
Matters of Coercion-Resistance in
Cryptographic Voting Schemes

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Carmen Kempka (geb. Stüber)

aus Karlsruhe

Tag der mündlichen Prüfung: 3. Juni 2014

Erster Gutachter: Prof. Dr. Jörn Müller-Quade

Zweiter Gutachter: Prof. Dr. Jeroen van de Graaf

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Acknowledgement

On the road which has led to this thesis, I have been inspired, motivated and sup-
ported by many people, to whom I am grateful.
First of all, I thank my thesis supervisor Prof. Dr. Jörn Müller-Quade, who has

inspired me with his contagious enthusiasm for cryptography. I thank him for all
his support, advice, patience and tolerance, especially for making it possible that
I could bring my son to the office, and for being able to do research in maximal
freedom.
Many thanks go to Prof. Dr. Jeroen van de Graaf, who corefereed this thesis,

for inviting me to join research on the taxonomy project, for invaluable input, and
for inspiring discussions in an uncomplicated working atmosphere. Besides, without
him, this work would be in much worse English.
I express my gratitude to Jun. -Prof. Dr. Dennis Hofheinz, for granting me oracle

access to his marvelous knowledge about all kinds of fancy encryption and signature
primitives, for sanity-checking my crazy ideas and for all kinds of support.
This work would not be what it is without my coworkers Dr. Christian Henrich,

Bernhard Löwe and Dirk Achenbach. Thanks for being with me at all those paper
deadline night shifts and especially in the thesis last minute panic period, for proof
reading, invaluable discussions and feedback.
I thank Víctor Mateu for taking away the mystery of pairing based cryptography

and elliptic curves, and for helpful and inspiring discussions, especially about the
ID-comparison with the Elgamal scheme. Thanks to Sven Krohlas for briefing me
about delegated voting.
Many thanks to everyone who has made the application of Bingo Voting in the

election of the student’s parliament possible, especially Björn Tackmann and Michael
Bär. Many thanks to Reiner SCT for providing the chip-card readers and the cus-
tomized random number generators for this election.
I offer my gratitude to Prof. Dr. Bernhard Beckert and Prof. Dr. Ralf Reussner

for inviting me to discuss about my work and for important feedback.
This work could be started thanks to Prof. Dr. Jaques Calmet, who welcomed me

to IAKS and gave me freedom in my research. I would like to thank Prof. Dr. Thomas
Beth (1949-2005), for his inspiring lectures, and for believing in me.
Thanks to all my current and former colleagues at IAKS/IKS/EISS/ITI for the

enjoyable working atmosphere, especially Hildegart Kühne for her friendship, Thilo
Mie for discussions about basically everything, and Florian Böhl, who shared with
me the pain and excitement of the last part of the road towards a doctorate. I
could feel this enjoyable working atmosphere already as a student thanks to Stefan
Röhrich, Dr. Jens-Matthias Bohli, Prof. Dr. Dominique Unruh, Prof. Dr. Rainer
Steinwandt, Prof. Dr. Markus Grassl and many more. Thanks for making me feel
welcome at IAKS right from the beginning. Special thanks to Jens and Stefan for

iii

iv

the joint work on Bingo Voting improvements, and for motivating me to work on
e-voting.
For her tireless administrative support I would like to thank Carmen Manietta.

No less I thank Holger Hellmuth, especially for not doing that server reboot on the
day of my thesis deadline. I also thank Audrey Bohlinger for patiently answering all
questions concerning the doctorate procedure.
I would like to express my gratitude to Dr. Masayuki Abe for welcoming me to

NTT as a postdoc, which gave me a lot of motivation and endurance during the last
phase of this work.
Thanks to my dear friends Makitaro, Reiko and Momo Arima for counter-balancing

my worktime with their wonderful world of music.
Not least at all I thank my family. I am in great debt to my parents Walter and

Anne Stüber for all their support throughout my life, and especially for being there
for my son Jonas. I thank my sister Tanja Mohr and her family Marlon, Luisa and
Michael Mohr for all their support. I thank my dear husband Matthias Kempka for
his love and all his support, and for shielding me from matters of real-life to give
me the freedom and a clear head to finish this work. And I thank my son Jonas
Nehemias Kempka for his love and patience, and especially for offering me to skip
kindergarten to help me with my work instead.

Abstract

Electronic voting has gained more and more interest during the last decades. It
promises less error-prone and faster tallying, while saving paper as well as working
time. On top of this, voters can be supported by a vote casting interface, reduc-
ing the amount of ballots which would otherwise be marked invalid unintentionally.
Moreover, the introduction of electronic voting introduces the possibility of conduct-
ing an election over the internet, which promises to increase voter turnout.
However, voting machines do not offer the same obvious transparency as tradi-

tional paper elections, since they are complex systems which are hard to verify.
It became soon apparent that paper ballots cannot be substituted by computers
without additional measures.
Cryptographic voting schemes offer the possibility of publicly verifiable elections.

This verifiability depends on cryptographic techniques and holds independently of
the implementation of the voting computer. This is even more important if elec-
tions are held over the internet, where ballots are recorded and counted on one or
several distant servers, and the voter does not interact with most of the system
components in person. However, the voter’s choice is to be secret and free – it
should be cast uninfluenced by any adversarial impact. This in fact leads to an even
stronger requirement than secrecy, namely coercion-resistance. Strongly related to
this requirement is vote-buying. Coercion and vote-buying can be considered in an
equivalent manner, since in both coercion and vote-buying situations the aim of the
adversary is to find out if the voter followed certain instructions.
Since cryptographic functions which prove correctness of the tally naturally get

as input the cast ballots, care has to be taken that no information is revealed about
the voter’s choices in any verification data. Verifiable correctness while preserving
coercion-resistance becomes even harder to achieve in non-standard elections, like
elections which allow write-in candidates or vote delegation. Elections held over the
internet are a special challenge, since the privacy of a voting booth is not guaranteed.
In this work, we take a look at cryptographic voting schemes, with focus on their

coercion-resistance, from a wide viewpoint. First of all, verifiability and coercion-
resistance are not the only design criteria for voting schemes. Measures to achieve
those two requirements affect other criteria. The provability of a manipulation
makes the voting scheme more robust than a mere detection. The early leakage
of intermediate results makes an election unfair. A too high amount of published
data for verification makes the election non-scalable. At the same time, there is a
huge variety of voting schemes, based on different underlying models, using different
cryptographic techniques. A consensus on a formal description of voting schemes is
still missing. Therefore, it is hard to consistently analyze or compare this variety of
voting schemes. This raises the question of a catalog of suitable design criteria.
The first contribution of this work is a taxonomy which identifies such design

v

vi

and analysis criteria, together with an analysis roadmap, with which the existing
variety of voting schemes can easily be analyzed and compared. The taxonomy is
written in natural language and can be applied to any voting scheme, regardless of
its underlying model. The taxonomy makes strengths and potential weaknesses of
an election scheme apparent rather quickly.
Since the main focus of this work is coercion-resistance, we give an overview over

existing definitions. After this, we describe real-world experiences with the voting
scheme Bingo Voting, discuss its coercion-resistance and retrospectively analyze it
with our taxonomy. We will see that Bingo Voting offers a great amount of flexibility
since it provides vote-splitting and cumulative voting without weakening coercion-
resistance. Further improvements of Bingo Voting are discussed, and to add to
its flexibility, we provide Bingo Voting with support for write-in candidates, which
means that instead of choosing a candidate from an existing candidate list, the voter
can write in an arbitrary name.
This brings up the first of three special cases considered in this work which offer

particular challenges when trying to achieve coercion-resistance. Write-in candidates
are problematic since the voter can always be coerced to “vote for” a certain name
or even a random string which would otherwise most likely get no votes. In the final
tally, the adversary sees if this candidate has gotten one or zero votes. Hence, it
seems impossible to achieve coercion-resistance in elections with write-in candidates.
We solve this problem by providing techniques to publish the tally in a controlled
fuzzy way, such that the tally leak less information while being sufficiently verifiable.
The second challenging case is the possibility to re-cast a vote: in internet voting

schemes, it cannot be assumed that all voting processes take place in private. We
have the problem of so-called shoulder voting: The voter might be observed during
her voting process. This opens doors for coercion. An obvious and often imple-
mented solution to this is revoting: The voter can cast a ballot as many times as she
wants, and therefore overwrite a ballot cast under adversarial observation. However,
to make this solution effective, the adversary must not see if the voter has revoted.
Even more, the voter must not be able to prove that she has not revoted, since this
would open doors for vote-buying and coercion. At the same time, the revoting
process must be verifiable: The voter should be able to verify that her last ballot
has been counted, and everyone should be able to verify that only everyone’s last
ballot has been counted. Achieving both properties at the same time has been an
open problem, for which we introduce a proof-of-concept solution in this work.
The third challenging election type is delegated voting, where the voter can choose

between voting by herself or delegating her choice to someone else. The new challenge
to coercion-resistance is that the adversary must not be able to coerce the voter to
delegate her choice to him. This is also related to revoting since in elections with
delegated voting, it is often required that the voter can change her decision between
voting and delegating at any time. We introduce a delegated voting scheme, which
combines our revoting solution with a new paradigm called vote fetching.

Zusammenfassung

ElektronischeWahlen haben in den letzten Jahrzehnten immer mehr Interesse gewon-
nen. Sie versprechen weniger fehlerbehaftete, schnellere und dabei personalsparende
Auszählungen, und könnenWähler beim Ausfüllen des Wahlzettels unterstützen, was
die Anzahl versehentlich ungültig abgegebener Stimmen sinken lässt. Die Stimmab-
gabe über das Internet wird möglich, was eine höhere Wahlbeteiligung verspricht.
Allerdings bietenWahlmaschinen nicht die Transparenz herkömmlicher Papierwahlen.
Es handelt sich bei Wahlmaschinen um komplexe Systeme, deren korrekte Umset-
zung nur schwer zu überprüfen ist. Offensichtlich kann daher die Papierwahl nicht
ohne weitere Maßnahmen durch elektronische Wahlen ersetzt werden.
KryptographischeWahlverfahren ermöglichen öffentlich verifizierbare Wahlen, wobei

die Verifizierbarkeit im Idealfall unabhängig von der Implementierung elektronischer
Komponenten gegeben ist. Jedoch darf die Verifizierbarkeit das Wahlgeheimnis nicht
gefährden. Die Stimmabgabe soll in freier Wahl erfolgen, ohne äußeren Einfluss. Dies
verlangt eine noch stärkere Anforderung: die Nicht-Erpressbarkeit. Diese ist stark
verwandt mit Stimmkauf: in beiden Fällen ist das Ziel des Angreifers, zu erkennen,
ob sich der Wähler an bestimmte Anweisungen gehalten hat.
Kryptographische Funktionen, die die Korrektheit einer Wahl, insbesondere der

Auszählung, nachweisen sollen, bekommen natürlicherweise die Wählerstimmen in
irgendeiner Form als Eingabe. Diese müssen zu lückenlosen Korrektheitsbeweisen
verarbeitet werden, die allerdings keine Information über einzelne Wählerstimmen
preisgeben. Verifizierbarkeit und Nicht-Erpressbarkeit scheinen deutlich in Konkur-
renz zu stehen, umso mehr in Nicht-Standardwahlen, wie etwa Wahlen mit Write-
In-Kandidaten oder Wahlen mit Stimmweitergabe.
In dieser Arbeit werden kryptographische Wahlen unter dem Schwerpunkt der

Nicht-Erpressbarkeit, jedoch aus einem weiten Blickwinkel behandelt. Maßnahmen
zum Erhalt der Verifizierbarkeit und der Nicht-Erpressbarkeit beeinflussen wiederum
andere Kriterien, wie die Robustheit, die Fairness oder die Skalierbarkeit einer Wahl.
Dem gegenüber steht eine Vielzahl existierender Wahlverfahren, aufbauend auf un-
terschiedlichen formalen Modellen und unterschiedlichen kryptographischen Prim-
itiven. Diese Vielzahl an Wahlverfahren ist nur sehr schwer zu vergleichen oder
einheitlich zu bewerten.
Diese Arbeit stellt eine Taxonomie vor, mit der Wahlverfahren einheitlich und auf

einfache Weise untersucht werden können. Die Taxonomie enthält eine Liste von
Kriterien, die kryptographische Wahlverfahren erfüllen sollten, und wird vorgestellt
zusammen mit einem Analysefahrplan, in Form eines Fragekatalogs mit 1-6 Fra-
gen pro Kriterium. Mit Hilfe dieser Fragen lässt sich für ein beliebiges Verfahren
sehr schnell ein Überblick über Stärken und potenziellen Schwächen des Verfahrens
gewinnen.
Der weitere Verlauf der Arbeit konzentriert sich auf die Nicht-Erpressbarkeit. Es

vii

viii

werden verschiedene Definitionen der Nicht-Erpressbarkeit verglichen im Bezug auf
zwei Soncerfälle, namentlich Write-In-Kandidaten und Internetwahlen, in denen der
Wähler die Möglichkeit hat, eine unter Beobachtung abgegebene Stimmabgabe durch
eine weitere Stimmabgabe zu überschreiben.
Dieser allgemeinen Betrachtung verschiedener Kriterien von Wahlverfahren und

Sicherheitsdefinitionen folgt ein Kapitel über Präsenzwahlen, in welchem Praxiser-
fahrungen mit dem Wahlverfahren Bingo Voting vorgestellt werden. Bingo Voting
hat sich als sehr flexibel erwiesen, es erlaubt Kumulieren und Panaschieren ohne
ein Verlust an Sicherheit, was nicht selbverständlich ist. Diese Arbeit stellt weitere
Verbesserungen des Verfahrens vor, und eine Möglichkeit, Write-In-Kandidaten zu
unterstützen.
Write-In-Kandidaten sind einer von drei in dieser Arbeit betrachteten Wahlfor-

men, die eine besondere Herausforderung für kryptographischeWahlverfahren darstel-
len. Sind Write-In-Kandidaten erlaubt, so kann der Wähler immer gezwungen wer-
den, einen Kandidaten zu wählen, der sonst vermutlich keine Stimmen bekommen
würde, zum Beispiel eine Zufallszeichenkette. Der Angreifer würde im Wahlergeb-
nis sehen, ob dieser unwahrscheinliche Kandidat eine Stimme bekommen hat oder
nicht. Aus diesem Grund werden Wahlen mit Write-In-Kandidaten in Definitionen
der Nicht-Erpressbarkeit oft ausgeschlossen oder nicht betrachtet. In dieser Arbeit
werden Techniken zur kontrolliert verwaschenen Darstellung des Wahlergebnisses
vorgestellt, die erpressbarkeitsfreie Wahlen mit Write-In-Kandidaten unter Erhalt
der Verifizierbarkeit ermöglichen.
In Internetwahlen ist die Privatsphäre des Wählers nicht gewährleistet, daher

kann nicht ausgeschlossen werden, dass er bei der Stimmabgabe beobachtet wird.
Eine Standardtechnik, dem zu begegnen, ist es, den Wähler seine Stimmabgabe be-
liebig oft durch eine weitere überschreiben zu lassen, was unseren zweiten Sonderfall
darstellt: Dies ist nur sinnvoll, wenn der Angreifer nicht bemerkt, ob der Wähler von
dieser Möglichkeit Gebrauch gemacht hat. Gleichzeitig muss die Wahl verifizierbar
bleiben. Den Teilnehmern der Wahl muss bewiesen werden, dass von jedem Wäh-
ler nur die neueste Stimme gezählt wird. Bisherige Lösungen erreichen entweder die
Verifizierbarkeit des Aussortierprozesses oder das Nicht-Erkennen einer wiederholten
Stimmabgabe. Diese Arbeit stellt ein Verfahren vor, welches beide Eigenschaften
zugleich erreicht.
Der dritte Sonderfall sind Wahlen mit Stimmweitergabe, auch bekannt unter

den Stichpunkten Liquid Democracy (flüssige Demokratie) oder Delegated Voting
(delegiertes Wählen). Hier hat der Wähler die Möglichkeit, sein Stimmgewicht an
einen sogenannten Proxy zu delegieren, der an seiner Statt eine Stimme abgibt.
Diese relativ junge Art der Wahl stellt neue Anforderungen an die Sicherheit eines
Wahlverfahrens. Es reicht nicht mehr aus, die korrekte Auszählung nachzuweisen.
Der Wähler muss auch nachprüfen können, dass seine Stimme an den richtigen
Proxy delegiert wurde. Um die Nicht-Erpressbarkeit zu gewährleisten, darf der
Proxy oder ein Dritter allerdings nicht erfahren, ob oder an wen der Wähler seine
Stimme delegiert hat. Eine weitere Anforderung dieser Wahlart ist oft, dass der
Wähler sich jederzeit umentscheiden kann zwischen einer Delegation und eigener
Stimmabgabe. Diese Arbeit stellt eine Möglichkeiten zur Umsetzung vor, die die
oben erwähnte Lösung zur Wahl mit Stimmabgabewiederholung mit einer neuen
Idee zum Umsetzen von Delegationen verbindet, dem Vote-Fetching. Die Idee des
Vote-Fetching ist es, statt dem Delegieren der Stimme Stimmen von einem Proxy
zu holen und rerandomisiert abzugeben.

Contents

1. Introduction 1
1.1. Contributions of this Work . 3

1.1.1. Requirements of Voting Schemes 3
1.1.2. Presential Elections . 3
1.1.3. Internet Elections . 4

1.2. Structure of this Work . 4

2. Preliminaries 7
2.1. What are Cryptographic Voting Schemes? 7

2.1.1. Privacy-type properties . 7
2.1.2. Verifiability . 8
2.1.3. Types of Cryptographic Voting Schemes 9

2.2. Known Attacks on Coercion-Resistance 9
2.3. Cryptographic Primitives . 10

2.3.1. General Definitions . 10
2.3.1.1. Probabilistic Polynomial Time (PPT) Algorithms . . 10
2.3.1.2. Discrete Logarithm Problem 11
2.3.1.3. Decisional Diffie-Hellman Problem 11
2.3.1.4. Negligible and Overwhelming Functions 11

2.3.2. Cryptographic Hash Functions 11
2.3.3. Public Key Encryption Schemes 11

2.3.3.1. Definition of Public Key Encryption Schemes 12
2.3.3.2. Reencryption . 12
2.3.3.3. The Elgamal Encryption Scheme 12

2.3.4. Commitment Schemes . 14
2.3.4.1. Definition of Commitment Schemes 14
2.3.4.2. Pedersen Commitments 15

2.3.5. Zero-Knowledge Proofs . 16
2.3.6. Verifiable Shuffling and Mixnets 16

2.3.6.1. Mixnets . 17
2.3.6.2. Proof of a Correct Shuffle with Shadow Mixes 17
2.3.6.3. Randomized Partial Checking 19

2.3.7. Bilinear Groups and Pairings 19
2.3.8. SXDH-Assumption . 20
2.3.9. The Groth-Sahai Proof System 20
2.3.10. Digital Signatures . 21
2.3.11. Automorphic Structure-Preserving Signatures 22

ix

x Contents

3. Requirements of Cryptographic Voting Schemes 25
3.1. Related Work . 25
3.2. A Taxonomy for Cryptographic Voting Schemes 26

3.2.1. What is an Election? . 26
3.2.2. Process of a Paper Election 27

3.2.2.1. Pre-election . 27
3.2.2.2. Voting phase . 27
3.2.2.3. Post-election . 28

3.2.3. Requirements of an Election Scheme 28
3.2.4. A Roadmap for Analyzing Elections 34

3.2.4.1. General Information about the Voting Scheme 34
3.2.4.2. Analysis of the Requirements 35
3.2.4.3. Conclusion of the Analysis 37

3.2.5. Categorizing the Requirements 38
3.2.6. Experiences . 39

3.2.6.1. German Paper Election 39
3.2.6.2. Prêt à Voter . 40

3.3. A Review of Definitions of Coercion Resistance 42
3.3.1. General remarks . 43
3.3.2. Definition Review . 44
3.3.3. Conclusion . 48

4. Coercion Resistance in Presential Elections 49
4.1. Related Work . 50

4.1.1. Related Work on Presential Elections 50
4.1.2. Related work on Bingo Voting 50
4.1.3. Related work on write-in candidates 51

4.2. Bingo Voting . 51
4.2.1. The Original Bingo Voting Scheme 51

4.2.1.1. Notation . 52
4.2.1.2. Preconditions . 52
4.2.1.3. Pre-Voting Phase . 53
4.2.1.4. Voting Phase . 54
4.2.1.5. Post-Voting Phase 55

4.2.2. Improvements of Bingo Voting 55
4.2.3. A discussion on Coercion-Resistance 57

4.3. Bingo Voting in the Student Parliament Election 59
4.3.1. About the Election . 59
4.3.2. Special Requirements of the Student Parliament Election . . . 60
4.3.3. Implementation and Application 60

4.3.3.1. Used Hardware . 60
4.3.3.2. Pre-Voting Phase . 61
4.3.3.3. Election Phase . 62
4.3.3.4. Post-Voting Phase 64

4.3.4. Experiences . 64
4.3.5. Analyzing this Election with the Taxonomy 65
4.3.6. Discussions about the Election’s Security 66
4.3.7. Conclusion and Possible Improvements 67

Contents xi

4.4. Bingo Voting with Write-in candidates 67
4.4.1. Preconditions . 68
4.4.2. Pre-voting Phase . 68
4.4.3. Voting Phase . 68
4.4.4. Post-voting Phase . 70
4.4.5. Privacy and Coercion-Resistance 70

4.5. Fuzziness: Coercion-Resistant Elections with Write-In Candidates . . 71
4.5.1. A Definition of Fuzziness . 73
4.5.2. Weak Fuzziness . 75

4.6. Including Fuzziness in Election Schemes 76
4.6.1. General Construction of µ, µ-Fuzzy Voting Schemes with Ho-

momorphic Tallying . 76
4.6.2. General Construction of µ, µ-Fuzzy Mix-Based Voting Schemes 78

4.6.2.1. Weak µ, µ-fuzzy mix-based voting schemes 81
4.6.3. Bingo Voting with Fuzziness 83

4.6.3.1. Construction of µ, µ-Fuzzy Bingo Voting 83
4.6.3.2. Fuzzy Bingo Voting with Write-In Support 85

4.6.4. Discussion . 85
4.6.5. Fuzziness and Coercion-Resistance 85

5. Coercion Resistance in Internet Elections 87
5.1. Related Work . 88

5.1.1. Remote Voting Schemes Used in Practice 88
5.1.2. Related Work on Revoting . 89
5.1.3. Related Work on Delegated Voting 90

5.2. Revoting . 90
5.2.1. Requirements for Revoting . 90

5.2.1.1. Information which Betrays a Re-Vote 90
5.2.1.2. Tallying Recast Votes Correctly 91

5.2.2. An Approach: Revoting in Five Phases 91
5.2.2.1. The Idea of our Approach 92
5.2.2.2. Overview over the Five Phases 92

5.3. An Instantiation of our Revoting Scheme 95
5.3.1. Overview over the Used Techniques 95
5.3.2. Participants . 96
5.3.3. Assumptions about the Setup 96
5.3.4. Protocol Description . 97

5.3.4.1. Pre-Voting Phase . 97
5.3.4.2. Voting Phase . 98
5.3.4.3. Post-voting phase . 100

5.3.5. Discussion . 102
5.3.6. Security Discussion . 103

5.3.6.1. Privacy Properties 103
5.3.6.2. Verifiability . 104

5.3.7. Analysis with the Taxonomy 105
5.4. Delegated Voting . 106

5.4.1. Liquid Democracy and Delegated Voting in a Nutshell 106
5.4.1.1. Bryan Ford’s Rules for Delegated Voting 106
5.4.1.2. Anomalies in Elections with Vote Delegation 107

xii Contents

5.4.2. Requirements Specific to Voting Schemes with Vote Delegation 107
5.4.3. Agora: An Existing Solution 109

5.4.3.1. Pre-Voting Phase . 109
5.4.3.2. Proxy’s Voting Phase 110
5.4.3.3. Voter’s Voting Phase 110
5.4.3.4. Vote Delegation . 110
5.4.3.5. Post-Voting Phase 110
5.4.3.6. How does Simplified Agora Fulfil the Additional Re-

quirements? . 110
5.4.3.7. Coercion-Resistance of Simplified Agora 111

5.4.4. Vote Fetching . 112
5.4.4.1. Motivation for Vote Fetching 112
5.4.4.2. Possible Difficulties with Vote Fetching 113

5.4.5. Fetch-and-Cast: A Delegated Voting Scheme with Vote Fetching113
5.4.5.1. Setup and Pre-Voting Phase 114
5.4.5.2. Proxy’s Vote Generation Phase 114
5.4.5.3. Voter’s Voting Phase 114
5.4.5.4. Post-Voting Phase 114
5.4.5.5. Possible extensions 114
5.4.5.6. How does the scheme meet the requirements above? . 115

5.4.6. Discussion . 116

6. Conclusion and Future Work 117

Appendix 131
A. Analysis of the German Paper Election 131

A.1. General Information about the voting scheme 131
A.2. Analysis of the Requirements 132
A.3. Conclusion of the Analysis . 137

B. Analysis of the Student Parliament Election 137
B.1. Preliminaries about the Voting Scheme 138
B.2. How the Requirements are met 139
B.3. Conclusion of the Analysis . 145

C. Analysis of our Revoting Scheme . 146
C.1. General Information about the Voting Scheme 146
C.2. Analysis of the Requirements 147
C.3. Conclusion of the Analysis . 152

D. Analysis of Prêt à Voter . 153
D.1. General Information about the voting scheme 153
D.2. Analysis of the Requirements 154
D.3. Conclusion of the Analysis . 159

E. Analysis of Scantegrity II . 160
E.1. General Information about the Voting Scheme 160
E.2. Analysis of the Requirements 161
E.3. Conclusion of the Analysis . 165

1. Introduction

An election, in its simplest form, is the process of making a decision together, by
jointly choosing one element out of a set of possible choices. The easiest way to do
this is that every voter who is allowed to participate in the election tells her preferred
choice to all others, and in the end, the voters jointly calculate the result. However,
with this approach, the voter’s choice in not confidential, voters can be manipulated
by bribe, hectoring and coercion, rather than making an uninfluenced, free choice.
For this reason, secrecy has become one of the basic principles of elections. At the
same time, the participants of an election need to be able to convince themselves
that the outcome of the election is correct, without revealing a single voter’s choice.
There is an established method to achieve this: the traditional paper election,

which has been used for decades in the German governmental elections, and in
similar form with similar principles in various other democratic countries [fSoiE90].
The traditional paper election is generally accepted because of its easily assessable
components and its transparency. It offers fundamental properties, making it a
prime example of what an election scheme should achieve:

• The voter’s choice is kept secret: the voter marks her ballot in a voting booth,
folds it and enters it into a ballot box. No one can see how she has filled out
her ballot. By the time her ballot is taken out for counting, the connection to
the voter is no longer deducible.

• The election scheme is receipt-free: the voter cannot prove to another person
how she voted, which prevents vote buying and coercion.

• The whole election process, including the tally, is verifiable: the election is
observable from beginning to end. Observers can check that only eligible
voters are allowed access to the voting process, that each voter enters only one
ballot into the ballot box and that the ballots in the ballot box are counted
correctly.

The traditional paper election seems hard to excel concerning security, under-
standability and acceptance, for good reason. However, it requires a high capacity
in paper and, due to the counting process by hand, a lot of working time of poll

1

2 1. Introduction

workers. Both the counting process and the voting process itself are error-prone. Es-
pecially in complex elections, voters often cast invalid ballots unintentionally. The
obvious solution to these problems - computer-aided support and automatization -
has led to the introduction of voting machines, and electronic voting in general. An
electronic vote casting interface could help the voter to cast a valid ballot. The tally
could be done electronically which would be much faster and less error-prone. More-
over, electronic voting introduces the possibility of casting ballots via the internet,
which promises to increase voter turnout.
However, electronic voting makes the once so transparent process of voting very

opaque. Voting machines are seen as black boxes by voters. It is not obvious
to see that a ballot is recorded as it was filled-out by the voter, or that all cast
ballots are counted correctly, since the ballot no longer has a physical representation
which is accessible for the voter. Malicious software could break privacy, influence
voters improperly, manipulate cast votes and output a wrong tally. Testing complex
hardware and software systems reliably is very difficult. The situation becomes even
more challenging when elections are conducted over the internet, where the voter
does not interact with most system components in person, and the correct processing
of ballots seems impossible to observe.
All this shows the importance of mechanisms which prove the correctness of an

election, independent of their implementation. Rivest and Wack call this Software
independence [RW06].
Cryptographic voting schemes use cryptographic methods to prove that the elec-

tion result is correct. These proofs ideally do not depend on any implementation and
can be verified by anyone. Also, each voter should be able to convince herself that
her choice is included in the counting process as it was intended and filled-out by
the voter. This requirement seems to be in competition with secrecy and coercion-
resistance, since such proofs of correctness receive the voter’s choice as input in some
form, and need to prove that this input was processed correctly, without revealing
information about it.
In fact, in the e-voting community, there has been a long-standing debate about

vote secrecy and certain levels of coercion-resistance versus verifiability. And yet,
one cannot be considered without the other. The stronger the level of secrecy and
coercion-resistance, the more opaque becomes the voting process, the more convinc-
ing proofs of correctness are necessary. The advocates of secrecy argument that, on
the other hand, without coercion-resistance, one cannot be sure if the tally really
reflects the will of the voters, so without coercion-resistance, we cannot speak of
verifiable correctness of the tally.
Moreover, both requirements have impact on other aspects of a voting scheme, like

its robustness, or its suitability for large-scale elections. This leads to the question
of suitable design criteria for voting schemes. In fact, research on electronic voting
has been done for several decades, resulting in a huge variety of voting schemes,
designed along heterogeneous aspects, resulting in largely differing concepts. This
is reflected in the fact that the widely agreed on requirements of coercion-resistance
and verifiability are defined in various ways, under differing underlying models. And
still, there are election types for which the task of achieving coercion-resistance is
particularly challenging and not yet achieved.
The aim of this work is twofold. First, we introduce a taxonomy with which

the existing variety of voting schemes can easily be analyzed and compared. The
taxonomy offers design criteria for new voting schemes. It also offers a tool for

1.1. Contributions of this Work 3

analyzing if a new voting scheme fulfills basic requirements, and what its strengths
and weaknesses are, independent of its underlying formal model.
The second part works towards achieving coercion-resistance in three special cases.

One of them are elections with write-in candidates, where additionally to a candi-
date list from which the voter can choose, she has the possibility to write a name on
her ballot which is not in this list. An adversary can use this to coerce the voter to
vote for a recognizable write-in candidate. Another special case occurs in internet
elections. As a countermeasure to observation, or simply to get familiar with the
voting system, voters are often allowed to cast more than one valid ballot, of which
only the last ballot is included in the tally. However, if the adversary learns whether
the voter has revoted, he can coerce her to cast a certain ballot and then not cast
another ballot afterwards. A rather young challenging paradigm is vote delegation,
where the voter can either cast a vote by herself, or delegate her decision to an-
other eligible voter. The correct delegation needs to be proven to the voter without
showing the adversary whether the voter has delegated her vote to him.

1.1. Contributions of this Work
The contributions of this work are presented in three parts. The first part dis-

cusses requirements of voting schemes. The second and third part discuss coercion-
resistance in presential and internet elections, respectively.

1.1.1. Requirements of Voting Schemes
The first two contributions center around requirements of voting schemes:

• We introduce a taxonomy with which voting schemes can be analyzed consis-
tently. This Taxonomy is an advanced version of the work in [CvdGRV07].
Its advancement is joint work with Jeroen van de Graaf, Dirk Achenbach and
Bernhard Löwe. Our main contribution is a roadmap which helps analyzing
voting schemes according to a list of criteria. We provide a catalog of questions,
which allows us to easily and quickly categorize and compare different voting
schemes, estimate which criteria they achieve to what extend, and what the
strengths and weaknesses of these schemes are. We demonstrate our taxonomy
on various voting schemes.

• We give a brief review of definitions of coercion-resistance and discuss how
they can deal with write-in candidates, and with the possibility of revoting.

1.1.2. Presential Elections
The second part of this thesis discusses practical experiences as well as several

matters of coercion-resistance in presential elections:

• We introduce our implementation and real-world experiences with Bingo Vot-
ing. We describe practical experiences and discuss coercion-resistance aspects.
Then we analyze this election with our taxonomy and compare the analysis to
our experiences.

• Though Bingo Voting has turned out to be very flexible, it does not allow for
write-in candidates in its original version. To make the scheme more broadly
applicable, we equip it with write-in candidate support.

4 1. Introduction

• Coercion resistance of election schemes which allow write-in candidates is hard
to measure, existing definitions are often impossible to fulfill with write-in
candidates. But coercion-resistance for write-in votes is possible if the tally is
published in a fuzzy way. This work introduces a first definition for a controlled
fuzzy tally representation, as well as a technique which meets this definition
while maintaining verifiability. The definition is very similar to k-anonymity,
a security definition for privacy in databases used for data mining.

• After introducing our general approach, we provide Bingo Voting, as well as
its version which supports write-in candidates, with the possibility of a fuzzy
but provable tally representation. To our knowledge, the scheme introduced
is the first to provide coercion-resistant and publicly verifiable elections with
write-in candidates.

1.1.3. Internet Elections
The third part of this thesis discusses coercion-resistance in internet elections:

• In internet elections, we cannot assume that each voting process takes place
in private. This opens doors for coercion because it becomes easier for an
adversary to observe the voter.
On a closer look, the seemingly intuitive solution to this problem, allowing
revoting, turns out to be more challenging than it seems at first sight. The
voter now needs to be proven that her most current ballot is counted even
though she has cast provably valid ballots before. Moreover, the public wants
to be proven that of each voter, only one vote counts. However, such a proof
must by no means yield the information whether the voter has made use of her
possibility to revote. Otherwise, the adversary could observe the voter once
and then coerce her not to cast a vote again afterwards. This work introduces
a voting scheme which allows incoercible revoting with verifiable correctness
of the processing of revotes.

• Delegated voting is an election type which implements a so-called Liquid
Democracy. In elections which allow vote delegation, each voter can choose
to either vote by herself or give the weight of her ballot to a so-called proxy,
another eligible voter of the voter’s choice, who then votes in her stead. This
introduces interesting new security challenges, because instead of merely prov-
ing tally correctness, the voter also has to be provided with a proof that her
vote has been delegated to the right proxy. But to prevent coercion, this proof
must by no means enable the voter to convince a proxy that she delegated her
vote to him. An additional requirement to such elections is usually that the
voter can change her mind at anytime, taking away delegations from proxies
and voting by herself instead, or delegating to another proxy. In this work, our
solution to the revoting problem is applied to delegated voting, in combination
with a new paradigm we call vote fetching.

1.2. Structure of this Work
This work is organized as follows. In Chapter 2, we present preliminaries and

cryptographic building blocks. Chapter 3 contains our taxonomy for cryptographic
voting schemes and a review of existing definitions of coercion resistance with re-
spect to write-in candidates and revoting. Chapter 4 discusses coercion-resistance in

1.2. Structure of this Work 5

presential elections on the example of Bingo Voting, and describes our practie expe-
riences with the scheme in the student parliament election 2008. The main part of
the chapter then concentrates on write-in candidates, including definitions and tech-
niques for a fuzzy tally representation. This is followed by Chapter 5 which discusses
coercion-resistance in internet elections while mainly centering around the revoting
problem. After introducing our revoting solution, we introduce vote fetching and
merge the two concepts to a voting scheme which allows incoercible vote delegation.
Chapter 3-5 each open with related work relevant to the respective chapter. Chap-
ter 6 concludes this work with a short summary of our results, open problems and
possibilities for future work.

2. Preliminaries

This chapter first gives an intuition of what cryptographic voting schemes are, and
how they achieve the two main properties of verifiability and privacy. After this,
some known attacks on coercion-resistance are described, to give a first intuition
of some possible pitfalls. The rest of this chapter then introduces preliminaries on
cryptographic primitives which are important for this work.

2.1. What are Cryptographic Voting Schemes?
Cryptographic voting schemes are voting schemes which use cryptographic meth-

ods to achieve certain requirements. Usually, the minimum which is to be achieved
is public verifiability to a certain extend, and certain privacy-type properties. This
section gives a short overview over these notions before giving an intuition of how
these properties are usually achieved in cryptographic voting schemes.

2.1.1. Privacy-type properties
Privacy in its simplest form means that no one but the voter can see which choice

the voter casts. But privacy is often not enough. To prevent voters from improper
influence through coercion or vote-buying, it is important that even in full coop-
eration with the adversary, the voter cannot convince the adversary that she has
followed his instructions. If, from the adversary’s point of view, a full cooperation
of the voter is indistinguishable from the situation where the voter follows her own
will, the adversary is likely not willing to pay the voter, and a coercion is useless for
the same reason. The following privacy-type notions have been established in the
literature:

• Privacy: The voter has the possibility to cast her ballot in a way that no
third party learns her choice.

• Receipt-Freeness: The voter obtains no data which allows her to create
a convincing proof that she has cast a certain choice. So even with a fully
cooperating voter, the adversary is not able to deduce the voter’s choice.

• Coercion-Resistance: Even a fully cooperating voter cannot convince the
adversary that she has followed his instructions in a way which affects her
choice. This property is also called incoercibility.

7

8 2. Preliminaries

Relations between privacy-type properties
Obviously, receipt-freeness is a stronger notion than privacy. It has been intro-

duced in [BT94] and basically states the requirement that privacy should not be
optional. The difference between receipt-freeness and coercion-resistance might not
be as obvious. Receipt-freeness is the weaker notion since it only demands that the
voter cannot provably reveal her choice. Coercion-resistance demands that even if
the adversary does not learn the voter’s choice, he cannot take any influence which
affects her choice in any visible way. In Juels et al. [JCJ05], the difference between
receipt-freeness and coercion-resistance is described via three separating examples:

• Randomization attack: The adversary does not learn the voter’s choice,
but can force her to cast a vote for a random candidate instead of her choice.

• Forced abstention attack: The adversary can coerce the voter not to par-
ticipate in the election. We also speak of forced abstention if the adversary
can coerce the voter to cast an invalid ballot.

• Simulation attack The adversary coerces the voter to reveal all her keying
material to him, so the adversary can impersonate the voter and vote in her
stead.

Everlasting privacy
A somewhat orthogonal privacy-type property is everlasting privacy [MN06]: pri-

vacy holds in an information-theoretic sense and does not depend on cryptographic
assumptions. Everlasting privacy is implied by neither above mentioned privacy
property and implies neither. It is, however, an important topic when talking about
coercion-resistance. It guarantees that even in, say, 20 years or more, voter pri-
vacy still holds. In most voting schemes, privacy depends on the encryption scheme
which is used to encrypt the ballot, which in turn usually depends on certain cryp-
tographic assumptions. One could argue that everlasting privacy is necessary to
achieve incoercibility, since the adversary could threaten to break privacy even-
tually and then find out the voter’s choice. General techniques to achieve ever-
lasting privacy in homomorphic and mixnet-based voting schemes have been pre-
sented [DvdGSdSA12, BDvdG13]. In this thesis, everlasting privacy is not consid-
ered as a main topic, but is always kept in mind as an important future research
direction.

2.1.2. Verifiability
The three most important notions of verifiability are the following:

• Individual verifiability: The voter can check that her ballot is recorded
correctly and included in the tally.

• Universal verifiability: Everyone can check that the tally is computed cor-
rectly.

• End-to-End verifiability: Every voter can check that her ballot is included
in the tally and processed correctly, and that the tally is then done corectly.

2.2. Known Attacks on Coercion-Resistance 9

End-to-End verifiability (E2E) is believed to hold if both individual and universal
verifiability are given. The voter can track her ballot until it enters the tally, where
it is unlinked from the voter’s identity, but processed correctly together with the
other ballots in a provable and verifiable way. E2E is an important paradigm to
achieve software independence[RW06]: the correctness of the tally can be verified
independently of the implementation of any voting computers or election servers.

2.1.3. Types of Cryptographic Voting Schemes
In the literature, there are three main techniques which have been established

to achieve privacy-type properties and verifiability simultaneously, dividing existing
cryptographic voting schemes mainly into three groups.

1. Voting schemes based on anonymous channels: The ballot is unlinked
from the voter before casting: she gets an anonymous credential for voting.
This credential can have the form of a token [JCJ05] or a blind signature
[Oka98] and does not reveal the voter’s identity. The credential proves that a
ballot has been cast by an eligible voter. Since the ballot is not linked to the
voter upon casting, it can be opened and counted.

2. Voting schemes based on verifiable shuffling: The second group consists
of mix-based voting schemes [SK95, Nef01, Adi08, BMQR07], where voters
cast their ballots in form of a rerandomizable ciphertext or a commitment.
These ballots are then unlinked from the voter’s identity by shuffling and
rerandomizing them, and proving the correctness of the shuffling process. After
the ballots are shuffled, they can be opened and counted.

3. Voting schemes based on homomorphic tallying: The voter casts her
ballot encrypted with a homomorphic encryption function. The election re-
sult is then computed without opening a single ballot. Instead, the homo-
morphic property is used to compute the sum on the ciphers. The cipher-
text containing the sum is then opened and the correctness of the decryp-
tion is proven. Examples for voting schemes in this group can be found in
[CGS97, Acq04, DvdGSdSA12].

The separation between the groups is blurry: voting schemes in the first group
might use a mixnet to achieve an anonymous channel, and a homomorphic tallying
procedure can often be substituted by a mixnet and vice versa. This work mainly
introduces voting schemes based on the second group.

2.2. Known Attacks on Coercion-Resistance
There are several known attacks on voting schemes which affect coercion-resistance.

Most of them can be met with standard measures. A similar overview over known
attacks is given in [Hen12].

Pattern Voting
In some voting schemes the voter can be coerced to fill out her ballot on a certain

pattern. This is the case for each election where the voter does not cast a 1 out of
n choice. The voter can be coerced to distribute her choices in a certain pattern.
In this case, the attack can easily be prevented by vote splitting, as mentioned in
[PS07]. In some voting schemes like Punchscan [PH10] or Prêt à Voter [CRS05],

10 2. Preliminaries

where receipt-freeness relies on the permutation of candidates, the voter can still be
coerced to fill out her ballot in a certain pattern, for example by forcing her to mark
the first choice regardless of what candidate this choice encodes. This would be an
example for the randomization attack mentioned in Section 2.1.

Mixnets and homomorphic encryption
If the ballot is encrypted with Elgamal or another homomorphic scheme, the

adversary can encrypt his vote for example as E(2) · E(vC) = E(2vC), where vC is
the coerced voter’s choice, and see if 2vC appears after mixing and opening. The
adversary casts an invalid ballot but breaks voter privacy of this voter. This way,
the adversary could coerce 2k voters, coerce voter i to vote for candidate vi for
i = 1, . . . , k, and coerce voter k+ i to cast E(i) ·E(vi). So the adversary has caused
k invalid ballots that contain information about the k other ballots.
To prevent this, upon casting an encrypted vote, the voter has to prove that the

contained plaintext is valid, as is usually done in voting schemes with homomorphic
tallying, or by letting the voter prove knowledge of the encrypted plaintext.

Babble attack
A so-called babble attack on the voting scheme of Moran and Naor [MN06] was

described in [BMQR07]. The idea is that the adversary has an audio connection to
the voter during the voting phase, and whenever the voter is to input randomness
which has recognizable impact on any published data, the adversary dictates the
randomness to the voter.

Shoulder Voting
If an election is held over the internet, voter privacy cannot be guaranteed. The

voter can be observed during the voting process, for example by family members
and friends. This is called shoulder voting or family voting. Measures against this
attack are introduced in Section 5.

2.3. Cryptographic Primitives
In this section, the cryptographic primitives used in this work are introduced.

2.3.1. General Definitions
Before the cryptographic primitives are described, we start with some general

definitions and notions.

2.3.1.1. Probabilistic Polynomial Time (PPT) Algorithms
Most algorithms used in this work are probabilistic; they can be thought of as

Turing machines which can flip coins [Gil74], i. e. choose certain randomness during
their runtime. A probabilistic polynomial time (PPT) algorithm is a probabilistic
algorithm which terminates within polynomial time, i. e. its runtime is bounded by
a polynomial of its input length. We call such an algorithm efficient. We call a
problem computationally infeasible, if there is no PPT algorithm which can solve
the problem. We speak of these problems as hard in certain algebraic structures.
Many cryptographic primitives are based on such underlying problems. Two ex-

amples are the discrete logarithm problem and the decisional Diffie-Hellman problem
described below.

2.3. Cryptographic Primitives 11

2.3.1.2. Discrete Logarithm Problem
The security of many cryptographic primitives is based on the discrete logarithm

problem. Examples used in this work are the Elgamal encryption and Pedersen
commitments.

Definition 1 (Discrete Logarithm Problem) Let G be a cyclic group of prime
order p, a ∈ G. Given an element c ∈ G, the discrete logarithm problem (DLog
problem) is to find an exponent x ∈ Zp with ax = c.

The discrete logarithm problem is generally believed to be hard if the group order
p is appropriately chosen.
2.3.1.3. Decisional Diffie-Hellman Problem
Related to the discrete logarithm problem is the decisional Diffie-Hellman problem

[Bon98]. If the decisional Diffie-Hellman problem is hard, the DLog problem is also
hard.

Definition 2 (Decisional Diffie-Hellman (DDH) Problem) Let G be a cyclic
group of prime order p with a generator G ∈ G. Given (G,Ga, Gb, Gc), the decisional
Diffie-Hellman problem is to decide whether c = ab.

2.3.1.4. Negligible and Overwhelming Functions
As usual in the literature, a function f : N → R is called negligible, if for every

constant c > 0 there is an n0 ∈ N such that for every n > n0 it holds that f(n) ≤ 1
nc .

A function f is overwhelming if 1− f is negligible.

2.3.2. Cryptographic Hash Functions
In general, a hash function

h : {0, 1}∗ → {0, 1}k

maps an element m ∈ {0, 1}∗ of arbitrary length to an element h(m) ∈ {0, 1}k of
fixed length k. We call h(m) the hash value of m. A cryptographic hash function is
a hash function with the following properties:

• Efficiency: The function h is efficiently computable, i. e. there exists a PPT
algorithm which computes h.

• Preimage-Resistance: Given a hash value c ∈ {0, 1}k, it is computationally
infeasible to compute a message m ∈ {0, 1}∗ with c = h(m).

• Collision-Resistance: It is computationally infeasible to find two messages
m1,m2 ∈ {0, 1}∗ with h(m1) = h(m2).

We call a pair (m1,m2) with h(m1) = h(m2) a collision. Since {0, 1}k $ {0, 1}∗,
h cannot be injective, so there are always collisions, but it should be hard to find
them.

2.3.3. Public Key Encryption Schemes
Intuitively, an encryption scheme E defines an encryption function Enc, with

which messages from a plaintext space M can be encrypted with a public key pk,
also called an encryption key, to obtain a ciphertext c, also called an encryption, in
a ciphertext space C. The ciphertext c can later be decrypted with an decryption
function Dec and a secret key sk to obtain the original message m ∈M. The secret
key sk is often also called a decryption key or a private key.

12 2. Preliminaries

2.3.3.1. Definition of Public Key Encryption Schemes
More formal, an encryption scheme E = (Setup,KeyGen,Enc,Dec) consists of

four efficiently computable algorithms, which are defined as follows:

• Setup(k) 7→ gs is a randomized algorithm which takes as input a security
parameter k and outputs an algebraic structure which we call a group setup
gs, in which encryptions can be created. The group setup gs defines a plaintext
space M, a ciphertext space C and a key space K.

• KeyGen(gs, k) 7→ (sk, pk) is a randomized algorithm which takes as input a
security parameter k and outputs a keypair (sk, pk) ∈ K, whereas sk is referred
to as a decryption key, and pk is called the encryption key.

• Enc(pk,m) 7→ c takes as input a message m ∈ M and a public key pk, and
outputs a ciphertext c ∈ C. We call m a plaintext and c a ciphertext.

• Dec(sk, c) 7→ m takes as input a ciphertext c ∈ C and a decryption key sk,
and outputs a plaintext m ∈ M with Enc(pk,m) = c, if such an m exists.
Otherwise, it outputs ⊥.

Each algorithm might take additional input. Sometimes, Enc additionally takes
as input some randomness r, or is assumed to choose a random parameter r which
it uses in the encryption process, such that the same plaintext can be encrypted to
different ciphertexts. In this case, we call Enc probabilistic.
An encryption scheme must be correct, i. e. for all m ∈M and key pairs (sk, pk)

generated by KeyGen it must hold that Dec(sk, Enc(pk,m)) = m with overwhelm-
ing probability.

2.3.3.2. Reencryption
Some probabilistic encryption functions allow to be rerandomized, i. e. there exists

an algorithm Reenc(c, r), which takes as input a ciphertext c and a parameter r,
which we call the reencryption randomness, and creates a new ciphertext

c′ := Reenc(c, r).

The ciphertext c′ contains the same plaintext message as c, but c′ 6= c. In the
following we omit the parameter r when it is clear from the context or implicitly
chosen by the reencryption algorithm.

Definition 3 (Rerandomizable) We call an encryption function Enc rerandom-
izable, if a function Reenc exists, such that for each ciphertext c in the underlying
ciphertext space, Reenc(c) is indistinguishable from a new ciphertext which encrypts
another plaintext. We call Reenc the reencryption function of Enc.

2.3.3.3. The Elgamal Encryption Scheme
The Elgamal encryption scheme [ElG85] is an asymmetric encryption scheme in-

troduced in 1984 by Taher Elgamal. It is IND-CPA-secure [GM84, BDPR98, Bon98]
under the decisional Diffie-Hellman assumption.
An Elgamal encryption scheme (Setup,KeyGen,Enc,Dec) is a public key en-

cryption scheme with the following algorithms:

2.3. Cryptographic Primitives 13

• Setup(k) is a randomized algorithm which on input of a security parameter
k chooses a cyclic group G of prime order p ≥ 2k and a generator g ∈ G. It
outputs the group setup gs := (p,G, g). The plaintext space is then the group
G, and the ciphertext space is G×G.

