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In this paper we report on the newest developments in precision calculations in supersymmetric theories. An important issue
related to this topic is the construction of a regularization scheme preserving simultaneously gauge invariance and supersymmetry.
In this context, we discuss in detail dimensional reduction in component field formalism as it is currently the preferred framework
employed in the literature. Furthermore, we set special emphasis on the application of multi-loop calculations to the analysis of
gauge coupling unification, the prediction of the lightest Higgs bosonmass, and the computation of the hadronic Higgs production
and decay rates in supersymmetric models. Such precise theoretical calculations up to the fourth order in perturbation theory are
required in order to cope with the expected experimental accuracy on the one hand and to enable us to distinguish between the
predictions of the Standard Model and those of supersymmetric theories on the other hand.

1. Introduction

Today we know that the Standard Model (SM) of particle
physics [1–7], which is a renormalizable gauge theory for the
group SU(3)

𝐶
×SU(2)

𝑊
×U(1), is extremely successful at short

distances of the order of 10−16 cm. Up to now, all experiments
verify it without any conclusive hint towards new physics. On
the other hand, Einstein’s gravitational theory based on the
same concept of gauging the symmetries gives a very good
classical theory for long distances. However, the classical
theory of gravity could not be quantized due to its abundant
number of singularities. There seems to be a deep conflict
between the classical theory of gravity and the quantum
field theory. Thus, the question whether gauging is the only
organizing principle or there is a deeper connection between
space time and internal space symmetries arises naturally. In
a long series of “no-go theorems” amongwhich the Coleman-
Mandula theorem [8] is the most important one, it was
shown that the only possible symmetry group of a consistent
four-dimensional quantum field theory is the direct product
of the internal symmetry group and the Poincaré group.
Precisely, it states that internal symmetries cannot interact
nontrivially with space time symmetry. Surprisingly, there
is a unique way of combining nontrivially space time and
inner space symmetries, namely, supersymmetry (SUSY). It

was shown by Haag et al. [9] that weakening the assump-
tions of the Coleman-Mandula theorem by allowing both
commuting and anticommuting symmetry generators, there
is a nontrivial extension of the Poincaré algebra, namely,
the supersymmetry algebra. The supersymmetry generators
transform bosonic particles into fermionic ones and vice
versa, but the commutator of two such transformations yields
a translation in space time. In case of four-dimensional space
time, the algebra generated by the SUSY generators will
contain the algebra of Einstein’s general relativity.

The first attempts to construct physical models respecting
SUSY can be traced back in the early seventies to the works
by Golfand and Likhtman [10] and Volkov and Akulov
[11]. However, the first known example of a renormalizable
supersymmetric four-dimensional quantum field theory is
the Wess-Zumino model [12]. Within SUSY it is very natural
to extend the concept of space time to the concept of
superspace [13]. Alongwith the four-dimensionalMinkowski
space there are also two new “anticommuting” coordinates 𝜃𝛼
and 𝜃

𝛼̇
, that are labeled in Grassmann numbers rather than

real numbers:
{𝜃

𝛼
, 𝜃

𝛽
} = 0, {𝜃

𝛼̇
, 𝜃 ̇𝛽

} = 0,

𝜃
2

𝛼
= 0, 𝜃

2

𝛼̇
= 0, with 𝛼, 𝛽, 𝛼̇, ̇𝛽 = 1, 2.

(1)
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The ordinary space dimensions correspond to bosonic
degrees of freedom, the anticommuting dimensions to
fermionic degrees of freedom. The fields are now func-
tions of the superspace variables (𝑥

𝜇
, 𝜃

𝛼
, 𝜃

𝛼̇
) and they are

organized into supersymmetric multiplets in a natural way
[13]. Expanding the multiplets in Taylor series over the
Grassmannian variables, one obtains the components of the
superfield as the coefficients of the expansion. They are
ordinary functions of the space time coordinates and can be
identifiedwith the usual fields. Furthermore, in the superfield
notation the manifestly supersymmetric Lagrangians are
polynomials of the superfields. In the same way, as the
ordinary action is the integral over the space time of the
Lagrangian density, in the supersymmetric case the action
may be expressed as an integral over the whole superspace.

As quantum field theories the supersymmetric theories
are less divergent as they would be in the absence of SUSY.
These properties can be traced back to the cancellation of
diagrams containing bosonic or fermionic particles, as, for
example, the cancellation of quadratic divergences present
in the radiative corrections to the Higgs boson mass. Even
more, it was shown [14–16] that there are parameters of
the theory that do not get any radiative corrections; that is
a very special feature in quantum field theories. The most
important consequence for the particle phenomenology is
the fact that in a supersymmetric theory there should be an
equal number of bosons and fermions with equal masses.
In other words, for every SM particle there should exist a
supersymmetric partner with an equal mass. But in Nature
we do not observe such a situation. An elegant solution to
break SUSY in such a way that its renormalization properties
remain valid (in particular the nonrenormalization theorems
and the cancellation of quadratic divergences) is to introduce
the so-called soft terms [17]. In this way, the mass difference
between supersymmetric partners can become of the order of
SUSY breaking scale. Moreover, there will also be parameters
that receive only finite radiative corrections of the order of
magnitude of SUSY breaking parameters. This is the case of
theHiggsmasses andHiggs couplings. Accordingly, the SUSY
partners of the SMparticles should not be very heavy in order
to account for the smallness of the Higgs mass and couplings.
For example, requiring for consistency of the perturbation
theory that the radiative corrections to the Higgs boson mass
do not exceed the mass itself gives [18]

𝛿𝑀
2

ℎ
≈ 𝑔

2
𝑀

2

SUSY ≈ 𝑀
2

ℎ
, (2)

where 𝑀SUSY denotes the mass scale of SM superpartners.
Thus, for𝑀

ℎ
≈ 100GeV and 𝑔 ≈ 10−1 one obtains𝑀SUSY ≈

1000GeV. This feature is one of the great achievements
of supersymmetric theories, namely, the solution to the
hierarchy problem in particle physics.

The very old concept of the existence of an organizing
principle that allows the unification of all interactions present
in Nature is nowadays embedded in the so-called Grand
Unified Theories (GUT). The predictions of such theories
can be even precisely tested with the help of the experiments
conducted at modern particle colliders. The most prominent
example concerns, for sure, the prediction of gauge coupling

unification. Once the gauge couplings for the electroweak
and strong interactions had been precisely measured at the
Large Electron-Proton Collider (LEP) [19], we could verify
this hypothesis with high precision. The amazing result
of evolving the low-energy values of the gauge couplings
according to the SM predictions [20–22] is that unification
is excluded by more than eight standard deviations. This
means that unification can be achieved only if new physics
occurs between the electroweak and the Planck scales. If one
considers that a supersymmetric theory describes the new
physics, one obtains that unification at an energy scale of
about 1016 GeV can be realized if the typical supersymmetric
mass scale is of the order of 103 GeV. This observation was
interpreted as first “evidence” for SUSY, especially because
the supersymmetric mass scale was in the same range as that
derived from the solution to the hierarchy problem.

Another virtue of SUSY is that it provides a candidate
for the cold dark matter. Nowadays, it is well established that
the visible matter amounts to only about 4% of the matter in
the Universe. A considerable fraction of the energy is made
up from the so-called dark matter. The direct evidence for
the existence of dark matter is the flat rotation curves of
spiral galaxies (see, e.g., [23] and references cited therein), the
gravitational lensing caused by invisible gravitating matter
in the sky [24, 25], and the formation of large structures
like clusters of galaxies. The dark matter is classified in
terms of the mass of the constituent particle(s) and its
(their) typical velocity: The hot dark matter, consisting of
light relativistic particles and the cold one, made of massive
weakly interacting particles (WIMPs) [26]. The hot dark
matter might consist of neutrinos; however, this hypothesis
cannot explain galaxy formation. For the cold dark matter,
there is obviously no candidate within the SM. Nevertheless,
SUSY provides an excellent candidate for WIMP, namely, the
neutralino as the lightest supersymmetric particle.

These three fundamental predictions of SUSY make it
one of the preferred candidates for physics beyond the SM.
This explains the enormous efforts devoted to searches for
SUSY in particle physics experiments at accelerators, in the
deep sky with the help of telescopes, and with the help of
underground facilities, that last already for four decades. The
exclusion bounds on the supersymmetric mass spectrum are
in general model dependent. In the case of the constrained
MSSM (CMSSM), the current status is as follows: if one
combines the excluded regions from the direct searches at
the LHC [27], the stringent lower bound on the mass of the
pseudoscalar Higgs from XENON100 [28], the constraints
from the relic density from WMAP [29], and those from
muon anomalous magnetic moment [30], one can set a
lower limit on the WIMP mass of 230GeV and on strongly
interacting supersymmetric particles of about 1300GeV. If in
addition, the mass of the lightest Higgs boson of 125GeV in
agreement with the recentmeasurement at the LHC [31, 32] is
imposed; one can exclude strongly interacting superpartners
below 2TeV. Nevertheless, such exclusion bounds concern
the gluinos andmainly the first two generation of squarks. On
the other hand, for the third generations of squarks, masses
of the order of few hundred GeV are still allowed.
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In this context, the question whether low-energy SUSY
is still a valid candidate for physics beyond the SM arises
naturally. Despite the slight tension that appears in particular
models, as, for example, the constrained MSSM, (the con-
strainedMSSMmodel is based on the universality hypothesis
and is described by a set of five free parameters defining the
mass scale for the Higgs potential and the scalar and fermion
masses) the supersymmetric parameter space is large enough
to accommodate all the experimental data known at present.
However, the main prediction of low-energy SUSY, that is,
the existence of supersymmetric particles at the TeV scale,
is falsifiable at the LHC at the full energy run of 14 TeV. If
no supersymmetric particle will be found at the TeV scale,
we have to give up the main arguments in favor of SUSY,
namely, the gauge coupling unification and the solution to the
hierarchy problem.

To draw such powerful conclusions, one definitely needs
an accurate comparison of the experimental data with the
theory predictions based on SUSY models. There are various
possibilities to perform such comparisons; one of them is
high precision analyses, that requires precision data both
at the experimental and theoretical level. On the theory
side, the observables for which precise theoretical predictions
up to the next-to-next-to leading order in perturbation
theory are required are the electroweak precision observables
(EWPO) [33], the muon anomalous magnetic moment [34],
the lightest Higgs boson mass [33], the decay rate for the
rare decay of a bottom quark into a strange quark and a
photon Γ(𝐵 → 𝑋

𝑠
𝛾) [35], and, of course, the production

and decay rates of the Higgs boson at hadron colliders [36].
Details about the various topics can be found in the excellent
review articles cited above. In this paper we report on the
newest developments in precision calculations within SUSY
models and set special emphasis on the recent calculations at
the three-loop order involving several different mass scales.
The latter constitute in many cases essential ingredients for
the state of the art analyses of the experimental data taken
currently at the LHC.

This paper is organized as follows. In the next section
we briefly review the main results concerning the renor-
malizability of supersymmetric theories that can be derived
from their holomorphic properties. In Sections 3 and 4 we
describe the regularization method based on dimensional
reduction applied to nonsupersymmetric and supersymmet-
ric theories up to the fourth order in perturbation theory.
In the second part of the paper we present the phenomeno-
logical applications of such precision calculations. Namely,
in Section 5 we concentrate on computation of the three-
loop gauge beta functions within the SM that allows us to
predict the gauge couplings at high energies with very high
accuracy. Furthermore, in Section 6 we report on the gauge
coupling unificationwithin SUSYmodels taking into account
the most precise theoretical predictions and experimental
measurements. Section 7 is devoted to the computation of the
lightest Higgs boson mass within SUSY models with three-
loop accuracy. In Section 8, the hadronic Higgs production
and decay in SUSY models are reviewed and the required
computations up to the third order in perturbation theory

are presented. Finally, we draw our conclusions and present
our perspective on precision calculations in SUSY models
in Section 9. In the Appendix A we give details about the
computation of the group invariants required in multiloop
calculations. Appendix B contains the main renormalization
constants needed for three-loop calculations in supersym-
metric quantum chromodynamics (SUSY-QCD) within the
modified minimal subtraction, that has been employed for
the computations reviewed in Sections 7 and 8.

2. Holomorphy and Exact Beta Functions in
Supersymmetric Theories

In the last decades, enormous progress has been made
in understanding the dynamics of supersymmetric gauge
theories. For many models even exact renormalization group
equations (RGEs) for the gauge couplings have been derived.
However, the connections between the exact results and those
obtained in perturbation theory are still not completely eluci-
dated. Shifman and Vainshtein [37] were the first to propose
a solution to this puzzle. They based their argumentation on
the difference between the quantities involved in the exact
beta functions derived within theWilsonian renormalization
approach and those adopted in the common perturbative
framework. A different derivation of the exact beta functions
was presented in [38], where only the Wilsonian renormal-
ization approach was used but the authors distinguished
between the holomorphic and canonical normalization of the
gauge kinetic term in the bare Lagrangian.

Within the Wilsonian framework [39] any field theory is
defined by the fundamental Lagrangian, the bare couplings,
and the cutoff parameter. Varying the cutoff parameter and
the bare couplings in a concerted way so that the low-energy
physics remains fixed, one finds the dependence of the bare
couplings on the cutoff parameter which is encoded in the
Wilsonian renormalization group equations (WRGEs). The
transition from a fundamental Lagrangian to an effective
Lagrangian involves integrating out the high momentum
modes of the quantum fields (i.e., degrees of freedom with
momenta between some large cutoff scale Λ and some
renormalization scale 𝜇). The coefficients of the resulting
operators play the role of renormalized couplings and we will
call them Wilsonian effective couplings. The virtue of this
approach is the lack of any infrared effects, since none of the
calculations involves infrared divergences.

Let us consider as an example supersymmetric electrody-
namics (SQED). The vector superfield in the Wess-Zumino
gauge has the following Grassmannian expansion:

𝑉(𝑥, 𝜃, 𝜃) = − 𝜃𝜎
𝜇
𝜃V

𝜇 (𝑥) + 𝑖𝜃𝜃𝜃𝜆 (𝑥)

− 𝑖𝜃𝜃𝜃𝜆 (𝑥) +
1

2
𝜃𝜃𝜃𝜃𝐷 (𝑥) ,

(3)

where the physical degrees of freedom correspond to the
vector gauge field V

𝜇
and the Majorana spinor field 𝜆, known

also as gaugino field. The field 𝐷 is an auxiliary field without
any physical meaning and can be eliminated with the help of
equations of motion for the physical fields.
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The Lagrangian of the model at an energy scale 𝜇 can be
written as follows:

𝐿 =
1

4𝑔2 (𝜇)
∫ d4

𝑥d2
𝜃W

𝛼
W

𝛼

+
1

4
𝑍 (𝜇)∫ d4

𝑥d2
𝜃 (𝑇𝑒

𝑉
𝑇 + 𝑈𝑒

−𝑉
𝑈) ,

(4)

where the superfield strength tensor is defined through the
following relation:

W
𝛼
=
1

8
𝐷

2

𝐷
𝛼
𝑉

= 𝑖𝜆
𝛼 (𝑥) − 𝜃𝛼𝐷 (𝑥) − 𝑖𝜃

𝛽
𝐹𝛼𝛽 (𝑥) + 𝜃

2
𝜕𝛼𝛼̇𝜆

𝛼̇

(𝑥) ,

(5)

with

𝐹
𝜇] = 𝜕𝜇V] − 𝜕]V𝜇. (6)

Here 𝐷 and 𝐷 are the supercovariant derivatives. The super-
fields 𝑇(𝑥, 𝜃, 𝜃) and 𝑈(𝑥, 𝜃, 𝜃) are chiral matter superfields
with charges 1 and −1, respectively. 𝑔(𝜇) stands for the gauge
coupling and 𝑍(𝜇) denotes the superfield renormalization
constant.

Themaximal value of 𝜇 is equal toΛ, the ultraviolet cutoff
parameter. At this point the Lagrangian (4) is just the original
SQED Lagrangian and the coefficients 1/𝑔2(Λ) and 𝑍(Λ) are
bare parameters.

Because the momentum integrals are performed in 𝑑 = 4
dimension and the regularization is introduced through the
cutoff parameter, the Wilsonian renormalization procedure
preserves SUSY.Thus, if one calculates theWilsonian effective
Lagrangian, it is manifestly supersymmetric. As a conse-
quence, the resulting effective superpotential (the part of the
Lagrangian density that does not contain any derivative)must
be a holomorphic function of the couplings [14–16]. This
constraint restricts the running of the Wilsonian couplings
to just the one-loop order.

For example, let us assume that we integrate out the
matter superfields passing to the low-energy limit of the
theory. The low-energy effective coupling at the low-energy
𝜇 is given through the following relation:

𝜋

𝛼
𝑊
(𝜇)

=
𝜋

𝛼
𝑊,0 (Λ)

− 2𝑏0 ln
Λ

𝜇
, (7)

where 𝛼
𝑊
(𝜇) denotes the renormalized or theWilsonian low-

energy effective coupling constant and 𝛼
𝑊,0
(Λ) is the cutoff-

dependent bare coupling constant. 𝑏
0
is the coefficient of the

one-loop beta function of the underlying theory, where the
beta function is defined through

𝛽 (𝛼) = 𝜇
2 d
d𝜇2

𝛼

𝜋
= −(

𝛼

𝜋
)
2

∑
𝑛≥0

(
𝛼

𝜋
)
𝑛

𝑏𝑛,

with 𝛼 =
𝑔2

4𝜋
.

(8)

Let us emphasize that (7) is exact at all orders. The two-
and higher-loop RGEs involve at least ln(ln(𝛼

𝑊,0
)) which is

a nonholomorphic function of the bare coupling and thus
cannot contribute to (7). In [37], it was proved through a
direct calculation using the supergraphsmethod that the two-
loop contributions to the running of the effective coupling
vanish. The generalization of this assertion to higher loops is
based on the extension of the nonrenormalization theorem
for 𝐹-terms in supersymmetric theories [14–16].

As mentioned above, one has to distinguish between the
holomorphic Wilsonian gauge couplings and the physically
measurable momentum-dependent effective gauge couplings
present in the one-particle irreducible generating functional.
Unlike the Wilsonian couplings, the physical couplings do
not depend on the ultraviolet cutoff scale but on momenta
of the particles involved. The dependence of the physical
couplings on the overall momentum scale is governed by the
Gell-Mann-Lowequations [40], which have different physical
meaning as the WRGEs and have different 𝛽-functions [41,
42] beyond one loop. Going from the effective Lagrangian
in the Wilsonian approach to the classical effective action
Γ means to integrate out all of the degrees of freedom
down to zeromomentum, that will generate nonholomorphic
corrections. Γ is often interpreted as a sort of effective
Lagrangian, but in general it does not have the form of a
supersymmetric Lagrangian with holomorphic coefficients.

The connection between the Wilsonian gauge coupling
𝛼𝑊

and a physical gauge coupling 𝛼ph was derived in the so-
called Novikov-Shifman-Vainshtein-Zakharov renormaliza-
tion scheme (NSVZ) [37]. This scheme requires a manifestly
supersymmetric regularization procedure. In addition, the
definition of the physical couplings is close to that in the
momentum subtraction scheme (MOM). The conversion
relation reads

𝜋

𝛼𝑊 (𝜇)
=

𝜋

𝛼ph (𝜇)
+ 𝑇 (𝑅) ln𝑍 (𝜇) , (9)

where 𝑍(𝜇) is the renormalization constant of the matter
superfield and the coefficient 𝑇(𝑅) is the Dynkin index of
the representation 𝑅 of the matter superfield. The factor
𝑍(𝜇) is related to the mass renormalization constants of the
matter superfield through the nonrenormalization theorems,
provided SUSY is preserved. However, in general the 𝑍

factors are not restricted by any holomorphic constraints and
thus are not known analytically. They have to be computed
order by order in perturbation theory. Combining (9) and (7)
we get

𝜋

𝛼ph (𝜇)
=

𝜋

𝛼ph (Λ)
− 𝑇 (𝑅) ln(

𝑍 (𝜇)

𝑍 (Λ)
) − 2𝑏0 ln

Λ

𝜇
. (10)

Using (8) we obtain for the beta function of the physical
coupling in the NSVZ scheme the following relation:

𝛽
NSVZ
SQED (𝛼ph) = (

𝛼ph

𝜋
)
2 1

2
𝑇 (𝑅) (1 − 𝛾) , (11)

where we have specified the value of the coefficient 𝑏
0 for

the SQED case and the superfield anomalous dimension is
defined through

𝛾 = −𝜇
d ln𝑍 (𝜇)

d𝜇
. (12)
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Because (7) is exact at all orders, also the relation between
the beta function of 𝛼ph and the anomalous dimension
of the matter superfields 𝛾 is valid at all orders. Let us
remark, however, that this relation holds only in the NSVZ
scheme. Unfortunately, it is highly nontrivial to fulfill the
requirements of the NSVZ scheme in practice.

In supersymmetric nonabelian models with several mat-
ter supermultiplets, (9) becomes

𝜋

𝛼
𝑊
(𝜇)

=
𝜋

𝛼ph (𝜇)
+
1

2
𝐶 (𝐺) ln𝛼ph (𝜇)

+∑
𝑖

𝑇 (𝑅
𝑖
) ln𝑍

𝑖
(𝜇) ,

(13)

where 𝐶(𝐺) is the quadratic Casimir operator of the adjoint
representation and𝑇(𝑅

𝑖
) is the Dynkin index of the represen-

tation 𝑅
𝑖
of the matter field 𝑖. The second term stands for the

gaugino contribution, while the third one for contributions
generated by the matter superfields. A simple calculation
provides us with the exact relation between the gauge beta
function and the anomalous dimension of the matter super-
fields:

𝛽
NSVZ

= −(
𝛼ph

2𝜋
)
2 3𝐶 (𝐺) − 2∑

𝑖
𝑇 (𝑅

𝑖
) (1 − 𝛾

𝑖
)

1 − 𝐶 (𝐺) 𝛼ph/ (2𝜋)
. (14)

From (14) it is easy to see that for the derivation of the 𝐿-
loop beta functions in theNSVZ scheme one needs thematter
anomalous dimensions 𝛾𝑖 at the (𝐿 − 1)-loop order. As will
be shown below this feature was intensively exploited in the
literature.

