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Introdu
tionWhen do asset pri
es ex
eed the fundamental value of the underlying asset? This phe-nomenon of a so-
alled asset bubble has long been studied in the literature. Numerouspapers provide 
onditions under whi
h bubbles are 
ompatible with rational, fully in-formed investors and study their 
onsequen
es for the real e
onomy. A 
ommon featureof almost all these studies, however, is that they employ a deterministi
 framework. Themain 
ontribution of the present paper is to study asset bubbles in sto
hasti
 e
onomieswhere the produ
tion side is subje
ted to random produ
tivity sho
ks. Using methods fromdynami
al systems theory, we derive 
onditions under whi
h asset bubbles exist in a broad
lass of su
h e
onomies. As the formal approa
h to be developed seems appli
able also inother and more general situations, the paper also o�ers a methodologi
al 
ontribution.A natural framework to study asset bubbles and their equilibrium impli
ations is the 
lassof overlapping generations (OLG) models on whi
h the present paper will ex
lusively fo
us.A �rst 
lass of models in this literature studies monetary bubbles 
orresponding to valued�at money in models of pure ex
hange. Early studies of deterministi
 ex
hange e
onomiesmay be found in Gale (1973), Okuno & Zil
ha (1983), or Beneviste & Cass (1986). Thesepapers show that monetary bubbles 
an only exist if the non-monetary equilibrium is non-optimal. The results were generalized, e.g., in Koda (1984), Manuelli (1990), or Aiyagari& Peled (1991) to sto
hasti
 ex
hange e
onomies where in
omes follow exogenous randompro
esses and 
onsumers may have a

ess to an intertemporal storage te
hnology. Theanalysis to be presented in this paper will show that the existen
e 
onditions in Manuelli(1990) are stru
turally similar to the ones for a sto
hasti
 produ
tion e
onomy.Con
eptually, most of the previous and related approa
hes fo
us on stationary equilibriafor whi
h they o�er abstra
t existen
e results. Issues su
h as dynami
 stability and therole played by initial 
onditions are typi
ally not studied. A notable ex
eption is Ro
hon& Polemar
hakis (2006) who extend the deterministi
 OLG model with pure ex
hange toin
lude a �nan
ial se
tor that issues money in ex
hange for debt and 
ondu
t a full-
edgedanalysis of the resulting dynami
s. The present paper attempts to 
ondu
t a study in thesame spirit for a sto
hasti
 e
onomi
 environment.A se
ond 
lass of models in
ludes an expli
it des
ription of the produ
tion pro
ess and thea

umulation of 
apital. This permits to study the impa
t of asset bubbles on produ
tionand investment in the e
onomy. For these e
onomies, Tirole (1985) showed that assetbubbles o

ur if and only if the bubbleless equilibrium is ineÆ
ient due to an overa

u-mulation of 
apital. In situations where the bubbleless equilibrium does not su�er fromover-a

umulation, bubbles may still exist in the presen
e of fri
tions. Mi
hel & Wigniolle(2003) study a monetary OLG model with produ
tion where 
onsumers hold money due to
ash-in advan
e 
onstraints. They show that temporary bubbles may exist even if the mon-eyless equilibrium fails to exhibit overa

umulation of 
apital. Similarly, Kunieda (2008)shows that asset bubbles 
an emerge in e
onomies with overa

umulation where 
onsumersfa
e borrowing 
onstraints. Below we will dis
uss how the deterministi
 results in Kunieda(2008) extend to the sto
hasti
 setting of this paper.An issue 
losely related to the emergen
e of a bubble is the sustainability of governmentaldebt whi
h may be viewed as a bubble rolled over from generation to generation. Thedi�eren
es between debt and bubbles are thoroughly exhibited in de la Croix & Mi
hel(2002, p.212). Starting with the seminal paper by Diamond (1965), several papers fo
us1



on the sustainability and optimality of government debt, see de la Croix & Mi
hel (2002)for a survey. Typi
ally, however, theses studies are also pla
ed in a deterministi
 setting.An ex
eption may be found in Berto

hi (1994), who studies a sto
hasti
 OLG e
onomywith government debt o�ering a safe return. Her model 
onstitutes a spe
ial 
ase of theframework to be developed in this paper and we will 
omment on her �ndings below.To a

ount for aggregate 
u
tuations of the type observed over the business 
y
le, mostma
roe
onomi
 models in
orporate random sho
ks, in parti
ular produ
tivity sho
ks. ForOLG produ
tion e
onomies, su
h a setup was introdu
ed in Wang (1993) and furthergeneralized, e.g., in Wang (1994), Morand & Re�ett (2007), M
Govern et al. (2013), orHillebrand (2014). Extending the previous studies of bubbles to su
h a random environmentseems important not only to in
orporate business 
y
le 
u
tuations, but also be
ause theresults for deterministi
 e
onomies indi
ate that bubbles are relatively fragile and theiremergen
e is subje
t to initial 
onditions. Thus, it seems important to analyze whetherthe deterministi
 �ndings are robust and 
ontinue to hold in a random setting.To the author's best knowledge, a general study of bubbles in OLG e
onomies with randomprodu
tion and endogenous 
apital a

umulation is still missing in the literature. Fillingthis gap is therefore the primary 
ontribution of this paper. While the fundamental side ofthe e
onomy will be similar to Wang (1993), we will argue below how and why the resultsand methods should also 
arry over to more general 
lasses of e
onomies. Con
eptually, thepaper develops and applies a dynami
al systems approa
h suitably adapted to a randomenvironment. This preserves the main strength of Tirole (1985) whose existen
e 
onditionsare essentially based on the dynami
 properties of the equilibrium mapping. In parti
ular,the saddle-path towards the bubbly steady state de�nes the maximum sustainable bubbleunder whi
h the state dynami
s remain bounded in Tirole's model. In the sto
hasti
 
asestudied here, matters are 
onsiderably more 
ompli
ated as the equilibrium bubble mustbe sustainable under any sequen
e of sho
ks. For this reason, the existen
e 
onditionsderived in this paper are based on the dynami
 properties of an entire family of equilib-rium mappings parameterized in the sho
k. This stru
ture provides a natural extensionof the deterministi
 dynami
al system in Tirole (1985) to the present sto
hasti
 setting.As a 
onsequen
e, the existen
e 
onditions derived below be
ome natural and intuitivegeneralizations of the ones in Tirole (1985) whi
h 
an be re
overed as a spe
ial 
ase.From a purely methodologi
al standpoint, the paper analyzes equilibria whi
h are gener-ated by randomly mixing a family of mappings ea
h of whi
h possesses an interior �xedpoint whi
h is saddle-path stable. This is a situation that arises in many ma
roe
onomi
models (for example, in the sto
hasti
 neo
lassi
al growth model in state-spa
e form) andthe approa
h to be developed delivers simple and geometri
ally intuitive 
onditions underwhi
h su
h a system generates bounded dynami
s and possesses stable, self-supportingsets. Using the stable manifold theorem (
f. Nite
ki (1971)), the key ingredient is a 
om-plete 
hara
terization of the regions in the state spa
e in whi
h ea
h mapping generatesstationary dynami
 behavior. Thus, great 
are is pla
ed on a 
lean mathemati
al 
har-a
terization of these regions (
f. Lemma 3.4 in Se
tion 3). The methods to be employedseem appli
able also in other and more general situations and 
ould, therefore, be of somegeneral methodologi
al interest quite independent of the parti
ular theme of this paper.The analysis of this paper unfolds as follows. In a �rst step, we impose restri
tions underwhi
h bubbly equilibria are generated by randomly mixing a family of dynami
 mappingson a suitably de�ned state spa
e. This stru
ture provides the basis for applying dynami
al2



systems theory to study bubbly equilibria. In a se
ond step, we 
hara
terize the dynami
properties of ea
h member of this family and whether it displays expansive or stationarybehavior. This permits to 
ompletely 
hara
terize the model's dynami
 behavior underarbitrary sequen
es of sho
ks and for di�erent initial 
onditions. In parti
ular, it will allowus to derive ne
essary and suÆ
ient 
onditions for bubbly equilibria to exist and derive anupper bound on the maximum initial bubble that 
an be sustained over time under anysequen
e of sho
ks. Essentially, our existen
e 
onditions require the state dynami
s to beex
lusively generated by stationary dynami
 mappings ea
h of whi
h generates boundeddynami
s on a 
ertain subset of the state spa
e. The interse
tion of these ranges de�nesan upper bound for the maximum initial bubble that 
an be sustained over time just as inTirole (1985). We also show that even if they exist, bubbles are temporary in the sense thatgeneri
ally the e
onomy 
onverges to a bubbleless situation with probability one. Finally,we demonstrate that our existen
e 
onditions 
an be relaxed if fri
tions su
h as borrowing
onstraints are introdu
ed.The paper is organized as follows. Se
tion 1 introdu
es the model. Se
tion 2 derives thestru
ture of equilibria whi
h are generated by a family of mappings whose dynami
 proper-ties are analyzed in Se
tion 3. Se
tion 4 establishes ne
essary and suÆ
ient 
onditions forbubbly equilibria to exist and dis
usses various extensions of the model. Se
tion 5 modi�esthe previous setup to study the role of borrowing 
onstraints. Se
tion 6 
on
ludes. Allproofs are pla
ed in the Mathemati
al Appendix.1 The ModelProdu
tion se
tor.The produ
tion side 
onsists of a representative �rm whi
h operates a linear-homogeneouste
hnology to produ
e an all-purpose 
onsumption good using labor and 
apital as inputs.In addition, the produ
tion pro
ess is subje
ted to an exogenous TFP-sho
k "t in ea
hperiod t � 0. At equilibrium, labor supply will be 
onstant and normalized to unity su
hthat per-
apita output yt is determined from 
apital kt and the 
urrent sho
k a

ording tothe intensive form te
hnology f : R+ �! R+yt = "t f(kt): (1)The fun
tion f is C2 with f(0) = 0 and derivatives satisfying f 00 < 0 < f 0 and theInada 
onditions limk&0 f 0(k) = 1 and limk!1 f 0(k) = 0. The sho
k pro
ess f"tgt�0
onsists of independent random variables where ea
h "t is distributed a

ording to theprobability measure � supported on the 
ompa
t set E � R++ . This stru
ture indu
esa probability spa
e (
;F ;P) on whi
h all random variables are de�ned and a �ltrationfFtgt�0 to whi
h all equilibrium pro
esses 
onsidered below are adapted.1 Denote byE t [�℄ := E [�jFt ℄ the expe
tations operator 
onditional on the information represented by Ftand E � [�℄ the expe
tation with respe
t to �.21Formally, a sto
hasti
 pro
ess f�tgt�0 taking values in some set � � RM is adapted to the �ltrationde�ned if ea
h random variable �t : 
 �! � is Borel-measurable with respe
t to Ft and hen
e dependsonly on sho
ks up to time t.2In the following analysis, all equalities or inequalities involving random variables are assumed to holdP-almost surely without further noti
e. Measurability of mappings always refers to the Borel � algebras.3



Under pro�t maximization and perfe
t 
ompetition on fa
tor markets, the equilibriumwage wt and 
apital return rt are determined by the standard formulaswt = W(kt; "t) := "t [f(kt)� ktf 0(kt)℄ (2a)rt = R(kt; "t) := "tf 0(kt): (2b)Consumption se
tor.The 
onsumption se
tor 
onsists of overlapping generations of homogeneous 
onsumerswho live for two periods. Abstra
ting from population growth, the size of ea
h generation
an be normalized to one. A young 
onsumer in period t is endowed with one unit of labortime whi
h is supplied inelasti
ally to the labor market. Old 
onsumers own the existingsto
k of 
apital whi
h they supply to the produ
tion pro
ess.A young 
onsumer in period t � 0 earns labor in
ome wt > 0 part of whi
h is 
onsumedand the remainder invested. For the latter purpose, the 
onsumer 
an invest in 
apitalwhi
h yields the random 
apital return rt+1. In addition, a bubbly asset is available whi
hpromises the random return r?t+1 to be paid in t+ 1 per unit invested at time t.Let st and bt be the investments in 
apital and the bubble at time t � 0. These 
hoi
esde�ne �rst period 
onsumption 
1t = wt � bt � st while se
ond period 
onsumption isgiven by the random variable 
2t+1 = bt r?t+1 + st rt+1. Here the randomness enters throughthe un
ertain returns on both investments whi
h are treated as given random variablesin the de
ision. As in Wang (1993), young 
onsumers evaluate the expe
ted utility ofdi�erent 
onsumption plans (
1t ; 
2t+1) using an additive von-Neumann Morgenstern utilityU(
y; 
o) = u(
y) + v(
o). Ea
h z 2 fu; vg is C2 with derivatives satisfying z00 < 0 < z0 andthe one-sided Inada 
ondition lim
&0 z0(
) =1.Ea
h young 
onsumer 
hooses investment to maximize her expe
ted lifetime utility. Thede
ision problem reads:maxb;s nu(wt � b� s) + E t�v�r?t+1 b+ rt+1 s���� s � 0; b + s � wto: (3)Note that no short-selling 
onstraints on b are imposed at the individual level. Thus, anysolution to (3) satis�es the 
orresponding �rst order 
onditions.At equilibrium, the investment in 
apital st determines next period's 
apital sto
kkt+1 = st: (4)Denote by bt � 0 the value of the bubble in period t � 0. No resour
es are added orwithdrawn from outside su
h that the bubble must be 
ompletely self-�nan
ing, i.e.bt+1 = r?t+1 bt; t � 0: (5)Old 
onsumers in period t � 0 simply 
onsume the pro
eeds of their investments in bubblesand 
apital made during the previous period.Equilibrium.The e
onomy is E = (f; �; u; v) plus initial 
onditions. The following de�nition of a bubblyequilibrium re
on
iles market 
learing, individual optimality, and rational expe
tations.Note that the Inada 
onditions imposed above ensure an interior equilibrium allo
ation of
apital and 
onsumption of both generations.4