• KeyGen(gs, k) takes as input a security parameter k and a group setup gs,
and chooses an x ∈ Zp at random, the secret key. It computes a corresponding
public key y := gx ∈ G. It outputs the key pair (x, y).

• Enc(y,m) is a probabilistic algorithm which takes as input a public key y ∈ G
and a message m ∈ G, chooses a random r ∈ Zp and outputs the ciphertext

c := (gr, yrm).

• Dec(x, c) takes as input a secret key x ∈ Zp and a ciphertext c = (a, b) ∈ G×G,
and outputs the message

m = a−xb.

The Elgamal encryption scheme has some properties that are very useful for cryp-
tographic voting schemes. One of these properties is that it is plaintext aware:
the sender of an Elgamal-encrypted message can prove knowledge of its plaintext
without revealing information about it, for example by using the Schnorr-protocol
[Sch91]. In e-voting schemes, we need this property to prevent the voter from casting
a ciphertext given to him by the adversary, or depending her input on the encrypted
ballot of another voter. A proof of correct decryption can be done with the Chaum-
Pederson protocol[CP93], which enables a server which creates an election result
from Elgamal-encrypted ballots to prove the correctness of the result.

Homomorphy of the Elgamal encryption
The Elgamal encryption function Enc is multiplicatively homomorphic under com-

ponentwise multiplication: given two messages m1,m2 ∈ G, we have that

Enc(m1) ◦ Enc(m2) = Enc(m1 ·m2),

where ◦ denotes componentwise multiplication. This holds because for two cipher-
texts c1 = (gr1 , yr1m1) and c2 = (gr2 , yr2m2), we have that

c1 ◦ c2 = (gr1gr2 , yr1m1y
r2m2) = (gr1+r2 , yr1+r2m1m2).

Reencryption
Since Elgamal is multiplicatively homomorphic, it allows an easy way of reencryp-

tion without knowledge of the encrypted plaintext, by multiplying a ciphertext with
an encryption of the neutral element of G:
Let c = (gr, yrm) be an Elgamal ciphertext, then we can create a reencryption of

c by choosing a random number r′ ∈ Zp and calculating

c′ = (gr, yrm)(gr′ , yr′) = (gr+r′ , yr+r′m).

The new ciphertext c′ is an encryption of the same message m, but with new
randomness r + r′.

14 2. Preliminaries

Threshold Elgamal
The Elgamal encryption scheme can be set up in a way that decryption can

be distributed among several parties. We call this threshold Elgamal. For a full
description of threshold Elgamal, the reader is referred to the original paper of
Pedersen [Ped91b], an explanation is also given in [CGS97]. Intuitively, several
different parties P1, . . . , Pk each create their own key pair (ski, pki), i = 1, . . . , k.
The keys ski are kept secret, the pki are accumulated to a joint public key pk. The
keys are setup in a way that the different parties share a secret s which is the Elgamal
decryption key corresponding to pk.
An encryption with threshold Elgamal is an ordinary Elgamal encryption with

public key pk. However, decryption can only be done jointly by all k parties who
share the secret s. If only one of them is missing, decryption is impossible. In this
process of decryption, the secret s is never reconstructed in plaintext, therefore it
remains unknown to the participating parties.
In voting schemes, this is used to distribute the task of decrypting ballots to

several servers, to prevent a single server from decrypting a ballot while it is still
linked to the voter’s identity.

2.3.4. Commitment Schemes
The purpose of a commitment scheme is to enable a party to commit to a value

m without revealing it, and optionally opening it at a later time to prove the com-
mitment to m.

2.3.4.1. Definition of Commitment Schemes
A commitment scheme (Setup, Com,Unveil) consists of three algorithms Setup,

Com and Unveil defined as follows:

• Setup(k) 7→ gs takes as input a security parameter k and outputs a group setup
gs for the creation of commitments. The group setup gs implies a message
space M, a commitment space C and a randomness space R.

• Com(m, r) 7→ c takes as input a message m ∈M and randomness r ∈ R, and
creates a commitment c ∈ C. We call the randomness r the unveil information
of c.

• Unveil(c, r) 7→ m takes as input a commitment c ∈ C and unveil information
r ∈ R, and outputs a message m with c = com(m, r).

A commitment scheme has the following two properties:

• Binding: The commitment function Com is computationally binding if for
any pair (m, c) = com(m, r)) ∈ M × C, it is computationally infeasible to
find another message m′ 6= m and unveil information r′ with c = com(m′, r′).
We call a commitment function perfectly binding, if no pair (m′, r′) exists with
m 6= m′ and c = com(m′, r′).

• Hiding: The commitment function Com is computationally hiding if for any
commitment c = com(m) ∈ C it is computationally infeasible to open the
commitment c, i. e. find out m without the knowledge of m and r. It is
perfectly hiding, if opening c is impossible without knowledge of r.

2.3. Cryptographic Primitives 15

It is proven in [Dam99] that a commitment scheme cannot be both perfectly
binding and perfectly hiding. For e-voting schemes, commitment schemes which are
perfectly hiding are usually preferred, since the hiding property affects the privacy
of the voter’s choice. Computationally binding is often sufficient since the binding
property only needs to hold until proofs of correctness of the tally are created, which
is usually during or immediately after the election, so this property only needs to
hold “long enough”.

2.3.4.2. Pedersen Commitments
Pedersen commitments were originally introduced by Chaum et al. in [CDvdG87],

but have been called Pedersen commitments after they were also described by Peder-
sen in [Ped91a]. The Pedersen commitment scheme consists of the three algorithms
Setup, Com and Unveil which work as follows:

• Setup(k) takes as input a security parameter k and creates a cyclic group G
with prime order p, and two generators g and h of G. It outputs the group
setup gs := (p,G, g, h).

• Com(m, r) takes as input a message m ∈ G and randomness r ∈ Zp and
outputs the commitment

c := gmhr ∈ G.

• Unveil(c,m, r) takes as input a commitment c ∈ G with c = Com(m, r) and
outputs the unveil information (m, r).

Pedersen commitments are unconditionally hiding and computationally binding:
for each commitment c = Com(m, r) and each message m′ ∈ G there is an r′ ∈ Zp
with Com(m′, r′) = c, but a discrete logarithm must be computed to find such an
r′. For this reason, Pedersen commitments are computationally binding with the
binding property depending on the discrete logarithm problem.
Pedersen Commitments are often used in cryptographic voting schemes since they

have useful properties. For example, they are multiplicatively homomorphic. Using
this property, they can be masked without knowing their content, and the correct
masking can be proven with merely knowing the masking randomness. Masking for
commitment schemes is the analog of reencryption for encryption schemes: it is a
rerandomization of a given commitment.

Masking Pedersen commitments
Pedersen commitments can be masked, i. e. rerandomized, without knowledge of

their contents, in the following way:
Let (p,G, g, h) be the group setup of a Pederson commitment scheme. A commit-

ment c = gmhr of a message m ∈ G can be masked by choosing a random r′ ∈ Zp
and computing the new commitment

c′ := c · hr′ .

We have
c′ = chr

′ = gmhrhr
′ = gmhr+r

′
,

so c′ is also a commitment to the message m, but with new randomness r + r′.

16 2. Preliminaries

2.3.5. Zero-Knowledge Proofs
Informally stated, zero-knowledge proofs [GMR85] are proofs with which a prover

proves a statement A to a verifier, without leaking any information other than the
fact that A is true.
A zero-knowledge proof has the following properties:

• Completeness: An honest prover is always able to convince an honest verifier
that the statement A is true.

• Soundness: A dishonest prover is not able to convince an honest verifier that
the statement A is true. We speak of computational soundness, if no dishonest
PPT prover can convince the verifier that a false statement A is true. Alterna-
tively stated, a dishonest prover can convince the verifier only with negligible
probability. We speak of perfect soundness, if this probability is 0, i. e. an
unbounded dishonest prover is unable to convince the verifier that A is true.

• Simulatability: With only the knowledge of A, the verifier is able to generate
a simulated transcript which is indistinguishable from the transcript of an in-
teraction between the prover and the verifier, in which a valid proof of A is
created. This is modeled by the existence of a simulator which can create such
simulated transcripts. This property is often referred to as the zero-knowledge
property. We speak of perfect zero-knowledge, if the transcript created by the
simulator is perfectly indistinguishable from a valid proof. We speak of com-
putational zero-knowledge, if the transcript of the simulator is computationally
indistinguishable from a valid proof, i. e. there is no PPT algorithm which
can distinguish if the transcript is from an honest prover or a simulator in
polynomial time.

If soundness is achieved only computationally, the literature speaks of a zero-
knowledge argument, and uses the notion proof only in the case of perfect soundness.
We relax this notion in this work and use the word proof also for zero-knowledge
arguments. A zero-knowledge proof is usually an interaction between the prover
and the verifier, and convinces only the verifier that the statement A is true, since
because of the zero-knowledge property, the verifier can simulate the proof. We
call a zero-knowledge proof a non-interactive zero-knowledge proof (NIZK), if it is
non-interactive. Often the statement A depends on a secret witness w. A zero-
knowledge proof is called a zero-knowledge proof of knowledge, if the prover proves
that he knows a witness w which makes the statement A true. Weaker forms of
zero knowledge are the notions witness hiding or witness indistinguishable. A proof
of a statement A is witness hiding, if it hides the witness w but may leak other
information. A proof of a statement A is witness indistinguishable, if in the case
that more than one witness exists which makes the statement A true, the proof does
not leak which witness w is used in the proof, but it may leak other information.

2.3.6. Verifiable Shuffling and Mixnets
An important cryptographic primitive often used in cryptographic voting schemes

is verifiable shuffling. It is, next to homomorphic tallying and anonymous channels
[JCJ05], one of the three most used techniques to unlink a plaintext ballot from the
voter’s identity, i. e. achieving vote privacy. There are generally two types of shuffles,

2.3. Cryptographic Primitives 17

namely re-encryption mixes and decryption mixes. In this work, we only use re-
encryption mixes, and use the words shuffle and re-encryption mix interchangeably
from now on.
In general, a re-encryption-mix computes a function shuffle(C) 7→ C ′, which gets

as an input a list
C := [c1, . . . , cn]

of rerandomizable ciphertexts. Its output is a list

C ′ := [c′π(1), . . . , c
′
π(n)]

of ciphertexts, where π is a random permutation and c′π(i) := Reenc(ci) for i =
1, . . . , n, and Reenc is the reencryption function used for rerandomizing the ciphers
c1, . . . , cn. Since in the shuffling procedure, a reencryption of each ciphertext is com-
puted, the function shuffle also takes as input the randomness used for reencryption.
We omit this in the notation for clarity.
For its use in e-voting schemes, we wish a shuffle to have the following properties:

• Secrecy: We say that the shuffle is secret if it is infeasible to establish a link
between an input ciphertext ci and its corresponding output ciphertext cπ(i)
better than guessing.

• Verifiability: We say that a shuffle is verifiable, if there exists a proof that
C is indeed a permutation and rerandomization of C ′, i. e. for each c′ ∈ C ′

there exists a ci ∈ C with c′ = Reenc(ci), and vice versa: For each c ∈ C there
exists a c′ ∈ C ′ with c′ = Reenc(c).

Intuitively, verifiable means that an outsider can verify that no element was lost,
added or changed in the shuffling process.
Several techniques for verifiable shuffling and mixnets building on them have been

introduced: [Nef01, SK95, Gro02, KMW12, Wik04, AH01, GJJS04] to name just a
few. A review on mixes was presented in [Adi06]. Verifiable shuffling of commitments
or ciphertexts is used in several parts of this work. Two examples of techniques for
verifiable shuffling are described below.
2.3.6.1. Mixnets
We speak of a mixnet, if a shuffle is done sequentially by several servers, called

the mix servers, such that each server shuffles its list of input ciphertexts and gives
the output of its shuffle to the next server as an input.
2.3.6.2. Proof of a Correct Shuffle with Shadow Mixes
In [Adi08], Adida describes a rather intuitive zero-knowledge proof of a shuffle,

following the idea of Benaloh [Ben06] and [SK95], using so-called shadow-mixes. The
idea of a shuffle proof with shadow mixes is as follows:
Let shuffle(C, π) denote a secret shuffle of a list C of ciphertexts with a permuta-

tion π, i. e. for C := [c1, . . . , cn] and a permutation π,

C ′ := shuffle(C, π) = [c′π(1), . . . , c
′
π(n)]

with c′π(i) := Reenc(ci) for all i and a reencryption function Reenc.
A prover who has created a shuffle C ′ of a list of ciphertexts C, proves the correct

shuffling to a verifier as follows: the prover chooses a permutation πL and creates a
shadow mix

C ′′ := shuffle(C, πL).

18 2. Preliminaries

Then he chooses a second permutation πR such that

πL ◦ πR = π,

i. e. πR(πL(i)) = π(i) for each i = 1, . . . , n. Since the prover has also created the
reencryption of each ciphertext, he knows the randomness used for the reencryption
and can therefore create reencryption randomness for a second shuffle that leads to
C ′:

C ′ = shuffle(C ′′, πR).
The prover sends C ′′ to the verifier, but keeps the permutations πL, πR and π secret.
The verifier chooses a bit b.
• If b = 0, the prover opens πL and the reencryption randomness used to create
C ′′ = shuffle(C, πL).

• If b = 1, the prover opens πR and the reencryption randomness with which
C ′ = shuffle(C ′′, πR).

In this proof, the prover has a 50% chance of a manipulation, since if C ′ is not
a correct shuffle of C, then either C ′′ 6= shuffle(C, πL) or C ′ 6= shuffle(C ′′, πR).
Therefore, the prover creates several instances of the proof, by creating k shadow
mixes C ′′1 , . . . , C ′′k and corresponding pairs of permutations (πL,j, πR,j) with

πL,j ◦ πR,j = π

for j = 1, . . . , k, and answers a challenge of the verifier for each of them.
For the use in e-voting, the challenge bits are usually either created by a set of

auditors, or the Fiat-Shamir heuristic (see below) is used. The operation of sending
a value to the verifier is usually done by publishing it on a public bulletin board.
Under the assumption that the reencryption is secure, i. e. a reencryption of a

ciphertext is indistinguishable from a new encryption of another plaintext, this is a
zero-knowledge proof of correct shuffling:
Completeness:
An honest prover can always correctly answer to both possible challenges.

Soundness:
In each proof instance, the prover has a chance of manipulation of 1

2 . With k
proof instances, this chance of a single manipulation not being detected decreases
to 1

2k .
Simulatability:
The simulator can simulate a proof as follows: he can chose a bitstring of “chal-

lenge bits” b = b1, . . . , bk. For each challenge bit bi, he does the following:
• If bi = 0, he chooses a permutation πL and creates a “shadow mix”

C ′′i := shuffle(C, πL)

without knowing a corresponding “right side” πR to link this shadow mix to
C ′.

• If bi = 1, he chooses a permutation πR and creates a “shadow mix”

C ′′i := shuffle(C ′, π−1
R)

without knowing the corresponding left side.

2.3. Cryptographic Primitives 19

Non-interactiveness with the Fiat-Shamir heuristic
To make this proof non-interactive, the Fiat-Shamir heuristic [FS86] can be used.

To do this, the prover proceeds as follows:

1. The prover creates k shadow mixes C ′′1 , . . . , C ′′k and sends them to the verifier.
Then a publicly known cryptographic hash function h is applied to the cre-
ated shadow mixes to create the challenge. Permutations and randomness are
opened according to this challenge.

To be sound, the Fiat-Shamir heuristic requires about 80 proof instances, i. e. 80
shadow mixes, as mentioned in [Hen12]

2.3.6.3. Randomized Partial Checking
A more efficient, but less sound and more information-leaking proof is randomized

partial checking (RPC). To prove a shuffle C ′ := shuffle(C, π) of a list of ciphertexts
C = [c1, . . . , cn], the prover only creates one shadow mix C ′′ := shuffle(C, πL) =:
(c′′1, . . . , c′′n) with a corresponding permutation pair πL, πR as above. He sends C ′′ to
the verifier. The verifier now creates n challenge bits B1, . . . , bn and sends them to
the prover. For each challenge bit bi, the prover does the following:

• If bi = 0, the prover opens the connection between c′′i and cπ−1
l

(i), i. e. he opens
πL(i) and the reencryption randomness used for c′i = Reenc(cπ−1

l
(i)).

• If bi = 1, the prover opens the connection between c′′i and c′πR(i) by opening
πR(i) and the reencryption randomness that leads to c′πR(i) = Reenc(c′′i).

Pros and Cons
Randomized partial checking is a rather efficient proof of a shuffle since it requires

only one proof instance. However, it has several flaws both concerning soundness
and information leakage, some of them were presented in [KW13]. A flaw when
using only one mix server is quite obvious: of each cipher c′′i in the list C ′′, either
the connection to a cπ−1

l
(i) in C is opened, or the connection to a c′πR(i) in C ′, but

never both. So if for a ci, the connection to a c′′ in C ′′ is opened, we know that
this is not any of the c′j in C ′ for which a connection between c′′ and a c′j in C ′ was
opened, and vice versa. So for each element in either list, we know for about half of
the elements in the other list that these are not a reencryption of this element.

2.3.7. Bilinear Groups and Pairings
A bilinear group is a set of three cyclic groups G1,G2 and GT of order n (often

n = p for a prime p), with generators g1 of G1 and g2 of G2, for which a function
e : G1 ×G2 → GT exists for which the following holds:

• e is bilinear: for all a, b ∈ Zn, all X ∈ G1 and all Y ∈ G2 we have e(Xa, Y b) =
e(X, Y)ab and

• e is non-degenerate: e(g1, g2) generates GT .

• Group operations, e and membership decision are efficiently computable.

In the literature and here, such a bilinear map e is often called a pairing. According
to [GPS08], there are three types of such pairings:

20 2. Preliminaries

• Type 1: Symmetric setting: G1 = G2 or an efficiently computable isomor-
phism exists in both directions.

• Type 2: G1 6= G2, an efficiently computable isomorphism ψ : G1 → G2 exists,
but none in the other direction.

• Type 3: G1 6= G2 and there is no known efficiently computable isomorphism
between the groups, in neither direction.

Type 3 pairings are the ones for which the most efficient instantiations exist. In
the context of this work, Type 3 pairings are used.

2.3.8. SXDH-Assumption
Ateniese et al. [ACHdM05] argued that in an asymmetric bilinear group setup,

the decisional Diffie-Hellman problem is hard in both domain groups. They state
this in the following assumption:

Assumption 1 (Symmetric external Diffie-Hellman (SXDH) assumption)
Given a setup (p,G1,G2,GT , e, G,H) of bilinear groups and a Type 3 pairing e, the
decisional Diffie-Hellman (DDH) problem is hard in both G1 and G2.

The SXDH assumption is needed in an instantiation of the Groth-Sahai proof
system, which we will use in our revoting scheme.

2.3.9. The Groth-Sahai Proof System
Groth and Sahai introduced in [GS08] a way to construct efficient non-interactive

witness-indistinguishable (NIWI) and zero-knowledge (NIZK) proofs of satisfiability
of a set of equations. We will call these proofs GS-proofs from now on. An advantage
of GS-proofs is that they are non-interactive without relying on the random oracle
model and its drawbacks [CGH04]. Instead, they depend on the CRS model and
one cryptographic assumption. Groth and Sahai introduce three instantiations of
their proof system, depending on different cryptographic assumptions. Of these,
the instantiation based on the SXDH assumption leads to the most efficient proofs
[EGW09]. We use this instantiation in our work, since we work with asymmetric
(Type 3) pairings.
Let G1,G2 and GT be cyclic groups of prime order p, and let e : G1×G2 → GT be

a bilinear map. Let G and H be generators of G1 and G2, respectively. In this work,
we use Groth-Sahai proofs for the following two equation types, with secret variables
X1, . . . , Xm ∈ G1, Y1, . . . , Yn ∈ G2 and x1, . . . , xm ∈ Zp. All other variables, namely
Ai ∈ G1, Bj ∈ G2, ci,j, ai ∈ Zp, T2 ∈ G2 and T ∈ GT for all i = 1, . . . , n and
j = 1, . . . ,m are publicly known constants.

• Pairing product equations:
n∏
i=1

e(Ai, Yi)
m∏
j=1

e(Xj, Bj)
m∏
i=1

n∏
j=1

e(Xi, Yj)ci,j = T

• Multi-scalar multiplication equations in G2:
n∏
i=1

Y ai
i

m∏
j=1

B
xj

j

m∏
i=1

n∏
j=1

Y
ci,jxj

i = T2

2.3. Cryptographic Primitives 21

GS-proofs are NIWI-proofs, but in most cases NIZK-proofs can be constructed
out of them. For the pairing product equations, this possibility is restricted to the
case that T = 1 or T can be written as a pairing product. This will be the case for
their application in this work.
For a full explanation of how the proof system works, we refer the reader to [GS08]

or [EGW09]. But we shortly describe their intuition here, as indicated in the original
paper.
Groth and Sahai define commitment functions for each of the groups G1,G2,GT

and Zp. These groups can be interpreted as Zp-modules. The commitment functions
map to other Zp-modules, which have a similar structure, such that the equations
can also be expressed in the target groups of the commitments. To create GS-proofs
for a set of equations, the prover commits to all secret variables and then has to prove
that the committed values satisfy the equations. The commitments are constructed
in a way that their committed values almost satisfy the corresponding equations in
the target groups. To fully satisfy the equations, additional terms are needed that
depend on the witness variables and on randomness used for the commitments. The
GS-proofs then consist of all commitments to witness variables and information from
which these additional terms can be computed.
The commitments used in the GS-proofs can be set up in either a binding setting

or a hiding setting. In the binding setting, the GS-proofs are perfectly sound. In
the hiding setting, the GS-proofs are perfectly witness indistinguishable/perfectly
zero-knowledge. The setting is given by the CRS, which consists of the group setup
(p,G1,G2,GT , e, G,H) and commitment public keys which determine the setting
(binding or hiding). The security of the proof system depends on the indistinguisha-
bility of the two settings.
In the SXDH instantiation, i. e. with the indistinguishability of the hiding and

the binding setting depending on the SXDH assumption, these commitments in the
binding setting are basically Elgamal encryptions, so they allow witness extractabil-
ity, and we can use them as proofs of knowledge of a witness. We use this fact in
our voting scheme to let the voter prove knowledge of a signature created with her
signature key, while revealing neither the signature nor her public key, and with
that, her identity.

2.3.10. Digital Signatures
Intuitively, a signature scheme S defines a function Sign, with which messages

from a message space M can be digitally signed, to obtain a digital signature σ of
the message m ∈M under the signing key sk. The signature σ can be verified with
a verification key vk.
More formally defined, a digital signature scheme

S = (Setup,KeyGen, Sign,Verify)

consists of four efficiently computable algorithms Setup,KeyGen, Sign, and Verify,
which are defined as follows:

• Setup(k) 7→ (gs, param) is a randomized algorithm which takes as input a
security parameter k and outputs a group setup gs, in which signatures can
be created. The group setup gs defines a message space M and a key space
K. It might also output additional parameters which are used by the other
algorithms.

22 2. Preliminaries

• KeyGen(gs, k) 7→ (sk, pk) is a randomized algorithm which takes as input a
group setup gs a security parameter k and outputs a keypair (sk, pk), whereas
sk is referred to as a signing key, and pk is called the verification key.

• Sign(sk,m) 7→ σ takes a signing key sk and a message m ∈ M as input, and
outputs a signature σ.

• Verify(pk,m, σ) 7→ b takes as input a verification key pk, a message m and a
signature σ, and outputs a bit b. If Verify(pk,m, σ) = 1, the signature σ is
called a valid signature ofm under the verification key pk. If Verify(pk,m, σ) =
0, σ is called an invalid signature of m under the verification key pk.

Each algorithm might take additional input. The signing key sk is usually kept
secret and therefore often referred to as a secret key, while vk is usually public and
referred to as a public key.

2.3.11. Automorphic Structure-Preserving Signatures
Automorphic structure-preserving signatures are signatures in which verification

keys, messages and signatures are group elements, and where signature verifica-
tion consists of checking a set of pairing equations. Automorphic means that the
signature scheme can sign its own public keys. An application of this is that the sig-
nature scheme can be used to create a certificate for its own public keys. Research on
structure-preserving signatures in general was started in [Gro06]. In [AFG+10], Abe
et al. developed automorphic structure preserving signatures which are compatible
with the Groth Sahai proof system.
We use the signature scheme introduced in [AFG+10] in our revoting solution

introduced in Section 5.3, and describe it here. It consists of four algorithms Setup,
GeyGen, Sign and Verify which are defined as follows:

• Setup(k) takes as input a security parameter k and chooses a triple of bilinear
cyclic groups (G1,G2,GT) of prime order p > 2k, generators G of G1 and H
of G2, and a bilinear map and

e : G1 ×G2 → GT

with 〈e(G,H)〉 = GT . The message space of the scheme is

M = {(Gi, H i)|i ∈ Zp}.

Three randomly chosen public parameters F,K, T ∈ G1 are chosen. Setup
outputs the group setup

gs = (p,G1,G2,GT , G,H)

and the public parameters (F,K, T).

• KeyGen(gs, k) takes as input the group setup gs and a security parameter k.
It chooses x ∈ Zp at random, and computes

pk := (X, Y) := (Gx, Hx) ∈ G1 ×G2.

It outputs the key pair (x, pk), consisting of the signing key x and the verifi-
cation key pk = (X, Y).

2.3. Cryptographic Primitives 23

• Sign(x,m) takes as input a secret key x ∈ Zp and a message m of the form

m = (M1,M2) = (Ga, Ha)

for an a ∈ Zp. To sign this message with the signing key x, two random values
r, c ∈ Zp are chosen, and as output the signature σ is computed as

σ = (A,C,D,R, S),

where A := (KT rM1)
1

x+c , C := F c, D := Hc, R := Gr, and S := Hr.

• Verify(pk,m, σ) verifies if σ = (A,C,D,R, S) is a valid signature of the mes-
sage m = (M1,M2) with verification key pk = (Gx, Hx), by checking the
following conjunction of pairing equations:

e(A, Y D) = e(KM1, H)e(T, S) ∧ e(C,H) = e(F,D) ∧ e(R,H) = e(G,S).

It outputs 1 if the above term is true, 0 otherwise.

As stated in [AFG+10], other messages which are not in the message space can
be signed by using a cryptographic hash function h to map them to an a ∈ Zp and
transform them into a signable message m = (Ga, Ha).

Compatibility with Groth-Sahai proofs
The signature scheme works with asymmetric (Type 3) pairings, for which the

SXDH assumption is believed to hold. Since the verification consists of checking
pairing product equations, the scheme is compatible with the SXDH instantiation
of the Groth-Sahai proof system. This makes it easy to create NIZK-proofs of
knowledge of a signature σ for a message (M1,M2) with Verify(pk, (M1,M2), σ) = 1
for a verification key pk, where each of the components σ, pk and (M1,M2) can
be witness variables as needed. This fact is used by the authors of [AFG+10] to
construct a blind signature out of this scheme. It is also used by Ghadafi in [Gha11]
to hide the public key and make a group signature out of the blind signature version
of the scheme. Inspired by Ghadafi’s group signature idea, we use this property to
hide the signature as well as the voter’s public key to make it publicly verifiable that
a vote has been cast with a valid signature key of an eligible voter, without revealing
the voter’s identity.

3. Requirements of Cryptographic
Voting Schemes

During the last 30 years, a huge amount of conceptually very different cryptographic
voting schemes has been developed. As a first contribution of this chapter, we
introduce a taxonomy for cryptographic voting schemes together with a roadmap
for analyzing voting schemes. The aim of the taxonomy is to provide a tool to
consistently analyze and compare this diversity of voting schemes.
Apart from the taxonomy, this work mainly concentrates on coercion-resistance.

There are several definitions of coercion-resistance, based on different underlying
models. The second contribution of this chapter is a brief review of existing defini-
tions of coercion-resistance, with respect to two of our special cases, namely write-in
candidates and revoting.

3.1. Related Work
Our taxonomy builds on a list of requirements that was published in [CvdGRV07].
Another review of privacy-type definitions for voting schemes was presented in

2010 by Lucie Langer in her Ph.D. thesis [Lan10]. She did her review from another
point of view, concentrated on privacy and did not take into account our cases of
revoting and write-in candidates. In her thesis, Langer introduced a taxonomy for
privacy and verifiability in electronic voting schemes. Her taxonomy is quite different
from ours and constitutes a linkability/unlinkability model, where privacy is defined
via the unlinkability of plaintext ballot and voter, and verifiability is defined as the
linkability of the set of cast votes with the set of counted votes.
Requirements of electronic voting schemes have been studied in several publica-

tions. A survey of electronic voting schemes and their properties was presented
in [FDL]. Chevallier-Mames et al. [CMFP+10] analyzed under which assumption
certain security properties of voting schemes can be achieved simultaneously. A
Common Criteria protection profile [fSidI07] with basic requirements for remote
electronic voting was proposed by the German Bundesamt für Sicherheit in der In-
formationstechnik (BSI). The requirements for the German governmental election
can be found in the German Federal Electoral Regulations [dJ13].
Jeremy Clark used a game-theoretic approach in his Ph.D. thesis [Cla11] to analyze

coercion and vote-buying possibilities in several election schemes.

25

26 3. Requirements of Cryptographic Voting Schemes

Küsters et al. [KTV12] introduced a rather general formal model for voting schemes
as well as a rather intuitive and generally applicable formal definition of coercion-
resistance. They compared several definitions of coercion-resistance to their own
work. Most of these definitions also appear in our review.
In 2013, Jonker et al. [JMP13] made an interesting survey about developments

and trends of notions of privacy and verifiability, as well as techniques used in voting
schemes to achieve these notions.

3.2. A Taxonomy for Cryptographic Voting Schemes
There is a huge variety of existing voting schemes, for example [CCC+08, PH06,

Gjø10, JCJ05, CGS97, FOO93, BMQR07] and many more, each different in focus
and conception. To the best of our knowledge, a list of formal definitions of require-
ments with which existing and newly developed voting schemes could consistently
be analyzed and compared is yet missing.
As a step towards solving this problem, we introduce a taxonomy, in natural

language, which provides:

1. A list of requirements we have towards voting schemes.

2. A roadmap with which a big variety of voting schemes can be analyzed ac-
cording to these requirements.

The taxonomy is joint work with Jeroen van de Graaf, Dirk Achenbach and Bern-
hard Löwe [vdGKAL14]. An earlier version of the list of requirements used in our
taxonomy was published in [CvdGRV07], but was not elaborated. We have refined
these requirements and identified questions, between 1 and 6 for each requirement,
to be able to easily find out in which way and to which extent an arbitrary voting
scheme meets these requirements. These questions build the heart of our analysis
roadmap. Our taxonomy has then been tested against several known voting schemes
and developed further.
In the remainder of this section, we introduce our taxonomy and our analysis

roadmap. At the end of this section, to demonstrate the capability of our taxonomy,
we summarize the analysis of several voting schemes. As examples for a full analysis,
the analysis of the non-cryptographic but generally accepted German paper election
can be found in Appendix A, the cryptographic voting schemes Prêt à Voter and
Scantegrity II are analyzed in Appendix D and E, respectively. An analysis of
an election held with Bingo Voting at the University of Karlsruhe is presented in
Appendix B and summarized in Section 4.3. The Analysis of our revoting scheme
can be found in Appendix C.

3.2.1. What is an Election?
An election is a process in which a predetermined set of participants, called eli-

gible voters, is allowed to take part. A subset thereof consists of the voters, which
participate in an election protocol, by giving a ballot as input into a predetermined
election functionality, which computes an outcome, called the tally, as a function of
these ballots. The tally is thought of as a joint decision of the voters. Each voter
inputs exactly one ballot, by default exactly once.
To avoid the ambiguity of the word vote, we use the following vocabulary: a voter

has n votes which she can distribute among several candidates on a ballot. The
distribution of her votes among candidates is called the voter’s choice. If the voter

3.2. A Taxonomy for Cryptographic Voting Schemes 27

Individual
verifiability

Universal
verifiabilitya

u
d
it

d
a
ta

ballot marking

voter authentication

ballot casting election tallying

ballot creation

voter credential
establishment

pre-election voting phase post-election

ballot

voting card

ballot box

ta
lly

voter list

candidate list

Figure 3.1.: Visualization of a generic voting procedure. Image source: [vdGKAL14]

votes, she casts a ballot which will be transfered to the ballot box. If she votes for a
candidate, she marks this candidate on the ballot she casts. The winning candidate
of an election is elected.
Following the vocabulary of the widely known paper election, we speak of ballots

and ballot boxes even in electronic elections, where the choices recorded on the ballots
might be stored in an arbitrary form. A ballot can therefore be a paper ballot or
electronically processed data which represents the voter’s choices. Likewise, a ballot
box can refer to a physical ballot box filled with paper ballots, or a digital storage
device that contains data from which the tally can be computed.
An election can be roughly divided into three phases: the pre-election, the voting

phase itself and the post-election. During the pre-election, the voting phase is pre-
pared, for example ballot boxes are set up, or the voter list is compiled. During the
voting phase, voters mark their choices on ballots and cast them. The tallying and
auditing are performed in the post-election.
We visualize this procedure in Figure 3.1. Depending on the voting scheme, more

steps are necessary. As an example we list the important steps of a conventional
paper election, as they are carried out in most democratic countries.

3.2.2. Process of a Paper Election
In this Section, we describe the process of a conventional paper election. This

description is an extended version of a description by Chaum et al. [CvdGRV07],
which is also the foundation of this taxonomy. The election takes place in a polling
station, which is equipped with a voting booth where voters can cast their ballots in
private, a ballot box, and a registration desk.

3.2.2.1. Pre-election
1. A list with the names of all legitimate voters is established, the voter list.

2. A candidate list is established.

3. The (empty) ballots are printed.

4. An empty ballot box is set up. Before starting the election phase, all present
observe that the ballot box is empty.

3.2.2.2. Voting phase
5. Voters present themselves at a registration desk and prove their identity.

28 3. Requirements of Cryptographic Voting Schemes

6. A legitimate voter (that is, a person whose name (identity) is on the voter list
and who has not already voted) receives a fresh ballot, enters the voting booth,
and fills in her choice. Her name (identity) is marked on the voter list, so that
she cannot vote again.

7. The voter casts her ballot in the ballot box. (From that moment on, the ballot
is cast, and she cannot undo or modify her vote.)

8. When the time for voting has expired, no ballots can be cast any more.

3.2.2.3. Post-election
9. Votes are tallied by opening the ballot box and publicly counting the votes.

All present observe the opening of the ballot box and tallying of the contained
ballots.

10. Those who disagree with the count can request a recount. The votes are
recounted (maybe more than once), under the observation of all present, until
there is consensus.

11. The outcome of the election is published.

12. Ballots and documentation are archived or destroyed.

Conventional elections are usually carried out in democracies for which one single
ballot box or one polling stations does not suffice. Therefore, electoral districts are
set up containing several polling stations, and the election results of each district
are accumulated to obtain the joint election result.

3.2.3. Requirements of an Election Scheme
In this section, we introduce a set of requirements which are desirable for vot-

ing schemes. These requirements were motivated by the traditional paper election,
which is generally accepted by a broad range of voters. The requirements were then
amended in the process of analyzing several cryptographic voting schemes. To mo-
tivate the requirements, we state a justification for each of them, and explain how
it is implemented in the traditional paper election. Some requirements might not
depend on a voting scheme itself but on its implementation in practice; they help
find out which requirements the scheme has towards its environment. In fact, it is
advisable that descriptions of new voting schemes explicitly state assumptions about
their operational environment.
In the following, some requirements refer to an election. These are requirements

towards an election conducted with the analyzed voting scheme and state that a
voting scheme should enable these requirements, or at least not make them unsatis-
fiable.

Requirement A (Eligibility) Only persons on the voter list specified by the Reg-
istration Authority, called voters, can cast votes.

Justification: Any election has a finite set of persons who have the right to
participate in that election and only these persons are allowed to cast a vote. We
will call the entity which is responsible for maintaining this list the Registration
Authority.

3.2. A Taxonomy for Cryptographic Voting Schemes 29

How implemented traditionally: In very small paper ballot elections this set
of persons can simply be the people present in the room, no actual list is made. In
a larger election usually a list is maintained which contains the names of all eligible
voters. The voter identifies herself to the poll worker and is granted access to the
voting system, which from then on is supposed to provide her anonymity.

Requirement B (Equality) Each eligible voter can cast a vote, from now on
called a ballot. Each eligible voter can cast at most one ballot.

Justification: Each eligible voter has only one vote. Some elections are excep-
tions to this requirement; for instance, in share holder elections the voting power can
be proportional to the amount of shares a person holds. However, these exception
are fairly rare and will not be considered in this taxonomy.
How implemented traditionally: In traditional voting this is enforced by

handing each voter only one ballot, and marking in a voter roll which voter has
already cast a ballot.
Revoting: In some election schemes, the voter is allowed to overwrite a cast

ballot with a new ballot. We call this revoting. If revoting is allowed, the second
sentence of this requirement is to be rephrased as “Of each eligible voter who has
cast at least one ballot, only the last cast ballot is included in the tally.”

Requirement C (Layout neutrality) The way the choices are presented to the
voters is unambiguously defined by a Ballot Creation Authority (BCA), does not
favor any choice beyond what is specified by the law, and is equal for each voter.

Justification: On the one hand, this requirement is related to equality: each eli-
gible voter should have the same possibilities to cast her choice. The voting process
should not depend on the voter’s race, gender or political view, i. e. not be made
more difficult for some voters and easier for others. On the other hand, Requirement
C requires fairness towards the candidates: no candidate should unjustly be disad-
vantaged. In some elections, the order of candidates on the ballot is specified by law
and should be the same on each ballot. In voting schemes that present the choices
in random order, care has to be taken that the permutation is chosen uniformly at
random and does not put certain candidates more often on top than others.
How implemented traditionally: In simple, informal elections the voter writes

her choice on a dedicated space on the ballot by writing a name or number. However,
this can be a source of various problems: ambiguity of the preference expressed, loss
of ballot privacy, intentional ballot marking, etc. This can be avoided by the creation
of preformatted ballots which list all possible options, each accompanied by some
identical symbol (like a circle or box). In the German paper election, the order in
which choices are presented to the voter is specified by law and equal for each voter.
This can be checked by auditing ballots.

Requirement D (Revisable ballot marking) The voter indicates her preferences
which are recorded in some unambiguous representation, called a ballot. The voter
can verify the validity of her ballot and can revise her preferences before casting the
ballot.

Justification: After marking her choice on a ballot but before actually casting
the ballot, the voter should have the right and the possibility to check her choice is

30 3. Requirements of Cryptographic Voting Schemes

marked (and when voting electronically, recorded) as intended and that it is valid.
She should have the opportunity to correct or revise her ballot.
How implemented traditionally: The voter uses a pen or pencil to write down

her preference or mark it in the way specified. The voter can visually verify that her
ballot is filled out correctly, and that it is valid. In case she made a mistake, she can
return her paper ballot to the authority in exchange for an unmarked ballot. She
gets no (technical) support for checking the validity of her ballot.

Requirement E (Irreversible ballot casting) When a voter, in agreement with
Requirements A and B, submits a ballot to be included in the tally, this is called
casting a ballot. The act of casting makes the ballot legitimate, and is irreversible.

Justification: Adherent to the previous requirement, the voter can fill out and
revise her ballot several times. This calls for a mechanism for the voter to determine
by herself when her ballot is filled out as intended and ready to be cast. With
casting, the voter accepts her ballot as a legitimate representation of her choice that
can be counted in the tally.
How implemented traditionally: In the traditional paper election, the act of

casting a ballot is performed by putting the ballot into the ballot box. Ideally we
have a ballot box which has an opening just large enough to let a paper ballot pass.
but making it virtually impossible to retrieve a ballot from it.
Revoting: If revoting is allowed, the last sentence of this requirement is to be

rephrased to “The act of casting makes the ballot legitimate, but can be counter-
manded by the voter through casting a new ballot within a given time, called the
voting period”.
If revoting is allowed, the voter’s choice can be updated by a new ballot. There

is an important difference to the revision in the ballot marking process: there, the
ballot is not yet legitimate. With casting, the ballot becomes legitimate. So revoting
countermands a legitimate ballot that would otherwise be counted.

Requirement F (Privacy and incoercibility) Under no circumstance, not even
with the cooperation of the voter, is it possible to link the preferences as recorded on
a legitimately cast ballot to the identity of the voter, nor can the voter be coerced to
deviate from her choice in any provable way.

Justification: It is important to realize that this requirement has two sides.
First, the voter should have the freedom to express her will without the risk of
repercussion. To guarantee this, nobody should be able to discover for whom or
what she voted or did not vote.
Second, it is necessary to prevent improper influence of voters, which includes the

buying and selling of votes. Consequently it should not be possible, even with the
cooperation or connivance of the voter, to deduce the vote. For this reason it is of
utmost importance that, during the marking and casting of the ballot, no proof or
receipt is created which could be linked to a ballot inside the ballot box, since this
would permit coercion and the buying and selling of votes.
How implemented traditionally: In order to guarantee ballot secrecy, there

exists a private space, the voting booth, where the voter can fill out the ballot. To
prevent a voter from linking her ballot to her ID in order to sell her vote, ballots
that are marked in a way other than specified are counted as invalid.

3.2. A Taxonomy for Cryptographic Voting Schemes 31

Requirement G (Secrecy of intermediate results) Until the end of the vote
casting process (as defined by a Ballot Casting Authority) no information can leak
about the choices marked on any of the ballots cast already.

Justification: Revealing partial results early would violate the secrecy of the
ballot for those who voted already. Second, knowing the partial result might in-
fluence the choice of someone who votes later. Moreover, exclusive access to this
information during the voting period could provide advantage in terms of allocation
of electioneering resources or even trigger disruption of the voting process.
In fact, any information leaking from the ballot box is undesirable. Ideally, in

an election the voters should express their opinion simultaneously. It is only for
logistical reasons we make it into a sequential process. So it would be unfair if
voters who vote last would know already the content of the ballot box, since they
could change their behavior based on additional information, to which the early
voters had no access.
How implemented traditionally: In large elections with several ballot boxes

in different locations, the announcement of the partial results is coordinated with
the end of the voting periods in each polling station, so that no intermediary results
become available before all ballot boxes are closed. Also, it is generally prohibited
to release any projections or estimates to the public before the last ballot box is
closed.

Requirement H (Inviolatability of the ballot box) It is not possible to mo-
dify the set of ballots cast, other than by adding ballots legitimately cast according to
Requirements A–F.

Justification: It is obvious that any possibility to modify the contents of the
ballot box would alter the tally.
How implemented traditionally: This requirement explains why the ballot

box should remain in a publicly visible place so that everybody present can see no
tampering takes place. The ballot box is not opened until the ballots are counted.
The counting itself is performed semi-publicly, i. e. all people present observe that
no ballots are removed or modified.

Requirement I (Tally integrity) All ballots contained in the ballot box, and only
these, will be included in the tally.

Justification: Votes not written on a proper ballot, for example, should not be
counted as they could represent multiple votes from a single voter. Additionally,
ballots that are ambiguous ought not to be counted.
How implemented traditionally: The Tallying Authority makes sure to only

regard counts from valid ballot boxes. When counting the ballots from a single
ballot box, all people present observe that only the ballots in the box are counted.

Requirement J (Individual verifiability) Any voter can convince herself that
her ballot is included in the tally.

Justification: We would like to be able to hand a proof/receipt to the voter,
allowing her to verify that her ballot is among the set of ballots tallied. However,

32 3. Requirements of Cryptographic Voting Schemes

conventional wisdom has it that this requirement contradicts the more important
requirement of ballot secrecy.
There is a tension between the requirement of verifiability (and auditability, see

below) on the one hand, and the secrecy of the ballot on the other, which makes the
design of election systems satisfying both requirements without using ballots or other
physical objects extremely challenging. Implicit in each election is a sub-procedure
that shuffles ballots to destroy the link between the ballot and the voter and protect
her anonymity. This procedure, trivial when dealing with physical objects such as
ballots or playing cards, is difficult to simulate in the virtual world. The problem is
made more difficult by the verifiability requirement: it should be possible to ensure
that the virtual shuffle did not add, subtract or replace any of the shuffled items.
How implemented traditionally: In the case of paper ballots, this requirement

is achieved in the following way: after the voter has cast her ballot by depositing
the ballot in the ballot box, she waits until the closing of the election. When the
ballot box is opened for the tallying of the ballots, she is sure that her ballot is
among the set, even if she does not know which particular ballot corresponds to the
one she filled in. It is interesting to note that, essentially, the voter’s faith is based
on the common sense notion that an object put in some place stays there and will
not disappear by itself, which can be assumed for physical objects, but not for data
stored electronically.

Requirement K (Auditability and public verifiability) Any interested party
can verify that the result, published by a Ballot Tallying Authority (BTA), is correct.

Justification: For higher credibility of the result it is important that voters,
party representatives and neutral observers are able to verify the process.
How implemented traditionally: In traditional elections the tallying of the

ballots happens in a public session: a person (or group of persons) designated for
this task opens the ballot box, takes out all the ballots (making sure none is left
inside) and counts the votes. He does so in the presence of observers and in a way
to make it easy to these observers to see that the process is executed correctly.
In addition, any person can contest the result and request a recount of the ballots,

which also happens in a public session. In principle this process should converge to
a result with which everybody agrees.

Requirement L (Robustness) The voting scheme must be robust towards invalid
or malformed data that is submitted intentionally or unintentionally by voters.

Justification: In traditional paper elections, the presence of invalid ballots is
quite common. Especially in complex elections, the casting of invalid or malformed
data can easily happen unintentionally, and should therefore not violate the election
process in any way. Moreover, everything that can happen unintentionally can also
be triggered by the adversary to gain advantage. Therefore it is important to ensure
that malformed data cannot abort or invalidate an election, or lead to an illegiti-
mate tally result undetected. An example where this is important is homomorphic
tallying, where an invalid ballot could encode −x votes for a candidate for some x,
so this ballot would subtract votes from a candidate.
There are two standard ways to meet this requirement: either the validity of a

ballot is proven and checked before the ballot is cast, this is important in electronic

3.2. A Taxonomy for Cryptographic Voting Schemes 33

elections with homomorphic tallying, as the example above shows. The other possi-
bility is filtering out invalid ballots before or during the tally process, so they are not
counted. This can be done in elections where the identity of the voter is unlinked
from the ballot and the ballot published in plaintext, like traditional paper elections
or voting schemes using mixnets.
How implemented traditionally: In traditional election schemes, each ballot

is processed in plaintext (without a link to the voter who cast it), so invalid ballots
can be filtered out easily. Ballots that contain malformed data (as defined by rules)
are discarded. The error cannot be corrected by voters who have unintentionally
cast invalid ballots, but the tally does not have to be aborted and redone because
of invalid ballots, and an invalid ballot does not lead to an invalid ballot outcome.

Requirement M (Availability) The election must be available, i. e. cope with the
unavailability of components.

Justification: This requirement is important for two reasons: for achieving equal-
ity, each voter should have access to the voting process. The voting period should
be estimated long enough that every voter has a chance to cast a ballot, and the
components necessary for the voting process should be available until a predefined
end of the voting period. In electronic voting, the capacity of voting machines or
vote servers should be high enough to handle the expected number of voters. The
other reason is that the breakdown of single components should not enforce a repe-
tition of the whole election. This would invalidate already cast ballots and in many
cases change the tally outcome.
How implemented traditionally: In traditional paper elections, each compo-

nent is a physical object and can be substituted. It has to be made sure before
election day that enough poll workers are there to help, that enough ballots and
ballot boxes etc. are available, and that the length of the voting period and the
number of polling stations is estimated such that each voter has a chance to cast a
ballot.

Requirement N (Scalability) The voting scheme should scale well. That is, it
should support an arbitrary number of voters without compromising any of the other
requirements.

Justification: There are many different kinds of elections, ranging from an
amount of two to several millions of eligible voters. When judging the scalability of
a voting scheme one has to take into account the amount of components needed, the
amount of published data needed for proofs of correctness as well as the time that
is needed for casting, counting and verification. There are voting schemes that work
perfectly well for elections with a few hundred voters but are infeasible to apply
to a bigger election with millions of voters. Therefore, before applying an election
scheme to an election with a big (or too small) amount voters, one should be aware
of how well it scales.
How implemented traditionally: The easiest way to achieve scalability is to

use multiple electoral constituencies and to have several instances of an election.
The end of the voting phases and the tally procedure is then synchronized and the
results are added up and published. Another solution would be to have one central
counting process, but this might be hard to achieve without being very error prone
and inefficient.

34 3. Requirements of Cryptographic Voting Schemes

3.2.4. A Roadmap for Analyzing Elections
In this Section, we introduce a roadmap in the form of some questions about the

voting scheme, along which voting schemes can be analyzed. The analysis is divided
into three parts. The first part consists of questions about general properties of
the voting scheme. In the second part, we evaluate if and to which extent the
requirements specified above are met. The third part is about a short conclusion
of the analysis and asks which requirements are met or could be met with minor
adaptions.

3.2.4.1. General Information about the Voting Scheme
To evaluate for which kinds of election a voting scheme is designed, what assump-

tions it depends on and what underlying concepts it uses, our analysis starts with
some general questions about the voting scheme:

Election type
The first two questions are about the type of the election scheme:

(Q1) Is the election scheme . . .

– . . . paper based, scanner based or computer based?

– . . . meant for presential or internet elections?

(Q2) For which kind of elections is the scheme designed? (E.g. governmental elec-
tions, non-political elections, etc.)

(Q3) Does the election scheme allow any special election types? (E.g. vote-splitting,
write-in candidates, vote delegation etc.)

