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Abstract

The paper develops a dynamical systems approach to study asset bubbles in OLG
economies with stochastic production. We derive necessary and sufficient conditions
for bubbly equilibria to exist and characterize the maximum sustainable bubble.
Even if they exist, bubbles are temporary and the economy converges to a bubbleless
equilibrium with probability one. We also demonstrate that the existence conditions
can be relaxed if frictions such as borrowing constraints are introduced.
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Introduction

When do asset prices exceed the fundamental value of the underlying asset? This phe-
nomenon of a so-called asset bubble has long been studied in the literature. Numerous
papers provide conditions under which bubbles are compatible with rational, fully in-
formed investors and study their consequences for the real economy. A common feature
of almost all these studies, however, is that they employ a deterministic framework. The
main contribution of the present paper is to study asset bubbles in stochastic economies
where the production side is subjected to random productivity shocks. Using methods from
dynamical systems theory, we derive conditions under which asset bubbles exist in a broad
class of such economies. As the formal approach to be developed seems applicable also in
other and more general situations, the paper also offers a methodological contribution.

A natural framework to study asset bubbles and their equilibrium implications is the class
of overlapping generations (OLG) models on which the present paper will exclusively focus.
A first class of models in this literature studies monetary bubbles corresponding to valued
fiat money in models of pure exchange. Early studies of deterministic exchange economies
may be found in Gale (1973), Okuno & Zilcha (1983), or Beneviste & Cass (1986). These
papers show that monetary bubbles can only exist if the non-monetary equilibrium is non-
optimal. The results were generalized, e.g., in Koda (1984), Manuelli (1990), or Aiyagari
& Peled (1991) to stochastic exchange economies where incomes follow exogenous random
processes and consumers may have access to an intertemporal storage technology. The
analysis to be presented in this paper will show that the existence conditions in Manuelli
(1990) are structurally similar to the ones for a stochastic production economy.
Conceptually, most of the previous and related approaches focus on stationary equilibria
for which they offer abstract existence results. Issues such as dynamic stability and the
role played by initial conditions are typically not studied. A notable exception is Rochon
& Polemarchakis (2006) who extend the deterministic OLG model with pure exchange to
include a financial sector that issues money in exchange for debt and conduct a full-fledged
analysis of the resulting dynamics. The present paper attempts to conduct a study in the
same spirit for a stochastic economic environment.

A second class of models includes an explicit description of the production process and the
accumulation of capital. This permits to study the impact of asset bubbles on production
and investment in the economy. For these economies, Tirole (1985) showed that asset
bubbles occur if and only if the bubbleless equilibrium is inefficient due to an overaccu-
mulation of capital. In situations where the bubbleless equilibrium does not suffer from
over-accumulation, bubbles may still exist in the presence of frictions. Michel & Wigniolle
(2003) study a monetary OLG model with production where consumers hold money due to
cash-in advance constraints. They show that temporary bubbles may exist even if the mon-
eyless equilibrium fails to exhibit overaccumulation of capital. Similarly, Kunieda (2008)
shows that asset bubbles can emerge in economies with overaccumulation where consumers
face borrowing constraints. Below we will discuss how the deterministic results in Kunieda
(2008) extend to the stochastic setting of this paper.

An issue closely related to the emergence of a bubble is the sustainability of governmental
debt which may be viewed as a bubble rolled over from generation to generation. The
differences between debt and bubbles are thoroughly exhibited in de la Croix & Michel
(2002, p.212). Starting with the seminal paper by Diamond (1965), several papers focus



on the sustainability and optimality of government debt, see de la Croix & Michel (2002)
for a survey. Typically, however, theses studies are also placed in a deterministic setting.
An exception may be found in Bertocchi (1994), who studies a stochastic OLG economy
with government debt offering a safe return. Her model constitutes a special case of the
framework to be developed in this paper and we will comment on her findings below.

To account for aggregate fluctuations of the type observed over the business cycle, most
macroeconomic models incorporate random shocks, in particular productivity shocks. For
OLG production economies, such a setup was introduced in Wang (1993) and further
generalized, e.g., in Wang (1994), Morand & Reffett (2007), McGovern et al. (2013), or
Hillebrand (2014). Extending the previous studies of bubbles to such a random environment
seems important not only to incorporate business cycle fluctuations, but also because the
results for deterministic economies indicate that bubbles are relatively fragile and their
emergence is subject to initial conditions. Thus, it seems important to analyze whether
the deterministic findings are robust and continue to hold in a random setting.

To the author’s best knowledge, a general study of bubbles in OLG economies with random
production and endogenous capital accumulation is still missing in the literature. Filling
this gap is therefore the primary contribution of this paper. While the fundamental side of
the economy will be similar to Wang (1993), we will argue below how and why the results
and methods should also carry over to more general classes of economies. Conceptually, the
paper develops and applies a dynamical systems approach suitably adapted to a random
environment. This preserves the main strength of Tirole (1985) whose existence conditions
are essentially based on the dynamic properties of the equilibrium mapping. In particular,
the saddle-path towards the bubbly steady state defines the maximum sustainable bubble
under which the state dynamics remain bounded in Tirole’s model. In the stochastic case
studied here, matters are considerably more complicated as the equilibrium bubble must
be sustainable under any sequence of shocks. For this reason, the existence conditions
derived in this paper are based on the dynamic properties of an entire family of equilib-
rium mappings parameterized in the shock. This structure provides a natural extension
of the deterministic dynamical system in Tirole (1985) to the present stochastic setting.
As a consequence, the existence conditions derived below become natural and intuitive
generalizations of the ones in Tirole (1985) which can be recovered as a special case.

From a purely methodological standpoint, the paper analyzes equilibria which are gener-
ated by randomly mixing a family of mappings each of which possesses an interior fixed
point which is saddle-path stable. This is a situation that arises in many macroeconomic
models (for example, in the stochastic neoclassical growth model in state-space form) and
the approach to be developed delivers simple and geometrically intuitive conditions under
which such a system generates bounded dynamics and possesses stable, self-supporting
sets. Using the stable manifold theorem (cf. Nitecki (1971)), the key ingredient is a com-
plete characterization of the regions in the state space in which each mapping generates
stationary dynamic behavior. Thus, great care is placed on a clean mathematical char-
acterization of these regions (c¢f. Lemma 3.4 in Section 3). The methods to be employed
seem applicable also in other and more general situations and could, therefore, be of some
general methodological interest quite independent of the particular theme of this paper.

The analysis of this paper unfolds as follows. In a first step, we impose restrictions under
which bubbly equilibria are generated by randomly mixing a family of dynamic mappings
on a suitably defined state space. This structure provides the basis for applying dynamical



systems theory to study bubbly equilibria. In a second step, we characterize the dynamic
properties of each member of this family and whether it displays expansive or stationary
behavior. This permits to completely characterize the model’s dynamic behavior under
arbitrary sequences of shocks and for different initial conditions. In particular, it will allow
us to derive necessary and sufficient conditions for bubbly equilibria to exist and derive an
upper bound on the maximum initial bubble that can be sustained over time under any
sequence of shocks. Essentially, our existence conditions require the state dynamics to be
exclusively generated by stationary dynamic mappings each of which generates bounded
dynamics on a certain subset of the state space. The intersection of these ranges defines
an upper bound for the maximum initial bubble that can be sustained over time just as in
Tirole (1985). We also show that even if they exist, bubbles are temporary in the sense that
generically the economy converges to a bubbleless situation with probability one. Finally,
we demonstrate that our existence conditions can be relaxed if frictions such as borrowing
constraints are introduced.

The paper is organized as follows. Section 1 introduces the model. Section 2 derives the
structure of equilibria which are generated by a family of mappings whose dynamic proper-
ties are analyzed in Section 3. Section 4 establishes necessary and sufficient conditions for
bubbly equilibria to exist and discusses various extensions of the model. Section 5 modifies
the previous setup to study the role of borrowing constraints. Section 6 concludes. All
proofs are placed in the Mathematical Appendix.

1 The Model

Production sector.

The production side consists of a representative firm which operates a linear-homogeneous
technology to produce an all-purpose consumption good using labor and capital as inputs.
In addition, the production process is subjected to an exogenous TFP-shock ¢; in each
period ¢ > 0. At equilibrium, labor supply will be constant and normalized to unity such
that per-capita output y; is determined from capital k; and the current shock according to
the intensive form technology f: R, — R,

yr = &1 f (k). (1)

The function f is C? with f(0) = 0 and derivatives satisfying f” < 0 < f’ and the
Inada conditions limg o f'(k) = oo and limy_, f'(k) = 0. The shock process {e;};>0
consists of independent random variables where each ¢; is distributed according to the
probability measure v supported on the compact set £ C R,,. This structure induces
a probability space (2, F,P) on which all random variables are defined and a filtration
{Fi}i>0 to which all equilibrium processes considered below are adapted.! Denote by
E,[-] := E[-|F] the expectations operator conditional on the information represented by F;
and E,[-] the expectation with respect to 1.2

!Formally, a stochastic process {& }1>0 taking values in some set = C RM is adapted to the filtration
defined if each random variable & : 2 — = is Borel-measurable with respect to F; and hence depends
only on shocks up to time t.

2In the following analysis, all equalities or inequalities involving random variables are assumed to hold
P-almost surely without further notice. Measurability of mappings always refers to the Borel o algebras.



Under profit maximization and perfect competition on factor markets, the equilibrium
wage w; and capital return r; are determined by the standard formulas

wy = Wlkie) :i=e[f (k) — kof' (kb)) (2a)
Rk er) :=euf' (k). (2b)

T

Consumption sector.

The consumption sector consists of overlapping generations of homogeneous consumers
who live for two periods. Abstracting from population growth, the size of each generation
can be normalized to one. A young consumer in period ¢ is endowed with one unit of labor
time which is supplied inelastically to the labor market. Old consumers own the existing
stock of capital which they supply to the production process.

A young consumer in period ¢ > 0 earns labor income w; > 0 part of which is consumed
and the remainder invested. For the latter purpose, the consumer can invest in capital
which yields the random capital return r; ;. In addition, a bubbly asset is available which
promises the random return 7}, ; to be paid in £ + 1 per unit invested at time ¢.

Let s; and b; be the investments in capital and the bubble at time ¢ > 0. These choices
define first period consumption c,} = w; — by — s; while second period consumption is
given by the random variable c? 1 = by i + 5;7441. Here the randomness enters through
the uncertain returns on both investments which are treated as given random variables
in the decision. As in Wang (1993), young consumers evaluate the expected utility of
different consumption plans (¢;,¢f,,) using an additive von-Neumann Morgenstern utility
U(cY, c®) = u(c¥) +v(c°). Each z € {u,v} is C* with derivatives satisfying 2" < 0 < 2’ and
the one-sided Inada condition lim.\ o 2'(¢c) = oo.

Each young consumer chooses investment to maximize her expected lifetime utility. The
decision problem reads:

rrgax{u(wt —b—3s)+E [v(r;rl b+ 71 s)] ‘ s>0,b+s< wt}. (3)
,8

Note that no short-selling constraints on b are imposed at the individual level. Thus, any
solution to (3) satisfies the corresponding first order conditions.