De�nition 1Given b0 � 0, k0 > 0, and "0 2 E , an equilibrium of E is an adapted sto
hasti
 pro
ess�wt; rt; r?t ; bt; st; kt+1	t�0 of non-negative values whi
h satis�es the following for ea
h t � 0:(i) The pair (bt; st) solves (3) at the given wage and returns while kt+1 follows from (4).(ii) Fa
tor pri
es wt and rt are determined by (2a,b) and bt evolves a

ording to (5).The equilibrium is 
alled bubbly, if bt > 0 and bubbleless if bt = 0 for all t � 0.Additional restri
tions.The subsequent analysis will frequently impose additional restri
tions on the e
onomy E .As these 
onditions are somewhat stronger than the ones imposed above, it will expli
itlybe indi
ated when they are used.Denote by Eh(x) := jxh0(x)=h(x)j, x 2 D � R the (absolute) elasti
ity of a di�erentiablefun
tion h : D �! Rnf0g. Additional restri
tions on the utility fun
tions u and v are:(U1) Ev0 � 1 (U2) lim
!1 
 v0(
) =1 (U3)Ev0 � � (U4)Eu0 � 1 (U5) lim
!1u0(
) = 0:Examples satisfying (U1) and (U2) are power utility v(
) = ��1
�, 0 < � < 1, or CES utilityv(
) = [1 � � + �
�℄1=�, 0 < � < 1, � > 0. While (U2) ex
ludes logarithmi
 utility, the�rst example shows that this 
ase 
an still be approximated by letting � ! 0. Under (U3),se
ond period utility v exhibits 
onstant relative risk aversion while (U4) is automati
allysatis�ed if (U1) holds and v(
) = �u(
), � > 0. The restri
tion (U5) on the boundarybehavior of u0 is standard.Additional restri
tions imposed on the produ
tion te
hnology f are the following:(T1) Ef 0 � 1 (T2) Ef < 12 :Restri
tion (T1) is known as 
apital in
ome monotoni
ity and widely used in OLG modelswith produ
tion, 
f. Wang (1993), de la Croix & Mi
hel (2002), or Hauens
hild (2002).It holds, e.g., for a Cobb-Douglas te
hnology f(k) = k�, 0 < � < 1. The se
ond re-stri
tion (T2) ensures that labor in
ome throughout ex
eeds 
apital in
ome, whi
h is awell-established empiri
al regularity. In the Cobb-Douglas 
ase, it holds if � < 12 .2 Equilibrium Dynami
sRisk stru
ture of bubbles.While the general de�nition of a bubbly equilibrium from the previous se
tion imposesno restri
tions on the risk stru
ture of the return pro
ess fr?t gt�0, the following analysisassumes that the bubble return o�ered at time t is of the following formr?t+1 = R?(zt; "t+1) := #("t+1) zt; t � 0: (6)Here zt > 0 is determined in period t and # : E �! R++ is a bounded measurable fun
tionwhi
h de�nes the risk-stru
ture of the bubbly asset. Two spe
i�
 
ases are of parti
ularinterest. If # � �# the bubble o�ers a riskless return. If # = idE , the identity map on5



E , the returns on bubbles exhibit the same risk stru
ture as 
apital investments. Thiswill be referred to as a 
apital-equivalent bubble. In the latter 
ase, one ne
essarily haszt = f 0(kt+1) whi
h implies r?t+1 � rt+1 for ea
h t � 0, i.e., the returns on bubbles and
apital 
oin
ide pointwise.A straightforward interpretation of (6) is as follows. Suppose there are �nitely many sho
ksE = f"1; : : : ; "Mg and in ea
h period there exists a 
omplete set of M Arrow se
urities.Let pmt > 0 be the pri
e of se
urity m that pays o� one unit in t + 1 i� "t+1 = "m.In ea
h period t � 0, the institution ba
king the bubbly asset (e.g., some governmentor an investment fund) issues a portfolio at = (amt )m=1;:::;M 2 RM++ of these se
urities to�nan
e the bubble, i.e., PMm=1 amt pmt = bt. Let the mix of se
urities be 
onstant overtime and determined by # where #m := #("m) is the relative share of se
urity m in theportfolio. The s
alar zt then determines the supply of se
urity m as amt = btzt#m. Foryoung 
onsumers to be willing to buy these assets, pri
es must satisfy the Euler equationspmt = �(f"mg)v0(amt + "mf 0(kt+1)kt+1)=u0(wt � bt � kt+1). Combined with the �rst order
onditions for an expe
tations-
onsistent 
apital investment derived from (3) this yieldspre
isely the Euler equation (8) derived below. All these arguments also extend to anin�nite set E and a 
ontinuum of Arrow se
urities. Extensions of (6) towards more generalbubble returns with state-dependent risk stru
ture are dis
ussed in Se
tion 4.Re
ursive equilibrium stru
ture.To un
over the re
ursive stru
ture of equilibria, 
onsider an arbitrary period t � 0. Letthe 
urrent state xt := (wt; bt) determined by (2a) and (5) be given and wt > bt � 0. Thetemporary equilibrium problem for period t is to determine next period's 
apital kt+1 > 0and a value zt > 0 
onsistent with an optimal savings de
ision derived from (3) andrational, self-
on�rming expe
tations. The s
alar zt determines the ex-ante bubble returnr?t+1 o�ered at time t a

ording to (6) su
h that young 
onsumers are willing to absorb the
urrent bubble. Combining the �rst order 
onditions3 of (3) with (2b), (4), and (6), de�nefor i 2 f1; 2g the mappings H(i)(�; �;w; b) : R++�℄0; w � b[�! RH(1)(z; k;w; b) := u0(w � b� k)� E � �R(k; �)v0�bR?(z; �) + kR(k; �)�� (7a)H(2)(z; k;w; b) := u0(w � b� k)� E � �R?(z; �)v0�bR?(z; �) + kR(k; �)��: (7b)Then, given wt > bt � 0 the previous problem redu
es to solving the Euler equationsH(1)(zt; kt+1;wt; bt) = H(2)(zt; kt+1;wt; bt) = 0: (8)The following result establishes 
onditions under whi
h a unique solution to (8) exists.Lemma 2.1Let the additional restri
tions (T1), (U1), and (U2) hold. Then, for ea
h w > b � 0 thereexist unique values z > 0 and 0 < k < w�b su
h that H(1)(z; k;w; b) = H(2)(z; k;w; b) = 0.Properties (U1) and (T1) ensure that an in
rease in the returns rt+1 or r?t+1 o�ered attime t in
reases the desired investment in 
apital respe
tively bubbles. E
onomi
ally,this means that the intertemporal substitution e�e
t always dominates the in
ome e�e
t.These 
onditions appear to be minimal ingredients under whi
h the state dynami
s derived3Throughout this paper, we exploit that di�erentiation may be inter
hanged with the expe
tationsoperator E� ��� if the integrand is 
ontinuously di�erentiable and integration is over a 
ompa
t set.6



below are well-de�ned, i.e., ea
h state has a unique su

essor. If bt = 0, either of the tworestri
tions alone is suÆ
ient. The additional restri
tion (U2) ensures that 
onsumersare willing to absorb any bubble bt not ex
eeding their in
ome wt if they are o�ered asuÆ
iently large return. This permits to de�ne the model's state spa
e as in (9) belowwhi
h is the 'largest' state spa
e possible. If (U2) failed to hold { as in the example withlog-utility in Se
tion 4 { tighter bounds on the bubble would be needed.4Unless stated otherwise, the remainder assumes that the hypotheses of Lemma 2.1 hold.This permits to de�ne the model's endogenous state spa
e asX := n(w; b) 2 R2+ jw > bo: (9)Exploiting the result from Lemma 2.1, let the mappings K : X �! R++ and Z : X �!R++ determine the solutions kt+1 and zt to (8) for ea
h xt = (wt; bt) 2 X. Using theimpli
it fun
tion theorem, the following result shows that these mappings are smooth(
ontinuously di�erentiable) and 
hara
terizes their monotoni
ity and boundary behavior.These properties provide the basis for the dynami
al systems approa
h developed below,whi
h will make repeated use of the Grobman-Hartman Theorem and the Stable ManifoldTheorem in order to 
hara
terize the dynami
 behavior of the equilibrium mappings.Lemma 2.2If (T1), (U1), and (U2) hold, both K and Z are C1 and satisfy the following properties:(i) limw�b&0K(w; b) = 0 and limw�b&0Z(w; b) =1. (ii) 0 < Kw < �Kb.(iii) If, in addition, either # = idE or (U3) holds, then 0 < �Zw < Zb and KwZb � KbZw.Lemma 2.2 (ii) shows that 
apital investment in
reases with in
ome and de
reases with thesize of the bubble. The latter is the standard 
rowding-out e�e
t whi
h is well-known fromdeterministi
 models. Similarly, (iii) shows that the return required for 
onsumers to bewilling to absorb the 
urrent bubble in
reases with its size and de
reases with in
ome. Themain ingredient to the proof of (iii) is Lemma B.1 whi
h requires se
ond-period utility todisplay 
onstant relative risk aversion. While this is a rather strong restri
tion, numeri
alexperiments with utility fun
tions v not satisfying (U3) have throughout displayed thesame properties of Z as in Lemma 2.2 (iii) suggesting that this restri
tion 
ould probablybe relaxed. If the bubble is 
apital-equivalent, no su
h 
ondition is needed.Equilibrium dynami
s.Combining Lemma 2.1 with (2a), (5), and (6) the evolution of the endogenous state variableunder the exogenous sho
ks is governed by the map � = (�(1);�(2)) : X � E �! R2+ ,wt+1 = �(1)(wt; bt; "t+1) :=W(K(wt; bt); "t+1) (10a)bt+1 = �(2)(wt; bt; "t+1) := R?(Z(wt; bt); "t+1)bt: (10b)As �(�; ") does not map X into itself, we refer to it as a pseudo-dynami
al system. Thisfeature is essentially due to the boundary behavior stated in Lemma 2.2 (i) and is well-known from deterministi
 models with bubbles, 
f. Tirole (1985). Given an initial state4In Tirole (1985) or Weil (1987), restri
tions are imposed on derived obje
ts su
h as the savings fun
tionor the fa
tor pri
ing fun
tions W and R and it seems not 
lear how they restri
t the underlying 
lass ofpreferen
es and te
hnology. For instan
e, Weil (1987) assumes that the interest elasti
ity of savings ispositive, whi
h is exa
tly what is ensured by (U1) and (T1).7



x0 = (w0; b0) 2 X, any equilibrium pro
ess fxtgt�0 is generated by randomly mixing thefamily of mappings (�(�; "))"2E de�ned in (10a,b). That is, for ea
h t > 0 the realizationof the produ
tion sho
k "t `sele
ts' a parti
ular map that determines the state xt from itsprevious value xt�1. Stru
turally, this 
orresponds to a two-dimensional version of the one-dimensional dynami
s in Wang (1993). The endogenous state variables fxtgt�0 togetherwith the exogenous sho
k pro
ess f"tgt�0 
ompletely determine the other equilibrium vari-ables of the model. Therefore, the existen
e of equilibrium is equivalent to determiningx0 2 X su
h that the pro
ess generated by (10a,b) satis�es xt 2 X for all t � 0 underP-almost all paths of the noise pro
ess. Sin
e b0 = 0 implies bt = 0 for all t > 0, thee
onomy has a unique bubbleless equilibrium along whi
h the state dynami
s redu
e to aone-dimensional system given by wt+1 = W(K(wt; 0); "t+1), t � 0. This is pre
isely theequilibrium studied in Wang (1993). It will turn out in the following se
tions that theproperties of the bubbleless equilibrium are 
ru
ial for the existen
e of bubbly equilibria,a �nding in line with the results obtained in Tirole (1985) for a deterministi
 e
onomy.3 Stationary and Expansive MappingsStru
ture of dynami
 mappings.From the stru
ture derived in the previous se
tion, it stands to reason that the existen
e ofbubbly equilibria depends 
ru
ially on the dynami
 properties of the mappings (�(�; "))"2Ede�ned in (10a,b). In this se
tion, we �x a value " 2 E to study the dynami
 properties ofthe single map � := �(�; "). Mathemati
ally, this 
orresponds to analyzing the model's be-havior under a parti
ular realization of sho
ks given by the 
onstant sequen
e ("; "; "; : : :).5De�ne the state spa
e X as in (9) and 
onsider the pseudo-dynami
al system � : X �! R2+ ,�(w; b) = � �(w; b) (w; b)b � : (11)Throughout, the following restri
tions will be imposed on � and  .Assumption 1The maps � : X �! R++ and  : X �! R++ in (11) are C1 with derivatives 0 < �w < ��b,0 < � w <  b and �w b � �b w. Also, limw�b&0 �(w; b) = 0 and limw�b&0  (w; b) =1.For t � 0, de�ne the t-fold 
omposition �t re
ursively by setting �0 := idX and �t(x) :=� Æ �t�1(x) for all x 2 X where it is de�ned. Let X+ := XT R2++ and X0 := XnX+ .The se
ond equation in (11) reveals that X0 is self-supporting under �, i.e., �(X0) � X0 .The following assumption restri
ts the dynami
 behavior of � on X0 whi
h will further bedis
ussed in the next se
tion.Assumption 2� has a unique �xed point �x0 in X0 . This �xed point satis�es �w(�x0) < 1.As the dynami
s on X0 are one-dimensional, uniqueness of the �xed point and the se
ond
ondition in Assumption 2 ensure that limt!1�t(x) = �x0 for all x 2 X0 , i.e., �x0 is globallyasymptoti
ally stable on X0 .5Note that this does not say that the distribution � of the sho
ks is degenerate, i.e., 
onsumers 
ontinueto maximize expe
ted utility su
h that this 
ase is not the one studied in Tirole (1985).8



