laserscan/html/classdepthimage__to__laserscan_1_1DepthImageToLaserScan.html
http://docs.ros.org/hydro/api/depthimage_to_laserscan/html/classdepthimage__to__laserscan_1_1DepthImageToLaserScan.html
https://openslam.org/gmapping.html
https://openslam.org/gmapping.html
http://wiki.ros.org/octomap

22 CHAPTER 4. SOLUTION AND IMPLEMENTATION

A B

Figure 4.2: A: occupancy map based on the floor plan

B: a map created with the gmapping SLAM implementation3

4.2.3 Implementation

The 2D navigation software does not need any further implementation. For the test a

SLAM based map has been used; it can be seen in figure 4.2.

The localization implements the adaptive Monte Carlo approach ’which uses a particle

filter to track the pose of a robot against a known map’ [ros14b]. The particles representing

pose assumptions can be seen in the right picture of figure 4.10. The initial positioning

can either be done manually or doing a global localization on the map. For a global

localization particles are spread over the whole map and while the robot is moving some

assumptions are discarded.

To navigate to a specific place it is enough to send a goal to the navigation software and

monitor the state of the goal to know if it suceeded.

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

4.3. MAIN ROBOT CONTROL 23

Figure 4.3: Three rooms in the OctoMap 3D representation (taken from [ros14e])

4.3 Main Robot Control

4.3.1 Requirements

A robot has a limited amount of resources and a management tool has to avoid that

several programs access the same resources at the same time. The robot control software

should run once on the robot and coordinate the access. As an agent for the database the

robot should be able to handle discrete goals and manage their execution in order of the

goal priorities. Moreover the cancelation of goals should be possible. A goal could be to

execute a specific task like ’goto’ or ’find person’.

It should be possible to add new software modules for new kind of tasks during run-

time. On startup the controller should build up a database connection and query the

AAL-system for the robots configuration as well as supply other software modules with

information for a database connection.

4.3.1.1 Triggers of the Active Database

In section 2.3 it is described that the active database can trigger resource adapters. In

this setup the robot control is the only software component listening to the channels and

A Mobile Robot System for Ambient Intelligence

24 CHAPTER 4. SOLUTION AND IMPLEMENTATION

is therefore implementing the resource adapter. It has to react to triggers on channels as

shown in table 4.1.

Table 4.1: The database channels a robot listens to and the associated actions. The ID

is a unique identifier for the robot.

Channel Action

global start Unblock the motors and accept incoming tasks

global stop Abort all tasks and block the motors

start robot[ID] Unblock the motors and accept incoming tasks

stop robot[ID] Abort all tasks and block the motors

new task Query the database for task information

cancel task Query the database for task identifier of the canceled tasks

4.3.2 Solutions

There is no off the shelf solution for a whole robot control software. This is mainly due

to the fact that the types of robots differ a lot. Furthermore, a robot control software

usually has to fulfill special requirements and is depending on the skill set of the robot.

4.3.2.1 Goal Management

To pass goals to the task executing modules the ROS framework offers unidirectional

messages, bidirectional services and the actionlib with its state pattern shown in figure

3.4. All are introduced in section 3.1.1.

A solution based on raw messages has a large implementation overhead, because delays

in the message transmission and message collection have to be caught.

Services allow a direct evaluation of the result of a call. The drawback of this approach

is the fact that services are thread blocking. This means that a single threaded robot

control software can not react to any other events like other incoming goals. Furthermore

there is no direct way to cancel a service call.

The actionlib implements a complete task coordination system. It allows to add, monitor,

cancel and update goals as presented in [LPP+11]. Therefore an implementation based

on the actionlib has been chosen.

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

4.3. MAIN ROBOT CONTROL 25

D
a
ta

b
a
se

B
in

d
in

g

Robot Control

D
a
ta

b
a
se

B
in

d
in

g

- Task 'find_person'

Module 1
- Task 'say'
- Task 'goto'

Module 2
- Task 'charge'

M
a
in

 T
a
sk

S
e
rv

e
r

(M
T
S
)

C
lie

n
t

Ta
sk

 '
sa

y
'

C
lie

n
t

Ta
sk

 '
g
o
to

'

C
lie

n
t

Ta
sk

 '
ch

a
rg

e
'

C
lie

n
t

Ta
sk

 '
fi
n
d
_p

e
rs

o
n
'

D
B

 C
lie

n
t

o
f

M
T
S

Search

Active Database

Connection

Database Interaction

Figure 4.4: The design concept of the robot control software. Module 1 can execute two

different tasks. Module 2 offers one task. The module ’search’ can execute one task and

has an own database connection.

4.3.3 Implementation

The overall concept as shown in figure 4.4 consists of one robot controller, one existing

active database and several modules which can be started and terminated during runtime.

The software of the robot controller is decoupled from the code of the modules. This makes

it possible to load any module without a recompilation or a restart of the controller. A

utility library is provided for the implementation of modules see section A.1.1.

The robot controller consists of the Main Task Server (MTS), the database binding and

the client of the MTS for the database. It is enhanced by a client of every registered

implementation of a task.

Every goal has to pass the Main Task Server in order to be executed. Whenever the robot

is idle or done with the last goal the robot controller sets the next goal respecting the

priorities of the pending goals.

4.3.3.1 Modules

A module is a program running on the robot and implementing the execution of a spe-

cific task. For example the module which can search for a person is called ’search’ and

implements the task ’find person’.

A Mobile Robot System for Ambient Intelligence

26 CHAPTER 4. SOLUTION AND IMPLEMENTATION

A module can implement several tasks and has an own task server for every implemented

task. These servers accept goal objects with the same definition as the Main Task Server.

Modules that need a database connection can build up their own connection. The nec-

essary connection information has been stored in the parameter server by the robot con-

troller and can be accessed by every module.

4.3.3.2 Definition of the Generic Goal Object

The goal object is a part of an action of the actionlib which is explained in 3.1.1. The

definition of the goal object can be seen in listing 3.3 and is generic in order to support

all kind of tasks. It is not possible to deliver any information for the task execution by

this object. The feedback message contains a percentage and an additional string for

debugging. The result of a goal consists of a boolean representing the success and a string

for debugging.

If an external module needs additional information or needs to report results, the database

can be contacted using the unique ID of a task and the defined Application Programming

Interface (API) between this module and the database. This design was chosen because

it is not possible to cover the needs of strongly differing tasks in one object definition.

For example a task ’charge’ would need an integer to specify the aimed battery state the

task ’say’ needs information stored in a string and a more complex task like ’find person’

needs a full set of parameters.

Instead of trying to focus on a never sufficient design of a goal object it has been chosen

to simplify the process of building a database connection with every module that needs

to exchange information.

4.3.3.3 Goal Handling within the Controller

Goal Storage In section 3.1.1 it is explained that on submission of a new goal to a task

server a server goalhandle and a client goalhandle for that goal are created. As these

objects ensure the access to a goal they are always stored on the server and the client

side.

If the database client of the Main Task Server submits a new goal, the goalhandle of the

client side is stored in the list of ’all database goals’ and the goalhandle on the server side

is saved in the list of ’all submitted goals’. This can be seen in figure 4.5 for goal #1 and

goal #2.

Whenever a stored goal of the Main Task Server is chosen as the next one to execute it is

sent to the external task server of that task type. This creates another pair of goalhandles.

The one on the external server is used to execute the goal. The client goalhandle which

is created on the side of the robot controller is saved together with a pointer to the server

goalhandle of the same goal at the Main Task Server. This can be seen in figure 4.5 for

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

4.3. MAIN ROBOT CONTROL 27

goal #1 whereas goal #2 is not running yet. This storage ensures that status feedback of

the executing task can be passed to the client of the Main Task Server.

Goal State Policy of the Main Task Server In figure 3.4 the different states of goals can be

seen. The most important ones are:

• PENDING - if a submitted task has neither been accepted nor been rejected

• ACTIVE - if the goal has been accepted

• REJECTED - if the server rejected the goal

• SUCEEDED - if the goal suceeded

• CANCELED or ABORTED - if either the client or the server terminates a goal

All incoming goals start in the state PENDING. When the Main Task Server receives a

goal it is checked if this type of task, e.g. ’jump on table’ can be executed by one of the

modules. If that requirement is not fulfilled the goal is rejected, otherwise the goal stays

pending and is added to the list of goals. When the goal is chosen for execution it is sent

to the external task server of the corresponding module. The state is changed to ACTIVE

and after that the state depends on the feedback and result of the external server.

4.3.3.4 Module Management

Modules can register at runtime at the robot controller using the message shown in listing

4.1. Based on the content of the message the robot controller builds up, updates or

terminates a connection to an external task server. If the connection can be established

the unique task name of the new task is added to the list of possible tasks and reported

to the database. That way the AAL system always has a list of tasks which the robot can

perform. If a deregistration is requested the controller terminates the connection, deletes

the task type from the list of possible task. Furthermore the database is informed and all

pending goals of that type are rejected.

In order to make sure that an external task server still responds are all connections

frequently checked by the controller.

4.3.3.5 Developing new Modules

On the code level external modules always depend on the robot control package. Imple-

menting a new module can either be done by fulfilling all requirements or using the class

’RobotControlSimpleClient’ as parent class. This class as shown in A.1.1 implements and

initializes all necessary structures to build a module which can offer the execution of one

A Mobile Robot System for Ambient Intelligence

28 CHAPTER 4. SOLUTION AND IMPLEMENTATION

task type. It allows the fast creation of own modules without the overhead of knowing

about the underlying structures and their initialization. Both existing modules use this

class.

1 # The unique i d e n t i f i e r o f the task

2 s t r i n g ta sk type

3 # The f u l l name o f the a c t i o n s e r v e r

4 s t r i n g task se rver name

5 # true to r e g i s t e r

6 # f a l s e to u n r e g i s t e r

7 bool reg

Listing 4.1: Message definition for registering or deregistering of a task type at the robot

controller

4.4 Database Connection

4.4.1 Requirements

The reference implementation of the active database architecture as explained in 2.3 is

running in a PostgreSQL database. PostgreSQL is an open-source database software

implementing the Structured Query Language (SQL) standard.

The robot as a resource adapter should be able to build a connection to the database and

perform the following tasks:

1. Listen to channels

2. Receive notfications and extract information

3. Call functions in the database

4. Receive and process a table in return

Channels are unprotected tunnels and every connected client can subscribe to every chan-

nel. They can be triggered by any client of the database. If a channel is triggered every

subscriber receives a notification consisting of:

• The name of the triggered channel

• The sending Process Identification Number (PID)

• An optional payload string

In this architecture the name of the channel and the notification event itself are used for

IPC between the database and the clients.

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

4.4. DATABASE CONNECTION 29

Robot Control

M
a
in

 T
a
sk

S

e
rv

e
r

(M
T
S

)

C
lie

n
t

Ta
sk

 '
g

o
to

'

C
lie

n
t

Ta
sk

 '
sa

y
'

D
a
ta

b
a
se

B
in

d
in

g

D
B

 C
lie

n
t

o
f

M
T
S

Goal #1
Server GH

Goal #1
Client GH

Running Goal

C
lie

n
t

Ta
sk

 '
ch

a
rg

e
'

Another Client

Goal #1
Client GH

DB Goals

Goal #2
Client GH

Goal #1
Server GH

Goal #2
Server GH

MTS Goals

Goal #3
Server GH

C
lie

n
t

Ta
sk

 '
cl

e
a
n

'

Current Goals:

Goal #1

goal_id:

task:

1

'goto'

priority: 8

Goal #2

goal_id:

task:

2

'say'

priority: 2

Goal #3

goal_id:

task:

3

'charge'

priority: 7

Actionlib
Interaction

Reference

Figure 4.5: Detailed view on the robot control structure. The upper half shows the server

and clients and the lower half the corresponding data structures for the goal storage. The

database submitted two goals and another client the goal #3. Goal #1 is running on the

task server of the task ’goto’.

4.4.2 Solutions

The robot software for this thesis is written in C++. Therefore just corresponding clients

are evaluated.

4.4.2.1 Official PostgreSQL C Client

The PostgreSQL project provides a client for the programming language C called ’libpq’

[lib14]. The package is well documented and supports a big set of database features.

Its functionalities go far further than the requirements. The usage of the client would

come with an additional learning overhead for everybody implementing modules.

A Mobile Robot System for Ambient Intelligence

30 CHAPTER 4. SOLUTION AND IMPLEMENTATION

4.4.2.2 ROS Package SQL-Database

The ROS package sql database ’provides an easy to use and general interface between a

SQL database and object-oriented C++ code, making it easy to encapsulate the concep-

tual ’objects’ contained in the database as C++ classes.’ [ros14g]

It is built on the official library ’libpq’ and abstracts the functionalities. It is capable of

inserting data into tables of a database and reading data of tables. It is well integrated

in ROS and comes with tutorials.

Eventhough the functions for listening to channels, receiving notifications and calling

functions are not yet implemented it has been chosen to use and enhance this package. It

will allow module programmers an easy interaction with the database.

4.4.3 Implementation

The existing implementation of the ROS package ’sql database’ [ros14g] was lacking sup-

port for the following needed functionalities:

• Listen and unlisten to channels

• Retrieve notifications from channels

• Call functions in the database and process the results

The package was enhanced by these capabilities.

To receive notifications from an attached channel, incoming notifications have to be ac-

tively collected. The implementation allows to choose between two different functions for

the collection of notifications.

1. checkNotify - checks for notifications and returns immediately

2. waitForNotify - waits for activity at the socket and exits on a connection error or

a received notification

The capability to call UDF of the database has been derived from the existing functionality

to read from databases. In listing 4.2 the code for a typical database query can be seen.

The object ’tasks’ of the type ’returnTasks’ will store the returned table and allows an

easy access.

For every call an object according to the expected columns has to be defined beforehand.

Such a definition can be seen in listing 4.3

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

4.4. DATABASE CONNECTION 31

1 ROS INFO(” Gett ing new task s ”) ;

2 std : : vector< boost : : shared ptr<returnTasks> > ta sk s ;

3 d a t a b a s e i n t e r f a c e : : FunctionCallObj c a l l ;

4 c a l l . name = ” g e t t a s k s ” ;

5 i f (! database −>ca l lFunc t i on (tasks , c a l l))

6 {
7 ROS WARN(” Ca l l i ng g e t t a s k s f a i l e d . Probably the connect ion dropped .

Ex i t ing . ”) ;

8 re turn f a l s e ;

9 }

Listing 4.2: Code to call a function of the database and receive a table of tasks in return.

’returnTasks’ is the object type receiving the table (see A.5.3) and ’database ’ is the object

holding the connection (see A.5.2)

1 #inc lude <s t r i ng>

2 #inc lude <vector>

3 #inc lude <d a t a b a s e i n t e r f a c e / d b c l a s s . h>

4

5 c l a s s returnTasks : pub l i c d a t a b a s e i n t e r f a c e : : DBClass

6 {
7 pub l i c :

8 d a t a b a s e i n t e r f a c e : : DBField<int> i d ;

9 d a t a b a s e i n t e r f a c e : : DBField<int> t a s k p r i o r i t y ;

10 . . .

11

12 returnTasks () :

13 i d (d a t a b a s e i n t e r f a c e : : DBFieldBase : :TEXT, th i s , ” key column ” , ” p l a c e s2 ” ,

t rue) ,

14 t a s k p r i o r i t y (d a t a b a s e i n t e r f a c e : : DBFieldBase : :TEXT, th i s , ” t a s k p r i o r i t y ”

, ” p l a c e s2 ” , t rue) ,

15 . . .

16 {
17 p r i m a r y k e y f i e l d = &i d ;

18 f i e l d s . push back(& t a s k p r i o r i t y) ;

19 . . .

20 }
21 } ;

Listing 4.3: Definition of the class ’returnTasks’ used in 4.2 (shortened to the unique serial

key and one column). The column name as well as the data type have to be mentioned

for every column.

A Mobile Robot System for Ambient Intelligence

32 CHAPTER 4. SOLUTION AND IMPLEMENTATION

4.5 Person Detection

4.5.1 Requirements

The robot has to find a person in order to fulfill the scenario. As mentioned in the

conventions in section 1.4 the search for a person should not rely on the existance of other

external sensors. This means that the robot should be able to carry all sensors needed

for the chosen methods and furthermore equip the computer performance to use them.

It can not be assumed that the person is standing and looking towards the robot. The

case of a person lying on the ground should be covered as well.

4.5.2 Solutions

In figure 3.2 it can be seen that the depth camera of the Turtlebot has a low mounting

height. This is necessary to avoid the navigation and mapping problems mentioned in

4.2.2.1. With the opening angle of the Kinect camera of 45.6 deg [ki-14] this means that

the robot has to be more than 3 m away from a 1.90 m standing person in order to be

able to detect a face or a full torso.

4.5.2.1 Method using 3D data

In [CMBV13] a fast detection process has been introduced. The method allows to detect

humans based on depthimages even if the body isn’t fully visible.

But eventhough the results are good it is not possible to integrate this method within the

given timeframe.

Furthermore skeleton trackers like the ’openni tracker’ 5 or the ’Voodoo’ tracker [KVSD06]

need an intialization pose which does not fit the requirements of a surveilling robot.

4.5.2.2 Face Detection

Face detection can be a good identifier if the person is looking towards the robot. There

exist two different packages for the ROS framework. The drawback of both packages is

that they use a Haar detector to find regions of interest. These detectors are usually

trained for a vertical face and can not detect the face of a lying person.

Care-o-Bot People Detection The Care-o-Bot project developed a complete face detection

cascade presented in [BZF+13] and [det10]. It can do face detection and face recognition

using a the ’Fisherface’ or ’Eigenface’ approach.

5 openni tracker on Github: https://github.com/ros-drivers/openni_tracker

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

https://github.com/ros-drivers/openni_tracker

4.5. PERSON DETECTION 33

As shown in figure 4.6, the software is using a Haar detector on depthimages [BZF+13]

to find a head and passes areas of interest to a face detector. If a face is detected, the

face identification assigns a name from the trained database for the label ’Unknown’. The

additional usage of depthimages leads to a low false detection rate. The training of new

persons is easy and can be done manually or even at code level. The package is integrated

into ROS and ready to use.

Because it is interesting for an AAL system to address people personally and to distinguish

and identify them this package has been chosen.

Head Detection Face Detection Face Identification Detection Tracking

Matthias

RGB-D

Data

Figure 4.6: The simplified pipeline of the ’cob people detection’

Pi Face Tracker In this package a Haar detector for face detection [Goe] is used. Found

faces are tracked using ’Good Features Track’ and the ’Lucas Kanade Optical Flow’

tracker. Additional depth data can be used to lower false detections and to improve the

tracking.

4.5.2.3 Map based detection

If a person looses consciousness there is a high probability that the person falls or sits on

the ground. When the robot is passing by it will see this spot as an additional obstacle.

This information can be used to estimate if it could be a human person and use human

robot interaction to verify the assumption.

This approach will cause false detections for replaced items. But in contrast to other

methods it does not need a lot of computation and could have a high probability to

recognize a person as an obstacle. As the robot is part of an AAL system it can pass

information, for example images, about these spots if the search does not succeed. The

system can transfer these pictures to relatives of the person or personal of the care facility

to evaluate them.

As recognition of a fallen human is not a trivial task this method has been chosen to find

a lying person. Furthermore it can be enhanced by an infrared sensor.

A Mobile Robot System for Ambient Intelligence

34 CHAPTER 4. SOLUTION AND IMPLEMENTATION

4.5.2.4 Infrared Sensors

Infrared sensors can measure the heat radiation emitted by objects. In [SSC+13] it is

shown that an array of infrared sensors can significantly lower false detections of humans.

An alternative to an array of sensors could be a single infrared sensor used to measure

the temperature of interesting points like new objects.

In contrast to the results is the price of an infrared sensor array.Such an array would

higher the price of a personal robot significantly. The prices for a single infrared sensor

are reasonable, but the usage of these sensors comes with a high effort of integration.

The sensors have to be connected to the analog or digital port of the robot and an own

software has to process the incoming data.

Therefore it has been chosen not to use an infrared sensor.

4.5.3 Implementation

The implementation is designed to be independent from the robot specific and task specific

parts in order to allow the reusage in other projects. This package does neither directly

interact with the robot nor with a person. It observes and outputs information about

detections.

The chosen approach to detect a person based on the additional appearence on the map

must be fully implemented. The face recognition is a fully running external package. For

this method the handling of the detections had to be implemented.

4.5.3.1 Map Approach

The goal of this approach is to identify and rate obstacles which do not appear on the

static map used for navigation.

Incoming Data The software uses information from two sources:

1. Currently seen obstacles by the navigation software

2. The local costmap of the navigation software

A visualization of the data can be seen in figure 4.7. The currently seen obstacles are

passed as points in absolute map coordinates. The local costmap is a small map anchored

in the base frame of the robot. It is used to calculate the local path for navigation [ros14d].

On this map every point is either

• occupied,

• free space or

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

4.5. PERSON DETECTION 35

currently seen
obstacles

local costmap

- occupied

Space can be:

- inflated, but free
- free space

Figure 4.7: Visualization of the incoming data in RViz. The local costmap around the

robot is marked by a rectangle. Occupied points are shown in yellow. Free space is white

and all other colors are information for the navigation cost function but represent free

space [ros14c]. The currently seen occupied points are marked in red and go further than

the costmap.

