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Abstract (English Version)

The topic of my dissertation are generalized single-peaked preferences. The three
chapters focus on theory, empirics and experiments, respectively.

In the first chapter, generalized single-peaked preferences are modeled in a space
of connected coalitions. We prove a novel possibility result for strategy-proof ag-
gregation of generalized single-peaked preferences using the special structure of the
underlying betweenness relation.

In the second chapter, we elicit such preferences empirically by means of a survey.
We determine the ordering of political parties such that the largest share of re-
ported preferences are single-peaked over single parties. As a next step, we design
and implement an algorithm to check for which ordering of parties the reported pref-
erence rankings satisfy generalized single-peakedness over connected coalitions. We
adapt the model to coalitions which consist of at most two coalition partners. We
show that the left-right-spectrum which fits best to our three analyses is different
from the common one which is applied as the seating arrangement in the German
Parliament.

The third chapter of this thesis reports the results of a laboratory experiment.
Using appropriate payoff functions, we induce single-peaked preferences for the par-
ticipants. Two different voting rules, the mean and the median rule, are investigated
and checked for manipulability. We derive equilibria theoretically and compare our
experimental data to the equilibrium predictions. We observe that participants play
Nash equilibria, but — in contrast to what one might expect — the observed equilibria
frequently involve weakly dominated strategies. By introducing manipulation costs,
such equilibria are ruled out theoretically and indeed observed less often.






Abstract (German Version)

Gegenstand dieser Dissertation sind verallgemeinert eingipflige Praferenzen. Die
Arbeit gliedert sich in drei Kapitel mit jeweiligen Schwerpunkten auf theoretischer,
empirischer und experimenteller Vertiefung.

Im ersten Teil werden verallgemeinert eingipflige Praferenzen im Raum der zusam-
menhéngenden Koalitionen modelliert. Es wird ein neues Moglichkeitsresultat zur
nicht-manipulierbaren Aggregation von verallgemeinert eingipfligen Préferenzen be-
wiesen, das die spezielle Struktur der zugrunde liegenden dreistelligen Zwischenre-
lation ausnutzt.

Im zweiten Teil der Arbeit werden solche Préaferenzen empirisch untersucht. Hier-
fiir wurden Umfragedaten erhoben und analysiert. Eine Anordnung der politischen
Parteien wird angegeben, so dass der grofftmogliche Teil der Befragten eingipflige
Praferenzen tiber einzelnen Parteien hat. Daraufthin wird algorithmisch untersucht,
fiir welche Ordnung die Praferenzen tiber Koalitionen die verallgemeinerte Eingipf-
ligkeit erfiillen. Eine Anpassung des Modells fiir Koalitionen mit maximal zwei
Koalitionspartnern wird vorgenommen. FEs zeigt sich, dass sich das Links-Rechts-
Spektrum, das in diesen drei Analysen am besten abschneidet, von dem unterschei-
det, welches iiblicherweise im Bundestag angenommen wird.

Fiir den dritten Teil der Arbeit wurde ein Experiment durchgefiihrt, in dem den Teil-
nehmern mithilfe entsprechend gewéahlter Auszahlungsfunktionen eingipflige Préfe-
renzen induziert wurden. Zwei Abstimmungsregeln, die auf arithmetischem Mittel
bzw. Median basieren, werden auf Manipulierbarkeit untersucht. Neben der theo-
retischen Herleitung der Gleichgewichte werden die Experimentdaten austiihrlich
analysiert. Es stellt sich heraus, dass die Teilnehmer zwar Nash-Gleichgewichte
spielen, diese jedoch — entgegen der theoretischen Vorhersage — auch schwach do-
minierte Strategien enthalten. Durch die Einfithrung geringer Manipulationskosten
werden solche Gleichgewichte allerdings ausgeschlossen und tatséchlich auch seltener
beobachtet.

vii






Contents

1__Introductionl 1
[Part 1 |
[ Efficient and strategy-proof voting over connected coalitions: |
[ a possibility result|
5 Motivation 5
[3 Generalized single-peaked preferences over connected coalitions| 7
4__Results| 11
(Part I1 |
[ Preferences over political coalitions: an empirical study on gen- |
[ eralized single-peakedness|
b__Motivation| 17
6 Overview of the literaturel 19
(7__Theoretical modell 23
[7.1  Single-peaked preferences over single-party coalitions| . . . . . . .. 24
[7.2  Generalized single-peakedness| . . . . ... ... ... ... ... .. 25
[7.2.1  Generalized single-peakedness over connected coalitions| 25
[7.2.2  Generalized single-peakedness over small coalitions| . . . . . 27
8 Data collectionl 29
[9__Method| 31
9.1  Method: Single-peaked preferences over singletons| . . . . . . . . .. 31
9.2 Method: Generalized single-peaked preferences| . . . . . . . . . . .. 32
9.3  Results expected in an impartial culture] . . . . . . . ... ... .. 35

X



Contents

10 Results| 37
(10.1  Distribution of preferences: peak-coalitions| . . . . . . . . . . .. .. 37
(10.1.1 Most preferred singletons| . . . . . . . .. ... ... .. .. 37
[10.1.2  Most preterred coalitions| . . . . ... ... ... ... ... 38
(10.2  Single-peakedness of singletons| . . . . . . . ... ... ... ... .. 40
[10.3  Generalized single-peakedness over connected coalitions| . . . . . . . 41
[10.4 Generalized single-peakedness over small coalitions|. . . . . . . . .. 44
0.5 Thesize of coalitiond . . . . . . .. ... ... ... .. 44
(10.6 The influence of one extreme political party on the preferences| . . . 47
11 Remarks and conclusionl 51
(Part I11

| Nash equilibrium and manipulation in a mean rule experiment)|

12 Motivation| 55
13 Overview of the literaturel 57
14 1wo rules| 59
41 Generalnotations . . . . . . . . ... ... L. 59
(14.1.1 'T'hree types of payoft tunctions| . . . . . . . . . .. ... .. 60

[14.1.2  Payoft functions with manipulation costs|. . . . . . . . . .. 61

(14.1.3 A refinement of the Nash equilibrium concept| . . . . . . . . 61

(14.2  Description of the median rule] . . . . . . .. .. ... ... ... .. 62
(14.2.1  "Theoretical analysis of Nash equilibria under the median rule| 63

(14.2.2  Median rule with manipulation costs| . . . . . . . . . .. .. 65

(14.3  Description of the mean rulef . . . . . . . ... ... ... ... ... 65
[14.3.1 'Theoretical analysis of Nash equilibria under the mean rule |

[ with full informationl . . . . . . . . . . ..o 66
[14.3.2  Learning in the mean rule model| . . . . . . . . ... .. .. 69

[14.3.3 Mean rule with manipulation costs| . . . . . . . .. ... .. 71

[14.3.4 Mean manipulation with linear payoft functions| . . . . . . . 73

[14.3.5 Mean manipulation with quadratic payoft functions| . . . . . 75

[14.3.6  Mean manipulation with special payofl tunctions| . . . . . . 78

(14.4 Comparing the tworules . . . . . . . .. . ... ... ... ..... 81

[15 Welfare effects and maximal payofts under different payoft func- |

[_tions| 87
(15.1 Linear payoff functions| . . . . . . . . . . ... ... 87
[15.2  Quadratic payoff tunctions| . . . . . . . . ... ... 87
[15.3 Special payoft functions|. . . . . . . .. ... 89




Contents

(16 Experimental design| 91
(16.1 General setup| . . . . . . .. . ..o 91
[16.2 Laboratory procedure|. . . . . . . . . . . ... ... ... .. ..., 92
[16.3  Demographic datal. . . . . . . . . . ... ... ... 93
[[6.4 Treatment variables . . . . . . . . ... ... ... ... ... 93

i ¢ T 93

“info” ... 93

- Ao 94

[16.4.4 'Treatment variable “exp™ . . . . . . . ... ... ... ... 94
[16.4.5 'Treatment variable “framing” . . . . . . . .. ... ... .. 94
[16.4.6 'Treatment variable “distribution of peaks” . . . . . . . . .. 95

[17 Research questions| 97

(I8 Summary of our datal 99
[18.1 Actual aggregated group outcome| . . . . . . . . ... ... ... 99

[18.1.1 Achieving the equilibrium outcome| . . . . . . . . . . .. .. 99
[18.1.2 Average aggregated values| . . . . . . . . ... .. ... ... 100
[18.1.3 Achieving the group Nash play| . . . . . ... ... ... .. 103
[18.1.4 FEfficiency| . . . . . . . . . .. 104

[18.2 Individual aggregated values: an overview| . . . .. ... ... ... 104
183 Themedian rulel. . . . . . .. ... . o 108
[18.4  Other strategies under the median rule| . . . . . . . . ... ... .. 110
(185 Themean rulel. . . . . . . . . . . .. 111
[18.6 Other strategies under the mean rule without manipulation costs|. . 113
[18.6.1 Best response to true preferences| . . . . . .. ... ... .. 113
[18.6.2 Best response to previous round results| . . . . . . . .. .. 113
[18.6.3 Best response to actual choice]. . . . . . . ... .. ... .. 115

[18.7 Best response to previous round with manipulation costs| . . . . . . 116
[18.8 Learning| . . . . . . . . .. 117
[18.9 (Absolute) Deviation: A comparison of the two rules . . . ... .. 120
(18.10 Individually announced values| . . . . . . . .. .. ... ... .... 123
(18.10.1 Individual truth-tellingl . . . . . . . ... ... .. ... .. 123
[18.10.2 Individual Nash play and best response] . . . . . . . .. .. 126

(19 Experimental results| 131
- e 131

(19.1.1 Influence of “rule” on truth-tellingl . . . . ... ... .. .. 131
(19.1.2 Influence of “rule” on Nash play| . . . .. .. ... ... .. 134

19.2 Influence of “info”l . . . . . . . . . . ... 134
(19.2.1 Influence of information on truth-tellingl . . . . . . . .. .. 134
[19.2.2  Influence of information on Nash play|] . . . . . ... .. .. 136

- 4 136

xi



Contents

(19.4 Influence of “framing”| . . . . . . . .. ... ... ... 137
(19.5 Influence of therankl . . . . . .. .. ... ... ... ... 137
[19.6  Sequencing effects| . . . . . . . . . ... 138
(19.7 Regression| . . . . . . . . . . 140
[19.7.1 A basic regression model with individual variables] . . . . . 140
[19.7.2  Regression with group variables . . . . . ... ... ... .. 142
20 _Conclusion and outlookl 143
APP O
[A__T'he German Federal Parliament and some historical remarks| 147
(B__Election Results| 149
IC__Combinatorial remarks| 151
[D The questionnaire)| 153
[EE Results: Generalized single-peaked preferences 155
[F' The Left: an extreme party| 159
|G Nash equilibria] 161
[H_Proof 163
(I Utility of best response functions for other peaks| 165
[J  Best response functions for other peaks| 169
Ik Handout: mathematical introductionl 173
[L. Handout for the abstract framing without manipulation costs| 175
(M Timetable of the experimental sessions| 177
(N Truth-telling and Nash play| 179

xii



List of Figures

[3.1  Graphical illustration for six parties| . . . . . . . . .. .. ... ... 8
[3.2  The coalition C' with its neighbors| . . . . . . . . ... ... ... .. 9
[4.1  The social choice C™ and the orthants Oy,...,O4 . . . . . . . . . .. 13
[7.1  Ordering 12345|. . . . . . . . . . . . . 25
(7.2 Ordering 31245|. . . . . . . . . . . 25
[7.3  Embedding connected coalitions in a median space structure| . . . . 26
7.4 Embedding small coalitions in a median space structure| . . . . . . . 27
[9.1  The graph of connected coalitions for the ordering LGSUF| . . . . . 34

(10.1  Distribution of coalitions ot different sizes among ranking positions| . 46
[10.2  Special representation for each party: their occurrence in the indi-

vidual rankings, n; =266 . . . . ... ..o 49
(14.1 Examples tor linear, quadratic and special payoft functions| . . . . . 61
[14.2  Overview over different types of Nash equilibria). . . . . . . . .. .. 63
14.3 Peaks (5,10,22,30,57) and intervals A;| . . . . ... ... ... ... 70
14.4 Nash equilibrium (0,0, 0,50, 100) with mean 30| . . . . . . . . . ... 70
14.5  Utility of best response to m for x7 = 20 for a linear payoff function | 76
14.6  Best response function BRy(m) for a linear payoff function| . . . . . 76
(14.7 Utility of best response to m for z7 = 20 for a quadratic payoft |

function | . . . . ..o 79
[14.8 Best response function BRyy(m) for a quadratic payoff function|. . . 79
(14.9 Utility of best response to m for x; = 20 for the special payoft |

function | . . . . . oL 82
[14.10 Best response function BRyy(m) for the special payoft function| . . . 82
(15.1 Payoff functions and their sum for peak values (10, 20, 50,60, 70)| . . 88
(16.1 Workplace at the KI'T laboratory|. . . . . . ... ... ... ... .. 92

[18.1 Percentage of Mean decisions, in which the mean of the announced

values equals the Nash equilibrium | . . . . ... .. ... ... ... 101
[18.2 Percentage of Median decisions, in which the median of the an- |
nounced values equals the median of the peaks|. . . . . . . . .. .. 101

xiii



List of Figures

[18.3 Actual outcome and Nash value compared| . . . . . . ... ... .. 102
[18.4 Percentage of truth-telling under the median rulej. . . . . . . . . .. 108
[18.5 Percentage of Nash play under the median rule} . . . . . . . ... .. 109
[18.6 Percentage of truth-telling under the mean rulef . . . . . . . ... .. 111
[18.7 Percentage of Nash play under the mean rulef . . . . . . . . . .. .. 112
[18.8  Best response tunctions for the mean rule compared, . . . . . . . .. 115
[18.9 Best response to previous round and best response function with

| manipulation costs for =7 =20[ . . . . ... ..o 116
[18.10 Average absolute deviation from the peak over time for decisions

L with and without costs in different rule and info treatments . . . . . 120
[18.11 Average deviation from the peak over time for decisions with and

[ without costs in different rule and info treatments for each rankl. . . 122
[18.12 Histograms showing individual truth-telling frequencies under the

[ mean rule| . . ... 124
[18.13 Histograms showing individual truth-telling tfrequencies under the

[ median rulel. . . . . ... 125
[18.14 Histograms showing individual Nash play under the mean rule] . . . 127
[18.15 Histograms showing individual best response under the median rule] 128
[18.16 Individual data aggregated over rule and info| . . . . . . .. ... .. 129

[A.1 The German Federal Parliament with seating arrangement LSGU F| 148

C.1  CABDHE ... ..o 152
C2 ABCDE ... ..o 152
[F.1  Special representation for each party: their occurrence in the indi- |
[ vidual rankings, no =250[ . . . . . . . ... o000 159
[[.1 ~ Utility of best response to m for z; = 40 and z; = 70 for linear |
| payoff functions| . . . . . . . . ... 166
[[.2  Utility of best response to m for x7 = 40 and x; = 70 for quadratic |
| payoft functions| . . . . . .. ..o 167
[[.3  Utility of best response to m for x; = 40 and x; = 70 for special |
[ payoff functions| . . . . . . . . . ... 168

[J.1 ~ Best response to m for z; = 40 and z; = 70 for linear payoft functions|170
[J.2 Best response to m for z; = 40 and z; = 70 for quadratic payoil |

[ functions| . . . . ..o 171
[J.3  Best response to m for 7 = 40 and x; = 70 for the special payoft |
[ functionl. . . . . . . Lo 172
[K.1  Two payoff functions: fio(z) and fro(x)| . . . . . . .. ... ... .. 174

Xiv



List of Tables

[9.1 Ratio of generalized single-peaked preferences| . . . . . . .. ... .. 35
(10.1 Hypothetical plurality voting for parties] . . . . . . .. ... ... .. 37
[10.2 Hypothetical plurality voting for coalitions| . . . . . . . . . . ... .. 39
[10.3 Percentage of single-peaked preterences for a given order| . . . . . .. 41
[10.4 Share of preterences satistying property con tor all orderings| . . . . . 42
[10.5 Share of preferences satistying property small for all orderings| . . . . 45
[10.6 Average numbers of coalitions containing each party in the first half |
[ of the ranking| . . . . . . . . . . ... 48
(14.1 Level-k learning up tok=3| . . . . . . ... .. .. ... ... ... .. 72
(14.2 Mean and Median rule compared| . . . ... ... ... ... ..... 83
[14.5 Example of non-existing equilibrial . . . . . . . ... ... ... ... 84
(16.1 Number of participants per framing| . . . . . . . . . . . ... ... .. 95
[16.2 Distribution of peaks (Distr.no.) and corresponding decision numbers |
| (Decno)| . . . . o oo 96
(8.1 Percentage of decisions, in which the mean/median of the announced |
| values equals the Nash equilibrium (or approximated values) . . . . . 100
[18.2 Percentage ot Nash play by all five group members| . . . . . ... .. 103
[18.3 Inefficient outcomes (total numbers)|. . . . . . . ... ... ... ... 104
[18.4 Overview over truth-telling and Nash play in all experiments| . . . . . 105

[18.5 Overview over truth-telling and Nash play in all eight treatments| . . 106
[18.6 Percentage of “winners.” Only non truth-telling decisions are considered|110

[18.7 Percentage of different strategies| . . . . . . . ... . ... ... ... 114
[18.8 Percentage of level-k actions in mean decisions under no/full infor- |
| mation in different periods without manipulation costs (n = 195)[. . . 118
[18.9 Percentage of level-k actions in mean treatments without manipula- |
| tion costs (n=195). . . . . . .. ... 119
(19.1 T-Test, no into: absolute deviation from peak is significantly higher |
[ under the mean rule than under the median rule . . . ... ... .. 132
(19.2 T-Test, tull info: absolute deviation from peak is significantly higher |
L under the mean rule than under the median rulel . . . ... ... .. 133
[19.3 Average payoff in Euro depending on the player number|. . . . . . . . 138

XV



List of Tables

(19.4 Regression analysis| . . . . ... ... ... ... ... ... 141
(19.5 Group regressions| . . . . . . . ... 142
B.I FElection Results . . . . . . . ... ... 149
[E.1 con (connected coalitions) Dataset Sy | . . . ... ... ... ... .. 156
[E.2 con (connected coalitions) Dataset So | . . . . ... ... ... .. .. 157
(G.1 Nash Equilibria for the peaks used in the experiments without and |
| with manipulation costs.| . . . . . . . .. ... o000 161
[M.1 Overview over experimental sessions with date, time and framing| . . 177
[N.1 Overview over truth-telling and Nash play in all experiments| . . . . . 179

Xvi



1 Introduction

Several times a day, every one of us has to make different decisions. Some of them
are quick and easy as they are taken by one person only and in addition, do not
influence any other person. Other decisions are more complex as they may affect
the life of another individual and yet others have to be taken by a group of decision
makers. In all of the mentioned cases, the preferences of one or more persons are
the basis for these decisions.

In the present thesis, we will focus on different aspects of preferences and the way
small groups or committees aggregate them. A basic property of the preferences —
and therefore part of the title of this thesis — is the assumption of single-peakedness.
A collection of preferences is single-peaked if each individual has a favorite alter-
native such that moving away from that alternative always reduces utility (in an
ordinal sense). This definition presupposes a common scale that determines what it
means to “move away from” the peak alternative.

The type of this scale depends on the context, as we see by means of the following
motivating examples. Imagine that a person buys fresh fruits at the marketplace
and needs one kilo of apples to prepare his favorite apple pie. In this situation, a bag
with 990 grams is preferred to a bag with 940 grams. Here, the scale of alternatives
is given by the natural ordering of real numbers and the actual choice can be easily
deduced from the preferences. Such decisions are not the focus of this thesis.

The underlying scale can also be derived from a political spectrum, for instance
by sorting parties from liberal to conservative. In many parliamentary elections,
however, two or more parties are necessary to form the government. Hence, we
sometimes assume that the voters have preferences not only over single parties but
also over political coalitions. In the first chapter of this thesis, we consider the case of
preferences over connected coalitions, i.e. coalitions of parties which form an interval
on the given political spectrum. These preferences are no longer single-peaked in the
classical sense and we therefore apply the more general concept of generalized single-
peaked preferences. We prove a novel possibility result for strategy-proof aggregation
of these preferences in the first part of the thesis, which is an extended version of the
published article “Efficient and Strategy-Proof Voting over Connected Coalitions: A
Possibility Result” (Block, 2010).

In these examples, the ordering (“scale”) of alternatives is exogenously given. How-
ever, in other cases it is not always clear which ordering to apply, as one may notice
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when trying to sort the political parties in Germany. If the Social Democrats are
to the left of the Union party, how do we arrange the Green party? In the sec-
ond chapter, we address this question by means of a survey and elicit preferences
over political coalitions. We determine the ordering of political parties such that
the largest share of reported preferences is single-peaked over single parties. As a
next step, we design and implement an algorithm to check for which ordering of
parties the reported preference rankings satisfy generalized single-peakedness over
connected coalitions. It turns out that the ordering obtained is different from the
common one which is applied in the seating arrangement in the German Parliament.
Furthermore, we adapt our model to coalitions which consist of at most two coalition
partners, as this might be plausible for the formation of a government.

In our last example, a family with several members who are spread across the country
plans to spend the Christmas holidays together. None of them likes long journeys
and therefore each family member prefers to celebrate close to his own home. Here,
the alternatives are ordered geographically. This example is more challenging than
the first one, as an interaction of the family members is necessary to come to a
decision. How they could solve this problem by an appropriate voting mechanism
is discussed in the third chapter of this thesis. There, we report the results of a
laboratory experiment where two different voting rules, the mean and the median
rule, are investigated and checked for manipulability. Already from a theoretical
point of view, the two rules are fascinating as the structure of their equilibria is
distinct. The mean rule has a unique Nash equilibrium whereas there exist different
types of Nash equilibria under the median rule. Although truth-telling is the strategy
one might expect, we observe equilibria which involve weakly dominated strategies.
We introduce manipulation costs to rule out such equilibria theoretically. Whether
these costs influence the behavior of the participants in the laboratory, is discussed
in the third chapter of this thesis.

Each chapter of this thesis has a different focus and can be read independently.
To facilitate readability, the conclusions and introductions are connecting passages
between the chapters.
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Efficient and Strategy-Proof Voting
over Connected Coalitions:
A Possibility Result






2 Motivation

By the Gibbard-Satterthwaite-Theorem (see (Gibbard (1973) and Satterthwaite
(1975))) the only strategy-proof voting rule on an unrestricted preference domain
over at least three alternatives is the dictatorship of one individual. For possibility
results restrictions of the preference domain are necessary. Well-known examples are
the domain of all single-peaked preferences on a line (see [Moulin| (1980))) and the
domain of all separable preferences on the hypercube (see Barbera et al.| (1991))).

In this chapter a novel example of a possibility domain is presented. As the two
preference domains mentioned above (and a number of other possibility domains as
well) it belongs to the large class of generalized single-peaked domains considered
in Nehring and Puppe, (2007b)).

To motivate our preference domain, consider a finite set of political parties ordered
from left to right on the political spectrum. The space of alternatives is the family of
all connected coalitions, i.e. the family of all non-empty coalitions that contain with
any two parties all parties that are between them in the political spectrum. The
family of connected coalitions can be endowed with a natural betweenness relation
as follows: a connected coalition C' is between two connected coalitions € and Cy
if (i) the leftmost element of C is between the leftmost elements of C) and Cs,
respectively, and (ii) the rightmost element of C' is between the rightmost elements
of Cy and (Y, respectively.

A preference ranking on the family of all non-empty connected coalitions is called
generalized single-peaked if it admits a unique most preferred coalition (the “peak”),

say C*, such that a coalition C' is strictly preferred to another coalition C” whenever
C' lies between C” and C*.

We show that on the domain of all generalized single-peaked preferences over con-
nected coalitions there exist anonymous and strategy-proof social choice functions.
One example is the social choice function that selects the connected coalition which
has as leftmost element the median of the leftmost elements of the individually most
preferred coalitions and as rightmost element the median of the rightmost elements
of the individually most preferred coalitions.

The existence of anonymous and strategy-proof social choice functions on the do-
main of all generalized single-peaked preferences over connected coalitions follows
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from general results derived in |[Nehring and Puppe| (2007b) since the underlying be-
tweenness relation gives rise to a median space. In fact it follows from the analysis
in Nehring and Puppe (2007b)) that the social choice function described above is
the only anonymous and strategy-proof voting rule that is neutral in an appropriate
sense. Moreover, using the main result of Nehring and Puppe, (2007a) one can show
that the above voting rule is efficient. In this chapter, we provide elementary proofs
of its strategy-proofness and efficiency.

This chapter is the extended version of the published article “Efficient and Strategy-
Proof Voting over Connected Coalitions: A Possibility Result” (Blockl |2010)).



3 Generalized Single-Peaked
Preferences over Connected
Coalitions

Let A= {pi,...,pm} be a finite set containing m > 2 objects. We consider the case
in which individuals have preferences over a subset of the power set P(A). Specifi-
cally, we consider the following domain restriction. Let < be a linear ordering of A,
w.lo.g. p1 < -+ < pm. As a specific example one may think of A as representing
a set of political parties which can be ordered from left to right on a political spec-
trum. In this case the power set P(A) represents the class of possible coalitions.
While other interpretations may be applicable as well, in the remainder will refer to
the elements of A as political parties and to the elements of P(A) as coalitions. For
notational convenience we identify parties with their indices and simply write (ijk)
for {p;, p;, pr}. A non-empty coalition C' is called connected, if for all 4, j, k,

,jeCandi<k<j=kel.

We denote by C. C P(A) the set of all connected coalitions.

For every connected coalition C' we call
lc € C leftmost in Cifforallk <lc=k¢ C

and
ro € C rightmost in C if for all k > rc = k ¢ C.

Evidently one has C' = (l¢...r¢) for every connected coalition C'.

Example 1. The coalition C' = (234) consisting of the parties ps,ps and py is
connected with o = 2 and rc = 4. C" = (24) is not connected and therefore not an
element of C_.

We define the following betweenness relation on C.. A coalition C is between
and Cy if
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e its leftmost party /o is between [, and o, and
e its rightmost party r¢ is between r¢, and re,.

Formally, C' is between C; and C} if

lo € min{lc,,lc, }, max{lc,,lo, }| and r¢ € [min{re,, re, }, max{re,, rco, }-

For graphical illustration of the betweenness relation consider Figure[3.1| with m = 6
parties. A coalition C' is between C and Cj if and only if it lies on a shortest path
connecting C; and C5 on the graph. Note that shortest paths need not be unique.

1
12 2
O—O
123 23 3
Q Q
1234 234 34 4
12345 2345 345 45 5
123456 23456 3456 456 56 6
O O O O O O

Figure 3.1: Graphical illustration for six parties

Obviously, the betweenness relation respects the subset ordering, i.e. a coalition is

between any of its subsets and any of its supersets (see Figure [3.2)). The neighbors
of a coalition (lo...rc) are all coalitions which are connected and which consist



either of exactly on party more ((Ic —1...7¢) or (Io...rc + 1)) or one party less
((lg...te =D or(lc+1...7¢0)).

lc. . .rc'].

sub-
sets

l+1...1c

Figure 3.2: The coalition C' with its neighbors

We are now able to define the preference structure over connected coalitions. Let
N = {1,...,n} denote the set of voters. Suppose that every individual i has a
unique favorite coalition Cf = (I, ...7¢,) which is called peak of i, i.e. for all
CecC.

C#Cl=C!»; C.

The preference relation (7Z;) of individual i is generalized single-peaked if for all
connected coalitions C' and C” # C} we have that

C is between C} and C' = C =, C'.
Denote by S(C.) the set of all generalized single-peaked preferences on C..
Example 2. Suppose that > is generalized single-peaked with peak C = (234).

Then, for instance, (234) >; (23) >, (123), but there is no restriction on the prefer-
ence over (23) and (1234).

Remark: The concept of generalized single-peakedness over connected coalitions
cannot be reduced to single-peakedness in the classical sense, i.e. there does not exist
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a linear ordering of the set of connected coalition such that all elements of S(C-)
are single-peaked with respect to the given linear ordering in the classical sense.[|

A social choice function is a mapping

F = S(C<)n — C<
' (Z1yeyon) — C

F is called strategy-proof if for all i € N and =;, =€ S(C) :

FCor oo o) mi FCoty o 2 )

Nl) Y~ y ~oNn )’ ~UL?

1 To see this, consider three generalized single-peaked preferences »=;, 2+ 2ok which have the
same peak but pairwise different second-best coalitions. Evidently, it is not possible to arrange all
three second-best coalitions as direct neighbors of the peak in one dimension.
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4 Results

Counsider the social choice function

F(?\:l; ey in) = (m@d(lcr, .. 7ZC;§) c. med(rcf, Ce ,Tc;«b)),
where med denotes the median-operator, i.e. med(xy, ..., x,) is an element satisfy-

ing

#{i | x; <med(xy,...,x,)} > = and #{i | z; > med(xq,...,2,)} >

n n
2 2

For simplicity we assume here that the number of voters is odd. This guarantees
that the median-operator produces a single element (for further discussion see the

remark at the end of this section).

Theorem 1.
F(-) is strategy-proof and anonymous.

Proof:
F' is anonymous:
The median operator is anonymous, hence F' is anonymous as well.

F' is strategy-proof:

Let F(-) = C* = (I*...r*) be the social choice.

Suppose that F' is not strategy-proof. Then, there exists a misrepresentation -/
in S(C.) such that F(Z1,...,20 ..., 2Zn) = C* for an individual ¢ with peak

Ci = (Ig,...r¢,).  As F depends only on the peak profile it follows that
F(zy, .., 2h o oymn) = O for all 22 with peak Cf. So the peak of ) has
to be different from C;. Let ¢ = (I'...r") be this misrepresented peak and
F(zy, b o) = Cy = (I - - . ) the resulting (manipulated) social choice.

For the relative position of the leftmost elements I*,[7,, I’ there are the following
three possible cases:

Case 1) I’ is between [* and I, = the median of the leftmost elements does not
change.

Case 2) I, is between [ and [* = the median of the leftmost elements does not
change.

11



4 Results

Case 3) I* is between [¢, and [’ = the median of the leftmost elements is between
[* and I'. This implies that [* is between [¢, and [},.