At equilibrium, the investment in capital s; determines next period’s capital stock

kiyr = s4. (4)

Denote by b; > 0 the value of the bubble in period ¢ > 0. No resources are added or
withdrawn from outside such that the bubble must be completely self-financing, i.e.

bt+1 = ’I“:+1 bt, t Z 0. (5)

Old consumers in period ¢ > 0 simply consume the proceeds of their investments in bubbles
and capital made during the previous period.

Equilibrium.

The economy is & = (f, v, u,v) plus initial conditions. The following definition of a bubbly
equilibrium reconciles market clearing, individual optimality, and rational expectations.
Note that the Inada conditions imposed above ensure an interior equilibrium allocation of
capital and consumption of both generations.



Definition 1
Given by > 0, kg > 0, and g9 € &, an equilibrium of & is an adapted stochastic process
{wt, T, 77, by, 51, kt+1}t>0 of non-negative values which satisfies the following for each t > 0:

(i) The pair (b, s;) solves (3) at the given wage and returns while k;,, follows from (4).

(ii) Factor prices w; and r; are determined by (2a,b) and b; evolves according to (5).

The equilibrium is called bubbly, if by > 0 and bubbleless if by = 0 for all t > 0.

Additional restrictions.
The subsequent analysis will frequently impose additional restrictions on the economy &.
As these conditions are somewhat stronger than the ones imposed above, it will explicitly
be indicated when they are used.
Denote by Ej(z) := |zh'(z)/h(z)], = € D C R the (absolute) elasticity of a differentiable
function i : D — R\{0}. Additional restrictions on the utility functions u and v are:
(Ul) Ey, <1 (U2) (}Lrglocv'(c) =oco (U3)Ey,=6 (U4 E, <1 (Ub) clg(r)lou'(c) =0.
Examples satisfying (U1) and (U2) are power utility v(c) = 0~ c?, 0 < # < 1, or CES utility
v(e) =[1—0+6c°]5,0 <0 < 1,3 >0. While (U2) excludes logarithmic utility, the
first example shows that this case can still be approximated by letting # — 0. Under (U3),
second period utility v exhibits constant relative risk aversion while (U4) is automatically
satisfied if (U1) holds and v(c) = Bu(c), > 0. The restriction (U5) on the boundary
behavior of u' is standard.
Additional restrictions imposed on the production technology f are the following:
Restriction (T1) is known as capital income monotonicity and widely used in OLG models
with production, cf. Wang (1993), de la Croix & Michel (2002), or Hauenschild (2002).
It holds, e.g., for a Cobb-Douglas technology f(k) = k% 0 < « < 1. The second re-
striction (T2) ensures that labor income throughout exceeds capital income, which is a
well-established empirical regularity. In the Cobb-Douglas case, it holds if a < %

2 Equilibrium Dynamics

Risk structure of bubbles.

While the general definition of a bubbly equilibrium from the previous section imposes
no restrictions on the risk structure of the return process {r}}:>o, the following analysis
assumes that the bubble return offered at time ¢ is of the following form

ri = R (25 6041) = 0(err) 2, t>0. (6)

Here 2z, > 0 is determined in period ¢ and ¥ : £ — Ry is a bounded measurable function
which defines the risk-structure of the bubbly asset. Two specific cases are of particular
interest. If ¢ = ¢ the bubble offers a riskless return. If ¢ = idg, the identity map on
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&, the returns on bubbles exhibit the same risk structure as capital investments. This
will be referred to as a capital-equivalent bubble. In the latter case, one necessarily has
2y = f'(kiy1) which implies rf; = 4y for each ¢ > 0, i.e., the returns on bubbles and
capital coincide pointwise.

A straightforward interpretation of (6) is as follows. Suppose there are finitely many shocks
& ={e',...,eM} and in each period there exists a complete set of M Arrow securities.
Let pj® > 0 be the price of security m that pays off one unit in ¢t + 1 iff ¢,y = ™.
In each period ¢ > 0, the institution backing the bubbly asset (e.g., some government
or an investment fund) issues a portfolio a; = (a]*)=1,...m € RY of these securities to
finance the bubble, i.e., Z%zl a'p® = b;. Let the mix of securities be constant over
time and determined by 9 where 9™ := (™) is the relative share of security m in the
portfolio. The scalar z; then determines the supply of security m as ay® = bz;9™. For
young consumers to be willing to buy these assets, prices must satisfy the Euler equations
pr = v({em ) (af + €™ f (kyor) ki) Ju' (wp — by — kyyq). Combined with the first order
conditions for an expectations-consistent capital investment derived from (3) this yields
precisely the Euler equation (8) derived below. All these arguments also extend to an
infinite set £ and a continuum of Arrow securities. Extensions of (6) towards more general
bubble returns with state-dependent risk structure are discussed in Section 4.

Recursive equilibrium structure.

To uncover the recursive structure of equilibria, consider an arbitrary period ¢ > 0. Let
the current state x; := (wy, b;) determined by (2a) and (5) be given and w; > b, > 0. The
temporary equilibrium problem for period ¢ is to determine next period’s capital k;; > 0
and a value z; > 0 consistent with an optimal savings decision derived from (3) and
rational, self-confirming expectations. The scalar z; determines the ex-ante bubble return
17, offered at time ¢ according to (6) such that young consumers are willing to absorb the
current bubble. Combining the first order conditions® of (3) with (2b), (4), and (6), define
for i € {1,2} the mappings H® (-, -;w,b) : R, x]0,w — b[— R

HY (2, kw,b) == o'(w—b—k) —E,[R(k; )" (b R*(2;+) + kR (k;+))] (7a)
H?(z,kw,b) = u/(w—b—k) —E,[R*(z )0 (bR*(2;-) + kR(k; )] (7b)
Then, given w; > b, > 0 the previous problem reduces to solving the Euler equations
H (24, kpir; we, b) = H® (24, kyyay wy, by) = 0. (8)
The following result establishes conditions under which a unique solution to (8) exists.

Lemma 2.1
Let the additional restrictions (T1), (Ul), and (U2) hold. Then, for each w > b > 0 there
exist unique values z > 0 and 0 < k < w—b such that HV (z, k;w,b) = H® (2, k;w, b) = 0.

Properties (Ul) and (T1) ensure that an increase in the returns r,.q or r},, offered at
time t increases the desired investment in capital respectively bubbles. Economically,
this means that the intertemporal substitution effect always dominates the income effect.
These conditions appear to be minimal ingredients under which the state dynamics derived

3Throughout this paper, we exploit that differentiation may be interchanged with the expectations
operator E, [] if the integrand is continuously differentiable and integration is over a compact set.
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below are well-defined, i.e., each state has a unique successor. If b, = 0, either of the two
restrictions alone is sufficient. The additional restriction (U2) ensures that consumers
are willing to absorb any bubble b; not exceeding their income w; if they are offered a
sufficiently large return. This permits to define the model’s state space as in (9) below
which is the 'largest’ state space possible. If (U2) failed to hold — as in the example with
log-utility in Section 4 — tighter bounds on the bubble would be needed.*

Unless stated otherwise, the remainder assumes that the hypotheses of Lemma 2.1 hold.
This permits to define the model’s endogenous state space as

X::{(w,b)eR2+|w>b}. 9)

Exploiting the result from Lemma 2.1, let the mappings £ : X — R, and Z2 : X —
R, determine the solutions k;y; and 2z to (8) for each z; = (w;,b;) € X Using the
implicit function theorem, the following result shows that these mappings are smooth
(continuously differentiable) and characterizes their monotonicity and boundary behavior.
These properties provide the basis for the dynamical systems approach developed below,
which will make repeated use of the Grobman-Hartman Theorem and the Stable Manifold
Theorem in order to characterize the dynamic behavior of the equilibrium mappings.

Lemma 2.2
If (T1), (U1), and (U2) hold, both K and Z are C' and satisfy the following properties:

(i) limy,_pn 0 K(w,b) = 0 and lim,,_,\ 0 Z(w, b) = oo. (i) 0 <Ky < —Ky.
(iii) If, in addition, either ¥ = idg or (U3) holds, then 0 < —Z,, < Z, and K2, > Ky 2,

Lemma 2.2 (ii) shows that capital investment increases with income and decreases with the
size of the bubble. The latter is the standard crowding-out effect which is well-known from
deterministic models. Similarly, (iii) shows that the return required for consumers to be
willing to absorb the current bubble increases with its size and decreases with income. The
main ingredient to the proof of (iii) is Lemma B.1 which requires second-period utility to
display constant relative risk aversion. While this is a rather strong restriction, numerical
experiments with utility functions v not satisfying (U3) have throughout displayed the
same properties of Z as in Lemma 2.2 (iii) suggesting that this restriction could probably
be relaxed. If the bubble is capital-equivalent, no such condition is needed.

Equilibrium dynamics.
Combining Lemma 2.1 with (2a), (5), and (6) the evolution of the endogenous state variable
under the exogenous shocks is governed by the map ® = (®),d?)) : X x £ — R?,

Wi = ‘I’(I)(wta be; €r41) 1= W(K(wy, by), €141) (10a)
byr = OO (wy, by ep1) = R (Z(wy, by); €41) by (10b)
As ®(+;¢) does not map X into itself, we refer to it as a pseudo-dynamical system. This

feature is essentially due to the boundary behavior stated in Lemma 2.2 (i) and is well-
known from deterministic models with bubbles, cf. Tirole (1985). Given an initial state

4In Tirole (1985) or Weil (1987), restrictions are imposed on derived objects such as the savings function
or the factor pricing functions ¥V and R and it seems not clear how they restrict the underlying class of
preferences and technology. For instance, Weil (1987) assumes that the interest elasticity of savings is
positive, which is exactly what is ensured by (U1) and (T1).

7



ry = (wp, by) € X, any equilibrium process {z;};>o is generated by randomly mixing the
family of mappings (®(+;£)).cs defined in (10a,b). That is, for each ¢ > 0 the realization
of the production shock &; ‘selects’ a particular map that determines the state x; from its
previous value z;_. Structurally, this corresponds to a two-dimensional version of the one-
dimensional dynamics in Wang (1993). The endogenous state variables {x;},;>¢ together
with the exogenous shock process {e;};>¢ completely determine the other equilibrium vari-
ables of the model. Therefore, the existence of equilibrium is equivalent to determining
o € X such that the process generated by (10a,b) satisfies z; € X for all ¢ > 0 under
P-almost all paths of the noise process. Since by = 0 implies by = 0 for all ¢ > 0, the
economy has a unique bubbleless equilibrium along which the state dynamics reduce to a
one-dimensional system given by w;; = W(K(wy,0),2441), t > 0. This is precisely the
equilibrium studied in Wang (1993). It will turn out in the following sections that the
properties of the bubbleless equilibrium are crucial for the existence of bubbly equilibria,
a finding in line with the results obtained in Tirole (1985) for a deterministic economy.

3 Stationary and Expansive Mappings

Structure of dynamic mappings.

