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Abstract 
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Abstract 

Temperature is one major physical quantity to characterize the subsurface because the 

temperature distribution and heat propagation depend on the properties of the subsurface. 

Therefore, heat can be used as a tracer. Furthermore, the attention on subsurface temperature 

is rising, because of the increasing popularity of geothermal energy. This additional 

application area of subsurface temperature and the combined new insights further strengthen 

the applicability of heat as a subsurface tracer. This thesis further promotes heat as a tracer by 

evaluating a thermal tracer test and comparing the obtained results to previous studies. 

Additionally, a new thermal field test for the hydraulic characterization of the subsurface is 

developed. This new development transfers the classical geothermal field test, the thermal 

response test (TRT), to a powerful hydrogeological field test, by introducing a new evaluation 

approach.  

The first part of this thesis encloses three separate studies regarding the TRT. The TRT is a 

field investigation technique to determine heat transport parameters of the subsurface. This is 

crucial for the planning of shallow geothermal energy systems, and particularly relevant for a 

proper configuration of borehole heat exchangers (BHE). The TRT estimates the thermal 

conductivity of the subsurface and the borehole resistance of the BHE. Over a period of 

several days, the heat carrier fluid is artificially heated at the inlet of the BHE and the thermal 

response, the temperature evolution at the outlet, is recorded. By calibrating the Kelvin line-

source equation, the searched parameters are obtained. The first study analyses the tampering 

effects of simplifications assumed for the standard TRT evaluation by interpreting numerical 

generated datasets. The analyzed tampering effects, which are not considered by the Kelvin 

line-source theory but by the applied numerical model, are the shank spacing of the BHE, the 

initial non-uniform temperature distribution of the subsurface and variations of thermal 

dispersivity in the subsurface. This study reveals minor tempering effects for the various 

shank spacings of the BHE and moderate tampering effects for the initial non-uniform 

temperature distribution, which slightly exceed a distortion of 10%. However, a significant 

tampering effect of the varying thermal dispersivities with constant Darcy velocities of 0.1 m 

day-1 is observed, which cause an overestimation between 20% and 190% of the actual 

thermal conductivity. 
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The second study picks up this significant tampering influence of groundwater flow on the 

standard TRT evaluation and develops a new evaluation approach to overcome this limitation. 

To fulfill this objective, a suitable analytical solution, the moving line source equation, is 

chosen as the basis of the new evaluation approach. To overcome potential distorting 

influences of the missing representation of the BHE geometry, the moving line source basis is 

supplemented by a numerically generated correction term. Using this correction term, it is 

possible to determine the integral Darcy velocity by a TRT evaluation. This approach is 

successfully tested on three literature-based TRT datasets. 

The third study offers the objective to establish the TRT as a geothermal field test in the 

application area of hydrogeological field test, such as the pumping test. This study benefits 

from the fact that the thermal properties of an aquifer are not as variable as the hydraulic ones, 

especially the hydraulic conductivity. Therefore it is possible to determine a hydraulic 

conductivity range with the new TRT evaluation approach, based on the assumption of 

realistic ranges for the thermal conductivity, the volumetric heat capacity, the thermal 

dispersivity and the thermal borehole resistance. The suggested hydraulic characterization 

method is successfully tested on a large scale geothermal laboratory experiment and a 

commercially performed TRT. Additionally, this successfully evaluation represents a 

validation of the new TRT evaluation developed in the second study. 

The fourth study examines a thermal tracer test (TTT). During this TTT 16 m³ of 22°C hot 

water are injected into a porous aquifer and the heat propagation is monitored by a down 

gradient well transect of five separate observation wells. The explored Lauswiesen test site is 

located near Tübingen, Germany. Based on the knowledge from previous studies, a numerical 

model is generated to obtain artificial results, which accord to an ideal heat transport 

behavior. From the measured and simulated thermal breakthrough curves the peak arrival time 

and the peak temperature are determined and comprehensively compared. Based on this 

comparison, the primarily responsible heat transport processes are identified. These are the 

layered structure of the aquifer, vertical and horizontal orientated preferential flow paths, and 

an induced transient hydraulic head change during the injection of the tracer. The results of 

the TTT are confirmed by comprehensively comparing them to the results of direct push 

injection logging measurements. 
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Kurzfassung 

Die Temperatur ist eine der bedeutendsten physikalischen Größen um den Untergrund zu 

charakterisieren, da die Temperaturverteilung und der Wärmetransport von den Eigenschaften 

des Untergrundes abhängen. Daher kann Wärme als Tracer eingesetzt werden. Des Weiteren 

steigt die Aufmerksamkeit für die Temperatur des Untergrundes durch die steigende 

Popularität der geothermischen Energie. Dieses zusätzliche Anwendungsfeld für 

Untergrundtemperaturen und der damit verbundene Erkenntnisgewinn, verstärkt die 

Anwendbarkeit von Wärme als Tracer. Diese Arbeit treibt den Einsatz von Wärme als Tracer 

voran, indem ein thermischer Tracertest ausgewertet wird und die erzielten Resultate mit 

früheren Studien verglichen werden. Zusätzlich wird ein neuer thermischer Feldversuch für 

die hydraulische Charakterisierung des Untergrundes entwickelt. Diese Neuentwicklung 

überführt den klassischen geothermischen Feldversuch, den Thermal Response Test (TRT), in 

einen aussagekräftigen hydrogeologischen Feldversuch durch die Einführung einer neuen 

Auswertemethode. 

Der erste Teil dieser Arbeit beinhaltet drei separate Studien die sich mit dem TRT 

beschäftigen. Der TRT ist ein Feldversuch, um die Wärmetransportparameter des 

Untergrundes zu bestimmen. Dies ist bedeutend für die Planung von geothermischen Anlagen 

und besonders wichtig für die richtige Konfiguration der Erdwärmesonden (EWS). Der TRT 

bestimmt die thermische Leitfähigkeit des Untergrundes und den Bohrlochwiderstand der 

EWS. Über mehrere Tage wird das Wärmeträgerfluid künstlich am Einlass der EWS erwärmt 

und die thermische Antwort, die Temperaturentwicklung am Auslass, aufgezeichnet. Mit 

Hilfe der Kalibrierung der Kelvinschen Linienquellen werden die gesuchten Parameter 

bestimmt. Die erste Studie untersucht die verfälschenden Einflüsse einiger Vereinfachungen, 

die bei der Standard-TRT-Auswertung angenommen werden, durch die Interpretation von 

numerisch generierten Datensätzen. Die analysierten verfälschenden Einflussfaktoren, die 

nicht in der Kelvinschen Linienquelle berücksichtigt werden, aber von dem verwendeten 

numerischen Model, sind der Rohrabstand der EWS, die initiale uneinheitliche 

Temperaturverteilung im Untergrund und Veränderungen der thermischen Dispersivität des 

Untergrundes. Diese Studie bestimmt geringe Ungenauigkeiten für die verschiedenen 

Rohrabstände der EWS und moderate Ungenauigkeiten für die uneinheitliche 

Temperaturverteilung, die eine Abweichung von 10% leicht überschreitet. Jedoch wurde eine 

signifikante Ungenauigkeit für die unterschiedlichen thermischen Dispersivitäten bei einer 
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konstanten Darcygeschwindigkeit von 0,1 m Tag-1 bestimmt, die zu einer Überschätzung der 

tatsächlichen thermischen Leitfähigkeit von 20% bis 190% führt. 

Die zweite Studie greift diesen deutlich Einfluss des Grundwasserflusses auf die Standard-

TRT-Auswertung auf und es wird ein neuartiger Auswerteansatz entwickelt, um diese 

Problematik zu lösen. Um diese Zielsetzung zu erfüllen, wird mit der Moving line source 

Gleichung eine geeignete analytische Lösung für den neuen Auswerteansatz gewählt. Die 

Moving line source Lösung wird durch einen numerisch bestimmten Korrekturterm erweitert, 

um mögliche verfälschende Einflüsse durch die fehlende Berücksichtigung der EWS-

Geometrie zu vermeiden. Mittels dieses Korrekturterms ist es möglich eine integrale 

Darcygeschwindgkeit durch die TRT-Auswertung zu bestimmen. Dieser neue Ansatz wurde 

erfolgreich an drei literaturbasierten TRT-Datensätzen getestet.  

Ziel der dritten Studie ist es den TRT als einen geothermischen Feldversuch in dem 

Anwendungsbereich der hydrogeologischen Feldversuche, wie zum Beispiel der 

Pumpversuch, zu etablieren. Diese Studie profitiert von der Tatsache, dass die thermischen 

Aquiferseigenschaften weniger variabel sind als die hydraulischen, insbesondere die 

hydraulische Leitfähigkeit. Daher ist es möglich die Spannbreite der hydraulischen 

Leitfähigkeit mit dem neuen TRT-Auswerteverfahren zu bestimmen, unter der Annahme von 

realistischen Intervallen für thermische Leitfähigkeit, volumetrische Wärmekapazität, 

thermische Dispersivität und thermischen Bohrlochwiderstand. Die vorgeschlagene 

hydraulische Charakterisierungsmethode wurde erfolgreich an Hand eines großmaßstäblichen 

geothermischen Laborversuchs und eines kommerziell ausgeführten TRTs getestet. 

Gleichzeitig stellt diese Untersuchung die Validierung der neuen TRT-Auswertemethode dar, 

die in der zweiten Studie entwickelt wurde. 

Die vierte Studie untersucht einen thermischen Tracertest (TTT). Während dieses TTTs 

werden 16 m³ an 22°C warmen Wasser in einen porösen Aquifer eingeleitet und die 

Wärmeausbreitung mittels eines stromabwärtsorientierten Profils aus fünf separaten 

Beobachtungsbrunnen überwacht. Das untersuchte Versuchsgelände Lauswiesen befindet sich 

in der Nähe von Tübingen, Deutschland. Basierend auf den Erkenntnissen von 

vorangegangenen Studien, wird ein numerisches Modell erstellt, um künstliche Ergebnisse zu 

erzeugen, die ein ideales Wärmetransportverhalten repräsentieren. Von den gemessenen und 

simulierten thermischen Durchbruchskurven wird die Ankunftszeit des Maximums und 



Kurzfassung 

 

v 

dessen Temperatur bestimmt und für einen detaillierten Vergleich verwendet. Die 

hauptsächlich verantwortlichen Wärmetransportprozesse werden auf Grund dieses Vergleichs 

identifiziert. Diese sind die geschichtete Struktur des Aquifers, vertikal und horizontal 

orientierte bevorzugte Fließpfade und eine erzeugte instationäre Änderungen des 

hydraulischen Potentials wären der Eingabe des Tracers. Die Ergebnisse der TTT-Auswertung  

werden durch den ausführlichen Vergleich mit einer Direct-Push-Injection-Logging Messung 

bestätigt.  
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1 Introduction 

1.1 Background 

Energy demand and climate change present some of the major challenges of the next century. 

On the one hand, the long term trend of the energy demand will increase and a safe energy 

supply is indispensable to ensure economic growth. On the other hand, the effects of climate 

change have to be mitigated. To fulfill these challenges, it is necessary to use the existing 

primary energy more efficiently and to find new energy resources which avoid or reduce 

greenhouse gas emissions.  

Geothermal energy exhibits a great potential to solve the aforementioned challenges. Bromley 

et al. [2010] listed the following advantages of using geothermal energy: It is available 

virtually worldwide; it provides base load power and heat, respectively cold; it requires 

technologies that are available in both developed as well as developing countries and it 

possesses a small land-use footprint. Depending on the type of use and system employed to 

harvest the geothermal energy, a better understanding of the interaction between the 

individual components of the geothermal system and the heat transport in the underground is 

mandatory.  

The definition of geothermal energy includes all kinds of energy stored as heat below the 

surface of the earth. Hence, there are different types of reservoirs within the earth, which 

might be used to attain geothermal energy. These reservoirs have different characteristics, for 

instance reservoir temperature or depth, which need to be considered to ensure an efficient use 

of the reservoir. According to Banks [2008], the geothermal reservoirs can be classified as a 

low, intermediate and high enthalpy systems. Intermediate and high enthalpy systems have 

high production temperatures (> 80°C). These systems are usually planned to provide electric 

and thermal energy if the temperatures are sufficient [Banks, 2008]. The high temperatures in 

combination with the reservoir depth (usually 1000 m below the surface) require the 

consideration of specific technical aspects for the energy exploration and various geoscientific 

parameters to describe the reservoir itself [Stober and Bucher, 2012]. These technical aspects 

and geoscientific parameters are different from those of low enthalpy systems, which are only 

applied to generate thermal energy at low temperature levels from shallow depth. In generally, 

these low enthalpy systems exhibit extraction temperatures of approximately 25°C and the 
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depth varies from 1 up to 150 m [Stober and Bucher, 2012]. The studies enclosed within the 

present thesis focus on low enthalpy systems. 

For certain applications, such as space heating, these low extraction temperatures require the 

application of an additional energy device, commonly a heat pump. The heat pump helps 

increase the temperature of the geothermal source to the temperature level required for the 

heating system [Tholen and Walker-Hertkorn, 2008]. To elevate the temperature level, the 

heat pump itself consumes auxiliary energy in the form of electricity [e.g. Bayer et al., 2012]. 

The amount of auxiliary energy consumption rises with an increasing temperature difference 

between the geothermal source and the heating system. To lower the temperature of a 

building, cooling applications, such as heat pump systems can be applied reverse to transfer 

heat from the building into the subsurface. The natural and undisturbed temperature regime of 

the shallow subsurface is typically very stable and varies only in the upper part due to diurnal 

temperature fluctuations [Taylor and Stefan, 2009]. This zone represents the geothermal 

reservoir used by a ground source heat pump system (GSHP). The thermal reservoir interacts 

in all directions with the surrounding environment, at the bottom a geothermal heat flux 

occurs, at the top there is a thermal interaction with the atmosphere and at the sides of the 

thermal reservoir there might be a heat flux due the advective and conductive heat transport. 

The direction of these heat fluxes across the reservoir boundaries depends on the temperature 

difference between the reservoir and the surrounding environments. Heat inside the thermal 

reservoir propagates by advection and thermal dispersion (see chapter 1.2 for more details on 

heat transport). To ensure a sustainable and efficient usage of this geothermal source, both the 

heat budget and the heat transport properties have to be considered. Based on this knowledge 

an adequate utilization technique can be developed. The shallow geothermal energy can be 

exploited by two types of systems, the groundwater heat pump (GWHP) and the ground 

source heat pump (GSHP). In GWHP systems or so called open systems heat and mass 

(groundwater) are exchanged with the subsurface. In general, the groundwater is extracted 

from a spring, dug well, drilled borehole or flooded mine [Banks, 2008]. Commonly, an open 

system consists of an extraction well, which heaves the groundwater and supplies the heat 

pump with this water, and a second well, the injection well, which passes the thermally used 

groundwater back into the aquifer [Koenigsdorff, 2011]. In contrast to this, closed systems 

only exchange heat with the subsurface. The main representatives of closed systems are 

vertical borehole heat exchanger (BHE), horizontal closed loops and energy piles [Banks, 
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2008]. The basic functionality of a closed loop system can be explained by using the example 

of a BHE, which is the most commonly used representative of this category [Bayer et al., 

2012]. A BHE is a drilled borehole equipped with a pipe system, for instance a single u-pipe, 

a double u-pipe or a coaxial pipe. The remaining surplus of the borehole, which is not 

occupied by the pipe system, is normally backfilled with a grouting material to guarantee the 

thermal connection between the pipes and the subsurface. The second task of the grouting 

material is to protect the subsurface from negative consequences, such as hydraulic short 

circuits between two aquifers, caused by the borehole. Inside the pipes a heat carrier fluid 

circulates, which exchanges thermal energy with the surrounding subsurface and transports 

the obtained thermal energy to the heat pump at the surface.  

Such shallow geothermal systems are among the fastest growing renewable energy 

technologies in the world [Rybach, 2010]. Furthermore, most parts of this technology, like the 

heat pump, are already well established and today a great number of installations already 

exist. This is corroborated by the 2.8 million GSHP installed in the year 2010 worldwide 

[Lund et al., 2011]. Bayer et al. [2012], who analyzed the current state of shallow geothermal 

installations in Europe, stated that there are over one million units installed in Europe and that 

this number will further increase. Blum et al. [2010] quantified the amount of shallow 

geothermal installations in Germany to approx. 100,000 units. All these three studies predict a 

recurrent growth of the number of GSHP systems. The amount of thermal energy supplied by 

the GSHP is small compared to the total amount of energy used for space heating. In the 

residential sector, Bayer et al. [2012] specified a percentage of less than 1% of GSHPs on the 

total heating energy amount. But this emphasizes that there is still a great growth potential 

and that this technology is far from reaching any level of market saturation.  

1.2 Heat transport in the shallow subsurface 

Heat propagation in the saturated porous media is controlled by three basic processes [de 

Marsily, 1986]. These are (1) heat transport through the solid phase, (2) heat transport by fluid 

movement and (3) heat exchange between the fluid and the solid phase. Both processes (1) 

and (2) result in a separate transport equation for heat in the fluid and solid phase. The 

interaction between these two transport equations is controlled by the heat exchange process 

(3). Due to the fast heat exchange rates between the fluid and the solid in a porous media, it is 

a common assumption to suppose an instantaneous thermal equilibrium in the porous media. 

For instance, de Marsily [1986] presented a study, which demonstrated that the temperature 
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difference between the solid and the fluid phase in a media composed of grains < 1mm will be 

equilibrated in less than one minute. Because of the valid assumption of an instantaneous 

thermal equilibrium, there is usually no significant temperature difference between the solid 

and the fluid temperature of the porous media. Hence, the heat transport in the porous 

subsurface can be simplified to be governed only by heat transport through the solid and the 

fluid phase with a uniform temperature distribution in both phases. Based on the principles of 

heat conservation, the heat transport governing equation in the porous media can be expressed 

as [de Marsily, 1986] 

( )( ) )( TvdivTgradDdiv
t

T
th−⋅=

∂
∂

 
(1-1) 

Where T specifies the temperature of the porous media (K), D denotes the thermal dispersion 

coefficient (m s-2) and vth represents the thermally retarded velocity (m s-1).The heat transport 

by fluid movement is termed advection. In the present thesis the term convection is only used 

if the fluid movement is caused by temperature induced density differences. It should be noted 

that in porous media, the groundwater velocity required for advective/convective heat 

transport, is typically described by Darcy’s law. Furthermore, it is necessary to consider that 

the advective heat transport velocity is retarded compared to the actual groundwater flow 

velocity. These effects of thermal retardation can be calculated by 

pm

pw
th c

c
vv =  

(1-2) 

Where cpm and cpw are the volumetric heat capacity of the porous media and the groundwater 

(J m-3 K-1). This thermally retarded velocity assumes a fictitious medium, which is completely 

streamed by groundwater, and disregards the actual velocity distribution caused by the 

heterogeneous structure of the pore channel network [de Marsily, 1986]. The effect of the 

existing variability of the groundwater velocity field, which is mainly caused by the granular 

structure of the porous media, is considered in the thermal dispersion coefficient D. This 

coefficient includes the isotropic and groundwater flow independent thermal diffusivity, 

which forms the quotient of the thermal conductivity and the volumetric heat capacity of the 

porous media. Further, this dispersion coefficient possesses a groundwater flow depending 

part. This part linearly links the vth with a longitudinal, αl, and two transversal dispersivities, 

αt. Therefore, the thermal dispersion is a tensor encompassing a coefficient parallel to the 

groundwater flow direction and two coefficients transversal to the groundwater flow direction 
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[de Marsily, 1986]. In this thesis it is assumed that both transversally orientated thermal 

dispersion coefficients are equal. The resulting longitudinal and transversal thermal dispersion 

coefficients (Dl and Dt) are 

thl
pm

m
l v

c
D αλ

+=  
(1-3) 

tht
pm

m
t v

c
D αλ +=  

(1-4) 

Where λm represents the thermal conductivity of the porous media (W m-1 K-1). The heat 

transport governing equation (Eq. 1-1) can be solved analytically or numerically. It should be 

noted, that thermal dispersion might be smaller than solute dispersion due to the heat 

exchange between the solid and fluid phase [Molina-Giraldo et al., 2011a]. In general, the 

analytical solution bases on a set of simplifications, but provides an exact solution of the 

entire space [Mohrlok, 2008]. These simplifications and assumptions are related to the 

parameters of the domain, the geometry of the system and the initial and boundary conditions 

of the problem. Based on these assumptions, suitable analytical solutions for various heat 

transport situations can be derived. For instance, several suitable solutions exist to simulate a 

BHE.  

Various analytical solutions exist for different simplifications of the BHE geometry. The most 

important ones are the solutions with a representation of the BHE as a line-shaped [e.g. 

Molina-Giraldo et al., 2011b] or cylinder-shaped [e.g. Sass and Lehr, 2011] heat source 

and/or a heat source of infinite [e.g. Diao et al., 2004] or finite [e.g. Zeng et al., 2002] length. 

Furthermore, the applied analytical solutions consider constant initial and boundary 

conditions. This simplification can be overcome by a Laplace transformation [Mohrlok, 

2008]. More frequently, utilizing the fact that energy is an extensive variable, the principles of 

spatial and temporal superposition are applied to simulate BHE arrays or BHEs with variable 

heat loads [e.g. Diao et al., 2004]. All these analytical solutions also assume that the hydraulic 

and thermal parameters are independent of time and temperature and that each of the 

parameters are homogenously distributed. The analytical solutions also differ in the transport 

processes, which are assumed. There are solutions which only consider conductive heat 

transport [e.g. Zeng et al., 2002] and other which consider conductive and advective heat 

transport [e.g. Carslaw and Jaeger, 1959; Molina-Giraldo et al., 2011b]. 
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Contrary to the analytical approaches, numerical solutions are able to represent more complex 

systems. Hence, they are suitable to solve transport problems with a complex geometry, 

highly variable boundary conditions, heterogeneous distributions of the initial conditions 

and/or the parameter distributions [Mohrlok, 2008]. In contrast to analytical solutions, 

numerical approaches calculate values only at a set of discrete numerical nodes. In general, 

three different numerical methods can be used to simulate heat transport in porous media: the 

finite difference method, the finite volume method and the finite element method. Based on 

these three different methods, there are several computer codes available to simulate 

subsurface heat transfer due to shallow geothermal systems. Hecht-Méndez et al. [2010] 

assembled a list of 18 different suitable numerical codes of varying complexity. The computer 

code complexity mainly depends on the ability to consider hydraulic and thermal processes 

alone or chemical processes in addition and on how the two, or respectively, three processes 

are coupled. More straightforward computer codes, such as AST/TWOW and VS2DH, 

possess a one way coupling between the hydraulic and thermal processes while more advance 

numerical codes exhibit a full coupling between the involved processes (e.g. FEFLOW and 

FRACtrue). 

1.3 Thermal field test methods 

Temperature is one major intensive quantity of the subsurface. Therefore, it is obvious to use 

temperature measurements to examine the subsurface [Anderson, 2005; Saar, 2011]. This 

thesis presents evaluations of two different thermal field tests, the thermal response test (TRT) 

and the active thermal tracer test (TTT). Comparable to the classification of shallow 

geothermal systems, these field tests can also be distinguished by the different thermodynamic 

interaction of the heat source and the subsurface. Similarly to closed loop systems, the TRT 

applies a BHE as a heat source, which is a thermodynamic closed system. In correspondence 

to an open geothermal system, the source of an active TTT is a groundwater well, which is 

used to exchange heat and water with the aquifer. 

1.3.1 Thermal response test 

The TRT is the most standard field investigation technique for close shallow geothermal 

systems using a BHE. The basic principle of the TRT is to thermally stress the subsurface by 

injecting or extracting heat in or from the subsurface through a BHE. The thermal response is 

then evaluated to derive the major heat transport characteristics of the examined system. 

These characteristics are typically the effective thermal conductivity λeff and the thermal 
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borehole resistance Rb. In general, a TRT device consists of a circulation pump, which 

controls the flow rate of the heat carrier fluid, temperature sensors connected to a data logger 

to record the development of the heat carrier fluid temperature, and a heating or cooling 

device. 

One of the major research topics related to the standard TRT is the accuracy of the obtained 

values λeff and Rb. The standard TRT evaluation encompasses a parameter estimation applying 

the Kelvin line source equation [e.g. Gehlin, 1998]. This approach exhibits several 

assumptions and not all effects which influence the TRT experiment are considered by this 

analytical solution. This nonobservance might have a tampering influence on the resulting 

parameters. Signorelli et al. [2007] analyzed by interpreting results of a numerical model, the 

tampering influences of borehole length, subsurface heterogeneity, groundwater movement 

and variable data quality on the resulting λeff values. The study “Numerical sensitivity study of 

thermal response tests” [Wagner et al., 2012b] presented in chapter 2, adopts the 

methodology of Signorelli’s study to determine the tampering effects of different 

assumptions. Further, these analyses are extended by a sensitivity analysis of the result. As the 

standard TRT evaluation includes a simultaneous determination of λeff and Rb, the present 

study performs a sensitivity analysis of both resulting parameters and not only of λeff. 

Motivated by the study of Signorelli et al. [2007], which demonstrated that there is a 

tampering effect of a non-uniform initial ground temperature distribution (e.g. geothermal 

gradient) based on one artificial dataset, a systematic survey of this effect is performed. One 

of the most intensively studied tampering effect is additional heat transport by advection [e.g. 

Signorelli et al., 2007; Raymond et al., 2011b], but the effects of thermal dispersion, which 

are directly related to heat transport in environments with flowing groundwater (chapter 1.2), 

so far have not been analyzed. Further, Raymond et al. [2011b] already formulated the 

necessity to account for thermal dispersion in TRT interpretations. This need is taken up and a 

systematical evaluation of different thermal dispersion coefficients caused by varying thermal 

dispersivities is evaluated. 

As mentioned above, the influence of groundwater movement on the result of a standard TRT 

evaluation is analyzed in several studies, which are based on numerical simulations [e.g. 

Signorelli et al., 2007] or field experiments [e.g. Witte, 2001]. For instance, the study 

presented in chapter 2 [Wagner et al., 2012b] determines an overestimation potential for λeff of 

0.5 to 3.9 W m-1 K-1 and Rb of 0.012 to 0.022 m K W-1 based on numerically generated TRT 
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datasets. Furthermore, Carslaw and Jaeger [1959] presented an adequate analytical solution 

more than 50 years ago which determines the heat propagation around an heat source, which 

is shaped like an infinite line, in an environment influenced by advection and conduction. In 

spite of the obvious demand and an existing analytical solution, there is no existing 

groundwater sensitive TRT evaluation relying on such an analytical equation. This analytical 

solution is the moving line source model. To overcome this need Chiasson and O’Connell 

[2011] and the study in chapter 3 [Wagner et al., 2013] simultaneously present a TRT 

evaluation approach based on the moving line source equation. In contrast to the study of 

Chiasson and O’Connell [2011], the survey “Analytical approach to groundwater influenced 

thermal response tests of grouted borehole heat exchangers” [Wagner et al., 2013] presented 

in chapter 3, analyzed the accuracy of the applied analytical solution to determine the actual 

thermal conductivity and Darcy velocity of the subsurface. This inspection relies on an 

intensive comparison between the input parameters of numerical generated TRT datasets and 

the resulting parameters of a moving line source based parameter estimation. Based on this 

systematic comparison, a correction term is developed to overcome the potentially distorting 

effects of not considering the geometry of the BHE.  