Notice that since betweenness is always understood in the weak sense we have that
[* is between [¢, and [ also if the median of the leftmost elements does not change,
ie. it I* =1),.

Analogously, one easily shows that r* is between r¢, and r},. This implies that C*
is between C} and (', hence by generalized single-peakedness, C* 77, C},. Thus, i
has no incentive to misrepresent. [l

Example 3. There are m = 6 parties and n = 5 individuals with peaks on the
coalitions C} = (2),C5 = (123),C5 = (34),C; = (45),CF = (23456) respectively.
The median of the leftmost parties is med{2,1,3,4,2} = 2 and the median of the
rightmost parties is med{2,3,4,5,6} = 4. Therefore, F(7Z1,...,7,) = (234).

Remark: It follows from the analysis of Nehring and Puppe (2007b) that the social
choice function F'(-) given above is the only anonymous and strategy-proof voting
rule on S(C.)" that is neutral, i.e. that treats the elements of C. symmetrically (in
an appropriate sense). As shown in |[Nehring and Puppe| (2007al) the property of
neutrality is closely related to efficiency, to which we turn now.

Proposition 2.

F(:) is efficient, i.e. for all (Z Zn) there exists no C' € C. such that

N17 I A 0}
C =i F(Z1, ..., Zn) with at least one strict preference.
Proof Consider a situation where F(2Z1,...,7,) = C* = (I*...r*) and let

= {C € C.llc > I*and r¢ < r*}, OQ ={C € Clc < I* andrc < r*},
={C e Cllc <l*and rc > 1*}, Oy := {C € C.|lc > I* and r¢ > r*} (see

Flgure [.1).

Step 1: We prove that there exists a peak in every orthant Oq,...,O4 by contradic-
tion. By symmetry, we assume w.l.o.g. that there is no peak in Oy, i.e. for
alli=1,...n,[5 <I"orrg >1r".

As [* is the median of the leftmost elements, we have #{i| Iy, < I} < §
(remember that n is odd). By the same argument, #{i| r¢, > "} < 3.

Summing up both inequalities, we obtain:
#{i| I, < I* or r§, > r*} < n, a contradiction; thus O; contains a peak.

Step 2: If there is a peak in every orthant, then C* is efficient.

Case a) Evidently, C* is efficient if C} = C* for some i.

12
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0, 0,

Figure 4.1: The social choice C* and the orthants Oq, ..., Oy

Case b) No individual has his peak on C*.
Let C' # C* be an arbitrary connected coalition, say in orthant O,. By
Step 1 we know that there exists a peak C;»‘ € Ou42(mods) in the opposite

orthant. As C* is between C' and C7, it follows by generalized single-
peakedness that C* >; C'. Thus, C* is efficient. O

Remark: If the number of voters is even, the median operator does not always
assign a single element, i.e. the mapping F' introduced above is a correspondence. To
obtain a strategy-proof social choice function in that case one has to give up either
anonymity or neutrality. Neutrality can be maintained, for instance, by count-
ing the peak of one pre-specified individual twice; clearly, this violates anonymity.
Anonymity, in turn, can be maintained by adding phantom voters along the lines
suggested by Moulin| (1980). For example, one may add a phantom voter with peak
at the grand coalition C' = (1...m). The resulting social choice function selects the
largest connected coalition among all median elements. Obviously this rule is not
neutral since it does not treat alternatives symmetrically.

13






Part 1l

Preferences over Political Coalitions:
An Empirical Study on Generalized
Single-Peakedness






5 Motivation

In this chapter we relate conclusions from Social Choice Theory to results from an
empirical survey. In Social Choice Theory the assumption of single-peaked prefer-
ences is used often but only little empirical confirmation of this assumption has yet
been given.

We consider three different kinds of preferences: Single-peaked preferences over
singletons, generalized single-peaked preferences over connected coalitions and gen-
eralized single-peaked preferences over “small” coalitions. The underlying domain
of alternatives is a linearly ordered set, e.g. a political left to right ordering. In
case of generalized single-peaked preferences a multi-dimensional space is needed.
Therefore, we consider the structure of median spaces, introduced by Nehring and
Puppe (2007b)) and applied also by Block| (2010).

The analysis of the preferences is based on two empirical studies in which students
were asked to rank political coalitions according to their preferences. Both studies
were conducted in Karlsruhe, the first in Spring 2009, the second in Winter 2009.
In between these two surveys the 17th German Parliament was elected.

The two studies lead to surprisingly similar findings, despite the significant political
change brought about by the election | Firstly, preferences over political coalitions
remain stable over time and are roughly the same in both surveys. Secondly, the
underlying order with respect to which the maximal number of preferences are single-
peaked stayed the same, which can be interpreted as saying that people’s perception
and conceptualization of parties was not perturbed much. This stability increases
the trust that one may have in the robustness of the findings.

Concerning the single-peakedness assumption on preferences over political parties,
we identify an ordering of political parties such that most of the respondents have
single-peaked preferences over parties. This ordering is the same for both groups of
the survey. In the second part of this work, we analyze the structure of preferences
over coalitions. We consider two special cases: Connected coalitions are sets of
political parties which form an interval in the left-to-right ordering. Small coalitions
are coalitions consisting of one or two political parties.

2The pre-election parliament gave rise to a grand coalition of the Union and SPD, whereas the
post-election parliament led to a centre-right coalition.
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5 Motivation

For single-peakedness, [Escoffier et al.|(2008]) give an algorithm to determine whether
a profile is single-peaked with respect to some dimension. To the best of my knowl-
edge, for generalized single-peakedness, there exists no such algorithm. With the
help of a program implemented in JAVA, our data are analyzed. As the sample has
a size of approximately 500 respondents, it is likely that there exists no structure
such that all preferences fit into the generalized single-peaked pattern. Hence, a
preference ranking is called almost generalized single-peaked if at most four change
iterations are necessary until the preferences are generalized single-peaked. We
found an ordering of political parties such that 81% of preferences fit into the model
of almost generalized single-peaked preferences over connected coalitions. A similar
analysis was done for small coalitions and there exists an ordering of political par-
ties such that about 71% of preferences are almost generalized single-peaked. The
ordering of political parties is the same for all three results.

Finally, we discuss the comments given by the students as to the influence of extreme
parties and their preferences for coalitions of a particular size.

In this part of my thesis, combinatorial considerations are used as well as (com-
putational) social choice results. All conclusions are based on empirical data and
compared with theoretical assumptions.

18



6 Overview of the literature

In this section, we give a short overview over the existing literature. We found the-
oretical results analyzing single-peaked preferences and empirical studies describing
the structure of preferences over political parties. To the best of my knowledge,
there is no empirical analysis over the preference structure over political coalitions
yet.

The theory of single-peaked preferences has a long tradition. Black (1958) analyzed
this type of preferences for the first time: If voters’ preferences are single-peaked
with respect to a given order, the median alternative will receive a simple majority
against every other alternative and no Condorcet cycle (Condorcet, 1785) will occur.
The median rule satisfies the property of strategy-proofness which was shown by
Moulin| (1980). He also gave a detailed description of all strategy-proof voting rules
on single-peaked domains in the one-dimensional case.

However, the probability that a preference profile satisfies the assumption of single-
peakedness is decreasing as well in the number of individuals as in the number of
alternatives when alternatives are assumed to be uniformly distributed in a prefer-
ence ranking. This is one of the theoretical results already stated by |[Niemi (1969).
For many years the characterization of preferences has still been an interesting
field of research. Ballester and Haeringer| (2007) characterize the (one-dimensional)
single-peaked domain and prove a possibility result whose reformulation has seri-
ous implications: “If a profile is not single-peaked, then there must be a violation
of that property for a set of three preferences over three alternatives or a set of
two preferences over four alternatives.” Therefore, it is almost impossible to find a
single-peaked profile in practice when considering large groups.

In “A Theory of Data”, |(Coombs| (1960) describes the “Unfolding Theory” to trans-
form scales. In particular, from one individual preference ranking all (common) or-
derings of alternatives are derived, such that the preference ranking is single-peaked.
A measure for “proximity to single-peakedness” is explained by |Niemi (1969) and of-
ten applied. The share of single-peaked preferences in the entire profile is calculated
and maximized over all possible or reasonable orderings. Accordingly, in our study,
we try to find an ordering, such that the largest proportion of preference rankings
is single-peaked

Single-peakedness is not only a problem in economics but also a challenge in com-
puter science. [Escoffier et al.| (2008) give an algorithm to determine whether a profile
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is single-peaked with respect to some axis. They call this property “single-peaked-
consistency” and calculate the running time of the algorithm. With the running
time O(nm), the algorithm is applicable also with high numbers of voters and is
adaptable when new voters are added to the profile. In this context the connection
to artificial intelligence problems becomes clear. The probability of single-peaked
consistency decreases exponentially both with the number of voters and the number
of candidates. As approximation, they suggest different approaches: First, to delete
the minimal number of individual rankings, such that single-peakedness is satisfied
(similar to the proximity mentioned above) or second, to delete the minimal number
of candidates, i.e. alternatives, such that the profile is single-peaked and third, the
minimal number of axis, such that each individual preference is single-peaked with
respect to at least one axis. Note that the latter is only a list of one-dimensional axis
and still not multi-dimensional. Escoffier, Lang and Oztiirk calculate the minimum
and maximum number of axes that are compatible with a set of distinct votes and
candidates. The underlying profile is uniformly distributed. In our work, we restrict
preferences to real ones collected in a survey but we compare the results with the
uniformly distributed case.

How can the theoretically obtained results be applied in a political context? Niemi
and Wright (1987) analyzed nationally-representative samples of preferences over
presidential candidates of the U.S. in 1980. With 14 politicians and computers from
those times, they had to divide their sample in smaller sub-sets to determine the
proportion of single-peaked preferences. However, they found that “[the] extreme
popularity or unpopularity of candidates leads to a high degree of unidimensionality,
but the underlying dimensionality is not ideologically based.” |Radcliffi (1993) used
data of U.S. elections, too. In contrast to [Niemi and Wright| (1987)), he only consid-
ered the “conventional left-right ideological dimension”; i.e. he considered an a priori
defined ordering. With five candidates, 50% of the preferences were single-peaked.

Van Deemen and Vergunst| (1998)) ran a national parliamentary election study during
Dutch elections in 1994. About 1500 persons were asked to evaluate political parties
by assigning (agreement) points. From these agreement points, individual preference
rankings were deduced. The main result of their study was the non-existence of
Condorcet cycles in this context. Furthermore, they give a linear ordering of eight
parties such that 35.1% of the voters have single-peaked preferences. This percentage
was maximal compared to all other orderings. [Van Deemen and Vergunst| (1998)
conclude that “single-peakedness of voters preferences in Dutch elections is not a
very likely cause” for the observed stability.

Whether preferences and the underlying ordering of alternatives are stable is one
focus of the research of |List et al. (2013)) and |Farrar et al. (2010). The measure
for proximity to single-peakedness is applied to determine the effects of deliberation
on a common ordering. Their main results are similar: “Deliberation can prevent
majority cycles [...] by bringing preferences closer to single-peakedness” ([List et al.|
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2013) “Deliberation effects policy attitudes and brings policy preferences closer to
single-peaked preferences.” (Farrar et al., [2010)).

We will not discuss here, what influence deliberation may have had on our data.
However, it is an interesting and even philosophical question whether there exists
an underlying objective ordering of the alternatives which has to be discovered
in a process of deliberation. Examples for a left-right dimension in which party
competition takes places is the degree of government intervention in the economy
(Downs, |1957). Some consequences are that “[plarties that are ambiguous in their
stance on the Left-Right scale attract lower preferential evaluations from individual
respondents and, [...], individuals’ level of misrepresentation of a party’s left-right
position is inversely related to their preference for that party” according to a study
by Aldrich et al. (2010).

So far, the mentioned literature has focused on single parties on the line only. Coali-
tions are often seen from a game-theoretical perspective, i.e. the candidates have to
make the decisions. For instance, |[Brams et al.| (2002) consider a coalition formation
process for connected coalitions. Each voter is part of the coalition forming alter-
natives. In our model, however, we consider individuals who have preferences over
distinct political parties.

One empirical study on whom voters vote for if they have preferences over coalitions
but only one vote for a party was run by Blais et al. (2006). They compare different
elections were political parties announced possible coalition partners before the elec-
tion. The behavior of voters was influenced by these promises when they decided
to vote for one party. “For one out of ten, coalition preferences were a decisive
consideration, i.e. they induced the voter to support a party other than their most
preferred one.”

A multi-dimensional approach was formulated by Nehring and Puppe (2007b) in
which preferences are no longer single-peaked with respect to one axis. In the
previous part of this thesis and in Block| (2010) a model is developed which embeds
connected coalitions in the median space structure. We will discuss the application
of this model in detail for the concrete application of the parties in the German
Parliament.
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7 Theoretical model

In this section, we focus on the theoretical model. Hence, we provide a structure of
coalitions on a graph and define preference relations on this graph. These definitions
are abstract at first, but we apply them to concrete examples in the next section.

We consider a finite set of parties A = {p1, ..., p }, where m is the number of parties.
In our empirical application, A will contain the m = 5 parties represented in the
17th German Federal Parliament, namely the Union (U)P| the Social Democratic
Party (S), the Free Democratic Party (F), the Left (L) and Alliance’90/The Greens

G {

The power set P(A) without the empty-set is called the set of coalitions. Let
Cyr C P(A) be a subset of P(A) which satisfies property M € {single, con, small}.
We consider sets of coalitions with three different properties, which are explained in
detail in the corresponding subsections:

Csingtie = the set of coalitions which consist of a single party
Ceon = the set of connected coalitions
Comann = the set of small coalitions

Let Car = (Car, Epr) be a connected graphf| consisting of |Cay| vertices and a set of
edges Ej;. An edge is a tuple {C1, Cy} which links two different coalitions Cy, Cy €
Cur.

A path from a coalition C' in C to another D is a finite sequence of coalitions
(C1,Cy,...,Cy) in C such that C; = C, Cy, = D, and any adjacent coalitions are
linked, i.e., E contains each pair {C;, C;11}. A shortest path from C to D is a path
from C' to D of minimal length. A coalition C' is between coalitions C; and Cy if C
belongs to a shortest path from Cy to Cs.

3To be legally precise, the Union is not a party but a parliamentary faction consisting of two
sister parties, the Christian Democratic Union (which covers the non-Bavarian part of Germany)
and the Christian Social Union (which covers Bavaria).

4For more information and historical remarks about the German Federal Parliament see Ap-
pendix

5A graph is called connected if for every pair of vertices C, D € Cy, there exist a path from C
to D.
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Note: Up to now we have made no restrictions as to which edges belong to Cy,.
An edge might represent similarities. In the following subsections we give three
examples.

Therefore, we fix a property M € {single, con, small} and consider the preferences
over the coalitions Cy;.

We consider a group of individuals, labeled ¢ = 1,2,...,n, where n is the (finite)
group size. Each individual has a preference ranking (7Z;) over the set of coalitions
C, which is assumed to be a linear orderE] The corresponding relation of strict
preference is denoted as (>;); formally, C' ; C" if and only if C' 7—; C" and C # C".
The peak of i’s preference ranking (2Z;), or in short of individual 4, is the (unique)
most preferred coalition, i.e. the C € C such that C; zZ; C for all C' € C. The
preference ranking is generalized single-peaked with respect to Cyy, if C" 77; C
for each coalition C' and each coalition C" between C' and i’s peak. Accordingly,
we call a profile (721, ...,75,) generalized single-peaked with respect to Cyy, if each

of the n preference relations is generalized single-peaked with respect to the same
Cu.

In the following, we denote coalitions simply by listing its members: the coalition
{1,2} is abbreviated 12, the singleton coalitions {3} is abbreviated 3, and so on.

7.1 Single-peaked preferences over single-party
coalitions

We consider preferences over the set of single-party coalitions Cyjpge = {P : P € A}.
We identify each coalition P in Cgnge with the party P, so that the domain of
preferences becomes simply the set of parties Cgngie = A. In order to represent
the standard notion of single-peakedness graph-theoretically, we endow Cgipg1e With
a linear graph structure, as illustrated in Figure [7.1] Formally, E consists of all
pairs {C, D} of adjacent parties with respect to some fixed linear order of parties.
Therefore, |E| = m — 1. Generalized single-peaked preferences on Cgipge reduce to
the so-called single-peaked preferences which are well-known in decision theory.

So far, we have only fixed the cardinality of E, but not determined the edges con-
tained in [E, i.e. which parties are adjacent or in other words which is the underlying
linear order of the political parties. There are many interpretations of the resulting

6Tn this thesis, different “things” have to be ordered. To prevent confusion, we will use the
term “(preference) ranking” for preferences and the term “order” or “ordering” for political parties.
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7.2 Generalized single-peakedness

left to right ordering which depends on dimensions like political concern, foreign
policy, diversity, freedom, change or social power[]

In the following, we consider all possibilities of linear orderings and try to find
which of them is adequate for the example of German political parties. From the
combinatorial point of view, there are m! possibilities to order m parties on the line.
As the resulting graph is symmetrical, this number can be reduced to %‘ In our
example of m = 5 parties, we get 60 different orderings. Two of them are shown
in Figure and [7.2l The only preference rankings that are single-peaked with
respect to both orders are 2 >1 >3 >4 >5and 1> 2 >3 >4 > 5. For more

combinatorial remarks, see Appendix [C]
n

Figure 7.1: Ordering 12345 Figure 7.2: Ordering 31245

7.2 Generalized single-peakedness

We now turn to preferences over a different set of coalitions than the set of single-
party coalitions. In Section we consider the set of connected coalitions, and
in Section the set of “small” coalitions. We do not assume such preferences
to satisfy standard single-peakedness w.r.t. a linear order of the coalitions; such a
linear order would not have been very plausible, since a coalition can include parties
from the entire political spectrum. Rather, we assume preferences to be generalized
single-peaked with respect to a graph over coalitions.

7.2.1 Generalized single-peakedness over connected coalitions

In this example, we focus on generalized single-peaked preferences over connected
coalitions, as introduced in Block (2010).@ As in the former section, we assume that
a linear order < of the five parties is given, i.e. p; < ... < ps with p; € A.

A non-empty coalition C' is called connected with respect to this linear order if
whenever C' contains p; and p;, then C' also contains p;, with i <k < j. We denote

7“The terms Right and Left refer to political affiliations which originated early in the French
Revolutionary era of 1789-1796, and referred originally to the seating arrangements in the various
legislative bodies of France. The aristocracy sat on the right of the Speaker (traditionally the seat
of honor) and the commoners sat on the Left, hence the terms Right-wing politics and Left-wing
politics” Source: http://en.wikipedia.org/wiki/Political_spectrum| retrieved December
2013.

8 Actually, the graph with its two dimensions can be interpreted as a property space, see Nehring
and Puppe| (2007b]).
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Figure 7.3: Embedding connected coalitions in a median space structure

the set of connected coalitions by C.,,. In the case of m = 5, there are exactly 15
coalitions in C,,,. For every connected coalition C' we call I € C leftmost in C' if
for all py < lc we have py ¢ C and r¢ € C rightmost in C' if for all p, > r¢ we have
pr ¢ C. In case of C being a singleton lo = r¢. For C.p,, the betweenness-relation,
which we have defined in the previous paragraph, reads as follows: A coalition C'
is between C and O, if its leftmost party is between lo, and e, and its rightmost
party is between r¢, and 7, ﬂ

The idea of connected coalitions is that two extreme parties cannot form a coalition
without accepting moderate parties to be part of the coalition. A justification for
this assumption is that voters prefer parties to ally with parties who have similar
programs until their coalition is big enough to form a government. Therefore, two
connected coalitions are linked by an edge if and only if one of them arises from the
other one by either adding or removing the rightmost or the leftmost party.

Example 4. Figure illustrates C.,, for the order 12345. For simplicity, parties
are identified with their indices. For instance, the coalition 12 is connected with
respect to the order 12345, but 13 is not (and therefore not shown in the graph).

9Formally, C' is between C; and Cj if

lo € [min{lc,,lc, }, max{lc,,lc,}] and r¢ € [min{re,,re, }, max{rc,,rc, })-

26



7.2 Generalized single-peakedness

12 2
Oo——O
13 23 3
@) O O

~
w
N
I

O
e RN
O

——O

15 25 35 45 5
o O O O O

Figure 7.4: Embedding small coalitions in a median space structure

Both 12 and 23 are between the coalitions 123 and 2. We observe, that in the first
column the leftmost element of each coalition is party 1 and the number of elements
of the coalition increases from the top to the bottom within the row by adding a
new rightmost element.

As their are m! different orders, there exist m7' = 60 different graph structures for
symmetry reasons, of which only one example is illustrated here.

7.2.2 Generalized single-peakedness over small coalitions

A coalition is small if and only if it contains only one or two parties. Let Cg,qn be
the set of small coalitions. As in the previous subsection, we consider a linear order
< of the parties. Two coalitions C' = (I¢ r¢) and D = (Ip rp) are linked by an edge
if and only if one of the following conditions hold.

1. rc+1=rpandlc=Ip
rc—lzrDandlC:lD

rc =rpand lc+1=Ip

- W

rc=rpandlc—1=Ip
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7 Theoretical model

Figure [7.4] shows the graph for small coalitions for the order 12345. We see, that
ICy| = X 4. The graphs Cep, and Cypan are isomorphic, that is, there exists a
bijection f : Ceon — Csman such that two coalitions C' and D € C,,, are linked if and
only if the corresponding coalitions f(C) and f(D) € Cspnan are linked.H

DLet f(lo(lc +1)...(r¢ — )re) = (lcre), ie. delete the parties lying in the interior of a
coalition, to get an adequate isomorphism.
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8 Data collection

The results presented in this chapter are based on two surveys carried out at the
Karlsruhe Institute of Technology, Germany (KIT). The first survey (S;) was con-
ducted in January and February in 2009, the second one (S;) in November and
December in 2009. In between these two surveys, the 17th German Parliament was
elected. The online questionnaire for both surveys was identical. It was generated
on www.onlineumfragen.com (see Appendix[D]). A link to the questionnaire was sent
to more than one thousand people via e-mail, mostly students at the Department
of Economics and Business Engineering. Passwords were used to ensure that ev-
erybody filled in only one form. There was no time limit for filling-in. Because of
the use of passwords, delays of several days were possible. The average time for
answering the question was 509 seconds (8.5 minutes).

In the questionnaire the respondents were asked to rank 31 coalitions according to
their political preferences. These 31 coalitions were the non-empty subsets of the
power set of the political parties which are represented in the German Parliament
(Deutscher Bundestag) at that time. No additional information about the political
program of the parties was given. Each respondent had to make a drag and drop
list beginning with his favorite coalition and ending with his least desired one. In
addition, a text field offered the possibility to give comments. We do not take into
account the relative weight (fraction of votes) of parties.

In the first survey 306 people participated of which 266 completely filled-in the ques-
tionnairesE-] In the second survey, there were 278 and 250 participants, respectively.
In the remaining analysis, only the completely filled-in questionnaires are consid-
ered. We refer to one dataset as a list, which we also call a ranking, of 31 elements
ordered from the most preferred to the least preferred political coalition.

For the analysis, data were anonymized and comments were detached. For easier
handling, coalitions were renamed to numbers from 1 to 31.

HComplete data and a translation of the questions are available from the author on request.
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9 Method

The aim of the following analysis is to check whether there exists an ordering
such that a profile is generalized single-peaked. We use the data obtained by the
survey as profile. As explained in Section [7] the property of generalized single-
peakedness depends on the underlying graph Ge,,. For each of the three properties
M € {single,con,small} and each underlying order of parties, we calculate the
percentage of voters that have generalized single-peaked preferences. The methods
to obtain these percentages differ for property single and (con and small).

9.1 Method: Single-peaked preferences over
singletons

This paragraph describes a method to check which preferences are single-peaked
with respect to one fixed order of political parties. For solving this problem, we
use the “unfolding technique” introduced by (Coombs| (1960). The main idea of this
technique is as follows: The party which is ranked worst has to be at one extreme
of the axis. The penultimate party therefore has to be at the other extreme or a
direct neighbor of the last party. Applying recursively this algorithm we get 21
preference rankings that are single-peaked with respect to the fixed linear order['?] In
our case, for each order of the five political parties, there are 16 preference relations
that are single-peaked, which we call the reference set (see Appendix [C)).

To compare empirical data with the reference set, we first reduce preference rankings
over coalitions to preference rankings over parties, e.g. lists of five elements. Then,
we determine the percentage of preference rankings which are elements of the refer-
ence set. As a last step, we sort the orderings starting with the one that has achieved
the highest percentage to find the ordering for which most of the preferences are
single-peaked. For our specific data, results are given in Section [10]

In theory, we may ask the question, whether there exist an ordering such that the
complete profile, i.e. each of the n individual preference relations, is single-peaked.

12This number is a result of the formula ;" (7@7:11) = 2™~ where we can identify the index
k with the ranking position of the peak and the binomial coefficient as the quantity of possibilities

to order the remaining parties. For a detailed proof see [Escoffier et al.| (2008).
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9 Method

The answer to this question depends on several factors, e.g. on the distribution of
preferences and the number of individuals in the profile. With a growing number
of individuals, the probability of getting a single-peaked profile decreases. Given
a uniform distribution of preferences, Escoffier et al. (2008) give a formula for this
probability. For n = 250, this probability is almost zero, which justifies the explained
method.

9.2 Method: Generalized single-peaked preferences
over connected coalitions and small coalitions

To check whether a profile satisfies property con or small more elaborate methods
are necessary. As the properties are very similar, only con is explained here. small
works analogously, see the remarks on isomorphism in Section [7.2.2]

For a given ordering of political parties, the set of generalized single-peaked prefer-
ences on the set of connected coalitions is enormous. Hence, a check that compares
the list of datasets with the reference set is impossible. Therefore, we implemented
an algorithm with the object-oriented programming language “Java”. A pseudo-
code is given in Algorithm The algorithm uses our data, which is saved in an
array. It generates all 60 possible orderings of the five political parties. The output
variables are two counters, to be precise vectors of dimension 60. The first one
is gsp__counter, which counts for each ordering the number of preference rankings
which are generalized single-peaked with respect to this ordering. The second one
is step counter, which counts for each ordering the number of marked coalitions
before the algorithm stops.

Example 5. We explain the algorithm based on a concrete example with j = 2 and
Ordering[2]= LGSUF. First, all coalitions, which are not connected with respect
to this ordering are deleted. Recall that given one concrete ordering, only 15 out of
31 coalitions are connected. With the remaining coalitions, the graph in Figure 9.1
is constructed.

Now, each individual preference ranking has to be checked one after another. In
our example, we check only individual 7, whose ranking starts with the sequence
(GS,S,G,SUGH,GSU, ...). Note that GU is crossed out as it is not connected
with respect to the ordering and therefore was already deleted in the first step.

At this point, the while-loop of the algorithm begins:

e We start with £ = 1 and mark the first coalition, i.e. the peak GS. Trivially,
every shortest path to GS is marked.
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9.2 Method: Generalized single-peaked preferences

Data: Preference profile (721, ..., 7,)
Result: Number of generalized single-peaked preferences per ordering.
generate Ordering[60];
for j =1 to 60 do
gsp__counter[j] = 0;
step_counter[j] = 0;
use Ordering|jl;
delete irrelevant coalitions;
construct Graph][j];
for i =1 to ndo

use reduced  preference (7Z;= C1, ..., Cis);
stop = false;
k=0;
while stop = false do
k++;

mark coalition C};
if A shortest path between two marked coalitions exists which uses

a non-marked coalition then /* 7; is not gsp */
step_counter[j] = step counter[j] + (k-1);
stop=true;

end

if k=15 then /* =; is gsp */

gsp__counter[j]++;
step__counter[j| = step__counterl[j] + k;

stop=true;
end
end
i++;
end
J++;

end
return gsp_counter, step_ counter;

Algorithm 1: Generalized single-peakedness check
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9 Method
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Figure 9.1: The graph of connected coalitions for the ordering LGSUF

e In the next iteration loop (k = 2), we mark coalition S. It is a direct neighbor
of GS and hence lies on the shortest path.

e For k = 3, we mark the third coalition G, which is also a neighbor of GS. There
is only one shortest path from G to S, namely (G, GS, S) which contains only
marked coalitions.

e In the fourth step (k = 4), we mark SU. It is a neighbor of S, which is
marked. However, there exists a shortest path (SU,GSU, GS) that uses the
non-marked coalition GSU. Hence, the while-loop stops at this point.

The considered ranking ~; is not generalized single-peaked with respect to the order-
ing LGSUF. The algorithm stops and we increase the step counter (step counter[2])
of the particular ordering (j = 2) by k—1 = 3, as three coalitions have been marked.
The counter gsp_ counter[2], which counts the number of preferences that are gen-
eralized single-peaked with respect to this ordering, is not increased.

Then, the next individual is analyzed. In our example, individual ¢ + 1 has the
following ranking which is already reduced to the connected coalitions.

(U,UF,SU,S,F,SUF,GSU,GS,G,GSUF, LGSU, LGSUF, LGS, LG, L)

It is easy to verify, that here the algorithm stops not until £ = 15, as the preference
is generalized single-peaked with respect to LGSUF. Hence, the step__counter[2] is
increased by 15 and the gsp_ counter[2] is increased by one.
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9.3 Results expected in an impartial culture

N° parties | N° con. coalitions | N° preferences | N° GSP preferences | ratio
1 1 1 1 1
2 3 6 4 .666667
3 6 720 56 077778
4 10 3628899 5204 001434
5 15 1.3- 10 5030332 .000004

Table 9.1: Ratio of generalized single-peaked preferences

As soon as every individual preference ranking has been checked, the next ordering
of political parties (j + +) is taken to construct the next graph and so on until each
of the 60 orderings has been checked.

The algorithm returns two counters, gsp_counter and step_counter, where the
numbers for each ordering are saved.

The explained algorithm works exactly and counts all preferences that are general-
ized single-peaked for coalitions that are connected, i.e. have property con. However,
the restriction given by con is very strong, i.e. only few preferences fit exactly in
this structure.