From the structure derived in the previous section, it stands to reason that the existence of
bubbly equilibria depends crucially on the dynamic properties of the mappings (®(+;¢)).ce
defined in (10a,b). In this section, we fix a value ¢ € £ to study the dynamic properties of
the single map ® := ®(-; ). Mathematically, this corresponds to analyzing the model’s be-
havior under a particular realization of shocks given by the constant sequence (g, ¢,¢,...).
Define the state space X as in (9) and consider the pseudo-dynamical system ® : X — R,

_( o(w,D)
®(w,b) = ( blw, b)) (11)
Throughout, the following restrictions will be imposed on ¢ and v .

Assumption 1
The maps ¢ : X — Ry, and ¢ : X — R, | in (11) are C'" with derivatives 0 < ¢, < —y,
0 < =ty < Yy and Gythy > Gpihy. Also, limy,_p\ o ¢(w,b) = 0 and lim,, 0 ¢ (w, b) = co.

For t > 0, define the ¢-fold composition ® recursively by setting ®° := idx and ®'(z) :=
® o " 1(z) for all x € X where it is defined. Let X, := XR%, and X, = X\X}.
The second equation in (11) reveals that Xy is self-supporting under @, i.e., ®(X,) C Xp.
The following assumption restricts the dynamic behavior of ® on X, which will further be
discussed in the next section.

Assumption 2
® has a unique fixed point 7° in Xy. This fixed point satisfies ¢, (") < 1.

As the dynamics on Xy are one-dimensional, uniqueness of the fixed point and the second
condition in Assumption 2 ensure that lim;_,, ®!(z) = z° for all x € Xy, i.e., 7° is globally
asymptotically stable on X,.

5Note that this does not say that the distribution v of the shocks is degenerate, i.e., consumers continue
to maximize expected utility such that this case is not the one studied in Tirole (1985).



Stationarity.

Our goal will be to characterize the qualitative dynamic behavior of ® on X, . Specifically,
we want to distinguish cases where ® generates expansive respectively stationary behavior.
This distinction is based on the following

Definition 2
® is called stationary, if it has a fixed point in X, . Otherwise, it is called expansive.

The idea of stationarity of a map is that there is at least one state x € X, which is
sustainable in the sense that ®*(z) € X, for all £ > 0. The merit of Assumption 2 is that
it permits the following characterization of stationarity.

Lemma 3.1
Under Assumptions 1 and 2, a map ® of the form (11) is stationary, if and only if )(z°) < 1.

Excluding the non-generic case 1)(z°) = 1, the next result shows that a sustainable state
fails to exist if @ is expansive, i.e., the dynamics will leave the state space X in finite
time for any initial value zy € X, . In this sense, any initial value which has by > 0 is
unsustainable under an expansive mapping ®.

Lemma 3.2
Let Assumptions 1 and 2 hold and assume that the fixed point T° € X, satisfies 1)(z°) # 1.
If ® is expansive, then for each xq € X there exists ty € N such that ™ (xg) ¢ X.

From the restrictions imposed so far, it does not seem possible to infer that a stationary
map ¢ has a unique steady state in X, . However, it will turn out that such a uniqueness
property is valuable if not required to further describe the qualitative behavior of stationary
mappings. For this reason, we impose uniqueness directly by the following assumption. In
addition, we rule out non-hyperbolic steady states by assuming that no Eigenvalue A\ of
the Jacobian matrix D®(x) satisfies |A\| = 1. Conditions under which these restrictions are
consistent with the primitives of the model are discussed in the next section.

Assumption 3
® has at most one steady state in X, . Moreover, if it exists, this steady state is hyperbolic.

A first step towards characterizing the global dynamic behavior of stationary mappings on
X, is the next result.®

Lemma 3.3
Under Assumptions 1 and 3, suppose ® is stationary. Then, the fixed point T € X, is a
saddle, i.e., the Eigenvalues \; and Ay of D®(Z) are real and satisfy 0 < |[A\;| <1 < |Ag].

The stable manifold.
The stability result from Lemma 3.3 implies that the dynamics generated by a stationary

60ne can show that saddle-path stability of interior steady states is a generic phenomenon of mappings
of the form (11) even if Assumption 3 is not satisfied. For instance, if ® has three hyperbolic fixed points
0 = (@@, b)) € Xy, i € {1,2,3} where @) < @ < @®), both (1) and Z*) are saddles while Z(*) is
unstable, i.e., both Eigenvalues of D®(z(?)) exceed unity in absolute value. The problem that arises with
multiple steady states is that the stable manifold defined below can not be represented as the graph of a
function M defined globally on R, in this case.



map ® display stable behavior only along a lower-dimensional subset of the state space.
This subset is called the (globally) stable manifold M and consists of all initial points for
which forward-iterates of the map ® stay in X and converge to the steady state z. Formally,

M = {xEX|<I>”(x) €XVn>1A lim @"(x):f}. (12)
n—oo

The stable manifold M will play a key-role in the following sections. First note that Ml C X
by the second requirement in (12). Second, M is self-supporting under ®, i.e., (M) C M.
Third, as will be shown below, M separates initial points which are sustainable —in the sense
defined above — from those which leave the state space X in finite time under iteration of
®. This last property requires a geometric characterization of M as the graph of a strictly
increasing C! function M : R,, — R,,. For this purpose, we make the following
additional assumption where we let wpax := limy, o @(w,0) and Y :=]0, wpax| X R, 1.

Assumption 4
® is a C'-diffeomorphism between the open sets X, and Y.

The final result of this section provides the desired geometric characterization of the glob-
ally stable manifold M and the separation property mentioned above. The proof of (i)
employs several ideas also used in Galor (1992).

Lemma 3.4
Under Assumptions 1, 2, 3, and 4, let ® be stationary. Then, the following holds:

(i) There exists a C' function M : R, ; — R, M’ > 0 such that M = graphM.
(ii) For any v = (w,b) € X, the following holds:

(a) If b < M(w), then ®'(x) € X for all t > 0 and limy_,,, ®'(z) = 2°.
(b) If b = M(w), then ®'(x) € M for allt > 0 and lim;_,., ®'(x) = & monotonically.
(c) If b > M(w), then there exists ty > 0 such that ®"(z) ¢ X.

Based on the characterization in (i), Lemma 3.4 (ii) shows that all states strictly below
M converge to the bubbleless steady state under iteration of ® while initial states on M
converge to the bubbly steady state Z. All states above M are unsustainable and leave the
state space in finite time. As a consequence, the set of sustainable states defined as

X = {xEX+|d>”(x) €X+Vn20} (13)

is given by X = {(w,b) € X, |b < M(w)}. Note from Lemma 3.4 (ii) that X is self-
supporting for ®, i.e., ®(X) C X and that no superset of X can be self-supporting. There-
fore, restricting ® to this set permits to transform the pseudo-dynamical system (11) into
a proper dynamical system. In the deterministic case, the findings from Lemma 3.4 gener-
alize the results in Tirole (1985) whose dynamic structure constitutes a special case of the
general class of mappings (11). Also note that X defined in (13) is empty if ® is expansive
due to Lemma 3.2.
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4 Existence of Bubbly Equilibria

The goal of this section is to exploit the dynamic properties of the equilibrium mappings to
construct bubbly equilibria. In order to apply the results from the previous section, each
of the equilibrium mappings (®(+;¢)).cs defined in (10a,b) has to satisfy the additional
Assumptions 1 to 4. The first part of this section provides conditions under which this
is the case. It should be noted, however, that the conditions to be presented are from
necessary to obtain the desired properties. For this reason, the main results stated as
Theorems 1 and 2 below employ the derived properties embodied in Assumptions 1 to 4
which may well be satisfied even if the conditions to be presented next are not.

Conditions for Assumption 1

Given ¢ € &, let ¢(x) := W(K(z);¢e) and ¢(z) := J(e)Z(x), x € X to observe that ®(-;¢)
defined in (10a,b) has the structure assumed in (11). Under the hypotheses of Lemma 2.2,
both mappings C and Z are strictly monotonic. Further, the properties of the production
function f imply that W(-;¢) is C*, strictly monotonic, and satisfies limys o W(k; ) = 0.
These observations lead to the following

Lemma 4.1
In addition to (T1), (Ul), and (U2), suppose either 9 = idg¢ or let (U3) hold. Then, each
®(-; ) satisfies Assumption 1.

Conditions for Assumption 2

To obtain conditions under which a bubbleless steady state 7° € X, of ®(+; ) exists, recall
that the bubbleless equilibrium in our model coincides with the one in Wang (1993). He
uses the condition lim,,_,o <I>1(Ul)(w, 0;¢) > 1 to ensure existence of a positive steady state.
While this appears to be a standard restriction in the literature also imposed, e.g., in
Hauenschild (2002), it does not guarantee that the steady state is unique. Therefore, the
following result adds sufficient conditions under which uniqueness holds. As the return
at the bubbleless steady state varies continuously with the parameters of the model, the
additional requirement of a non-unit return from Lemma 3.2 should generically be satisfied.

Lemma 4.2
Under (T1), (T2), (Ul), (U2), and (U4), each ®(-; &) has at most one fixed point in X,. If,

in addition, (U5) holds and lim,, o <I>,(U1)(w, 0;¢) > 1, then ®(-;¢) satisfies Assumption 2.

The assumption of a unique bubbleless steady state is imposed throughout in Tirole (1985),
Weil (1987), and almost any deterministic study of bubbles. In the stochastic case studied
here, it will offer a convenient way to distinguish stationary versus expansive behavior of the
equilibrium mappings using the result from Lemma 3.1. In addition, one can show that the
existence of a bubbleless steady state of ®(-;¢) for each € € £ is also necessary for bubbly
equilibria to exist at all. To see this, note that if some ®(+;¢) failed to have a bubbleless
steady state, the boundary behavior of f and Lemma 2.2 would imply &) (w,b;e) <
®M(w,0;¢) < w for all z = (w,b) € X. Thus, the economy would impoverish under
forward-iteration of ®(-;¢) in the sense that the wage and capital stock converge to zero.
In this case, one can easily show that any initial state zy € X, will leave the state space X
in finite time, i.e., the map ®(+; ) will display expansive behavior in the exact same sense
as defined in the previous section. As argued below, there can be no bubbly equilibria in
this case.
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Conditions for Assumption 3

In the deterministic case studied in Tirole (1985), there can be at most one bubbly steady
state. Essentially, this is because the steady state interest on the bubble is directly pinned
down by the growth rate of the economy. In the stochastic case studied here, a similar
result holds if the bubble is capital-equivalent, i.e., ¥ = idg in (6). If the returns on
bubbles and capital exhibit a different risk structure, however, additional restrictions on
the fundamentals of the economy stated are required to guarantee uniqueness of the bubbly
steady state. Conditions under which this holds are stated next.

Lemma 4.3
In addition to (T1), (Ul), and (U2), let either 9 = idg or (T2), (U3), and (U4) hold. Then
®(-; ¢) satisfies Assumption 3, i.e., has at most one steady state in X, which is hyperbolic.

Conditions for Assumption /

In addition to the uniqueness condition from Assumption 3, the key property needed to
construct a globally stable manifold as in Section 3 is that ®(+;¢) be a C'-diffeomorphism.
Our next result shows that this property requires little more than the restrictions imposed
in Lemma 2.2. Here we define wpay(g) := limg_,oo W(k; €) and Y. :=]0, wpax(e)[ xRy ;.7

Lemma 4.4
In addition to (T1), (Ul), and (U2), let (U5) and either ¥ = idg or (U3) hold. Then ®(-;¢)
satisfies Assumption 4, i.e., it is a C''-diffeomorphism between the sets X, and Y..