• inflated by a cost function, but free space.

This means that input from the local costmap can be used to clear false detections while

this is costly to compute with the incoming data of the currently seen obstacles.

Whereas the information of the local costmap can always be used, the quality of the

information of seen obstacles is strongly depending on the distance and the twisting

speed of the robot. Therefore data from this source is not used while the robot is turning

and for points which are more far away than 4 m.

Data Storage Map data is stored in a costmap object provided by the navigation package

of ROS [ros14c]. It provides an easy access to the stored occupancy information and can

do the transformation between the internal array and map coordinates. For every point

of the map an 8 bit integer is used to store occupancy information.

To find and rate obstacles five map objects are used:

• Inflated Static Map: A copy of the static map inflated by 10 cm

A Mobile Robot System for Ambient Intelligence

36 CHAPTER 4. SOLUTION AND IMPLEMENTATION

• Updated Map: A map only representing the actual situation

• Count Map: It stores how often a point has been marked as occupied

• Distance Map: A map storing the closest distance from which a point has been

marked as occupied

• Difference Map: A map representing all occupied points of the updated map

which are not occupied in the inflated static map

In the distance and count map the integer of the map representation has been used to

store the amount of sightings and the closest distance in decimeter. The static map is the

map used for navigation.

a

b

c

d

Figure 4.8: The static map and the inflated map overlayed in RViz.

a) Unknown space in the static map

b) Free space in both maps

c) Occupied space in the inflated static map

d) Occupied space in the static map

Process Flow In figure 4.9 the flow of one process cycle is shown. First the incoming

data is inserted into the frequently updated map, the count map and the distance map.

Then a difference map is calculated. Every point which is occupied in the updated map

but marked as free in the inflated static map is an additional occupied point and set as

occupied in the difference map.

At the end of every cycle the list of obstacles is published for other nodes.

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

4.5. PERSON DETECTION 37

Rating of Obstacles Every known obstacle is rated for its probability to be a human.

This rating is based on three factors:

1. Average sighting distance

2. Average amount of sightings

3. Its size

In total an obstacle can score between 0 and 100 points. Each factor can influence one

third.

Sighting distance The sensor data of the Kinect looses accuracy on higher distances.

Therefore the average sighting distance for each obstacle is calculated and rated between

0 and 100 points using the function6

prd = pd ·
(
−10

3

)
+

400

3
.

Whereas prd is the rating and pd is the average distance of the obstacle in decimeter. As

sensor data with a distance of more than 4 m is not used, the function never returns a

negative value. The lowest distance a point can have is 1 m if the point appears on the

local costmap.

Amount of sightings As mentioned in 4.5.3.1 the costmap can store values between 0 and

255. The function6

pra =
100 ·

∑psize
i=1 pi

255 · psize
rates an obstacle between 0 and 100 points based on the amount of appearances. pra is the

rating, psize is the amount of points an obstacle includes and pi is the number of sightings

of each point stored in the count map.

Size The third factor in the rating of an obstacle is the size; respectively the amount of

occupied points on the map. On the used map every point represents a 5 cm ·5 cm square.

But it has to be noted that the robot usually just sees the border of an obstacle. For

example the obstacle in front of the robot in figure 4.8 is an arm chair. The rating is

• 0 ≤ p ≤ 5: 10 points,

• 5 ≤ p ≤ 10: 50 points,

6 Both function are self designed

A Mobile Robot System for Ambient Intelligence

38 CHAPTER 4. SOLUTION AND IMPLEMENTATION

• 10 ≤ p ≤ 20: 75 points and

• p > 20: 100 points

whereas p is the number of points.

ID: 2 Points: Rate: 60

Known Obstacles

ID: 1 Points: Rate: 80

Local Costmap Seen Obstacles

Input

Confirmations

ID: 1 State: Tried

ID: 2 State: Running

Processing

Output

Counter
Map

Distance
Map

insert

Inflated
Static
Map

Update Maps

Updated
Map

Update Obstacles

1. Retrieve known obstacles
2. Find new obstacles

Generate
Difference

Map

Update

Add

u
p

d
a
te

 s
ta

te

Figure 4.9: Process flow of one cycle in the obstacle approach

4.5.3.2 Integration of the Face Identification

The Care-o-Bot people detection software is a fully implemented face recognition. This

package is developed in the older buildsystem ’rosbuild’ whereas the new packages are

developed in the newer buildsystem ’catkin’. As ’catkin’ packages can not depend on

’rosbuild’ packages, the header files for the messages had to be copied to an included

header directory of the new package.

The face recognition software has several outputs of which the topic for tracked faces is

used as input. The message is shown in listing 4.5.3.2.

The integration of the face recognition mainly implements four functionalities:

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

4.5. PERSON DETECTION 39

Figure 4.10: The left picture shows a detected head (outer blue rectangle) and the detected

face within the head (inner green rectacle) with the assigned name. On the right picture

the published coordinate frame as well as the visualization in RViz can be seen. (On the

ground the local costmap as well as the localization assumptions are displayed)

1. Coordinate transformation to map coordinates

2. A simple tracking of recognized faces

3. The capability to assign several names to a recognition

4. The possibility to do an external verification e.g. by using human robot interaction

1 # Sequence number and timestamp

2 std msgs /Header header

3 # Name o f the person or ’Unknown ’

4 s t r i n g l a b e l

5 s t r i n g de t e c t o r

6 # The sco r e o f that l a b e l

7 f l o a t 3 2 s co r e

8 cob peop l e de t e c t i on msgs /Mask mask

9 # the p o s i t i o n and o r i e n t a t i o n

10 geometry msgs /PoseStamped pose

Listing 4.4: Detection message of the cob-people-detection package (taken from [git14]

and commented)

The pose represents the position of the face in the coordinate frame of the camera.

Coordinate Transformation First the position of every face is published as a coordinate

frame in relation to the camera. This can be seen in figure 4.10. To allow easier debugging

also the label of the recognition and a cube at this position are published for RViz.

A Mobile Robot System for Ambient Intelligence

40 CHAPTER 4. SOLUTION AND IMPLEMENTATION

ID: 4

Known Face Recognitions

ID: 3 Pos x: 5.3

Input

Confirmations

ID: 3 State: Tried

ID: 4 State: Running

Processing

Output

Coordinate Transformation

Match Recognitions

Find nearest known
recognition

Update

Add

u
p

d
a
te

 s
ta

te

Face Recognitions

/camera
-frame

/map
-frame

Pos y: -2.4

Pos x: 2.3 Pos y: 8.9

Figure 4.11: One cycle in the face detection.

Then the published coordinate frame is used to do a transformation between the detection

and the map coordinate frame which can be seen in figure 4.12. The output of this

transformation are the map coordinates of the detection.

Information Storage The assigned name of a face recognition should not depend on a

single result. Furthermore a global storage on the whole map requires a tracking of

recognitions. Therefore it is necessary to store and fuse information of recognitions. As

shown in figure 4.11 incoming detections are used to update a known detection or add a

new detection. The list of known detections covers all currently known detections.

Match Recognitions Every incoming detection is assigned to the nearest known recogni-

tion using a modification of the Hungarian Algorithm. If the nearest known detection is

more than 0.5 m away, a new detection added. Otherwise the nearest one is updated with

the name, position and time.

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

4.5. PERSON DETECTION 41

human pose raw camera rgb optical frame camera rgb frame

base linkbase footprintodom

map

Figure 4.12: Transformation chain between a detection and the coordinate frame of the

map.

Multiple Assigned Names A known detection can have multiple names assigned if the face

identification outputs different names for the same person. Every time a known detection

is updated with a name, a counter for that name is incremented. For example for the

visualization in RViz the name with the most appearances will be displayed.

Furthermore, if a name, e.g. ’Matthias’ is assigned to a detection, all other known detec-

tion on the whole map having the same name assigned loose one point on the counter for

this name. This solves two issues:

1. older detections will loose points for this name and sooner or later be deleted

2. wrong identifications of that name will loose points

If a known detection does not have any more names assigned and is older than a specified

time it is deleted by a garbage collector.

4.5.3.3 External Confirmation

The robot can use text to speech as well as speech recognition. This allows a confirmation

of detected obstacles and face recognitions. As the person detection software is designed

to be a passive component an external software has to carry out the confirmation and has

to decide which detections are going to be confirmed.

If an external program start or updates a confirmation it can inform the person detector

about the process using the message shown in listing 4.5.3.3. The person detector updates

the known detection using the information of the confirmation. A detection can have the

A Mobile Robot System for Ambient Intelligence

42 CHAPTER 4. SOLUTION AND IMPLEMENTATION

NEW RUNNING

TRIED

SUCCESS
Name

Figure 4.13: The states of obstacle and face detections. First all detections are uncon-

firmed, then an external process can report an ongoing confirmation. This can result in

success or fail. A successfull confirmation can assign to a detection.

states shown in figure 4.13. If a confirmation was successful, this name is removed from

all other known detections.

1 Header header

2 i n t32 id # ID o f the d e t e c t i o n

3 bool running # true i f the con f i rmat ion has been s t a r t e d

4 bool t r i e d # true i f the con f i rmat ion has f a i l e d

5 bool suceeded # true i f i t suceeded

6 s t r i n g l a b e l # name to a s s i g n

7 time l a t e s t c o n f i r m a t i o n # time o f the con f i rmat ion

Listing 4.5: Confirmation message used to inform the person detection software about

external confirmation of a detection

4.6 Module for Search Coordination

This module executes the search for a person. Whereas the person detection software

described in section 4.5 is collecting information, this module is reasoning about it.

4.6.1 Requirements

As shown in figure 4.1 this is connected to

• the database,

• the robot control,

• the human interface,

• the person detection and the

• navigation software

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

4.6. MODULE FOR SEARCH COORDINATION 43

but also needs to take care of the exchange of information.

The reasoning about the order of the navigation goals and the detections should be done

in this package. Furthermore it is deciding if a detection should be confirmed using the

human interface component and takes care of the conversation with the person.

It is a module of the robot control software as described in section 4.3.3.1 and offers the

task ’find person’.

4.6.2 Solutions

During a search for a person, the robot has to perform a lot of different subtasks like

doing a 360° turn or waiting for the photo to be taken. The different states can be defined

in a state machine.

4.6.3 Implementation

The states and transitions can be seen in figure 4.14. The states are explained in table

4.2.

On startup the module registers the task ’find person’ at the robot control. If a new goal

of this task is sent to the robot control it will be forwarded to this module. The module

is inactive as long as there is not a running goal.

Initialization If a new goal comes in the database is queried for a list of places to explore.

Each of the delivered places is added to a list of exploration goals and the state machine

is started by setting the first goal.

Navigation Goal Storage The module has three different kind of goals:

1. Exploration goals

2. Face recognition goals

3. Obstacle goals

All are stored in the same format but lead to different behaviour which can be seen in

figure 4.14 showing the state machine. Every goal can be marked as done to allow to exit

the state machine if all goals have been reached.

Obstacle and Face Recognition Goals Whereas exploration goals are provided by the

database, obstacle and face recognition goals are calculated from the known recognitions

and known obstacles provided by the person detection package.

A Mobile Robot System for Ambient Intelligence

44 CHAPTER 4. SOLUTION AND IMPLEMENTATION

As described in 4.5.3.1 every obstacle is rated and can be present or unpresent. In this

module a threshold is defined to distinguish between interesting obstacles and ignored

obstacles. In order to be added as an navigation goal an obstacle has to be present and

rated higher than the threshold. A second threshold allows to delete navigation goals if

the corresponding obstacle gets a lower rating or if it was a false detection.

The navigation goals for both obstacle and face recognitions are calculated to be 1 m in

front of the spot.

Ordering of Goals The goals are ordered following the rule:

1. all face recognition goals

2. all obstacle goals

3. all exploration goals

This way upcoming face recognitions and obstacle detection preempt exploration goals

which usually leads to a faster search.

Visualization The whole process of a search can be monitored using the visualization tool

RViz. In this tool

• the order of the goals

• the places of the calculated navigation goals and

• the state of goals

are shown. This can be seen in figure 5.6.

4.7 Human Interface

4.7.1 Requirements

The robot should be able to interact with a human in order to ask for its wellbeing.

Therefore text-to-speech as well as speech recognition is required. But as the human

robot interaction is not a main part of thesis, a basic setup is sufficient.

The system has to support to ask questions and to process the results. Furthermore, it

should offer a simple interface to use text-to-speech.

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

4.7. HUMAN INTERFACE 45

Table 4.2: States of the search process. The state machine can be seen in figure 4.14

Shortcut Explanation

START Received a new goal from the robot control

FINISH Done with the goal to search for a person

SET GOAL Set the next goal in the list of ordered goals as navigation goal

FACE Navigate to a detected face

OBS. Navigate to a detected ostacle

EXPL. Navigate to a place which should be explored

CONF. Do a confirmation of an obstacle or detected face

PHOTO Wait until a photo is taken and safed

PANO Do a 360° turn

FOUND Ask the person for its wellbeing

4.7.2 Solutions

4.7.2.1 Speech Recognition

A list of speech recognition software can be seen at [spe14]. From the large amount of

different solutions, two got a closer evaluation.

Hark ’Hark’ is an ’open-sourced robot audition software’ [har14]. It has mainly three

functionalities:

1. sound localization

2. sound seperation

3. speech recognition

The ’Hark’ project offers source code and binaries for the used version of ROS. But as a

simple setup is enough to solve the scenario, this software could be included in the next

development step.

Pocketsphinx The ROS package pocketsphinx offers an integrated and easy to use speech

recognition within the ROS framework. It is based on CMU Sphinx 7 and needs a dictio-

nary file and a language model. Both are delivered in a default installation, but are limited

to about 100 words [ros14f]. This package has been chosen, because it is a convenient

solution for a ROS based system.

7 Website of CMU Sphinx: http://cmusphinx.sourceforge.net/

A Mobile Robot System for Ambient Intelligence

http://cmusphinx.sourceforge.net/

46 CHAPTER 4. SOLUTION AND IMPLEMENTATION

START

SET
GOAL

OBS.FACE EXPL.

CONF.PHOTO

FOUNDFINISH

PANO.

DRIVING STATES

reached

response &
right person

donereached

no response

response &
wrong person

FINISH

no more goals

reached preempted

1 2 11 3 4

1 preempted

2 face recognition goal

4 exploration goal

3 obstacle goal

Transition

STATE

Figure 4.14: The state machine of the search process. The states are explained in table

4.2.

4.7.2.2 Text to Speech

Text to speech engines have a high price range starting from free open source solutions

like Festival8 going up to commercial products9.

As a basic solution is sufficient for this thesis, the text to speech engine Festival has been

chosen. It is well integrated into ROS by the ’sound play’ package10. A drawback of this

solution is the lacking feature to track the end of an text to speech output. An advantage

is the possibility to play soundfiles from the filesystem.

8 Website of the Festival project: http://festvox.org/festival/

9 Website of Ivona: http://www.ivona.com/en/

10 ’sound play’ package in the ROS Wiki: http://wiki.ros.org/sound_play

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

http://festvox.org/festival/
http://www.ivona.com/en/
http://wiki.ros.org/sound_play

4.7. HUMAN INTERFACE 47

4.7.3 Implementation

A node called ’human interface’ has been created to fulfill the requirements. It offers:

• text-to-speech handling

• a service for yes-no-questions returning the answer

• a service for the confirmation of several names

As the ’sound play’ package does not make sure that the text-to-speech output of ’Festival

has ended before it transfers the next string, this capability had to be added.

Experiments showed that the average output of the default voice of Festival is 0.07 letter/s

which is extended by a 1.5 s safety margin.

Yes-No-Questions The offered service of yes-no-questions is defined in the service file

shown in listing 4.7.3. It outputs the question using the text-to-speech and then processes

the input of the speech recognition.

The output of the speech recognition is a string for every sound snippet. Therefore these

messages are enhanced by a timestamp refering to the time of arrival. After the question

is pronounced the answers are processed. All sentences which have been recognized before

the end of the text-to-speech output are ignored and the reamaining are searched for ’yes’

or ’no’.

The person has 20 seconds to respond to the question. If there is not any valid answer,

it is assumed that no one is present. This way was chosen, because even small noises are

recognized as speech.

1 Header header

2 # the ques t i on

3 s t r i n g ques t i on

4 # some th ings exp i r e a f t e r some time

5 # mention the l a s t time you want something to be sa id

6 time e x p i r e s

7 −−−
8 # the s t a t u s o f the answer

9 # 0 = worked

10 # 1 = no answer

11 # 2 = wrong answers

12 # 3 = speaker blocked

13 i n t 8 s t a t u s

14 bool answer

Listing 4.6: Service definition of yes-no-questions

A Mobile Robot System for Ambient Intelligence

48 CHAPTER 4. SOLUTION AND IMPLEMENTATION

Confirmation of a face recognition Besides the yes-no-questions a complete confirmation

of an array of names is offered. This is used if a detected face has multiple assigned names.

The confirmation accepts an array of names and internally forms yes-no-questions for each

of them. It returns information about the success and, if it was succesful, the right name.

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

Chapter 5

Results

This chapter describes the setup of the experiment for analysing the detection of persons

in different positions.

It will give an idea of the working efficiency and explain the overall result of the approach

to connect a robot to the AmI.

5.1 Setup of the Experiment

In order to show the abilities of the system and their behaviour in different situations a

set of scenarios has been chosen to be tested.

The experiment has been performed in the facilities of the institute. The environment

includes a long floor, two living room equivalent places as well as a big conference table.

For the speech recognition software ’pocketsphinx’ the robocub demo files were used.

These files are part of the default installation of pocketsphinx.

5.1.1 Scenarios

Four different scenarios were evaluated. Their positions are shown in figure 5.1.1

1. A person sitting on a chair

2. A person lying flat on the ground

3. A person sitting at a wall

4. No person present

A Mobile Robot System for Ambient Intelligence

50 CHAPTER 5. RESULTS

EE

E

E

W

L

S

W

S

L

Sitting person at the wall

Sitting person on a chair

Lying person

E Exploration goal from the database

Figure 5.1: Positions of the person in the different scenarios

5.1.1.1 Chair Scenario

The setup of the scenario can be seen in figure 5.1.1.1. This scenario was chosen, because

a person could have left the bed because he or she could not sleep and decided to read

something before going back to bed. To fulfill this scenario the robot has to detect the

person and do a confirmation.

Figure 5.2: Person sitting at a chair (chair scenario) and a person lying on the ground

(lying scenario)

To be able to find a person using the face detection the AAL system has to be aware of

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

5.1. SETUP OF THE EXPERIMENT 51

the low mounting point and the opening angle of the Kinect mentioned in section 4.5.2.

5.1.1.2 Lying Scenario

As the laserscanner can not recognize points below its mounting height as described in

section 4.2.2.1 the detection in this scenario is especially difficult. The scenario is seen as

fulfilled if a photo of the lying person is taken by the robot.

5.1.1.3 Sitting at a Wall Scenario

This scenario has been choosen for evaluation because the static map is inflated by 10 cm

as explained in paragaph 4.5.3.1. Therefore the upper body next to a wall should not be

detected by the robot. To fulfill this scenario the robot has to detect the person and do

a confirmation.

Figure 5.3: A person sitting at a wall (wall scenario)

5.1.2 Hardware Setup

During the execution the whole software was running on the robot and the database was

reachable all the time.

The robot was equiped with the two laptops shown in table 5.1.

Both laptops are connected with each other using an ethernet cable. As the camera is

connected to the Dell laptop and the navigation software is running on the Asus laptop

their clock times must concur exactly. On little divergence the navigation runs poorly,

on slightly bigger divergence either the ’depthimage to laserscan’-node on the Dell or the

A Mobile Robot System for Ambient Intelligence

52 CHAPTER 5. RESULTS

Table 5.1: Technical data of the laptops running the software [del14] [asu14]

Dell Latitude E4310

Processor Intel(R) Core(TM) i5 M 540

Operating System (OS) Ubuntu Linux 12.04 32 bit

Ethernet 100/1000 mbit/s

Memory 4 GB DDR3

Asus eeePC X101CH

Processor Intel(R) Atom(TM) N2600

OS Ubuntu Linux 12.04 32 bit

Ethernet 100 mbit/s

Memory 1 GB DDR3

Table 5.2: Splitting of the running software packages during the experiment

Dell Latitude E4310

openNI Kinect

cob-people-detection

Person Detection Software

Human Interface

Speech Recognition

Text-to-Speech

Asus eeePC X101CH

ROS master

Turtlebot Software

Navigation Software

Search Software

Robot Control

‘move base’-node on the Asus notebook crashes. Synchronizing the clock times with the

same timeserver before every start is strongly recommended.

5.1.3 Reasons for this Distribution

The Asus laptop supports 100 mbit/s network whereas the topic used as information

source by the cob-people-detection software streams 50 mb/s 1. Moreover is the processor

of the Asus laptop not fast enough to calculate pointclouds from the depthimage with a

1 Own measurement using the command “rostopic bw ’/camera/depth registered/points”’ executed at

the Dell laptop with the camera connected to the same laptop

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

5.2. RESULTS OF THE EXPERIMENT 53

frequency higher than 2-3 Hz 2. Therefore the only useful setup is to connect the Kinect

camera to the same laptop running the cob-people-detection software.