Therefore, we approximate generalized single-peakedness by allowing up to four
transpositions ¢ in the ranking. A transposition of a preference ranking is a per-
mutation of exactly two coalitions[™] Note that computing time of the algorithm
grows exponentially in the number of transpositions. A preference ranking is almost
generalized single-peaked if up to four transpositions are necessary to transform it
into a generalized single-peaked preference ranking. For ¢ = 4, the algorithm ran
approximately 110 minutes per survey. For purposes of readability, a more detailed
description of the implementation is skipped herer]

9.3 Results expected in an impartial culture

Which results do we expect when we run the algorithm with our data? To evaluate
whether the results are in a sense good or unexpected, we try to answer this questions
in two different ways. First, the analytical one, where we calculate the number of
single-peaked preferences in relation to the overall possibilities of preferences given
one fixed order. Results are given in Table [9.1]

13For instance, the ranking (1-2-3-4) can be transposed (3-2-1-4); and (3-2-1-4) can be trans-
posed into (3-1-2-4).
4More information about the implementation with Java is available on request.
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9 Method

For us, the important is the last row: With five parties and 15 connected coalitions,
a randomly picked preference ranking satisfies generalized single-peakedness with
a probability very close to zero (0.0004%). Therefore, the second way to answer
the question is given by data simulation. We considered 20 samples of 250 random
datasets which were generated by uniformly distributed data. Then, we tested each
of the samples on generalized single-peakedness. The result was really surprising:
For each ordering, and each sample, the number of generalized single-peaked pref-
erences was zero. The result is the same for connected and small coalitions. So,
in an impartial culture, we expect that we will not find generalized single-peaked
preferences no matter which ordering we consider.
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10 Results

The result section is structured as follows: First, we analyze plurality voting over
parties and over coalitions. Then, we state the results on generalized single-peaked-
ness with the properties single, con and small. Finally, the influence of coalition
size and of extreme parties is considered.

10.1 Distribution of preferences: peak-coalitions

In this subsection we present the distribution of the peaks of the preferences from
the participants of the survey. In the first paragraph we have a closer look at the
singletons, in the second paragraph we consider all coalitions.

10.1.1 Most preferred singletons

For politicians, the most relevant question is: Which party wins the election?

Assume a hypothetical election, where each of our respondents votes for the political
party he likes best, i.e. which occurs first in his individual ranking list as a single
party coalition[”] Table shows the result of this hypothetical plurality-voting
for the five parties.

Party St So

Union | 45.5 % | 52.4 %
SPD [ 259% | 184 %
FDP |162 % | 144 %
Green | 11.3 % | 13.2 %
Left 1.1% | 1.6%

Table 10.1: Hypothetical plurality voting for parties, n; = 266, no = 250

15For instance, a ranking list (SPD-Green, Green, SPD,...) would be counted as a vote for the
Green party and a list (SPD-Green, SPD, Green,...) or (SPD, Green, SPD-Green,...) would be
counted for the SPD.
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10 Results

Although the percentage varies in the surveys, the ranking of the parties is the same
for both surveys. In both surveys, “Union” is the favorite party with 45.5% and
52.4% respectively, followed by “SPD”, “FDP” and “Green”. The “Left” is least
preferred with less than two percent of the votes.

Plurality voting is motivated by the German federal election system where every
voter has two votes. The first vote decides which candidate is sent directly from a
constituency to Parliament. The second vote is more important in the sense that
it determines the proportional representation of each party in Parliament. It is
possible to split votes for the two ballots but this has no effect on actual coalition
formation. Parties are not bounded to agreements they have made before elections
as coalition formation depends on final election results. Even though most of the
governing coalitions consist of exactly two political parties, every voter has to decide
for only one party for his second vote. This corresponds to the plurality rule we
have just analyzed.

To give a measure of substantive agreement, the Herfindahl-Hirschman-Concentra-
tion-Index H (see [Hirschman| (1964)) is calculated[’f] We therefore sum up the
squares of the numbers in Table . For the first survey, we obtain H{ = 0.3468
(normalized: 0.1835) and for the second survey HY = 0.3132 (normalized: 0.1415).
If all individuals preferred the same party, the index would be H” = 1 (normalized:
1). In case of a uniform distribution, it would be H” = L =1 = 0.2 (normalized:
0).

Note that the restriction of reducing preferences to the ranking of singletons is
strong. A dataset where the five singletons were ranked on positions 1 to 5 would
give the same information as a dataset with singletons ranked on positions 27 to 31
as long as the ordering on the subset of singletons remained the same.

10.1.2 Most preferred coalitions

Using plurality voting, we elicit the peaks of the preferences over (all) coalitions. In
contrast to plurality voting over singletons, this voting mechanism has no equivalent
in the German voting system. To answer the question which coalition wins our hypo-

thetical election?, i.e. which coalitions are most frequently ranked first, we consider
the first places of data for both surveys S; and S, as illustrated in Table [10.2]

We obtain the result that the coalition of Union and FDP tops the list in both
surveys, as it achieves 23.5% of the votes in S; and 25.9% in S,. Note that this
coalition was the government coalition during the second survey Ss, but not when

16The inverse of the Herfindahl-Hirschman-Index is also known as Laakso-Taagepera index
(see Laakso and Taagepera (1979), |Taagepera and Grofman| (1981)))
"In HY the ¥ stands for 'party’ in contrast to © for ’coalition’ in the following paragraph.
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10.1 Distribution of preferences: peak-coalitions

Coalition S Sy

Union, FDP 23.3 % | 26.8 %
Union 188 % | 15.2 %
SPD, Green 14.7 % | 10.4 %
FDP 7T9% | 48 %
SPD 7T1% | 80%
Union, Green 56 % | 84 %
SPD, FDP 45% | 2.0%
Union, SPD 41 % | 6.8 %
Green 41 % | 52%
Union, FDP, Green | 1.9 % | 3.6 %

Table 10.2: Hypothetical plurality voting for coalitions, n; = 266, ny = 250;
the coalitions are listed with decreasing percentages with respect to Sy

the first survey was conducted. On the second place, there is the single-party Union
followed by the coalition of SPD and Green. The coalition Union and SPD, which
was the government coalition during the first survey S, obtains 3.6% and 6.8% of
the votes, which leads to positions 8 and 6, respectively. The coalitions are listed
with decreasing percentages with respect to S;. Here, for instance, FDP has a larger
support than SPD. In contrast, in Sy the party SPD is ranked first more often than
FDP. We compare the implicit ordering of single parties with the result of Table[10.]]
and obtain a consistent ordering for survey Sy (Union-SPD-FDP-Green-Left) but
an inconsistent result for the first survey due to the reverse ordering of FDP and
SPD. Coalitions not listed in Table achieved less then 2% of the votes in both
surveys.

Historically, the coalition Union-FDP formed the government nine times, and SPD-
Green twice (1998-2005). Except for the years 1960-1961 where the Union solely
formed the government, always two parties were required (and sufficient) to achieve

a maj orityll;g]

As in the previous paragraph, we calculate the Herfindahl-Hirschman concentration
index. For the first survey, we get HS = 0.1323 (normalized: 0.1033) and for
the second survey a similar value of HSY = 0.1315 (normalized: 0.1025). If all
individuals preferred the same coalition, the index would be H® =1 and in case of
a uniform distribution it would be H¢ = 2m1_1 = 3—11 = 0.0322. Hence, we observe a
concentration on some particular coalitions, i.e. the data are biased.

8An overview over Germans Governing Parties is available on http://de.wikipedia.org/
wiki/Datei:German_parliamentary_elections_diagram_de.png, retrieved December 2013.
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10 Results

10.2 Single-peakedness of singletons

In this paragraph we ask with respect to which ordering of political parties most
of the preferences are single-peaked, i.e. are generalized single-peaked with prop-
erty single. For every ordering of political parties the proportion of single-peaked
preference-rankings is calculated, i.e. for each of the 60 orderings, the correspond-
ing 16 preference rankingd™| are determined that are single-peaked with respect to
this ordering as explained in Section [9.1] Then, the number of those preferences is
summed up and divided by the total number of individuals (n; = 266, ny = 255).
This measure for single-peakedness was also introduced in |List et al.| (2013) as proz-
imity to single-peakedness, which equals the size of a largest subset of sample mem-
bers whose combination of preferences is single-peaked divided by the overall sample
size. The corresponding order of political parties is called a largest structuring di-
mension. The lower bound for the proximity to single-peakedness is given by 2m

m!
which equals % for m = 5. This would be the case when we would consider an
impartial culture. Tseltin, Regenwetter and Grofman show that the impartial cul-
ture maximizes the probability of majority cycles (see Tsetlin et al. (2003)). Hence,
this assumption always gives us a lower bound of the expected largest structuring

dimension.

All orderings with values higher than 20% are listed in Table in a descending
order with respect to S; Y In the following, we will focus on three special order-
ings.

O = (LSGUF), O, := (LGSUF), and O; := (LGFUS)

The ordering O, i.e. Left - SPD - Green -Union - FDP, coincides with the seating
arrangement in the German Parliament from 1998 to 2013. However, when we look
at Table we see that the ordering with the highest percentage of single-peaked
preferences is Left - Green - SPD - Union - FDP. In the first survey, 70.7% and in the
second survey 62.4% of the respondents have single-peaked preferences with respect
to this ordering. Hence, we highlight this ordering as Oy := (LGSUF). Interest-
ingly, this ordering coincides with the spectrum projected on the “Communism vs.
Neo-Liberalism” axis, suggested from the “Political Compass” after evaluating the
elections in 2005 and 20131 O3 will be motivated in the following sections.

Note that in Oy and O; only the positions of “SPD” and “Green” are switched, but
only 21.1% and 27.6% of the respondents have single-peaked preferences according
to Ol-

9Recall Appendix |C|for combinatorial remarks.

20A detailed list is available from the author on request.

2lsee www.politicalcompass.org/germany2005 and http://www.politicalcompass.org/
germany2013| retrieved December 2013.
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10.3 Generalized single-peakedness over connected coalitions

Ordering S So

LGSUF 70.7 % | 62.4 %
LFUSG 66.9 % | 58.4 %
LSUFG 549 % | 55.2 %
LGFUS 53.0 % | 51.2 %
LSFUG |44.0% | 404 %
LGUFS 421 % | 38.4 %
LGSFU 41.0% | 34.0 %
LUFSG 40.6 % | 31.6 %
LFSUG |368% |31.6%
LGUSF 36.1% | 324 %
LUSGF 29.3 % | 26.8%
LFGSU 274 %
LSGUF 21.1 % | 27.6 %
LSUGF 21.1 % | 22.0 %
LUSFG 20.7 %
LFUGS 22.0 %
others <20 %

Table 10.3: Percentage of single-peaked preferences for a given order, n; = 266,
ne = 250; listed decreasingly in S;

The Left party is extreme in the sense that orders with this party as an extreme
element are more likely to obtain higher percentages of single-peaked preferences.
Orderings where “The Left” is not an extremal element have at most 6.0% of single-
peaked preferences. The members of the coalition Union-FDP which formed the
government during the second survey are neighboring parties in each of the top
eight orderings. The former government Union-SPD (2005-2009) are neighboring
parties in each of the top five orderings.

In 2013, the initial coalition negotiations on a federal level of Union and Green failed.
According to our table, these two parties are neighbors not until the fifth row. The
next paragraph will focus on connectedness of coalitions, i.e. coalitions that satisfy
property con.

10.3 Generalized single-peakedness over connected
coalitions

In this section, we analyze whether our datasets represent generalized single-peaked
preferences over connected coalitions, i.e. property con according to the method
explained in Section 0.2l The aim is to find the ordering which maximizes the
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10 Results

con survey 1 (269) survey 2 (250) both surveys (519)
Ordering | t=0 t=4 %t=4 | t=0 t=4 %t=4 | t=0 t=4 %t=4
GLFSU 0 62 23% 0 58 23% 0 120 23%
GLFUS 0 106 39% 0 106 42% 0 212 41%
GLSFU 0 76 28% 0 63 25% 0 139 27%
GLSUF 0 117 43% 0 117 47% 0 234 45%
GLUFS 0 111 11% 0 110 44% 0 221 43%
GLUSF 0 108 40% 0 102 41% 0 210 40%
GFLSU 0 18 7% 0 18 7% 0 36 7%
GFLUS 0 8 3% 0 20 8% 0 28 5%
GFSLU 0 59 22% 0 55 22% 0 114 22%
GFSUL 0 192 71% 0 172 69% 0 364 70%
GFULS 1 109 41% 0 117 47% 1 226 44%
GFUSL 3 211 78% 5 193 7% 8 404 78%
GSLFU 0 22 8% 0 27 11% 0 49 9%
GSLUF 0 22 8% 0 32 13% 0 54 10%
GSFLU 0 59 22% 0 56 22% 0 115 22%
GSFUL 1 197 73% 1 167 67% 2 364 70%
GSULF 0 116 43% 0 125 50% 0 241 46%
GSUFL 3 210 78% 4 195 78% 7 405 78%
GULFS 0 10 1% 0 22 9% 0 32 6%
GULSF 0 19 7% 0 28 11% 0 47 9%
GUFLS 1 97 36% 0 103 11% 1 200 39%
GUFSL 4 195 72% 2 174 70% 6 369 71%
GUSLF 0 92 31% 0 89 36% 0 181 35%
GUSFL 1 186 69% 0 183 73% 1 369 1%
LGFSU 0 193 2% 0 162 65% 0 355 68%
LGFUS 8 205 76% 12 171 68% 20 376 72%
LGSFU 2 206 7% 1 171 68% 3 377 73%
LGSUF 8 215 80% 4 204 82% 12 419 81%
LGUFS 11 202 75% 6 180 72% 17 382 74%
LGUSF 2 203 75% 1 195 78% 3 398 %
LFGSU 0 155 58% 0 136 54% 0 291 56%
LFGUS 0 185 69% 2 158 63% 2 343 66%
LFSGU 1 147 55% 0 140 56% 1 287 55%
LFUGS 1 198 74% 1 186 74% 2 384 74%
LSGFU 1 164 61% 0 144 58% 1 308 59%
LSGUF 1 183 68% 0 181 72% 1 364 70%
LSFGU 1 154 57% 0 138 55% 1 292 56%
LSUGF 1 195 72% 0 196 78% 1 391 75%
LUGFS 1 158 59% 0 139 56% 1 297 57%
LUGSF 1 157 58% 0 148 59% 1 305 59%
LUFGS 1 166 62% 0 159 64% 1 325 63%
LUSGF 2 175 65% 3 158 63% 5 333 64%
FGLSU 0 26 10% 0 38 15% 0 64 12%
FGLUS 0 25 9% 0 22 9% 0 47 9%
FGSLU 2 80 30% 2 75 30% 4 155 30%
FGULS 2 66 25% 0 65 26% 2 131 25%
FLGSU 0 65 24% 0 64 26% 0 129 25%
FLGUS 0 58 22% 0 70 28% 0 128 25%
FLSGU 1 70 26% 1 67 27% 2 137 26%
FLUGS 1 64 24% 0 82 33% 1 146 28%
FSGLU 2 64 24% 0 65 26% 2 129 25%
FSLGU 1 23 9% 0 34 14% 1 57 11%
FUGLS 2 70 26% 1 66 26% 3 136 26%
FULGS 1 27 10% 1 22 9% 2 49 9%
SGLFU 0 17 6% 0 20 8% 0 37 7%
SGFLU 0 33 12% 0 42 17% 0 75 14%
SLGFU 1 63 23% 0 46 18% 1 109 21%
SLFGU 1 32 12% 0 44 18% 1 76 15%
SFGLU 0 33 12% 0 46 18% 0 79 15%
SFLGU 0 11 4% 0 18 7% 0 29 6%

Table 10.4: Generalized single-peaked preferences over connected coalitions:
Share of preferences satisfying property con for all orderings
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10.3 Generalized single-peakedness over connected coalitions

share of generalized single-peaked preferences among the respondents of our survey
considering only connected coalitions. Recall that depending on the ordering of
political parties, the set of connected coalitions contains different elements.

Table m gives an overview over both surveys with no transpositions (t = 0) and
up to four transpositions (¢ = 4). The first column indicates the underlying ordering
in the corresponding row. There exist 60 different orderings which are all checked
by the algorithm. Each of the following columns is divided in three sub-columns,
where the first one indicates the number of preferences which are generalized single-
peaked without transpositions, the second indicates the number with up to four
transpositions and the last one shows the corresponding percentage for t = 4. Data
are grouped for Survey 1 and Survey 2 and for the aggregated datasets. In each
column the orderings Oy, Oy and O3 are highlighted.

More details about the step-counter for each survey and each number of transposi-
tions can be found in the Appendix (see Table and Table [E.2)).

Without transpositions, O3 = LGFUS maximizes the number of generalized single-
peaked preferences. For this ordering, 20 of 519 (i.e. 3.8%) of all preferences are
generalized single-peaked. Due to the reasons already mentioned in the theoretical
part, this small percentage is not surprising. The reason why the algorithm stopped
so early was that often the alternative ranked on the second position was not a direct
neighbor of the peak, i.e. there exists no link between the coalitions in the corre-
sponding graph (recall Figure . For instance, if an individual ranking starts with
two singletons (U, F,UF,...) it is never generalized single-peaked independently of
the ordering. This is due to the fact, that two connected coalitions of the same size
(i.e. the same number of parties) are never linked by an edge in our model.

To solve this problem we consider preferences which are almost generalized single-
peaked, i.e. we allowed up to ¢ = 4 transpositions. If we allow up to four trans-
positions, 72% of the preferences are almost generalized single-peaked with respect
to Oz and even 81% are almost generalized single-peaked with respect to LGSUF .
This ordering is O,, already known from Section as the ordering which is also
the best fitting for single-peaked preferences over singletons (M = single). Recall
Figure [9.1] for the graphical interpretation.

Given the ordering of the German Parliament Oy, only one person has generalized
single-peaked preferences without transpositions. With up to four transpositions,
70% of the preferences are almost generalized single-peaked with respect to Oj.
Here, we see that almost generalized single-peakedness is a much weaker restriction
than generalized single-peakedness.

According to our definition, the seating arrangement of the German Parliament does
not seem to represent a good approximation of the perceived left-right-spectrum
suggested by our survey data.
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10 Results

10.4 Generalized single-peakedness over small
coalitions

When analyzing the preferred coalitions, we have seen that many students rank
coalitions with at most two coalition partners first. Hence, we modify our model,
such that all “small” coalitions are taken into account. Again, we ask the question
which underlying ordering of political parties maximizes the share of generalized
single-peaked preference rankings. In contrast to the algorithm used in the previous
section, the set of alternatives does not change when considering different orderings.
It always contains the same 15 elements, namely the five single parties and the ten
coalitions consisting of two parties.

Table [10.5] shows the results. The structure of the table is similar to the one in
the previous section. Again, the orderings Oy, O,, and O3 are highlighted. For the
aggregated data, O3 = LGFUS maximizes the share of generalized single-peaked
preferences when no transpositions are allowed. Here, 28 of 519 are generalized
single-peaked for small parties. When considering up to four transpositions, we
obtain 425, i.e. 82%, of almost generalized single-peaked preferences with respect to
the ordering O, = LGSUF'.

The German Parliament seating arrangement O; performs poorly in this model.
Only two rankings satisfy generalized single-peakedness with respect to this order-
ing.

We conclude that when no transpositions are allowed, O3 maximizes the percent-
age of generalized single-peaked preferences over connected coalitions as well as
over small coalitions. When considering up to four transpositions, O, performs even
better for our data. This ordering O, also maximizes the share of single-peaked pref-
erences over single-parties. As an additional result, the ranking of the hypothetical
plurality voting (see Table is consistent with Os.

10.5 The size of coalitions

In this section we describe how the size of a coalition, i.e. the number of contained
parties influences its valuation. Figure[10.I]shows for each of the 31 ranking positions
how often a coalition of a given size is ranked in that position.

On the first rank, i.e. the favorite coalition, 287 of 519 participants place a two-party
coalition, 190 place a single-party and 38 place a coalition consisting of three parties.
On the last rank, i.e. the worst coalition, 342 participants rank a single party whereas
107 place the coalition containing all five parties. Coalitions containing three or four
members are not very popular in the beginning and at the end of the ranking but
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10.5 The size of coalitions

small survey 1 (269) survey 2 (250) both surveys (519)
Ordering | t=0 t=4 %t=4 | t=0 t=4 %t=4 | t=0 t=4 %t=4
GLFSU 0 32 12% 0 24 10% 0 56 11%
GLFUS 0 53 20% 0 58 23% 0 111 21%
GLSFU 0 27 10% 0 35 14% 0 62 12%
GLSUF 0 41 15% 0 52 21% 0 93 18%
GLUFS 0 69 26% 0 61 24% 0 130 25%
GLUSF 0 46 17% 0 61 24% 0 107 21%
GFLSU 0 29 11% 0 35 14% 0 64 12%
GFLUS 0 44 16% 0 52 21% 0 96 18%
GFSLU 0 39 14% 0 48 19% 0 87 17%
GFSUL 0 201 75% 0 175 70% 0 376 2%
GFULS 0 62 23% 0 64 26% 0 126 24%
GFUSL 16 215 80% 11 199 80% 27 414 80%
GSLFU 0 22 8% 0 33 13% 0 55 11%
GSLUF 0 42 16% 0 46 18% 0 88 17%
GSFLU 0 34 13% 0 49 20% 0 83 16%
GSFUL 3 192 1% 2 180 2% 5 372 2%
GSULF 0 41 15% 0 54 22% 0 95 18%
GSUFL 9 218 81% 6 197 79% 15 415 80%
GULFS 0 33 12% 0 46 18% 0 79 15%
GULSF 0 31 12% 0 49 20% 0 80 15%
GUFLS 0 43 16% 0 46 18% 0 89 17%
GUFSL 12 204 76% 9 188 75% 21 392 76%
GUSLF 0 31 12% 0 46 18% 0 77 15%
GUSFL 3 199 74% 1 194 78% 4 393 76%
LGFSU 0 192 1% 1 162 65% 1 354 68%
LGFUS 18 215 80% 10 182 73% 28 397 76%
LGSFU 7 192 1% 3 174 70% 10 366 1%
LGSUF 9 222 83% 6 203 81% 15 425 82%
LGUFS 15 208 7% 7 190 76% 22 398 7%
LGUSF 2 208 7% 2 188 75% 4 396 76%
LFGSU 1 148 55% 2 145 58% 3 293 56%
LFGUS 0 188 70% 1 175 70% 1 363 70%
LFSGU 1 169 63% 2 146 58% 3 315 61%
LFUGS 0 183 68% 1 165 66% 1 348 67%
LSGFU 3 152 57% 1 136 54% 4 288 55%
LSGUF 0 182 68% 2 182 73% 2 364 70%
LSFGU 0 149 55% 0 149 60% 0 298 57%
LSUGF 0 194 2% 2 185 74% 2 379 73%
LUGFS 2 158 59% 0 143 57% 2 301 58%
LUGSF 2 162 60% 2 150 60% 4 312 60%
LUFGS 0 162 60% 2 148 59% 2 310 60%
LUSGF 2 177 66% 2 153 61% 4 330 64%
FGLSU 0 51 19% 0 55 22% 0 106 20%
FGLUS 0 37 14% 0 47 19% 0 84 16%
FGSLU 2 57 21% 1 60 24% 3 117 23%
FGULS 0 40 15% 0 44 18% 0 84 16%
FLGSU 0 42 16% 0 63 25% 0 105 20%
FLGUS 0 35 13% 0 37 15% 0 72 14%
FLSGU 1 44 16% 1 65 26% 2 109 21%
FLUGS 0 27 10% 0 34 14% 0 61 12%
FSGLU 1 37 14% 0 49 20% 1 86 17%
FSLGU 0 33 12% 0 51 20% 0 84 16%
FUGLS 0 30 11% 0 35 14% 0 65 13%
FULGS 0 31 12% 0 34 14% 0 65 13%
SGLFU 0 22 8% 0 31 12% 0 53 10%
SGFLU 0 34 13% 0 35 14% 0 69 13%
SLGFU 0 17 6% 0 30 12% 0 47 9%
SLFGU 0 26 10% 0 30 12% 0 56 11%
SFGLU 0 23 9% 0 40 16% 0 63 12%
SFLGU 0 20 7% 0 41 16% 0 61 12%

Table 10.5: Generalized single-peaked preferences over small coalitions:

Share of preferences satisfying property small for all orderings
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Figure 10.1: Distribution of coalitions of different sizes among ranking positions
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10.6 The influence of one extreme political party on the preferences

are placed more often in the middle: most three-and four-party-coalitions are placed
on ranking positions 20 and 23, respectively.

Note that in each ranking there is only one coalition with five members, but five
times more coalitions with one and four parties, and even ten coalitions with two or
three parties. One explanation for the number is the following. Participants divide
the set of all coalitions into three groups. Their favorite party or parties are put into
the first group. Coalitions which are still acceptable and preferred to those coalitions
which are not able to make decisions due to their size are put into the second group.
Finally, the third group contains all coalitions which include the party which they
absolutely dislike to be part of the government. We will come to this effect in the
following section.

10.6 The influence of one extreme political party on
the preferences

In the set of political parties, the Left party takes a special position. Only 1.12%
of the respondents consider it as their favorite party (see Table E To get an
intuition of what this means for the individual rankings, Figure [10.2] presents the
survey data in a special way.

We first explain how to read the diagram. Each of the five columns has a width of 31
ranking positions and corresponds to one political party, whose name is written in
the caption above the column. In each column, the ranking should be read from left
to right: the leftmost element represents the coalition ranked first and the rightmost
element represents the coalition ranked last, i.e. on position 31. The ranking of each
respondent of the first surveyEg] is represented by a tiny row. Whenever a dot is
plotted, this indicates that the respective party is included in the coalition which is
ranked on that position. Hence, the ranking is presented five times (once per party)
but in each column different ranking positions are highlighted by a dot.

Second, we interpret the diagram. The eye-catching column is the fourth as it seems
to be divided into a white and a black part (of course with some irregularities). This
implies that many respondents put all coalitions which do not contain the Left party
in the first half of the ranking and all coalitions containing the Left party in the
second half. We do not observe this for any other political party.

22In the German parliamentary elections in 2005 the party received 8.7% of votes.
23As data for both surveys look similar, the figure for the second survey is deferred to Ap-

pendix
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To verify this observation, we count the number of marked coalitions in the first half
of the ranking, i.e. the positions 1 — 16. For each party, we calculate the average
over all respondents. The result is shown in Table [10.6]

party | av. markers pos.1-16 | std.dev.
Union 8.86 2.06
SPD 8.54 1.55
FDP 8.05 1.51
Left 3.56 2.52
Greens 7.95 1.46

Table 10.6: Average numbers of coalitions containing each party in the first half of
the ranking

If the markers were uniformly distributed, the average would have been 13%2 = 8.26.
The number of the Left party is significantly smaller, which can be verified by a
t-test (p-value=0.000). Hence, we confirmed that the Left party is ranked on worse

ranking positions more often than other parties.

48



10.6 The influence of one extreme political party on the preferences

Figure 10.2: Special representation for each party: their occurrence in the individual
rankings, n; = 266
49






11 Remarks and Conclusion

In many democracies, the concept of an election in which citizens vote for one polit-
ical party is rarely questioned. However, many individuals do not only prefer single
parties but coalitions consisting of at least two partners. Few research has been done
so far to elicit the structure of these preferences. In our empirical study, we explicitly
asked students to sort different coalitions in Germany according to their preferences.
First, we analyzed the results of a hypothetical plurality voting over single parties
and over coalitions. We verified that a majority of the respondents prefer two-party-
coalitions to single parties. Second, we calculated the order of political parties O,
which maximized the number of (one-dimensionally) single-peaked preferences over
political parties. Then, we embedded the coalitions in a two-dimensional space of
connected coalitions and small coalitions, respectively. This structure of general-
ized single-peaked preferences was already explained in the first part of this thesis.
Here, we applied it to a real life example. With the help of a computer algorithm
we determined the ordering of political parties O3 which maximized the number of
generalized single-peaked preferences and the ordering O, maximizing the number
of almost generalized single-peaked preferences. Note that the latter ordering was
the same as in the one-dimensional case.

Surprisingly, neither of these orderings coincided with the historically evolved left-
right-ordering O; used for the seating arrangement in the German Parliament for a
long time.

How shall our results be interpreted? To answer this question, we first give an
overview over some limitations of our survey. With 584 respondents and 519 com-
pletely filled-in questionnaires, the result is certainly not representative for the Ger-
man Society. For instance, the Left party performed very badly in our survey,
whereas it achieved 11.9% of the votes in the election in 2009 and 8.6% in 2013.
Hence, our results should not be compared with results in Brandenburg or Saxony-
Anhalt. For instance, there may be also a greater difference between students and
the working people.

Another limiting element is the huge set of alternatives. Many respondents men-
tioned in the fill-in question that the list of coalitions was too long to order it in
a strict way. Some students explained their strategies to manage this challenge.
For instance, they sorted the alternatives in two groups of which one half contained
all coalitions with a particular party, e.g. the Left, and the other did not. Then,
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11 Remarks and conclusion

they ranked both sub-groups separately. A different strategy was to rank only the
favorite coalitions without sorting the bottom half of the list.

As we asked for a ranking, we obtained only an ordinal representation of the pref-
erences. By allowing cardinal utilities, e.g. by assigning points, two problems could
have been ruled out. On the one hand, by assigning zero points, a participant
could have highlighted a non-sorted list. Moreover, by assigning the same number
of points, also indifferences could have been revealed.

Despite the mentioned problems, the results of the survey remain quite strong. We
have shown that a large majority of the respondents prefer a coalition consisting of
two parties to a coalition of one or three and more parties. One reason is that large
coalitions are assumed to be incapable of making decisions due to coordination
problems. A government consisting of only one party carries the risk of extreme
politics. However, the voting system in Germany is still far away from voting for
multiple member coalitions. It would be a challenging task to design and implement
an appropriate voting system for Parliamentary elections. In our survey, we did
not take into account the relative weight of a political party. In real politics, this
is an important issue as, for instance, the fraction of votes determines which party
provides the Chancellor.

We applied the model of generalized single-peaked preferences over connected coali-
tions to an example in real life and adapted it to almost generalized single-peaked
preferences. By allowing this weakening, we obtained an ordering, such that 82% of
the preferences satisfied almost generalized single-peakedness. Our algorithm can be
applied to other situations and contexts as well and hence opens a novel approach
to multi-dimensional voting.