In the case of SUSY-Yang-Mills theories the matter
superfields are absent, so 𝑇(𝑅𝑖) = 0, and an exact formula
for the gauge coupling beta function can be derived:

𝛽
NSVZ

= −(
𝛼ph

2𝜋
)
2 3𝐶 (𝐺)

1 − 𝐶 (𝐺) 𝛼ph/ (2𝜋)
. (15)

Similar relations can also be derived for models with softly
broken SUSY.The line of reasoning is as follows: the powerful
supergraph method is also applicable for models with softly
broken SUSY by using the “spurion” external field method
[17, 43]. Perhaps, one of the most prominent example is the
relation that can be established between the gauginomass𝑚𝑔

and the gauge beta function. In the presence of the SUSY
breaking gaugino mass term, the coefficient of the gauge
kinetic term in the Wilsonian action becomes

(
1

𝑔2
)

𝑊

󳨀→ (
1 − 2𝑚2

𝑔
𝜃2

𝑔2
)

𝑊

, (16)

where 𝜃 is the Grassmann variable.
Using the same arguments based on holomorphy, it was

shown [44, 45] that a renormalization group invariant (RGI)
relation for the gaugino mass can be derived within NSVZ
scheme:

𝑚𝑔
𝛼

𝛽 (𝛼)
= RGI. (17)

Moreover, it was shown with the help of the spurion formal-
ism that the renormalization constants of softly broken SUSY
gauge theory can be related to the renormalization constants
of the underlying exact supersymmetricmodel [46–48]. Even
more, the connecting formulas are valid at all orders in
perturbation theory.The only necessary assumption for their
derivation is the existence of a gauge and SUSY invariant
regularization scheme. Thus, such relations are valid only in
NSVZ-like regularization schemes.

At this point, a few remarks are in order to comment on
the results discussed above. The authors of [56] state that in
𝑑 = 4 dimensions the only known regularization to conserve
SUSY is the Pauli-Villars scheme for matter superfields and
the higher derivative scheme for the gauge superfields. Tech-
nically this construction is rather complicated and hardly
applicable tomultiloop computations. In [43], an attempt was
made to apply the “supersymmetric dimensional regulariza-
tion” or “regularization by dimensional reduction” (DRED)
[57] within the supergraph formalism. However, as pointed
out by Siegel himself [58], this scheme is mathematically
inconsistent in its original formulation and a consistent
formulation will break supersymmetry in higher orders of
perturbation theory. A similar situation occurs also for the
application of DRED in component field formalism [59, 60]
(A detailed analysis of this issue will be done in the next
section). Thus, the exact formulas of the NSVZ scheme are
not valid, in general, for calculations based on DRED since
they do not involve a regularization scheme supersymmetric
at all orders. For particle phenomenology, it means that
the powerful predictions of (14) cannot be tested through
experiments, since the beta functions are scheme dependent
beyond two loops.

The breakthrough regarding this situation was obtained
in [61–65], where it is stated that if the NSVZ scheme
exists it can be perturbatively related to schemes based
on DRED. Such arguments follow from the equivalence of
different renormalization schemes in perturbation theory
[66]. Precisely, the computation of the three-loop mass
anomalous dimension for the chiral matter superfield in a
general nonabelian supersymmetric theory and of the three-
loop gauge beta function in the abelian case allowed the
derivation of the three- and four-loop gauge beta function for
a general supersymmetric theory. Remarkably enough, the
derivation (up to a numerical coefficient) of the four-loop
gauge beta function was based on a three-loop calculation
and theoretical considerations about special relations valid
in 𝑁 = 2 supersymmetric theories and one-loop finite
supersymmetric theories.

Let us mention at this point also the calculation of the
three-loop gauge beta function for supersymmetric Yang-
Mills (SYM) theories of [67]. For this calculation, DRED was
employed in component field formalism rather than super-
field formalism, and hence a manifestly not supersymmetric
gauge was used. The computations of [64, 65, 67] coincide as
a consequence of gauge invariance of the gauge beta function.

Moreover, the authors of [61, 62] noticed that the dif-
ferential operators relating the beta functions for soft SUSY
breaking parameters to the beta functions of the gauge and
Yukawa couplings are form invariant under change of scheme
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(i.e., from NSVZ to DRED scheme). Thus, similar relations
for the soft SUSY breaking parameter valid to all orders
of perturbation theory hold also in a DRED-like scheme
(Actually, the scheme. proposed by the authors of [61, 62]
is the so-called DRED󸀠, for which beta functions of SUSY
breaking parameters do not depend on the unphysical 𝜖-
scalar mass parameter. For more details about the DRED󸀠

scheme see Section 3.)
In the next sectionwewill discuss in detail the application

of DRED in component field formalism and give some exam-
ple of important calculations that can be done within this
approach. Nevertheless, already now we want to mention the
coincidence of all results obtained with DRED in component
field formalism and those derived via DRED in supergraphs
formalism.

3. Dimensional Reduction in the Component
Field Formalism

Theprecision ofmany present or forthcoming experiments in
particle physics requires inevitably higher order perturbative
calculations in the SM or its extensions like the Minimal
Supersymmetric Standard Model (MSSM). Regularization
of the divergent loop diagrams arising in the higher order
calculations is commonly performed employingDimensional
Regularization (DREG) or its variants, due to its nice feature
to respect gauge invariance. Higher order calculations within
the SMpredominantly useDREG in its original form [68, 69],
while for calculations within supersymmetric theories DRED
as defined in [57] is commonly employed. It is not a priori
known whether SUSY as a symmetry of a given Lagrangian is
still a symmetry of the full quantum theory in any particular
case. Nevertheless, a detailed formal renormalization pro-
gram has been pursued in [70] including a proof that SUSY
is not anomalous. If the regularized theory does not respect
SUSY, the finite amplitude will not satisfy theWard identities
required by SUSY, giving rise to an apparent anomaly. If SUSY
is not anomalous, it is possible to restore the invariance by
introducing finite counterterms.

In practice, the choice of regularization scheme is of
considerable significance for the extraction of physical pre-
dictions. This is the case for the NSVZ scheme we alluded
in the previous section, that rarely found direct practical
applicability. It rather provides important checks for results
predicted within DRED. In this section we discuss in detail
the application of DRED in the component field formalism
and its application to practical calculations.

3.1. Framework. DRED consists of continuing the number of
space dimensions from 4 to 𝑑, where𝑑 is less than 4, but keep-
ing the dimension of all the fields fixed. In component field
language, this means that the vector bosons and fermions
preserve their four-dimensional character. Furthermore, it
is assumed that all fields depend on 𝑑 rather than 4 space
time coordinates, so that the derivatives 𝜕𝜇 and momenta
𝑝
𝜇
become 𝑑-dimensional. It is the four-dimensional nature

of the fields that is supposed to restore the supersymmetric
Ward-Takahashi [71, 72] or Slavnov-Taylor [73] identities,

while the 𝑑-dimensional space time coordinates cure, as in
DREG, the singularities of the loop integrals.

However, potential inconsistencies ofDRED, arising from
the use of purely four-dimensional relations between the
Levi-Civita tensor and the metric tensor, have been pointed
out by Siegel himself [58]. Even more, inconsistencies of
DRED arising without the direct use of Levi-Civita tensors
have been revealed in [60]. The authors have correlated
them with the impossibility of decomposing the finite four-
dimensional space into a direct sum of infinite-dimensional
spaces.The solution proposed by the same authors is to intro-
duce a formal space, called quasi-four-dimensional space
(𝑄4), with “noninteger valued” vector and spinor indices
(thus, the two types of indices range over an infinite set of
values), obeying certain algebraic identities inspired from
the properties of the four-dimensionalMinkowski space.The
existence of such a space was demonstrated by construction
[74] starting from similar arguments as those used to prove
the existence of the formal 𝑑-dimensional space of DREG
[75]. In this way the consistency of the calculation rules is
guaranteed. By construction, 𝑄

4
is represented as the direct

sum of two infinite-dimensional spaces:𝑄
𝑑
which is formally

𝑑-dimensional and is identical with the one of DREG and
𝑄

2𝜖
which is formally 2𝜖 = 4 − 𝑑-dimensional. (One needs

to perform twice the construction of 𝑛-dimensional integrals
and metric tensors for 𝑛 = 𝑑 and 𝑛 = 2𝜖. The 𝑑-dimensional
integral is themomentum integral inDRED, while 2𝜖 integral
is involved only in the definition of the 2𝜖-dimensionalmetric
tensor.)

𝑄
4
= 𝑄

𝑑
⊕ 𝑄

2𝜖
. (18)

According to the properties of the three formal spaces at hand
𝑄

4, 𝑄𝑑, 𝑄2𝜖 one can derive the following relations for the
corresponding metric tensors 𝑔𝜇], 𝑔𝜇], 𝑔𝜇] [59, 74]:

𝑔
𝜇]
= 𝑔

𝜇]
+ 𝑔

𝜇]
, 𝑔

𝜇𝜇
= 4, 𝑔

𝜇𝜇
= 𝑑,

𝑔
𝜇𝜇
= 2𝜖, 𝑔

𝜇]
𝑔
𝜌

] = 𝑔
𝜇𝜌
,

𝑔
𝜇]
𝑔
𝜌

] = 𝑔
𝜇𝜌
, 𝑔

𝜇]
𝑔
𝜌

] = 0.

(19)

Furthermore, any quasi-four-dimensional vector can be
decomposed with the help of the projectors 𝑔𝜇], 𝑔

𝜇]:

𝑡
𝜇
= 𝑡̂

𝜇
+ 𝑡

𝜇
, 𝑡̂

𝜇
= 𝑔

𝜇]
𝑡], 𝑡

𝜇
= 𝑔

𝜇]
𝑡]. (20)

Imposing the Dirac algebra for the 𝛾-matrices defined in 𝑄
4

{𝛾
𝜇
, 𝛾

]
} = 2𝑔

𝜇]1, (21)

we can derive similar commutation relations for the compo-
nents in 𝑄𝑑

and 𝑄
2𝜖
:

{𝛾
𝜇
, 𝛾

]
} = 2𝑔

𝜇]1, {𝛾
𝜇
, 𝛾

]
} = 2𝑔

𝜇]1,

{𝛾
𝜇
, 𝛾

]
} = 0.

(22)

These relations together with the trace condition

Tr 1 = 4 (23)
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are sufficient for computing Feynman diagrams. Equa-
tion (23) is particularly useful in supersymmetric theories,
because it ensures that the numbers of degrees of freedom for
fermions and bosons are equal.

For practical computations, it is useful to note that the
fermion traces that contain both types of 𝛾-matrices can be
factored out as follows:

Tr (𝛾𝜇1 ⋅ ⋅ ⋅ 𝛾𝜇𝑛𝛾]1 ⋅ ⋅ ⋅ 𝛾]𝑙)

=
1

4
Tr (𝛾𝜇1 ⋅ ⋅ ⋅ 𝛾𝜇𝑛)Tr (𝛾]1 ⋅ ⋅ ⋅ 𝛾]𝑙) .

(24)

This relation can be derived from (23), (22), and the algebra of
Dirac matrices in 𝑑 dimensions. Thus, the Dirac algebra can
be performed separately in 𝑑 and in 4 − 𝑑 = 2𝜖 dimensions.

Once we introduced “noninteger valued” spinor indices,
we need infinite-dimensional 𝛾-matrices to represent the
Dirac algebra. Thus, the Fierz identities valid in the genuine
four-dimensional space do not hold anymore in 𝑄

4
. Their

use was identified with one of the sources of DRED incon-
sistencies. Moreover, within𝑄4 the invariance of the original
Lagrangian under SUSY transformations might be broken.
This feature can be directly correlated with the lack of Fierz
identities that would ensure the cancellation of Lagrangian
variation under SUSY transformations in the genuine four-
dimensional space. However, it has been shown [60, 74] that
such inconsistencies become active only in the higher orders
of perturbation theory, when, for example, traces over at
least ten 𝛾-matrices and antisymmetrization over five indices
are involved. Thus, DRED also breaks SUSY, but starting
from higher orders of perturbation theory.This explains, why
one- and even two-loop calculations of QCD corrections
within DRED [76–80] based on genuine four-dimensional
Dirac algebra and even Fierz rearrangement provided correct
results. Even the supersymmetric character of DRED at
low orders has been exploited in the context of QCD with
massless quarks in [78]. However, beyond the one-loop level
the distinction between𝑔𝜇] resulting from contractions of the
quasi-four-dimensional vector fields and 𝑔𝜇] resulting from
momentum integrals is difficult to follow. It turned out [81]
that for higher order computations it is useful to decompose
the quasi-four-dimensional vector fields according to (20). As
we shall see in the next section, in the case of gauge theories
the 𝑑-dimensional components behave as vectors under the
gauge transformations whereas the 2𝜖 components as scalars,
usually called 𝜀-scalars.

Representing the underlying space of DRED 𝑄4 as a
formal infinite-dimensional space renders the extension of
𝛾5 as subtle as in DREG. The consistent procedure proposed
by ’t Hooft-Veltman (HV) [69] for defining 𝛾5 as in four
dimensions 𝛾

5
= 𝑖𝛾0𝛾1𝛾2𝛾3 has in the context of SUSY

theories two drawbacks.On the one hand, it is the fact that the
mathematically consistent treatment of 𝛾

5
in DREG requires

𝑑 > 4, whereas for DRED 𝑑 < 4 is needed. However, it
has been shown up to two loops [82, 83] that the Adler-
Bardeen theorem [84] could still be satisfied in DRED with
HV scheme, if relations like

𝛾
𝑖
𝛾
5
𝛾𝑖 = (𝑑 − 8) 𝛾5, (25)

which follow in 𝑑 > 4 are assumed to hold also for 𝑑 < 4. On
the other hand, the use of a not anticommuting 𝛾

5
leads to the

breakdown of symmetries, for example, chiral symmetry of
the SM or supersymmetry in case of theMSSM already at the
one-loop level. These “spurious anomalies” would spoil the
renormalizability and they have to be cured by introducing
appropriate counterterms to restore Ward-Takahashi and
Slavnov-Taylor identities order by order in perturbation
theory (see [85]). This approach was successfully applied for
SM predictions within DREG up to three-loops [86, 87].
However, for the MSSM it becomes much more involved due
to the complexity introduced by supersymmetric conditions
and it rarely has been employed in practice [83].

The implementation of 𝛾5 in DRED commonly used in
practice is inspired by the naive scheme (NS) of DREG.
Namely, it is treated rather like a formal object which is not
well defined mathematically but anticommutes with all 𝛾-
matrices

{𝛾
𝜇
, 𝛾

5
} = {𝛾

𝜇
, 𝛾

5
} = 0, (𝛾

5
)
2
= 1. (26)

Nevertheless, one has to correct the false result that arises
from (26), that the trace of 𝛾

5
and four or more 𝛾-matrices

vanishes. Paying attention that now two types of 𝛾-matrices
occur, the additional constraints read

Tr (Γ𝛼Γ𝛽Γ𝛾Γ𝛿𝛾
5
) = 4𝑖 𝜀

𝛼𝛽𝛾𝛿
+ O (𝜖) ,

with Γ𝜇 = 𝛾𝜇 or 𝛾𝜇.
(27)

The tensor 𝜀𝛼𝛽𝛾𝛿 has some similarities with the four-
dimensional Levi-Civita tensor: (i) it is completely antisym-
metric in all indices; (ii) when contracted with a second one
of its kind gives the following result:

𝜀
𝛼𝛽𝛾𝛿

𝜀
𝛼
󸀠
𝛽
󸀠
𝛾
󸀠
𝛿
󸀠

= [𝐺
𝛼

𝛼
󸀠 𝐺

𝛽

𝛽
󸀠
𝐺

𝛾

𝛾
󸀠
𝐺𝛿

𝛿
󸀠] ,

𝐺
𝜇]
= 𝑔

𝜇] or 𝑔𝜇]
,

(28)

depending on the nature ofDiracmatrices Γ𝜇 in (27).Here the
square brackets denote complete antisymmetrization. When
taking the limit 𝑑 → 4, 𝜀𝛼𝛽𝛾𝛿 converts into the four-
dimensional Levi-Civita tensor and (27) and (28) ensure that
the correct four-dimensional results are reproduced.This last
constraint is needed in order to correctly compute fermion
triangle diagrams containing an axial vector current, that is,
to cope with the Adler-Bardeen-Jackiw anomaly [88–90].

At this point a comment on (27) is in order. When we
combine it with the cyclic property of traces, it necessarily
follows that other traces are not well defined in 𝑑 ̸= 4 dimen-
sions. It turns out that there is an unavoidable ambiguity of
orderO(𝑑−4)when fixing the trace condition in (27). Even if
one does not use the cyclic property of the trace, an ambiguity
in the distribution of the anomaly between the vector and the
axial vector currents shows up [82]. The occurrence of the
ambiguity is a characteristic of the extension of 𝛾

5
away from

𝑑 = 4 dimensions. ’t Hooft and Veltman have pointed out
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in their original paper [69] that an ambiguity related to the
location of 𝛾

5
shows up in HV scheme, too.

The use of an anticommuting 𝛾
5
in 𝑑 ̸= 4 dimensions was

applied for the first time to the evaluation of fermion traces
with an even number of 𝛾

5
’s in [91], and a few years later

extended also to odd 𝛾
5
fermion traces in [92]. The method

(formore details see [93] and references cited therein) proved
to be effective for SM calculations involving chiral fermions
up to two-loop order [94–97]. The consistency of this 𝛾5
prescription has been verified even in three-loop QCD-
electroweak calculations [98, 99]. Within DRED, it has been
successfully employed in MSSM calculations at the two- and
three-loop order [100–103]. However, let us mention at this
point that for these calculations at most the finite parts of
two-loop and the divergent parts of three-loop diagrams are
required. For the calculation of finite parts of three-loop
diagrams containing two fermion triangle subdiagrams, the
HV scheme has to be applied as the naive scheme does not
provide correct results.

Through the consistent formulation of DRED we gain a
regularization scheme which proves to be supersymmetric
only in the lower orders of perturbation theory. Due to the
violation of Fierz identities, SUSY invariance will be broken
at higher orders. The first consequence of SUSY breaking
is that the all-order relations between different anomalous
dimensions valid in the NSVZ scheme do not hold in DRED.
However, although DRED consistently formulated is not a
supersymmetric scheme at all orders, it provides so far the
best option for computations within SUSY theories.

3.2. Minimal Subtraction Schemes MS and DR. The common
renormalization schemes used for multiloop calculations
are the minimal subtraction (MS), momentum subtraction
and on-shell schemes. Minimal subtraction, scheme has the
advantage of involving the simplest computations, but it is
nonphysical in the sense that it does not take into account
mass threshold effects for heavy particles. Nevertheless, it
is the main scheme used in renormalization group (RG)
analyses relating the predictions of a given theory at different
energy scales. The other two options are computationally
muchmore involved but indispensable for the determination
of the parameters of a theory from the quantities measured
experimentally. We focus in this section on the minimal
subtraction methods.

Minimal subtraction scheme with DREG as regulator
[104] or the modified MS scheme [105] and its variant for
DRED—the DR scheme—are in particular well suited for
higher order calculations in perturbation theory. The advan-
tage of these schemes is that all ultraviolet (UV) counterterms
are polynomial both in external momenta and masses [106,
107].This allows for setting to zero certain masses or external
momenta, provided no spurious infrared divergences are
introduced. This simplifies substantially the calculations of
the Feynman integrals. It has been shown [108] by means of
the infrared rearrangement (IRR) procedure [108–110] that
the renormalization constants within the MS scheme can
be reduced to the calculation of only massless propagator
diagrams. This method was used for the first three-loop

calculation of the QCD 𝛽-function [111], applying it to each
individual diagram. But the most effective approach is its
use in combination with multiplicative renormalization.This
amounts in general to solve recursively the equation

𝑍𝑎 = 1 − 𝐾𝜖 [Γ𝑎 (𝑝
2
)𝑍𝑎] , (29)

where 𝐾
𝜖
[𝑓(𝜖)] stands for the singular part of the Laurent

expansion of 𝑓(𝜖) in 𝜖 around 𝜖 = 0. Γ
𝑎
(𝑝2) denotes

the renormalized Green function with only one external
momentum 𝑝2 kept nonzero.𝑍

𝑎
denotes the renormalization

constant associated with the Green function Γ
𝑎
. In this case,

the renormalization of Γ
𝑎
through (𝑙 + 1)-loop order requires

the renormalization of the Lagrangian parameters like cou-
plings,masses, gauge parameters,mixing angles, and so forth.
up to 𝑙-loop order. The method was successfully applied to
the three-loop calculations of anomalous dimensions within
MS or DR schemes [49, 86, 101–103, 112–114] using the
package MINCER [115] written in FORM [116], which computes
analytically massless propagator diagrams up to three loops.

Apart from that, a second method was proposed in [117],
which has been used for the calculation of the three- and even
four-loop anomalous dimensions of QCD [118–121] and the
beta function of the quartic coupling of the Higgs boson in
the SM [114, 122, 123]. It deals with the IRR by introducing an
artificial mass for all propagators. Expanding in all particles
masses and external momenta, one can reduce the evaluation
of the Feynman integrals to massive tadpoles. The analytic
evaluation of the massive tadpoles up to three-loop order can
be obtained with the help of the package MATAD [124].