Recently, Anderson [2005] and Saar [2011] presented the high potential of heat as a 

groundwater tracer. Additionally, there are already several studies on thermal field tests, 

which successfully evaluate thermal signals to perform a hydraulic characterization of the 

subsurface. For instance, there are active thermal tracer tests [e.g. Ma et al., 2012; Wagner et 

al., 2014b] or the heat perturbation flow meter [e.g. Ochsner et al., 2005; Gao et al., 2006]. 

Due to the fact that the theoretical study presented in chapter 3 [also see Wagner et al., 2013] 

provides an evaluation framework to determine groundwater velocities based on TRTs, it is 

very reasonable to use a TRT for hydraulic characterizations. The study “Hydraulic 

characterization of aquifers by thermal response testing: validation by large scale tank and 

field experiments”, which is presented in chapter 4, picks this up and inspects the applicability 

of a TRT as a hydraulic characterization method. Due to the fact that the thermal properties of 

a porous aquifer vary in small ranges compared to the hydraulic properties, especially the 

hydraulic conductivity, the correction term based TRT evaluation in chapter 3 is used to 

obtain an integral hydraulic conductivity value of the subsurface. To validate this approach, 

the study presented in chapter 4 [Wagner et al., 2014a] conducts a large scale tank experiment 

to be able to generate a groundwater influenced TRT in a well-known environment. 
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Furthermore, a field scale and commercially performed TRT is used to test the approach 

under realistic conditions. The obtained TRT dataset from this tank experiment and the field 

based TRT dataset are evaluated and the resulting hydraulic properties are compared to 

previous hydraulic characterization to validate the proposed approach. 

1.3.2 Thermal tracer test 

As aforesaid, there are several applications, which use heat as a tracer [e.g. Anderson, 2005]. 

One of these applications is the short term active thermal tracer test (TTT). In general, this 

TTT is applied for the characterization of an aquifer [e.g. Ma et al., 2012]. In spite of the fact 

that heat propagation in the subsurface can be quantified and the direct analogy between heat 

and solute tracer test, the TTT, is still not a standard method for aquifer testing. To establish 

the short term active TTT as a standard methodology, one essential requirement is an 

improved insight into the relevant heat transport phenomena influencing the TTT-result. 

Furthermore, it is important to share the implications from as many TTTs as possible to 

accelerate the establishment of the TTT as a standard hydrogeological investigation 

technique. Therefore the study “Thermal tracer testing in a sedimentary aquifer: field 

experiment (Lauswiesen, Germany) and Numerical simulation”  presented in chapter 5 

presents a TTT experiment which determines relevant heat transport processes and is upfront 

with the observed experimental difficulties. To achieve these objectives, the study compares 

the results of the TTT to another hydrogeological field investigation (direct push injection 

logging measurements) and a corresponding numerical model. The TTT incorporates one 

injection well, which is used to inject 16 m³ of 22°C warm water within 8 h into the aquifer 

and five downgradient observation wells to record the transport of the thermal plume. Based 

on the recommendations of Bellin and Rubin [2004], the main focus of the interpretation is set 

on the peak arrival time of the thermal tracer. The comparison of measured and simulated 

TTT results are used primarily to improve the understanding of the thermal interaction 

between aquifer and aquitard, the distinction of hydraulic heterogeneities and density effects 

and influences of the layered aquifer structure on the heat propagation. The results of the TTT 

are in agreement with the findings of Lessoff et al. [2010]. 

1.3.3 Test evaluation 

Both thermal field tests share the same principle: heat is injected into the subsurface and the 

measured thermal response is interpreted to get new insights of the subsurface thermal 



Chapter 1 

 

10 

properties. Therefore the interpretation process of the measured datasets can be carried out by 

the same methodology. This methodology is based on the principles of optimization.  

In the present investigation, the general aim of the optimization procedures focuses on the 

determination of a set of model properties, such as thermal or hydraulic conductivity, which 

result in the best agreement between the TRT or TTT experiment and a corresponding model. 

Therefore the optimization is used to perform a parameter estimation or an inverse modeling, 

respectively. To be able to estimate the optimal parameter set, a model is needed, which 

represents the real system, for instance a field test and considers the searched set of properties, 

for example thermal conductivity and/or hydraulic conductivity. Based on this model and the 

measured results of the field experiment, an objective function can be formulated which 

quantifies the difference between both. Loague and Green [1991] presented a comprehensive 

review of suitable formulations of such an objective function. All studies included in this 

thesis apply the root mean squared error (RMSE) to scale the difference between the 

measured and simulated values to express the objective function.  

Additionally, a suitable search algorithm is needed to find the optimal parameter set. The 

most simple discrete search algorithm, respectively, technique is the “brute force” grid search 

method [Venkataraman, 2009]. This method first constructs a parameter grid of the searched 

parameters with a predefined resolution of each parameter. The value of the objective 

function is obtained for each grid point and all related values are compared. Consequently, the 

grid point with the optimal value of the objective function, which might be the highest, lowest 

or nearest to a certain target value, features the searched or optimal parameter set. In general, 

this approach requires numerous evaluations of the objective function to find an adequate 

solution, which might cause a long duration of the optimization procedure. But this approach 

always examines the entire parameter grid and therefore this solution represents a global 

optimum with respect to the parameter grid. In contrast to the global optimum, which 

represents the best solution of the entire parameter grid, there is the local optimum. This 

exhibits the best solution of a certain parameter grid sector, but not of the entire array. More 

efficient search algorithms, which in general require less objective function evaluations, 

implicate a risk to find only a local optimum. The second search algorithm applied in this 

thesis is the Nelder-Mead simplex algorithm [Nelder and Mead, 1965], which is more 

efficient, but entails the risk of finding only a local optimum. This algorithm is able to 

optimize any function with n searched parameters. The algorithm evaluates the objective 
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function at the n + 1 vertices of a simplex. For example, if the searched parameter set consists 

of the hydraulic and thermal conductivity, the algorithm determines the value of the objective 

function for three different parameter combinations. The three parameter pairs are the vertices 

of the first simplex. The search algorithm skips the vertices with the worst value of the 

objective function. To construct the missing vertices of a new simplex, a parameter 

combination is determined by applying a reflection, expansion, contraction and shrinkage 

step. The Nelder-Mead simplex algorithm is a quite robust search algorithm, but it is not 

completely shielded to converge in a local minima or contracting some parameters as constant 

too early in the optimization procedure.  

Both of these search algorithms are applied to find the best parameter combinations in the 

enclosed studies. The studies presented in chapter 2 and 5 uses the “brute force” grid search 

method approach. The study enclosed in chapter 3 applies the Nelder-Mead simplex algorithm 

to find the optimal solution and the study of chapter 4 employs a combination of both search 

algorithms.  
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1.4 Thesis outline 

This work is a cumulative dissertation and the four enclosed studies of this work are 

integrated in the chapters 2 – 5. The major objective of the first study (chapter 2) is to reveal a 

deeper insight into the influences of the shank spacing, initial non-uniform temperature 

distributions (e.g. geothermal gradient), and thermal dispersion on a Kelvin line source based 

TRT evaluation. The main objective of the second study (chapter 3) is the development of a 

new groundwater sensitive TRT evaluation approach, which can be used to additionally 

determine the integral Darcy velocity of an aquifer. The primary objective of the third study 

(chapter 4) is to demonstrate that data from TRT measurements can be applied for a hydraulic 

characterization of the subsurface. The general objective of the fourth study (chapter 5) is to 

determine how much information of the hydraulic properties can be derived from the 

interpretation of a TTT experiment. 
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2 Numerical Sensitivity Study of Thermal Response Tests 

 

Reproduced from: Wagner, V., Bayer, P., Kübert, M., Blum, P. (2012a), Numerical sensitivity 

study of thermal response tests, Renewable Energy, 41(0), 245-253, doi: 10.1016/j.renene. 

2011.11.001. The final publication is available at sciencedirect.com. 

 

Abstract:  Thermal conductivity and thermal borehole resistance are basic parameters for the 

technical and sustainable design of closed ground source heat pump (GSHP) systems. One of 

the most common methods to determine these parameters is the thermal response test (TRT). 

The response data measured are typically evaluated by the Kelvin line source equation which 

does not consider all relevant processes of heat transfer in the subsurface. The approach only 

considers conductive heat transfer from the borehole heat exchanger (BHE) and all transport 

effects are combined in the parameters of effective thermal conductivity and thermal borehole 

resistance. In order to examine primary effects in more detail, a sensitivity study based on 

numerically generated TRT data sets is performed considering the effects of (1) the in-situ 

position of the U-shaped pipes of borehole heat exchangers (shank spacing), (2) a non-

uniform initial thermal distribution (such as a geothermal gradient), and (3) thermal 

dispersivity. It will be demonstrated that the shank spacing and the non-uniform initial 

thermal distribution have minor effects (less than 10%) on the effective thermal conductivity 

and the determined borehole resistance. Constant groundwater velocity with varying thermal 

dispersivity values, however, has a significant influence on the thermal borehole resistance. 

These effects are even more pronounced for interpreted effective thermal conductivity which 

is overestimated by a factor of 1.2 to 2.9 compared to the real thermal conductivity of the 

saturated porous media. 
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2.1 Introduction 

The utilization of shallow geothermal energy is becoming increasingly popular, which is 

mainly due to the rising costs of fossil fuels and its potential to avoid additional or even 

reduce CO2 emissions [Blum et al., 2010; Saner et al., 2010]. The most popular way to exploit 

shallow geothermal energy resources is the use of ground source heat pump (GSHP) systems. 

They extract energy from the ground to depths of about 400 m by horizontal or vertical 

borehole heat exchangers (BHEs). In the latter, a heat carrier fluid is circulated in closed pipes 

that transfer heat or cold to the heat pumps. The pipes are installed in boreholes and are often 

backfilled with a bentonite-cement suspension for safety and stability reasons. To ensure the 

efficiency of such systems, appropriate dimensioning of the GSHP system is essential. Only if 

the extracted amount of energy is equal or close to the amount of energy which can be 

replenished naturally, will the GSHP system work efficiently and sustainably over its lifetime. 

The extractable amount of energy mainly depends on the thermal properties and the 

hydrogeological conditions of the ground as well as on the properties of the grouting material.  

Thermal properties commonly are estimated in situ by a thermal response test (TRT) which 

was developed by Morgensen [Morgensen, 1983]. During the TRT, a constant amount of 

energy is injected into [Gehlin, 1998] or extracted [Witte et al., 2002] from the ground by 

using a BHE and the temperature development of the circulating heat carrier fluid is recorded. 

Standard interpretation of TRTs follows the line source theory [Witte et al., 2002]. The 

parameters obtained are the effective thermal conductivity, λeff, which integrates all thermal 

effects of the subsurface along the entire BHE length, and the thermal borehole resistance, Rb, 

which describes the heat transfer inside the entire BHE. To characterize the expected 

performance of a BHE, all relevant heat transfer processes in the subsurface are parameterized 

by two integrative terms, λeff and Rb. However, it is often impossible to identify the reasons of 

specific parameter values, since the interference of the dominant heat transfer processes 

cannot be resolved. In order to clarify the role of different effects on λeff and Rb, several field 

[Witte, 2001; Roth et al., 2004; Sanner et al., 2005; Esen and Inalli, 2009; Kübert et al., 2009; 

Gustafsson and Westerlund, 2010; Raymond et al., 2011b] and modeling studies [Gehlin and 

Hellström, 2003; Wagner and Clauser, 2005; Signorelli et al., 2007; Marcotte and Pasquier, 

2008; Zanchini and Terlizzese, 2008; Acuña and Palm, 2009; Raymond et al., 2011b] were 

performed. From field studies, it is known that groundwater flow results in an increase of λeff 

[Witte, 2001; Kübert et al., 2009]. Esen and Inalli [Esen and Inalli, 2009] suggested that 
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increasing the depth of the analyzed BHEs yields a decrease of Rb. Variable daily air 

temperature causes fluctuations in the recorded temperature time curve of the circulating heat 

carrier fluid, which introduce uncertainty in TRT interpretation [Roth et al., 2004]. An 

enhanced thermal conductivity of the grouting material improves Rb [Sanner et al., 2005]. 

Increasing heat injection rates of groundwater-filled boreholes results in a decrease of Rb 

[Gustafsson and Westerlund, 2010]. Raymond et al. [2011b] demonstrated that geological 

heterogeneity (e.g. layering) can result in an overestimation of λeff. The results of TRT 

simulations confirm these observations like the enhancing effect on λeff of groundwater flow 

[Signorelli et al., 2007] and reveal the influence of additional parameters, especially of the 

type of aquifer [Gehlin and Hellström, 2003], heat capacity of the subsurface [Wagner and 

Clauser, 2005], horizontal configuration of the BHE pipes [Acuña and Palm, 2009], and 

changes in the heat carrier fluid density during a TRT [Zanchini and Terlizzese, 2008].  

The effects of different methods to calculate the mean heat carrier fluid temperature [Marcotte 

and Pasquier, 2008] and the impact of vertical temperature variations [Raymond et al., 

2011b] are analyzed based on numerical models. For example, high values of groundwater 

flow velocity yield elevated λeff values. Another crucial factor is the shank space defined by 

Lamarche et al. [Lamarche et al., 2010] as the distance between the centers of the BHE pipes. 

A small shank spacing or a lower thermal conductivity of the grouting material results in high 

Rb values. The exact in-situ position of the individual U-shaped pipes results in a major 

uncertainty which can hardly be quantified, even if a pipe spacer is used during installation.  

The shank spacing will also be one of three factors in the focus of the present study. A 

number of studies are dedicated to factors determining the value of Rb. Some studies 

examined the thermal borehole resistance of a single U-pipe BHE [Acuña and Palm, 2009; 

Sharqawy et al., 2009a; Lamarche et al., 2010] and others focused on double U-pipe BHE 

[Zeng et al., 2003; De Carli et al., 2010]. However, these studies did not consider the 

evaluation of Rb using TRTs. Here, the effects of various pipe positions on the Rb values 

obtained from TRT interpretation will be analyzed and compared to actual (“true”) Rb-num 

values determined by numerical simulation. In addition, the influence of the shank spacing on 

the resulting λeff will be evaluated. For this, valid pairs of estimated Rb and λeff values will be 

studied as a function of the shank spacing.  
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Signorelli et al. [2007] demonstrated for one numerically simulated TRT that the non-uniform 

initial ground temperature distribution due to the natural vertical geothermal gradient, which 

is not considered by the line source theory, results in a detectable difference between the 

obtained λeff and the true thermal conductivity of the porous medium, λm. Raymond et al. 

[2011b] confirm these findings by analyzing a TRT conducted in a waste rock. This waste 

rock contains iron-sulfide minerals which react exothermally with water and oxygen and 

cause an abnormally high geothermal gradient (0.3 °C m-1). The TRT is evaluated with a 

numerical model and based on the standard line source approach. The thermal conductivity 

value of the numerical analysis is approximately 14% lower than the value of the line source 

based evaluation. The work reported here was based on their findings and will focus on a 

systematic analysis of the influence of various non-uniform initial temperature distributions 

on the TRT result. Additionally, the correlation between Rb and λeff will be studied. 

Several studies [Witte, 2001; Gehlin and Hellström, 2003; Signorelli et al., 2007] evaluated 

the influence of convective heat transfer, i.e. groundwater flow, on TRT interpretation (in 

particular on λeff). However, these studies did not consider the effects of thermal dispersion. 

Although Raymond et al. [2011b] mentioned the need to also account for thermal dispersion 

in TRT interpretation, no sensitivity study was performed. In contrast to this, Molina-Giraldo 

et al. [2011a] found that dispersion-dominated aquifers result in smaller temperature changes 

close to the BHE and shorter thermal plumes. The present study will therefore also 

concentrate on the effects of thermal dispersion on the TRT and a detailed analysis of 

convection-influenced TRTs will be performed.  

The main objective of this study is to obtain deeper insight into the influence of the three 

factors of shank spacing, non-uniform initial temperature distribution (e.g. geothermal 

gradient), and thermal dispersion on the interpretation of TRTs. Furthermore, the difference 

between estimated and true parameter values characterizing the BHE and subsurface under 

various conditions will be determined. For this purpose, a high-resolution finite element BHE 

model with coupled heat and mass transport will be developed to generate artificial TRT data 

sets with well-known initial and boundary conditions. The generated data will be analyzed by 

two common line source based evaluation approaches, linear regression and the two-variable 

parameter fitting method. 
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2.1.1 Nomenclature 

The nomenclature used in chapter 2 is compiled in Table 1 

Table 1 Nomenclature of chapter 2. 

T temperature (°C) 
q heat transfer rate per unit length (W m-1) 
Rb thermal borehole resistance (m K W-1) 
r radius (m) 
t time (s) 
Ei exponential integral 
u integration variable 
m slope of the linear regression(°C) 
n number of time steps evaluated 
L length of the borehole heat exchanger (m) 
cp volumetric heat capacity of the porous media (MJ m-3 K-1) 
cpf volumetric heat capacity of the heat carrier fluid (MJ m-3 K-1) 
Qf volume flow rate of the heat carrier fluid (m³ s-1) 
Greek symbols  
λ thermal conductivity (W m-1 K-1) 
κ thermal diffusivity(m2 s-1) 
γ Euler’s constant  
Subscripts  
f fluid 
bw borehole wall 
sub subsurface 
eff effective property value 
num numerically determined 
lin determined by linear regression 
par determined by parameter estimation 
m property of the porous media 
0 initial or undisturbed value 
mea measured value 
in inflow 
out outflow 
 

2.2 Methodology 

2.2.1 Line Source Theory 

Kelvin’s line source theory [Carslaw and Jaeger, 1959] is often used to evaluate a TRT 

[Gehlin, 1998; Witte et al., 2002; Signorelli et al., 2007]. The BHE is approximated as an 

infinite line source in a homogeneous, isotropic, and infinite medium, which injects or 

extracts a constant amount of energy (q). The temporal and spatial temperature changes 

around the line source are derived by [Witte, 2001; Gehlin, 2002]: 
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where q (W m-1) is the heat injection rate per unit length of a borehole, λeff (W m-1 K-1) the 

effective thermal conductivity of the subsurface, and κ (m² s-1) the thermal diffusivity of the 

subsurface. The mean fluid temperature (Tf = (Tin + Tout) / 2 [Signorelli et al., 2007]) of the 

circulating heat carrier fluid can be accessed by including a thermal borehole resistance term, 

Rb, in Eq. (2-1) [Signorelli et al., 2007]: 

bbwf qRTT =− (2-2)  

The thermal borehole resistance depends mainly on the geometry (shank spacing, pipe and 

well diameter, number of pipes, and depth of the BHE) as well as on the physical parameters 

of the BHE, such as thermal properties of the BHE material, flow rate of heat carrier fluid in 

the BHE, and fluid properties [Pahud and Matthey, 2001]. This yield: 
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The logarithmic approximation of Eq. (2-3) is a linear function of the logarithm of time. One 

possibility to graphically evaluate the TRT is by linear regression of the measured fluid 

temperature in logarithmic time. The slope (m) of the straight line is used to quantify λeff as 

follows: 
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In the same manner, Rb is determined by the y-axis intercept. The other possibility consists in 

a more rigorous two-variable parameter fitting method [Roth et al., 2004]. This approach 

minimizes the misfit (e.g. root mean squared error, RMSE) between model and observation 

by a combined adjustment of Rb and λeff [Marcotte and Pasquier, 2008]: 



Numerical Sensitivity Study of Thermal Response Tests   

 

19 

( )
5.0

1

21







 −= ∑
=

n

i
fmea TT

n
RMSE  (2-5) 

Due to measurement impreciseness and data noise, no perfect fit can be obtained and instead 

of one optimal parameter combination, it is desirable to also evaluate valid parameter pairs of 

Rb and λeff. Validity has to be decided on for each specific case and is determined by setting a 

threshold of tolerable RMSE. Here, the valid parameter pairs are searched for by exhaustive 

grid search. Reasonable intervals of Rb and λeff are discretized on a sufficient level of detail 

and interpolated response surfaces of fit are obtained through complete testing of all possible 

parameter pairs. In the current study the acceptable error of the parameter fitting method is set 

to an RMSE of 0.14°C based on the typical uncertainty of the temperature difference of 

0.14°C determined by Witte et al. [Witte et al., 2002], which is supposed to represent the 

measurement error of a TRT. 

2.2.2 Numerical Simulation 

 
In contrast to the application of the line source equation, numerical models allow for the 

simulation of coupled subsurface physical and hydraulic processes during a TRT. The 

numerical model can be used to simulate the relevant processes during a TRT under realistic 

conditions. Although using real field data would be even more desirable, synthetic 

simulations are attractive, since all processes and their specifications are completely known. 

By comparison to standard line source theory-based interpretation, the significance of the 

individual effects to the standard parameters, Rb and λeff, can be quantified accurately. 

In previous studies, 1D finite difference BHE models [Shonder and Beck, 1999], 2D finite 

volume BHE models [Yavuzturk et al., 1999], 2D finite element BHE models [Zanchini and 

Terlizzese, 2008], 3D finite difference BHE models [Wagner and Clauser, 2005], and 3D 

finite element BHE models [Signorelli et al., 2007] were used. Due to the three-

dimensionality of heat transport caused by a BHE in the subsurface, a 3D simulation is the 

most favourable option [Signorelli et al., 2007]. The complex geometry of a BHE can be 

represented by finite element meshes [Esen et al., 2009]. Therefore, finite element-based 

simulations are frequently used to simulate BHE [Marcotte and Pasquier, 2008; Lamarche et 

al., 2010; Diersch et al., 2011a; b]. A common and versatile commercial finite element 

software platform for computationally efficient simulations of 3D heat transport is FEFLOW 

[Diersch, 2006]. 
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Since the release of the FEFLOW version 5.4, a BHE model has been implemented directly in 

the software, in which the BHE is simulated as an embedded vertical 1D finite element in the 

finite element matrix [Diersch, 2006]. However, this implementation does not provide the 

exact spatial temperature distribution inside the BHE. This prevents a detailed analysis of Rb 

based on numerical results. Within the framework of the present study, an alternative single 

BHE model based on the study by Signorelli et al. [2007] was developed in FEFLOW and 

verified for conduction- as well as convection-dominated aquifer systems [Wagner, 2010]. 

The BHE is assumed to be installed in a confined sandy aquifer. The flow field around a 

single BHE is hardly influenced by the BHE and therefore simulated in steady state, whereas 

the heat transport is simulated transiently. The entire 3D model has a size of 100 m × 90 m × 

165 m (length × width × depth; Fig. 1), which is large enough to minimize boundary effects 

for the period of a TRT (e.g. 40 h to 90 h). The dimensions of the fully discretized BHE are 

listed in Table 1. 

Table 2 Detailed dimensions of the simulated borehole heat exchanger. 

 Value 
Radius of the borehole, rb, (m) 0.075 
Inner radius of the pipe, rpin, (m) 0.013 
Outer radius of the pipe, rpout, (m) 0.016 
Depth of the BHE, DBHE, (m) 100 

 

The distance between borehole wall and the pipe wall is often unknown. To determine the 

uncertainty, several numerical simulations with varying pipe positions are analyzed. The 

model is discretized by 191,940 prism elements equally distributed in 35 horizontal layers. 

The finite element resolution is telescopic: It increases towards the BHE and reaches a 

maximum at the pipe wall (Fig. 1), where the steepest temperature gradients are expected. The 

distance between nodes varies between approximately 20 m at the model boundary and 

approximately 0.001 m at the pipe wall. The thickness of the horizontal layers ranges between 

0.03 m and 39 m. The layer offset is smallest at the bottom of the BHE, where the highest 

vertical temperature gradients are expected. 
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Fig. 1. Left: 3D overview of the model domain and discretization. Right: 2D top view of the 
model domain and the used boundary conditions (BC). 

Thermal and hydraulic properties of the different compartments of the finite element mesh are 

given in Table 2. The selected values are based on reported real values, except for the thermal 

conductivity of the pipe material and the part of the mesh representing the heat carrier fluid. 

The heat transfer between the turbulently flowing heat carrier fluid and the pipe wall can be 

approximated by a one-dimensional series connection of thermal resistances, which gives the 

fitted thermal conductivity of the pipe material. Due to turbulent flow within the BHE, lateral 

heat transfer to/from the heat carrier fluid is very fast. To represent this in the model, thermal 

conductivity of the elements representing the heat carrier fluid is set very high [Diersch et al., 

2011a]. Clausen [2008] demonstrated that a thermal conductivity of 20 W m-1 K-1 is sufficient 

to represent this turbulent flow. Furthermore, a modification of the volumetric heat capacity 

for the part of the mesh representing the heat carrier fluid is recommended by Diersch et al. 

[2010]. The volumetric heat capacity of this part should therefore be very small (e.g. 1 J m-3 

K-1). 
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Table 3 Hydraulic and thermal properties of different model compartments. 

Property Hydraulic conductivity, K, (m s-1) 
Thermal conductivity of the 
porous media, λm, (W m-1K-1) 

Volumetric heat capacity of the 
porous media, cp, (MJ m-³K-1) 

Subsurface 1.5 ×10-3 a) [Hähnlein et al., 2010] 2.1 a) [Palmer et al., 1992] 2.8 a) [Palmer et al., 1992] 

Grouting material 6×10-8 a) [Herrmann, 2008] 0.8 a) [Herrmann, 2008] 2.3b) [Niekamp et al., 1984; Gauthier et al., 1997] 

Pipe material 1 ×10-19 c) [Pannike et al., 2006] 0.39 b) [Signorelli et al., 2007] 1.6 a) [Signorelli et al., 2007] 

Heat carrier fluid (mesh) 1 ×10-19 c) [Pannike et al., 2006] 20.0 b) [Clausen, 2008] 1 ×10-6c) [Diersch et al., 2010] 
Heat carrier fluid (discrete feature 

element) 
- 0.6a) [Signorelli et al., 2007] 4.2a) [Signorelli et al., 2007] 

a) Reported realistic values; b) estimated based on real values; c) estimated to be able to run the model and avoid 
hydraulic interactions between the discrete feature elements and the part of the FE mesh representing the 
grouting material and the subsurface. 
 
To simulate flow of the heat carrier fluid, elements of lower dimension, i.e. discrete feature 

elements [Diersch, 2005], are often connected with the 3D finite element mesh [Witte, 2001; 

Gehlin and Hellström, 2003; Diersch, 2006]. The shank spacing of the simulated BHE is 

equal to the distance between the connected discrete feature elements representing the center 

of each pipe (Fig. 1). Convective heat transport through the heat carrier fluid is simulated only 

within the discrete feature elements. Heat transport of the connected mesh representing the 

inner parts of the pipe is approximated by conduction only [Diersch, 2006]. The flow of the 

heat carrier fluid is defined by a fourth-type boundary condition (BC) [Diersch, 2006]. In 

FEFLOW the fourth-type BC describes a singular point source, which describes the injection 

or withdrawal rate of water/mass/energy into/from a single node or into/from a number of 

nodes. To simulate the energy transfer to the circulating BHE fluid, a fourth-type BC is used. 

Constant values are assigned to both fourth-type BC, therefore the BHE fluid is circulating 

with a constant flow rate and a constant energy injection rate to BHE fluid. This arrangement 

is very similar to a TRT device used in the field. Here, the flow rate of the heat carrier fluid 

and the energy transfer to the heat carrier fluid are held constant by the TRT device. Thus, the 

heat transfer rate, q, of the simulated BHE can be calculated based on the difference between 

inlet temperature, Tin, and outlet temperature, Tout, the volume flow rate of the heat carrier 

fluid, Qf, and the volumetric heat capacity of the heat carrier fluid, cpf: 

( )
L

TTQcp
q outinff −

=

 

(2-6)
 

Based on Eq. (2-6) we calculated for each test case the average heat transfer rate, q, of the 

examined evaluation period of the BHE. 
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Groundwater flow, if applicable, is simulated by a second-type BC (Neumann) that assigns a 

constant flux to model boundary nodes [Diersch, 2006]. The temperature of the groundwater, 

which enters the model domain, is controlled by a first-type BC (Dirichlet), which assigns a 

certain temperature value to a selected node [Diersch, 2006]. 