Necessary conditions for bubbly equilibria.

The remainder of this section assumes that each member of the family (®(-;¢)).ce satisfies
Assumptions 1, 2, 3, and 4. For ease of exposition, we also assume that £ is a finite set.
Generalizations of this restriction are straightforward and discussed below.

A first observation based on the result from Lemma 3.2 is that existence of a bubbly
equilibrium requires each mapping ®(-;¢) to be stationary. For if some member ®(-;¢’),
e’ € £ were expansive, any initial state o € X, would leave the state space under forward-
iteration of this mapping in finite time ¢, € N. Since the event of drawing ¢, = ¢’ for all
1 <t <ty occurs with positive probability v({'})" > 0, the equilibrium condition z; € X
P-almost surely for all £ > 0 is clearly not satisfied in this case.

Therefore, invoking Lemma 3.1 the bubbly return at the bubbleless steady state (w?,0)
must be smaller than unity for each € € £. This condition can be stated as

maX{R*(Z(zDg,O),e)} <1 (14)

eel

In the deterministic case & = {¢}, (14) reduces to the existence condition in Tirole (1985).
Solving (7a) for z, condition (14) may equivalently be written as

min{EuW(-)v’(kSR(kS; -))]} o1 (15)

cee | (o) (0l — k?)

Here k¥ := KC(2°) is the corresponding steady state capital stock. As the bubbleless steady
state is independent of ¥, (15) may be seen as a restriction on the risk-structure of the
bubble. In particular, this condition is invariant to re-scaling the function 4.

"This is consistent with the definition of wmay in Assumption 4 as limy,_,o K(w,0) = oo under (U5).
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A second observation is that restrictions on the initial state zq = (wp, by) are required. To
this end, let (15) hold. Then, each ®(-;¢) is stationary and, therefore, has a bubbly steady
state Z, = (w., b.) € X, which is unique by Assumption 3. Let M. be the associated stable
manifold defined as in (12). Then, Assumption 4 and Lemma 3.4 (i) permit to represent
each M, as the graph of an increasing C* function M, : R, — R,,. By Lemma 3.4
(i), it is clear that the initial state o = (wp, by) and, in fact, any successive state x; must

lie below each M., € € £. Thus, define for each w > 0 the critical value

M (w) = 1;n€i§1{./\/lg(w). (16)
Note that M is well-defined as the minimum is taken over finitely many values in &.
Further, M is continuous and strictly increasing although not necessarily differentiable.
The curve w — M (w), w > 0 defines the boundary of the set of points which lie below
each of the stable sets M. defined in (12) for all ¢ € £ and it follows immediately from
Lemma 3.4 (ii) that any equilibrium process must take values in this set.

Combining the previous insights, we are now in a position to state our first main result
which provides necessary conditions for bubbly equilibria to exist.

Theorem 1
Suppose & is finite. Let ®(-;¢) defined in (10a,b) satisfy Assumptions 1, 2, 3, and 4 for
each £ € £. Then, the existence of a bubbly equilibrium requires the following conditions:

(i) For each ¢ € £, ®(-;¢) is stationary, i.e., condition (15) holds.

1I e initial state (wy, by) satisfies 0 < by < b&'t := M (wy) defined as in .
ii) The initial b isfies 0 < b, bt = MOt defined 16

For the deterministic case, Theorem 1 completely recovers the results in Tirole (1985). His
setup corresponds to the special case where v = ¢, is a Dirac measure concentrated at some
point € > 0, i.e., £ = {e}. In this case, the condition (ii) in Theorem 1 is also sufficient
and each by < bg't defines a bubbly equilibrium.

In the general stochastic case, however, the conditions in Theorem 1 may not be sufficient.
To see this, suppose the initial state zo = (wg, by) € X, satisfies by < M (wy). Then,
by (16) by < M (wy) for all € € £. Tt follows from Lemma 3.4 (ii) that for any constant
sequence (g,2,...) where ¢ € & the sequence of states x; := ®(x; 1,£), t > 0 satisfies
by < M_(wy) for all t > 0 and converges to the bubbleless steady state z° if by < M. (wy)
and to the bubbly steady state z. otherwise. However, this convergence may be non-
monotonic, i.e., it can happen that for some ¢’ € £ for which M. # Mt the sequence
x} = ®'(xg; '), t > 0 temporarily exceeds the graph of M as indicated by the dashed
arrows in Figure 1. Suppose this happens after ¢, periods, i.e., bj > Merit (wy,). Lete" € £
be the value for which M (w;] ) = M.s(w) ). Then, bj > M.u(w} ) and it follows from
Lemma 3.4 (ii) that there exists a finite time ¢; € N for which ®" (] ;") ¢ X As the
event of drawing ¢; = ¢’ for t = 1,...,tg and ¢, = ¢” for t = t5 + 1,...,%; has positive
probability v({e'})v({e"})" ', the initial choice zq is not compatible with an equilibrium.
Conclude from this that, in general, the value defined in (16) is only an upper bound for
the initial bubble by. Also note that the previous arguments become obsolete if each M.
is independent of £, a case which holds in the example studied below.
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A direct consequence of the previous observations is that the following additional property
is required for the conditions in Theorem 1 to be sufficient: The set of points below the
graph of M must be self-supporting for the family (®(-;¢)).ce. Formally,

VYw >0:b< M (w) = 0D(w,be) < MDD (w,be)) Vee&  (17)
The additional condition (17) leads to the following corollary.

Corollary 1
Under the hypotheses of Theorem 1, suppose conditions (15) and (17) hold. Then, each
(wo, by) for which 0 < by < M (wq) defines a bubbly equilibrium.

An alternative interpretation of (17) can be obtained by defining for each ®(-;¢) the set of
sustainable states X, as in (13). Then, as demonstrated above, the fact that each X, is self-
supporting for ®(-; ) does not imply that the intersection X := N.c¢X, is self-supporting
for the family (®(+;¢)).ce. As X = {(w,b) € X, |b < M (w)}, this is precisely what
is ensured by the additional condition (17) under which any z, € X defines a bubbly
equilibrium. Also recall from Section 3 that X, and, therefore, X would be empty if some
map P(-;¢) were expansive.

Figure 1 illustrates the previous insights for the case with two shocks where & = {¢’,"}.
The dashed arrows represent the case which is excluded by (17).

b A O<—o(;c) -

\X
<I>(5

=Y

Figure 1: Dynamics generated by mixing two stationary mappings.

Sufficient conditions for bubbly equilibria.

As condition (17) is not stated in terms of the primitives of the model, it is not clear which
restrictions it imposes on the economy & and whether it can be satisfied at all. As our
second main result, we now establish that (17) holds automatically if the bubble is riskless,
i.e., if ¥ in (6) is a constant function ¥ > 0. In this case, the existence condition (15) reads

min{lEy[v’(k?R(lg?; -))]} o1 (18)

ee€ ’LL’(’[IJE — kg)
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Observe the similarity of (18) to the existence conditions (2) and (3) derived in Manuelli
(1990, p.273) for a stochastic exchange economy. For the case with a riskless bubble, we
now have the following additional properties of the mappings M, which characterize the
stable sets M. Note that the result does not require finiteness of £.

Lemma 4.5 B
Let each ®(-;¢) be stationary and satisfy Assumptions 1, 2, 3, and 4. If 9 = ¢, then ¢ < &'
implies M. (w) < M. (w) for allw > 0, €, € £. Moreover, M™* = M, satisfies (17).

Lemma 4.5 states that for a riskless bubble, the map & —— M. (w) is strictly increasing on
£ for all w > 0. In particular, ¢ # &’ implies M. " M., = (), i.e., the stable sets pertaining
to different shocks have an empty intersection, a property which will become important in
the next paragraph. Using the insights from Lemma 4.5, we are in a position to state our
second main result.

Theorem 2
Let £ be finite and each ®(+;¢) defined in (10a,b) satisty Assumptions 1, 2, 3, and 4. If
¥ =19 > 0 and condition (18) holds, each 0 < by < M._. (wy) defines a bubbly equilibrium.

Temporary nature of stochastic bubbles.

While bubbly equilibria exist under the conditions (15) and (17), generically these bubbles
are only temporary and converge to zero with probability one. Unlike the case in Tirole
(1985), this holds even if by = M (wy). Structurally, the reason is that positive sta-
ble sets of the dynamics (10a,b), i.e., compact subsets A C X, which are self-supporting
for the family (®(-;€))cce such that ®(A;2) C A for all ¢ € £ typically fail to exist.
To see this, note from Lemma 3.4 that A C X, closed and self-supporting under ®(-;¢)
requires A C M.. Hence, positive stable sets are subsets of N.ceM. which is typically
empty. In particular, as shown in Lemma 4.5 this is true if the bubbly asset is riskless, i.e.,
¥ =19 > 0. In this case, all equilibria will be asymptotically bubbleless with probability
one, i.e., lim;_,,, by = 0 P-a.s.

This last finding entails serious consequences for the discussion in Bertocchi (1994) about
the existence of stable sets in a similar model with the bubble corresponding to riskless
government debt. Referring to the equilibrium scenarios discussed there, Lemma 3.3 al-
ready showed that bubbly steady states which are asymptotically stable and would give
rise to stable sets with positive bubbles do not exist. Lemma 4.5 now shows that such
stable sets are directly excluded by the assumption that debt offers a riskless return.

An example with persistent bubbles.

The following example, however, shows that stable sets giving rise to persistent bubbles
may exist in certain situations where the return on the bubble is risky. Let U(c,¢°) =
(1—y)Inc? +vIne®, 0 <y < 1 and f(k) = k% 0 < o < 1. This parametrization is widely
used in many deterministic studies, c¢f. Michel & Wigniolle (2003), or Kunieda (2008). As
condition (U2) is violated in this case, the tighter restriction b; < yw; is required to ensure
that a solution to (8) exists. Thus, redefine the endogenous state space

X = {(w,b) € R%|b < yw}. (19)
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Suppose the bubble is capital-equivalent, i.e., J = idg. Solving (8) using (2a,b), the
equilibrium mapping defined as in (10a,b) takes the explicit form @ : X' x & — R?,

Wi = (I)(l)(wt, biserrr) = el —a)(yw, — b)” (20a)
bt+1 = @(2) ('U}t, bta 8t+1) = St_l_lO[(’}/UJt — bt)a_lbt. (20b)

By direct computations, one verifies that ®(-; ¢) satisfies Assumptions 1 to 4 for each ¢ € £
such that all the results from Section 3 extend to the present case with the modified state
space given by (19).% For each £ € £ the unique bubbleless steady state (w?,0) can be
computed explicitly as @° = (£(1—a)y*)"/('=®) and the associated ex-post return on capital

and the bubble is R(K(w?,0);¢) = v 'a/(1 — a), € € £. The latter determines whether
each equilibrium mapping is stationary or expansive. This leads to the following result.

Lemma 4.6 -
Given ¢ € &£, define ®(-;¢) as in (20a,b). If 3 := v — t*= > 0, then the following holds:

(i) ®(+;¢) is stationary and has a unique steady state T. € X, which is a saddle.