Stationarity.Our goal will be to 
hara
terize the qualitative dynami
 behavior of � on X+ . Spe
i�
ally,we want to distinguish 
ases where � generates expansive respe
tively stationary behavior.This distin
tion is based on the followingDe�nition 2� is 
alled stationary, if it has a �xed point in X+ . Otherwise, it is 
alled expansive.The idea of stationarity of a map is that there is at least one state x 2 X+ whi
h issustainable in the sense that �t(x) 2 X+ for all t � 0. The merit of Assumption 2 is thatit permits the following 
hara
terization of stationarity.Lemma 3.1Under Assumptions 1 and 2, a map � of the form (11) is stationary, if and only if  (�x0) < 1.Ex
luding the non-generi
 
ase  (�x0) = 1, the next result shows that a sustainable statefails to exist if � is expansive, i.e., the dynami
s will leave the state spa
e X in �nitetime for any initial value x0 2 X+ . In this sense, any initial value whi
h has b0 > 0 isunsustainable under an expansive mapping �.Lemma 3.2Let Assumptions 1 and 2 hold and assume that the �xed point �x0 2 X0 satis�es  (�x0) 6= 1.If � is expansive, then for ea
h x0 2 X+ there exists t0 2 N su
h that �t0(x0) =2 X.From the restri
tions imposed so far, it does not seem possible to infer that a stationarymap � has a unique steady state in X+ . However, it will turn out that su
h a uniquenessproperty is valuable if not required to further des
ribe the qualitative behavior of stationarymappings. For this reason, we impose uniqueness dire
tly by the following assumption. Inaddition, we rule out non-hyperboli
 steady states by assuming that no Eigenvalue � ofthe Ja
obian matrix D�(�x) satis�es j�j = 1. Conditions under whi
h these restri
tions are
onsistent with the primitives of the model are dis
ussed in the next se
tion.Assumption 3� has at most one steady state in X+ . Moreover, if it exists, this steady state is hyperboli
.A �rst step towards 
hara
terizing the global dynami
 behavior of stationary mappings onX+ is the next result.6Lemma 3.3Under Assumptions 1 and 3, suppose � is stationary. Then, the �xed point �x 2 X+ is asaddle, i.e., the Eigenvalues �1 and �2 of D�(�x) are real and satisfy 0 < j�1j < 1 < j�2j.The stable manifold.The stability result from Lemma 3.3 implies that the dynami
s generated by a stationary6One 
an show that saddle-path stability of interior steady states is a generi
 phenomenon of mappingsof the form (11) even if Assumption 3 is not satis�ed. For instan
e, if � has three hyperboli
 �xed points�x(i) = ( �w(i);�b(i)) 2 X+, i 2 f1; 2; 3g where �w(1) < �w(2) < �w(3), both �x(1) and �x(3) are saddles while �x(2) isunstable, i.e., both Eigenvalues of D�(�x(2)) ex
eed unity in absolute value. The problem that arises withmultiple steady states is that the stable manifold de�ned below 
an not be represented as the graph of afun
tion M de�ned globally on R++ in this 
ase. 9



map � display stable behavior only along a lower-dimensional subset of the state spa
e.This subset is 
alled the (globally) stable manifold M and 
onsists of all initial points forwhi
h forward-iterates of the map � stay in X and 
onverge to the steady state �x. Formally,M := nx 2 X j�n(x) 2 X 8n � 1 ^ limn!1�n(x) = �xo: (12)The stable manifold M will play a key-role in the following se
tions. First note that M � X+by the se
ond requirement in (12). Se
ond, M is self-supporting under �, i.e., �(M ) � M .Third, as will be shown below, M separates initial points whi
h are sustainable { in the sensede�ned above { from those whi
h leave the state spa
e X in �nite time under iteration of�. This last property requires a geometri
 
hara
terization of M as the graph of a stri
tlyin
reasing C1 fun
tion M : R++ �! R++ . For this purpose, we make the followingadditional assumption where we let wmax := limw!1 �(w; 0) and Y :=℄0; wmax[�R++ .Assumption 4� is a C1-di�eomorphism between the open sets X+ and Y.The �nal result of this se
tion provides the desired geometri
 
hara
terization of the glob-ally stable manifold M and the separation property mentioned above. The proof of (i)employs several ideas also used in Galor (1992).Lemma 3.4Under Assumptions 1, 2, 3, and 4, let � be stationary. Then, the following holds:(i) There exists a C1 fun
tion M : R++ �! R++ , M0 > 0 su
h that M = graphM.(ii) For any x = (w; b) 2 X, the following holds:(a) If b <M(w), then �t(x) 2 X for all t � 0 and limt!1 �t(x) = �x0.(b) If b =M(w), then �t(x) 2 M for all t � 0 and limt!1�t(x) = �x monotoni
ally.(
) If b >M(w), then there exists t0 � 0 su
h that �t0(x) =2 X.Based on the 
hara
terization in (i), Lemma 3.4 (ii) shows that all states stri
tly belowM 
onverge to the bubbleless steady state under iteration of � while initial states on M
onverge to the bubbly steady state �x. All states above M are unsustainable and leave thestate spa
e in �nite time. As a 
onsequen
e, the set of sustainable states de�ned asX := nx 2 X+ j�n(x) 2 X+ 8n � 0o (13)is given by X = f(w; b) 2 X+ jb � M(w)g. Note from Lemma 3.4 (ii) that X is self-supporting for �, i.e., �(X) � X and that no superset of X 
an be self-supporting. There-fore, restri
ting � to this set permits to transform the pseudo-dynami
al system (11) intoa proper dynami
al system. In the deterministi
 
ase, the �ndings from Lemma 3.4 gener-alize the results in Tirole (1985) whose dynami
 stru
ture 
onstitutes a spe
ial 
ase of thegeneral 
lass of mappings (11). Also note that X de�ned in (13) is empty if � is expansivedue to Lemma 3.2. 10



4 Existen
e of Bubbly EquilibriaThe goal of this se
tion is to exploit the dynami
 properties of the equilibrium mappings to
onstru
t bubbly equilibria. In order to apply the results from the previous se
tion, ea
hof the equilibrium mappings (�(�; "))"2E de�ned in (10a,b) has to satisfy the additionalAssumptions 1 to 4. The �rst part of this se
tion provides 
onditions under whi
h thisis the 
ase. It should be noted, however, that the 
onditions to be presented are fromne
essary to obtain the desired properties. For this reason, the main results stated asTheorems 1 and 2 below employ the derived properties embodied in Assumptions 1 to 4whi
h may well be satis�ed even if the 
onditions to be presented next are not.Conditions for Assumption 1Given " 2 E , let �(x) := W(K(x); ") and  (x) := #(")Z(x), x 2 X to observe that �(�; ")de�ned in (10a,b) has the stru
ture assumed in (11). Under the hypotheses of Lemma 2.2,both mappings K and Z are stri
tly monotoni
. Further, the properties of the produ
tionfun
tion f imply that W(�; ") is C1, stri
tly monotoni
, and satis�es limk&0W(k; ") = 0.These observations lead to the followingLemma 4.1In addition to (T1), (U1), and (U2), suppose either # = idE or let (U3) hold. Then, ea
h�(�; ") satis�es Assumption 1.Conditions for Assumption 2To obtain 
onditions under whi
h a bubbleless steady state �x0" 2 X0 of �(�; ") exists, re
allthat the bubbleless equilibrium in our model 
oin
ides with the one in Wang (1993). Heuses the 
ondition limw!0�(1)w (w; 0; ") > 1 to ensure existen
e of a positive steady state.While this appears to be a standard restri
tion in the literature also imposed, e.g., inHauens
hild (2002), it does not guarantee that the steady state is unique. Therefore, thefollowing result adds suÆ
ient 
onditions under whi
h uniqueness holds. As the returnat the bubbleless steady state varies 
ontinuously with the parameters of the model, theadditional requirement of a non-unit return from Lemma 3.2 should generi
ally be satis�ed.Lemma 4.2Under (T1), (T2), (U1), (U2), and (U4), ea
h �(�; ") has at most one �xed point in X0 . If,in addition, (U5) holds and limw!0�(1)w (w; 0; ") > 1, then �(�; ") satis�es Assumption 2.The assumption of a unique bubbleless steady state is imposed throughout in Tirole (1985),Weil (1987), and almost any deterministi
 study of bubbles. In the sto
hasti
 
ase studiedhere, it will o�er a 
onvenient way to distinguish stationary versus expansive behavior of theequilibrium mappings using the result from Lemma 3.1. In addition, one 
an show that theexisten
e of a bubbleless steady state of �(�; ") for ea
h " 2 E is also ne
essary for bubblyequilibria to exist at all. To see this, note that if some �(�; ") failed to have a bubblelesssteady state, the boundary behavior of f and Lemma 2.2 would imply �(1)(w; b; ") ��(1)(w; 0; ") < w for all x = (w; b) 2 X. Thus, the e
onomy would impoverish underforward-iteration of �(�; ") in the sense that the wage and 
apital sto
k 
onverge to zero.In this 
ase, one 
an easily show that any initial state x0 2 X+ will leave the state spa
e Xin �nite time, i.e., the map �(�; ") will display expansive behavior in the exa
t same senseas de�ned in the previous se
tion. As argued below, there 
an be no bubbly equilibria inthis 
ase. 11



Conditions for Assumption 3In the deterministi
 
ase studied in Tirole (1985), there 
an be at most one bubbly steadystate. Essentially, this is be
ause the steady state interest on the bubble is dire
tly pinneddown by the growth rate of the e
onomy. In the sto
hasti
 
ase studied here, a similarresult holds if the bubble is 
apital-equivalent, i.e., # = idE in (6). If the returns onbubbles and 
apital exhibit a di�erent risk stru
ture, however, additional restri
tions onthe fundamentals of the e
onomy stated are required to guarantee uniqueness of the bubblysteady state. Conditions under whi
h this holds are stated next.Lemma 4.3In addition to (T1), (U1), and (U2), let either # = idE or (T2), (U3), and (U4) hold. Then�(�; ") satis�es Assumption 3, i.e., has at most one steady state in X+ whi
h is hyperboli
.Conditions for Assumption 4In addition to the uniqueness 
ondition from Assumption 3, the key property needed to
onstru
t a globally stable manifold as in Se
tion 3 is that �(�; ") be a C1-di�eomorphism.Our next result shows that this property requires little more than the restri
tions imposedin Lemma 2.2. Here we de�ne wmax(") := limk!1W(k; ") and Y" :=℄0; wmax(")[�R++ .7Lemma 4.4In addition to (T1), (U1), and (U2), let (U5) and either # = idE or (U3) hold. Then �(�; ")satis�es Assumption 4, i.e., it is a C1-di�eomorphism between the sets X+ and Y".Ne
essary 
onditions for bubbly equilibria.The remainder of this se
tion assumes that ea
h member of the family (�(�; "))"2E satis�esAssumptions 1, 2, 3, and 4. For ease of exposition, we also assume that E is a �nite set.Generalizations of this restri
tion are straightforward and dis
ussed below.A �rst observation based on the result from Lemma 3.2 is that existen
e of a bubblyequilibrium requires ea
h mapping �(�; ") to be stationary. For if some member �(�; "0),"0 2 E were expansive, any initial state x0 2 X+ would leave the state spa
e under forward-iteration of this mapping in �nite time t0 2 N. Sin
e the event of drawing "t = "0 for all1 � t � t0 o

urs with positive probability �(f"0g)t0 > 0, the equilibrium 
ondition xt 2 XP{almost surely for all t � 0 is 
learly not satis�ed in this 
ase.Therefore, invoking Lemma 3.1 the bubbly return at the bubbleless steady state ( �w0" ; 0)must be smaller than unity for ea
h " 2 E . This 
ondition 
an be stated asmax"2E nR?(Z( �w0" ; 0); ")o < 1: (14)In the deterministi
 
ase E = f"g, (14) redu
es to the existen
e 
ondition in Tirole (1985).Solving (7a) for z, 
ondition (14) may equivalently be written asmin"2E �E � [#(�)v0(�k0"R(�k0" ; �))℄#(")u0( �w0" � �k0") � > 1: (15)Here �k0" := K(�x0") is the 
orresponding steady state 
apital sto
k. As the bubbleless steadystate is independent of #, (15) may be seen as a restri
tion on the risk-stru
ture of thebubble. In parti
ular, this 
ondition is invariant to re-s
aling the fun
tion #.7This is 
onsistent with the de�nition of wmax in Assumption 4 as limw!1K(w; 0) =1 under (U5).12