The numerical model is applied to simulate a BHE, which injects energy of a known rate into 

the subsurface. The resulting synthetic time series of the temperature development of the heat 

carrier fluid represent the measured (artificial) data set of a TRT. In separate subsequent 

analyses, the influence of the geometry of the BHE as well as of naturally occurring non-

uniform initial temperature distributions, e.g. vertical geothermal gradients and thermal 

dispersivities, on standard TRT-based interpretation are investigated. For this purpose, 

evaluation intervals of 50 h and a starting point of 40 h are selected, which is considered a 

period sufficient to obtain reliable results [Signorelli et al., 2007]. Furthermore, to improve 

the comparability of the parameters obtained, equal starting points and the same duration of 

the evaluation interval are set for all experiments. 

2.3 Results and Discussion 

By way of example, Fig. 2 illustrates two numerically generated TRT data sets. Additionally, 

the linear regression based on Eq. (2-3) is shown.  

 

Fig. 2. Comparison of two numerically generated temperature time series of the mean fluid 
temperature Tf at variable shank spacings. Additionally, the result of the linear regression is 
presented. 
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2.3.1 Pipe Position  

To exclusively analyze the effects of different shank spacings, no groundwater flow is 

considered and the initial temperature of the entire model is assumed to be uniform. These 

conditions comply with those commonly assumed for application of the line source equation. 

Different shank spacings are simulated by variants of the numerical model grid that is 

adjusted to the cross section geometry of the BHE. The setup of the models is illustrated in 

Fig. 3 showing different sections through the BHE, with decreasing distance of the 

symmetrically arranged tubes from Case A to D. The simulated shank spacings are 0.115 m, 

0.092 m, 0.071 m, and 0.051 m in Cases A to D, respectively.  

 

Fig. 3. Results of the two-variable parameter fitting method and the linear regression method 
for four different BHE shank spacings compared to the thermal conductivity of the porous 
media (λm) and the Rb-num value. The evaluated time interval lasts from 40 h to 90 h and only 
parameter pairs with an RMSE value smaller than 0.14°C are presented. 

The results of the analysis are also presented in Fig. 3. For both parameter estimation 

techniques, the linear regression and the parameter fitting method, the effective thermal 

conductivities (λeff) identified sufficiently approximate the given thermal conductivity of the 

porous media (λm). According to the way the parameter values are derived, they are further 

distinguished by λeff-lin and λeff-par. Table 3 shows that the best fitted values of λeff are identical 

for both methods. Fig. 3 also reveals that several parameter pairs of λeff-par and Rb-par exist 

within the valid RMSE range (<0.14°C). Valid pairs are positively correlated, indicating an 

ill-posed parameter estimation problem. If the acceptable error interval of estimated parameter 
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values is set to ±10% [Eugster, 2002], the detected pairs are mostly within these limits. With 

the given RMSE threshold, however, valid solutions spread beyond the 10% interval. Since 

the RMSE threshold is an arbitrary tolerance level that accounts for measurement uncertainty 

and noise, setting a stricter threshold may be problematic in practice, although this would 

improve identifiability of λeff and Rb in the ideal case. 

The effective thermal conductivities obtained decrease with decreasing shank spacing and 

only in Case B is λeff similar to the “true” λm specified in the numerical model. Nevertheless, 

the differences between the λeff-lin and λm values obtained are small and lie within an interval 

of -2% and +1%. This demonstrates that the derived λeff is an apparent and integral value 

integrating the properties of the grouting material and the aquifer. In general, the smaller the 

shank spacing is and the larger the distance to the ambient ground, the greater is the influence 

of the grouting material and, hence, the smaller is the derived effective thermal conductivity. 

The overestimation by 1% determined for Case A is due the deviation of the simulated system 

from the ideal shape assumed by the line source. In this particular case, interpretation by a 

cylinder source equation appears to be more suitable.  

In contrast to its minor influence on the interpretation of thermal conductivity, the effect of 

changing shank spacing on the best fitted value of Rb is significant (Fig. 3). This agrees with 

the observations by Acuna et al. [2009], who studied the thermal borehole resistance of single 

U-pipe BHEs by a steady-state approach. We determined the same promoting effect of 

increasing shank spacing on Rb obtained by TRTs for a double U-pipe system. Again, the best 

results of the linear regression (Rb-lin) and the parameter fitting method (Rb-par) are in 

agreement. Borehole resistance values, Rb-lin and Rb-par, are comparable to those derived 

directly by Eq. (2-2) from the numerical model (Rb-num). For using this equation, the actual 

difference between borehole wall temperature (Tbw) and carrier fluid temperature (Tf) is 

determined by the simulated temperatures. Tf is extracted at the discrete feature element and 

Tbw is determined at eight equally scattered points on the borehole wall. To account for 3D 

effects, the weighted mean Rb-num value of four different layers (depth of 0 m, 15 m, 55 m, and 

95 m) is calculated. The Rb-num value is considered to be most suitable for representing the 

actual heat transfer inside the BHE (Fig. 3).  

The estimated values of Rb-lin and Rb-par agree with Rb-num within an interval of ±10%, except 

for Case A. The reason of the higher discrepancy in this case is the direct contact between the 
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pipes and the ambient ground, which substantially disturbs the temperature distribution at the 

borehole wall. Thus, the assumption of a uniform Tbw is not fulfilled and the standard Rb 

calculation method is no longer suitable. Due to the unrealistic shape of Case A, the 

evaluation procedure is not adopted for this test case. However, Case A is included in this 

study as it offers insight into the theoretically minimum possible value of Rb. Although the 

fitting error is small for the Cases C-D, the values of Rb-lin and Rb-par systematically 

overestimate Rb-num. This is interpreted as an indication of 3D effects explicitly simulated by 

the numerical model, but not covered by the line source equation. Case B represents 

intermediate conditions, where these artifacts appear to be negligible and the actual 

parameters λm and Rb-num can be estimated perfectly. Therefore, the remainder of this study 

will focus on the shank spacing simulated by Case B.  

Table 4 Results of linear regression and parameter fitting in comparison to originally 
simulated values (λm and Rb-num) for four different shank spacings. The evaluated time interval 
is between 40 h and 90 h. 

Pipe position Case A Case B Case C Case D 
Shank spacing (m) 0.115 0.092 0.071 0.051 
Heat transfer rate per unit length, calculated by Eq. (2-6), q (W m-1) 59 61 58 52 
Thermal borehole resistance of the numerical simulation, Rb-num (m K W-1) 0.057 0.089 0.124 0.173 
Thermal borehole resistance determined by linear regression, Rb-lin (m K W-1) 0.068 0.094 0.128 0.178 
Thermal borehole resistance determined by parameter estimation, Rb-par m K W-1) 0.068 0.094 0.128 0.178 
Thermal conductivity of porous media, λm (W m-1 K-1) 2.10 2.10 2.10 2.10 
Effective thermal conductivity determined by linear regression, λeff-lin (W m-1 K-1) 2.12 2.10 2.08 2.06 
Effective thermal conductivity determined by parameter estimation, λeff-par (W m-1 K-1) 2.12 2.10 2.08 2.06 

 

2.3.2 Non-uniform Initial Temperature Distribution  

To analyze the effects of a non-uniform initial temperature distribution of the subsurface on 

the TRT result, the model with the fixed pipe configuration of Case B is modified. While 

constant thermal and hydraulic material properties are kept as before (see Table 2) and 

groundwater flow is neglected, initial temperature increases with depth according to a specific 

geothermal gradient. To simulate realistic geothermal gradients, the initial temperature field is 

calculated separately by steady-state simulations with different geothermal heat fluxes at the 

bottom boundary of the model and a constant temperature at the surface of the model (Table 

4).  

According to Pollack et al. [1993], a geothermal heat flux range between 0.05 and 0.11 W m-2 

is considered to be realistic. Based on the given extreme values, temperature gradients of 

23.7°C km-1 and 52.2°C km-1 are determined for the numerical model, which are below the 

unnaturally high gradient of 300°C km-1 analyzed in the special case by Raymond et al. 
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[2011b]. The initial ambient temperature values in the model are calculated based on the two 

temperature gradients selected and assuming a fixed temperature value of 10°C at a depth of 

50 m. In this way, the simulations of the two geothermal gradients remain comparable.  

 

Fig. 4. Results of the two-variable parameter fitting method and the linear regression method 
for three different initial temperature distributions compared to the thermal conductivity of the 
porous media and the Rb-num values. The latter are given in Table 4. The evaluated time 
interval lasts from 40 h to 90 h and only parameter pairs with an RMSE value smaller than 
0.14°C are presented here. 

Both line source evaluation approaches yield comparable results (relative difference less than 

1%). However, the best fitted λeff values are smaller than the input values of the numerical 

simulation selected (Fig. 4). For high geothermal gradients (52.2°C km-1), the acceptable error 

exceeds ±10% (Fig. 4) [Eugster, 2002]. Fig. 4 illustrates again that a wide range of valid 

parameter pairs of λeff-par and Rb-par exists and acceptable parameter values are correlated 

positively. This validity range is shifted along the direction of correlation by increasing the 

value of the geothermal gradient. This outcome demonstrates that a depth-dependent initial 

temperature field prevents reliable line source based TRT evaluation. The geothermal gradient 

influences the horizontal temperature gradient towards the BHE. The amplified depth-

dependent heat propagation which cannot be considered by the line source theory leads to an 

apparently higher thermal conductivity than the real one.  

As shown above, the borehole resistance Rb reflects the heat transport inside the BHE and, 

thus, depends on geometry and physical properties of the BHE itself. Hence, it can be 

expected that Rb is quasi-independent of the subsurface properties and that the TRT parameter 

values obtained are constant and comparable to those computed for the negligible geothermal 
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gradient (0.089 m K W-1, Table 3). This is true for the value of Rb-num which is determined 

directly from the numerical model (Table 4). In contrast to this, Rb-lin and Rb-par values 

obtained from the TRT seem to be influenced significantly by the geothermal gradient (Table 

4).  

For the geothermal gradients evaluated, the resulting Rb-lin and Rb-par values vary in the range 

between 0.077 m K W-1 and 0.094 m K W-1. The line source based TRT evaluation with a 

constant initial temperature yields the slightly overestimated value of Rb = 0.094 m K W-1 (see 

Fig. 3). At an enhanced geothermal gradient, the estimated value of Rb decreases. The relative 

error of the line source evaluation for the high geothermal gradients selected even exceeds the 

acceptable error range of -10% (Fig. 4) [Eugster, 2002]. This relationship between estimated 

borehole resistance and geothermal gradient apparently is artificial and does not represent the 

real heat transfer inside the BHE. This positive correlation illustrated in Fig. 4 might be 

caused by the temperature variations inside and outside the BHE along the total length, 

leading to depth-dependent Rb values.  

Table 5 Results of the parameter fitting method, linear regression, and the FEFLOW input 
values (λm and Rb-num) for three different initial temperature distributions which can be 
described by a constant geothermal gradient. All simulations are based on a BHE with the 
geometry of Case B. The evaluated time interval is between 40 h and 90 h. 

Heat flux (W m-²): 0.00 0.05 0.11 
Resulting geothermal gradient (°C km-1): 0.0 23.7 52.2 
Heat transfer rate per unit length, calculated by Eq. (2-6), q (W m-1) 61 58 55 
Thermal borehole resistance of the numerical simulation, Rb-num (m K W-1) 0.089 0.089 0.089 
Thermal borehole resistance determined by linear regression, Rb-lin (m K W-1) 0.094 0.084 0.077 
Thermal borehole resistance determined by parameter estimation, Rb-par (m K W-1) 0.094 0.083 0.077 
Thermal conductivity of porous media, λm (W m-1 K-1) 2.10 2.10 2.10 
Effective thermal conductivity determined by linear regression, λeff-lin (W m-1 K-1) 2.10 1.97 1.86 
Effective thermal conductivity determined by parameter estimation, λeff-par (W m-1 K-1) 2.10 1.96 1.86 

 

2.3.3 Thermal Dispersion 

A third aspect analyzed is the effect of longitudinal and transverse thermal dispersion on TRT 

interpretation. Again, artificial TRT data sets are generated using the numerical model that 

simulates a BHE with the pipe configuration of Case B. A uniform horizontal Darcy velocity 

of 0.1 m day-1 is assumed for the aquifer. This threshold is recommended by Signorelli et al. 

[Signorelli et al., 2007] to be the upper limit for TRT evaluations based on the line source 

theory. The thermal dispersivities are varied and a constant relationship αt = 0.1 × αl is 

assumed [Molina-Giraldo et al., 2011a]. Molina-Giraldo et al. [2011a] demonstrate the 

variability of the reported αl and αt values which are mainly influenced by the relationship 
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applied for the description of thermal dispersion. Hence, a wide range of αl values between 0 

and 2 m is analyzed here in order to represent possible values for a field scale of 10 m 

[Molina-Giraldo et al., 2011a]. The results are depicted in Fig. 5. 

 

Fig. 5. Result of the two-variable parameter fitting method and the linear regression method 
for five different thermal dispersivities (constant Darcy velocity of 0.1 m day-1) compared to 
the thermal conductivity of the aquifer and the Rb-num values. The latter are given in Table 5. 
The evaluated time interval lasts from 40 h to 90 h and only parameter pairs with an RMSE 
value smaller than 0.14°C are presented. Superscript numbers specify the thermal 
dispersivities belonging to a corresponding Rb-num value. 

Both parameter estimation techniques yield similar λeff-lin and λeff-par values with a difference of 

less than 1% (Table 5). Both evaluation approaches are therefore considered to be equally 

suitable for the TRT-based λeff determination in these cases. Again, the parameter estimation 

with an RMSE tolerance of 0.14°C yields a correlated group of λeff-par, Rb-par pairs. The λeff 

values obtained are significantly higher than the original value of λm in the numerical model. 

They are higher than λm by a factor between 20% (αl = 0) and 190% (αl = 2), which clearly 

exceeds the acceptable 10% error assumed for a TRT [Eugster, 2002]. The effect of 

increasing thermal dispersivity on the valid λeff value range is explained by the relationship 

between αl and αt and the effective thermal dispersion coefficient which is one key parameter 

of the heat transport equation in porous media [Domenico and Schwartz, 1998]. Heat 

transport, including dispersion, results in an increase of λeff (Table 5). Thus, TRT evaluation 

of convection-dominated conditions should not only consider the effect of convection, but 

also the impact of dispersion. 
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As in all previous results, the Rb-lin and Rb-par values obtained are identical. A slightly negative 

correlation between thermal dispersivity and determined borehole resistance is found. The 

calculated Rb-num values decrease by up to 3% compared to the conduction-dominated value of 

0.089 m K W-1 (Table 3). The decrease by 3% might be caused by dispersive effects into the 

BHE, which decrease the thermal resistance between the borehole wall and the heat carrier 

fluid. This is also reflected by the line source based best estimates of Rb. However, these 

values are significantly higher than those in the model. They also span a broad validity range 

depending on the given dispersivity. By neglecting the effects of thermal dispersion, the best 

line source based fit yields an overestimation of 14% compared to Rb-num. This discrepancy 

increases with the degree of dispersion up to 25% for αl = 2 m. Under these conditions, the 

standard line source equation obviously is not applicable. Consequently, estimated parameter 

values are not reliable.  

Table 6 Results of the two-variable parameter fitting method, the linear regression method, 
and the FEFLOW input values (λm and Rb-num) for six different thermal dispersivity values. 
The evaluated time interval is 40 h - 90 h. 

Longitudinal dispersivity, αl (m) 2 1 0.5 0.3 0 
Heat transfer rate per unit length, calculated by Eq. (2-6), q (W m-1) 61 61 61 61 61 
Thermal borehole resistance of the numerical simulation, Rb-num (m K W-1) 0.086 0.087 0.087 0.088 0.089 
Thermal borehole resistance determined by linear regression, Rb-lin (m K W-1) 0.098 0.103 0.103 0.106 0.111 
Thermal borehole resistance determined by parameter estimation, Rb-par (m K W-1) 0.098 0.103 0.103 0.106 0.111 
Thermal conductivity of porous media, λm (W m-1 K-1) 2.10 2.10 2.10 2.10 2.10 
Effective thermal conductivity determined by linear regression, λeff-lin (W m-1 K-1) 5.99 4.44 3.48 3.11 2.56 
Effective thermal conductivity determined by parameter estimation, λeff-par (W m-1 K-1) 6.00 4.45 3.49 3.13 2.58 

 

2.4 Conclusions 

A finite element model of a double U-pipe BHE was developed to generate artificial TRT data 

sets. Based on these data sets, the influence of selected natural subsurface conditions, such as 

depth-dependent temperature variation and thermal dispersion, was investigated. Furthermore, 

the effect of the shank spacing within the BHE on TRT interpretation was assessed by 

simultaneous λeff and Rb estimation. From the results of this study, the following conclusions 

can be drawn: 

• The TRT parameters (Rb-lin, Rb-par and λeff-lin, λeff-par) obtained for different shank 
geometries represent the real parameters of the subsurface (λm) and the BHE (Rb-num) 
with sufficient accuracy. The shank spacing analyzed varied between 0.051 and 0.115 
m, the resultant error of the estimated λeff values was less than 2%. However, the 
borehole resistance is strongly dependent on the shank spacing. With increasing 
shank spacing, the borehole resistance decreases as the influence of the grout material 
is reduced. At the same time, the error of line source based Rb estimation increases. 
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The BHE more and more disagrees with the ideal line-shaped heat source. In practice, 
a TRT evaluation based on the cylinder source equation, which was analyzed by Sass 
and Lehr [2011], might improve the result for large shank spacing, such as in Case A. 

• A typical geothermal gradient (0°C per 100 m to 5.2°C per 100 m) results in an 
underestimation of λeff and Rb by the standard line source based approach. The 
estimation error may exceed 10% for a gradient of 5.2°C per 100 m. This has to be 
accounted for when TRTs are conducted in areas with a relatively high geothermal 
gradient. Furthermore, the effects observed may also be induced by artificial 
temperature variations in the subsurface, for instance, by surrounding geothermal 
systems, local heat sources, such as sewage systems or other underground facilities, 
especially in urban areas.  

• Apart from convection, also thermal dispersion was found to influence the TRT and 
its interpretation. Numerically generated TRTs influenced by a constant Darcy 
velocity (0.1 m day-1) and various dispersivities (αl between 0 and 2 m) result in a 
deviation from the ”true” values of the model from 0.5 W m-1 K-1 to 3.9 W m-1K-1 for 
λeff and from 0.012 m K W-1 to 0.022 m K W-1 for Rb, respectively. Hence, further 
studies of convection-dominated TRTs should also consider the effects of thermal 
dispersion. In practice, we recommend to consider not only groundwater flow, but 
also the effects of thermal dispersion for convection-influenced TRTs in highly 
heterogeneous aquifers.  

This numerical study clearly showed the limits of the standard TRT evaluation when the test 

performed is influenced by extreme shank spacing, high geothermal gradients or significant 

dispersivity values. To overcome this restriction, improved concepts are needed to consider 

and quantify the analyzed effects, especially thermal dispersivity. TRT interpretation also has 

to account for feasible parameter ranges instead of best fits within a small function fitting 

tolerance only. The results of the numerical study here showed that typical case-specific valid 

ranges of positively correlated borehole resistance and effective thermal conductivity values 

exist. 
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3 Analytical approach to groundwater-influenced thermal response tests 

of grouted borehole heat exchangers 

 

Reproduced from: Wagner, V., Blum, P., Kübert, M., Bayer, P. (2013), Analytical approach to 

groundwater-influenced thermal response tests of grouted borehole heat exchangers, 

Geothermics, 46(0), 22-31, doi: 10.1016/j.geothermics.2012.10.005. The final publication is 

available at sciencedirect.com. 

 

Abstract:  For ground-source heat pump (GSHP) systems, the thermal response test (TRT) is 

commonly used to determine the heat transport parameters of the subsurface. The main 

limitation of this approach is the assumption of pure conductive heat transport, which might 

result in significant deviations. Based on the moving line source theory, a parameter 

estimation approach is introduced, which is sensitive to conduction and advection. This 

approach is calibrated and successfully tested against three different test cases. The presented 

analytical approach therefore expands the field of application of the TRT to advection-

influenced conditions beyond a Darcy velocity of 0.1 m day-1. 
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3.1 Introduction 

The heat stored in the shallow subsurface is of growing interest to geothermal energy use. In 

the upper hundreds of meters of the earth’s crust, the temperature usually does not reach much 

more than 20°C [e.g., Taniguchi and Uemura, 2005; Zhu et al., 2011]. Thus, the energy is 

only useful for space heating and air conditioning systems and is ideally extracted from wells 

or boreholes (in general to a depth of around 150 m [e.g., Hecht-Méndez et al., 2010]) 

combined with heat pumps. Alternatively, the ground may be used as storage medium for 

waste heat or for cooling purposes [Sanner et al., 2003]. The most common variants of 

geothermal systems are ground-source heat pumps (GSHPs), where vertical boreholes act as 

borehole heat exchangers (BHEs) [Rybach and Eugster, 2010]. A heat carrier fluid is 

circulated in closed tubes installed in the boreholes. In the heating mode, the injection 

temperature is slightly lower than the temperature of the ground. Circulation in the subsurface 

warms up the fluid and by operating the heat pump, the collected energy is extracted above, 

thus cooling the ambient ground. Temperature anomalies develop, and the radial temperature 

gradient forces the heat flow towards the BHE. 

Since the geological, geophysical, and hydrogeological conditions that control the heat 

transfer processes and extraction efficiency vary, field investigation campaigns are suggested 

for larger-scale systems to ensure appropriate planning of shallow geothermal installation. 

The thermal response test (TRT), which is conducted in BHEs before heat mining begins is an 

established technique [Morgensen, 1983; Gehlin, 2002; Sanner et al., 2005; Signorelli et al., 

2007; Beier et al., 2011; Raymond et al., 2011a; Raymond et al., 2011c]. By monitoring the 

effect of short-term heating (or cooling), the thermal properties of the ground and the heat 

transfer efficiency between ground and BHE are interpreted.  

In standard experiments, a heated or cooled fluid is injected and the temperature development, 

i.e. the response of the ground, is monitored at the BHE outlet. The slower the temperatures of 

the heat carrier fluid increase, the more heat is lost in the ground and, thus, the higher is the 

interpreted in-situ effective thermal conductivity. The temperature time series are commonly 

evaluated based on the Kelvin line source theory that assumes an infinite, homogeneous and 

isotropic medium with a constant heat source [Carslaw and Jaeger, 1959]. This evaluation 

provides the effective thermal conductivity (λeff) as well as the thermal borehole resistance 

(Rb), which is a measure of the heat transfer performance in the borehole. Both parameters are 

used for a case-specific planning and efficient operation of the GSHP-system.  
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Standard TRT interpretation exhibits several shortcomings. It assumes a homogenous 

subsurface, no axial heat transport, uniform initial temperature distribution, and it 

approximates the BHE shape as an infinite line. Bandos et al. [2009] presented an analytical 

solution to overcome the limitations caused by the assumption of an infinite line shape. 

Another significant shortcoming is that only conductive heat transport is considered [e.g., 

Signorelli et al., 2007]. However, shallow geothermal systems are frequently installed in 

water- saturated underground. In aquifers, advective heat transfer due to groundwater flow 

can be significant [e.g., Witte, 2001]. Accordingly, the effective thermal conductivity (λeff) 

obtained based on the Kelvin line source theory is an apparent parameter, which increases 

with Darcy velocity. Several studies have demonstrated the significant influence of 

groundwater flow [Witte and Gelder, 2006] and ambient air temperature variations [Bandos et 

al., 2011] on TRT results. Witte [2001] established a advection-dominated aquifer by 

performing a TRT, while groundwater was being extracted from a well 5 m away from the 

BHE. A comparison to the results of an undisturbed TRT showed an increase in the λeff value 

by a factor of 1.38. This relationship was also investigated by Bozdag et al. [2008], who 

performed four different TRTs in one BHE and correlated the obtained λeff and Rb values with 

the observed different hydraulic gradients. Their field measurements clearly indicated the 

influence of groundwater table fluctuations, which govern groundwater flow velocities, on the 

TRT results. The influence of groundwater flow is also examined by several theoretical 

studies. For instance, Chiasson et al. [2000] numerically simulated TRTs to analyze the role 

of groundwater flow velocity and different evaluation periods with respect to the value of λeff 

that would be obtained by the line- source approach. They demonstrated that the resulting 

thermal conductivity value is an effective one and does not represent the thermal conductivity 

of the subsurface. Signorelli et al. [2007] comprehensively analyzed those effects and 

confirmed the findings by Witte et al. [2001] that λeff increases continuously with evaluation 

time. In essence, the line source-based TRT evaluation of advection-dominated systems 

results in ambiguous λeff values. Signorelli et al. [2007] conclude that BHE dimensioning 

based on λeff in advection-dominated systems is rather problematic, because of the increasing 

instability of the resulting values.  

A number of remedies have been suggested to reliably evaluate TRTs influenced by 

groundwater flow. One possibility to detect the influence of groundwater flow is a stepwise 

TRT evaluation based on the Kelvin line source theory [e.g., Sanner et al., 2005]. Witte 
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[2001] interpreted an increasing λeff value with increasing evaluation time step size as an 

indicator for groundwater flow. Another possibility is an enhanced TRT [Wagner and Rohner, 

2008], where depth-depending temperature series during and/or after the heating period are 

evaluated [Fujii et al., 2009]. Wagner and Rohner [2008] showed how specific layers with 

groundwater flow (enhanced λeff values) can be estimated. However, these concepts provide 

no information about the actual Darcy velocity. To overcome this, parameter estimation 

approaches based on numerical simulations [Raymond et al., 2011b] or alternative analytical 

equations [Katsura et al., 2006] were suggested. Raymond et al. [2011b] numerically 

quantified that the TRT examined at a field site was influenced by a groundwater flow 

velocity smaller than 10-5 m s-1. Based on several simulation results with a groundwater flux 

between 10-6 and 10-8 m s-1 and λm values between 2.35 and 2.65 W m-1 K-1, the measured 

temperature values could be reproduced [Raymond et al., 2011b]. In a different context, 

Katsura et al. [2006] analyzed the heat response of a thermal probe in a sand-filled cylinder 

influenced by different water flow velocities. By calibration of the moving line source 

equation [Carslaw and Jaeger, 1959] to the measured thermal response it was possible to 

derive the groundwater velocity with a relative error less than 20% [Katsura et al., 2006]. 

Previous studies have demonstrated the ambiguous character of the parameters determined by 

line source-based TRT evaluation, especially if groundwater flow influences the system. The 

objective of this study is therefore to develop an analytical approach to groundwater-

influenced TRTs, which provides parameters more suitable for a detailed simulation of 

conductive and advective heat transport in the subsurface. For this purpose, an approach in 

line with the one by Katsura et al. [2006] is developed. Furthermore, we introduce a 

correction term to consider the effects caused by the lower hydraulic conductivity of a grouted 

BHE on the apparent (i.e., estimated) Darcy velocity in the vicinity of the BHE. This 

correction term is calibrated by artificially generated high-resolution TRT temperature time 

series and embedded in a parameter estimation framework. Finally, the applicability of this 

concept for the simultaneous determination of ground thermal conductivity, λm, and Darcy 

velocity, v, is discussed based on a set of scenarios adopted from related studies. 
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3.1.1 Nomenclature 

The nomenclature used in chapter 3 is compiled in Table 7. 