In our algorithm we allow up to four transpositions. Hence, the algorithm itself is
very complex and can hardly be manipulated. On the resulting graph, the multi-
dimensional median rule is strategy-proof, anonymous and efficient as proven in
Theorem [II

Up to now, we assumed (generalized) single-peaked preferences either over single
parties or coalitions. The third chapter of this thesis presents an experimental study
of different voting rules that aggregate such preferences. Specifically, we consider the
median rule, which takes the median of the announced values as social outcome and
the mean rule, which takes the average of the announced values as social outcome.
We implement the single-peaked preference structure on an interval by assigning
specific payoff functions to the participants in the laboratory. In various sessions we
test how the voting rule itself, the presence of information about others’ preferences
and the occurrence of manipulation costs influence individuals to vote truthfully or
to manipulate strategically.
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12 Motivation

Every day, people have to take decisions in small groups or committees. When
it concerns money, specific thresholds or valuation in general, it can be assumed
that the committee members have single-peaked preferences over the underlying
alternatives. But how to find a common decision? How to aggregate votes in a
“good” way? In this chapter, we focus on two popular voting rules, the mean and
the median rule, and report the results of a laboratory experiment.

First, we analyze both rules in a theoretical way and describe equilibrium concepts.
From the theoretical point of view, we know that the mean rule can be manipu-
lated very easily, whereas the median rule cannot. Taking the mean value of the
votes as the social outcome, this incentivizes almost every player to announce a
value different from his true peak. This leads to an equilibrium with extreme indi-
vidual strategies which can also be observed in the experiments. Although under
the median rule, there exist infinitely many equilibria, plenty of them are inefficient.
Some others can be easily ruled out when there is uncertainty over the others’ prefer-
ences and behaviors and therefore uncertainty over being pivotal. Hence, the unique
equilibrium which is not dominated by any of those concepts is the one where all
individuals just tell the truth. Surprisingly, in our experiment we find this in half
of the observations, whereas in the other half participants show a different behav-
ior. When not being pivotal, participants tend to implement other strategies than
truth-telling, i.e. we observe a variety of Nash equilibria in which participants do not
announce their true peak. Therefore, we introduce manipulation costs, i.e. constant
but small fees which have to be paid when deviating from the true (induced) peak.
This treatment increases truth-telling as well under the median as under the mean
rule.

Of course, it is difficult to find a (real-life) justification for those costs. Given
that manipulation costs have to be paid, this implies that all peaks are known
and this in turn implies that voting itself is not necessary as all preferences are
common knowledge and therefore known by a social planner who would be able
to implement an optimal social alternative. However, one simple interpretation of
manipulation costs is the expected value of getting caught deviating from the peak.
As an advantage of our model, stochastic effects have not to be taken into account.
In general participants’ decisions converge to equilibrium strategies when repeating
the voting situations and inefficient equilibria do not play a crucial role in our data.
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12 Motivation

The structure of this chapter is as follows. In Section [L3|we give a short overview of
the literature. The model and some general notations are introduced in Section [14].
We describe the median rule and state a (well-known) equilibrium in weak dominant
strategies. By introducing manipulation costs, this equilibrium becomes a unique
one. For the mean rule the equilibrium without costs has a nice structure but
becomes more complex, or in special cases even does not exist, when costs arise.
Therefore, we introduce the concept of level-k learning and summarize different
properties of both rules in Section [I4 We end the theoretical part by shortly
analyzing welfare effects for three types of payoff functions in Section[I5] Section
explains in detail our experimental design and in Section we sumimarize our
research questions. In Section [18] we give an overview over the observed data.
Section [19|shows the statistical analysis with several parametric and non-parametric
tests and a linear regression model. The focus lies on the two strategies “truth
telling” and “Nash play”, but also other strategies are considered. We analyze the
influence of information and framing as well as rank and manipulation costs. In
Section [20| we shortly summarize the main results of this work and outline possible
extensions.
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13 Overview of the literature

Aggregating the votes of several decision makers has a long history in economic the-
ory. Already Gibbard (1973) and Satterthwaite| (1975) show in their famous theorem
that on an unrestricted preference domain with at least three alternatives there is
no strategy-proof voting rule but the dictatorship of one individual. As soon as the
preference domain is restricted to single-peaked preferences on a line, possibility re-
sults are obtained as shown by Moulin| (1980)). Hence, from the theoretical point of
view, it is very interesting to consider single-peaked preferences. This work focuses
on one-dimensional preference domains. The more dimensional case, as analyzed for
instance by [Nehring and Puppe| (2007b) or [Block (2010)), is not considered here.

Osborne et al.[(2000) study the decision-making process when participation is costly.
They analyze different compromise functions, i.e. voting rules, and show that only
those players participate who have a large influence on the aggregated value. Trans-
lated to our context this means that only those individuals deviate, and therefore
pay the manipulation costs, who are able to shift the aggregated value strong enough
in the direction of their peak.

In their theoretical article, Renault and Trannoy| (2005) analyze Nash equilibria
under the mean rule when there are no manipulation costs. The equilibrium outcome
is unique and is characterized by a median formula depending on the peaks and the
voters weights. Voters tend to extreme values in the equilibrium. In Section
we formulate this result in a slightly different way and work out an algorithm for
the discrete distribution of voters with equal weights. In particular, the rank of
the voter is essentially for his equilibrium strategy. Renault and Trannoy (2005)
focus on the protection of minorities which are important for groups in mean voting
decisions. The influence of minorities is mainly determined by the group size and
according to their theory manipulation decreases by increasing group size. Renault
and Trannoy| (2011) evaluate “the discrepancy between the average taste”; i.e. the
mean of peaks, “and the average vote”, i.e. the mean of announced values. They
give upper and lower bounds to show the effects of strategic behavior.

Ehlers et al.|(2004) analyze the influence of voters when behaving strategically. They
focus on Lipschitz continuous utility functions and show that “if there are at least
five agents, the mean rule [...] is the unique anonymous and unanimous voting rule
that meets a lower bound with respect to the number of agents needed to obtain
threshold strategy-proofness”.

57



13 Overview of the literature

Research on strategic behavior in the laboratory has been done for instance in the
experimental study of Cherry and Kroll (2003)) where primary elections are analyzed.
Although strategic voting occurs not in large numbers, “low levels of strategic be-
havior can influence the election outcome”.

Van der Straeten et al. (2010)) conduct a voting experiment with four different elec-
tion rules and “conclude that voters behave strategically as fas as strategic compu-
tations are not too demanding, in which case they rely on simple heuristics [...] or
they just vote sincerely”. |Kube and Puppe| (2009) ran another laboratory experi-
ment. Here, Borda elections are analyzed when varying the information available.
The more participants are informed, the more they try to manipulate. In contrast to
other experiments, participants were asymmetrically informed. A result from |Eckel
and Holt| (1989) that gives hope for real elections: In the laboratory, several rounds
of “experience was necessary for strategic voting to occur”.

The closest to our study are the experiments done by Marchese and Montefiori
(2011) and the related working paper Marchese and Montefiori (2005) as they focus
on the mean rule. Marchese and Montefiori (2011)) ran a public good experiment,
where the social choice rule selects the mean of the quantities the students voted
for. A linear payoff function was used. A large share of votes was biased in the
direction of the Nash equilibrium. They claim that “Strategic bias seems to be a
mode of behavior that more persistently characterizes some players, while sincerity
was a more intermittent way of playing”. Surprisingly, “no group was able to reach
the Nash equilibrium” which induced us to test this observation again by doing a
similar analysis (see Section [I8.1.3)). As their work is strongly related to the article
of Renault and Trannoy| (2011]), Marchese and Montefiori (2011)) focus on group size.
However, they found out that there is no significant influence of the group size on
manipulation. In the following study, we fix group size during the entire experiment
to five participants. Furthermore, by considering an odd number of individuals, the
position of the median player is always uniquely detemined and can be analyzed.

Marchese and Montefiori| (2005) compare manipulation under mean and median rule.
Their “full information treatment” is similar to ours, but in their “no information”
treatment, participants not even know the number of voters they are competing
with. As payoff functions they used a quadratic function.

In our work we introduce several new aspects. First, we implement a strongly spiked
utility function which is still Lipschitz-continuous. Second, we analyze how behavior
changes when manipulation costs are introduced. Third, as we repeat the voting for
several periods before allocating new peaks, we are able to observe learning behavior.
Fourth, we implement different framings. As many people have different perceptions
of truth-telling and lying (see for instance Ariely (2013))), we were curious whether
the wording matters in a laboratory experiment.
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14 Two rules

In this section, we briefly introduce the two rules Mean and Median. Considering the
Nash equilibrium under full information, they have distinct properties. Under the
mean rule, there is a tendency towards extreme values, whereas under the median
rule truth-telling is a dominant strategy. For both rules, we analyze equilibria
with and without manipulation costs. Under the median rule, manipulation costs
imply that truth-telling becomes a strictly dominant strategy. Under the mean
rule, manipulation costs may change the structure of the equilibrium or even cause
the non-existence of equilibria. Furthermore, it is necessary to know the payoff
function.

14.1 General notations

We begin with some general notations which are relevant for both rules.

Let A = [0, M] be an interval of feasible alternatives. In our experiments, we set
M equal to 100. The set of individuals is denoted by I = {1,...,n}, and every
individual has a peak 2} € A which maximizes his utility function w; : A — R. In
particular, u; is a single-peaked function with peak x7, i.e.

wi(z]) > wi(zr) Vo € A
and for all z,y € A with f >z >y or y > x > x}, we have
ui(27) = ui(Z) > ui(y).

Three examples of single-peaked utility functions will be given in the following sec-
tion. All considered voting rules are anonymous, i.e. it has no influence on the
output who announced a particular vote. Hence, we use the ordered vector of peaks
(x7,...,2y) = x* € A", where z7 < x},,. We say that z* is strictly ordered if the
the peaks are strictly increasing, i.e. 2} < a},, fori e {1,...,n— 1}@

1 n

The mean of a vector x is calculated by 7 = - 37| x;, where x; € A is the choice or
vote of individual ¢. For the equilibrium concept, we also need the choice x_; of all

24In a strictly ordered vector, the index i indicates the rank of the individual.

29



14 Two rules

other individuals j € I except i. It is defined by z_; = (z1,...,%i—1, Tiy1,...,&n) €
AnL

For our purposes, a voting rule is a function that maps a vector of votes to a unique
alternative which is the outcome:

f:A"— A
(1, ..., 2y) —> f(x)

The outcome and the individual peak x} influence the payoft, which is defined by
an individual payoff function.

14.1.1 Three types of payoff functions
First, we consider the payoff functions when there are no manipulation costs. The

payoff function w;(m) of individual ¢ depends only on the distance from the peak to
the realized group outcome m = f(x).

In the following, we will use three different payoff functions |
Linear payoff functions:

u;(m) =a — blz; —m| with a € R and b > 0 (14.1)
Quadratic payoff functions:

ui(m) =a — b(x; —m)* with a € R and b > 0 (14.2)

The special payoft function:

(14.3)

380 380
u;(m) =10 + min < )

Im — (7 = 2)|" [m — (27 + 2)|

(2

The linear one is appealing because of its simplicity. It has been used in var-
ious articles, for instance by Marchese and Montefiori (2011). The quadratic payoff
function does not need an absolute value, but is still single-peaked. There-
fore, it is easy for calculations and applied for instance by Marchese and Montefiori
(2005). In the remainder, a payoff function of the form is called special payoff

25 As the derivatives of the payoff functions are bounded, all of them are in particular Lipschitz-
continuous. This criterium was essential for the analysis by [Ehlers et al.| (2004]).
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Figure 14.1: Examples for linear, quadratic and special payoff functions

function. We used this type for the experiments because of its sharp spike form. To
get an intuition of the shape, examples of the three different payoff functions are
visualized in Figure [I4.1]

14.1.2 Payoff functions with manipulation costs

If there are manipulation costs, the structure of the payoff function looks different.
The payoff function w;(m,x;) of individual 7 still depends on the realized group
outcome m := f(z), but furthermore on the announced value x; and manipulation
costs c(x;, z7). To be precise, the payoff function with manipulation costs can be
written in the form

wi(m, x;) = u;(m) — c(x;, )

were u;(m) is the payoff function without costs as defined in the previous paragraph.
In the following, we will always write the extended form w;(m) — ¢(x;, z}) to make
clear that manipulation costs occur. At this point, the only restriction we make
to the cost function is c(x}, xf) = 0, i.e. the costs are zero whenever an individual
announces his true peak x7. In our experiment, we use quasi-fized manipulation
costs, i.e. c(x;, x}) = cfor x; # =} and a fixed value ¢ > 0. Hence, the fixed amount ¢
has to be paid if and only if an individual deviates from his true peak z;.

14.1.3 A refinement of the Nash equilibrium concept

Given a voting rule, the definition of a Nash equilibrium (Nash, [1951) reads as
follows.
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14 Two rules

Definition 1 (Nash equilibrium (NE)).

oV = (2, ..., 2Y) is a Nash equilibrium (NE) if for all i € I the choice is optimal

rn

given the choice of all other individuals:

wi( f (@) = wi(f (22, 1)) Vo,

A Nash equilibrium will be called straight Nash equilibrium (SNE), if it is a Nash
equilibrium, in which all non-pivotal individuals tell the truth. [Dutta and Laslier
(2010) interpret this as a lexicographical preference for honesty. An individual is
pivotal, if he can influence the outcome. By this manipulation, his own utility may
increase or decrease.

Definition 2 (Straight Nash equilibrium (SNE)).
oV = (2, ..., 2)) is a SNE, if:

a) 2V is a NE: u;(f(2)) > u;(f (2

- —17

z;)) Vx;

b) If f(a, x;) = f(aV,, 2}) Va; then z¥ = 7.

7

In a Nash Equilibrium where every individual, who cannot improve his utility by
manipulating, tells the truth, is called a strong straight Nash equilibrium.

Definition 3 (Strong straight Nash equilibrium (SSNE)).
oV = (2, ... 2)) is a SSNE, if:

a) o is a NE: u;(f(zV)) > w;(f (2N, 2;)) Va,

b) If u;(f(a,, z)) < ui(f(2N, 27)) Va; then 2V = 7.

%) Z

Obviously, every strong straight Nash equilibrium is also a straight Nash equilibrium.
Finally, we define a weak straight Nash equilibrium as a straight Nash equilibrium
which is not strong.

Definition 4 (Weak straight Nash equilibrium (WSNE)).

oV = (V... 2] is a WSNE, if it is a straight Nash equilibrium but not a strong
straight Nash equilibrium.

rn

For a better overview, all mentioned equilibria are visualized in Figure Detailed
examples in the context of the median rule are given in the following section.
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4 )

Nash Equilibria

Straight NE

C Strong Straight NE | Weak Straight NE

N /

Figure 14.2: Overview over different types of Nash equilibria

14.2 Description of the median rule

One particular voting rule is the median rule which we study more closely now. From
an ordered set of values, the median rule selects the element in the middle. In case
of an odd number of values, this element is unique. Otherwise, the median is the
average of the two middle values. We will skip the case of an even number of values
also in the theoretical part, as we use a fixed number of five in our experiments. In
this special case, the median is the third largest value. Hence, from here on let n
be an odd number. Formally, given the values x4, ..., x,, the corresponding ordered
values are xp, ..., x[,. Thus, the median is given by

fmed(x) — QT[nTH]

14.2.1 Theoretical analysis of Nash equilibria under the median
rule

Under the median rule, truth telling is an optimal strategy given that preferences
are single-peaked. This result is well known as stated by [Moulin| (1980)), but also
explained quickly:

*

Let m be the median of the ordered vector of peaks (x3,...,z%), i.e. m = x%,,. For
2
’%1 it is optimal to announce his peak z%.,, as he is the median voter
2

and therefore pivotal. If individual ¢ with i < ”TH proposes a value x; which is
smaller or equal than m, the social outcome does not change at all. If he suggest
a value z; larger than m, the new median m’ will be larger than m, to be precise

individual
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14 Two rules

m = min(l'i,an-Hi). As m —xf < m' — z, there is no improvement for individ-
ual 2. The argumentation for an individual with a peak larger than the median is
analogous. Therefore, it is an optimal strategy for each individual to propose his
true peak under the median rule. To be precise, truth-telling is weakly dominant
for every individual.

Theorem 3. Under the median rule, truth-telling is the unique strong straight Nash
equilibrium, i.e. ¥ = (

i, .., xk).

Proof. The proof is divided into an existence and an uniqueness part.

e Existence.
Truth-telling is a SSNE. As truth-telling is a weakly dominant strategy for
every individual, it is obviously a Nash equilibrium. As ¥ = a7 for every i,
it is also a SSNE.

e Uniqueness.
Each SSNE is truth-telling. Let y™ be a SSNE with y # y; for one individ-
ual k. As truth-telling is a weakly dominant strategy, it holds:

uk(fmed(yivka y;)) Z uk(fmed(yivh yljcv))
From the definition of a SSNE, it follows that v}’ = y;.
[

Note that this Nash equilibrium is the only strong straight Nash equilibrium, but
not unique without manipulation costs. At this point, we are able to give some
examples of other Nash equilibria.

Example 6. Consider the peak distribution x* = (5,10, 22,30, 57). Then, there are
infinitely many Nash equilibria if A = [0,100] is a continuous interval and still a
large number of Nash equilibria in pure strategies if we restrict the votes to integers.

e According to Theorem [3| the only strong straight Nash equilibria is truth-
telling, i.e. z*. The outcome in the SSNE is [ (z*) = z} = 22.

e Equilibria, in which the outcome is the same as the outcome under truth-
telling, i.e. fmed(z™) = fmed(x*), are called weak straight Nash equilibria
according to Definition [d] The median voter reports his preferences truthfully.
Voters with a peak smaller than the median peak announce a value smaller
than %, and individuals with a peak which is higher than the median peak

2
announce a value larger than z%,,. In the given example, one WSNE is
2

2N = (7,10,22,31,56). It is important, that individual 3 announces his
peak 22 truthfully, but of course other individuals may announce their true
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14.2 Description of the median rule

peaks as well. The equilibrium 2% is a straight Nash equilibrium, because all

non-pivotal individuals announce the truth, as the set of non-pivotal individ-
uals is empty. As there exist individuals who do not tell the truth but who
cannot improve by deviating from the peak, the equilibrium is not a SSNE.

e Equilibria, in which the outcome is different to the outcome under truth-telling,
i.e. fmed(zN) #£ fmed(x*) can be either efficient or inefficient. For instance, if
”T” or more individuals state the same value v, this value will be selected by
the median rule and cannot be changed by deviation of one individual.

— An equilibrium which is not straight but efficient is (10, 10, 10, 10, 10).

With any other outcome, individual 2 will be worse off.

— A non-straight and also inefficient equilibrium is (0,0, 0,0,0) as the out-
come is smaller than the smallest peak (0 < 2} = 5). In particular a
value v < z7 (or v > z7) leads to a non-efficient outcome, as x} (or z7)
would be a Pareto improvement. These “bad” equilibria are analyzed for
instance by |Cason et al. (2006), Saijo et al. (2007) and Yamamura and
Kawasaki| (2013)).

Obviously, such equilibria are not straight.

In the following, we eliminate all equilibria which are not SSNE by introducing
manipulation costs.

14.2.2 Median rule with manipulation costs

As mentioned in the previous paragraph, truth-telling is only a weakly dominant
strategy in a scenario without costs. Now, we consider the case of manipulation costs
¢(x;, xF) which have to be payed if and only if the suggested value z; is not equal
to the peak x7. With this small change, truth-telling becomes a strictly dominant
strategy.

The structure of ¢(z;, x}) is irrelevant for this argument for the median rule, as long
as

c(xf,x}) < c(x;, xf) for all z; # a].
The simplest example which is considered in the experiments are quasi-fixed costs,

ie. c(xf,xf) =0 and c(zy, 27) = ¢ for x; # x} and a constant value ¢ € RT.

By introducing manipulation costs, inefficient equilibria are ruled out and the Nash
equilibrium becomes unique. This fact is very important for the later analysis of
the experimental results. In the following, we analyze the mean rule, for which
truth-telling is hardly ever an optimal strategy.
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14.3 Description of the mean rule

The mean rule, also known as average rule, computes the arithmetic mean f™¢*" of

the given values z1, ..., z,. It is defined by
1 n
fmean(l,) I le
Nz
Here, f™*" is the social outcome and the values 1, ..., x, are the announced val-

ues of the participants. The mean rule is highly manipulable, i.e. only rarely it
is optimal to announce the true peak. In most constellations, announcing an ex-
treme value leads to a social outcome which is closer to the individual peak. Given
that preferences are single-peaked, the Nash equilibrium can be determined by an
algorithm explained in the following section.

14.3.1 Theoretical analysis of Nash equilibria under the mean
rule with full information

First, we state an adapted version of the Proposition 1 of Renault and Trannoy
(2005), which determines the unique equilibrium allocation. In the original version
of their paper, individuals may have different weights. Here, every individual has
the weight +.

Theorem 4 (Renault and Trannoy| (2005)). The average voting game has a Nash
equilibrium. Furthermore, the equilibrium allocation, Xy, is unique and is given by

5k
IN = min{bi*, ML}7
n

where i* = min{i € I : M% > bi11} and b; are the peaks in a decreasing order.

If preferences are single-peaked and peaks are ordered increasingly and distinct, then
the Nash equilibrium under full information is unique. This result is stated formally
in Theorem [l

Theorem 5. Let (uy,...,u,) be single-peaked functions w.r.t. (x7,...,z%) and let
x* be strictly ordered. Then, there exists a unique Nash equilibrium z™ .
The equilibrium x is of the form (1 0,...,0, «X, M,... . M) for some iy € I and
(io—1)—t (n—ig)—t
io—1)—times n—ig)—times

xfg € [0, M|, where M is the upper endpoint of the feasible interval.
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14.3 Description of the mean rule

Proof. First, we show by contradiction that a Nash equilibrium (z¥',...,z%) is
ordered by value, i.e. 2 <af\, forallie {1,...,n—1}.
Assume there exists a Nash equilibrium y = (y1,...,y,) with y; > y;41 for some

i

Case 1: y > x7, i.e. the mean of the NE is larger than j’s peak.
As y; > y;+1 > 0, there exists € > 0, such that y; — e € [0, M], (choose ¢
small enough, i.e. ¢ < n(y —z7), see below). So, by choosing y; — ¢ instead
of y; and given all other individuals’ choices y_; remain the same, the utility

of 7 changes.
1 Z _ €
v (” (yj _€+i¢jyi)) o (y— ”>

As z; <y — £ <y, it follows by single-peakedness of u; that

( 5) > u;(y)
i\Y n i\y
We see that j’s utility increases which means that she can manipulate.

Case 2: y < 7, i.e. the mean of the NE is smaller than j’s peak.
The proof is analogous to case 1. Here, individual 7 + 1 can increase his
utility by choosing a value y;41 + € which is greater than y;1;. y;41 +¢ €
[0, M] exists, as M > y; > y;41.

Hence, y cannot be a Nash equilibrium and we conclude that every Nash equilibrium
must be of the form (zy,...,z,) with z; < z;,.

Second, we show that in a Nash equilibrium there can be at most one value z;,
distinct from zero or M, i.e. z € {0, M} for all i\{io}.

By contradiction, let us assume that in a Nash equilibrium y there exist k,[ with
vk, yi ¢ {0, M'}. Without loss of generality, k& < I. Hence, zj < 7. Obviously, the
mean value cannot equal both peaks, i.e. x} # y or z] # y.

Wlog z; # y. We show that y; ¢ {0, M} cannot be optimal.

Case 1: y <z} < x}. As yg,yi ¢ {0, M}, there exists g, > 0 such that:
_ € _
(7 (y + :) > u(y),

i.e. k can increase his utility by announcing a value xj; = y + €.

Case 2: x; < xj < y. Analogous to case 1, when [ announces an appropriate value
Ty =Y — &

26This condition seems to be weak, at first. But if there exist k,! with k& < [ and v, > ¥, then
there also exist some consecutive individuals j, j + 1 with y; > ;1.
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Case 3: zj, <y < xj. Both individuals have an incentive to manipulate which leads
to k’s choice yr — e and [’s choice y; + ¢; until one of both reaches the
endpoints of the interval A: either 0 or M.

Hence, in no case it is optimal if two or more individuals announce values distinct
to the interval endpoints. O

Now, we know that the Nash equilibrium must be of the form

N N

2N =(0,...,0, 2N M, M)
—_—— —_——
(ip—1)—times (n—ig)—times

It remains to figure out which is the individual ig. In Theorem [6] we derive a simple
algorithm associating to each individual ¢ a specific interval A; C A.

These intervals Ay, ..., A, are defined as follows:
M M
hom [, M
. (n—1) " (n—i+1)
Obviously,
A=J4
i=1
and

n

ﬁAfzu{f@kw+n}%@

=1 =1

With these intervals, we can now state the following theorem which determines the
optimal strategy depending on the rank of each individual.

Theorem 6 (Determination of the Nash Equilibrium). If every individual i chooses
his N according to the following algorithm, x™ is a Nash Equilibrium.

o Case I (“z} < A;”): xf < M(n—1i). Then 2} =0.
o Case 2 (“z} > A;7): af > M (n—i+1). Then ) = M.

o Case 3 (“zf € A;7): M(n—i) <af < Y(n—i+1).

Then ¥ = nat + M(i —n).

Proof. According to Theorem [5], there exists at most one individual with a choice
unequal the endpoints of the interval. So let us assume, we found 7y and calculate
his optimal choice. We know by Theorem 5| that all individuals with a smaller index
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choose 0, and all individuals with a higher index choose M. In the following equation
10’s peak equals the mean given these choices.

1
zjy = ~[(io = 1) - 0+ + (n — o) - M] (14.4)
This leads us to the optimal choice of i:
Ty = naj, + M(io — n) (14.5)

This term is smaller than 0 if and only if 2}, < 22(n — 4) (case 1) and larger than
the extreme value M if and only if 7, > 2 (n — iy + 1) (case 2). O

Example 7. For the better understanding of Theorem [0 we give an example for
n =5 and the peaks (5,10,22,30,57). The peaks and their position relative to the
individual’s interval are shown in Figure [14.3]

For individuals 1,2 and 3, the peak is smaller than the corresponding A;, i.e. ac-
cording to Case 1, they vote 0. Individual 5 has a peak which is larger than his
interval, i.e. he votes M = 100 (Case 2). Case 3 holds for individual 4, whose op-
timal response is 50. The equilibrium allocation is shown in Figure [14.4] where the
mean value 30 results.

Remark: If z* is not strictly ordered, i.e. there exist k,[ with = = zf, the Nash
equilibrium may not be unique. However, if none of the peaks lies in one of the cor-
responding intervals, i.e. xj ¢ Ag, A;, the Nash equilibrium strategy is still unique;
namely to announce an extreme value.

But there exist multiple NE;, if for one of those individuals it holds that his peak is
within his interval. Let us call this individual k& with z; € Ag. Then, the mean of
the Nash equilibrium equals both peaks, i.e.
N =gp =}

Hence, a vector y is a NE, if the sum of the choices of £ and [ remains the same,
i.e. yp+y; =z +x}' and all other individuals’ choices remain the same, i.e. y; = =¥
for all i € I\{k,l}. Properties of this general case can also be found in the work of
Renault and Trannoy (2005).

In the previous paragraphs, it was assumed that individuals have full information
about the others’ peaks or at least know their own position in the ranking of in-
dividual peaks, i.e. not only x} but also their own . According to Theorem [6] it
is enough to know the ranking position to determine the optimal strategy. If no
information is available, the theorems are not applicable. We therefore consider the
concept of level-k learning.
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Figure 14.3: Peaks (5,10, 22,30,57) and intervals A;
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14.3 Description of the mean rule

14.3.2 Learning in the mean rule model

To analyze the behavior of individuals over periods, we also have to take into account
learning effects. We consider the model of level-k learning (see Crawford and Iriberri
(2007)) and [Stahl and Wilson, (1994))).

e Level 0 player tell the truth.

e Level 1 player act optimal if all other players tell the truth.

e Level 2 player act optimal if all other players are of type level 1.

e Level k player act optimal if all other players are of type level k-1.

For mean decisions without manipulation costs, the level-k actions in our example

are listed in Table The Nash equilibrium is achieved for level-3 players at the
latest.

Remark: Interestingly, in the fourth peak distribution, player 5 overshoots his true
peak in the first level, but undershoots it in the following.

14.3.3 Mean rule with manipulation costs

In the model explained in the previous paragraphs, it was costless to deviate from
the peak z7 by announcing a different value x;. Introducing manipulation costs
c(x;,x¥) changes the equilibrium depending on the structure of costs, the payoff
function and the distribution of the peaks. We assume that each individual knows
the mean value which occurs if he tells the truth. This value is denoted by m, i.e.

*

m = fmean(xiij .CL’*)

%

Hence, m lies in the interval [%, w] Note that the assumption of knowing

m is very restrictive and even in some cases with full information about peak dis-
tribution not justified. Given these assumptions, the general best response function
BRI;« reads as follows.

0 ifwy (m - %) —¢(0,2F) > u;(m) and ¢ < 0
q ifw(zl,q) —c(q) > ui(m) and g € [0, M]
‘ M ifu,-(m—xf%M)—c(M,xf)>ui(m) and ¢ > M

z7 otherwise

(14.6)

where ¢ := zf(n + 1) —nm. If ¢ = 0, u;(m) is always smaller or equal than the
utility which can be obtained by manipulation. Hence, the best response function
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72

Peak Distribution | Player | Peak | k=0 1 2 3
1 1 20 50 90 50 50
2 60 60 100 100 100

3 20 20 0 0 0

4 70 70 100 100 100

) 10 10 0 0 0

2 1 70 70 100 100 100
2 60 60 8 75 100

3 20 50 25 0 0

4 30 30 0 0 0

) 65 65 100 100 100

3 1 10 10 0 0 0
2 20 20 0 0 0

3 30 30 30 0 0

4 40 40 90 70 100

5 20 50 100 100 100

4 1 60 60 100 100 100
2 70 70 100 100 100

3 10 10 0 0 0

4 20 20 0 0 0

) 45 45 65 25 25

5 1 70 70 100 100 100
2 10 10 0 0 0

3 60 60 100 100 100

4 20 50 90 50 50

5 20 20 0 0 0

6 1 30 30 0 0 0
2 50 50 25 0 0

3 70 70 100 100 100

4 65 65 100 100 100

5 60 60 &8 75 100

7 1 40 40 90 70 100
2 20 50 100 100 100

3 10 10 0 0 0

4 20 20 0 0 0

) 30 30 30 0 0

8 1 20 20 0 0 0
2 10 10 0 0 0

3 45 45 65 25 25

4 60 60 100 100 100

5 70 70 100 100 100

Table 14.1: Level-k learning up to k=3
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can be reduced to the case of “manipulation without costs”:

0 ifm> "TH:E:
BR,-(m)=qq if 2tlgr — M

M ifm<”7+1z;“—

IN

sl 3
IN

‘:

5

(14.7)

The best response in Equation is similar to the Nash equilibrium stated
in Theorem [6] but with the additional constraint to tell the truth if deviating is
too costly. As BR,: is very sensitive to changes in the payoff function and the
cost structure, a general statement is not possible. Hence, we focus on quasi-fixed
costs (see Section combined with the three payoff functions introduced in
Section [14.1.1] Furthermore, we set M = 100 and n = 5. [

According to , an individual has three different opportunities to manipulate:
Telling 0, a value ¢ between [0,100] or 100. The action in the middle is called
“fine-tuning” as the resulting mean coincides with his peak. The new mean reads
as follows:

T} 6, %
m— m > sT;
mi(m) = o Sap—20<m < Lag (14.8)
100—x*
m + 005361 m<%x§—20

The new mean m;(m) is between m and the peak z}. Whether the payoff with
manipulation costs is higher than the payoff under truth-telling depends on the
payoff function and is discussed explicitly in what follows.

