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We compute the next-to-next-to-leading order hadronic contribution to the muon anomalous magnetic 
moment originating from the photon vacuum polarization. The corresponding three-loop kernel functions 
are calculated using asymptotic expansion techniques which lead to analytic expressions. Our final result, 
ahad,NNLO
μ = 1.24 ± 0.01 × 10−10, has the same order of magnitude as the current uncertainty of the 

leading order hadronic contribution and should thus be included in future analyses.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The anomalous magnetic moment of the electron and the muon 
is measured with high precision and at the same time also ac-
curately predicted including high-order quantum corrections (see, 
e.g., Refs. [1–4] for reviews on this topic). Notable recent achieve-
ments in this context are the five-loop QED corrections obtained 
in Refs. [5,6].

In the case of the muon the largest input to the uncer-
tainty comes from hadronic contributions which to a large ex-
tent rely on experimental measurements of the cross section 
σ(e+e− → hadrons). Several groups have performed the leading 
order (LO) [7–10] and next-to-leading order (NLO) [8,11–13] anal-
ysis. In this paper we compute the next-to-next-to-leading order 
(NNLO) hadronic corrections to the anomalous magnetic moment 
of the electron and the muon. We evaluate the three-loop kernels 
in the limit Mμ � mπ and show that four expansion terms are 
sufficient to obtain a precision far below the per cent level. Note 
that we do not consider the light-by-light contribution where the 
external photon couples to the hadronic loop (see, e.g., Ref. [14]) 
but only the contributions involving the hadronic vacuum polar-
izations.

In the next section we briefly mention some technical details 
of our calculation and discuss the NLO contribution. Section 3 con-
tains the results of the various NNLO contributions for the muon 
anomalous magnetic moment and in Section 4 we apply our re-
sults to the anomalous magnetic moment of the electron. We con-
clude in Section 5.
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2. Technicalities and NLO result

The LO hadronic contribution to the anomalous magnetic mo-
ment of the muon (see Fig. 1) can be computed via

a(1)
μ = 1

3

(
α

π

)2 ∞∫

m2
π

ds
R(s)

s
K (1)(s), (1)

where α is the fine structure constant and R(s) is given by 
the properly normalized total hadronic cross section in electron 
positron collisions

R(s) = σ(e+e− → hadrons)

σpt
, (2)

with σpt = 4πα2/(3s). A convenient integral representation for 
K (1)(s) is given by

K (1)(s) =
1∫

0

dx
x2(1 − x)

x2 + (1 − x) s
M2

μ

, (3)

analytic results can be found in Refs. [15,16].
A crucial input for the evaluation of ahad

μ is a compilation of 
the experimental data for R(s) as obtained by various experiments. 
In our analysis we use a FORTRAN code which is provided to us 
by the authors of Ref. [8]. This gives us access to both the cen-
tral values and the upper and lower limit of R(s). However, the 
use of the latter leads to a vast overestimation of the final un-
certainty since we have no information about the correlations of 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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Fig. 1. LO and sample NLO Feynman diagrams contributing to ahad
μ .

the individual data points. Thus, we use a heuristic method and 
consider the difference between ahad

μ as obtained from the cen-
tral and upper or lower limit of R(s) and divide it by three which 
leads to realistic (and still conservative) error estimates at LO and 
NLO. In fact, for the energy region [0.32 GeV, 1.43 GeV] we ob-
tain the LO contribution 608.19 ± 3.97 × 10−10 which is in a good
agreement with 606.50 ± 3.35 × 10−10 from Table 5 of Ref. [8]. 
Note that in this paper we do not aim for an improved predic-
tion of the LO or NLO contribution. Rather we present for the first 
time NNLO hadronic predictions. Obviously, for that purpose, the 
described prescription for the determination of the uncertainty is 
sufficient.

The contribution to aμ from the J/Ψ , Ψ (2S) and Υ (nS) (n =
1, . . . , 4) resonances is obtained with the help of the narrow-width 
approximation as described in Ref. [13].

At NLO three different contributions are distinguished as shown 
in Fig. 1(b), (c) and (d). We have computed the kernels K (2a) and 
K (2b) using the methods of asymptotic expansion [17] and in that 
way confirmed the results provided in Ref. [11]. Ref. [11] also con-
tains analytic expressions for K (2c)(s, s′). It is, however, convenient 
to work with the one-dimensional integral representation which 
reads [11]

K (2c)(s, s′) =
1∫

0

dx
x4(1 − x)

[x2 + (1 − x) s
M2

μ
][x2 + (1 − x) s′

M2
μ
] . (4)

The contributions a(2a)
μ and a(2b)

μ are obtained from Eq. (1) after 
replacing K (1) by either K (2a) or K (2b) and (α/π)2 by (α/π)3. a(2c)

μ

requires an integration over both s and s′ and is obtained from

a(2c)
μ = 1

9

(
α

π

)3 ∞∫

m2
π

dsds′ R(s)

s

R(s′)
s′ K (2c)(s, s′). (5)

Our results for the three contributions read

a(2a)
μ = −20.90 × 10−10,

a(2b)
μ = 10.68 × 10−10,

a(2c)
μ = 0.35 × 10−10, (6)

which leads to

ahad,NLO
μ = −9.87 ± 0.09 × 10−10, (7)

in a good agreement with Refs. [8,13].