Table 7 Nomenclature of chapter 3. 

C correction factor (-) 
cp volumetric heat capacity (MJ m-3 K-1) 
D thermal dispersion coefficient (m2 s-1) 
ds shank spacing (m) 
Ei exponential integral 
k hydraulic conductivity (m s-1) 
Pe Péclet number (-) 
q heat transfer rate per unit length (W m-1) 
r radius (m) 
rpin inner pipe radius (m) 
rpout outer pipe radius (m) 
Rb thermal borehole resistance (m K W-1) 
T temperature (°C) 
t time (s) 
tc time criterion (s) 
u integration variable 
v Darcy velocity (m day-1) 
vth heat transport velocity (m day-1) 
x, y Cartesian coordinates (m) 
Greek symbols  
α dispersivity (m) 
λ thermal conductivity (W m-1 K-1) 
κ thermal diffusivity (m2 s-1) 
γ Euler constant (-) 
Subscripts and superscripts  
f heat carrier fluid 
bw borehole wall 
sub property of the subsurface 
g property of the grouting material 
eff obtained effective property value (without correction) 
m property of the porous medium 
w property of the groundwater 
0 initial or undisturbed value 
l longitudinal 
t transversal 
* value corrected by C 

 

3.2 TRT Models 

3.2.1 Conductive Line Source 

The most widely used procedure to evaluate a TRT is based on the Kelvin line source theory. 

This approach approximates the BHE as an infinite line source in a homogeneous, isotropic 

and infinite medium, which injects or extracts a constant amount of energy (q) by conductive 

heat transport only. The temporal and spatial temperature changes around the line source can 
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be calculated as follows [e.g. Carslaw and Jaeger, 1959; Gehlin, 2002; Signorelli et al., 

2007]:  
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The maximum error of the logarithmic approximation of the exponential integral is less than 

10%, if the time criterion t ≥ tc ≥ 5 rbw
2 κ-1 is fulfilled [Hellström, 1991]. This error range 

assumes that substantial disturbances on the recorded temperatures are absent and the test is 

properly executed. To be able to calculate the mean fluid temperature, the thermal resistance 

Rb between the borehole wall and the circulating heat carrier fluid has to be considered. This 

leads to the following extension of Eq. (3-1): 
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To determine the effective thermal properties (λeff and Rb), two similar approaches are 

possible. The recorded TRT data are either fitted by a two-variable parameter estimation 

technique [Roth et al., 2004] or by a linear regression based on the logarithmic approximation 

of Eq. (3-3) [Gehlin, 2002; Signorelli et al., 2007]. A TRT evaluation based on the Kelvin line 

source theory does not consider the effects of groundwater flow and simplifies all possible 

heat transfer processes of the subsurface as purely conductive transport with an effective 

thermal conductivity, λeff. Therefore, it is not possible to determine the relevant heat transport 

parameters for advection-dominated conditions using Eq. (3-3). 

3.2.2 Moving Line Source 

To determine adequate parameters for the simultaneous heat transport by advection and 

conduction, another analytical equation is necessary. Carslaw and Jaeger [1959] derived a 

suitable analytical equation, which simulates a constant line source of infinite length in a 

homogeneous and infinite medium and in its extended version additionally accounts for 

f bw bT T q R− = ⋅
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advection and hydrodynamic dispersion [Metzger et al., 2004; Molina-Giraldo et al., 2011a]. 

The temperature difference caused by the line source is calculated by: 

∫ 







−








+−








=−

l

th

D

tv

l

th

tll

th

tlpm

sub u

du
u

uD

v

D

y

D

x

D

xv

DDc

q
TtyxT

4

0

222

0

2

16
exp

2
exp

4
),,(

π
 (3-4) 

Equivalent to the approach by Sutton et al. [2002], the fluid temperature of a BHE can be 

accessed by adding a thermal borehole resistance term. Eq. (3-4) is extended as follows if the 

Cartesian coordinates fulfill the condition x2 + y2 = rbw
2: 
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Eqs. (3-4) and (3-5) account for an effective heat transport velocity (vth) and an effective 

thermal dispersion coefficient (Dl and Dt). These parameters are determined as follows: 
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In contrast to λeff, λm,eff in fact is an obtained value, but only represents the properties of the 

porous medium and contains no advective portion. 

Eq. (3-5) additionally accounts for advective heat transport, but it still carries some 

simplifying assumptions. Similar to Eq. (3-2) for standard TRT interpretation, the effects of 

thermal disturbance, such as from vertical heat flow along the natural vertical geothermal 

gradient, are neglected. However, Wagner et al. [2012b] demonstrated that this only 

introduces a minor error in standard TRT interpretation. Disturbances from buoyancy effect 
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are also ignored. Hecht-Méndez et al. [2010] demonstrated this as a valid assumption for the 

simulation of common GSHP systems. Furthermore, Gehlin et al. [2003] reported that the 

thermosiphon effect, which is caused by a vertical groundwater flow inside the borehole, can 

be neglected for properly grouted BHE. It is important to emphasize that our TRT 

interpretation only provides subsurface properties averaged over the total length of the BHE. 

Both Eq. (3-3) and Eq. (3-5) yield integral parameter sets to characterize the subsurface, and 

are not suited for resolving heterogeneous properties of the ground. Eq. (3-5) also assumes 

advective heat transport in a porous media, and the application to fractured rocks is restricted. 

For the latter, the evaluation by Gehlin and Hellström [2003] is therefore recommended. 

We suggest a parameter estimation approach that calibrates Eq. (3-5) to temperature time 

series of a TRT, which uses the Nelder-Mead algorithm as explained for example by Lagarias 

et al. [1998]. This minimizes the root mean squared error (RMSE) between observed (in this 

study: the numerically generated dataset) and calculated data (Eq. (3-5)) by varying a defined 

set of functional parameters. The RMSE determines the accuracy of the fitting, and thus can 

be utilized to compare different calibration results. In general, when calibrating models to 

measurements in natural systems, the complex coupled processes involved often make it 

impossible that one unique set of valid model parameter values can be determined. For a 

given tolerance on the RMSE of the calibrated model it is thus suggested to estimate possible 

parameter ranges and, if they exist, to also extract correlations among different parameters 

[Maier et al., 2009]. This insight is in particular valuable for ill-posed problems like the TRT 

evaluation based on Eq. (3-5), where solutions to the inverse problem are non-unique. For the 

estimation of λm,eff and veff this is considered by setting a threshold on the RMSE equivalent to 

the expected measurement error of 0.1°C, which Witte et al. [2002] mentioned as the accuracy 

of a temperature sensor. In reality, the measurement error might be different, because of the 

applied type of sensor, the kind of combination of temperature sensors and/or the temperature 

dependency of the sensor itself. To inspect whether acceptable locally optimal or close-

optimal solutions to the error function exist, multiple randomly initialized Nelder-Mead-based 

minimization runs (here: 15) are applied. In this way, we gather sufficient sets of λm,eff and veff 

pairs. 

Eq. (3-5) is not suitable for TRT interpretation with a real BHE, since it does not explain the 

complex heat transfer inside the BHE. This was not relevant in the study by Katsura et al. 

[2006], who suggested the moving line source equation to evaluate the temperature difference 
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in a sand- filled cylinder caused by a needle-shaped heating device in a laboratory experiment. 

In our approach, similar to that by Katsura et al. [2006], the effects of mechanical thermal 

dispersion are neglected in Eq. (3-5) in a first step. This is considered an acceptable 

simplification that reduces the number of unknown parameters. More details on potential 

errors introduced by this simplification are comprehensively discussed by Molina-Giraldo et 

al. [2011a] and Wagner et al. [2012b]. 

The second step computes a single representative borehole wall temperature, which is 

necessary for application of Eq. (3-5). The representative borehole wall temperature here is an 

integral value of the entire BHE. In contrast to a conduction-dominated system, the heat 

propagation in an advection-dominated system is not radially symmetric. Consequently, 

temperatures at the borehole wall are not constant. To account for the asymmetric heat 

distribution around a BHE influenced by groundwater flow, we calculate a mean borehole 

wall temperature measured at eight positions. These positions are predefined on the BHE 

cross section and depicted in Fig. 6. 

 

Fig. 6. Cross section of a BHE with central evaluation position of the line source equation and 
the temperature measurement locations at the borehole wall for calculation of mean 
temperature in the case of groundwater flow. 
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The amount of energy transported by conduction and advection can be compared by the 

Péclet number Pe [Domenico and Palciauskas, 1973]. Barcenilla et al. [2005] suggested the 

following formulation to calculate the Péclet number, Pe, of a BHE: 

m

pmbwbw
cvrvr

Pe
λκ

==  (3-9) 

 

3.2.3 Two-dimensional Finite Element Model for TRT Simulation 

The applicability of the moving line source equation (Eq. 3-5) to evaluate the thermal 

response of a BHE is tested by comparing analytical to realistic numerical simulation. For 

this, a two-dimensional (2D) high-resolution finite element model in FEFLOW 5.4 [Diersch, 

2006] is developed. The latter is developed by comparison to a more comprehensive 3D finite 

element model presented by Wagner et al. [2012b]. It is able to predict the complex heat 

transfer between the several parts of the BHE (heat carrier fluid, pipe wall and grout material), 

the porous medium, and the moving groundwater. In contrast, Eq. (3-5) considers the entire 

system as a line-shaped heat source in a homogeneous medium. Errors caused by this 

simplification can be evaluated by comparison between the numerical simulation and the 

results of Eq. (3-5). The numerical model specifications of simulated BHE geometry are listed 

in Table 8 and shown in Fig. 7, and the assumed material properties are provided in Table 9.  

Table 8 Geometric settings of simulated borehole heat exchanger (BHE) in the numerical 
model (Fig. 7). 

 Value 
Radius of the borehole,rbw, (m) 0.075 
Inner radius of the pipe,rpin, (m) 0.013 
Outer radius of the pipe, rpout, (m) 0.016 
Shank spacing, ds, (m) 0.093 
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Table 9 Hydraulic and thermal properties of different numerical model compartments. 

Property Hydraulic conductivity, k, (m s-1) 
Thermal conductivity of porous 

medium, λm, (W m-1 K-1) 

Volumetric heat capacity of 
porous medium, cpm, (MJ m-³ K-

1) 

Subsurface 1.5 ×10-3 a) [Hähnlein et al., 2010] 2.1 a) [Palmer et al., 1992] 2.8 a) [Palmer et al., 1992] 

Grout material 6×10-8 a) [Herrmann, 2008] 0.8 a) [Herrmann, 2008] 2.3b) [Niekamp et al., 1984; Gauthier et al., 1997] 

Pipe material 1 ×10-19 c) [Pannike et al., 2006] 0.39 b) [Signorelli et al., 2007] 1.6 a) [Signorelli et al., 2007] 

Heat carrier fluid (surplus) 1 ×10-19 c) [Pannike et al., 2006] ≥20.0 b) [Clausen, 2008] 4.2a) [Diersch et al., 2010] 

a) reported realistic values; b) estimated based on real values; c) estimated to be able to run the model and avoid hydraulic interactions between 
the discrete feature elements and the part of the finite element mesh representing the grouting material and the subsurface. 

 
Implementation of the BHE and the surrounding aquifer in the numerical grid is illustrated in 

Fig. 2. The discretization is refined for the parts with the highest expected gradients. This is 

the BHE itself and the downgradient eastern part of the subsurface, where the temperature 

plume evolves. Groundwater flow is simulated by a 2nd type boundary condition (BC) at the 

western and eastern boundary of the model, which assigns a constant flux [Diersch, 2006]. 

The temperature of the inflowing groundwater is controlled by a 1st BC, which assigns a 

constant temperature value to certain nodes. The temperature value is equal to the initial 

temperature of the entire system. The heat is injected in the surplus of the pipes by a 4th
 type 

BC, which defines cell-specific energy extraction/injection per time. The turbulent heat 

propagation inside the pipe is simulated by an enhanced thermal conductivity of the pipe 

surplus [Diersch et al., 2010]. 
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Fig. 7. Overview of model domain, spatial discretization, boundary conditions (BC), and 
parameters to characterize the simulated borehole heat exchanger (BHE). The shape of the 
BHE is defined by shank spacing ds, borehole radius rbw, outer pipe radius rpout, and inner pipe 
radius rpin. 

3.3 Initial Evaluation 

3.3.1 Thermal Borehole Resistance 

In an initial evaluation, the numerical model is employed to examine the influence of 

hydraulic parameters on the calculated borehole resistance, Rb, of a completely grouted BHE. 

Conditions in ungrouted and groundwater filled BHE might be different, reflected by a more 

transient behavior inside the BHE [e.g. Gustafsson and Gehlin, 2008; Gustafsson and 

Westerlund, 2010; Gustafsson and Westerlund, 2011].The latter is calculated based on Eq. (3-

2) and the simulated temperature values of the borehole wall, Tbw, and of the fluid, Tf. The 

borehole wall temperature Tbw is the arithmetic mean of temperature values which are 

obtained from nodes located at the boundary between the subsurface and the grout material. 

The position of the nodes applied to obtain the latter temperature values are specified in Fig. 

6. The mean heat carrier fluid temperature, which is evaluated by the TRT approach, is the 

average temperature determined at the center nodes of each pipe (Fig. 7). 
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Using the numerical model, it is possible to determine Rb for every simulation time step (Fig. 

8). All thermal settings remain unchanged. The BHE is simulated with variable Darcy 

velocities, v, in the aquifer and two different hydraulic conductivities, kg, of the grout material 

(Fig. 8). The first case analyzes Rb with respect to increasing v. In order to prevent the BHE 

from acting as hydraulic resistor, the hydraulic conductivity of the grouting material is set 

equal to the hydraulic conductivity of the subsurface (kg = ksub). Thus, groundwater flow 

penetrates the BHE, and conductive and advective heat transports inside the BHE occur. The 

additional advective component promotes heat transfer inside the BHE and therefore thermal 

borehole resistance, Rb, decreases with increasing Darcy velocity, v. If significant amounts of 

groundwater penetrate the grouted part of a BHE, adverse impacts on the grouting material 

might also occur.  

The second case considers the more realistic hydraulic conductivity kg contrast between grout 

and aquifer (kg << ksub). Hermann [2008] measured hydraulic conductivity values of several 

grout materials, and accordingly a typical value of kg = 6 × 10-8 m s-1 is selected here. Under 

such conditions, groundwater flows mainly around the BHE. The heat transfer inside the grout 

is considered purely conductive and only in the aquifer heat is transported by both conduction 

and advection. As a consequence, the calculated Rb values are nearly independent of the 

Darcy velocity (Fig. 8). The determined Rb time series of the second case shows small 

variations of the Rb values at the early time steps. The promoting effect of groundwater flow 

on the heat transport in the subsurface decreases the period of time to reach thermal steady-

state conditions of the entire system (subsurface and BHE). To verify the obtained results, Rb 

values with an identical BHE setup are calculated based on the steady-state multipole method, 

which is implemented in the software Earth Energy Designer - EED [Hellström and Sanner, 

2000]. For all cases with a negligible advective heat transport inside the BHE, both 

approaches result in comparable values (discrepancy below 0.5%) for the time interval of 20 h 

to 70 h. This time interval is also applied for subsequent TRT interpretations. 
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Fig. 8. Temporal sequence of thermal borehole resistance calculated from the numerical 
simulation result for different Darcy velocities, v, and hydraulic conductivity values, kg, of the 
grouting material. The obtained results are compared to simulation by EED. 

There are several similar methods available to determine Rb [e.g. Lamarche et al., 2010; 

Bauer et al., 2011], if the specifications of the BHE are known, like hydraulic and thermal 

properties of the grout material, U-tube spacing, borehole diameter. Chiasson and O’Connell 

[2011] demonstrated a good agreement of Rb values calculated by the multipole method and a 

moving line source parameter estimation approach. This means that in principle, no TRT is 

necessary to estimate this parameter, which is also assumed in the current study. Hence, the 

borehole resistance can be excluded from the evaluation of a TRT. Instead, it is predetermined 

as a case-specific constant, and the only unknowns, therefore, are v and λm. This facilitates the 

parameter estimation procedure, which is already difficult for standard TRT interpretation. 

The inversion problem revealed to be ill-posed in the studies by Marcotte et al. [2008] and 

Wagner et al. [2012b], which showed multiple λeff and Rb pairs yielding valid solutions. 

Accordingly, we also assess the determinability of TRT parameters in our proposed analytical 

approach for groundwater-influenced TRT.  

3.3.2 TRT Evaluation With Moving Line Source 

Several numerically generated TRT temperature time series are generated to analyze the 

suitability of the moving line source equation, Eq. (3-5), for determination of the Darcy 

velocity. Since a BHE is made up of different materials with specific property values, this 

violates the assumption of a homogeneous medium in Eq. (3-5). Thus, fitting TRT data might 

potentially cause errors for the results. Thermal properties are less variable than hydraulic 

properties, and therefore interpretation of purely conductive systems with the standard line 
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source equation is feasible. Signorelli et al. [2007] analyzed numerically generated TRTs and 

showed that the error caused by the thermal conductivity difference between the grouting 

material and the subsurface of ∆λ = 2.2 W m-1 K-1 is less than 5%. The difference of the 

model in our study is even smaller (∆λ = 1.3 W m-1 K-1, Table 9). This property contrast 

becomes even smaller when a thermally enhanced grout material is used to backfill the BHE, 

which becomes increasingly popular. The effect of this parameter difference is presented in 

Fig. 9a. The spatial temperature distribution calculated by Eq. (3-5) only deviates inside the 

BHE in comparison with the results of the numerical model. The heat transfer inside the BHE 

is approximated by the thermal borehole resistance; therefore, the temperature value at the 

borehole wall is relevant for TRT evaluation and, thus, the temperatures resulting at the 

borehole wall of the analytical solution and the numerical model are identical. Hence, we 

assume that the influence of the thermal conductivity contrast can be neglected.  
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Fig. 9. Comparison of the spatial temperature distribution around a BHE perpendicular to the 
flow direction calculated using Eq. (3-5) and the numerical model presented in chapter 3.2.3. 
a) Temperature distribution for a pure conductive heat transfer around a BHE; b) Temperature 
distribution for a conductive and advective heat transfer around a BHE (Darcy velocity: v = 
0.5 m day-1). 

The borehole resistance, Rb, should not be influenced by groundwater flow in the BHE- 

surrounding porous medium, and its value may be determined separately. Therefore, in the 

next analysis our focus is set exclusively on Darcy velocity, v, and thermal conductivity. 

Thermal borehole resistance values are fixed as given in Table 9. The question is, how well 

does the effective Darcy velocity (veff), determined by Eq. (3-5), approximate the known value 

of v specified in the numerical model? The results are based on repeated simulations of 

different hydraulic conditions, and parameter estimations with Eq. (3-5) and are illustrated in 

Fig. 10. According to Witte et al. [2002], all determined effective Darcy velocities are suitable 
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with an RMSE smaller than the temperature measurement error of 0.1°C. The average validity 

range of veff is smaller than ± 2.5% of the optimal fit, which denotes that the moving line 

source delivers a satisfactory result. The observed discrepancy between chosen v and best-

fitted veff is unsatisfactory. The true value of Darcy velocity, v, is always underestimated, and 

the calculated conformance ratio even decreases non-linearly for higher groundwater 

velocities. For a high Darcy velocity of v = 2 m day-1, for example, the best-fitted Darcy 

velocity is about 50% below the input value. For low values (< 0.2 m day-1), conduction 

dominates the heat transport and consequently the sensitivity of the advective component 

decreases. Under these conditions, the validity range of veff clearly exceeds ± 2.5%, indicating 

that a small uncertainty in the thermal conductivity value causes significant relative errors of 

veff in this domain and, thus, a precise determination of the ratio veff/v is not possible. 

This discrepancy between input and best-fitted Darcy velocity is mainly caused by the 

difference between the hydraulic conductivities of the grouting material and the aquifer. The 

latter (ksub) applied in the current study is 2.5 × 104 times higher than that of the grouting 

material. Thus, the Darcy velocity is noticeably reduced in the close vicinity of the source, i.e. 

the BHE, which also explains why the best-fitted Darcy velocities are increasingly 

underestimated for increasing input velocities v. This effect is shown for the conduction and 

advection-influenced system in Fig. 9b. The determined temperature at the borehole wall 

calculated using Eq. (3-5) and the numerical model differ not only inside the BHE like in the 

case of conductive heat transfer, but also at the borehole wall. The deviation inside the BHE is 

reflected by the thermal borehole resistance Rb, but the discrepancy of Tbw values still 

remains. The latter hampers the application of Eq. (3-5), and instead only time-consuming 

numerical simulation appears to be suitable. However, as a systematic error is introduced by 

an evident process, a straightforward parametric approach is favored for practical 

applications. Hence, a correction term is included in the estimation procedure by Eq. (3-5), 

which is described in the subsequent chapter.  
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Fig. 10. Result of the evaluation of numerically generated TRT temperature time series 
(influenced by different Darcy velocities) based on the moving line source equation. 
Maximum tolerance of fitting error is set to an RMSE of 0.2°C.  

 

3.4 Correction  

3.4.1 Correction Term 

A correction term, C, is introduced to balance the difference between veff and v: 

 (3-10) 

For various hydraulic and thermal conditions, the ratio veff/v is calculated to obtain a robust 

specification of the correction term, which can be used to estimate a corrected Darcy velocity 

veff
*. Numerical simulations with a thermal conductivity range of the porous medium λm from 

1.2 to 5.2 W m-1 K-1 and a Darcy velocity v interval from 0.01 to 3.5 m day-1 are performed 

and analyzed. Furthermore, the ratio veff/v is calculated for three different Rb values and four 

different extraction or injection rates, respectively (Fig. 11). 

* eff
eff

v
v v

C
≈ =
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Fig. 11. Relation between the resulting parameters of the TRT evaluation based on Eq. (3-5) 
(λm,eff and veff) and the determined ratio veff/v, which is based on numerical simulations. a) 
using three different Rb values and an heat transfer rate of 50 W m-1; b) using four different q 
values and an thermal borehole resistance of 0.09 m K W-1. 
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The determined ratio veff/v does not vary significantly for the three different Rb values, which 

is expected, because Rb is only related to the heat transfer inside the BHE. Thus, it is possible 

to exclude Rb from a TRT evaluation procedure and determine Rb separately. The focus of the 

TRT evaluation is therefore on the heat transfer from the borehole wall to the subsurface (or 

vice versa). The ratio veff/v shows a clear linear correlation between the obtained Darcy 

velocity, veff, and the determined thermal conductivity of the porous medium, λm,eff. The 

wavering curve shape of the veff/v ratio arrays 0.9 and 1.0 (Fig. 11) are mainly caused by the 

decreasing influence of advective heat transport, resulting in a substantial uncertainty of the 

determined veff value. The determined ratio veff/v is even less influenced by the applied heat 

transfer rate. This is expected, because the heat transfer rate is simulated by the moving line 

source (Eq. (3-5)). 

 

Fig. 12. Relation between the resulting parameters of the TRT evaluation based on Eq. (3-5) 
(λm,eff and veff) and the determined correction term C. For the dotted parameter range of λm,eff 
and veff, no correction is required, and for the white parameter range a correction of veff based 
on Eq. (3-10) is suggested. Parameter pairs (λm,eff and veff) of the three studied test cases 
presented in chapter 3.5 are marked as: × Diersch-case; o Dornstädter-case; + Pannike-case. 

To transfer the results to an applicable correction term C, only the averages of veff/v for the 

three analyzed Rb values and four different extraction or injection rates are determined, which 
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are shown Fig. 7. As explained previously, the determination of veff/v starts to become vague 

for low groundwater velocities. This inaccuracy also affects the determined C values. Thus, 

we defined a field of application (C < 1) in which the resulting Darcy velocity veff of the 

moving line source evaluation (Eq. (3-5)) should be corrected by C. Inside this area veff 

systematically underestimates v, and outside of this area (dotted range in Fig. 12) no 

correction of the obtained veff value is required. 

3.4.2 Correction Procedure 

We suggest a three-step procedure to quantify both thermal (Rb, λm) and hydraulic (v) 

parameters from the TRT.  

(1) Determine Rb by an external approach. In our study, we used the numerical results 
(Fig. 8). 

(2) Estimate λm,eff (= λm) and veff by fitting the moving line source (Eq. (3-5)) to the 
measured temperature time series. 

(3) Obtain veff
* (= v) by correction of veff (Eq. (3-10)) with C taken from Fig. 12. For low 

veff, no correction is necessary (C = 1).  

3.5 Application 

To assess the proposed correction procedure for realistic GSHPs, three reported test cases are 

taken from the literature representing the field of application shown in Fig. 12 (Table 10). 

Based on the provided conditions, numerical TRT temperature time series are simulated and 

illustrated in Fig. 13. All other settings are listed in Tables 6 and 7. The generated temperature 

time series are evaluated by the proposed correction approach and the resulting parameter 

values are compared to the assigned input values to assess the procedure.  

Table 10 Thermal conductivities λm and λg, calculated thermal borehole resistances Rb, and 
Darcy velocities v from the three case studies for the application of the proposed correction 
procedure. 

 Diersch case  Dornstädter case  Pannike case  
Thermal conductivity of the grout, λg, (W m-1 K-1) 2.3 a)  0.5 b) 0.8 b) 
Thermal borehole resistance, Rb, (m K W-1) 0.05 c) 0.14 c) 0.09 c) 
Thermal conductivity of the porous medium, λm, (W m-1 K-1) 2.5 a)  1.5 a)  2.7 a)  
Darcy velocity, v (m day-1) 0.05 a)  0.25 a)  0.86 a)  
Péclet number,Pe (-) 0.05 c) 0.4 c) 0.8 c) 

a) values from literature Diersch et al. [2010], Dornstädter et al. [2008] or Pannike et al. [2006], respectively; b) values estimated; c) values 
calculated based on the reported values and using Eq. (3-9); d) values calculated based on Eq. (3-2) and the numerical result. 

 



Chapter 3 

 

54 

 

Fig. 13. Numerically generated temperature time series of the three evaluated test cases 
(Diersch case, Dornstädter case, Pannike case). 

3.5.1 Diersch Case 

Diersch et al. [2010]simulated a shallow geothermal energy storage system installed in South-

West Germany. The entire energy storage system consists of 80 BHEs, which are placed in a 

circular field with a radius of 15 m [Diersch et al., 2011b]. Each installed BHE is influenced 

by an underlying limestone aquifer with λm = 2.4 W m-1 K-1 and a maximum reported Darcy 

velocity of v = 0.05 m day-1. Based on both parameters an artificial temperature time series is 

generated by the numerical model and evaluated with the presented approach. This case study 

represents these conditions with lowest Darcy velocity and is dominated by conductive heat 

transport, which is also indicated by the small Péclet number (Pe = 0.05). 
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Fig. 14. Valid parameter pairs of λm,eff and veff
* for an RMSE ≤ 0.1 °C. Dashed lines delineate 

the predefined tolerance window of ± 10% around the initial values listed in Table 10 for the 
different cases. a) Diersch case ; b) Dornstädter case; c) Pannike case. 
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The results of the Diersch case TRT evaluation are shown in Fig. 14a. The competitive 

character of conductive and advective heat transport is indicated by a minor negative 

correlation. Still, the thermal conductivity focuses in a small range between 2.4 and 2.55 W 

m-1 K-1. This only means a slight potential overestimation of the given value of λm = 2.4 W m-

1 K-1. Conduction dominates the heat transfer (Pe = 0.04), and the small contribution by 

advection therefore may be misinterpreted as a higher impact from conduction. Under such 

conditions, however, extracting the role of advection is a challenging task. Even if feasible 

solutions of λm,eff and veff very close to the real values are found, the range of possible veff
* 

results exceeds the predefined validity interval of ± 10%. This confirms our expectations for 

the limited applicability of the presented approach for aquifers with low groundwater 

velocities. Obviously, even if λm can be estimated very well, more information can hardly be 

extracted from the TRT interpretation procedure. At most, it can be concluded that a very 

small Darcy velocity (v < 0.1 ms-1) is present. 