14.3.4 Mean manipulation with linear payoff functions

In this paragraph, we analyze the best response function and the resulting payoff
in case of a linear payoff function. First, we state some general results and in the
remainder we consider a concrete example with corresponding figures.

2TWith the adapted values, we have ¢ := 6z — 5m and the best response

0 if u; (m—%)—c>ui(m)
q if u;(xf) — ¢ > u;(m) and ¢ € [0, 100]
100 if u, (mf%JrQO) —c > u;(m)

L

otherwise
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Theorem 7. For a linear payoff function u;(m) = a — blxj — m| and quasi-fized
costs ¢ > 0 we have:

a) If |z —m| < §, then i has no incentive to manipulate.

b) If x; <m — §, then i has no incentive to manipulate if and only if x7 < ¢,

c) If v; > m+ ¢, then i has no incentive to manipulate if and only if xj > 100 — 5F.

Proof. a) If i manipulates, the maximal utility he can gain is

ui(z}) —c=a—blz; —zj|—c=a—c (14.9)

Hence, if this value is smaller than the utility of telling the truth, he has no incentive
to manipulate:

a—c<a-—blx; —m| (14.10)
& g > |zt —m) (14.11)
b) Let x; < m — {. Individual ¢ has no incentive to manipulate if and only if the

payoff of the not manipulated mean m is higher than the payoff of the manipulated
mean m minus the manipulation costs c.

ui(m) > u;(m;(m)) — ¢ (14.12)
a—blx; —m| > a — blx] —m;(m)| —c (14.13)

As the mean m is larger than the peak z, individual ¢ proposes a value which
is smaller than his peak. Maximal manipulation arises for the smallest value 0.
According to Equation (14.8]), the manipulated mean is

mi(m) =m — —= (14.14)

which can be inserted in the utility inequality (14.13))

*

a— blxf —m)| Za—b|x:—(m—£)|—c (14.15)
n

The constant a arises on both sides and thus can be canceled out. As xf —m > 0,

i

the absolute value can be substituted by normal brackets. This leads to

nc

7 < (14.16)
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¢) Analogous to part b) with the condition
100 — a7

a—blzi —m|>a—-blz; —m - ——"| —c¢ (14.17)
n
TR e > 100 — o (14.18)

]

Besides knowing on which side of the mean value the own peak is, it is not neces-
sary to know the exact value m. The main statement of the theorem is that the
inequalities are independent of m. An individual with an extreme peak, i.e. close to
0 or 100, will manipulate in less cases than an individual with an intermediate peak
value.

Example 8 (The optimal payoff). As the best response function is defined via
inequalities over the utility function, we start with the visualization of the payoff
function, when m is given and individual ¢+ with peak z] acts optimal. We consider
two different cases: First, we look at the payoff function w;(m) when i decides not to
manipulate and therefore has not to pay any costs. Second, we calculate the payoff
when announcing 0, 100 or an optimal value in between minus manipulation costs.

Therefore, we consider the piecewise defined function u;(m;(m)) — ¢ (i.e. manipula-
tion with costs) compared with the truth-telling function w;(m) (without manipu-
lation costs). The special case of xf = 20 is plotted in Figure , more examples
can be found in the appendix (see Figure . In all linear examples, let a = 100,
b=1and c=5. %

The red line shows the payoff when i responds optimal, i.e. u;(BR;(m)). This
function can be intersected in three piecewise linear parts: In the first part, it is
optimal to manipulate by “fine-tuning”, i.e. by manipulation the new mean coincides
with his peak (second line of Equation m This part is parallel to the m—axis
and generates a payoff a — ¢ = 95. The second part is above the a — ¢ -line. Due to
the costs, this area cannot be reached by manipulation (see Part a) of Theorem [7)).
For m = z} the payoff is maximal and equals a = 100. The third part is again the
non-manipulation payoff. Here, 7 < m and z} = 20 < 4 = % = 25. Hence, we
apply Theorem [7] which tells us that i has no incentive to manipulate by telling
the minimal value 0. For peaks larger than 25, there exists an interval on the right-
hand-side of the peak, such that manipulation to 0 is worth. See the appendix
for some illustrating examples. The best response function BRyy(m) is plotted in
Figure It has a jump at m = 15. As stated above, for peaks smaller than 25
(Theorem [7}b ) or larger than 75 (Theorem [7jc ), individuals will never manipulate

to the value 0 or 100, respectively.

Z8The figures are simulated and plotted with MatLab.
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T T T
120H * —  —  manipulation with costs i
— — — no manipulation
best response

100

80

utility u

60

40
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0 ! ! ! ! ! ! ! !
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mean value m when telling the truth

Figure 14.5: Utility of best response to m for x7 = 20 for a linear payoff function

100 7

80 E

Best response BR(m)

401 §

0 ! ! ! ! ! ! ! !
10 20 30 40 50 60 70 80

mean value m when telling the truth

Figure 14.6: Best response function B Ryy(m) for 7 = 20 for a linear payoff function
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14.3.5 Mean manipulation with quadratic payoff functions

In this paragraph, we consider quadratic payoff functions of the form
u;(m) = a — b(z; —m)?

These functions are differentiable, but still single-peaked. Similar to the linear case,
there exists an interval around the peak value, where manipulation is not profitable.
The length of this interval is independent of the peak value. Beyond this, truth-
telling generates a higher payoff also in a larger interval. This interval depends on
the peak value, the parameters of the function and the number of individuals. If the
expected mean value is far enough away from the peak value, manipulation is always
profitable. A precise description of this vaguely formulated statements is given in
the following theorem.

Theorem 8. For a quadratic payoff function u;(m) = a—b(x; —m)?* and quasi-fived
costs ¢ > 0 it holds:

a) If |xf —m| < \/%, then i has no incentive to manipulate. In particular, if

|z} — m| > \/% and "zt < m < "lgr — M then the best response is

z; =x;(n+1) — nm.
b) If m > ”“ xf, then © has no incentive to manipulate if

m <

cn 1
1 14.1
= Doa + ] ( + 5 ) (14.19)
Otherwise he responds optimal with x; = 0.

c) Ifm < "ar — M then i has no incentive to manipulate if
n n

cn 1 M
>___ N 1 -z 14.2
MM =) < * Zn) on (14.20)

Otherwise he responds optimal with x; = M.

Proof. To prove the theorem, we have to compare the utilities of telling the truth
with the utility of the best response minus the manipulation costs ¢. Announcing a
value different from either of them, cannot be optimal.

a) The maximal payoff when manipulating equals ul(x )— ¢ = a—c and is smaller
than the truth-telling payoff w;(m) = a — b(x 2 if f > |xf —m|.
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14 Two rules

b) Let m > "T“x;", i.e. the maximal manipulation can be achieved by z; = 0,

which implies that the new mean equals m — %’ So truth-telling is better
than manipulating if the following condition hold.

a—b(zy —m)* > a—b(a:;‘—(m—xi)

2
n
*

) -
T T

*2
c> —b(2($f—m)-i—|— Z)

n n?
cn

1
14+ —
2bx} i ( * 2n>

m <

c) For zf > m the truth-telling condition reads as follows.

M —zi\\’
a—b(xf —m)* > a—b<xf—<m—|— xl)) —c

n
cn M —z;
LT () ) i
b(M —20) = ( Totemt >
N cn n *<1+ 1> M
m ——— +t — - —
- 2b(M —xF) " 2n 2n

Example 9. For a = 200, b = 0.02 and ¢ = 5, truth-telling is a best response for
all ¥ whenever m is within [z} — 5v/10, 2% + 5v/10].

Figure and illustrate the example of z} = 20, more figures can be found
in the appendix. In Figure [14.8) we see that for this choice of parameters, there
is no fine-tuning interval: only the values {0,z;,100} are optimal, respectively.
This is a peculiarity of this concave payoff function. Let us consider values of
m > ”T“x;“ = 1.2-20 = 24. Without costs, it would be optimal to announce the
minimal value 0. By Equation truth-telling for large m is better, whenever

11
+20- — =53.25

m< —
— 0.04-20 10

This is exactly the value, for which the utility of best response switches from “no
manipulation” to “manipulation with costs” in Figure [14.7]

As in the linear case, the best response function is a decreasing function in m.
However, this is not true for every payoff function as we will see in the following
paragraph.
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14.3 Description of the mean rule

250 T T T
— - —  manipulation with costs
— — — no manipulation
best response
200

150

utility u

100 - b

0 ! ! ! ! ! ! ! !
10 20 30 40 50 60 70 80

mean value m when telling the truth

Figure 14.7: Utility of best response to m for 7 = 20 for a quadratic payoff function

100 b

60 b

Best response BR(m)

20 ® i

0 | | | | | | | 1
10 20 30 40 50 60 70 80

mean value m when telling the truth

Figure 14.8: Best response function BRyy(m) for zf = 20 for a quadratic payoff
function
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14 Two rules

14.3.6 Mean manipulation with special payoff functions

As a last example, we consider the special payoff function. We start with a theoret-
ical result and explain its meaning in a concrete example afterwards.

Theorem 9. For the special payoff function

(14.21)

380 380 )

3 =10 . 5
w(m) +mm<W%%ﬁ—2N!m—Cﬁ+®|

and quasi-fized costs ¢ > 0 it holds:

a) If |z —m| < &, then i has no incentive to manipulate. In particular, if
lzp —m| > Z and “z; < m < gy — M ghen the best response is

3 n 1
r;=xf(n+1) —nm.

b) If m > ”Tﬂx;‘, then i has no incentive to manipulate if

1 * * 380
m2—2+xf(1+)+\/%<xl+) (14.22)
2n n \4n c

Otherwise he responds optimal with x; = 0.

c) If m < "Hgr — M then i has no incentive to manipulate if
n ? n

1\ 50  [100 — 27 /100 — 27 380
m§2+x;*<1+)——\/ x( x’+> (14.23)
2n n n 4dn c

Otherwise he responds optimal with x; = M.

Proof. a) Maximal payoff is obtained when the manipulated mean 7;(m) equals the
peak.

380
ui(xf) —c=10+ ———— —-5=195
Ty —x; +2
By comparing this value with truth-telling, we obtain
: 380 380
10+ min (=8, =Py) > 195
. 1 1 185
min (|m—x;‘+2\’ |m—x;‘—2)\) 2 380

0 > max(m — o7 + 2], lm — o7 — 2))
B> |m—af+2

m — @] < &

L
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14.4 Comparing the two rules

b) If m > 2 a¥, the relevant part of the min-function is the first argument. Truth-
telling is better than manipulating if

380 380
T 1€
: me= g =2y +2

= m-Z—a+2>m—a+2- 5 (m—a+2) (m— L -1} +2)

= m2+m(4—2m;—f§‘)+((2—x;)2 ”%—2‘”3‘_380%>>o

This inequality has two values for which it holds with equality. Due to the structure
of our problem, we are interested in the larger one.

¥ o\ 2 % x*? ¥ ¥
m2—2+x;~“+2;1+\/<2—x2‘—2;) —<(2—xi)2+;—2’2—3&“>

¥

= m>=2+ai(1+ &) + /% (£ +22)

C

c¢) analogous. O

Example 10. Figure illustrates the best response function and Figure [14.9
the utility of the best response function for z} = 20.

The special payoff function reacts very sensitive on manipulation, i.e. in a large
interval around the peak, manipulation generates a higher payoff than truth-telling.
A mean value far away from the peak may imply truth-telling as the generated
benefit does not compensate manipulation costs. In the direct neighborhood of
x}, there exists a small interval, where truth-telling is the best response. To be
precise, this occurs when |m — zf| < % This peculiarity can be seen in utility
function (Figure but is too small to be noticed in the best response function

(Figure [14.10)) and is also too small for being relevant in the experiments.

We also notice that the fine-tuning interval, i.e. the plateau at the utility level
Umaz — ¢ = 195 coincides relatively often with the best response utility. As an
implication, the best response of one individual may have counter-productive effects
on another individual.

In this example (Figure [14.10)) the marginal utility of the special payoff function
for large values is very small as the payoff function is piecewise convex. Hence,
manipulation is not profitable, and we observe again a discontinuity.

14.4 Comparing the two rules

We have seen that mean and median rules generate social outcomes which are “some-
where in between” of the suggested values. They are somewhat similar since the
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Figure 14.9: Utility of best response to m for z7 = 20 for the special payoff function

Best response BR(m)
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mean value m when telling the truth

Figure 14.10: Best response function BRyg(m) for xj = 20 for the special payoff
function
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14.4 Comparing the two rules

. wr 1 ‘ e .
median can be written as the ”2n1 truncated mean. However, the dissimilarities of

both rules are more conspicuous. The mean rule is manipulable whereas the median
rule is not. Without costs, there exists a unique and efficient Nash equilibrium under
the mean rule, while inefficient equilibria are also possible under the median rule.
As the median rule is strategy-proof, it is not necessary to have full information over
the peaks of the other individuals to state an optimal proposal. However, under the
mean rule, individuals have to know at least their ranking number within all peaks
to calculate their optimal choice. This includes knowledge of the total number of in-
dividuals n. Moreover, the assumption of the rational behavior of other individuals
plays a crucial role in calculating the equilibrium. Also, the outcome value differs:
Under the median rule, it corresponds to one of the proposed values, whereas under
the mean rule it may be a different value. An overview over these properties is given
in Table where both rules are compared with and without costs.

mean median

no costs | costs || no costs | costs
strategy-proof No No Yes Yes
equilibrium always ex- || Yes No Yes Yes
ists
if exists, unique Yes No No Yes
inefficient  equilibria || No Yes Yes No
possible
more peak info than || Yes Yes No No
own peak necessary
more payoff function || No Yes No No
info than own peak
necessary

Table 14.2: Mean and Median rule compared

We briefly highlight some of the results shown in Table [[4.2] Depending on the
distribution of peaks, there may be no equilibrium in pure strategies for the mean
rule with costs. This exception arises, when there are at least a pair of agents of
those one manipulates if and only if the other does not and vice versa. Such a cycle
occurs for instance in the following example.

Example 11. Table shows an illustrative example, where it depends on the
payoff function whether a unique equilibrium exists or not.@ The peaks of the five
individuals are 10, 20, 50, 60, 70. Hence, for every payoff function without manipula-
tion costs, there exists a unique equilibrium with mean 50 (yellow row). The table

29Tf two peaks are very close together, it may happen that the same mean value occurs when
telling the truth or manipulating, but unilateral deviation is not profitable. This is a very special
case and not relevant for our analysis.
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14 Two rules

84

Individual | 1 2 3 4 5 Mean
Peak 10 20 50 60 70 42
ewoc 0 0 50 100 100 o0
Linear payoff function
m;(50) 52 54 50 42 44
BR,x(m;) 10 20 50 100 100 56
m;(56) 56 56 56 48 50
BR,x(m;) 10 20 20 100 100 50
m;(50) 50 50 56 42 44
equilibrium | 10 20 20 100 100 50
Quadratic payoff function
m;(50) 52 54 50 42 44
BRyx(m;) 10 0 50 60 100 44
m;(44) 44 48 44 44 38
BR,x(m;) 10 20 74 60 100 52.8
m;(52.8) 52.8 52.8 48 52.8 46.8
BRyx(m;) 10 20 50 60 70 42
m;(42) 42 42 42 42 42
BR,x(m;) 10 20 50 60 100 48
m;(48) 48 48 48 48 42
equilibrium | 10 20 50 60 100 48
Special payoff function
m;(50) 52 b4 50 42 44
BRyx(m;) |10 20 50 100 70 50
m;(50) 50 50 50 42 50
BRx(m;) 10 20 50 100 100 56
m;(56) 56 56 56 48 50
BR,x(m;) 10 20 20 100 100 50
m;(50) 50 50 56 42 44
BR,x(m;) 10 20 20 100 70 44
m;(44) 44 44 50 36 44
circle 10 20 50 100 70 50
Table 14.3: Example of non-existing equilibria



14.4 Comparing the two rules

shows the iterative calculation for the three different payoff functions, we analyzed in
the previous paragraphs. As initial value we use the constellation of the equilibrium
without costs (ewoc). As in the sections before, for each person, the best response
function BR;: is based on the mean value if he announced the truth. This value is
calculated by taking the actual mean, subtracting the announced value and adding
the peak value in appropriate proportions. Hence, it is determined by

T x;

mi(m) :=m+ — — —
where z; is the last calculated best response or the initial value in the first round.
We need this intermediate step to apply the results of the previous sections. For
instance, individual 1 announces 0 in the ewoc, i.e. if he told the truth, the mean
would be 52. In the ewoc, only individual 3 tells the truth, so for he the mean value

(50) does not change.

In the next row, the best response is given according to our previous analysis for the
linear payoff function. We see that individuals 1 and 2 no longer have an incentive
to manipulate and hence tell the truth, whereas it is profitable for individual 4
and 5 still to deviate to the maximal value 100. This steps are repeated until we
see that the best response function does not change and the stable equilibrium
(10,20, 20, 100, 100) with mean 50 is reached.

For the quadratic payoff function, the general idea remains the same, but more
iterations are necessary and a different equilibrium (10, 20, 50, 60, 100) with mean 48
results (green rows).

In the lower part of the table, it is shown that for the special payoft function a circle
occurs. The last line coincides with the initial best response values (red rows). Every
time, individual 3 tells the truth, individual 5 has an incentive to deviate and vice
versa. The exact proof is given in the Appendix [H] here only a sketch of the proof is
given. In an equilibrium it must hold that BR,qg = 10, BRyy = 20 and BRg, = 100
which can be shown by contradiction. Hence, only the choices of individuals 3 and 5
are flexible and here no equilibrium is possible as explained above. We conclude
that there exist equilibria for the linear and quadratic payoff function, but not for
the special one.

As we saw in Section [I4.3.3] the calculation of the best response function can be
complex for the mean rule with costs. For each of the studied payoff functions, it
was necessary to have information about the expected mean value. This implicitly
signifies a knowledge about the others’ peaks. Manipulating or not and therefore
the best response function itself is sensitive to the structure and parameters of the
payoff function. This fact must be taken into account when updating the belief over
the expected mean value. On the other hand, the median rule is very robust in all
those mentioned issues. Combining individuals with different payoff parameters or
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even different types of payoff functions has no influence on the resulting equilibrium.
Although complexity is not a topic of this work, obviously the calculation of the me-
dian equilibrium is very easy and can become very difficult for mean equilibria with
costs. Attention should be paid to this when analyzing the experimental results.

As stated in Table[14.2) there exist inefficient equilibria for the mean rule with manip-
ulation costs and for the median rule without costs. The latter one has been already
discussed in Section [I4.2.1], for the mean rule we give the following example.

Example 12. Assume that the peaks are given by (10, 20,45,60,70). Then, the
mean rule with the special payoff function and manipulation costs of ¢ = 5 leads to
the equilibrium (10, 20, 25, 100, 70) (see also Table [G.1]). But z = (10, 20, 65, 60, 70)
would not change the mean value (45) but increase the payoff of the individual 4 with
peak 60, as he has not to pay manipulation costs. Note that z is not an equilibrium
as individual 4 has an incentive to manipulate. Hence, this equilibrium is inefficient.
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15 Welfare effects and maximal
payoffs under different payoff
functions

As a small excursion, we analyze in this section the overall payoff if all individuals
have payoff functions of the same form u;(m) with different peaks z7,... z%. De-
pending on the form of individual payoffs the sum, i.e. the utilitarian social welfare
functional U(m) = Y, u;(m), also has distinct properties. We consider linear,
quadratic and special payoff functions as introduced in Equations -. For
this analysis, it is not relevant whether m is the mean, median or any other value

and therefore we do not apply manipulation costs.

15.1 Linear payoff functions

First, we consider the case of piecewise linear functions, i.e. functions of the form
u;(m) = a — blx; — m| with fixed values a and b and individual peaks z}. Because
of concavity, the sum of the functions U(m) = >, u; is also piecewise linear and
single-peaked. Its maximum is at the median of the individual peaks. Figure
shows an example for a = 100, b = 1 and the peaks (10, 20, 50, 60, 70). The maximum
of the sum is at the median of the peak values m = 50.

15.2 Quadratic payoff functions

Second, we analyze quadratic payoff functions, i.e. utility functions which can be
written as u;(m) = a — b(x; —m)% The sum U(m) = X1, u;(m) is also quadratic
as we can easily see:
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15.3 Special payoff functions

U(m) = il u;(m)

n

=> a—b(z} —m)?
i=1
=na — b <ZQJZ‘2 +2my —an)

i=1 i=1

For maximizing the sum, we need the set the first derivation of U equal to zero.

ggl =U'(m) = —Qbef—i-Zlmm =0

=1

This signifies that overall payoff is maximal for the mean of the individual peaks.
Figure shows an example with the same peaks as in the linear case. We
adapted the parameters to a = 200 and b = 0.02. The maximum of the sum
function is at the mean value m = 42.

15.3 Special payoff functions

The last type of payoff functions we analyze here, is the one we used in the experi-
ments. This function is of the form

u;(m) = 10 4+ min ( 580 580 )

m — (27 = 2)|" [m — (27 + 2)|

The function u;(m) is piecewise hyperbolic and symmetric with respect to z = 7.
In contrast to the previous examples, the sum U(m) = >, u;(m) is not single-
peaked any more. One of the reasons is that the functions u;(m) are not concave.
The maximal value of U(m) is reached at one of the peaks and depends on the
distribution of the peaks and the distances between them. Figure shows
the special payoff function for the peaks (10,20, 50,60, 70) as used in the previous
examples. Here, the maximum of the sum function is achieved for m = 60. Because
of the piecewise monotonicity of the w;’s, the value maximizing U(m) can never be
one of the extreme peaks zj or x). Hence, in the case of n = 3, the maximum
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15 Welfare effects and maximal payoffs under different payoff functions

coincides with the median PO

30A comprehensive analysis does not really lead to “nice” equations but to long formulas without
added value.
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16 Experimental Design

In order to test whether the theoretical results hold also in practice, we conducted
an experimental studyP" In this section we first explain the general setup of the
experiment and the outline of the experimental procedure. We then explain the
different treatments. Our main treatment variables are “rule”, “info” and “cost”.
We also have secondary treatment variables such as “experiment” and “framing”.
The first is an auxiliary variable, the second was only used in the no cost treatments.
They are explained in detail in the following subsections.

16.1 General setup

All sessions took place at Karlsruhe Institute of Technology in 2012. Each experi-
ment consisted of a “Mean” and a “Median” part. The students were divided into
groups of five. Two groups were in the laboratory at the same time and we ensured
anonymous interaction.

In total we observed the behavior of 235 participants (see Table for details).
Students, who showed up, but did not participate received a show-up fee of 5€.
The average wage of participants was 14.26 € for the duration of approximately one
hour.

To implement single-peaked preferences, all participants were paid according to the
same payoff function (see Equation which depended on the group decision and
their individual peak. The function was introduced to the students at the beginning
of the experiment and denominated in “ECU T

Given that proposals between 0 and 100 were allowed, feasible payoffs were between
10 ECU and 200 ECU.

31'We thank the “Fondation Université de Strasbourg” for the financial support.
32Experimental Currency Unit
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16.2 Laboratory procedure

We recruited the participants via ORSEE (see |Greiner| (2004)). The experiments
took place in the experimental laboratory of the department of economics at KIT.
The workplaces were allocated arbitrarily to the participants after arrival. Sepa-
rating walls prevented the persons from talking to each other. Figure [I6.1] shows
a typical workplace equipped with a PC, paper and pencil. The calculator was
integrated in the zTree (see [Fischbacher (2007))) environment and available all the
time.

Figure 16.1: Workplace at the KIT laboratory

First, the mathematical instructions (see Appendix were read out aloud to the
participants. We used an audiotape to guarantee constant quality and to avoid any
variation across sessions. Then, participants answered test questions on the PC to
assure that they understand the calculation of mean and median values and basic
properties of their payoff function. After solving all tasks correctly, the instructions
(see Appendix were read aloud. The instructions were different depending on the
framing (see Section . During the entire experiment, the participants were
able to read the instructions again on the handout. Then, each participants had to
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16.3 Demographic data

make 48 decisiond®] according to the peak distribution explained in Section [16.4.6]|
At the end of the experiment, they filled in a short questionnaire with demographic
characteristics. The students were payed one by one, such that they could not
observe the profit of the others.

16.3 Demographic data

In total, we observed the behavior of 235 participants of whom 67 were female. This
is representative for the Karlsruhe Institute of Technology where there are about
27% female students. Out of all participants, 160 ticked that their subject of study
is related to economics, i.e. either major or minor subject. Minimal age was 17,
maximum age 37, so we got an average of 22.4 years. At the end of the study,
the students were asked whether it was possible to manipulate under the mean rule
(221 correctly answered “yes”) and whether it was possible to manipulate under the
median rule (168 correctly answered “no”).

16.4 Treatment variables

16.4.1 Treatment variable “rule”

The treatment variable rule is a within-subject treatment variable. It determines
which rule is used to aggregate the individual values to a group value. It can take
the values mean and median. Both rules were explained in the previous sections.

16.4.2 Treatment variable “info”

The treatment variable info is a within-subject treatment variable. Info is used
as the abbreviation for information and determines whether information about the
peak of the others is available or not. It can take the values no info and full info.
In rounds with no info (NI), participants knew their own peak but not the peak of
the other participants. In rounds with full info (FI), participants in addition knew
the peaks of the other four participants. The type of information was the same for
all participants, i.e. either every one had no information or full information for a
single decision. As we already explained in Section full information is necessary
to find the mean equilibrium but not required for the median equilibrium.

33Data were collected with zTree software. Due to a mistake, two peak distributions were
replayed in the first experiment. Treatment 8 (session 8) and 10 (session 5) were played twice. The
corresponding data were deleted for the analysis.
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16.4.3 Treatment variable “cost”

The treatment variable cost is a between-subject treatment variable. It can take
the values no costs and costs and indicates whether manipulation costs occured. In
experiment 1 and 2 there were no manipulation costs. In experiment 3 and 4 we
introduced costs of 5 ECU per decision if the proposed value was unequal the peak.
So we added this sentence to the introduction of the abstract framing{*]

If your proposal x is different from your value z},
you incur expenses of 5 ECU in this round.

Changes in the Nash equilibria were already discussed in Sections [14.2.2] and [14.3.3]
An overview of the equilibria is given in Table [G.1]

16.4.4 Treatment variable “exp”

The treatment variable exp is a between-subject auxiliary treatment variable. It
is used to distinguish between the sequence of the treatment rule in the different
treatments of cost and to check for sequence effects.

e cxp.l: no costs, where rule is played in the sequence mean-median.
e exp.2: no costs, where rule is played in the sequence median-mean.
e cxp.3: costs, where rule is played in the sequence mean-median.
e cxp.4: costs, where rule is played in the sequence median-mean.

Unless otherwise stated, (exp.1 and exp.2) are grouped in no costs and (exp.3 and
exp.4) are grouped in costs in the following analysis.

16.4.5 Treatment variable “framing”

The treatment variable framing is a between-subject treatment variable. It can
attain four different values: A, F, J, Z. In each session, the task was explained to
the participants in one particular framing.

e Abstract (A): The first framing was the control group. The instructions were

bR A4

neutral, in the sense that we used the terms “value”, “payoft” and so on. This
was the only framing which was used for the treatment “costs”.

3original German version: “Wenn Ihr Vorschlag i von Ihrem Wert w verschieden ist, entstehen
Ihnen in dieser Runde Kosten in Hohe von 5 ECU.” In the experiments, we used “y” instead of “z”
and “w” instead of “z}” to avoid confusion. In this work, we try to label the variables consistent

with the denomination introduced in the theoretical part.
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16.4 Treatment variables

framing
cost exp | Abstract  Company Jury Bank | sum
no costs | 1 30 20 25 20 95
2 20 30 20 30 | 100
costs 3 20 0 0 0 20
4 20 0 0 0] 20
sum 90 50 45 50 | 235

Table 16.1: Number of participants per framing

e Company (F): In treatment F, a “manager” had to decide where to construct
a “shop” for selling the products manufactured at the headquarters’ position.
His profit depended on the distance of the headquarters to the shop because
of “transportation costs”.

e Jury (J): In treatment J, a “jury member” had to score “athletes” according
to their performance.

e Bank (Z): In treatment Z, an “expert” of the central bank had to estimate
the seasonally adjusted change of the money supply compared to the previous
year.

Depending on the framing, participants received their paper instructions in a dif-
ferent wording. The terms used on the computer monitor were adapted as WGHF’EI
Table shows the number of participants for each framing in all three experi-
ments. In each treatment, at least 20 persons participated.

16.4.6 Treatment variable “distribution of peaks”

The distribution of peaks is another auxiliary variable which is shown in Table[16.2]
As peaks were not assigned randomly, it is possible to look at each peak distribution
separately and compare the results between individuals. There exist basically four
different distributions but as only one peak was assigned to each player per round, we
obtain 12 distribution numbers by permutation. For instance, distribution number
1 and 5 both consist of the peaks (10, 20, 50, 60, 70) but no player had the same peak
in these distributions (player 1: 50 and 70, player 2: 60 and 10 etc.) The no info
treatments were repeated five times each, the full info treatments three times. The
players did not know their player number and were informed about their peak not
until the corresponding period. The number of repetitions was not announced in
advance. In the right column, the corresponding decision numbers are listed. For
each player, a list of 48 decisions is obtained.