5.2 Results of the Experiment

The scenario without a present person has been tested 5 times and includes all exploration

points shown in 5.1.1. The other scenarios just include the point before and after the

person as the functionality of the whole system has already been tested in the first scenario.

In the column ’Detected Obstacles’ it is shown how many obstacles have been detected.

The obstacles which were rated high enough to be considered as a person are shown in

column ’Confirmed Obstacles’.

5.2.1 No Person Scenario

Table 5.3: Results of the scenario without a person

Nr. Detected

Obstacles

Confirmed

Obstacles

Detected

Faces

Confirmed

Faces

Execution

Time (s)

Panorama

Waiting

Time (s)

Scenario

fulfilled

1 0 0 0 0 660 - yes

2 10 3 0 0 1200 - yes

3 10 2 0 0 1260 - yes

4 12 4 0 0 1748 752 no1

5 14 3 0 0 1179 0 yes

1: One exploration point has not been reached.

5.2.2 Chair Scenario

To fulfill this scenario

1. the person has to be detected and

2. the answers have to be recognized.

This is shown in the column ’Scenario fulfilled’. The search has been aborted after the

robot passed the person as there was not any chance for a success left.

2 Own measurement using the command “rostopic hz ’/camera/depth registered/points”’ executed at

the Dell laptop with the camera connected to the Asus

A Mobile Robot System for Ambient Intelligence

54 CHAPTER 5. RESULTS

Table 5.4: Results of the chair scenario

Nr. Detected

Obstacles

Confirmed

Obstacles

Detected

Faces

Confirmed

Faces

Execution

Time (s)

Panorama

Waiting

Time (s)

Scenario

fulfilled

1 2 1 0 0 233 0 yes1/no

2 1 0 1 1 301 0 yes/no

3 2 1 1 1 290 0 yes/no

4 1 0 0 0 99 0 no2

5 0 0 0 0 86 0 no2

1: The legs have been recognized as an additional obstacle.
2: The face of the person was not completely in the field of view of the camera.

5.2.3 Lying Scenario

Table 5.5: Results of the lying scenario

Nr. Detected

Obstacles

Confirmed

Obstacles

Detected

Faces

Confirmed

Faces

Execution

Time (s)

Panorama

Waiting

Time (s)

Scenario

fulfilled

1 5 2 0 0 407 0 yes

2 8 3 0 0 480 0 yes

3 10 3 0 0 294 0 no

4 5 2 0 0 245 0 no

5 7 0 0 0 120 0 no

The last exploration point has not been reached in any run of this scenario as the lying

person blocked the whole way and was not recognized by the Kinect camera. Both

detections were not based on incoming data from the laserscanner but from the obstacle

detection based on the bump sensors at the front of the robot.

5.2.4 Wall Scenario

To fulfill this scenario

1. the person has to be detected and

2. the answers have to be recognized.

This is shown in the column ’Scenario fulfilled’.

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

5.3. MAIN ROBOT CONTROL 55

Table 5.6: Results of the wall scenario

Nr. Detected

Obstacles

Confirmed

Obstacles

Detected

Faces

Confirmed

Faces

Execution

Time (s)

Panorama

Waiting

Time (s)

Scenario

fulfilled

1 1 1 0 0 419 0 yes/no

2 2 1 0 0 170 0 yes/yes

3 2 1 0 0 374 0 yes/yes

4 1 1 0 0 137 0 yes/yes

5 2 1 0 0 207 0 yes/yes

5.3 Main Robot Control

The robot controll software offers a goal management and a capability management. It can

accept goals from external sources like the database and forward them for the execution

respecting the priorities of the goals. Futhermore modules can connect to this software

and register tasks.

The external task executing server in a module can loose the received goals after a few

seconds. This is still a task for further investigation, but can be bypassed by sending

frequently feedback to the main task server.

5.4 Database Binding

The database binding is an easy to use interface which is able to build up a connection and

interact with the database. The database connection is very stable and never dropped.

The automatic reconnect of the robot controller works, but all interacting software is not

yet able to stash queries until the connection is reestablished.

The integration of a database connection is abstracted to a high level and just needs some

lines of code as it is shown in listing A.5.1.

5.5 Person Detection

The software to detect a person can perceive a person based on face identification and

the appearance as an additional obstacle compared to the static map.

A Mobile Robot System for Ambient Intelligence

56 CHAPTER 5. RESULTS

5.5.1 Obstacle Approach

This method causes a lot of false detections. The amount can be seen in the results of

the experiments. The false detections are mainly

• replaced items or

• static elements like walls.

Static elements are recognized due to odometry differences and false localization.

5.5.2 Face Recognition

The face recognition software has been evaluated in [BZF+13]. The maximum distance is

higher than shown in [TMV13] but not enough to recognize a standing person. Further-

more tilted heads are not detected.

The implemented tracking method is not able to track fast moving persons. But as they

usually either

• move outside the field of view of the camera or

• move outside the maximum distance for a recognition

this setup is sufficient for the assignment.

5.6 Module for Search Coordination

The coordination of the search is a module of the robot controller and can manage the

execution of the search using a state machine.

The implementation fulfills the requirements. But as this module does not do path plan-

ning by using the priority and the position of goals, the robot often follows a not optimal

path.

5.7 Human Interface

The human interface offers basic functionalities for an interaction with a person. The text-

to-speech always worked and spoken sentences are not recognized as an possible answer.

Using the equiped dictionary file of the ’robocub’ competition the speech recognition does

often not detect the answer ’yes’. It often assigns ’get’ or ’this’ instead. Furthermore even

small noises are recognized as spoken words.

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

5.8. HARDWARE 57

Figure 5.4: A running exploration task. The blue and red line are the planned navigation

trajectories. In the bottom left the representation of a recognized face can be seen. In

the bottom middle a detected but low rated obstacle can be seen.

5.8 Hardware

5.8.1 Turtlebot

Eventhough the Turtlebot offers a payload of 5 kg [Rob13] the navigation capabilities get

worse if an additional laptop is attached to the robot. Rotating often fails, because the

wheels are slipping. If the robot is stuck too long, the navigation software will abort the

navigation goal. This limitation often leads to a not fullfilled scenario.

5.8.2 Laptops

The time on both laptops must accord exactly. Even slight time differences worsen the

navigation capabilities a lot and lead to false detection of obstacles.

To be able to distribute tasks between several machines every computer should have a

1000 mbit/s ethernet connection. A slower connection or wireless network is not sufficient

to transfer the required data for this setup.

A Mobile Robot System for Ambient Intelligence

58 CHAPTER 5. RESULTS

5.9 Overall Result

The approach to connect a mobile robot to a database-centric AmI works. The shown

setup allows to exchange information between both entities and fulfill goals. Based on

this interaction the robot can search for a person in a known environment.

The system on the robot is able to accept several goals from the AAL-system as well

as from robot internal clients and manage the execution. Furthermore it is possible to

register new modules on runtime and therefore offer a flexible management system.

But whereas the design of the system works practical problems during the execution

still accure. These problems are mainly focused on the hardware and the used existing

software.

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

Chapter 6

Discussion and Conclusion

This chapter evaluates and interprets the results of the previous chapter. It summerizes

the contributions and gives an outlook to further development.

6.1 Discussion

In this section the contributions are shown and the results are discussed. Furthermore

the limitation of the approaches and the implementation are examined.

6.1.1 Main Robot Control

The main robot control is able to do

• a goal management

• a capability management and

• a resource management.

Furthermore it implements a resource adapter for the active database.

At the moment the registration of external task server is automatically canceled if the

connection dropped. In the future, modules that do not respond anymore could be auto-

matically restarted. Furthermore the code will be divided into a Turtlebot specific and a

general part in order to allow reusage in other projects.

6.1.2 Database Connection

The database binding fulfills the requirements and does not need any improvements. It

does not implement to resend a call if it did not succeed due to a dropped connection.

A Mobile Robot System for Ambient Intelligence

60 CHAPTER 6. DISCUSSION AND CONCLUSION

But it is better to react to a failed call in the code sending the call as the reaction can

strongly differ.

During the work the existing package has been enhanced by the missing capabilities and

is now an easy to use package to

• build up a connection and reconnect it if dropped,

• call function in the database,

• listen and unlisten to channels,

• receive notifications,

• insert into tables and

• read from tables.

6.1.3 Finding a Person

The mounting height of the Kinect camera is a problem in both approaches to detect a

person. It is too low to detect a face of a standing person and can be too high to detect

a lying person.

To get better and more reliable results for navigation, obstacle detection and face recog-

nition it is strongly recommended either

• use two cameras

– a low mounted for navigation and obstacle detection and

– a camera on the top of the robot to do face or torso detection

• or to use a tilt module to switch between a navigation and a detection position.

6.1.3.1 False Detection Rate on Obstacles

In table 5.3 it can be seen that the false detection rate of obstacles is high. False detections

have mainly two reasons:

• False localization

• Map inaccurancy

The false detection in a search could be significantly lowered by the usage of an infrared

sensor as it is shown in [SSC+13].

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

6.1. DISCUSSION 61

False Localization The obstacle detection algorithm is not aware of localization inaccu-

racy. The position of the robot is always treated as the ground truth and data is added

even if the localization algorithm replaces the robot. This problem could be remedled by

an more advanced approach for the storage of seen obstacles; for example by using the

variance of the robot position.

Map in inaccurancy The used map should be precise in order to avoid additional false

detections. It is difficult to achieve a better map quality, because a copy of a floor plan

does not include furniture and a more precise map based on SLAM is not easy to make.

6.1.3.2 Missing Detection of a Lying Person

The approach to find a person based on the navigation input is based on the appearance

of that person in the sensor data. In section 4.2.2.1 it is described that the detected

obstacles are limited by the mounting height of the Kinect camera. If a person is thin and

lying totally flat, the navigation software will not always be able to perceive the person.

This results in two things:

• The robot will hit the person

• The robot will is rarely detect the obstacle and will not try to interact with the

person or take a photo

To overcome this, the Kinect camera could be mounted lower.

6.1.3.3 Face Detection

A detection of faces of persons far away as well as of persons with averting heads is not

yet possible. Evenmore the detection of ’moving’ faces for example while the robot is

slowly rotating at an exploration point is unreliable. While the distance is a limitation of

the camera averted heads could be detected by an additional set of detectors this would

cause more computation.

The cob-people-detection package also offers head detections as an output stream. With

this information the robot could go to the interesting place and ask the possible person

to turn the head in order to be able to recognize the face. Furthermore that information

could be used to to stop rotating in order to be able to recognize a face.

6.1.4 Module for the Search Coordination

The search software offers a working state machine to coordinate a search. Eventhough the

design it does not yet do advanced path planning the chosen approach works and shows

A Mobile Robot System for Ambient Intelligence

62 CHAPTER 6. DISCUSSION AND CONCLUSION

good results. A drawback is, that the probability or priority of a goal is not considered

yet. If the goals are not ordered by the database or the search is started with a lot of

known detections the search will take long. A path planning could improve that.

Furthermore this software is not yet able to handle a cancelation of the navigation to a

goal. In the current implementation this goal will be marked as ’done’ although it has

never been reached.

6.1.5 Human Interface

The implemented software offers basic functionalities for an interaction with a person. In

the results it is shown that even the simple answer ’yes’ is often not detected. Therefore

it is recommended to use another speech recognition engine or improve the speech model

and the dictionary.

To be able to distinguish speaking persons the speech localization software ’Hark’ 1 could

be used. Furthermore it could be asked if the recognized answer is correct and an avatar

could displayed on the laptop screen.

Although the capabilities are limited this component can be a valuable utilitiy for other

programmers.

6.2 Conclusion

In this thesis the approach of the extension of AmI with a mobile robot is examined.

Furthermore the task to search for a person should be implemented to show that the

combination can benefit from each others strenghts.

The robot hardware is a Turtlebot 2, the AAL system is implemented in a PostgreSQL

database and the setup is based on the Robot Operating System (ROS).

To enable the robot to execute task the robot must be connected to the database, be able

to accept and handle goals, detect a human, interact with a person and execute a search.

The developed setup is able to execute a goal for the AAL systems and to report the

result. The task to find a person can search in an apartment and can deliver the position

of a found person or a set of pictures of possible spots. The implemented human robot

interaction offers basic functionalities and the extendable robot control system is able to

register new kind of tasks at runtime.

The detection of a lying person with this hardware setup is limited to the height of the

Kinect camera. Furthermore the obstacle detection can have false detections if items are

replaced or the localization of the robot is wrong. The perception of faces is limited to

the opening angle of the camera.

1 Website of the Hark project: http://winnie.kuis.kyoto-u.ac.jp/HARK/

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

http://winnie.kuis.kyoto-u.ac.jp/HARK/

6.3. OUTLOOK 63

These problems can be solved by attaching additional cameras and a more advanced

obstacle detection based on the covariance of the robot position.

It is shown that a robot can be a useful and effective extension of an AAL system and can

help to find a person. Both entities can benefit from the interaction. Whereas the mobile

robot can provide information about the current situation the AmI is able to store long

time information and to pass them to the robot if it is needed for the execution of a task.

The proposed robot controller and its extensibility with modules that provide different

capabilities has been shown to be well adapted to the concept of a database-centric AmI

system.

The proposed system allows the further implementation of more types of tasks and can be

used either as a personal robot or in a fleet of robots in a care facility. The implementation

of new modules is easy as a parent class is provided for that purpose and the integration

of a database connection is abstracted to a high level.

6.3 Outlook

The shown system of an expandable robot controller, modules that implement tasks and

the connection to an active database can be the basis of a large quantity of scenarios and

applications of mobile robots extending AmI.

If a personal robot becomes capable of performing more tasks and being realiable it can

become an important helper for care facilities or at home. At home it could extend an

AmI system by executing specific tasks. Furthermore these tasks can support AAL like

the implemented task to search for a person. In care facilities a fleet of robots could be

used to provide help for the care takers. An intelligent management system can distribute

goals in the whole robot fleet. The possibilty to run a different set of modules on every

robot can provide a new dimension of task assignment for those systems. Regarding the

hardware and software capabilites, every robot can have an own skill set. For example all

mobile robots are able to fulfill a task like ’goto’ but just robots with manipulators can

do a task like ’tidy up’.

Moreover multiple robots could be used to execute the same task and exchange information

about explored places using the AmI system.

A Mobile Robot System for Ambient Intelligence

64 CHAPTER 6. DISCUSSION AND CONCLUSION

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

Acronyms

AAL Ambient Assisted Living

AmI Ambient Intelligence

API Application Programming Interface

BSD Berkley Software Distribution (a software distribution licence)

IMU Intertial Measurement Unit

IPC Inter Process Communication

MTS Main Task Server (a part of the goal management in the robot controller)

openCV Open Source Computer Vision Library

OS Operating System

PID Process Identification Number (a unique number to access a process)

REP ROS Enhancement Proposals (ideas to enhance and guidelines to implement

ROS2)

RGB Red Green Blue (a color space)

ROS Robot Operating System

RPC Remote Procedure Call

RViz ROS Visualization (3D visualization tool for ROS3)

SLAM Simultanious Location and Mapping (a robot based mapping approach)

SQL Structured Query Language (a programming language for relational database

management systems)

2 http://www.ros.org/reps/rep-0000.html

3 http://wiki.ros.org/rviz/

A Mobile Robot System for Ambient Intelligence

http://www.ros.org/reps/rep-0000.html
http://wiki.ros.org/rviz/

66 CHAPTER 6. DISCUSSION AND CONCLUSION

UDF User Defined Function (a function in a database)

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

Bibliography

[ARA12] M.R. Alam, M. B I Reaz, and M. A M Ali. A Review of Smart Homes;Past,

Present, and Future. Systems, Man, and Cybernetics, Part C: Applications

and Reviews, IEEE Transactions on, 42(6):1190–1203, Nov 2012.

[asu14] Technical Data of the Asus X101 CH. http://www.asus.com/Notebooks_

Ultrabooks/Eee_PC_X101CH/#specifications, 03 2014.

[BWB+] Wassilios Bentas, Marc Wolfram, Ronald Bräutigam, Michael Probst, Wolf-

Dietrich Beecken, Dietger Jonas, and Jochen Binder. Da Vinci robot assisted

Anderson-Hynes dismembered pyeloplasty: technique and 1 year follow-up.

World Journal of Urology, 21(3):133–138.

[BZF+13] Richard Bormann, Thomas Zwölfer, Jan Fischer, Joshua Hampp, and Martin

Hägele. Person Recognition for Service Robotics Applications . volume 13th.

IEEE, 2013.

[CMBV13] B. Choi, C. Mericli, J. Biswas, and M. Veloso. Fast human detection for indoor

mobile robots using depth images. In Robotics and Automation (ICRA), 2013

IEEE International Conference on, pages 1108–1113, May 2013.

[CVBK11] Anand Chandrasekhar, Vineeth.P.Kaimal, Chhayadevi Bhamare, and

Miss Sunanda Khosla. Ambient Intelligence: The Next Generation Technol-

ogy. International Journal on Computer Science and Engineering (IJCSE),

03:2491–2497, 06 2011.

[DB13] Torbjørn S Dahl and Maged N Kamel Boulos. Robots in Health and So-

cial Care: A Complementary Technology to Home Care and Telehealthcare?

Robotics, 3(1):1–21, 2013.

[del14] Technical Data of the Dell Latitude E4310. http://www.notebookcheck.

net/Review-Dell-Latitude-E4310-Subnotebook.45771.0.html, 03 2014.

[det10] Face Detection using 3-D Time-of-Flight and Colour Cameras. VDE-Verlag,

2010.

A Mobile Robot System for Ambient Intelligence

http://www.asus.com/Notebooks_Ultrabooks/Eee_PC_X101CH/#specifications
http://www.asus.com/Notebooks_Ultrabooks/Eee_PC_X101CH/#specifications
http://www.notebookcheck.net/Review-Dell-Latitude-E4310-Subnotebook.45771.0.html
http://www.notebookcheck.net/Review-Dell-Latitude-E4310-Subnotebook.45771.0.html

68 BIBLIOGRAPHY

[dMW13] W.O. de Morais and N. Wickstrom. A ’Smart Bedroom’ as an Active Database

System. In Intelligent Environments (IE), 2013 9th International Conference

on, pages 250–253, July 2013.

[git14] Detection.msg of the cob-people-detection on Github. 03 2014.

[Goe] Patrick Goebel. Pi Face Tracker Package in the ROS Wiki. http://wiki.

ros.org/pi_face_tracker.

[GRH+09] B. Graf, U. Reiser, M. Hägele, K. Mauz, and P. Klein. Robotic home assistant

Care-O-bot - product vision and innovation platform. In Advanced Robotics

and its Social Impacts (ARSO), 2009 IEEE Workshop on, pages 139–144, Nov

2009.

[har14] Hark in the ROS Wiki. http://wiki.ros.org/hark, 03 2014.

[HTK+05] Panu Harmo, Tapio Taipalus, Jere Knuuttila, José Vallet, and Aarne Halme.

Needs and solutions-home automation and service robots for the elderly

and disabled. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005

IEEE/RSJ International Conference on, pages 3201–3206. IEEE, 2005.

[HWB+13] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wol-

fram Burgard. OctoMap: An Efficient Probabilistic 3D Mapping Framework

Based on Octrees . Autonomous Robots, pages 1–16, 2013.

[ki-14] Kinect Details on a Microsoft Homepage. http://msdn.microsoft.com/

en-us/library/hh855368, 03 2014.

[KVSD06] S. Knoop, S. Vacek, K. Steinbach, and R. Dillmann. Sensor fusion for model

based 3D tracking. In Multisensor Fusion and Integration for Intelligent Sys-

tems, 2006 IEEE International Conference on, pages 524–529, Sept 2006.

[lib14] libpq in the PostgreSQL Documentation. http://www.postgresql.org/

docs/9.1/static/libpq.html, 03 2014.

[LPP+11] Ingo Lütkebohle, Roland Philippsen, Vijay Pradeep, Eitan Marder-Eppstein,

and Sven Wachsmuth. Generic middleware support for coordinating robot

software components: The Task-State-Pattern . Journal of Software Engi-

neering for Robotics, 2011.

[mai] Website of the MAID project. http://rob.ipr.kit.edu/projekte_1388.

php.

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

http://wiki.ros.org/pi_face_tracker
http://wiki.ros.org/pi_face_tracker
http://wiki.ros.org/hark
http://msdn.microsoft.com/en-us/library/hh855368
http://msdn.microsoft.com/en-us/library/hh855368
http://www.postgresql.org/docs/9.1/static/libpq.html
http://www.postgresql.org/docs/9.1/static/libpq.html
http://rob.ipr.kit.edu/projekte_1388.php
http://rob.ipr.kit.edu/projekte_1388.php

BIBLIOGRAPHY 69

[MHN+10] T. Mukai, S. Hirano, H. Nakashima, Y. Kato, Y. Sakaida, S. Guo, and

S. Hosoe. Development of a nursing-care assistant robot RIBA that can lift a

human in its arms. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ

International Conference on, pages 5996–6001, Oct 2010.

[Nat01] United Nations. World Population Ageing: 1950-2050. Web, 2001.