A third method was introduced for the evaluation of
the renormalization constants for the quark mass [118] and
the vector [125] and quark scalar current correlators [126]
through four loops. It is based on global IRR properties and
amounts essentially to set to zero the external momentum
and let an arbitrary subset of the internal lines to be massive.
After nontrivial manipulations, the four-loop integrals can be
reduced to three-loopmassless, two-point integrals, and one-
loop massive vacuum integrals.

The three-loop accuracy for the anomalous dimensions
of theories involving not only vector but also Yukawa
and quartic scalar interactions (e.g., the SM [49, 114]) was
achieved only very recently. Remarkably, for supersymmetric
and softly broken supersymmetric theories like the MSSM
the three-loop anomalous dimensions were computed long
before [63, 64, 127]. Their derivations used intensively the
exact relations established between the various anomalous
dimensions in the NSVZ scheme (for more details see
Section 2) as well as the observation that the NSVZ scheme
and DRED can be perturbatively connected.

3.3.DREDApplied toNonsupersymmetricTheories. Although
DREDwas originally proposed as a candidate for an invariant
regularization in supersymmetric theories, it proved to be
useful also in nonsupersymmetric theories. Its use in SM
calculations up to three-loop orders was motivated either by
the possibility to apply four-dimensional algebra and even
Fierz rearrangements [77, 80] (the mathematical inconsis-
tencies alluded to above do not occur at the two-loop level



Advances in High Energy Physics 9

in this calculations), or by the possibility to easily convert
a nonsupersymmetric gauge theory into a SUSY-Yang-Mills
theory and use nontrivialWard identities as checks of compli-
cated calculations [78, 98, 128]. Apart from the computational
advantages, DRED applied to nonsupersymmetric theories,
in particular to QCD, provides us with a powerful tool to
verify its consistency up to three-loop order via the connec-
tion that can be established with DREG (DRED and DREG
are also perturbatively connected). Finally, it is motivated by
the MSSM, as a softly broken supersymmetric theory or by
various models derived from the MSSM which feature lower
symmetries (e.g., the intermediate energy theory obtained by
integrating out the squarks and sleptons). DRED applied to
effective field theories, such that QCD extended to include
theHiggs-topYukawa coupling, was useful for the calculation
of the production rate for the Higgs boson in gluon-fusion
channel within MSSM [54, 129].

In the following, we consider a nonabelian gauge theory
with 𝑛

𝑓
Dirac fermions 𝜓

𝑓
transforming according to a

representation 𝑅 of the gauge group G. For the moment we
do not take into account any genuine scalar field.

The Lagrangian density (in terms of bare fields) reads

L𝐵 = −
1

4
𝐹

2

𝜇] −
1

2 (1 − 𝜉)
(𝜕

𝜇
𝑊

𝑎

𝜇
)
2

+ 𝜕
𝜇
𝑐
𝑎
(𝜕𝜇𝑐

𝑎
− 𝑔𝑓

𝑎𝑏𝑐
𝑐
𝑏
𝑊

𝑐

𝜇
) + 𝑖

𝑛
𝑓

∑
𝑓=1

𝜓
𝑓�𝐷𝜓𝑓,

(30)

where the field strength tensor is defined through

𝐹
𝑎

𝜇] = 𝜕𝜇𝑊
𝑎

] − 𝜕]𝑊
𝑎

𝜇
+ 𝑔𝑓

𝑎𝑏𝑐
𝑊

𝑏

𝜇
𝑊

𝑐

] ,

𝐷
𝜇
= 𝜕

𝜇
− 𝑖𝑔 (𝑅

𝑎
)𝑊

𝑎

𝜇

(31)

is the covariant derivative. 𝑊
𝜇
is the gauge field, 𝑐𝑎 is the

Fadeev-Popov-ghost field, 𝑓𝑎𝑏𝑐 are the structure constants of
the gauge groupG, 𝜉 is the gauge parameter, and𝑔 is the gauge
coupling.

For the case when the theory admits a gauge invariant
fermion mass term we will have 𝐿𝐵 → 𝐿𝐵 + 𝐿

𝑚

𝐵
, where

𝐿
𝑚

𝐵
= −𝑚𝑓

𝜓
𝑓
𝜓𝑓. (32)

DRED amounts to imposing that all field variables depend
only on a subset of the total number of space timedimensions;
in this case 𝑑 out of 4 where 𝑑 = 4 − 2𝜖. We can then make
the decomposition

𝑊
𝑎

𝜇
(𝑥

𝑗
) = 𝑊̂

𝑎

𝜇
(𝑥

𝑗
) +𝑊

𝑎

𝜇
(𝑥

𝑗
) , (33)

where

𝑊̂
𝑎

𝜇
= 𝑔𝜇]𝑊

],𝑎
, 𝑊

𝑎

𝜇
= 𝑔

𝜇]𝑊
],𝑎
, 𝑔𝜇𝜇 = 𝑑. (34)

It is then easy to show that [130]

𝐿
𝐵
= 𝐿

𝑑

𝐵
+ 𝐿

𝜖

𝐵
, (35)

where

𝐿
𝑑

𝐵
= −

1

4
𝐹

2

𝜇] −
1

2 (1 − 𝜉)
(𝜕

𝜇
𝑊̂

𝜇)
2

+ 𝜕
𝜇
𝑐
𝑎
(𝜕

𝜇
𝑐
𝑎
− 𝑔𝑓

𝑎𝑏𝑐
𝑐
𝑏
𝑊̂

𝑐

𝜇
) +

𝑛
𝑓

∑
𝑓=1

𝑖𝜓
𝑓
𝛾
𝜇
𝐷

𝜇
𝜓

𝑓
,

(36)

𝐿
𝜖

𝐵
=
1

2
(𝐷

𝜇
𝑊])

2

−

𝑛𝑓

∑
𝑓=1

𝑔𝜓
𝑓
𝛾
𝜇
𝑅

𝑎
𝜓

𝑓
𝑊

𝑎

𝜇

−
1

4
𝑔
2
𝑓

𝑎𝑏𝑐
𝑓

𝑎𝑑𝑒
𝑊

𝑏

𝜇
𝑊

𝑐

]𝑊
𝑑,𝜇

𝑊
𝑒,]
,

(37)

where 𝐹𝜇] and 𝐷𝜇 denote the projection of the field strength
and covariant derivative given in (31) onto 𝑄𝑑, obtained
with the help of the operator 𝑔𝜇]. Conventional dimensional
regularization (DREG) amounts to using (36) and discarding
(37).

Note that under the gauge transformations

𝛿𝑊̂
𝑎

𝜇
= 𝜕

𝜇
Λ

𝑎
+ 𝑔𝑓

𝑎𝑏𝑐
𝑊̂

𝑏

𝜇
Λ

𝑐
, (38a)

𝛿𝑊
𝑎

𝜇
= 𝑔𝑓

𝑎𝑏𝑐
𝑊

𝑏

𝜇
Λ

𝑐
, (38b)

𝛿𝜓
𝛼
= 𝑖𝑔(𝑅

𝑎
)
𝛼𝛽
𝜓

𝛽
Λ

𝑎 (38c)

each term in (37) is separately invariant.The𝑊
𝜇
fields behave

exactly like scalar fields and are hence known as 𝜀-scalars.
There is therefore no reason to expect the 𝜓𝜓𝑊 vertex to
renormalize in the sameway as the𝜓𝜓𝑊̂ vertex (except in the
case of supersymmetric theories). The couplings associated
with the 𝜓𝜓𝑊 vertex or with the quartic 𝜀-scalar interaction
are called evanescent couplings. They were first described in
[131] and later independently discovered by vanDammeand ’t
Hooft [132].The vertices 𝑊̂𝑊𝑊 and 𝑊̂𝑊̂𝑊𝑊, on the other
hand, are renormalized in the same way as 𝑊̂𝑊̂𝑊̂, 𝐶𝐶𝑊̂,
and so forth because of the gauge invariance [133]. Thus
we can conclude that 𝑊̂ is the gauge particle, while 𝑊
acts as matter field transforming according to the adjoint
representation. In order to avoid confusion, we denote in the
following the gauge particles with 𝐺𝑎

𝜇
and the 𝜀-scalars with

𝜀𝑎
𝜇
:

𝑊̂
𝑎

𝜇
󳨀→ 𝐺

𝑎

𝜇
, 𝑊

𝑎

𝜇
󳨀→ 𝜀

𝑎

𝜇
. (39)

Since 𝜀-scalars are present only on internal lines we could,
in fact, choose the wave function renormalization of 𝜀

𝜇

and 𝐺𝜇 to be the same. However, such a renormalization
prescription will break unitarity [132].The crucial point is the
correct renormalization of subdivergences, which requires
that vertices involving 𝜀-scalars renormalize in a differentway
as their gauge counterparts.Thus, to renormalize the 𝜀-scalars
one has to treat them as new fields present in the theory.

For the renormalization of the theory we distinguish
two new types of couplings: a Yukawa like coupling 𝑔

𝑒

associated with the vertex 𝜓𝜓𝜀 and a set of 𝑝 quartic cou-
plings 𝜆

𝑟
associated with vertices containing four 𝜀-scalars.
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The number 𝑝 is given by the number of independent
rank four tensors 𝐻𝑎𝑏𝑐𝑑 which are nonvanishing when
symmetrized with respect to (𝑎𝑏) and (𝑐𝑑) interchange. We
address the issue of the quartic vertex renormalization in
more detail in the next section.

The renormalization constants for the couplings, masses,
and fields and vertices are defined as

𝑔
0
= 𝜇

𝜖
𝑍

𝑔
𝑔, 𝑔

0

𝑒
= 𝜇

𝜖
𝑍

𝑒
𝑔
𝑒
, √𝜆0

𝑟
= 𝜇

𝜖
𝑍

𝜆
𝑟

√𝜆
𝑟
,

1 − 𝜉
0
= (1 − 𝜉) 𝑍3

, 𝑚
0

𝑓
= 𝑚

𝑓
𝑍

𝑚
𝑓

,

𝑚
0

𝜀
= 𝑚

𝜀
𝑍

𝜀

𝑚
, 𝜓

0
= √𝑍

2
𝜓, 𝐺

0,𝑎

𝜇
= √𝑍

3
𝐺

𝑎

𝜇
,

𝜀
0,𝑎

𝜇
= √𝑍𝜀

3
𝜀
𝑎

𝜇
, 𝑐

0,𝑎
= √𝑍

3
𝑐
𝑎
,

Γ
0

𝜓𝜓𝐺
= 𝑍

1
Γ
𝜓𝜓𝐺

, Γ
0

𝜓𝜓𝜀
= 𝑍

𝜀

1
Γ
𝜓𝜓𝜀

,

Γ
0

𝑐𝑐𝐺
= 𝑍

1
Γ
𝑐𝑐𝐺
, Γ

0

𝜀𝜀𝐺
= 𝑍

𝜀𝜀𝐺

1
Γ
𝜀𝜀𝐺
,

Γ
0

𝜀𝜀𝐺𝐺
= 𝑍

𝜀𝜀𝐺𝐺

1
Γ
𝜀𝜀𝐺𝐺

, Γ
0

𝐺𝐺𝐺𝐺
= 𝑍

4𝐺

1
Γ
𝐺𝐺𝐺𝐺

,

Γ
0

𝜀𝜀𝜀𝜀
= 𝑍

4𝜀

1
Γ
𝜀𝜀𝜀𝜀
,

(40)

where 𝜇 is the renormalization scale and the bare quantities
are marked by the superscript “0.” Γ𝑥𝑦𝑧(𝑤) stands for one-
particle irreducible Green functions involving the external
particles 𝑥, 𝑦, 𝑧, (𝑤). Equation (36) takes under renormal-
ization the usual expression in terms of renormalized param-
eters as in DREG scheme. The renormalized Lagrangians 𝐿𝜖

is the new term that distinguishes DRED from DREG and it
is given by

𝐿
𝜖
=
1

2
𝑍

𝜀𝜀
(𝜕

𝜇
𝜀
𝑎

])
2

+ 𝑍
𝜀𝜀𝐺
𝑔𝑓

𝑎𝑏𝑐
𝜕
𝜇
𝜀
𝑎

]𝐺
𝑏,𝜇
𝜀
𝑐,]

+ 𝑍
𝜀𝜀𝐺𝐺

𝑔
2
𝑓

𝑎𝑏𝑐
𝑓

𝑎𝑑𝑒
𝐺

𝑏

𝜇
𝜀
𝑐

]𝐺
𝑑,𝜇
𝜀
𝑒,]

− 𝑍
𝜓𝜓𝜀

𝑔
𝑒
𝜓𝑅

𝑎
𝛾
𝜇
𝜓𝜀

𝑎

𝜇

−
1

4

𝑝

∑
𝑟=1

𝑍
𝜆
𝑟

𝜆
𝑟
𝐻

𝑎𝑏𝑐𝑑

𝑟
𝜀
𝑎

𝜇
𝜀
𝑐

]𝜀
𝑏,𝜇
𝜀
𝑑,]
.

(41)

Strictly speaking, (41) should also have a mass term for
the 𝜀-scalars; but since this mass term does not affect
renormalization of the couplings and fermionmasseswe omit
it here. We discuss this issue in more detail in Section 3.3.5.

The charge renormalization constants are obtained from
the Slavnov-Taylor identities. For example, if one computes
the 𝑁-point Green function with external fields 𝜙1, . . . , 𝜙𝑛

and denotes its coupling constant by 𝑔, one obtains

𝑍
𝑔
=

𝑍
𝜙
1
⋅⋅⋅𝜙
𝑁

√𝑍𝜙
1

⋅ ⋅ ⋅ 𝑍𝜙
𝑁

, (42)

where the 𝑍
𝜙
𝑖

are the wave function renormalization con-
stants for the 𝜙

𝑖
, 𝑍

𝜙
1
⋅⋅⋅𝜙
𝑁

is the corresponding vertex renor-
malization constant, and 𝑍

𝑔
the charge renormalization.

Within the minimal subtraction scheme, one is free to
choose anymasses and external momenta, as long as infrared
divergences are avoided. One can set all masses to zero, as
well as one of the two independent external momenta in
three-point functions. In this case, one arrives at three-loop
integralswith one nonvanishing externalmomentum 𝑞which
can be calculated with the help of MINCER. One can also
calculate the three-point functions setting a common mass
𝑚 to all particles and expanding the Feynman integrals in the
limit𝑚2/𝑞2 ≪ 1with the help of asymptotic expansions [117].
This approach is much more tedious, but possible infrared
singularities would manifest in ln𝑚2/𝑞2 terms. If such terms
are absent in the final expression, the limit 𝑚 → 0 can be
taken and the result should coincide with the one obtained
with the massless setup (for a comprehensive overview about
the multiloop techniques within DREG see the review article
[134]).

Precisely, the charge renormalization of the gauge cou-
pling can be derived from the ghost-gauge boson, fermion-
gauge boson, 𝜀-scalar-gauge boson vertices, or the gauge
boson self-interaction

𝑍𝑔 =
𝑍

1

𝑍
3
√𝑍

3

=
𝑍

1

𝑍
2
√𝑍

3

=
𝑍𝜀𝜀𝐺

1

𝑍𝜀

3
√𝑍

3

= etc. (43)

as a consequence of gauge invariance.
Similarly, for the charge renormalization constants of the

evanescent couplings, the following relations hold:

𝑍
𝑒 =

𝑍𝜀

1

𝑍2√𝑍
𝜀

3

, 𝑍𝜆
𝑟

=
𝑍4𝜀

1

(𝑍𝜀

3
)
2
. (44)

In general, 𝑍
𝑔 ̸= 𝑍𝑒 even at one-loop order. However, in

supersymmetric theories 𝑍
𝑔
= 𝑍

𝑒
should hold at all orders

because of SUSY. This can be understood following the same
line of reasoning as for the derivation of the equality of
the charge renormalization constants for the interactions
involving gluons and those involving gluinos.

3.3.1.The 𝜀-Scalar Self-Couplings. Let us discuss the structure
of the quartic 𝜀-scalar couplings for an arbitrary gauge group.
These interactions are invariant under the symmetry G ⊗

𝑂(2𝜖), where only G is gauged. The number of independent
quartic 𝜀-scalar couplings is given by the number of indepen-
dent rank 𝑛 = 4 tensors𝐻𝑎𝑏𝑐𝑑 invariant with respect to (𝑎, 𝑏)
and (𝑐, 𝑑) exchange, because of the 𝑂(2𝜖) invariance. It has
been shown that for G = SU(𝑁), SO(𝑁), SP(𝑁) with𝑁 ≥ 4

there are four such tensors [135]. For the case 𝑁 = 3 only
three independent tensors can be built [136], while for𝑁 = 2

their number reduces to two [133]. The answer to the general
question concerning rank 𝑛 tensors is not yet known. For the
explicit construction of the set of tensors 𝐻𝑎𝑏𝑐𝑑 we consider
first the SU(𝑁) group and then generalize the results for the
other two groups.

A natural choice for a basis for rank 𝑛 = 4 tensors
when 𝑁 ≥ 4 is given by [137]. (An alternative way to
define a basis which has the virtue of being immediately
generalizable to any group [136] is in terms of traces of
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products of the generators in the defining representation, thus
Tr(𝑇𝑎𝑇𝑏𝑇𝑐𝑇𝑑), Tr(𝑇𝑎𝑇𝑏)Tr(𝑇𝑐𝑇𝑑), etc.) one has

𝐾
1 = 𝛿

𝑎𝑏
𝛿
𝑐𝑑
, 𝐾4 = 𝑑

𝑎𝑏𝑒
𝑑
𝑐𝑑𝑒
, 𝐾7 = 𝑑

𝑎𝑏𝑒
𝑓

𝑐𝑑𝑒
,

𝐾2 = 𝛿
𝑎𝑐
𝛿
𝑏𝑑
, 𝐾5 = 𝑑

𝑎𝑐𝑒
𝑑
𝑏𝑑𝑒
, 𝐾8 = 𝑑

𝑎𝑐𝑒
𝑓

𝑏𝑑𝑒
,

𝐾
3 = 𝛿

𝑎𝑑
𝛿
𝑏𝑐
, 𝐾6 = 𝑑

𝑎𝑑𝑒
𝑑
𝑏𝑑𝑒
, 𝐾9 = 𝑑

𝑎𝑑𝑒
𝑓

𝑏𝑐𝑒
.

(45)

Here 𝑑𝑎𝑏𝑐 stands for the completely symmetric rank 𝑛 = 3

tensors.The dimension of the basis reduces to 8 in the case of
SU(3). This is achieved via the relation [137, 138]

𝐾
4
+ 𝐾

5
+ 𝐾

6
=
1

3
(𝐾

1
+ 𝐾

2
+ 𝐾

3
) (46)

which is not valid for𝑁 ≥ 4.
To describe the 𝜀-scalar quartic interactions one needs

to construct rank 𝑛 = 4 tensors invariant with respect to
exchange of pairs of indices. Thus, one has to take linear
combinations of the basis tensors and symmetrize them with
respect to the pair of indices (𝑎𝑏) and (𝑐𝑑). A possible choice
for𝑁 ≥ 4 is given by

𝐻
1
=
1

2
𝐾

1
, 𝐻

2
=
1

2
(𝐾

2
+ 𝐾

3
) ,

𝐻
3
=
1

2
𝐾

4
, 𝐻

4
=
1

2
(𝐾

5
+ 𝐾

6
) .

(47)

Note that the absence of a 𝑑 − 𝑓 type term from (47) follows
from the identity [137]

𝐾
8
+ 𝐾

9
= −𝑓

𝑎𝑏𝑒
𝑑
𝑐𝑑𝑒
. (48)

However, for practical purposes a basis constructed with
the help of the structure constants 𝑓𝑎𝑏𝑐 and avoiding the
use of the 𝑑-tensors is more suited. For example, it would
allow to explore more easily the supersymmetric case and
to generalize to other groups. It is natural to consider the
alternative choice [113, 131]

𝐻
1
=
1

2
(𝑓

𝑎𝑐𝑒
𝑓

𝑏𝑑𝑒
+ 𝑓

𝑎𝑑𝑒
𝑓

𝑏𝑐𝑒
) ,

𝐻
2
= 𝛿

𝑎𝑐
𝛿
𝑏𝑑
+ 𝛿

𝑎𝑑
𝛿
𝑏𝑐
+ 𝛿

𝑎𝑏
𝛿
𝑐𝑑
,

𝐻
3
=
1

2
(𝛿

𝑎𝑐
𝛿
𝑏𝑑
+ 𝛿

𝑎𝑑
𝛿
𝑏𝑐
) − 𝛿

𝑎𝑏
𝛿
𝑐𝑑
,

𝐻
4
=
1

2
(𝑓

𝑎𝑒𝑓
𝑓

𝑏𝑓𝑔
𝑓

𝑐𝑔ℎ
𝑓

𝑑ℎ𝑒
+ 𝑓

𝑎𝑒𝑓
𝑓

𝑏𝑓𝑔
𝑓

𝑑𝑔ℎ
𝑓

𝑐ℎ𝑒
) .