3.5.2 Dornstädter Case 

Dornstädter et al. [2008] evaluated an enhanced TRT by a Péclet number analysis. The 

studied BHE is 57 m deep and is influenced by an aquifer with λm = 1.5 W m-1 K-1 and a 

maximum reported Darcy velocity of v = 0.25 m day-1. The aquifer ranges from 7 m to 14 m 

below ground level and is mainly built up of gravel. The hydraulic and thermal settings are 

used to generate an artificial TRT dataset, which is evaluated by the presented approach. 

From the selected case studies, the Dornstädter case represents the intermediate variant, with 

considerable but not extreme Darcy velocity. The calculated Pe indicates that the Dornstädter 

case is more influenced by advective heat transport than the Diersch case, but less than the 

following Pannike case. Nevertheless, in the Dornstädter case, conductive heat transport is 

more pronounced.  

Again, the fitting procedure provides a nearly linear correlation of the possible solutions for 

λm,eff and veff
*, which is presented in Fig. 14b. This reflects the similar effects of conduction 

and advection, although the higher contribution from advection yields a steeper trend, i. e., a 

more pronounced negative correlation. In contrast to the Diersch case, the estimated results 

for both parameters comply very well with the real values. Even if – for the given tolerance of 

the RMSE – numerous results are valid, the possible solution pairs only slightly exceed the ± 

10% boundary. Thus, we conclude that for conditions similar to this Dornstädter case (Pe = 

0.4), the presented corrected moving line source procedure turns out to be very efficient.  
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3.5.3 Pannike Case 

Pannike et al. [2006] analyzed numerically the thermal plume caused by a BHE in several 

aquifers with varying hydraulic and thermal properties, which are typical of northern 

Germany. We extract the case with the highest Darcy velocity v = 0.86 m day -1 and a thermal 

conductivity of the porous medium λm = 2.7 W m-1 K-1. The conditions from the Pannike 

study are used to generate an artificial TRT dataset influenced by the highest Darcy velocity 

for testing the presented TRT evaluation approach. Based on the high Darcy velocity, the 

resulting Péclet number is Pe = 0.8, which indicates that heat is transported in comparable 

proportions by conduction and advection. 

Similar to the previous cases, the results of the TRT evaluation show a negative linear 

correlation between λm and veff
* (Fig. 14c), which is further pronounced by the relatively high 

contribution from advective heat transport. Here, valid parameter values are nearly 

proportional. A relative change in veff
* is balanced by the same relative change in λm,eff. For the 

given RMSE threshold ≤ 0.1°C, the parameters span a broad range, which not only meets but 

also exceeds the ± 10% error window. For example, for the given v = 0.86 m day-1, veff
* values 

are found to be between 0.6 and 1.1. The true thermal conductivity λm = 2.7 W m-1 K-1 is 

equally over- and underestimated with values between λm,eff = 2.0 and 3.5 W m-1 K-1. In 

practice, this means that by the procedure at least a considerable influence of advection can be 

detected and also a plausible range can be determined. In the specific Pannike case, close-to-

reality solutions can be found by taking the (visual) mean (or statistical median) from Fig. 

14c, but in practice this might be biased by measurement errors or other sources of noise. 

Often, it is possible to further confine reasonable ranges of the expected thermal conductivity 

based on rock or sediment facies. For example, Woodside and Messmer [1961] and Popov et 

al.  

[1999] presented several methods to estimate ranges of thermal conductivity for 

unconsolidated materials, which could be used as constraints to improve the estimation of the 

prevailing Darcy velocity.  

Finally, we could demonstrate for all studied test cases that the resulting parameters of the 

presented evaluation procedure are representative properties of the subsurface. The Diersch 

case, which represents a low-advection case, shows that no further correction is necessary and 

the evaluation is not sensitive for the estimation of the Darcy velocity within the assigned 
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relative error range. The Dornstädter case, which represents a medium-advection case, shows 

that the proposed correction approach results in acceptable estimates for λm,eff and veff
*. 

Although the Rb value of the simulated BHE exceeds the used Rb range for determination of 

the correction term C, the accuracy of the estimated parameters is very high. This is evidence 

that the field of application might exceed the considered Rb range for the determination of C 

(Fig. 12). The Pannike case, which represents the highly advective case, reveals the non-

uniqueness of the inverse problem, which prevents an unequivocal estimation of λm,eff and veff
*. 

However, the accuracy can be efficiently improved, if the representative thermal conductivity 

of the porous medium can be constrained. Nevertheless, four main challenges still remain: 

First, the effect of subsurface heterogeneity has to be analyzed in more detail and in 

particular, if the examined BHE is only partially groundwater-influenced. Secondly, the 

influence of different evaluation times should be further analyzed. Thirdly, the heat capacity 

ratio between the groundwater and the solid might also influence the result of the evaluation. 

Finally, the validation of the presented evaluation procedure in the field is necessary.  

3.6 Conclusion 

In this study, an innovative analytical approach to the evaluation of groundwater-influenced 

TRTs is introduced and applied using three different case studies from the literature. The 

approach includes a correction procedure to mitigate the error that is caused by the hydraulic 

parameter contrast between the grouting material and the subsurface. The derived procedure is 

verified by high-resolution numerical simulations. 

With the results of the numerical simulations we demonstrate that for a wide range of 

groundwater-influenced TRTs, the Darcy velocity cannot be determined simply by the 

moving line source theory. Hence, we derived a correction procedure to overcome the 

limitations of a line-shaped heat source in a homogeneous flow field describing a BHE. The 

analyses of three TRT test cases are performed to assess the simultaneous determination of 

λm,eff and veff
*. Due to the competitive character of conductive and advective heat transport 

around a BHE, the assessment of all three test cases results in an array of possible solutions 

and not only in a single valid parameter pair. However, all solution sets contain possible 

“true” parameter combinations and λm,eff and veff
* always exhibit a negative correlation. 

For conduction-dominated cases (Pe < 0.1), the result obtained by the moving line source 

theory cannot be further improved by the correction approach. The evaluation procedure 
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results in a wide range of valid veff
* values, which exceeds the given error tolerance interval of 

± 10%. In contrast, the resulting thermal conductivity value λm,eff matches rather precisely the 

value assigned in the numerical simulation. For the moderate test case, with a Pe number in 

the range of 0.1 to 0.8, an excellent distinction between advective and conductive contribution 

could be achieved. Almost all possible parameter pairs (λm,eff and veff
*) are within the ± 10% 

error interval. The results of the test case with the highest Darcy velocity (v = 0.9 m day-1) 

show that even for a small error tolerance (RMSE < 0.1), a broad range of parameter pairs of 

λeff and veff
* provide suitable results. However, based on the significant negative correlation 

between λm,eff and veff
*, the latter however can be more precisely determined, if the 

representative thermal conductivity of the porous medium is estimated. Thus, for high Pe 

numbers (Pe ≥ 0.8), the TRT could also be used as a hydraulic test method. 
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4 Hydraulic characterization of aquifers by thermal response testing: 

validation by large scale tank and field experiments 

 

Reproduced from: Wagner, V., Bayer, P., Bisch, G., Kübert, M., Blum, P., (201x): Hydraulic 

characterization of aquifers by thermal response testing: validation by large scale tank and 

field experiments. Water Resources Research, (in revisions) 

 

Abstract:  Thermal response tests (TRT) are a common field method in shallow geothermics 

to estimate thermal properties of the ground. During the test, a constantly heated fluid is 

circulated in closed tubes within a vertical borehole heat exchanger (BHE). The observed 

temperature development of the fluid is characteristic for the thermal properties of the ground 

and the BHE. We show that, when the BHE is installed in an aquifer with significant 

horizontal groundwater flow, this test can also be used for hydrogeological characterization of 

the penetrated subsurface. An evaluation method based on the moving line source equation 

and considering the natural occurring variability of the thermal transport parameters is 

presented. It is validated by application to a well-controlled, large-scale tank experiment with 

9 m length, 6 m width and 4.5 m depth, and by data interpretation from a field scale test. The 

tank experiment imitates an advection influenced TRT in a well-known layered aquifer. The 

field experiment was recorded with a 100 m deep BHE, installed in a gravel aquifer in 

southwest Germany. The evaluations of both experiments result in similar hydraulic 

conductivity ranges as determined by standard hydraulic investigation methods such as 

pumping tests and sieve analyses. Thus, advection influenced TRTs could also potentially be 

used to determine integral hydraulic conductivity of the subsurface. 

  



Chapter 4 

 

62 

4.1 Introduction 

The use of temperature signals in hydrogeological field investigation has been suggested for 

decades [e.g., Stallman, 1963; Bravo et al., 2002], and has recently gained significant 

attention, especially in the context of surface-groundwater interaction [Cardenas, 2010; Lautz, 

2010]. Anderson [2005] and Saar [2011] emphasized the often unexplored potential of using 

natural temperature variations as a cheap, expressive and complementary means to support 

hydraulic characterization of groundwater flow conditions, water balancing, and modeling on 

local and basin scale. So far, less interest has been on application of artificial thermal signals, 

which are actively induced in field measurement campaigns. Reasons for this are that standard 

applications and interpretation procedures do not exist, that established alternative 

hydrogeological investigation methods coexist, and that generation of substantial and far 

reaching thermal signals is challenging, time consuming, and potentially costly.  

In most studies with artificial heat perturbation, understanding coupled hydraulic-thermal 

processes is of particular interest. Evolution of thermal anomalies from injection of hot or 

cold water is mainly studied in the context of geothermal energy use of shallow aquifers [Parr 

et al., 1983; Palmer et al., 1992]. Thermal monitoring downgradient or in the vicinity of an 

artificial heat source has been gaining attention for active thermal tracer testing. Hurtig et al. 

[1994] initiated the use of distributed thermal sensors (DTS) at the Grimsel test site in 

Switzerland. Hot and cold water was injected in the crystalline hard rock to successfully 

identify fractures by thermal fluid logging. Ma et al. [2012] demonstrated that additional 

information can be exploited from combining Bromide tracer with hot water at the Hanford 

site, Washington. Both tracers could be used for the calibration of a groundwater and heat 

transport model, but density effects and intra borehole flow were identified as critical factors 

for the interpretation of vertical temperature variations [Klepikova et al., 2011].  

In contrast to this “open test design”, where mass and heat is exchanged with the subsurface, 

there are experiments that employ temperature signals from hydraulically closed devices 

without water exchange between device and soil or aquifer. Byrne et al. [1967] were among 

the first to used conductive heating devices to characterize soil water flux. In their application, 

a solid cylinder shelters the heater and the temperature sensors, but it significantly distorts the 

flow field. More recently developed devices measure thermal perturbations from a central 

wire, and these can be classified by the specific sensor arrangement. There are one-

dimensional (1D) [e.g., Ochsner et al., 2005; Gao et al., 2006], two-dimensional (2D) [e.g., 
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Greswell et al., 2009] and three-dimensional (3D) configurations [e.g., Angermann et al., 

2012]. In these studies, analytical solutions were employed to determine water flux, except of 

Hopmans et al. [2002], who applied the numerical HYDRUS-2D model for the analysis. 

Ochsner et al. [2005] emphasized that a systematical misfit between recorded and modeled 

data exists, which can be overcome by introducing a correction term that mitigates the 

advection component. Gao et al. [2006] explained this misfit by wall flow effects caused by 

the sensor. 

“Closed” thermal perturbation, common in hydrogeology and soil science, is confined to 

miniature field investigation techniques such as heat perturbation flow meter or heat pulse 

sensor [Greswell et al., 2009; Angermann et al., 2012]. A related method for investigating 

ground thermal parameters, the thermal response test (TRT), is established in larger scale 

geothermal applications. Typically, vertical boreholes of about 50-200 m are drilled, equipped 

with one or two U-tubes, and a heat carrier fluid is circulated to facilitate energy transfer 

between subsurface and an aboveground heat pump or resistance heater. The borehole-tubes 

installation is also termed borehole heat exchanger (BHE). During the TRT, the temporal 

development of the artificially heated fluid over a period of one or more days is analyzed. The 

recorded temperatures are used to calibrate analytical or numerical models to obtain the BHE-

specific borehole resistance, and the thermal conductivity of the ambient ground [e.g., Gehlin, 

2002]. Commonly, advective heat transport in penetrated aquifers is ignored. If aquifers are 

present then it is accounted for by introducing an effective thermal conductivity that is 

typically larger than the actual one describing conduction only [e.g. Witte, 2001]. 

The influence of groundwater flow on TRTs has been examined in experimental and 

theoretical studies. To quantify the influence experimentally, two different strategies were 

presented. The first one compares a groundwater-influenced TRT to one conducted in 

comparable geology [e.g., Chiasson and O'Connell, 2011]. Alternatively, a forced gradient 

(e.g., by groundwater extraction) TRT is contrasted with results from undisturbed conditions 

[Witte, 2001]. The influence of groundwater flow on the TRT result is also analyzed by 

numerically generated datasets [e.g., Signorelli et al., 2007; Raymond et al., 2011b; Wagner et 

al., 2012b; Sharqawy et al., 2013]. Fitting the analytical line source model [e.g., Mogensen, 

1983; Signorelli et al., 2007], or the cylinder source model [Gehlin, 2002] is most common 

for TRT evaluation. Apart from these analytical models, there are numerical 1D [e.g., Gehlin, 

2002], 2D [Witte et al., 2002] and 3D models [e.g., Signorelli et al., 2007; Raymond et al., 
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2011b] applied for more detailed TRT analysis. However, many of these standard analytical 

models (i.e. line and cylinder source models) neglect advective heat transport in the ground. 

To overcome this limitation, Chiasson and O’Connell [2011] and Wagner et al. [2013] 

suggested a conduction and advection sensitive model calibration approach for the TRT 

analysis. In Wagner et al. [2013], we revealed that there is a systematical misfit between 

actual and estimated Darcy velocities. Comparable to the approach by Ochsner et al. [2005] 

and Gao et al. [2006] for heat injection devices, a correction term is introduced.  

The main objective of the current study is to determine the integral hydraulic conductivity of 

an aquifer by thermal response testing. The study builds up on the theoretical analysis 

presented in Wagner et al. [2013]. We introduce the TRT evaluation as a method to 

characterize – exclusively – the groundwater flow regime, and validate the evaluation 

procedure in laboratory and field applications. This changes the motivation of standard TRT 

application, which is mainly focused on thermal parameters, such as thermal conductivity and 

thermal borehole resistance, describing heat conduction from heated BHE. We recognize, in 

line with the results by the study of Ma et al. [2012] on “open” thermal tracer testing, that 

thermal conduction and dispersion are much less sensitive than hydraulic parameters (i.e. 

hydraulic conductivity) for advection-influenced systems. In the following, moderate value 

ranges of thermal parameters to describe heat transport in aquifers are discussed. First, the 

technical principles of TRT are briefly explained. Second, the moving line source based TRT 

interpretation to determine the vertically integrated Darcy velocity of an aquifer is introduced. 

By applying Darcy’s law, an integral aquifer hydraulic conductivity value is estimated. Then 

comprehensive large-scale tank and field experiments are described, one at a laboratory in 

Stuttgart and one at a field site in the town of Schwanau, Germany. These are used for 

validation. Finally, we discuss the applicability of the developed method, and conclude upon 

its robustness and potentials for improvements. 

4.2 Methodology 

4.2.1 Technological and theoretical background 

Closed geothermal systems are frequent applications for low-enthalpy thermal energy 

provision. In Europe alone, there are currently far more than one million reported installations 

[Bayer et al., 2012]. The technological principle is straightforward: in the tubes of one or 

multiple adjacent boreholes a heat carrier fluid is circulated to establish a temperature gradient 
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between borehole and ground. This stimulates conductive heat transport from or towards the 

borehole heat exchanger (BHE). In the closed tubes, the heat carrier fluid transports heat or 

cold to an aboveground receptor, such as a heat pump that supplies the heating demand of 

buildings. For cooling, only a circulating pump or a reversible heat pump is used. The TRT is 

an established field experiment to support design of closed geothermal systems [Gehlin, 2002; 

Signorelli et al., 2007; Sharqawy et al., 2009b]. It is employed, usually in the planning or 

pilot phase, to gain insights into the heat transport characteristics of the ground and of the 

transition between ground and heat carrier fluid. The better the geothermal system can extract 

heat (or cold) from the ground, the smaller the required length of the borehole and the lower 

the installation costs [Blum et al., 2011].   

During the TRT, the heat carrier fluid is warmed up at the inlet of the borehole tube(s) and 

circulated for one or more days. By recording the temperature at the outlet, the heat loss to the 

ground is monitored. Assuming only conductive heat loss and integrating over the entire 

borehole length, the Kelvin line source theory is typically applied [e.g., Carslaw and Jaeger, 

1959]. The analytical line source equation describes conductive heat transport from the 

borehole to the ground that is simulated as an infinitely small linear structure. In practice, a 

logarithmic approximation of the Kelvin line source theory is often used for the calibration by 

straight line fitting on semi-log scale to the temperature time series recorded during the TRT. 

This procedure is comparable to pumping test interpretation in hydrogeology. 

The TRT is conducted to typically estimate the values of two thermal parameters such as the 

mean effective thermal conductivity of the ground and the thermal borehole resistance. 

According to Fourier’s law, the thermal conductivity governs the conductive heat flux from or 

towards the borehole for a given temperature gradient. In many applications, the tubes are 

embedded in bentonite grout [Wagner et al., 2013]. Detailed simulation of the transport 

processes between borehole wall and carrier fluid in the tubes requires advanced numerical 

models, which simulate the discrete parts of a BHE. Instead of this, in the analytical line 

source based simulation, the thermal borehole resistance Rb is introduced serving as the bulk 

parameter to quantify the thermal effects inside the BHE (Fig. 15).  
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Fig. 15. Borehole heat exchanger (BHE) during a thermal response test (TRT) with heat 
transfer processes and parameters accounted for by the moving line source (Eq. (4-6)) 
(thermal borehole resistance Rb; Darcy velocity v; thermal conductivity of the porous media 
λm; volumetric heat capacity of the porous media cpm; volumetric heat capacity of the 
groundwater cpw; longitudinal and transversal dispersivity αl and αt). 

If BHEs operate in aquifers, advection commonly improves heat transfer and system 

efficiency. Since hydrogeological insight is often lacking, this process is not further examined 

and opportunities are lost for more economic (shorter) boreholes [e.g., Blum et al., 2011]. 

Thus, recently, attention has grown towards the role of groundwater flow, and the additional 

advective heat transport component that balances thermal anomalies evolving around such 

BHEs. There are analytical [e.g., Chiasson and O'Connell, 2011; Molina-Giraldo et al., 

2011b] and numerical [e.g., Signorelli et al., 2007; Hecht-Méndez et al., 2010; Raymond et 

al., 2011b] studies, which analyze the effects of simultaneous heat advection and 

hydrodynamic heat dispersion (Fig. 15). To be able to distinguish advective and conductive 

components in a groundwater influenced TRT, Chiasson and O’Connell [2011] and Wagner 

et al. [2013] suggest using the infinite moving line source model. The infinite moving line 

source equation approximates the BHE as an infinite line shape heat source (or sink) with a 

constant heat flux. The time-dependent temperature variation in the ground caused by the heat 

source is given by [Carslaw and Jaeger, 1959]  
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In this study, T represents the temperature [°C], x and y are the Cartesian coordinates [m] with 

the BHE at the origin, t is the time [s], q is the heat injection per unit length [W m-1], cpm is the 

volumetric heat capacity of the porous media [J m-3 K-1] and u is the integration variable. 

Temperature T0 describes the undisturbed conditions at the initial state.  

Eq. (4-1) describes conductive and advective heat propagation in homogeneous porous media. 

The effective heat transport velocity is defined as 

pm

pw
th c

c
vv =  (4-2) 

where v is the Darcy velocity [m s-1] and cpw the volumetric heat capacity of the groundwater 

[J m-3 K-1]. Subscript th denotes that the transport velocity (vth) is thermally retarded. The 

effective thermal dispersion coefficients D [m s-2] are in longitudinal direction 

thl
pm

m
l v

c
D αλ
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and in transversal direction 

tht
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m
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c
D αλ

+=  (4-3b) 

The thermal conductivity of the porous media is λm [W m-1 K-1] ; αl and αt [m] represent the 

longitudinal and transversal dispersivities. For TRT interpretation, the temperature change of 

the ambient ground is calculated based on Eq. (4-1). The temperature difference inside the 

BHE is accounted for by the thermal borehole resistance Rb [m K W-1], which is calculated as  

q

TT
R bwf

b

−
=  (4-4) 
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Temperature Tbw refers to the borehole wall and Tf to the heat carrier fluid. Rb relates the 

borehole wall temperature to the heat carrier fluid temperature [Sutton et al., 2002] 
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(4-5) 

If the physical properties of the ground can be approximated as temperature independent, 

superposition can be applied to Eq. (4-5). Temporal superposition is used to consider multiple 

loads during the TRT, and consequentally, to facilitate a stepwise TRT evaluation. Spatial 

superposition is employed to account for locally variable effects of groundwater flow. During 

heating, advective heat transport causes an asymmetric borehole wall temperature with lower 

values at the upstream. This is resolved by multiple (here, six) superimposed line sources 

equally positioned at the borehole wall at (xj, yj), which share the total heat injection rate of 

the TRT. Temporally and spatially superimposed Eq. (4-5) reads 
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where m denotes the number of time steps and n the number of heat sources. At time step i, a 

total heat injection rate of qi is applied to the BHE, with t0 = 0 and q0 = 0.  

By formulating the moving line source equation in dimensionless form, one is able to obtain a 

set of universal thermal response curves. The dimensionless coordinates are obtained by 

referring to the BHE length H; in x-direction: x’ = x H-1 and in y-direction y’ = y H-1. The 

dimensionless heat injection rate per unit length q’ is formulated in the same manner, q’ = q 

qref
-1. In line with the work of Molina-Giraldo et al. [2011b], a dimensionless temperature rise 

Θ is defined based on the temperature change ∆T: Θ = ∆T cpm Dl 4 π qref
-1. Furthermore, the 

Fourier number Fo = Dl t H
-2, the Peclet number Pe = vth H Dl

-1 and the effective thermal 
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dispersion ratio β = Dl Dt
-1 are defined. Based on these dimensionless parameters, Eq. (4-6) 

can be expressed in dimensionless form: 
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In contrast to the approach by Chiasson and O’Connell [2011], Wagner et al. [2013] also 

considers the hydraulic effects of the grouting material inside the borehole on the estimated 

parameters. Wagner et al. [2013] built up a two-dimensional (2D) finite element model of a 

BHE in FEFLOW 5.4 [Diersch, 2009b]. By using a fully discretized BHE, this numerical 

model considers the complex heat propagation inside the BHE between the heat carrier fluid, 

pipe wall and the grout material, as well as advective and conductive heat transport in the 

surrounding ground. By comparing this high-resolution numerical model and Eq. (4-6), it was 

demonstrated that there is a systematic misfit between the Darcy velocities derived from 

realistic numerical and approximate moving line source models. The anticipated discrepancy 

of the numerical and analytical thermal response curves is caused by remarkable hydraulic 

conductivity contrast between the grouting material of the BHE and the ambient aquifer, 

which reaches typically more than three orders of magnitude, and which is not resolved by 

Eq. (4-6). In comparison, thermal properties of the grouting material and the aquifer are 

commonly in a comparable range. Wagner et al. [2013] demonstrated that Darcy velocity, v, 

in an aquifer is underestimated by Eq. (4-6) due to disregard of the low-permeable grout and 

therefore, the calibrated value reflects an effective Darcy velocity. This is comparable to the 

findings by Ochsner et al. [2005] for calibration of heat pulse models. The derived effective 

Darcy velocity, veff, however, may be adjusted by a numerically derived correction factor C to 

a corrected effective Darcy velocity veff
*, which is comparable to the aquifer Darcy velocity.  

C

v
vv eff

eff =≈ *  (4-8) 

Appropriate values of C depend on effective thermal conductivity and effective Darcy 

velocity, λm,eff and veff, as shown in Fig. 16. Wagner et al. [2013] analyzed possible effects of 

Rb values ranging from 0.06 m K W-1 to 0.12 m K W-1 and heat extraction/injection rates, q, 
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varying from -50 W m-1 to 75 W m-1 on the discrepancy between veff and v. It was 

demonstrated that the obtained C values are robust and insensitive to these parameters. 

 

Fig. 16. Values for the correction factor C depending on effective thermal conductivity, λm,eff, 
and effective Darcy velocity, veff. The grey area depicts the value range for the examples 
chosen in the present study. 

4.2.2 Parameter estimation procedure 

A two-step parameter estimation procedure is applied to determine Darcy velocity of 

horizontal groundwater flow. If the hydraulic gradient is known, the hydraulic conductivity 

can be derived (Fig. 17). Hydraulic parameters such as the hydraulic conductivity, K, vary 

over orders of magnitude, and therefore natural occurring Darcy velocities are highly variable. 

In contrast, reasonable value ranges for thermal transport parameters in aquifers are much 

more constrained. Hence, here, we solely focus on the identification of effective Darcy 

velocity, veff, and K. The Nelder-Mead algorithm [Nelder and Mead, 1965; Lagarias et al., 

1998; Bayer and Finkel, 2007] is used to determine veff, by fitting Eq. (4-6) to measured 

temperature time series. This is achieved by minimizing the root mean squared error (RMSE). 

Further thermal transport parameters are set fixed during the fitting step. In order to examine 

the variability of veff depending on the thermal transport parameter settings, the veff fitting step 

is repeated for alternative combinations. Given ranges of λm, cpm, αl and Rb are discretized and 

all combinations of these discretized parameter values are tested. This is exhaustive but, with 

an analytical model, the computational effort is moderate. Not all combinations enable 

satisfactory curve fitting, and a threshold for the RMSE is suggested to exclude non-plausible 

results. As a result, we obtain a complete set of possible veff, as well as the associated residuals 
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from the fitting, while assuming limited knowledge on thermal transport parameters. The 

derived veff values are corrected by Eq. (4-8) to estimate v, and we arrive at an estimate of K 

with the hydraulic gradient of the aquifer. This two-step parameter estimation procedure is a 

straightforward method, which may be replaced by any alternative. We favor the presented 

steps to capture all possible values of veff. Alternatively, this may also be studied with a 

Bayesian or evolutionary algorithm. 

 

Fig. 17. Optimization schedule applied to combine a local Nelder-Mead optimization of veff, 
and full enumeration grid search on cpm, λm, αl and Rb. Determined veff values are corrected by 
Eq. (4-8) and if the hydraulic gradient is known, veff

* can be transferred to an integral 
hydraulic conductivity (K). 