Question (Q2) is about the intended use of an election scheme. Some elections,
like the scheme introduced in [Gjø10], are designed for and used in governmental
elections, while others, for example Helios [Adi08], are explicitly designed for elec-
tions with a low risk of coercion. Question (Q2) asks about “special features” of the
analyzed election scheme. Does it require a special ballot layout which only allows
to choose 1 out of n candidates, or is it more flexible?

Preliminaries and Assumptions
The next questions ask about preliminaries and underlying assumptions required

by the voting scheme:

(Q4) On what cryptographic assumptions is the scheme based?

(Q5) If the scheme relies on trusted parties, which parties need to be trusted?

(Q6) Which components have to be trusted? Does the scheme rely on trusted hard-
ware?

(Q7) Are there other assumptions? (E.g. the existence of a voting booth, at least
one voting process done in private etc.)

3.2. A Taxonomy for Cryptographic Voting Schemes 35

What makes this scheme secure?
(Q8) What is the main attribute that leads to the security of the analyzed voting

scheme?

Question (Q8) asks for a brief description of the most important feature or underlying
concept that is responsible for the security of the scheme. For example, does the
scheme use anonymous credentials to unlink the ballot from the voter’s identity, as
in the voting scheme of Juels et al. [JCJ05]? Or does the security rely on a trusted
random number generator, as in Bingo Voting [BMQR07]?

3.2.4.2. Analysis of the Requirements
The next part analyzes to which extent the requirements defined in our taxonomy

are met. For the analysis, we derive between 1 and 6 questions for each requirement,
which are listed in the following:

Requirement A (Eligibility)
(A1) How does the system identify whether persons presenting themselves to vote

are eligible?

Requirement B (Equality)
(B1) How does the system ensure that each eligible voter can cast at most one

ballot?

(B2) How is it made sure that each eligible voter has the possibility to cast her
vote?

Requirement C (Layout neutrality)
(C1) How are choices presented to the voter?

(C2) How is it made sure that no option is favored more than specified by election
rules?

(C3) How is it made sure that choices are presented fairly to the voters?

When answering question (C1), an interesting point would be if and how it is made
sure that the way choices are presented to the voter does not depend on the voter’s
identity. Question (C2) asks for fairness towards the candidates, while Question (C3)
asks for fairness towards the voters. Question (C3) could also be thought of as how
is it made sure that each voter gets the same ballot or sees the same user interface,
often referred to as the vote casting interface. On the other hand, Questions (C2)
and (C3) are particularly important if the ballot or vote casting interface displays
the candidates in random order. In that case, it is interesting to know how it is
made sure that the distribution of the displayed order is really random and does not
put one candidate more often to the top than others.

Requirement D (Revisable ballot marking)
(D1) How does the voter mark her choice?

(D2) How can the voter verify that the ballot she just created contains a faithful
representation of her preferences? Under what assumptions?

(D3) How is it made sure that the voter can revise her ballot?

36 3. Requirements of Cryptographic Voting Schemes

Requirement E (Irreversible ballot casting)
(E1) How does the voter cast her ballot?

(E2) What defines when a ballot is cast?

(E3) What makes it irreversible? Under what assumptions is it irreversible?

(E4) What defines the ballot box?

Requirement F (Privacy and incoercibility)
(F1) How is individual privacy assured? Under which assumptions?

(F2) How is individual privacy assured in the future? And under which assump-
tions? (Is it computational? Unconditional? Why?)

(F3) How is receipt-freeness assured? And under which assumptions?

(F4) How is coercion-resistance assured? And under which assumptions? (I. e. how
is it ensured that a ballot/voter’s choice cannot be marked in a way that shows
to the adversary that the voter has been successfully coerced?)

(F5) Who learns the vote or is able to calculate it?

(F6) Who gets critical information? What information is this and in which way is
it critical?

Requirement G (Secrecy of intermediate results)
(G1) How does the voting scheme guarantee that no information about the contents

of the ballot box leaks before the tallying procedure is completed? Under
which assumptions?

Requirement H (Inviolatability of the ballot box)
(H1) How does the system make sure that no ballots are modified? Under which

assumptions?

(H2) How does the system make sure that no ballots are removed? Under which
assumptions?

(H3) How does the system make sure that no ballots are added?

Requirement I (Tally integrity)
(I1) How is the tallying of the votes implemented?

(I2) How is it made sure that only the ballots correctly cast are counted?

(I3) If not correctly cast ballots are counted, who sees it?

(I4) If not correctly cast ballots are counted, who can prove it and how?

(I5) If not correctly cast ballots are counted, what can be done to correct the error?

3.2. A Taxonomy for Cryptographic Voting Schemes 37

Requirement J (Individual verifiability)
(J1) How can a voter convince herself that her ballot is included in the tally? Under

which assumptions?

(J2) What is the underlying principle used? Physical? Statistical/Probabilistic?
Trust in the authorities?

(J3) If the above check fails, how can the voter prove that her ballot is not included
in the tally?

(J4) How and by whom can this error be corrected?

Requirement K (Auditability and public verifiability)
(K1) How can an interested party be convinced that the result published by the

BTA is correct?

(K2) What is the underlying principle used? Physical? Mechanical? Electrical?
Electronic? Statistical/Probabilistic? Trust in the authorities?

(K3) If the result is not correct, who can prove it and how?

(K4) If the result is not correct, can the error be corrected? If so, by whom and
how?

(K5) Is it traceable who/what has caused the error?

Requirement L (Robustness)
(L1) How is invalid or malformed voter data treated?

(L2) What happens when a voter aborts the voting process?

Requirement M (Availability)
(M1) How does the system handle the unintentional breakdown of its components?

(M2) How can the system made to gracefully deal with denial of service attacks?

Requirement N (Scalability)
(N1) How well does the scheme scale? How big can an electoral constituency be?

3.2.4.3. Conclusion of the Analysis
At the end, there should be a small summary of which requirements are met:

(S1) Which of the requirements listed above are fully met under the underlying
assumptions?

(S2) Which requirements are only partly met, and in which way?

(S3) Which requirements could be met with minor improvements of the scheme?
What are the suggested improvements?

(S4) Which requirements are not met?

(S5) For which requirements does it depend on a concrete implementation or ap-
plication if they are met?

Each analysis should close with some concluding remarks:
(S6) Are there any concluding remarks?

38 3. Requirements of Cryptographic Voting Schemes

3.2.5. Categorizing the Requirements
Analyzing a voting scheme by going through the questions of the roadmap usually

leads to several pages of analysis, which can be seen in the Appendix A, B and D, for
example. In order to show the benefits and weaknesses of an analyzed voting scheme
at a glance, it is often appropriate to summarize the outcome of such an analysis.
We have derived five bigger categories from our list of requirements, assigning each
requirement to one or two categories. This should make it easy to quickly summarize
to which extent requirements related to a category are met, and give an overview
over the scheme’s benefits and weaknesses.
The first two categories are about the “cryptographic parts” of a voting scheme,

coercion-resistance and correctness. The third category, fairness, is about influence
on the voter, be it through ballot layout or by leaking intermediate results. The
last two categories, provability of a fraud and robustness and scalability are mainly
about the robustness of a scheme when actually applied in practice.
Category 1: Privacy and Coercion-Resistance
This category contains all requirements related to privacy, namely Requirements F

(privacy and incoercibility) and G (secrecy of intermediate results). Requirement G
belongs here because seeing intermediate results might diminish privacy: the choice
of a voter “hides between” less votes. In the extreme case that only one ballot is in
the ballot box, leaking an intermediate result would fully break privacy. If k ballots
are in the ballot box, the probability of guessing the voter’s choice has a lower
bound of 1

k
and increases with pre-knowledge of the adversary of the distribution

of these ballots. The adversary might have cast one of these ballots himself, or
have knowledge about the contents of some ballots. It is obvious that the chance of
correct guessing decreases with the number of ballots in the ballot box.
Category 2: Correctness and Verifiability
Assigned to this category are requirements that are related to the (verifiable)

correctness and manipulation resistance of a voting scheme. These requirements
are Requirement D (revisable ballot marking), E (irreversible ballot casting) and J
(individual verifiability) for individual verifiability, Requirement H (inviolatability
of the ballot box) and I (integrity) for integrity and Requirement K (auditability
and public verifiability) for universal verifiability.
Category 3: Fairness
Requirements A (eligibility) and B (eEquality make sure that all eligible voters,

but only those, can cast the same amount of votes. Requirements C (layout neutral-
ity) and G (secrecy of intermediate results) also have an impact on the fairness of
an election. A ballot layout that differs between voters or favors certain candidates
leads to an unfair election. Intermediate results influence voters who have not cast
a ballot yet. These voters would make their decision with other preconditions than
voters who have already cast their ballot – the election would not be fair.
Category 4: Provability of a fraud
This category summarizes which fraud can be detected by whom, and whether

these frauds can additionally be proven. For detectable frauds it is also interesting
whether errors can be corrected. All requirements related to verifiability, which are
those in Category 2, are also related to this category, since a verification might lead
to the detection of a manipulation, which rises the question of the provability of a
fraud. Questions I4, J3, and K3 ask if attempted or detected frauds can be proven.

3.2. A Taxonomy for Cryptographic Voting Schemes 39

This category is closely related to robustness: if a voter can detect but not prove
a fraud, she can in argumentum e contrario always claim to have detected a fraud,
since her wrongness cannot be proven to her. This enables a group of malicious
voters who disagree with the tally outcome to spread mistrust in an election and in
the worst case enforce a reelection, even if the tally was computed correctly.
Category 5: Robustness and Scalability
This is the category for Requirements which are important for applicability in

real world. Analysis outcomes of Requirement L (robustness), M (availability) and
N (scalability) the questions I5, J4, and K4 are summarized in this category.

3.2.6. Experiences
To test and refine our Taxonomy, we have analyzed several different voting schemes

known to us, presential as well as internet voting schemes, paper-based as well as
electronic voting schemes. Among them are the traditional German paper election,
Prêt à Voter[CRS05], Bingo Voting[BMQR07], and ScantegrityII[CCC+08]. We ex-
emplarily summarize the analysis of two of these voting schemes here. The full
analysis can be found in the appendix.
3.2.6.1. German Paper Election
The German governmental election is usually implemented as a traditional pa-

per election, which takes place in designated polling stations. The election can be
observed from beginning to end by everyone who is interested. Eligible voters are
informed of the upcoming election several weeks before the election day(s) and get
an invitation together with a personalized voting card with which they can prove
eligibility at the polling station. Before the voting phase starts the poll workers
show to the observers that the ballot box is empty. Then the ballot box is closed
and its opening stays covered except when voters put in their ballots. Poll workers
maintain a list of eligible voters, a voter roll, in which they record which voter has
already cast a vote. To cast their vote, voters go to a polling station assigned to
them, where they show their identity card and their voting card, are ticked off in the
voter roll as present and obtain a ballot. With the ballot, the voter enters a voting
booth and marks her choice in private on her ballot, which she then folds to hide her
marks. The voter puts her filled-out ballot into a ballot box and is again ticked off
in the voter roll to mark that she has cast her ballot. There are several elections run
in parallel in different polling stations. At the end of election day, before counting
it is made sure that all voters in all other polling stations are finished with casting
their ballots, to avoid the leaking of intermediate results before the poll is closed. To
count the ballots, they are taken out of the ballot box one at a time and shown to
the observers. The content of each ballot box is counted by more than one person,
the counting process is repeated until there is a consensus.
The German paper election scheme is rather strong concerning privacy, fairness

and verifiable correctness. Provability of a fraud strongly depends on the avail-
ability of voluntary election observers. A weak point of the scheme is its lack of
redundancy and the fact that its voting processes within one polling station can
hardly be parallelized.
The full analysis of this election can be found in Appendix A.

Election type
The voting scheme is paper-based and designed for governmental elections which

take place distributed over several polling stations.

40 3. Requirements of Cryptographic Voting Schemes

Preliminaries and Assumptions
• The poll workers as a group are neutral and trusted and do not mark ballots

in an inconspicuous way.

• The ballot box is big enough that the ballots inside are sufficiently shuffled.

• The voter marks her choice in a voting booth which does not contain a camera.

• The election and counting process is observed by sufficiently many witnesses.

What makes this scheme secure?
The main security feature of the scheme is that the whole election and counting

process is observable from beginning to end. The observability is supported by the
fact that the votes are recorded on physical objects that can not be tampered with
without physical access.

Category 1: Privacy and Coercion-Resistance
Voter privacy is ensured by the voting booth. The leakage of intermediate re-

sults is prevented as long as the counting procedures of different polling stations
are sufficiently synchronized between polling stations. The scheme is not coercion
resistant since the voter can be forced to mark her ballot to make it invalid, or not
to participate in the election at all. If the voter can mark more than one choice per
ballot, the voting scheme is vulnerable to pattern voting attacks.

Category 2: Correctness and Verifiability
Verifiable correctness is ensured by the possibility of observation. A downside of

the scheme is that each voter can only observe one polling station, so the election is
not exactly universally verifiable. The observation is also very time-consuming.

Category 3: Fairness
The ballot layout is auditable, and the leakage of intermediate results is prevented

by observation.

Category 4: Provability of a fraud
Since everything except for the ballot marking process is done in the open, ev-

erything can be observed. So provability of a fraud depends on the presence of
witnesses.

Category 5: Robustness and Scalability
The limiting factor of the paper election is that voters can only vote sequentially

and the ballots are counted by hand, so the whole process takes a lot of time. Since
choices are recorded on paper ballots, recounts can be done as often as wished. On
the other hand, there is no redundancy in the recording of votes, lost ballots cannot
be recovered.

3.2.6.2. Prêt à Voter
This analysis refers to the original scheme Prêt à Voter as introduced in [CRS05],

and is done with the purpose of demonstrating and testing the taxonomy, not as an
evaluation of Prêt à Voter. The original scheme has some drawbacks which become
obvious in the taxonomy. However, it shall be mentioned here that Prêt à Voter
has been further developed and improved in both privacy and robustness aspects
[RS06, DHvdG+13].

3.2. A Taxonomy for Cryptographic Voting Schemes 41

The full analysis is in Appendix D. Prêt à Voter is a paper-based election scheme
for presential elections. The voter gets a ballot which has two parts: a right-hand
side which displays the candidates in random order, and a left-hand side where the
voter can mark her choice. To cast her ballot, the voter makes a mark next to the
candidate of her choice, separates the two ballot halves and destroys the part which
contains the candidate names. The other half also contains an encryption of the
permutation. This part is scanned and recorded and later published on a public
bulletin board for verification. The voter can take this part home as a receipt, and
check if it is published correctly.
The permutation of each ballot has been created prior to the voting phase by a set

of tellers, each teller using its own randomness called a germ to create its permuta-
tion. The permutations are applied subsequently, and ballots are later decrypted by
the tellers by sequentially decrypting and applying the permutation to the ballot.
This procedure is called an onion mix. In newer versions [RS06], a more robust
re-encryption mix is used.

Election type
Prêt à Voter is a paper and optical scanner based cryptographic voting scheme

designed for presential elections.

Preliminaries and Requirements
• Tallying is performed by a set of tellers which are realized as several hard-

ware devices. Each teller has two key pairs, and creates a permutation of the
candidate order for each ballot.

• There is a trusted election authority (EA) which generates a random seed of
which the tellers calculate their permutations. The EA generates the ballots
depending on these permutations.

• The EA generates a random seed from which random values, called germs, are
created for the tellers. The germs are encrypted and hashed to obtain each
teller’s permutation.

What makes this scheme secure?
• Each ballot has a random candidate order which is invisible but present as an

encryption on the voter’s receipt.

• The recording device only reads the mark but not the candidate order (only
its encryption), so it does not see the voter’s choice in plaintext.

• Voters can check their receipts on a public bulletin board.

Trusted Instances/cryptographic assumptions:
• Trusted ballot creators/printers (they see the permutation of each ballot)

• IND-CPA-secure encryption for the permutations

• Encryption acts as binding commitment; Encrypted permutations should not
be decryptable to other permutations with some trapdoor.

42 3. Requirements of Cryptographic Voting Schemes

Category 1: Privacy and Coercion-Resistance
Privacy and receipt-freeness depend strongly on the underlying assumptions, es-

pecially the assumption of trusted authorities: each entity which sees the full ballots,
i. e. parties who create it, print it, hand it out to voters etc. sees the permutation,
and each ballot has a unique identification number which identifies the ballot. Pri-
vacy is ensured as long as these parties are trusted. Privacy is not unconditional,
it depends on the encryption scheme used for the encrypted permutations that are
printed on the ballots. However, Demirel et al. [DHvdG+13] introduced a technique
to provide Prêt à Voter with everlasting privacy. Receipt-freeness holds under the
given assumptions, but coercion-resistance does not, since the voter can be forced to
mark a certain position which can be seen on her receipt. A big advantage of Prêt à
Voter is that the device which records the ballots does not learn the voter’s choice.

Category 2: Correctness and Verifiability
For individual verifiability, the voter can see on her paper ballot that it is correctly

marked and that it is published on the bulletin board correctly. The counting process
is publicly verifiable by anyone who is interested, but requires some mathematical
background. Verifiable correctness strongly depends on enough voters checking that
their ballots are on the bulletin board, or at least the EA not knowing who is going
to check their ballot, since not checked ballots can be modified unnoticed.

Category 3: Fairness
Fairness holds under the assumption that the checking of eligibility is performed

properly and it is checked that each voter takes part in the voting process only
once, and sufficiently many ballots are audited to ensure layout neutrality. For
intermediate results to leak, the scanner and either all tellers or the voting authority
would have to be corrupted.

Category 4: Provability of a fraud
If a ballot is missing on the bulletin board, the voter can prove this with her

receipt. Her ballot can then be included in the tally. It is then unclear though if
her ballot is just missing or was substituted by another one. Since the ballots are
not signed by the voters, ballot stuffing is only prevented if additional measures are
taken, like observability as in the German paper election.

Category 5: Robustness and Scalability
Due to the onion mixing technique, each teller can perform a denial of service

attack by refusing to decrypt ballots. Apart from that, similar scalability issues
hold as with the paper election: the voting process requires physical presence in
a voting booth in a polling station, therefore voters mostly vote sequentially. An
advantage of Prêt à Voter is that ballots can be tallied electronically.

3.3. A Review of Definitions of Coercion Resis-
tance

In the literature, coercion-resistance is defined in several different ways, mostly
depending on the considered underlying model or type of voting schemes, including
symbolic, game-based and UC-based definitions. While some of them are very gen-
eral, others are very restrictive and only applicable to a small set of voting schemes.
In this section, we review these definitions and discuss if they can be applied to
our special cases write-in-candidates and revoting. First, we present some general

3.3. A Review of Definitions of Coercion Resistance 43

observations concerning write-in candidates and revoting in Section 3.3.1. In Sec-
tion 3.3.2, we present the review of definitions of coercion-resistance. There are
several definitions that capture the weaker notion of receipt-freeness, for example
[MN06, BT94, JP06a]. These are not reviewed here.

3.3.1. General remarks
Before we start our review, we discuss some general observations. There are two

kinds of information the adversary can use for coercion: the information specific
for and leaked by a voting protocol, and information the adversary gets through
external parameters, independently of the voting scheme. An example of the latter
would be the election result, which can be compared to an expected distribution of
the choices of honest voters. As stated in [MN06], it is obvious that if every voter
votes for the same candidate, there is neither privacy nor coercion-resistance. The
same holds if there is only one voter.

Write-in candidates
Analyzing elections with write-in candidates with respect to existing definitions

is a special challenge because it gives two main weak points for coercion, which are
in line with the above mentioned different kinds of information:

• Some voting schemes support write-in candidates, but in order to do so, process
them differently than the normal candidates. Whether such a scheme can be
analyzed by a certain definition strongly depends on the protocol, so we do
not consider this issue in this review.

• The adversary learns significant information about the voter’s choice from the
tally itself: he can always coerce the voter to vote for a candidate that will
most likely get no votes otherwise. This is by the way not only a problem of
write-in candidates but with all elections that have such unlikely candidates.

The way the protocol-independent information such as the tally is treated strongly
differs between existing definitions. Some definitions just ignore these external pa-
rameters and the level of coercion-resistance in elections with information-giving ex-
ternal parameters cannot really be told with such a definition. Other definitions take
into account this external information but are not achievable by elections with write-
in votes, because they give yes/no answers to the question of coercion-resistance,
while another group of definitions is more flexible, and measures coercion-resistance
by a bound δ. The latter build up the group of definitions that are suitable to
measure the coercion-resistance of elections with write-in candidates.

Revoting
Revoting is a counter-measure to observation during the voting process, but also

gives the voter the ability to change her mind, as in our application to delegated
voting. The challenge that revoting gives us is that the voter can change her input
during the protocol, or more precisely, give more than one valid input of which only
last one may be included in the final outcome. This possibility is sometimes difficult
to model: some definitions allow the voters to only cast a vote once in the protocol,
other definitions let the adversary control the network and therefore learn which
voter has cast how many ballots.

44 3. Requirements of Cryptographic Voting Schemes

Delegated voting
With vote delegation, we have two dimensions of coercion: the coercion concern-

ing the voter’s choice and the coercion concerning the delegation. To capture vote
delegation, a definition would have to consider the possibility of a party depending
her input on someone else’s without letting this person know and without learn-
ing the input of that other party. To the author’s knowledge, currently no formal
model exists that captures delegated voting. We leave this as an open problem and
concentrate on the other two special cases in this review.

3.3.2. Definition Review
In this section, we first review two symbolic definitions which are slightly weaker

than the general notion of coercion-resistance. Then we review simulation-based
definitions which are related to the UC-framework [Can00], and several game-based
definitions.
Symbolic Definitions
• Delaune et al. [DKR09] introduce a model for privacy-type properties of cryp-

tographic voting schemes using the applied pi calculus. They concentrate
on blind signature based voting schemes, where privacy is achieved through
anonymous channels. The authors state that coercion-resistance cannot hold
if the coercer can physically vote on behalf of the voter, and therefore model
a voting booth as an anonymous channel. As usual for symbolic approaches,
cryptography is assumed to work perfectly.
In the semantics of [DKR09], the difference between privacy, receipt-freeness
and coercion-resistance is defined via the nature of cooperation between the
voter and the adversary. In all three definitions, the adversary must not be able
to distinguish whether two voters A and B have swapped their votes, whereas
in the definition of privacy, the adversary only sees public information, while in
the definition of receipt-freeness, the voter gives input to the adversary but not
the other way around. In the definition of coercion-resistance, the adversary
additionally gives input to the voter. This notion does not capture coercion-
resistance in its full generality, forced abstention attacks are not covered, for
example.
Write-in candidates and revoting: Additional information that is leaked
by the tally is not taken into account by this definition, so it cannot be applied
to write-in candidates. As to revoting, the model makes no restriction. It can
be applied if the corresponding voting scheme can be modeled in the applied
pi-calculus.

• Jonker and Pieters [JP06b] define an interesting notion they call strong receipt-
freeness in epistemic logic. Their notion is rather close to coercion-resistance
and states that with all information the voter can give to the adversary, the
adversary cannot learn whether the voter did not vote for a certain candidate
X.
Write-in candidates and revoting: The definition takes into account the
information supplied by the voter, as well as public information, but gives
a yes/no-answer to the question of (strong) receipt-freeness. Therefore, the
notion is not useful for write-in candidates. Revoting is not excluded by the
underlying model.

3.3. A Review of Definitions of Coercion Resistance 45

Simulation-based definitions
Simulation-based definitions define security of a protocol via indistinguishability

between an ideal world an the real world. In the real world, protocol participants
interact with an adversary and the real protocol, while in the ideal world, the desired
functionality of the real protocol is emulated by an ideal functionality, and the
adversary’s role is played by a simulator. These definitions have in common that
they are often considered too strong and it is hard to construct protocols that can
be proven secure with such definitions. They often require cryptographic primitives
that are specially designed to achieve simulatability in all possible situations.

• Canetti and Gennaro [CG96] introduce a definition of coercion-resistance for
general multi party computation. An election can be seen as a special kind of
multi party computation since each participant wants to keep his input, the
ballot, secret, and a joint output - the tally - is computed. So the definition in
[CG96] can be applied to voting schemes and is actually listed by its authors
as a use case. The definition measures coercion-resistance as the statistical
difference δ between an execution of an ideal protocol with a simulator that
has blackbox access to the adversary, and the execution of a real protocol with
a real adversary. An advantage of this definition is that it is more flexible than
giving a yes/no answer to the question of coercion-resistance.
Write-in candidates and revoting: Write-in candidates would mainly af-
fect the external parameters the adversary sees, which are the same in the ideal
and the real world. So a vote for an unlikely candidate would have no influence
on simulatability. It is therefore not advisable to measure coercion-resistance
of a scheme with write-in candidates with this definition.
Revoting as a counter strategy to coercion is hard to capture with this defini-
tion. The underlying model assumes that the adversary sees all communication
between the parties and the input procedure is thought of as parties broad-
casting their encrypted input. So the adversary is assumed to see the number
of messages each party sends.

• Müller-Quade and Unruh [UMQ10] introduce the notion of universally com-
posable incoercibility (UC/c), an extention of the UC-framework of Canetti
[Can00]. Parties are modeled by interactive Turing machines (ITM), coercion-
resistance is defined by indistinguishability between a real world and an ideal
world. In the ideal world, there is a deceiver that models the voter’s free will,
which has to be accomplished by the voter in the real world with the help of a
deceiver-simulator. A party in the real world can have one of three corruption
states: it is either uncorrupted, controlled by the adversary or controlled by
the deceiver-simulator. A party controlled by the deceiver-simulator tries to
accomplish her own will (modeled by the deceiver) while making the adversary
believe she follows his instructions. A real protocol π then UC/c-emulates an
ideal protocol ρ, if for every deceivier D there exists a deceiver-simulator DS
in the real world such that for each adversary A there exists an adversary-
simulator S in the ideal world such that no environment Z can distinguish
between the real world that contains the real protocol, the adversary and the
deceiver-simulator, and the ideal world that contains the ideal functionality,
the adversary-simulator and the deceiver. The definition assumes the adver-
sary to have a chance δmin of coercion in the ideal protocol, depending on

46 3. Requirements of Cryptographic Voting Schemes

external parameters, while δmin is not explicitly measured. To be coercion-
resistant, the adversary’s maximal chance of coercion has to be bounded by
δmin plus a negligible function.
Write-in candidates and revoting: Coercion by forcing the voter to vote
for unlikely candidates would also be successful in the ideal world. Therefore,
write-in candidates would increase coercion possibilities captured by δmin in
the ideal protocol, but have no effect on simulatability. So coercion-resistance
with write-in candidates is hard to measure in the UC/c framework without
explicitly measuring δmin.
Modeling revoting is possible but not trivial, since care has to be taken with
scheduling issues. Each Turing machine invokes the next in turn by sending it
a message on its input tape. If no next Turing machine is specified, it is the
environment’s turn to invoke an ITM. So without further restrictions it cannot
be assumed that each voter-ITM has the possibility to revote.

Game-Based and Computational Definitions
• Juels, Catalano and Jakobsson [JCJ05] were among of the first to give a for-

mal and rather strong definition of coercion-resistance, and clearly differentiate
between coercion-resistance and receipt-freeness. Their model is rather restric-
tive and only applicable to voting schemes with a specific structure which is
not met by the voting schemes introduced in our work. Voters are assumed
to use anonymous credentials for proving eligibility and casting their votes.
The voter’s strategy to evade coercion is then assumed to be providing the
adversary with a fake credential. The definition takes into account external
parameters and assumes the adversary to have knowledge about the expected
distribution of votes cast by honest voters.
Write-in candidates and revoting: The authors state themselves that
elections supporting write-in candidates can never be coercion-resistant in their
model as long as the election result is published accurately, which was actually
the motivation for Section 4.5 of this work.
The definition by Juels et al. is not designed for revoting as a deceiving strategy.
This can be seen in the attack game, where the adversary casts his vote, with
the credential obtained by the voter, after all other voters have cast their vote,
and right before the tally is computed. They also define an ideal tally function
that ignores double votes and therefore excludes revoting.

• Gardner et al. [GGR09] propose a game based definition where the adversary
is given oracle access to the vote casting process, but given no access to post-
voting outputs. Coercion-resistance is defined via the indistinguishability of
public protocol outputs during the voting phase in answer to inputs of the
voter’s choice versus inputs of the adversary’s choice. They model a counter
strategy for the voter as a function GenerateInput that takes as input the
voter’s wish and the adversary’s input of choice, which for example can be
a vote for a certain candidate or certain randomness. It outputs input the
voter can use for vote casting that will lead to the voter’s wish but deceive the
adversary.
Write-in candidates and revoting: The definition does not take into ac-
count information on plaintext ballots, including write-in candidate strings.

3.3. A Review of Definitions of Coercion Resistance 47

The adversary only gets public output specific to each cast vote, it does not
see the tally or anything published in the post-voting phase. So with this
definition it is hard to measure the impact write-in votes would have on the
coercion-resistance of an election.
The definition does not specify what the voter’s input looks like, just that
the voter sends some input, at least including her final choice, in a series of
interactions with the election servers. So revoting can in principle be captured
by the definition.

• Küsters et al. [KTV12] provide an intuitive game-based definition of coercion-
resistance that is rather general and applicable to a wide range of voting
schemes. The idea of their definition is that an adversary can not distin-
guish between a voter that follows the instructions of the adversary, and a
voter that instead uses a deceiving strategy with which the voter accomplishes
her own will. An advantage of this definition is that it takes into account both
the voting scheme itself and external parameters.
Coercion-resistance is measured by a parameter δ the calculation of which
consists of a combinatorial part, that takes into account only the external
parameters that are independent of the voting scheme, and a cryptographic
part, that analyzes information specific to the voting protocol. They define
an ideal election, which has coercion-possibility δmin, in relation to which the
coercion-resistance of voting schemes can be measured.
The definition is very similar to UC/c (see Section 3.3.2): in this definition,
too, there is assumed to be one universal deceiving strategy, determined by
the voting scheme and known to the adversary, that can be used against each
coercion-strategy. Though while UC/c is very specific concerning the schedul-
ing, in the model of Küsters et al. an appropriate scheduling is assumed without
being defined explicitly.
Write-in candidates and revoting: Write-in candidates would increase
δmin, so as with the UC/c definition, judging coercion-resistance of an elec-
tion with write-in candidates requires explicitly measuring δmin. Our notion
of fuzziness introduced in Section 4.5 would in turn decrease δmin, and the two
definitions in combination seem to be appropriate to handle write-in candi-
dates.
Revoting is not excluded by the model and can easily be used as a deceiving
strategy.

• In their work about single transferable votes (STV), Teague et al. [TRN08] pro-
pose a definition of coercion-resistance that takes into account the information
leakage of (intermediate) tally results. The adversary can communicate with
the voter before and after, but not during the voting process. The view of an
adversary is then defined as the information the adversary learns in this com-
munication together with public information. Coercion-resistance is defined
against a certain threshold for the ratio between the likelihood of a certain
view given the voter obeyed the adversary and the likelihood of a view given
the voter did not obey. They model the voter’s choice in a very abstract way,
so it can be not only her choice of candidate but also any decision the voter
could make, like for example abstaining from voting.

48 3. Requirements of Cryptographic Voting Schemes

Write-in candidates and revoting: The definition seems suited for elec-
tions with write-in candidates since it takes into account all public informa-
tion, including the tally results. To measure the impact of write-in votes on
coercion-resistance, an upper bound for the ratio between the likelihoods of
views would be the value of interest.
The definition does not put restrictions on the casting process, so revoting is
not excluded, but as the definition assumes a private channel for vote casting,
it makes little sense to analyze revoting as a counter-measure to adversarial
observation in this model.

3.3.3. Conclusion
We conclude our review with a brief summary of the suitability of the reviewed

definitions for measuring the coercion-resistance of election schemes which support
write-in candidates and revoting.

Write-in candidates
We have seen that the definitions of Delaune et al. [DKR09], Canetti et al. [CG96]

and Müller-Quade et al. [UMQ10] are not suited to measure coercion-resistance
with write-in candidates, since they do not take into account non-protocol specific
information, and write-in candidates would have no impact on coercion-resistance.
The definitions of Gardner et al. [GGR09] and Juels et al. [JCJ05] do explicitly
not take into account write-in votes. As the definition of Jonker et al. [JP06a],
they cannot be fulfilled with voting schemes that allow write-in candidates if the
tally is published accurately. The definitions of Küsters et al [KTV12] and Teague
et al. [TRN08] are suited to measure coercion-resistance in the presence of write-
in candidates, though they would correctly show a rather low level of coercion-
resistance if the tally is published accurately.

Revoting
The definition of Canetti et al. [CG96] is not applicable to revoting since the ad-

versary controls the network. Revoting is also not captured by the definition of Juels
et al. [JCJ05], which is designed for a different, specific strategy to evade coercion.
The definition of Teague et al. [TRN08] assumes a private channel during the voting
process, while in a szenario where revoting is used as a counter-measure against co-
ercion, it is assumed that the voter can be observed during the voting process. The
definition of Gardner et al. [GGR09] is applicable to revoting, but gives the adver-
sary no access to data published in the post-voting phase. Both reviewed symbolic
definitions are applicable to voting schemes which use revoting as a counter-measure.
However, these definitions only capture a weaker notion of coercion-resistance. The
definitions of Unruh et al. [UMQ10] and Küsters et al. [KTV12] seem best suited to
capture revoting, though scheduling issues need to be kept in mind.

4. Coercion Resistance in
Presential Elections

In presential elections, voters cast their choices in a designated polling station. Since
voters are present in person, their eligibility can be checked on-site by poll workers.
Therefore, election schemes for presential elections do often not specify how voters
are authenticated and how their eligibility is checked. Secrecy is usually provided
by a voting booth which the voter enters alone to fill out her ballot. Depending on
the voting scheme, this can be done on paper or with the help of a so-called vote
casting interface, the user interface of a voting machine.
A weakness presential elections have in common is that forced-abstention attacks

are always possible: the adversary can observe the polling station and see who has
cast a vote. This attack is very expensive and uncomfortable for the adversary: he
has to be present at the polling station, or observe it during the whole election time
with a camera. Therefore, it is still important to prevent other forced abstention
attacks in a voting scheme, where the adversary could perform such an attack com-
fortably from at home by analyzing published data. Bingo Voting is a cryptographic
voting scheme which was proven to be as coercion-resistant as an ideal voting scheme
in [KTV12]. In this Chapter, we introduce real-world experiences with Bingo Voting,
introduce possible improvements and discuss under which assumptions the scheme
is coercion resistant. To review our practical experiences, we analyze the conducted
election with our taxonomy. To add more flexibility to Bingo Voting, we provide it
with the possibility to allow for write-in candidates.
As we have seen in Section 3.3, most definitions of coercion-resistance are not

suited for elections with write-in candidates. The reason for this is that the ad-
versary can use information leaked by the tally to coerce the voter. Motivated by
this issue, we introduce a definition for a controlled fuzzy tally representation, to
enable coercion-resistant elections with write-in candidates. We introduce tallying
techniques for mix-based schemes and schemes with homomorphic tallying, which
fulfill the new definition. After introducing the general approaches, we apply it to
Bingo Voting and show that the modified scheme is secure under our new definition.
This Chapter is structured as follows: after introducing related work relevant for

this chapter in Section 4.1, we introduce Bingo Voting and its improvements in
Section 4.2. Practice experiences with Bingo Voting are discussed in Section 4.3. To

49

50 4. Coercion Resistance in Presential Elections

make Bingo Voting more flexible, we provide it with write-in candidates in Section
4.4. After discussing the additional impact write-in candidates have on coercion-
resistance, we introduce our notion of fuzziness in Section 4.5. Section 4.6 shows
how fuzziness can be realized in cryptographic voting schemes, and applies those
techniques to Bingo Voting as an example.

4.1. Related Work
4.1.1. Related Work on Presential Elections
During the last three decades, many voting schemes for presential elections have

been introduced which provide public verifiability while protecting privacy. They
can be divided into two groups: paper-based schemes, where the voter filles out a
paper ballot, and computer-based schemes, where the voter casts her choice using a
vote casting interface. Most paper-based schemes use a hybrid approach: the voter
casts her choice on a paper ballot, which is then scanned and processed electronically.
With Three Ballot [Riv06], Rivest introduced a paper-based scheme which is pub-

licly verifiable without using any cryptography. The scheme is easy to understand,
but allows pattern-voting attacks in elections with many candidates, and gives the
adversary a 2

3 chance of manipulation for each ballot. Punchscan [PH10] is a receipt-
free paper based scheme which is not coercion-resistant, it is vulnerable to a random-
ization attack [JCJ05]. ScantegrityII [CCC+08] is a paper-based scheme, which has
been successfully applied in a real world election [CCC+10]. Prêt à Voter [CRS05]
is a paper-based scheme in which the scanner does not learn the voter’s choice. It
has recently been further developed to achieve everlasting privacy [DHvdG+13].
Research on cryptographic electronic voting in general has started with the work

of Chaum [Cha81]. One of the first electronic cryptographic voting schemes was the
scheme of Benaloh and Tuinstra [BT94], where the voter enters a voting booth for
registration, but later casts her vote over a public channel. A cryptographic voting
schemes that uses a voting machine is introduced by Moran and Naor [MN06], it
gives a receipt to the voter with challenges for zero-knowledge proofs, which prove
for each candidate that this candidate is voted and included in the tally, whereas the
proofs are simulated for the not voted candidates. Only the voter, who took part in
the voting process, knows which of the proofs is not simulated. Motivated by this
scheme was Bingo Voting [BMQR07], which hides the voter’s choice between dummy
votes. Bingo Voting is used throughout this chapter to introduce and demonstrate
our techniques.
There are many more voting schemes for presential elections, those in [AR06,

Cha04, BJR10, CEC+08, ACvdG10, RS07, AN09] still build up an incomplete list,
but provide an overview over their variety. Reviews on several voting schemes were
done in [Hen12] and [JMP13].

4.1.2. Related work on Bingo Voting
Bingo Voting was originally introduced in 2007 by Bohli, Müller-Quade and

Röhrich in [BMQR07]. Improvements regarding both voter privacy and verifia-
bility were done by Bohli et al. in [BHK+09], they will be discussed in Section 4.2.2.
Bingo Voting was implemented and applied in the Student’s Parliament’s election
of Universität Karlsruhe (TH), now Karlsruhe Institute of Technology, in 2008. The
experiences of the event together with a comparison of the scheme with three others,
regarding usability, were published in [BHMQ+08]. We discuss those practical expe-
riences in Section 4.3. Additional improvements were introduced in the dissertation

4.2. Bingo Voting 51

of Christian Henrich [Hen12], who, among other things, used a proof technique of
Groth [Gro02] to minimize the size of the correctness proofs of the scheme.
Küsters et al. [KTV12] introduced a definition of coercion resistance under which

they proved Bingo Voting as secure as an ideal voting scheme.

4.1.3. Related work on write-in candidates
A review of definitions of coercion-resistance and their relation to write-in can-

didates can be found in Section 3.3. Several voting schemes exist which efficiently
include write-in votes in elections based on homomorphic encryption [Acq04, KY04].
While forced-abstention attacks are not considered in [KY04], Acquisti [Acq04] pre-
vents forced abstention attacks based on forcing the voter to “vote for” a random
string by only allowing certain permissible choices. This does not keep an adversary
from forcing the voter to vote for a valid, rarely elected candidate.
As stated in [Adi06], mixnet-based schemes like Neff’s [Nef01] naturally support

write-in votes as they support free-form ballots. Scantegrity II [CCC+08] has been
used in a real election [CCC+10] providing the possibility to write in candidates
in a way which is practical and straightforward for the voter. Their technique is
similar to ours in that it also tallies in two steps: first the candidates from the list
and then the write-in candidates. However, the write-in solution of Scantegrity II
has some drawbacks. As stated in [CCC+10], the election authority can modify
the write-in names. Furthermore, any observer auditing the resolution of write-in
votes sees the handwritten choices. The two-step idea of counting write-in votes
separately has also been proposed in [Adi06] for paper-based schemes. All schemes
allowing write-in votes, including those mentioned above, are naturally vulnerable
to forced-abstention attacks as long as their proofs of correctness yield the exact
tally.

4.2. Bingo Voting
In this Section, we briefly review Bingo Voting and its development during the last

few years. Bingo Voting provides verifiable correctness even if the voting machine
is corrupt. If the voting machine is uncorrupted, it additionally provides coercion
resistance. The scheme’s verifiability relies on a trusted random number generator.
A voting machine is usually a rather complex system, so its hardware and software
are hard to test. As opposed to this, the random number generator can be very
simple hardware, ideally without any software component, like for example a bingo
cage.
Bingo Voting was successfully applied in the election of the student parliament in

the University of Karlsruhe (now Karlsruhe Institute of Technology) in 2008, Section
4.3 gives some insight into our practical experiences. The scheme is rather flexible
since it is applicable to elections which allow vote-splitting, i. e. voters can distribute
their votes among several candidates, and cumulative voting, i. e. voters can give
more than one vote to a candidate. Furthermore, it makes no restrictions towards
the vote casting interface. Choices can be presented to the voter in an arbitrary
way. In Section 4.4, we introduce a technique to provide Bingo Voting with write-in
candidates.

4.2.1. The Original Bingo Voting Scheme
In this section, we describe the original Bingo Voting scheme, as introduced in

[BMQR07]. The idea of Bingo Voting is similar to the voting scheme of Moran

52 4. Coercion Resistance in Presential Elections

and Naor [MN06]: after casting her vote, the voter gets a receipt with which she
can later verify that her vote is correctly included in the tally. Since this receipt
must not yield information about the voter’s choice, the chosen candidate is hidden
between so-called dummy votes, and only the voter, who has been present in the
voting booth during the voting process, can differentiate between her choice and the
dummy votes, but not prove her knowledge to others.
In Bingo Voting, votes are represented by random numbers. Dummy votes are

random numbers that are precalculated in a pre-voting phase, and commitments to
them are published on a public bulletin board before the election starts. In the voting
phase, after the voter has entered her choice, the voting machine prints a receipt that
contains the candidate of the voter’s choice, together with a fresh random number
created and displayed by the trusted random number generator. To conceal this
choice, the receipt also contains dummy votes for each not voted candidate. By
comparing the display of the random number generator with the receipt, the voter
is convinced that her chosen candidate is represented by a fresh random number
and not a dummy vote. In a post-voting phase, all receipts, the tally and its proofs
of correctness are published for verification. It is proven that each receipt contains
only one fresh random number, and apart from that only dummy votes. That the
fresh number is assigned to the right candidate could be verified by the voter in
the voting booth. The three phases will be described in more detail below, after all
necessary assumptions have been explained.

4.2.1.1. Notation
Let com be the commitment function of a Pedersen commitment [Ped91a] (see

Section 2.3.4.2). With comr(m) we denote a commitment to a message m with ran-
domness r. We omit the parameter r if it is clear from the context or irrelevant and
write com(m) instead. A commitment to a tuple (m1,m2) denoted by com(m1,m2)
is performed componentwise: com(m1,m2) = (com(m1), com(m2)). Please note
that this differs from the usual notation that denotes the randomness used for the
commitment in the second parameter.
Bingo Voting uses Pedersen commitments because they are unconditionally hiding,

which allows it to provide everlasting privacy. The implied computational binding
property is sufficient since it only needs to hold until all proofs of correctness are com-
puted. Pedersen commitments are also maskable through rerandomization, which
allows to shuffle a set of commitments with common mix-techniques as explained in
Section 2.3.6.

4.2.1.2. Preconditions
Coercion-resistance and verifiable correctness hold under the following assump-

tions:

Preconditions for verifiable correctness
• The trusted random number generator is uncorrupted, and its output is dis-

played to the voter unchanged.

• The probability of collisions between dummy random numbers and fresh ran-
dom numbers is negligible.

• There is a public bulletin board to which anyone has read access, and an
election authority has write access. This election authority does not need to
be trusted for correctness.

4.2. Bingo Voting 53

213 683 172
769 579 413
.
145 123 756
Alice Bob Carol

Figure 4.1.: Dummy votes are created in the pre-voting phase and stored on the
voting machine. They have to be kept secret. Each candidate gets the
same number of dummy votes.

• A mechanism is provided with which the voter can log in at the voting machine
and cast exactly one ballot.

We assume that the random number generator has its own display, so the fresh
random numbers are not displayed to the voter by a possibly corrupted device. If a
fresh random number collides with a dummy random number of the voted candidate,
the voting machine can substitute the fresh random number by the colliding dummy
random number and assign another new random number it creates by itself to a
candidate of its choice. Therefore, collisions should happen only with negligible
probability. A discussion about an appropriate choice of random numbers and their
probablity of collisions is presented in the thesis of Christian Henrich [Hen12].
Preconditions for privacy
• The voting machine is uncorrupted.

• The distribution of random numbers created by the trusted random number
generator and the distribution of the dummy votes are indistinguishable.

All calculations, including the creation of dummy votes and all proofs of correct-
ness, can be executed by the voting machine. The voting machine needs to know
the dummy votes in plaintext so it can print them on the receipts. Therefore, it has
to be trusted for privacy. We model the trustworthiness of the voting machine as
an election authority that has full access to the voting machine and write access to
the bulletin board. This election authority has to be trusted for secrecy but not for
correctness. Fresh random numbers should not be identifiable on the receipts, so
their distribution has to be the same as the distribution of the dummy votes.

4.2.1.3. Pre-Voting Phase
In the pre-voting phase, dummy votes for each candidate are created which are

later used on the voter’s receipt to conceal her choice. Let n be the number of
candidates, and C = {C1, . . . , Cn} the set of candidates. Furthermore, let l be the
number of eligible voters, and s the number of votes a voter can give to a single
candidate. As indicated in Figure 4.1, each candidate gets the same amount k of
dummy votes, where k = l · s is the number of votes a candidate can maximally get
in the tally.
For the sake of convenience we assume that each voter can cast exactly one vote

per candidate, so each ballot encodes a one out of n choice and k = l. Other ballot
formats that allow vote-splitting and cumulative voting are discussed in Section 4.3.
If the exact number of expected voters is unclear, more dummy votes can be created,
as long as this is later accounted for in the calculation of the tally.

54 4. Coercion Resistance in Presential Elections

(com(Bob), com(123)) (com(Bob), com(683)) (com(Carol), com(172))
(com(Alice), com(769)) (com(Carol), com(413)) (com(Alice), com(145))

.
(com(Carol), com(756)) (com(Alice), com(213)) (com(Bob), com(579))

Figure 4.2.: Commitments to dummy votes are published before the voting period
starts. The commitments are published in random order so they cannot
be assigned to candidates.

The dummy votes are created as follows: for each candidate Ci ∈ C, k random
numbers rCi,1, . . . , rCi,k are drawn. These random numbers are the dummy votes for
candidate Ci. The random numbers have to be mutually distinct and indistinguish-
able from those drawn by the trusted random number generator during the voting
phase, so they are ideally drawn out of the same source.
For each candidate Ci, commitments com(Ci, rCi,j) = (com(Ci), com(rCi,j) to each

of his dummy votes rCi,j are created. The commitments are published on the public
bulletin board in random order, as shown in Figure 4.2. The random numbers
themselves must be kept secret by the voting authority. Additionally, a proof that
each candidate has the same amount of dummy votes is published on the public
bulletin board.
In the original scheme [BMQR07] these proofs are suggested to be performed using

randomized partial checking (RPC) [JJR02], but the authors of [BMQR07] also state
that other proof techniques can be used, for example a shuffle using shadow mixes
as explained in Section 2.3.6.2. In fact, RPC should not be used since it yields too
much information [KW13]. In the election of the student parliament we performed
an interactive proof with shadow mixes.

4.2.1.4. Voting Phase
In the voting booth, the voter uses the vote casting interface of the voting machine

to enter her choice. The representation of the choices to the voter is arbitrary and
not specified. After confirming her choice, the vote casting process is initiated. The
voting machine prints a receipt that contains a list of all candidates with a random
number next to each candidate’s name. Each random number next to a not-voted
candidate is one of this candidate’s dummy votes. The voting machine internally
marks these dummy votes as used and does not use them again on another receipt.
The fresh random number from the trusted random number generator is written
next to the voted candidate.
The receipt creation is shown in Figure 4.3. In the privacy of the voting booth,

the voter can compare the number next to the elected candidate’s name with the
fresh random number shown on the trusted random number generator’s display. If
the two numbers are equal, the voter can be convinced that the number next to her
chosen candidate is not a dummy vote. She can take the receipt with her to later
check if her vote is included in the tally. When the voter leaves the voting booth,
the random number generator’s display is cleared, and the receipt does not show
which of the numbers were fresh. This information is only known to the voter and
the voting machine, and cannot be proven by the voter to an adversary. The receipt
is also stored digitally on the voting machine to create the proofs of correctness in
the post-voting phase.

4.2. Bingo Voting 55

Dummy votes stored by the voting machine:
213 683 172
769 579 413
.
145 123 756
Alice Bob Carol

Voter view:

Figure 4.3.: In the voting booth, the voter votes for Alice. The fresh random number
789 is created by the trusted random number generator. Bob and Carol
both “lose” a dummy vote which is printed on the receipt.

4.2.1.5. Post-Voting Phase
After the voting period is over, all commitments to unused dummy votes are

opened by publishing their unveil information on the public bulletin board. The
unused dummy votes mirror the tally, since each time a candidate gets a vote, he
does not lose a dummy vote. Therefore, in theory, it is thus sufficient to publish the
unused dummy votes as the tally. The tally and all receipts are published on the
public bulletin board, and the voters can check the presence of their receipts.
A proof is published that each receipt contains a) exactly one fresh random number

and b) for each not elected candidate a dummy vote of which a commitment was
published in the pre-voting phase. The proof takes as input a new commitment to
the fresh random number and the commitments to the dummy votes on the receipt
which were published in the pre-voting phase. It is then proven that there is one
commitment for each candidate and that the content of the commitments correspond
to the random numbers on the receipt, without revealing any associations between
commitments and random numbers. The details of this proof are again omitted here
since there are different proof techniques [BMQR07, JJR02] that work here as well
as with our adapted fuzzy scheme which is described in Section 4.6.3.