(49)

Let us introduce the coupling constants

𝛼
𝑠 =

𝑔2

4𝜋
, 𝛼𝑒 =

𝑔2

𝑒

4𝜋
, 𝑢𝑟 =

𝜆𝑟

4𝜋
. (50)

Then we can write the last term in (41)

4

∑
𝑟=1

𝑍
𝜆
𝑟

𝜆
𝑟
𝐻

𝑎𝑏𝑐𝑑

𝑟
= 4𝜋

4

∑
𝑟=1

𝑍
𝑢
𝑟

𝑢
𝑟
𝐻

𝑎𝑏𝑐𝑑

𝑟
= 4𝜋

4

∑
𝑟=1

𝑍
𝜂
𝑟

𝜂
𝑟𝐻

𝑎𝑏𝑐𝑑

𝑟
,

(51)

where 𝜂
𝑟
denote the quartic 𝜀-scalar couplings in the basis

𝐻
𝑎𝑏𝑐𝑑. The renormalization constants 𝑍

𝜂
, 𝑍

𝑢
, and so forth

have been computed through one loop in the DR scheme
for a general gauge group in [131, 135] and in [113] for SU(3).
The calculation performed in [113] has employed the method
of [117] to introduce an artificial mass for all propagators
in order to avoid spurious infrared divergences. For the
calculation of the results in terms of group invariants the
package color [139] has been used. For completeness, we
reproduce here the one-loop results for the couplings 𝜂𝑟:

𝑍
𝜂
1

= 1 +
1

𝜖

× [−
𝛼DR
𝑠

𝜋
𝐶𝐴

3

2
+
𝜂
1

𝜋
𝐶𝐴

1

2
+
𝜂
2

𝜋
𝐶𝐴2

−
𝜂
3

𝜋

7

2
−
𝜂
2

𝜋

𝜂
4

𝜂1
𝐶

𝐴
−
𝜂
3

𝜋

𝜂
4

𝜂1
𝐶

𝐴

1

2
+
𝜂
4

𝜋

×
𝐶4

𝐴
(−61 + 7𝑁

𝐴
) + 48𝐷

4 (𝐴𝐴) (𝑁𝐴
− 1) /𝑁

𝐴

36𝐶2

𝐴
(𝑁

𝐴
− 3)

+
𝛼
𝑒

𝜋
𝑇
𝑓
−
𝛼
𝑒

𝜋

𝛼
𝑒

𝜂
1

× ((
4𝐶𝐴 (2 + 𝑁𝐴)𝐷4 (𝑅𝐴)

𝐼
2 (𝑅)

+ 5𝐶
3

𝐴
(7𝐶

𝐴
− 2𝐶

𝑅
)𝑁

𝐴

−16 (2 + 𝑁𝐴)𝐷4 (𝐴𝐴))

×(2 (25𝐶
4

𝐴
𝑁𝐴−12𝐷4 (𝐴𝐴) (2+𝑁𝐴)))

−1

)

× 𝑇
𝑓

−
𝜂
4

𝜋

𝜂
4

𝜂
1

× ( (1) × (54𝐶𝐴
𝑁

𝐴
(𝑁

𝐴
− 3)

× (25𝐶
4

𝐴
𝑁

𝐴

−12𝐷4 (𝐴𝐴) (2 + 𝑁𝐴) ) )
−1

)

× (−144𝐷
4(𝐴𝐴)

2
(2 + 𝑁𝐴) (1 + 2𝑁𝐴)

+ 216𝐶
2

𝐴
𝐷

4 (𝐴𝐴𝐴)𝑁𝐴
(2 + 𝑁

𝐴
) (𝑁

𝐴
− 3)

− 12𝐶
4

𝐴
𝐷

4 (𝐴𝐴)𝑁𝐴
(−191 − 56𝑁

𝐴
+ 𝑁

2

𝐴
)

−25𝐶
8

𝐴
𝑁

2

𝐴
(4𝑁

𝐴
+ 23)) ] ,
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𝑍
𝜂
2

= 1 +
1

𝜖

× [−
𝛼DR
𝑠

𝜋
𝐶

𝐴

3

2
−
𝜂1

𝜋
𝐶

𝐴

1

6
+
𝜂3

𝜋

𝑁𝐴 − 1

6

+
𝜂
4

𝜋
𝐶

2

𝐴

13

12
+
𝜂
2

𝜋

2 (8 + 𝑁
𝐴
)

3

+
𝜂
3

𝜋
(
𝜂
1

𝜂2
𝐶

𝐴

1

6
+
𝜂
4

𝜂2
𝐶

2

𝐴

1

6
−
𝜂
3

𝜂2

(𝑁
𝐴
− 1)

12
)

−
𝜂
4

𝜋

𝜂
4

𝜂
2

2

9

× ((
72𝐷

4(𝐴𝐴)
2

𝑁𝐴

− 90𝐶
2

𝐴
𝐷

4 (𝐴𝐴𝐴)

+25𝐶
4

𝐴
𝐷4 (𝐴𝐴))

×(25𝐶
4

𝐴
𝑁

𝐴
− 12𝐷

4 (𝐴𝐴) (2 + 𝑁𝐴
))

−1

)

+
𝛼
𝑒

𝜋

× (𝑇
𝑓
−
𝛼
𝑒

𝜂
2

2

× ((
5𝐶

2

𝐴
𝐷4 (𝑅𝐴)

𝐼
2 (𝑅)

+(𝐶
𝐴 − 6𝐶𝑅)𝐷4 (𝐴𝐴))

×(25𝐶
4

𝐴
𝑁

𝐴
− 12𝐷

4(𝐴𝐴) (2+𝑁𝐴
))

−1

)

×𝑇
𝑓
)] ,

𝑍
𝜂
3

= 1 +
1

𝜖
× [−

𝛼
DR
𝑠

𝜋
𝐶

𝐴

3

2
+
𝜂4

𝜋
𝐶

2

𝐴

5

12

+
𝜂
2

𝜋

2 (2 + 𝑁
𝐴
)

3
+
𝜂
3

𝜋

−26 + 5𝑁
𝐴

12

+
𝜂
4

𝜋

𝜂4

𝜂
3

7

108

12𝐷
4 (𝐴𝐴) − 5𝐶

4

𝐴
𝑁

𝐴

(𝑁
𝐴
− 3)𝑁

𝐴

−
𝜂
2

𝜋
(
𝜂
4

𝜂
3

𝐶
2

𝐴

2

3
+
𝜂
2

𝜂
3

(2 + 𝑁𝐴)

3
)

+
𝜂1

𝜋
( − 𝐶

𝐴

5

6
−
𝜂2

𝜂
3

2𝐶𝐴

3

+
𝜂
4

𝜂
3

12𝐷
4 (𝐴𝐴) − 5𝐶

4

𝐴
𝑁

𝐴

9𝐶
𝐴
𝑁

𝐴
(𝑁

𝐴
− 3)

)

+
𝛼𝑒

𝜋
𝑇𝑓
] ,

𝑍
𝜂
4

= 1 +
1

𝜖

× [−
𝛼DR
𝑠

𝜋
𝐶

𝐴

3

2
−
𝜂1

𝜋
𝐶

𝐴

1

4
+
𝜂2

𝜋
8

−
𝜂3

𝜋

1

2
+
𝛼
DR
𝑠

𝜋

𝛼DR
𝑠

𝜂
4

3

4
−
𝜂1

𝜋

𝜂1

𝜂
4

1

4
+
𝜂4

𝜋

× ( − 1152𝐷
4 (𝐴𝐴𝐴) (2 + 𝑁𝐴

) + 5𝐶
2

𝐴

× (125𝐶
4

𝐴
𝑁𝐴 + 4𝐷4(𝐴𝐴)(98 + 𝑁𝐴)))

× (48 (25𝐶
4

𝐴
𝑁

𝐴
− 12𝐷

4 (𝐴𝐴) (2 + 𝑁𝐴
)))

−1

+
𝛼
𝑒

𝜋

× (𝑇
𝑓 +

𝛼𝑒

𝜂
4

× ((5𝐶
2

𝐴
(𝐶𝐴 − 6𝐶𝑅)𝑁𝐴

+
12 (2 + 𝑁𝐴)𝐷4 (𝑅𝐴)

𝐼
2 (𝑅)

)

× (25𝐶
4

𝐴
𝑁

𝐴
−12𝐷

4(𝐴𝐴)(2+𝑁𝐴
))

−1

)

× 𝑇
𝑓
)] ,

(52)

with the group invariants defined in Appendix A and the
abbreviation 𝑇

𝑓
= 𝐼

2
(𝑅)𝑛

𝑓
, where 𝑛

𝑓
denotes the number

of active fermions. Let us notice at this point the presence
of negative power of couplings in the expressions of the
renormalization constants. This results in beta functions that
are not proportional to the coupling itself. This feature is
specific to scalar couplings and it implies that, even if we
set such a coupling to zero at a given scale, it will receive
nonvanishing radiative corrections due to the other couplings
present in the theory.

The above results have been computed using an SU(𝑁)
gauge group. However, they are parametrized in terms of
group invariants.Thus they are also valid for other physically
interesting groups like SO(𝑁) and SP(𝑁). The explicit values
of the group invariants for the three groups can be found in
Appendix A.

In the case of SU(3) group, the invariant 𝐻
4
becomes a

linear combination of𝐻𝑖, 𝑖 = 1, 2, 3, because of relation (46).
The same is also true for the coupling 𝜂4 that can be expressed
in terms of the other three couplings.Thus in this case one can
ignore 𝜂

4
.

Actually, the one- and two-loop renormalization con-
stants for totally symmetric quartic scalar couplings with
scalars in an arbitrary representation have been known for
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long time [140]. However, these results cannot be directly
applied to 𝜀-scalar self-interactions, due to their particular
symmetry with respect to exchange between pairs of indices.

3.3.2. Three-Loop Renormalization Constants for a Non-
supersymmetric Theory. In this section we report on the
explicit computation of the charge 𝑍

𝑔
, 𝑍

𝑒
and mass 𝑍𝑞

𝑚
,

𝑍𝜖

𝑚
renormalization constants to three-loop order within DR

scheme. This requires the calculation of divergent parts of
logarithmically divergent integrals. One can exploit the fact
that such contributions are independent of the masses and
external momenta. Precisely, one sets all internal masses to
zero and keeps only one external momentum different from
zero and then solve recursively (29). In practice, use of the
automated programs QGRAF [141], q2e and exp [142, 143] and
MINCER are essential due to the large number of diagrams that
occur.

The analytical form of 𝑍DR
𝑔

up to two-loop order is
identical to the corresponding result in the MS scheme. This
has been shown by an explicit calculation for the first time
in [81] and is a consequence of the minimal renormalization.
The three- and four-loop results for a general theory have
been derived in [113, 135, 144]. For completeness we present
in the following the three-loop results:

𝑍
DR
𝑔

= 1 +
𝛼DR
𝑠

𝜋

1

𝜖
(−
11

24
𝐶

𝐴
+
1

6
𝑇
𝑓
) + (

𝛼DR
𝑠

𝜋
)

2

× [
1

𝜖2
(
121

384
𝐶

2

𝐴
−
11

48
𝐶

𝐴
𝑇
𝑓
+
1

24
𝑇

2

𝑓
)

+
1

𝜖
(−
17

96
𝐶

2

𝐴
+
5

48
𝐶𝐴𝑇𝑓 +

1

16
𝐶𝑅𝑇𝑓)]

+ (
𝛼
DR
𝑠

𝜋
)

3

× [
1

𝜖3
(
−6655

27648
𝐶

3

𝐴
+
605

2304
𝐶

2

𝐴
𝑇
𝑓

−
55

576
𝐶

𝐴
𝑇

2

𝑓
+

5

432
𝑇

3

𝑓
)

+
1

𝜖2
(
2057

6912
𝐶

3

𝐴
−
979

3456
𝐶

2

𝐴
𝑇
𝑓
+
11

288
𝐶

𝑅
𝑇

2

𝑓

−
121

1152
𝐶

𝐴
𝐶

𝑅
𝑇
𝑓
+
55

864
𝐶

𝐴
𝑇

2

𝑓
)

+
1

𝜖
(−

3115

20736
𝐶

3

𝐴
+
1439

10368
𝐶

2

𝐴
𝑇𝑓

+
193

3456
𝐶

𝐴
𝐶

𝑅
𝑇
𝑓
−

79

5184
𝐶

𝐴
𝑇

2

𝑓

−
1

192
𝐶

2

𝑅
𝑇
𝑓
−
11

864
𝐶

𝑅
𝑇

2

𝑓
)]

+ (
𝛼
DR
𝑠

𝜋
)

2

𝛼
𝑒

𝜋

1

𝜖
(
1

32
𝐶

2

𝑅
𝑇
𝑓
) +

𝛼DR
𝑠

𝜋
(
𝛼
𝑒

𝜋
)
2 1

𝜖

× (
1

96
𝐶

𝐴
𝐶

𝑅
𝑇
𝑓
−
1

48
𝐶

2

𝑅
𝑇
𝑓
−
1

96
𝐶

𝑅
𝑇

2

𝑓
) .

(53)

The one-loop result for 𝑍
𝑒 can be found in [133]. For the

particular case of QCD, that is, G = SU(3) and 𝜂4 = 0,
the two-, three-, and four-loop results have been computed
in [113, 144]. The two-, three-, and four-loop results for a
general theory have been derived in [135]. Because of the
complexity of the results, we reproduce below only the two-
loop contributions that are, however, enough for most of the
practical applications:

𝑍
𝑒
= 1 +

𝛼DR
𝑠

𝜋

1

𝜖
(−
3

4
𝐶

𝑅
)

+
𝛼
𝑒

𝜋

1

𝜖
(−
1

4
𝐶

𝐴
+
1

2
𝐶

𝑅
+
1

4
𝑇
𝑓
) + (

𝛼
DR
𝑠

𝜋
)

2

× [
1

𝜖2
(
11

32
𝐶𝐴𝐶𝑅 +

9

32
𝐶

2

𝑅
−
1

8
𝐶𝑅𝑇𝑓)

+
1

𝜖
(
7

256
𝐶

2

𝐴
−
55

192
𝐶

𝐴
𝐶

𝑅

−
3

64
𝐶

2

𝑅
−
1

32
𝐶𝐴𝑇𝑓 +

5

48
𝐶𝑅𝑇𝑓)]

+
𝛼DR
𝑠

𝜋

𝛼
𝑒

𝜋

× [
1

𝜖2
(
3

8
𝐶

𝐴
𝐶

𝑅
−
3

4
𝐶

2

𝑅
−
3

8
𝐶

𝑅
𝑇
𝑓
)

+
1

𝜖
(
3

32
𝐶

2

𝐴
−
5

8
𝐶𝐴𝐶𝑅 +

11

16
𝐶

2

𝑅
+
5

32
𝐶𝑅𝑇𝑓)]

+ (
𝛼
𝑒

𝜋
)
2

[
1

𝜖2
(
3

32
𝐶

2

𝐴
−
3

8
𝐶

𝐴
𝐶

𝑅
+
3

8
𝐶

2

𝑅

−
3

16
𝐶𝐴𝑇𝑓 +

3

8
𝐶𝑅𝑇𝑓 +

3

32
𝑇

2

𝑓
)

+
1

𝜖
(−

3

32
𝐶

2

𝐴
+
5

16
𝐶

𝐴
𝐶

𝑅
−
1

4
𝐶

2

𝑅

+
3

32
𝐶𝐴
𝑇
𝑓
−
3

16
𝐶𝑅
𝑇
𝑓
)]

+
𝛼
𝑒

𝜋

1

𝜖
[
𝜂
1

𝜋
(
1

32
𝐶

2

𝐴
) +

𝜂
2

𝜋
(
1

16
𝐶

𝐴
−
3

8
𝐶

𝑅
)

+
𝜂
3

𝜋
(−

1

16
𝐶

𝐴
)

+
𝜂
4

𝜋
(
1

192
𝐶

3

𝐴
−
1

8
𝐷4 (𝑅𝐴) 𝐼2 (𝑅))]

+ (
𝜂
1

𝜋
)
2 1

𝜖
(−

3

256
𝐶

2

𝐴
) + (

𝜂
2

𝜋
)
2 1

𝜖
(
3

32
(𝑁

𝐴
+ 2))
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+
𝜂
1

𝜋

𝜂3

𝜋

1

𝜖
(
3

64
𝐶

𝐴
) + (

𝜂
3

𝜋
)
2 1

𝜖
(−

3

128
(𝑁

𝐴
− 1))

+
𝜂
1

𝜋

𝜂
4

𝜋

1

𝜖
(−

1

256
𝐶

3

𝐴
) +

𝜂
2

𝜋

𝜂
4

𝜋

1

𝜖
(
5

32
𝐶

2

𝐴
)

+
𝜂
3

𝜋

𝜂
4

𝜋

1

𝜖
(
1

128
𝐶

2

𝐴
)

+ (
𝜂
4

𝜋
)
2 1

𝜖
(−

1

3072
𝐶

4

𝐴
+
1

32
𝐷4 (𝐴𝐴)) .

(54)

The group invariants 𝐶𝐴, 𝐶𝑅, 𝐼2(𝑅),𝐷4(𝑋𝑌) occurring in the
above equations are defined in Appendix A and we used the
abbreviation 𝑇

𝑓
= 𝐼

2
(𝑅)𝑛

𝑓
.

There is also an indirect way to derive the three-loop
gauge beta function in the DR scheme starting from the
knowledge of the three-loop gauge beta function in the MS
scheme and the fact that the gauge couplings defined in the
two schemes can be perturbatively related to each other. This
method will be discussed in more detail in the next section.
Let us mention, however, that using the expression for the
three-loop gauge beta function in theMS scheme𝛽MS

𝑠
and the

two-loop conversion relation of 𝛼𝑠 given in (57) one obtains
exactly the same results for 𝛽DR

𝑠
as given in (53). This is a

powerful consistency check for the calculation reviewed in
this section. It is interesting tomention that the equality of the
two results can be obtain only if one keeps𝛼DR

𝑠
̸= 𝛼𝑒 during the

calculation and renormalize them differently. The identifica-
tion of 𝛼DR

𝑠
and 𝛼

𝑒
leads to inconsistent results. In case of 𝛽DR

𝑠

the error is a finite, gauge parameter independent term [128].
For quarkmass renormalization, this identification (precisely
the identification of the renormalization constants for the two
couplings) generates much more severe problems. Namely,
the renormalization constant for the quark mass 𝑍DR

𝑚
will

contain nonlocal terms at three-loop order and the mass
anomalous dimension will erroneously become divergent at
this loop order.

The renormalization constant for the fermionmasses𝑍DR
𝑚

has been computed in [113] to three- and in [135, 144] even to
four-loop order.Whereas in [113, 135, 144] only the anomalous
dimensions were given we want to present the explicit three-
loop result for the renormalization constant, that reads

𝑍
DR
𝑚

= 1 +
𝛼DR
𝑠

𝜋

1

𝜖
(−
3

4
𝐶𝑅) + (

𝛼DR
𝑠

𝜋
)

2

× [
1

𝜖2
(
11

32
𝐶𝐴𝐶𝑅 +

9

32
𝐶

2

𝑅
−
1

8
𝐶𝑅𝑇𝑓)

+
1

𝜖
(−

91

192
𝐶

𝐴
𝐶

𝑅
−
3

64
𝐶

2

𝑅
+
5

48
𝐶

𝑅
𝑇
𝑓
)]

+
𝛼
DR
𝑠

𝜋

𝛼
𝑒

𝜋
(
3

16

1

𝜖
𝐶

2

𝑅
)

+ (
𝛼
𝑒

𝜋
)
2 1

𝜖
(
1

16
𝐶

𝐴
𝐶

𝑅
−
1

8
𝐶

2

𝑅
−
1

16
𝐶

𝑅
𝑇
𝑓
)

+ (
𝛼
DR
𝑠

𝜋
)

3

× [
1

𝜖3
(−
121

576
𝐶

2

𝐴
𝐶

𝑅
−
33

128
𝐶

𝐴
𝐶

2

𝑅
−

9

128
𝐶

3

𝑅

+
11

72
𝐶𝐴𝐶𝑅𝑇𝑓 +

3

32
𝐶

2

𝑅
𝑇𝑓 −

1

36
𝐶𝑅𝑇

2

𝑓
)

+
1

𝜖2
(
1613

3456
𝐶

2

𝐴
𝐶

𝑅
+
295

768
𝐶

𝐴
𝐶

2

𝑅
+

9

256
𝐶

3

𝑅

−
59

216
𝐶𝐴𝐶𝑅𝑇𝑓−

29

192
𝐶

2

𝑅
𝑇𝑓+

5

216
𝐶𝑅𝑇

2

𝑓
)

+
1

𝜖
(−
10255

20736
𝐶

2

𝐴
𝐶

𝑅
+
133

768
𝐶

𝐴
𝐶

2

𝑅
−
43

128
𝐶

3

𝑅

+ (
281

2592
+
1

4
𝜁
3
)𝐶

𝐴
𝐶

𝑅
𝑇
𝑓

+(
23

96
−
1

4
𝜁3)𝐶

2

𝑅
𝑇𝑓 +

35

1296
𝐶𝑅𝑇

2

𝑓
)]

+ (
𝛼DR
𝑠

𝜋
)

2

𝛼
𝑒

𝜋

× [
1

𝜖2
(−

11

192
𝐶

𝐴
𝐶

2

𝑅
−
15

64
𝐶

3

𝑅
+
1

48
𝐶

2

𝑅
𝑇
𝑓
)

+
1

𝜖
(
5

256
𝐶

2

𝐴
𝐶𝑅 +

7

32
𝐶𝐴𝐶

2

𝑅

+
9

64
𝐶

3

𝑅
−
3

32
𝐶

2

𝑅
𝑇
𝑓
)]

+
𝛼DR
𝑠

𝜋
(
𝛼
𝑒

𝜋
)
2

× [
1

𝜖2
(−

9

64
𝐶

𝐴
𝐶

2

𝑅
+
9

32
𝐶

3

𝑅
+
9

64
𝐶

2

𝑅
𝑇
𝑓
)

+
1

𝜖
(−

1

64
𝐶

2

𝐴
𝐶𝑅 +

7

32
𝐶𝐴𝐶

2

𝑅
−
3

8
𝐶

3

𝑅

−
1

64
𝐶

𝐴
𝐶

𝑅
𝑇
𝑓
−
1

8
𝐶

2

𝑅
𝑇
𝑓
)]

+ (
𝛼𝑒

𝜋
)
3

× [
1

𝜖2
(−

1

48
𝐶

2

𝐴
𝐶

𝑅
+
1

12
𝐶

𝐴
𝐶

2

𝑅
−
1

12
𝐶

3

𝑅

+
1

24
𝐶𝐴𝐶𝑅𝑇𝑓 −

1

12
𝐶

2

𝑅
𝑇𝑓 −

1

48
𝐶𝑅𝑇

2

𝑓
)

+
1

𝜖
(
1

32
𝐶

2

𝐴
𝐶𝑅 −

1

8
𝐶𝐴𝐶

2

𝑅
+
1

8
𝐶

3

𝑅

−
1

24
𝐶𝐴
𝐶

𝑅
𝑇
𝑓
+
5

48
𝐶

2

𝑅
𝑇
𝑓
+
1

96
𝐶𝑅
𝑇

2

𝑓
)]

+ (
𝛼
𝑒

𝜋
)
2 1

𝜖
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× [
𝜂
1

𝜋
(−

1

96
𝐶

2

𝐴
𝐶

𝑅
) +

𝜂
2

𝜋
(−

1

48
𝐶

𝐴
𝐶

𝑅
+
1

8
𝐶

2

𝑅
)

+
𝜂
3

𝜋
(
1

48
𝐶

𝐴
𝐶

𝑅
)

+
𝜂
4

𝜋
(−

1

576
𝐶

3

𝐴
𝐶

𝑅
+
1

12
𝐶

𝑅
𝐷

4 (𝑅𝐴))]

+
𝛼
𝑒

𝜋

1

𝜖

× [(
𝜂1

𝜋
)
2

(
1

256
𝐶

2

𝐴
𝐶

𝑅
)

+ (
𝜂
2

𝜋
)
2

(−
1

32
𝐶

𝑅
(𝑁

𝐴
+ 2))

+ (
𝜂
3

𝜋
)
2

(
1

128
𝐶

𝑅
(𝑁

𝐴
− 1))

+ (
𝜂
4

𝜋
)
2

(
1

9216
𝐶

4

𝐴
𝐶

𝑅
−
1

96
𝐶

𝑅
𝐷

4 (𝐴𝐴))

+
𝜂
1

𝜋

𝜂
3

𝜋
(−

1

64
𝐶

𝐴
𝐶

𝑅
) +

𝜂
1

𝜋

𝜂
4

𝜋
(
1

768
𝐶

3

𝐴
𝐶

𝑅
)

+
𝜂
2

𝜋

𝜂
4

𝜋
(−

5

96
𝐶

2

𝐴
𝐶

𝑅
) +

𝜂
3

𝜋

𝜂
4

𝜋
(−

1

384
𝐶

2

𝐴
𝐶

𝑅
) ] ,

(55)
where 𝜁(3) is Riemann’s zeta functionwith 𝜁(3) = 1.20206 . . ..