The more the value range of thermal parameters can be constrained, the more precisely the 

Darcy velocity can be determined. The thermal properties of aquifers are less variable than 

hydraulic properties [e.g. Parr et al., 1983; Anderson, 2005], and by means of established 

empirical or statistical relationships they can be estimated at the field site [e.g., Woodside and 

Messmer, 1961; Menberg et al., 2013b]. Support for this can be found when comparing case 
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studies on unconsolidated aquifers. For example, Markle et al. [2006] analyzed the evolution 

of a thermal plume in a glacial-outwash aquifer of the Tricks Creek wetland complex in 

southwest Ontario, Canada. Their main objective was to assess the impact of thermal 

disturbances on the subsurface and therefore, a detailed characterization of the hydraulic and 

thermal properties was performed. The volumetric heat capacity of the aquifer was cpm = 2.79 

± 0.01 MJ m-3 K-1 and the thermal conductivity was λ = 2.42 ± 0.28 W m-1 K-1. In contrast to 

this small range of the thermal properties, the hydraulic conductivity measured at this site 

varies by three orders of magnitude (1.8 ×10-4 m s-1 ≤ K ≤ 1.7 × 10-2 m s-1). At the prominent 

Borden test site, Macfarlane et al. [2002] and Sudicky [1986], among others, described the 

moderate heterogeneity of the studied aquifer (1.0 × 10-5 m s-1 ≤ K ≤ 3.1 × 10-4 m s-1). In the 

field experiments by Palmer et al. [1992], the volumetric heat capacity was specified as cpm = 

2.84 MJ m-3 K-1 and the variability of λm = 2.1 ± 0.3 W m-1 K-1 was comparably small. A third 

exemplary study site is located 32 km north of Mobile, Alabama. Parr et al. [1983] 

characterized the confined aquifer to assess its potential for thermal energy storage, and they 

obtained cpm = 2.78 MJ m-3 K-1 and λm = 2.3 ± 0.19 W m-1 K-1. A transmissivity of 1130 - 

1140 m day-1 was determined by a standard pumping test. With an aquifer thickness of about 

31 m and mean hydraulic conductivity around K = 4.2 × 10-3 m s-1. 

The volumetric heat capacity of porous media is commonly calculated by the arithmetic mean 

of the components [e.g. Parr et al., 1983; Palmer et al., 1992; Markle et al., 2006]. For an 

idealized aquifer with one solid phase (i.e., mainly quartz) and one fluid phase (i.e., water) the 

volumetric heat capacity can be estimated by [e.g. Rau et al., 2012]: 

pspfpm cnncc )1( −+=  (4-9) 

where cpf and cps are the volumetric heat capacities of the fluid and the solid phase (Note: if 

the fluid phase is water, cpf is equal to cpw). The porosity of unconsolidated materials is 

variable and for instance, in Fetter [2001], the porosity of sand and gravel mixture ranges  

typically from 20% to 35%, and may reach 50% in well sorted material. This yields a span of 

cpm as illustrated in Fig. 18, which also captures those values reported above in the three case 

studies. Additionally, the values from the studied tank experiment (Table 11), which will 

subsequently serve as validation case for this study, are shown.  



Hydraulic characterization of aquifers by thermal response testing  

 

73 

Appropriate estimation of thermal conductivity of saturated porous media, λm, is more 

challenging, because the value does not only depend on fraction of components or phases. 

There are several other factors, which are also relevant, such as bulk density, shape, size and 

arrangement of the grains [Markle et al., 2006]. Accordingly, several methods to narrow 

down values of λm coexist. Maximum values are given by the arithmetic mean of component-

specific quantities, and the harmonic mean denotes the minima [Woodside and Messmer, 

1961]. The geometric mean describes a random distribution, which was successfully applied 

in a study by Menberg et al. [2013] validating the results of a TRT. A more specific, 

empirical approach is the one proposed by de Vries [1963]. It is particularly suited for 

unconsolidated soil, because it also considers the shape of the particles by the form factor gi. 

For spherical particles g1 = g2 = g3 = 1/3, 
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where the thermal conductivity of the fluid phase is λf, and of the solid phase λs. The factor F1 

defines the average temperature gradient in the fluid and solid phase. 
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Fig. 18. a) Volumetric heat capacity values compared to estimates based on Eq. (4-9) for 
water/quartz system, with: cpf = 4.2 MJ m-3 K-1 and cps = 2.1 MJ m-3 K-1. b) Thermal 
conductivity values compared to the range derived by Eq. (4-10). The thermal conductivity of 
the porous medium is calculated for a quartz solid phase with 6 W m-1 K-1, and water as fluid 
phase with 0.6 W m-1 K-1. 

Fig. 18b) depicts obtained thermal conductivity value ranges for unconsolidated gravel/sand 

mixtures, assuming a two-phase system of spherical quartz grains and water. Again, this range 

captures the measured and reported (mean) values . Based on the findings from the exemplary 

measurements and the empirical relationships, values of λm vary within a small range, which 

is 2.2 W m-1 K-1 ± 0.55 W m-1 K-1. This range represents a variability of ± 25% around the 

mean thermal conductivity value. This variability is even less for the heat capacity, cpm with  a 

mean of 2.79 MJ m-3 K-1, and values that spread from 2.51 MJ m-3 K-1 to 3.07 MJ m-3 K-1, 

which is ± 10 % of the mean value. These limits are also adopted to constrain the parameter 

values in this study. 



Hydraulic characterization of aquifers by thermal response testing  

 

75 

Differential advection leads to mechanical dispersion, which is quantified by thermal 

longitudinal and transversal dispersivity in Eqs. (3a) and (3b). It is commonly assumed that 

transversal dispersivity is one order of magnitude smaller than longitudinal dispersivity [e.g., 

Bear and Cheng, 2010; Molina-Giraldo et al., 2011a]. This relationship is also applied for 

this study. In order to account for the scale-dependency of dispersion, appropriate dispersivity 

values are related to the field scale. Molina-Giraldo et al. [2011a] compiled longitudinal 

thermal dispersivity and corresponding field scales of previous studies. Gelhar et al. [1992] 

suggested taking the distance covered by transport during the experiment as a field scale. A 

rough estimate would be effective heat transport velocity times experimental duration. Until 

now, it is still not clear how thermal dispersivity compares to solute dispersivity [Rau et al., 

2012]. Vandenbohede et al. [2009] and Bear [1988] suspect that thermal is smaller than solute 

dispersivity, because heat propagates through the solid phase and the pore channels. In 

contrast, de Marsily [1986] found no differences in a combined solute and thermal tracer test. 

For our application, we suppose limited knowledge of appropriate dispersivity values and 

therefore, estimate the longitudinal dispersivity value based on the empirical relationship 

provided by Neuman [1990]:  

( ) 5.15.1 017.0017.0 TRTthsl tvL ≈=α  (4-12) 

where the travel distance Ls is assumed to be equal to the product of the effective heat 

transport velocity, vth, and the duration of the TRT, tTRT. The travel distance can also represent 

the distance between the source and the observation point. For application purposes, we 

consider a range for the travel distance, with the borehole radius as the lower bound and the 

travel distance as upper bound.  

While heat transport in the ambient ground is described in detail, heat transport inside the 

borehole is approximated by one parameter, the thermal borehole resistance, Rb. It relates the 

temperature difference between the heat carrier fluid and the borehole wall with the applied 

heat input rate per unit length. There are several approaches to estimate Rb based on the 

geometry and the material properties of the BHE [e.g., Sharqawy et al., 2009a; Lamarche et 

al., 2010]. Bennet et al. [1987] introduced the common multipole method. In this study, 

realistic Rb values are estimated using the multipole method implemented in the simulation 

software Earth Energy Designer (EED) [Hellström and Sanner, 2000]. Ranges are generated 

based on the known material properties of the BHE (pipe and backfilling material, heat carrier 
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fluid), the operation mode (volume flow rate of the heat carrier fluid and heat injection rate) 

and the geometry of the BHE (borehole radius, outer/inner pipe radius, number of pipes). The 

shank spacing, that is, the distance between the centers of the pipes in the borehole, is another 

unknown. Analogous to the work by Acuña and Palm [2009], the full range of feasible shank 

spacing variants is covered, from one extreme, where all pipes have direct contact in the 

centre of the borehole, to the other, where all pipes are symmetrically distributed at the 

borehole wall, to obtain the range of feasible Rb values. 

4.2.3 Experimental setup 

Two experiments were conducted to examine the suitability of the TRT for estimating Darcy 

velocity and deducing integral hydraulic conductivity. The first one is a well-controlled large-

scale tank experiment. Here, all crucial hydraulic and thermal transport parameters are known 

or can be precisely determined. This experiment serves for validation of the moving line 

source based interpretation of monitored thermal response on the laboratory scale. However, 

laboratory experiments only approximate real in situ conditions. There are often limitations 

due to boundary or scaling effects, which might influence the results. Thus, the second 

experiment is a TRT performed at field scale, with moderate knowledge of the thermal and 

hydraulic parameters of the subsurface. We adopt this to validate our suggested approach at 

the field scale. 

4.2.3.1 Tank experiment 

A TRT tank experiment with a layered artificial aquifer was conducted at the research facility 

for subsurface remediation (VEGAS) at the University of Stuttgart (Fig. 19). Four grouted 

boreholes equipped with double U-tubes, which act as BHEs are installed in a water-saturated 

sand container of 9 m length, 6 m width and 4.5 m depth. The BHEs, with a radius of 0.1 m, 

penetrate the upper 4.3 m and, when ignoring the missing 20 cm on the bottom, can be 

approximated as fully penetrating. Due to the downscaling of this experiment, the length-

width ratio of the used BHE (length / width = 4.3 m / 0.2 m = 21.5) is rather small. A second 

critical aspect of the laboratory experiment is the vicinity of the container bottom to the BHE, 

which might cause unsolicited boundary effects. From these BHEs, one is selected to conduct 

the TRT. It is located approximately 6 m away from the inflow boundary and approximately 

at the centerline of the container. The other BHEs are not used but implemented for other 

experiments [Wagner et al., 2012a]. To ensure an optimal thermal connection between BHE 

and the subsurface, a thermally enhanced grouting material is selected (GWE ThermoSeal®). 
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Comparable to a standard TRT, tap water is taken as heat carrier fluid in the tubes. For this 

setting, the steady-state multipole method delivers Rb ranges between 0.04 and 0.10 m K W-1, 

considering a shank spacing range from 0 m to 0.168 m. 

Through controlled in and outflow devices, a constant hydraulic gradient can be established in 

the tank. For the TRT experiment, it is adjusted to 0.003. The artificial aquifer is composed of 

pure unconsolidated quartz of different well-sorted grain sizes. The five different layers, one 

of fine sand, two of middle sand and one of coarse sand, are sub-horizontal with an inclination 

of 3°. The structure is illustrated in Fig. 19, and detailed properties of the layers are listed in 

Table 11. The measured porosity of the fine sand layer is 0.40, the middle sand layers exhibit 

a porosity of 0.36 and the coarse sand layer possesses a porosity of 0.36. Hydraulic 

conductivity, K, ranges for the three different sand classes are determined by sieve curve 

analyses (Fig. 20) based on the empirical methods by Hazen [1893] and Beyer [1964]. For 

each layer, three different samples are analyzed. According to the validity ranges of these 

methods, the method by Hazen [1893] was solely applied for the coarse sand layer, and the 

method by Beyer [1964] was used for the middle sand layers. For the fine sand layer both 

methods are valid and therefore the widest resulting parameter range considering both 

methods is selected. 
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Fig. 19. a) Picture of the tank experiment; b) Schematic bird’s eye view of the layered 
structure and geometries including the thicknesses of the layers. 

Thermal conductivity of each layer is determined by laboratory measurements using the 

“TK04 thermal conductivity meter”, which is based on the line source method [Blackwell, 

1954] with a measurement error of ± 5%. Due to the fact that each layer is built up of pure 

quartz sand, the volumetric heat capacity cpm can be reliably calculated by a weighted 

arithmetic average of volumetric fraction of water and solid [e.g. Parr et al., 1983; Palmer et 

al., 1992; Markle et al., 2006] (Table 11).  
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Table 11 Properties of the different sedimentary layers in the tank experiment. 

 Middle sand layer Coarse sand layer Fine sand layer 

 Min Max Min Max Min Max 

10 % grains passed d10 (mm) 0.19 0.25 0.70 1.00 0.12 0.13 

60 % grains passed d60 (mm) 1.31 1.87 2.35 2.15 0.29 0.31 

Uniformity index U ( ) 6.9 7.5 3.1 2.4 2.4 2.4 

Hydraulic conductivity K (m s-1) 2.9 × 10-4 b) 5.0 × 10-4 b) 5.7 × 10-3 a) 1.2 × 10-2 a) 1.2 × 10-4 b) 2.0 × 10-4 a) 

Volumetric heat capacity cpm (MJ m-3 K-1) 2.73 2.73 2.84 2.84 2.93 2.93 

Thermal conductivity λm (W m-1 K-1) 2.02 2.24 2.14 2.36 1.87 2.07 
a) determined by method by Haze [1893]; b) determined by method by Beyer [1964]. 

 

 

Fig. 20. Grain size distribution from repeated sieve analyses of the three different sandy 
materials of the tank experiment. 

A TRT was employed for a period of 8 days. During the test, sensors recorded the 

temperature of the heat carrier fluid at one-minute resolution. To minimize the atmospheric 

influences, the sensors were positioned directly at the in- and outflow of the BHE. The TRT 

was divided in two separate phases. During the initial heating phase of three days a constant 

heat load of 130 W m-1 was applied. Then, the behavior during a five-day recovery phase with 

no heat load was monitored. The recorded temperature development during the entire TRT is 

presented in Fig. 21. 
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Fig. 21. Measured temperature development of the heat carrier fluid temperature at the inflow 
and outflow of the BHE during the TRT experiment at the tank experiment. Additionally, the 
air temperature in 0.1 m above the surface is shown. 

Evaluation based on Eq. (4-6) assumes a homogenous aquifer. To be able to examine the 

applicability of the presented approach, integral parameters of the artificial aquifer are 

quantified. Water flow and heat propagation is nearly parallel to the sub-horizontal layering, 

and therefore, an equivalent homogenous media can be calculated by the arithmetic means of 

the layer properties (Table 12). Based on the minimum and maximum observed values, 

property ranges of the equivalent homogenous media are calculated. For the thermal 

conductivity, ± 0.55 W m-1 K-1 ranges are listed in Table 12, which are typical for natural 

porous aquifers. Although the measurement error of the determined thermal conductivity 

values is evidently below this range (± 0.11 W m-1 K-1), we applied the wider parameter range 

(± 0.55 W m-1 K-1) to inspect the robustness of the parameter estimation procedure. Ranges of 

the thermal dispersivity values αl are estimated by Eq. (4-12). The minimum travel distance of 

this experiment is the borehole radius (rbw = 0.1 m), and the maximum travel distance is 

limited by the size of the tank, which is 9 m. We obtain a longitudinal dispersivity ranging 

between 0 m and 0.5 m with the resulting transversal dispersivity using the commonly applied 

1/10 of αl. 
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Table 12 Integral value ranges of hydraulic and thermal parameters for the artificial aquifer of 
the tank experiment. 

 Value range 
 Min Max 

Hydraulic conductivity K (m s-1) 8.6 × 10-4 1.7 × 10-3 
Volumetric heat capacity cpm (J m-3 K-1) 2.5 × 106 3.06 × 106 
Thermal conductivity λm (W m-1 K-1) 1.64 2.74 

Longitudinal dispersivity, αl (m) 0 0.5 

Thermal borehole resistance, Rb (m K W-1) 0.04 0.10 

 

4.2.3.2 Field experiment 

In addition to the tank experiment, we examine also a field site in the upper Rhine valley at 

the town of Schwanau in southwest Germany. One vertical borehole of 0.14 m diameter, with 

double U-tube pipes, was installed to a depth of 100 m (Fig. 22). The length-width ratio of the 

field scale BHE (length / width = 100 m / 0.2 m = 500) is clearly higher than the one of the 

tank experiment. It is grouted with thermally enhanced grouting material (ZEO Therm 2.0 

from the company Hans G. Hauri KG). Borehole resistance ranges are determined by the 

multipole based method, analog to the procedure for the tank experiment, considering a shank 

spacing range from 0 m to 0.108 m. The derived Rb ranges vary between 0.04 and 0.09 m K 

W-1. The BHE fully penetrates an aquifer with a thickness of 68 m and partially intersects an 

underlying low permeability formation, which is made up of sandstone and claystone units 

(Fig. 22). The aquifer is composed of flood plain and low terrace gravel. The low 

permeability formation consists of one 15 m thick claystone layer embedded in two sandstone 

layers with a total thickness of 17 m. According to Junker and Essler [1980], the hydraulic 

conductivity, K, of the aquifer, which is allocated to the so-called upper and middle gravel 

layers of the Rhine valley, varies between 2.3 × 10-3 and 1.2 × 10-2 m s-1. These values were 

obtained by several sieve curve analyses and hydraulic pumping tests. No specific hydraulic 

data is available for the low permeability formation. With a typical value range of 10-6 - 10-9 

m s-1 for sandstones and < 10-9 m s-1 for clays [Domenico and Schwartz, 1998], a parameter 

range of 10-6 - < 10-9 m s-1 is considered here for the hard rocks below the aquifer. 
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Fig. 22. Schematic cross-section of the studied field experiment in Schwanau (Germany) 
showing the layered geological units. The individual depths of the layer boundaries are 
determined based on borehole cuttings. The depth to water table is only 2 m and is therefore, 
not explicitly shown. 

At the field site, thermal parameters are not specifically investigated by additional laboratory 

experiments. Thus, empirical ranges of the volumetric heat capacity and the thermal 

conductivity, based on reported data, have to be defined here (Table 13). The volumetric heat 

capacity of a natural porous aquifer is typically about 2.79 MJ m-3 K-1, with a variability of ± 

0.28 MJ m-3 K-1. A thermal conductivity range from 1.64 W m-1 K-1 to 2.74 W m-1 K-1, with a 

mean value of 2.20 W m-1 K-1 is assumed for the aquifer material. Volumetric heat capacities 

of the low permeability formation is estimated based on the study by Clauser [2011], and the 

thermal conductivities of the sandstone and the claystone are extracted from Domenico and 

Schwartz [1998]. 
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Table 13 Properties of the different geological layers for the field site. 

 Aquifer Low permeability formation 
 Porous media Sandstone Claystone 

 Min Max Min Max Min Max 

Hydraulic conductivity K (m s-1) 2.3 × 10-3 12 × 10-3 < 1 × 10-9 1 × 10-6 < 1 × 10-9 1 × 10-6 
Volumetric heat capacity cpm (MJ m-3 K-1) 2.51 3.07 2.05 2.05 2.30 2.30 

Thermal conductivity λm (W m-1 K-1) 1.64 2.74 3.77 3.77 1.05 1.05 

 

The TRT started on the 28th of January 2010 and lasted for 4 days. A mobile device was used, 

which applied power-controlled continuous-flow heaters to reach a constant heat injection rate 

of 49.3 W m-1 during the experiment. The heat carrier fluid was tap water. Flow rates, inlet 

and outlet temperatures of the fluid in each U-pipe loop were continuously monitored. The 

testing time can be separated in an initial burn-in phase, where only fluid circulates without 

any heat injection (0.1 day) and a second constant heating phase. The recorded temperature 

curves of the fluid at the inlet and outlet of the BHE are shown in Fig. 23. The irregular 

temperature fluctuations at the inlet fluid temperature are caused by slight instabilities of the 

chosen fluid flow rate and/or irregularities in the power net supply. In contrast to observations 

at the tank experiment, atmospheric diurnal temperature fluctuations have no noticeable 

influence. This is attributed to different measurement devices, as well as to the larger BHE 

depth and size of the field-scale TRT.  

 

Fig. 23. Measured inflow and outflow temperatures of the heat carrier fluid during TRT at 
Schwanau field site. 

We follow the same procedure as for the tank experiment, and average the hydraulic and 

thermal values assuming an equivalent homogenous medium. Based on the thicknesses of the 
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porous aquifer, sandstone and the clay layer, the weighted arithmetic mean of the hydraulic 

and thermal parameters is calculated. The derived ranges serve as input for Eq. (4-6), except 

of the hydraulic conductivity, which is utilized for validation (Table 14). Ranges of thermal 

dispersivity are determined based on Eq. (4-12). The borehole radius of the BHE represents 

the minimum travel distance for this experiment, which is rbw = 0.065 m. The maximum travel 

distance (Ls = 5.9 m) is calculated based on the expected effective heat transport velocity (vth 

= 1.7 × 10-5 m s-1) and the duration of the TRT (t = 4 days). Longitudinal dispersivity values 

are determined by Eq. (4-12) and the obtained range varies between 0 m and 0.24 m. The 

transversal dispersivity is set to one tenth of the longitudinal dispersivity. 

Table 14 Integral values of thermal and hydraulic parameters at the field site. 

 Value range  

 Min Max 

Hydraulic conductivity K (m s-1) 1.6 × 10-3 8.3 ×·10-3 
Volumetric heat capacity cpm (J m-3 K-1) 2.40 × 106 2.79 × 106 

Thermal conductivity λm (W m-1 K-1) 1.90 2.66 

Longitudinal dispersivity, αl (m) 0 0.24 

Thermal borehole resistance, Rb (m K W-1) 0.04 0.09 

 

4.3 Results and discussion 

4.3.1 Interpretation of the tank experiment 

The undulating inlet and outlet heat carrier fluid temperatures of the tank experiment (Fig. 21) 

are averaged for TRT interpretation (Fig. 24). By superposition of phases with specific heat 

loads qt, Eq. (4-6) facilitates simulations of the two time periods of heating (qn = 130 W m-1, t 

= 0-3 days) and recovery (qn = 0, t = 3-8 days). The parameter estimation step follows the 

scheme as illustrated in Fig. 17, and this means that exclusively veff is iteratively optimized. 

The evaluation interval considered for the parameter estimation is set to 0.8 to 7.0 days. All 

other thermal transport parameters λm, cpm, αl and the thermal borehole resistance, Rb, are 

considered uncertain within the given ranges listed in Table 12. Note that the uncertainty is 

significant, for instance, within ± 40% for Rb. These ranges are discretized in 10 steps for each 

parameter, and for each of the possible parameters permutations (total number of (10)4 = 

10,000), veff is calibrated. This procedure offers detailed insights into feasible parameter value 

pairs. Feasibility is defined by a fitting error threshold, which is set here after preliminary 

visible inspection of fitted curves with RMSE = 0.8°C. This tolerance takes into account that 

often no unique solution exists or is searched for, and it respects potential measurement errors 
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and noise. In the tank experiment substantial noise is apparently introduced by the influence 

of the diurnal atmospheric temperature variability, and the low BHE length-width ratio might 

also cause some imprecisions. Measurement error by the PT100 sensors is only ± 0.1°C. 

Best fit result is an apparent global optimum, RMSE = 0.37°C, with λm = 2.61 W m-1 K-1, cpm 

= 2.56 × 106 J m-3 K-1, αl = 0.06 m and with a thermal borehole resistance, Rb = 0.040 m K W-

1. However, Fig. 24a reveals a large number of about 2900 (29% of all trials) of feasible sub-

optimal solutions. The simulated temperature trends span the grey shadow surrounding the 

measured temperatures. As illustrated in Fig. 24a, the threshold of 0.8°C is chosen to 

encompass the entire undulating curve from the measurement.  

Based on the solution-specific thermal conductivity and the determined veff, the corresponding 

correction factors (Fig. 16) are selected to derive the (average) Darcy velocity, v. Since the 

hydraulic gradient of the experiment is known (i = 0.003), based on Darcy’s law, an integral 

hydraulic conductivity, K, of the artificial aquifer can be obtained. The values of all possible 

solutions with their respective fitting errors are shown in Fig. 25. The global optimum of K = 

0.9 × 10-3 m s-1 is close to the mean of the range determined from the sieve analysis with K = 

1.3 × 10-3 m s-1 (Table 12). The point cloud of solutions spans a wide range of resulting 

hydraulic conductivity values, but this shows an overall best fitting in the range of the sieve 

curve results and this is the most striking feature. Thus, the TRT based estimation coincides 

well with the hydraulic characterization based on this hydrogeological standard technique, 

despite the high uncertainty of the thermal parameters. This indicates that the developed 

evaluation approach is very robust. 
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Fig. 24. Fitting results of the tank experiment. a): Comparison of mean measured fluid 
temperature and results of the parameter estimation approach based on Eq. (4-6). b): 
Comparison of the measured temperature change and a set of calculated universal temperature 
response curves based on Eq. (4-7). For straightforward comparison between measured and 
simulated data, the nondimensionalization is executed by multiplying t H-1 with Dl to result in 
the Fourier number and by multiplying ∆T with cpm Dl 4 π qref

-1 to determine the 
dimensionless temperature rise. 

For a dimensionless analysis of the results, Eq. (4-7) is applied. Five pairs of the 

dimensionless variables Pe and β are chosen, consistent with the parameter ranges determined 

for the tank experiment (Table 12). Pe numbers range from 6 to 30, and β values range from 

1.07 to 2.34, which cover the value domain surrounding the best fitted Pe and β combinations. 

Based on these pairs, a set of five universal thermal response curves are determined and 

compared to the measured temperature changes of the TRT experiment. This comparison is 

presented in Fig. 24b for a fixed Rb = 0.04 m K W-1, which represents the Rb value used to 

obtain the best fit result of the dimensional formulation of the moving line source.  
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Fig. 25. Hydraulic conductivity values obtained from the determined corrected effective 
Darcy velocity, and the corresponding RMSE value of the performed parameter estimation 
approach. 

The most suitable pair (Pe =14; β = 1.20) is also in accordance to the best fit. The 

dimensionless analysis also reveals the correlation between the four parameters (λm, cpm, αl 

and v respectively K), suitable to model the observed thermal response of the subsurface. 

Furthermore, if thermal dispersion is neglected or assumed to be isotropic, i.e. β becomes 1, 

and the heat transport in the subsurface depends only on Pe. For this simplification, a unique 

Pe number can be determined and used to derive possible K values based on the predefined 

thermal parameter ranges, instead of applying a multi-parameter estimation procedure. 

4.3.2 Interpretation of the field experiment 

The temperature time series measured during the field TRT are employed to validate the 

introduced parameter estimation approach at the field scale (Fig. 23). First, equivalent to the 

procedure for the tank experiment, the mean of inlet and outlet heat carrier fluid temperature 

is computed and plotted in Fig. 26. Then, burn-in phase (qn = 0 W m-1 , t = 0 – 0.1 days) and 

heating period (qn = 49.3 W m-1 , t = 0.1 – 3.9 days) are superimposed based on Eq. (4-6). The 

evaluation interval is set from 0.8 to 3.7 days after initiation temperature recording. Again, veff 

is iteratively optimized, while the 10 discretization steps within the ranges listed in Table 14 

are applied for all other relevant parameters (λm, cpm, αl and Rb). The fitting error threshold is 

not changed from the tank experiment and kept at 0.8°C.  

In comparison to the tank experiment, the influence of diurnal temperature variations is not 

significant for this experiment; therefore, better agreement between mean measured and 
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simulated temperatures is achieved. In fact, all parameter variations result in a misfit below 

the RMSE threshold. This indicates that within the range of noise and measurement error, a 

large number of acceptable solutions exist. The best result is obtained for a parameter 

combination of λm = 2.66 W m-1 K-1, cpm = 2.53 × 106 J m-3 K-1, αl = 0.24 m, and thermal 

borehole resistance, Rb = 0.068 m K W-1, with an RMSE value of 0.021°C.  