4.2.2. Improvements of Bingo Voting
In joint work with Jörn Müller-Quade, Jens-Matthias Bohli, Christian Henrich and

Stefan Röhrich, several improvements of Bingo Voting have been suggested since its
introduction in 2007, most of them can also be applied to other voting schemes.
This section shortly summarizes some of the improvements which were suggested

in [BHK+09] and [Hen12]. Additional improvements motivated by our practice ex-
periences in the student parliament election are discussed in [BHMQ+08, Hen12] and

56 4. Coercion Resistance in Presential Elections

Section 4.3. A way to let Bingo Voting support write-in candidates is introduced in
[Kem12] and Section 4.4.

Early deletion of secrets
The voting machine stores all dummy votes in plaintext, since they are needed

for the generation of the receipts and their proofs of correctness. If an adversary
gets access to these dummy votes, he can identify fresh random numbers and with
that break voter privacy. However, after generating a receipt, the dummy votes
used on this receipt are only needed for the receipt’s proof of correctness, the tally
is calculated from the unused dummy votes. There is one such proof per receipt,
which takes as input the dummy votes used on the receipt, their corresponding
commitments (with unveil information) and the fresh random number. If these
proofs are created by the voting machine non-interactively, directly after each voting
process, the used dummy votes and the unveil information of their commitments can
be deleted immediately [BHK+09]. This way, all secrets which could break a voter’s
privacy would be deleted directly after she leaves the voting booth, and cannot be
derived by a malicious voting authority who has access to the voting machine after
the voting phase.

Hash Chains
If the adversary knows which receipts are not checked, it can manipulate the tally

by manipulating these receipts. To prevent this attack, the voting machine can build
up a so-called hash chain: each receipt is hashed after creation and its hash value
is then included on the receipt of the next voter. This way, to manipulate a receipt
after the voting phase, the adversary either needs to find a collision with the receipt’s
hash value or also manipulate all receipts that were created after the manipulated
receipt, which would significantly increase the chance of being detected. Therefore,
the hash chain makes manipulating receipts after the voting phase very hard. The
voting machine can still manipulate receipts upon their creation, but to this end it
needs to know in advance if the voter is going to check her receipt. This is discussed
in more detail in [BHK+09] and [Hen12].

Proving a fraud in the voting booth
In the voting booth, if the fresh random number does not appear next to the

voter’s chosen candidate, it is hard to prove a discrepancy without giving up voter
privacy. Moreover, if the fresh random number appears on the receipt but in the
wrong place, it is hard for the voter to prove that she did not vote for the other
candidate in the first place. In [BHK+09, Hen12], a solution is suggested in which the
voter casts her choice by filling out a paper ballot, which acts as forensic evidence of
the voter’s choice. This ballot is scanned to record the vote and create the receipt.
To be able to prove a fraud without breaking privacy, alignment information is
printed both on the paper ballot and on the receipt. Using two different kinds of
privacy sleeves, the voter can prove a discrepancy: with one privacy sleeve, the voter
can prove that the fresh random number is not in the same row as where she has
put her mark. With the other privacy sleeve, the poll worker can check whether the
alignment information is correctly printed on both ballot and receipt.

Resolving a dispute after the voting phase
After all receipts and proofs of correctness are published, the voter detects a fraud

if her receipt is not published or a proof of correctness is incorrect. In the latter
case, there is nothing to prove since everyone can check the proofs. If the voter’s

4.2. Bingo Voting 57

receipt is missing or not correctly published, the voter can prove this by showing
her receipt. This implies that it has to be ensured that the receipt is unforgeable.
On way to achieve this is letting the voting machine or the printer digitally sign the
receipt, or using unforgeable paper. However, if the signing component is corrupt or
the printer uses the wrong paper, the voter cannot prove that she did not forge her
receipt. Moreover, using these techniques it is hard for the voter to convince herself
in the voting booth that her receipt is created with the correct forensic evidence. So
it would be of advantage to have more than one evidence to prove the authenticity
of the receipt, created by different instances [BHK+09, Hen12].

Convenient comparison of random numbers
In the voting booth, the voter has to compare the random number on the trusted

random number generator to the random number next to the chosen candidate
on her receipt. To make this comparison more convenient, the random numbers
should be presented to the voter in a way such that they can be easily processed
by the human brain. Following Ryan and Wickelgren [Rya69, Wic64], groups of 3
or 4 digits of easily distinguishable characters seems to be a suitable representation.
This is described in more detail by Christian Henrich [Hen12], who also discusses the
necessary length of random numbers and techniques to decrease their probability of
collision, which in turn allows for shorter random numbers.

4.2.3. A discussion on Coercion-Resistance
In this Section, we discuss the privacy properties of Bingo Voting. First, we show

why the choice of the used shuffle proofs is crucial. Then we show that Bingo Voting
offers more privacy and coercion-resistance than a paper election if cumulative voting
and vote-splitting are allowed. After that, we argue that under given assumptions,
Bingo Voting offers everlasting privacy.

Importance of the shuffle proofs
In [KTV12], Bingo Voting is proven as coercion-resistant as an ideal voting scheme.

This holds if all used shuffle proofs are zero knowledge proofs.
Bingo voting uses proofs of correctness of a shuffle on two occasions: in the pre-

voting phase, to prove that each candidate has got the same amount of dummy
votes, and in the post-voting phase, to prove that each receipt contains exactly one
fresh random number and otherwise dummy votes. In these proofs, Bingo Voting
shuffles and opens Pedersen commitments, and then proves the correctness of the
shuffles.
For the proofs of correctness of the receipts, the used shuffle proof technique is

critical: it is not sufficient to hide the link between the fresh random number and
the chosen candidate, since this would only provide receipt-freeness. To provide
coercion-resistance, it is important that the adversary cannot see that a candidate
is not voted, or that one candidate is voted with a higher probability than another.
Therefore, a shuffle proof needs to be computed in a way that the fresh commitment,
which encodes the fresh random number, could in principle belong to each opened
random number, with equal probability.
However, the original paper [BMQR07] suggests randomized partial checking

(RPC)[JJR02] as a proof technique, which is not zero-knowledge and in fact has
several flaws, both concerning privacy as well as concerning soundness [KW13]. It is
easy to see that if only one mix server is used, which is the case if the voting machine
creates the proofs by itself, RPC reveals significant information as shown in Section

58 4. Coercion Resistance in Presential Elections

2.3.6.3: if an RPC proof is performed in the naive way, by shuffling the commitments
twice and then for each commitment in the middle reveal either the link to the orig-
inal commitment or the link to the opened commitment, the adversary would know
for half of the candidates that the voter did not vote them.
A better, but less efficient way is the zero-knowledge proof of a shuffle using

shadow mixes, as introduced in [Adi08, Ben06] and explained in Section 2.3.6.2. For
more efficiency, Henrich [Hen12] suggests using a proof technique of Groth [Gro02],
which is a honest-verifier zero knowledge argument.
As a side note, an additional improvement would be following the example of

a real world use of Helios [AdM09] and opening shuffled commitments only after
giving voters a chance to complain. This way, voters can complain if a shuffle is not
computed correctly and reveals information about links between shuffle input and
output.

Resistance against pattern voting
Assuming the used shuffle proofs are zero knowledge proofs, Bingo Voting is even

more coercion-resistant than a paper election, or other elections where the plaintext
ballots are revealed for counting after being unlinked from the voter, since it reveals
less information. The reason for this is that the tally is computed by counting the
unused dummy votes, which are not linked to any voter. Therefore, Bingo Voting
has no chance to reveal any voting pattern, except in the proof of correctness of
each receipt. So if each receipt contains the same amount of fresh random numbers,
no pattern is revealed by these proofs. For the adversary it is indistinguishable for
any s if a candidate got s votes from one voter, or one vote from s voters, or any
combination in between.
To give an example, imagine a voting scheme where vote-splitting or cumulative

voting is allowed. If plaintext ballots are revealed, the voter could be coerced to
fill out her ballot in a certain pattern. However, Bingo Voting only reveals the
information that on the voter’s ballot, k votes were given, where k is the number
of fresh random numbers on the voter’s receipt. These k votes could be distributed
to candidates in any possible way. If a special abstention candidate is used as was
done in the student parliament election (see Section 4.3), a voter can even undervote
without being detected.

Everlasting privacy
To break voter privacy, the adversary needs to identify the fresh random numbers

on each receipt. He can do this by opening the commitments to the dummy votes
published in the pre-voting phase, which are unconditionally hiding. Without giving
a formal proof, we argue that Bingo Voting offers everlasting privacy under the
following conditions:

• The distribution of fresh and dummy random numbers is indistinguishable.

• The voting machine is trusted.

• All dummy votes and the unveil information of all published commitments is
stored only on the voting machine.

• All proofs of correctness of a shuffle computed in the pre-election and post-
election phases are perfectly zero-knowledge.

4.3. Bingo Voting in the Student Parliament Election 59

If these conditions hold, the adversary can only identify the voted candidate by
opening the published Pedersen commitments, which are unconditionally hiding.
The first three assumptions are requirements of the Bingo Voting scheme. The
fourth requirement is important and achievable as discussed above.

4.3. Bingo Voting in the Student Parliament Elec-
tion

In January 2008, we had the opportunity to apply Bingo Voting in the election
of the student parliament of the University of Karlsruhe, now Karlsruhe Institute
of Technology. The complexity of the election allowed us to show the flexibility of
the scheme: fifteen polls were run in parallel, and the election allowed vote-splitting
and cumulative voting. Voters could choose between casting a paper ballot or using
the Bingo Voting scheme. Many voters decided to try out the new scheme and cast
their votes electronically.
In the remainder of this section, we describe how we adapted and implemented

Bingo Voting to meet the requirements of the student parliament election, and share
our practice experiences with the Bingo Voting scheme. We first describe election
details and adaptions we made to meet the election’s requirements. After that we
describe the implementation of our voting machine. We then analyze the election
with our taxonomy to compare the analysis with experiences gained in the student
parliament election.
The realization of Bingo Voting and its application in the student parliament elec-

tion was joint work with Christian Henrich. It is also discussed in [BHMQ+08] and
Christian Henrich’s dissertation [Hen12]. This work concentrates more on imple-
mentation and security issues, but for completeness, some election details that were
already described in [Hen12] are also described here.

4.3.1. About the Election
The election of the student parliament was held in January 2008 on five consecutive

days. The election took place in several polling stations, Bingo Voting was available
in one of them. In the same polling station, as well as in all others, students could
cast their choices on a paper ballot, similar to the paper election described in the
introduction. In the following, we concentrate on the part of the election that was
performed with Bingo Voting. The voting machine was treated as one ballot box.
Students could choose between casting a ballot either with Bingo Voting or on paper.
Revoting was not allowed, an electronically cast vote could not be overwritten with
a paper ballot.
The election was rather complex: fifteen different polls were run in parallel, each

student could cast a vote in up to five out of these fifteen polls. The largest of the
polls was the election of the student parliament itself, which actually consisted of
two polls: in the first poll, the voter could vote for one out of nine lists. In the
second poll, the voter could then distribute 9 votes among the 72 candidates on
the lists, at most five votes per candidate. Each student could additionally take
part in the election of the student council of his faculty, there were eleven such polls.
Female students could additionally take part in a poll for the women’s representative.
Foreign students could additionally vote for the representative for foreign students.

60 4. Coercion Resistance in Presential Elections

4.3.2. Special Requirements of the Student Parliament Elec-
tion

For its application in the student parliament election, the Bingo Voting scheme
had to be adapted to meet all the requirements of the election. As implied by the
description above, the voting scheme had to support vote-splitting and cumulative
voting. This can easily be done with Bingo Voting by adjusting the number of
dummy votes. A more challenging requirement was that everything that was possible
with the paper election also had to be possible in the electronic election. This implied
that voters had to be able to cast invalid ballots, or cast empty or only partially
filled-out ballots. Voters were also allowed to take part in different polls on different
days.
The original Bingo Voting scheme as described in [BMQR07] does not specify how

the voter proves eligibility, and how she logs in at the voting machine. So our voting
machine had to be equipped with a login mechanism that allowed each voter to cast
only one ballot per poll, and only in these polls she was eligible for, while allowing
her to leave the voting booth after one poll and cast a ballot in another poll at a
later time.

4.3.3. Implementation and Application
This section describes how Bingo Voting was adapted to meet all requirements of

the student parliament election, and how it was applied in practice. The software for
the voting machine was implemented by the author and Michael Bär in the context
of Bär’s diploma thesis [B0̈8]. The implementation was specifically designed for the
election of the student parliament. The implementation was written for Java 1.6
and has about 8000 lines of code. It consists of three sub-programs which can be
executed separately:

• The pre-election software that creates and commits to dummy votes and
proves the correct number of dummy votes for each candidate,

• the software for the voting process that is responsible for voter-login at the
voting machine, ballot marking and casting, and

• the post-election software that computes the tally and all proofs of correct-
ness.

4.3.3.1. Used Hardware
In the election of the student parliament, we used a standard PC with a linux

system (SUSE 3.2) as a voting machine. For printing the receipts, we used a laser
printer, the receipts were printed on A4 paper. Connected to the voting machine
were the printer, a mouse, a chip-card reader and a random number generator, the
latter two provided by Reiner SCT1. Voters could log in at the voting machine with a
memory card they inserted into the chip card reader. It consists of a certified smart
card in a smart card reader. The card is protected by a seal so it cannot be taken out
and exchanged unnoticed. The smart card was originally designed for digital signing
and has an integrated hardware-based random number generator. The smart card
reader was specifically customized for our requirements and has special firmware to
display the random numbers as a string of hexadecimal digits.

1Website of Reiner SCT: http://www.reiner-sct.com/

http://www.reiner-sct.com/

4.3. Bingo Voting in the Student Parliament Election 61

4.3.3.2. Pre-Voting Phase
In the pre-election phase, the dummy random numbers were created, and commit-

ments to them were published on the website of the voting authority, from here on
called the bulleting board. Proofs were created to show that each candidate had the
proper amount of dummy votes. Details are described in the following paragraphs.

Cumulative voting and vote-splitting
The election of the student parliament allowed cumulative voting and vote-splitting.

cumulative voting means that the voter could give more than one vote to a single
candidate. Vote-splitting allowed the voter to distribute her votes among different
candidates. In the following, let n be the number of votes a voter could distribute in
a poll and k the maximum number of votes she could cast per candidate in that poll.
In the most complex election the voter had n = 9 votes which she could distribute
among 72 candidates, whereupon she could give at most k = 5 votes to a single
candidate.
In Bingo Voting, one fresh random number represents one vote. So each voter got

n fresh random numbers in the voting phase, which were assigned to the candidates
according to how the voter distributed her votes. At most k votes, i. e. fresh random
numbers, could be assigned per candidate. To represent this on the receipt, there
were k random numbers written behind each candidate. For the pre-election, this
implied that k dummy random numbers per candidate had to be created for each
voter.

Invalid ballots and abstention
To prevent coercion and preserve verifiability, intentionally invalid, empty or only

partially filled-out ballots had to be indistinguishable from a valid, fully filled-out
ballots. For this purpose, we introduced two special candidates: an invalid candi-
date, and an abstention candidate. To cast an empty ballot or undervote, a voter
could give all or some of her votes to the abstention candidate. To cast an invalid
ballot, all of the voter’s votes were given to the invalid candidate. Because a ballot
is either invalid or not, but never partially invalid, a voter could only give either
all or no votes to the invalid candidate. However, this was only enforced by the
software and not publicly verifiable. Since the voter could give all n of her votes to
the invalid or abstention candidate, n dummy votes per voter were created for the
invalid and the abstention candidate each.

Dummy vote generation and the pre-election proof
In the biggest poll, voters could distribute 9 votes among 72 candidates, maximum

5 votes per candidate. So in this poll, for each voter, we had to create 5 dummy
random numbers per candidate plus 9 dummy votes for the abstention and invalid
candidate, resulting in a total number of 378 dummy votes per voter. Since this
was one of the two polls for the student parliament itself, this poll also had the
highest amount of eligible voters. We prepared dummy votes for 4000 voters for the
student parliaments election and for 1000 to 2000 voters for the other polls. This
led to an overall number of dummy votes of a little more than a million. Since a
paper election was run in parallel and Bingo Voting was only available in one out of
several polling stations, we did not have to cover the full amount of eligible voters.
To commit to the dummy votes, we used Pedersen commitments. The commitments
to the dummy votes were published on the bulleting board.

62 4. Coercion Resistance in Presential Elections

For the pre-election proof, we used the shuffling technique with shadow mixes
as explained in Section 2.3.6.2: we rerandomized and shuffled the candidate parts
of the commitments twice, and then opened the shuffled and masked commitments
resulting from the second shuffle. For the proof of correct shuffling, a challenge
has been created together with a member of the voting authority. According to the
challenge, either the permutation of the first shuffle or the permutation of the second
shuffle was opened and proven. The pre-election calculations took about ten days.
With appropriate parallelization the calculations could have been completed within
several hours.

4.3.3.3. Election Phase
On election day, there were several desks with two poll workers each, who main-

tained an electoral register and handed out memory cards which allowed the voters
to log in at the voting machine. The login cards were customized since each voter
was eligible for different polls, but the cards contained no information about the
voter other than for which poll she was eligible. The registration software with
which the poll workers encoded these cards was provided by the voting authority on
bootable CD-ROMs. Each poll worker desk had a laptop which was booted from one
of these CD-ROMs to decrease the risk of malicious software running on the laptops.
The laptops contained an electronic voter roll with eligibility information about each
voter, which was also used for the registration process of the paper election.
To prevent voters from exiting the vote casting interface and accessing the under-

lying system of the voting machine, no keyboard was connected to it except when
administration was necessary. The voting machine was not connected to the inter-
net or any other network. The only hardware in the voting booth was the voting
machine, the random number generator, a Mouse, a chip card reader and the re-
ceipt printer. For administration, a special administration card could end the voting
software (without triggering the tally) to access the underlying system. The voting
software could later be restarted to go on with the voting process. For adminis-
tration, no person was allowed access to the voting machine alone. At least one
administrator (who was in possession of the administration card) and one member
of the voting authority had to be present to guarantee proper mutual observation.

Voter Registration
Before starting the voting process, the voter first had to register at a poll worker’s

desk. There, she presented her student identity card to a poll worker and her
eligibility was checked. The poll workers prepared a memory card for her on which
they encoded for which polls she was eligible. The registration procedure had to
be designed in a way that voters could not forge, copy or modify cards in order to
vote more than once in one poll, or cast a vote in a poll they were not eligible vor.
Therefore, each login card contained a unique ID, the voting machine’s device name
as well as status bits which encoded for which poll a voter was eligible and in which
polls she has already cast a vote. There were also status bits which were used during
the voting process, these were set to an initial state when the card was handed out.
The device name was encoded on the chip card because we originally planned to use
two voting machines, and we wanted to prevent voters from copying a login card
and casting a ballot on both voting machines. The data written on the memory card
was digitally signed by the software of the voting authority. The voter was handed
out the memory card in exchange for her student’s ID card, to make sure she gave

4.3. Bingo Voting in the Student Parliament Election 63

back the memory card after the voting process. The poll workers documented in the
electoral register that the voter has obtained a login card.
The voter could then enter the voting booth and cast her vote as described below.

After the voting process was finished, the voter gave back her login card and in turn
got back her student identity card. The poll workers checked the voting machine’s
signature on the card, the status bits and the bits that indicated in which poll the
voter has cast a ballot. This made it possible to let voters vote in different polls on
different days.

Voting Process
After registration, the voter entered the voting booth, where she was prompted by

the vote casting interface to insert her login card. After the login card was inserted,
the voting machine checked the device name encoded on the card, and whether a
card with the same ID has already been used. The card’s ID was then stored on
the voting machine so the card could not be copied for voting a second time. The
voting machine also checked if the status bits were in a valid initial state and if the
data was signed with a valid signature from the voting authority. If one of the above
mentioned checks failed, the voting machine displayed an error message, and after
a few seconds returned to prompting for a valid login card.
As we will see in the description below, during the voting process, the voting

machine used the status bits of the login card to encode and check the current state
of the voter’s voting process, more precisely, if she was still editing her ballot, or
if she had already cast it. This was necessary because the chip card could have
been taken out of the card reader at any time. Therefore, we had to prevent voters
from pulling out their login cards too early after casting a ballot and then return
a chip card to the poll workers that indicated that the voter has not voted yet in
that poll. With each write access, the data on the card was digitally signed by the
voting machine, and with each read access, this signature was tested by the voting
machine.
After successful login, the voter could choose with which poll to start.After choos-

ing a poll, the voting machine displayed the corresponding “ballot”, consisting of
a list of candidates with plus and minus buttons next to them. where the voter
could distribute her votes among the candidates. The voter could cancel the voting
process of her current poll at anytime, proceed with another poll, and return to the
first poll later. The vote casting interface displayed to the voter at any time how
many votes the voter had already distributed and how many she had left to give.
It did not allow the voter to create an invalid ballot through an invalid distribution
of votes, so the voter could not unintentionally cast an invalid ballot. Instead, the
voter could give all her votes to a designated invalid candidate as described above.
Since a ballot could either be valid or not, the voter could give either all her votes
to the invalid candidate or none. The voter could also give some or all of her votes
to an abstention candidate.
When the voter indicated that she was finished, the voting machine checked valid-

ity of the ballot. If the voter had not yet distributed all her votes, she was informed
about this and could choose between going back to the ballot screen and distributing
the remaining votes or giving them to the abstention candidate. This was necessary
to not leak information in the post election proof about how many votes the voter
had actually cast. Therefore, each voter had to get the same amount of fresh random
numbers.

64 4. Coercion Resistance in Presential Elections

After all votes were distributed, the user interface displayed a confirmation screen
where the voter could double check her choices. After confirmation, the voting
machine checked the presence of the login card and its status bits before starting
the ballot casting process. The status bits of the chip card were then set to a state
that indicated that the voter has cast her ballot in this poll. Then the casting
process was run: dummy random numbers for the receipt were chosen at random
and marked as used, and the random number generator generated the fresh random
numbers for the chosen candidates.
The voter’s receipt was created: next to each candidate were as many random

numbers as the voter could give votes to one candidate. Each candidate got as many
fresh random numbers as he got votes, the rest was filled up with dummy votes. The
receipt also contained a hash of the so far created receipt content as a unique ID
with which the voter could later find her receipt on the bulletin board. The receipt
content was then digitally signed by the voting machine and the signature also put
on the receipt, to enable the voter to prove a fraud, should her receipt be missing
on the public bulletin board. The hash-chain described in Section 4.2.2 was not
implemented in this election, but later included in our prototype. The receipt was
then printed on a sheet of A4 paper with the laser printer. This size of the receipt was
necessary for the most complex poll which as explained above contained 378 random
numbers. The user interface asked the voter to compare the numbers on the random
number generator with the numbers on the receipt, indicating the positions of the
fresh random numbers on the screen to assist the voter. After checking the receipt,
the voter could clear the display of the random number generator. Otherwise, the
display was cleared after a given time if the voter did not press any buttons on the
random number generator, to hide the voter’s fresh numbers from the next voter. To
complete the vote casting process, the voter was asked to confirm the correctness of
her receipt. After this, a completion flag for this poll was set on the login card. The
voter could then either proceed with another poll or end the voting process. Please
note that the voter obtained one receipt per poll. After the voter was finished, she
gave back her login card to the poll workers who checked the completion flag for
each poll and documented this in the electoral register. If the voter had not cast a
ballot in each poll she was eligible for, she could come back later to obtain another
login card which would unlock only the remaining polls.

4.3.3.4. Post-Voting Phase
The post-voting phase was performed together with the voting authority. To

calculate the tally, the unused commitments were opened. Calculating the tally
took about five minutes.
To prove that on each receipt there were only n fresh random numbers, where n

is the number of votes each voter was allowed to cast, n fresh commitments were
created for the voted candidates and their random numbers. These were shuffled
together with the commitments to the dummy votes on the receipt, to create a
prove as described in Section 2.3.6.2. For the proofs, challenges were created jointly
with the voting authority. After about three hours the calculation of the proofs was
finished. Checking the proofs successfully showed correctness of the tally.

4.3.4. Experiences
The election was conducted without any critical incidents. Some voters pulled out

their login cards in the middle of the voting process, causing an erroneous state on

4.3. Bingo Voting in the Student Parliament Election 65

the login card. This happened a few times, but the state on the card could always
be retraced and corrected without breaking privacy, and the voting machine itself
was not put into an incoherent state by this. Many voters wanted to try out the new
scheme, despite the parallel paper election which had a much faster voting process.
The feedback of voters who voted electronically could be summarized as follows:
the voter interface itself was not hard to use but the voting process could have been
more comfortable.
Many voters did not bother checking the random numbers. The largest receipt

contained 378 random numbers of which nine had to be compared to numbers on the
random number generator. However, the display of the random number generator
was very small and could only display two random numbers at a time, so the voter
had to scroll to find the other numbers.
Some voters stated that the voting process took too long and that the receipt

printer was too slow, or that they would have preferred a touchscreen.
The voting process took several minutes due to the slow printer and the necessary

write accesses to the memory card. This problem with the memory cards could be
solved with a chip card reader that pulls in the login card completely and releases
it only after the voter ends or aborts her voting process.
A rather funny incident was that the voting booth was setup in front of a glass wall,

which was perfectly fine for the election with paper ballots, but the glass reflected
the screen of the voting computer. Fortunately, this problem was noticed before the
election started, and could easily be solved by putting a movable wall between the
glass and the voting booth. This showed us that it is hard to actually define all
requirements towards the operational environment of a voting scheme in advance,
or consider all possible side channels. It also showed us that an environment that
provides security for one voting scheme is not necessarily suitable for another.

4.3.5. Analyzing this Election with the Taxonomy
Our experiences with Bingo Voting showed us that the scheme is rather flexible

and, aside from solvable usability issues, can successfully be applied to a real world
election. But this was only one application. For a deeper insight, we analyze the
election with our taxonomy as a direct comparison to our practice experiences.
The full analysis can be found in Appendix B, this section summarizes our results.

An election run with the same setup as the student parliament election would have
the following properties:

Election type
Bingo voting is designed for presential elections using voting computers.

Preliminaries and Assumptions
The security of Bingo Voting relies on the following assumptions:

• The parameters for the Pedersen commitments must be created by a trusted
authority and the discrete logarithm problem must be hard in the used group.

• The voting machine and its administrators need to be trusted for privacy.

• Verifiability and privacy rely on a trusted random number generator.

• A voting booth is provided as a private channel between the voter and the
voting computer.

66 4. Coercion Resistance in Presential Elections

• The probability of collisions between random numbers is sufficiently small.

• Dummy random numbers are indistinguishable from numbers generated by the
trusted random number generator.

What makes this scheme secure?
Verifiability of Bingo Voting relies on a trusted random number generator which

can be very simple hardware and is therefore easier to audit than a more complex
voting machine. To achieve individual verifiability, the voter gets a receipt with
which she can immediately check the correctness of her ballot. But to achieve
privacy, the voter’s choice is hidden between dummy votes which conceal the real
vote.

Category 1: Privacy and Coercion-Resistance
Provided that the underlying assumptions hold, Bingo Voting achieves everlasting

privacy and receipt-freeness. Coercion-resistance is met except for the scheme’s vul-
nerability to forced abstention attacks, which it has in common with any presential
election.

Category 2: Correctness and Verifiability
As long as there are no collisions between random numbers, a manipulation can

always be detected.

Category 3: Fairness
Assuming that enough auditors test the user interface, the election is fair.

Category 4: Provability of a fraud
Under the assumption that there are no collisions between random numbers, all

manipulations are always detectable and provable at most times, but the cause of an
error is not always tracable and error correction is not always possible. Approaches
to solve this problem are discussed in [BHK+09] and [Hen12].

Category 5: Robustness and Scalability
With the voting machine as a single point of failure, the lack of error correction

possibilities in some cases and the big amount of published data for verification,
robustness and scalability are clearly the weak points of the scheme. Some of these
problems could be met as discussed in the full analysis in Appendix B, Section B.3.

4.3.6. Discussions about the Election’s Security
In the biggest poll, the voter could distribute nine votes among 72 candidates,

distributed to several lists. Due to the many possibilities to fill out a ballot, pattern
voting attacks could have been done easily in the paper election, where the full
plaintext ballots were visible in the tallying process. This was not possible with
the electronic election because votes were not counted ballot-wise and the voting
pattern was not visible on the ballots. Even undervotes were not visible since non-
distributed votes were given to the abstention-candidate automatically, so there was
the same amount of fresh random numbers on each receipt. Therefore, the electronic
election with Bingo Voting actually offered more coercion-resistance than the paper
election.
The receipt-proofs were zero-knowledge, so they did not yield any information

about the voters’ choices.

4.4. Bingo Voting with Write-in candidates 67

Had the voting machine put an invalid signature on the receipt, the voter would
have had no proof of manipulation. In theory, she could have checked the signa-
ture immediately, but in practice, this would have required additional designated
hardware in the voting booth. Other methods of achieving the provability of ma-
nipulations are discussed in [Hen12] and [BHK+09].

4.3.7. Conclusion and Possible Improvements
The application of Bingo Voting showed that the scheme can handle complex

elections in a real world environment. It also showed that steps that are often
assumed as given in the description of a voting scheme, like the login process of the
voter at the voting machine, are not necessarily trivial.
While the scheme worked as supposed, usability was far from perfect. By now,

a new prototype exists that has a touchscreen and a much faster printer. A new
user interface has been implemented in the context of a software engineering course
held at the Institute of Cryptography and Security, now part of the Institute of
Theoretical Informatics, of the Karlsruhe Institute of Technology. The new software
supports write-in candidates using the technique described in Section 4.4. Tech-
niques to decrease the amount of published data, mostly consisting of the proofs of
correctness, were discussed in [Hen12]. For a use of the scheme in a bigger election
it would be preferable to provide error traceability and provability of a fraud for
each possible manipulation or error while protecting privacy. As mentioned above,
approaches for this were discussed in [BHK+09] and [Hen12].
The assumption of a trusted voting machine for privacy is a rather strong one. It

can barely be achieved for a complex system like an ordinary PC without making sure
that the voting machine is only accessed under observation of independent parties.
To improve trustworthiness of the voting machine, a modular design would be of
advantage where tasks are distributed among components, such that no component
with a significant amount of memory learns any secrets.
Another step towards trustworthiness would be following the suggestion of Bohli

et al. [BHK+09], who suggested creating receipt proofs immediately after each voting
process and deleting the according dummy votes afterwards.

4.4. Bingo Voting with Write-in candidates
The previous sections showed that Bingo Voting allows cumulation and vote-

splitting without being vulnerable to pattern voting attacks.
However, for some elections, this flexibility is not enough. There are elections,

like the municipal election in Takoma Park [CCC+10], where it is required by law
that a voter has the chance to cast a vote for a candidate that is not on a predefined
candidate list, a so-called write-in candidate. In this section, we adapt Bingo Voting
to allow write-in candidates.
The construction introduced here has been published in [Kem12]. It does not

require new techniques and is actually quite generic: the basic idea is to add an
additional candidate called “Write-In”, which is treated as a regular candidate. The
“normal” then yields the overall number of write-in votes, as well as the tally for
the list candidates. The write-in votes are then counted in a separate tally. Similar
approaches for other voting schemes have been suggested in [KY04], [CCC+10] and
[Adi06].
As in [KY04], our scheme does not show whether a voter has voted for a write-in

candidate or chosen a candidate from the candidate list. At the same time, our

68 4. Coercion Resistance in Presential Elections

C1 R1
C2 R2
.
Cn Rn
WriteIn Rn+1
com(“Na Me”)

Figure 4.4.: Scheme of a receipt with write-in support: the with write-in candidate
“Na Me” was chosen.

scheme is maximally flexible: we can easily allow more than one write-in candidate,
or allow vote-splitting and cumulative voting while allowing the voter to vote for
both write-in candidates and candidates from the list in one voting process, with
one ballot and one receipt.
This is achieved with almost no additional effort for the voter. In fact, a voter who

does not write in a candidate can do exactly the same as in the original Bingo Voting
scheme. Apart from a voluntary testing of the voting process her only additional
effort compared to a pen-and-paper election is the also voluntary comparison of a
random number. As mentioned above, an example implementation of Bingo Voting
with write-in support was produced by students in a software engineering course
held at the Karlsruhe Institute of Technology.

4.4.1. Preconditions
The same preconditions hold as in the original Bingo Voting scheme, which is

described in Section 4.2.1.

4.4.2. Pre-voting Phase
To be able to include a write-in candidate into the Bingo Voting election process,

we use an additional candidate named “Write-In” as a wildcard. The pre-voting
phase is performed as in the original scheme, described in Section 4.2.1. The new
candidate “Write-In” gets as many dummy votes as voters are allowed to cast votes
for write-in candidates, multiplied by the number of eligible voters. For the sake of
simplicity we describe our technique for one write-in candidate and a one out of n
election.

4.4.3. Voting Phase
In the voting booth, the voter can mark her choice as she would in the original

scheme, except that she now has the additional possibility to write in a candidate.
In the original scheme, the voter’s receipt is printed and the vote casting process
is started immediately after the voter has marked and confirmed her choice. This
is different here. To be able to count the write-in votes, a Pedersen commitment
to the write-in candidate’s name is created and included in the voter’s receipt, as
sketched in Figure 4.4. Apart from the commitment, the receipt looks like a receipt
in the original scheme. To conceal the fact whether a voter has voted for a write-in
candidate, we include such a commitment in any case. If no write-in candidate is
chosen, the voting machine commits to “No write-in” instead.
Before generating the final receipt, we include an additional testing phase in which

the voter can check the content of the commitment, following the idea of voter
initiated auditing [Ben06]: the voter can either test or accept the commitment.

4.4. Bingo Voting with Write-in candidates 69

Only after accepting a commitment, the vote casting process is initiated, which is
performed as in the original scheme.
The following steps describe the voting process in more detail:

1. Login: The voter enters the voting booth and logs in at the voting machine
(we assume an existing login mechanism).

2. Ballot marking: The voter marks her choices, the ballot can be revised
as often as the voter wishes. The user interface additionally provides the
possibility to write in a candidate. How this is implemented is arbitrary.

3. Confirmation: After the voter is finished marking her ballot, she confirms
her choice.

4. Commit: The voting machine creates a commitment to the write-in candi-
date’s name. If the voter’s choice is not a write-in candidate, the commitment
is to the string “No Write-In”. The printer prints the commitment.

5. Test: Following the idea of voter-initiated auditing [Ben06], the voter can now
choose to either test the commitment or cast her vote.
• Voter chooses to test: In the case of testing, the vote does not count,

the unveil information and the supposed content of the commitment is
printed and the voting process begins anew at Step 2.
• Voter chooses to cast: The printed commitment is not opened, the

voting process proceeds with step 6.

6. Cast: The voting casting process is performed as in the original scheme:
a) The trusted random number generator creates the fresh random number

representing the vote.
b) Dummy votes for the not-voted candidates are chosen for the receipt.
c) The rest of the receipt (additionally to the unopened commitment) is

printed.
d) The voter can compare the random number on the trusted random num-

ber generator’s display with the random number next to her chosen can-
didate. If the voter voted for a write-in candidate, the fresh random
number appears behind “Write-In”.

7. Receipt verifiation: The voter leaves the voting booth and takes her receipt
home for later checking, see the description of the post-voting phase. She can
also take home all printed commitments from the testing phases together with
their printed unveil information, to test them later.

The printed commitments created in Step 5 and their corresponding unveil infor-
mation can be checked offline, either by the voter herself or by a competent person
or institution of her choice. Please note that we do not have to make any additional
assumptions about the printer. The dummy votes are chosen and sent to the printer
only after the voter has accepted the commitment. Furthermore, the voter does not
have any influence on the receipt or any published data after accepting a commit-
ment. Therefore, unlike in the scheme of Moran and Naor [MN06], the voter can see
what is printed anytime and take away the print-out anytime.

70 4. Coercion Resistance in Presential Elections

Main Tally:
Candidate Number of votes
John 9
Joe 7
Write In 3

Figure 4.5.: Main tally: There are 3 votes for write-in candidates.

Tally of the write-in candidates:
Write-in candidate Number of votes
Alice 2
Bob 1
No Write-In 16

Figure 4.6.: Tally of the write-in candidates: The number of “votes” for No Write-In
has to match the number of non-write-in votes.

4.4.4. Post-voting Phase

After the voting phase, the results of the main tally and the tally of the write-in
candidates are published, as sketched in Figure 4.5 and Figure 4.6, together with a
proof of their correctness.
The tally consists of two parts: a tally of the list candidates and a tally of the

write-in votes. The tally of the list candidates also contains the overall number
of write-in votes. It is computed as in the original scheme (see Section 4.2.1) by
counting the unused dummy votes for each candidate. The correctness of this tally
part is proven as in the original scheme: all receipts are published, and for each
receipt, a proof is computed that it contains exactly one fresh random number. The
Tally of the write-in candidates is computed by shuffling and opening the write-in
commitments on the published receipts, and proving the correctness of the shuffle.
For this, the same shuffle technique can be used as for the proofs of correctness of
each receipt. The number of commitments to “No Write-In” has to equal the number
of all votes minus the number of votes for write-in candidates.

4.4.5. Privacy and Coercion-Resistance

Bingo Voting with write-in candidates provides the same amount of voter privacy
as the original scheme, with the exception that the voter can be coerced to write
in a certain random string, or write a certain candidate in a distinguishable way.
This is a problem of all voting schemes that allow write-in candidates if the tally
is published one-to-one. This problem is addressed in the following two sections.
An advantage of our scheme is that the voter’s receipt as well as any published
information does not reveal whether a voter voted for a write-in candidate or a list
candidate.
Everlasting privacy holds under the same assumption as in the original scheme,

since for the commitments to the write-in names, Pedersen-commitments are used,
which are unconditionally hiding.

4.5. Fuzziness: Coercion-Resistant Elections with Write-In Candidates 71

Figure 4.7.: Accurate tally representation: Everyone sees that M17Mouse got exactly
one vote.

4.5. Fuzziness: Coercion-Resistant Elections with
Write-In Candidates

In some elections, it is required by law that voters can vote for a write-in candidate.
However, of the security definitions reviewed in Section 3.3, only the definitions
of Küsters et al. [KTV12] and Teague et al. [TRN08] can be reasonably applied
to elections with write-in candidates, since only these definitions measure external
information that the adversary learns regardless of the used election scheme. But
these definitions would most likely show for most election schemes that they are
not very coercion-resistant when applied to elections with write-in candidates. The
reason for this is that the external information leaks too much about the voter’s
choice, as can be seen in Figure 4.7: the voter can be coerced to write in a certain
rarely elected candidate or a random string chosen by the adversary, who will see this
in the election result. Most existing definitions of coercion-resistance disregard or
even explicitly exclude write-in candidates, arguing that an election allowing them
can never be fully coercion-resistant. The tally is usually considered public, and as
stated by Juels et al. [JCJ05], the above mentioned attacks cannot be prevented as
long as the tally is published directly.
But it is possible for write-in supporting schemes to be coercion-resistant if only a

fuzzy version of the tally is published. In real world elections a fuzzy representation
of the tally is often sufficient. Examples for such fuzzy representations are the
representation of the tally in percent, as in Figure 4.8, or the resulting number of
parliamentary seats for each candidate. In this case, if a candidate only got zero or
one votes, it is sufficient that the representation of the tally shows that the number of
votes for this candidate is less than a certain threshold, instead of showing whether
this candidate got a vote or not. However, the added fuzziness should not be greater
than necessary. This Section takes a closer look at this fuzziness. An arising problem
is that if the tally is published fuzzy, a verifiable election scheme has to prove the
correctness of the fuzzy tally without revealing the exact tally.
We provide a formalization of fuzzy tally representations that enables reasonable

definitions of coercion-resistance to be achieved by write-in supporting verifiable
election schemes without weakening that definition.
Our notion can be seen as an add-on to existing and upcoming models, bridging

72 4. Coercion Resistance in Presential Elections

Figure 4.8.: Tally representation that does not show whether M17Mouse got a vote,
or if someone just asked the voting authority to list it in the tally while
voting for another candidate.

the gap between write-in candidates and coercion-resistance. The idea of its usage
is as follows: consider a voting scheme with verifiable correctness that is coercion-
resistant (by any definition), and provides a proof of correctness of the tally which
can be adapted such that it proves the correctness of the fuzzy tally representation
without revealing the exact tally. Applied to an election where the tally can be
published fuzzy according to our definitions of fuzzability, the adapted scheme should
still achieve the same coercion-resistance while additionally being resistant against
forced abstention caused by coercing voters to vote for a rarely elected candidate.
This holds even if the scheme supports write-in candidates, assuming that a voter
can add names to the representation of the tally without voting for (i. e. losing her
vote for) them.
Some remarks: on a first glance, there seems to be a simple countermeasure to the

attack that a voter is forced to vote for an unlikely or fictional write-in candidate
in opening and counting write-in votes only if they could make a difference in the
result. First of all, this is also a fuzzy representation, but without any formalization.
Second, on a closer look, this is not as trivial as it seems. To prevent voters from
being coerced to write-in a name instead of voting for a list candidate, the voting
process must not leak the information whether a voter voted for a write-in candidate.
At the same time, to preserve verifiable correctness, there needs to be a proof that
these unopened votes are really for write-in candidates and that they really make
no difference in the result. This is especially a problem if voters can validly write in
names of list candidates. By contrast, our techniques prove the correct counting of
write-in votes without revealing information about a single voter’s choices.
The attack of forcing the voter to vote for a certain string cannot only be used as a

forced abstention, but also as identifying a ballot that contains a vote for more than
one candidate. The problem is more crucial when the voter does not cast a one out
of n choice: the voter can encode her ID with the write-in candidate on the ballot,
and the adversary see how the rest of the ballot is filled out. It is hard to prevent
this when opening plaintext ballots, for example when the tally is computed by a
mixnet. We leave this as an interesting open problem, our techniques concentrate
on one out of n choices.

4.5. Fuzziness: Coercion-Resistant Elections with Write-In Candidates 73

4.5.1. A Definition of Fuzziness
In this section, we introduce two concrete approaches to blurr the tally result

in a way that the voter’s choice is sufficiently hidden, without giving up too much
accuracy of the real tally. Our definition of fuzziness is motivated by k-anonymity
[CdVFS07] and l-diversity [MKGV07], two notions of database privacy, in which an
entry is hidden between k elements, that have at least l different values. We do
the same with the voter’s choice: it leads to one out of a set of k possible tally
results, in which the number of votes for each candidate can have l different values.
This section first provides a rather strong definition of fuzziness and then a weaker
version of this definition in which the fuzziness/accuracy-trade-off is adjustable in
a more fine-grained way. The formalization of fuzziness introduced here is seen as
an add-on to existing (or upcoming) models. Therefore it is phrased very general,
without commiting to a specific model of voting schemes.
We differentiate between the tally and its representation. We assume the tally

itself to remain secret, while instead a representation of the tally is published.
We denote the set of all possible tally results of a given election by T . This set

strongly depends on parameters given by the election, like the number n of eligible
voters, the set of candidates that can be voted, both list candidates and write-in
candidates, and on election rules like the number of votes each voter can cast.
A representation R can be seen as a view that represents a certain subset TR ⊂ T

of tallies. The possible representations of the tally are also co-determined by the
election since the election defines the needed accuracy with which the tally has to
be represented.

Definition 4 (complete) We call a set R of representations complete for a set
of tallies T if ⋃R∈R TR = T , where TR denotes the set of tallies represented by a
representation R ∈ R.

Hence a set of representations is complete if each possible tally has a representa-
tion.
We henceforth assume that the tally is a vector of length n where n is the number

of candidates. The ith entry in this vector corresponds to the number of votes for
the ith candidate.

Definition 5 (δ-neighbored) Let A and B be two vectors of length n. We call A
δ-neighbored to B, if a vector X = (x1, x2, . . . , xn) exists with ∑n

i=1 |xi| ≤ δ and
A = B +X.

Definition 6 (µ, δ-fuzzability) Let T be the set of all possible tallies of a given
election. We call this election µ, δ-fuzzable if there is a set R of representations
which is complete for T , and for each representation R ∈ R the following holds for
its set of represented tallies TR ⊆ T :

1. For each pair of tallies (T1, T2) ∈ TR × TR it holds that T1 is δ-neighbored to
T2.

2. Let Ei be the set of all entries that occur at position i within any tally-vector
in TR. Then |Ei| ≥ µ for i = 1, . . . , n.

74 4. Coercion Resistance in Presential Elections

Figure 4.9.: Fuzzy tally representation for δ = 20, µ = 5

Intuitively, the second requirement states that the number of votes of each candi-
date can have at least µ different values encoded in each representation, as sketched
in Figure 4.9.
Let in the following an election protocol denote the protocol that is specified by

an election scheme to execute an election, i. e. the election protocol specifies all sub-
protocols for running the pre-voting phase, all voting processes and the post-voting
phase. A protocol run of an election protocol denotes the execution of one whole
election with this election protocol, i. e. a pre-voting phase, a voting period where a
set of more than µ voters cast their ballots, and a post-voting phase where the tally
and its representation is computed and its proofs of correctness published. Let the
public view V of a run of the election protocol denote the public information the elec-
tion protocol creates during that protocol run. It includes the tally representation,
all public proofs of correctness etc.

Definition 7 (µ, δ-fuzzy election scheme) We call an election scheme µ, δ-fuzzy,
if applied to a µ, δ-fuzzable election, for each possible protocol run of the election lead-
ing to a public view V and a tally T with representation R which represents a set TR
of tallies, the following holds:

1. The proofs of correctness in V prove that T ∈ TR.

2. There is a subset M ∈ TR such that
a) For each pair of tallies (T1, T2) ∈M ×M it holds that T1 is δ-neighbored

to T2.
b) Let Ei be the set of all entries that occur at position i within any tally-

vector in M. Then |Ei| ≥ µ for i = 1, . . . , n.
c) For each Ti ∈ M , there is a possible election protocol run which leads to

tally Ti and representation R, and a public view that is indistinguishable
from V.

Particularly, if µ > 0, the proof of correctness must not yield the tally itself. This
means that voting schemes whose proofs of correctness can only be verified with
knowledge of the exact tally cannot comply with the above definition unadapted.

4.5. Fuzziness: Coercion-Resistant Elections with Write-In Candidates 75

4.5.2. Weak Fuzziness
To prevent forced abstention, full µ, δ-fuzzability is not generally required. We

usually do not have to conceal whether a candidate got, say 150 or 151 votes. In some
cases we even must not conceal this because the order of the most voted candidates
is an important tally outcome. If we just want to conceal if a candidate got zero
votes or more, a weaker definition as follows might be more suitable.

Definition 8 (weak µ, δ-fuzzability) Let T be the set of all possible tallies for
a given election. We call this election weak µ, δ-fuzzable, if there is a set R of
representations that is complete for T and the following holds for each tally T ∈ T :
let T = (x1, . . . , xn). For each representation R ∈ R that represents T , meaning
T ∈ TR, the following holds:

1. For each pair of tallies (T1, T2) ∈ TR × TR it holds that T1 is δ-neighbored to
T2.

2. For each i ∈ {1, . . . , n} with xi < µ: let Ei be the set of all entries that occur
at position i within any tally-vector in TR. Then |Ei| ≥ µ.

Intuitively this means that if a candidate got less than µ votes, then each repre-
sentation of the tally indicates µ other possible numbers of votes for this candidate.
Please note that µ, δ-fuzzability implies weak µ, δ-fuzzability: given µ, δ-fuzzability,

for each representation R there occur µ different outcomes in TR for each candidate,
in particular for these having less than µ votes.

Definition 9 (weakµ, δ-fuzzy election scheme) We call an election scheme weak
µ, δ-fuzzy, if applied to a µ, δ-fuzzable election, for each possible protocol run of the
election leading to a public view V and a tally T with representation R which repre-
sents a set TR of tallies, the following holds:

1. The proofs of correctness in V prove that T ∈ TR.

2. There is a subset M ∈ TR such that
a) For each pair of tallies (T1, T2) ∈M ×M it holds that T1 is δ-neighbored

to T2.
b) For each i ∈ {1, . . . , n} with xi < µ: let Ei be the set of all entries that

occur at position i within any tally-vector in M . Then |Ei| ≥ µ.
c) For each Ti ∈ M , there is a possible election protocol run that leads to

tally Ti and representation R, and a public view that is indistinguishable
from V.

The intuition behind this definition is that if an entry in the tally vector is less
than µ, it “hides between” at least µ−1 other values that are all mutually different.
Since we only need to hide whether a voter voted for a certain candidate or not,
the two parameters δ and µ should be a little bit greater than the number of voters
under control of the adversary. For real world elections, parameters δ and µ less
than 10 seem reasonable. However, if to prevent group coercion, a higher value for
these parameters should be considered.

76 4. Coercion Resistance in Presential Elections

4.6. Including Fuzziness in Election Schemes
This section introduces a general construction of µ, µ-fuzzy verifiable election

schemes from voting schemes based on mix-based or homomorphic tallying. A for-
mer version of these schemes is published in [Kem12]. Our construction only affects
the post-voting phase of the voting scheme that is to be made fuzzy. Precalculations
and vote casting are performed as in the original schemes. The only additional as-
sumption our construction requires is a set of trustees that can jointly compute and
learn the exact tally, which in the original schemes would have been public.
The descriptions below assume that the voting schemes are applied to a µ, µ-

fuzzable election with n candidates C1, . . . , Cn and one vote per voter. For the sake
of clarity, our techniques are described without considering a special treatment of
write-in candidates. But we do assume that if write-in candidates are supported, the
voter has the possibility to ask a voting authority via a private channel to include
candidates in the tally representation, so she can vote for another candidate while
the candidate she was coerced to vote still appears in the representation of the tally.
The reason for this is that public data should not reveal a voter’s choice by including
a name in the representation that had otherwise not been there. Whenever a zero-
knowledge proof of correct shuffling is computed, the shuffle technique with shadow
mixes described in Section 2.3.6.2, [Ben06] and [Adi08] can be used.
Since vote-casting and pre-election phases stay unaffected, we only describe the

new post-voting phases.