Again, the consistency of the above results can be proved
using the indirect method alluded above. To derive the three-
loop quark mass anomalous dimension in the DR scheme
𝛾DR
𝑚

, one needs the three-loop result for 𝛾MS
𝑚

and the two-loop
conversion relation for the quark mass as given in (58). Full
agreement has been found between the two methods [113],
that provides a further consistency check of the calculation.

3.3.3. The General Four-Loop Order Results in the𝐷𝑅 Scheme.
The direct way to compute the renormalization constants
in minimal subtraction schemes as MS or DR requires the
calculation of divergent parts of logarithmically divergent
integrals. Up to three loops there arewell establishedmethods
and automated programs exist to perform such calculations
(see, e.g., [115, 124]). Also at four-loop order a similar
approach is applicable. Nevertheless, it is technically much
more involved [118, 119, 121, 145, 146]. There is, however,
an indirect method discussed in [113, 128] to derive the
renormalization constants in the DR scheme starting from
theirMS expressions. It relies on the perturbative relation that
can be established between the couplings and masses defined
in the two schemes and takes into account that the four-
loop results in the MS scheme are known [118, 119, 121]. For
example, to derive the beta function for the gauge coupling to
four-loop order inDR scheme one needs the relation between

the gauge couplings defined in the MS and DR schemes up
to three-loop order. The latter can be determined using the
following arguments.

To compute the relations between running parameters
defined in two different renormalization schemes, one has to
relate them to physical observables which cannot depend on
the choice of scheme. For example, the relationship between
the strong coupling constant defined in the MS and DR
schemes can be obtained from the 𝑆-matrix amplitude of a
physical process involving the gauge coupling computed in
the two schemes. However, beyond one loop the computation
of the physical amplitudes becomes very much involved and
requires the computation of multiloop and multiscale on-
shell Feynman integrals that is a highly nontrivial task. Nev-
ertheless, one can avoid the use of on-shell kinematics intro-
ducing a physical renormalization scheme defined through
convenient kinematics, for which the renormalization con-
stants can be computed applying the “large-momentum” or
the “hard-mass” procedures. Up to three loops, there are
well established methods (for details see previous sections)
to compute the divergent as well as finite pieces of the
Feynman integrals and automated programs exist to perform
such calculations. Once the renormalization constants in
the physical renormalization scheme are determined, one
uses the constraint that the effective gauge coupling constant
defined in such a scheme is unique and thus independent
of the regularization procedure. Furthermore, one relates the
running gauge couplings defined in the two regularization
schemes through the following relations:

𝛼
ph
𝑠
= (𝑧

ph,𝑋
𝑠

)
2

𝛼
𝑋

𝑠
, 𝑧

ph,𝑋
𝑠

=
𝑍𝑋

𝑠

𝑍
ph,𝑋
𝑠

, 𝑋 ∈ {MS,DR}

󳨐⇒ 𝛼
DR
𝑠

= (
𝑍
ph,DR
𝑠

𝑍
MS
𝑠

𝑍
ph,MS
𝑠 𝑍DR

𝑠

)

2

𝛼
MS
𝑠
,

(56)

where𝑍MS/DR
𝑠

are the charge renormalization constants using
minimal subtraction inDREG/DRED, as defined above. Note
that the various𝑍

𝑠
in (56) dependondifferently renormalized

𝛼𝑠, so that the equations have to be used iteratively at
higher orders of perturbation theory. Working out these
considerations for the gauge coupling and for the fermion
mass up to the three-loop order, one obtains

𝛼
DR
𝑠

= 𝛼
MS
𝑠
[

[

1 +
𝛼MS
𝑠

𝜋

1

12
𝐶𝐴 + (

𝛼MS
𝑠

𝜋
)

2

11

72
𝐶

2

𝐴

−
𝛼
MS
𝑠

𝜋

𝛼
𝑒

𝜋

1

8
𝐶

𝑅
𝑇
𝑓
+ 𝛿

(3)

𝛼
]

]

,

(57)
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𝑚
DR

= 𝑚
MS [

[

1 −
𝛼
𝑒

𝜋

1

4
𝐶𝑅 + (

𝛼
MS
𝑠

𝜋
)

2

11

192
𝐶𝐴𝐶𝑅

−
𝛼MS
𝑠

𝜋

𝛼
𝑒

𝜋

1

32
𝐶𝑅

(3𝐶
𝐴
+ 8𝐶

𝑅
)

+(
𝛼
𝑒

𝜋
)
2 1

32
[3𝐶

𝑅
+ 𝑇

𝑓
] + 𝛿

(3)

𝑚
]

]

,

(58)

where we have suppressed the explicit dependence on the
renormalization scale 𝜇. 𝛿(3)

𝛼
and 𝛿(3)

𝑚
denote the three-loop

terms and they are obtained from the finite parts of three-
loop diagrams (see [113] for details). They read [131, 135]

𝜋
3
𝛿
(3)

𝛼
=

1

96
𝛼
MS
𝑠
𝛼
2

𝑒
𝑇𝑓

× [2𝐶
2

𝐴
− 3𝐶𝐴𝐶𝑅 + 2𝐶

2

𝑅
− 𝐶𝐴𝑇𝑓 + 7𝐶𝑅𝑇𝑓]

−
1

192
(𝛼

MS
𝑠
)
2

𝛼𝑒𝑇𝑓 (5𝐶
2

𝐴
+ 60𝐶𝐴𝐶𝑅 + 6𝐶

2

𝑅
)

+
1

9216
𝛼
MS
𝑠

× (36𝐶
3

𝐴
𝜂
2

1
− 576𝐶

𝐴
𝜂
2

2
− 144𝐶

2

𝐴
𝜂
1
𝜂
3
− 72𝐶

𝐴
𝜂
2

3

+ 12𝐶
4

𝐴
𝜂
1
𝜂
4
− 480𝐶

3

𝐴
𝜂
2
𝜂
4
− 24𝐶

3

𝐴
𝜂
3
𝜂
4

+𝐶
5

𝐴
𝜂4

2
− 288𝐶

𝐴
𝑁

𝐴
𝜂
2

2
+ 72𝐶

𝐴
𝑁

𝐴
𝜂
2

3
)

−
1

96𝑁
𝐴

𝛼
MS
𝑠
𝜂
2

4
𝐶

𝐴
𝐷

4 (𝐴𝐴)

+
1

48
(𝛼

MS
𝑠
)
2

𝜂
4
𝐷

4 (𝐴𝐴) +
1

4608
(𝛼

MS
𝑠
)
2

× (−6𝐶
3

𝐴
𝜂1 + 240𝐶

2

𝐴
𝜂2 + 12𝐶

2

𝐴
𝜂3 − 𝐶

4

𝐴
𝜂4)

+
1

10368
(𝛼

MS
𝑠
)
3

× [3049𝐶
3

𝐴
− 416𝐶

2

𝐴
𝑇𝑓 − 138𝐶𝐴𝐶𝑅𝑇𝑓] ,

𝜋
3
𝛿
(3)

𝑚
= −

1

384
𝛼
3

𝑒
𝐶

𝑅

× [−10𝐶
2

𝐴
+ 14𝐶

𝐴
𝐶

𝑅
+ 27𝐶

2

𝑅
− 7𝐶

𝐴
𝑇
𝑓

+ 39𝐶
𝑅
𝑇
𝑓
− 10𝐼

2(𝑅)
2
𝑇

2

𝑓
+ 12𝐶

2

𝐴
𝜁
3

−36𝐶𝐴𝐶𝑅𝜁3 + 24𝐶
2

𝑅
𝜁3] − 𝛼

2

𝑒
𝐶𝑅

× (
1

322
[(6𝐶

𝑅
− 𝐶

𝐴
) 𝜂

2
]

+
1

16𝐼
2 (𝑅)𝑁𝐴

𝐷4 (𝑅𝐴) 𝜂4 +
1

384
𝛼
MS
𝑠

× [47𝐶
2

𝐴
+ 10𝐶

2

𝑅
− 3𝐶

𝐴
𝑇
𝑓
− 19𝐶

𝑅
𝑇
𝑓

− 165𝐶
𝐴
𝐶

𝑅
+ 144𝐶

2

𝑅
𝜁
3
− 48𝐶

𝐴
𝑇
𝑓
𝜁
3

+48𝐶
𝑅
𝑇
𝑓
𝜁
3
+ 72𝐶

2

𝐴
𝜁
3
− 216𝐶

𝐴
𝐶

𝑅
𝜁
3
] )

+ 𝛼
𝑒
𝐶

𝑅

× (
1

12288

× [−36𝐶
2

𝐴
𝐶

𝑅
𝜂
2

1
+ 1728𝐶

𝑅
𝜂
2

2

+ 144𝐶
𝐴
𝐶

𝑅
𝜂
1
𝜂
3
+ 72𝐶

𝑅
𝜂3

2

− 12𝐶
3

𝐴
𝐶

𝑅
𝜂
1
𝜂
4
+ 1440𝐶

2

𝐴
𝐶

𝑅
𝜂
2
𝜂
4

+ 24𝐶
2

𝐴
𝐶𝑅𝜂3𝜂4 − 𝐶

4

𝐴
𝐶𝑅𝜂4

2

+864𝐶𝑅𝑁𝐴𝜂
2

2
− 72𝐶𝑅𝑁𝐴𝜂3

2
]

+
1

3072
(𝛼

MS
𝑠
)
2

× [2880𝐶
2

𝑅
𝜁
3
− 168𝐶

𝐴
𝑇
𝑓
− 1544𝐶

𝐴
𝐶

𝑅

− 52𝐶
2

𝑅
− 128𝐶

𝑅
𝑇
𝑓
+ 1440𝐶

2

𝐴
𝜁
3

−4320𝐶
𝐴
𝐶

𝑅
𝜁
3
− 79𝐶

2

𝐴
] )

+
1

20736
(𝛼

MS
𝑠
)
3

𝐶
𝑅
𝐶

𝐴
[4354𝐶

𝐴
+135𝐶

𝑅
+304𝑇

𝑓
]

+
3

128𝑁𝐴

𝐷
4 (𝐴𝐴) 𝜂

2

4
.

(59)
Inserting (57) and (58) into the definition of the beta function
for the gauge coupling equation (8) and the mass anomalous
dimension equation (12), one can show that

𝛽
DR
𝑠

= 𝜇
2 d
d𝜇2

𝛼DR
𝑠

𝜋

= 𝛽
MS
𝑠

𝜕𝛼DR
𝑠

𝜕𝛼MS
𝑠

+ 𝛽
𝑒

𝜕𝛼DR
𝑠

𝜕𝛼
𝑒

+∑
𝑟

𝛽
𝜂
𝑟

𝜕𝛼DR
𝑠

𝜕𝜂
𝑟

,

𝛾
DR
𝑚

=
𝜇2

𝑚DR

d
d𝜇2

𝑚
DR

= 𝛾
MS
𝑚

𝜕 ln𝑚DR

𝜕 ln𝑚MS
+
𝜋𝛽MS

𝑠

𝑚DR

𝜕𝑚DR

𝜕𝛼MS
𝑠

+
𝜋𝛽

𝑒

𝑚DR

𝜕𝑚DR

𝜕𝛼
𝑒

+∑
𝑟

𝜋𝛽𝜂
𝑟

𝑚DR

𝜕𝑚DR

𝜕𝜂
𝑟

,

(60)

where the first equality is due to the definition of 𝛽DR
𝑠

and 𝛾DR
𝑚

and the second one is a consequence of the chain rule. Let us
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briefly discuss the order in perturbation theory up to which
the individual building blocks are needed. Of course, the MS
quantities are needed to four-loop order; they can be found
in [118–121]. The dependence of 𝛼DR

𝑠
and 𝑚DR on 𝛼

𝑒
starts at

two- and one-loop order [113], respectively.Thus,𝛽
𝑒
is needed

up to the three-loop level (cf. (60)). On the other hand, both
𝛼DR
𝑠

and 𝑚DR depend on 𝜂
𝑟
starting from three loops and

consequently only the one-loop termof𝛽𝜂
𝑟

enters in (60).The
DR four-loop results were derived for QCD in [113] and for a
general theory in [131, 135]. The explicit four-loop results are
too lengthy to be presented in this review and we refer to the
original papers for the explicit results. We discuss however
their supersymmetric limit in the next section.

3.3.4. The Four-Loop Supersymmetric Case. An important
check of the complicated formulas derived in the previous
sections can be obtained by converting them to a supersym-
metric Yang-Mills theory. For this case, one has to replace the
fermions by the supersymmetric partner of the gauge bosons,
the so-called gauginos. Technically, this amounts to setting
the fermions in the adjoint representation of the gauge group.
In addition, closed fermion loops have to be multiplied by an
extra factor 1/2 in order to take into account the Majorana
character of the gauginos. Explicitly, for the derivation of the
three- and four-loop results one needs the replacements

𝐶
𝑅
󳨀→ 𝐶

𝐴
,

𝐼
2 (𝑅) 󳨀→ 𝐶

𝐴
,

𝑛
𝑓
󳨀→

1

2
,

𝐷
4 (𝑅𝑅) 󳨀→ 𝐷

4 (𝐴𝐴) ,

𝐷4 (𝑅𝐴) 󳨀→ 𝐷
4 (𝐴𝐴) ,

𝐷
4 (𝑅𝐴𝐴) 󳨀→ 𝐷

4 (𝐴𝐴𝐴) .

(61)

Furthermore, SUSY requires that the gauge coupling 𝛼
𝑠

equals the evanescent coupling𝛼𝑒 to all orders of perturbation
theory, and therefore, the 𝛽 functions are also equal 𝛽SYM

𝑒
=

𝛽SYM
𝑠

. Moreover, SUSY also requires that the 𝜀-scalar quartic
interaction containing the structure constants is equal to the
gauge coupling to all orders of perturbation theory. In this
case, the other three quartic couplings have to vanish, so that
the decomposition equation (33) holds to all orders of per-
turbation theory. Indeed, using (52) one can easily derive the
corresponding one-loop beta functions for supersymmetric
theories and obtains

𝛽
SYM
𝜂
1

= 𝛽
SYM
𝑒

= 𝛽
SYM
𝑠

, 𝛽
SYM
𝜂
2

= 𝛽
SYM
𝜂
3

= 𝛽
SYM
𝜂
4

= 0,

(62)

when the SUSY restrictions
𝜂
1
= 𝛼

3
= 𝛼

𝑠
, 𝜂

2
= 𝜂

3
= 𝜂

4
= 0 (63)

are imposed. It is also interesting to notice that the terms
in the renormalization constants equations (52) that contain
negative power of couplings cancel out in the SUSY limit, so

that the limit 𝜂
2
= 𝜂

3
= 𝜂

4
→ 0 can be computed trivially.

Thus, if relations (63) are imposed at the tree level, they will
not be spoiled by the renormalization at the one-loop order.
Checks of this statement at two- and three-loop orders are
available so far only for the evanescent coupling 𝛼

𝑒
[113, 144].

Applying the substitutions given in (61) and (63) one can
obtain the four-loop results for the gauge beta function 𝛽SYM

𝑠

[113, 135] and compare it with the expression derived in [147]

𝛽
SYM
𝑠

= − (
𝛼
𝑠

𝜋
)
2

[
3

4
𝐶

𝐴
+
3

8
𝐶

2

𝐴

𝛼
𝑠

𝜋
+
21

64
𝐶

3

𝐴
(
𝛼
𝑠

𝜋
)
2

+
51

128
𝐶

4

𝐴
(
𝛼
𝑠

𝜋
)
3

] + O (𝛼
6

𝑠
) .

(64)

The method employed in [147] to obtain the four-loop result
was very indirect, in particular relying on the existence of
the NSVZ formula for 𝛽SYM

𝑠
[148, 149] (for more details

see Section 2). It is therefore a remarkable check on both
calculations that indeed precise agreement was obtained.

Turning now to the case of softly broken supersymmetry,
there exists an exact result relating 𝛽

𝑠
and 𝛾

𝑚
[44, 61] within

the NSVZ scheme:

𝛾
SYM
𝑚

= 𝜋𝛼
𝑠

d
d𝛼𝑠

[
𝛽SYM
𝑠

𝛼𝑠

] , (65)

that nevertheless holds in DR scheme too. Hence, it follows
that

𝛾
SYM
𝑚

= − (
𝛼
𝑠

𝜋
) [

3

4
𝐶

𝐴
+
3

4
𝐶

2

𝐴

𝛼
𝑠

𝜋
+
63

64
𝐶

3

𝐴
(
𝛼
𝑠

𝜋
)
2

+
51

32
𝐶

4

𝐴
(
𝛼
𝑠

𝜋
)
3

] + O (𝛼
5

𝑠
) .

(66)

Inserting (61) in (60), one can easily reproduce (66).
The invariant 𝐷

4
(𝐴𝐴𝐴) does not occur in either cal-

culation, and the dependence on 𝐷
4
(𝐴𝐴), 𝑁

𝐴
, 𝜁

3
, 𝜁

4
, and

𝜁
5
all cancels although they appear in individual terms. It

is tempting to speculate that this absence of higher order
invariants and transcendental numbers (other than 𝜋) is
related to the existence of the NSVZ scheme, in which the
gauge 𝛽-function for any simple gauge group is given (in the
supersymmetric case without matter fields) by the expression
in (15), which is manifestly free of transcendental numbers to
all orders. It is natural to conjecture that the same property
holds in the DRED scheme, too.

3.3.5. 𝜀-Scalar Mass. Although there is in general no tree-
level term in the Lagrangian for themass of the 𝜀-scalars there
are loop-induced contributions to it that require the introduc-
tion of the corresponding counterterm. Let us introduce first
the renormalization constant for the 𝜀-scalar mass:

(𝑚
0

𝜀
)
2

= 𝑍
𝑚
𝜀

𝑚
2

𝜀
. (67)

The relevant Feynman diagrams contributing to the 𝜀-scalar
propagator show quadratic divergences and therefore one
needs to consider only contributions from massive particles.
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(a) (b) (c)

(d) (e) (f)

Figure 1: One- and two-loop Feynman diagrams contributing to the 𝜀-scalar propagator. Dashed lines denote 𝜀-scalars, curly lines denote
the gauge bosons, and solid lines denote massive fermions with mass𝑀

𝑓
.

Thus, in this case, only diagrams involving massive fermions
have to be taken into account, since they are the only particles
allowed by the gauge invariance to have nonzero masses.
Sample diagrams are shown in Figure 1.

It is advantageous in practice to renormalize 𝑚
𝜀
on shell

and require that the renormalized mass is zero to each order
in perturbation theory. In this scheme the 𝜀-scalar mass
completely decouples from the physical observables.