(ii) The sets M. defined as in (12) take the form M. = M := {(w,b) € R% | | b= fw}.

Lemma 4.6 (ii) shows that in this particular case, the sets M. defined as in (12) are
independent of . Thus, one can show by direct computations that states below M remain
below this set, i.e., condition (17) is satisfied. This leads to the following result.

Theorem 3 B
For the previous parametrization, suppose (3 > 0. Then, each xo = (wo, by) € X' for which
by < [wy defines a bubbly equilibrium where the bubble is capital-equivalent, i.e., ¥ = idg¢.

The key feature of this example is that the set Ml = N.c¢M. is self-supporting for the family
(®(-;€))ees. Thus, whenever xy € M, the state process {x;},>¢ generated by (20a,b) stays
in M for all ¢. Moreover, the state dynamics converge to a compact subset of M defined
by the bubbly fixed points ((w;, b.)).ce of the mappings (®(+;¢)).ce which is a stable set.
Thus, in this special case, setting the bubble by equal to its maximum value b5t = By
yields a result similar to the deterministic case in Tirole (1985) where the bubble fails to

die out and in fact converges to a positive stable subset of the state space.

The final part of this section outlines some extensions to which the previous setup should
be amendable.

Infinite shock spaces
It is straightforward to extend the results from Theorems 1 and 2 to the case with an
infinite shock space, e.g., where & = [emin, €max]- In this case, define the sets

£ ={c € £IR*Z(w?,0),e) < 1} (21)

and £7 := E\E®. As R* from (6) is Caratheodory and the bubbleless steady state 70 varies
continuously with € by the Implicit Function Theorem, both sets £° and £* are measurable.

8 As the state space is now given by (19), the boundary properties in Assumption 1 must be restated as
limey—pn0 @(w, b) = 0 and lim.,—p~ 0¥ (w,b) = co. All arguments which rely on this boundary behavior,
e.g., the proofs of Lemma 3.1 or Lemma 3.4, must (and can easily) be adapted accordingly.
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They represent shocks associated with drawing a stationary respectively expansive mapping
®(-;¢). Extending the arguments developed above, the existence of a bubbly equilibrium
requires v(E*) = 0, i.e., the probability of drawing an expansive map must be zero. In
addition, an upper bound on initial conditions must be established, which is obtained by
replacing (16) by M (w) := inf.ces {M_.(w)}. In particular, if 9 is continuous, e.g., if the
bubble is risk-less or capital-equivalent, and £° is compact, all previous conditions and the
results stated in Theorems 1 and 2 remain valid if in (14) to (18) & is replaced by £°.

Bubbles with state-dependent risk-structure.
A key restriction imposed throughout the previous analysis is that the risk-structure of the
bubbly asset is time invariant. A natural and interesting extension would be to consider
bubbles with a risk structure that varies with the current endogenous state of the economy.
Formally, one would replace (6) by an arbitrary measurable or even continuous function
¥:E x X — Ry such that

i = V(Eeg1; 70) 2 (22)
Maintaining the hypotheses of Lemma 2.1, one observes that the entire equilibrium struc-
ture derived in Section 2 along with the state space definition (9) continue to hold under
this modification. In particular, bubbly equilibria are generated by a family of dynamic
mappings (®(+;¢)).ce and the existence of such equilibria requires each member of this
family to generate bounded dynamics on a non-empty subset of X, . Further, the dynamic
properties of the equilibrium mappings can be studied with the same techniques applied
above as long as the map ¥(g;-) is continuously differentiable. Apart from that, there
seems to be considerable freedom in the form (22) and the key question is whether cer-
tain specifications change the monotonicity properties stated in Lemma 2.2 and, therefore,
the qualitative dynamic properties derived in Section 3. In this regard, first numerical
experiments indicate that for certain specifications some equilibrium mappings may even
possess bubbly steady states which are asymptotically stable. Having said this, at least
some equilibrium mappings should continue to display the saddle-path stability which is
crucial for the construction of bubbly equilibria in this paper. This suspicion is supported
by the observation that the previous modification has no implications whatsoever in the
deterministic case where v = .. In any case, the basic approach to construct bubbly
equilibria employed in this paper should remain fully applicable under this extension. A
particularly intriguing question is whether the function 9 in (22) can be chosen such that
a positive stable set of the state dynamics exists and the bubble becomes persistent, as
in the example from Lemma 4.6. Using different techniques from functional analysis, this
issue is further explored in Barbie & Hillebrand (2014).

Stochastically bursting bubbles.

The previous structure can also be generalized to study bubbles which burst stochastically
as in Weil (1987). In this case, let {#;},>¢ be a sequence of i.i.d. random variables which,
for simplicity, are also independent of the production shocks and take values in © := {0, 1}.
Then, the shock at time ¢ is now given by the random variable & := (g4, 6;) with values in
= := & x 0. Consequently, the ex-ante bubble return takes the generalized form

T:+1 = R*(Zt; §t+1) = 9t+179(5t+1) Zt. (23)

In particular, the function ¢ in (23) can be chosen constant in which case r},, becomes
independent of the fundamental shock ;.. It is now straightforward to modify the Euler
equations (8,b) and to determine z; and k;,; as functions of the current state z; = (wy, b;).
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Then, bubbly equilibria are generated by randomly mixing the family (®(-;&))¢ez where
some equilibrium mappings ®(+;¢) : X — R now map bubbly states 2, € X, into
bubbleless states ;.1 € Xy, i.e., the bubble 'bursts’ whenever £ = (£,0). Clearly, these
latter mappings trivially generate 'stationary dynamic behavior’ in the sense that each state
r € X, is sustainable under forward-iteration of ®(-;£). One can now repeat the entire
dynamic analysis from the previous sections to obtain necessary and sufficient conditions
for bubbly equilibria to exist in such an extended setup. Moreover, by varying the set ©
and its interpretation the generalized form (23) would also permit to incorporate ’extrinsic
uncertainty’ such as sunspots in the analysis.

Broader classes of economies

The setup in Wang (1993) has been extended in various directions to include non-additive
utility, correlated production shocks, and more general, so-called non-classical production
functions. Recent examples may be found in Morand & Reffett (2007), McGovern et al.
(2013), or Hillebrand (2014). In principle, it should be possible to extend the study of
the present paper to these more general classes of economies as long as the bubbleless
equilibrium is unique and the equilibrium mappings are smooth. The latter is required in
order to apply the methods used in this paper which made repeated use of the implicit
function theorem and the stable manifold theorem. A large class of economies having this
structure is identified in Hillebrand (2014).

5 Bubbles with Borrowing Constraints

In the frictionless economy studied in Tirole (1985), bubbly equilibria only exist if the
bubbleless equilibrium suffers from overaccumulation of capital. To explain the emergence
of asset bubbles in the presence of underaccumulation, several approaches in the literature
study deterministic OLG economies with frictions such as cash-in advance constraints in
Michel & Wigniolle (2003) or borrowing constraints in Kunieda (2008). The present section
extends the setup from Kunieda (2008) to show that his findings carry over to a stochastic
environment as well.

Heterogeneous consumers.

Following Kunieda (2008) , we modify the previous OLG structure by assuming that each
generation now consists of a continuum of heterogeneous consumers with index set A :=
[Amins Amax] Where 0 < Apin < 1 < Apax. A consumer born at time ¢ > 0 is identified by her
investment productivity A € A which determines the amount of capital obtained by each
consumption good invested at time t. Specifically, if consumer A\ € A invests s; > 0 units
at time ¢, she owns As; units of productive capital at time ¢ 4+ 1. The productivity index
A is continuously distributed on the interval A. The distribution function G : A — [0, 1]
has a continuous density function g : A — R, with respect to Lebesgue measure on A.
Assuming E[A] = [, lg(l)d1 = 1, the earlier setup is recovered ‘on average’.

The following analysis restricts attention to the parametrization employed in Kunieda
(2008) with log-additive utility U(c¥,¢?) = (1 — ) logc? + vylogc®, 0 < v < 1 and Cobb-
Douglas production f(k) = k%, 0 < a < 1. Given labor income w; > 0 and the returns on
capital and bubbles, the decision problem faced by consumer A € A reads:

max{(l — N In(w; — b — ) +VE [In(r} b+ ri1 As)]| s> 0,6>0,b+s < wt}. (24)

b,s

18



Note that short-selling of the bubbly asset is no longer possible which is where the capital
market imperfection enters. For simplicity, suppose that the return on the bubbly asset
determined by (6) has the same risk-structure as capital, i.e., ¥ = ide and 77,, = 1412
with z; determined at time ¢. However, unlike the scenario from Section 2, it need not be
the case that z; = f'(k41) at equilibrium since the per-unit return on capital investment s,
undertaken by consumer A € A is now Ay = Aegpq f'(ki1). Letting Ay = 2/ f'(ki11), one
infers from (24) that consumer A will invest only in capital if A > A; and only in the bubble
if A < A;. Thus, direct calculations reveal that the unique solution to (24) is determined
by the pair of demand functions®

sp=S\wi, M) = ywy Lpgmag () (25a)
by =B\ wi, &) = ywi Iy, aman] (A)- (25b)

Here, 1,4 is the characteristic function of A, i.e., 14(z) = 1 iff x € A and 14(z) = 0
otherwise.

Recursive equilibrium structure.

Based on individual demands (25a,b), consider an arbitrary period ¢ > 0. Defining X' as
in (19), let (wy,b;) € X' be given. The values z; and k;yy are determined such that the
bubble is absorbed and next period’s capital stock is consistent with individual savings.
Using (25a,b), these conditions read

b = / B wy, M)A = v, GO) (26a)
kt+1:/)\8()\; Wi, A))R(N)dN = ywy k(). (26b)

Here we define k : A — [0, 1], k(\;) := f;\t’“"”‘ Ag(A)dA which is strictly decreasing with
boundary behavior k(Apin) = E[A] = 1 and k(Anax) = 0. As G is invertible, the first
condition (26a) defines the equilibrium value \; as a map L : [0,7] — A,

eo(8) o (28)

Note that L is strictly increasing with L(0) = G™'(0) = A and L(y) = G7H(1) = Apax-
Using (27) in (26b) and the definition of \;, the values k;;, and z; are determined as

Foe = K(wnb) = s <L<ﬁ>> (282)

wy

b
Zy = Z(U)t,bt) = fl(’(:(wtabt))L<Et> (28b)
t
Equilibrium dynamics.
Using (2a), (5), and (28a,b), the dynamics are generated by ® = (), @) : X' x & — R2

W41 = q)(l)(wt; by; €t+1) = gt (1 - Oé) (’C(wt, bt))a (293)
o— b
bt+1 = (13(2) (wt,bt;6t+1) = 6t+1 (0% (K(wt,bt)) 1L<—t> bt- (29b)

wy

Tt is arbitrarily assumed that the consumer invests only in capital if A = \;. Since the set of consumers
who have A = )\; has measure zero, this assumption is irrelevant.
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As in the example from the previous section, one verifies that ®(-;¢) defined in (29a,b)
satisfies Assumptions 1 to 4 for each ¢ € £ with the modified state space given by (19). In
particular, the definitions of L and & and (28a) yield ®")(w,0;¢) = &(1 — a)(yw)®. Thus,
the dynamics (29a,b) coincide with (20a,b) along the bubbleless equilibrium. In particular,
a unique bubbleless steady state (w?, 0) exists for each £ € £ where w? is defined as in the
previous section. However, while the capital return at the bubbleless steady state continues
to be R(K(w?,0);e) = v'a/(1 — ), the ex-post return on the bubble is now given by

)\mll’l Q

v 1—a’

R*(Z(w,0);¢) = eZ(w?,0) = (30)
Analogously to Section 4, the returns (30) are key for the dynamic properties of the map-
pings (P(-;€))ecce in (29a ,b). In particular, the existence of a bubbly equilibrium requires
that each ®(-;¢) be stationary, which is the case iff R*(Z(w?,0);¢) < 1. Based on (30),
we have the following result:

Lemma 5.1
Given € € &, define ®(-;¢) as in (29a,b) and let

)\min

2@ < 1. Then, the following holds:

v 1—-a
(i) ®(-;¢) is stationary and has a unique steady state T. € X, which is a saddle.