[OFD+09] A.G. Ozkil, Zhun Fan, S. Dawids, H. Aanes, J.K. Kristensen, and K.H. Chris-

tensen. Service robots for hospitals: A case study of transportation tasks in a

hospital. In Automation and Logistics, 2009. ICAL ’09. IEEE International

Conference on, pages 289–294, Aug 2009.

[QBN07] Morgan Quigley, Eric Berger, and Andrew Y. Ng. STAIR: Hardware and

Software Architecture . Technical report, Association for the Advancement of

Artificial Intelligence (www.aaai.org), 2007.

[RM13] P. Rashidi and A. Mihailidis. A Survey on Ambient-Assisted Living Tools

for Older Adults. Biomedical and Health Informatics, IEEE Journal of,

17(3):579–590, May 2013.

[Rob13] Clearpath Robotics. Turtlebot 2 Manual, 0.5 edition, 2013.

[ros14a] actionlib in the ROS Wiki. 03 2014.

[ros14b] AMCL in the ROS Wiki. http://wiki.ros.org/amcl, 03 2014.

[ros14c] Costmap in the ROS Wiki. http://wiki.ros.org/costmap_2d?distro=

hydro#Inflation, 03 2014.

[ros14d] Move Base in the ROS Wiki. http://wiki.ros.org/move_base?distro=

hydro, 03 2014.

[ros14e] OctoMap Representations in the ROS Wiki. http://wiki.ros.org/ccny_

rgbd/keyframe_mapper, 03 2014.

[ros14f] Pocketsphinx in the ROS Wiki. http://wiki.ros.org/pocketsphinx, 03

2014.

[ros14g] SQL-Database Package in the ROS-Wiki. http://wiki.ros.org/sql_

database/, 03 2014.

[ros14h] Topics in the ROS Wiki. http://wiki.ros.org/Topics, 03 2014.

[SD03] Peter Steinhaus and Rüdiger Dillmann. Aufbau und Modellierung des RoSi

Scanners zur 3D-Tiefenbildakquisition . Technical report, 2003.

A Mobile Robot System for Ambient Intelligence

http://wiki.ros.org/amcl
http://wiki.ros.org/costmap_2d?distro=hydro#Inflation
http://wiki.ros.org/costmap_2d?distro=hydro#Inflation
http://wiki.ros.org/move_base?distro=hydro
http://wiki.ros.org/move_base?distro=hydro
http://wiki.ros.org/ccny_rgbd/keyframe_mapper
http://wiki.ros.org/ccny_rgbd/keyframe_mapper
http://wiki.ros.org/pocketsphinx
http://wiki.ros.org/sql_database/
http://wiki.ros.org/sql_database/
http://wiki.ros.org/Topics

70 BIBLIOGRAPHY

[SFR11] Corry-Ann Smarr, Cara Bailey Fausset, and Wendy A. Rogers. Understanding

the Potential for Robot Assistance for Older Adults in the Home Environment

. Technical report, Human Factors & Aging Laboratory, 2011.

[spe14] List of Speech Recognition Software in the Wikipedia. https://en.

wikipedia.org/wiki/List_of_speech_recognition_software, 03 2014.

[SSC+13] Loreto Susperregi, Basilio Sierra, Modesto Castrillón, Javier Lorenzo,

Jose Maŕıa Mart́ınez-Otzeta, and Elena Lazkano. On the Use of a Low-

Cost Thermal Sensor to Improve Kinect People Detection in a Mobile Robot.

Sensors, 13(11):14687–14713, 2013.

[TMV13] C. Tonelo, A.P. Moreira, and G. Veiga. Evaluation of sensors and algorithms

for person detection for personal robots. In e-Health Networking, Applications

Services (Healthcom), 2013 IEEE 15th International Conference on, pages 60–

65, Oct 2013.

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

https://en.wikipedia.org/wiki/List_of_speech_recognition_software
https://en.wikipedia.org/wiki/List_of_speech_recognition_software

Appendix A

Source Code

The source code can be found on Github and is licensed und GPL v2 as well as the

BSD-licence.

Link to the Github repository: http://www.github.com/matthiashh

A.1 Robot Control Node

The robot control node is a completely self implemented component. The listing below

shows the header file of the robot controller.

1 #i f n d e f ROBOT CONTROL H

2 #d e f i n e ROBOT CONTROL H

3 #inc lude <ro s / ro s . h> // gene ra l ROS−header

4 #inc lude <kobuki msgs /ButtonEvent . h> // f o r kobuki button eventhandl ing

5 #inc lude <kobuki msgs /Led . h> // f o r kobuki l ed handl ing

6 #inc lude <move base msgs /MoveBaseAction . h> // f o r n a v i g a t i o n g o a l s

7 #inc lude <r o b o t c o n t r o l /RobotTaskAction . h> // the g e n e r i c task ac t i on

8 #inc lude <a c t i o n l i b / c l i e n t / s i m p l e a c t i o n c l i e n t . h> // f o r a move base c l i e n t

9 #inc lude <a c t i o n l i b / c l i e n t / a c t i o n c l i e n t . h> // to use an a c t i o n c l i e n t

10 #inc lude <a c t i o n l i b / s e r v e r / a c t i o n s e r v e r . h> // to use an a c t i o n s e r v e r

11 #inc lude <std msgs /Time . h>

12 #inc lude <d a t a b a s e i n t e r f a c e / p o s t g r e s q l d a t a b a s e . h> // to connect to a p o s t g r e s q l

database

13 #inc lude <r o b o t c o n t r o l / Reg i s te rTaskServer . h> // the r e g i s t r a t i o n message

14

15 // needed f o r a c t i o n s e r v e r

16 typede f a c t i o n l i b : : S impleAct ionCl ient<move base msgs : : MoveBaseAction> MoveBaseClient ;

17 typede f a c t i o n l i b : : Act ionServer<r o b o t c o n t r o l : : RobotTaskAction> TaskServer ;

18

19

20 // gene ra l connect ion enom , used f o r database connect ion

21 namespace r o b o t c o n t r o l

22 {
23 // ! Enum to support mu l t ip l e s t a t e s o f a s e r v i c e robot

24 /∗ ! I t i s intended to a l low use r s to shut o f f database support ∗/

A Mobile Robot System for Ambient Intelligence

http://www.github.com/matthiashh

72 APPENDIX A. SOURCE CODE

25 enum robotMode

26 {
27 database , //!< Accept ta sk s from the database

28 speechContro l l ed , //!< Allows the user to c o n t r o l the robot by speech

29 manual //!< For example f o r debugging or deve lop ing

30 } ;

31

32 // ! St ruct to s t o r e the connect ion and task execut ing c a p a b i l i t i e s

33 /∗ ! Every connect ion to an e x t e r n a l task execut ing s e r v e r i s s to r ed in element o f t h i s

type ∗/

34 s t r u c t e x t e r n a l S e r v e r

35 {
36 std : : s t r i n g task name ; //!< Task i d e n t i f y i n g

name

37 std : : s t r i n g task se rver name ; //!< Topicname o f the

task s e r v e r

38 a c t i o n l i b : : Act ionCl ient<r o b o t c o n t r o l : : RobotTaskAction>∗ as ; //!< Access to the

connect ion

39 ro s : : Time l a s t c o n t a c t ; //!< Frequenct ly

updated on every connect ion check

40 } ;

41

42 // ! A s t r u c t f o r extern running ta sk s

43 s t r u c t srvClGoalPair

44 {
45 TaskServer : : GoalHandle∗ s rv ; //!< Reference to

the r e f e r i n g goa l handle on the ma in ta sk s e rve r

46 a c t i o n l i b : : ClientGoalHandle<r o b o t c o n t r o l : : RobotTaskAction> c l ; //!< Goalhandle o f

the extern running task

47 } ;

48

49 // ! St ruct f o r the database c l i e n t

50 s t r u c t Goa lCl i entPa i r

51 {
52 RobotTaskGoal goa l ; //!< Goal o f

the task , because i t can ’ t be acce s s ed through the goa lhandle

53 a c t i o n l i b : : ClientGoalHandle<r o b o t c o n t r o l : : RobotTaskAction> c l i e n t g h ; //!<

Corresponding goa lhandle

54 } ;

55 }
56

57

58 // ! The main task running the whole robot c o n t r o l l i n g so f tware

59

60 c l a s s RobotControl

61 {
62 p r i v a t e :

63 // ros

64 ro s : : NodeHandle n ;

//!< Mandatory nodehandle

65 // Main Act ionServer

66 // ! The main task s e r v e r

67 /∗ ! The main task s e r v e r i s the c e n t r a l task s e r v e r . Every task has to be sent to

that s e r v e r in order to be executed . ∗/

68 a c t i o n l i b : : Act ionServer<r o b o t c o n t r o l : : RobotTaskAction> m a i n t a s k s e r v e r ;

69 a c t i o n l i b : : Act ionCl ient<r o b o t c o n t r o l : : RobotTaskAction> d b t a s k c l i e n t ;

//!< The database c l i e n t o f the main task s e r v e r

70

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

A.1. ROBOT CONTROL NODE 73

71

72 std : : vector<TaskServer : : GoalHandle> a l l g o a l s s e r v e r ;

//!< Al l goa l s o f the main task s e r v e r are s to r ed here

73 bool g o a l a c t i v e ;

//!< True i f an e x t e r n a l goa l i s running

74

75 // External Act i onse rve r

76 std : : vector<r o b o t c o n t r o l : : ex t e rna lSe rve r> a l l e x t e r n a l a s ;

//!< Al l connected e x t e r n a l t a s k s e r v e r

77 std : : vector<r o b o t c o n t r o l : : srvClGoalPair> a l l e x t e r n a l g o a l s ;

//!< Al l e x t e r n a l running goa l s

78 ro s : : Subsc r ibe r s u b r e g t a s k s e r v e r ;

//!< Subsc r ibe r f o r the r e g i s t r a t i o n t op i c

79

80 // Database A c t i o n c l i e n t

81

82 std : : vector<r o b o t c o n t r o l : : GoalCl ientPair> a l l d b g o a l s ;

//!< Al l database goa l s and goa lhand l e s

83

84 // Kobuki base

85 ro s : : Pub l i sher motors ;

//!< Publ i she r to turn the motors on and o f f

86 ro s : : Subsc r ibe r button ;

//!< Subsc r ibe r to button input

87 ro s : : Pub l i sher led1 pub ;

//!< Publ i she r f o r the f i r s t LED

88 kobuki msgs : : Led l e d 1 ;

//!< Msg to see the l a s t s t a t e

89 ro s : : Pub l i sher l ed2 pub ;

//!< Publ i she r f o r the second LED

90 kobuki msgs : : Led l e d 2 ;

//!< Msg to see the l a s t s t a t e

91 ro s : : Pub l i sher kob sound ;

//!< Can make sounds on the t u r t l e b o t

92 bool button0 ;

//!< Lates t s t a t e o f button 0

93 bool button1 ;

//!< Lates t s t a t e o f button 1

94 bool button2 ;

//!< Lates t s t a t e o f button 2

95

96 // Robot Control

97 r o b o t c o n t r o l : : robotMode robot mode ;

//!< Stor ing the s t a t e o f the robot (not used yet)

98 bool running ;

//!< To see i f the database to ld the robot to stop

99 // Database

100

101 d a t a b a s e i n t e r f a c e : : Postgresq lDatabase ∗ database ;

//!< The connect ion to the database

102 // FUNCTIONS

103 // Cal lbacks

104

105 // ! Cal lback f o r t u r t l e b o t buttons

106 /∗ ! \param button the r e c e i v e d button message ∗/

107 void buttonCal lback (const kobuki msgs : : ButtonEvent button) ;

108

109 // ! Cal lback f o r the r e g i s t r a t i o n proce s s

A Mobile Robot System for Ambient Intelligence

74 APPENDIX A. SOURCE CODE

110 /∗ ! \param reg Received r e g i s t r a t i o n message ∗/

111 void r e g i s t e r C a l l b a c k (const r o b o t c o n t r o l : : Reg i s te rTaskServer reg) ;

112

113 // ! Cal lback i f an e x t e r n a l goa l s s t a t e i s changed

114 /∗ ! \param cgh Received goa lhandle o f the goa l running e x t e r n a l l y ∗/

115 void t ran s i t i onCa l l backExte rna lGoa l s (a c t i o n l i b : : ClientGoalHandle<r o b o t c o n t r o l : :

RobotTaskAction> cgh) ;

116

117 // ! Cal lback i f an database goa l s s t a t e i s changed

118 /∗ ! \param cgh Received goa lhandle o f the goa l running on the main task s e r v e r ∗/

119 void t rans i t i onCa l lbackDatabaseGoa l s (a c t i o n l i b : : ClientGoalHandle<r o b o t c o n t r o l : :

RobotTaskAction> cgh) ;

120

121 // ! Cal lback f o r feedback o f e x t e r n a l goa l s

122 /∗ ! \param cgh Received goa lhandle d e l i v e r i n g the in fo rmat ion ∗/

123 void feedbackCal lbackExterna lGoal s (a c t i o n l i b : : ClientGoalHandle<r o b o t c o n t r o l : :

RobotTaskAction> cgh) ;

124

125 // ! Cal lback f o r feedback o f database goa l s

126 /∗ ! \param cgh Goalhandle cary ing the feedback ∗/

127 void feedbackCal lbackDatabaseGoals (a c t i o n l i b : : ClientGoalHandle<r o b o t c o n t r o l : :

RobotTaskAction> cgh) ;

128

129 // Database

130 // ! Reacts based on in fo rmat ion in the n o t i f i c a t i o n

131 /∗ ! \param no Not i ca t i on d e l i v e r i n g the in fo rmat ion

132 \ r e turn Fa l se i f the n o t f i c a t i o n doesn ’ t f i t to the known ones ∗/

133 bool p r o c e s s N o t i f i c a t i o n (d a t a b a s e i n t e r f a c e : : N o t i f i c a t i o n no) ;

134

135 // ! Get new tasks i f the database t r i g g e r s

136 /∗ ! \ r e turn f a i l s i f the c a l l f a i l e d ∗/

137 bool getTasks () ;

138

139 // ! Checks the database connect ion , s e t s the LED and checks f o r n o t i f i c a t i o n s

140 /∗ ! \ r e turn f a l s e i f the r e ’ s no connect ion ∗/

141 bool checkDatabaseConn () ;

142 // Main Act ionse rve r

143

144 // ! Cal led i f a new goa l i s r e c e i e v e d

145 /∗ ! \param gh The new goa l ∗/

146 void TaskServerGoalCal lback (TaskServer : : GoalHandle gh) ;

147

148 // ! Cal led i f a goa l i s c a n c e l l e d

149 /∗ ! \param gh The c a n c e l l e d goa l ∗/

150 void TaskServerCancelCal lback (TaskServer : : GoalHandle gh) ;

151

152 // ! Finds the goa l with the h i ghe s t p r i o r i t y and s e t s i t

153 bool setNewMainGoal () ;

154

155 // External Act i onse rve r

156 // ! Checks contact to a l l e x t e r n a l a c t i o n s e r v e r

157 /∗ ! \param max time Maximum time a connect ion can stay dropped u n t i l the e x t e r n a l

s e r v e r i s de l e t ed and the cor re spond ing goa l s are aborted ∗/

158 void checkContact (ro s : : Duration max time) ;

159

160 // Robot Control

161 // ! S t a r t s robot s e r v i c e s i f the database asks d ev i c e s to run

162 void dbStart () ;

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

A.1. ROBOT CONTROL NODE 75

163

164 // ! Stop robot s e r v i c e s i f the database asks f o r a stop

165 void dbStop () ;

166

167 // ! Deprecated func t i on to do a f u l l turn

168 i n t fu l lTurn () ;

169

170 pub l i c :

171 // ! Constructor o f the main c l a s s

172 /∗ ! \param name Topic name o f the a c t i o n s e r v e r ∗/

173 RobotControl (std : : s t r i n g name) ;

174 // Database

175

176 // ! Connect to the database

177 /∗ ! \ r e turn true i f i t worked ∗/

178 bool connectDb () ;

179

180 // ! Gets the c o n f i g from the database

181 /∗ ! \ r e turn ∗/

182 bool getConf ig () ;

183

184 // ! Runs the c o n t r o l l e r and j u s t r e tu rn s on c r i t i c a l e r r o r s

185 i n t run () ;

186 } ;

187

188 #e n d i f // ROBOT CONTROL H

Listing A.1: The header file of the robot controller

A.1.1 Robot Control Simple Client

The robot control simple client is a utility class to allow an easy implementation of

modules.

1 #inc lude <ro s / ro s . h> // mandatory ros header

2 #inc lude <s t r i ng> // to proce s s s t r i n g s

3 #inc lude <r o b o t c o n t r o l / Reg i s te rTaskServer . h> // to r e g i s t e r an

t a s k s e r v e r

4 #inc lude <r o b o t c o n t r o l /RobotTaskAction . h> // the ac t i on f o r the

goa l s

5 #inc lude <a c t i o n l i b / s e r v e r / a c t i o n s e r v e r . h> // the header f o r the

s e r v e r

6

7 typede f a c t i o n l i b : : Act ionServer<r o b o t c o n t r o l : : RobotTaskAction>

t a s k s e r v e r ;

8

9 // ! A u t i l i t y c l a s s to a l low an easy implementation o f modules

10

11 c l a s s RobotControlSimpleCl ient

A Mobile Robot System for Ambient Intelligence

76 APPENDIX A. SOURCE CODE

12 {
13 p r i v a t e :

14 ro s : : Pub l i she r p u b r e g i s t r a t i o n ;

//!< Publ i sher to

r e g i s t e r at r o b o t c o n t r o l

15 std : : s t r i n g task name ;

//!< The name

o f the o f f e r e d task

16 std : : s t r i n g ta sk se rve r name ;

//!< The address /

t o p i c name o f the task s e r v e r

17 void TaskServerGoalCal lback (t a s k s e r v e r : : GoalHandle gh) ;

//!< The c a l l b a c k f o r incoming goa l s

18 void TaskServerCancelCal lback (t a s k s e r v e r : : GoalHandle gh) ;

//!< The c a l l b a c k f o r cance l ed goa l s

19 protec ted :

20 ro s : : NodeHandle n ;

//!<

Mandatory ROS nodehandle

21 t a s k s e r v e r : : GoalHandle t a s k g o a l ;

//!< The cur rent goa l

22 r o b o t c o n t r o l : : RobotTaskResult r e s u l t ;

//!< A template r e s u l t f o r

e a s i e r usage

23 r o b o t c o n t r o l : : RobotTaskFeedback feedback ;

//!< A template feedback f o r

e a s i e r usage

24

25 // ! Function to r e g i s t e r at r o b o t c o n t r o l

26 /∗ ! \ re turn true i f s u c c e s s ∗/

27 bool r e g i s t e r S e r v e r () ;

28

29 // ! Function to d e r e g i s t e r at r o b o t c o n t r o l

30 /∗ ! \ re turn true i f s u c c e s s ∗/

31 bool d e r e g i s t e r S e r v e r () ;

32

33 // ! A p o s s i b i l i t y to check the incoming goa l be f o r e i t g e t s accepted

34 /∗ ! \param goa l The new goa l

35 \param r e s The returned r e s u l t i f the goa l i s r e j e c t e d

36 \ re turn true i f accepted ; f a l s e i f r e j e c t e d ∗/

37 v i r t u a l bool checkIncomingGoal (r o b o t c o n t r o l : : RobotTaskGoalConstPtr goal ,

r o b o t c o n t r o l : : RobotTaskResult &r e s) ;

38

39 // ! Draft : A p o s s i b i l i t y to prepare be f o r e a new goa l i s running

40 /∗ ! \param goa l The new goa l

41 \param r e s The r e s u l t f o r the o ld goa l ∗/

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

A.1. ROBOT CONTROL NODE 77

42 v i r t u a l void prepareForNewGoal (r o b o t c o n t r o l : : RobotTaskGoalConstPtr goal ,

r o b o t c o n t r o l : : RobotTaskResult &r e s) ;

43

44 // ! A p o s s i b i l i t y to c l ean up the cance l ed o ld goa l

45 /∗ ! \param r e s Result o f the o ld goa l ∗/

46 v i r t u a l bool c leanupCance l ledGoal (r o b o t c o n t r o l : : RobotTaskResult &r e s) ;

47

48 // ! Executes a ro s : : spinOnce

49 void sp inSe rve r () ;

50

51 // ! Easy i d e n t i f i e r i f a goa l i s c u r r e n t l y a c t i v e

52 bool g o a l a c t i v e ;

53 pub l i c :

54 // ! The task s e r v e r ob j e c t

55 /∗ ! Has to be pub l i c as t h i s i s the only way to get i t work . ∗/

56 a c t i o n l i b : : Act ionServer<r o b o t c o n t r o l : : RobotTaskAction> t a s k s e r v e r ;

57

58 // ! The cons t ruc to r

59 /∗ ! \param task se rver name The address / to p i c name o f the task s e r v e r

60 ∗ \param task name The name o f the implemented task ∗/

61 RobotControlSimpleCl ient (std : : s t r i n g task server name , std : : s t r i n g

task name) ;

62 ˜ RobotControlSimpleCl ient () ;

63 } ;

Listing A.2: The head file of the ’RobotControlSimpleClient’ utility class

A.1.1.1 Example Code for a Simple Module

This module implements the task ’say’. This task does not have a database connection.