To obtain the integral hydraulic conductivity of the field site, in a first step, the corresponding 

values of the correction factor are determined. With this factor, the fitted veff values are 

transferred to the actual integral Darcy velocity v (Eq. (4-8)). Applying Darcy’s law and 

taking the known hydraulic gradient of 0.001, the integral values of K are determined for all 

fitting trials. In Fig. 27, the derived K values are plotted versus the fitting errors. The best 

result, with a misfit of 0.021 °C, yields K = 3.1 × 10-3 m s-1. This value is within the K range 

determined by sieve analysis and pumping tests for this site, which reaches from 1.6 × 10-3 to 

8.3 × 10-3 m s-1 (Table 14). Furthermore, by comparing all obtained results, a distinct optimal 

interval can be determined, which is also within the range of K values determined from the 

study of Junker and Essler [1980]. This optimal interval, where RMSE < 0.05°C, reaches 

from 2.5 × 10-3 to 5.5 × 10-3m s-1. This demonstrates for the field scale, that the TRT data can 

also be applied to determine hydraulic conductivity values comparable to the ones obtained 

from standard hydraulic investigation methods such as hydraulic pumping tests or sieve curve 

analysis. A premise is that the weighted arithmetic mean is applied to consider a layered 

structure of the subsurface including penetrated aquifer and low permeability formation. It is 

noteworthy that the Schwanau experiment was merely conducted to support the design of a 

larger GSHP system; hence, it clearly demonstrates that the developed procedure can be 

confidently applied to determine hydraulic parameters.  
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Fig. 26. Fitting results of the field experiment. a): Comparison of the measured mean fluid 
temperature and the results of the parameter estimation approach based on Eq. (4-6). b): 
Comparison of the measured temperature change and a set of calculated universal temperature 
response curves based on Eq. (4-7). For straightforward comparison between measured and 
simulated data, the nondimensionalization is executed by multiplying t H-1 with Dl to result in 
the Fourier number and by multiplying ∆T with cpm

 Dl
 4 π qref

-1 to determine the dimensionless 
temperature rise. 

Following the same procedure as for the tank experiment, five pairs of Pe and β are selected 

for dimensionless analysis of the results. Based on the best-fit result of the dimensional 

analysis and the specified parameter ranges (Table 14), Pe and β pairs are defined to cover the 

corresponding dimensionless parameter array. For the field site, these cover the intervals 160 

≤ Pe ≤ 400 and 1.53 ≤ β ≤ 3.00. The Rb is set to 0.068 m K W-1, which represents the value 

associated with the previously determined best fitted K value.  
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Fig. 27. Hydraulic conductivity, K, values obtained from the determined corrected effective 
Darcy velocity and the corresponding RMSE value of the performed parameter estimation 
approach. Empirical range is extracted from Table 14. 

As expected, the dimensionless analysis shown in Fig. 26b exhibit the best agreement of the 

measured and calculated temperature for the parameter pair (Pe =187; β = 1.68) obtained 

from the best fit of the dimensional analysis. The dimensionless formulation results in a 

reduced number of heat transport relevant parameters of the subsurface, two (Pe and β) 

instead of four (λm, cpm, αl and v respectively K). Thus, the heat transport behavior can be 

expressed in a more condensed formulation. Nevertheless, there are still two relevant 

subsurface parameters, which allow for the determination of one unique Pe number compiling 

the correlation of the four dimensional heat transport parameters λm, cpm, αl and v respectively 

K. Hence, the dimensionless formulation provides a suitable and condensed description of the 

parameter correlation, but the major objective, to determine the hydraulic conductivity, cannot 

be further improved by applying a dimensionless formulation.  

4.4 Summary and conclusions 

Hydraulic characterization of the subsurface is a major task of hydrogeological field methods. 

This study proposes an advection sensitive TRT evaluation as a potential method to estimate 

Darcy velocity and integral aquifer hydraulic conductivity. For demonstrating the 

applicability, the correction term based TRT evaluation by Wagner et al. [2013] is integrated 

in a two-step fitting approach. Two measured TRT temperature time series, from a large-scale 

tank experiment and one from a standard field TRT are used to validate the new approach. 

Results for both experiments reveal that temperature time series of a TRT can be assuredly 
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used to determine hydraulic parameters. This is feasible in spite of (i) the conceptual 

shortcomings of the simplified line source model, (ii) the high uncertainty in crucial thermal 

parameter values, and (iii) the noise typically overprinting measurement data.  

In principle, the used infinite moving line source model is only applicable to homogeneous 

conditions, and it does not properly describe the flow and transport processes close to and 

inside the BHE. As demonstrated, even if heterogeneity cannot be resolved, an integral value 

of depth averaged Darcy velocity can be obtained. This is a precious insight, comparable to 

the one obtained by pumping tests. In comparison, however, TRTs are closed applications 

without mass exchange, with little minor lateral and high axial range. Depth averaging 

integrates properties of unsaturated zone, aquifer and low permeability formation. An 

extension to facilitate also depth-dependent evaluation would be a DTS system with an 

integrated heating wire in the BHE-like enhanced TRT [e.g. Fujii et al., 2009; Acuña, 2013]. 

By the same heat injection in different layers or compartments, the thermal response would 

allow distinguishing high from low velocity zones.  

Simulation of heat transport at the BHE is improved by using superimposed line source 

equations. The most critical aspect is the lateral heterogeneity due to the discrepancy between 

grout and ground conductivity. By introducing a versatile correction factor that increases with 

estimated effective thermal conductivity and decreases with estimated effective Darcy 

velocity, this hurdle is overcome and robust parameter estimation is developed. Improvement 

potential lies in the applied line source model. Especially for shorter boreholes, a favorable 

choice is the finite moving line source model developed by Molina-Giraldo et al. (2011b). 

This variant also considers axial effects, and can be applied at similar computational effort. 

However, for conditions with substantial axial effects, the correction factor has not been 

employed, yet, and may need to be adjusted.  

Despite the promising results, constructing a BHE and performing a TRT to exclusively 

characterize hydrogeology is not often favorable, because of the large involved investment 

costs for constructing a BHE and performance of the TRT. Instead, the potential of the new 

method is to complement standard interpretation of TRT. This does not only refer to future 

TRT applications, but we see a high potential in re-interpreting existing temperature time 

series of the numerous existing TRT applications worldwide, which for example, were 
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conducted associated with the strong geothermal development in Europe during the last 

decade.  
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5 Thermal tracer testing in a heterogeneous sedimentary aquifer: Field 

experiment and numerical simulation 

 

Reproduced from: Wagner, V., Li, T., Bayer, P., Leven, C., Dietrich, P., Blum, P., (2013): 

Thermal tracer testing in a heterogeneous sedimentary aquifer. Hydrogeology Journal, 1-13, 

doi: 10.1007/s10040-013-1059-z. The final publication is available at link.springer.com. 

 

Abstract:  An active and short-duration thermal tracer test (TTT) was conducted in a shallow 

heterogeneous sedimentary aquifer at the Lauswiesen test site near Tübingen, Germany. By 

injecting 16 m3 of warm water at 22°C, a thermal anomaly was created, which propagated 

along the local groundwater flow direction. This was comprehensively monitored in five 

observation wells at a few meters distance. The purpose of this well-controlled experiment 

was to find out the practicability of such a TTT and its suitability to examine hydraulic 

characteristics of heterogeneous aquifers. The results showed that the thermal peak arrival 

times in the observation wells were consistent with previous observations from alternative 

field testing, such as Direct-Push Injection Logging (DPIL). Combined analysis of depth-

dependent temperatures, peak arrival times and comparison with a numerical heat transport 

model offers valuable insights into the natural flow field and spatial distribution of hydraulic 

conductivities. We could identify vertical flow focusing and bypassing, which is attributed to 

preferential flow paths common in such sedimentary sand and gravel aquifers. These findings 

are fundamental for further development of experimental designs of active and short duration 

TTTs and provide a basis for a more quantitative analysis of advective and conductive 

transport processes. 
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5.1 Introduction 

For decades, heat has been considered as a groundwater tracer. However, despite the positive 

experience from several field tests and a range of different applications, it is still not routinely 

used in hydrogeology. Anderson [2005] and Saar [2011] have presented comprehensive 

reviews of heat as a tracer. Recently, interest has been growing, particularly in using natural 

temperature variability to characterize surface water-aquifer interactions [Doussan et al., 

1994; Conant, 2004; Schmidt et al., 2006; Keery et al., 2007; Constantz, 2008; Vogt et al., 

2010; Molina-Giraldo et al., 2011a], to reveal climate change effects [e.g. Taniguchi et al., 

1999; Brouyère et al., 2004], for localization of preferential flow paths or fractures [e.g. Leaf 

et al., 2012; Pehme et al., 2013], or to trace back direct anthropogenic influences [e.g. 

Ferguson and Woodbury, 2007; Engelhardt et al., 2013; Menberg et al., 2013a]. Further 

studies concentrated on temperature-depth profiles to estimate vertical heat flux, vertical 

groundwater flux and thermal aquifers properties [e.g. Taniguchi et al., 2003; Lowry et al., 

2007; Kollet et al., 2009]. 

Natural temperature variability has especially been in focus when pronounced and measurable 

over long periods of time, for example, as vertical temperature profiles in a streambed, or as 

observed in seasonal or diurnal temperature fluctuations of groundwater. Such long-term time 

series can serve as important information to more reliably simulate processes in aquifers on 

different scales. For example, Bravo et al. [2002] applied groundwater temperatures to 

constrain parameter estimation in a groundwater flow model of a wetland system. Rath et al. 

[2006] and Jardani and Revil [2009] used synthetic test cases to demonstrate the usability of 

temperature measurements for numerical groundwater model inversion.  

Significant and abrupt change of temperature in aquifers is less common in nature. In contrast, 

artificially generated cold or hot temperature anomalies, which can be caused by geothermal 

energy utilization, often exhibit such a pronounced and abrupt change. In the past, several 

injection-storage experiments were performed, and mainly deployed to examine the 

performance of aquifer thermal storage systems [ATES, e.g. Sauty et al., 1982b; Molz et al., 

1983; Xue et al., 1990; Palmer et al., 1992; Kocabas, 2005; Wu et al., 2008]. Such 

experiments are commonly conducted with large volume injections of hot water (thousands of 

m3) and with monitoring of aquifer temperature changes over a relatively long duration 

(months to years). Main objectives of such field tests are the assessment of hot water storage 
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capacity and/or recovery efficiencies in the target aquifer and model validation to simulate 

ATES [e.g. Ziagos and Blackwell, 1986; Xue et al., 1990; Molson et al., 1992]. 

Sauty et al. [1982a; 1982b] conducted a series of aquifer storage experiments with single and 

doublet-well configurations and injection volume of 245 to 1680 m3 at the Bonnaud site in 

France. The temperature measurements were used to calibrate two numerical models. Palmer 

et al. [1992] performed a heat injection experiment at the Borden site in Canada, to 

investigate the feasibility of storing thermal energy in shallow unconfined aquifers near the 

water table. In a companion study, Molson et al. [1992] successfully validated a three-

dimensional (3D) density-dependent numerical flow and transport model using the field data. 

They demonstrated that processes of heat convection, dispersion, diffusion, retardation, 

buoyancy and boundary heat loss can be represented by their model. They also emphasized 

the importance of the vertical surface heat loss mechanism when long-term thermal storage is 

concerned near the water table. Shook [1999;  2001] suggested predicting temperature signals 

from conservative tracer breakthrough curves (BTC) through variable transformation, for 

example, by applying thermal retardation factors. This was demonstrated for homogeneous 

test cases and for heterogeneous conditions when thermal conductivity and dispersion can be 

neglected as second-order effects.  

When using heat as a tracer, there is another type of application, called ‘thermal tracer test’ 

(TTT) or active TTT [e.g. Leaf et al., 2012]. The utilization of TTT is mainly for aquifer 

characterization, in which warm (or cold) water is injected as a tracer into the aquifer and then 

temperature changes are measured in the injection well and/or in nearby observation wells. 

These tests are different from the above-mentioned studies for thermal storage in injection 

volume and experimental scale, as well as duration (normally only for a few days in TTT, 

Table 15). Keys and Brown [1978] presented a field study of TTT in the High Plains of Texas, 

USA. They conducted three artificial recharge experiments with various injection water 

volumes and rates. The recharged water was supplied from a lake, where the water 

temperature fluctuated between 13-23°C, and provided thermal pulses recorded in the 

groundwater temperature logs. By evaluating the thermal pulses they identified contrasts in 

the horizontal groundwater velocity of the studied area. Macfalane et al. [2002] reported an 

injection/pumping experiment in west-central Kansas, USA. They injected about 360 m3 of 

heated water (73°C) at one well and then pumped from the other well at about 13 m distance. 

A distributed optical-fiber temperature-sensing device (DTS) was used for monitoring the 
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temperature changes under transient conditions, and vertical temperature profiles were 

recorded from the production well. This study estimated a groundwater velocity from the 

temperature profiles, which was comparable to that derived from previous pumping tests. 

DTS was also applied in recent related work by Leaf et al. [2012], who examined a porous 

fractured sandstone aquifer using open-well thermal dilution tests in two wells near Madison, 

Wisconsin. Their tests only provided information on the borehole flow regimes and not on the 

spatial heterogeneity of the aquifer. They demonstrated that DTS measurements are a suitable 

alternative to standard heat pulse methods or spinner flow meters. Read et al. [2013] 

presented a TTT in a fractured aquifer  at the Ploemeur site in Brittany, France (Table 15). 

They determined a pronounced retardation of the BTC in a monitoring well compared to the 

one of a solute tracer. Read et al. [2013] explained this observation by the stronger fracture-

matrix interaction of the thermal tracer.  

Vandenbohede et al. [2008a; 2008b] reported their experience from two single-well push-pull 

tests, which they conducted in a deep aquifer in the Belgian coastal plain. The tests were 

designed to evaluate the performance of a planned ATES, but the data was further interpreted 

to study the differences between solute and heat transport in Vandenbohede et al. [2008a]. 

The temperature of the injected water for both tests was about 11.5°C, and slightly colder 

compared to the ambient aquifer temperature of 15.8°C. The tests, including injection, rest 

and extraction phase were performed in periods of 9 - 22 days, with rates of a few m3 per 

hour. A numerical model was adopted to simulate the field tests [Vandenbohede et al., 

2008a]. After comparing the simulated results on solute (chloride) and heat transport, they 

concluded that for a push-pull test, the most sensitive parameter in solute transport is solute 

longitudinal dispersivity and in heat transport it is thermal diffusivity. Ma et al. [2012] 

applied a numerical model of a complex aquifer-river system to discuss the role of variable 

density and viscosity assumptions on heat transport modeling (Table 15). They observed that 

up to a maximum temperature difference of 15°C in the model domain, the assumption of 

constant fluid density and viscosity appears to have only minor effect on the simulated 

temperature distribution [Ma and Zheng, 2010]. They also state that this is valid for any heat 

transport model and for various field conditions. All studies on TTT successfully 

demonstrated that aquifer structures and/or properties can be evaluated from monitoring 

groundwater temperatures. However, active TTT is still not a standard method for aquifer 

testing. 
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The current study examines viability and usability of the TTT for characterization of a 

shallow heterogeneous aquifer at the Lauswiesen test site close to Tübingen, Germany. An 

active, small-scale and short-term TTT was performed with warm water injection in the well-

known unconfined porous aquifer (Table 15), and the resulting temperature anomaly was 

monitored in five downgradient observation wells. For the interpretation, well- and depth-

specific temperature time series are evaluated with emphasis on maximum observed 

temperature changes and peak arrival times. A numerical flow and heat transport model is set 

up to simulate the experiment and identify effects from aquifer heterogeneity. We ask to what 

extent spatial hydraulic heterogeneity and density effects influence the thermal tracer 

propagation. This is complemented by comparison to the findings from an alternative field 

investigation, the direct-push injection logging (DPIL), at the same site [Lessoff et al., 2010].  

5.2 Thermal tracer test set up at Lauswiesen site  

5.2.1 Study site 

The Lauswiesen test site is located near the city of Tübingen in southwest Germany (Fig. 28), 

where numerous investigations have previously been performed to study aquifer properties 

[e.g. Rein et al., 2004; Riva et al., 2006; Lessoff et al., 2010; Händel and Dietrich, 2012]. The 

test site is part of a heterogeneous alluvial aquifer located close to the Neckar River. The 

injection well is around 60 m away from the river. The aquifer consists of loosely packed 

Quaternary sandy gravel, overlain by Quaternary silty clay and clayey gravel. As observed in 

previous studies by Bou Ghannam [2006] and Schneidewind [2008], the aquifer can be 

divided into two major zones: The first zone reaches down to 6 m below land surface (bls) 

and consists of sand and gravel, with a small portion of fines. Based on these studies, it can be 

assumed that the first layer is more homogeneous than the second layer, which ranges from 6-

10 m bls. According to soil sample analyses from Sack-Kühner [1996], the portion of fines 

increases in the lower part of the aquifer below 7 m bls. This lower part of the aquifer appears 

to be more heterogeneous with partly lower permeable zones and pronounced local 

anisotropies. The Lauswiesen aquifer is underlain by Triassic marl and clay stones (Middle 

Keuper), which form a natural aquitard. The water table at the site is about 4 m below surface, 

but can vary several decimeters due to the proximity of the Neckar River. The hydraulic 

gradient of Lauswiesen is estimated to be around 0.2-0.3%. The hydraulic conductivity of the 

aquifer was measured in several field campaigns using a variety of techniques, yielding 

average values in the range of K = 2-3 × 10-3 m s-1 [Sack-Kühner, 1996; Lessoff et al., 2010]. 
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Using a multilevel-multi-tracer field experiment, Riva et al. [2006] determined an average 

effective porosity of 9.8% for the test site. Thus, the average and natural groundwater flow 

velocity towards the Neckar River is around 5.5 m day-1 at the site.  

 

Fig. 28. a) Location of the Lauswiesen test site, close to Tübingen, SW Germany. (b) Plan 
view of setup of the thermal tracer test. Well B2 (x = 0, y = 0) was used as injection well and 
OW1 – OW5 served as observation wells during the test. 

5.2.2 Thermal tracer test 

The main groundwater flow axis through the chosen experimental area was determined from 

groundwater contour maps based on water level measurements done over a two-month period 

in existing monitoring wells, before the installation of the observation wells. The 

configuration of the wells for the TTT at the Lauswiesen site is outlined in Fig. 28. Thermal 

tracer injection was performed in a fully penetrating well, B2 (Table 16). For the tracer 

monitoring, five fully penetrating observation wells OW1-OW5 (1” diameter) were installed 

along the pre-determined main groundwater flow axis with various spacing (Table 16). The 

reason of using small diameter observation wells for TTT was to minimize the effect of free 

convection within the well column, so that the measured fluid temperature in the observation 

wells could more accurately represent the temperature in the surrounding solid/fluid matrix 

[Leaf et al., 2012].  
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Table 16 Information on the wells used for the thermal tracer test at the Lauswiesen site. 

Well Distance from the injection well B2 (m) Screen length (m) Inner well diameter (mm) Material 

B2 0.0 Fully screened 150 PVC1) 
OW1 1.5 6 25 HDPE2) 

OW2 2.5 4 25 HDPE2) 

OW3 3.75 4 25 HDPE2) 

OW4 5.0 4 25 HDPE2) 

OW5 7.5 4 25 HDPE2) 
1) Polyvinylchloride; 2) High density polyethylene 

For the preparation of the thermal tracer approximately 16 m3 of groundwater were pumped 

out from the aquifer and then stored in a basin. As the experiment was conducted in summer 

time, during a warm weather period, the extracted water could be heated in the sun to about 

22°C. Groundwater temperatures in the aquifer were continually monitored before the 

injection in every installed observation well and recorded showing an average initial 

temperature T0 of 11.02 ± 0.30°C. Temperature measurements were acquired using chains of 

PT-100 thermistors (Platinum Thermometer, resolution 0.01°C): For each temperature chain 

ten PT-100 sensors are attached with a spacing of 0.5 m to a transmission cable which is 

connected to a data reading unit (Fig. 29). Two temperature sensors (OW4; 7.2 m bls and 

OW5; 8.2 m bls) were damaged during the installation and therefore, both sensors were 

omitted for the experiment. During operation, measurements from each sensor are transmitted 

to a reading device at the land surface and recorded manually. The induced head changes 

from the injection were manually recorded in irregular time steps. The constant injection 

resulted in 3 cm of increase in hydraulic head at the injection well during the whole injection 

period. 
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Fig. 29. Vertical cross-section along the well axis (x) showing positions of wells (B2, OW1 – 
OW5), water table, aquifer and aquitard. 

During the injection period, the heated water was introduced as a thermal tracer from two 

injection units in B2 at 6 m and 9 m bls, both with constant rates of 2 × 1 m3 h-1 using two 

Grundfos MP1 pumps. Temperature changes were then monitored simultaneously in all 

observation wells and in the injection well B2. At the early phase of the experiment, 

measurements were taken more frequently (every 30 minutes). The injection ended after 8 

hours (0.33 days), while the temperature monitoring was continued until the end of 

experiment, which was terminated after about 100 hours (4.2 days) after the start of injection. 

5.2.3 Direct-push injection logging 

Lessoff et al. [2010] applied the direct-push injection logging (DPIL, [Dietrich et al., 2008]) 

and direct-push slug test (DPST, [Butler et al., 2002]) for characterizing the spatial structure 

of hydraulic conductivity (K) at the Lauswiesen site test. They could demonstrate that the 258 

measurements of relative conductivity (Kr) using DPIL are compatible with results from other 

more conventional methods performed at the site. All recorded DPIL–profiles (Fig. 30) are 

within a radius of 15 m around the injection well of the TTT. One DPIL-profile was directly 

obtained at the injection well and two profiles at the observation wells OW4 and OW5, which 

were also used for the TTT. The profiles are highlighted in Fig. 30 and will be compared to 

the TTT results of this study. All measured Kr values indicate that there is a significant 

difference in the hydraulic conductivities of the upper and lower part of the aquifer. A more 
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detailed inspection of the profiles from B2, OW4 and OW5 reveals that the transition between 

the upper and the lower part of the aquifer is not at constant depth. Lessoff et al. [2010] 

deduced from the DPIL-profiles, that the upper part of the aquifer as more conductive and 

more homogenous than the lower part. Moreover, all three profiles show local maxima of Kr 

at certain depths (e.g. OW4 at a depth of 6.4 m bls, OW5 at a depth of 7.4 m bls). 

 

Fig. 30. Compound profiles of Yr = ln(Kr) obtained from DPIL measurements within a radius 
of 15 m around the injection well of the TTT. The three DPIL profiles that are taken from 
observation wells also monitored during the TTT are highlighted. The DPIL measurements 
are extracted from the study of Lessoff et al. [2010]. 

5.2.4 Numerical model 

Based on the existing knowledge of the Lauswiesen site, it is assumed that the subsurface can 

be represented by a layered unconfined aquifer with an underlying aquitard. A numerical 

model was set up using FEFLOW [Diersch, 2009a] to simulate the TTT with the injection of 

warm water in the aquifer and the transport of the heated groundwater through the 

sedimentary strata. Analogous to the TTT at the Lauswiesen site, the model contains 5 

observation wells (Fig. 31). These are positioned in the centre of the model domain, where the 

TTT is simulated. The total size of the numerical model is 130 m × 26 m × 15 m (width × 

height × depth). This size is considered large enough to minimize boundary effects at the 

injection and observation wells. The total area is discretized with 30,656 triangle prismatic 

elements with an increasing resolution of the numerical mesh towards the well transect. The 

distance between the numerical nodes decreases from the model boundary to the well transect 

by a factor of 40. 
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Fig. 31. Three-dimensional sketch of the model domain, numerical mesh, hydraulic and 
thermal boundary conditions. Values used as hydraulic and thermal boundary condition are 
specified in brackets. 

The simulated stratified aquifer is separated in an upper and a lower part as suggested by the 

results of Lessoff et al. [2010]. In the upper part of the aquifer, a free water table is simulated 

to account for a potential mound of the water table due to injection of water. This 

groundwater mound may affect the flow field, especially close to the injection well. 

Unsaturated flow is calculated by applying the Richards equation, and the model allows for 

heat exchange between aquifer and unsaturated zone. 

Fixed hydraulic heads are assigned at the inflow and outflow boundary of the model, and no 

flow at the remaining boundaries. The fixed heads are set to ensure a horizontal hydraulic 

gradient of 0.003 along the well transect and a height of the water table of 4.0 m bls at B2 as 

measured before the TTT. On the upstream model boundary, a hydraulic head of 3.9 m bls is 

assigned and on the opposing site a value of 4.3 m bls. The temperatures of the inflowing 

groundwater and at the surface are similarly controlled by Dirichlet boundary conditions. The 

temperature of the inflowing groundwater and at all aquifer model edges is set to 11.0°C. This 

value was obtained from groundwater measurements before the TTT started. At the top of the 

model, the temperature is set fixed at 18.1°C, gradually declining to the groundwater 

temperature at the lateral unsaturated boundaries. This value was derived from linear 

extrapolation of temperature values obtained before the tracer injection in the section of the 

unsaturated zone (from the water table to 2.2 m bls).  
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The injection well, B2, is represented by a well module integrated in FEFLOW, which assigns 

a given extraction or injection rate to all nodes of the well. To realistically reproduce the 

conditions of the heated water injection, a combination of a temperature and the described 

well boundary condition is applied. For the injection phase (0 to 8 h) water is injected in the 

aquifer at a constant rate along the well screen. The temperature of the injected water is stated 

by a Dirichlet boundary condition. After the injection phase (> 8 h after start of the injection), 

both boundary conditions referring to the injection well are deactivated. 

Hydraulic and thermal parameters for the three model layers are subsequently calibrated by 

fitting simulated to measured temperatures during the TTT. The possible ranges of hydraulic 

conductivities of the three layers are derived from previous studies at this site. Lessoff et al. 

[2010] suggest an integral hydraulic conductivity of 3 × 10-3 m s-1. Riva et al. [2006] 

compiled the results of several sieve analyses and determined different cluster groups with 

hydraulic conductivity values, K, between 3 × 10-4 m s-1 and 5.9 × 10-3 m s-1. We selected 

these two values as initial assumptions for the two layers, with the upper aquifer layer being 

more conductive as the integral parameter suggested by Lessoff et al. [2010]. A range of 

±50% uncertainty is then defined for the calibration. Furthermore, we assume that the aquitard 

has a significantly lower hydraulic conductivity of 1.0 × 10-9 m s-1. A constant effective 

porosity of 9.8%, as suggested by Riva et al. [2006], is set for the entire aquifer. 

No measurements of the thermal conductivity and the heat capacity exist for the Lauswiesen 

test site. However, these parameters only show a small variability in sedimentary aquifers and 

may be well estimated by adopting values from other work: Parr et al. [1983], Palmer et al. 

[1992] and Markle et al. [2006] examined thermal properties of porous aquifers similar to the 

one at the Lauswiesen site. Based on the values and ranges reported therein, we chose cpm = 

2.8 ± 0.3 × 106 J m-3 K-1 and λm = 2.2 ± 0.5 W m-1 K-1. The thermal properties of the aquitard 

are estimated assuming a pure clay stone layer (Table 17). Volumetric heat capacities are 

derived from the study by Clauser [2011], and the corresponding thermal conductivity values 

are extracted from Domenico and Schwartz [1998]. The longitudinal thermal dispersivity is 

estimated based on the empirical relationship by Neuman [1990]: 

5.1017.0 sl L=α  (5-1) 

where the travel distance Ls is considered to be the maximum distance between the source and 

the most distant observation well. The transversal dispersivity is set to one tenth of the 
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longitudinal one [e.g. Molina-Giraldo et al., 2011a]. For this TTT experiment, Ls, is 7.5 m 

and thus we derive a first estimate of αl = 0.34 m. Due to the substantial uncertainty in this 

parameter value, for the calibration feasible ranges from 0 to 0.68 m are defined. Since 

mechanical thermal dispersion is not expected to be relevant for the diffusion-dominated 

transport in the Aquitard, a small fixed value of αl = 0.01 m is set in the numerical model. 