A se
ond observation is that restri
tions on the initial state x0 = (w0; b0) are required. Tothis end, let (15) hold. Then, ea
h �(�; ") is stationary and, therefore, has a bubbly steadystate �x" = ( �w";�b") 2 X+ whi
h is unique by Assumption 3. Let M " be the asso
iated stablemanifold de�ned as in (12). Then, Assumption 4 and Lemma 3.4 (i) permit to representea
h M " as the graph of an in
reasing C1 fun
tion M" : R++ �! R++ . By Lemma 3.4(ii), it is 
lear that the initial state x0 = (w0; b0) and, in fa
t, any su

essive state xt mustlie below ea
h M " , " 2 E . Thus, de�ne for ea
h w > 0 the 
riti
al valueM
rit(w) := min"2E fM"(w): (16)Note that M
rit is well-de�ned as the minimum is taken over �nitely many values in E .Further,M
rit is 
ontinuous and stri
tly in
reasing although not ne
essarily di�erentiable.The 
urve w 7! M
rit(w), w > 0 de�nes the boundary of the set of points whi
h lie belowea
h of the stable sets M " de�ned in (12) for all " 2 E and it follows immediately fromLemma 3.4 (ii) that any equilibrium pro
ess must take values in this set.Combining the previous insights, we are now in a position to state our �rst main resultwhi
h provides ne
essary 
onditions for bubbly equilibria to exist.Theorem 1Suppose E is �nite. Let �(�; ") de�ned in (10a,b) satisfy Assumptions 1, 2, 3, and 4 forea
h " 2 E . Then, the existen
e of a bubbly equilibrium requires the following 
onditions:(i) For ea
h " 2 E , �(�; ") is stationary, i.e., 
ondition (15) holds.(ii) The initial state (w0; b0) satis�es 0 < b0 � b
rit0 :=M
rit(w0) de�ned as in (16).For the deterministi
 
ase, Theorem 1 
ompletely re
overs the results in Tirole (1985). Hissetup 
orresponds to the spe
ial 
ase where � = Æ" is a Dira
 measure 
on
entrated at somepoint " > 0, i.e., E = f"g. In this 
ase, the 
ondition (ii) in Theorem 1 is also suÆ
ientand ea
h b0 � b
rit0 de�nes a bubbly equilibrium.In the general sto
hasti
 
ase, however, the 
onditions in Theorem 1 may not be suÆ
ient.To see this, suppose the initial state x0 = (w0; b0) 2 X+ satis�es b0 � M
rit(w0). Then,by (16) b0 � M"(w0) for all " 2 E . It follows from Lemma 3.4 (ii) that for any 
onstantsequen
e ("; "; : : :) where " 2 E the sequen
e of states xt := �(xt�1; "), t � 0 satis�esbt � M"(wt) for all t � 0 and 
onverges to the bubbleless steady state �x0" if b0 <M"(w0)and to the bubbly steady state �x" otherwise. However, this 
onvergen
e may be non-monotoni
, i.e., it 
an happen that for some "0 2 E for whi
h M"0 6= M
rit, the sequen
ex0t := �t(x0; "0), t � 0 temporarily ex
eeds the graph of M
rit, as indi
ated by the dashedarrows in Figure 1. Suppose this happens after t0 periods, i.e., b0t0 >M
rit(w0t0). Let "00 2 Ebe the value for whi
h M
rit(w0t0) =M"00(w0t0). Then, b0t0 >M"00(w0t0) and it follows fromLemma 3.4 (ii) that there exists a �nite time t1 2 N for whi
h �t1(x0t0 ; "00) =2 X. As theevent of drawing "t = "0 for t = 1; : : : ; t0 and "t = "00 for t = t0 + 1; : : : ; t1 has positiveprobability �(f"0g)t0�(f"00g)t1�t0 , the initial 
hoi
e x0 is not 
ompatible with an equilibrium.Con
lude from this that, in general, the value de�ned in (16) is only an upper bound forthe initial bubble b0. Also note that the previous arguments be
ome obsolete if ea
h M"is independent of ", a 
ase whi
h holds in the example studied below.13



A dire
t 
onsequen
e of the previous observations is that the following additional propertyis required for the 
onditions in Theorem 1 to be suÆ
ient: The set of points below thegraph of M
rit must be self-supporting for the family (�(�; "))"2E . Formally,8w > 0 : b �M
rit(w) ) �(2)(w; b; ") �M
rit(�(1)(w; b; ")) 8" 2 E : (17)The additional 
ondition (17) leads to the following 
orollary.Corollary 1Under the hypotheses of Theorem 1, suppose 
onditions (15) and (17) hold. Then, ea
h(w0; b0) for whi
h 0 < b0 �M
rit(w0) de�nes a bubbly equilibrium.An alternative interpretation of (17) 
an be obtained by de�ning for ea
h �(�; ") the set ofsustainable states X" as in (13). Then, as demonstrated above, the fa
t that ea
h X" is self-supporting for �(�; ") does not imply that the interse
tion X := \"2EX" is self-supportingfor the family (�(�; "))"2E . As X = f(w; b) 2 X+ j b � M
rit(w)g, this is pre
isely whatis ensured by the additional 
ondition (17) under whi
h any x0 2 X de�nes a bubblyequilibrium. Also re
all from Se
tion 3 that X" and, therefore, X would be empty if somemap �(�; ") were expansive.Figure 1 illustrates the previous insights for the 
ase with two sho
ks where E = f"0; "00g.The dashed arrows represent the 
ase whi
h is ex
luded by (17).
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Figure 1: Dynami
s generated by mixing two stationary mappings.SuÆ
ient 
onditions for bubbly equilibria.As 
ondition (17) is not stated in terms of the primitives of the model, it is not 
lear whi
hrestri
tions it imposes on the e
onomy E and whether it 
an be satis�ed at all. As ourse
ond main result, we now establish that (17) holds automati
ally if the bubble is riskless,i.e., if # in (6) is a 
onstant fun
tion �# > 0. In this 
ase, the existen
e 
ondition (15) readsmin"2E �E � [v0(�k0"R(�k0" ; �))℄u0( �w0" � �k0") � > 1: (18)14



Observe the similarity of (18) to the existen
e 
onditions (2) and (3) derived in Manuelli(1990, p.273) for a sto
hasti
 ex
hange e
onomy. For the 
ase with a riskless bubble, wenow have the following additional properties of the mappings M" whi
h 
hara
terize thestable sets M " . Note that the result does not require �niteness of E .Lemma 4.5Let ea
h �(�; ") be stationary and satisfy Assumptions 1, 2, 3, and 4. If # � �#, then " < "0impliesM"(w) <M"0(w) for all w > 0, "; "0 2 E . Moreover, M
rit =M"min satis�es (17).Lemma 4.5 states that for a riskless bubble, the map " 7�!M"(w) is stri
tly in
reasing onE for all w > 0. In parti
ular, " 6= "0 implies M " \ M "0 = ;, i.e., the stable sets pertainingto di�erent sho
ks have an empty interse
tion, a property whi
h will be
ome important inthe next paragraph. Using the insights from Lemma 4.5, we are in a position to state ourse
ond main result.Theorem 2Let E be �nite and ea
h �(�; ") de�ned in (10a,b) satisfy Assumptions 1, 2, 3, and 4. If# � �# > 0 and 
ondition (18) holds, ea
h 0 < b0 �M"min(w0) de�nes a bubbly equilibrium.Temporary nature of sto
hasti
 bubbles.While bubbly equilibria exist under the 
onditions (15) and (17), generi
ally these bubblesare only temporary and 
onverge to zero with probability one. Unlike the 
ase in Tirole(1985), this holds even if b0 = M
rit(w0). Stru
turally, the reason is that positive sta-ble sets of the dynami
s (10a,b), i.e., 
ompa
t subsets A � X+ whi
h are self-supportingfor the family (�(�; "))"2E su
h that �(A ; ") � A for all " 2 E typi
ally fail to exist.To see this, note from Lemma 3.4 that A � X+ 
losed and self-supporting under �(�; ")requires A � M " . Hen
e, positive stable sets are subsets of \"2EM " whi
h is typi
allyempty. In parti
ular, as shown in Lemma 4.5 this is true if the bubbly asset is riskless, i.e.,# � �# > 0. In this 
ase, all equilibria will be asymptoti
ally bubbleless with probabilityone, i.e., limt!1 bt = 0 P-a.s.This last �nding entails serious 
onsequen
es for the dis
ussion in Berto

hi (1994) aboutthe existen
e of stable sets in a similar model with the bubble 
orresponding to risklessgovernment debt. Referring to the equilibrium s
enarios dis
ussed there, Lemma 3.3 al-ready showed that bubbly steady states whi
h are asymptoti
ally stable and would giverise to stable sets with positive bubbles do not exist. Lemma 4.5 now shows that su
hstable sets are dire
tly ex
luded by the assumption that debt o�ers a riskless return.An example with persistent bubbles.The following example, however, shows that stable sets giving rise to persistent bubblesmay exist in 
ertain situations where the return on the bubble is risky. Let U(
y; 
o) =(1� 
) ln 
y + 
 ln 
o, 0 < 
 < 1 and f(k) = k�, 0 < � < 1. This parametrization is widelyused in many deterministi
 studies, 
f. Mi
hel & Wigniolle (2003), or Kunieda (2008). As
ondition (U2) is violated in this 
ase, the tighter restri
tion bt � 
wt is required to ensurethat a solution to (8) exists. Thus, rede�ne the endogenous state spa
eX0 = f(w; b) 2 R2+ j b < 
wg: (19)
15



Suppose the bubble is 
apital-equivalent, i.e., # = idE . Solving (8) using (2a,b), theequilibrium mapping de�ned as in (10a,b) takes the expli
it form � : X0 � E �! R2 ,wt+1 = �(1)(wt; bt; "t+1) := "t+1(1� �)(
wt � bt)� (20a)bt+1 = �(2)(wt; bt; "t+1) := "t+1�(
wt � bt)��1bt: (20b)By dire
t 
omputations, one veri�es that �(�; ") satis�es Assumptions 1 to 4 for ea
h " 2 Esu
h that all the results from Se
tion 3 extend to the present 
ase with the modi�ed statespa
e given by (19).8 For ea
h " 2 E the unique bubbleless steady state (w0" ; 0) 
an be
omputed expli
itly as �w0" = ("(1��)
�)1=(1��) and the asso
iated ex-post return on 
apitaland the bubble is R(K(w0" ; 0); ") = 
�1�=(1 � �), " 2 E . The latter determines whetherea
h equilibrium mapping is stationary or expansive. This leads to the following result.Lemma 4.6Given " 2 E , de�ne �(�; ") as in (20a,b). If �� := 
 � �1�� > 0, then the following holds:(i) �(�; ") is stationary and has a unique steady state �x" 2 X+ whi
h is a saddle.(ii) The sets M " de�ned as in (12) take the form M " � M := �(w; b) 2 R2++ �� b = ��w	.Lemma 4.6 (ii) shows that in this parti
ular 
ase, the sets M " de�ned as in (12) areindependent of ". Thus, one 
an show by dire
t 
omputations that states below M remainbelow this set, i.e., 
ondition (17) is satis�ed. This leads to the following result.Theorem 3For the previous parametrization, suppose �� > 0. Then, ea
h x0 = (w0; b0) 2 X0 for whi
hb0 � ��w0 de�nes a bubbly equilibrium where the bubble is 
apital-equivalent, i.e., # = idE .The key feature of this example is that the set M = \"2EM " is self-supporting for the family(�(�; "))"2E . Thus, whenever x0 2 M , the state pro
ess fxtgt�0 generated by (20a,b) staysin M for all t. Moreover, the state dynami
s 
onverge to a 
ompa
t subset of M de�nedby the bubbly �xed points (( �w";�b"))"2E of the mappings (�(�; "))"2E whi
h is a stable set.Thus, in this spe
ial 
ase, setting the bubble b0 equal to its maximum value b
rit0 = ��w0yields a result similar to the deterministi
 
ase in Tirole (1985) where the bubble fails todie out and in fa
t 
onverges to a positive stable subset of the state spa
e.The �nal part of this se
tion outlines some extensions to whi
h the previous setup shouldbe amendable.In�nite sho
k spa
esIt is straightforward to extend the results from Theorems 1 and 2 to the 
ase with anin�nite sho
k spa
e, e.g., where E = ["min; "max℄. In this 
ase, de�ne the setsEs := f" 2 E jR?(Z( �w0" ; 0); ") < 1g (21)and Ex := EnEs. As R? from (6) is Caratheodory and the bubbleless steady state �x0" varies
ontinuously with " by the Impli
it Fun
tion Theorem, both sets Es and Ex are measurable.8As the state spa
e is now given by (19), the boundary properties in Assumption 1 must be restated aslim
w�b&0 �(w; b) = 0 and lim
w�b&0  (w; b) =1. All arguments whi
h rely on this boundary behavior,e.g., the proofs of Lemma 3.1 or Lemma 3.4, must (and 
an easily) be adapted a