(ii) The sets M, defined as in (12) are of the form M, = M := {(w,b) € X|b = fw}.
Here, 3 > 0 is the unique solution to L(8) = =2yk(L(0)).

An immediate consequence of Lemma 5.1 (ii) is that a condition similar to (17) holds. This
leads to the following main result of this section.

Theorem 4
)\min

For the previous parametrization, suppose Tﬁ < 1 and define 3 as above. Then, each

(wo, by) € X' for which by < Bwy defines an equilibrium with capital-equivalent bubble.

The previous extension with borrowing constraints preserves the essential dynamic features
of the frictionless example from Section 4. In the present case, however, a sufficiently small
value A\ni, ensures that Aiﬂymﬁ < 1 and a bubbly equilibrium exists even if the steady
state capital return exceeds unity, i.e., if the bubbleless equilibrium does not suffer from
overaccumulation. One also observes that M := N..¢M. is again self-supporting for the
family (®(-;¢)).ce from (29a, b). Thus, whenever z, € M, the dynamics converge to a
compact stable set. While bubbles are persistent in this particular case, we suspect that
this persistence property should generically fail to hold as the analysis is extended to more
general preferences and technologies, just as in the absence of frictions.

6 Conclusions

The previous analysis derived necessary and sufficient conditions under which bubbly equi-
libria exist in a frictionless OLG economy with random production and endogenous capital
accumulation. A maximum sustainable bubble was identified which places an upper bound
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on the initial condition extending the results for deterministic models in Tirole (1985).
Unlike the deterministic case, however, bubbles in stochastic OLG models are generically
non-persistent and vanish asymptotically with probability one even if the initial bubble is
set to its maximum value. Introducing frictions such as borrowing constraints allows for
bubbles to emerge even if the bubbleless equilibrium has overaccumulation of capital.
This last result was demonstrated for a particular parametrization of the model which is
widely used in the literature. An interesting topic of future research might be to explore
how this generalizes to the broader setup employed in the earlier chapters of this paper.
Several other extensions of the model were already discussed in Section 4. A final set of
questions concerns the welfare implications of bubbles and whether the conditions under
which bubbly equilibria exist imply that the bubbleless equilibrium is inefficient. These
and related questions are explored in Barbie & Hillebrand (2014).

A Mathematical Appendix

A.1 Proof of Lemma 2.1

Given (w,b) € X, let k := w — b > 0. The argument °(z,k,b, ) := bR*(z;¢) + kR(k; )
will be suppressed when convenient. Suppose b = 0. Then, H®" is independent of z and ¥
and the existence of a zero k €]0, k[ of HM (2, +;w, 0) follows from the arguments of Wang
(1993) who also shows that (T1) is sufficient for this zero to be unique. Given k, the
condition H(Q)(z, k;w,0) = 0 can be solved explicitly for z > 0 proving the case b = 0.
Suppose b > 0. The strategy is to use (7b) to eliminate z reducing (8) to a one-dimensional
problem. First, let k €0, k[ be arbitrary. We prove existence of a unique 2 > 0 to satisfy
H® (2, k;w,b) = 0. Since lim,_,o0 ¢?(2, k, b, €) = oo for each ¢ € &, (U2) implies

lim z9(z)v'(=) = b~ lim ¢°(2, k, b, e)v'(=) — b kR (k; ) lim v'(—) = co.

Z—00 Z—00 Z—00

This being true for all £ € £ implies H®(z, /Af; w, b) < 0 for z sufficiently large. Combined
with H®) (0, k;w, b) > 0, this proves existence of 2. Uniqueness follows from (U1) by which
HP(z k;w,b) = -, [19() v'(co(z, k,b, )) +bzI(-)* " (co(z, k, b, ))] (A.1)

< =E,[9()(v'(’(z, k,b,-)) + (2, k, b, 0" (c°(2,k,b,-)))] <0.

Let Z(-;w,b) :]0,k[— R, determine the value % for each k €]0, k[. By (2b) and (T1),
HP (2, k;w,0) = —u"(w —b— k) — (14 Ep(k))E, [R(k; ) 29(-)0"(=)] > 0. (A.2)

By (A.1), (A.2) and the implicit function theorem, Z(-;w,b) is C* and strictly increasing
since Z(k; w, b) = —H,?)(é, k:w, b)/H§2)(73, k;w,b) > 0, for all k €]0,k[, 2 = Z(k; w, b).

Second, let HW (k;w,b) == HO(Z(k;w,b), k;w,b), k €]0,k[. We show that H®(-;w,b)
has a unique zero k' €]0,k[. Since v’ is strictly decreasing, R(k;z)v’(b Z(k;w,b) V(e) +
kR(k;2)) < R(k;e)v' (kR (k;)) for all k €]0, k[ and € € £. Then, by the Inada conditions

im HV (k; w im (v (k—Fk) — s = = 0.
lim A (kzw,b) > lim (o (F k) — B, [R(k: o' (KR(k:))])
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Let (kn)n>1 be a sequence in |0, k[ with lim,, , k, = 0. Since k Z(k; w, b) and, by (T1),
k — ER(k;¢) are increasing, ¢, () := b Z(kn; w, b) 9() 4 knR(kyn, ) is bounded from above
and limy, o R (kn, ) v/ (¢, (€)) = oo for all & € €. Therefore, lim, 0o H (kp;w, b) = —
This proves existence of a zero k'. Finally, using (U2) the partial derivatives satisfy

HY (2, kw,0) = —E,[R(k,-)bI(-)v"(=)] >0 (A.3)
H" (2, k5 w,0) = —u"(=) =B, [Ry(k; ) v'(=) + (1 + Ep(k))R(k; -)20"(=)] > 0. (A.4)

Combining (A.3) and (A.4) Wlth the monotonicity of Z(-;w,b) yields ﬁ,gl)(k;w,b) =
H (5, k;w, b) 23k w b) H )(2,k;w,b) > 0 for all k €]0, %[ and 2 = Z(k;w,b). Hence,
(5w

k' is the unique zero of H ,b). Setting z = Z(k’, w, b) completes the proof. [ |

A.2 Proof of Lemma 2.2

(i) The first limit follows from 0 < K(w,b) < w—0b for all x = (w, b) € X. To see the second
one, note from (8) that there must be some & € £ for which 9(€) Z(z) > epinf'(K(x)). Thus,
letting ¢ := emin/Y(€) we have Z(z) > (f'(K(x)) for all z € X. Combined with the first
result and the boundary behavior of f’, the claim follows.

(i) /(iii) We suppress arguments of functions when convenient. Given = = (w,b) € X, set
2= Z(z), k = K(x), £ = (2,k) and write H = (H", H®). Using (A.1), ( 2), (A.3),
and (A.4) the Jacobian matrix D¢H satisfies det DeH = HZ(I)H,?) - H,gl)Hz( )'> 0. Further,
the partial derivatives of H with respect to w and b are given by

HY(z,k;w,b) = HP(z,kw,b) =u"(w—b—Fk) <0 (A.5)
HM (2, kw0,0) = —u"(w—b—k) — B, [R(k;-) R*(2; )" (=)] > 0 (A.6)
HP (z,k;w,0) = —u"(w—b—k) —E,[(R*(2;-))%"(=)] > 0. (A7)

By the implicit function theorem, using the standard inversion formula for 2 x 2 matrices

1 2 1 1 2 2 1
B — Y HOH® — B B

Zy(w, b , Zp(w, b
(w, ) det DeH b(w;5) det DeH (A8)
—H&l)[Hél) _ HéZ)] H;Z)H(l) . Hél)H(Z) :
Ky(w,b) = Ko(w,b) = b b
’ det DgH ’ ’ det DgH

Since the matrix D¢ H (2, k; w, b) is non-singular also at any boundary point (w, 0) € Xp, the
implicit function theorem implies that the mappings Z and K can locally be extended to an
open neighborhood around (w, 0). Hence, their derivatives are well-defined and continuous
also on the boundary XO and Lemma 2.2 indeed holds on the entire set X.

(i) Use HY <0 < HY by (A.1), (A.3), and 0 < —HY < HY i =1,2, by (A.5)~(A.7).
(iii) For ¥ = idg one has Z(w,b) = f'((w, b)) by (8) and (ii) is implied by (i). If, instead,
(U3) holds, straightforward calculations give

HY —HY = B, [(R(k;-) — R* (2 )R(k; )" ()] (1 + Ep (k) — B, [Ry(k; ' ()]
H —HY = E, [(R(k;-) — R*(z; )Rz )" (-]
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By Lemma B.1, H{" — H” > 0> H{" — H®® which gives Z, < 0 < Z,. Finally,

KuwZy — KpZy =

1 2 1
SN o

A.3 Proof of Lemma 3.1

Let 2° = (w°, 0) be the unique fixed point of ® in Xy from Assumption 2. First, we show
that ¢(z°) > 1 implies that ® is expansive. By contradiction, suppose 1(z°) > 1 and @
has a fixed point Z = (1, b) in X, . Then, as ¢, < 0 one has ¢(w,b) < ¢(w,0) < w for all
w > w°. Tt follows that @w < w°. Monotonicity of 1 implies 1 < 1(2°) < ¢(@°,b) < ¥(Z).
But this contradicts (11) whose second component clearly implies ¢(z) = 1.

Second, we show that ¢(z°) < 1 implies that ® has a fixed point # = (w,b) € X;. Let F =
(FO,F®): X — R? be defined by F™ (w, b) := w—¢(w, b) and F® (w,b) := ¢(w, b) — 1.
Any value z € X, that satisfies F'(z) = 0 is a fixed point of ®.

By uniqueness and stability of z°, any z = (w, b) € X, satisfying w > @° gives F(V)(w, b) >
w — ¢(w,0) > 0. Further, let 0 < w < @° be the unique value for which (w,0) = 1 which
is well-defined by the monotonicity and boundary properties of ¢. Observe that for any
r = (w,b) € X, satisfying w < w, F®(w,b) > (w,0) — 1 > ¢(w,0) — 1 = 0. Combining
both results shows that any fixed point Z = (w,b) € X, satisfies w € W :=|w, 0°[.