The additional code to build up a database connection can be found in section A.5.1.

1 #inc lude <ro s / ro s . h> // mandatory ROS header

2 #inc lude <human inter face / SpeechRequest . h> // to perform the

speech reque s t

3 #inc lude <r o b o t c o n t r o l / RobotControlSimpleCl ient . h> // to connect i t to

robot c o n t r o l l

4 #inc lude <s t r i ng>

5

6 c l a s s say : pub l i c RobotControlSimpleCl ient

7 {
8 p r i v a t e :

9 // p u b l i s h e r f o r text−to−speech

10 ro s : : Pub l i she r pub speech ;

A Mobile Robot System for Ambient Intelligence

78 APPENDIX A. SOURCE CODE

11 // ove r l oad ing func t i on to check a goa l be f o r e i t i s accepted

12 bool checkIncomingGoal (r o b o t c o n t r o l : : RobotTaskGoalConstPtr goal ,

r o b o t c o n t r o l : : RobotTaskResult &r e s) ;

13 pub l i c :

14 // cons t ruc to r ; ’ ta sk se rver name ’ s p e c i f i e s where to reach the s e r v e r ; ’

task name ’ s p e c i f i e s the i d e n t i f i e r /name o f the task

15 say (std : : s t r i n g task server name , std : : s t r i n g task name) ;

16 void run () ;

17 } ;

18

19 bool say : : checkIncomingGoal (r o b o t c o n t r o l : : RobotTaskGoalConstPtr goal ,

r o b o t c o n t r o l : : RobotTaskResult &r e s)

20 {
21 // we could check the database here

22 re turn true ;

23 }
24

25 say : : say (std : : s t r i n g task server name , std : : s t r i n g task name) :

RobotControlSimpleCl ient (task server name , task name)

26 {
27 // i n i t i a l i z e the p u b l i s h e r f o r text−to−speech

28 pub speech = n . adve r t i s e<human inter face : : SpeechRequest>(”/

human inter face / spee ch r eque s t ” ,10) ;

29 }
30

31 void say : : run ()

32 {
33 ro s : : Rate r (3) ;

34 whi le (ro s : : ok ())

35 {
36 // ’ g o a l a c t i v e ’ i s switched to t rue i f a new goa l a r r i v e s

37 i f (g o a l a c t i v e)

38 {
39 // send text to the human inter face

40 human inter face : : SpeechRequest req ;

41 req . t e x t t o s a y = ”Yeah − i t worked . This i s goa l ” ;

42 i n t id = (∗ t a s k g o a l . getGoal ()) . t a s k i d ;

43 req . t e x t t o s a y += boost : : l e x i c a l c a s t <std : : s t r i ng >(id) ;

44 pub speech . pub l i sh (req) ;

45 // repor t s u c c e s s to the robot c o n t r o l l e r

46 r e s u l t . s u c c e s s = true ;

47 r e s u l t . e n d r e s u l t = ” Everything worked” ;

48 ro s : : Duration (5) . s l e e p () ;

49 t a s k g o a l . setSucceeded (r e s u l t , ” Everything worked”) ;

50 g o a l a c t i v e = f a l s e ;

51 }

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

A.2. PERSON DETECTOR NODE 79

52 r . s l e e p () ;

53 sp inSe rve r () ;

54 ro s : : spinOnce () ;

55 }
56 }
57

58 i n t main (i n t argc , char ∗∗ argv)

59 {
60 ro s : : i n i t (argc , argv , ” say s en t ence ”) ;

61 say s a y o b j e c t (”/ r o b o t c o n t r o l b a s i c s / s a y t a s k s e r v e r ” , ” say ”) ;

62

63 ROS INFO(” Fin i shed i n i t i a l i z a t i o n , now running in the loop ”) ;

64 // This loop i s supposed to run e n d l e s s

65 s a y o b j e c t . run () ;

66 re turn 0 ;

67 }

Listing A.3: Example code for a module implementing a simple task

A.2 Person Detector Node

The header file of the person detection implementing a handling of face recognition and

an approach to find additional obstacles in the environment.

1 #i f n d e f PERSON DETECTOR H

2 #d e f i n e PERSON DETECTOR H

3 #inc lude <ro s / ro s . h> // gene ra l ROS−f u n c t i o n a l i t i e s

4 #inc lude <cob peop l e de t e c t i on msgs / Detect ionArray . h> // message type f o r the

c o b p e o p l e d e t e c t i o n t o p i c

5 #inc lude <queue> // used to s t o r e the d e t e c t i o n s

6 #inc lude <vector> // used to s t o r e amcl−poses

7 #inc lude <t f / t r a n s f o r m l i s t e n e r . h> // c u r r e n t l y unused

8 #inc lude <t f / t rans f o rm broadcas t e r . h> // used to broadcast d e t e c t i o n s

9 #inc lude <v i s u a l i z a t i o n m s g s /Marker . h> // d i sp l ay markers on r v i z

10 #inc lude <v i s u a l i z a t i o n m s g s /MarkerArray . h> // advanced d i sp l ay o f marker on

r v i z

11 #inc lude <p e r s o n d e t e c t o r / Detect ionObjectArray . h> // our d e t e c t i o n s

12 #inc lude <p e r s o n d e t e c t o r / Detect ionObject . h> // used f o r a s i n g l e d e t e c t i o n

13 #inc lude <p e r s o n d e t e c t o r / SpeechConfirmation . h> // f o r speech con f i rmat i on s we

r e c e i v e

14 #inc lude <p e r s o n d e t e c t o r / ObstacleArray . h> // to s t o r e found o b s t a c l e s

15 #inc lude <nav msgs/OccupancyGrid . h> // the map format

16 #inc lude <costmap 2d/ l a y e r . h> // to use a costmap

17 #inc lude <costmap 2d/ costmap 2d ros . h> // to use a costmap

18 #inc lude <sensor msgs /Imu . h> // to get in fo rmat ion about the

r o t a t i o n

19 #inc lude <geometry msgs /PoseWithCovarianceStamped . h> // f o r amcl

20 #inc lude <geometry msgs /Pose . h> // to save the cente r o f an

o b s t a c l e

A Mobile Robot System for Ambient Intelligence

80 APPENDIX A. SOURCE CODE

21

22 namespace p e r s o n d e t e c t o r {
23 // ! This s t r u c t i s used to s t o r e the o b s t a c l e map po in t s

24 /∗ ! The o b s t a c l e po in t s in the Obstac le . msg are s to r ed in metr ic map coo rd ina t e s . This

would r e q u i r e a lookup metr ic map coo rd ina t e s to the corre spond ing f i e l d s in the

costmap array each time the o b s t a c l e has to be found again . There fore the ar rays

p o s i t i o n s o f a l l po in t s o f an o b s t a c l e are a l s o s to r ed in t h i s s t r u c t . ∗/

25 s t r u c t ObsMapPoints

26 {
27 unsigned i n t id ; //!< The unique ID o f the

o b s t a c l e

28 std : : vector<geometry msgs : : Point> po in t s ; //!< A vector po in t s on

the costmap array . They x and y va lue s are po in t ing to a f i e l d on the costmap and

aren ’ t metr ic

29 } ;

30 }
31

32 /∗ ! The p e r s o n d e t e c t o r c l a s s manages the whole p roce s s o f d e t e c t i o n s based on f a c e

r e c o g n i t i o n s and found o b s t a c l e s ∗/

33

34 c l a s s p e r s o n d e t e c t o r c l a s s

35 {
36 p r i v a t e :

37 // ros−s t u f f

38 ro s : : NodeHandle n ; //!< The mandatory ROS

nodehandler

39 ro s : : Subsc r ibe r s u b f a c e r e c o g n i t i o n ; //!< Subsc r ibe r to

c o b p e o p l e d e t e c t i o n f a c e r e c o g n i t i o n s

40 ro s : : Pub l i she r p u b a l l r e c o g n i t i o n s ; //!< Publ i she r o f a l l

f a c e r e c o g n i t i o n s

41 ro s : : Pub l i she r p u b a l l o b s t a c l e s ; //!< Publ i she r o f a l l

o b s t a c l e s

42 ro s : : Subsc r ibe r sub map ; //!< Subsc r ibe r to the

map t op i c

43 ro s : : Subsc r ibe r sub l o ca l co s tmap ; //!< Subsc r ibe r to the

l o c a l costmap o f move base

44 ro s : : Subsc r ibe r s u b o b s t a c l e s ; //!< Subsc r ibe r to the

publ i shed o b s t a c l e s by move base

45 ro s : : Subsc r ibe r sub imu ; //!< Subsc r ibe r to the

robots gyro data

46 ro s : : Subsc r ibe r s u b c o n f i r m a t i o n s ; //!< Subsc r ibe r to the

con f i rmat i on s publ i shed by other nodes

47 ro s : : Subsc r ibe r sub amcl ; //!< Subsc r ibe r to the

robots p o s i t i o n s publ i shed by amcl

48 ro s : : Subsc r ibe r s u b r e s e t a l l ; //!< Subsc r ibe r to r e s e t

the o b s t a c l e s and the d e t e c t i o n s

49 ro s : : Subsc r ibe r s u b r e s e t o b s t a c l e s ; //!< Subsc r ibe r to r e s e t

the detec ted o b s t a c l e s

50 ro s : : Subsc r ibe r s u b r e s e t d e t e c t i o n s ; //!< Subsc r ibe r to r e s e t

the f a c e d e t e c t i o n s

51 // t rans f o rmat i ons

52 t f : : Trans formListener t f l i s t e n e r ; //!< Transformation

l i s t e n e r to get t rans f o rmat i ons between a f a c e r e c o g n i t i o n and the map

53 t f : : StampedTransform t r a n s f o r m l i ; //!< Resuable

t rans fo rmat ion ob j e c t f o r the t rans fo rmat ion l i s t e n e r

54 t f : : TransformBroadcaster t f h u m a n l o c a l b r o a d c a s t e r ; //!< Transformation

broadcas te r to announce t rans f o rmat i ons between the camera and a detec ted f a c e s

55 t f : : Transform trans f o rm br ; //!< Resuable

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

A.2. PERSON DETECTOR NODE 81

t rans fo rmat ion ob j e c t f o r the t rans fo rmat ion broadcas te r

56 t f : : TransformBroadcaster t f map human broadcaster ; //!< Transformation

broadcas te r to announce t rans f o rmat i ons between the map and the detec ted f a c e s

57 t f : : Transform transform br map ; //!< Reusable

t rans fo rmat ion ob j e c t f o r the t rans fo rmat ion broadcas te r

58 ro s : : Duration t f c a c h e ; //!< Stor ing the

in fo rmat ion about the l ength o f the t f l i s t e n e r cache

59

60 // markers f o r r v i z

61 ro s : : Pub l i she r pub human marker raw ; //!< Publ i she r o f the raw

r e c e i v e d f a c e d e t e c t i o n s as cubes in r v i z . \ sa showAl lRecognit ions

62 v i s u a l i z a t i o n m s g s : : Marker heads raw ; //!< Reusable Marker f o r

the pub human marker raw . Avoids long i n i t i a l i z a t i o n . \ sa showAl lRecognit ions

63 ro s : : Pub l i she r pub human marker raw text ; //!< Publ i she r o f the raw

r e c e i v e d f a c e d e t e c t i o n s as t ext in r v i z . \ sa showAl lRecognit ions

64 v i s u a l i z a t i o n m s g s : : Marker t ex t raw ; //!< Reusable Marker f o r

the pub human marker raw text . Avoids long i n i t i a l i z a t i o n . \ sa showAl lRecognit ions

65 ro s : : Pub l i she r pub human marker ; //!< Publ i she r o f a l l

f a c e r e c o g n i t i o n s s to r ed in a l l d e t e c t i o n s as cubes in r v i z . \ sa

showAl lRecognit ions

66 v i s u a l i z a t i o n m s g s : : Marker heads ; //!< Reusable Marker f o r

the pub human marker . Avoids long i n i t i a l i z a t i o n . \ sa showAl lRecognit ions

67 ro s : : Pub l i she r pub human marker text ; //!< Publ i she r o f t ex t to

a l l f a c e r e c o g n i t i o n s s to r ed in a l l d e t e c t i o n s in r v i z . \ sa showAl lRecognit ions

68 v i s u a l i z a t i o n m s g s : : Marker h e a d s t e x t ; //!< Reusable Marker f o r

the pub human marker text . Avoids long i n i t i a l i z a t i o n . \ sa showAl lRecognit ions

69 ro s : : Pub l i she r p u b o b s t a c l e p o i n t s t e x t ; //!< Publ i she r f o r

in fo rmat ion to every occupied po int in the d i f f e r en c e m ap \ sa showAl lObstac le s \
sa d i f f e r en c e m ap

70 v i s u a l i z a t i o n m s g s : : Marker o b s t a c l e p o i n t s t e x t ; //!< Reusable Marker f o r

the p u b o b s t a c l e p o i n t s t e x t . Avoids long i n t i a l i z i a t i o n . \ sa showAl lObstac le s \
sa p u b o b s t a c l e p o i n t s t e x t

71 ro s : : Pub l i she r p u b o b s t a c l e b o r d e r s ; //!< Publ i she r f o r a l i n e

connect ing a l l po in t s o f an o b s t a c l e in r v i z . \ sa showAl lObstac le s

72 v i s u a l i z a t i o n m s g s : : Marker obs tac l e boa rde r marke r ; //!< Reusable Marker f o r

the p u b o b s t a c l e b o a r d e r s . Avoids long i n i t i a l i z a t i o n . \ sa showAl lObstac le s \ sa

p u b o b s t a c l e b o a r d e r s

73 ro s : : Pub l i she r pub obs ta c l e cube s ; //!< Publ i she r f o r a cube

r e p r e s e n t i n g an the middle o f an o b s t a c l e in r v i z . \ sa showAl lObstac le s

74 v i s u a l i z a t i o n m s g s : : Marker o b s t a c l e c u b e s ; //!< Reusbale Marker f o r

the pub obs ta c l e cube s . Avoids long i n i t i a l i z a t i o n . \ sa showAl lObstac le s \ sa

pub obs ta c l e cube s

75 ro s : : Pub l i she r p u b o b s t a c l e i n f o t e x t ; //!< Publ i she r f o r t ex t

in fo rmat ion to each o b s t a c l e in r v i z . \ sa showAl lObstac le s

76 v i s u a l i z a t i o n m s g s : : Marker o b s t a c l e i n f o t e x t ; //!< Reusable Marker f o r

the p u b o b s t a c l e i n f o t e x t . Avoids long i n t i a l i z a t i o n . \ sa showAl lObstac le s \ sa

p u b o b s t a c l e i n f o t e x t

77

78

79 // c a l l b a c k s

80 // ! Cal lback f o r f a c e r e c o g n i t i o n s o f the c o b p e o b l e d e t e c t i o n .

81 /∗ ! \param r e c e i v e d d e t e c t i o n s d e t e c t i o n array from c o b p e o b l e d e t e c t i o n ∗/

82 void f a c eRecogn i t i onCa l lback (const cob peop l e de t e c t i on msgs : : Detect ionArray

r e c e i v e d d e t e c t i o n s) ;

83

84 // ! Cal lback f o r the occupancy map used by the robot .

85 /∗ ! \param received map The r e c e i v e d map ∗/

86 void mapCallback (const nav msgs : : OccupancyGrid rece ived map) ;

A Mobile Robot System for Ambient Intelligence

82 APPENDIX A. SOURCE CODE

87

88 // ! Cal lback f o r the localCostmap provided by move base

89 /∗ ! \param r e c e i v e d The r e c e i v e d occupancy g r id

90 \ sa updated map \ sa o b s t a c l e C a l l b a c k \ sa updated dm \ sa updated counter ∗/

91 void loca lCostmapCal lback (const nav msgs : : OccupancyGrid r e c e i v e d) ;

92

93 // ! Cal lback f o r the occupied po in t s provided by move base

94 /∗ ! \param pc l The r e c e i v e d PointCloud

95 \ sa updated map \ sa updated dm \ sa updated counter ∗/

96 void o b s t a c l e s C a l l b a c k (const sensor msgs : : PointCloud pc l) ;

97

98 // ! Cal lback f o r the gyrometer output .

99 /∗ ! \param imu The r e c e i v e d imu data ∗/

100 void imuCallback (const sensor msgs : : Imu imu) ;

101

102 // ! Cal lback f o r con f i rmat i on s in fo rmat ion about an o b s t a c l e

103 /∗ ! \param conf The r e c e i v e d con f i rmat ion in fo rmat ion ∗/

104 void con f i rmat i onCa l lback (const p e r s o n d e t e c t o r : : SpeechConfirmation conf) ;

105

106 // ! Cal lback f o r the p o s i t i o n o f the robot provided by amcl

107 /∗ ! \param pose The r e c e i v e d pose with covar iance ∗/

108 void amclCal lback (const geometry msgs : : PoseWithCovarianceStamped pose) ;

109

110 // ! The c a l l b a c k to r e s e t a l l d e t e c t i o n s

111 /∗ ! \param t r i g The t r i g g e r ∗/

112 void r e s e t A l l C a l l b a c k (const std msgs : : Empty t r i g) ;

113

114 // ! The c a l l b a c k to r e s e t o b s t a c l e s

115 /∗ ! \param t r i g The t r i g g e r ∗/

116 void r e s e tObtac l e sCa l l back (const std msgs : : Empty t r i g) ;

117

118 // ! The c a l l b a c k to r e s e t a l l f a c e d e t e c t i o n s

119 /∗ ! \param t r i g The t r i g g e r ∗/

120 void r e s e tD e t e c t i o n s Ca l l b a c k (const std msgs : : Empty t r i g) ;

121

122 // d e t e c t i o n s

123 // ! Storage f o r d e t e c t i o n ar rays provided by c o b p e o p l e d e t e c t i o n wai t ing to be

proce s sed

124 /∗ ! The d e t e c t i o n s are j u s t saved here u n t i l they are proce s sed and matched with

t rans fo rmat ion in fo rmat ion . A warn i s sent out i f t h i s array becomes too big .

125 \ sa p roc e s sDe t e c t i on s ∗/

126 std : : queue<cob peop l e de t e c t i on msgs : : DetectionArray> d e t e c t i o n t e m p s t o r a g e ;

127

128 // ! The array o f a l l cu r r ent d e t e c t i o n s with a l l in fo rmat ion .

129 /∗ ! This array i s f r e q u e n t l y updated with new d e t e c t i o n s and new incoming data and sent

out by the p u b l i s h e r .

130 \ sa proce s sDetec t i on \ sa p u b a l l r e c o g n i t i o n s ∗/

131 p e r s o n d e t e c t o r : : Detect ionObjectArray a l l d e t e c t i o n s a r r a y ;

132

133 // ! A counter f o r the unique IDs as s i gned to a l l r e c o g n i t i o n s .

134 /∗ ! I t has to incremented every time a new detec ted o b s t a c l e or a new detec ted f a c e i s

i s c r ea ted . Obstac le s and f a c e r e c o g n i t i o n s share the same counter . ∗/

135 unsigned i n t r e c o g n i t i o n i d ;

136

137 // ! Holds a copy o f the s t a t i c map r e c e i v e d from the /map to p i c .

138 /∗ ! I f a new map i s r ece ived , the map in fo rmat ion i s copied in to t h i s costmap . After

that i t w i l l be i n f l a t e d by 10cm.

139 \ sa in f l a teMap \ sa mapCallback ∗/

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

A.2. PERSON DETECTOR NODE 83

140 costmap 2d : : Costmap2D sta t i c map ;

141

142 // ! This map i s f r e q u e n t l y updated with occupancy in fo rmat ion .

143 /∗ ! I t s t o r e s the in fo rmat ion about c u r r e n t l y occupied and f r e e po in t s and r e c e i v e s

in fo rmat ion from the localCostmap o f move base and the publ i shed o b s t a c l e s . I t i s

used to c a l c u l a t e the d i f f e r e n c e map .

144 \ sa loca lCostmapCal lback \ sa o b s t a c l e s C a l l b a c k \ sa ca lcDi f f e renceMap \ sa

d i f f e r e nc e m ap ∗/

145 costmap 2d : : Costmap2D updated map ;

146

147 // ! This map s t o r e s in fo rmat ion about the d i s t ance from which the o b s t a c l e has been

seen .

148 /∗ ! The depthdata o f the Kinect i s very inac cu ra t e on h igher d i s t a n c e s . The c l o s e s t

d i s t ance o f a d e t e c t i o n f o r each po int i s saved in t h i s map . Please note , that i t

i s s t o r ed in dec imeter . A value o f 10 r e s u l t s in 100cm c l o s e s t d i s t anc e . Obstac le

seen by the localCostmap are always s to r ed with 100cm d i s t anc e . This map i s used by

ra teObstac l e .

149 \ sa localCostmapCal lback \ sa obs tac l eCa l l back \ sa ra t eObstac l e ∗/

150 costmap 2d : : Costmap2D updated dm ;

151

152 // ! This map s t o r e s in fo rmat ion about the number o f appearances o f an o b s t a c l e .

153 /∗ ! Sometimes o b s t a c l e s are j u s t seen a few times because i t were walking people or

wrong senso r in fo rmat ion . This map counts the appearances o f each occupied po int .

The maximum value i s 255 accord ing to the l i m i t o f unsigned char . I f a occupied i s

marked as FREE SPACE by the localCostmap , 10 po in t s are subs t rac t ed each time .