35 A detailed instruction in German for the framing “abstract” is attached in the Appendix [L].
All other instructions are available upon request.
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player
Distr. no. treatment 1 2 3 4 5 Dec.no.
1 50 60 20 70 10| 15
p . 70 60 50 30 65| 6-10
3 noinfo | 16 90 30 40 50| 11-15
4 60 70 10 20 45| 16-20
5| Mean 70 10 60 50 20| 21-23
6 full info | 30 50 7065 60| 2426
7 40 50 10 20 30| 27-29
8 20 10 45 60 70| 30-32
9 . 20 70 50 10 60| 33-37
o noinfo a0 45 20 70 10| 3842
11 | medan 130 40 50 10 20| 4345
12 Julinfo | 20 50 65 60 30| 4648

Table 16.2: Distribution of peaks (Distr.no.) and corresponding decision numbers
(Dec.no)
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17 Research questions

Before we summarize our data in the next chapter, we shortly state our main hy-
potheses.

1.

Truth-telling under the median rule. According to the theoretical analy-
sis, truth-telling is a weakly dominant strategy and should therefore be played
often under the median rule. It is not possible to verify this in a t-test or a
weaker sign rank test because of the structure of the question: If we compare
the average deviation, i.e. the value of the peak minus the suggested value,
with the normal distribution with expected value 0, strategically motivated
deviations cannot be distinguished from stochastic deviations. Therefore, we
give a more descriptive analysis of this hypothesis.

. There is more truth-telling under the median rule than under the

mean rule. Compared to the previous hypothesis, the negation of this hy-
pothesis can be rejected by an appropriate hypothesis test. We apply the t-test
for paired samples to compare the average absolute deviation per group under
the median and the mean rule restricted to information and costs.

. Unique Nash equilibrium under the mean rule. As explained in Sec-

tion [14.3.1] we assume that when there are no manipulation costs, the unique
Nash equilibrium is played under the mean rule. We count how often individ-
uals announce these values and analyze the results in a descriptive way.

Costs increase truth-telling under the mean rule and under the me-
dian rule under full information. Cost reduce average absolute deviation
per group. We apply a two sample Wilcoxon rank-sum (Mann-Whitney) test.

Costs reduce Nash play under the mean rule. It is more challenging
to determine the equilibrium strategy when there are costs. We apply a two
sample Wilcoxon rank-sum (Mann-Whitney) test.

. There are no sequencing effects between median-mean and mean-

median. We run the Mann-Whitney-U test for two independent samples to
check for sequencing effects in the average absolute deviation from the peak.

Full information reduces truth-telling under the mean rule. In a
within-subject comparison, we check the effect of information on absolute de-
viation of the peak by t-tests.
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17 Research questions

8. Framing has no influence. In our regression model, we use framing as an
independent variable to show that it does not influence the absolute deviation
from the peak.
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18 Summary of our data

In the previous sections we explained the theory of two important voting rules and
introduced the design of our experiment. The goal of this section is the presentation
of the results in a descriptive way. We classify the announced values of the partici-
pants in different “strategy-types”, where strategy is a term we use for the one-shot
game. When using the term “Nash play”, we refer to the equilibrium action as
determined in the theoretical part of this work.

This section consists of three parts: In the first part, we analyze the aggregated group
outcome to figure out whether the aggregated mean and median values coincide
with the predicted values. In the second part, we look at the individual actions and
aggregate these results independently of the person announcing this value. This is
the main part of the analysis as we are able to make general statements on truth-
telling, Nash play and other strategies. Finally, in the third part, we take a closer
look at the individuals themselves. Do some individuals tell the truth more often
than others? is one of the questions we consider in that part.

18.1 Actual aggregated group outcome

18.1.1 Achieving the equilibrium outcome

Independently of the individual actions, it is an interesting issue, whether the social
outcome predicted by the equilibrium analysis is achieved in the experiments. Ta-
ble presents the percentage of coincidence for all different treatments. Values
in brackets show coincidence with an approximated value which is in the interval of
the equilibrium value +5.

In the mean treatments, the underlying theoretically predicted Nash equilibrium
outcome is the same for experiments with and without manipulation costs. Over
all experiments, the mean value hardly equals the predicted Nash value (3% — 8%).
These values are significantly higher, when the approximated values are taken into
account (40% — 50%).

The exact median of peaks was achieved more often (49% — 75%). An approximate
value was obtained in 64% — 100% of median decisions. These values are plotted
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18 Summary of our data

mean median
no info | full info | no info | full info
exp. 1| 0.04 0.04 0.53 0.49
no costs (0.47) | (0.45) | (0.64) | (0.75)
exp. 2| 0.06 0.05 0.66 0.68
(0.50) (0.40) (0.80) (0.91)
exp. 3 | 0.03 0.08 0.63 0.50
costs (0.50) (0.50) (0.68) (0.67)
exp. 4 | 0.05 0.08 0.60 0.75
(0.48) (0.44) (0.65) (1.00)
all 0.05 0.05 0.60 0.60
(0.49) (0.43) (0.71) (0.83)

Table 18.1: Percentage of decisions, in which the mean/median of the announced
values equals the Nash equilibrium (or approximated values)

over time in Figure and when exp.1 and exp.2 are aggregated (no costs)
and exp.3 and exp.4 are aggregated (costs). On the horizontal axis, the decision
numbers over time are plotted (see Table [16.2). The numbers refer to the first
round of a peak distribution. Therefore, under no information every fifth round and
under full information every third round is labeled. As only group decisions were
counted, the underlying datasets consist of 39 values without costs and 4 values with
manipulation costs. Therefore, the results of costs should be used for comparison
only.

18.1.2 Average aggregated values

Figure [18.3 shows the actual outcome and the outcome in the equilibrium situation
(green) over all rounds. The blue circles represent the treatments without costs,
the red triangles those treatments with manipulation costs. Changes in the peak
distribution can be seen at the steps of the green squared function and again by the
labeling of the abscissa.

Compared to the previous section in which we counted how many times the equi-
librium value was achieved, we now illustrate the average actual group values. A
special value is decision number 11, where the average mean value is conspicuously
smaller than the equilibrium value. One possible explanation is the positive skew
of the peak distribution: Participants may belief that their peak is smaller than the
peak of others and therefore manipulate in the wrong direction. In decision 27, there
is the same peak distribution but full information and we observe that the differ-
ence between actual outcome and equilibrium value is very small in the treatment
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18.1 Actual aggregated group outcome

no info full info
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Figure 18.1: Percentage of Mean decisions, in which the mean of the announced
values equals the Nash equilibrium
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Figure 18.2: Percentage of Median decisions, in which the median of the announced
values equals the median of the peaks
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18.1 Actual aggregated group outcome

without costs. With manipulation costs, the group outcome differs a lot from the
optimal value in decision 27. We found that the participants with the highest peak
(50), instead of telling the high value 100, announced a small value. Up to now, we
do not have any explanation for this phenomenon, but recall that the sample size is
only four.

We conclude, that under no information (decisions 1-20), the mean value in the
first periods differ more from the equilibrium outcome than in following periods,
i.e. there is a learning effect. This effect remains present in a weakened form for
decisions under full information (decisions 21-32).

For the median rule there are no such outliers and overall the group outcome is
closer to the equilibrium when there is full information available (decisions 43-48)
than when it is not (decisions 33-42).

18.1.3 Achieving the group Nash play

In Section [I8.1.1 we considered whether an outcome coincides with the predicted
outcome if every individual acts according to the Nash play. Now, we go a step
further and look whether within a group all five individuals play the Nash strategy.
These percentages are shown in Table [18.2]

no costs costs
mean | no info | 2.8 0
full info | 3.4 0

median | no info | 2.3 (58.7) | 8.8
full info | 3.9 (52.6) | 12.5

Table 18.2: Percentage of Nash play by all five group members

Percentages listed here refer to the unique strong straight Nash Equilibrium (see
Definition . Numbers in brackets consider all straight Nash equilibria, i.e. those
where only the individual on rank 3 has to tell the truth and the remaining stay
on “their side” of the median peak. Percentages of all straight Nash equilibria are
significantly higher compared to only strong straight ones. In the mean treatment
only a small percentage of 3% achieves the unique Nash equilibrium under the
mean rule when there are no manipulation costs. With manipulation costs not even
one group achieved a Nash equilibrium under the mean rule. This supports the
conjecture that by introducing costs the calculation of the Nash play becomes a
complex task which is not manageable within the short time of the experiment.
Under the median rule with manipulation costs, the percentage of pure truth-telling
groups rises to 8.8% (no info) and 12.5% (full info).
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18 Summary of our data

18.1.4 Efficiency

We saw that on average the social outcomes are close to the theoretically predicted
values. In this section we focus on outliers generating an inefficient outcome. Within
our context, the definition of Pareto (in-)efficiency reads as follows. A social outcome
is inefficient, if it is not within the convex hull of the peaks, i.e. T < Ty Or T > Ty

In total, 117 of 2192 decisions were inefficient, which are 5.3%. Table[18.3|shows the
detailed distribution over the experiments and different voting rules. There are more
inefficient outcomes under the mean rule than under the median rule. This is not
surprising, as for an inefficient outcome under the median rule it is necessary that
three or more individuals act irrationally in the same direction at the same moment.
Furthermore, for the mean rule the optimal individual action is often outside the
convex hull of the peaks but the equilibrium is not, i.e. 2Y ¢ [vfyy,275] > 2.
Interestingly, inefficient outcomes are not uniformly distributed: 14 observations
were made in decision number 27. Here, we have peaks (10, 20, 30,40, 50) and the
outcome was too high if there were no costs (range from 52 to 67) and too low with
manipulation costs (range from 6 to 9), compare also Figure .

mean median all rules
no info | full info | no info | full info
no costs | exp. 1 17 24 5} 2 48
exp. 2 26 29 0 0 5}
costs exp. 3 4 5) 0 0 9
exp. 4 3 2 0 0 )
| sum | 50 | 60 | 5 | 2] 117

Table 18.3: Inefficient outcomes (total numbers)

Under the median rule with full information 0.7% (and 1.1% with no information)
of the outcomes are inefficient. We want to highlight that not even one of them is an
equilibrium. In the implementation literature, inefficient equilibria are discussed as
a major problem of the median rule. But our results suggest that inefficiency is in
fact a negligible phenomenon empirically. Furthermore, all seven inefficient median
outcomes were observed in exp.l, where participants already had experience with
the mean rule. Here, the sequencing may be an issue.

18.2 Individual aggregated values: an overview

So far, we looked at the aggregated outcome. This is certainly a key figure for many
election results. However, in this experiment we were also interested in determining

104



18.2 Individual aggregated values: an overview

how the result is achieved. Therefore, we look at different strategies under the mean
and the median rule and compare truth-telling versus the Nash play.

truth-telling | Nash play | N°obs
exp 1 0.23 0.62 | 4560
mean NI 0.12 0.46 | 1900
mean FI 0.06 0.56 | 1140
med NI 0.46 0.87 950
med FI 0.56 0.84 570
exp 2 0.24 0.64 | 4800
med NI 0.47 0.91 | 1000
med FI 0.54 0.91 600
mean NI 0.13 0.49 | 2000
mean FI 0.09 0.52 | 1200
exp 3 (costs) 0.39 0.42 800
med NI 0.62 200
med FI 0.69 120
mean NI 0.21 0.31 300
mean FI 0.24 0.19 180
exp 4 (costs) 0.45 0.47 800
mean NI 0.31 0.32 300
mean FI 0.25 0.31 180
med NI 0.66 200
med FI 0.78 120

| Total \ 0.26 | 0.60 | 10960 |

NI=no information, FI= full information

Table 18.4: Overview over truth-telling and Nash play in all experiments

Some important results can be derived from Table [18.4] (or more compact in Ta-
ble(18.5)). For each experiment and each voting rule, the percentages of truth-telling
and Nash play are listed. Each decision is counted independently as one action. The
distinction between experiment 1 and 2 is the sequence of the treatments (Mean-
Median vs. Median-Mean). In experiments 3 and 4 participants were confronted
with manipulation costs. Obviously, the check whether a value coincides with the
true peak, is the same for every voting rule, i.e. (x; = x}). The “Nash play” refers to
the theoretically predicted equilibrium and therefore differs depending on the voting
rule and the experiment:

e For the mean rule, there exists a unique equilibrium when there are no ma-

nipulation costs, see Section [14.3.1]
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truth-telling \ Nash play \ N°obs
no costs
mean NI 0.12 (0.48) 3900
mean FI 0.08 0.54 2340
median NI 0.47 0.89 1950
median FI 0.55 0.88 1170
with costs
mean NI 0.26 (0.31) 600
mean FI 0.25 0.25 360
median NI 0.64 400
median FI 0.74 240

Table 18.5: Overview over truth-telling and Nash play in all eight treatments

If there are manipulation costs, the mean rule equilibrium may not exist. These
peak distributions are ruled outﬁ] Hence, for the mean rule, the announced
values are compared to the values given in Table [G.]]

For the median rule without manipulation costs, all choices are taken into
account which are a best response if the other players act as in the straight
Nash equilibrium, i.e. tell the truth. In particular, we count a value as “Nash
play”, if the individual is the median player or if he announces a value which is
on the same side of the median peak as his own peakE] However, truth-telling
is a weakly dominant strategy and the corresponding equilibrium is the only
SSNE according to Definition [3]

For the median rule with manipulation costs, the best response coincides with
the truth-telling strategy as we analyzed in Section [14.2.1

Summarizing Table suggests the following:

1.

Truth-telling is an action which is played more often under the median rule
than under the mean rule. This result is robust as it holds as well in each
experiment as on the overall consideration. In particular, it is independent of
the sequence (Mean-Median) and manipulation costs.

. Without costs (Exp.1 and 2), the percentage of Nash play is higher under full

information than under no information for the mean rule.

. Without costs, it seems that it does not have an influence whether participants

start with the median or mean rule.

36See Appendix [N| for a table where these peak distributions are ruled for the entire analysis.
?

37(
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18.2 Individual aggregated values: an overview

. The percentage of truth-telling under the median rule is higher under full
information than under no information.

. The percentage of truth-telling under the median rule is higher in the presence
of manipulation costs.

. The percentage of truth-telling under the mean rule is higher in the presence
of manipulation costs.

. The percentage of finding the Nash play without costs is similar for mean and
median rule.

. The percentage of finding the Nash play with costs is higher for the median
than for the mean rule.

. The percentage of Nash play under the mean rule is smaller in the presence of
manipulation costs.
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18 Summary of our data

18.3 The median rule

After having seen a brief overview of the results, we now have a closer look on the
two rules. We start with the median rule and compare the announced values with
the peaks, i.e. check who tells the truth.
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Figure 18.4: Percentage of truth-telling under the median rule

Figure shows the percentage of truth-telling under the median rule. The blue
no costs-line is below the red costs-line for each decision, i.e. truth-telling in general
occurs more often when there are manipulation costs. Without costs, we observe
that truth-telling is higher in the first periods (decisions 33 and 38) than in the
following four rounds of each peak distribution when there is no information about
the peak distribution available. When full information is available (and three periods
are played), the percentage of truth-telling is minimal in the second round.

The percentage of Nash play under the median rule is shown in Figure [I8.5] When
there are no costs (left subfigures), we can distinguish between two kinds of Nash
play: those, which lead to the strong straight Nash equilibrium (see Def. and
those which lead to a weak straight Nash equilibrium (see Def. . Together, they
sum up to the straight Nash play with 89% (no info) and 88% (full info) on average
according to Table [I8.5] Without information, strong straight and weak straight,
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18.3 The median rule
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Figure 18.5: Percentage of Nash play under the median rule

i.e. truth-telling and optimal but not truth, are in similar ratio. With information,
we observe a shift from weak straight to strong straight.

On the right subfigures, the strong straight Nash play equals the straight Nash play
which is truth-telling. The red diamond line shows which plays would have been a
weak straight Nash play if there had been no costs. It is only meant as a reference
as there does not exist any weak straight Nash play under the median rule when
manipulation costs occur.

On average, there are 64% (no info) and 74% (full info) of straight Nash play with
costs.
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18 Summary of our data

18.4 Other strategies under the median rule:
Trying to “win”

We observed that some individuals tend to vote for an intermediate value, which
suggests that they either have a preference for being the one who exactly announce
the aggregated outcome or for finding a consensus. We distinguish between a

1. Nash-winner, who announces the value which is the outcome of the strong
straight Nash equilibrium, i.e. the peak of individual with rank 3

2. winner, who announces the value, which equals the actual group outcome

3. consensus-winner, who announces the value which was played in the previous
round. This concept makes sense in periods > 2.

Table gives an overview of the percentage of individuals who did not tell their
true peak and fit in one of the categories mentioned above. They are sorted by rank.
Hence, for rank 3 (=median voter) obviously there can be no Nash winner.

no costs costs

no info | full info | no info | full info

Nash winner 259 % | 11.81 % | 7.50 % | 10.00 %

Rank 1 | winner 11.48 % | 21.53 % | 10.00 % | 10.00 %
consensus winner | 5.41 % | 10.00 % | 5.88 % | 0.00 %

Nash winner 6.07 % | 7.89 % | 0.00% | 16.67 %

Rank 2 | winner 16.19 % | 20.18 % | 0.00 % | 33.33 %
consensus winner | 7.18 % | 2.60 % | 833 % | 0.00 %

Nash winner 0.00% | 0.00% | 0.00% | 0.00%

Rank 3 | winner 43.04 % | 26.09 % | 47.06 % | 50.00 %
consensus winner | 6.45 % | 11.76 % | 6.67 % | 0.00 %

Nash winner 859 % | 15.69 % | 10.53 % | 9.09 %

Rank 4 | winner 21.72 % | 23.53 % | 21.05 % | 27.27 %
consensus winner | 872 % | 7.35% | 6.67 % | 11.76 %

Nash winner 648 % | 9.22% | 0.00% | 5.88%

Rank 5 | winner 13.77 % | 29.79 % | 15.79 % | 23.53 %
consensus winner | 6.83 % | 13.27 % | 0.00 % | 18.18 %

Table 18.6: Percentage of “winners.” Only non truth-telling decisions are considered
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18.5 The mean rule

18.5 The mean rule

Under the median rule, independently of the other treatment variables, at least 40%
of the announced values equal the peak in each decision. When considering the
mean rule, the fraction of truth-telling is significantly lower as we see in Figure [18.6]
It shows the percentage of truth-telling under the mean rule.

no info full info

Percentage truth-telling

1 6 11 16 21 24 27 30
Decisions over time

—@— nocosts —&— costs

Figure 18.6: Percentage of truth-telling under the mean rule

For each of the 32 decisions the fraction of persons who announce their peak is
determined. As in the previous sections, every first period of a peak distribution
is labeled with the corresponding decision number. In the no info treatment (left
subfigure) the functions are spiky whenever a new peak distribution was allocated to
the participants. In the full info treatment (right subfigure) this observation cannot
be made. As the theory predicts, in each decision, the percentage of truth-telling
is higher when there are manipulation costs (red line) than when there are no costs
(blue line). This result holds for both full and no info. On average, when there are
no costs 12% (8%) of the no info (full info) decisions are honest. For manipulation
costs, even 26% under no info and 25% under full info are telling the truth.
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no info full info

Percentage Nash play

6 11 16 24 27 30
Decisions over time

—@— nocosts —A&— costs

Figure 18.7: Percentage of Nash play under the mean rule

Figure shows the percentage of Nash play under the mean rule over timeﬁ
The left subfigure shows the result under no information. The average values for no
costs (costs) are 46% (31%) when no information about peaks is available. Recall
that these numbers should only be taken as a reference as it is not possible for the
participants to calculate the equilibrium strategy. The three dips of the blue line
represent the change of the peak distribution every five periods. This corresponds
to the peaks of truth-telling in Figure [18.6

The right subfigure shows the result under full information. Recall that without
costs, a unique Nash equilibrium always exists. Here, the average values for no costs
(costs) are 51% (25%) over the appropriate decision numbers. Without costs, there
is a tendency towards the Nash play. This learning curve is not affected by the peak
distribution, which was changed every third round.

In both info treatments, the no costs line lies above the cost line.

38Due to the non-existence of an equilibrium in the treatment “manipulation costs”, only deci-
sions 6 to 20 and 24 to 32 are taken into account.
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18.6 Other strategies under the mean rule without manipulation costs

18.6 Other strategies under the mean rule without
manipulation costs

Not only truth-telling and Nash play are strategies that we observed. We focus on
three different strategies for mean decisions, namely “best response to true pref-
erences”, “best response to previous round results” and “best response to actual
choice” These strategies are explained in the following subsections. Due to sam-
ple size and the complexity of calculation, we confine ourselves to the experiments
without manipulation costs. Table shows the percentage of the decisions which
fit in the particular strategy definition.

18.6.1 Best response to true preferences

For each decision, it is counted how many decisions would be optimal given that all
other players tell the truth. Formally, the calculation reads

1

i

with the restriction that xZB Rirue is within the interval [0,100]. This type of response
occurs more often than the Nash play. We observe this strategy more often under
full information than under no information. See the first column of Table [I8.7

18.6.2 Best response to previous round results

For each decision it is counted how many decisions would be optimal given that the
aggregated value of the other players would be the same as in the previous round.
So the optimization problem reads

SL‘: — gPrev 4 ;(xiBRprev . :L,;;Jrev)

where P is the aggregated output of the previous round and 2™ is the choice
of individual 7 in the previous round. Obviously, the calculation of this value is not
possible in all first periods. Between 27% and 51% of the decisions fit in the xf Bprev
concept, but of course many of those values coincide with the extreme values 0 or

100. See the second column of Table [18.7 for exact shares.
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Decision | BR true | BR prev. round | BR actual

mean no info 0.43 0.40 0.43

Peak distribution 1 0.46 0.41 0.46
1 0.17 - 0.18

2 0.46 0.33 0.46

3 0.55 0.43 0.57

4 0.56 0.43 0.57

5 0.54 0.45 0.54

Peak distribution 2 0.33 0.34 0.36
6 0.17 - 0.18

7 0.31 0.25 0.31

8 0.37 0.35 0.40

9 0.38 0.36 0.44

10 0.41 0.39 0.48

Peak distribution 3 0.38 0.39 0.38
11 0.29 - 0.19

12 0.32 0.27 0.28

13 0.37 0.35 0.39

14 0.45 0.45 0.49

15 0.45 0.48 0.54

Peak distribution 4 0.54 0.48 0.53
16 0.37 - 0.37

17 0.51 0.44 0.51

18 0.59 0.50 0.56

19 0.61 0.48 0.58

20 0.63 0.49 0.63

mean full info 0.53 0.43 0.49
Peak distribution 5 0.59 0.44 0.54
31 0.58 - 0.52

32 0.62 0.45 0.55

33 0.59 0.44 0.54

Peak distribution 6 0.38 0.32 0.35
34 0.37 - 0.29

35 0.34 0.27 0.34

36 0.42 0.36 0.42

Peak distribution 7 0.51 0.44 0.45
37 0.54 - 0.35

38 0.52 0.41 0.51

39 0.48 0.47 0.51

Peak distribution 8 0.63 0.51 0.60
40 0.62 - 0.54

41 0.63 0.50 0.62

42 0.64 0.51 0.64

Overall 0.46 0.41 0.45

Table 18.7: Percentage of different strategies




18.6 Other strategies under the mean rule without manipulation costs

18.6.3 Best response to actual choice

For each decision it is counted how many decisions were optimal in the given situa-

tion.

1

.Z';k — ($7;BRa6tual + le)
5 —
JF#i

This value is hypothetical as it is not calculable by the participants ex ante. As we
see in the last column of Table the values are higher than the Best response to
previous round for every decision number.

For a better visualization, the results of the three best response strategies are illus-
trated in Figure for no info and full info treatments. In many decisions the
best response is the same independently of the strategy, e.g. announcing the extreme
value 100 could be the best response to true preferences as well as to the results of
the previous round. Hence, the plots look very similar.

no info full info
03__
w__
l\__
(D__
0
’ (]
<r__
C')__
C\!_
o_
r--.-.r .+~~~ 1+~~~ ~1 o~ T * * T T T T T T 1
1 6 11 16 21 24 27 30

Decisions over time

—&—— Nash (theo) —@— BRtrue
——— BR actual o BR previous

Figure 18.8: Best response functions for the mean rule compared
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18 Summary of our data

18.7 Best response to previous round with
manipulation costs

In Section we have analyzed in detail, how the best response function in the
presence of manipulation costs looks like. Here, we compare this function with the
experimental data for a concrete example, namely for decisions with peak =} = 20.
Thus, for each observation, we calculate what the mean in the previous round would
have been, if the individual with peak 20 had told the truth. Figure plots
the “mean value in the previous round if telling the truth” against the “actually
announced value”. Each decision from the experiment is marked by a red circle.
The blue line is the plot of the best response function derived in Section [14.3.6]
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Figure 18.9: Best response to previous round and best response function with ma-
nipulation costs for x} = 20

We observe that only in one decision a value which is far too high (100) is announced.
Most individuals tend to tell either the truth or to manipulate to the extreme value 0.
Only three red circles are between 0 and 20, namely at value 10. However, there
are many decisions which are according to the best response function, i.e. the red
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18.8 Learning

dots lie on the blue function. When the mean value is large, participants announce
a value of 0 instead of 20. This implies that they either underestimate manipulation
costs or overestimate their influence by manipulating.

18.8 Learning

As we discussed in Section truth-telling is the same as level-0 learning and
best response to true preferences can also be interpreted as level-1 learning. Here,
we give a short overview over higher levels. The Nash equilibrium is achieved at the
latest in level 3.

Table gives an overview over the percentage of level-k actions in different mean
decisions without manipulation costs. We distinguish between the two info treat-
ments no info and full info. In each row, the values are aggregated per period, i.e. all
first periods (decisions 1, 6, 11 and 16 for no info) are aggregated and so on.

The percentage of level-0 in decisions without information is 31% in period 1. Com-
pared to other periods, the level-0 fraction is maximal in this period. In later
periods, the percentage of level-1 actions increases, i.e. 40% in period 2 and even
51% in period 5. A reason for this can be that participants update their beliefs. For
decisions under full information, the high percentage of level-O in the first period
does no longer hold. We observe 53% level-1 decisions from the first to the third
period, i.e. the given information is often used to calculate the level-1 value. We
have seen that it depends on information and time, how participants form their
beliefs. In the following, we consider the decisions of the participants according to
the concrete peak distribution and their player number.

Table [18.9 aggregates the percentages of level-k actions for each distribution per
player group. In total, there are data of 195 participants analyzed, i.e. each percent-
age represents the average value of 39 persons in 5 or 3 decisions depending on the
peak distribution. These results can also be compared with the theoretical analysis
of Table [I4.1] where peak values and level-k values are listed. First, we consider
peak distributions with no information (peak distributions 1-4). We observe that for
most players, the highest percentage is achieved for the level-k that coincides with
the Nash strategy. If the Nash strategy is already the best response to true prefer-
ences, i.e. level-1, it is announced more often than in constellations, where it concurs
on/with a higher level. As an example, we take a closer look on peak distribution 2:
For players 1, 4, and 5, level-1 actions are played with frequency 46%, 71% and 39%,
respectively. For those three players, the level-1 action is the announcement of an
extreme value (100, 0, 100). In contrast, the Nash strategy for player 3 is reached in
level 2 and for player 2 in level 3. The corresponding frequencies are 19% and 27%
and therefore less than for players 1, 4 and 5. If the peak is already closer to an
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18 Summary of our data

Period Lo? Li1?7 L2? L3?
Mean No Info | 0.12 0.43 0.46 0.48
Period 1 0.31 025 0.31 0.33
Period 2 0.09 040 040 042
Period 3 0.07 047 0.50 0.51
Period 4 0.07 050 0.54 0.55
Period 5 0.07 0.51 0.57 0.59
Mean Full Info | 0.08 0.53 0.54 0.54
Period 1 0.10 0.53 0.49 048
Period 2 0.07 053 0.54 0.55
Period 3 0.05 053 0.59 0.59
Overall 0.11 0.46 0.49 0.50

Table 18.8: Percentage of level-k actions in mean decisions under no/full information
in different periods without manipulation costs (n = 195)

extreme value, it is more probable that the player actually announces this extreme
value. In peak distribution 4, we observe the smallest value for level-3 for player 4.
This is the player whose best response is hard to calculate, as the level-1 response
is higher and the level-2 response is smaller than the level-0 value.