For any w € W we have F(M(w,0) < 0 and limj, », F (w,b) = w > 0. Thus, there exists
a value 0 < b < w such that F("(w,b) = 0 which is unique by monotonicity of ¢. Let
this value be determined by the implicit function f® : W — R, which is C! by the
implicit function theorem with derivative fM'(w) = (1 — ¢ (w, b))/ds(w, b), where w € W
and b = f(w). Continuity of F) implies lim,, sgo f1 (w) = 0 and lim,~, f& (w) > 0.
For any w € W we have F® (w,0) < 0 and limy, », F"(w,b) = co. Thus, there exists a
value 0 < b < w such that F®)(w,b) = 0 which is unique by monotonicity of 1. Let this
value be determined by the implicit function f : W — R, which is C' by the implicit
function theorem with derivative f@’'(w) = —y,(w,b))/vy(w,b) > 0 where w € W and
b= f@(w). Continuity of F® implies lim,, g0 f*(w) > 0 and lim,~,, f@ (w) = 0.

Let AW — R, A(w) := fO(w) — fP(w). Any zero @ € W of A defines a steady state
value 7 = (w, f()(0)). Existence of such a zero now follows from continuity of A and the
boundary behavior limy, g0 A(w) < 0 and lim,\,, A(w) > 0. For later reference, we also
note that the derivative at the steady state is given by

Ub(T) — ¢uw(Z)(Z) + Yu(T)Pn(Z)
96(7) (7)) .

By the boundary behavior of A, there is always a steady state at which A'(w) < 0. [ |

Al(w) = —

(A.10)

A.4 Proof of Lemma 3.2
By contradiction, suppose there exists 2o = (wg, by) € X, such that z; := ®'(z¢) € X for all
t > 0. Let 2 := (wy,0) and 2 := ®'(z)) € X for all ¢ > 0. Clearly, z, € X, and 2z} € X,

for all ¢ > 0. Stability of z° due to Assumption 2 implies lim; o, z) = 7° = (2", 0).
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Further, ® being expansive implies ¢(7°) > 1 by Lemma 3.1 as ¢(z°) = 1 is excluded
by assumption. A simple induction argument using the monotonicity properties of &
shows that w) > w; > b > 0 for all £. Further, the induced sequences ¢ := (z?) and
Yy := (), t > 0 satisfy ¢, > ¢ for all t > 0 and lim_, 1)) = ¢(z°) > 1 by continuity
of 1 and stability of z°. Thus, there exists T > 0 such that ¢; > ¢ > 1 forall t > T
and the sequence (b;);>7 is strictly increasing, i.e., byy1 = ¢yb > b, for all t > T. As
by < wy < w? for all + > 0, b := lim,_,., b; exists and satisfies by < b < @w’. But then,

1 = limy 0 % = limy_,0 ¢, which contradicts limy_,o ¢ > limy oo ) = ¢(z%) > 1. W

A.5 Proof of Lemma 3.3

At any steady state ¥ = (w,b) € X, the trace and determinant of the Jacobian D®(z) read
trDP(7) = 1+¢u(7)+b1h(7) and det DP(7) = ¢ () +b[dw (7)1 () — ¢(7)¢w(7)]. By the
properties of ¢ and ¢, trD®(Z) > 1, det D®(Z) > 0 and trDP(z) = 1+det DP(Z) —CA'(w)
where ¢ > 0 and A is defined as in the proof of Lemma 3.3. By uniqueness of the
steady state, A’(w) < 0 as A’(w) = 0 would imply a non-hyperbolic steady state. Hence,
trD®(z) > 1 + det D®(x) implying saddle-path stability of z, cf. Galor (2007, p.88). W

A.6 Proof of Lemma 3.4

Define X as in (13). Note that # € X and that M C X.

(i) Step 1: M is a one-dimensional C''-manifold. By the Stable Manifold Theorem (cf.
Nitecki (1971)), there is an open neighborhood U C X, N'Y of Z such that the locally
stable set M°¢ := {z € X, [®"(2) € UVn > 1 Alim,_,o ®"(z) = z} is a one-dimensional
manifold which is as smooth as @, i.e., C'. By Nitecki (1971, p.89) or Galor (1992, p.1371,
Definition 4), the globally stable manifold defined in (12) obtains as M = U,,>o® " (M°).
Exploiting Assumption 4, M inherits the smoothness of M'°¢ and is thus a one-dimensional
C'-manifold. The same arguments are used in Galor (1992, p.1371, Corollary 3).

Step 2: M is the graph of a strictly increasing function M : W — R, ., W C R, ,. By
Lemma B.2, for each w > 0 there exists at most one 0 < b < 0 such that (,b) € M. Let
W be the set of all @ > 0 for which such a value b exists. Then, w € W and M is the graph
of M : W — R, defined via M (1) := b. Lemma B.2 also implies that M is increasing.

Step 3: W is an interval and M is continuous. As M is O, there exists an open neighbor-
hood V C M of Z, an open subset U C R and a C'-diffeomorphism ¢ : V — U. W.l.o.g.,
let U be an interval and V C MI°® (otherwise, choose an open interval UcU containing
©(Z) small enough such that ¢~ (U) € M and switch to V := ¢~ 1(U) and @ := v17)- By
Dugundji (1970, p.108, Theorem 1.4), V = ¢ }(U) being the image of an open and con-
nected set under a homeomorphism is an open and connected subset of Ml containing z. Let
r € M be arbitrary. By (12), lim,,_,o, ®"(z) = & implying ®"(z) € V for n large enough,
i.e., € ®7(V). Since z was arbitrary and V C M'°*, M = U,,5c® (V). Continuity of
&~ and Theorem 1.4 in Dugundji (1970) imply that each ®~"(V) is a connected set con-
taining z. By (12) and Theorem L5 in Dugundji (1970, p.108), M is connected and so are
W and B := M(W) as the images of M under the continuous projections 7 : (w,b) — w
and 7y : (w,b) = b. Thus, both W and B are intervals. Suppose M were not continuous
at some interior point wy € W. Then, there exists € > 0 such that for all § > 0 sufficiently
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small there is some W €]wy — 6, wy + [ for which |[M(w) — M(wp)| > €. Then, by strict
monotonicity of M, for all § > 0, either M (wy) > e+ M (wy—3) or M(wp+6) > e+ M(wy).
In particular, there is no w € W for which M(w) € [M(wy) — 3¢, M(wy) — 3¢]. Conclude
that B CJ0, M(wp) — 3e[U]M(wp) — 3¢, 00], i.e., B is separated which is a contradiction.

Step 4: M is C'. Let wy be an interior point of W. Since M is O, there exist an open
neighborhood Vo C M of zg := (wq, M (wy)), an open set Uy C R and a C*-diffeomorphism
' = (I',Ty) : Uy — Vy. Let F := (idw, M) : W — M which is continuous by
Step 3 and so is the inverse F'~! = m; which is the projection defined above. Define
Wy := m(Vy) which is open since 7, is open. Thus, Ty = F~'ol : Uy — W, is
C" and the inverse I'T' = T o F' : Wy — U, is at least continuous. The strategy is
to show that I'T' is even C'. Suppose I'\(@7) = 0 for some @ € Uy. Let @ = T'y(q).
Since I'y, = M oT'; and W takes values in the unit interval'® for all w > 0,
I'h(a) = T (@) limy, g (M(w)—M(0))/(w—w) = 0. Adopting an argument from Villanacci
et al.(2002, p.39), let ¥ be a C'-extension of I'™! to an open set in R? containing Vy, i.e.,
Uy, =01 Then, (Vol')(a) =0,V (I(a)l(a) + 0¥ (I'(a))I% (@) = 0 which contradicts
(¥ oTI")y, = idy, implying (¥ o I')’'(#) = 1. Conclude I'|(u) # 0 for all u € Uy. Then, by
the inverse function theorem (T';")(w) = 1/T(T'7" (w)) for all w € Wy. Since I'; is C' and
I';! continuous, (T';') is well-defined and continuous. Thus, T'; is a C'-diffeomorphism
and so is F' =T oT'; ! restricted to Wy. Hence, M is C* on W, and, in particular, at wy.

Step 5: om(w) == ¢(w, M(w)), w € W is increasing. We first show that ¢y is non-
decreasing, i.e., M' < —¢,, /¢, < 1. By contradiction, suppose M’ () > — by, (10, b) /¢y (10, b)
for some interior point w € W where b := M(w). Then, M' (@) > —t; (w0, b) /15 (0, b). Let
Yy(w) = Y(w, M(w)), w € W. By continuity, ¢y is locally strictly decreasing while ¢y
is locally strictly increasing around w. Let 1 > w be close to w and b= M(w). Then,
(w,b), (w,b) € M and w; := ¢y(w) < pp(w) =: wy while by := bihy(w) > by (w) =: by.
But M being self-supporting under ® implies (@,b) = ®(w,b) € M and (i, b)) =
®(w,b) € M, i.e., by = M() and by = M(w;) which contradicts that M is strictly
increasing. To see that ¢y is even strictly increasing, suppose ¢y (w) = ¢yp(w) for some
w > w. Then, ¢y must be constant on the interval [w,w] while 1y is weakly increasing.
Repeating the previous argument, w; = w; and 131 > l~)1 leading to the same contradiction.

Step 6: W =R, . By Step 5, ¢y, : W* — W is well-defined where W* := ¢y (W) is an
interval with the same structure (left-open/closed and right-open/closed) as W. By (12),
oy has @ as its unique fixed point which is globally asymptotically stable on W. Therefore,

Yw e W : d)M(w)%w & wéw and Yw € W* : d)N_ﬂl(w)éw & wéu’). (A.11)

Define wiys := inf W < @ < supW =: wg,, and wfj; := inf W* < < sup W* =: w,,. By
(12) and Assumption 4, ® is a homeomorphism between M and MIN'Y from which we infer
that W* = WN]0, wmax[ and , therefore, w}; = wiy and w,, = min{wsup, Wmax }-

We show wins = 0. Choose wy € W such that wiy < wo < w. Forn > 0, let w, 1 = ¢y (wy)
and b, := M(w,) which are well-defined as ¢, maps Jwinr, w[ into itself. Also note that
Ty = (wy,b,) € M and z, = ® *(z,_1) for all n > 1. By (A.11), (wy,)p>1 is strictly
decreasing and converges to some value w,, > wiye. Suppose ws > 0. By monotonicity of

M, (b,)n>1 is strictly decreasing and converges to bo, < We. SUPPOSE Wo = bo. Then,

10T his follows from monotonicity of M and a straightforward modification of the contradiction argument

employed in Step 5 below where M’ (w) needs to be replaced by the difference quotient AA—L’] = w
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lim,, 50 ¥(wn, b,) = 00 by the properties of ¢ and, since by, > 0, (wy,b,) ¢ X D M for
large n, which is a contradiction. Conclude that lim, o T, = Too = (W, b)) € X. As
®(zp11) = x, for all n, continuity of @ gives lim, o P(1,) = Too = P(Ts). Thus, z is a
fixed point of ® satisfying 0 < we < w < w°, which contradicts either Assumption 2 or 3.
Conclude that w., = 0 which implies w;,s = 0.