3. NNLO hadronic contributions to aμ

We classify the NNLO contributions in analogy to NLO accord-
ing to the number of hadronic insertions and closed electron loops. 
This leads to five different kernels which contain the following 
contributions (see Fig. 2 for sample Feynman diagrams):

• K (3a): one hadronic insertion; up to two additional photons 
to the LO Feynman diagram; contains also the contributions 
Fig. 2. Sample NNLO Feynman diagrams contributing to ahad
μ . The external fermions 

are muons and the fermions in the closed loops represent electrons.

with one or two closed muon loops and the light-by-light-type 
diagram with a closed muon loop.

• K (3b): one hadronic insertion and one or two closed electron 
loops and additional photonic corrections; the external photon 
couples to the muon.

• K (3b,lbl): light-by-light-type contribution with closed electron 
loop and one hadronic insertion; the external photon couples 
to the electron.

• K (3c): two hadronic insertions and additional photonic correc-
tions and/or closed electron or muon loops.

• K (3d): three hadronic insertions.

Note that we do not consider contributions with closed tau lepton 
loops since they are suppressed by an additional factor M2

μ/M2
τ . 

Actually, at NLO these contributions amount to 0.01 × 10−10 and 
thus we anticipate that the corresponding NNLO terms are even 
smaller.

The calculation of K (3a)(s) proceeds in analogy to the corre-
sponding one- and two-loop cases: we apply an asymptotic expan-
sion for 

√
s � Mμ and compute terms up to order (M2

μ/s)4. The 
minimal value of 

√
s is given by mπ and thus the largest value of 

the expansion parameter is M2
μ/m2

π ≈ 0.6. Note, however, that the 
contribution from the energy interval [mπ , 2mπ ] is very small such 
that in practice the expansion parameter is M2

μ/(4m2
π ) ≈ 0.15 or 

smaller for higher energies. We observe a good convergence of the 
series as can be seen by considering the difference for a(3a)

μ (a(3b)
μ ) 

computed from K (3a)(s) (K (3b)(s)) by including and neglecting the 
highest available term which is at the per mil level. For K (3b) and 
K (3b,lbl) we consider in addition the limit Mμ � Me and compute 
terms up to quartic order in Me . Corrections of order Me/Mμ or 
higher turn out to be negligibly small. In the case of K (3b) the 
leading term for Me → 0 can be obtained using renormalization 
group techniques (see, e.g., Ref. [18] where four-loop correction 
to aμ with closed electron loops have been considered). However, 
a non-zero electron mass is crucial for the light-by-light-type con-
tribution K (3b,lbl) since the Feynman integrals are divergent in case 
Me = 0 is chosen. Thus, a non-trivial asymptotic expansion has to 
be applied. The latter is realized with the help of the program
asy [19,20].

For the computation of K (3c)(s, s′) we use asymptotic expan-
sions in the limits s � s′ � M2

μ , s ≈ s′ � M2
μ and s′ � s � M2

μ

and construct an interpolating function by combining the results 
from the individual limits. This procedure can be tested in the 
case of K (2c)(s, s′) where a comparison to the exact result is possi-
ble. In Fig. 3(a) we show K (2c)(s, s′) for 

√
s = 1 GeV as a function 
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Fig. 3. (a) Comparison of exact result (solid, black) for K (2c)(s, s′) and the various approximations for s � s′ (blue, dotted), s ≈ s′ (orange and red, short and medium dashed) 
and s � s′ (green long dashed) for √s = 1 GeV as a function of 

√
s′ . (b) Approximations for K (3c)(s, s′). (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.)
of
√

s′.1 (For larger values of 
√

s the convergence properties are 
even better.) One observes that for each value of 

√
s′ there is per-

fect agreement between the exact result (solid line) and at least 
one of the approximations (dotted and dashed lines). Furthermore, 
the final results for a(2c)

μ computed from the exact and approxi-
mated kernels differ by less than 1%.

Fig. 3(b) shows the corresponding results for K (3c)(s, s′). For 
each value of s′ we have at least two approximations which agree 
with each other. Thus it is evident that a function can be defined 
which agrees piecewise with one of the approximations.

For the kernel of the triple-hadronic insertion, K (3d)(s, s′, s′′), 
we derive a one-dimensional integral representation which is given 
by

K (3d)
(
s, s′, s′′)

=
1∫

0

dx
x6(1 − x)

[x2 + (1 − x) s
M2

μ
][x2 + (1 − x) s′

M2
μ
][x2 + (1 − x) s′′

M2
μ
] .