154 \ sa localCostmapCal lback \ sa o b s t a c l e s C a l l b a c k \ sa ra t eObs ta c l e ∗/

155 costmap 2d : : Costmap2D updated counter ;

156

157 // ! This map i s the d i f f e r e n c e between the updated map and the i n f l a t e d s t a t i c map

158 /∗ ! Every po int which i s occupied on the updated map but not occupied in the i n f l a t e d

s t a t i c map i s occupied in t h i s map . This map i s the base f o r the d e t e c t i o n o f

o b s t a c l e s .

159 \ sa updatedMap \ sa s ta t i c map \ sa generateDi f f erenceMap \ sa f i ndObs ta c l e s ∗/

160 costmap 2d : : Costmap2D d i f f e r e nc e m ap ;

161

162 // ! This map i s used in the proce s s o f f i n d i n g and rematching o f o b s t a c l e s and i s copy

o f d i f f e r e n c e m ap

163 /∗ ! The usage o f t h i s map i s not r e a l l y sure . Each run i t i s a copy o f the

d i f f e r enceMap and every proce s sed occupied po int i s marked as FREE SPACE.

164 \ todo Check i f the dmap new i s r e a l l y nece s sa ry . Probably not . ∗/

165 costmap 2d : : Costmap2D dmap new ;

166

167 // ! The seen o b s t a c l e s dur ing a panorama turn are marked in t h i s map .

168 /∗ ! This map i s n ’ t used yet , but i t should he lp to r epor t which o b s t a c l e s have been

seen during a panorama turn . ∗/

169 costmap 2d : : Costmap2D dmap pano ;

170

171 // ! Marks i f the maps have been i n t i a l i z e d by r e t r i e v i n g the map from the map t o p i c .

172 /∗ ! In order to s t a r t working i t i s very important to r e t r i e v e the map from the map

t op i c f i r s t . The most f u n c t i o n s o f t h i s node don ’ t work i f the maps haven ’ t been

i n i t i a l i z e d yet .

173 \ todo Add a warn i f m a p i n i t i a l i z e d i s f a l s e ∗/

174 bool m a p i n i t i a l i z e d ;

175

176 costmap 2d : : Costmap2DPublisher ∗ pub stat i c map ; //!<

Publ i she r f o r the s t a t i c map . \ sa s ta t i c map

177 costmap 2d : : Costmap2DPublisher ∗pub updated map ; //!<

Publ i she r f o r the updated map r e p r e s e n t i n g the cur rent o b s t a c l e s \ sa updated map

A Mobile Robot System for Ambient Intelligence

84 APPENDIX A. SOURCE CODE

178 costmap 2d : : Costmap2DPublisher ∗ pub d i f f e r ence map ; //!<

Publ i she r f o r the d i f f e r e n c e map \ sa d i f f e r en c e m ap

179 costmap 2d : : Costmap2DPublisher ∗pub dmap new ; //!<

Publ i she r f o r the d i f f e r e n c e map used to f i n d o b s t a c l e s \ sa dmap new

180 costmap 2d : : Costmap2DPublisher ∗pub dmap pano ; //!<

Publ i she r f o r the dmap pano \ sa dmap pano

181

182 // ! Sto r ing the r o t a t i o n v e l o c i t y provided by the gyrometer

183 /∗ ! The l a t e s t angular v e l o c i t y in z−d i r e c t i o n (r o t a t i o n o f the robot) i s s to r ed here .

This i s nece s sa ry because the occupied po in t s r e c e i v e d by the o b s t a c l e p u b l i s h e r o f

move base are too no i sy during a turn .

184 \ sa o b s t a c l e C a l l b a c k ∗/

185 double imu ang ve l z ;

186

187 // ! A queue s t o r i n g a l l c on f i rmat i on s u n t i l they are proce s s ed

188 std : : queue<p e r s o n d e t e c t o r : : SpeechConfirmation> con f queue ;

189

190 // ! A vec to r s t o r i n g the l a t e s t 30 amcl poses o f the robot

191 /∗ ! The poses have to be stored , because the s to rage o f in fo rmat ion from localCostmap

needs the p o s i t i o n o f the robot .

192 \ sa f indAmclPose ∗/

193 std : : vector<geometry msgs : : PoseWithCovarianceStamped> amc l pose s ;

194

195 // ! Al l in fo rmat ion about a l l cur r ent tracked o b s t a c l e s are s to r ed in here .

196 /∗ ! A l l in fo rmat ion about o b s t a c l e s are s to r ed in t h i s array . I t i s f r e q u e n t l y updated

and l a t e r pub l i shed . Each o b s t a c l e entry must have an corre spond ing entry in

a l l obs map xy . So the s i z e and the order o f the o b s t a c l e vec to r in a l l o b s t a c l e s

must be the same as in a l l obs map xy

197 \ sa f i n d O b s t a c l e s \ sa a l l obs map xy ∗/

198 p e r s o n d e t e c t o r : : ObstacleArray a l l o b s t a c l e s ;

199

200 // ! This vec to r ho lds the cor re spond ing po in t s o f an o b s t a c l e in the array o f the

costmap

201 /∗ ! In order to avoid f r equent conver s i on from metr ic map coo rd ina t e s to the

cor re spond ing po in t s in the array o f the costmap , a l l occupied po in t s o f an

o b s t a c l e are s to r ed in here as we l l . The s i z e and the order o f t h i s vec to r must be

the same as the number o f o b s t a c l e in a l l obs map xy

202 \ sa ObsMapPoints \ sa a l l o b s t a c l e s ∗/

203 std : : vector<p e r s o n d e t e c t o r : : ObsMapPoints> a l l obs map xy ;

204 // g l o b a l h e lp e rpo in t

205 geometry msgs : : Point p ; //!< This

po int i s g l o b a l l y used to avoid the c r e a t i o n o f temporary ones . Always r e s e t unused

a t t r i b u t e s !

206 geometry msgs : : Point p map xy ; //!< This

po int i s g l o b a l l y used to avoid the c r e a t i o n o f temporary ones . Always r e s e t unused

a t t r i b u t e s !

207 double x map ; //!< This

v a r i a b l e i s g l o b a l l y used to avoid the c r e a t i o n o f temporary ones .

208 double y map ; //!< This

v a r i a b l e i s g l o b a l l y used to avoid the c r e a t i o n o f temporary ones .

209

210 // f u n c t i o n s

211 // ! This func t i on p r o c e s s e s incoming d e t e c t i o n s to the r i g h t coord inate frame , r a t e s

and adds them to the g l o b a l array .

212 /∗ ! \ returnÂ¸Sucess o f the p r o c e s s i n g ∗/

213 i n t p ro c e s sDe t e c t i on s () ;

214

215 // ! This func t i on takes incoming d e t e c t i o n s and c a l c u l a t e s the d i s t ance to known ones .

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

A.2. PERSON DETECTOR NODE 85

216 /∗ ! \param d e t e c t i o n a r r a y The incoming d e t e c t i o n s

217 \ r e turn 0 on s u c c e s s ∗/

218 i n t c l a s s i f y D e t e c t i o n s (cob peop l e de t e c t i on msgs : : Detect ionArray d e t e c t i o n a r r a y) ;

219

220 // ! This func t i on adds a incoming d e t e c t i o n to the array o f a l l d e t e c t i o n s

221 /∗ ! \param new detect ion The new incoming d e t e c t i o n which should be added

222 \ r e turn 0 on su c e s s ∗/

223 i n t addNewDetection (cob peop l e de t e c t i on msgs : : Detect ion new detect ion) ;

224

225 // ! This func t i on updates a known d e t e c t i o n with new informat ion ,

226 /∗ ! \param new detect ion The incoming d e t e c t i o n d e l i v e r i n g in fo rmat ion f o r the update

227 \param pos The p o s i t i o n in the a l l d e t e c t i o n s a r r a y f o r array a c c e s s

228 \ r e turn 0 on su c e s s ∗/

229 i n t updateDetect ion (cob peop l e de t e c t i on msgs : : Detect ion new detect ion , unsigned i n t

pos) ;

230

231 // ! This func t i on f i n d s the c l o s e s t known d e t e c t i o n to a incoming d e t e c t i o n

232 /∗ ! \param d i s t a n c e s An array o f d i s t a n c e s

233 \param win id The ID o f the c l o s e s t known d e t e c t i o n to each incoming d e t e c t i o n . The

same ID can appear s e v e r a l t imes !

234 \param w i n d i s t The winning d i s t ance f o r each pa i r in meter .

235 \param d e t e c t i o n a r r a y s i z e The amount o f incoming d e t e c t i o n s

236 \ r e turn 0 on s u c c e s s

237 ∗/

238 i n t f indDistanceWinner (std : : vector< std : : vec to r <double> > &di s tance s , s td : : vector<

unsigned int> &win id , std : : vector<double> &win d i s t , unsigned i n t

d e t e c t i o n a r r a y s i z e) ;

239

240 // ! Checks i f two incoming d e t e c t i o n s want to a s s i g n to the same known d e t e c t i o n

241 /∗ ! \param d i s t a n c e s The array o f a l l d i s t a n c e s between a incoming and a known

d e t e c t i o n

242 \param win id The ID o f the c l o s e s t known d e t e c t i o n to an incoming d e t e c t i o n

243 \param w i n d i s t The s h o r t e s t d i s t anc e between the incoming d e t e c t i o n and the

known d e t e c t i o n s p e c i f i e d in win id

244 \param d e t e c t i o n a r r a y s i z e The amount o f known incoming d e t e c t i o n s

245 \ r e turn 0 on s u c c e s s ∗/

246 i n t c l ea rDoub l eResu l t s (std : : vector< std : : vec to r <double> > &di s tance s , s td : : vector<

unsigned int> &win id , std : : vector<double> &win d i s t , unsigned i n t

d e t e c t i o n a r r a y s i z e) ;

247

248 // ! Subs t rac t s an h i t o f a name on every other Detect ionObject

249 /∗ ! \param l a b e l The newly detec ted name

250 \param l e a v e i d The ID the name was newly as s i gned .

251 \ r e turn 0 on s u c c e s s ∗/

252 i n t subs t r a c tH i t (std : : s t r i n g l abe l , unsigned i n t l e a v e i d) ;

253

254 // ! De l e t e s o ld f a c e r e c o g n i t i o n s and detec ted o b s t a c l e s

255 /∗ ! \param o ldne s s The maximum l i f e t i m e and old ob j e c t can have

256 \ r e turn 0 on s u c c e s s ∗/

257 i n t ga rbageCo l l e c to r (ro s : : Duration o ldne s s) ;

258

259 // ! Prepares and sends v i s u a l i z a t i o n o f the f a c e r e c o g n i t i o n s to r v i z

260 void showAl lRecognit ions () ;

261

262 // ! Generates the d i f f e r e n c e map from the s t a t i c map and the updated map

263 /∗ ! \ r e turn 0 on su c e s s ∗/

264 i n t generateDi f f erenceMap () ;

265

A Mobile Robot System for Ambient Intelligence

86 APPENDIX A. SOURCE CODE

266 // ! Updates known o b s t a c l e s and f i n d s new o b s t a c l e s

267 /∗ ! \ r e turn 0 on s u c c e s s ∗/

268 i n t f i ndObs ta c l e s () ;

269

270 // ! Recurs ive he lpe r func t i on s ea r ch ing f o r more occupied po in t s around a s p e c i f i e d

po int

271 /∗ ! \param o r i g x The s t a r t i n g x p o s i t i o n on the costmap

272 \param o r i g y The s t a r t i n g y p o s i t i o n on the costmap

273 \param costmap The costmap used f o r to search . Every found occupied po int i s going

to be marked as FREE SPACE on t h i s costmap

274 \param po in t s Vector s t o r i n g a l l found po in t s in metr ic map coo rd i an t e s to update

or c r e a t e an o b s t a c l e ob j e c t

275 \param points map xy Vector s t o r i n g a l l found po int in costmap array coo rd ina t e s

276 \ r e turn s uc e s s ∗/

277 bool searchFurther (unsigned i n t o r i g x , unsigned i n t o r i g y , costmap 2d : : Costmap2D∗
costmap , std : : vector<geometry msgs : : Point> ∗ points , s td : : vector<geometry msgs : :

Point> ∗ points map xy) ;

278

279 // ! Helper func t i on r a t i n g an o b s t a c l e on a s c a l e from 0 to 100

280 /∗ ! \param obs Pointer to the o b s t a c l e that should be rated

281 \param map points Po inter to the cor re spond ing po in t s in the costmap array

coo rd ina t e s

282 \ r e turn s uc e s s ∗/

283 bool ra t eObstac l e (p e r s o n d e t e c t o r : : Obstac le ∗obs , p e r s o n d e t e c t o r : : ObsMapPoints ∗
map points) ;

284

285 // ! Helper func t i on to c a l c u l a t e the geometr ic c en te r o f a s e t o f po in t s

286 /∗ ! \param po in t s The po in t s used f o r c a l c u l a t i o n

287 \param pose The returned pose

288 \ r e turn s u c c e s s ∗/

289

290 bool c a l c u l a t eC en t e r (std : : vector<geometry msgs : : Point> points , geometry msgs : : Pose &

pose) ;

291

292 // ! Prepares and sends v i s u a l i z a t i o n o f the o b s t a c l e s to r v i z

293 void showAl lObstac les () ;

294

295 // ! I n f l a t e s occupied po in t s on a r e c e i v e d s t a t i c map by 10cm

296 i n t in f lateMap () ;

297

298 // ! Updates known o b s t a c l e s and known f a c e r e c o g n i t i o n s with incoming con f i rmat ion

in fo rmat ion

299 i n t proce s sConf i rmat ions () ;

300

301 // ! Finds the best f i t t i n g robot p o s i t i o n to a s p e c i f i e d time

302 /∗ ! \param pose The returned pose

303 \param stamp The time the pose should match

304 \ r e s u l t Fa l se i f no poses are s to r ed . True i f a pose could be found ∗/

305 bool findAmclPose (geometry msgs : : PoseWithCovarianceStamped &pose , ro s : : Time stamp) ;

306

307 pub l i c :

308 // ! Constructor i n i t i a l i z i n g subsc r ibe r , p u b l i s h e r and marker

309 p e r s o n d e t e c t o r c l a s s () ;

310 // ! Runs e n d l e s s and manages the whole d e t e c t i o n proce s s

311 i n t run () ;

312 } ;

313

314 #e n d i f // PERSON DETECTOR H

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

A.3. EXPLORATION NODE 87

Listing A.4: Header file of the person detection package

A.3 Exploration Node

The header file of the module which is coordinating the search.

1 #i f n d e f EXPLORATION HH H

2 #d e f i n e EXPLORATION HH H

3

4 #inc lude <ro s / ro s . h> // needed f o r gene ra l ROS−support

5 #inc lude <r o b o t c o n t r o l / RobotControlSimpleCl ient . h> // c l a s s i n h e r i t s from the

s i m p l e c l i e n t

6 #inc lude <vector> // needed to s t o r e the goa l s

7 #inc lude <s t d s r v s /Empty . h> //

8 #inc lude <std msgs /Empty . h> //

9 #inc lude <exp lo ra t i on hh / Explorat ionGoal . h> // e x p l o r a t i o n messagetype

10 #inc lude <move base msgs /MoveBaseAction . h> // to make a move−base−c l i e n t

11 #inc lude <a c t i o n l i b / c l i e n t / s i m p l e a c t i o n c l i e n t . h> // −−
12 #inc lude <p e r s o n d e t e c t o r / Detect ionObjectArray . h> // to proce s s and s t o r e the

d e t e c t i o n s

13 #inc lude <p e r s o n d e t e c t o r / ObstacleArray . h> // to proce s s and s t o r e the o b s t a c l e s

14 #inc lude <v i s u a l i z a t i o n m s g s /Marker . h> // to show s t a t e in r v i z

15 #inc lude <sensor msgs /Image . h> // to s t o r e the panorama images

16 #inc lude <image t ranspor t / image t ranspor t . h> // to su b s c r i b e to image t o p i c s

17 #inc lude <cv br idge / cv br idge . h> // to save p i c t u r e s

18 #inc lude <opencv/cv . h> // to save p i c t u r e s

19 #inc lude <opencv/ h ighgu i . h> // to save p i c t u r e s

20 #inc lude <human inter face / Recognit ionConf i rmat ion . h> // f o r con f i rmat ion o f a person

21 #inc lude <d a t a b a s e i n t e r f a c e / p o s t g r e s q l d a t a b a s e . h> // to be ab le to use the database

22

23 // j u s t here f o r non permanent purposes

24 namespace human inter face {
25

26 s t r u c t speechRec {
27 ro s : : Time time ;

28 std : : s t r i n g sentence ;

29 } ;

30

31 enum y e s n o r e s u l t {
32 ANSWERED = 0 ,

33 UNANSWERED = 1 ,

34 WRONGANSWER = 2 ,

35 BLOCKED SPEAKER = 3

36 } ;

37 }
38

39 namespace exp lo ra t i on hh

40 {
41 // ! Enum to d e s c r i b e the s t a t e s o f the s t a t e machine

42 /∗ ! This node i s a s t a t e machine s w i t i c h i n g between these s t a t e s ∗/

43 enum s t a t e

A Mobile Robot System for Ambient Intelligence

88 APPENDIX A. SOURCE CODE

44 {
45 IDLE , //!< Nothing to

do . No more goa l s

46 EXPLORATION, //!< The

cur rent goa l i s an e x p l o r a t i o n goa l

47 FACE RECOGNITION, //!< The

cur rent goa l i s a goa l f o r a r e cogn i z ed f a c e

48 CONFIRMATION, //!< The

con f i rmat ion o f an o b s t a c l e or a r ecogn i z ed f a c e takes p lace

49 OBSTACLE, //!< The

cur rent goa l i s an o b s t a c l e goa l

50 PANORAMA, //!< A panorama

p i c t u r e i s taken

51 PHOTO, //!< Needed to

wait a shor t moment f o r the p i c t u r e

52 FOUND //!< Found the

r i g h t person

53 } ;

54 // ! Enum to d i s t i n g u i s h d i f f e r e n t kind o f goa l s

55 /∗ ! Every goa l has to be o f one kind . ∗/

56 enum goa l type

57 {
58 EXPLORATION GOAL = 0 , /∗ !< A goa l sent by the database ∗/

59 RECOGNITION GOAL = 1 , /∗ !< A goa l f o r a r ecogn i z ed f a c e ∗/

60 OBSTACLE GOAL = 2 /∗ !< A goa l f o r a r ecogn i z ed o b s t a c l e ∗/

61 } ;

62 // ! A s t r u c t to save an panorama image with metainformation

63 /∗ ! This can be used f o r l a t e r purposes . So t h i s may be t r a n s f e r e d in to a ROS message .

∗/

64 s t r u c t img meta

65 {
66 i n t id ; //!< A unique ID

67 sensor msgs : : Image img ; //!< The p i c t u r e

68 geometry msgs : : Pose robot pose ; //!< The pose o f

the robot when p i c t u r e s t a r t e d to be taken

69 i n t o b s t a c l e i d ; //!< The ID the

v i s i b l e o b s t a c l e

70 geometry msgs : : Pose o b s t a c l e p o s e ; //!< The pose o f

the v i s i b l e o b s t a c l e

71 i n t f a c e d e t e c t i o n i d ; //!< The ID o f

the v i s i b l e f a c e r e c o g n i t i o n

72 geometry msgs : : Pose f a c e d e t e c t i o n s p o s e ; //!< The pose o f

the v i s i b l e f a c e d e t e c t i o n

73 } ;

74 }
75 /∗ ! The Explorat ion c l a s s i s ab le to coo rd ina te and i n f l u e n c e the search f o r a person ∗/

76

77

78 c l a s s Explorat ion : pub l i c RobotControlSimpleCl ient

79 {
80 p r i v a t e :

81 //ROS and Markers

82 // ros : : NodeHandle n ; //!< Mandatory

ROS−Nodehandler

83 ro s : : Subsc r ibe r s u b e x p l o r a t i o n g o a l s ; //!< Subsc r ibe r

f o r database−given e x p l o r a t i o n goa l s

84 ro s : : Subsc r ibe r s u b d e t e c t i o n s ; //!< Subsc r ibe r

f o r p e r s o n d e t e c t o r f a c e d e t e c t i o n s

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

A.3. EXPLORATION NODE 89

85 ro s : : Subsc r ibe r s u b o b s t a c l e s ; //!< Subsc r ibe r

f o r p e r s o n d e t e c t o r o b s t a c l e s

86 ro s : : S e r v i c e C l i e n t c o n f i r m a t i o n c l i e n t ; //!< Cl i en t f o r

human inter face con f i rmat ion r e q u e s t s

87 ro s : : S e r v i c e C l i e n t y e s n o c l i e n t ; //!< Cl i en t f o r

human inter face yes−no−que s t i on s

88 ro s : : Pub l i she r pub speech ; //!< Publ i she r

f o r human inter face text−to−speech r e q u e s t s

89 ro s : : Pub l i she r pub con f i rmat i ons ; //!< Publ i she r

f o r p e r s o n d e t e c t o r con f i rmat i on s

90 ro s : : Pub l i she r pub pano s ta r t ; //!< Publ i she r

to s t a r t a panorama p i c t u r e

91 ro s : : Pub l i she r pub pano stop ; //!< Publ i she r

to stop a panorama p i c t u r e

92 image t ranspor t : : Subsc r ibe r ∗ sub pano ; //!< Subsc r ibe r

f o r the panorama image t op i c

93 image t ranspor t : : Subsc r ibe r ∗ sub img ; //!< Subsc r ibe r

to the image to p i c

94 a c t i o n l i b : : S impleAct ionCl ient<move base msgs : : MoveBaseAction>∗ ac ; //!< Cl i en t f o r

nav igat i on goa l s

95 ro s : : Pub l i she r pub point marker ; //!< Publ i she r

f o r r v i z goal−cubes

96 v i s u a l i z a t i o n m s g s : : Marker po int marker ; //!< I n t e r n a l

s t o rage f o r r v i z goal−cubes . This i s used to avoid the i n i t i a l i z a t i o n .