Under full information, (peak distributions 5-8), participants take the information
about the others’ peaks into account. For the level-k analysis, the most interesting
constellations are those, were the Nash strategy is obtained for k£ > 2. Player 2
in peak distribution 6, for instance, seem to skip level 1 and directly announce the
extreme value with a frequency of 25%. For player 6, 15% announce level 0, 10%
level 1, 6% level 2 and 3% level 3. On the one hand, this can be interpreted as a
process of learning and the existence of different level-k types among the partici-
pants. On the other hand, aggregating these frequencies leads to a total of 34% for
all level-k strategies, which means that around two third of participants played a
different strategy.
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18.8 Learning

Peak Distribution Player | LO? | L17 | L27 | L3?
1] 039 0.02] 039 0.39

21 0.18 | 0.38 | 0.38 | 0.38

1 31 011] 0.62] 0.62 | 0.62
41 0.10 | 0.61 | 0.61 | 0.61

51 0.10 | 0.67 | 0.67 | 0.67

11012 ] 046 | 0.46 | 0.46

21 0.14 | 0.05] 0.02 | 0.27

2 31 025 0.03| 0.19 | 0.19
41 004 071] 0.71 | 0.71

51 0.10 | 0.39 | 0.39 | 0.39

1] 0.07| 072 ] 0.72 | 0.72

2| 0.09| 0.57 | 0.57 | 0.57

3 31013 0.13 | 0.33 | 0.33
41 0.11 | 0.03 | 0.04 | 0.08

51 0.17 | 0.43 | 0.43 | 0.43

1] 0.08] 044 | 0.44| 0.44

2| 0.05| 0.70 | 0.70 | 0.70

4 31 0.04| 0.79 | 0.79 | 0.79
41 0.04 | 0.76 | 0.76 | 0.76

51 0.18 | 0.02 | 0.04 | 0.04

1] 0.03| 079 ] 0.79 | 0.79

21002 074] 074 | 0.74

D 31 0.06| 054 0.54 | 0.54
41 029 | 0.18| 0.29 | 0.29

51 0.01| 0.74 | 0.74 | 0.74

1] 0.03| 0.64| 0.64 | 0.64

21 013 0.05] 0.21 | 0.21

6 31004 0.72] 072 | 0.72
41 0.09| 037 037 ] 0.37

51 0.15| 0.10 | 0.06 | 0.03

1] 0.09| 0.12| 0.09 | 0.17

2| 0.02| 0.77 | 0.77 | 0.77

7 31 0.04| 0.72 | 0.72 | 0.72
41 0.03] 0.71 | 0.71 ] 0.71

51024 024 | 0.22 | 0.22

1] 004| 075] 0.75| 0.75

21003 0791 079 0.79

8 31 0.16 | 0.09 | 0.08 | 0.08
41 0.03] 0.68| 0.68 | 0.68

51 0.01| 0.85| 0.85| 0.85

Overall | 0.11 | 0.46 | 0.49 | 0.50

Table 18.9: Percentage of level-k actions in mean treatments without manipulation
costs (n = 195)
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18 Summary of our data

18.9 (Absolute) Deviation: A comparison of the two
rules

So far, we have analyzed the two rules separately and compared whether the an-
nounced values were “precision landings” on the strategies truth-telling or Nash
play. In this section, we compare the deviation from the peak and the absolute
deviation from the peak to give a better understanding of the tendency towards a
particular strategy. Figure shows the average absolute deviation over time.
Again, changes of the peak distribution are highlighted by the appropriate label on
the horizontal axis. The figure facilitates the comparison of the two rules, both info
treatments, and the influence of costs. However, it does not show which individuals
deviate and whether the deviation under the mean rule is towards the Nash play.
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Figure 18.10: Average absolute deviation from the peak over time for decisions with
and without costs in different rule and info treatments

Some insight is given in Figure Where the average deviation (and not longer the
absolute deviation) for each rank is illustrated for both cost treatments. The caption
of each subfigure consists of the rank (where rank 1 is the player with the smallest
peak and rank 5 is the player with the highest peak in this constellation), the rule
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18.9 (Absolute) Deviation: A comparison of the two rules

(mean or median) and the cost (no costs or costs). Within each subfigure, the left
bars show the no info decisions and the right bars show the full info decisions.

The first column shows the results for the mean rule when there are no manipulation
costs. Especially for the players with rank 2,4 and 5, we see how they manipulate
towards the Nash equilibrium. For instance, the average announced values are higher
than the peak in each decision for the players with rank 5. There is one exception for
rank 4: this is decision number 11, where the new peak 40 was assigned and players
deviated to a smaller value instead of a higher valuef] In the full info treatment
this outlier does not occur. For rank 3, it depends on the peak distribution, whether
deviation has a positive or a negative sign (see also Table in the Appendix).

Concerning the median rule, we observe that the average deviation is smaller than
under the mean rule. For instance, the player with rank 3 has an average deviation
close to zero (third column). Recall that in the cost treatments per bar only eight
observations were made and therefore variations are more noticeable.

We sum up that absolute deviation from the peak is higher under the mean rule
than under the median rule according to Figure [18.10] and varies more when no
information is available. Furthermore, we have seen that the direction and also the
strength of the deviation depends on the rank and the available information.

39Tt would be very interesting to know, whether individuals deviate towards the Nash play in
this situation when they get to know their rank as an additional information.
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18 Summary of our data

Average deviation over time
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Figure 18.11: Average deviation from the peak over time for decisions with and with-
out costs in different rule and info treatments for each rank
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18.10 Individually announced values

18.10 Individually announced values

The previous analysis was based on the aggregation of data over different individu-
als. Even if data were grouped by rank, an individual belonged to different groups
depending on the particular peak distribution. In this section, we discuss whether
the tendency for truth-telling is an individual property or whether it is equally
distributed among the participants.

18.10.1 Individual truth-telling

First, we look at the frequency of truth-telling. Figure [I8.12] shows the fractions
under the mean rule. On the horizontal axis, the total number of decisions is plotted
(20 for no info and 12 for full info). The vertical axis shows the fraction of individ-
uals who told the truth in the corresponding number of decisions. Without costs,
17.95% never announced the peak under no information (Figure [18.12(a)). When
manipulation costs occur, the percentage for never telling the truth is only 2.5%.

When full information is available (Figure [18.12(b))), the tendency towards manip-
ulating when there are no costs, is stronger, i.e. 47.69% never tell the truth. With
manipulation costs, still 15.00% never tell the truth.

Figure shows the fraction of truth-telling under the median rule. Without
information (Figure [18.13(a)|) and without costs, 9.74% announce the true peak in
nine or ten out of ten times and 4.62% never announce the true peak. When there
are manipulation costs, the fraction of those manipulating at most once arises to
37.50%. On the other hand, the percentage of never telling the truth is only 2.5%.

Under full information (Figure[18.13(b)]), 11.28% never tell the truth when there are
no costs and 7.5% when there are manipulation costs. Of the participants, 31.28%
manipulated at most once occurs in the no costs treatment, and 60% in the costs
treatment.

To sum up, we have seen that under the mean rule without costs, there are some
players who never announce their true peak. With costs, the participants announce
the truth in at most half of the mean rule decisions. Under the median rule, truth-
telling was higher in both cost treatments. But even when there was no incentive
to manipulate, we observed individuals who never announce their true peak.
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18 Summary of our data

mean, no info, no costs

mean, no info, costs

Fraction

T
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N° of decisions

(a) Frequency of individual truth-telling under the mean rule with no information

mean, full info, no costs

mean, full info, costs

Fraction

0 2 4 6 8 10 12
N° of decisions

(b) Frequency of individual truth-telling under the mean rule with full information

Figure 18.12: Histograms showing individual truth-telling frequencies under the
mean rule
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18.10 Individually announced values

median, no info, no costs

median, no info, costs
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N° of decisions

(a) Frequency of individual truth-telling under the median rule with no information

median, full info, no costs

median, full info, costs

Fraction

N° of decisions
(b) Frequency of individual truth-telling under the median rule with full information

Figure 18.13: Histograms showing individual truth-telling frequencies under the me-
dian rule
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18 Summary of our data

18.10.2 Individual Nash play and best response

In this subsection we analyze how often the individuals play the Nash strategy. For
the mean rule, the results are illustrated in Figure [I8.14] In peak distributions 1
and 5, a Nash equilibrium with manipulation costs does not exist (see Appendix.
Therefore, we drop data of this peak distributions for both cost treatments to have
better comparability. In the no info treatment 15 of 20 and in the full info treatment
9 of 12 decisions remain, respectively. When there are manipulation costs and no info
(Figure|18.14(a))), none of the participants announced the Nash play more often then
eleven times and only 10% achieved the Nash play eight or more times. Without
costs, this partition is not that strict and each possible number of Nash plays is
achieved at least once. The fraction of participants who never achieve the Nash
play is similar in both treatments (no costs: 8.21% and costs: 7.5%). With full
information (Figure [18.14(b))), the tendency to Nash plays is higher in the no costs
treatment. Without costs, 7.18% of the participants announced the Nash play at
most once, with manipulation costs, the value rises to 32.5%.

Under the median rule, the number of best responses are shown in Figure [I8.T5]
With costs, the best response equals truth-telling and therefore is identical to Fig-
ure Without costs, we consider both types of straight equilibria, the strong
and the weaker straight ones. Under no info, 78.69% of the participants gave a best
response in at least eight of ten decisions. Under full information, even 80.51% of
the participants gave a best response in at least five of six decisions.

In Figure we finally aggregate the individual data over all decisions, i.e. over
rule and info. Interestingly, in both cost-treatments, none of the participants an-
nounced the true peak in all 48 decisions. Without costs, the true peak is announced
between one and 29 times (with one exception at 41). With manipulation costs, in-

dividuals tell in five to 38 decisions the truth (see Figure [18.16(a))).

A Nash play (in the sense of a strategy corresponding to a straight Nash equilibrium)
was announced in 12 to 38 (of 40) decisions in the treatment without manipulation
costs. With manipulation costs, Nash play was observed between 6 and 28 times

(see Figure [18.16(b))).

We conclude that the introduction of manipulation costs leads to a shift towards
truth-telling and away from Nash play on the individual level.
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18.10 Individually announced values

mean, no info, no costs

mean, no info, costs
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(a) Frequency of individual Nash play under the mean rule with no information for peak
distributions 2,3,4

mean, full info, no costs

mean, full info, costs

Fraction

0 3 6 9
N° of decisions

(b) Frequency of individual Nash play under the mean rule with full information for peak
distributions 6,7,8

Figure 18.14: Histograms showing individual Nash play under the mean rule
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(b) Frequency of individual best response under the median rule with full information

Figure 18.15: Histograms showing individual best response under the median rule
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18.10 Individually announced values

Fraction

Fraction

no costs

.15

costs

0 5 10 15
N° of decisions

(a) Frequency of individual truth-telling in 48 decisions

no costs

.15

costs

0 5 10 15 20 25 30 35 40
N° of decisions

(b) Frequency of individual (straight) Nash play in 40 decisions

Figure 18.16: Individual data aggregated over rule and info
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19 Experimental results

The previous section gave us an overview over the collected data in a descriptive
way. The aim of what follows is a statistical analysis including some hypotheses tests
and a regression analysis. In our experiment, interacting groups consisted of five
players. Hence, the results of different members of one group are not independent
from each other. Therefore, we aggregate the group results and get observations for
each group, i.e. 39 independent observations without costs and 8 observations with
manipulation costs for each info/rule combination. We have seen that individual
deviation from the peak mostly is consistent with the direction of Nash prediction
(see Figure , so we use the average absolute deviation of the group as the
dependent variable for our treatment comparisons. The aggregated values are metric
variables which suggest to be normally distributed. Hence, parametric tests, such
as the t-test can be applied.

In the following, all hypotheses are formulated in a negative way such that we reject
them by the appropriate statistical test.

19.1 Influence of “rule”

19.1.1 Influence of “rule” on truth-telling

We claim that truth-telling is higher under the median rule than under the mean
rule in all treatments. The Hy hypothesis reads as follows:

Hypothesis H 1. The average absolute group deviation from the peak is smaller
(or equal) under the mean rule than under the median rule in all combinations of
cost and info.

To reject these hypotheses for the four treatments which occur when combining
“info” (no info, full info) with “costs” (no costs, costs), we run paired t-tests. Ta-
ble [19.1] and [19.2 show the results: the absolute deviation under the mean rule
compared to the absolute deviation under the median rule is signficantly higher
(p<0.0003) in each treatment.
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19 Experimental results

no costs

Variable Obs Mean Std. Err. Std. Dev.

GroupAbsDev mean 39 21.62 0.46 2.85 20.70 22.55

GroupAbsDev median | 39 11.61 0.54 3.35 10.52 12.70

diff 39 10.01 0.74 4.61 851 11.51
mean(diff)= mean(GroupAbsDev mean-GroupAbsDev median)
t= 13.55

Hy: mean(diff) = 0, degrees of freedom = 38

Ha: mean(diff) < 0, Pr(T<t)= 1.0000

Ha: mean(diff) # 0 , Pr(|T|>|t)| = 0.0000

Ha: mean(diff) > 0, Pr(T>t)= 0.0000

costs

Variable Obs Mean Std. Err. Std. Dev.
GroupAbsDev mean 8 19.88 1.21 343 17.02 22.75
GroupAbsDev median 8 931 135 381 6.12 12.50
diff 8 10.57 1.74 492 6.46 11.69

mean(diff)= mean(GroupAbsDev mean-GroupAbsDev median)
t= 6.08
Hy: mean(diff) = 0, degrees of freedom = 7

Ha: mean(diff) < 0, Pr(T<t)= 0.9997
Ha: mean(diff) # 0, Pr(|T|>|t)| = 0.0005
Ha: mean(diff) > 0, Pr(T>t)= 0.0003

Table 19.1: T-Test, no info: absolute deviation from peak is significantly higher
under the mean rule than under the median rule.
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19.1 Influence of “rule”

no costs

Variable Obs Mean Std. Err. Std. Dev.
GroupAbsDev mean 39 2574 0.53 3.29 24.67 26.80
GroupAbsDev median | 39  9.58 0.67 4.19 822 10.94
diff 39 16.16 0.84 5.27 1445 17.87
mean(diff)= mean(GroupAbsDev mean-GroupAbsDev median)
t=19.15
Hy: mean(diff) = 0, degrees of freedom = 38

Ha: mean(diff) < 0, Pr(T<t)= 1.0000
Ha: mean(diff) # 0 , Pr(|T|>|t)| = 0.0000
Ha: mean(diff) > 0, Pr(T>t)= 0.0000

costs
Variable Obs Mean Std. Err. Std. Dev.
GroupAbsDev mean 8 20.10 0.94 267 17.88 22.32
GroupAbsDev median 8 575 1.03 290 332 817
diff 8 14.35 0.96 2.72 12.08 16.63

mean(diff)= mean(GroupAbsDev mean-GroupAbsDev median)
t= 14.94
Hy: mean(diff) = 0, degrees of freedom = 7

Ha: mean(diff) < 0, Pr(T<t)= 1.0000
Ha: mean(diff) # 0, Pr(|T|>|t)| = 0.0000
Ha: mean(diff) > 0, Pr(T>t)= 0.0000

Table 19.2: T-Test, full info: absolute deviation from peak is significantly higher
under the mean rule than under the median rule.
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19 Experimental results

With absolute group deviation, the number of those individuals who exactly an-
nounce the peak cancels out. Therefore, we also run a paired t-test on precise
truth-telling.

Hypothesis H 2. The average percentage of truth-telling per group is higher (or
equal) under the mean rule than under the median rule in all combinations of cost
and info.

These hypotheses can be rejected and the results are highly significant for all treat-
ments (p<0.0001) [9]

19.1.2 Influence of “rule” on Nash play

Does the implemented rule have a significant influence on Nash play? We use the
theoretical concept of straight Nash equilibria as introduced in Section [14] and run
another paired t-test for the percentage of Nash play per group.

Hypothesis H 3. The average percentage of Nash play per group is higher (or
equal) under the mean rule than under the median rule in all combinations of cost
and info.

This hypothesis can be rejected for all four treatments with p<0.0001. The mean
of the calculated test variables are similar to the values in Table [I8.5] and therefore
not listed here.

19.2 Influence of “info”

19.2.1 Influence of information on truth-telling

In this section, we analyze the treatment variable “info”. When its value is “no
info”, the participants do not have any information over the peaks of the other four
players. Under “full info”, the peaks of the five players are common knowledge ]
Information about the peaks of the other participants influences the players in two
different ways:

1. On the one hand, knowing the peak distribution enables the participants to
determine the optimal strategies. Especially under the mean rule, without
knowing the own rank, it is not possible to calculate a Nash equilibrium.
Hence, full info supports strategic behavior.

40Detailed summary statistics are available upon from the author.
41Tn particular, either all players know all peaks or each player only knows his own peak.
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19.2 Influence of “info”

2. On the other hand, with information it is possible to draw inferences from
the aggregated value about the behavior of the others. Hence, manipulation
is more transparent. A fully rational player does not care about this trans-
parency. But there are at least two reasons, why participants care: First, not
telling the truth is similar to “lying” which is considered as bad behavior in
large parts of our civilization. Second, under the median rule, there is no ra-
tional reason to misrepresent the preferences. Many people do not like to be
observed when they act irrational.

These arguments sometimes give contradictory recommendations. It is reasonable to
assume that the strength of the argument depends on the rule. Under the mean rule,
we expect that full information decreases truth-telling, whereas under the median
rule, it increases truth-telling.

Hypothesis H 4. The average absolute group deviation is smaller (or equal) under
full information than under no information under the mean rule.

We test this hypothesis by a paired t—testf‘f] We reject the hypothesis with a p-value
of 0.0000 when there are no manipulation costs. With a p-value of 0.4178, we cannot
reject the hypothesis when manipulation costs occur. Furthermore, the sample size
of eight is too small to make a statement which is statistically significant.

Hypothesis H 5. The average absolute group deviation is larger (or equal) under
full information than under no information under the median rule.

We can reject this hypothesis with a p-value of 0.0011@ (0.0109) when there are no
manipulation costs (with manipulation costs). However, the result is only statisti-
cally significant for the “no costs” treatment with 39 groups.

We also check whether the precise truth-telling is different for the treatment variable
“info”:

Hypothesis H 6. The average percentage of truth-telling per group is higher (or
equal) under full information than under no information under the mean rule.

The hypothesis can be rejected with a p-value of 0.0000 for no manipulation costs
and the result is not significant for manipulation costs (p=0.0876).

Hypothesis H 7. The average percentage of truth-telling per group is smaller (or
equal) under full information than under no information under the median rule.

The hypothesis can be rejected with a p-value of 0.0000 for no manipulation costs
and the result is not significant for manipulation costs (p=0.0013).

42We run the sdtest for all variables to ensure that a t-test is an appropriate tool.

43When reducing data to sessions with the experimental sequence median-mean, the p-value
rises to 0.0519 which is not statistically significant any more. See Section for sequencing
effects.
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19 Experimental results

19.2.2 Influence of information on Nash play

In this section, we want to find out, whether information has a significant influence
on Nash play. As test variable, we calculate the percentage of decisions which are
optimal in the sense of straight Nash equilibria in each player group and for each
rule. Recall, that under the mean rule there exists only one Nash equilibrium which
is also straight. Again, we apply a paired t-test, as the standard deviations are
similar.

Hypothesis H 8. The average percentage of Nash play per group is smaller (or
equal) under full information than under no information under both rules.

We can clearly reject this hypothesis for the mean rule when there are no manip-
ulation costs (p=0.0001). Surprisingly, the contrary holds for manipulation costs,
i.e. there is more Nash play under no information. One explanation is the sample
size of eight, which makes the result not statistically significant.

When there are no costs, the difference of Nash play is not significant under the
median rule (p:0.4729)@. When there are manipulation costs, we can reject the
hypothesis for manipulation costs under the median rule (p=0.0013).

19.3 Influence of “cost”

In the following, we test whether the variable “cost”, i.e. the introduction of ma-
nipulation costs has an influence on the frequency of truth-telling. In contrast to
the within-subject treatment variables “rule” and “info”, the variable “cost” is a
between-subject variable. Therefore, we have different numbers of observations and
the application of a t-test is no longer sustainable. In this section, we use the Mann
Whitney U-Test (see [Mann and Whitney| (1947))) to rank the observations and test
on differences.

Hypothesis H 9. The variable “cost” does not affect the average absolute group
deviation in each of the “info” and “rule” treatments.

This hypothesis has to be checked and explained in each of the four treatments
as we have seen in Figure [I8.10f When considering full information, the average
group deviation is significantly smaller when there are manipulation costs. The
corresponding p-values are 0.0003 (mean rule) and 0.0167 (median rule)] When no
information is available, the difference is not significant for the mean rule (p=0.3958)

“When considering only sessions with sequence median-mean, the p-value equals 0.2743.
45The p-value of the median rule changes to p=0.0473 when taking into account only sessions
with median-mean sequence.
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19.4 Influence of “framing”

and the median rule (p=0.0525)" This result is compatible to the results we have
obtained in Section [19.21

Although the result is not significant for the mean rule under no information, Fig-
ure [18.12(a)|suggest a higher rate of truth-telling when there are costs. So, we check
the exact truth-telling percentages in another Mann-Whithney-U-Test.

Hypothesis H 10. The variable “cost” does not affect the percentage of truth-
telling per group in each of the “info” and “rule” treatments.

These hypotheses can be rejected with high significance. The corresponding p-values
are 0.0000 (mean, no info), 0.0000 (mean, full info), 0.0015 (median, no info) and
0.0017 (median, full info).

Hypothesis H 11. The variable “cost” does not affect the percentage of Nash play
per group in each of the “info” and “rule” treatments.

These hypotheses correspond to Figures|18.14]and [18.15] We reject them for each of
the treatments with p-values 0.0003 (mean, no info), 0.0000 (mean, full info), 0.0000
(median, no info) and 0.0043 (median, full info).

Hence, the influence of manipulation costs is highly significant.

19.4 Influence of “framing”

In our experiment we distinguished between four different framings as explained
above. We found that there is no significant difference in the average absolute
aggregated value, the percentage of truth-telling or the percentage of Nash play.

19.5 Influence of the rank

In this section we focus on the rank, i.e. the position of the peak in comparison
to the other peaks (1= smallest peak, ... , 5= highest peak). As there are five
different ranks, a normal t-test is not applicable, so we run an analysis of variances
(ANOVA). For each individual we determine the average absolute deviation from
the peak in each of the treatments rule/info depending on the rank. Then we tested
whether there are differences between the different ranks in an ANOVA and run a
post-hoc Scheffe test. We face the problem that an ANOVA is not applicable in all

46When considering only sessions with the sequence median-mean, the p-value rises to 0.2320
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19 Experimental results

cases, as the assumption of equal variances has to be rejected in most casesE] So,
the applicability of an ANOVA is doubtful, but on the other hand, we argue that the
difference in variances already leads to the result: Absolute deviation depends on the
rank. When ignoring heteroscedasticity, which has been done in several statistical
analyses, we found that the mean values differ in all treatments but the median
treatment with costs.

The influence of the rank is also represented in the total payoff with respect to the
player number. There is no significant difference in the payoffs between the treat-
ments no cost vs. manipulation costs (p-value=0.2627). But there is a significant
difference between the player groups when there are no manipulation costs which
can be seen in Table . The p-value of the corresponding ANOVA is 0.000 (de-
grees of freedom=4, F' = 28.81). Participants with player number 1,2 and 3 earn
significantly more than participants with player number 4 and 5.

player number

cost 1 2 3 4 5 Total
no costs | 14.69 | 16.02 | 15.51 | 12.94 | 12.28 | 14.29
costs 14.08 | 14.87 | 14.34 | 12.78 | 13.07 | 13.83
Total 14.59 | 15.83 | 15.31 | 12.91 | 12.41 | 14.21

Table 19.3: Average payoff in Euro depending on the player number

19.6 Sequencing effects

During our experiment, we vary the sequence of the mean and median rule. In
this section, we test whether the sequence has an effect on the average absolute
deviation in the groups. Therefore we run a Mann-Whitney-U-Test for each of the
eight combinations of “rule”; “info” and “cost”.

Hypothesis H 12. There is no significant difference in average absolute deviation
if the sequence of median and mean is changed in the experiment.

Without manipulation costs, we find no significant differences under the mean rule
(no info and full info) and under the median rule with full information. Under
the median rule with no information, we have to reject the hypothesis (p-value =
0.0054). This implies that the decisions of persons who played the median rule after
the mean rule should be taken in consideration of these circumstances and cannot be
taken as history independent. Unless stated otherwise, the analysis of the previous

4"We ran a Bartlett’s test suggesting the rejection of the assumption of equal variances in all
treatments without costs and the treatments under the median rule with manipulation costs.
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19.6 Sequencing eftects

subsections is not influenced by this result: All significant results remain statistically
significant when dropping the data affected by sequencing.@

In case of repeating the experiment, median rule experiments should be run before
the mean rule. On the other hand, when testing the values of average truth-telling
and average Nash play, there were no significant differences between both sequences
in all treatments.

As the sample size for the treatment “costs” is very small, we state only for com-
pleteness that we find no significant differences in all four combinations of rule and
info.

48 All t-tests were run with both data sets. The p-values changed in a minimal way. Exact
values are available upon request.
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19 Experimental results

19.7 Regression

In the previous sections we run parametric and non-parametric tests to analyze
effects of single variables. In this section, we summarize these results in a linear re-
gression model. We distinguish between individual and group variables as dependent
variable.

19.7.1 A basic regression model with individual variables

In this regression analysis, the dependent variable is absolute deviation. As it
depends on the individual, we are able to include demographic variables in the
regression model.

As in the sections before, the independent variables are rule (0 = mean, 1 = me-
dian), info (0 = no info, 1 = full info), cost (0 = no costs, 1 = costs), framing
(0 = abstract, 1 = firm, 2 = jury, 3 = bank), rank (1 to 5), period (1-5) and
sequence (0= median-mean, 1=mean-median). We control for demographic data
such as gender (0 = male, 1= female) and econstud (1= studying something re-
lated with economics, 0 otherwise). The variables QuestMedian (1= correct median
answer, 0 otherwise) and QuestMean (1 = correct mean answer, 0 otherwise) in-
dicate whether the participants correctly answered the questions about which rule
can be manipulated. The regression is clustered in the groups of five persons who
played together during the entire experiment["”] Table lists the corresponding
coefficients.

The stars indicate the level of significance. Rule, info, cost and period are highly
significant as well as differences in some ranks. Sequence, gender and QuestMedian
play a minor but still significant role in the model. The negative signs of the co-
efficients indicate that absolute deviation is smaller under the median rule, when
there are costs, if the participant is the median voter, if he had understood that
manipulation is not possible under the median rule or if she is female. Neither the
framing nor the field of study has a significant influence. On the other hand, abso-
lute deviation increases if information is available, if the mean rule is played first,
or if the peak is larger than the median peak. According to the regression model,
absolute deviation increases each period.

49Gtandard Error is adjusted for 47 clusters in groups of five.
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19.7 Regression

Dependent: abs. dev Coefficient (Std. Err.)
rule -11.231"** (0.803)
info 3.439"** (0.410)
cost -3.097* (1.055)
framing 0 0.000 (0.000)
framing 1 0.080 (1.053)
framing 2 -0.673 (0.871)
framing 3 -1.442 (0.736)
rank 1 0.000 (0.000)
rank 2 0.158 (0.589)
rank 3 5,617 (0.766)
rank 4 2.832** (0.872)
rank 5 6.165" (0.633)
period 1.899"* (0.116)
sequence 2.127* (0.913)
gender -2.068* (0.789)
econstud 0.977 (1.152)
QuestMedian -2.889* (1.101)
QuestMean -0.166 (1.003)
constant 16.659*** (1.149)
N 11280

R? 0.168

F (1646 110,567
Significance levels :  x: 5%  sx: 1%  xxx: 0.1%

Table 19.4: Regression analysis
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19.7.2 Regression with group variables

In this subsection we consider group variables as the dependent variable. The three
different aggregated variables are group abs dev, group Nash and group truth.
Each variable was observed four times per group in the four combinations of rule and
info. Therefore, we have 4-47 (number of groups) = 188 independent observations.

The dependent variable group abs dev indicates the average absolute group devi-
ation over different periods and peak distributions, group Nash and group truth
represent the percentage of Nash play and truth-telling, respectively.

Dependent: group abs dev group Nash group truth

info 0.582 0.025%* 0.021**
(0.390) (0.009) (0.007)
rule -12.980%** 0.383*** 0.411%**
(0.599) (0.015) (0.018)
cost -3.886%** -0.259°%** 0.173%%*
(0.997) (0.028) (0.030)
framing -0.333 -0.012 0.001
(0.236) (0.008) (0.008)
sequence 0.965 -0.012 0.005
(0.602) (0.019) (0.018)
constant 23.362%** 0.510%** 0.086***
(0.725) (0.024) (0.018)
N 188 188 188
R? 0.770 0.836 0.828
E' (4.46) 108.24 246.12 142.34

Robust standard errors in parentheses
Significance levels :  x: 5%  #x: 1%  *xx: 0.1%

Table 19.5: Group regressions

Table shows the regression table. As in the section before, rule and cost are
highly significant. The most conspicuous effect we observe is that information is
significant for the percentage of Nash play and truth-telling, but not for absolute
deviation.
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20 Conclusion and outlook

The present text gave an overview over two different voting rules. While the the-
oretical analysis clearly predicted truth-telling under the median rule, we observed
strong deviation in the experiment. As expected, manipulation was higher under the
mean rule than under the median rule. By introducing manipulation costs, truth-
telling increased under both rules. In the theoretical part, we saw that calculating
the Nash equilibrium under the mean rule can become very complex in the presence
of manipulation costs in case of deviating from the peak. In contrast, the Nash
equilibrium under the median rule becomes unique in the presence of costs. The
concept of these different types of equilibria was explained and discussed in detail.
We found that in the experiments inefficient equilibria arose extremely rarely.

Beside the strategies we analyzed in the previous sections, we also observed different
behaviors such as voting for the group average or waiting for the last round. Es-
pecially participants with an extreme rank seemed to suffer from envy or boredom:
They sometimes announced values which seem to be totally irrational. Possible
explanations are that they just want to do “something” or to harm other players.

We observed that the sequencing of mean and median rule plays a minor role.
In the regression analysis, it turned out that gender had a significant effect on
manipulation. Women did not deviate as much as men did. It would be interesting
to test the strength of this effect in a follow-up study.

What is the interpretation and justification of manipulation costs? At first, they
seem implausible. If manipulation is observable, this implies that true preferences
are observable. So why vote? From the theoretical point of view, costs are a very
nice instrument to reduce an infinite set of Nash equilibria to a unique one. On
the other hand, they can be interpreted as the expected costs of being caught by
a supervising institution in case of deviating. This, of course, only makes sense,
if the underlying set of alternatives is somehow objectively observable and not an
individually preferred good. For instance, in the framing of a juror evaluating a
sport competition this interpretation is very clear. Here, a catalogue of judgement
criteria exists and whenever a juror manipulates, there are institutions to check his
decisions, give him a penalty and remove him from office. Another interpretation of
manipulation costs are psychological overcoming costs for lying. Many individuals
feel uncomfortable when they do not tell the truth. For them, the strength of their
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20 Conclusion and outlook

lie does not play a crucial role. Hence, quasi-fixed manipulation costs — as used in
the experiments — are a good way to model these preferences for honesty.

The treatment variable “info” is the one with the most ambiguous interpretations.
We gave some explanations in the text. According to theory, it is sufficient for
the calculation of the Nash equilibria to know the own rank in a mean rule treat-
ment without manipulation costs. Therefore, a study with a different information
structure, namely the indication of the rank, would be very interesting.