(8)

We refrain from listing explicit results for the NNLO kernels 
but provide the results in computer-readable form on the web 
page [23].

For the computation of a(3a)
μ , a(3b)

μ and a(3b,lbl)
μ one inserts the 

corresponding kernel in Eq. (1) and replaces (α/π)2 by (α/π)4. 
Furthermore, a(3c)

μ is obtained from Eq. (5) with K (2c) replaced by 
K (3c) and (α/π)3 by (α/π)4 and the three-fold hadronic insertion 
is calculated from

a(3d)
μ = 1

27

(
α

π

)4 ∞∫

m2
π

dsds′ds′′ R(s)

s

R(s′)
s′

R(s′′)
s′′ K (3d)

(
s, s′, s′′).

(9)

For the individual NNLO contributions we obtain the results

a(3a)
μ = 0.80 × 10−10,

a(3b)
μ = −0.41 × 10−10,

a(3b,lbl)
μ = 0.91 × 10−10,

a(3c)
μ = −0.06 × 10−10,

a(3d)
μ = 0.0005 × 10−10, (10)

1 Note that there are two curves for the region s ≈ s′ which correspond to the 
expansion parameters 1 − √

s/
√

s′ and 1 − √
s′/

√
s, see also Refs. [21,22].
which leads to

ahad,NNLO
μ = 1.24 ± 0.01 × 10−10. (11)

Our result is of the same order of magnitude as the uncertainty 
of the LO hadronic contribution. For example, in Ref. [8] an un-
certainty of 3.72 × 10−10 is quoted due to the statistical and sys-
tematic errors of the experimental data. Furthermore, ahad,NNLO

μ in 
Eq. (11) is also of the same order of magnitude as the experimental 
uncertainty anticipated for future experiments measuring aμ (see, 
e.g., Ref. [24]). Thus, the NNLO hadronic corrections should be in-
cluded in the comparison with the experimental result for aμ .

4. NNLO hadronic contributions to ae

In this section we apply our results to the electron anomalous 
magnetic moment, ae . At LO and for K (2a) this means that the 
lepton mass has to be interpreted as Me . K (2b) is absent and we 
have checked that K (2c) gives a negligible contribution (see also 
Ref. [11]). The situation is analogous at NNLO where we only re-
main with K (3a) .

At LO and NLO our results for ae read ahad,LO
e = a(1)

e = 1.877 ×
10−12 and ahad,NLO

e = a(2a)
e = −0.2246 × 10−12 which is consistent 

with the recent analysis of Ref. [25] where the values ahad,LO
e =

1.866 ± 0.011 × 10−12 and ahad,NLO
e = −0.2234 ± 0.0014 × 10−12

have been obtained. At NNLO we get the result2

ahad,NNLO
e = a(3a)

e = 0.028 ± 0.001 × 10−12, (12)

which is almost three times larger than the uncertainty of ahad,LO
e

quoted in Ref. [25]. It is furthermore of the same order of magni-
tude as the hadronic light-by-light contribution which amounts to 
ahad,lbl

e = 0.035 ± 0.010 × 10−12 [5]. Note that currently both the 
uncertainty in the theory prediction for ae and the difference be-
tween theory and experiment is of order 1 × 10−12 [5] which is 
about a factor 40 larger than the result given in Eq. (12).

5. Conclusions

We have computed the NNLO hadronic vacuum polarization 
corrections to the anomalous magnetic moment of the muon. Five 
different contributions can be distinguished which are discussed 
individually. The numerically largest contribution comes from the 
light-by-light-type diagram with a closed electron loop followed by 

2 We neglect the contribution from K (3c) since it is about a factor 100 smaller 
than the one from K (3a) . Similarly heavy-lepton contributions proportional to 
M2

e /M2
μ are not taken into account.
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the photonic corrections and the contribution containing a closed 
electron two-point function. Multiple hadronic insertions only lead 
to numerical results which are much smaller. The main result of 
this paper is given in Eq. (11).

In Ref. [6] the theory prediction ath
μ = 116 591 840(59) × 10−11

has been compared to the experimental result [26,27] aexp
μ =

116 592 089(63) × 10−11 which leads to a deviation of 2.9σ . Af-
ter adding our result in Eq. (11) to ath

μ this reduces to 2.7σ .
As a by-product we have also evaluated the NNLO hadronic cor-

rections to ae . Our result is larger than the uncertainty at LO and 
of the same order as the hadronic light-by-light contribution. How-
ever, it is significantly smaller than both the uncertainty from the 
fine structure constant and the experimental uncertainty for ae , see 
the discussion in Ref. [5].

6. Note added

During the refereeing process the paper [30] appeared on the 
arXiv. In that paper the NLO hadronic light-by-light contribution, 
which is of the same perturbative order as the corrections consid-
ered in our paper, has been estimated to albl-had,NLO

μ = 0.3 ± 0.2 ×
10−10.
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