4.6.1. General Construction of µ, µ-Fuzzy Voting Schemes with
Homomorphic Tallying

In this section, a verifiable µ, µ-fuzzy election scheme is constructed from an ar-
bitrary verifiable election scheme that is based on homomorphic tallying, provided
that the original scheme publishes all cast ballots in encrypted form on a public
bulletin board and homomorphically adds these ballots to compute the tally.
The idea of our technique to blur the tally is to assign each possible tally result

to a bucket of size n × µ, where n is the length of the tally vector. Let E be
the additive homomorphic encryption function used to encrypt the ballots in the
original scheme. We assume E to be probabilistic2, so implied by its homomorphic
property it supports re-encryption. For each candidate Ci that is to appear in the
tally, the trustees create µ fake ballots BCi,0, . . . , BCi,µ−1, where for all i = 1, . . . , n
and j = 0, . . . , µ − 1, BCi,j is a “ballot” that gives −j votes to candidate Ci and 0
votes to all other candidates. These ballots are encrypted to optain n sets of ciphers
{ci,1, . . . , ci,n} := {E(BCi,0), . . . , E(BCi,µ−1)} for i = 1, . . . , n. The fake ballots and
their encryptions are published with a proof of correct encryption. We call these
encrypted ballots ci,j the blurrers of candidate Ci. Each candidate’s blurrers are then
shuffled and reencrypted, and one blurrer of each candidate is included in the final
result, to blurr the tally in a controlled way. The blurring and tallying process is now
described in more detail. In the following, the trustees are assumed to depend the
blurrers, and all additional steps performed to blur the tally (i. e. shuffle proofs of the
reencrypted blurrers etc.), solely on the tally vector, and not on individual ballots
or any other data. They are also assumed to do all reencryptions honestly in the

2This is not a strong assumption. Ballots generally constitute a very small plaintext space. Would
they be encrypted deterministically, everyone could find out their contents by encrypting all
possible ballots and testing the outcome.

4.6. Including Fuzziness in Election Schemes 77

sense that they do not encode information about the exact tally into any published
data. After all votes are cast, the trustees compute the tally representation and its
proof of correctness as follows:

1. The trustees compute the tally T = (T1, . . . , Tn) in secret (including an entry
for each candidate they were asked by voters to include in the tally represen-
tation, should write-in votes be supported).

2. For each candidate that is to appear in the tally representation, the trustees
create µ blurrers {ci,0, . . . , ci,µ−1} := {E(BCi,0), . . . , E(BCi,µ−1)}, as described
above, publish each set {ci,0, . . . , ci,µ−1} together with {BCi,0, . . . , BCi,µ−1}, and
prove that ci,j = E(BCi,j) for all j = 0, . . . , µ − 1. The trustees are assumed
to depend the calculation of the blurrers solely on the list of candidates that
are to be included in the tally.

3. For each candidate Ci, the trustees do the following:
a) They secretly compute ki := Ti mod µ, where Ti is the entry in the

tally vector that corresponds to candidate Ci. Candidate Ci’s real tally
outcome Ti will later be blurred by ki.

b) They compute a shuffle of the blurrers of Candidate Ci by permuting them
with a permutation π and reencrypting them, resulting in a list of shuffled
blurrers (E ′(BCi,π(0)), . . . , E ′(BCi,π(µ−1))), where for each j, E ′(BCi,π(j)) is
a reencryption of E(BCi,j).

c) They publish the list (E ′(BCi,π(0)), . . . , E ′(Ci, Bπ(µ−1))) with a zero knowl-
edge proof of correct shuffling.

d) They pick out eCi
:= E ′(BCi,π(ki)) to later include it in the tally. This

will subtract ki votes from candidate Ci. Only the trustees know the
permutation, and therefore know which blurrer is chosen. Everyone else
only sees that eCi

contains a ballot that subtracts between 0 and µ − 1
votes from candidate Ci.

4. The trustees include the blurrers eC1 , . . . , eCn for all candidates C1, . . . , Cn into
the set of cast ballots, by publishing them. Everyone can check that there is
exactly one blurrer of each candidate.

5. The tally is computed by homomorphically adding the encrypted real votes
and the chosen blurrers eC1 , . . . , eCn .

6. The sum is decrypted to optain the representation R = (R1, . . . , Rn), which is
published as the tally representation.

7. The correct decryption of the sum is proven, as would have been done in the
original scheme.

Verifiable Correctness
The representation of the tally is the result R = (R1, . . . , Rn) of the decryption of

the sum of all ballots, including the blurrers. Everyone can check that in Step 4/5,
there is one blurrer included in the tally for each candidate, by checking the shuffle
proofs of the blurrers for each candidate. So anyone can check that the number of
votes for each candidate results from subtracting a value between 0 and µ− 1 from

78 4. Coercion Resistance in Presential Elections

the candidate’s actual number of votes. Therefore, everyone is convinced that the
real tally T lies between (R1, . . . , Rn) and (R1 + µ − 1, . . . , Rn + µ − 1), without
knowing the exact tally T .
Individual verifiability is as in the original scheme, since the vote casting process

stays the same, and the cast votes are published on the bulletin board as in the
original scheme.

Coercion-resistance
Since per definition, the blurring procedure solely depends on the tally and not

on any other data created in the election process, especially not on individual votes,
it can not yield more information about them than the tally would. Therefore, the
fuzzy scheme is at least as coercion-resistant as the original scheme.

Fuzziness
The above described construction provides µ, µ-fuzziness: each entry in R is a

multiple of µ, and per construction each tally result T ′ that lies between (R1, . . . , Rn)
and (R1 + µ− 1, . . . , Rn + µ− 1) has the representation (R1, . . . , Rn). So R implies
µ different possible values for each entry in T , and all tallies represented by R are
µ-neighbored. The corresponding views are indistinguishable for the adversary: for
each possible tally T ′ = (T ′1, . . . , T ′n) represented by R, it holds that

Ri ≤ T ′ ≤ Ri + µ− 1

for all i = 1, . . . , n. In Step 2, a set of blurrers {c1,0, . . . , c1,µ−1, . . . , cn,0, . . . , cn,µ−1} is
created. For each possible tally T ′ there is a subset of blurrers {c0,x1 , . . . , cn,xn} that
would lead to the representation R when chosen in Step 3: the set c0,x1 , . . . , cn,xn

with
xi := T ′i mod µ

for each i = 1, . . . , n. Since the proves of correct shuffling in Step 3 are zero knowl-
edge proofs, the adversary cannot distinguish which blurrers were chosen. Therefore,
these proofs contain no information about T and are indistinguishable for all possible
tallies T ′ represented by R. Therefore, µ, µ-fuzziness holds.

Weak fuzziness
A weak µ, µ-fuzzy version of this scheme can be created by only including blurrers

of “critical” candidates in the tally, i. e. candidates that have less than µ votes.
Please note that if the overall number of cast votes is public, at least two candidates
have to be blurred.

Write-in support
Write-in support can be included straightforwardly by using a hybrid approach,

which tallies the list candidates homomorphically and the write-in candidates with
a mix-based scheme, as in [KY04]. Fuzziness can be provided by combining the ho-
momorphic construction described above with the mix-based construction described
below.

4.6.2. General Construction of µ, µ-Fuzzy Mix-Based Voting
Schemes

The construction of a µ, µ-fuzzy mix-based scheme is a bit more tricky. In schemes
with mix-based tallying, ballots are published on a public bulletin board in some
encrypted form. These ballots are then shuffled with a proof of correct shuffling

4.6. Including Fuzziness in Election Schemes 79

to be unlinked from the voter’s identity, and decrypted to obtain the tally. Some
voting schemes use a decryption mix where decryption and mixing is computed in
one procedure. For our construction, these mixes have to be substituted by a mix
that only permutes and rerandomizes the ballots, but does not decrypt them, for
example a re-encryption mix as described in [Ben06].
A naive way to construct a µ, µ-fuzzy version of a mix-based voting scheme is

to follow the technique of the construction above for homomorphic schemes, and
instead of subtracting blurrers, take out votes for each candidate. But since the
number of overall ballots is known, the number of taken out ballots would also be
known and reveal information about the tally. To achieve representations where
each entry is a multiple of µ, it could happen that less than µ ballots are taken
out, which would prevent µ, µ-fuzziness. Instead of using this bucket approach, we
subtract a “fuzziness vector” f = k1, . . . , kn from the tally by taking out ballots, but
the number of taken out votes per candidate does not equal Ti mod µ for all entries
Ti in the tally. Therefore, in this construction, the same tally can lead to different
representations.
For the algorithm to terminate, we require that more than 2µ votes are cast. Our

blurring technique is described for elections where each ballot contains a one out of
n choice, i. e. gives one vote to one out of n candidates. Since plaintext ballots are
revealed, the problem of pattern voting remains, and the construction would not
make sense for other ballot formats.
To compute the representation of the tally, the trustees do the following:

1. The trustees publicly shuffle all cast encrypted ballots, but without opening
them, resulting in a set L of shuffled and reencrypted ballots. We assume that
the voter’s identities are detached from the encrypted ballots before mixing,
i. e. the elements in L are unlinked from the voter’s identities.

2. The correctness of the shuffle is proven with a zero knowledge proof, for ex-
ample with the technique introduced in [Ben06].

3. The trustees then open the ballots in secret and compute the tally T =
(T1, . . . , Tn), including an entry for each candidate name that should be in-
cluded in the representation. Entry Ti equals the number of votes for candidate
Ci.

4. To choose a fuzziness vector f = (k1, . . . , kn), the trustees do the following (in
secret) for each candidate Ci, i = 1, . . . , n:
• If Ti < µ, they compute ki := Ti mod µ.
• If µ ≤ Ti < 2µ, they choose a random ki with 0 ≤ ki ≤ Ti mod µ.
• If Ti ≥ 2µ, they choose a random ki with 0 ≤ ki < µ.

5. If Σn
i=1ki < µ or Σn

i=1µ − ki < µ, the trustees repeat Step 4. Otherwise, they
proceed with Step 6.

6. For each candidate Ci, i = 1, . . . , n, the trustees do the following (in secret):
a) They take out ki encrypted ballots of the set L that contain a vote for

candidate Ci.

80 4. Coercion Resistance in Presential Elections

b) They create µ − ki encrypted ballots for candidate Ci, such that the
created plaintext ballots are indistinguishable from real ballots.

7. Let M be the set of encrypted ballots that where taken out in the previous
step, and LR the resulting reduced set LR = L \M of encrypted ballots. The
trustees publish M , without showing which or how many of these ballots were
for which candidate.

8. Let N be the set of newly created ballots from Step 6. b). The trustees
publish N , again without revealing which or how many ballots belong to which
candidate.

9. The trustees shuffle M ∪ N , to obtain a new set of encryptions, in which
it cannot be seen which ballots are cast ballots and which ones were newly
created. The correctness of the shuffle is proven with a zero knowledge proof.

10. The shuffled ballots from Step 9 are opened, there should be µ ballots for each
candidate. This proves that of each candidate, no more than µ ballots were
taken out of L.

11. The ballots in the reduced set LR are opened, the resulting tally is the rep-
resentation of the real tally. The resulting representation is (R1, . . . , Rn) =
(T1 − k1, . . . , Tn − kn).

Verifiable Correctness
The representation of the tally is R = (R1, . . . , Rn) = (T1 − k1, . . . , Tn − kn). In

steps 7-10, everyone can verify that of each candidate, at most µ − 1 votes were
taken out. So anyone can see that the exact tally is a value between (R1, . . . , Rn)
and (R1 + µ− 1, . . . , Rn + µ− 1), without knowing the exact tally T .
Individual verifiability is as in the original scheme. The process of vote casting

and publishing encrypted votes on the bulletin board is not changed by the blurring
process.

Coercion-resistance
The blurring process only depends on the tally, and on information that would be

published in the original voting scheme. So the fuzzy version is at least as coercion-
resistant as the original voting scheme.

Fuzziness
The tally T lies between (R1, . . . , Rn) and (R1+µ−1, . . . , Rn+µ−1). The possible

tallies represented by R are all µ-neighbored. There are at least n · µ ≥ µ tallies
that could have let to this representation. The overall number of taken out votes is
visible, but the choice of ki in Step 4 is constructed in a way that µ different values are
possible for each candidate. The corresponding views are again indistinguishable for
the adversary: the only difference to the original scheme is the taking out of ballots
and the creation of new ballots, that are per construction indistinguishable from
cast ballots. The adversary only sees a zero knowledge proof that of each candidate,
between 0 and µ−1 ballots were taken out. Because of the zero knowledge property,
these proofs contain no information about ki itself.
Therefore, µ, µ-fuzziness holds.

4.6. Including Fuzziness in Election Schemes 81

Write-in support
Write-in support can be included analogous to the write-in supporting fuzzy Bingo

Voting scheme, which will be described in Section 4.6.3.2 using an additional “reg-
ular” candidate “Write-In” and two tallies with their own representations.

4.6.2.1. Weak µ, µ-fuzzy mix-based voting schemes
A weak µ, µ-fuzzy election scheme can be created in the same way by only taking

out ballots of “critical” candidates, i. e. those who have less than µ votes. Since the
overall number of cast votes is public, at least two candidates have to be blurred.
The vector f determines in which way the tally is made fuzzy, and is kept secret.
Like in the previous section, consider a µ, µ-fuzzable election with one vote per

voter, and n candidates C1, . . . , Cn.
Again, the blurring only effects the post-voting phase of the election. It is done as

above, except that instead of filling up the taken out ballots to µ per candidate, we
fill them up with less ballots if we want to blurr the result of certain candidates less.
The difference is that to obtain weak µ, µ-fuzziness, a second vector d = (d1, . . . , dn)
is chosen. Let T = (T1, . . . , Tn) be the tally vector. The post-voting phase of the
weak µ, µ-fuzzy voting scheme is performed as follows:

1. As above, the trustees shuffle and reencrypt the ballots, but open them in
secret to compute the tally T = (T1, . . . , Tn). Entry Ti equals the number of
votes for candidate Ci.

2. The trustees decide which candidates need to be blurred how much, and which
entries in the tally are to be published accurately.

3. A vector f = (k1, . . . , kn) is chosen by the voting machine: for each candidate
Ci, i = 1, . . . , n, the trustees do the following (in secret):
• If Ti < µ, they compute ki := Ti mod µ.
• If µ ≤ Ti < 2µ, they choose a ki with 0 ≤ ki ≤ Ti mod µ.
• If Ti ≥ 2µ, they choose a ki with 0 ≤ ki < µ.
• If Ti must be published accurately, fi = 0.

4. If Σn
i=1ki < µ or Σn

i=1µ − ki < µ, the trustees repeat Step 4. Otherwise, they
proceed with Step 6.

5. The trustees choose a second vector d = (d1, . . . , dn) with the following prop-
erties:
• ki + di ≤ µ for all i
• ki + di = µ for each i where Ti ≤ µ,
• if an i exists with Ti ≤ µ, then

a) ∑n
i=1 di ≥ µ

b) f + d must have at least two entries that are greater than zero.

6. For each candidate Ci, i = 1, . . . , n, the trustees do the following (in secret):
a) They take out ki ballots for candidate Ci of the set L.

82 4. Coercion Resistance in Presential Elections

b) They create only di − ki (not µ − ki) encrypted ballots for candidate
Ci, such that the created plaintext ballots are indistinguishable from real
ballots.

7. The trustees publish the set M of ballots that were taken out of L, with-
out showing which of these ballots were for which candidate. Let LR be the
resulting reduced set of ballots.

8. The trustees also publish the set N of newly created ballots from Step 6. b),
again without revealing which or how many ballots belong to which candidate.

9. The trustees shuffle M ∪N and prove the correctness of the shuffle with a zero
knowledge proof.

10. The shuffled ballots from Step 9 are opened, there are ki + di ballots for each
candidate Ci. Everyone can check that there are less than µ ballots for each
candidate.

11. The ballots in the reduced set LR are opened, the resulting tally is the represen-
tation of the real tally. The resulting representation should be (R1, . . . , Rn) =
(T1 − k1, . . . , Tn − kn).

As in the scheme above, for each candidate Ci, ki ballots are taken out. But instead
of filling them up with the difference to µ, the trustees fill them up with di encrypted
ballots. The range in which each entry Ti lies is of size ki+di, which is public. In Step
5, the authorities decide with the vector d how strong each entry is blurred. We could
call d the accuracy vector. If di = 0, Ti can be computed from the representation of
the tally. Of cource, if di = 0, it makes no sense to choose an ki 6= 0.
Coercion-resistance
Coercion-resistance is not weaker as in the original scheme, as argued in the µ, µ-

fuzzy scheme above.
Verifiability
The representation of the tally is R = (R1, . . . , Rn) = (T1 − k1, . . . , Tn − kn). The

vectors f and dmust be kept secret, but f+d becomes public with step 7 and 8, after
which everyone can see that at most ki +di ballots where taken out from the ballots
of each candidate Ci. So after the representation is published, everyone is convinced
that the tally lies between (T1−k1, . . . , Tn−kn) and (T1−k1 +d1, . . . , Tn−kn+dn).
Weak µ, µ-fuzziness
The tally lies between (T1− k1, . . . , Tn− kn) and (T1− k1 + d1, . . . , Tn− kn + dn).

By definition, ki + di = µ for each candidate with less than µ votes, and the overall
number of taken out ballots is greater than µ. So for each candidate Ci with less
than µ votes, there are µ possibilities for Ti, which are all indistinguishable, with a
similar argumentation as in the µ, µ-fuzziness of the construction described above.
Remarks
If a single candidate needs blurring, at least two entries in T need to be blurred,

because the overall number of ballots is publicly known. Therefore, the blurring has
to be in a way that the taken out ballots could as well have been taken out from
other candidates. However, this “counter-blurring" can be distributed among several
candidates that are blurred a little less, with ki + di < µ.

4.6. Including Fuzziness in Election Schemes 83

4.6.3. Bingo Voting with Fuzziness
As an example, we adapt Bingo Voting to our notion of fuzziness, using the

techniques described above. Bingo Voting uses a voting machine that is trusted for
privacy and can do all calculations, including the blurring process. Therefore, the
necessity of a trusted entity who can learn the tally does not imply an additional
assumption.
For the sake of simplicity, we first describe a µ, µ-fuzzy version of the original

Bingo Voting scheme. After that, we describe a µ, µ-fuzzy Bingo Voting scheme
with write-in support. In both schemes, the pre-voting phase and the voting phase
are exactly the same as in their non-fuzzy versions. Therefore, we only describe the
post-voting phases. To allow for a more precise tally representation, we also describe
a weak µ, µ-fuzzy version of both variants.
As opposed to our general approaches, the situation in Bingo Voting seems to

be a little different, since the tally itself is neither computed homomorphically nor
by shuffling ballots. Instead, Bingo Voting calculates the tally reversely: for each
voter, instead of (actively) giving a vote to one candidate, one dummy vote is taken
away from each not voted candidate. For tallying, the left-over, unused dummy
votes are opened, which do not depend on any individual ballots. Therefore, they
can be opened directly and do not have to be unlinked from voters first. On a
first look, it seems that an elegant solution would be to blur the tally beforehand,
in the pre-election phase, by randomly adding between 0 and µ dummy votes for
each candidate. The tally representation would then be calculated by opening the
unused dummy votes, where each candidate would have between 0 and µ too many
of them. So the representation R = (R1, . . . , Rn) would yield an upper bound of each
candidate’s number of votes, and the real tally would lie between (R1−µ, . . . , Rn−µ)
and R = (R1, . . . , Rn). However, to prevent the adversary from seeing an upper
bound less then µ, each candidate should have at least µ votes in the representation
of the tally. Since it is not known beforehand which candidates will get less than µ
votes, this is hard to achieve. Instead, we use the construction used for the mix-based
schemes, and take out unused dummy votes in the post-voting phase.
Apart from that, there is an important difference between Bingo Voting and mix-

based schemes: in Bingo Voting, pattern voting is not a problem since no plaintext
ballots are published. Ballot formats are regulated via the number of dummy votes
created in the pre-voting phase, and their arrangement on the receipt. No pattern
from individual ballots becomes visible when opening the unused dummy votes. The
reason for this is that each unused dummy vote naturally corresponds to a one out
of n ballot, regardless of the voter’s ballot format. Multiple choices on the voter’s
ballot simply result in more unused dummy votes of the corresponding candidates.
So unlike in the mixed-based schemes, no restriction to one out of n choices is
necessary.
4.6.3.1. Construction of µ, µ-Fuzzy Bingo Voting
The construction of µ, µ-fuzzy Bingo Voting is an instantiation of the general

construction for mix-based voting schemes described in Section 4.6.2. Consider a
µ, µ-fuzzable election with n candidates C1, . . . , Cn. Like in the description of the
original Bingo Voting scheme, we assume a trusted voting authority that has read
access to the voting machine and write-access to the public bulletin board. The
post-election phase of µ, µ-fuzzy Bingo Voting consists of the following steps:

1. The voting authority publishes all receipts on the public bulletin board.

84 4. Coercion Resistance in Presential Elections

2. For each receipt, the voting authority publishes a proof that it contains the
correct amount of fresh random numbers and dummy votes. With these proofs,
it is also published which commitments correspond to unused dummy votes,
and which are commitments of dummy votes that have been used on the
receipts.

3. The voting machine opens the unused dummy votes (in secret) to compute the
tally T = (T1, .., Tn). There are Ti unused dummy votes for each candidate Ci.

4. A vector f = (k1, . . . , kn) is chosen by the voting machine: for each candidate
Ci, i = 1, . . . , n, the voting machine chooses ki in the following way:
• If Ti < µ, compute ki := Ti mod µ.
• If µ ≤ Ti < 2µ, choose a random ki with 0 ≤ ki ≤ Ti mod µ.
• If Ti ≥ 2µ, choose a random ki with 0 ≤ ki < µ.

5. If Σn
i=1ki < µ or Σn

i=1µ−ki < µ, the voting machine repeats Step 4. Otherwise,
it proceeds with Step 6.

6. Let L be the set of commitments to the unused dummy votes. For each
candidate Ci, i = 1, . . . , n, the voting machine does the following (in secret):
a) It takes ki commitments of candidate Ci out of the set L.
b) It creates µ−ki new dummy votes for candidate Ci, such that the created

dummy votes are indistinguishable from the other dummy votes, and
calculates a Pedersen commitment to each new dummy vote.

7. Let LR be the resulting reduced set of commitments, M := L \ LR the set of
all commitments that were taken out in iterations of Step 6. b), and N the set
of all new commitments created in Step 6. c). The voting machine publishes
M and N .

8. The voting machine publicly opens all commitments in the reduced set LR by
publishing their unveil information on the public bulletin board, resulting in
a set of unused plaintext dummy votes. The representation of the tally is the
vector

R = (R1, . . . , Rn),

where each entry Ri equals the number of unused dummy votes of candidate
Ci that are in LR.

9. The commitments in M ∪ N are masked and shuffled to obtain a set S of
shuffled commitments.

10. The set S is published together with a zero knowledge proof that it is a correct
shuffle of M ∪N .

11. The commitments in S are publicly opened, there should be µ for each can-
didate. This shows that no more than µ commitments were taken out for
each candidate, and that therefore the tally lies between (R1, . . . , Rn) and
(R1 + µ, . . . , Rn + µ).

4.6. Including Fuzziness in Election Schemes 85

Coercion-Resistance
The blurring process depends solely on the tally and affects only the unused

dummy votes, which in turn are independent of each single voter’s actions. There-
fore, the blurring process does not weaken coercion-resistance.

Verifiable correctness and µ, µ-fuzziness
Verifiable correctness and µ, µ-fuzziness can be shown by analogy with the mixed-

based approach.

Bingo Voting with Weak Fuzziness
A weak µ, µ-fuzzy version of Bingo Voting applied to a (not weak) µ, µ-fuzzable

election can be setup by instantiating the general construction of weak µ, µ-fuzzy
mix-based voting schemes, described in Section 4.6.2.1.

4.6.3.2. Fuzzy Bingo Voting with Write-In Support
The Bingo Voting version with write-in support described in Section 4.4 consists

of two tallies: the tally of the list candidates, which is computed as in the original
Bingo Voting scheme, and the tally of the write-in candidats, which is performed
by mixing and opening commitments to write-in candidates. A µ, µ-fuzzy version of
this scheme can be created straightforwardly by computing the tally representation
of the list candidates with the µ, µ-fuzzy scheme described in Section 4.6.3, and
the representation of the tally of the write-in candidates with the construction of
µ, µ-fuzzy mix-based voting schemes described in Section 4.6.2.
To prevent forced abstention that is caused by forcing the voter to “vote” for a

certain random string it is crucial here that the voter may write in names without
voting for them, so that these names appear in the representation of the tally.
Without this possibility, a voter can be forced to not vote for a certain write-in
candidate by forcing him to write in another. So we have to provide the voter
with the possibility to somehow whisper an arbitrary number of names to the voting
authority that are later included in the representation even though they got no votes.
Since in Bingo Voting for secrecy we have to assume an honest voting computer
anyway we can as well provide the voting computer with an additional interface
with which the voter can secretly enter names that she wishes to be included in the
representation.

4.6.4. Discussion
The schemes described above were designed to fulfill the definition of fuzziness.

However, they can be used in a more general way: both techniques show for each
candidate that his number of votes lies between x and x+ µ for some x. If we take
a closer look at the situation, we can as well generalize our definition to different
bucket sizes, i. e. different values of µ for each candidate. This way, we can easily
adapt the schemes introduced above to prove that a candidate has reached a certain
quota, or that he has earned a certain number of parliament seats.

4.6.5. Fuzziness and Coercion-Resistance
To show how our definition of fuzziness can be used together with definitions

of coercion resistance, we informally apply our work to the definition of Küsters
et al. [KTV12] and the µ, µ-fuzzy Bingo Voting scheme described in Section 4.6.3.
Küsters et al. prove that Bingo Voting achieves the same level of coercion resistance
as an ideal voting scheme except for forced abstention. They state that Bingo Voting

86 4. Coercion Resistance in Presential Elections

is vulnerable to this attack because the adversary sees the receipts of all voters. We
argue that a voter cannot by any feasible means prove that she has obtained no
receipt, so she cannot prove to an adversary that she did not vote. We do not
regard this attack any further. What remains is forced abstention through voting
for an unlikely or fictional candidate.
We informally define µ-coercion-resistance as follows:

Definition 10 (µ-coercion-resistance) A voting scheme applied to a µ, µ-fuzzable
election is µ-coercion resistant if it is coercion-resistant according to the definition
of Küsters et al. [KTV12] and µ, µ-fuzzy.

It is easy to see that if a µ, µ-fuzzy election scheme that achieves coercion resistance
according to the definition of Küsters et al., it also achieves the definition of µ-
coercion-resistance above and is resistant against forced abstention caused by forcing
to vote for unlikely candidates.
Since the µ, µ-fuzzy Bingo Voting scheme does not differ from the original scheme

except in its published data and the fact that µ more dummy votes are created per
candidate, and since its published data leaks less information than that of the original
scheme, the µ, µ-fuzzy Bingo Voting should achieve coercion-resistance according to
the definition of Küsters et al. As stated above the voter cannot possibly prove that
she did not vote by proving that she has no receipt. Therefore the scheme seems to
be resistant against forced abstention.
The µ, µ-fuzzy Bingo Voting scheme with write-in support yields with its published

data no more information as is yielded by an election performed with the original
scheme and all occurring write-in candidates on the list of regular candidates. The
additionally published list of names does not tell whether a candidate on this list
got a write-in vote or not. So this scheme, too, should be µ-coercion-resistant and
additionally resistant against forced abstention.

5. Coercion Resistance in Internet
Elections

The concept of conducting elections via the internet promises new possibilities: vot-
ers can cast their ballots comfortably from at home, which might increase voter
turnout, and the time and effort of overseeing a polling station is saved. However,
the absence of a polling station also brings new challenges: as opposed to a presen-
tial election, where the voting process usually takes place in the privacy of a voting
booth, voting authorities have no influence on the computational platform on which
the ballot is generated and cast, or on the location where this process takes place.
Privacy during the vote casting process cannot be assumed. A second problem is
that the eligibility of voters has to be checked remotely, without interacting with the
voter in person. Similarly, the voter does not have any physical access to the device
which records her ballot. This, too, is done by a distant server, as is the counting
of the cast ballots. Therefore, voter-privacy is harder to protect, coercion-resistance
much harder to guarantee. At the same time, the opposing requirement of providing
both individual and universal verifiability becomes a more demanding task as well.
The main topic of this chapter is revoting: the possibility for voters to overwrite an

already cast ballot. This possibility promises to solve the problem of being observed
during the voting process. However, it complicates providing public verifiability,
since now the counting of the right ballots needs to be proven. At the same time,
these proofs must not provide the adversary with the possibility to find out if the
voter has revoted, and by doing so has overwritten a ballot cast under adversarial
observation. Coercion is not the only motivation for revoting. As stated in [AdM09],
a voter might not be familiar with internet voting, and it would be of advantage if
she could ask a friend to go through a voting process with her, and then cast a vote
in private later.
Though it has become a standard technique to overcome the problem of being

observed during the voting process, there is no existing practical solution that pro-
vides revoting with full verifiability and coercion-resistance at the same time. In
this chapter, we offer a solution which provides revoting while achieving both pub-
lic verifiability and strong privacy properties. We apply our solution to a relatively
young voting paradigm for which revoting is essential: delegated voting. In elections
which allow delegated voting, the voter can choose between casting a ballot herself

87

88 5. Coercion Resistance in Internet Elections

or delegating her vote to another eligible voter of her choice. In such elections, it is
usually required that a voter can revise her choice of delegation at anytime. This
Chapter provides a voting scheme which allows delegated voting by combining our
revoting solution with a new paradigm we call vote fetching.
This Chapter is structured as follows: Section 5.1 discusses related work on inter-

net elections, revoting and alternative solutions to the observation problem. After
discussing the revoting problem in general in Section 5.2, we introduce our solution
in Section 5.3. We apply our solution to Delegated Voting in Section 5.4, where
we first introduce additional requirements for a voting scheme allowing delegations,
discuss an existing scheme and its drawbacks, and then introduce our idea of vote
fetching from which we design a voting scheme which allows vote delegation.

5.1. Related Work
Many voting schemes for remote internet voting have been proposed during the

last years, some of them were introduced in [SK95, HS00, Cha01, Nef01, RT09,
AHL+09, HLVL10, KKW06, Adi08, MR10, OKNV12, Gjø10, Lip11, ZCC+13, JCJ05,
MCC08, CH11a, ECH12].

5.1.1. Remote Voting Schemes Used in Practice
Helios [Adi08] is a publicly verifiable election scheme which has mainly been de-

signed for educational purposes and elections with a low risk of coercion. There
are several versions of Helios, both mix-based and with homomorphic tallying. The
scheme has been used in several smaller elections [AdM09]. Everlasting privacy was
added to Helios in [DvdGSdSA12].
POLYAS1 is a voting scheme that has been designed to comply with the Common

Criteria Protection Profile for Online Voting Schemes [MR10, OKNV12, fSidI07],
and has been applied, among others, in elections of the Gesellschaft für Informatik2

(German Society of Informatics). POLYAS uses separate servers to ensure integrity
and voter privacy. In its original version, it does not provide public verifiability.
Olembo et al. [OKNV12] analyze some modifications to POLYAS that introduce
partial verifiability. These modifications allow for a verification of the correct com-
putation of the tally from the stored encrypted votes, but do not provide a possibility
to verify the correct recording of the ballots.
Online voting has been used as a trial and in real parliamentary elections in sev-

eral European countries, for example in Estonia and Norway. Like POLYAS, both
the Estonian [HLW12] and the Norwegian voting scheme [Gjø10] are based on the
physical separation of vote servers. The Estonian scheme introduces several secu-
rity measures like audit logs, checksums and tamper resistant hardware to protect
integrity and voter privacy. However, a corrupted voting computer is able to modify
the voter’s choice undetected, as attacks mentioned in [HLW12] have shown. Neither
the Estonian nor the Norwegian voting scheme allows for a public verification of the
tally.
An approach to evade the risks of coercion and manipulation coming from malware

on the voter’s PC is to use code voting [Cha01, HSS08]. The voter inputs her choice
by typing a code, so her choice is concealed from her computer. The voter then gets
back a return code with which she can check that her ballot has been transmitted to

1POLYAS website: https://www.polyas.de/
2Website of the German Society of Informatics: en.gi.de/

https://www.polyas.de/
en.gi.de/

5.1. Related Work 89

the voting server correctly. The Norwegian voting scheme provides return codes, but
the voter’s choice is entered in plaintext for usability reasons. The voter can detect
a manipulation with the help of the return codes, but the manipulation cannot be
proven [GSB]. The Norwegian scheme [Gjø10] has later been improved by Lipmaa
[Lip11].
Remotegrity [ZCC+13], a remote version of Scantegrity II, has been applied in

the municipal election of the city of Takoma Park, Maryland. With Remotegrity, a
voter can detect and prove manipulations of her ballot. Revoting is not provided, a
voter can be coerced through observation during the voting process.

5.1.2. Related Work on Revoting
There are several internet voting schemes which allow revoting. However, in each

of these schemes, either the revoting process is not secret, or it is not publicly
verifiable. A more advanced version of Helios [AdM09] has been used in the election
of the university president of the Université catholique de Louvain in 2008, which
was estimated to be an election of low coercion risk by the authors of [AdM09].
Voters could revote, to give voters who are not familiar with internet voting to do
a voting process together with a friend to get to know the system, and then vote
again in private. Revoting was implemented by overwriting the voter’s encrypted
ballot on the bulletin board. Therefore, the revoting process was verifiable but not
coercion-resistant. In the Norwegian scheme [Gjø10] mentioned above, the voter
can revote as many times as she wants and gets a receipt code for each cast ballot.
Multiple votes by the same voter are sorted by serial numbers on the ballot box
server, only votes with the newest serial number are counted. However, the scheme
offers no public verifiability of the revoting process.
Alternative approaches to solve the problem of observation during the voting

process are usually based on fake credentials. The voting scheme proposed by Juels
et al. [JCJ05] and its advanced version Civitas [MCC08] fall into this category. In
these schemes, upon coercion the voter provides the adversary with a fake credential
for vote casting, which is indistuinguishable from the real credential. In 2011, Clark
and Hengartner introduced Selections [CH11a, CH11b], in which the voter eludes
coercion with the help of a panic password, also a form of a fake voter credential.
The idea is that a voting process done with a panic password is indistinguishable
from a voting process done with the real password. Under observation, the voter can
use a panic password to “cast” a vote that will not count, and in a private moment
cast a vote with her real password. In 2012, Clark et al. introduced [ECH12], which
is also based on fake credentials in the form of panic passwords, but with a more
efficient ballot authorization technique.
An advantage of the panic password approach is that the voter can cast a vote

bare-handed: the construction of a panic password is easy, and can be done by the
voter without any computer support. Another advantage is that, unlike with the
revoting approach, the voter does not have to do his real voting process after the
voting process under adversarial observation, so it overcomes the problem of being
coerced one minute before the end of the voting phase. However, one big disadvan-
tage is that the voter gets no confirmation when voting with her real password (as is
the goal of the scheme). So if she votes with a panic password by accident, she might
not be aware that she has actually not cast a ballot. Conversely, the voter might
not be sure if she has entered her real password unintentionally under observation.
Therefore, we propose that this approach should be combined with revoting, to let

90 5. Coercion Resistance in Internet Elections

the voter cast her ballot again if she is unsure, just in case.

5.1.3. Related Work on Delegated Voting
Basic rules for delegated voting were introduced by Bryan Ford in [For02], sug-

gestions for designing delegated voting schemes were made by Greem-Armytage in
[GA14]. Liquid Feedback3 is a voting scheme designed for polls in which voter’s
choices are opened directly after all ballots are cast. It is used by the German Pi-
rate Party. It uses standard techniques for authorization, but is not a cryptographic
voting scheme. It is not designed to provide coercion-freeness, the only privacy pro-
vided is through pseudonyms. Another non-cryptographic project is Adhocracy 4,
where security measures are kept low-level for better transparency and usability.
The Agora Ciudadana project5 is an open source project of a voting scheme

which provides vote delegation. It uses cryptographic techniques to provide vote
secrecy and verifiability. The implementation can be seen in action on the website
agoravoting.com.

5.2. Revoting
The work introduced in this chapter is joint work with Jörn Müller-Quade, Bern-

hard Löwe, and Dirk Achenbach [AKMQL14].
A lot of coercion risks, like family voting or cameras observing the voter, may be

resolved by allowing the voter to recast her vote. Therefore, revoting has become
a desirable feature in most online voting schemes. However, to achieve end-to-end-
verifiability, the voters must be convinced that of each voter only the most current
ballot was counted and that the ballot counted was cast by the voter herself and not
inserted by an election server. But any information that proves if, how often or when
a voter has recast her vote leads to a second problem: an adversary observes the
voter once, and coerces her not to cast a vote again afterwards, effectively preventing
revoting. Existing schemes either provide verifiability or secrecy of the revoting
process, as was seen in the related work section. To the best of our knowledge, the
voting scheme introduced in this chapter is the first to achieve both end-to-end-
verifiability and coercion-resistance simultaneously.

5.2.1. Requirements for Revoting
As stated above, the strategy of evading coercion by revoting is only effective if

the adversary cannot learn whether the voter has used her ability to revote. In
particular, the adversary must not learn how many votes a voter has cast. In the
following, we state in more detail how a revote could potentially be recognized by an
adversary. After this we discuss which additional verifiability issues are introduced
by revoting.

5.2.1.1. Information which Betrays a Re-Vote
We identified three sources of information the adversary can use to deduce whether

a voter has revoted.
3Liquid Feedback website: http://liquidfeedback.org/
4Adhocracy website: https://adhocracy.de/
5Website of the Agora Ciudadana project: https://github.com/agoraciudadana/

agora-ciudadana

agoravoting.com
http://liquidfeedback.org/
https://adhocracy.de/
https://github.com/agoraciudadana/agora-ciudadana
https://github.com/agoraciudadana/agora-ciudadana

5.2. Revoting 91

Number of ballots of the same voter
The number of valid ballots a voter has cast may lead to a coercion, even if this

number is not linked to the voter’s name – it can identify the voter. If the number
of revotes of the same voter is deducible, the adversary can cast exactly k votes with
the coerced voter, and then check if k appears as a number of someone’s revotes.
Hence, it should be impossible to infer how many ballots have been cast by any voter,
and the voter must not be able to prove how many times she has cast a ballot. For
this reason, an algorithm which sorts out overwritten votes must not leak any chains
of revotes which belong to the same voter.

Timestamps
If an adversary can determine at which time a counted ballot was cast, he can also

determine whether his coercion attempt was successful. He simply needs to note the
time during his coercion attempt. Therefore, timestamps must not be visibly linked
to cast ballots during the tallying process.

Tagging a Ballot
Tagging is the third possibility to detect whether a certain ballot has been counted.

To achieve verifiability, voting schemes usually publish all counted ballots on a bul-
letin board. An adversary might try to “tag” the ballot that is cast during his
coercion attempt. If this tag is not removed in the casting and counting process, the
adversary can recognize it on the bulletin board, and track it to see if “his” ballot en-
ters the counting process. The simplest way to tag the ballot is to do nothing—just
remember the cast ballot. If cast ballots contain static elements like a signature or
an ID, the adversary can figure out if the voter revoted after the coercion attempt.
This leads to the requirement that ballots, signatures or other data which will be
part of the tallying process must not be linkable to any cast ballot. Achieving this
while maintaining verifiability is a quite a challenge.

5.2.1.2. Tallying Recast Votes Correctly
In addition to the verifiability requirements any cryptographic voting scheme must

comply with, schemes that allow for revoting face at least two additional challenges.

One Ballot per Voter
It must be proven that at least one ballot of each voter (who cast at least one

ballot) has been counted. At the same time it must be shown that only one ballot
has been counted of each voter. Using digital signatures for these proves is delicate,
as explained above.

Tallying the last Ballot
In a voting scheme without revoting it is sufficient to prove that a ballot of a

voter has been counted. In a revoting scheme it also has to be proven that the last
one, and only the last one, has been counted. For the above mentioned reasons, this
proof must be done without revealing how many ballots the voter has cast, the time
when the ballot has been cast, or any other information which helps identifying a
revote.

5.2.2. An Approach: Revoting in Five Phases
Our solution for secret but verifiable revoting can be described in five phases, of

which the first phase consists of ballot casting and takes place in the voting phase,
while the other four phases take place in the post-voting phase, in which old ballots

92 5. Coercion Resistance in Internet Elections

Figure 5.1.: Revoting phases

are verifiably sorted out and counted. The phases are described in more detail below,
our detailed voting protocol is described in Section 5.3. After sketching the idea of
our approach, we will describe the five phases in more detail below.

5.2.2.1. The Idea of our Approach
The idea of our scheme is that the voter signs her encrypted ballot, which is to

be published on a public bulletin board, in a way that links it to her identity while
hiding her identity at the same time, even in the process of signature checking.
Therefore, instead of using the actual signature, she appends a zero knowledge proof
of knowledge of her signature. These proves are then checked to prove that there
are only ballots from eligible voters on the public bulletin board, which enter the
process of sorting out old ballots and selecting the newest ballots for counting. This
process is publicly verifiable, i. e. everyone can check that of each voter who has cast
a ballot, a ballot is selected for counting, and this selected ballot is the last ballot
this person has cast. This is done without revealing which voter has cast which or
how many ballots, or if a voter has revoted at all. After that, it is proven that of
each voter exactly one ballot remains. This is done by unlinking the identity of the
voter from her ballot and opening it. After this step, the selected ballots, which are
in turn unlinked from the voter’s identity, are opened and tallied. The phases are
sketched in Figure 5.1.

5.2.2.2. Overview over the Five Phases
We now provide a high level description of the five phases used to implement

verifiable and incoercible revoting. An instantiation of these five phases is described
in Section 5.3.
In the following description, let E be a multiplicatively homomorphic encryption

function, i. e. E(m1) ·E(m2) = E(m1 ·m2) for two messages m1 and m2. We suggest
using the Elgamal encryption. Let EA be an additively homomorphic encryption
function, i. e. EA(m1) · EA(m2) = EA(m1 + m2). We suggest using the Paillier
cryptosystem, in which ciphers are multiplied to obtain an encrypted sum of their
plaintexts, which is the reason for the above notation.
In our voting protocol, all components of the ballot will be encrypted with one of

these homomorphic schemes, and can therefore be rerandomized. In the description
below, we will shuffle encryptions on several occasions. Each time encryptions are
shuffled, a zero-knowledge proof of correct shuffling is published. In our high level

5.2. Revoting 93

description we will not always state this explicitely. The shuffling and its proof can
be done with standard techniques, for example by using a re-encryption mixnet with
shadow mixes, following the ideas described in [Ben06] and Section 2.3.6.2.

Phase 1: Vote Casting
The voter creates a ballot B := (pk, ts, v), where v is the voter’s choice, ts is the

current timestamp, and pk is the public verification key corresponding to the voter’s
signature key. The public key pk uniquely identifies the voter. Therefore, we also
refer to pk as the voter’s identity. The voter encrypts her ballot componentwise to
obtain an encryption (E(pk), EA(ts), E(v)). The voter’s identity pk and the ballot’s
timestamp are encrypted with the joint public key of a set of sorting servers, while
the choice v is encrypted with the joint public key of a set of tellers. This encrypted
ballot will later appear on the public bulletin board.
To publicly prove eligibility, the voter has to sign her ballot. But this signature

would reveal the voter’s identity, and therefore show if or how often a voter has
revoted. Instead, the voter creates a non-interactive zero-knowledge (NIZK) proof
π of knowledge of a valid signature of her encrypted ballot. This proof π consists of
several sub-proofs, one of which proves that the signature is created with the signing
key corresponding to the public key encoded in her ballot, to prevent that a voter
signs and casts ballots for other voters. Another sub-proof proves that the voter owns
a certificate for this signing key, which proves her eligibility. To cast her ballot, the
voter sends the encrypted ballot (E(pk), EA(ts), E(v)) as well as the zero-knowledge
proof π to a casting server, to which she proves that the encrypted timestamp
encodes the current time. Her encrypted ballot and the proof π are published on a
public bulletin board, the voter can check that it appears there unchanged. Everyone
can check the NIZK proofs without learning the voter’s identity.
At the end of Phase 1, the bulletin board contains a set of encrypted ballots with

proofs allowing a public verification that each ballot has been cast by an eligible
voter.

Phase 2: Verifying the signatures
In Phase 2, it is checked which ballots have been cast by eligible voters. It is

crucial in this step that the checking of signatures does not reveal the identity of a
voter, and with this, if a voter revoted. This is done by checking the NIZK proofs of
knowledge of the signature, which are created in a way that the public keys of the
voters are not needed for checking. The sorting servers also check the signatures,
mark ballots with invalid proofs as invalid and do not process them any further.
Since signature checking can be done by everyone, everyone can check that the
sorting servers marked the right ballots.
At the end of this phase, the bulletin board contains a set of ballots which are

from eligible voters. Only these ballots are further processed and enter the process
of sorting out old ballots in the next phase.

Phase 3: Sorting out old ballots
After the signatures are verified, the sorting servers detach the ballots cast by

eligible voters from their signatures by mixing and rerandomizing them without the
signature proofs, to obtain a list L of ballots.
To sort out old ballots, the sorting servers have to be able to decide and prove

whether two ballots belong to the same voter, and if they do, which of the two ballots
is older. This needs to be done without building a chain of ballots of the same voter,

94 5. Coercion Resistance in Internet Elections

because this would reveal the number of revotes of each voter. The process must
also not reveal any voter’s identities or timestamps. To avoid chains, we sort out
ballots in several rounds.
Each round starts with a list M of ballots. The first round starts with the list

M := L, each subsequent round with the reduced list of ballots that were not thrown
out in the previous round. In each round, the first ballot is taken out of the list and
its identity part is subsequently compared with that of the other ballots in the list
until another ballot with the same identity is found. If no match is found, we put
this ballot into the list N of ballots that is to enter the next round, and proceed
with the next ballot in the current list M . If a match is found, the timestamps of
the two ballots are compared, both ballots are deleted from M . The newer ballot is
put into N , and we proceed with the next ballot in M . We repeat this until M is
empty, and enter the next round with a shuffled version of the list M := N . Please
note that in each round, each ballot is compared with at most one other ballot with
the same identity.
Now we describe the sub-protocols of identity and timestamp comparison. For

both we basically compute the difference on the ciphers. When comparing identities,
we check if the difference is the neutral element of the underlying group. When
comparing timestamps, we can just decrypt the difference and check whether it is
greater or less than zero. However, we must not reveal the difference of any two
identities: the difference uniquely determine which pair of identities is compared,
so revealing it would show how often two identities are compared with one another,
which would reveal information about the number of revotes of these two voters.
Therefore, we mask the difference of the identities with a random exponent, which
will not affect the neutral group element. This masking is done jointly by the sorting
servers to ensure that no exponent is chosen which maps the difference to the neutral
element. The masked difference of the identities is decrypted. If it is the neutral
element, the two identities are the same, i. e. the ballots belong to the same voter.
At the end of this phase, the bulletin board contains a set of ballots selected for

tallying, together with all the necessary proofs (i. e. shuffle proofs, decrypted masked
differences etc.) to check that the sorting was done correctly. So it contains all data
that is needed to publicly verify that of each voter, a ballot has been selected for
tallying, and that this is the newest ballot of this voter.

Phase 4: Proving one ballot per voter
To prove that of each voter, only one ballot is left, the sorting server shuffles the

part of the ballots that contain the voter’s encrypted public key and proves the
correct mixing. The encryptions are then opened to prove that of each voter, there
is one public key, and with that, for each voter, only one ballot enters the tallying
process.
At the end of Phase 4, the bulletin board contains all necessary information to

verify that of the ballots selected for tallying, each belongs to a different voter.
Remember that from the previous phase it also contains all information to verify
that of each voter who has cast a ballot, the newest one is selected for counting.

Phase 5: Tallying
From here, our scheme follows standard procedure: the parts of the ballots that

encrypt the voter’s choices are shuffled, decrypted and counted by the tellers, with
proofs of correct decryption. This is a standard procedure and requires no new
techniques.

5.3. An Instantiation of our Revoting Scheme 95

At the end of this phase, the tally is published with all necessary proofs of cor-
rectness.

5.3. An Instantiation of our Revoting Scheme
A big advantage of our protocol is that it can be set up in a way that no sin-

gle instance has to be trusted for privacy and coercion-resistance. Each critical
calculation like sorting out old ballots or tallying can be distributed over a set of
trustees. At the same time, our scheme is publicly verifiable, under the assumption
that a common reference string (CRS) is created honestly and the PKI only certifies
signature keys of eligible voters.
For the sake of clarity, we describe our protocol with one single server per task,

whereas each server which learns critical data can be distributed. A way to distribute
each trusted server is discussed below the description of our voting scheme.
Apart from that, our scheme does not depend on any trusted authority for verifi-

ability or voter privacy.