A more challenging modification would be a combination of the different chapters of
this thesis. It remains an open question how voters with generalized single-peaked
preferences would behave in a laboratory experiment if they were confronted with
our strategy-proof social choice rule.
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A The German Federal Parliament
and some historical remarks

The political party spectrum in Germany is broad: Not only two big parties exist but
several others are important in the federal and state parliaments. The way parties
are arranged in the parliament, i.e. the left-to-right-order, has its origin in the French
National Assembly ( “Assemblée nationale”) in 1789 where the left wing represented
the progressive socialists and the right wing consisted of the conservative nobility.
In Germany this seating arrangement came up for the first time in the Frankfurt
National Assembly (“Frankfurter Nationalversammlung”) in 1848. Since then, the
basic progressive-conservative order remained stable even though lots of new parties
have appeared and others disappeared over the years.

Five parties were represented in the 17th German Federal Parliament (2009 — 2013),
“17. Deutscher Bundestag”. In that legislative period, the governmental coalition
consisted of CDU/CSU and FDP. By size, the parliamentary parties were:

e U: Christian Democratic Union (CDU) and Christian Social Union of Bavaria
(CSU), total 239 seats

S: Social Democratic Party (SPD), 146 seats

F: Free Democratic Party (FDP), 93 seats
L: The Left (Die Linke), 76 seats
G: Alliance 90/ The Greens (Die Griinen), 68 seats
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A The German Federal Parliament and some historical remarks

* Deutscher Bundestag

IM BUNBESTAD

SPD
BUNDESTAGS
FRAKTION

e

e Geh

Sitzverteilung im 17. Deutschen Bundestag
nach dem vorldufigen amtlichen Endergebnis vom 28. September 2009 um 3.35 Uhr

Figure A.1: The German Federal Parliament with seating arrangement LSGU F
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B Election Results

The results (in percentages) from our survey (S, Sz) compared to the second vote
of Parliamentary elections at national level (elec) and the corresponding results in
the district Karlsruhe (elec KA) are listed in Table

Union | SPD | FDP | Green | Left

Sh 45.5 | 259 | 16.2 11.3 ] 1.1
S 5241 184 | 144 1321 1.6
elec 2009 33.8 | 23.0 | 14.6 10.7 | 11.9
elec 2013 41.5 | 25.7 4.8 8.4 ] 8.6

elec KA 2009 28.6 | 206 | 174 184 | 8.3
elec KA 2013 37.5 | 22.7 6.0 15.0 | 6.0

Table B.1: Election Results
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C Combinatorial remarks

Calculation of the number 16: The peak divides the ordered set of alternatives into
two subsets with & and (m — 1 — k) alternatives respectively. As we assume the
preference ranking to be single-peaked, we know the ranking of the alternatives
within these subsets. Combining both subsets we obtain that there are m — 1
positions where k alternatives can be placed. Summing up over all peaks we get

S -2 ()

k=1

which equals 16 for m = 5. (Proof see [Escofhier et al.| (2008))

Example 13. Given the ordering ABCDE and the peak A (i.e. k = 1), it is clear
that A= B = C = D > E. For k = 2 the peak is B. So we know that B = C >
D = E. Alternatively, A can be placed in 4 different positions: behind B, C, D or
E, i.e. BACDE, BCADE, BCDAE and BCDEA.

All possible rankings are listed below. In Section [0.I] the set of these 16 rankings
is called the reference set. For notational convenience we leave the preference
symbol () out.

Peak A (k=1): ABCDE

Peak B (k = 2): BACDE BCADE BCDAE BCDEA

Peak C (k = 3): CBADE CBDAE CBDEA CDBAE CDBEA CDEBA
Peak D (k = 4): DCBAE DCBEA DCEBA DECBA

Peak E (k =5): EDCBA

Note that there is a difference between searching for single-peaked preferences on a
given party-order and searching for party-orders where a given preference-order is
still single-peaked. This is illustrated in the following example: Given the party-
ordering CABDE the preference-order ABCDE is single-peaked (see Figure .
However, the preference-order CABDE is not single-peaked given the party-order
ABCDE (see Figure |[C.2).

This remark is important for the symmetry structure: Given a preference ranking
which is single-peaked with respect to a certain party-ordering, the ranking remains
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C Combinatorial remarks

Figure C.1: CABDE Figure C.2: ABCDE

single-peaked when reversing the order of parties, i.e. mirroring left and right side.
Generally, reversing the preference ranking (i.e. the worst alternative is the new
favorite) is not single-peaked any more.
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D The Questionnaire

The following questionnaire was generated on the Swiss Internet platform www.
onlineumfragen.com. The entire text is written in German, a translation is avail-
able from the author upon request .

¢ Umfragen

Com

R Onlin

Vorwort

Umfrage zu Praferenzen itiber Regierungskoalitionen

Liebe Studierende,
sehr geehrte Damen und Herren,

danke fir Ihre Teilnahme an dieser Befragung. Im Folgenden wird Ihnen eine Frage
zu Ihren Praferenzen Uber Regierungskoalitionen gestellt, Bitte nehmen Sie die
Frage ernst, Sie konnen damit einen erheblichen Beitrag zur Forschung am Insttut
fur Wirtschaftstheorie und Statistik leisten. Wislen Dank fur Ihre Mithilfe!

Autor
veronica Block, Institut fur wWirtschaftstheorie und Statistik, Universitat Karlsruhe

Zur ersten Frage!
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iR O linc Umfragen

|
i

.com

Frage zu Regierungskoalitionen

Stellen Sie sich vor, Sie kinnten die Regierung im Bundestag nicht durch Wahlen einer Partei,
sondern direkt durch Bestimmen einer Regierungskoalition festlegen. Ordnen Sie die links
aufgelisteten Koalitionen durch Ziehen auf die rechte Seite s0 an, dass oben die Koalition steht, die
Ihnen als Regierungskoalition am liebsten wére und unten diejenige, die Sie am wenigsten
winschen, Bitte ordnen Sie dafur alle Koalitionen,

Flr die bessere Lesbarkeit gilt!

Union steht flr COU/CSU.

LIMKE steht flr DIE LIMKE. ,

GRUNE steht fur Biundnis '90/ Die Griinen,

Bitte begrinden Sie Ihre Entscheidung kurz in dem Kommentarfeld unten.

Erstellen Sig hitte eine Bangliste mit 31 Elarmenten,

Hier nehmen! Ihre Rangliste

Ui

SPD

1R 2

FOP

LINKE

GRUNE

Union, SPD {aktuelle Regierung)
Union, FOP

Union, LINKE

Union, GROME

SPD, FOP

SPD, LINKE

SPD, GRUNE

FDF, LINKE

FOP, GROME

LINKE, GRUNE

Union, SPD, FOP

Union, SPD, LINKE

Union, SPD, GRUNE
Union, FOP, LINKE

Union, FOP, GRONE

Union, LINKE, GRUNE
SPD, FOP, LINKE

SPD, FOP, GRUNE

SPD, LINKE, GRUNE

FDP, LINKE, GRUNE

SPD, FOP, LINKE, GRUNE
Union, FOP, LINKE, GRUME
Union, SPD, LINKE, GRUNE
Union, SPD, FOP, GRUNE
Union, SPD, FOP, LINKE

Union, SFD, FOP, LINKE, GRUNE (4)1-Koslition)

Bifte begrinden Sie |hre Entscheidung kue:

Speichern - nachste Frage!



E Results: Generalized single-peaked
preferences
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E Results: Generalized single-peaked preferences

Survey 1 (269) | #GSP  t=0 | #GSP _ t=1 | #GSP _ t=2 | #GSP _ t=3 | #GSP _ t=4
Ordering GLFSU 0 526 0 1107 1 1671 10 2256 62 2977
Ordering GLFUS 0 614 2 1346 5 1854 34 2500 106 3185
Ordering GLSFU 0 668 1 1274 1 1766 13 2408 76 3057
Ordering GLSUF 0 639 1 1387 9 1973 38 2608 117 3276
Ordering GLUFS 0 636 2 1285 13 1851 48 2513 111 3183
Ordering GLUSF 0 518 1 1205 6 1811 43 2485 108 3219
Ordering GFLSU 0 461 0 881 1 1179 3 1531 18 2092
Ordering GFLUS 0 445 1 893 1 1188 4 1571 8 2094
Ordering GFSLU 0 387 1 918 3 1514 15 2087 59 2765
Ordering GFSUL 0 520 6 1197 28 1906 83 2794 192 3611
Ordering GFULS 1 639 2 1256 7 1794 49 2515 109 3146
Ordering GFUSL 3 757 38 1829 90 2567 157 3231 211 3682
Ordering GSLFU 0 582 1 1024 1 1218 7 1622 22 2141
Ordering GSLUF 0 576 0 1020 2 1265 7 1668 22 2213
Ordering GSFLU 0 436 2 1034 4 1565 14 2119 59 2806
Ordering GSFUL 1 729 7 1391 34 2038 107 2924 197 3634
Ordering GSULF 0 523 0 1218 8 1781 34 2460 116 3224
Ordering GSUFL 3 746 20 1602 66 2412 139 3185 210 3712
Ordering GULFS 0 367 0 815 1 1126 4 1569 10 2109
Ordering GULSF 0 383 0 828 1 1143 7 1582 19 2116
Ordering GUFLS 1 617 1 1236 5 1859 37 2451 97 3055
Ordering GUFSL 4 752 34 1637 78 2375 137 3107 195 3595
Ordering GUSLF 0 473 0 1127 5 1778 26 2371 92 3085
Ordering GUSFL 1 533 14 1320 47 2183 112 2975 186 3598
Ordering LGFSU 0 525 6 1165 22 1863 99 2874 193 3656
Ordering LGFUS 8 769 46 1883 94 2567 146 3127 205 3669
Ordering LGSFU 2 775 13 1497 45 2164 127 3112 206 3723
Ordering LGSUF 8 800 23 1683 77 2543 152 3308 215 3770
Ordering LGUFS 11 783 48 1738 89 2477 147 3135 202 3623
Ordering LGUSF 2 539 15 1350 68 2346 135 3127 203 3666
Ordering LFGSU 0 571 11 1243 31 1857 75 2537 155 3385
Ordering LFGUS 0 467 10 1232 34 2017 101 2902 185 3579
Ordering LFSGU 1 516 7 1145 33 1796 77 2541 147 3358
Ordering LFUGS 1 688 13 1411 44 2125 116 3000 198 3645
Ordering LSGFU 1 768 13 1396 32 1918 83 2718 164 3472
Ordering LSGUF 1 716 12 1452 42 2141 112 3016 183 3595
Ordering LSFGU 1 427 5 969 14 1571 61 2465 154 3392
Ordering LSUGF 1 494 12 1251 47 2136 127 3035 195 3628
Ordering LUGFS 1 420 4 1004 16 1572 47 2415 158 3406
Ordering LUGSF 1 521 6 1174 27 1790 88 2617 157 3388
Ordering LUFGS 1 718 7 1333 30 1870 78 2628 166 3441
Ordering LUSGF 2 588 11 1311 34 1956 98 2770 175 3504
Ordering FGLSU 0 460 1 889 2 1177 7 1576 26 2081
Ordering FGLUS 0 460 2 914 2 1220 7 1620 25 2168
Ordering FGSLU 2 497 6 1063 12 1576 36 2217 80 2820
Ordering FGULS 2 424 2 998 5 1518 16 2121 66 2873
Ordering FLGSU 0 545 2 1173 9 1723 29 2271 65 2823
Ordering FLGUS 0 459 1 1082 2 1679 17 2291 58 2910
Ordering FLSGU 1 505 5 1079 10 1617 28 2188 70 2862
Ordering FLUGS 1 457 1 1031 4 1516 16 2100 64 2847
Ordering FSGLU 2 490 4 1083 7 1619 27 2211 64 2746
Ordering FSLGU 1 389 1 803 1 1143 9 1580 23 2029
Ordering FUGLS 2 641 2 1297 5 1853 25 2421 70 2992
Ordering FULGS 1 579 1 1034 3 1284 8 1696 27 2196
Ordering SGLFU 0 578 1 1033 2 1264 5 1650 17 2114
Ordering SGFLU 0 450 2 961 2 1374 5 1861 33 2577
Ordering SLGFU 1 702 2 1321 5 1768 13 2262 63 2839
Ordering SLFGU 1 428 2 987 3 1482 8 2014 32 2608
Ordering SFGLU 0 384 1 900 2 1429 11 1966 33 2564
Ordering SFLGU 0 375 1 806 1 1138 3 1569 11 2000
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Survey 2 (250) | #GSP  t=0 | #GSP _ t=1 | #GSP _ t=2 | #GSP _ t=3 | #GSP _ t=4
Ordering GLFSU 0 516 0 1050 1 1564 18 2057 58 2690
Ordering GLFUS 0 628 1 1317 9 1815 46 2378 106 2940
Ordering GLSFU 0 626 0 1175 1 1633 22 2190 63 2765
Ordering GLSUF 0 654 2 1355 9 1909 45 2540 117 3118
Ordering GLUFS 0 601 1 1232 12 1732 44 2286 110 2925
Ordering GLUSF 0 517 0 1112 9 1660 26 2249 102 2985
Ordering GFLSU 0 460 0 862 3 1146 7 1528 18 1977
Ordering GFLUS 0 422 0 843 2 1146 9 1573 20 2064
Ordering GFSLU 0 358 1 865 6 1429 18 1915 55 2534
Ordering GFSUL 0 515 6 1125 25 1814 87 2644 172 3320
Ordering GFULS 0 600 11173 8 1721 50 2361 117 2976
Ordering GFUSL 5 754 33 1644 71 2279 135 2945 103 3438
Ordering GSLFU 0 555 1 985 4 1230 10 1615 27 2065
Ordering GSLUF 0 565 1 1036 4 1270 15 1676 32 2203
Ordering GSFLU 0 417 1 916 4 1467 18 1994 56 2612
Ordering GSFUL 1 693 13 1331 34 1934 90 2676 167 3286
Ordering GSULF 0 540 1 1231 12 1784 53 2439 125 3093
Ordering GSUFL 4 744 20 1599 67 2347 138 3046 195 3477
Ordering GULFS 0 357 1 791 2 1099 6 1540 22 2056
Ordering GULSF 0 379 1 822 6 1132 10 1539 28 2061
Ordering GUFLS 0 606 2 1231 6 1728 38 2307 103 2893
Ordering GUFSL 2 707 28 1548 73 2220 128 2827 174 3289
Ordering GUSLF 0 521 0 1159 11 1751 30 2288 89 2892
Ordering GUSFL 0 524 11 1271 38 2031 109 2821 183 3397
Ordering LGFSU 0 503 1 1062 16 1703 75 2519 162 3257
Ordering LGFUS 12 797 41 1680 83 2299 128 2848 171 3254
Ordering LGSFU 1 687 6 1269 25 1885 88 2668 171 3320
Ordering LGSUF 4 758 29 1669 75 2456 146 3131 204 3531
Ordering LGUFS 6 730 39 1610 87 2281 135 2875 180 3299
Ordering LGUSF 1 535 21 1342 52 2114 126 2944 195 3465
Ordering LFGSU 0 554 6 1153 22 1691 64 2388 136 3107
Ordering LFGUS 2 513 9 1197 35 1855 81 2645 158 3268
Ordering LFSGU 0 491 4 1067 21 1614 67 2377 140 3107
Ordering LFUGS 1 673 12 1362 42 1983 109 2780 186 3395
Ordering LSGFU 0 667 3 1202 20 1693 62 2414 144 3191
Ordering LSGUF 0 706 13 1422 41 1999 108 2800 181 3406
Ordering LSFGU 0 416 5 977 20 1528 66 2301 138 3070
Ordering LSUGF 0 524 8 1250 45 2037 115 2878 196 3463
Ordering LUGFS 0 408 6 980 20 1528 55 2267 139 3137
Ordering LUGSF 0 500 12 1143 29 1664 69 2404 148 3159
Ordering LUFGS 0 644 4 1219 26 1718 68 2401 159 3232
Ordering LUSGF 3 587 8 1233 33 1855 89 2602 158 3266
Ordering FGLSU 0 471 1 897 4 1203 13 1577 38 2101
Ordering FGLUS 0 430 0 863 3 1179 11 1617 22 2133
Ordering FGSLU 2 479 5 1013 18 1520 33 2028 75 2640
Ordering FGULS 0 434 2 969 5 1452 20 2061 65 2724
Ordering FLGSU 0 559 1 1163 15 1690 33 2161 64 2678
Ordering FLGUS 0 483 1 1073 2 1595 12 2188 70 2845
Ordering FLSGU 1 514 2 1080 14 1602 43 2146 67 2640
Ordering FLUGS 0 474 1 1005 3 1460 18 2094 82 2811
Ordering FSGLU 0 436 2 954 11 1488 27 1999 65 2601
Ordering FSLGU 0 374 2 810 7 1107 14 1498 34 2003
Ordering FUGLS 1 637 2 1264 3 1741 24 2282 66 2847
Ordering FULGS 1 571 2 1019 5 1275 9 1638 22 2119
Ordering SGLFU 0 549 2 988 4 1245 11 1630 20 2047
Ordering SGFLU 0 427 2 892 3 1277 10 1776 42 2445
Ordering SLGFU 0 623 2 1184 5 1623 16 2102 46 2658
Ordering SLFGU 0 425 2 915 5 1422 15 1917 44 2514
Ordering SFGLU 0 336 2 825 4 1299 9 1790 46 2465
Ordering SFLGU 0 358 2 775 2 1075 7 1465 18 1954

Table E.2: con (connected coalitions) Dataset S,
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G Nash Equilibria

mean
Peak distr. 1 10 20 50 60 70 42
Equ. no costs 0 0 50 100 100 50
Equ. with costs - -
Peaks distr. 2 30 50 60 65 70 55
Equ. no costs 0 O 100 100 100 60
Equ. with costs [ 30 0 70 100 100 60
Peaks distr. 3 10 20 30 40 50 30
Equ. no costs 0 0 0 100 100 40
Equ. with costs | 10 20 0 70 100 40
Peaks distr. 4 10 20 45 60 70 41
Equ. no costs 0 0 25 100 100 45
Equ. with costs | 10 20 25 100 70 45

Table G.1: Nash Equilibria for the peaks used in the experiments without and with
manipulation costs.

Table shows the peak distribution used in the experiments with the corre-
sponding Nash equilibria for the mean rule. The equilibrium under the median rule
coincides with the peaks. Therefore these values are not listed separately. As we
saw in Table [14.3] for the first peak distribution there does not exist an equilibrium
with manipulation costs (proof in Section [H).
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H Proof

Claim: For the peak distribution (10,20, 50,60,70) there does not exist a Nash
equilibrium with costs for the special payoft function.

Proof. The proof is by contradictions through a sequence of claims.
Claim 1: m; > 12

By contradiction, assume m; < 12 : The best response of individual 1 lies in [0, 50],
so m € [0,20] and therefore ms € [0,40] = BR; = 70 . Y ;5 2; € [0,50] which
implies BRs # 70. 4

Claim 2: m; > 21

By contradiction, assume m; € [12,21.3] : By the best response function, this leads
to BRy = 0.

Therefore, the mean value is in the interval m € [10,19.3]. Hence, ms € [4,40] =
BRs; = 70. This implies my € [2,32] = BR,; = 60. With z5 = 70 and x4 = 60, we
have m > % > 19.3 which is a contradiction. 4

Claim 1 and Claim 2 lead to BR; = 10 = m € [21, 82].
Claim 3: mz > 33

By contradiction, assume mg3 < 33 : This leads to BR, = 60 and m = my. So,
m € [21,33]. With new calculated ms € [11,43],m5 € [15,47], we have BR3 > 50
and BRs; = 70. So Y ;z; > 104 50 + 60 + 70 = 190 and therefore m > 38. 4
Contradiction to m < 33.

Claim 4: m4 <60

By contradiction, assume my > 60 : This is equivalent to saying >, ., x; > 240.
Hence, the mean must be at least m > 48. Consider individual 2: my > 32, so
BR, € {0,20}. As BR; = 10, the sum of the remaining must be zy + z3 + x5 >
240 — 10 = 230. As z; < 100 for every i, x5 > 30 which is a contradiction to
BR, € {0,20}. 4

Claim 4 implies BR4 > 60.

Claim 5: ms < 70
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H Proof

By contradiction, assume ms > 70 : This implies m > 56 and mg > 46, my > 40.
The best response function leads to BR; < 70 and BRy = 20. So, >, x; < 10 +
20 + 70 4+ 60 + 100 = 260 = m < 52. 4 Contradiction to m > 56.

Claim 5 implies BR5 > 70 and m € [28, 76].
Claim 6: mqy > 37

By contradiction, assume mo < 37 : If mgy < 24 = m < 284. If 24 < my < 37, the
best response of individual 2 is BRy = 0 which implies m < 33 and Y, z; < 165. As
BR; = 10, the latter one is equivalent to x3+ x4+ x5 < 155 such that x4, + x5 > 130.
On the other hand, m < 33 implies my < 45 and ms < 47 which lead to BR4 = 100
and BR5s = 70. So, x4 + x5 = 170. 4 Contradiction to x4 + x5 < 155.

Claim 6 implies BRy = 20.
Claim 7: my < 52

By contradiction, assume my > 52 : By Claim 4, my < 60, this implies that
individual 4 determines the mean value and m = 60. So, ms € [50,70] which
implies BR3 < 50. This leads to >>; z; < 10 + 20 + 50 4+ 100 + 100 = m < 56. 4
Contradiction to m = 60.

By Claim 3 and Claim 7, 33 < my < 52 = BR4 = 100. The updated mean is
m € [40,46] and therefore ms € [34,60] = BR5 € {70,100}. These two values have
to be checked in the next claims.

Claim 8: BR; # 70

By contradiction, assume BR5 = 70 : Then, m = %(130 + x3+ 70) = mg = 50 =
BR3; =50 = m = 50. 4 Contradiction to m < 46.

Claim 9: BR; # 100

By contradiction, assume BRs = 100 : Then m = % + 46 = m3 = 56 = BR; =
20 = m = 50. 4 Contradiction to m < 46.

Hence, no Nash equilibrium exists for the peak distribution (10,20, 50, 60,70) with
costs and the special payoff function. m
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I Utility of best response functions for other peaks

Utility of best response to m
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Figure I.1: Utility of best response to m for zj = 40 (top) and z; = 70 (bottom) for
linear payoff functions, see also Section
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Figure 1.2: Utility of best response to m for zj = 40 (top) and z; = 70 (bottom) for
quadratic payoff functions, see also Section
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Figure 1.3: Utility of best response to m for x} = 40 (top) and x
special payoff functions, see also Section
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Figure J.1: Best response to m for 7 = 40 (top) and 2} = 70 (bottom) for linear
payoff functions, see also Section
170



Best response to m for x =40

120 n

100 b,

80 n

60 B

Best response BR(m)

40 o .

ol ! ! ! ! | ! !
10 20 30 40 50 60 70 80

mean value m when telling the truth

Best response to m for x=70

120 Ny

100 b,

80 n

Best response BR(m)

0 I I I I I I I !
20 30 40 50 60 70 80 90

mean value m when telling the truth

Figure J.2: Best response to m for ¥ = 40 (top) and z} = 70 (bottom) for quadratic
payoff functions, see also Section
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Figure J.3: Best response to m for xf = 40 (top) and zf = 70 (bottom) for the
special payoff function, see also Section
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K Handout: Mathematical
Introduction

Einfiihrung

Guten Tag. Vielen Dank, dass Sie Zeit gefunden haben, an der Studie teilzunehmen.
Wir méchten Sie zunachst mit einigen mathematischen Grundlagen vertraut machen.

Durchschnitt (arithmetisches Mittel)

Der Durchschnitt (arithmetisches Mittel) ist ein Mittelwert, der als Quotient aus
der Summe aller Werte und der Anzahl der Werte definiert ist. Bei fiinf Werten
lautet die Formel zur Berechnung;:

x:m+m+%+m+m
5

Beispiel: Wenn die fiinf Zahlen 10, 14, 52, 26,68 gegeben sind, so ist der Durch-
schnitt « = 34, weil 1 - (10 4 14 4+ 52 4 26 + 68) = 2% = 34

Median

Der Median einer ungeraden Anzahl von Werten ist die Zahl, welche an der mittleren
Stelle steht, wenn man die Werte nach Grofle sortiert.

Beispiel: Wenn die fiinf Zahlen 10, 14,52, 26,68 gegeben sind, so ist der Median
x = 26, namlich die mittlere Zahl von 10, 14, 26, 52, 68.

Betragsfunktion
Es wird mit |z| der Betrag von x bezeichnet. Dieser ist auch als Absolutwert oder

abs(z) bekannt.
Beispiel: | - 15+ 12| =|-3|=3.
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K Handout: mathematical introduction

Minimumsfunktion

Es wird mit min(z,y) das Minimum von x und y bezeichnet.
Beispiel: min(15, | — 10]) = min(15,10) = 10.

Veranschaulichung der Auszahlungsfunktion f, ()

Die Funktion f,,(z) wird im Folgenden mit verschiedenen Werten w verwendet. Sie
wird spéter als Thre “Auszahlungsfunktion” bezeichnet.

fw(z) = 10 4+ min ( 380 380 )

|z —w+2|" |z —w—2

Erlauterung: Beim Wert x = w erreicht die Funktion ihr Maximum und der dazuge-
horige Wert ist f,,(w) = 200. Die Funktion ist achsensymmetrisch zu z = w und
ist insbesondere bis zu diesem Wert monoton wachsend und anschliefend monoton
fallend. Zur Veranschaulichung sehen Sie zwei Beispiele, im oberen Bild ist w = 12,
im unteren w = 70.

220 T T T T T T T T T 220

200 [~

180

160 -

140

120

70X

100 -

80

60

40

20

I I I I I I L I I 0 L L L L L L L L L
OD 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
x x

Figure K.1: Zwei Auszahlungsfunktionen, oben: fi5(z), unten: f7q(x)

Bitte beantworten Sie nun einige Verstédndnisfragen am Bildschirm.

Papier und Stift fiir Notizen ist bereitgelegt, wir bitten Sie, diese beim Verlassen
des Raumes am Platz liegen zu lassen. Auflerdem kénnen Sie wiahrend der gesamten
Studie den Taschenrechner am rechten unteren Bildschirmrand verwenden.
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L Handout for the abstract framing
without manipulation costs

Anleitung

Sie sind Teilnehmer einer Abstimmung bei der der Wert x bestimmt wird. Hierfiir
wird Thnen ein Wert w zwischen 0 und 100 zugeteilt. An der Abstimmung nehmen
noch weitere vier Personen teil. Jeder der fiinf Teilnehmer macht einen Vorschlag,
das heifit er nennt eine Zahl y zwischen 0 und 100. Der Wert x wird nun an-
hand aller fiinf genannten Vorschldge bestimmt. Dazu werden die Vorschlage, also
fiinf Zahlen zwischen 0 und 100, entweder aufsummiert und durch fiinf geteilt (das
entspricht dem Durchschnitt aller Vorschlage) oder aber der GroBe nach sortiert und
der drittgrofite Vorschlag wird gewéhlt (das entspricht dem Medianverfahren). Sie
erfahren jeweils vor der Abstimmung, welches Verfahren benutzt wird. Manchmal
werden Sie dariiber informiert, welches die zugeteilten Werte der anderen Teilnehmer
sind.

Je grofler die Differenz zwischen x und w, desto kleiner ist IThr Gewinn. TIhre
Auszahlung ist

380 380 )

w =10 i ’
ful@) +mm<|x—w+2| |z —w — 2

Die Auszahlung wird in der Einheit FCU angegeben.
100 EC'U entsprechen 0, 60 €.

Die Abstimmung findet in mehreren Runden statt. Der Ablauf jeder Runde ist wie
folgt:

1. Sie erfahren das Verfahren der Abstimmung. (Durchschnitt oder Median)
2. Sie erfahren Thren Wert w und manchmal die Werte der anderen Teilnehmer.
3. Sie machen einen Vorschlag y.

4. Sie erfahren den aus den Vorschldgen berechneten Wert x und Ihre Auszahlung.
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M Timetable of the experimental

sessions

A = Abstract, F = Company, J = Jury, Z = Bank
Exp 1 and 2: no costs, Exp 3 and 4: costs
Exp 1 and 4: mean - median, Exp 2 and 3: median - mean

Exp Session

Date

Time

Framing

1

—_

—
B W O OISOl WNRFE O OO Ok W

SR W W NN NDNDNDNDNDDNDDNRFR —H = = = 2 ==

04/30/12
04/30/12
04/30/12
05,/02/12
05,/02/12
05,/02/12
05,/03/12
05/03/12
05,/03/12
05,/03/12
06,/20/12
06,/20/12
06,/21/12
06,/21/12
06,/21/12
06,/22/12
06,/22/12
06,/22/12
06,/25/12
06,/25/12
11/23/12
11/23/12
11/23/12
11/23/12

09:45
14:00
16:30
08:00
10:00
17:30
09:00
11:30
14:00
16:30
14:00
15:45
11:30
14:00
15:45
09:00
11:45
14:00
10:00
15:45
10:00
11:45
14:00
15:45

>N PPN PEPTEANPE PN o NT™

Table M.1: Overview over experimental sessions with date, time and framing
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N Truth-telling and Nash play

The following Table is similar to Table[18.4] For experiments 1 and 2 also those
peak distributions are taken into account for which a unique Nash equilibrium exists
in the presence of manipulation costs. The percentage of Nash strategy is slightly
lower compared to the case when considering all observations.

w/o Distr. 1& 5 | truth-telling | Nash play | N°obs
exp 1 0.25 0.63 | 3800
mean NI 0.09 0.46 1425
mean FI 0.06 0.54 855
med NI 0.46 0.85 950
med FI 0.56 0.85 570
exp 2 0.26 0.64 | 4000
med NI 0.47 0.90 1000
med FI 0.54 0.89 600
mean NI 0.12 0.46 1500
mean FI 0.09 0.49 900
exp 3 0.39 0.42 800
med NI 0.62 200
med FI 0.69 120
mean NI 0.21 0.31 300
mean FI 0.24 0.19 180
exp 4 0.45 0.47 800
mean NI 0.31 0.32 300
mean FI 0.25 0.31 180
med NI 0.66 200
med FI 0.78 120
| Total \ 0.28 | 0.60 | 9400 |

Table N.1: Overview over truth-telling and Nash strategies in all experiments. Peak
distributions without equilibrium with manipulation costs are skipped in

all experiments.
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