ordingly.16



They represent sho
ks asso
iated with drawing a stationary respe
tively expansive mapping�(�; "). Extending the arguments developed above, the existen
e of a bubbly equilibriumrequires �(Ex) = 0, i.e., the probability of drawing an expansive map must be zero. Inaddition, an upper bound on initial 
onditions must be established, whi
h is obtained byrepla
ing (16) byM
rit(w) := inf"2EsfM"(w)g. In parti
ular, if # is 
ontinuous, e.g., if thebubble is risk-less or 
apital-equivalent, and Es is 
ompa
t, all previous 
onditions and theresults stated in Theorems 1 and 2 remain valid if in (14) to (18) E is repla
ed by Es.Bubbles with state-dependent risk-stru
ture.A key restri
tion imposed throughout the previous analysis is that the risk-stru
ture of thebubbly asset is time invariant. A natural and interesting extension would be to 
onsiderbubbles with a risk stru
ture that varies with the 
urrent endogenous state of the e
onomy.Formally, one would repla
e (6) by an arbitrary measurable or even 
ontinuous fun
tion# : E � X ! R++ su
h that r?t+1 = #("t+1; xt)zt: (22)Maintaining the hypotheses of Lemma 2.1, one observes that the entire equilibrium stru
-ture derived in Se
tion 2 along with the state spa
e de�nition (9) 
ontinue to hold underthis modi�
ation. In parti
ular, bubbly equilibria are generated by a family of dynami
mappings (�(�; "))"2E and the existen
e of su
h equilibria requires ea
h member of thisfamily to generate bounded dynami
s on a non-empty subset of X+ . Further, the dynami
properties of the equilibrium mappings 
an be studied with the same te
hniques appliedabove as long as the map #("; �) is 
ontinuously di�erentiable. Apart from that, thereseems to be 
onsiderable freedom in the form (22) and the key question is whether 
er-tain spe
i�
ations 
hange the monotoni
ity properties stated in Lemma 2.2 and, therefore,the qualitative dynami
 properties derived in Se
tion 3. In this regard, �rst numeri
alexperiments indi
ate that for 
ertain spe
i�
ations some equilibrium mappings may evenpossess bubbly steady states whi
h are asymptoti
ally stable. Having said this, at leastsome equilibrium mappings should 
ontinue to display the saddle-path stability whi
h is
ru
ial for the 
onstru
tion of bubbly equilibria in this paper. This suspi
ion is supportedby the observation that the previous modi�
ation has no impli
ations whatsoever in thedeterministi
 
ase where � = Æ". In any 
ase, the basi
 approa
h to 
onstru
t bubblyequilibria employed in this paper should remain fully appli
able under this extension. Aparti
ularly intriguing question is whether the fun
tion # in (22) 
an be 
hosen su
h thata positive stable set of the state dynami
s exists and the bubble be
omes persistent, asin the example from Lemma 4.6. Using di�erent te
hniques from fun
tional analysis, thisissue is further explored in Barbie & Hillebrand (2014).Sto
hasti
ally bursting bubbles.The previous stru
ture 
an also be generalized to study bubbles whi
h burst sto
hasti
allyas in Weil (1987). In this 
ase, let f�tgt�0 be a sequen
e of i.i.d. random variables whi
h,for simpli
ity, are also independent of the produ
tion sho
ks and take values in � := f0; 1g.Then, the sho
k at time t is now given by the random variable �t := ("t; �t) with values in� := E � �. Consequently, the ex-ante bubble return takes the generalized formr?t+1 = R?(zt; �t+1) := �t+1#("t+1) zt: (23)In parti
ular, the fun
tion # in (23) 
an be 
hosen 
onstant in whi
h 
ase r?t+1 be
omesindependent of the fundamental sho
k "t+1. It is now straightforward to modify the Eulerequations (8,b) and to determine zt and kt+1 as fun
tions of the 
urrent state xt = (wt; bt).17



Then, bubbly equilibria are generated by randomly mixing the family (�(�; �))�2� wheresome equilibrium mappings �(�; �) : X �! R2+ now map bubbly states xt 2 X+ intobubbleless states xt+1 2 X0 , i.e., the bubble 'bursts' whenever � = ("; 0). Clearly, theselatter mappings trivially generate 'stationary dynami
 behavior' in the sense that ea
h statex 2 X+ is sustainable under forward-iteration of �(�; �). One 
an now repeat the entiredynami
 analysis from the previous se
tions to obtain ne
essary and suÆ
ient 
onditionsfor bubbly equilibria to exist in su
h an extended setup. Moreover, by varying the set �and its interpretation the generalized form (23) would also permit to in
orporate 'extrinsi
un
ertainty' su
h as sunspots in the analysis.Broader 
lasses of e
onomiesThe setup in Wang (1993) has been extended in various dire
tions to in
lude non-additiveutility, 
orrelated produ
tion sho
ks, and more general, so-
alled non-
lassi
al produ
tionfun
tions. Re
ent examples may be found in Morand & Re�ett (2007), M
Govern et al.(2013), or Hillebrand (2014). In prin
iple, it should be possible to extend the study ofthe present paper to these more general 
lasses of e
onomies as long as the bubblelessequilibrium is unique and the equilibrium mappings are smooth. The latter is required inorder to apply the methods used in this paper whi
h made repeated use of the impli
itfun
tion theorem and the stable manifold theorem. A large 
lass of e
onomies having thisstru
ture is identi�ed in Hillebrand (2014).5 Bubbles with Borrowing ConstraintsIn the fri
tionless e
onomy studied in Tirole (1985), bubbly equilibria only exist if thebubbleless equilibrium su�ers from overa

umulation of 
apital. To explain the emergen
eof asset bubbles in the presen
e of undera

umulation, several approa
hes in the literaturestudy deterministi
 OLG e
onomies with fri
tions su
h as 
ash-in advan
e 
onstraints inMi
hel & Wigniolle (2003) or borrowing 
onstraints in Kunieda (2008). The present se
tionextends the setup from Kunieda (2008) to show that his �ndings 
arry over to a sto
hasti
environment as well.Heterogeneous 
onsumers.Following Kunieda (2008) , we modify the previous OLG stru
ture by assuming that ea
hgeneration now 
onsists of a 
ontinuum of heterogeneous 
onsumers with index set � :=[�min; �max℄ where 0 < �min < 1 < �max. A 
onsumer born at time t � 0 is identi�ed by herinvestment produ
tivity � 2 � whi
h determines the amount of 
apital obtained by ea
h
onsumption good invested at time t. Spe
i�
ally, if 
onsumer � 2 � invests st � 0 unitsat time t, she owns �st units of produ
tive 
apital at time t + 1. The produ
tivity index� is 
ontinuously distributed on the interval �. The distribution fun
tion G : � �! [0; 1℄has a 
ontinuous density fun
tion g : � �! R++ with respe
t to Lebesgue measure on �.Assuming E [�℄ = R� lg(l)d l = 1, the earlier setup is re
overed `on average'.The following analysis restri
ts attention to the parametrization employed in Kunieda(2008) with log-additive utility U(
y; 
o) = (1 � 
) log 
y + 
 log 
o, 0 < 
 < 1 and Cobb-Douglas produ
tion f(k) = k�, 0 < � < 1. Given labor in
ome wt > 0 and the returns on
apital and bubbles, the de
ision problem fa
ed by 
onsumer � 2 � reads:maxb;s n(1� 
) ln(wt � b� s) + 
E t�ln�r?t+1 b+ rt+1 � s���� s � 0; b � 0; b+ s � wto: (24)18



Note that short-selling of the bubbly asset is no longer possible whi
h is where the 
apitalmarket imperfe
tion enters. For simpli
ity, suppose that the return on the bubbly assetdetermined by (6) has the same risk-stru
ture as 
apital, i.e., # = idE and r?t+1 = "t+1ztwith zt determined at time t. However, unlike the s
enario from Se
tion 2, it need not bethe 
ase that zt = f 0(kt+1) at equilibrium sin
e the per-unit return on 
apital investment stundertaken by 
onsumer � 2 � is now �rt+1 = �"t+1f 0(kt+1). Letting �t := zt=f 0(kt+1), oneinfers from (24) that 
onsumer � will invest only in 
apital if � > �t and only in the bubbleif � < �t. Thus, dire
t 
al
ulations reveal that the unique solution to (24) is determinedby the pair of demand fun
tions9s�t = S(�;wt; �t) := 
wt 1[�min;�t℄(�) (25a)b�t = B(�;wt; �t) := 
wt 1℄�t;�max℄(�): (25b)Here, 1A is the 
hara
teristi
 fun
tion of A, i.e., 1A(x) = 1 i� x 2 A and 1A(x) = 0otherwise.Re
ursive equilibrium stru
ture.Based on individual demands (25a,b), 
onsider an arbitrary period t � 0. De�ning X0 asin (19), let (wt; bt) 2 X0 be given. The values zt and kt+1 are determined su
h that thebubble is absorbed and next period's 
apital sto
k is 
onsistent with individual savings.Using (25a,b), these 
onditions readbt = Z� B(�;wt; �t)h(�)d� = 
wtG(�t) (26a)kt+1 = Z� �S(�;wt; �t)h(�)d� = 
wt �(�t): (26b)Here we de�ne � : � �! [0; 1℄, �(�t) := R �max�t �g(�)d� whi
h is stri
tly de
reasing withboundary behavior �(�min) = E [�℄ = 1 and �(�max) = 0. As G is invertible, the �rst
ondition (26a) de�nes the equilibrium value �t as a map L : [0; 
℄ �! �,�t = L� btwt� := G�1�1
 btwt�: (27)Note that L is stri
tly in
reasing with L(0) = G�1(0) = �min and L(
) = G�1(1) = �max.Using (27) in (26b) and the de�nition of �t, the values kt+1 and zt are determined askt+1 = K(wt; bt) := 
wt ��L� btwt�� (28a)zt = Z(wt; bt) := f 0�K(wt; bt)�L� btwt�: (28b)Equilibrium dynami
s.Using (2a), (5), and (28a,b), the dynami
s are generated by � = (�(1);�(2)) : X0�E �! R2+wt+1 = �(1)(wt; bt; "t+1) := "t+1 (1� �) �K(wt; bt)�� (29a)bt+1 = �(2)(wt; bt; "t+1) := "t+1 � �K(wt; bt)���1L� btwt� bt: (29b)9It is arbitrarily assumed that the 
onsumer invests only in 
apital if � = �t. Sin
e the set of 
onsumerswho have � = �t has measure zero, this assumption is irrelevant.19



As in the example from the previous se
tion, one veri�es that �(�; ") de�ned in (29a,b)satis�es Assumptions 1 to 4 for ea
h " 2 E with the modi�ed state spa
e given by (19). Inparti
ular, the de�nitions of L and � and (28a) yield �(1)(w; 0; ") = "(1� �)(
w)�. Thus,the dynami
s (29a,b) 
oin
ide with (20a,b) along the bubbleless equilibrium. In parti
ular,a unique bubbleless steady state ( �w0" ; 0) exists for ea
h " 2 E where �w0" is de�ned as in theprevious se
tion. However, while the 
apital return at the bubbleless steady state 
ontinuesto be R(K( �w0" ; 0); ") = 
�1�=(1� �), the ex-post return on the bubble is now given byR?(Z( �w0" ; 0); ") = "Z( �w0"; 0) = �min
 �1� �: (30)Analogously to Se
tion 4, the returns (30) are key for the dynami
 properties of the map-pings (�(�; "))"2E in (29a ,b). In parti
ular, the existen
e of a bubbly equilibrium requiresthat ea
h �(�; ") be stationary, whi
h is the 
ase i� R?(Z( �w0" ; 0); ") < 1. Based on (30),we have the following result:Lemma 5.1Given " 2 E , de�ne �(�; ") as in (29a,b) and let �min
 �1�� < 1. Then, the following holds:(i) �(�; ") is stationary and has a unique steady state �x" 2 X+ whi
h is a saddle.(ii) The sets M " de�ned as in (12) are of the form M " � M := f(w; b) 2 X jb = ��wg.Here, �� > 0 is the unique solution to L(�) = 1��� 
�(L(�)).An immediate 
onsequen
e of Lemma 5.1 (ii) is that a 
ondition similar to (17) holds. Thisleads to the following main result of this se
tion.Theorem 4For the previous parametrization, suppose �min
 �1�� < 1 and de�ne �� as above. Then, ea
h(w0; b0) 2 X0 for whi
h b0 � ��w0 de�nes an equilibrium with 
apital-equivalent bubble.The previous extension with borrowing 
onstraints preserves the essential dynami
 featuresof the fri
tionless example from Se
tion 4. In the present 
ase, however, a suÆ
iently smallvalue �min ensures that �min
 �1�� < 1 and a bubbly equilibrium exists even if the steadystate 
apital return ex
eeds unity, i.e., if the bubbleless equilibrium does not su�er fromovera

umulation. One also observes that M := \"2EM " is again self-supporting for thefamily (�(�; "))"2E from (29a, b). Thus, whenever x0 2 M , the dynami
s 
onverge to a
ompa
t stable set. While bubbles are persistent in this parti
ular 
ase, we suspe
t thatthis persisten
e property should generi
ally fail to hold as the analysis is extended to moregeneral preferen
es and te
hnologies, just as in the absen
e of fri
tions.6 Con
lusionsThe previous analysis derived ne
essary and suÆ
ient 
onditions under whi
h bubbly equi-libria exist in a fri
tionless OLG e
onomy with random produ
tion and endogenous 
apitala

umulation. A maximum sustainable bubble was identi�ed whi
h pla
es an upper bound20



on the initial 
ondition extending the results for deterministi
 models in Tirole (1985).Unlike the deterministi
 
ase, however, bubbles in sto
hasti
 OLG models are generi
allynon-persistent and vanish asymptoti
ally with probability one even if the initial bubble isset to its maximum value. Introdu
ing fri
tions su
h as borrowing 
onstraints allows forbubbles to emerge even if the bubbleless equilibrium has overa