5.3.1. Overview over the Used Techniques
Our instantiation of the revoting scheme builds on several building blocks. Groth

and Sahai introduced a way to efficiently instantiate NIWI and NIZK proofs for
pairing product equations (GS-Proofs). We will use these proofs in Phase 1 and
check them in Phase 2. To be able to do this, we need a signature scheme and a
ballot encryption method that is compatible with the GS proof system. Also, our
building blocks have to enable us to unlink a ballot’s identity from the signature
while proving correctness, in particular being able to check that each voter has cast
her own ballot and not voted in the name of someone else. Our main building block
is inspired by a construction of Ghadafi[Gha11], who constructed a blind group
signature out of a structure preserving signature scheme.
GS-compatible structure preserving signature schemes were introduced by Abe

et al. in [AFG+10]. The aim of their work was to provide building blocks for a
modular protocol design. Compatibility with the Groth-Sahai proof system is given
because the verification function of the signature scheme consists of checking a set
of pairing product equations. This provides the possibility of creating NIZK-proofs
of knowledge of a signature σ for a message m that verifies to 1 with a verification
key pk, where each of these components can be witness variables, i. e. kept secret, as
needed. This fact is used by the authors of [AFG+10] to construct a blind signature
out of their signature scheme: they just let the signer sign an also GS-compatible
commitment to the message and prove that he knows a signature on the message
under verification key pk. This scheme was later transformed to a blind group
signature scheme by Ghadafi in [Gha11], who also hides the signer’s public key in
the witness of the GS-proofs.
In our work, we adapt the non-blind version of the signature scheme in [AFG+10]

to be kind of a group signature. Group signatures provide the possibility to trace
and open the identity of a signer with additional information. A naive way to
realize our scheme would be to use a group signature for ballot signing, check the
signature without revealing the voter’s identity, then sort out old ballots and then
use the open algorithm to reveal the identities of the remaining ballots to prove
that only one ballot per voter is left. But there is an important difference between
our application and the usual use of group signatures: the open algorithm in a
group signature scheme is usually provided to reveal someones identity in the case

96 5. Coercion Resistance in Internet Elections

of fraud, where it is usually wanted that the signature can be linked to a certain
signing process. In our voting scheme, the situation where we need the opening is
not a fraud but a standard case, and a link to the signing process would link the
signature to a certain ballot. We need unlinkability to remain intact even with the
revealed identity.
What we do instead is attach an encryption of the voter’s public key to the ballot,

and add a GS-proof that this encryption contains the same verification key as is
used in the GS-proof of knowledge of the signature.
We first describe the scheme with trusted servers and one server per task, to make

it more clear. Later we discuss about which servers need to be trusted and how they
can be distributed to implement a trusted instantiation.

5.3.2. Participants
The participants in our voting scheme are the following:

• Issuer: The issuer acts as a public key infrastructure (PKI), which certifies
the voter’s public keys in the registration phase. Eligibility is verified against
this list, so the Issuer manages the list of eligible voters and their public keys
for voting.

• Voters: The voters encrypt, cast and sign their ballots and create proofs of
knowledge of a valid signature.

• Voter-PC: This is the PC used by the voter to cast her vote. It learns the
voter’s choice in that voting process. The voter can perform several voting
processes with the same or different PCs.

• Casting Server: The voter connects to this server to cast her ballot. The
server is responsible for checking that the timestamp on the ballot is feasible
and the ballot is valid

• Sorting Server: The sorting server sorts out the old ballots and selects the
newest ballot of each voter for tallying.

• Tally Servers: The tally servers mix and decrypt the selected ballots and
compute the tally.

• Auditors: The auditors jointly create public parameters like the common
reference string crs for the Groth-Sahai proofs.

• Public Bulletin Board: As common to most voting schemes, our voting
scheme uses a public bulletin board. Everyone has read access, the casting
server, the sorting server and the tally server have append access. Once on the
bulletin board, data cannot be deleted or modified.

5.3.3. Assumptions about the Setup
Our voting scheme requires the following assumptions to hold:

• Existing PKI: We assume a PKI from which eligibility can be tested. The PKI
maintains a public list of public keys and certificates. A voter is eligible if her
public key is in this list and has a valid certificate. The PKI is managed by the

5.3. An Instantiation of our Revoting Scheme 97

Issuer, who issues certificates on public keys to eligible voters. We assume an
existing procedure for key generation, authentication and proving eligibility to
the issuer, and do not specify this step in our protocol.

• The casting server might get some information about the PC the voter casts
her ballots with (IP address, OS, Browser, etc.). This is not a problem specific
to our voting scheme. But it might enable the casting server to recognize a new
ballot which comes from the same PC. Therefore, in our protocol description,
we assume the casting server as trusted. However, the voter could use an
anonymization network, and the casting server could be distributed to weaken
this problem (see the discussion below).

• A dishonest sorting server is able to decrypt the timestamps and voter identi-
ties of single ballots, but not the voter’s choice encoded on this ballot. However,
the sorting server does not need to decrypt any identities or timestamps to per-
form its task of sorting, and our sorting algorithm can be distributed among
several servers. We assume the sorting server as trusted, and implement it by
distribution as discussed below.

• The tally server is able to decrypt the choices, which are part of the bal-
lots. Therefore, it has to be trustworthy. However, it cannot decrypt the
corresponding public keys, i. e. it cannot identify the voters who have cast
these ballots. This server is naturally implemented by distribution by using a
threshold scheme for encrypting votes.

• The Voter-PC learns the voter’s choice and therefore needs to be trusted for
privacy. This assumption is not as critical as it looks: since we allow revoting,
if the voter does not trust her PC anymore, she can use another one even if she
has already cast a vote. The voter’s signing key should be stored on trusted
hardware so a malicious PC does not sign and cast ballots on its own.

5.3.4. Protocol Description
Our voting scheme consists of three parts which will be described below: a pre-

voting phase, in which keying material is created, a voting phase, in which voters
cast their votes, and a post-voting phase, in which old votes are sorted out and the
newest votes are counted. Our five revoting phases appear in the voting phase and
the post-voting phase, we indicate them as “Revoting-Phase 1-5”.

5.3.4.1. Pre-Voting Phase
In this phase, all public parameters are setup and the necessary key pairs for the

encryption and signature schemes are generated.

Setup of the bilinear groups and public parameters
Before the election starts, the encryption and signature schemes are setup. Let

gs := (p,G1,G2,GT , e, G,H) be a group setup with bilinear groups G1, G2 and GT

of prime order p, a bilinear map e : G1 ×G2 → GT , and generators G and H of G1
and G2, respectively, where e(G,H) generates GT .
Let Sign and SignCERT be the signature function of the automorphic structure

preserving signature scheme described in [AFG+10] (see Section 2.3.11), both with
the group setup gs chosen above. We use different function names for clarity. The
function Sign is used by the voters to sign ballots, while SignCERT is used by the

98 5. Coercion Resistance in Internet Elections

issuer to certify the public keys. Actually, SignCERT does not need to be automor-
phic, so it can be substituted by another GS-compatible signature scheme based on
Type 3 pairings.
The public parameters F,K, T ∈ G1 for the signature scheme Sign are chosen at

random by the auditors. The auditors jointly create the common reference string
crs in the binding setting for the GS-proofs.
In the following, let E : G2 → G2 ×G2 be the multiplicatively homomorphic El-

gamal encryption function. We encrypt in G2 with generator H, so for each x ∈ G2,
we have E(x) := (Hr, xY r) where Y is the public key used for encryption and r ∈ Zp
a random number. Let EA be the Paillier encryption, which is additively homomor-
phic: EA(x1) · EA(x2) = EA(x1 + x2) for all x1, x2 ∈ G, where G is an appropriate
group used for the encoding of the timestamps with the Paillier encryption. The
group G is also setup by the auditors.
The setup (gs, crs, F,K, T,G) is published.
Encryption is always done componentwise. When not clear from the context, we

denote the used public key pk for the encryption by Epk.

Key Generation
1. The Issuer creates a secret key skI and a corresponding public key pkI for the

scheme SignCERT . He publishes his public key pkI .

2. The casting server does not need any keys except those which are public.

3. The sorting server creates a key pair (skS, pkS) for the Elgamal encryption
scheme: he randomly chooses skS ∈ Zp and computes pkS = HskS , and pub-
lishes his public key pkS. He also creates a key pair (pkAS, skAS) for the
additive scheme EA and publishes pkAS.

4. The Tally Server creates a key pair (skT , pkT) for the Elgamal scheme, i. e.
he randomly chooses skT ∈ Zp, and computes pkT = HskT . The key pkT is
published.

Voter registration
Let ET be the public key table in the PKI managed by the Issuer. Before the

registration starts, the key table ET is empty. Each eligible voter creates a key pair
(ski, pki) for the signature scheme Sign. To this end, the voter chooses a random
s ∈ Zp and calculates her public key pki := (S1, S2) := (Gs, Hs). The voter’s key
pair is (ski, pki) = (s, (S1, S2)). The voter proves her identity and eligibility to the
Issuer. How this is implemented is not specified by this work, we assume this as
given.
The Issuer verifies the voter’s identity and eligibility, and upon success signs pki

with the scheme SignCERT with his secret issuing key skI . He sends the resulting
signature certpki

to the voter. The tuple (IDi, pki, certpki
) is published in the table

ET , where IDi is the voter’s name.
The voter can verify the Issuer’s signature on her key and complain and create

another key pair if the verification check fails.

5.3.4.2. Voting Phase
Revoting-Phase 1: casting
In the voting phase, the voter creates a ballot together with the casting server.

Casting a ballot is done in three steps:

5.3. An Instantiation of our Revoting Scheme 99

1. First, the ballot is created.

2. To prove the legitimacy of her ballot while hiding her identity, the voter creates
a proof of knowledge of a signature of her ballot.

3. The ballot and the proof of knowledge are published.

The three steps are now described in more detail.
Step 1: Ballot creation
The Voter creates EpkS (pki) and EpkT (v) and sends them to the casting server. To

prevent common attacks, the voter must prove knowledge of the contents of EpkT (v).
This can be done using the technique of Schnorr [Sch91] and is not described here.
The casting server verifies this proof and aborts the voting process if this verification
fails. Otherwise, he proceeds with as follows: the casting server creates EpkAS

A (ts) and
sends (ts, EpkAS

A (ts)) with a proof of correct encryption to the voter. The timestamp
can actually be created by the voter or the server, as long as the encryption of the
current time is proven to the other party.
The voter’s ballot is then

B := (EpkS (pki), EpkT (v), EpkAS
A (ts)).

Step 2: Creating a proof of knowledge of a signature
After the ballot is created, the voter computes a GS-proof which shows that:

1. The voter knows a valid signature of her ballot.

2. The public key corresponding to the signing key used to create this signature
is the one encrypted in EpkS (pki). This ensures that she does not cast ballots
for another voter.

3. The voter owns a certificate certpki
for pki, i. e. she is eligible.

The GS-proof can only be created if the voter is able to sign her ballot. Therefore,
it can act as a signature by itself. The proof must be publicly verifiable without
revealing the voter’s identity. Therefore, the signature itself, as well as the certificate
certpki

of the voter’s public key, must not be revealed by the proof, since they link
the ballot to the voter’s identity. The GS-proof is created as follows, using the
common reference string crs created in the pre-voting phase:

1. Signing: The voter transforms B into an element m ∈ Zp using a crypto-
graphic hash function. Let (M1,M2) := (Gm, Hm). The voter chooses r, c ∈ Zp
at random and computes the signature

C1 := F c, C2 := Hc, A := (KT rM1)
1

s+c , R1 := Gr, R2 := Hr,

where F,K, T ∈ G1 are the public random parameters of the signature scheme,
which were created in the pre-voting phase. The resulting signature is

σ := (C1, C2, A,R1, R2).

The components (A,C1, C2) contain information about the voter and must be
hidden. Therefore, σ is kept secret by the voter. It can be deleted after the
proof is created.

100 5. Coercion Resistance in Internet Elections

2. Sub-proof of knowledge of a signature: The voter creates a GS-proof Ω1
of satisfiability of the signature verification equations

e(X,H) = e(G, Y), (5.1)
e(C1, H) = e(F,C2),

and
e(A, Y C2) = e(KM1, H)e(T,R2). (5.2)

The witness variables in this proof are pki =: (X, Y), and the signature com-
ponents A, C1 and C2.

3. Sub-proof of eligibility: The voter proves that she knows a certificate
certpki

of her public key, by creating a GS-proof Ω2 of knowledge of a witness
(certpki

, pki) which together with the issuer’s public key pkI satisfies the ver-
ification equations of the signature scheme SignCERT . The GS-commitments
of the components X and Y of pki from the first sub-proof are used, to show
that the same key is involved as in the Equations 5.1 and 5.2.

4. Sub-proof of identity: To prove that the voter has attached her own identity
to the ballot, the voter proves that the public key used in the two sub-proofs
above is the one encrypted in EpkS (pki) =: (U, V). For this, she creates a
GS-proof Ω3 for the equation

V = (Hr, Y pkrT).

The public key component Y and the encryption randomness r are treated as
witness variables. Again the same GS-commitment of Y is used as in the other
two sub-proofs.

Since for Y the same GS-commitment is used in all three sub-proofs, we see that
the public key used to sign the ballot is the same as the one encrypted on the ballot,
and the certificate used in sub-proof Ω3 is for this very public key.
Step 3: Ballot casting
The voter casts her ballot

ballot := ((EpkS (pki), EpkT (v), EpkAS
A (ts))

together with the GS-proof Ω = (Ω1,Ω2,Ω3) by sending it to the casting server,
who publishes (ballot,Ω) on the public bulletin board. The voter can check that her
ballot appears.
Please note that the fact that the voter knows her encryption randomness is not a

problem since she can always revote. So even if she proves a certain vote, this only
proves that one such vote signed by her is on the bulletin board. There could be
others.
5.3.4.3. Post-voting phase
Revoting-Phase 2: Verifying the signatures
After all ballots are cast, the GS-proofs Ωi of all ballots,

(EpkS (pki), EpkT (vi), EpkAS
A (tsi)),

i = 1, . . . , n, are verified by the sorting server, where n is the number of votes
cast. The sorting server marks ballots of which the signature check fails as invalid.
Everyone can verify this step since the proofs are publicly verifiable.

5.3. An Instantiation of our Revoting Scheme 101

Revoting-Phase 3: Sorting out old ballots
To sort out old votes, the sorting server takes all ballots

(EpkS (pki), EpkT (vi), EpkAS
A (tsi))

with valid signatures from the bulletin board as input without the GS-proofs, which
are no longer needed. The sorting server shuffles and reencrypts all the ballots,
obtaining a new list L of ballots, and proves the correct mixing. The sorting server
initializes a new empty list N , which is later filled with already compared ballots.
Then the sorting procedure starts as follows:
The sorting server takes the first two elements

ballot1 = (EpkS (pk1), EpkT (v1), EpkAS
A (ts1))

and
ballot2 = (EpkS (pk2), EpkT (v2), EpkAS

A (ts2))
out of the list L and compares their IDs (i. e. their public keys, which identify the
voters):
First, the server computes

EpkS (div) =
(
EpkS (pk1)
EpkS (pk2)

)r
= EpkS (

(
pk1

pk2

)r
).

The division as well as the exponentiation is done componentwise and the server
proves with the Chaum-Pedersen-protocol [CP93] that he used the same r for each
component. If pk1 = pk2, we have

div =
(
pk1

pk2

)r
= (1, 1)r = (1r, 1r) = (1, 1).

The value div is opened with a proof of correct decryption. If the decryption of
EpkS (div) results in div = (1, 1), the server opens r in order to show that r 6≡ 0
mod p. If the IDs do not match, ballot1 is compared to the next ballot in the list
L. This is continued until the end of the list is reached or a ballot is found whose
identity matches the one of ballot1.
If the IDs match, the sorting server calculates:

EpkS (diff) = EpkAS
A (ts1)

EpkAS
A (ts2)

= EpkS (ts1 − ts2).

Then diff is decrypted with a proof of correct decryption. If diff > 0, ballot1 is
older.
Both ballots are deleted from L, the newer ballot is appended to N and not

compared again in this round. The procedure is repeated until L is empty. Please
note that each element is compared only once.
When L is empty, the remaining ballots in N are shuffled, L := N , and N is

reinitialized as an empty list. The whole procedure is repeated until N does not get
shorter anymore.
Revoting-Phase 4: Proving one ballot per voter
The sorting server shuffles the EpkS (pki) parts of the ballots, and proves the correct

shuffling. Then he opens the ciphers and proves correct decryption. All proofs and
the plaintexts are published on the public bulletin board. Everyone can check that
each pki occurs only once.

102 5. Coercion Resistance in Internet Elections

Revoting-Phase 5: Tallying
The tally server shuffles the EpkT (vi) parts of the ballot, proves the correct shuffling

and publishes the shuffled ciphers and the proof on the public bulletin board. Then
the tally server decrypts these shuffled ciphers and publishes their content with
proofs of correct decryption. The tally can be computed by everyone from the set
of decrypted choices vi. At this point, the bulletin board contains all necessary
information to verify that the tally is calculated correctly, i. e. only ballots from
eligible voters were processed, and of each voter who has cast ballots the newest
ballot is counted.

5.3.5. Discussion
We now discuss some aspects of our scheme, including the distribution of servers

and other possible improvements. The author is aware that this scheme, especially
the sorting algorithm, can be improved. This scheme is supposed to be a proof of
concept.

Homomorphic tallying
The encryption function with which the voter’s choice itself is encrypted, is, in

fact, arbitrary. Therefore, instead of using a shuffle in the tally phase, the tally can
be computed homomorphically: the voters encrypt their choice vi for example with
exponential Elgamal, which is additively homomorphic, and prove validity of vi upon
casting. This would make our scheme more efficient and stronger against coercion,
since no plaintext ballots would be decrypted, and therefore, pattern voting would
not be a problem. In its current version, our scheme is only secure for 1-out-of-n
choices.

Distribution of servers
Since the only critical operation of the sorting server and tally server is shuffling

and decrypting Elgamal encryptions, we can use a threshold version of Elgamal
(see Section 2.3.3.3 and [Ped91b]), where the decryption key is distributed among
several servers and decryptions are done without ever reconstructing the decryption
key (it is used in the exponent only). So we can implement both the sorting server
and the tally servers as a set of servers which share the corresponding secret keys
for decrypting differences of timestamps and the voter’s choices, respectively. For
the voters, this makes no difference since encryption with threshold-Elgamal works
exactly the same way as with ordinary Elgamal: there is one joint public key. Only
the decryption process is different. The shuffling of encrypted votes can be done
jointly by these servers as well.
The sorting server also needs to choose randomness for masking the difference of

identities. The masking can be done jointly by several servers, by exponentiating
consecutively. The masking randomness of each server is then opened if the difference
is the neutral element.
The casting server might learn the number of revotes of a single voter from her

IP-adress, but no other critical information. It has no decryption keys. To hide the
number of revotes, there could be more than one such server from which the voter
can choose, or the voter can use an anonymization network.
The CRS used for the GS-proofs is basically the public key of an Elgamal en-

cryption, since we use the SXDH instantiation of GS-proofs in the binding setting.
Therefore, the CRS can be jointly created by a set of trustees. Since we do not need

5.3. An Instantiation of our Revoting Scheme 103

to actually extract any witnesses, all data which is used to create the CRS can be
deleted immediately after its creation.

Everlasting Privacy
Vote privacy in our voting scheme is computational, it depends on the encryp-

tion function used for encrypting the votes. In 2012, Demirel et .al.[DvdGSdSA12]
showed how to introduce everlasting privacy in voting schemes based on homomor-
phic tallying. The ballot part encrypting the votes is not used in any algorithm
of our voting scheme except the tallying, so its encryption is in fact arbitrary, and
we can as well use for example exponential Elgamal (i. e. encrypting Hm instead
of m with normal Elgamal) and let the voter prove that her ballot contains a valid
vote upon casting. This would additionally require a trusted authority to which the
voter proves this validity. This authority would learn the encryption of the vote,
which would otherwise, in our current voting scheme, be seen by anyone. However,
the authority which learns the Elgamal encryptions would also need to track which
ballot is sorted out, i. e. which encryption is not to be included in the tally. We
leave a secure realization as an interesting open problem.

Belated coercion
A remaining attack, loosely related to everlasting privacy, would be that the

adversary coerces the voter after the voting phase in order to retroactively break
privacy, and forces her to open one of the votes. Without a warning of the adversary’s
intentions of coercion, the voter cannot use revoting as a deceiving strategy anymore.
We consider this attack harmless. At this stage, such a coercion would not have an
impact on the tally anymore, and the voter can always claim she has forgotten her
randomness used for ballot creation since she was not asked in time to keep it.

Forced Abstention
In the above described version of our voting scheme, the identities of the voters

who have cast a vote is opened in the end. Therefore, a voter could be coerced
not to participate in a vote. This problem could be solved by proving that of the
remaining ballots, each contains an encryption of a different public key. For this
we could use the same techniques for identity comparison as we used in the sorting
algorithm.

Manipulating timestamps
A voter can cast a ballot with a wrong timestamp in cooperation with the casting

server. Therefore, a corrupted casting server could coerce the voter to cast a ballot
with a future timestamp. However, the timestamp can also be checked by a third
party without learning the voter’s identity.

5.3.6. Security Discussion
In this section, we discuss the security of our voting scheme. As we shall see, it is

not yet perfect since our sorting algorithm leaks some information about the number
of voters who revoted. However, if more than one voter revotes, the algorithm does
not leak information about which voter revoted how often.

5.3.6.1. Privacy Properties
Secrecy of the vote
The vote is encrypted with Elgamal, and not touched during the election process

except for re-encryption and shuffling until the tally is computed with standard

104 5. Coercion Resistance in Internet Elections

techniques. Before the tally is computed, the vote is detached from the rest of the
ballot, in particular, the voter’s identity, by shuffling and proving the correctness of
the shuffle with a zero-knowledge proof. Therefore, vote secrecy holds depending on
the security of the Elgamal encryption.

Secrecy of the act of revoting
The identity of the voter is never shown on the public bulletin board until all

but her newest ballots are sorted out. By then, her ballot is unlinked from her
cast ballot: the plaintext timestamp is never revealed, and neither is the signature.
The GS-proofs do not enter the sorting process. The only information the ballots
contain about their voter is the voter’s encrypted public key, which is encrypted with
different randomness for each ballot, so under the assumption that the encryption
scheme is secure, this encryption cannot be used to identify ballots of the same
voter. All possible tags, i. e. randomness used to create encryptions and proofs,
are destroyed by rerandomization. Therefore, the only possibility to link a counted
ballot to a cast ballot is information leaked by the sorting algorithm. We take a
closer look at this algorithm now.
In the sorting process, we see that two ballots belong to the same voter, but not

which ones. A ballot is only compared once with another ballot of the same voter
in one round, i. e. between two rerandomization procedures. Therefore, a chain of
ballots of the same voter cannot be deduced. But we do in fact see that there are
revotes, but not how many of them are done by a single voter. The sorting algorithm
is not perfect yet however. It leaks some information about the number of voters
who have revoted: if in the beginning of a round some ballots are processed that do
not have any matches, we know that these ballots are from different voters, so the
algorithm leaks an upper bound of the number of voters who revoted. We leave the
creation of a better sorting algorithm as an open problem, but strongly believe that
the problem is solvable.

Receipt-Freeness and Coercion-Resistance
The only data the voter can influence, i. e. use to encode information, is the

first appearance of her ballot on the bulletin board, which can be invalidated by a
revote. This first appearance is rerandomized and shuffled with other ballots with
any further processing, so it cannot be linked to a ballot which is sorted out, or to
a ballot which is included in the final tally. The encrypted ballot included in the
final tally does not reveal any information about the form of the vote. Moreover,
concerning the adversary’s view on published data, until the end of the sorting
process, each processed vote could belong to any initially cast ballot and have been
cast by any eligible voter. In particular, the voter does not have any material to
prove that a certain encryption included in the tally encrypts her choice. However,
we count by shuffling and opening ballots, so plaintext ballots are revealed. So
coercion might be possible if we allow the voter to cast too flexible ballot formats,
for example with vote splitting or write-in candidates, in which a voter could encode
her identity.

5.3.6.2. Verifiability
Individual verifiability
The voter can check that all her ballots, especially her newest ballot, appear on

the public bulletin board. She can then check that all her ballots, most importantly
her newest ballot, enter the sorting procedure. From there on, the voter can check

5.3. An Instantiation of our Revoting Scheme 105

that the ballots of all voters are processed correctly (see universal verifiability). At
the same time, since this ballot does not visibly overwrite a particular older ballot
(ballots are rerandomized and shuffled before they are compared), privacy is assured.

Universal verifiability
Universal verifiability can be divided into three aspects in our voting scheme.

Everyone can check that only ballots cast by eligible voters are counted. Everyone
can check that these cast ballots are sorted out correctly, and that the votes selected
for tallying are tallied correctly.

• Verifiability of eligibility Everyone can check that each ballot on the bul-
letin board belongs to an eligible voter, by checking the GS-proofs of signature
knowledge attached to the ballot. These proofs contain a part which proves
that a certificate of the key used for signing exists. Therefore, under the as-
sumption that the signature scheme used for certification is unforgeable, only
an eligible voter can have created the signature.

• Voter authentication The proof of knowledge of a signature created in Phase
1 binds the ballot to a certain voter’s signing key. It is proven that this key
corresponds to the public key encrypted on the ballot. So under the assumption
that the used GS-proofs are sound, the ballot is signed by the voter who’s
public key is encoded in the ballot encryption.

• Verifiability of the Sorting Process As mentioned above, it is proven that
each ballot is signed by the voter who’s public key is encoded in the ballot
encryption. This public key is used to sort out old ballots. Everyone can
verify that whenever two ballots are compared, one of them is thrown out iff
they belong to the same voter, and if so, it is the older ballot that is thrown
out. At the end it is proven that of each voter, the newest ballot is among
these which will be counted.

• Verifiability of the Tally Since eligibility is publicly verifiable, everyone can
check that only votes from eligible voters enter the sorting process. Since the
process of sorting out old votes is publicly verifiable, and it is proven that of
each voter, only one ballot is selected for counting, everyone can verify that of
each voter who has cast a ballot, a ballot will be counted, and that this ballot
is the newest ballot of this voter. Altogether this proves that only the newest
ballot of each voter enters the tallying process. The tallying process itself can
be verified in a standard way by checking the proof of correct shuffling and
decryption of the encrypted ballots.

5.3.7. Analysis with the Taxonomy
An analysis of our revoting scheme with our taxonomy can be found in Ap-

pendix C. The analysis showed that our scheme is rather strong regarding most
requirements, but it is not suitable yet for large-scale elections because of its lack of
efficiency. Apart from the scalability requirement, most requirements are fully met,
one could be met with minor adjustments and two requirements are almost met.
The two latter requirements are coercion-resistance (because of the minor informa-
tion leakage of the sorting algorithm), and provability of a fraud if the voter’s ballot
is not published.

106 5. Coercion Resistance in Internet Elections

5.4. Delegated Voting
The idea of delegated voting is that a voter can choose between casting her own

vote or instead giving the weight of her vote to another eligible voter of her choice.
We call the person to whom votes are delegated a proxy. By default, the weight of
a voter’s vote is 1. This weight increases with delegations this voter gets in the case
that she acts as a proxy.
The concept of vote delegation poses some interesting challenges to the construc-

tion of a cryptographic voting scheme. Not only has the tally to be proven correct,
a voter also needs to be given a proof that her vote was delegated to the right
proxy. At the same time, the proxy must not know if a voter delegated her weight
to him, for this might open possibilities for coercion. This makes balancing voter
privacy and verifiability an even harder challenge than in ordinary cryptographic
voting schemes.
The possibility of verifiable revoting is essential for delegated voting, since it is

often required that a voter can change her mind between delegating and voting by
herself at anytime during the voting phase.
In this chapter, we first introduce the new requirements and challenges which

delegated voting gives to us cryptographers. Then we review an existing approach,
Agora, and discuss how these challenges are met. Agora is a cryptographic voting
scheme whose original idea was to enrich Helios with the feature of vote delegation.
Agora does not provide secrecy of the revote, revoting is implemented by substituting
encrypted ballots on a public bulletin board. We do not evaluate Agora – we use
the scheme as an example to show some pitfallss.
After having looked at an existing scheme, we present our own solution which

combines our revoting solution with a new paradigm we call vote fetching. The idea
of vote fetching is that instead of delegating, the voter fetches a vote which was
provided by the proxy without letting the proxy know that she is doing so. As we
will see, this has several advantages over the delegation approach, since it is more
flexible in many ways.

5.4.1. Liquid Democracy and Delegated Voting in a Nutshell
Delegated Voting is an implementation of a so-called Liquid Democracy. The

underlying ideas of vote delegation were introduced by Miller in the 1960s [Mil69]. In
2002, Ford introduced some basic rules for delegated voting [For02], Green-Armytage
suggests a design for a vote delegation system in [GA14].
Liquid democracy can be seen as a hybrid between direct and representative

democracy, where vote delegation acts as a tool for overall decision making. In-
stead of having a parliament take all the decisions, voters have the choice of giving
their own opinion in a poll or delegating the weight of their vote to another eligible
voter, a so-called proxy. The proxy himself can also delegate his vote to yet another
proxy, and Ford even suggests delegating delegation decisions [For02]. It is usually
required that a voter can change her mind anytime, as stated for example in [GA14],
so after delegating, the voter can take back her weight from the proxy and vote by
herself or delegate to another proxy. Another non-cryptographic requirement is that
a delegation stays intact for several polls so the voter does not have to be involved
in each poll in person.
5.4.1.1. Bryan Ford’s Rules for Delegated Voting
In [For02], Ford introduced some basic rules for delegated voting. Interpretation

and implementation of these rules differ between existing schemes.

5.4. Delegated Voting 107

Choice of Role
Every voter has the right to refuse to be a proxy and instead vote as an individual

only.

Low Barrier to Participation
In principle, every voter has the chance to become a proxy, but a low barrier is

allowed. Ford explicitly states that becoming a proxy shall “not require campaigning
or winning a competitive election”.

Delegated Authority
The weight of the vote of a proxy is the sum of his own weight an the weight of

the voters who delegated their vote to him.

Privacy of Individuals
Voter privacy holds for voters who are not proxies. Voter’s choices of candidates

as well as delegations to proxies remain secret. A proxy does not know which voter
has delegated her vote to him.

Accountability of Delegates
Proxies are called delegates by Ford. Each proxy has to account for his choice,

therefore Ford demands that their choices are made in public.

Specialization by Re-Delegation
Like voters, a proxy can delegate his choice to another proxy, who gets the full

weight of the delegating proxy. This allows several levels of specialization on different
topics.

5.4.1.2. Anomalies in Elections with Vote Delegation
The possibility of delegation introduces some known anomalies and peculiarities.

Two of them are important for this work:

Delegation Cycles
A delegation cycle occurs when proxy A delegates to proxy B, who delegates to

proxy C, who in turn delegates to proxy A. If this happens, the weight of all votes
delegated to a proxy in the cycle is lost since it is not given to any actual candidate.
Especially if proxies vote in secret, this can happen without anyone noticing. We will
see that cycle resolution without introducing possibilities for coercion is a challenging
problem.

Unknown Weight
Proxies are not aware of their own weight upon vote casting. Therefore it is

difficult for a proxy to cast protest votes since his choice might have significant
influence on the outcome. As we will see, our solution with vote fetching solves this
problem.

5.4.2. Requirements Specific to Voting Schemes with Vote
Delegation

In addition to the usual requirements for internet voting schemes, delegated voting
has some requirements which come from the possibility of delegation. In this section
we will briefly introduce such additional requirements, which have been identified
in the context of Jonathan Bickel’s bachelor thesis [Bic12]. The list of requirements
listed here is a slightly advanced version of the list in Bickel’s thesis. As we shall

108 5. Coercion Resistance in Internet Elections

see, the listed requirements are not accomplishable concurrently; some are excluding
each other. A more detailed analysis of the dependencies between the requirements
can be found in [Bic12]. Several requirements might be desirable in one election,
whereas in another election the reverse requirement needs to be achieved. Examples
for such requirements are splitting, transitivity, or vote secrecy for proxies.
The additional requirements are:

Choice of mode
During the whole voting phase the voter shall be able to choose between voting

herself and delegating to a proxy. She can take away her vote from the proxy at any
time during the voting phase and vote by herself or delegate to another proxy.

Choice of role
Each voter can choose if she wants to act as a proxy or not. A weaker form is

that she can refuse to be a proxy. This is especially important if voter privacy for
proxies does not hold.

Unknown weight
Proxies should not know the weight of their vote before they cast their decision.

Otherwise they might be vulnerable to social pressure and favored victims of bribe
and coercion.

Coercion-resistance: No forced delegation
The adversary must not be able to coerce the voter to delegate to a certain proxy.

There’s a similar problem here as with write-in candidates: the adversary could force
the voter to delegate to an unlikely proxy and then look at this proxy’s weight.

Coercion-resistance: No forced delegation to the adversary
This can is a special case of the requirement above. However, it is harder to

achieve if the voting scheme warns the voter from delegation cycles. Therefore, we
state it as an extra requirement. The adversary must not be able to coerce a voter
to delegate her vote to him. So the adversary must not see who, or even whether
someone has delegated a vote to him. Please note that if the voting scheme gives
warnings if a voter induces a delegation cycle, the adversary can test who delegated
their vote to him simply by trying to delegate to these voters.

Vote secrecy for proxies
Privacy can be seen twofold in delegated voting, since we have two different roles.

This requirement asks for vote secrecy for proxies and is in competition with the
accountability of proxies. While some elections might wish for vote secrecy for
proxies, others might explicitly want proxies to vote openly.

Coercion resistance of proxies
The proxies shall not be coercible in a certain way. This is a stronger version

of the requirement above, and is impossible to achieve if the proxies have no voter
privacy.

Unawareness of role
The voter does not know if she is a proxy or not. As stated in Bickel’s thesis, it

can prevent the voter from voting “unfree”, i. e. being influenced by the knowledge of
her power. Maybe the role can be revealed after the voting phase. This requirement
contradicts with Choice of role if the voter cannot deny to be a proxy. If she can,
this is just a special case of unknown weight.

5.4. Delegated Voting 109

Verification of delegation
The voter can verify that her vote was delegated to the right proxy.

Accountability of proxies
The voter can verify what has become of her vote: what her proxy voted for or

where her vote was delegated to.

Vote splitting
If a proxy has weight more than one, he can split (or, not split) the weight to

different choices or further delegations. This prevents concentration of power that
could be caused by specialization through repeated re-delegation [For02].

Transitivity
A proxy can further delegate to another proxy.

5.4.3. Agora: An Existing Solution
As an example, we now take a look at an existing cryptographic voting scheme

which allows vote delegation, and discuss its coercion-resistance. The purpose of this
section is not an evaluation of this voting scheme, but a demonstration of potential
difficulties.
The Agora Ciudadana project 6 is an open source project which implements a

cryptographic voting scheme with support for vote delegation. It offers voter privacy
and end-to-end public verifiability while using easy to understand cryptographic
techniques. The project’s original intent was to extend Helios with the possibility
to delegate votes, to obtain an easy to use voting scheme. We briefly describe the
voting scheme in a simplified version we call simplified Agora. Our version is close
to the original version, but we abstract from the fact that the voter’s choices are
actually preference choices. We will shortly review the ideas of the scheme to show
some pitfalls one has to take care of when designing a fully coercion-resistant voting
scheme with vote delegation.
Agora depends on a trusted voting authority, consisting of a set of trustees, for

privacy. The trustees share an ElGamal secret key for the decryption of ballots. Vote
delegation is implemented by having two elections in parallel: an ongoing election in
which voters choose their proxies, and in which tallies are done periodically, and a
direct election in which each voter can cast a direct vote, which will then be counted
instead of her delegation. We call the first election the proxy election and the second
election the direct election.

5.4.3.1. Pre-Voting Phase
Before an election starts, the members of the voting authority, consisting of a

set of trustees, jointly set up parameters for a threshold ElGamal encryption: each
trustee creates his own key pair, the public keys are then combined to build the joint
public key used for the encryption of ballots. Remember that we have two elections,
which can be set up with a different set of trustees and a different public key. The
two joint public keys are published on a public bulletin board, together with the
individual public key of each trustee. Eligible voters can register themselves to be
proxies. They can use pseudonyms as proxy names to hide their identity.

6Website of the Agora Ciudadana project: https://github.com/agoraciudadana/
agora-ciudadana

https://github.com/agoraciudadana/agora-ciudadana
https://github.com/agoraciudadana/agora-ciudadana

110 5. Coercion Resistance in Internet Elections

5.4.3.2. Proxy’s Voting Phase
Prior to the voting period, the proxies cast their choices. Those choices are public,

they are published on the bulletin board in plaintext before the actual voting phase
of the direct election starts. So the only secrecy a proxy has is by hiding his identity
behind a pseudonym. Each proxy can also cast a direct vote in secret in his role of
an eligible voter.

5.4.3.3. Voter’s Voting Phase
To cast a ballot, the voter encrypts it with the joint public key of the trustees,

using the ElGamal encrytion scheme, and digitally signs her vote with her electronic
identity card for authentication. The encrypted, signed ballots are published on a
public bulletin board to provide individual verifiability. Revoting is implemented
by overwriting the voter’s choice on the public bulletin board with her new ballot.
Everyone can check that there is at most one ballot per voter since the ballots are
signed, and the voter can check that her newest ballot is online.

5.4.3.4. Vote Delegation
As stated above, vote delegation is implemented as a separate proxy election which

takes place in parallel to the direct elections. It is implemented as a regular election,
except that the voting phase never ends and the tally is repeated periodically, the
delegations are evaluated for each related direct tally. The choices on the ballot,
consisting of the names of the proxies, are updated when new proxies join the system.
The idea is that the voter can have a permanent delegation in the proxy election
which she can overwrite anytime by casting a new ballot in the proxy election. For
each direct election which is linked to this proxy election, the voter can cast a direct
vote, in which case her choice of delegation in the permanent election is be ignored.
Since cast ballots are published with a signature of the voter, this can be publicly
verified. Delegations can be transitive, i. e. a proxy can delegate his vote to another
proxy.

5.4.3.5. Post-Voting Phase
There are two tallies: the tally of the direct votes and the tally of the delegations

chosen in the ongoing election. The two tallies are basically done in the same
way: the corresponding trustees build up a re-encryption mixnet to anonymize the
ballots, i. e. each trustee reencrypts and shuffles the set of ballots, and proofs the
correctness of the shuffle with a zero knowledge proof. The shuffled ballots are then
jointly decrypted using the threshold ElGamal system.
The tally of the delegation is done as in the direct election, but ignores ballots

of voters who have cast a direct vote. This tally result determines the weight each
proxy vote gets in the direct election: the weight of the proxy’s choice equals the
number of delegations given to this proxy. The overall tally is then done by summing
up the result of the direct election and each proxy’s choice multiplied by his weight
according to the current tally of the proxy election.

5.4.3.6. How does Simplified Agora Fulfil the Additional Requirements?
Choice of mode
The voter can have a permanent delegation in the proxy election, but cast a direct

vote in the real election at any time. This becomes apparent to other voters.

5.4. Delegated Voting 111

Choice of role
The voter can be both at the same time: She can create a proxy under a pseudonym,

and additionally cast a private vote in her role of a voter (which she can, of course
delegate to herself). A proxy with no delegations has weight 0.

Unknown weight
Proxies do not know their weight until the tally of the proxy election is done.

However, since delegations persist if not updated, a proxy might infer her weight
approximately by observing the overall changes of delegations and taking into ac-
count past tallies of the proxy election.

Coercion-resistance: No forced delegation
Each voter can create a proxy under a pseudonym, and everyone sees this proxy’s

weight after the election. So the adversary can create a pseudonym and coerce the
voter to cause at least one delegation to this pseudonym.

Coercion-resistance: No forced delegation to the adversary
See above.

Vote secrecy for proxies
The proxy’s choice as a proxy is not secret, however, the proxy has a secret vote

as an eligible voter, and can hide her proxy behind a pseudonym.

Coercion resistance of proxies
See above.

Unawareness of role
The voter knows if she has created a proxy or not. She also knows that her vote

in the role of the voter has only weight one.

Verification of delegation
End-to-end verifiability is provided.

Accountability of proxies
Since proxies vote openly, accountability holds.

Vote splitting
This depends on the rules and implementation of a given election.

Transitivity
This depends on the rules and implementation of a given election.

5.4.3.7. Coercion-Resistance of Simplified Agora
In this section, we introduce some coercion attacks on the Agora voting scheme.

Recognizable revoting
Revoting is implemented by updating the voter’s encrypted ballot. Therefore, a

voter can be coerced not to revote. Moreover, it becomes apparent whether the
voter casts a direct vote, so she can be coerced not to do so.

112 5. Coercion Resistance in Internet Elections

Evaluation of voting history
There is an attack7 on coercion-resistance using the results of past elections: the

tally of the election for the choice of proxy is repeated periodically. Since ciphers are
only updated if the voter changes her delegation, it is easy to deduce information
about a voter’s choice of proxy by comparing the new distribution of the weights
among proxies with the information which voter has updated her ballot in the elec-
tion of proxies. In principle, a voter could cast a new delegation for the same proxy,
but it is still public which voters cast a new ballot and which do not.

Forced delegation
As described when listing the requirements, a voter can be coerced to delegate

her weight to a proxy which would otherwise most likely get no delegations. This is
similar to the write-in problem described in Chapter 4 and not a problem specific
to this voting scheme. It is, however, an attack with more impact, because it is
not merely a forced abstention, but a vote which the adversary can direct to a
particular candidate, provided the corresponding proxy (which has no privacy) is
under the adversary’s control.

Proxy Secrecy
Proxies vote openly, before the election phase. So a voter can either use the

vote as a suggestion, delegate to another proxy, or decide that she is content with
her current delegation. Since the choices of the proxies are not secret, proxies can
always be coerced towards a certain choice, giving the adversary influence in the
decision making of voters: even if he might not have direct influence on a voter’s
choice through coercion, because the voter sees his proxies choice and decides by
himself if she follows this choice or not, the adversary still has influence on the
provided suggestions. However, the openness also implies that accountability holds.
Everyone in the election is free to cast a vote of her own choice after looking at the
proxie’s choices, which might be biased by the adversary.

5.4.4. Vote Fetching
In this section, we introduce our new paradigm called vote fetching, which takes

a somewhat reverse approach to vote delegation: the voter does not delegate her
choice. The idea of vote fetching is that proxies provide an amount of ballots. Then,
instead of delegating her choice, the voter fetches a ballot from the proxy, reencrypts
it and casts it as her own. As is the idea of delegated voting, the voter can fetch as
many ballots from different proxies as she wishes, changing her mind anytime. This
approach is more flexible than delegation in several aspects.
The idea of vote fetching was developed in joint work with Jörn Müller-Quade,

Dirk Achenbach and Bernhard Löwe. In this section, we first describe the idea of
vote fetching, and then introduce a voting scheme that combines the revoting idea
with the vote fetching solution.

5.4.4.1. Motivation for Vote Fetching
In schemes with vote delegation, a proof has to be given that the choices of each

proxy are counted with the correct weight. A usual way to do this is that, in
addition to the tally, the weight of each proxy is published. In this case a voter
could be coerced to delegate to an unlikely proxy, which leads to a similar problem
as with write-in candidates. Moreover, group coercion is possible. An adversary

7This attack has been presented on https://blog.agoravoting.com/.

https://blog.agoravoting.com/

5.4. Delegated Voting 113

could provide a proxy for a certain group of people, coerce the group to delegate to
this proxy as a whole, and punish the whole group if even one delegation is missing.
With vote fetching, the weigh of each single proxy stays hidden, while a proof of
correct counting can be given. Moreover, the voter does not have to be provided
with a proof of correct delegation, and the proxy does not see who fetches votes.
Another advantage of vote fetching is that it provides an easy way of vote splitting.

Proxies can define their choice more fine-grained, for example by providing a certain
amount of ballots for each candidate, according to a chosen distribution. This type
of vote splitting is explicitly wished for by Ford [For02].
With the vote fetching approach that we now can choose freely between letting

the proxies vote openly by providing plaintext ballots or letting them provide ci-
phertexts. So the choice between secrecy of the proxy’s choice and accountability is
not restricted by the scheme.
Another advantage is that delegation cycles are not a problem. A proxy A who

would delegate to another proxy B, now simply fetches ballots from B. If B also
fetches ballots from A, these ballots are still counted when fetched by voters. A
cycle without vote splitting would lead to the situation that neither proxy provides
any ballots, which they would be aware of, so no weight is lost by an unintended
cycle.

5.4.4.2. Possible Difficulties with Vote Fetching
One advantage of delegated voting is that the voter does not have to participate

in each election in person. She can have a permanent delegation instead, which
stays intact in following elections until the voter revises her choice. With the vote
fetching approach, this can be achieved by a script which automatically fetches the
votes. A problem is then, how is eligibility proven? How is the ballot signed? By
combining vote fetching with our revoting solution, we can solve this problem as
discussed below.

5.4.5. Fetch-and-Cast: A Delegated Voting Scheme with Vote
Fetching

Fetch-and-Cast is a voting scheme which combines our revoting solution with the
idea of vote fetching. The idea of our scheme is as follows: the proxy provides
encrypted ballots. The voter fetches these ballots (with a script that does this for
each election), reencrypts them and casts them. For the voter being able to change
her mind whenever she wants, we use our revoting technique. The proxy will not
recognize her ballot later, because it is rerandomized.
Please note that we do not specify what a choice looks like. In fact, delegated vot-

ing schemes often implement something similar to STV votes, where voter’s choices
are preferences, and tallied for example with the Schulze-method [Sch11]. Cryp-
tographic counting methods for STV votes are introduced by [TRN08] and can be
used on top of this scheme, since in our revoting scheme, the encryption of the vote
itself is arbitrary.
In the following, we describe the basic protocol Fetch-and-Cast. Several possi-

ble extensions are discussed below. Since it is very close to the revoting protocol
described in Section 5.3, we only describe the changes to this protocol. The par-
ticipants are the same as those in the revoting scheme, plus the proxies and an
additional server, called a reencrypter, which rerandomizes ciphertexts. The votes
which can be fetched from the proxies are published on the public bulletin board

114 5. Coercion Resistance in Internet Elections

which is also used for vote casting. We prefer this to letting proxies provide ballots
on their own webpage since this way they cannot track who fetched ballots from
them.

5.4.5.1. Setup and Pre-Voting Phase
The setup is done as in the revoting scheme. Additionally, eligible voters can

create a proxy.

5.4.5.2. Proxy’s Vote Generation Phase
Before the voting phase starts, the proxies provide an equal amount n of encrypted

votes for the voters. For this, each proxy chooses his preferred candidate(s) in the
form of a set of votes v1, . . . , vn, encrypts them and sends them under his name to
a reencrypter. The proxy does not create a full ballot. Timestamp, public key and
proof of knowledge of a signature will later be added by the voter. To prevent the
proxy from encoding his identity or other information in provided ballots, he has to
prove the validity of his encryptions. Since the encryption of the vote is an ElGamal
encryption, this can be done with a standard proof as described in [CGS97].
If the proof is correct, the reencrypter rerandomizes the ciphers and proves correct

reencryption. After this, both the proxy and the reencrypter sign the encrypted
ballot. The encryption and the signatures are published on a public bulletin board
under the proxy’s name. If vote splitting is allowed, all proxies should provide the
same amount of ballots to prevent coercion attacks like forcing a proxy to only
provide one ballot.
Our scheme is trivially adaptable to letting the proxies vote openly: they publish

their choice and the voters just cast a vote for what their proxy publishes.

5.4.5.3. Voter’s Voting Phase
After the proxies have published their ballots, the voters can cast their ballots,

as described in our revoting scheme. To do this, each voter either encrypts her
own choice or uses one of the encryptions provided by her proxy of choice. If she
uses a vote from a proxy, it must be reencrypted before usage. Encryptions that
are already on the bulletin board are not accepted. As in the revoting scheme, the
voter attaches an encryption of her public key to the ballot, and the casting server
encrypts the current timestamp. The voter then signs the ballot as in the revoting
scheme and the ballot is processed as in the revoting scheme.

5.4.5.4. Post-Voting Phase
The post voting phase is done exactly as in the revoting scheme.

5.4.5.5. Possible extensions
In this Section, we discuss some possible extensions to Fetch-and-Cast.

Transitive Delegations
Vote fetching does not directly support transitive delegations. One way to imple-

ment these is to let proxies fetch and rerandomize votes from other proxies. Another
would be to allow proxies to encrypt names of proxies in their ballot. If such a ballot
is opened in the tally, a vote from the proxy indicated in the ballot is randomly cho-
sen from the votes this proxy has provided. All such chosen votes are then mixes and
rerandomized again and opened. This offers less privacy for the proxies, however,
and it would give proxies partial information about their weight.

5.4. Delegated Voting 115

Permanent delegations
Permanent vote delegations that stay in tact for more than one election could be

realized in the following way: the voter casts as a “permanent delegation" in the
permanent election a ballot that instead of a vote contains the name of a proxy.
The ballot contains a timestamp. Therefore, because of the sorting process, the
delegation is naturally overwritten by a direct vote. Whenever such a vote is opened
in the tally, a random vote from the corresponding proxy can be chosen, similar
to the solution to transitive delegations. As above, this offers less privacy for the
proxies and rings back the problem of coercing a voter to delegate to an unlikely
proxy with such a permanent delegation. This would give proxies partial information
about their weight.
Accountability
The voting scheme could also be setup in a way that voters can ask their proxies

for ciphers directly if they want accountability. This way, the proxy could prove
the content of the encryption per designated verifier proof [JSI96] or cut-and-choose
[Ben06]. Please note that a proxy cannot coerce a voter to cast his vote that way,
since the voter can always revote. This cannot be done with votes on the bulletin
board since otherwise an adversary could just let the proxy open all his votes, so
votes have to be fetched directly from the proxy. Since voters can revote and do not
have to cast fetched votes, the proxy does not know if he voter actually casts a vote
she fetches this way. Even if the proxy recognizes a vote on the bulletin board, he
does not know if the voter revoted afterwards.

5.4.5.6. How does the scheme meet the requirements above?
Choice of mode
The voter can choose between fetching a vote from a proxy and casting her own.