At the one-loop order there is only one relevant diagram
(cf. Figure 1(a)) which has to be evaluated for vanishing
external momentum. A closer look at the two-loop diagrams
shows that they develop infrared divergences in the limit
𝑚

𝜀
→ 0 (cf., e.g., Figure 1(e)). They can be regulated by

introducing a small but nonvanishing mass for the 𝜀-scalars.
After the subsequent application of an asymptotic expansion
[150] in the limit 𝑞2 = 𝑚2

𝜀
≪ 𝑀2

𝑓
the infrared divergences

manifest themselves as ln(𝑚
𝜀
) terms. Furthermore, one-loop

diagrams like the ones in Figures 1(b) and 1(c) do not
vanish anymore and have to be taken into account as well.
Although they are proportional to 𝑚2

𝜀
, after renormalization

they induce two-loop contributions which are proportional
to𝑀2

𝑓
, partly multiplied by ln(𝑚𝜀) terms. It is interesting to

note that in the sum of the genuine two-loop diagrams and
the counterterm contributions the limit𝑚

𝜀
→ 0 can be taken

which demonstrates the infrared finiteness of the on-shell
mass of the 𝜀-scalar. The two-loop renormalization constant
within QCD has been computed in [151]. It is given by

𝑚
2

𝜀

𝑀2

𝑓

(𝑍
OS
𝑚
𝜀

− 1) = −
𝛼𝑒

𝜋
𝑛ℎ𝐼2 (𝑅)
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2

𝜖
+ 2 + 2𝐿

𝜇

+𝜖 (2 +
1

6
𝜋

2
+ 2𝐿𝜇 + 𝐿

2

𝜇
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− (
𝛼DR
𝑠

𝜋
)

2

𝑛
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𝐼
2 (𝑅) (

3

4

1

𝜖
+
1

4
+
3

2
𝐿

𝜇
)𝐶

𝐴

+
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𝜋

𝛼
𝑒

𝜋
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𝐼
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3

8
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3

2
𝐶𝑅)
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1

𝜖
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7
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𝐶

𝐴
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3

2
𝐶

𝑅
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3

4
𝐶

𝐴
+
3
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𝐶

𝑅
) 𝐿

𝜇
]

+ (
15

8
+
1

16
𝜋

2
)𝐶𝐴 + (

3

2
+
1

8
𝜋

2
)𝐶𝑅

+ (
7

4
𝐶

𝐴
+
3

2
𝐶

𝑅
) 𝐿

𝜇

+(
3

4
𝐶𝐴 +

3

4
𝐶𝑅) 𝐿

2

𝜇
}

+ (
𝛼
𝑒

𝜋
)
2

𝑛
ℎ
𝐼
2 (𝑅)

× {
1

𝜖2
(
1

4
𝐶𝐴 −

1

2
𝐶𝑅 −

1

2
𝑇𝑓)

+
1

𝜖
[
1

2
𝐶

𝑅
−
1

2
(1 + 𝐿

𝜇
) 𝑇

𝑓
] −

1

2
𝐶

𝐴

+
5

2
𝐶

𝑅
− (

1

2
+
1

24
𝜋

2
)𝑇

𝑓

− (
1

2
𝐶𝐴 − 2𝐶𝑅 +

1

2
𝑇𝑓) 𝐿𝜇

−(
1

4
𝐶

𝐴
−
1

2
𝐶

𝑅
+
1

4
𝑇
𝑓
) 𝐿

2

𝜇
}

+
𝛼
𝑒

𝜋

𝜂
1

𝜋
𝑛
ℎ

× [
3

16

1

𝜖2
+
1

𝜖
(
3

16
+
3

8
𝐿

𝜇
)

+
3

16
+
1

32
𝜋

2
+
3

8
𝐿

𝜇
+
3

8
𝐿
2

𝜇
]

−
𝛼
𝑒

𝜋

𝜂2

𝜋
𝑛
ℎ
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× [
5

4

1

𝜖2
+ (5 +

5

2
𝐿

𝜇
)
1

𝜖

+
25

2
+
5

24
𝜋

2
+ 10𝐿

𝜇
+
5

2
𝐿
2

𝜇
]

−
𝛼
𝑒

𝜋

𝜂3

𝜋
𝑛
ℎ

× [
7

16

1

𝜖2
+ (

7

16
+
7

8
𝐿

𝜇
)
1

𝜖

+
7

16
+
7

96
𝜋

2
+
7

8
𝐿𝜇 +

7

8
𝐿
2

𝜇
] ,

(68)

where 𝐿
𝜇 = ln(𝜇2

/𝑀
2

𝑓
), 𝑇𝑓 = 𝑛𝑓𝐼2(𝑅), where 𝑛𝑓 and 𝑛ℎ

denote the number of fermions and heavy fermions, respec-
tively. The overall factor 𝑛ℎ in front of the one- and two-
loop corrections shows that the renormalization of𝑚

𝜀
is only

influenced by those diagrams which contain a closed heavy
fermion loop.

It is also possible to renormalize 𝑚
𝜀
so that 𝑚OS

𝜀
̸= 0 or

adopt the DR scheme for it. In the latter case, the physical
observables will depend on 𝑚

𝜀
. In order to get rid of this

unphysical dependence, one has to introduce additional
finite shifts in the renormalization constants of the physical
parameters. This new renormalization scheme is called DR󸀠

and it will be discussed in more detail in the next section.
Nevertheless, in context ofQCD, theDR󸀠 has rarely been used
[152].

4. Dimensional Reduction Applied to
SUSY-QCD at Three Loops

All the appealing features of supersymmetric theories have
to be confirmed by an accurate comparison with the exper-
imental data like those measured in collider experiments
[31, 32, 153]. Such an ambitious task requires precision data
as well as precision calculations. But, precise predictions for
observables implies computations of higher order radiative
corrections. Thus, it necessarily rises the question of con-
structing regularization and renormalization schemes that
are gauge and SUSY invariant. As discussed in the previous
sections, DRED scheme was proposed as a solution, although
it could violate SUSY at higher orders of perturbation theory.
Currently, it is believed that DRED preserves SUSY at three-
loop order as was explicitly checked in [101–103] and that
it breaks SUSY at four-loop order, taking into consideration
formal arguments [60, 74]. Nevertheless, renormalization by
combiningDREDwithminimal subtraction (theDRscheme)
or the on-shell scheme has become the preferred schemes in
higher order supersymmetric calculations [100, 129, 154–156].

4.1. Renormalization of the Gauge Coupling and Fermion
Masses at Three Loops. As was already reviewed in Section 2,
for supersymmetric gauge theories one candevise a particular
renormalization scheme, the so-called NSVZ scheme [157],
where an all-order relation between the gauge 𝛽 function
and the anomalous dimension of the chiral supermultiplet

is valid. So, in the absence of the matter supermultiplet,
that is, for SUSY-Yang-Mills theory, the 𝛽 function is known
to all orders in the coupling constant. Applying the same
method based on the connection between the holomorphic
and the NSVZ schemes to softly broken SUSY gauge the-
ory, the authors of [44] derived the renormalization group
equation governing the running of the gaugino and sfermion
masses as functions of the gauge and Yukawa coupling 𝛽
functions, valid to all orders in perturbation theory. Actually,
all these calculations received important phenomenological
applications only after the authors of [64] found the three-
loop conversion formula between the NSVZ and DR. This
allowed the derivation of three-loop order beta functions for
the parameters of the MSSM in the DR scheme [158, 159].

The goal of this section is to report on another confirma-
tion of the results for the anomalous dimensions of SUSY-
QCD parameters, that is based on a direct calculation of rele-
vant three-loop Feynman diagrams implementing the DRED
approach in the component field formalism. The agreement
of the two independent and conceptually completely different
calculations is a very important check of the two methods on
the one side, and on the other side it establishes the DRED
as a consistent framework for computations of radiative
corrections in supersymmetric theories.

The renormalized Lagrangian of a supersymmetric the-
ory will obey SUSY constraints, only if the decomposition of
(33) holds at all orders of perturbation theory. Therefore, the
renormalized gluon and 𝜀-scalar coupling constants must be
equal, that is, their𝛽 functionsmust be the same. An all-order
proof of this statement is currently not available. However, it
was explicitly shown [103] that the coupling constant arising
from the vertices 𝑔𝑐𝑐, 𝑔𝑔𝑔, 𝑔𝑞𝑞, and 𝑔𝑞𝑞 and that from the
vertices 𝑞𝑞𝜖, 𝑔𝑔𝜖, and 𝑔𝜖𝜖 are equal through three loops.

Even more, in order to renormalize the quartic 𝜀-scalar
vertex, one has to take into account all possible color
structures for it and attribute to each one a separate coupling
constant (for details see Sections 3.3.1 and 3.3.4). For SUSY-
QCD, it has been explicitly checked [135] that at the one-
loop order only the 𝛽 function associated with the usual color
structure of the four-gluon interaction, that is, 𝑓

𝑎𝑏𝑒
𝑓
𝑐𝑑𝑒

(𝑓
𝑎𝑏𝑒

denotes the structure constants of the gauge group), does not
vanish and it equals the one loop gauge 𝛽 function. Thus,
through one-loop, one can identify the coupling constant of
the corresponding 𝜀-scalar quartic interactionwith the strong
coupling constant and set to zero the other three quartic
couplings. This order of accuracy is sufficient for the results
discussed here, as the 𝜀-scalar quartic interactions contribute
to the anomalous dimensions starting from the two-loop
order. A similar observation was made also in the previous
section when the SUSY-Yang-Mills theory was discussed at
four-loop accuracy. All these tests confirm the consistency of
DRED with SUSY at next-to-next-to-next-to-leading order
(NNNLO) of perturbation theory.

For the calculation of renormalization constants within
supersymmetric theories one can apply the same methods
as the ones discussed in Section 3.3.2 in the context of non-
SUSY theories. Let us however mention at this point a
technical subtlety related to the implementation of 𝛾

5
matrix.
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Figure 2: Sample diagram for the three-loop 𝑞𝑞𝜖 vertex where a
nonvanishing trace with a single 𝛾

5
-matrix occurs. Solid lines are

quarks, dashed lines are squarks, slashed springy lines are gluinos,
and the external dashed line depicts an 𝜀-scalar. The arrows on the
lines denote the charge flow.

Traces with a single 𝛾
5
and at least four 𝛾-matrices do not

contribute to any of the two-point functions (for a detailed
discussion about this aspect see [160]).They do contribute for
some of the three-point functions though, in particular the
𝑞𝑞𝑔, the 𝑔𝑔𝜖, and the 𝑞𝑞𝜖 vertex. An example diagram for the
latter vertex is shown in Figure 2. Such diagrams contribute
(among others) a color factor 𝑑𝑎𝑏𝑐𝑑

𝑅
𝑑𝑎𝑏𝑐𝑑

𝐴
(for the notation,

see Appendix A), but they cancel against the same factors
from other sources in the final result for the renormalization
constants and the 𝛽 functions. Precisely, the naive scheme
for the implementation of the 𝛾

5
gives rise to incorrect

results. One has to supplement it with the relations given
in (27) and (28). The first equation takes into account the
contributions arising in triangle diagrams containing Dirac
fermions, whereas the second one generalizes the contraction
properties of the pseudo-Levi-Civita tensors defined away
from 𝑑 = 4 dimensions.

The results for the three-loop renormalization constants
of the gauge coupling constant 𝛼𝑠 are very compact and are
given by

𝑍
𝑠
= 1 +

𝛼
𝑠

4𝜋

1

𝜖
[−3𝐶

𝐴
+ 2𝑇

𝑓
] + (

𝛼
𝑠

4𝜋
)
2

× {
1

𝜖2
[9𝐶

2

𝐴
− 12𝐶𝐴𝑇𝑓 + 4𝑇

2

𝑓
]

+
1

𝜖
[−3𝐶

2

𝐴
+ 2𝐶

𝐴
𝑇
𝑓
+ 4𝐶

𝑅
𝑇
𝑓
] } + (

𝛼
𝑠

4𝜋
)
3

× {
1

𝜖3
[−27𝐶

3

𝐴
+ 54𝐶

2

𝐴
𝑇𝑓 − 36𝐶𝐴𝑇

2

𝑓
+ 8𝑇

3

𝑓
]

+
7

3𝜖2
[9𝐶

3

𝐴
− 12𝐶

2

𝐴
𝑇
𝑓
− 12𝐶

𝐴
𝐶

𝑅
𝑇
𝑓

+4𝐶
𝐴
𝑇

2

𝑓
+ 8𝐶

𝑅
𝑇

2

𝑓
] +

1

3𝜖

× [−21𝐶
3

𝐴
+ 20𝐶

2

𝐴
𝑇
𝑓
+ 52𝐶

𝐴
𝐶

𝑅
𝑇
𝑓

−16𝐶
2

𝑅
𝑇𝑓 − 4𝐶𝐴𝑇

2

𝑓
− 24𝐶𝑅𝑇

2

𝑓
] } ,

(69)

where we have introduced the notation 𝑇
𝑓

= 𝐼
2
(𝑅)𝑛

𝑓
,

with 𝑛
𝑓
being the number of active fermions of the theory,

and the invariants 𝐶
𝑅
, 𝐶

𝐴
, 𝐼

2
(𝑅) are explicitly given in the

Appendix A.
The case 𝑇

𝑓
= 0 corresponds to SUSY-Yang-Mills theory

that has been treated in detail in Sections 2 and 3.3.4. Full
agreement has been found between the two methods up to
three-loop order.

The three-loop renormalization constants for the gluino
mass read

𝑍
𝑚
𝑔

= 1 +
𝛼
𝑠

4𝜋

1

𝜖
[−3𝐶

𝐴
+ 2𝑇

𝑓
] + (

𝛼
𝑠

4𝜋
)
2

× {
1

𝜖2
[9𝐶

2

𝐴
− 12𝐶𝐴𝑇𝑓 + 4𝑇

2

𝑓
]

+
2

𝜖
[−3𝐶

2

𝐴
+ 2𝐶

𝐴
𝑇
𝑓
+ 4𝐶

𝑅
𝑇
𝑓
] } + (

𝛼
𝑠

4𝜋
)
3

× {
1

𝜖3
[−27𝐶

3

𝐴
+ 54𝐶

2

𝐴
𝑇
𝑓
− 36𝐶

𝐴
𝑇

2

𝑓
+ 8𝑇

3

𝑓
]

+
4

𝜖2
(9𝐶

3

𝐴
− 12𝐶

2

𝐴
𝑇
𝑓
− 12𝐶

𝐴
𝐶

𝑅
𝑇
𝑓

+4𝐶
𝐴
𝑇

2

𝑓
+ 8𝐶

𝑅
𝑇

2

𝑓
) +

1

𝜖

× (−21𝐶
3

𝐴
+ 20𝐶

2

𝐴
𝑇
𝑓
+ 52𝐶

𝐴
𝐶

𝑅
𝑇
𝑓

−16𝐶
2

𝑅
𝑇𝑓 − 4𝐶𝐴𝑇

2

𝑓
− 24𝐶𝑅𝑇

2

𝑓
) } .

(70)

The DR quark mass renormalization constant is also inde-
pendent of any mass parameter and is given by the following
formula:

𝑍
𝑚
𝑞

= 1 −
𝛼
𝑠

4𝜋

1

𝜖
2𝐶

𝑅
+ (

𝛼
𝑠

4𝜋
)
2

× {
1

𝜖2
[3𝐶𝐴𝐶𝑅 + 2𝐶

2

𝑅
− 2𝐶𝑅𝑇𝑓]

+
1

𝜖
[−3𝐶

𝐴
𝐶

𝑅
+ 2𝐶

2

𝑅
+ 2𝐶

𝑅
𝑇
𝑓
]}

+ (
𝛼𝑠

4𝜋
)
3

× {
1

𝜖3
[ − 6𝐶

2

𝐴
𝐶

𝑅
− 6𝐶

𝐴
𝐶

2

𝑅
−
4

3
𝐶

3

𝑅

+ (8𝐶𝐴𝐶𝑅 + 4𝐶
2

𝑅
) 𝑇𝑓 −

8

3
𝐶𝑅𝑇

2

𝑓
]

×
1

𝜖2
[10𝐶

2

𝐴
𝐶

𝑅
+ 2𝐶

𝐴
𝐶

2

𝑅
− 4𝐶

3

𝑅

+(−
32

3
𝐶

𝐴
𝐶

𝑅
−
20

3
𝐶

2

𝑅
)𝑇

𝑓
+
8

3
𝐶

𝑅
𝑇

2

𝑓
]
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×
1

𝜖
[−4𝐶

2

𝐴
𝐶

𝑅
+ 4𝐶

𝐴
𝐶

2

𝑅
−
16

3
𝐶

3

𝑅
+
8

3
𝐶

𝑅
𝑇

2

𝑓

+ 𝑇
𝑓
(𝐶

2

𝑅
(
32

3
− 16𝜁 (3))

+𝐶
𝐴
𝐶

𝑅
(−
4

3
+ 16𝜁 (3))]} , (71)

where 𝜁(3) is Riemann’s zeta functionwith 𝜁(3) = 1.20206 . . ..
The results of ((69), (71), (70)) are in agreement with [63, 64].
Using (69) and (70), it is an easy exercise to confirm the
relation derived in [61] between the anomalous dimension
of gluino mass and the gauge 𝛽 function that holds also in
DRED. This result is similar to the NSVZ relation given in
(17) and holds to all orders in perturbation theory. It reads

𝛾
𝑔

𝑛
= (𝑛 + 1) 𝛽𝑛

, (72)

where 𝑛 denotes the number of loops.

4.2. Renormalization of the Squark Sector at Three Loops. In
this section, we report on the renormalization of the squark
sector of SUSY-QCD up to three-loop order within the DR
scheme in the component field approach [161]. These results
are on the one side important for the phenomenological anal-
yses aiming to predict the squarkmasses at the TeV scale with
an accuracy of the order ofO (50GeV), that is required by the
precision achieved in the current experimental searches at the
LHC. On the other side, they have also genuine theoretical

significance, since they provide an independent confirmation
of the three-loop results obtained with the help of the NSVZ
scheme [47, 48, 158, 159].

The calculations presented in this section are performed
in the framework of SUSY-QCD with 𝑛

𝑞
= 5massless quarks

and a massive top quark (𝑚
𝑡
). The scalar superpartners of

the latter has two mass eigenstates (𝑚𝑡̃
1

and 𝑚
𝑡̃
2

) which may
have different masses and thus a nonvanishing mixing angle
occurs. The superpartners of the 𝑛𝑞 light quarks are assumed
to have degenerate masses (𝑚𝑞

) and vanishingmixing angles.
A generalization to a nondegenerate spectrum is possible in
a straightforward way from the formalism for the top squark
sector which is discussed in detail in the following.

Unless stated otherwise all parameters in the following
derivation are DR quantities which depend on the renor-
malization scale 𝜇. For the sake of compactness the latter is
omitted. Bare quantities are marked by a superscript “(0)”.
To define the framework, we start from the bare Lagrangian
containing the kinetic energy and the mass terms for the top
squarks:

L
(0)

𝑡̃
=
1

2
𝜕
𝜇
(𝑡̃

∗

𝐿
, 𝑡̃

∗

𝑅
)
(0)
𝜕
𝜇
(
𝑡̃
𝐿

𝑡̃
𝑅

)

(0)

−
1

2
(𝑡̃

∗

𝐿
, 𝑡̃

∗

𝑅
)
(0)
(M

2

𝑡̃
)
(0)

(
𝑡̃
𝐿

𝑡̃
𝑅

)

(0)

,

(73)

where 𝑡̃𝐿 and 𝑡̃𝑅 denote the interaction eigenstates. The top
squark mass matrix is given by

M
2

𝑡̃
= (

𝑚2

𝑡
+𝑀2

𝑍
(
1

2
−
2

3
sin2 𝜗𝑊) cos 2𝛽 +𝑀

2

𝑄̃
𝑚𝑡 (𝐴 𝑡 − 𝜇SUSY cot𝛽)

𝑚𝑡 (𝐴 𝑡 − 𝜇SUSY cot𝛽) 𝑚2

𝑡
+
2

3
𝑀2

𝑍
sin2 𝜗𝑊 cos 2𝛽 +𝑀2

𝑈̃

)

≡ (

𝑚2

𝑡̃
𝐿

𝑚
𝑡
𝑋

𝑡

𝑚𝑡𝑋𝑡 𝑚2

𝑡̃
𝑅

)

(74)

with 𝑋
𝑡
= 𝐴

𝑡
− 𝜇SUSY cot𝛽. 𝐴 𝑡

is the soft SUSY breaking
trilinear coupling, and 𝑀

𝑈̃
and 𝑀

𝑄̃
are the soft SUSY

breaking masses.
The top squarkmass eigenstates are related to the interac-

tion eigenstates through the unitary transformation

(
𝑡̃
1

𝑡̃
2

)

(0)

=R
(0)†

𝑡̃
(
𝑡̃
𝐿

𝑡̃
𝑅

)

(0)

. (75)

The unitarymatrixR
𝑡̃ is defined through the diagonalization

relation for the mass matrixM2

𝑡̃

(
𝑚2

𝑡̃
1

0

0 𝑚2

𝑡̃
2

) = 𝑅
†

𝑡̃
M

2

𝑡̃
𝑅𝑡̃. (76)

The eigenvalues are the masses of the eigenstates 𝑡̃
1
and 𝑡̃

2
.

They read

𝑚
2

𝑡̃
1,2

=
1

2
[𝑚

2

𝑡̃
𝐿

+ 𝑚
2

𝑡̃
𝑅

∓ √(𝑚2

𝑡̃
𝐿

− 𝑚2

𝑡̃
𝑅

)
2

+ 4𝑚2

𝑡
𝑋2

𝑡
] . (77)

The unitary transformation can be parameterized by the
mixing angle

𝑅
𝑡̃ = (

cos 𝜃𝑡 − sin 𝜃
𝑡

sin 𝜃𝑡 cos 𝜃𝑡
) , (78)

with

sin (2𝜃
𝑡
) =

2𝑚
𝑡
(𝐴

𝑡
− 𝜇SUSY cot𝛽)

𝑚2

𝑡̃
1

− 𝑚2

𝑡̃
2

. (79)

The renormalization constants connected to the top squark
are extracted from the top squark propagator. At tree level it is
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a diagonal 2×2matrix which receives non-diagonal entries at
loop-level. In order to be able to write down the renormalized
top squark propagator we define the renormalization con-
stants as follows.Thewave function renormalization constant
is introduced through the relation

(
𝑡̃
1

𝑡̃
2

)

(0)

=Z
1/2

𝑡̃
(
𝑡̃
1

𝑡̃
2

) , with Z
1/2

𝑡̃
= (

𝑍
1/2

11
𝑍

1/2

12

𝑍
1/2

21
𝑍

1/2

22

) , (80)

where it holdsZ1/2

𝑡̃
= I + O(𝛼

𝑠
).