umulation of 
apital.This last result was demonstrated for a parti
ular parametrization of the model whi
h iswidely used in the literature. An interesting topi
 of future resear
h might be to explorehow this generalizes to the broader setup employed in the earlier 
hapters of this paper.Several other extensions of the model were already dis
ussed in Se
tion 4. A �nal set ofquestions 
on
erns the welfare impli
ations of bubbles and whether the 
onditions underwhi
h bubbly equilibria exist imply that the bubbleless equilibrium is ineÆ
ient. Theseand related questions are explored in Barbie & Hillebrand (2014).A Mathemati
al AppendixA.1 Proof of Lemma 2.1Given (w; b) 2 X, let �k := w � b > 0. The argument 
o(z; k; b; ") := bR?(z; ") + kR(k; ")will be suppressed when 
onvenient. Suppose b = 0. Then, H(1) is independent of z and #and the existen
e of a zero k 2℄0; �k[ of H(1)(z; �;w; 0) follows from the arguments of Wang(1993) who also shows that (T1) is suÆ
ient for this zero to be unique. Given k, the
ondition H(2)(z; k;w; 0) = 0 
an be solved expli
itly for z > 0 proving the 
ase b = 0.Suppose b > 0. The strategy is to use (7b) to eliminate z redu
ing (8) to a one-dimensionalproblem. First, let k̂ 2℄0; �k[ be arbitrary. We prove existen
e of a unique ẑ > 0 to satisfyH(2)(ẑ; k̂;w; b) = 0. Sin
e limz!1 
o(z; k; b; ") =1 for ea
h " 2 E , (U2) implieslimz!1 z #(") v0(�) = b�1 limz!1 
o(z; k̂; b; ")v0(�)� b�1k̂R(k̂; ") limz!1v0(�) =1:This being true for all " 2 E implies H(2)(z; k̂;w; b) < 0 for z suÆ
iently large. Combinedwith H(2)(0; k̂;w; b) > 0, this proves existen
e of ẑ. Uniqueness follows from (U1) by whi
hH(2)z (z; k;w; b) = �E � �#(�) v0�
o(z; k; b; �)�+ b z #(�)2 v00�
o(z; k; b; �)�� (A.1)< �E � �#(�)�v0�
o(z; k; b; �)�+ 
o(z; k; b; �)v00�
o(z; k; b; �)��� � 0:Let Ẑ(�;w; b) :℄0; �k[�! R++ determine the value ẑ for ea
h k̂ 2℄0; �k[. By (2b) and (T1),H(2)k (z; k;w; b) = �u00(w � b� k)� �1 + Ef 0(k)�E � �R(k; �) z #(�)v00(�)� > 0: (A.2)By (A.1), (A.2) and the impli
it fun
tion theorem, Ẑ(�;w; b) is C1 and stri
tly in
reasingsin
e Ẑk(k;w; b) = �H(2)k (ẑ; k;w; b)=H(2)z (ẑ; k;w; b) > 0, for all k 2℄0; �k[, ẑ = Ẑ(k;w; b).Se
ond, let Ĥ(1)(k;w; b) := H(1)(Ẑ(k;w; b); k;w; b), k 2℄0; �k[. We show that Ĥ(1)(�;w; b)has a unique zero k0 2℄0; �k[. Sin
e v0 is stri
tly de
reasing, R(k; ")v0�b Ẑ(k;w; b)#(") +kR(k; ")� < R(k; ")v0�kR(k; ")� for all k 2℄0; �k[ and " 2 E . Then, by the Inada 
onditionslimk%�k Ĥ(1)(k;w; b) � limk%�k�u0(�k � k)� E � �R(k; �)v0�kR(k; �)��� =1:21



Let (kn)n�1 be a sequen
e in ℄0; �k[ with limn!1 kn = 0. Sin
e k 7! Ẑ(k;w; b) and, by (T1),k 7! kR(k; ") are in
reasing, 
n(") := b Ẑ(kn;w; b)#(")+knR(kn; ") is bounded from aboveand limn!1R(kn; ") v0�
n(")� =1 for all " 2 E . Therefore, limn!1 Ĥ(1)(kn;w; b) = �1.This proves existen
e of a zero k0. Finally, using (U2) the partial derivatives satisfyH(1)z (z; k;w; b) = �E � �R(k; �) b #(�) v00(�)� > 0 (A.3)H(1)k (z; k;w; b) = �u00(�)� E � �Rk(k; �) v0(�) + (1 + Ef 0(k))R(k; �)2 v00(�)� > 0: (A.4)Combining (A.3) and (A.4) with the monotoni
ity of Ẑ(�;w; b) yields Ĥ(1)k (k;w; b) =H(1)z (ẑ; k;w; b)Ẑk(k;w; b) +H(1)k (ẑ; k;w; b) > 0 for all k 2℄0; �k[ and ẑ = Ẑ(k;w; b). Hen
e,k0 is the unique zero of Ĥ(1)(�;w; b). Setting z = Ẑ(k0;w; b) 
ompletes the proof. �A.2 Proof of Lemma 2.2(i) The �rst limit follows from 0 < K(w; b) < w�b for all x = (w; b) 2 X. To see the se
ondone, note from (8) that there must be some ~" 2 E for whi
h #(~")Z(x) � "minf 0(K(x)). Thus,letting � := "min=#(~") we have Z(x) � �f 0(K(x)) for all x 2 X. Combined with the �rstresult and the boundary behavior of f 0, the 
laim follows.(ii)/(iii) We suppress arguments of fun
tions when 
onvenient. Given x = (w; b) 2 X, setz := Z(x), k := K(x), � = (z; k) and write H = (H(1); H(2)). Using (A.1), (A.2), (A.3),and (A.4) the Ja
obian matrix D�H satis�es detD�H = H(1)z H(2)k �H(1)k H(2)z > 0. Further,the partial derivatives of H with respe
t to w and b are given byH(1)w (z; k;w; b) = H(2)w (z; k;w; b) = u00(w � b� k) < 0 (A.5)H(1)b (z; k;w; b) = �u00(w � b� k)� E � �R(k; �)R?(z; �)v00���� > 0 (A.6)H(2)b (z; k;w; b) = �u00(w � b� k)� E � �(R?(z; �))2v00���� > 0: (A.7)By the impli
it fun
tion theorem, using the standard inversion formula for 2� 2 matri
esZw(w; b) = �H(1)w [H(2)k �H(1)k ℄detD�H ; Zb(w; b) = H(1)k H(2)b �H(2)k H(1)bdetD�HKw(w; b) = �H(1)w [H(1)z �H(2)z ℄detD�H ; Kb(w; b) = H(2)z H(1)b �H(1)z H(2)bdetD�H : (A.8)Sin
e the matrixD�H(z; k;w; b) is non-singular also at any boundary point (w; 0) 2 X0 , theimpli
it fun
tion theorem implies that the mappings Z and K 
an lo
ally be extended to anopen neighborhood around (w; 0). Hen
e, their derivatives are well-de�ned and 
ontinuousalso on the boundary X0 and Lemma 2.2 indeed holds on the entire set X.(ii) Use H(2)z < 0 � H(1)z by (A.1), (A.3), and 0 < �H(1)w < H(i)b , i = 1; 2, by (A.5){(A.7).(iii) For # = idE one has Z(w; b) = f 0(K(w; b)) by (8) and (ii) is implied by (i). If, instead,(U3) holds, straightforward 
al
ulations giveH(1)k �H(2)k = E � [(R(k; �)�R?(z; �))R(k; �)jv00(�)j℄ (1 + Ef 0(k))� E � [Rk(k; �)v0(�)℄H(1)b �H(2)b = E � [(R(k; �)�R?(z; �))R?(z; �)jv00(�)j℄ :22



By Lemma B.1, H(1)k �H(2)k > 0 � H(1)b �H(2)b whi
h gives Zw < 0 < Zb. Finally,KwZb �KbZw = �H(1)w [H(2)b �H(1)b ℄detD�H � 0: (A.9)�A.3 Proof of Lemma 3.1Let �x0 = ( �w0; 0) be the unique �xed point of � in X0 from Assumption 2. First, we showthat  (�x0) � 1 implies that � is expansive. By 
ontradi
tion, suppose  (�x0) � 1 and �has a �xed point �x = ( �w;�b) in X+ . Then, as �b < 0 one has �(w;�b) < �(w; 0) � w for allw � �w0. It follows that �w < �w0. Monotoni
ity of  implies 1 �  (�x0) <  ( �w0;�b) <  (�x).But this 
ontradi
ts (11) whose se
ond 
omponent 
learly implies  (�x) = 1.Se
ond, we show that  (�x0) < 1 implies that � has a �xed point �x = ( �w;�b) 2 X+ . Let F =(F (1); F (2)) : X �! R2 be de�ned by F (1)(w; b) := w��(w; b) and F (2)(w; b) :=  (w; b)�1.Any value x 2 X+ that satis�es F (x) = 0 is a �xed point of �.By uniqueness and stability of �x0, any x = (w; b) 2 X+ satisfying w � �w0 gives F (1)(w; b) >w� �(w; 0) � 0. Further, let 0 < w < �w0 be the unique value for whi
h  (w; 0) = 1 whi
his well-de�ned by the monotoni
ity and boundary properties of  . Observe that for anyx = (w; b) 2 X+ satisfying w � w, F (2)(w; b) >  (w; 0)� 1 �  (w; 0)� 1 = 0. Combiningboth results shows that any �xed point �x = ( �w;�b) 2 X+ satis�es �w 2 W :=℄w; �w0[.For any w 2 W we have F (1)(w; 0) < 0 and limb%w F (1)(w; b) = w > 0. Thus, there existsa value 0 < b < w su
h that F (1)(w; b) = 0 whi
h is unique by monotoni
ity of �. Letthis value be determined by the impli
it fun
tion f (1) : W �! R++ whi
h is C1 by theimpli
it fun
tion theorem with derivative f (1)0(w) = (1� �w(w; b))=�b(w; b), where w 2 Wand b = f (1)(w). Continuity of F (1) implies limw% �w0 f (1)(w) = 0 and limw&w f (1)(w) > 0.For any w 2 W we have F (2)(w; 0) < 0 and limb%w F (1)(w; b) = 1. Thus, there exists avalue 0 < b < w su
h that F (2)(w; b) = 0 whi
h is unique by monotoni
ity of  . Let thisvalue be determined by the impli
it fun
tion f (2) : W �! R++ whi
h is C1 by the impli
itfun
tion theorem with derivative f (2)0(w) = � w(w; b))= b(w; b) > 0 where w 2 W andb = f (2)(w). Continuity of F (2) implies limw% �w0 f (2)(w) > 0 and limw&w f (2)(w) = 0.Let � : W �! R, �(w) := f (1)(w)� f (2)(w). Any zero �w 2 W of � de�nes a steady statevalue �x = ( �w; f (1)( �w)). Existen
e of su
h a zero now follows from 
ontinuity of � and theboundary behavior limw% �w0 �(w) < 0 and limw&w�(w) > 0. For later referen
e, we alsonote that the derivative at the steady state is given by�0( �w) = � b(�x)� �w(�x) b(�x) +  w(�x)�b(�x)j�b(�x) b(�x)j : (A.10)By the boundary behavior of �, there is always a steady state at whi
h �0( �w) � 0. �A.4 Proof of Lemma 3.2By 
ontradi
tion, suppose there exists x0 = (w0; b0) 2 X+ su
h that xt := �t(x0) 2 X for allt � 0. Let x00 := (w0; 0) and x0t := �t(x00) 2 X for all t � 0. Clearly, xt 2 X+ and x0t 2 X0for all t � 0. Stability of �x0 due to Assumption 2 implies limt!1 x0t = �x0 = ( �w0; 0).23



Further, � being expansive implies  (�x0) > 1 by Lemma 3.1 as  (�x0) = 1 is ex
ludedby assumption. A simple indu
tion argument using the monotoni
ity properties of �shows that w0t > wt > bt > 0 for all t. Further, the indu
ed sequen
es  0t :=  (x0t ) and t :=  (xt), t � 0 satisfy  t >  0t for all t � 0 and lim!1  0t =  (�x0) > 1 by 
ontinuityof  and stability of �x0. Thus, there exists T � 0 su
h that  t >  0t > 1 for all t � Tand the sequen
e (bt)t�T is stri
tly in
reasing, i.e., bt+1 =  tbt > bt for all t � T . Asbt < wt < w0t for all t � 0, �b := limt!1 bt exists and satis�es bT < �b < �w0. But then,1 = limt!1 bt+1bt = limt!1  t whi
h 
ontradi
ts limt!1  t � limt!1  0t =  (�x0) > 1. �A.5 Proof of Lemma 3.3At any steady state �x = ( �w;�b) 2 X+ the tra
e and determinant of the Ja
obian D�(�x) readtrD�(�x) = 1+�w(�x)+�b  b(�x) and detD�(�x) = �w(�x)+�b[�w(�x) b(�x)��b(�x) w(�x)℄. By theproperties of � and  , trD�(�x) > 1, detD�(�x) > 0 and trD�(�x) = 1+detD�(�x)���0( �w)where � > 0 and � is de�ned as in the proof of Lemma 3.3. By uniqueness of thesteady state, �0( �w) < 0 as �0( �w) = 0 would imply a non-hyperboli
 steady state. Hen
e,trD�(�x) > 1 + detD�(�x) implying saddle-path stability of �x, 
f. Galor (2007, p.88). �A.6 Proof of Lemma 3.4De�ne X as in (13). Note that �x 2 X and that M � X.(i) Step 1: M is a one-dimensional C1-manifold. By the Stable Manifold Theorem (
f.Nite
ki (1971)), there is an open neighborhood U � X+ \ Y of �x su
h that the lo
allystable set M lo
 := fx 2 X+ j�n(x) 2 U 8n � 1 ^ limn!1�n(x) = �xg is a one-dimensionalmanifold whi
h is as smooth as �, i.e., C1. By Nite
ki (1971, p.89) or Galor (1992, p.1371,De�nition 4), the globally stable manifold de�ned in (12) obtains as M = [n�0��n(M lo
).Exploiting Assumption 4, M inherits the smoothness of M lo
 and is thus a one-dimensionalC1-manifold. The same arguments are used in Galor (1992, p.1371, Corollary 3).Step 2: M is the graph of a stri
tly in
reasing fun
tion M : W �! R++ , W � R++ . ByLemma B.2, for ea
h ~w > 0 there exists at most one 0 < ~b < ~w su
h that ( ~w;~b) 2 M . LetW be the set of all ~w > 0 for whi
h su
h a value ~b exists. Then, �w 2 W and M is the graphofM : W �! R++ de�ned viaM( ~w) := ~b. Lemma B.2 also implies thatM is in
reasing.Step 3: W is an interval andM is 
ontinuous. As M is C1, there exists an open neighbor-hood V � M of �x, an open subset U � R and a C1-di�eomorphism ' : V �! U. W.l.o.g.,let U be an interval and V � M lo
 (otherwise, 
hoose an open interval ~U � U 
ontaining'(�x) small enough su
h that '�1(~U) � M lo
 and swit
h to ~V := '�1(~U) and ~' := 'j~V). ByDugundji (1970, p.108, Theorem I.4), V = '�1(U) being the image of an open and 
on-ne
ted set under a homeomorphism is an open and 
onne
ted subset of M 
ontaining �x. Letx 2 M be arbitrary. By (12), limn!1�n(x) = �x implying �n(x) 2 V for n large enough,i.e., x 2 ��n(V). Sin
e x was arbitrary and V � M lo
 , M = [n�0��n(V). Continuity of��n and Theorem I.4 in Dugundji (1970) imply that ea
h ��n(V) is a 
onne
ted set 
on-taining �x. By (12) and Theorem I.5 in Dugundji (1970, p.108), M is 
onne
ted and so areW and B :=M(W ) as the images of M under the 
ontinuous proje
tions �1 : (w; b) 7! wand �2 : (w; b) 7! b. Thus, both W and B are intervals. Suppose M were not 
ontinuousat some interior point w0 2 W . Then, there exists " > 0 su
h that for all Æ > 0 suÆ
iently24