97 ro s : : Pub l i she r pub text marker ; //!< Publ i she r

f o r r v i z goal−t ex t

98 v i s u a l i z a t i o n m s g s : : Marker text marker ; //!< I n t e r n a l

s t o rage f o r r v i z goal−t ex t

99

100 // Database

101 // ! A database ob j e c t f o r the connect ion to the Postgresq lDatabase

102 /∗ ! I t ho lds the connect ion , can repo r t about i t s s t a t e and do q u e r i e s . ∗/

103 d a t a b a s e i n t e r f a c e : : Postgresq lDatabase ∗ database ;

104

105 //own−v a r i a b l e s

106 std : : vector<exp lo ra t i on hh : : Explorat ionGoal> e x p l o r a t i o n g o a l s ; //!< I n t e r n a l

s t o rage f o r e x p l o r a t i o n goa l s

107 std : : vector<exp lo ra t i on hh : : Explorat ionGoal> r e c o g n i t i o n g o a l s ; //!< I n t e r n a l

s t o rage f o r f a c e r e c o g n i t i o n goa l s

108 std : : vector<exp lo ra t i on hh : : Explorat ionGoal> o b s t a c l e g o a l s ; //!< I n t e r n a l

s t o rage f o r o b s t a c l e goa l s

109

110 // ! The ordered goa l s a f t e r they have been ordered by ca l cGoa l s ()

111 /∗ ! The f i r s t item o f t h i s vec to r i s always the next goa l . I f i t changes , the new f i r s t

item w i l l be s e t as the next goa l and the s t a t e changes accord ing o f the s t a t e o f

that goa l .

112 ∗/

113 std : : vector<exp lo ra t i on hh : : Explorat ionGoal∗> o r d e r e d g o a l s ;

114 exp lo ra t i on hh : : Explorat ionGoal ∗ c u r r e n t g o a l ; //!< Holds a

po in t e r to the cur rent goa l

115 move base msgs : : MoveBaseGoal move base goa l ; //!< The

nav igat i on goa l sent to the movebase

116

117 // ! Holds a l l d e t e c t i o n s o f the p e r s o n d e t e c t o r

118 /∗ ! This ob j e c t i s f r e q u e n t l y r ep laced by a new array o f d e t e c t i o n s sent from the

p e r s o n d e t e c t o r . Don ’ t change anything or s t o r e any data in the re . Use the

ext rac t ed Explorat ionGoal s or send a p e r s o n d e t e c t o r : : con f i rmat ion message to the

person de t e c t o r i f you need to update anything . ∗/

A Mobile Robot System for Ambient Intelligence

90 APPENDIX A. SOURCE CODE

119 p e r s o n d e t e c t o r : : Detect ionObjectArray d e t e c t i o n s ;

120

121 // ! Holds a l l de tec ted o b s t a c l e s o f the p e r s o n d e t e c t o r

122 /∗ ! This ob j e c t i s f r e q u e n t l y r ep laced by a new array o f d e t e c t i o n s sent from the

p e r s o n d e t e c t o r . Don ’ t change anything or s t o r e any data in the re . Use the

ext rac t ed Explorat ionGoal s or send a p e r s o n d e t e c t o r : : con f i rmat ion message to the

person de t e c t o r i f you need to update anything . ∗/

123 p e r s o n d e t e c t o r : : ObstacleArray o b s t a c l e s ;

124 i n t g o a l c o u n t e r ; //!< Counter to

g ive every new goa l a unique ID

125

126 // ! The name o f the person , we ’ re s ea r ch ing r i g h t now

127 /∗ ! I f the search doesn ’ t have a name , t h i s s t r i n g i s empty ∗/

128 std : : s t r i n g name ;

129

130 // ! Saves the cur rent s t a t e o f the node

131 /∗ ! The node has s e v e r a l s t a t e s de f ined in the exp lo ra t i on hh : : s t a t e enum . Whenever the

s t a t e i s changed , t h i s v a r i a b l e has to be updated . ∗/

132 exp lo ra t i on hh : : s t a t e n o d e s t a t e ;

133 i n t s p e e c h c o n f i r m a t i o n i d ; //!< Counter to

g ive human inter face con f i rmat i on s unique IDs

134

135 // ! The th r e sho ld f o r accept ing o b s t a c l e goa l s

136 /∗ ! Obstac le goa l s get on a s c a l e from 0 to 100 po in t s . I t i s p o s s i b l e to s e t t h i s

th r e sho ld to accept j u s t i n t e r e s t i n g goa l s . Be c a r e f u l s e t t i n g t h i s v a r i a b l e . I f i t

’ s too low the search proce s s w i l l drown in o b s t a c l e goa l s . I t i t ’ s too high i t

w i l l cause f a l s e nega t i v e s . A reasonab l e va lue f o r qu i t e a l o t o f goa l s i s 40 . A

balanced value could be 50 . A high value with some f a l s e nega t i v e s could be 60 .

137 \ sa e r a s e t h r e s h o l d ∗/

138 i n t a c c e p t t h r e s h o l d ;

139

140 // ! The th r e sho ld f o r d e l e t i n g o b s t a c l e goa l s

141 /∗ ! I f an o b s t a c l e turns out to be a wrong d e t e c t i o n or i f i t s s i z e sh r i nk s the

cor re spond ing o b s t a c l e goa l should be de l e t ed . I t i s p o s s i b l e to s e t a t r e s h o l d f o r

that , but be c a r e f u l l s e t t i n g i t . I t i s recommended to keep a d i s t ance (e . g . 10

po in t s) from Explorat ion : : a c c e p t t r e s h o l d in order to avoid goa l s appear ing and

d i sappear ing a l l the time .

142 \ sa a c c e p t t r e s h o l d ∗/

143 i n t e r a s e t h r e s h o l d ;

144

145 // ! A counter f o r the panorama images we take

146 /∗ ! This counter a l s o a f f e c t s the f i l enames ∗/

147 i n t image counter ;

148 sensor msgs : : ImageConstPtr tmp picture ;

149 std : : vector<exp lo ra t i on hh : : img meta> images ; //!< Storage o f

a l l images with metainformation

150 image t ranspor t : : ImageTransport imageTransport ; //!< Needed to

connect to an sensor msgs : : Image stream

151

152 bool image taken ;

153 bool image running ;

154 bool panorama taken ;

155 bool panorama running ;

156

157 //own−f u n c t i o n s are documented in the cpp

158 // ! The c a l l b a c k f o r a new e x p l o r a t i o n goa l sent by the database

159 /∗ ! \param r e c e i v e d g o a l The new goa l r e c e i v e d from the database ∗/

160 void exp lorat ionGoa lCa l lback (const exp lo ra t i on hh : : Explorat ionGoal r e c e i v e d g o a l) ;

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

A.3. EXPLORATION NODE 91

161

162 // ! The c a l l b a c k f o r the p e r s o n d e t e c t o r f a c e d e t e c t i o n s

163 /∗ ! \param rec The r e c e i v e d array o f d e t e c t i o n s ∗/

164 void de t e c t i on sCa l l back (const p e r s o n d e t e c t o r : : Detect ionObjectArray rec) ;

165

166 // ! The c a l l b a c k f o r the p e r s o n d e t e c t o r o b s t a c l e d e t e c t i o n s

167 /∗ ! \param obs The r e c e i v e d array o f o b s t a c l e s ∗/

168 void obs tac l eCa l l back (const p e r s o n d e t e c t o r : : ObstacleArray obs) ;

169

170 // ! The c a l l b a c k f o r the panorama image

171 /∗ ! \param img The r e c e i v e d image ∗/

172 void panoramaCallback (const sensor msgs : : Image : : ConstPtr& img) ;

173

174 // ! The c a l l b a c k f o r the c o l o r image

175 /∗ ! \param img The r e c e i v e d image ∗/

176 void imageCallback (const sensor msgs : : Image : : ConstPtr& img) ;

177

178 // ! This func t i on orde r s a l l g oa l s and c r e a t e s a new o r d e r e d g o a l s vec to r

179 /∗ ! \ r e turn s u c e e s s or not ∗/

180 bool ca l cGoa l s () ;

181

182 // ! This f u n c t i o n s prepares and pu b l i s h e s the in fo rmat ion vor r v i z

183 void showGoals () ;

184

185 // ! Goes through the l a t e s t f a c e d e t e c t i o n array and updates and add goa l s

186 /∗ ! \ sa r e c o g n i t i o n g o a l s d e t e c t i o n s ∗/

187 bool p ro c e s sDe t e c t i on s () ;

188

189 // ! Goes through the l a t e s t o b s t a c l e array and updates and adds the goa l s

190 /∗ ! \ sa o b s t a c l e g o a l s o b s t a c l e s ∗/

191 bool p roc e s sObs tac l e s () ;

192

193 // ! Set s the next goa l o f the o r d e r e d g o a l s vec to r and changes the s t a t e

194 /∗ ! \ sa o r d e r e d g o a l s c u r r e n t g o a l ∗/

195 void setGoal () ;

196

197 // ! Cal led func t i on in the s t a t e CONFIRMATION with c u r r e n t g o a l = OBSTACLE GOAL

198 i n t c o n f i r m a t i o n f a c e () ;

199

200 // ! Cal led func t i on in the s t a t e CONFIRMATION with c u r r e n t g o a l = RECOGNITION GOAL

201 i n t c o n f i r m a t i o n o b s t a c l e () ;

202

203 // ! Cal led func t i on in the s t a t e RECOGNITION

204 i n t r e cogn i t i onGoa l () ;

205

206 // ! Cal led func t i on in the s t a t e EXPLORATION

207 i n t exp lo ra t i onGoa l () ;

208

209 // ! Cal led func t i on in the s t a t e OBSTACLE

210 i n t obs tac l eGoa l () ;

211

212 // ! Cal led func t i on in the s t a t e PANORAMA

213 i n t panorama () ;

214

215 // ! Cal led func t i on in the s t a t e FOUND

216 void found () ;

217

218 // ! Cal led func t i on i f we are in PHOTO

A Mobile Robot System for Ambient Intelligence

92 APPENDIX A. SOURCE CODE

219 void photo () ;

220

221 // ! Used to get a l i s t o f p l a c e s to a task

222 /∗ ! \ r e turn true on s u c c e s s ∗/

223 bool ge tP lace s () ;

224

225 // ! Used to c a l c u l a t e where the robot should go in order to speak with the person

226 /∗ ! \param robot pose The p lace from which the robot saw the i n t e r e s t i n g po int

227 \param i n t p l a c e The i n t e r e s t i n g p lace

228 \param goa l Where the robot should go to f o r a conve r sa t i on

229 \ r e turn s u c c e s s ∗/

230 bool ca l cGoa lP lace (geometry msgs : : Pose∗ robot pose , geometry msgs : : Pose∗ i n t p l a c e ,

geometry msgs : : Pose &goa l) ;

231

232 // ! Check f o r incoming goa l s i f database data i s a v a i l a b l e

233 /∗ ! \ r e turn true i f the new goa l w i l l be accepted ∗/

234 bool checkIncomingGoal (r o b o t c o n t r o l : : RobotTaskGoalConstPtr goal , r o b o t c o n t r o l : :

RobotTaskResult &r e s) ;

235

236 bool c leanupCance l ledGoal (r o b o t c o n t r o l : : RobotTaskResult &r e s) ;

237

238 // ! Cleanup a f t e r f i n i s h i n g the task

239 void f i n i shTask (bool succes s , s td : : s t r i n g r e s) ;

240

241 pub l i c :

242

243 // ! Constructor − i n t i a l i z e s the c l a s s

244 Explorat ion (std : : s t r i n g task server name , std : : s t r i n g task name) ;

245

246 // ! Run loop which runs e n d l e s s

247 i n t run () ;

248 } ;

249

250 #e n d i f // EXPLORATION HH H

Listing A.5: Header file of the search coordination

A.4 Human Interface Node

The human interface node offers basic functionalities for the interaction with a human.

It is self implemented and uses the ’sound play’ package for text-to-speech and ’pocket-

sphinx’ for speech recognition.

1 #i f n d e f HUMAN INTERFACE H

2 #d e f i n e HUMAN INTERFACE H

3 #inc lude <ro s / ro s . h> // gene ra l ro s f u n c t i o n a l i t i e s

4 #inc lude <s t r i ng>

5 #inc lude <std msgs / St r ing . h>

6 #inc lude <human inter face / SpeechRequest . h>

7 #inc lude <human inter face / Recognit ionConf i rmat ion . h>

8 #inc lude <human inter face /YesNoQuestion . h>

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

A.4. HUMAN INTERFACE NODE 93

9 #inc lude <queue> // to s t o r e speech r e c o g n i t i o n

r e s u l t s

10

11 //be c a r e f u l l to modify the . / in c lude / human inter face /enums . h as we l l

12 namespace human inter face {
13 // ! Used to add a time to incoming sen tence s o f the speech r e c o g n i t i o n

14 s t r u c t speechRec {
15 ro s : : Time time ;

16 std : : s t r i n g sentence ;

17 } ;

18 // ! De f ine s the s t a t e s an answer accord ing to the message f i l e

19 enum y e s n o r e s u l t {
20 ANSWERED = 0 ,

21 UNANSWERED = 1 ,

22 WRONGANSWER = 2 ,

23 BLOCKED SPEAKER = 3

24 } ;

25 }
26

27 // ! Stand a lone node to a l low text−to−speech , p roce s s yes−no−que s t i on s and do

con f i rmat i on s

28 c l a s s h u m a n i n t e r f a c e c l a s s

29 {
30 p r i v a t e :

31 // ros−s t u f f

32 ro s : : NodeHandle n ; //!< Mandatory nodehandle

33 ro s : : Pub l i she r pubRobotSounds ; //!< Publ i she r f o r the text−
to−speech soundplay−node

34 ro s : : Subsc r ibe r subSpeechRequests ; //!< Subsc r ibe r to r e c e i v e

text−to−speech r e q u e s t s

35 ro s : : S e r v i c e S e r v e r yesNoServer ; //!< Server f o r yes−no−
que s t i on s

36 ro s : : Subsc r ibe r subSpeechRecog ; //!< Subsc r ibe r to the

recogn i z ed speech outputs o f pocketsphinx

37 ro s : : S e r v i c e S e r v e r con f i rmat i onSe rve r ; //!< Server f o r con f i rmat i on s

38

39 // speech

40 bool s p e a k e r s i n u s e ; //!< True i f the speaker s are

used (probably not need on a s i n g l e thread program

41 std : : queue <human inter face : : speechRec> speech q ; //!< A queue f o r a l l

r e cogn i z ed sen tence s with timestamps

42

43 // ! Forms the s t r i n g to the t t s−message and waits u n t i l i t s s a id

44 /∗ ! \param t e x t t o s a y Text which should be sent ∗/

45 void say (std : : s t r i n g t e x t t o s a y) ;

46

47 // ! Server func t i on f o r con f i rmat ion r e q u e s t s

48 /∗ ! \param req Received reque s t

49 \param r e s Returned r e s u l t to the r eque s t i ng c l i e n t

50 \ r e turn Passed to the c l i e n t o f the r eque s t ∗/

51 bool r e cogn i t i onCon f i rmat i on (human inter face : : Recognit ionConf i rmat ion : : Request &req ,

human inter face : : Recognit ionConf i rmat ion : : Response &r e s) ;

52

53 // ! Server func t i on f o r the yes−no−que s t i on s

54 /∗ ! \param req Received reque s t

55 \param r e s Returned r e s u l t to the ask ing c l i e n t

56 \ r e turn Passed to the c l i e n t o f the r eque s t ∗/

57 bool yesNoQuest ionServ ice (human inter face : : YesNoQuestion : : Request &req , human inter face

A Mobile Robot System for Ambient Intelligence

94 APPENDIX A. SOURCE CODE

: : YesNoQuestion : : Response &r e s) ;

58

59 // ! Implementation o f the yes−no−ques t i on

60 /∗ ! \param ques t i on Question s t r i n g

61 \param answer True i f the answer i s yes

62 \param s t a t u s Fol lowing the message d e f i n i t i o n ∗/

63 void yesNoQuestion (std : : s t r i n g quest ion , bool &answer , i n t &s t a t u s) ;

64

65 // ! Cal lback f o r r e c e i v e d speech r e c o g n i t i o n s

66 /∗ ! \param speech The recogn i z ed sentence ∗/

67 void speechRecogn i t i onCa l lback (const std msgs : : S t r ing speech) ;

68

69 // ! Cal lback f o r speech r e q u e s t s

70 /∗ ! \param req Received reque s t ob j e c t ∗/

71 void speechRequestCal lback (human inter face : : SpeechRequest req) ;

72

73 // ! Function to get a c c e s s to the speaker

74 /∗ ! \ todo Probably u s e l e s s in a s i n g l e threaded system

75 \param max Maximal durat ion to wait

76 \ r e turn true i f a c c e s s i s granted ∗/

77 bool getSpeakers (ro s : : Duration max) ;

78 pub l i c :

79 // ! Constructor i n i t i a l i z i n g s u b s c r i b e r and p u b l i s h e r

80 h u m a n i n t e r f a c e c l a s s () ;

81

82 // ! Runs the c l a s s and never e x i t s except in c r i t i c a l e r r o r s

83 i n t run () ;

84 } ;

85

86 #e n d i f // HUMAN INTERFACE H

Listing A.6: Header of the human interface

A.5 SQL Database Client

A.5.1 Integration of a Database Binding

To integrate a database binding into a module the ROS package ’sql database’ 1 must be

included.

1 #inc lude <d a t a b a s e i n t e r f a c e / p o s t g r e s q l d a t a b a s e . h> // to be ab le to use

the database

2

3 std : : s t r i n g host , port , user , passwd , db ;

1 The latest modified package can be found on: https://github.com/matthiashh/sql_database

The latest upstream package can be found on: https://github.com/

ros-interactive-manipulation/sql_database

The upstream package does not yet include all necessary code

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

https://github.com/matthiashh/sql_database
https://github.com/ros-interactive-manipulation/sql_database
https://github.com/ros-interactive-manipulation/sql_database

A.5. SQL DATABASE CLIENT 95

4 i f (! n . getParam (”/ database /hostname” , host) | |
5 ! n . getParam (”/ database / port ” , port) | |
6 ! n . getParam (”/ database / db user ” , user) | |
7 ! n . getParam (”/ database /db passwd” , passwd) | |
8 ! n . getParam (”/ database /db name” ,db))

9 {
10 ROS ERROR(”Couldn ’ t get a l l parameters f o r the database connect ion . Did

you s t a r t r o b o t c o n t r o l and got a connect ion ?”) ;

11 ROS ERROR(” Al l database r e l a t e d ta sk s won ’ t work . ”) ;

12 }
13 e l s e

14 {
15 ROS INFO(” Trying to connect with host %s , port %s , user %s , passwd %s , db

%s ” , host . c s t r () , port . c s t r () , user . c s t r () , passwd . c s t r () , db . c s t r ()

) ;

16 d a t a b a s e i n t e r f a c e : : Postgresq lDatabase database (host , port , user , passwd , db)

;

17 }

Listing A.7: Code to integrate a database binding into a module. ’n ’ is the ROS

nodehandle of that executable

A.5.2 PostgreSQL Database Header

The PostgreSQL database header is part of the ROS package ’sql database’ and has been

modified and enhanced in order to fit the requirements of the project.

1 /∗ ∗∗
2 ∗ Software L icense Agreement (BSD License)

3 ∗
4 ∗ Copyright (c) 2009 , Willow Garage , Inc .

5 ∗ Al l r i g h t s r e s e rved .

6 ∗
7 ∗ R e d i s t r i b u t i o n and use in source and binary forms , with or without

8 ∗ modi f i ca t i on , are permitted provided that the f o l l o w i n g c o n d i t i o n s

9 ∗ are met :

10 ∗
11 ∗ ∗ R e d i s t r i b u t i o n s o f source code must r e t a i n the above copyr ight

12 ∗ not i ce , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g d i s c l a i m e r .

13 ∗ ∗ R e d i s t r i b u t i o n s in binary form must reproduce the above

14 ∗ copyr ight not i ce , t h i s l i s t o f c o n d i t i o n s and the f o l l o w i n g

15 ∗ d i s c l a i m e r in the documentation and/ or other m a t e r i a l s provided

16 ∗ with the d i s t r i b u t i o n .