In case of SUSY-QCD, the matrixZ1/2

𝑡̃
has a particularly

symmetric form. This can be derived from the observation
that the left- and right-handed components of the top squark
fields have the same renormalization constant for their wave
functions within SUSY-QCD

(
𝑡̃
𝐿

𝑡̃
𝑅

)

(0)

= 𝑍
1/2

2
(
𝑡̃
𝐿

𝑡̃
𝑅

) . (81)

Furthermore, if we introduce the renormalization constant
for the mixing angle via

𝜃
(0)

𝑡
= 𝜃

𝑡
+ 𝛿𝜃

𝑡
(82)

and make use of (75), we obtain

Z
1/2

𝑡̃
= 𝑍

1/2

2
(
cos 𝛿𝜃𝑡 sin 𝛿𝜃𝑡
− sin 𝛿𝜃

𝑡
cos 𝛿𝜃

𝑡

) . (83)

When supersymmetric electroweak (SUSY-EW) corrections
are taken into account, (81) becomes

(
𝑡̃𝐿

𝑡̃
𝑅

)

(0)

= (
𝑍

1/2

𝐿
0

0 𝑍
1/2

𝑅

)(
𝑡̃𝐿

𝑡̃
𝑅

) . (84)

This assignment takes into account supersymmetric con-
straints [162, 163] and is sufficient to absorb all divergences.
As a consequence also the matrix Z

1/2

𝑡̃
has a more compli-

cated structure and additional renormalization conditions are
required.

Furthermore, the mass matrix equation (74) has to be
renormalized. It can be parameterized as follows:

(
(𝑚

(0)

𝑡̃
1

)
2

0

0 (𝑚
(0)

𝑡̃
2

)
2) 󳨀→ (

𝑚2

11
𝑍

𝑚
11

𝑚2

12
𝑍

𝑚
12

𝑚2

21
𝑍𝑚
21

𝑚2

22
𝑍𝑚
22

) ≡M,

(85)

where we require that the off-diagonal elements in the
renormalized mass matrix vanish. This ensures that the
renormalized fields are the true mass eigenstates. As a con-
sequence, the counterterm 𝛿𝜃

𝑡
takes care of the divergences

in the self-energy contribution where a 𝑡̃1 transforms into a 𝑡̃2
or vice versa. This can be seen in the explicit formulae given
below. The diagonal elements of (85) can be identified with
the renormalization constants of the masses:

(𝑚
(0)

𝑡̃
𝑖

)
2

= 𝑚
2

𝑖𝑖
𝑍𝑚
𝑖𝑖

= 𝑚
2

𝑡̃
𝑖

𝑍𝑚
𝑡̃𝑖

. (86)

In order to formulate the renormalization conditions it is
convenient to consider the renormalized inverse top squark
propagator given by

𝑖S
−1
(𝑝

2
) = 𝑝

2
(Z

1/2

𝑡̃
)
†

Z
1/2

𝑡̃
− (Z

1/2

𝑡̃
)
†

[M − Σ (𝑝
2
)]Z

1/2

𝑡̃
,

(87)

where

Σ (𝑝
2
) = (

Σ
11
(𝑝2) Σ

12
(𝑝2)

Σ
21 (𝑝

2) Σ22 (𝑝
2)
) , (88)

stands for the matrix of the squark self-energies in the mass
eigenstate basis.

In the DR scheme the renormalization conditions read
S

−1

𝑖𝑗
(𝑝

2
)
󵄨󵄨󵄨󵄨󵄨pp

= 0, (89)

where “pp” stands for the “pole part.”
In order to obtain explicit formulae for the evaluation

of the renormalization constants it is convenient to define
perturbative expansions of the quantities entering equation
(89). Up to three-loop order we have

𝑍
𝑘
= 1 + (

𝛼
𝑠

𝜋
) 𝛿𝑍

(1)

𝑘
+ (

𝛼
𝑠

𝜋
)
2

𝛿𝑍
(2)

𝑘

+ (
𝛼𝑠

𝜋
)
3

𝛿𝑍
(3)

𝑘
+ O (𝛼

4

𝑠
) ,

𝛿𝜃
𝑡
= (

𝛼
𝑠

𝜋
) 𝛿𝜃

(1)

𝑡
+ (

𝛼
𝑠

𝜋
)
2

𝛿𝜃
(2)

𝑡
+ (

𝛼
𝑠

𝜋
)
3

𝛿𝜃
(3)

𝑡
+ O (𝛼

4

𝑠
) ,

Σ𝑖𝑗 = (
𝛼
𝑠

𝜋
)Σ

(1)

𝑖𝑗
+ (

𝛼
𝑠

𝜋
)
2

Σ
(2)

𝑖𝑗
+ (

𝛼
𝑠

𝜋
)
3

Σ
(3)

𝑖𝑗
+ O (𝛼

4

𝑠
) ,

(90)

where 𝑖, 𝑗 ∈ {1, 2}, and 𝑘 ∈ {2,𝑚𝑡̃
1

, 𝑚𝑡̃
2

}. Inserting these
equations into (87) one can solve (89) iteratively order by
order in 𝛼

𝑠
. At one-loop order one gets

{Σ
(1)

𝑖𝑖
− 𝑚

2

𝑡̃
𝑖

(𝛿𝑍
(1)

2
+ 𝛿𝑍

(1)

𝑚
𝑡̃𝑖

) + 𝑝
2
𝛿𝑍

(1)

2
}
󵄨󵄨󵄨󵄨󵄨󵄨pp

= 0,

𝑖 = 1, 2,

{Σ
(1)

12
− 𝛿𝜃

(1)

𝑡
(𝑚

2

𝑡̃
1

− 𝑚
2

𝑡̃
2

)}
󵄨󵄨󵄨󵄨󵄨pp

= 0.

(91)

The terms proportional to 𝑝2 in the first equation of (91) are
used to compute the wave function renormalization constant
which is independent of all occurring masses. Thus they can
be set to zero and one obtains

𝛿𝑍
(1)

2
= −

1

𝑝2
Σ

(1)

11
(𝑝

2
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨pp

= −
1

𝑝2
Σ

(1)

22
(𝑝

2
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨pp
. (92)

Once 𝛿𝑍(1)

2
is known (91) is used to obtain 𝛿𝑍(1)

𝑚
𝑡̃𝑖

keeping the
mass dependence in Σ(1)

𝑖𝑖
(see below for more details). The

second equation of (91) is used to obtain the renormalization
constant of the mixing angle via

𝛿𝜃
(1)

𝑡
=

Σ
(1)

12

𝑚2

𝑡̃
1

− 𝑚2

𝑡̃
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨pp

. (93)
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Proceeding to two loops we obtain the equations

[Σ
(2)

𝑖𝑖
+ 𝛿𝑍

(1)

2
Σ

(1)

𝑖𝑖
− 𝑚

2

𝑡̃
𝑖

(𝛿𝑍
(2)

2
+ 𝛿𝑍

(1)

2
𝛿𝑍

(1)

𝑚
𝑡̃𝑖

+ 𝛿𝑍
(2)

𝑚
𝑡̃𝑖

)

+ 𝛿𝑍
(2)

2
𝑝

2
+ (−1)

(𝑖+1)
𝛿𝜃

(1)

𝑡

× (−2Σ
(1)

12
+ 𝛿𝜃

(1)

𝑡
(𝑚

2

𝑡̃
1

− 𝑚
2

𝑡̃
2

)) ]
󵄨󵄨󵄨󵄨󵄨󵄨pp

= 0,

𝑖 = 1, 2,

[−𝛿𝜃
(2)

𝑡
(𝑚

2

𝑡̃
1

− 𝑚
2

𝑡̃
2

) − 𝛿𝜃
(1)

𝑡
𝛿𝑍

(1)

2
(𝑚

2

𝑡̃
1

− 𝑚
2

𝑡̃
2

)

− 𝛿𝜃
(1)

𝑡
𝛿𝑍

(1)

𝑚
𝑡̃1

𝑚
2

𝑡̃
1

+ 𝛿𝜃
(1)

𝑡
𝛿𝑍

(1)

𝑚
𝑡̃2

𝑚
2

𝑡̃
2

+ 𝛿𝜃
(1)

𝑡
Σ

(1)

11

−𝛿𝜃
(1)

𝑡
Σ

(1)

22
+ 𝛿𝑍

(1)

2
Σ

(1)

12
+ Σ

(2)

12
]
󵄨󵄨󵄨󵄨󵄨pp

= 0,

(94)

which are solved for 𝑍(2)

2
, 𝛿𝑍(2)

𝑚
𝑡̃𝑖

, and 𝛿𝜃(2)
𝑡

using the same
strategy as at one-loop level.

Similarly, at three-loop order we have

[(−1)
𝑖+1
{(𝛿𝜃

(1)

𝑡
)
2

× (𝛿𝑍
(1)

2
(𝑚

2

𝑡̃
1

− 𝑚
2

𝑡̃
2

) + 𝛿𝑍
(1)

𝑚
𝑡̃1

𝑚
2

𝑡̃
1

−𝛿𝑍
(1)

𝑚
𝑡̃2

𝑚
2

𝑡̃
2

− Σ
(1)

11
+ Σ

(1)

22
)

+ 𝛿𝜃
(1)

𝑡
(2𝛿𝜃

(2)

𝑡
(𝑚

2

𝑡̃
1

− 𝑚
2

𝑡̃
2

)

−2𝛿𝑍
(1)

2
Σ

(1)

12
− 2Σ

(2)

12
)

−2𝛿𝜃
(2)

𝑡
Σ

(1)

12
}

+ 𝛿𝑍
(1)

2
(Σ

(2)

𝑖𝑖
− 𝛿𝑍

(2)

𝑚
𝑡̃𝑖

𝑚
2

𝑡̃
𝑖

) − 𝛿𝑍
(2)

2
𝛿𝑍

(1)

𝑚
𝑡̃𝑖

𝑚
2

𝑡̃
𝑖

+ 𝛿𝑍
(2)

2
Σ

(1)

𝑖𝑖
− 𝛿𝑍

(3)

2
𝑚

2

𝑡̃
𝑖

+ 𝛿𝑍
(3)

2
𝑝

2

−𝛿𝑍
(3)

𝑚
𝑡̃𝑖

𝑚
2

𝑡̃
𝑖

+ Σ
(3)

𝑖𝑖
]
󵄨󵄨󵄨󵄨󵄨󵄨pp

= 0, 𝑖 = 1, 2,

[𝛿𝜃
(1)

𝑡
(−𝛿𝑍

(1)

2
𝛿𝑍

(1)

𝑚
𝑡̃1

𝑚
2

𝑡̃
1

+ 𝛿𝑍
(1)

2
𝛿𝑍

(1)

𝑚
𝑡̃2

𝑚
2

𝑡̃
2

+ 𝛿𝑍
(1)

2
Σ

(1)

11
− 𝛿𝑍

(1)

2
Σ

(1)

22
− 𝛿𝑍

(2)

2
(𝑚

2

𝑡̃
1

− 𝑚
2

𝑡̃
2

)

−𝛿𝑍
(2)

𝑚
𝑡̃1

𝑚
2

𝑡̃
1

+ 𝛿𝑍
(2)

𝑚
𝑡̃2

𝑚
2

𝑡̃
2

+ Σ
(2)

11
− Σ

(2)

22
)

+ 𝛿𝜃
(2)

𝑡
(−𝛿𝑍

(1)

2
(𝑚

2

𝑡̃
1

− 𝑚
2

𝑡̃
2

) − 𝛿𝑍
(1)

𝑚
𝑡̃1

𝑚
2

𝑡̃
1

+𝛿𝑍
(1)

𝑚
𝑡̃2

𝑚
2

𝑡̃
2

+ Σ
(1)

11
− Σ

(1)

22
)

− 𝛿𝜃
(3)

𝑡
(𝑚

2

𝑡̃
1

− 𝑚
2

𝑡̃
2

) + 𝛿𝑍
(1)

2
Σ

(2)

12
+ 𝛿𝑍

(2)

2
Σ

(1)

12

+ Σ
(3)

12
+
2

3
(𝛿𝜃

(1)

𝑡
)
3

(𝑚
2

𝑡̃
1

− 𝑚
2

𝑡̃
2

)

−2(𝛿𝜃
(1)

𝑡
)
2

Σ
(1)

12
]
󵄨󵄨󵄨󵄨󵄨󵄨pp

= 0. (95)

Sample diagrams contributing to Σ
11
up to three loops can be

found in Figure 3; the contributions to Σ
12
, and Σ

22
look very

similar. Once the quantities Σ
11
, Σ

12
and Σ

22
are known to

three-loop order it is possible to extract the renormalization
constants for the squark wave function and mass and the
mixing angle from (95).

As compared to the corresponding self-energy contri-
butions for fermions or gauge bosons, which after proper
projection only lead to logarithmically divergent integrals,
the quantities in the above equations have mass dimension
two. As a consequence the renormalization constants of
the squark masses and the mixing angles depend on the
occurring masses, even in a minimal subtraction scheme like
DR. At three-loop order an exact evaluation of the corre-
sponding integrals is not possible. It is nevertheless possible
to reconstruct the complete dependence on the occurring
masses using repeated asymptotic expansions and in addition
some knowledge about the structure of the final result. Thus,
one has to keep during the calculation nonvanishing squark,
gluino, and the top quark masses and chose convenient
hierarchies between them. For the asymptotic expansion (see,
e.g., [150]) one can use exp [142, 143]. As a result only
one-scale integrals up to three loops appear which can be
evaluated with the packages MINCER [115] and MATAD [124].

After the calculation of the bare self-energies one has to
renormalize all occurring parameters in the DR scheme. For
the three-loop calculation one needs the counterterms for 𝛼𝑠,
𝑚𝑡, 𝑚𝑔

, 𝑚𝑡̃
𝑖

, 𝜃𝑡, and 𝑚𝜖 to two-loop order and the one for
𝑚𝑞

to one-loop approximation. Furthermore, also the QCD
gauge parameter has to be renormalized to two loops since
it appears in the results for the wave function anomalous
dimensions.

At this point some comments on the treatment of the
𝜖-scalar mass, 𝑚

𝜖
, are in order. In practice there are two

renormalization schemes for 𝑚
𝜖
which are frequently used,

the DR and on-shell scheme. In the latter one requires that
the renormalizedmass vanishes in each order in perturbation
theory whereas in the DR prescription only the pole parts
are subtracted by the renormalization constant. In the DR
scheme it is important to keep𝑚

𝜖
different fromzero since the

renormalization group equations for the squark masses and
𝑚

𝜖
are coupled. Anonvanishing 𝜖-scalarmass in intermediate

steps is also required for the computation of the anomalous
dimensions in the DR󸀠 scheme [164] (see below) which was
constructed in order to disentangle the running of 𝑚

𝜖
from

the one of the squark parameters.
In the following, we present only the results derived

in the scheme where the 𝜖-scalar mass is renormalized in
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Figure 3: Sample diagrams contributing to Σ
11
at one, two, and three loops. The symbols 𝑡, 𝑡̃

𝑖
, 𝑔, 𝑔, and 𝜖 denote top quarks, top squarks,

gluons, gluinos, and 𝜖-scalars, respectively.

DR scheme. The two-loop results for the renormalization
constants of the top squark mass𝑚𝑡̃

1

read

𝑚
2

𝑡̃
1

𝛿𝑍
(1)

𝑚
𝑡̃1

= 𝐶
𝑅
(−𝑚

2

𝑔
− 𝑚

2

𝑡
+ 𝑚

𝑔
𝑚

𝑡
𝑠
2𝑡
+
𝑚2

𝑡̃
2

− 𝑚2

𝑡̃
1

4
𝑠
2

2𝑡
)
1

𝜖
,

𝑚
2

𝑡̃
1

𝛿𝑍
(2)

𝑚
𝑡̃1

=
{

{

{

𝐶
2

𝑅
[

[

𝑐2
2𝑡
𝑚2

𝑔
𝑚2

𝑡

𝑚2

𝑡̃
1

− 𝑚2

𝑡̃
2

+
(1 + 𝑐2

2𝑡
) 𝑠2

2𝑡
(𝑚2

𝑡̃
1

− 𝑚2

𝑡̃
2

) + 8𝑚2

𝑡

16

−
(1 + 𝑐2

2𝑡
)𝑚

𝑔
𝑚𝑡𝑠2𝑡

2
]

]

+ 𝐶
𝐴
𝐶

𝑅

× [

[

9𝑚2

𝑔

8
+ 3

𝑠2
2𝑡
(𝑚2

𝑡̃
1

− 𝑚2

𝑡̃
2

) + 4𝑚2

𝑡

32
−
3𝑚

𝑔
𝑚

𝑡
𝑠
2𝑡

4
]

]

+ 𝐶
𝑅
𝑇
𝑓
[

[

−3𝑚2

𝑔

4
−
𝑠
2

2𝑡
(𝑚2

𝑡̃
1

− 𝑚2

𝑡̃
2

) + 4𝑚2

𝑡

16

+
𝑚

𝑔
𝑚

𝑡
𝑠
2𝑡

2
]

]

}

}

}

1

𝜖2

+
{

{

{

𝐶
2

𝑅
[

[

3𝑚2

𝑔

4
+
𝑠2
2𝑡
(𝑚2

𝑡̃
1

− 𝑚2

𝑡̃
2

) + 4𝑚2

𝑡
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𝑚

𝑔
𝑚

𝑡
𝑠
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2
]

]

+ 𝐶𝐴𝐶𝑅
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[

−11𝑚2

𝑔
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𝑠
2

2𝑡
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𝑡
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𝑔
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]

]

+ 𝐶
𝑅
𝑇
𝑞
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3𝑚2

𝑔

4
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𝑠
2

2𝑡
(𝑚2

𝑡̃
1
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𝑡̃
2

) + 8𝑚2

𝑞
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𝑡

16
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𝑚

𝑔
𝑚

𝑡
𝑠
2𝑡

2
]

]

+ 𝐶
𝑅
𝑇
𝑡
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[

3𝑚2

𝑔

4
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𝑠
2

2𝑡
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1
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2

− 4𝑚2

𝑡

16

−
𝑚

𝑔
𝑚

𝑡
𝑠
2𝑡

2
]

]

}

}

}

1

𝜖

+ 𝑚
2

𝜀
(−𝐶𝐴𝐶𝑅

3

8
+ 𝐶𝑅𝑇𝑓

1

4
)
1

𝜖
,

(96)

where we have introduced the abbreviations 𝑇
𝑙
= 𝑛

𝑙
𝐼
2
(𝑅),

with 𝑙 = 𝑓, 𝑞, 𝑡 and 𝑐
𝑛𝑡
= cos(𝑛𝜃

𝑡
) and 𝑠

𝑛𝑡
= sin(𝑛𝜃

𝑡
). 𝑛

𝑞

denotes the number of light quark flavors and takes in this
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case the value 𝑛
𝑞
= 5. 𝑛

𝑡
= 1 has been introduced for conve-

nience and it holds 𝑛
𝑓
= 𝑛

𝑞
+𝑛

𝑡
. Furthermore𝑚

𝜀
denotes the

DR renormalized 𝜀-scalar mass. The corresponding results
for 𝑚𝑡̃

2

can be derived from (96) by interchanging 𝑚𝑡̃
1

and
𝑚𝑡̃
2

and changing the sign of 𝜃𝑡.
Finally, for the mixing angle we have

(𝑚
2

𝑡̃
1

− 𝑚
2

𝑡̃
2

) 𝛿𝜃
(1)

𝑡
= 𝐶

𝑅
𝑐
2𝑡
(𝑚

𝑔
𝑚

𝑡
−
𝑠2𝑡 (𝑚

2

𝑡̃
1

− 𝑚2

𝑡̃
2

)

4
)
1

𝜖
,

(𝑚
2

𝑡̃
1

− 𝑚
2

𝑡̃
2

) 𝛿𝜃
(2)

𝑡

=
{

{

{

𝐶
2

𝑅
𝑐
2𝑡
[

[

(𝑠
2

2𝑡
− 𝑐

2

2𝑡
)(

𝑚
𝑔
𝑚

𝑡

2
−
𝑠
2𝑡
(𝑚2

𝑡̃
1

− 𝑚2

𝑡̃
2

)

16
)

−
2𝑠

2𝑡
𝑚2

𝑔
𝑚2

𝑡

𝑚2

𝑡̃
1

− 𝑚2

𝑡̃
2

]

]

+ 𝐶
𝑅𝐶𝐴𝑐2𝑡

[

[

−3𝑚
𝑔
𝑚

𝑡

4
+
3𝑠

2𝑡
(𝑚2

𝑡̃
1

− 𝑚2

𝑡̃
2

)

32
]

]

+𝐶
𝑅
𝑇
𝑓
𝑐
2𝑡
[

[

𝑚
𝑔𝑚𝑡

2
−
𝑠
2𝑡
(𝑚2

𝑡̃
1

− 𝑚2

𝑡̃
2

)

16
]

]

}

}

}

1

𝜖2

+
{

{

{

𝐶
2

𝑅
𝑐
2𝑡
[

[

−
𝑚

𝑔
𝑚

𝑡

2
+
𝑠
2𝑡
(𝑚2

𝑡̃
1

− 𝑚2

𝑡̃
2

)

16
]

]

+ 𝐶
𝑅𝐶𝐴𝑐2𝑡

[

[

3𝑚
𝑔
𝑚

𝑡

4
−
3𝑠2𝑡 (𝑚

2

𝑡̃
1

− 𝑚2

𝑡̃
2

)

32
]

]

+𝐶
𝑅
𝑇
𝑓
𝑐
2𝑡
[

[

−
𝑚

𝑔
𝑚

𝑡

2
+
𝑠
2𝑡
(𝑚2

𝑡̃
1

− 𝑚2

𝑡̃
2

)

16
]

]

}

}

}

1

𝜖
.