We show wg,, = 00. Suppose wsyp < Wmax. Then w§,, = wg,, < 0o and, by (A11) ém
maps |0, W[ into itself. One can now choose wy €)W, wy,p| and modify the arguments
from the previous paragraph to obtain a contradiction. Conclude that wgy, > Wmax = W,

Let (wy)n>1 be a strictly increasing sequence in W converging to wsyp. Then, (¢n(wp))n>0
converges t0 Wpayx. But, by definition of wp,ay, this is only possible if wg,, = 0o.

(ii) Claim (a) follows from Lemma B.2 and Assumptions 2 and 3 while (b) follows from (12),
(i), and (A.11). To show (c), assume by contradiction that b > M(w) but z = (w,b) € X.
Define 2, = (wy, b)) == ®(2) and &, = (iy, b)) = ®'(&) where & := (w, M(w)). Note
that 2, € M for all ¢ > 0 and lim;_ Z; = (w,l;). Using Assumption 1, an induction
argument yields 0 < I;t < by < wy < wy for all t. Define g3; = bt/lA)t to observe that
Bo > 1 and By = Bub(x,) /() > B for all t > 0. Hence, limy ,o 5 = 3 > 1 and
limy oo by = 3b =: b’ > b exist. Since w, remains bounded, z; € X for all ¢ only if ¥’ < oo
which requires lim; ,, ¢)(x;) = 1 by (11). But, by the previous properties lim; ., 1(x;) >
limy_, o0 (104, by) = (w, ') > 1b(w, b) = 1 which is a contradiction. |

A.7 Proof of Lemma 4.2

Let £ € € be given and define ¢°(w;z) := W(K®(w);e) for w > 0 where k = K%(w) is the
unique solution to u'(w — k) = E,[R(k; )v'(kR(k;-))]. Any steady state of ®(-;¢) in Xy is
of the form z° = (@, 0) where @w° > 0 is a fixed point of ¢°(-;£). We show that any such
steady state satisfies ¢° (0% ¢) < 1. For any w > 0 and k = K°(w), the derivative reads
Er(k) ¢ (w;e) wky(w)
0 f ’ 0

h(wie) = g LA R p ) (A12)
By (T2), the first factor in (A.12) is positive but strictly less than one. The second one
equals unity at any steady state. Finally, note that the derivative of Ky satisfies

1
0< Kyw) = (A.13)
(w0 k) E, (kR (k) 21" (kR (k)]
L+ Ep (k) grango—y + (1 = Ep(F)) Flu(w— k)]
(T1) 1 (U4) k T 1k
< u' (w—k) S S w
1+ Ep (k) ity k+Ep(k)(w — k) Ep (k) w

Thus, the last factor in (A.12) is also bounded by unity, as was to be shown.

If the additional conditions hold, then ¢(w;e) > w for w small while (U5) ensures that
limy, 00 KCo(w) = oo. This and the boundary behavior of f implies ¢(w;e) < ef(Ko(w)) <
Ko(w) < w for w sufficiently large and yields the existence of a non-trivial steady state. H

A.8 Proof of Lemma 4.3

We show that if & = ®(; ¢) has a steady state in X, , it will be unique. Defining A as in the
proof of Lemma 3.3, it suffices to show that A’(w) < 0 at any steady state Z = (w, b) € X,..

26



For brevity, let k := K(Z) and Z := Z(Z). As the denominator in (A.10) is positive, one
verifies directly that A’(w) < 0 if and only if

2,(%) — Ep(F)R(%; )[Ku(T) 24(T) — Ky(F) 20 (Z)] > 0. (A.14)

If ¥ = idg, the bracketed term in (A.14) is zero and the claim follows from Lemma 2.2 (iii).
If ¥ # ide , use (A.8) and (A.9) to observe that (A.14) is positive, iff M > 0 where

M:=HVH® — HYH + Ep(B)R(E; ) HP (HP — HV).

Let My = E,[R(k;-) [v'(=)l], My := By[R(k;)*[v"(=)]], Ms = B, [(R*(%;-))” [v"(-)]]

and My :=E,[R(k;-) R*(z;+) [v"(—)]|]. Using the functional forms (A.1)—(A.4), and (A.5)-
(A.7), tedious but straightforward calculations reveal that M = A 4+ B + C where

A= " ()| _J;/I/((g)) My +m(Ms — My) + (1 + Ep (k) (Mg — M4)]
T - "1, _ 2
m = 1-Ep(B)R(k;e), B:= LM M, = (1+ Ep (k) [M2M3 — (M) ]

By Lemma B.1(b), My > M, and M3 > M, which implies C' > 0 by (T1). Also, B > 0.
Suppose m > 0. Then, A > 0 by (T1) which implies M > 0. Conversely, suppose
—mM, > 0. By (8) and (U4), M; = v'(w —b—k) > (w — b — k)|u"(w — b — k)| which
implies B > — f"(k)/ f'(k) (0 — b— k) |u"(=)| M5. By (T1), (1+ Ep(k))(Mz — My) > 0. By
(U3), My = 0~ (kMy+bMs) implying M; > bMs by (U1). Combining the four inequalities
gives -
" oy 4R
A+ B> |u"(=)|M;|(1+ Ep(k)) — 7 (0 — kR (k;€))|-

Both terms in brackets are non-negative due to (T1) and (T2). Hence, M > 0. [

A.9 Proof of Lemma 4.4

Given € € &, let 2/ = (w', V') € Y. arbitrary. We determine a unique xz = (w, b) € X, such
that ®(z;¢) = 2. As w' €]0, w™|, there is a unique £’ > 0 such that w" = W(k';¢). The
value 2’ then follows from the first order conditions E, [R*(2'; -)v'(b'0(-) /9 (e) +k'R(K';-))] =
E, [R(K';-)v'(b"0(+)/9(e) + K'R(K';+))] from which b = 0'/(2"9(g)) can be inferred. Finally,
w is the unique solution to u'(w — b — k') = E,[R(K;-)v'(bR*(2';-) + K'R(k';-))] which
is well-defined due to the Inada conditions and (U5) and ensures that &' = K(x) and
2/ = Z(x). Hence, d~' is well-defined. As ® is C'' by Lemma 2.2 and det D®(x) > 0,
D®'(z') = [D®(x)] ! is continuous by the inverse function theorem. |

A.10 Proof of Lemma 4.5

By contradiction, suppose ¢ < &’ but by := M. (wy) > M (wy) =: b for some wy >
0. Let zy := (wp,by) and zf, := (wy,by). Using (10a,b) and an induction argument in
conjunction with Lemma 2.2 and the multiplicative structure of shocks, the sequences
{z1}1>0 and {2} };>0 defined as z; = (wy, b)) = ®(z4-1;¢) and z} = (w}, b)) = P(x)_1;¢")

satisfy w; < wj and by > b} for all ¢ > 0. Therefore, . = (w.,b.) = limy, x; and
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T = (Wor, ber) := limy_, o @) satisfy w0, < W and b, > b.. By Lemma 2.2 (iii), however, the
steady state property Z(Z.) = Z(Z.) = % requires 7, = I implying K(Z.) = K(Z.) =: k.
But this contradicts w. = W(k,e) < W(k,e') = w». Conclude that M=t = M,
in (16). Using this, ¥ = ¥, and the properties of ® and M._. , b < M (w) implies
D@ (w, b;e) = @ (w, b; i) < PP (w, M (w); emin) = MDD (w, MU (w); i) <

MDD (w, by £ 1)) < MDD (w, b; £)) Ve € €. Thus, condition (17) holds. |

A.11 Proof of Lemma 4.6

(1) The unique bubbly steady state can be obtained by direct computations and its stability
properties follow from the same arguments used in the proof of Lemma 3.3.

(ii) Let 3, := by/w, for t > 0. Using (20a,b) gives F;41 = ¢(3;) := 2=y — B] "B, t > 0.
The map ¢ has 3 as its unique non-trivial fixed point which is unstable. Moreover, 8, < 3
implies lim;_,o, 3 = 0 and (B, > (3 implies that ¢ (3;) > « for some finite #,. Hence,
by = Bwy is necessary for (wo, by) € M, and each such initial state converges to . [ |

A.12 Proof of Lemma 5.1

(i) Define f3; as in the previous proof. By (29a,b), G;11 = ¢(5;) == ﬁ%L(ﬁt)/h}(L(ﬁt))ﬂt,
t > 0. Using the properties of L and &, ¢ has 3 > 0 as its unique non-trivial steady state.
As any bubbly steady state of (29a, b) must satisfy b, = 3., one obtains w, as the unique
solution to w = ®W(w, fw;e). The stability properties follow from the same arguments
used in the proof of Lemma 3.3.

(ii) Noting that the steady state in (i) satisfies ¢'(3) > 1 and is, therefore, unstable, an
analogous reasoning as in the proof of Lemma 4.6(ii) yields the claim. [ |

B Auxiliary results

Lemma B.1
In addition to (T1), (Ul), and (U2), let (U3) hold. Then, for all (w,b) € X, the solutions
z:= Z(w,b) and k := K(w, b) to (8) satisfy the following inequalities:

(a) KBy, [(R(k;-) = R*(z ) R(K; ) [0" ()] = =0y [(R(K;-) = R*(2;))R*(2; ) [0" (=)]].
(b) By [(R(k; ) = R* (7)) R(k; )" ()] = 0 = By [(R(K; ) = R*(2;-))R* (25 -)[0" ()]

Proof of Lemma B.1.

(a) By (8), 0 = HW (2, k;w,b) — H®) (2, k;w,b) = E, [(R(k;-) — R*(2;-))v'(—)]. By (U3),
v'(c) =07 te|v”(c)| for all ¢ = bR*(z;+) + kR (k,e) > 0 which yields (a).

(b) As By, [(R(K; ) = R*(2;-))R(k; ) [0"(=)[] = By [(R(K; ) — R*(2;-))R* () [v"(—)]] and,
by (a), the two sides are either both zero or have opposite signs, the claim follows. [ |

Lemma B.2 B o
Define ® as in (11) and let & # & be distinct points in X such that w > w and b < b.

Suppose &, = ®"(), n > 0 and &, := ®"(&), n > 0 converge to i* = (u?*,ja*) and
* = (w*,b*) where b* > 0. Then, * and T* are fixed points of ® and w* > @w* > b* > b*.
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Proof. An induction argument using the properties of ® gives w, > w, > l;n > l;n > 0
for all n > 0. Further, (3, := b, /b, satisfies 0 < B,41 = Butb(2,) /0 (&) < B, for n > 0.
Thus, By = lim,_, G, exists and 0 < [, < 1 implies bt = ﬁooi)* < b*. We claim that
i* € X which necessarily implies * € X. Suppose @w* = b*. By the boundary behavior
of ¥, lim,,_, 1¥(Z,) = oo which, since b, is bounded away from zero and @, from above,
would imply b, > 1, for some n sufficiently large, a contradiction. Conclude that 2* € X, .
Continuity of ® then implies lim,, o Ty y1 = lim, oo ®(Z,) = * = O(T%), i.e, T* is a fixed
point of ®. The argument for * is analogous. Finally, w* > w* by monotonicity of ®. B
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