small there is some ~w 2℄w0 � Æ; w0 + Æ[ for whi
h jM( ~w) �M(w0)j � ". Then, by stri
tmonotoni
ity ofM, for all Æ > 0, eitherM(w0) � "+M(w0�Æ) orM(w0+Æ) � "+M(w0).In parti
ular, there is no w 2 W for whi
h M(w) 2 [M(w0)� 23";M(w0)� 13"℄. Con
ludethat B �℄0;M(w0)� 23"[[ ℄M(w0)� 13";1[, i.e., B is separated whi
h is a 
ontradi
tion.Step 4: M is C1. Let w0 be an interior point of W . Sin
e M is C1, there exist an openneighborhood V0 � M of x0 := (w0;M(w0)), an open set U0 � R and a C1-di�eomorphism� = (�1;�2) : U0 �! V0 . Let F := (idW ;M) : W �! M whi
h is 
ontinuous byStep 3 and so is the inverse F�1 = �1 whi
h is the proje
tion de�ned above. De�neW 0 := �1(V0) whi
h is open sin
e �1 is open. Thus, �1 = F�1 Æ � : U0 �! W 0 isC1 and the inverse ��11 = ��1 Æ F : W 0 �! U0 is at least 
ontinuous. The strategy isto show that ��11 is even C1. Suppose �01(~u) = 0 for some ~u 2 U0 . Let ~w := �1(~u).Sin
e �2 = M Æ �1 and M(w)�M( ~w)w� ~w takes values in the unit interval10 for all w > 0,�02(~u) = �01(~u) limw! ~w(M(w)�M( ~w))=(w� ~w) = 0. Adopting an argument from Villana

iet al.(2002, p.39), let 	 be a C1-extension of ��1 to an open set in R2 
ontaining V0 , i.e.,	jV0 = ��1. Then, (	 Æ �)0(~u) = �1	(�(~u))�01(~u) + �2	(�(~u))�02(~u) = 0 whi
h 
ontradi
ts(	 Æ �)jU0 = idU0 implying (	 Æ �)0(~u) = 1. Con
lude �01(u) 6= 0 for all u 2 U0 . Then, bythe inverse fun
tion theorem (��11 )0(w) = 1=�01(��11 (w)) for all w 2 W 0 . Sin
e �1 is C1 and��11 
ontinuous, (��11 )0 is well-de�ned and 
ontinuous. Thus, �1 is a C1-di�eomorphismand so is F = � Æ ��11 restri
ted to W 0 . Hen
e, M is C1 on W 0 and, in parti
ular, at w0.Step 5: �M (w) := �(w;M(w)), w 2 W is in
reasing. We �rst show that �M is non-de
reasing, i.e.,M0 � ��w=�b < 1. By 
ontradi
tion, supposeM0( ~w) > ��w( ~w;~b)=�b( ~w;~b)for some interior point ~w 2 W where ~b :=M( ~w). Then,M0( ~w) > � 1( ~w;~b)= 2( ~w;~b). Let M (w) :=  (w;M(w)), w 2 W . By 
ontinuity, �M is lo
ally stri
tly de
reasing while  Mis lo
ally stri
tly in
reasing around ~w. Let ŵ > ~w be 
lose to ~w and b̂ := M(ŵ). Then,(ŵ; b̂); ( ~w;~b) 2 M and ŵ1 := �M (ŵ) < �M ( ~w) =: ~w1 while b̂1 := b̂  M (ŵ) > ~b  M ( ~w) =: ~b1.But M being self-supporting under � implies ( ~w1;~b1) = �( ~w;~b) 2 M and (ŵ1; b̂1) =�(ŵ; b̂) 2 M , i.e., ~b1 = M( ~w1) and b̂1 = M(ŵ1) whi
h 
ontradi
ts that M is stri
tlyin
reasing. To see that �M is even stri
tly in
reasing, suppose �M (ŵ) = �M ( ~w) for someŵ > ~w. Then, �M must be 
onstant on the interval [ ~w; ŵ℄ while  M is weakly in
reasing.Repeating the previous argument, ŵ1 = ~w1 and b̂1 > ~b1 leading to the same 
ontradi
tion.Step 6: W = R++ . By Step 5, ��1M : W ? �! W is well-de�ned where W ? := �M (W ) is aninterval with the same stru
ture (left-open/
losed and right-open/
losed) as W . By (12),�M has �w as its unique �xed point whi
h is globally asymptoti
ally stable on W . Therefore,8w 2 W : �M (w) T w , w S �w and 8w 2 W ? : ��1M (w) S w , w S �w: (A.11)De�ne winf := inf W < �w < supW =: wsup and w?inf := inf W ? < �w < supW ? =: w?sup. By(12) and Assumption 4, � is a homeomorphism between M and M \Y from whi
h we inferthat W ? = W \℄0; wmax [ and , therefore, w?inf = winf and w?sup = minfwsup; wmaxg.We show winf = 0. Choose w0 2 W su
h that winf < w0 < �w. For n � 0, let wn+1 = ��1M (wn)and bn := M(wn) whi
h are well-de�ned as ��1M maps ℄winf ; �w[ into itself. Also note thatxn := (wn; bn) 2 M and xn = ��1(xn�1) for all n � 1. By (A.11), (wn)n�1 is stri
tlyde
reasing and 
onverges to some value w1 � winf. Suppose w1 > 0. By monotoni
ity ofM, (bn)n�1 is stri
tly de
reasing and 
onverges to b1 � w1. Suppose w1 = b1. Then,10This follows from monotoni
ity ofM and a straightforward modi�
ation of the 
ontradi
tion argumentemployed in Step 5 below whereM0( ~w) needs to be repla
ed by the di�eren
e quotient �b�w := M(w)�M( ~w)w� ~w .25



limn!1  (wn; bn) = 1 by the properties of  and, sin
e b1 > 0, (wn; bn) =2 X � M forlarge n, whi
h is a 
ontradi
tion. Con
lude that limn!1 xn = x1 := (w1; b1) 2 X. As�(xn+1) = xn for all n, 
ontinuity of � gives limn!1�(xn) = x1 = �(x1). Thus, x1 is a�xed point of � satisfying 0 < w1 < �w < �w0, whi
h 
ontradi
ts either Assumption 2 or 3.Con
lude that w1 = 0 whi
h implies winf = 0.We show wsup = 1. Suppose wsup < wmax. Then w?sup = wsup < 1 and, by (A.11) �Mmaps ℄ �w;wsup[ into itself. One 
an now 
hoose w0 2℄ �w;wsup[ and modify the argumentsfrom the previous paragraph to obtain a 
ontradi
tion. Con
lude that wsup � wmax = w?sup.Let (wn)n�1 be a stri
tly in
reasing sequen
e in W 
onverging to wsup. Then, (�M (wn))n�0
onverges to wmax. But, by de�nition of wmax, this is only possible if wsup =1.(ii) Claim (a) follows from Lemma B.2 and Assumptions 2 and 3 while (b) follows from (12),(i), and (A.11). To show (
), assume by 
ontradi
tion that b >M(w) but x = (w; b) 2 X.De�ne xt = (wt; bt) := �t(x) and x̂t = (ŵt; b̂t) := �t(x̂) where x̂ := (w;M(w)). Notethat x̂t 2 M for all t � 0 and limt!1 x̂t = ( �w;�b). Using Assumption 1, an indu
tionargument yields 0 < b̂t < bt < wt < ŵt for all t. De�ne �t := bt=b̂t to observe that�0 > 1 and �t+1 = �t (xt)= (x̂t) > �t for all t � 0. Hen
e, limt!1 �t = �� > 1 andlimt!1 bt = ���b =: �b0 > �b exist. Sin
e wt remains bounded, xt 2 X for all t only if �b0 < 1whi
h requires limt!1  (xt) = 1 by (11). But, by the previous properties limt!1  (xt) �limt!1  (ŵt; bt) =  ( �w;�b0) >  ( �w;�b) = 1 whi
h is a 
ontradi
tion. �A.7 Proof of Lemma 4.2Let " 2 E be given and de�ne �0(w; ") := W(K0(w); ") for w > 0 where k = K0(w) is theunique solution to u0(w � k) = E � [R(k; �)v0(kR(k; �))℄. Any steady state of �(�; ") in X0 isof the form �x0 = ( �w0; 0) where �w0 > 0 is a �xed point of �0(�; "). We show that any su
hsteady state satis�es �0w( �w0; ") < 1. For any w > 0 and k = K0(w), the derivative reads�0w(w; ") = Ef (k)1� Ef(k) �0(w; ")w wK00(w)k Ef 0(k): (A.12)By (T2), the �rst fa
tor in (A.12) is positive but stri
tly less than one. The se
ond oneequals unity at any steady state. Finally, note that the derivative of K0 satis�es0 < K00(w) = 11 + Ef 0(k) u0(w�k)kju00(w�k)j + (1� Ef 0(k))E� [kR(k;�)2jv00(kR(k;�))j℄kju00(w�k)j (A.13)(T1)� 11 + Ef 0(k) u0(w�k)kju00(w�k)j (U4)� kk + Ef 0(k)(w � k) (T1)� 1Ef 0(k) kw:Thus, the last fa
tor in (A.12) is also bounded by unity, as was to be shown.If the additional 
onditions hold, then �(w; ") > w for w small while (U5) ensures thatlimw!1K0(w) =1. This and the boundary behavior of f implies �(w; ") < "f(K0(w)) <K0(w) < w for w suÆ
iently large and yields the existen
e of a non-trivial steady state. �A.8 Proof of Lemma 4.3We show that if � = �(�; ") has a steady state in X+ , it will be unique. De�ning � as in theproof of Lemma 3.3, it suÆ
es to show that �0( �w) < 0 at any steady state �x = ( �w;�b) 2 X+ .26