5.2.5 Evaluation methodology 

The analysis of the recorded TTT data focuses on the development of the thermal plume and 

the governing transport processes in the porous aquifer. Injection of warm water induces a 

dynamically evolving thermal anomaly in the aquifer. We focus on the temperature change 

∆T, which is determined by the difference between initial temperature and measured 

temperature values. Propagation of the warm water is seen in the wells by recorded thermal 

breakthrough curves (BTC). As diagnostics of the BTC, we choose the maximal observed 

temperature change ∆Tpeak and the peak arrival time tpeak. The ∆Tpeak values are determined by 

scanning each measured temperature curve for the global temperature maximum. Thus, the 

peak arrival time tpeak is the corresponding point of time for which the temperature maximum 

is detected. According to Bellin and Rubin [2004], evaluation of tpeak has several advantages 

to examine tracer BTCs. It is not so much interfered by infrequent sampling, and missing of 

early or late parts of the signal or measurements below the detection level is not as 

problematic as it is for the analysis of moments of the BTC. These interferences, which could 

hamper BTC interpretation, are also seen as critical for the TTT at the Lauswiesen site. 

The influence of different transport processes can be quantified by dimensionless numbers. To 

analyze the ratio between advection and thermal conduction, the macroscopic Peclet number 

is defined as [e.g. Ma et al., 2012] 

m

Dpw lvc
Pe

λ
=  (5-2) 

where cpw is the volumetric heat capacity of water (cpw = 4.2 × 106 J m-3 K-1), vD the Darcy 

velocity and l the characteristic length, which is a length specifying changes in the 

temperature (e.g. here total length of the observation well transect with 7.5 m).  
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The importance of considering density effects can be evaluated by calculating the ratio 

between the vertical buoyancy force and the horizontal friction force from regional 

groundwater flow. Oostrom et al. [1992] defined a stability number G as 

0

0D

K

G
v i

ρ
ρ ρ

ρ

∆
∆= =  (5-3) 

where i is the hydraulic gradient, ρ0 is the reference density of the thermally undisturbed 

aquifer and ∆ρ is the induced density difference. Oostrom et al. [1992] experimentally 

determined a critical value of Gc = 0.3, where the transition from a stable to an unstable plume 

set in. 

5.3 Results and discussion 

During the TTT the vertical temperature profiles were recorded for four days in the injection 

well B2 and in the five downgradient observations wells (OW1-5). The measurements are 

shown in Fig. 32 as thermoisopleth graphs, which visualize the time-dependent evolution of 

the temperatures in the Lauswiesen aquifer cross-sections. In the same manner the results of 

the numerical simulation are presented in Fig. 33. In the following, first the calibration of the 

numerical model is presented and then the temperature development at the injection well is 

discussed. Next, the effects of hydraulic heterogeneity and induced density differences are 

examined. Then the heat transport in the down gradient observation wells is discussed in more 

detail. Finally the findings of the TTT are compared to those from previous DPIL 

measurements.  
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Fig. 32. Measured depth related temperature development over the entire experimental period. 
The temperature change is calculated based on the initial temperature at the start of the 
experiment. Additionally, temperature peak arrival times for every measurement location are 
emphasized; a) injection well B2; b)-f) observation wells OW1-5. For interpolation the 
MATLAB ®-function contourc is used. 
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Fig. 33. Simulated depth related temperature development over the entire experimental period 
using the numerical heat transport model. The temperature change is calculated based on the 
initial temperature at the start of the experiment. Additionally, temperature peak arrival times 
for every measurement location are emphasized; a) injection well B2; b)-f) observation wells 
OW1-5. For interpolation the MATLAB®-function contourc is used. 
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5.3.1 Calibration of the numerical model 

For the calibration, we considered mean, minimal and maximal values of the uncertain flow 

and transport parameters of the two aquifer layers K, λm, cpm, and αl. Preliminary testing 

revealed that simulated results are least sensitive to the thermal properties and strongly 

controlled by the hydraulic conductivity. Consequently, thermal properties and dispersivity, 

which are not expected to substantially vary in the aquifer, were assumed to be the same for 

both aquifer layers. The hydraulic conductivities were individually calibrated for each layer. 

Thus, 34= 81 value combinations were tested, and the best fit between simulated and 

measured groundwater temperatures at injection and observation wells during the TTT is 

chosen for further analysis (Table 17).  

For the thermal transport parameters of the aquifer we derived αl = 0.68 m; cpm = 2.5 × 106 MJ 

m-3 K-1; λm = 2.7 W m-1 K-1. The obtained hydraulic conductivity of the more conductive 

upper aquifer layer is 8.9 × 10-3 m s-1 and the value of the lower one is 4.5 × 10-4 m s-1. The 

model with this parameter set results in a root mean squared error (RMSE) between all 

simulated and measured BTCs of 0.65°C. This misfit highlights that the numerical model may 

capture the main thermal transport processes in the aquifer, but is not capable of fully 

reproducing the observed temperature evolution, which is comprehensively discussed in the 

following chapters. 

Table 17 Hydraulic and thermal parameter ranges applied for the numerical simulation. 
Values in bolt are used to generate the numerical results which are further analyzed. 

  Hydraulic conductivity K 
(m s-1) 

Volumetric heat capacity 
cpm (MJ m-3 K-1) 

Thermal conductivity λm 
(W m-1 K-1) 

Longitudinal dispersivity 
αl (m) 

  Lower part Upper part    

Aquifer ( and 
gravel) 

Min 1.5 × 10-4 3.0 × 10-3 2.5 × 106 1.7 0.01 

Median 3.0 × 10-4 5.9 × 10-3 2.8 × 106 2.2 0.34 

Max 4.5 × 10-4 8.9 × 10-3 3.1 × 106 2.7 0.68 

Aquitard (clay 
stone) 

Min 1.0 × 10-9 2.3 × 106 1.1 0.01 
Median 1.0 × 10-9 2.3 × 106 1.1 0.01 

Max 1.0 × 10-9 2.3 × 106 1.1 0.01 

 

5.3.2 Temperature evolution at injection well  

First the temperature evolution at the injection well B2 is inspected. The temperature changes 

measured are illustrated in Fig. 32a. Small vertical variability indicates that a homogenized 

line-source with a temperature of 22.4 ± 0.5°C (∆T = 11.4 K) was created below the water 

table during the injection experiment (t < 0.33 d). Proper mixing of the injected thermal tracer 

and the groundwater in and around the well was achieved, and after the warm water injection, 
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only a slight vertical variability in the temperature is observed. Even if this variability is only 

marginal, it can be seen that long-term cooling is most pronounced at the bottom and highest 

temperatures appear in the lower section at about 7.2 m bls. This pattern of the temperature 

signal could be interpreted as a first indication of non-uniform horizontal groundwater 

movement with lower advective flow velocity in the lower part of the aquifer. Minor long-

term cooling at the bottom may be attributed to slight vertical heat loss due to conduction into 

the aquitard beneath.  

The numerical simulation for B2 shows a very similar development of the temperature in the 

injection well (Fig. 33a). However, a closer look reveals that after the injection, the thermal 

anomaly is more persistent. A possible explanation for this observation is that the assumption 

of a thermal equilibrium between solid and fluid phase in the numerical model, is not 

instantaneous in the vicinity of the injection well. Hence, less heat is stored in the subsurface 

than expected based on the simulation, particularly during the fast injection of the warm 

water. As a consequence, after the injection period also faster cooling rates are measured than 

observed for thermally equilibrated conditions in the numerical simulation (Fig. 33a). After 

one day, increased temperatures are still apparent in the model, especially at the central and 

lower profiles. There is a temperature maximum in the injection well at a depth of around 7.2 

to 7.7 m bls (Fig. 33a). Apparently, as observed in the field and in the model, the aquitard 

(and lower aquifer layer) temporally stores and slowly releases thermal energy at the injection 

well.  

5.3.3 Density effects vs. hydraulic heterogeneity 

Due to layering of the aquifer, advective forces in the more permeable layer dictate and focus 

thermal breakthrough in the upper part of the aquifer. This is confirmed by applying the 

values used for the calibrated numerical model to calculate the layer-specific Peclet numbers, 

Pe (Table 17, Eq. 5-2). For the upper part of the aquifer Pe = 420 and for the lower part Pe = 

21. Therefore, heat transport in both parts of the aquifer is dominated by advection, however, 

it is more pronounced in the upper part. In comparison, for the aquitard Pe is only 9 × 10-5, 

indicating conduction dominated conditions in the aquitard. 

The next observation well in the regional groundwater flow direction, OW1, positioned just 

1.5 m downgradient of the injection well, reveals that the moving warm water only leaves a 

trace in the upper layer of the aquifer with a peak value of ∆Tpeak = 6.6 K (Fig. 32b). In 
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comparison with the numerical model (Fig. 33b), significant temperature changes are only 

detected in the upper most part of the aquifer. At first sight, this observation may be a sign of 

density effects, however, for example, following previous studies by Hecht-Méndez et al. 

[2010], Ma and Zheng [2010], Ma et al. [2012] and Leaf et al. [2012], such effects are 

expected to be negligible given the small temperature range and the short duration of the 

performed TTT experiment. Hence, a more plausible reason could be hydraulic 

heterogeneities within the upper layer with highest advection on top of the profile. 

Further insight provides the stability criterion, Gc, according to Oostrom et al. [1992]. Based 

on a groundwater density of 999.6 kg m-3 for 11°C, and an undisturbed hydraulic gradient of i 

= 0.003, a maximum possible density change of 0.9 kg m-3 would be acceptable to avoid 

buoyancy effects (G ≤ Gc = 0.3). During the TTT at the Lauswiesen site, the maximal density 

change by temperature increase from 11°C to 17°C is ∆ρ = 0.9 kg m-3. Consequently, the 

resulting value of G = 0.3 indicates that density effects could not be completely ruled out (Eq. 

5-3). However, temporary warm water infiltration yields transient conditions with a head 

build up at the injection well, and thus during injection the local hydraulic gradient is 

increased at the injection well B2 (i > 0.003). As a result, the maximum ∆T can be expected to 

be higher than the limit of ∆T = 6 K obtained from a calculated density difference based by 

Eq. 5-3 for undisturbed flow conditions. Furthermore flow field changes are most pronounced 

very close to the injection well and even under well-controlled experiments, induced small-

scale lateral and vertical flow components may be significant. Since hydraulic heads have not 

been continuously monitored during the experiment, clear quantitative evidence from the field 

cannot be provided. 

5.3.4 Downgradient propagation of the thermal plume 

The focus of the thermal plume in the uppermost part of the well is also observed in the more 

downgradient observation wells. Accordingly, the numerical model overestimates the vertical 

extension of the plume throughout the experiment. These observations may be influenced by 

measurement inaccuracies: The experiment is possibly prone to technical artifacts, like intra 

borehole convection, which is not considered in the numerical simulation either. Slight 

vertical warm water flow in the wells could have smeared the plume. Therefore, caution is 

given when interpreting the measured temperature trends at the wells. In further analysis, we 

favor the peak arrival time as a potentially more robust criterion. The values of tpeak are 

marked as red crosses in Fig. 32 and Fig. 33 for each sensor position. 
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The lower aquifer has a lower hydraulic conductivity, assuming that differences in 

pronounced tpeak are mainly controlled by different horizontal advective flow velocities. 

Thermal effects are minimal in the lower part of the aquifer (6 – 10 m bls). As a consequence 

of the small signal to noise ratio, the tpeak in the lower part the aquifer cannot be well 

determined. This is in line with the simulated results. The model predicts (Figure 6) here that 

during the TTT no thermal peak passes OW2-5, because obtained tpeak values are at the end of 

the experiment.  

Under ideal conditions, the result of a TTT would show later tpeak values for the more 

downgradient wells with a decrease of ∆Tpeak. Advection would move the peaks in the upper 

layer in flow direction from OW1 to OW5, and diffusion and mechanical dispersion would 

lead to a longitudinal thermal plume spreading and transversal heat loss. This ideal transport 

behavior can be seen in the numerical simulation (Fig. 33). There is a gradual decline of the 

numerically obtained peak temperatures with increasing distance of observation well from 

injection well. For example, the temperature differences at a depth 4.7 m bls are ∆T = 8.5 K 

(OW1) to 6.6 K (OW2), 4.9 K (OW3), 3.8 K (OW4), and 2.5 K (OW5).  

The measured temperature values follow a similar trend as those simulated by the model, but 

with some deviations. As expected, temperature differences are least pronounced at the most 

distant observation well OW5 (Fig. 32f). Measured and simulated tpeak agree well in the 

closest OW1. However, there is no gradual decline in the wells closer to the injection well. 

Peak temperatures on top of the screened section (4.7 m bls) change from ∆T = 6.6 K (OW1) 

to 6.8 K (OW2), 4.0 K (OW3), 4.7 K (OW4), and 3.3 K (OW5). Furthermore, peak arrival 

times recorded at the upper sensor do not increase with distance.  
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Fig. 34. Comparison of the peak arrival times (tpeak) measured and simulated for the TTT 
experiment. a) B2, OW1 and OW2; b) OW3-5. Dashed lines indicate uncertain sections, 
influenced by measurement inaccuracies or data noise (∆Tpeak < 0.3 K). 

The evolution of the thermal plume measured during the TTT and values of tpeak provide 

crucial hints that substantial spatial heterogeneity are present in the aquifer, which is 

insufficiently reproduced in the model by two horizontal and laterally persistent layers. Small-

scale, vertical heterogeneity has already been identified as a potential reason that the plume is 

detected only in the uppermost well screens. In the upper part of the aquifer, at OW2 and 

OW3, tpeak trends would compare better by simple shifting along the vertical axis. This shift 

could be an indication that the boundary between the upper and the lower aquifer part is 

declined or displaced relative to the assumptions in the model. The inconsistencies in tpeak 

between model and field of OW4 and OW5 are a sign of lateral heterogeneities in the 

direction of the well transect, as well as perpendicular. The thermal plume appears locally 

deviated from the suspected centerline, potentially with meandering. Thus, the measured 

temperatures may originate from the fringe of the thermal plume. This conclusion is 

supported by the measured tpeak values at OW4 and OW5, which are smaller than those at 

OW3, meaning that the thermal peak arrives at OW4 and OW5 before it passes OW3. 

5.3.5 Comparison to DPIL 

Finally, tpeak values are compared to the DPIL profiles (Fig. 30 and Fig. 34). The overall 

patterns are comparable, and both field experiments are obviously consistent with higher 

relative hydraulic conductivities and smaller tpeak values in the upper part of the aquifer. The 6 
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m bls boundary between both aquifer parts in the DPIL-profile of B2 is well reproduced by 

the model. The DPIL-profiles of OW4 and OW5 indicate that this boundary could be at a 

more shallow depth, which corresponds to the interpretation from trends in the tpeak values. 

Due to the substantial influence of noise on the small values shown on logarithmic scale, the 

DPIL-based characterization of the lower section is as unsatisfactory as from the TTT. Further 

insights in the heat transport characteristics of the studied aquifer would mandate an even 

denser measurement network and a longer duration of TTT observation to assure the 

monitoring of the passage of the thermal peak. 

5.4 Conclusions  

The main objective of the TTT at the Lauswiesen site was to improve our understanding from 

the experiment and with the obtained experience, identify implications for future TTT 

designs. By numerical simulation of the TTT, the governing transport processes could be 

identified, and high-conductivity regions at the top of the aquifer could also be confirmed. 

The heterogeneous hydraulic properties of the studied shallow aquifer, which is generally well 

known and has already served as hydrogeological test case for decades, have substantial 

effects on the heat transport behavior. It is shown that macrodispersion and flow-focusing 

occurred, and that complex flow patterns result in thermal breakthrough curves (shown as 

thermoisopleth graphs) that are substantially distinct from what would be expected under 

ideal conditions in a layered aquifer. Accordingly, the capability of the presented model to 

simulate the measured propagation of the thermal plume is limited. For more comprehensive 

flow and transport simulations, however, the data collected during our experiment is 

insufficient. A main obstacle is that the induced transient hydraulic head change at injection 

well and in the observation wells were not continuously monitored during the experiment. 

Hence, piezometers have to be added to the experimental design, especially, when the injected 

water volume per time is significant in comparison to the anticipated natural groundwater 

flow.  

Considering that lateral and even vertical flow and transport components may be significant in 

such highly heterogeneous systems, it is also recommended to prefer a more distributed and 

space filling arrangement of observation wells (e.g. several observation well transects) to the 

linear one chosen in the performed TTT. Such wells, which also reveal the thermal evolution 

aside from the expected dominant flow direction, show valuable insights in the 3D 

characteristics of the transport mechanisms. Furthermore, particularly in the case of long-



Thermal tracer testing in a heterogeneous sedimentary aquifer  

 

115 

duration experiments, sensors are needed that monitor potential vertical conductive heat 

losses, such as into the underlying aquitard and the unsaturated zone above.  

Ideally, the TTT is complemented by additional field experiments, such as near surface 

geophysics [e.g. Slater, 2007] or hydraulic tomography [e.g. Brauchler et al., 2013], which 

are able to identify the main structural build-up of the aquifer. For example, at the Lauswiesen 

site, DPIL field tests have been performed before the TTT. It is demonstrated that the 

monitored thermal transport along the local hydraulic gradient is consistent with the findings 

from the DPIL campaign. In addition, as reported by Ma et al. [2012], injection of both 

thermal and dye tracers, is an appealing combination, which should be considered for future 

active and short-term TTT. Thus, coupled parameter estimation for determining both thermal 

and solute transport parameters would be possible [Rau et al., 2012], which would better 

constrain the inversion problem than by separate interpretation of individual tracer tests. 

Although, heat appears to be a favourable tracer for studying aquifer properties, care has to be 

taken to interpret the acquired data. Hence, more studies on active and short-term TTT are 

required to establish such tests as a standard hydrogeological investigation technique. 
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6 Summary and conclusions 

Anderson [2005] designated inverse problems as the most powerful application of temperature 

data in hydrogeology. She also suggest that temperature signal analyses should become a 

standard tool in hydrogeology. The studies enclosed in this thesis rely on this suggestion. 

Therefore, the main objective is to further improve the interpretation of artificially generated 

temperature signals and to extract as much information as possible about the subsurface from 

those signals. All four individual studies of this thesis apply time series of artificially 

disturbed subsurface temperature for the characterization of hydraulic and thermal parameters. 

The first three studies (chapter 2 to 4), which are closely related, analyze and develop 

innovative methodologies to interpret temperature signals from TRTs. The fourth study 

(chapter 5) interprets the temperature signals of a TTT to further characterize the subsurface. 

The first study (chapter 2) analyses potential shortcomings of the standard TRT evaluation. 

The second study (chapter 3) develops a new TRT evaluation to overcome the most important 

shortcoming detected in chapter 2. The third study (chapter 4) is directly connected to the 

previous study and validates this new methodology. This study further lifts the TRT beyond 

the classical geothermal application area and introduces it as a hydrogeological investigation 

method comparable to a pumping test.  

The first study reveals, on the one hand, that there are shortcomings based on the ill-posed 

character of the standard TRT evaluation by performing a rigorous two-variable parameter 

estimation. Hence, there is no distinct λeff and Rb pair as a parameter estimation result, but a 

range of parameter combinations of equal quality. On the other hand, this study systematically 

analyzes the distorting potential of pipe positions, non-uniform initial temperature 

distributions and thermal dispersion in an advection influenced environment on the TRT 

evaluation. The analyses exhibit significant tampering effects only for thermal dispersion in 

an advection influenced environment. For a constant Darcy velocity of 0.1 m day-1 and 

considering longitudinal thermal dispersivity values between 0 and 2 m, an overestimation of 

the actual thermal conductivity by the TRT result from 0.5 to 3.9 W m-1 K-1 is determined. 

These findings confirm the assumption of Raymond et al. [2011b] that thermal dispersion 

might influence the TRT and are therefore taken up by the scientific community [Dehkordi 

and Schincariol, 2013; Witte, 2013; Casasso and Sethi, 2014]. Furthermore, the potential 
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overestimation of λeff compared to λm clarifies the need of an advection sensitive TRT 

evaluation approach, which also considers the influence of thermal dispersion.  

In line with this need, the second study (chapter 3) introduces an advection sensitive TRT 

evaluation approach by using the moving line source equation [e.g. Molina-Giraldo et al., 

2011a]. Here, it is demonstrated by detailed comparisons of analytical and numerical results 

that the hydraulic conductivity discrepancy of the aquifer and the BHE cause a non-uniform 

groundwater velocity field in the vicinity of the BHE. This provokes a considerable difference 

between both solutions. Therefore, for most of the analyzed aquifer settings, the application of 

the unimproved moving line source based evaluation would result in underestimated 

groundwater flow velocities. For instance, such an unimproved evaluation in an aquifer (v = 

1.8 m day-1 and λm = 2.2 W m-1 K-1) would underestimate the Darcy velocity by a factor of 

two. To overcome this tampering effect a correction term is developed which is derived from 

the analytical and numerical comparison. This entire evaluation approach using an improved 

version of the moving line source model is successfully tested on three different literature 

based TRT datasets. The newly developed parameter estimation procedure is applied to 

determine the thermal conductivity and the groundwater flow velocity of the three test cases. 

Comparable to the standard TRT evaluation (chapter 2), this is also an ill-posed problem and 

it is not possible to determine a distinct parameter combination. Instead all three test 

evaluations result in an array of equally suitable parameter combinations with a definitely 

negative correlation. This clear correlation and the fact that the variability of the thermal 

conductivity is considerably smaller than the variability of naturally occurring hydraulic 

conductivity values are the starting point of the third study. 

The third TRT related study achieves two objectives. First, the validation of the evaluation 

approach presented in chapter 3, which is already accepted by the scientific community 

[Sharqawy et al., 2013; Casasso and Sethi, 2014]. Secondly, it successfully demonstrates that 

an integral Darcy velocity or an integral hydraulic conductivity, respectively, can be 

determined using the new evaluation approach on temperature time series from a TRT. Both 

objectives are fulfilled by evaluating TRT datasets from two different locations. Assuming 

realistic ranges for the thermal properties of a porous aquifer, i.e. thermal conductivity, 

volumetric heat capacity and longitudinal thermal dispersivity ,and the thermal borehole 

resistance of the BHE, the new evaluation approach results in correct hydraulic conductivity 

ranges of the aquifers sampled by the two TRT experiments. The subsurfaces of both test sites 
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are also investigated by classical hydrogeological investigation techniques, like a sieve curve 

analysis or a pumping tests. The hydraulic conductivity ranges obtained from the TRT and 

from the classical methods are nearly the same for the tank experiment. The TRT based 

hydraulic conductivity range of the field experiment (2.5 × 10-3 to 5.5 × 10-3m s-1) is not only 

within the ranges from classical methods, but also further specifies this range (1.6 × 10-3 to 

8.3 × 10-3 m s-1). The successful validation of the moving line source based evaluation method 

presented in chapter 2 also demonstrates that the TRT can be employed as a hydrogeological 

characterization method. The developed and validated approach (chapter 3 and 4) certainly 

improves and extends the current applicability of the TRT. Temperature signals recorded from 

TRTs can now be used to provide suitable subsurface parameters for advanced numerical 

simulation codes, which implement advection and conduction heat transport.  

The fourth study (chapter 5) interprets temperature time series of a TTT. During the TTT 

experiment, 16 m³ of 22°C hot water is injected into the subsurface and the heat transport is 

observed along one transect containing five observation wells. The location of the TTT is the 

well characterized Lauswiesen test site. Based on the existing knowledge of the test site, a 

numerical model is set up to distinguish the governing heat transport processes by comparing 

measured and simulated results. The separation of the aquifer into a high conductive upper 

part and an underlying low conductive part, which is known from previous studies [e.g. 

Lessoff et al., 2010], can be clearly detected from the measured and simulated thermoisopleth 

graphs from all observation wells along the entire well transect. However, a more detailed 

interpretation of the measured thermal breakthrough curves and comparisons with the 

numerical results illustrate that there is a significant deviation from the ideal heat transport 

behavior observed in the numerical simulation. For instance, peak arrival times measured at 

the observation wells OW3 to OW5 of the upper aquifer decrease with increasing distance 

from the well. This effect, which deviates from the ideal model assumption, is an indication 

for the likely occurrence of flow focusing zones. Further, the comparison of the 

thermoisopleth graphs demonstrates that the boundary depth between the upper and the lower 

aquifer part is not uniform. Beside from improving the process understanding of a TTT, the 

second objective of this study is to identify implications to further improve the TTT 

experimental design. This study provides fundamental evidence that the temperature signal is 

very sensitive to the actual flow paths in the porous media.  
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To be able to measure the effects of the existent flow paths, a wider distributed temperature 

sensor network is mandatory. In addition, complementary field investigation techniques 

should be performed in order to avoid significant uncertainties caused by the geological 

structure.  

The investigations described in the present thesis demonstrate the capabilities of using 

standard field investigation techniques such as TRTs and TTTs, commonly applied in the area 

of geothermics, in a broader manner. In summary, the studies enclosed in this thesis help to 

achieve a further step to establish the TTT as a standard tool in hydrogeology. In addition, 

studies enclosed in this thesis introduces the first time a new evaluation approach for the TRT, 

which accesses to a novel correction factor, to be able to determine simultaneously advective 

and conductive heat transport parameters. Applying this novel evaluation procedure, the first 

time, TRT temperature time series are used to determine the hydraulic conductivity of an 

aquifer. Therefore the TRT is introduced as a completely new temperature related tool in the 

toolbox of hydrogeologists. 
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7 Perspectives 

In this section future research questions are compiled, which arise from the results presented 

in this thesis. First the major research perspectives related to the new TRT evaluation are 

presented, then the ones related to the TTT evaluation and at last perspectives to thermal field 

test in general are introduced. 

Future research should focus on the extension of the new application area for TRT datasets 

beyond the classical shallow geothermal background. Existing TRT datasets of advection 

influenced test sites can be reevaluated in order to obtain an integral hydraulic conductivity 

value instead of tampered λeff value. It should be further evaluated wether it is possible to 

apply this approach to enhanced TRT datasets [Acuña, 2013] in order to interpret the 

temperature signals at various depths during a TRT. Using such a dataset, the determination 

of depth depending hydraulic conductivities might be possible. This new evaluation approach 

should also be applied on TRT datasets from fractured or karstic rocks to inspect the 

applicability for subsurfaces, which are not a porous media. Future work should also analyze 

the sensitivity of the determined correction term and the parameter estimation result itself on 

the chosen length of the evaluation interval. 

The results of this thesis, which are related to the TTT, indicate that the transient head 

changes caused by the tracer injection tamper the result of the experiment. Future TTT 

experiments should analyze, if it is necessary to inject the heat as hot water into the aquifer or 

if it is sufficient to install heating devices directly into the well. This new position of the heat 

source would avoid a significant change of the local hydraulic gradients and the influences by 

this latter effect. Furthermore, future studies should analyze the benefit of extending the 

temperature sensor network not only in horizontal but also in vertical direction, especially 

additional temperature measurements in the unsaturated zone and the underlying aquitard. 

The studies enclosed in this thesis focus on the hydraulic and thermal characterization of the 

subsurface by TRT or TTT. The recent work of Bons et al. [2013] presents a unifying 

expression for heat and solute dispersion coefficients. Applying this new expression and the 

associated transferability of the suggested formulation of the dispersion coefficients, the 

obtained results from TRTs or TTTs can be also used to get further insights in the solute 

transport properties of the subsurface. Or vice versa, solute dispersion coefficients can be 

applied to further constrain the TRT or TTT evaluation, respectively. 
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