She can overwrite her choice anytime with a revote. She can even overwrite her own
vote with a delegation.
Choice of role
Voters can choose if they want to provide votes which can be fetched. So they

can choose their role.
Unknown weight
Proxies do not know how many votes of them were fetched, cast and not over-

written.
Coercion-resistance: No forced delegation
The basic scheme is resistant against this form of coercion, but the adaptions for

permanent delegation and transitivity are not.
Coercion-resistance: No forced delegation to the adversary
See above.

Vote secrecy for proxies
Proxies have vote secrecy in the basic scheme.

Coercion resistance of proxies
Proxies cannot revote since their ballots are linked to their identity. So if the

adversary is present while the proxy creates his encrypted votes, he is coercible.
However, this attack is more expensive to the adversary than with open votes of
proxies.

116 5. Coercion Resistance in Internet Elections

Unawareness of role
The voter knows if she provides votes for fetching or not, so she knows her role,

but not her weight.

Verification of delegation
Since the voter fetches votes, no delegation needs to be proven.

Accountability of proxies
Accountability can be achieved as discussed above.

Vote splitting
Vote splitting is trivially possible by providing different votes according to a cer-

tain distribution.

Transitivity
Transitivity can be provided as discussed above.

5.4.6. Discussion
We have seen two extremes here: in the Agora voting scheme, proxies vote openly

and can therefore be influenced by the adversary. Therefore, one cannot know if a
suggestion by a proxy comes from the proxy himself or from an adversary. On the
other hand, Agora provides full accountability. In Fetch-and-Cast, the adversary
has as little influence on the proxy’s choices as on the voter’s choices. The problem
with this approach is that there is no proxy accountability at all, the voter has to
trust his proxy blindly. We have discussed how to weaken this trade-off and make a
compromise by letting the voter get proxy votes which she can open. So it seems that
in delegated voting, there is a big trade-off between incoercibility and accountability
of proxies. We will not discuss here which of these properties is more important.
However, we have offered techniques with which this trade-off can be overcome to
some extend.

6. Conclusion and Future Work

In this work, we discussed aspects of coercion-resistance from a wide viewpoint. We
introduced new solutions in some aspects, and identified interesting open problems in
some others. We introduced a taxonomy and an analysis roadmap with which even
the most different voting schemes can easily be analyzed and compared. Answering
the questions provided by the roadmap gives a quite accurate idea about what is
ensured by an analyzed voting scheme, which assumptions it is based on, and what its
strengths and weaknesses are. Future work would be a wider range of requirements,
including the important requirements of usability and efficiency. Another important
and interesting future work would be generally applicable formal definitions of the
identified requirements. The model of Küsters et al. [KTV12] is rather general and
seems to be a promising candidate for an underlying model.
We showed the flexibility of Bingo Voting in its application in a real-world elec-

tion. We provided Bingo Voting with write-in support, and showed the impact of
this voting type on coercion-resistance. To capture coercion-resistance caused by
information-leakage of the tally result, we provided definitions and techniques for a
fuzzy tally representation. With these definitions, we showed that there is a relation
between vote privacy and database privacy. Future research could show if there are
more such relations. We introduced techniques to present the tally in a fuzzy way,
while preserving a suitable amount of verifiability. A more fine-grained blurring
technique which allows for more sophisticated representations like the distribution
of seats in parliament might be interesting.
For a publicly verifiable revoting scheme to offer coercion-resistance, it is impor-

tant that the act of revoting is secret. We introduced a proof-of-concept revoting
solution which is publicly verifiable and coercion-resistant to a suitable amount.
However, our sorting process leaks a minimal amount of information about the par-
ticipating voters’ overall revoting behavior. A next step would be research on a
better sorting algorithm which provably leaks less information, to be able to for-
mally prove security of the revoting scheme in a suitable model. Another direction
of improvement of the revoting scheme is working towards more efficiency. Intro-
ducing everlasting privacy in our revoting scheme seems possible but not trivial, and
presents another interesting open problem.
Delegated voting is a relatively young election type, which has barely been ad-

dressed in cryptographic literature but poses interesting challenges for cryptography.

117

118 6. Conclusion and Future Work

We introduced a voting scheme which captures vote delegation while achieving a suit-
able amount of coercion-resistance for the voters, while at the same time providing
techniques for three different stages between proxy secrecy and proxy accountability,
respectively. We gave a first idea to realize a permanent delegation. However, this
solution does not offer full coercion-resistance. A fully coercion-resistant way to re-
alize permanent delegations is an open problem. A formal model for vote delegation
from a cryptographic viewpoint is still missing. Such a model, as well as a voting
scheme with a rigorous proof of security, would be interesting future research.

Bibliography

[ACHdM05] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno
de Medeiros. Practical group signatures without random ora-
cles. Cryptology ePrint Archive, Report 2005/385, 2005. http:
//eprint.iacr.org/.

[Acq04] Alessandro Acquisti. Receipt-Free Homomorphic Elections and
Write-in Ballots. Technical Report 2004/105, International Asso-
ciation for Cryptologic Research, 2004.

[ACvdG10] Roberto Araújo, Ricardo Felipe Custódio, and Jeroen van de Graaf.
A verifiable voting protocol based on farnel. In David Chaum,
Markus Jakobsson, RonaldL. Rivest, PeterY.A. Ryan, Josh Be-
naloh, Miroslaw Kutylowski, and Ben Adida, editors, Towards
Trustworthy Elections, volume 6000 of Lecture Notes in Computer
Science, pages 274–288. Springer Berlin Heidelberg, 2010.

[Adi06] Ben Adida. Advances in Cryptographic Voting Systems. PhD The-
sis, MIT, 2006.

[Adi08] Ben Adida. Helios: Web-based open-audit voting. In Proceedings of
the 17th Conference on Security Symposium, SS’08, pages 335–348,
Berkeley, CA, USA, 2008. USENIX Association.

[AdM09] Ben Adida and Olivier de Marneffe. Electing a university presi-
dent using open-audit voting: Analysis of real-world use of helios.
Electronic Voting Technology Workshop/Workshop On Trustwor-
thy Elections, EVT/WOTE 2009, 2009.

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralam-
biev, and Miyako Ohkubo. Structure-preserving signatures and
commitments to group elements. In Proceedings of the 30th An-
nual Conference on Advances in Cryptology, CRYPTO’10, pages
209–236, Berlin, Heidelberg, 2010. Springer-Verlag.

[AH01] Masayuki Abe and Fumitaka Hoshino. Remarks on mix-network
based on permutation networks. In Kwangjo Kim, editor, Public Key
Cryptography, volume 1992 of Lecture Notes in Computer Science,
pages 317–324. Springer, 2001.

[AHL+09] Arne Ansper, Sven Heiberg, Helger Lipmaa, Tom André Øverland,
and Filip van Laenen. Security and trust for the norwegian e-voting
pilot project e-valg 2011. In NordSec, pages 207–222, 2009.

119

http://eprint.iacr.org/
http://eprint.iacr.org/

120 Bibliography

[AKMQL14] Dirk Achenbach, Carmen Kempka, Jörn Müller-Quade, and Bern-
hard Löwe. How to (secretly) recast a vote. unpublished manuscript,
2014.

[AN09] Ben Adida and C. Andrew Neff. Efficient receipt-free ballot cast-
ing resistant to covert channels. In Proceedings of the 2009 Con-
ference on Electronic Voting Technology/Workshop on Trustworthy
Elections, EVT/WOTE’09, pages 11–11, Berkeley, CA, USA, 2009.
USENIX Association.

[AR06] Ben Adida and Ronald L. Rivest. Scratch & vote: self-contained
paper-based cryptographic voting. In Ari Juels and Marianne
Winslett, editors, WPES, pages 29–40. ACM, 2006.

[B0̈8] Michael Bär. Analyse und vergleich verifizierbarer wahlverfahren.
Diploma thesis, Universität Karlsruhe (TH), 2008.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rog-
away. Relations among notions of security for public-key encryp-
tion schemes. In Hugo Krawczyk, editor, CRYPTO, volume 1462 of
Lecture Notes in Computer Science, pages 26–45. Springer, 1998.

[BDvdG13] Johannes Buchmann, Denise Demirel, and Jeroen van de Graaf. To-
wards a publicly-verifiable mix-net providing everlasting privacy. In
Ahmad-Reza Sadeghi, editor, Financial Cryptography, volume 7859
of Lecture Notes in Computer Science, pages 197–204. Springer,
2013.

[Ben06] Josh Benaloh. Simple verifiable elections. In Proceedings of the
USENIX/Accurate Electronic Voting Technology Workshop 2006 on
Electronic Voting Technology Workshop, EVT’06, pages 5–5, Berke-
ley, CA, USA, 2006. USENIX Association.

[BHK+09] Jens-Matthias Bohli, Christian Henrich, Carmen Kempka, Jörn
Müller-Quade, and Stefan Röhrich. Enhancing Electronic Voting
Machines on the Example of Bingo Voting. In IEEE Transactions
on Information Forensics and Security Vol. 4, pages 745–750, 2009.

[BHMQ+08] Michael Bär, Christian Henrich, Jörn Müller-Quade, Stefan
Röhrich, and Carmen Stüber. Real World Experiences with Bingo
Voting and a Comparison of Usability. Workshop On Trustworthy
Elections, WOTE 2008, 2008.

[Bic12] Jonathan Bickel. Sicherheitsanforderungen an delegated voting und
analyse existierender ansätze. Bachelor thesis, Karlsruhe Institute
of Technology, 2012.

[BJR10] Shuki Bruck, David Jefferson, and Ronald L. Rivest. Towards trust-
worthy elections. chapter A Modular Voting Architecture ("Frog
Voting"), pages 97–106. Springer-Verlag, Berlin, Heidelberg, 2010.

Bibliography 121

[BMQR07] Jens-Matthias Bohli, Jörn Müller-Quade, and Stefan Röhrich.
Bingo Voting: Secure and Coercion-Free Voting Using a Trusted
Random Number Generator. In A. Alkassar and M. Volkamer, ed-
itors, VOTE-ID 2007, volume 4896 of Lecture Notes in Computer
Science, pages 111–124. Springer-Verlag, 2007.

[Bon98] Dan Boneh. The decision Diffie-Hellman problem. In Proceedings of
the Third International Symposium on Algorithmic Number Theory,
ANTS-III, pages 48–63, London, UK, UK, 1998. Springer-Verlag.

[BT94] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elec-
tions (extended abstract). In Proceedings of the Twenty-sixth An-
nual ACM Symposium on Theory of Computing, STOC ’94, pages
544–553, New York, NY, USA, 1994. ACM.

[Can00] Ran Canetti. Universally composable security: A new paradigm
for cryptographic protocols. Cryptology ePrint Archive, Report
2000/067, 2000. http://eprint.iacr.org/.

[CCC+08] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex,
Stefan Popoveniuc, Ronald L. Rivest, Peter Y. A. Ryan, Emily
Shen, and Alan T. Sherman. Scantegrity II: End-to-End Verifiabil-
ity for Optical Scan Election Systems using Invisible Ink Confirma-
tion , 2008. http://www.usenix.org/event/evt08/tech/full_
papers/chaum/chaum.pdf.

[CCC+10] Richard T Carback, David Chaum, Jeremy Clark, John Con-
way, Aleksander Essex, Paul S. Herrnson, Travis Mayberry, Stefan
Popoveniuc, Ronald L. Rivest, Emily Shen, Alan T. Sherman, and
Poorvi L. Vora. Scantegrity II Municipal Election at Takoma Park:
The First E2E Binding Governmental Election with Ballot Privacy.
Proceedings of the 19th USENIX Security Symposium, 2010.

[CDvdG87] David Chaum, Ivan Damgård, and Jeroen van de Graaf. Multiparty
computations ensuring privacy of each party’s input and correctness
of the result. In Carl Pomerance, editor, CRYPTO, volume 293 of
Lecture Notes in Computer Science, pages 87–119. Springer, 1987.

[CdVFS07] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti,
and Pierangela Samarati. k-anonymity. In Secure Data Management
in Decentralized Systems, pages 323–353. 2007.

[CEC+08] David Chaum, Aleks Essex, Richard Carback, Jeremy Clark, Stefan
Popoveniuc, Alan Sherman, and Poorvi Vora. Scantegrity: End-to-
end voter-verifiable optical- scan voting. IEEE Security & Privacy,
6(3):40–46, 2008.

[CG96] Ran Canetti and Rosario Gennaro. Incoercible multiparty com-
putation. Cryptology ePrint Archive, Report 1996/001, 1996.
http://eprint.iacr.org/.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. J. ACM, 51(4):557–594, July 2004.

http://eprint.iacr.org/
http://www.usenix.org/event/evt08/tech/full_papers/chaum/chaum.pdf
http://www.usenix.org/event/evt08/tech/full_papers/chaum/chaum.pdf
http://eprint.iacr.org/

122 Bibliography

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A se-
cure and optimally efficient multi-authority election scheme. pages
103–118. Springer-Verlag, 1997.

[CH11a] Jeremy Clark and Urs Hengartner. Selections: Internet voting with
over-the-shoulder coercion-resistance. In George Danezis, editor,
Financial Cryptography, volume 7035 of Lecture Notes in Computer
Science, pages 47–61. Springer, 2011.

[CH11b] Jeremy Clark and Urs Hengartner. Selections: Internet voting with
over-the-shoulder coercion-resistance. Cryptology ePrint Archive,
Report 2011/166, 2011. http://eprint.iacr.org/.

[Cha81] David L. Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Commun. ACM, 24(2):84–90, February 1981.

[Cha01] David Chaum. Surevote: Technical overview. WOTE 2001, 2001.

[Cha04] David Chaum. Secret-ballot receipts: True voter-verifiable elections.
IEEE Security & Privacy, 2(1):38–47, 2004.

[Cla11] Jeremy Clark. Democracy enhancing technologies: Toward deploy-
able and incoercible e2e elections, 2011.

[CMFP+10] Benoît Chevallier-Mames, Pierre-Alain Fouque, David Pointcheval,
Julien Stern, and Jacques Traoré. On some incompatible properties
of voting schemes. In David Chaum, Markus Jakobsson, RonaldL.
Rivest, PeterY.A. Ryan, Josh Benaloh, Miroslaw Kutylowski, and
Ben Adida, editors, Towards Trustworthy Elections, volume 6000 of
Lecture Notes in Computer Science, pages 191–199. Springer Berlin
Heidelberg, 2010.

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with ob-
servers. In Proceedings of the 12th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’92, pages 89–105,
London, UK, UK, 1993. Springer-Verlag.

[CRS05] David Chaum, Peter Y. A. Ryan, and Steve Schneider. A practical
voter-verifiable election scheme. In Proceedings of the 10th European
Conference on Research in Computer Security, ESORICS’05, pages
118–139, Berlin, Heidelberg, 2005. Springer-Verlag.

[CvdGRV07] David Chaum, Jeroen van de Graaf, Peter Y. A. Ryan, and Poorvi L.
Vora. Secret ballot elections with unconditional integrity. Cryptol-
ogy ePrint Archive, Report 2007/270, 2007. http://eprint.iacr.org/.

[Dam99] Ivan Damgård. Commitment schemes and zero-knowledge proto-
cols. In Lectures on Data Security, pages 63–86. Springer, 1999.

[DHvdG+13] Denise Demirel, Maria Henning, Jeroen van de Graaf, PeterY.A.
Ryan, and Johannes Buchmann. Prêt à voter providing everlasting
privacy. In James Heather, Steve Schneider, and Vanessa Teague,
editors, E-Voting and Identify, volume 7985 of Lecture Notes in
Computer Science, pages 156–175. Springer Berlin Heidelberg, 2013.

http://eprint.iacr.org/

Bibliography 123

[dJ13] Bundesministerium der Justiz. Federal electoral regula-
tions (Bundeswahlordnung). http://bundeswahlleiter.
de/en/bundestagswahlen/downloads/rechtsgrundlagen/
bundeswahlordnung_engl.pdf, 1985, last revised 2013.

[DKR09] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying
privacy-type properties of electronic voting protocols. Journal of
Computer Security, 17(4):435–487, 2009.

[DvdGSdSA12] Denisa Demirel, Jeroen van de Graaf, and Roberto Samarone dos
Santos Araújo. Improving Helios with Everlasting Privacy Towards
the Public. Electronic Voting Technology Workshop/Workshop On
Trustworthy Elections, EVT/WOTE 2012, 2012.

[ECH12] Aleksander Essex, Jeremy Clark, and Urs Hengartner. Cobra: To-
ward concurrent ballot authorization for internet voting. In Pre-
sented as part of the 2012 Electronic Voting Technology Work-
shop/Workshop on Trustworthy Elections, Berkeley, CA, 2012.
USENIX.

[EGW09] N.P. Smart E. Ghadafi and B. Warinschi. Groth–sahai proofs re-
visited. Cryptology ePrint Archive, Report 2009/599, 2009. http:
//eprint.iacr.org/.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. In David Chaum George Robert Blak-
ley, editor, Advances in Cryptology Proceedings of CRYPTO 84,
pages 10–18. Springer-Verlag, Berlin, Heidelberg, 1985.

[FDL] Laure Fouard, Mathilde Duclos, and Pascal Lafourcade. Survey
on electronic voting schemes. Available at http://www-verimag.
imag.fr/~duclos/paper/e-vote.pdf.

[FOO93] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical
secret voting scheme for large scale elections. In Proceedings of the
Workshop on the Theory and Application of Cryptographic Tech-
niques: Advances in Cryptology, ASIACRYPT ’92, pages 244–251,
London, UK, UK, 1993. Springer-Verlag.

[For02] Bryan Ford. Delegative democracy, 2002. Draft available at http:
//www.brynosaurus.com/deleg/deleg.pdf.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solu-
tions to identification and signature problems. In CRYPTO, pages
186–194, 1986.

[fSidI07] Bundesamt für Sicherheit in der Informationstechnik. BSI protec-
tion profile - basic requirements for remote electronic voting sys-
tems, 2007.

[fSoiE90] Organization for Security and Co operation in Europe. Document of
the copenhagen meeting of the conference on the human dimension

http://bundeswahlleiter.de/en/bundestagswahlen/downloads/rechtsgrundlagen/bundeswahlordnung_engl.pdf
http://bundeswahlleiter.de/en/bundestagswahlen/downloads/rechtsgrundlagen/bundeswahlordnung_engl.pdf
http://bundeswahlleiter.de/en/bundestagswahlen/downloads/rechtsgrundlagen/bundeswahlordnung_engl.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www-verimag.imag.fr/~duclos/paper/e-vote.pdf
http://www-verimag.imag.fr/~duclos/paper/e-vote.pdf
http://www.brynosaurus.com/deleg/deleg.pdf
http://www.brynosaurus.com/deleg/deleg.pdf

124 Bibliography

of the csce. http://www.osce.org/odihr/elections/14304, Juni
1990.

[GA14] James Green-Armytage. Direct voting and proxy voting, 2014.
Available at http://inside.bard.edu/~armytage/proxy.pdf.

[GGR09] Ryan W. Gardner, Sujata Garera, and Aviel D. Rubin. Coercion
resistant end-to-end voting. In Financial Cryptography, pages 344–
361, 2009.

[Gha11] Essam Ghadafi. Formalizing group blind signatures and practical
constructions without random oracles. Cryptology ePrint Archive,
Report 2011/402, 2011. http://eprint.iacr.org/2011/402/.

[Gil74] John T. Gill, III. Computational complexity of probabilistic turing
machines. In Proceedings of the Sixth Annual ACM Symposium on
Theory of Computing, STOC ’74, pages 91–95, New York, NY, USA,
1974. ACM.

[GJJS04] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson.
Universal re-encryption for mixnets. In Tatsuaki Okamoto, editor,
Topics in Cryptology – CT-RSA 2004, volume 2964 of Lecture Notes
in Computer Science, pages 163–178. Springer Berlin Heidelberg,
2004.

[Gjø10] Kristian Gjøsteen. Analysis of an internet voting protocol. IACR
Cryptology ePrint Archive, 2010:380, 2010.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J.
Comput. Syst. Sci., 28(2):270–299, 1984.

[GMR85] S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of
interactive proof-systems. In Proceedings of the Seventeenth Annual
ACM Symposium on Theory of Computing, STOC ’85, pages 291–
304, New York, NY, USA, 1985. ACM.

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart.
Pairings for cryptographers. Discrete Appl. Math., 156(16):3113–
3121, September 2008.

[Gro02] Jens Groth. A verifiable secret shuffe of homomorphic encryptions.
In Yvo Desmedt, editor, Public Key Cryptography ï¿1

2 PKC 2003,
volume 2567 of Lecture Notes in Computer Science, pages 145–160.
Springer Berlin / Heidelberg, 2002. 10.1007/3-540-36288-6_11.

[Gro06] Jens Groth. Simulation-sound nizk proofs for a practical language
and constant size group signatures. In In proceedings of ASI-
ACRYPT ’06, LNCS series, pages 444–459. Springer-Verlag, 2006.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems
for bilinear groups. In Proceedings of the Theory and Applications of
Cryptographic Techniques 27th Annual International Conference on
Advances in Cryptology, EUROCRYPT’08, pages 415–432, Berlin,
Heidelberg, 2008. Springer-Verlag.

http://www.osce.org/odihr/elections/14304
http://inside.bard.edu/~armytage/proxy.pdf
http://eprint.iacr.org/2011/402/

Bibliography 125

[GSB] Ida Sofie Gebhardt Stenerud and Christian Bull. When Reality
Comes Knocking - Norwegian Experiences with Verifiable Electronic
Voting. EVOTE2012.

[Hen12] Christian Henrich. Improving and Anaysing Bingo Voting. PhD the-
sis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2012.

[HLVL10] Sven Heiberg, Helger Lipmaa, and Filip Van Laenen. On e-vote
integrity in the case of malicious voter computers. In Proceedings of
the 15th European Conference on Research in Computer Security,
ESORICS’10, pages 373–388, Berlin, Heidelberg, 2010. Springer-
Verlag.

[HLW12] Sven Heiberg, Peeter Laud, and Jan Willemson. The application
of i-voting for estonian parliamentary elections of 2011. In Lec-
ture Notes in Computer Science, 2012, Volume 7187/2012, 208-223.
Springer, 2012.

[HS00] Martin Hirt and Kazue Sako. Efficient receipt-free voting based
on homomorphic encryption. In Proceedings of the 19th Interna-
tional Conference on Theory and Application of Cryptographic Tech-
niques, EUROCRYPT’00, pages 539–556, Berlin, Heidelberg, 2000.
Springer-Verlag.

[HSS08] J. Helbach, J. Schwenk, and S. Schage. Code voting with linkable
group signatures. Proceedings of Electronic Voting, 2008, 2008.

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-
resistant electronic elections. In WPES ’05: Proceedings of the 2005
ACM workshop on Privacy in the electronic society, pages 61–70,
New York, NY, USA, 2005. ACM.

[JJR02] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making Mix
Nets Robust For Electronic Voting By Randomized Partial Check-
ing. In USENIX Security Symposium, pages 339–353, 2002.

[JMP13] H. L. Jonker, S. Mauw, and J. Pang. Privacy and verifiability in vot-
ing systems: Methods, developments and trends. Computer Science
Review, 10:1–30, 2013.

[JP06a] H.L. Jonker and W. Pieters. Receipt-freeness as a special case of
anonymity in epistemic logic. In Proceedings of the IAVoSS Work-
shop On Trustworthy Elections (WOTE 2006), Cambridge, 2006.
Robinson College.

[JP06b] H.L. Jonker and W. Pieters. Receipt-freeness as a special case of
anonymity in epistemic logic. In Proceedings of the IAVoSS Work-
shop On Trustworthy Elections (WOTE 2006), Cambridge, 2006.
Robinson College.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Desig-
nated verifier proofs and their applications. In Ueli Maurer, editor,

126 Bibliography

Advances in Cryptology - EUROCRYPT ’96, volume 1070 of Lec-
ture Notes in Computer Science, pages 143–154. Springer Berlin
Heidelberg, 1996.

[Kem12] Carmen Kempka. Coercion-resistant electronic elections with write-
in candidates. In Proceedings of the 2012 international conference on
Electronic Voting Technology/Workshop on Trustworthy Elections,
EVT/WOTE’12. USENIX Association, 2012.

[KKW06] Aggelos Kiayias, Michael Korman, and David Walluck. An internet
voting system supporting user privacy. In ACSAC, pages 165–174.
IEEE Computer Society, 2006.

[KMW12] Shahram Khazaei, Tal Moran, and Douglas Wikström. A mix-net
from any cca2 secure cryptosystem. In Xiaoyun Wang and Kazue
Sako, editors, Advances in Cryptology – ASIACRYPT 2012, volume
7658 of Lecture Notes in Computer Science, pages 607–625. Springer
Berlin Heidelberg, 2012.

[KTV12] R. Küsters, T. Truderung, and A. Vogt. A Game-Based Definition of
Coercion-Resistance and its Applications. Journal of Computer Se-
curity (special issue of selected CSF 2010 papers), 20(6/2012):709–
764, 2012.

[KW13] Shahram Khazaei and Douglas Wikström. Randomized partial
checking revisited. In Proceedings of the 13th International Confer-
ence on Topics in Cryptology, CT-RSA’13, pages 115–128, Berlin,
Heidelberg, 2013. Springer-Verlag.

[KY04] Aggelos Kiayias and Moti Yung. The Vector-Ballot E-Voting Ap-
proach. Financial Cryptography 2004, 2004.

[Lan10] Barbara Lucie Langer. Privacy and Verifiability in Electronic Vot-
ing. PhD thesis, Techniche Universität Darmstadt, 2010.

[Lip11] Helger Lipmaa. Two simple code-verification voting protocols. IACR
Cryptology ePrint Archive, 2011:317, 2011.

[MCC08] Andrew C. Myers, Michael Clarkson, and Stephen Chong. Civitas:
Toward a secure voting system. In IEEE Symposium on Security
and Privacy, pages 354–368. IEEE, May 2008.

[Mil69] III Miller, JamesC. A program for direct and proxy voting in the
legislative process. Public Choice, 7(1):107–113, 1969.

[MKGV07] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and
Muthuramakrishnan Venkitasubramaniam. L-diversity: Privacy be-
yond k-anonymity. TKDD, 1(1), 2007.

[MN06] Tal Moran and Moni Naor. Receipt-Free Universally-Verifiable Vot-
ing With Everlasting Privacy. In Cynthia Dwork, editor, Advances
in Cryptology – CRYPTO 2006, volume 4117 of Lecture Notes in
Computer Science, pages 373–392. Springer, August 2006.

Bibliography 127

[MR10] Niels Menke and Kai Reinhard. Compliance of polyas with the com-
mon criteria protection profile - a 2010 outlook on certified remote
electronic voting. In Electronic Voting, pages 109–118, 2010.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application to
e-voting. CCS ’01 Proceedings of the 8th ACM conference on Com-
puter and Communications Security, 2001.

[Oka98] Tatsuaki Okamoto. Receipt-free electronic voting schemes for large
scale elections. In Bruce Christianson, Bruno Crispo, Mark Lo-
mas, and Michael Roe, editors, Security Protocols, volume 1361 of
Lecture Notes in Computer Science, pages 25–35. Springer Berlin
Heidelberg, 1998.

[OKNV12] Maina M. Olembo, Anna Kahlert, Stephan Neumann, and Melanie
Volkamer. Partial verifiability in polyas for the gi elections. In
Melanie Volkamer Manuel J. Kripp and Rüdiger Grimm, editors, 5th
International Conference on Electronic Voting 2012 (EVOTE2012),
volume 205 of LNI - Lecture Notes in Informatics, pages 95–109. Co-
organized by the Council of Europe, Gesellschaft für Informatik and
E-Voting.CC, Gesellschaft für Informatik, Jul 2012.

[Ped91a] Torben Pryds Pedersen. Non-interactive and Information-Theoretic
Secure Verifiable Secret Sharing. In Joan Feigenbaum, editor, Ad-
vances in Cryptology – CRYPTO ’91: Proceedings, volume 576 of
Lecture Notes in Computer Science, pages 129–140. Springer, 1991.

[Ped91b] Torben Pryds Pedersen. A threshold cryptosystem without a trusted
party. In Proceedings of the 10th annual international confer-
ence on Theory and application of cryptographic techniques, EU-
ROCRYPT’91, pages 522–526, Berlin, Heidelberg, 1991. Springer-
Verlag.

[PH06] Stefan Popoveniuc and Ben Hosp. An Introduction to Punch-
scan. IAVoSS Workshop On Trustworthy Elections, WOTE
2006, 2006. http://punchscan.org/papers/popoveniuc_hosp_
punchscan_introduction.pdf, online version dated 2006-10-15.

[PH10] Stefan Popoveniuc and Benjamin Hosp. An introduction to punch-
scan. In David Chaum, Markus Jakobsson, Ronald L. Rivest, Peter
Y. A. Ryan, Josh Benaloh, Miroslaw Kutylowski, and Ben Adida,
editors, Towards Trustworthy Elections, volume 6000 of Lecture
Notes in Computer Science, pages 242–259. Springer, 2010.

[PS07] Stefan Popoveniuc and Jonathan Stanton. Undervote and pattern
voting: Vulnerability and a mitigation technique. In In Prepro-
ceedings of the 2007 IAVoSS Workshop on Trustworthy Elections
(WOTE 2007, 2007.

[Riv06] Ronald L Rivest. The threeballot voting system. Unpublished draft,
2006.

http://punchscan.org/papers/popoveniuc_hosp_punchscan_introduction.pdf
http://punchscan.org/papers/popoveniuc_hosp_punchscan_introduction.pdf

128 Bibliography

[RS06] Peter Y. A. Ryan and Steve A. Schneider. Prêt à voter with re-
encryption mixes. In Dieter Gollmann, Jan Meier, and Andrei
Sabelfeld, editors, ESORICS, volume 4189 of Lecture Notes in Com-
puter Science, pages 313–326. Springer, 2006.

[RS07] Ronald L. Rivest and Warren D. Smith. Three voting protocols:
Threeballot, vav, and twin. In Proceedings of the USENIX Workshop
on Accurate Electronic Voting Technology, EVT’07, pages 16–16,
Berkeley, CA, USA, 2007. USENIX Association.

[RT09] Peter Y. A. Ryan and Vanessa Teague. Pretty good democracy.
In Bruce Christianson, James A. Malcolm, Vashek Matyas, and
Michael Roe, editors, Security Protocols Workshop, volume 7028 of
Lecture Notes in Computer Science, pages 111–130. Springer, 2009.

[RW06] Ronald L. Rivest and John P. Wack. On the notion of "software
independence" in voting systems, 2006.

[Rya69] Joanna Ryan. Grouping and Short-Term Memory: Different Means
and Patterns of Grouping. The Quaterly Journal of Experimental
Psychology 21, p.137-147, 1969.

[Sch91] C.P. Schnorr. Efficient signature generation by smart cards. Journal
of Cryptology, 4(3):161–174, 1991.

[Sch11] Markus Schulze. A new monotonic, clone-independent, reversal
symmetric, and condorcet-consistent single-winner election method.
Social Choice and Welfare, 36(2):267–303, 2011.

[SK95] Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme:
a practical solution to the implementation of a voting booth. In
Proceedings of the 14th annual international conference on The-
ory and application of cryptographic techniques, EUROCRYPT’95,
pages 393–403, Berlin, Heidelberg, 1995. Springer-Verlag.

[TRN08] Vanessa Teague, Kim Ramchen, and Lee Naish. Coercion-resistant
tallying for stv voting. In EVT, 2008.

[UMQ10] Dominique Unruh and Jörn Müller-Quade. Universally composable
incoercibility. In Crypto 2010, volume 6223 of LNCS, pages 411–428.
Springer, August 2010. Preprint on IACR ePrint 2009/520.

[vdGKAL14] Jeroen van de Graaf, Carmen Kempka, Dirk Achenbach, and Bern-
hard Löwe. A taxanomy for analysing and comparing voting proto-
colos. unpublished manuscript, 2014.

[Wic64] Wayne A. Wickelgren. Size of Rehearsal Group and Short-Term
Memory. Journal of Experimental Psychology, Vol. 68, No. 4, 1964.

[Wik04] Douglas Wikström. A universally composable mix-net. In Moni
Naor, editor, TCC, volume 2951 of Lecture Notes in Computer Sci-
ence, pages 317–335. Springer, 2004.

Bibliography 129

[ZCC+13] Filip Zagorski, Richard T. Carback, David Chaum, Jeremy Clark,
Aleksander Essex, and Poorvi L. Vora. Remotegrity: Design and use
of an end-to-end verifiable remote voting system. Cryptology ePrint
Archive, Report 2013/214, 2013. http://eprint.iacr.org/.

http://eprint.iacr.org/

Appendix

A. Analysis of the German Paper Election
A.1. General Information about the voting scheme
Election type
(Q1) Is the election scheme . . .

– . . . paper based, scanner based or computer based?
– . . . meant for presential or internet elections?

The scheme is paper based and meant for presential elections.

(Q2) For which kind of elections is the scheme designed?

(Q3) Does the election scheme allow any special election types? (E.g. vote-splitting,
write-in candidates, vote delegation etc.)

The scheme is designed and used for governmental elections.

Preliminaries and Assumptions
(Q4) On what cryptographic assumptions is the scheme based?

There is no cryptography involved.

(Q5) If the scheme relies on trusted parties, which parties need to be trusted?

Poll workers need to be trusted as a group to not mark ballots in an incon-
spicuous way.

(Q6) Which components have to be trusted? Does the scheme rely on trusted hard-
ware?

The scheme relies on some physical assumptions: the ballot box has to be big
enough that the ballots inside are sufficiently mixed – the order of ballots would
break privacy since it is observable in which order the voters cast their ballots.

131

132 6. Appendix

(Q7) Are there other assumptions?

The scheme relies on a voting booth and the election and counting process
being observed by volunteers.

What makes this scheme secure?
(Q8) What is the main attribute that leads to the security of the analyzed voting

scheme?

The whole election and counting process is observable from beginning to end. The
voter’s will is marked on a physical object that cannot be tampered with without
physical access, and which the voter throws into an observable ballot box by herself.

A.2. Analysis of the Requirements
Requirement A (Eligibility)
(A1) How does the system identify whether persons presenting themselves to vote

are eligible?

Poll workers maintain a list of eligible voters, called a voter roll. Voters have
to present their identity card and their voting card.

Requirement B (Equality)
(B1) How does the system ensure that each eligible voter can cast at most one ballot?

After presenting her identity card, the voter is given only one ballot, may only
throw one ballot into the ballot box and is only allowed to enter the polling
station once. The voter’s name is ticked off in the voter roll to mark her as
“has voted”. Observation ensures that this is done correctly. Each voter gets
only one ballot at a time (it can be exchanged for revision). The opening of
the ballot box is covered by the poll workers unless a voter puts in her ballot.

(B2) How is it made sure that each eligible voter has the possibility to cast her
ballot?

By law every eligible voter is notified of an upcoming election several weeks
in advance. The election is also announced by media. Everyone can observe
that no eligible voter is denied access.

Requirement C (Layout neutrality)
(C1) How are choices presented to the voter?

Choices are presented on a paper ballot. The exact layout differs, depend-
ing on election rules. Generally, candidates are listed in a predefined order,
equally to each ballot, with a box next to it where the voter can put her mark.

(C2) How is it made sure that no option is favored more than specified by election
rules?

Each ballot is supposed to look the same. This can be audited by persons
present in the polling station.

A. Analysis of the German Paper Election 133

(C3) How is it made sure that choices are presented fairly to the voters?

See the answer to question C3.

Requirement D (Revisable ballot marking)
(D1) How does the voter mark her choice?

The voter obtainss her ballot, goes into the voting booth and marks the box
next to her chosen candidate.

(D2) How can the voter verify that the ballot she just created contains a faithful
representation of her preferences? Under what assumptions?

The voter can check that her mark is in the right place.

(D3) How can the voter revise her ballot?

The voter can ask the poll workers for a new ballot, the old ballot is then
destroyed.

Requirement E (Irreversible ballot casting)
(E1) How does the voter cast her ballot? The voter puts her ballot into the ballot

box.

(E2) What defines when a ballot is cast?

The ballot being in the ballot box.

(E3) What makes it irreversible? Under what assumptions is it irreversible?

Under physical assumptions, ballots cannot be taken out of the ballot box un-
noticed or modified once they are inside.

(E4) What defines the ballot box?

There are one or several actual ballot boxes that are big enough to sufficiently
shuffle the ballots. The opening of the box is covered by the poll workers unless
a voter puts in her ballot, and small enough that nothing but the ballot can be
put inside.

Requirement F (Privacy and incoercibility)
(F1) How is individual privacy assured? Under which assumptions?

The voter’s privacy while marking her choice is protected by a voting booth
under the assumption that there is no camera inside. Before leaving the voting
booth, the voter has to fold her ballot, hiding her marks, and put it into the
ballot box. It is assumed that ballots in the ballot box are sufficiently shuffled
before they are taken out for counting.

134 6. Appendix

(F2) How is individual privacy assured in the future? And under which assump-
tions?

As soon as the ballot is in the ballot box, it is unlinked from the voter’s iden-
tity. So if the ballot is not marked, privacy is preserved unconditionally, except
maybe for DNA-tests on the ballots. Marked ballots count as invalid, so the
voter can be coerced not to vote for a candidate.

(F3) How is receipt-freeness assured? And under which assumptions?

Receipt-freeness is not perfectly ensured. Poll workers might be able to se-
cretly and inconspicuously mark ballots to recognize them later, without the
mark being noticed (otherwise, the ballot would be counted as invalid). In polls
where the voter can distribute more than one vote among candidates, pattern
voting attacks are possible.

(F4) How is coercion-freeness assured? And under which assumptions?

The voter can mark her ballot. It is then counted as invalid, so the scheme is
not fully coercion resistant.

(F5) Who learns the vote or is able to calculate it?

No one but the voter herself learns her own choice. After the voter’s ID is
unlinked, everyone sees the plaintext ballots.

(F6) Who gets critical information? What information is this and in which way
is it critical? Critical information would be a link between the contents of the
ballots and the voter’s identity. This is why it is important that ballots are
sufficiently shuffled.

Requirement G (Secrecy of intermediate results)
(G1) How does the voting scheme guarantee that no information about the contents

of the ballot box leaks before the tallying procedure is completed? Under
which assumptions?

Observation of the ballot box guarantees that no ballots are taken out and looked
at. The ballot box is opaque, so no ballot’s contents can be seen from the out-
side. Under the assumption that there is no camera in the voting booth or in
the ballot box, no one but the voter who has cast it sees a ballot’s content before
it is thrown into the urn.

Requirement H (Inviolatability of the ballot box)
(H1) How does the system make sure that no ballots are modified? Under which

assumptions?

The voter is the only one who can modify her ballot before casting it. Physics
and observation of the ballot box make sure that ballots in the ballot box cannot
be modified. No other item but a ballot may be put into the ballot box. The
reason for this is that an additional item could spoil or mark some ballots. The

A. Analysis of the German Paper Election 135

small size of the opening of the box and covering it ensures that only ballots
are put inside.

(H2) How does the system make sure that no ballots are removed? Under which
assumptions?

Observation of the ballot box.

(H3) How does the system make sure that no ballots are added? Before the voting
phase starts, it is shown to everyone present that the ballot box is empty. After
that, each eligible voter have only one ballot at a time and can enter exactly
one ballot.

Requirement I (Tally integrity)
(I1) How is the tallying of the votes implemented?

The ballot box is opened. Then each ballot is taken out, shown to the observers
and counted.

(I2) How is it made sure that only the ballots correctly cast are counted?

The ballots in the ballot box have been put there by eligible voters, observa-
tion of the polling station ensures this. The counting is done openly, everyone
sees that invalid ballots are not counted. Objects other than ballots that indicate
choices are not counted.

(I3) If not correctly cast ballots are counted, who sees it?

Everyone who observes the process can see it.

(I4) Who can prove it and how?

Since everyone sees it there is nothing to prove.

(I5) What can be done in this case to correct the error?

Recount without the incorrect ballot.

Requirement J (Individual verifiability)
(J1) How can a voter convince herself that her vote is included in the tally? Under

which assumptions?

The voter throws her ballot into the ballot box by herself and can observe the
ballot box and the counting process afterwards.

(J2) What is the underlying principle used?

Physics and observation.

(J3) If the above check fails, how can the voter prove that her ballot is not included
in the tally?

If the voter observes manipulation, probably others have seen it also.

136 6. Appendix

(J4) How and by whom can this error be corrected?

This strongly depends on the error. Since paper ballots are used, a recount
is always possible as long as no ballots were removed. Since the voter’s choices
are only recorded on the paper ballots, votes on lost ballots cannot be recovered.

Requirement K (Auditability and public verifiability)
(K1) How can an interested party be convinced that the result published by the

BTA is correct?

Everyone can observe the voting and counting process. However, everyone
can only be present at one polling station at a time, so if the election takes
place at more than one polling station in parallel, there is no true universal
verifiability.

(K2) What is the underlying principle used?

Physics and observation.

(K3) If the result is not correct, who can prove it and how?

See the answer to question J3.

(K4) If the result is not correct, can the error be corrected? If so, by whom and how?

See the answer to question J4.

(K5) Is it traceable who/what has caused the error?

If it was observed, yes.

Requirement L (Robustness)
(L1) How is invalid or malformed voter data treated?

Invalid ballots are not counted. Invalid voter rolls can be corrected.

(L2) What happens when a voter aborts the voting process?

The ballot is either thrown into the ballot box or not. If it is inside, it counts
as cast. If not, this is documented in the voter roll.

Requirement M (Availability)
(M1) How does the system handle the unintentional breakdown of its components?

All physical objects except for marked ballots can be substituted. Lost or de-
stroyed ballots or ballot boxes cannot be recovered, there is no redundancy in
the vote recording process.

(M2) How can the system made to gracefully deal with denial of service attacks?

Mutual observation assures that no present person can file a denial of ser-
vice attack unnoticed. There are no electronic systems involved which could be
attacked from outside.

B. Analysis of the Student Parliament Election 137

Requirement N (Scalability)
(N1) How well does the scheme scale? How big can an electoral constituency be?

Since ballots are counted by hand, the scheme scales with the number of avail-
able poll workers. The voting process is done mostly sequentially, there is only
a very limited number of voting booths in one polling station that can only be
used one at a time. Therefore, only a limited number of voters can cast a ballot
in one voting station in one day.

A.3. Conclusion of the Analysis
(S1) Which of the requirements listed above are fully met under the underlying

assumptions? Requirements A, B, C, D, E, G, H, I, L and M are met.

(S2) Which requirements are only partly met, and in which way? Requirement F
is met except for forced-abstention and pattern voting attacks, and the incon-
spicuous marking of ballots. Requirement J and K are met but a missing ballot
can only be proven with witnesses and the error cannot be corrected after the
voting phase. Requirement K is not fully met if the voting process takes place
in several polling stations: everyone can only be physically present at one of
them.

(S3) Which requirements could be met with minor improvements of the scheme?
What are the suggested improvements? A problem of the paper election is its
lack of redundancy: lost ballots cannot be recovered. This problem could be
solved by additionally scanning the ballots.

(S4) Which requirements are not met? None

(S5) For which requirements does it depend on a concrete implementation or ap-
plication if they are met? None

(S6) Are there any concluding remarks? From a security and verifiability point of
view, the paper election seems to meet high standards. But even though it is
often used as an ideal, it is not secure against some coercion attacks. More
robustness could be achieved by introducing a backup mechanism of the votes. It
is funny that while for electronicly stored ballots, paper audit trails (VVPATs)
are suggested, the same is advisable vice versa.

B. Analysis of the Student Parliament Election
This chapter contains the full analysis of the student parliament election held in

January 2008 at the University of Karlsruhe, now Karlsruhe Institute of Technology,
with the voting scheme Bingo Voting. Election details are described in Section 4.3.
The analysis is done according to the evaluation criteria of our taxonomy. Voters
could choose between either using Bingo Voting or traditionally casting a paper
ballot. This taxonomy concentrates on the electronic voting part. Revoting was not
possible, an electronicly cast vote could not be overwritten by a paper ballot.

138 6. Appendix

B.1. Preliminaries about the Voting Scheme
Election type
(Q1) Is the election scheme . . .

– . . . paper based, scanner based or computer based?
– . . . meant for presential or internet elections?

The 2008 election was a presential election, held in several polling stations.
Students could vote electronically with the Bingo Voting scheme in one of the
polling stations, where also an ordinary paper election was offered. Details on
the election rules are explained in Section 4.3.

(Q2) For which kind of elections is the scheme designed?

This is not specified by the scheme. We estimate the election of the student
parliament as an election with low coercion and manipulation risk.

(Q3) Does the election scheme allow any special election types? (E. g. vote-splitting,
write-in candidates, vote delegation etc.) The scheme as used in the 2008
election supported vote-splitting and cumulation. A newer implementation also
supports write-in candidates.

Preliminaries and Assumptions
(Q4) On what cryptographic assumptions is the scheme based?

Verifiability relies on the discrete logarithm problem.

(Q5) If the scheme relies on trusted parties, which parties need to be trusted?

In Bingo Voting, for verifiability, the parameters g and h for Pedersen com-
mitments must not be created by the voting machine but a trusted authority.
For privacy, the voting machine, and therefore, its administrators, needed to
be trusted. However, in the student parliament election, we implemented the
trusted voting machine the following way: upon start of the election, The voting
machine was not connected to the internet or any other network. No keyboard
was available in the voting booth, the voters could not exit the vote casting
program and access the underlying system. For administrating purposes, the
administrators only had access to the voting machine under surveillance of at
least one member of the voting authority, and the other way around.

(Q6) Which components have to be trusted? Does the scheme rely on trusted hard-
ware?

The scheme relies on a trusted random number generator.

(Q7) Are there other assumptions?

The presence of a voting booth, and a sufficiently small probability of colli-
sions between random numbers. For privacy, the distribution of the dummy
random numbers has to be indistinguishable from the distribution of the num-
bers generated by the TRNG. The random numbers created by the TRNG must
not contain side-channels.

B. Analysis of the Student Parliament Election 139

What makes this scheme secure?
(Q8) What is the main attribute that leads to the security of the analyzed voting

scheme?

Bingo Voting relies on a trusted random number generator (TRNG) that is
hard to manipulate. On the voter’s receipt, the real vote is hidden between
dummy votes to protect voter privacy while giving the voter a proof that her
ballot has been processed correctly. The voting booth asures voter privacy while
filling out the ballot on the voting machine.

B.2. How the Requirements are met
The student parlaiment election was done without any critical incidents, all proofs

of correctness were checked and turned out to be correct, no voter complained about
a missing receipt and no person complained about incorrect proofs. There were very
few smaller incidents with the chip card when pulled out by the voters too early, for
details see Section 4.3, the errors could always be corrected. But for completeness,
when answering the questions, incidents that could have happened are described.
Requirement A (Eligibility)
(A1) How does the system identify whether persons presenting themselves to vote

are eligible?

Students presented their student card to the voting authority, and then got
a random chip card, not connected to their ID, with which they could start the
voting process at the voting machine. The voting authority encoded on the chip
card for which poll the voter is eligible.

Requirement B (Equality)
(B1) How does the system ensure that each eligible voter can cast at most one vote?

Voters were ticked off in a voter roll by poll workers. This part of the election
could be observed by everyone. The information if the voter has already cast
a vote in a poll was recorded on her login chip card. Each login card could
be used only once for each poll, afterwards it was not accepted by the voting
machine. The number of votes cast could be checked against the voter roll, so
an error would have been detectable.

(B2) How is it made sure that each eligible voter has the possibility to cast her vote?

Since it was a presential election, forced abstention attacks were not prevented.
The ticking off in the voter’s roll was observed, and there were always two poll
workers per table who observed each other, so there was a high probability to
get caught when ticking off a voter who was no there.

Requirement C (Layout neutrality)
(C1) How are choices presented to the voter?

For a description of the implementation see Section 4.3. Each voter saw the
same UI, the order in which candidates were displayed was specified by a XML
file generated by the voting authority and was the same for each voter. The

140 6. Appendix

scheme was tested by members of the voting authority before the election phase,
but this part was not publicly verifiable. Since the chip cards for login did not
encode the identity of the voter, the voting machine could not depend the UI on
the voter’s ID. But the chip card encoded for example if the voter was eligible
for the poll of woman’s representative, i. e. if the voter was a woman.

(C2) How is it made sure that no option is favored more than specified by election
rules?

See the answer to question C1.

(C3) How is it made sure that choices are presented fairly to the voters?

See the answer to question C1.

Requirement D (Revisable ballot marking)
(D1) How does the voter mark her choice?

By clicking plus and minus buttons next to the name of a candidate. The
UI showed the voter how many votes she had left to cast.

(D2) How can the voter verify that the ballot she just created contains a faithful
representation of her preferences? Under what assumptions?

After the voter marked her choice, the voting machine presented her ballot
to the voter where she could check her vote. A proof of correct recording of the
ballot was given only after casting (see next requirement).

(D3) How can the voter revise her ballot?

As mentioned above, the UI displayed the ballot to the voter before casting.
The voter could click the back button and change her choices. This could be
done an arbitrary number of times.

Requirement E (Irreversible ballot casting)
(E1) How does the voter cast her ballot?

After double checking her ballot, the voter clicked cast. After that, dummy ran-
dom numbers for each not voted candidate were taken from the list of dummy
votes, the TRNG generated and displayed a fresh random number and the re-
ceipt was printed and stored electronically on the voting machine.

(E2) What defines when a ballot is cast?

The transfer of the dummy votes and the fresh number to the voter’s receipt.

(E3) What makes it irreversible? Under what assumptions is it irreversible?

The dummy votes that are taken away from the candidates are printed on
a receipt that is later published, so they cannot be given back and opened as
unused or given to another voter.

B. Analysis of the Student Parliament Election 141

(E4) What defines the ballot box?

The unused dummy votes together with the stored receipts and the commit-
ments to the used dummy votes.

Requirement F (Privacy and incoercibility)
(F1) How is individual privacy assured? Under which assumptions?