For brevity, let �k := K(�x) and �z := Z(�x). As the denominator in (A.10) is positive, oneveri�es dire
tly that �0( �w) < 0 if and only ifZb(�x)� Ef 0(�k)R(�k; ")[Kw(�x)Zb(�x)�Kb(�x)Zw(�x)℄ > 0: (A.14)If # = idE , the bra
keted term in (A.14) is zero and the 
laim follows from Lemma 2.2 (iii).If # 6= idE , use (A.8) and (A.9) to observe that (A.14) is positive, i� M > 0 whereM := H(1)k H(2)b �H(2)k H(1)b + Ef 0(�k)R(�k; ")H(1)w (H(2)b �H(1)b ):Let M1 := E � [R(�k; �) jv0(�)j℄, M2 := E � [R(�k; �)2 jv00(�)j℄, M3 := E � [(R?(�z; �))2 jv00(�)j℄and M4 := E � [R(�k; �)R?(�z; �) jv00(�)j℄. Using the fun
tional forms (A.1){(A.4), and (A.5){(A.7), tedious but straightforward 
al
ulations reveal that M = A+B + C whereA := ju00(�)jh�f 00(�k)f 0(�k)M1 +m(M3 �M4) + (1 + Ef 0(�k))(M2 �M4)im := 1� Ef 0(�k)R(�k; "); B := �f 00(�k)f 0(�k)M1M3; C := (1 + Ef 0(�k))hM2M3 � �M4�2i:By Lemma B.1(b), M2 � M4 and M3 � M4 whi
h implies C � 0 by (T1). Also, B > 0.Suppose m � 0. Then, A > 0 by (T1) whi
h implies M > 0. Conversely, suppose�mM4 > 0. By (8) and (U4), M1 = u0( �w � �b � �k) � ( �w � �b � �k)ju00( �w � �b � �k)j whi
himplies B � �f 00(�k)=f 0(�k)( �w��b� �k)ju00(�)jM3. By (T1), (1 +Ef 0(�k))(M2�M4) � 0. By(U3), M1 = ��1(�kM2+�bM3) implyingM1 > �bM3 by (U1). Combining the four inequalitiesgives A+B > ju00(�)jM3h(1 + Ef 0(�k))� f 00(�k)f 0(�k) ( �w � �kR(�k; "))i:Both terms in bra
kets are non-negative due to (T1) and (T2). Hen
e, M > 0. �A.9 Proof of Lemma 4.4Given " 2 E , let x0 = (w0; b0) 2 Y" arbitrary. We determine a unique x = (w; b) 2 X+ su
hthat �(x; ") = x0. As w0 2℄0; wmax" [, there is a unique k0 > 0 su
h that w0 =W(k0; "). Thevalue z0 then follows from the �rst order 
onditions E � [R?(z0; �)v0(b0#(�)=#(")+k0R(k0; �))℄ =E � [R(k0; �)v0(b0#(�)=#(") + k0R(k0; �))℄ from whi
h b = b0=(z0#(")) 
an be inferred. Finally,w is the unique solution to u0(w � b � k0) = E � [R(k0; �)v0(bR?(z0; �) + k0R(k0; �))℄ whi
his well-de�ned due to the Inada 
onditions and (U5) and ensures that k0 = K(x) andz0 = Z(x). Hen
e, ��1 is well-de�ned. As � is C1 by Lemma 2.2 and detD�(x) > 0,D��1(x0) = [D�(x)℄�1 is 
ontinuous by the inverse fun
tion theorem. �A.10 Proof of Lemma 4.5By 
ontradi
tion, suppose " < "0 but b0 := M"(w0) � M"0(w0) =: b00 for some w0 >0. Let x0 := (w0; b0) and x00 := (w0; b00). Using (10a,b) and an indu
tion argument in
onjun
tion with Lemma 2.2 and the multipli
ative stru
ture of sho
ks, the sequen
esfxtgt�0 and fx0tgt�0 de�ned as xt = (wt; bt) := �(xt�1; ") and x0t = (w0t; b0t) := �(x0t�1; "0)satisfy wt < w0t and bt � b0t for all t > 0. Therefore, �x" = ( �w";�b") := limt!1 xt and27



�x"0 = ( �w"0;�b"0) := limt!1 x0t satisfy �w" � �w"0 and �b" � �b"0. By Lemma 2.2 (iii), however, thesteady state property Z(�x") = Z(�x"0) = 1�# requires �x" = �x"0 implying K(�x") = K(�x"0) =: �k.But this 
ontradi
ts �w" = W(�k; ") < W(�k; "0) = �w"0. Con
lude that M
rit = M"minin (16). Using this, # � �#, and the properties of � and M "min , b � M
rit(w) implies�(2)(w; b; ") = �(2)(w; b; "min) � �(2)(w;M
rit(w); "min) = M
rit(�(1)(w;M
rit(w); "min)) �M
rit(�(1)(w; b; "min)) �M
rit(�(1)(w; b; ")) 8" 2 E . Thus, 
ondition (17) holds. �A.11 Proof of Lemma 4.6(i) The unique bubbly steady state 
an be obtained by dire
t 
omputations and its stabilityproperties follow from the same arguments used in the proof of Lemma 3.3.(ii) Let �t := bt=wt for t � 0. Using (20a,b) gives �t+1 = �(�t) := �1�� [
 � �t℄�1�t, t � 0.The map � has �� as its unique non-trivial �xed point whi
h is unstable. Moreover, �0 < ��implies limt!1 �t = 0 and �0 > �� implies that �t0(�0) > 
 for some �nite t0. Hen
e,b0 = ��w0 is ne
essary for (w0; b0) 2 M " and ea
h su
h initial state 
onverges to �x. �A.12 Proof of Lemma 5.1(i) De�ne �t as in the previous proof. By (29a,b), �t+1 = �(�t) := �1�� 1
L(�t)=�(L(�t))�t,t � 0. Using the properties of L and �, � has �� > 0 as its unique non-trivial steady state.As any bubbly steady state of (29a, b) must satisfy �b" = �� �w", one obtains �w" as the uniquesolution to w = �(1)(w; ��w; "). The stability properties follow from the same argumentsused in the proof of Lemma 3.3.(ii) Noting that the steady state in (i) satis�es �0( ��) > 1 and is, therefore, unstable, ananalogous reasoning as in the proof of Lemma 4.6(ii) yields the 
laim. �B Auxiliary resultsLemma B.1In addition to (T1), (U1), and (U2), let (U3) hold. Then, for all (w; b) 2 X, the solutionsz := Z(w; b) and k := K(w; b) to (8) satisfy the following inequalities:(a) kE � [(R(k; �)�R?(z; �))R(k; �)jv00(�)j℄ = �bE � [(R(k; �)�R?(z; �))R?(z; �)jv00(�)j℄.(b) E � [(R(k; �)�R?(z; �))R(k; �)jv00(�)j℄ � 0 � E � [(R(k; �)�R?(z; �))R?(z; �)jv00(�)j℄.Proof of Lemma B.1.(a) By (8), 0 = H(1)(z; k;w; b)�H(2)(z; k;w; b) = E � [(R(k; �)�R?(z; �))v0(�)℄. By (U3),v0(
) = ��1
jv00(
)j for all 
 = bR?(z; �) + kR(k; ") > 0 whi
h yields (a).(b) As E � [(R(k; �)�R?(z; �))R(k; �)jv00(�)j℄ � E � [(R(k; �)�R?(z; �))R?(z; �)jv00(�)j℄ and,by (a), the two sides are either both zero or have opposite signs, the 
laim follows. �Lemma B.2De�ne � as in (11) and let x̂ 6= ~x be distin
t points in X su
h that ŵ � ~w and b̂ � ~b.Suppose x̂n := �n(x̂), n � 0 and ~xn := �n(~x), n � 0 
onverge to x̂� = (ŵ�; b̂�) and~x� = ( ~w�;~b�) where ~b� > 0. Then, x̂� and ~x� are �xed points of � and ŵ� > ~w� > ~b� > b̂�.28



Proof. An indu
tion argument using the properties of � gives ŵn > ~wn > ~bn > b̂n > 0for all n > 0. Further, �n := b̂n=~bn satis�es 0 < �n+1 = �n (x̂n)= (~xn) < �n for n � 0.Thus, �1 := limn!1 �n exists and 0 � �1 < 1 implies b̂� = �1~b� < ~b�. We 
laim that~x� 2 X whi
h ne
essarily implies x̂� 2 X. Suppose ~w� = ~b�. By the boundary behaviorof  , limn!1  (~xn) = 1 whi
h, sin
e ~bn is bounded away from zero and ~wn from above,would imply ~bn > ~wn for some n suÆ
iently large, a 
ontradi
tion. Con
lude that ~x� 2 X+ .Continuity of � then implies limn!1 ~xn+1 = limn!1�(~xn) = ~x� = �(~x�), i.e, ~x� is a �xedpoint of �. The argument for x̂� is analogous. Finally, ŵ� > ~w� by monotoni
ity of �. �Referen
esAiyagari, R. & D. Peled (1991): \Dominant Root Chara
terization of Pareto Opti-mality and the Existen
e of Optimal Equilibria in Sto
hasti
 Overlapping GenerationsModels", Journal of E
onomi
 Theory, 54, 69{83.Barbie, M. & M. Hillebrand (2014): \Bubbly Markov Equilibria", KIT workingpaper, Karlsruhe Institute of Te
hnology, Karlsruhe.Beneviste, L. M. & D. Cass (1986): \On the Existen
e of Optimal Stationary Equi-libria with a Fixed Supply of Fiat Money: I. The Case of a Single Consumer", Journalof Politi
al E
onomy, 94, 402{417.Berto

hi, G. (1994): \Safe Debt, Risky Capital", E
onomi
a, 61(244), 493{508.de la Croix, D. & P. Mi
hel (2002): A Theory of E
onomi
 Growth - Dynami
s andPoli
y in Overlapping Generations. Cambridge University Press.Diamond, P. (1965): \National Debt in a Neo
lassi
al Growth Model", Ameri
an E
o-nomi
 Review, 55(5), 1126{1150.Dugundji, J. (1970): Topology. Allyn and Ba
on In
., Boston.Gale, D. (1973): \Pure Ex
hange Equilibrium of Dynami
 E
onomi
 Models", Journalof E
onomi
 Theory, 6, 12{36.Galor, O. (1992): \A two-se
tor overlapping-generations model: A global 
hara
teriza-tion of the dynami
al system", E
onometri
a, 60(6), 1351{1386.(2007): Dis
rete Dynami
al Systems. Springer, Berlin, a. o.Hauens
hild, N. (2002): \Capital A

umulation in a Sto
hasti
 Overlapping Genera-tions Model with So
ial Se
urity1", Journal of E
onomi
 Theory, 106, 201{216.Hillebrand, M. (2014): \Uniqueness of Markov Equilibrium in Sto
hasti
 OLG Modelswith Non
lassi
al Produ
tion", E
onomi
s Letters, 123 (2), 171{176.Koda, K. (1984): \A Note on the Existen
e of Monetary Equilibria in Overlapping Gen-erations Models with Storage", Journal of Exonomi
 Theory, 34, 388{395.29



Kunieda, T. (2008): \Asset bubbles and borrowing 
onstraints", Journal of Mathemati
alE
onomi
s, 44, 112{131.Manuelli, R. (1990): \Existen
e and Optimality of Curren
y Equilibrium in Sto
hasti
Overlapping Generations Models: The Pure Endowment Case", Journal of E
onomi
Theory, 51, 268{294.M
Govern, J., O. F. Morand & K. L. Reffett (2013): \Computing minimal statespa
e re
ursive equilibrium in OLG models with sto
hasti
 produ
tion", E
onomi
 The-ory, 54, 623{674.Mi
hel, P. & B. Wigniolle (2003): \Temporary Bubbles", Journal of E
onomi
 The-ory, 112, 173{183.Morand, O. F. & K. L. Reffett (2007): \Stationary Markovian Equilibrium inOverlapping Generations Models with Sto
hasti
 Non
lassi
al Produ
tion and MarkovSho
ks", Journal of Mathemati
al E
onomi
s, 43, 501{522.Nite
ki, Z. (1971): Di�erentiable Dynami
s. MIT Press, Cambridge, MA.Okuno, M. & I. Zil
ha (1983): \Optimal Steady-State in Stationary Consumption-LoanType Models", Journal of E
onomi
 Theory, 31(2), 355{363.Ro
hon, C. & H. Polemar
hakis (2006): \Debt, liquidity and dynami
s", E
onomi
Theory, 27, 179{211.Tirole, J. (1985): \Asset Bubbles and Overlapping Generations", E
onometri
a, 53(6),1499{1528.Villana

i, A., L. Carosi, P. Benevieri & A. Battinelli (2002): Di�erentialTopology and General Equilibrium with Complete and In
omplete Markets. Kluwer A
a-demi
 Publishers, Boston.Wang, Y. (1993): \Stationary Equilibria in an Overlapping Generations E
onomy withSto
hasti
 Produ
tion", Journal of E
onomi
 Theory, 61(2), 423{435.Wang, Y. (1994): \Stationary Markov Equilibria in an OLG Model with CorrelatedProdu
tion Sho
ks", International E
onomi
 Review, 35(3), 731{744.Weil, P. (1987): \Con�den
e and the real value of money in an overlapping generationse
onomy", Quarterly Journal of E
onomi
s, 102, 1{22.

30



No. 57

No. 56

No. 55

No. 54

No. 53

No. 52

No. 51

No. 50

No. 49

No. 48

No. 47

No. 46

Marten Hillebrand: Existence of bubbly equilibria in overlapping genera-

tions models with stochastic production, June 2014

Mher Safarian: Hedging options including transaction costs in incomplete 

markets, April 2014

Aidas Masiliunas, Friederike Mengel, J. Philipp Reiss: Behavioral variation 

in Tullock contests, February 2014

Antje Schimke: Aging workforce and firm growth in the context of 

„extreme“ employment growth events, January 2014

Florian Kreuchauff and Nina Teichert: Nanotechnology as general

purpose technology, January 2014

Mher Safarian: On portfolio risk estimation, December 2013

Klaus Nehring, Marcus Pivato, Clemens Puppe: The Condorcet set: majori-

ty voting over interconnected propositions, December 2013

Klaus Nehring, Marcus Pivato, Clemens Puppe: Unanimity overruled: ma-

jority voting and the burden of history, December 2013

Andranik S. Tangian: Decision making in politics and economics: 5. 2013 

election to German Bundestag and direct democracy, December 2013

Marten Hillebrand, Tomoo Kikuchi, Masaya Sakuragawa: Bubbles and 

crowding-in of capital via a savings glut, November 2013

Dominik Rothenhäusler, Nikolaus Schweizer, Nora Szech: Institutions, 

shared guilt, and moral transgression, October 2013

Marten Hillebrand: Uniqueness of Markov equilibrium in stochastic OLG 

models with nonclassical production, November 2012

recent issues

Working Paper Series in Economics

The responsibility for the contents of the working papers rests with the author, not the Institute. Since working papers 

are of a preliminary nature, it may be useful to contact the author of a particular working paper about results or ca-

veats before referring to, or quoting, a paper. Any comments on working papers should be sent directly to the author.


	KITe_WP_57_front
	DynBubb
	KITe_WP_57_back