17 ∗ ∗ Neither the name o f the Willow Garage nor the names o f i t s

18 ∗ c o n t r i b u t o r s may be used to endorse or promote products der ived

19 ∗ from t h i s so f tware without s p e c i f i c p r i o r wr i t t en permis s ion .

20 ∗
21 ∗ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

A Mobile Robot System for Ambient Intelligence

96 APPENDIX A. SOURCE CODE

22 ∗ ”AS IS ” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

23 ∗ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

24 ∗ FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

25 ∗ COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

26 ∗ INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

27 ∗ BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ;

28 ∗ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

29 ∗ CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT

30 ∗ LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

31 ∗ ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

32 ∗ POSSIBILITY OF SUCH DAMAGE.

33 ∗∗ ∗/

34

35 // Author (s) : Matei C i o c a r l i e

36

37 #i f n d e f POSTGRESQL DATABASE H

38 #d e f i n e POSTGRESQL DATABASE H

39

40 #inc lude <vector>

41 #inc lude <s t r i ng>

42 #inc lude < l i s t >

43 #inc lude <boost / sha r ed pt r . hpp>

44

45 // f o r ROS e r r o r messages

46 #inc lude <ro s / ro s . h>

47 #inc lude <yaml−cpp/yaml . h>

48

49 #inc lude ” d a t a b a s e i n t e r f a c e / d b c l a s s . h”

50 #inc lude ” d a t a b a s e i n t e r f a c e / d b f i l t e r s . h”

51

52 //A b i t o f an invo lved way to forward d e c l a r e PGconn , which i s a typede f

53 s t r u c t pg conn ;

54 typede f s t r u c t pg conn PGconn ;

55

56 namespace d a t a b a s e i n t e r f a c e {
57

58 // t h i s i s passed over to a func t i on c a l l e d ho ld ing a l l the in f o rmat i ons which should be

submitted

59 s t r u c t FunctionCallObj {
60 std : : s t r i n g name ;

61 std : : vector<std : : s t r i ng> params ;

62 } ;

63

64 // t h i s i s used to pass the in fo rmat ion s to r ed in a r e c e i v e d n o t i f i c a t i o n event

65 s t r u c t N o t i f i c a t i o n {
66 std : : s t r i n g channel ;

67 i n t s end ing p id ;

68 std : : s t r i n g payload ;

69 } ;

70

71 c l a s s Postgresq lDatabaseConf ig

72 {
73 p r i v a t e :

74 std : : s t r i n g password ;

75 std : : s t r i n g u s e r ;

76 std : : s t r i n g hos t ;

77 std : : s t r i n g po r t ;

78 std : : s t r i n g dbname ;

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

A.5. SQL DATABASE CLIENT 97

79

80 pub l i c :

81 Postgresq lDatabaseConf ig () { }
82

83 std : : s t r i n g getPassword () const { r e turn password ; }
84 std : : s t r i n g getUser () const { r e turn u s e r ; }
85 std : : s t r i n g getHost () const { r e turn hos t ; }
86 std : : s t r i n g getPort () const { r e turn por t ; }
87 std : : s t r i n g getDBname () const { r e turn dbname ; }
88

89 f r i e n d void operator >>(const YAML: : Node &node , Postgresq lDatabaseConf ig &opt ions) ;

90 } ;

91

92 /∗ !

93 ∗\ b r i e f Loads YAML doc in to c o n f i g u r a t i o n params . Throws YAML: : ParserExcept ion i f keys

miss ing .

94 ∗/

95 i n l i n e void operator >>(const YAML: : Node& node , Postgresq lDatabaseConf ig &opt ions)

96 {
97 node [”password”] >> opt ions . password ;

98 node [” user ”] >> opt ions . u s e r ;

99 node [” host ”] >> opt ions . ho s t ;

100 node [” port ”] >> opt ions . po r t ;

101 node [”dbname”] >> opt ions . dbname ;

102 }
103

104 c l a s s Postgresq lDatabase

105 {
106 protec ted :

107 void pgMDBconstruct (std : : s t r i n g host , s td : : s t r i n g port , s td : : s t r i n g user ,

108 std : : s t r i n g password , std : : s t r i n g dbname) ;

109

110 // ! The PostgreSQL database connect ion we are us ing

111 PGconn∗ connec t i on ;

112

113 // ! Helper c l a s s that ac t s l i k e an auto ptr f o r a PGresult , with a l i t t l e more cleanup

114 c l a s s PGresultAutoPtr ;

115

116 // beg inTransact ion s e t s t h i s f l a g . endTransact ion c l e a r s i t .

117 bool i n t r a n s a c t i o n ;

118

119 // ! S to r e s a l l channels , which the in s t ance l i s t e n s

120 std : : l i s t <std : : s t r i ng> channe l s ;

121

122 // ! Gets the text value o f a g iven v a r i a b l e

123 bool ge tVar i ab l e (std : : s t r i n g name , std : : s t r i n g &value) const ;

124

125 // ! I s s u e s the ” r o l l b a c k ” command to the database

126 bool r o l l b a c k () ;

127

128 // ! I s s e s the ” begin ” command to the database

129 bool begin () ;

130

131 // ! I s s u e s the ”commit” command to the database

132 bool commit () ;

133

134 // ! Re t r e i v e s the r e s u l t o f a func t i on c a l l in a c e r t a i n type

135 template <c l a s s T>

A Mobile Robot System for Ambient Intelligence

98 APPENDIX A. SOURCE CODE

136 bool ca l lFunc t i on (std : : vector< boost : : shared ptr<T> > &objVec , const T& example ,

FunctionCallObj paramVec) const ;

137

138 // ! Helper func t i on f o r ca l lFunct ion , s e pa ra t e s SQL from (templated) i n s t a n t i a t i o n

139 bool cal lFunct ionRawResult (const DBClass ∗example , std : : vector<const DBFieldBase∗> &

f i e l d s ,

140 std : : vector<int> &column ids , FunctionCallObj paramVec ,

141 boost : : shared ptr<PGresultAutoPtr> &r e s u l t , i n t &num tuples)

const ;

142

143 // ! Re t r e i v e s the l i s t o f o b j e c t s o f a c e r t a i n type from the database

144 template <c l a s s T>

145 bool g e t L i s t (std : : vector< boost : : shared ptr<T> > &vec , const T& example , s td : : s t r i n g

where c lause) const ;

146

147 // ! Helper func t i on f o r ge tL i s t , s e pa ra t e s SQL from (templated) i n s t a n t i a t i o n

148 bool getListRawResult (const DBClass ∗example , std : : vector<const DBFieldBase∗> &f i e l d s ,

149 std : : vector<int> &column ids , std : : s t r i n g where c lause ,

150 boost : : shared ptr<PGresultAutoPtr> &r e s u l t , i n t &num tuples) const ;

151

152 // ! Helper func t i on f o r ge tL i s t , s e pa ra t e s SQL from (templated) i n s t a n t i a t i o n

153 bool populateL i s tEntry (DBClass ∗ entry , boost : : shared ptr<PGresultAutoPtr> r e s u l t , i n t

row num ,

154 const std : : vector<const DBFieldBase∗> &f i e l d s ,

155 const std : : vector<int> &column ids) const ;

156

157 // ! Returns the ’ c u r r v a l ’ f o r the database sequence i d e n t i f i e d by name

158 bool getSequence (std : : s t r i n g name , std : : s t r i n g &value) ;

159

160 // ! Helper func t i on f o r i n s e r t i n g an in s t ance in to the database

161 bool i n s e r t I n t o T a b l e (std : : s t r i n g table name , const std : : vector<const DBFieldBase∗> &

f i e l d s) ;

162

163 // ! Helper func t i on that d e l e t e s a row from a t ab l e based on the value o f the s p e c i f i e d

f i e l d

164 bool deleteFromTable (std : : s t r i n g table name , const DBFieldBase ∗ k e y f i e l d) ;

165

166 pub l i c :

167 // ! Attempts to connect to the s p e c i f i e d database

168 Postgresq lDatabase (std : : s t r i n g host , s td : : s t r i n g port , s td : : s t r i n g user ,

169 std : : s t r i n g password , std : : s t r i n g dbname) ;

170

171 // ! Attempts to connect to the s p e c i f i e d database

172 Postgresq lDatabase (const Postgresq lDatabaseConf ig &c o n f i g) ;

173

174

175 // ! Closes the connect ion to the database

176 ˜ Postgresq lDatabase () ;

177

178 // ! Returns t rue i f the i n t e r f a c e i s connected to the database and ready to go

179 bool isConnected () const ;

180

181 // ! Reconnects to the database . For example i f the connect ion i s l o s t

182 void reconnect () ;

183

184 //−−−−−−− gene ra l q u e r i e s that should work r e g a r d l e s s o f the datatypes a c t u a l l y being

used −−−−−−
185

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

A.5. SQL DATABASE CLIENT 99

186 //−−−−−−− c a l l i n g a user de f ined func t i on −−−−−−−
187 template <c l a s s T>

188 bool ca l lFunc t i on (std : : vector< boost : : shared ptr<T> > &objVec , std : : s t r i n g func) const

189 {
190 T example ;

191 FunctionCallObj paramVec ;

192 paramVec . name = func ;

193 r e turn ca l lFunct ion<T>(objVec , example , paramVec) ;

194 }
195

196 template <c l a s s T>

197 bool ca l lFunc t i on (std : : vector< boost : : shared ptr<T> > &objVec , FunctionCallObj paramVec

) const

198 {
199 T example ;

200 r e turn ca l lFunct ion<T>(objVec , example , paramVec) ;

201 }
202

203

204 //−−−−−−− r e t r i e v a l without examples −−−−−−−
205 template <c l a s s T>

206 bool g e t L i s t (std : : vector< boost : : shared ptr<T> > &vec) const

207 {
208 T example ;

209 r e turn ge tL i s t<T>(vec , example , ””) ;

210 }
211 template <c l a s s T>

212 bool g e t L i s t (std : : vector< boost : : shared ptr<T> > &vec , const F i l t e r C l a u s e c l a u s e) const

213 {
214 T example ;

215 r e turn ge tL i s t<T>(vec , example , c l a u s e . c l a u s e) ;

216 }
217 template <c l a s s T>

218 bool g e t L i s t (std : : vector< boost : : shared ptr<T> > &vec , std : : s t r i n g where c lause) const

219 {
220 T example ;

221 r e turn ge tL i s t<T>(vec , example , where c lause) ;

222 }
223

224 //−−−−−−− r e t r i e v a l with examples −−−−−−−
225 template <c l a s s T>

226 bool g e t L i s t (std : : vector< boost : : shared ptr<T> > &vec , const T &example) const

227 {
228 r e turn ge tL i s t<T>(vec , example , ””) ;

229 }
230 template <c l a s s T>

231 bool g e t L i s t (std : : vector< boost : : shared ptr<T> > &vec , const T &example , const

F i l t e r C l a u s e c l a u s e) const

232 {
233 r e turn ge tL i s t<T>(vec , example , c l a u s e . c l a u s e) ;

234 }
235

236 // ! Counts the number o f i n s t a n c e s o f a c e r t a i n type in the database

237 bool countL i s t (const DBClass ∗example , i n t &count , std : : s t r i n g where c lause) const ;

238

239 // ! templated implementation o f count l i s t that works on f i l t e r c l a u s e s .

240 template <typename T>

241 bool countL i s t (i n t &count , const F i l t e r C l a u s e c l a u s e=F i l t e r C l a u s e ()) const

A Mobile Robot System for Ambient Intelligence

100 APPENDIX A. SOURCE CODE

242 {
243 T example ;

244 r e turn countL i s t (&example , count , c l a u s e . c l a u s e) ;

245 }
246

247 // ! Writes the value o f one p a r t i c u l a r f i e l d o f a DBClass to the database

248 bool saveToDatabase (const DBFieldBase∗ f i e l d) ;

249

250 // ! Reads the value o f one p a r t i c u l a r f i e l d s o f a DBClass from the database

251 bool loadFromDatabase (DBFieldBase∗ f i e l d) const ;

252

253 // ! I n s e r t s a new in s tance o f a DBClass in to the database

254 bool in s e r t In toDatabase (DBClass∗ i n s t ance) ;

255

256 // ! De l e t e s an in s t anc e o f a DBClass from the database

257 bool deleteFromDatabase (DBClass∗ i n s t ance) ;

258

259 // ! Enables l i s t e n i n g to a s p e c i f i e d channel

260 bool l i s tenToChannel (std : : s t r i n g channel) ;

261

262 // ! stop l i s t e n i n g to a s p e c i f i e d channel

263 bool unl istenToChannel (std : : s t r i n g channel) ;

264

265 // ! Checks f o r a n o t i f i c a t i o n

266 bool checkNot i fy (N o t i f i c a t i o n &no) ;

267

268 // ! Checks f o r a n o t i f i c a t i o n , but i d l e s and e x i t s when we have one

269 bool che ckNot i f y Id l e (N o t i f i c a t i o n &no) ;

270

271 } ;

272

273 template <c l a s s T>

274 bool Postgresq lDatabase : : c a l lFunc t i on (std : : vector< boost : : shared ptr<T> > &objVec ,

275 const T &example , FunctionCallObj paramVec) const

276 {
277 //we w i l l s t o r e here the f i e l d s to be r e t r i e v e d r e t r i e v e from the database

278 std : : vector<const DBFieldBase∗> f i e l d s ;

279 //we w i l l s t o r e here t h e i r index in the r e s u l t returned from the database

280 std : : vector<int> co lumn ids ;

281 boost : : shared ptr<PGresultAutoPtr> r e s u l t ;

282

283 i n t num tuples = 0 ;

284

285 i f (! ca l lFunct ionRawResult (&example , f i e l d s , column ids , paramVec , r e s u l t , num tuples))

286 {
287 r e turn f a l s e ;

288 }
289

290 objVec . c l e a r () ;

291 i f (! num tuples)

292 {
293 r e turn t rue ;

294 }
295

296 // parse the raw r e s u l t and populate the l i s t

297 f o r (i n t i =0; i<num tuples ; i++)

298 {
299 boost : : shared ptr<T> entry (new T) ;

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

A.5. SQL DATABASE CLIENT 101

300 i f (populateL i s tEntry (entry . get () , r e s u l t , i , f i e l d s , co lumn ids))

301 {
302 objVec . push back (entry) ;

303 }
304 }
305

306 r e turn t rue ;

307 }
308

309

310 /∗ ! The datatype T i s expected to be der ived from DBClass .

311

312 The example i s used only to dec ide which f i e l d s should be r e t r i e v e d from the database .

313 Note that the primary key f i e l d i s ALWAYS r e t r i e v e d ; you can expect the returned l i s t

314 to have the primary key s e t . Any other f i e l d s are r e t r i e v e d ONLY i f they are marked

315 with syncFromDatabase in the example .

316

317 Note that the example i s not used to dec ide which ins tanced to r e t r i e v e (but only which

318 ∗ f i e l d s ∗ o f the i n s t a n c e s) . To r e t r i e v e only c e r t a i n f i e l d s , you must use the

where c lause .

319 This i s not id ea l , as much f u n c t i o n a l i t y i s hidden from the user who i s not exposed

320 to SQL syntax . For those f u n c t i o n s where the e x t e r n a l user needs the where c lause (even

i f

321 he does not know i t) we are c u r r e n t l y prov id ing pub l i c wrappers , but that might change

in

322 the fu tu r e .

323

324 The s i g n i f i c a n t d i f f e r e n c e between t h i s func t i on and the ve r s i o n that reads a

325 c e r t a i n f i e l d i s that t h i s func t i on c r e a t e s new i n s t a n c e s o f the DBClass and g i v e s them

326 the r i g h t va lue s o f the primary key . The func t i on that reads a c e r t a i n f i e l d expect s

the

327 i n s t ance o f DBClass to a l r eady ex i s t , and i t s primary key f i e l d to be s e t c o r r e c t l y

328 a l r eady .

329 ∗/

330 template <c l a s s T>

331 bool Postgresq lDatabase : : g e t L i s t (std : : vector< boost : : shared ptr<T> > &vec ,

332 const T &example , std : : s t r i n g where c lause) const

333 {
334 //we w i l l s t o r e here the f i e l d s to be r e t r i e v e d r e t r i e v e from the database

335 std : : vector<const DBFieldBase∗> f i e l d s ;

336 //we w i l l s t o r e here t h e i r index in the r e s u l t returned from the database

337 std : : vector<int> co lumn ids ;

338 boost : : shared ptr<PGresultAutoPtr> r e s u l t ;

339

340 i n t num tuples ;

341 //do a l l the heavy l i f t i n g o f querying the database and g e t t i n g the raw r e s u l t

342 i f (! getListRawResult (&example , f i e l d s , column ids , where c lause , r e s u l t , num tuples))

343 {
344 r e turn f a l s e ;

345 }
346

347 vec . c l e a r () ;

348 i f (! num tuples)

349 {
350 r e turn true ;

351 }
352

353 // parse the raw r e s u l t and populate the l i s t

A Mobile Robot System for Ambient Intelligence

102 APPENDIX A. SOURCE CODE

354 f o r (i n t i =0; i<num tuples ; i++)

355 {
356 boost : : shared ptr<T> entry (new T) ;

357 i f (populateL i s tEntry (entry . get () , r e s u l t , i , f i e l d s , co lumn ids))

358 {
359 vec . push back (entry) ;

360 }
361 }
362 r e turn t rue ;

363 }
364

365

366 }// namespace

367

368 #e n d i f

Listing A.8: Header of the modified database binding

A.5.3 Return object for tasks

This is the full object definition of the object which is needed to get the new tasks from

the database. The returned table of a call for new tasks is stored in a vector of this object.

For every kind of database call such an object has to be defined according to the returned

columns and the expected variable types.

1 #inc lude <s t r i ng>

2 #inc lude <vector>

3 #inc lude <d a t a b a s e i n t e r f a c e / d b c l a s s . h>

4

5 c l a s s returnTasks : pub l i c d a t a b a s e i n t e r f a c e : : DBClass

6 {
7 pub l i c :

8 d a t a b a s e i n t e r f a c e : : DBField<int> i d ;

9 d a t a b a s e i n t e r f a c e : : DBField<int> t a s k i d ;

10 d a t a b a s e i n t e r f a c e : : DBField<std : : s t r i ng> task name ;

11 d a t a b a s e i n t e r f a c e : : DBField<int> p r i o r i t y ;

12

13 returnTasks () :

14 i d (d a t a b a s e i n t e r f a c e : : DBFieldBase : :TEXT, th i s , ” key column ” , ” p l a c e s2 ” ,

t rue) ,

15 t a s k i d (d a t a b a s e i n t e r f a c e : : DBFieldBase : :TEXT, th i s , ” t a s k i d ” , ” p l a c e s2 ”

, t rue) ,

16 task name (d a t a b a s e i n t e r f a c e : : DBFieldBase : :TEXT, th i s , ” task name ” , ”

p l a c e s2 ” , t rue) ,

17 p r i o r i t y (d a t a b a s e i n t e r f a c e : : DBFieldBase : :TEXT, th i s , ” p r i o r i t y ” , ”

p l a c e s2 ” , t rue)

18 {

Institute for Information Processing Technology - ITIV

Karlsruher Institute of Technology - KIT

A.5. SQL DATABASE CLIENT 103

19 p r i m a r y k e y f i e l d = &i d ;

20 f i e l d s . push back(& t a s k i d) ;

21 f i e l d s . push back(&task name) ;

22 f i e l d s . push back(& p r i o r i t y) ;

23 }
24 } ;

Listing A.9: Definition of the object returned by the database binding on a call for new

tasks

A Mobile Robot System for Ambient Intelligence

	Introduction
	Motivation
	Scenario
	Assignment
	Conventions
	Contributions

	Background and Related Work
	Robots in Healthcare and Ambient Assisted Living
	Ambient Intelligence and Ambient Assisted Living
	Smart Home as an Active Database
	Smart Bedroom

	Materials and Tools
	Robot Operating System (ROS)
	Building blocks of ROS
	Capabilities of ROS

	Robot Turtlebot 2
	Kinect Camera

	Solution and Implementation
	System Overview
	Navigation and Mapping
	Requirements
	Solutions
	Implementation

	Main Robot Control
	Requirements
	Solutions
	Implementation

	Database Connection
	Requirements
	Solutions
	Implementation

	Person Detection
	Requirements
	Solutions
	Implementation

	Module for Search Coordination
	Requirements
	Solutions
	Implementation

	Human Interface
	Requirements
	Solutions
	Implementation

	Results
	Setup of the Experiment
	Scenarios
	Hardware Setup
	Reasons for this Distribution

	Results of the Experiment
	No Person Scenario
	Chair Scenario
	Lying Scenario
	Wall Scenario

	Main Robot Control
	Database Binding
	Person Detection
	Obstacle Approach
	Face Recognition

	Module for Search Coordination
	Human Interface
	Hardware
	Turtlebot
	Laptops

	Overall Result

	Discussion and Conclusion
	Discussion
	Main Robot Control
	Database Connection
	Finding a Person
	Module for the Search Coordination
	Human Interface

	Conclusion
	Outlook

	Literature
	Source Code
	Robot Control Node
	Robot Control Simple Client

	Person Detector Node
	Exploration Node
	Human Interface Node
	SQL Database Client
	Integration of a Database Binding
	PostgreSQL Database Header
	Return object for tasks