Privacy is assured under the assumption that the voting machine does not
leak the used dummy random numbers or the unveil information of their com-
mitments, otherwise they can be distinguished from the fresh numbers which
would break privacy.

(F2) How is individual privacy assured in the future? And under which assump-
tions?

Pedersen commitments are unconditionally hiding, so as long as the TRNG
and the voting machine can be trusted, and the distribution of dummy and
fresh random numbers is indistinguishable, Bingo Voting offers unconditional
privacy. Pedersen commitments can be trapdoor-opened to arbitrary values, so
in princible it is possible to lie about their contents if one knows the discrete
logarithm logg(h).

(F3) How is receipt-freeness assured? And under which assumptions?

See the answer to question F4.

(F4) How is coercion-freeness assured? And under which assumptions?

The voter has no influence on the form of any published data. Each receipt
contains the same candidate names and random numbers from the same or at
least an indistinguishable distribution. The voter can only be coerced to abstain
from voting.

F5 Who learns the vote or is able to calculate it?

The voting machine and whoever is able to unveil the dummy vote commit-
ments can learn the voter’s choice.

F6 Who gets critical information? What information is this and in which way is
it critical?

The plaintext dummy votes and unveil information to their commitments is
critical information. It was stored on the voting machine.

Requirement G (Secrecy of intermediate results)
(G1) How does the system guarantee that no information about the contents of the

ballot box leaks before the tallying of the votes has completed? Under which
assumptions?

This fact was not publicly verifiable and relied on trust in the voting machine.

142 6. Appendix

How the trustworthiness of the voting machine was implemented, see the an-
swer to Question (Q4).

Requirement H (Inviolatability of the ballot box)
(H1) How does the system make sure that no ballots are modified? Under which

assumptions?

The voter could check that her receipt appeared on the bulletin board correctly,
and a proof of the correct processing of the voter’s choice was given according
to this receipt. Under the assumption that there was no collision between a
fresh random number and a dummy random number for another candidate, no
ballots could be changed. For possible attacks at the occurrence of collisions,
see [Hen12].

(H2) How does the system make sure that no ballots are removed? Under which
assumptions?

The receipts are published and the voter can check them.

((H3)) How does the system make sure that no ballots are added?

The number of voters who have cast votes was visible in the voter roll. Poll
workers who maintained the voter roll could be observed by each other and the
voters. Everyone could check that the number of voters according to the voter
roll matched the number of published receipts as well as the number of unused
dummy votes.

Requirement I (Tally integrity)
(I1) How is the tallying of the votes implemented?

For details see the description of the Bingo Voting scheme in Section 4.2.
The tally matches the number of unused dummy votes of each candidate.

(I2) How is it made sure that only the ballots correctly cast are counted?

It was publicly observable that only eligible voters had access to the voting
machine. The number of voters according to the voter roll had to match the
number of receipt. Under the assumption that the poll workers maintaining
the voter roll were honest or sufficiently observed, and enough voters checked
their published receipts, the proofs of correctness proved that only correctly cast
receipts are counted.

(I3) If not correctly cast ballots are counted, who sees it?

The voter could see if her receipt was correctly published and correctly pro-
cessed in the tally. There was one proof of correctness per receipt, which could
be checked by everyone.

(I4) Who can prove it and how?

If the proofs of correctness had been wrong, everyone could have seen and

B. Analysis of the Student Parliament Election 143

proven this. If an incorrect receipt had been used in the tally, there are two
possibilities how this could have happened: either a receipt not cast by an eligi-
ble voter was added, then there had been one receipt too much. This could have
been proven with the help of the voter roll. Or a receipt of an eligible voter
was manipulated, then this voter could have proven this issue with her signed
receipt, assuming the signatur was valid.

(I5) What can be done in this case to correct the error?

In the case of an incorrect receipt and resulting incorrect prove of correct-
ness, the receipt could have been substituted by the voter’s correct receipt and
the tally be redone. In case of an incorrect receipt and correct prove of cor-
rectness, a wrong dummy random number would have been marked as unused,
this error could not have been corrected. If a receipt had been added, the error
could only have been corrected by having all voters show their receipts.

Requirement J (Individual verifiability)
(J1) How can a voter convince herself that her vote is included in the tally? Under

which assumptions?

The voter could follow her receipt from when it was printed to its proof of
correctness. She could check “her” proof and every other. In the voting booth,
she had the chance to check that the fresh random number is in the right place.

(J2) What is the underlying principle used?

Publishing on the public bulletin board, trust in the TRNG, negligible proba-
bility of collisions of large random numbers, binding property of commitments
(DLog hardness).

(J3) If the above check fails, how can the voter prove that her vote is not included
in the tally?

A disadvantage was that this check could only be done after casting. If the
voter had seen in the voting booth that her fresh random number was not in
the right place, she could have complained but it had been hard to prove. If
her receipt had not appeared online, she could have proven this with her signed
receipt.

(J4) How and by whom can this error be corrected?

This question is partly answered with the answer to I5. If the voter had seen
the wrong random number next to her candidate, it had been hard to correct the
error without breaking privacy. With the help of the voting authority together
with the administrators, the used dummy random numbers could have been
given back to the candidates and the voter’s receipt deleted, but these dummy
votes could not have been used on another receipt because the voter had already
seen them.

144 6. Appendix

Requirement K (Auditability and public verifiability)
(K1) How can an interested party be convinced that the result published by the

BTA is correct?

For details of the proof of correctness please refer to Section 4.2. The tally
had to be in accordance with the number of unused dummy votes of each candi-
date. For each receipt, the commitments to the used dummy votes and a fresh
commitment to the fresh random number were mixed and opened. Everyone
could check that each commitment published in the pre-voting phase was either
opened or used in a correctness proof of exactly one receipt.

(K2) What is the underlying principle used?

A verifiable shuffle.

(K3) If the result is not correct, how can this be proven?

Everyone could check the proves of correctness. So if the result had not been
correct, everyone would have seen it.

(K4) If the result is not correct, is it traceable who/what caused it? Who can prove
this?

This question was partly answered in question J3. If there had been discrepan-
cies between the voting machine and the voter roll, it had been hard to prove
the source, but since the voter roll was observed at all time it seems more
trustworthy than the voting machine.

(K5) If the result is not correct, how can the error be corrected?

If the error had come from an incorrect receipt, see the answers to questions
I5 and J4. Otherwise it strongly depends on the error. In the Bingo Voting
scheme, the tally can be redone as long as dummy votes and unveil information
are not deleted from the voting machine.

Requirement L (Robustness)
(L1) How is invalid or malformed voter data treated?

For malformed receipts, see he answer to J4. If wrong eligibility informa-
tion had been encoded on the voter’s chip card, this could be corrected by the
voting authority.

(L2) What happens when a voter aborts the voting process?

The voter could abort the voting process at anytime, but had to wait a few
seconds for the voting machine to record on the chip card that the voter was
still eligible in the poll. If the chip card was pulled out too early, it was recorded
on the chip card that the voter had started the ballot marking process in a poll,
but not if she had cast a vote in it. Therefore, with a card in this state the voter
could not have logged in again, she had lost her possibility to vote in this poll.

B. Analysis of the Student Parliament Election 145

This had actually happened a few times, but the error could always be corrected
by immediately checking how many votes have been cast. After checking this
information on the voting machine against the voter roll, the chipcard of the
voter could be unlocked for this poll by the voting authority.

Requirement M (Availability)
(M1) How does the system handle the unintentional breakdown of its components?

The voting machine is a single point of failure since it contains all the votes
cast. While it adds to security that it is not connected to any network, a good
backup mechanism would be advisable.

(M2) How can the system made to gracefully deal with denial of service attacks?

Since the voting machine is offline, it cannot be attacked from outside. If
it stops working, it can be substituted by another one, assuming it has an ap-
propriate backup mechanism.

Requirement N (Scalability)
(N1) How well does the scheme scale? How big can an electoral constituency be?

The bottle neck in the student parliament election was the slow write-access
to the chip cards, which led to the voting process taking several minutes. This
could have been compensated by using several voting machines. In Bingo Vot-
ing, the dummy random numbers can be distributed to arbitrary many voting
machines. For less probable collisions of fresh random numbers with dummy
votes, one can treat each voting machine as a distinct election or use longer
random numbers. The impact of the number of voters handled in one election
on the suggested length of the used random numbers and their probability of
collision is not very critical: as Henrich showed in [Hen12], with 45 bit random
numbers, i. e. about 12 alphanumeric letters, and an election with 714 million
voters, which was the number of voters in the Indian general election of 2009,
the expected number of overall collisions occuring in an election is less than
one.

B.3. Conclusion of the Analysis
In a system setup like it was applied in the student parliament election, Require-

ments would be met as follows:

(S1) Which of the requirements listed above are fully met under the underlying
assumptions? Requirement A, B, C, D, E and H.

(S2) Which requirements are only partly met, and in which way? Requirements I, J
and K are partly met: a manipulation can always be proven, the source of the
error is not traceable in some cases, and an error cannot always be corrected.
Requirement C and G are met, but the fact is verifiable only by auditors who
test the system in advance, not publicly. Requirement F is met except for the
possibility of forced abstention attacks. Requirement L was is partly met, errors
cannot always be corrected.

146 6. Appendix

(S3) Which requirements could be met with minor improvements of the scheme?
What are the suggested improvements? Requirement M could be met with a
good redundancy mechanism so no votes are lost. This would compete with
privacy, though, since more components would get critical information. Re-
quirement N could be met if a faster card reader was used, preferably one that
pulls in the card completely so less states need to be documented on the card.
The size of published data is also a matter, for a discussion on their reduction
please refer to the dissertation of Christian Henrich [Hen12].

(S4) Which requirements are not met? There are no requirements that are impos-
sible to achieve with the scheme. All requirements can be met with a suitable
adaption of the scheme.

(S5) For which requirements does it depend on a concrete implementation or ap-
plication if they are met? None

(S6) Are there any concluding remarks? As a concluding remark one could say that
The assumption of a trusted voting machine for privacy is very strong since
it is in the hands of the voting authority. It is hard to make the implemen-
tation publicly verifiable, one would have to publish the implementation (this
was actually done in the student parliament election), and then prove that the
published code is the same as the code running on the voting machine (this was
only done by the voting authority).

C. Analysis of our Revoting Scheme
This section contains an analysis of the revoting scheme introduced in Section 5.3.

C.1. General Information about the Voting Scheme
Election type
(Q1) Is the election scheme . . .

– . . . paper based, scanner based or computer based?

– . . . meant for presential or internet elections?

The election scheme is an electronic internet election scheme.

(Q2) For which kind of elections is the scheme designed? (E.g. governmental elec-
tions, non-political elections, etc.)

It is designed as a proof of concept and not yet meant for large-scale elections.
It has not been designed for efficiency.

(Q3) Does the election scheme allow any special election types? (E.g. vote-splitting,
write-in candidates, vote delegation etc.)

In its current version it is designed for one out of n choices only. It can
be adapted to allow vote delegation.

C. Analysis of our Revoting Scheme 147

Preliminaries and Assumptions
(Q4) On what cryptographic assumptions is the scheme based?

The ElGamal encryption depends on the DDH-assumption. The GS-proofs
depend on the CRS-Model and the SXDH-assumption. The signature scheme
is based on the ADH-SDH assumption and the AWF-CDH assumption, the
definitions of these assumptions can be found in [AFG+10].

(Q5) If the scheme relies on trusted parties, which parties need to be trusted?

All servers can be distributed, there is no single trusted party.

(Q6) Which components have to be trusted? Does the scheme rely on trusted hard-
ware?

None.

(Q7) Are there other assumptions? (E.g. the existence of a voting booth, at least
one voting process done in private etc.)

Existing PKI, at least one voting process can be done in private.

What makes this scheme secure?
(Q8) What is the main attribute that leads to the security of the analyzed voting

scheme?

The voter can vote and revote without revealing her identity. Ballots which
are counted cannot be linked to certain cast ballots.

C.2. Analysis of the Requirements
Requirement A (Eligibility)
(A1) How does the system identify whether persons presenting themselves to vote

are eligible?

By checking the GS-proof of knowledge of a signature corresponding to a veri-
fication key which has a certificate.

Requirement B (Equality)
(B1) How does the system ensure that each eligible voter can cast at most one ballot?

The sorting algorithm and the opening of identities after the sorting ensure
that only one vote per voter is counted.

(B2) How is it made sure that each eligible voter has the possibility to cast her vote?

In fact, since identities are opened in the end, a voter can be coerced not
to cast a vote. This problem can be solved as discussed in Section 5.3.

148 6. Appendix

Requirement C (Layout neutrality)
(C1) How are choices presented to the voter?

The voter creates and encrypts her ballot by herself.

(C2) How is it made sure that no option is favored more than specified by election
rules?

See (C1).

(C3) How is it made sure that choices are presented fairly to the voters?

See (C1).

Requirement D (Revisable ballot marking)
(D1) How does the voter mark her choice?

See (C1).

(D2) How can the voter verify that the ballot she just created contains a faithful
representation of her preferences? Under what assumptions?

See (C1).

(D3) How is it made sure that the voter can revise her ballot?

The voter does not have to cast her ballot. She can create as many encryptions
as she wishes.

Requirement E (Irreversible ballot casting)
(E1) How does the voter cast her ballot?

Via a vote caster who publishes it on a public bulletin board.

(E2) What defines when a ballot is cast?

The publishing on the bulletin board

(E3) What makes it irreversible? Under what assumptions is it irreversible?

The publishing on the bulletin board. It is not changeable by third parties,
and the voter cannot take back a ballot, but she can overwrite it with a revote.

(E4) What defines the ballot box?

The bulletin board

Requirement F (Privacy and incoercibility)
(F1) How is individual privacy assured? Under which assumptions?

Ballots are encrypted with the ElGamal encryption, so privacy depends on
the DDH assumption.

C. Analysis of our Revoting Scheme 149

(F2) How is individual privacy assured in the future? And under which assump-
tions? (Is it computational? Unconditional? Why?)

Privacy is not everlasting.

(F3) How is receipt-freeness assured? And under which assumptions?

Receipt-freeness is assured depending on the security of the ElGamal encryp-
tion.

(F4) How is coercion-resistance assured? And under which assumptions? (I. e. how
is it ensured that a ballot/voter’s choice cannot be marked in a way that shows
to the adversary that the voter has been successfully coerced?)

Coercion-Resistance depends on the sorting algorithm. If it does not leak in-
formation about revoting behavior, the scheme is coercion-resistant.

(F5) Who learns the vote or is able to calculate it?

The voter-PC (who does not know if the ballot is overwritten from another
PC). The tally servers can jointly decrypt ballots.

(F6) Who gets critical information? What information is this and in which way is
it critical?

Critical information is never processed in plaintext. The sorting servers could
jointly decrypt public keys and timestamps, and with this link ballots to each
other, or learn the number of revotes. But they can not decrypt the voter’s
choice. The tally servers could jointly decrypt single ballots, but not the iden-
tities of the voters who have cast them, or any other item than the vote itself
which could link a counted ballot to a cast ballot, in particular not the voter’s
identity or a timestamp. The casting server learns the timestamp but cannot
recognize it later in the counted ballots.

Requirement G (Secrecy of intermediate results)
(G1) How does the voting scheme guarantee that no information about the contents

of the ballot box leaks before the tallying procedure is completed? Under
which assumptions?

Ballots are encrypted until they are counted. Decryption can only be done
jointly by the tally servers.

Requirement H (Inviolatability of the ballot box)
(H1) How does the system make sure that no ballots are modified? Under which

assumptions?

Ballots are digitally signed. Afterwards, each step in the processing of bal-
lots is publicly verifiable.

(H2) How does the system make sure that no ballots are removed? Under which
assumptions?

150 6. Appendix

See (H1).

(H3) How does the system make sure that no ballots are added?

See (H1), and the ballots contain a proof for a certificate of the signer. To
add a ballot, the adversary would have to forge a signature. Overwriting bal-
lots with replays are not possible because of the timestamps, which is signed
(replays would be sorted out).

Requirement I (Tally integrity)
(I1) How is the tallying of the votes implemented?

Old votes are sorted out without decrypting critical information. The tally
is then done mix-based with standard procedures.

(I2) How is it made sure that only the ballots correctly cast are counted?

Everyone can check the proofs of knowledge of a signature and a corresponding
certificate.

(I3) If not correctly cast ballots are counted, who sees it?

Everyone sees it.

(I4) If not correctly cast ballots are counted, who can prove it and how?

It is visible on the public bulletin board.

(I5) If not correctly cast ballots are counted, what can be done to correct the error?

They will not be included in the sorting process in the first place. Everyone
can check this. If, however, an invalidly cast ballot is included, the tally can
be repeated without the invalidly cast ballot.

Requirement J (Individual verifiability)
(J1) How can a voter convince herself that her ballot is included in the tally? Under

which assumptions?

It is published on the bulletin board and enters the sorting process which is
done in public. From there, the correctness of all steps is proven.

(J2) What is the underlying principle used? Physical? Statistical/Probabilistic?
Trust in the authorities?

Verifiable shuffles

(J3) If the above check fails, how can the voter prove that her ballot is not included
in the tally?

The voter has no receipt. She cannot prove it if her ballot is not published

C. Analysis of our Revoting Scheme 151

on the bulletin board. But she sees this before the end of the voting phase and
can cast another ballot. If it is published, the it is visible to anyone whether
the ballot is included.

(J4) How and by whom can this error be corrected?

Not specified

Requirement K (Auditability and public verifiability)
(K1) How can an interested party be convinced that the result published by the

BTA is correct?

The voting scheme is end-to-end verifiable: the voter can see that her bal-
lot is published and enters the sorting process, and that from there, all ballots
are processed correctly.

(K2) What is the underlying principle used?

Verifiable shuffles and homomorphic encryption.

(K3) If the result is not correct, who can prove it and how?

Everyone can see this on the bulletin board.

(K4) If the result is not correct, can the error be corrected? If so, by whom and how?

The tally can be repeated.

(K5) Is it traceable who/what has caused the error?

The corresponding server(s) will not be able to create a proof of correctness,
so it is traceable. These proofs are created on several occasions. In the shuffle
procedures, each shuffling server provides its own proof. In joint decryption
procedures, each server has to provide an individual proof of using the correct
secret key as well. In the masking of the identity differences, each server has
to reveal its randomness if the difference is the neutral element, so there, too,
the error is traceable.

Requirement L (Robustness)
(L1) How is invalid or malformed voter data treated?

Malformed voter data would be a ballot with an invalid signature. This bal-
lot would be ignored and not be processed in the tally procedure. Ballots with
invalid content are treated as invalid votes and not counted. However, a proof
of validity could be included in the casting process to prevent this.

(L2) What happens when a voter aborts the voting process?

The voter can abort the voting process before casting at any time without any
consequences. Once her ballot is signed and published however, it is considered
as cast and is included in the sorting procedure.

152 6. Appendix

Requirement M (Availability)
(M1) How does the system handle the unintentional breakdown of its components?

See (M2).

(M2) How can the system made to gracefully deal with denial of service attacks?

All used procedures like shuffling, decrypting and sorting can be setup as k-out
of-n threshold schemes. The bulletin board can be mirrored for redundancy.

Requirement N (Scalability)
(N1) How well does the scheme scale? How big can an electoral constituency be?

The ballots, or parts of them, have to be shuffled on several occasions. The
sorting process consists of several shuffle procedures and creates a huge amount
of published data.

C.3. Conclusion of the Analysis
(S1) Which of the requirements listed above are fully met under the underlying

assumptions?

Requirements A, C, D, E, G, H, I, K, L and M are fully met.

(S2) Which requirements are only partly met, and in which way?

Requirement F depends on the information leakage of the sorting algorithm.
Privacy does not hold unconditionally. Requirement J is only partly met be-
cause a voter cannot prove that her ballot has not been published.

(S3) Which requirements could be met with minor improvements of the scheme?
What are the suggested improvements?

Requirement B can be met if identities are not opened in the end, as described
in the discussion of Section 5.3.

(S4) Which requirements are not met?

None.

(S5) For which requirements does it depend on a concrete implementation or ap-
plication if they are met?

Requirement N is only met for sufficiently small elections. For large-scale
elections, a more efficient sorting procedure should be used.

(S6) Are there any concluding remarks?

Our revoting scheme is a working proof of concept for fully verifiable receipt-
free elections with revoting. Coercion-resistance depends on the leakage of
information of the sorting algorithm, which depends on the number of voters

D. Analysis of Prêt à Voter 153

who revote. The voting scheme is coercion-resistant for ballots with one out of
n choices if a sufficient number of voters revote. However, the scheme is not
yet suitable for large-scale elections because of its lack of efficiency.

D. Analysis of Prêt à Voter
This analysis refers to the original scheme Prêt à Voter as introduced in [CRS05].

D.1. General Information about the voting scheme
Election type
(Q1) Is the election scheme . . .

– . . . paper based, scanner based or computer based?

– . . . meant for presential or internet elections?

The scheme is paper and optical reader based, and meant for presential elec-
tions.

(Q2) For which kind of elections is the scheme designed?

This is not specified.

(Q3) Does the election scheme allow any special election types? (E. g. vote-splitting,
write-in candidates, vote delegation etc.)

It allows vote-splitting and could be adapted to allow cumulative voting, though
this would make the scheme vulnerable to pattern voting attacks, which is th
case with any voting scheme which reveals plaintext balots.

Preliminaries and Assumptions
(Q4) On what cryptographic assumptions is the scheme based?

Encryption of the permutation acts as binding commitment and cannot be
trapdoor-opened to another permutation.

(Q5) If the scheme relies on trusted parties, which parties need to be trusted?

Trusted ballot creators/printers (they see the permutation of each ballot)

(Q6) Which components have to be trusted? Does the scheme rely on trusted hard-
ware?

None

(Q7) Are there other assumptions?

The existence of a voting booth

154 6. Appendix

What makes this scheme secure?
(Q8) What is the main attribute that leads to the security of the analyzed voting

scheme?

Each ballot has another candidate order which is invisible, but present as en-
cryption on the voter’s receipt. The voter can check if her receipt is published,
i. e. her vote is included in the tally. There is also a proof that all ballots were
counted correctly by proving the correct application of all permutations.

D.2. Analysis of the Requirements
Requirement A (Eligibility)
(A1) How does the system identify whether persons presenting themselves to vote

are eligible?

Assumed as given.

Requirement B (Equality)
(B1) How does the system ensure that each eligible voter can cast at most one ballot?

Assumed as given.

(B2) How is it made sure that each eligible voter has the possibility to cast her vote?

Assumed as given.

Requirement C (Layout neutrality)
(C1) How are choices presented to the voter?

On a ballot with two parts: candidate/choice list in random order on the left
side, space to put marks on the right side.

(C2) How is it made sure that no option is favored more than specified by election
rules?

Ballot audits can make sure that the permutations are distributed randomly
and no candidate appears on top more often than others.

(C3) How is it made sure that choices are presented fairly to the voters?

See C2.

Requirement D (Revisable ballot marking)
(D1) How does the voter mark her choice?

By putting a mark on the right side next to her choice, on a paper ballot.

(D2) How can the voter verify that the ballot she just created contains a faithful
representation of her preferences? Under what assumptions?

She made a mark next to her candidate. Her receipt contains an encryption to

D. Analysis of Prêt à Voter 155

her ballot’s permutation. Assuming the encryption acts as a binding commit-
ment and cannot be opened to another permutation, the proof of correctness
after the tally shows that for each ballot, the right permutation was used to
decipher the ballot. The voter can also use another ballot for auditing before
she votes.

(D3) How is it made sure that the voter can revise her ballot?

Before the right-hand side is thrown into the urn, she can just get another
ballot.

Requirement E (Irreversible ballot casting)
(E1) How does the voter cast her ballot?

After the right-hand side is marked, it is scanned by an optical reader, the
scanned data is transferred to the tellers and the scanned right-hand side given
to the voter as a receipt. The left-hand side is shredded.

(E2) What defines when a ballot is cast?

Scanning of the right-hand side and transferring it to the tellers.

(E3) What makes it irreversible? Under what assumptions is it irreversible?

The right-hand side being scanned and transferred to the tellers. The receipt
appears on a public bulletin board and cannot be taken back.

(E4) What defines the ballot box?

The device where the scanned right-hand sides are stored.

Requirement F (Privacy and incoercibility)
(F1) How is individual privacy assured? Under which assumptions?

Privacy depends on the security of the encryption scheme used to encode the
permutation, and on the mechanism to calculate the encryption from the germs
the tellers choose, and/or on the ballot creation, since the complete ballots also
show the permutation.

(F2) How is individual privacy assured in the future? And under which assump-
tions? (Is it computational? Unconditional? Why?)

It is not everlasting. It depends on whatever mathematical problem the used
encryption scheme is based on.

(F3) How is receipt-freeness assured? And under which assumptions?

Measures have to be taken that the voter either really shreds the left-hand side
of her ballot or that she can take out dummy left-hand sides with corresponding
receipts. (with the second approach, how can the real receipt be distinguished
from the dummy ones and act as a proof of manipulation? Commitments to
the dummy receipts, maybe).

156 6. Appendix

(F4) How is coercion-resistance assured? And under which assumptions?

Not given, the voter can for example be forced to mark the choice on top what-
ever the permutation is.

(F5) Who learns the vote or is able to calculate it?

Each authority who can see the complete ballots. It is not specified how ballots
are issued to the voter and who except the voter sees them.

(F6) Who gets critical information? What information is this and in which way is
it critical?

See F5; Critical information is each ballot’s permutation, which is visible in
the complete plaintext ballots.

Requirement G (Secrecy of intermediate results)
(G1) How does the voting scheme guarantee that no information about the contents

of the ballot box leaks before the tallying procedure is completed? Under
which assumptions?

The optical reader and the device were its scanned data is stored have to be
trusted, or
the authority who knows the permutation can be trusted and the tellers only
start tallying after the election phase.
Careful: tellers are used as oracles for auditing, this oracle access possibility
must not be abusable for decrypting some real votes.

Requirement H (Inviolatability of the ballot box)
(H1) How does the system make sure that no ballots are modified? Under which

assumptions?

The receipts—they equal the cast ballots—are published on a public bulletin
board, so the voter can see if her vote appears there unmodified.

(H2) How does the system make sure that no ballots are removed? Under which
assumptions?

Right hand sides of the ballots have to show up on the bulletin board. Re-
moval of receipts of voters who do not check their receipts is not detected. The
original paper suggests additional paper audit trails, this would at least make
removals detectable by auditors.
During the tallying process, the correct mixing is publicly proven and everyone
sees that the number of the processed right hand sides stays the same.

(H3) How does the system make sure that no ballots are added?

This is not specified.

D. Analysis of Prêt à Voter 157

Requirement I (Tally integrity)
(I1) How is the tallying of the votes implemented?

After the voting phase, the ballots are processed as follows: the permutation
on each ballot as well as its encryption was calculated by several tellers in an
onion kind of way. During the tallying process, the onion is removed level by
level by each teller (two steps per teller): each teller removes his encryptions
and applies his parts of the ballot permutation for each ballot, then shuffles
the modified ballots. In the end, the permutation is decrypted, the vote trans-
formed to a readable ballot and all votes are mixed, so the links to the voters are
broken. The shuffling is later checked with Remote Partial Checking (RPC).

(I2) How is it made sure that only the ballots correctly cast are counted?

This is not directly specified by the scheme, but some suggestions are made
by the paper. Together with the electoral role one can check the number of cast
ballots. It is easy to cast an invalid ballot, though, if the scanner does not
check validity, which is not specified by the original paper.

(I3) If not correctly cast ballots are counted, who sees it?

The ballots are not signed by the voter, so each voter can only check her own
ballot. Ballot stuffing might be detected.

(I4) If not correctly cast ballots are counted, who can prove it and how?

If the voter’s ballot does not appear, she can prove the fraud by showing her
receipt, which is stamped and digitally signed by the voting authority. Ballot
stuffing might be detected but its origin cannot be proven.

(I5) If not correctly cast ballots are counted, what can be done to correct the error?

We do not see if the ballot was just not counted or substituted by another
one. So a ballot for the voter can be added but we do not know if therefore a
ballot needs to be removed or which one, except if the substitution happens to
have the same encrypted permutation on it.

Requirement J (Individual verifiability)
(J1) How can a voter convince herself that her ballot is included in the tally? Under

which assumptions?

She finds her receipt on the bulletin board and checks the RPC proofs of cor-
rectness. Assumption: encryption acts as binding commitment

(J2) What is the underlying principle used? Physical? Statistical/Probabilistic?
Trust in the authorities?

Public bulletin board, RPC, “binding encryption”.

(J3) If the above check fails, how can the voter prove that her ballot is not included
in the tally?

158 6. Appendix

See I4, she can show her receipt which is stamped and digitally signed. Ballot
auditing should prevent invalidly signed and stamped ballots.

(J4) How and by whom can this error be corrected?

The voting authorities can let the voter cast a vote; see I5.

Requirement K (Auditability and public verifiability)
(K1) How can an interested party be convinced that the result published by the

BTA is correct?

Public proofs of correctness (RPC of the tellers decryption and mixes)

(K2) What is the underlying principle used?

RPC/Verifiable shuffling, auditing (also statistical)

(K3) If the result is not correct, who can prove it and how?

Everyone can see that the proofs of correctness fail for the (public) input data.

(K4) If the result is not correct, can the error be corrected? If so, by whom and how?

Correction is difficult since the manipulation could either have happened during
ballot creation or during tallying. The latter is more probable, though, since
there was auditing before the election phase. If the teller is able to decrypt cor-
rectly (in the paper it is seen as a device) or its key pair is stored somewhere
else, the error can be corrected.

(K5) Is it traceable who/what has caused the error?

The RPC proof shows which teller made the manipulation. So if it was a
teller, this can be proven.

Requirement L (Robustness)
(L1) How is invalid or malformed voter data treated?

Not specified

(L2) What happens when a voter aborts the voting process?

Either the vote is scanned or not. If it is scanned, it will be counted (ex-
cept if there is an error handling strategy, this is not specified by the scheme.)
If it is not scanned, nothing happens. The voter can prove to the authority that
she has not scanned her ballot by showing the ballot and letting the authorities
check the recordings.

D. Analysis of Prêt à Voter 159

Requirement M (Availability)
(M1) How does the system handle the unintentional breakdown of its components?

The onion mixing and tallying process is not very robust, each teller can deny
service. But the process can be substituted by more robust mixing techniques,
which has been done in newer versions of the scheme.

(M2) How can the system made to gracefully deal with denial of service attacks?

See M1.

Requirement N (Scalability)
(N1) How well does the scheme scale? How big can an electoral constituency be?

he scheme seems to scale very well. If the number of ballots per scanner is
high enough, several scanners can be used to record ballots. The tallying pro-
cess involves several tellers, so this could be a bottleneck, but there can also be
several groups of tellers assigned to several ballots, if the number of ballots per
group is big enough (e.g. one group of tellers for each polling station). But,
the bigger the number of voters in a polling stations, the more important is a
more robust teller setup.

D.3. Conclusion of the Analysis
(S1) Which of the requirements listed above are fully met under the underlying

assumptions?

Requirements D, K and N are met, Requirement C is met if audits check the
random distribution if the permutations. Requirements E and H are met with
an additional paper audit trail, as suggested in the paper. Requirement G is
met under the assumption of a trusted authority. Requirement J is met if the
encryption scheme acts as a binding commitment. Requirements A, B and L
are up to implementation.

(S2) Which requirements are only partly met, and in which way?

Requirement I is met apart from the ballot stuffing attack. In Requirement
F, privacy and receipt-freeness are given, but coercion-resistance is not met.

(S3) Which requirements could be met with minor improvements of the scheme?
What are the suggested improvements?

Requirement M can be met with a more robust technique than the onion mixing,
as suggested in the literature.

(S4) Which requirements are not met?

None

(S5) For which requirements does it depend on a concrete implementation or ap-
plication if they are met?

It is not specified how Requirement A and B are met.

160 6. Appendix

(S6) Are there any concluding remarks?

A big advantage of the scheme is that no component learns the voter’s choice,
under the assumption of a honest ballot creation authority. The analysis of
this scheme showed us that if the candidates are presented in a random order,
one has to be careful that the permutation is really chosen at random to provide
a ballot layout which is fair towards the candidates.

E. Analysis of Scantegrity II
Scantegrity II is a paper-based cryptographic votingscheme. The voter marks her

choice on a paper ballot with confirmation codes printed in invisible ink. She marks
her choice with a decoder pen and scans the ballot, the confirmation code is not
recorded by the scanner.
A trusted authority has a table which records the link between each confirmation

code and the corresponding choice. Entries belonging to ballots not used in the
election period are reveald for audit. Entries belonging to codes/ballots used in the
election are reveald RPC-like.

E.1. General Information about the Voting Scheme
Election type
The first two questions are about the type of the election scheme:

(Q1) Is the election scheme . . .
– . . . paper based, scanner based or computer based?
– . . . meant for presential or internet elections?

Scantegrity II is a paper-based voting scheme designed for presential elections.

(Q2) For which kind of elections is the scheme designed?

It has been used in municipal elections.

(Q3) Does the election scheme allow any special election types?

A version of Scantegrity II provides write-in candidates.

Preliminaries and Assumptions
(Q4) On what cryptographic assumptions is the scheme based?

This depends on the assumptions on which the used commitment schemes are
based.

(Q5) If the scheme relies on trusted parties, which parties need to be trusted?

The authorities who generate the tables and the ballots need to be trusted.Auditors
are trusted as a group to create good randomness.

(Q6) Which components have to be trusted? Does the scheme rely on trusted hard-
ware?

Invisible ink,Scanner memory

E. Analysis of Scantegrity II 161

(Q7) Are there other assumptions?

The existence of a voting booth

What makes this scheme secure?
(Q8) What is the main attribute that leads to the security of the analyzed voting

scheme?

Invisible ink, and confirmation codes which the voter can keep in mind without
noting them.

E.2. Analysis of the Requirements
Requirement A (Eligibility)
(A1) How does the system identify whether persons presenting themselves to vote

are eligible?

This is assumed as given.

Requirement B (Equality)
(B1) How does the system ensure that each eligible voter can cast at most one ballot?

Assumed as given

(B2) How is it made sure that each eligible voter has the possibility to cast her vote?

Assumed as given

Requirement C (Layout neutrality)
(C1) How are choices presented to the voter?

Standard paper ballot

(C2) How is it made sure that no option is favored more than specified by election
rules?

Auditors audit half of the ballots, and each voter can have ballots for auditing.

(C3) How is it made sure that choices are presented fairly to the voters?

Auditing

Requirement D (Revisable ballot marking)
(D1) How does the voter mark her choice?

As in paper elections, but with a special decoder pen which reveals invisible
ink.

(D2) How can the voter verify that the ballot she just created contains a faithful
representation of her preferences? Under what assumptions?

She gets two ballots: one for audit, one for casting. Interpretation of codes are
partly revealed in tables.

162 6. Appendix

(D3) How is it made sure that the voter can revise her ballot?

She can go to pollworker, her ballot is marked as spoiled, she gets a new one.
This has to happen before the ballot is scanned.

Requirement E (Irreversible ballot casting)
(E1) How does the voter cast her ballot?

Her ballot is scanned.

(E2) What defines when a ballot is cast?

The scanning.

(E3) What makes it irreversible? Under what assumptions is it irreversible?

The scanning and recording of the ballot. The voter’s recording of her con-
firmation code makes it provably irreversible.

(E4) What defines the ballot box?

Scanned ballots, recorded in the scanner’s memory.

Requirement F (Privacy and incoercibility)
(F1) How is individual privacy assured? Under which assumptions?

Assumption: Ballots are not revealed, the voter is not observered while scan-
ning, used commitments in the tables are hiding. It is not stated in the paper
what happens with the ballots after voting, however.

(F2) How is individual privacy assured in the future? And under which assump-
tions? (Is it computational? Unconditional? Why?)

Privacy only holds as long as ballots are not revealed and commitments used
in the tables are hiding. (The ballots contain an ID which the voter has on her
receipt). Unconditional/computational privacy depends on the hiding property
of the used commitment scheme.

(F3) How is receipt-freeness assured? And under which assumptions?

Assumption: The scanner’s memory is not read by the adversary, commit-
ments are hiding, we have enough voters (commitments are revealed RPC-like.

(F4) How is coercion-resistance assured? And under which assumptions?

Whoever gets hold of marked paper ballots can coerce. They contain a bal-
lot ID which the voter has on her receipt. Apart from that, as long as the
adversary does not know the connection between receipt-codes and candidates,
he will not be able to coerce to voter that a certain receipt-code has to appear
in the published tables.

E. Analysis of Scantegrity II 163

(F5) Who learns the vote or is able to calculate it?

The scanner records the ballot allong with its ballot ID; Whoever sees the ballot
learns vote and ballot ID, their processing after scanning is not specified.

(F6) Who gets critical information? What information is this and in which way is
it critical?

The tables are the most critical information. They have to be contained in
trusted hardware or created and processed by a trusted authority.

Requirement G (Secrecy of intermediate results)
(G1) How does the voting scheme guarantee that no information about the contents

of the ballot box leaks before the tallying procedure is completed? Under
which assumptions?

The scanner memory has to be trusted, so no one can access it before the
election period is over.

Requirement H (Inviolatability of the ballot box)
(H1) How does the system make sure that no ballots are modified? Under which

assumptions?

The voter records her confirmation code. The tables which show the connection
between code and choice are opened RPC-like. Each voter can check that the
right receipt-codes are opened and the flags are in the right places.

(H2) How does the system make sure that no ballots are removed? Under which
assumptions?

The voter recognizes if her receipt code does not appear on the public bulletin
board.

(H3) How does the system make sure that no ballots are added?

This is not specified.

Requirement I (Tally integrity)
(I1) How is the tallying of the votes implemented?

Scanner-memory is read.

(I2) How is it made sure that only the ballots correctly cast are counted?

Has to be assumed as given.

(I3) If not correctly cast ballots are counted, who sees it?

No one. Authentication has to happen before election, ballot stuffing is only
prevented through joint observation.

164 6. Appendix

(I4) If not correctly cast ballots are counted, who can prove it and how?

-

(I5) If not correctly cast ballots are counted, what can be done to correct the error?

-

Requirement J (Individual verifiability)
(J1) How can a voter convince herself that her ballot is included in the tally? Under

which assumptions?

She checks the reveiled confirmation code in the line of the table belonging
to her ballot ID. Used commitment scheme has to be binding.

(J2) What is the underlying principle used? Physical? Statistical/Probabilistic?
Trust in the authorities?

See above.

(J3) If the above check fails, how can the voter prove that her ballot is not included
in the tally?

She knows her receipt-code, and the probability that she guesses an unrevealed
receipt-code which is on a certain ballot is low. Voter privacy is revealed,
though.

(J4) How and by whom can this error be corrected?

It can be corrected by the authorities who have the tables.

Requirement K (Auditability and public verifiability)
(K1) How can an interested party be convinced that the result published by the

BTA is correct?

Everyone can check the revealed parts of the tables (either opened for audit
or RPC-like for real votes). Soundness of this proof depends on the binding
property of the used commitment scheme. If the voting authority knows which
confirmation codes are not checked, it can publish the wrong code and count
the corresponding choice.

(K2) What is the underlying principle used? Physical? Mechanical? Electrical?
Electronic? Statistical/Probabilistic? Trust in the authorities?

Audits, RPC, commitments

(K3) If the result is not correct, who can prove it and how?

If anyone sees that the tables are wrong, everyone does. If a voter does not
find her confirmation code, see J3.

E. Analysis of Scantegrity II 165

(K4) If the result is not correct, can the error be corrected? If so, by whom and how?

If the audit before the election phase fails, everyone sees immediately that the
tables are wrong. The voter can prove a fraud with her confirmation code. The
authority can correct the error.

(K5) Is it traceable who/what has caused the error?

If the voter’s confirmation code is actually on her ballot (which can only be
proven by opening corresponding commitments in the tables), the error was
probably done by the authority holding the tables (unless the voter guessed
well).

Requirement L (Robustness)
(L1) How is invalid or malformed voter data treated?

Not specified by the scheme

(L2) What happens when a voter aborts the voting process?

Either she scans her ballot, or she doesn’t. If she doesn’t, she has not voted.
If she does, her ballot is counted. It is unspecified what happens if she aborts,
if she can come back later and obtain a new ballot for casting.

Requirement M (Availability)
(M1) How does the system handle the unintentional breakdown of its components?

The only thing that could brake down are the scanners and the tables. Table-
backups compete with privacy. If the tables are lost, verifiability becomes im-
possible, but the tally can still be computed. Backup of the scanner-memory
also competes with privacy. (If this is lost, all votes are lost, too).

(M2) How can the system made to gracefully deal with Denial of Service attacks?

There is no internet connection needed while voting. If the scanners do not
work, they can be replaced, but their data (cast ballots) might be lost.

Requirement N (Scalability)
(N1) How well does the scheme scale? How big can an electoral constituency be?

The scheme scales very well. More than one scanner can be used as long
as on each scanner, enough ballots are recorded.

E.3. Conclusion of the Analysis
(S1) Which of the requirements listed above are fully met under the underlying

assumptions?

Requirements C,D, E, F, G, H, K and N are met.

166 6. Appendix

(S2) Which requirements are only partly met, and in which way?

-

(S3) Which requirements could be met with minor improvements of the scheme?
What are the suggested improvements?

-

(S4) Which requirements are not met?

None.

(S5) For which requirements does it depend on a concrete implementation or ap-
plication if they are met?

Assumptions A,B,I,J,L and M depend on environment and implementation.

(S6) Are there any concluding remarks?

Scantegrity II has a lot of trust assumptions to hardware and authorities (ta-
bles, scanner-memory, handling of marked and scanned ballots). The most
critical part is the processing of the tables. Error correcting is easy in some
cases and difficult in others. Ballot Stuffing might be a problem. If the voting
authority knows that a certain voter will not check her confirmation code, he
can count this voter’s ballot as he wishes. However, the code is so short that
the adversary can never be sure the voter doesn’t remember it, even without
her receipt.

	Contents
	1 Introduction
	1.1 Contributions of this Work
	1.1.1 Requirements of Voting Schemes
	1.1.2 Presential Elections
	1.1.3 Internet Elections

	1.2 Structure of this Work

	2 Preliminaries
	2.1 What are Cryptographic Voting Schemes?
	2.1.1 Privacy-type properties
	2.1.2 Verifiability
	2.1.3 Types of Cryptographic Voting Schemes

	2.2 Known Attacks on Coercion-Resistance
	2.3 Cryptographic Primitives
	2.3.1 General Definitions
	2.3.1.1 Probabilistic Polynomial Time (PPT) Algorithms
	2.3.1.2 Discrete Logarithm Problem
	2.3.1.3 Decisional Diffie-Hellman Problem
	2.3.1.4 Negligible and Overwhelming Functions

	2.3.2 Cryptographic Hash Functions
	2.3.3 Public Key Encryption Schemes
	2.3.3.1 Definition of Public Key Encryption Schemes
	2.3.3.2 Reencryption
	2.3.3.3 The Elgamal Encryption Scheme

	2.3.4 Commitment Schemes
	2.3.4.1 Definition of Commitment Schemes
	2.3.4.2 Pedersen Commitments

	2.3.5 Zero-Knowledge Proofs
	2.3.6 Verifiable Shuffling and Mixnets
	2.3.6.1 Mixnets
	2.3.6.2 Proof of a Correct Shuffle with Shadow Mixes
	2.3.6.3 Randomized Partial Checking

	2.3.7 Bilinear Groups and Pairings
	2.3.8 SXDH-Assumption
	2.3.9 The Groth-Sahai Proof System
	2.3.10 Digital Signatures
	2.3.11 Automorphic Structure-Preserving Signatures

	3 Requirements of Cryptographic Voting Schemes
	3.1 Related Work
	3.2 A Taxonomy for Cryptographic Voting Schemes
	3.2.1 What is an Election?
	3.2.2 Process of a Paper Election
	3.2.2.1 Pre-election
	3.2.2.2 Voting phase
	3.2.2.3 Post-election

	3.2.3 Requirements of an Election Scheme
	3.2.4 A Roadmap for Analyzing Elections
	3.2.4.1 General Information about the Voting Scheme
	3.2.4.2 Analysis of the Requirements
	3.2.4.3 Conclusion of the Analysis

	3.2.5 Categorizing the Requirements
	3.2.6 Experiences
	3.2.6.1 German Paper Election
	3.2.6.2 Prêt à Voter

	3.3 A Review of Definitions of Coercion Resistance
	3.3.1 General remarks
	3.3.2 Definition Review
	3.3.3 Conclusion

	4 Coercion Resistance in Presential Elections
	4.1 Related Work
	4.1.1 Related Work on Presential Elections
	4.1.2 Related work on Bingo Voting
	4.1.3 Related work on write-in candidates

	4.2 Bingo Voting
	4.2.1 The Original Bingo Voting Scheme
	4.2.1.1 Notation
	4.2.1.2 Preconditions
	4.2.1.3 Pre-Voting Phase
	4.2.1.4 Voting Phase
	4.2.1.5 Post-Voting Phase

	4.2.2 Improvements of Bingo Voting
	4.2.3 A discussion on Coercion-Resistance

	4.3 Bingo Voting in the Student Parliament Election
	4.3.1 About the Election
	4.3.2 Special Requirements of the Student Parliament Election
	4.3.3 Implementation and Application
	4.3.3.1 Used Hardware
	4.3.3.2 Pre-Voting Phase
	4.3.3.3 Election Phase
	4.3.3.4 Post-Voting Phase

	4.3.4 Experiences
	4.3.5 Analyzing this Election with the Taxonomy
	4.3.6 Discussions about the Election's Security
	4.3.7 Conclusion and Possible Improvements

	4.4 Bingo Voting with Write-in candidates
	4.4.1 Preconditions
	4.4.2 Pre-voting Phase
	4.4.3 Voting Phase
	4.4.4 Post-voting Phase
	4.4.5 Privacy and Coercion-Resistance

	4.5 Fuzziness: Coercion-Resistant Elections with Write-In Candidates
	4.5.1 A Definition of Fuzziness
	4.5.2 Weak Fuzziness

	4.6 Including Fuzziness in Election Schemes
	4.6.1 General Construction of ,-Fuzzy Voting Schemes with Homomorphic Tallying
	4.6.2 General Construction of ,-Fuzzy Mix-Based Voting Schemes
	4.6.2.1 Weak ,-fuzzy mix-based voting schemes

	4.6.3 Bingo Voting with Fuzziness
	4.6.3.1 Construction of ,-Fuzzy Bingo Voting
	4.6.3.2 Fuzzy Bingo Voting with Write-In Support

	4.6.4 Discussion
	4.6.5 Fuzziness and Coercion-Resistance

	5 Coercion Resistance in Internet Elections
	5.1 Related Work
	5.1.1 Remote Voting Schemes Used in Practice
	5.1.2 Related Work on Revoting
	5.1.3 Related Work on Delegated Voting

	5.2 Revoting
	5.2.1 Requirements for Revoting
	5.2.1.1 Information which Betrays a Re-Vote
	5.2.1.2 Tallying Recast Votes Correctly

	5.2.2 An Approach: Revoting in Five Phases
	5.2.2.1 The Idea of our Approach
	5.2.2.2 Overview over the Five Phases

	5.3 An Instantiation of our Revoting Scheme
	5.3.1 Overview over the Used Techniques
	5.3.2 Participants
	5.3.3 Assumptions about the Setup
	5.3.4 Protocol Description
	5.3.4.1 Pre-Voting Phase
	5.3.4.2 Voting Phase
	5.3.4.3 Post-voting phase

	5.3.5 Discussion
	5.3.6 Security Discussion
	5.3.6.1 Privacy Properties
	5.3.6.2 Verifiability

	5.3.7 Analysis with the Taxonomy

	5.4 Delegated Voting
	5.4.1 Liquid Democracy and Delegated Voting in a Nutshell
	5.4.1.1 Bryan Ford's Rules for Delegated Voting
	5.4.1.2 Anomalies in Elections with Vote Delegation

	5.4.2 Requirements Specific to Voting Schemes with Vote Delegation
	5.4.3 Agora: An Existing Solution
	5.4.3.1 Pre-Voting Phase
	5.4.3.2 Proxy's Voting Phase
	5.4.3.3 Voter's Voting Phase
	5.4.3.4 Vote Delegation
	5.4.3.5 Post-Voting Phase
	5.4.3.6 How does Simplified Agora Fulfil the Additional Requirements?
	5.4.3.7 Coercion-Resistance of Simplified Agora

	5.4.4 Vote Fetching
	5.4.4.1 Motivation for Vote Fetching
	5.4.4.2 Possible Difficulties with Vote Fetching

	5.4.5 Fetch-and-Cast: A Delegated Voting Scheme with Vote Fetching
	5.4.5.1 Setup and Pre-Voting Phase
	5.4.5.2 Proxy's Vote Generation Phase
	5.4.5.3 Voter's Voting Phase
	5.4.5.4 Post-Voting Phase
	5.4.5.5 Possible extensions
	5.4.5.6 How does the scheme meet the requirements above?

	5.4.6 Discussion

	6 Conclusion and Future Work
	Appendix
	A Analysis of the German Paper Election
	A.1 General Information about the voting scheme
	A.2 Analysis of the Requirements
	A.3 Conclusion of the Analysis

	B Analysis of the Student Parliament Election
	B.1 Preliminaries about the Voting Scheme
	B.2 How the Requirements are met
	B.3 Conclusion of the Analysis

	C Analysis of our Revoting Scheme
	C.1 General Information about the Voting Scheme
	C.2 Analysis of the Requirements
	C.3 Conclusion of the Analysis

	D Analysis of Prêt à Voter
	D.1 General Information about the voting scheme
	D.2 Analysis of the Requirements
	D.3 Conclusion of the Analysis

	E Analysis of Scantegrity II
	E.1 General Information about the Voting Scheme
	E.2 Analysis of the Requirements
	E.3 Conclusion of the Analysis