(97)

The three-loop results are also available in electronic form
[161], but they are too lengthy to be explicitly given in this
review.

In the case of degenerate squark masses, one can take
naively the limit𝑚𝑡̃

2

→ 𝑚𝑡̃
1

in (96). Furthermore one has to
nullify themixing angle.The quantities 𝛿𝜃(1,2)

𝑡
are not defined

in the mass-degenerate case which is reflected by the fact that
the limit𝑚𝑡̃

2

→ 𝑚
𝑡̃
1

does not exist in (97).
For completeness let us also provide the three-loop result

for mass-degenerate squarks which is given by

𝑚
2

𝑞
𝑍

𝑚
𝑞

= 𝑚
2

𝑞
−
𝛼
𝑠

𝜋

1

𝜖
𝐶

𝑅
𝑚

2

𝑔
+ (

𝛼
𝑠

𝜋
)
2 1

16

× {
2

𝜖2
𝐶

𝑅
(9𝐶

𝐴
− 6𝑇

𝑓
)𝑚

2

𝑔

+
1

𝜖
[4𝐶

𝑅
[2𝑇

𝑞
𝑚

2

𝑞
+ 𝑇

𝑡
(𝑚

2

𝑡̃
1

+ 𝑚
2

𝑡̃
2

− 2𝑀
2

𝑡
)]

+ [2𝐶
𝑅
(−11𝐶

𝐴
+ 6𝐶

𝑅
) + 12𝐶

𝑅
𝑇
𝑓
]𝑚

2

𝑔

+ (−6𝐶
𝐴
𝐶

𝑅
+ 4𝐶

𝑅
𝑇
𝑓
)𝑚

2

𝜀
] }

× (
𝛼
𝑠

𝜋
)
3 1

64

× {
8

𝜖3
𝐶

𝑅
[−9𝐶

2

𝐴
+ 12𝐶

𝐴
𝑇
𝑓
− 4𝑇

2

𝑓
]𝑚

2

𝑔

+
1

𝜖2
[8𝐶

𝑅
𝑇
𝑞
(−3𝐶

𝐴
+ 2𝑇

𝑓
)𝑀

2

𝑞
+ 4𝐶

𝑅
𝑇
𝑓

× (−3𝐶
𝐴
+ 2𝑇

𝑓
) (𝑚

2

𝑡̃
1

+ 𝑚
2

𝑡̃
2

− 2𝑀
2

𝑡
)

+2𝐶
𝑅
(3𝐶

𝐴
− 2𝑇

𝑓
)
2

𝑚
2

𝜀
]

+
1

𝜖
[𝐶

𝑅
(5𝐶

𝐴
− 2𝐶

𝑅
+ 2𝑇

𝑓
)

× [𝑇
𝑞
𝑀

2

𝑞
+ 4𝑇

𝑡
(𝑚

2

𝑡̃
1

+ 𝑚
2

𝑡̃
2

− 2𝑀
2

𝑡
)]

+ 8𝐶
𝑅
𝑚

2

𝑔
[−10𝐶

2

𝐴
+ 7𝐶

𝐴
𝐶

𝑅
− 8𝐶

2

𝑅

+ 4𝑇
2

𝑓
+ 6𝑇

𝑓
𝐶

𝑅 (3 − 4𝜁 (3))

+24𝑇
𝑓
𝐶

𝐴
𝜁 (3) ]

+ 2𝐶
𝑅
(3𝐶

𝐴
− 2𝑇

𝑓
)

× (−5𝐶
𝐴
+ 2𝐶

𝑅
+ 2𝑇

𝑓
)𝑚

2

𝜀
] } ,

(98)

where we have used the above mentioned abbreviations 𝑇
𝑙
=

𝑛
𝑙
𝐼
2
(𝑅), with 𝑙 = 𝑓, 𝑞, 𝑡. The terms that do not involve 𝑇

𝑡
can

be obtained from 𝑍
𝑚
𝑡̃1

by setting 𝑚𝑡̃
2

= 𝑚𝑡̃
1

, 𝑚
𝑡
= 0, and

𝜃
𝑡 = 0.

As mentioned before, the 𝜖-scalar mass needs to be
renormalized at two loops within the DR scheme, in order to
obtain the three-loop renormalization constants for squark
masses and mixing angles. The corresponding renormaliza-
tion constant is given by

𝑍
𝑚
𝜀

= 1 +
𝛼
𝑠

𝜋

1

𝜖

× {
−3

4
𝐶

𝐴
+
1

2
𝑇
𝑓

+ [−
𝐶𝐴

2
𝑚

2

𝑔

+2𝑇𝑞𝑚
2

𝑞
+ 𝑇𝑡 (𝑚

2

𝑡̃
1

+ 𝑚
2

𝑡̃
2

− 2𝑚
2

𝑡
) ]

1

2𝑚2

𝜀

}

+ (
𝛼
𝑠

𝜋
)
2
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× {
1

𝜖2
[
9

16
𝐶

2

𝐴
−
3

4
𝐶

𝐴
𝑇
𝑓
+
1

4
𝑇

2

𝑓

+ (
3𝐶

2

𝐴
− 2𝐶𝐴𝑇𝑓 − 2𝐶𝑅𝑇𝑓

4
𝑚

2

𝑔

−
3𝐶

𝐴𝑇𝑞 − 2𝑇𝑓𝑇𝑞

4
𝑚

2

𝑞
−
3𝐶

𝐴𝑇𝑡 − 2𝑇𝑓𝑇𝑡

8

× (𝑚
2

𝑡̃
1

+ 𝑚
2

𝑡̃
2

− 2𝑚
2

𝑡
))

1

𝑚2

𝜀

]

×
1

𝜖
[ −

3

8
𝐶

2

𝐴
+
1

4
𝐶𝐴𝑇𝑓

+ (−
5𝐶2

𝐴
−2𝐶

𝐴
𝑇
𝑓
−4𝐶

𝑅
𝑇
𝑓

8
𝑚

2

𝑔
+
𝐶

𝐴
𝑇
𝑞

2
𝑚

2

𝑞

+
𝐶𝐴𝑇𝑡

4
(𝑚

2

𝑡̃
1

+𝑚
2

𝑡̃
2

−2𝑚
2

𝑡
))

1

𝑚2

𝜀

]} .

(99)

Let us detail at this point on the choice of scheme.When com-
puting the anomalous dimensions for the physical param-
eters, one has to consider the combined set of differential
equations of all DR parameters appearing in the correspond-
ing renormalization constants.This concerns in particular the
unphysical 𝜖-scalar mass whichmeans that although𝑚𝜖 is set
to zero at one scale it is different from zero once this scale
is changed. A way out from this situation is to renormalize
the 𝜖-scalar mass on shell and set the renormalized mass𝑀𝜀

to zero. However, this scheme might become quite involved
in practice, because of the on-shell two-loop diagrams that
have to be computed. Alternatively one could shift the squark
masses by a finite term which is chosen such that the 𝜖-
scalar decouples from the system of differential equations.
The resulting renormalization scheme is called DR󸀠 scheme
and has been suggested in [164]. For this calculation the finite
shift is needed up to two loops and is given by [152, 164]

𝑚
2

𝑓
󳨀→ 𝑚

2

𝑓
−
𝛼𝑠

𝜋

1

2
𝐶𝐹𝑚

2

𝜖
+ (

𝛼𝑠

𝜋
)
2

× 𝐶
𝐹
𝑚

2

𝜖
(
1

4
𝑇
𝑓
(𝑛

𝑞
+ 𝑛

𝑡
) +

1

4
𝐶

𝐹
−
3

8
𝐶

𝐴
) ,

(100)

where 𝑓 = 𝑡 or 𝑓 = 𝑞.
At the end of this section we want to discuss briefly

the numerical impact of the higher order corrections on the
squark masses. If one chooses the SUSY mass parameters of
the order of O (1TeV), one observes a moderate shift of a
few GeV when going from one to two loops. After switching
on the three-loop terms, however, the squark masses are
decreased by about 40GeV which is approximately an order
ofmagnitude larger than the two-loop corrections. Neverthe-
less it corresponds to a shift in themasses of about 3%which is
a reasonable amount for a three-loop SUSY-QCD term. Our
observation coincides with the findings of [158, 159] where

also relatively large three-loop corrections for the squarks
have been identified.

5. The SM Gauge Beta Functions to
Three Loops

In this section we report on the recent calculation of the
three-loop gauge beta functions of the SM. In contrast to
the supersymmetric theories, the SM beta functions to three
loops have been computed only last year. At this point, it
becomes probably clear the importance of all-order relations
for the anomalous dimensions of supersymmetric theories
valid in special regularization schemes. In the absence of
SUSY and its holomorphic properties, one has to derive the
anomalous dimension from a pure diagrammatic computa-
tion, which at the three-loop level becomes computationally
quite involved.

The SM beta functions are important tools that allow us
to relate theory predictions for various parameters at different
energy scales. An important example in this respect is the
inspection of the gauge coupling unification at high energies,
for which precise experimental data of the couplings at the
electroweak scale combined with accurate calculations of the
RGEs yields precise predictions.

The computation of the beta functions of gauge theories
has a long history. The one-loop beta functions in gauge
theories along with the discovery of asymptotic freedom have
been presented in [6, 7, 165]. The computation of the corre-
sponding two-loop corrections followed a few years later in a
series of papers. Namely, for gauge theories without fermions
the results were computed in [166, 167], with those for gauge
theories with fermions neglecting Yukawa couplings in [168–
170] and considering also Yukawa couplings in [171].The two-
loop gauge coupling beta functions in an arbitrary quantum
field theory have been considered in [172–175]. At the three-
loop order, the first computed contributions to the gauge
beta functions were those induced through the scalar self-
interactions in [122, 123]. An important contribution to the
field was the computation of the three-loop beta function
in QCD [111, 112]. Yukawa contributions to it have been
obtained in [176]. The generalization of these results to a
general quantum field theory based on a single gauge group
has been achieved in [101, 102]. For QCD, even the four-loop
corrections are known from [119, 121]. In the following we
concentrate on the calculation of the beta functions for the
three gauge couplings of the SM up to three loops in the MS
scheme. They have been computed for the first time in [49]
and confirmed by an independent calculation in [177].

Let us in a first step fix the notation. We denote the three
gauge couplings by 𝛼

1
, 𝛼

2
, and 𝛼

3
and adopt a SU(5)-like

normalization.They are related to the quantities usually used
in the SM by the all-order relations

𝛼
1
=
5

3

𝛼QED

cos2𝜃
𝑊

,

𝛼
2
=

𝛼QED

sin2𝜃
𝑊

,

𝛼
3
= 𝛼

𝑠
,

(101)
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where𝛼QED is the fine structure constant, 𝜃
𝑊
theweakmixing

angle, and 𝛼
𝑠
the strong coupling.

The SM Yukawa interactions are described by (see, e.g.,
Chapter 11 of [178])

LYukawa

= −𝑄
𝐿

𝑖
𝑌

𝑈

𝑖𝑗
𝜖𝐻

⋆
𝑢
𝑅

𝑗
− 𝑄

𝐿

𝑖
𝑌

𝐷

𝑖𝑗
𝐻𝑑

𝑅

𝑗
− 𝐿

𝐿

𝑖
𝑌

𝐿

𝑖𝑗
𝐻𝑙

𝑅

𝑗
+ h.c.,

(102)

where 𝑌𝑈,𝐷,𝐿 are complex 3 × 3 matrices, 𝑖, 𝑗 are generation
labels, 𝐻 denotes the Higgs field, and 𝜖 is the 2 × 2

antisymmetric tensor. 𝑄𝐿, 𝐿𝐿 are the left-handed quark and
lepton doublets; and 𝑢𝑅, 𝑑𝑅, 𝑙𝑅 are the right-handed up-
and down-type quark and lepton singlets, respectively. The
physicalmass eigenstates are obtained by diagonalizing𝑌𝑈,𝐷,𝐿

by six unitary matrices 𝑉𝑈,𝐷,𝐿

𝐿,𝑅
as follows:

𝑌̃
𝑓

diag = 𝑉
𝑓

𝐿
𝑌

𝑓
𝑉

𝑓†

𝑅
, 𝑓 = 𝑈,𝐷, 𝐿. (103)

As a result the charged-current 𝑊± couples to the physical
quark states with couplings parametrized by the Cabibbo-
Kobayashi-Maskawa (CKM) matrix 𝑉CKM ≡ 𝑉𝑈

𝐿
𝑉𝐷†

𝐿
. We

furthermore introduce the notation

𝑇̂ =
1

4𝜋
𝑌

𝑈
𝑌

𝑈†

, 𝐵 =
1

4𝜋
𝑌

𝐷
𝑌

𝐷†

, 𝐿̂ =
1

4𝜋
𝑌

𝐿
𝑌

𝐿†

.

(104)

Of course, only traces over products of Yukawa matrices can
occur because they arise from closed fermion loops. Using
(103) and (104) it is straightforward to see that only traces of
diagonal matrices have to be taken except for tr𝑇̂𝐵 which is
given by

tr𝑇̂𝐵 = tr[

[

(

𝛼
𝑢
0 0

0 𝛼
𝑐
0

0 0 𝛼
𝑡

)𝑉CKM(
𝛼
𝑑
0 0

0 𝛼
𝑠
0

0 0 𝛼
𝑏

)𝑉
†

CKM
]

]

.

(105)

The Yukawa couplings are related to the SM parameters via
the tree-level relations

𝛼
𝑥
=

𝛼QED𝑚
2

𝑥

2sin2𝜃
𝑊
𝑀2

𝑊

, with 𝑥 = 𝑡, 𝑏, 𝜏, 𝑐, 𝑠, . . . , (106)

where 𝑚
𝑥
and 𝑀

𝑊
are the fermion and 𝑊 boson mass,

respectively.
We denote the Higgs boson self-coupling by 𝜆̂, where the

Lagrange density contains the following term:

L = ⋅ ⋅ ⋅ − (4𝜋𝜆̂) (𝐻
†
𝐻)

2

+ ⋅ ⋅ ⋅ (107)

describing the quartic Higgs boson self-interaction.
The beta functions are obtained by calculating the

renormalization constants relating bare and renormalized
couplings via the relation

𝛼
bare
𝑖

= 𝜇
2𝜖
𝑍

𝛼
𝑖

({𝛼
𝑗
} , 𝜖) 𝛼

𝑖
. (108)

Taking into account that 𝛼bare
𝑖

does not depend on 𝜇 and
taking into account that𝑍

𝛼
𝑖

may depend on all couplings lead
to the following formula:

𝛽
𝑖
= −[

[

𝜖
𝛼
𝑖

𝜋
+
𝛼
𝑖

𝑍
𝛼
𝑖

7

∑
𝑗=1,𝑗 ̸= 𝑖

𝜕𝑍𝛼
𝑖

𝜕𝛼
𝑗

𝛽
𝑗
]

]

(1 +
𝛼
𝑖

𝑍
𝛼
𝑖

𝜕𝑍𝛼
𝑖

𝜕𝛼
𝑖

)

−1

,

(109)

where 𝑖 = 1, 2 or 3. We furthermore set 𝛼4 = 𝛼𝑡, 𝛼5 = 𝛼𝑏,
𝛼
6
= 𝛼

𝜏
, and 𝛼

7
= 𝜆̂ and neglect the rest of Yukawa couplings.

The first term in the first factor of (109) originates
from the term 𝜇2𝜖 in (108) and vanishes in four space time
dimensions. The second term in the first factor contains the
beta functions of the remaining six couplings of the SM.
Note that (for the gauge couplings) the one-loop term of
𝑍

𝛼
𝑖

only contains 𝛼
𝑖
, whereas at two loops all couplings are

present except 𝜆̂. The latter appears for the first time at three-
loop level. As a consequence, it is necessary to know 𝛽𝑗 for
𝑗 = 4, 5, 6 to one-loop order and only the 𝜖-dependent term
for 𝛽

7
, namely, 𝛽

7
= −𝜖𝛼

7
/𝜋. From the second term in

the first factor and the second factor of (109) one can read
off that three-loop corrections to 𝑍

𝛼
𝑖

are required for the
computation of 𝛽

𝑖
to the same loop order.

In the MS scheme the beta functions are mass indepen-
dent. This allows us to use the SM in the unbroken phase
as a framework for our calculation. In principle each vertex
containing the coupling 𝑔𝑖 = √4𝜋𝛼𝑖 can be used in order
to determine the corresponding renormalization constant
via the relation (42). In order to compute the individual
renormalization constants entering equation (42) one can
proceed as outlined in the previous sections.

A second method that can be used to get an independent
result for the renormalization constants of the gauge cou-
plings is a calculation in the background field gauge (BFG)
[179, 180].The basic idea of the BFG is the splitting of all gauge
fields in a “quantum” and a “classical” part where in practical
calculations the latter only occurs as external particle.

TheBFGhas the advantage thatWard identities guarantee
that renormalization constants for gauge couplings can be
obtained from the exclusive knowledge of the corresponding
wave function renormalization constant. Thus we have the
following formula:

𝑍𝛼
𝑖

=
1

𝑍
𝐴
𝑖
,wf
, (110)

where𝐴 denotes the gauge boson corresponding to the gauge
coupling 𝛼

𝑖.
In the BFG calculation it is advisable to adopt Landau

gauge in order to avoid the renormalization of the gauge
parameters 𝜉𝑖. However, it is not possible to choose Landau
gauge from the very beginning since some Feynman rules for
vertices involving a background gauge boson contain terms
proportional to 1/𝜉

𝑖
where 𝜉

𝑖
= 0 corresponds to Landau

gauge. To circumvent this problem one has to evaluate the
bare integrals for arbitrary gauge parameters. In the final
result all inverse powers of 𝜉

𝑖
cancel and thus the limit 𝜉

𝑖
= 0

can be taken at the bare level.
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An important issue in the present calculation is the
treatment of 𝛾

5
within dimensional regularization. Nontrivial

contributions may arise if in the course of the calculation
two fermion traces occur where both of them contain an
odd number of 𝛾

5
-matrices and four or more 𝛾-matrices. It

is straightforward to see that the three-point Green functions
that are required for this computation contain at most
one-loop triangle subdiagrams (three-point Green functions
involving external fermion lines are not considered here).
This could potentially lead to contributions where a careful
treatment of 𝛾5 is required. However, all these contributions
vanish identically due to anomaly cancellations in the SM
(see, e.g., [181]). This can also be checked by an explicit
calculation using the seminaive regularization prescription
for 𝛾

5
as discussed in Section 3.1. Due to theO(𝜖) ambiguity of

(27), this approach can be directly applied only to diagrams
that contain at most simple poles in 𝜖. Otherwise, finite
counterterms have to be introduced in order to restore
Ward identities [86]. However, the diagrams contributing to
this calculation that contain one-loop triangle subdiagrams
have at most simple poles in 𝜖. This explains why one
obtains correct results for the three-loop beta functions even
without implementing the ’t Hooft-Veltman scheme for the
regularization of 𝛾

5
.

From the technical point of view, all themethods and pro-
grams discussed in the previous section can also be applied in
this computation.Themain difficulty of this calculation is the
enormous number of diagrams (of about a million diagrams)
that contribute to the individual renormalization factors. In
order to handle such an enormous amount of diagrams in
a reasonable wall-clock time, one needs to parallelize the
calculation.

We are now in the position to present the results for the
beta functions of the gauge couplings which are given by
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In the above formulas 𝑛
𝐺
denotes the number of fermion

generations. It is obtained by labeling the closed quark and
lepton loops present in the diagrams.

Let us finally briefly discuss the numerical impact of
the new three-loop corrections. In Figure 4 from [49] we
reproduce the running of 𝛼

1
and 𝛼

2
from 𝜇 = 𝑀

𝑍

to the energy scales where these two couplings become
equal. The dotted and dashed lines correspond to one- and
two-loop running, respectively. One observes a significant
change of the curves, which is in particular much bigger
than the experimental uncertainty indicated by the dashed
band. Thus in case only one- and two-loop perturbative
corrections are included the theory uncertainty is much
bigger than the experimental one. This changes with the
inclusion of the three-loop terms. The results are shown as
solid lines which are closed to the corresponding dashed
curves. The effect is small, however, still of the order of the
experimental uncertainty, in particular for 𝛼

2
. The three-

loop effects on 𝛼
3
predictions are, as expected, much smaller

than the experimental uncertainty. For this reason, the strong
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Figure 4: The running of the electroweak gauge couplings in the
SM from [49]. The lines with positive slope correspond to 𝛼

1
, the

lines with negative slope to 𝛼
2
. The dotted, dashed, and solid lines

correspond to one-, two-, and three-loop precision, respectively.
The bands around the three-loop curves visualize the experimental
uncertainty.

coupling was not displayed in Figure 4. Let us briefly point
out that the energy scale at which the electroweak couplings
meet each other is of about 1013 GeV. Coupling unification
at such a low-energy scale would imply a too rapid proton
decay, in contrast to the experimental results.Thus, even from
this partial analysis, we can conclude that the statement that
gauge coupling unification cannot be achieved within the
SM remains valid even after the inclusion of the three-loop
radiative corrections. More details about this topic can be
found in the next section.

6. Gauge Coupling Unification in
Supersymmetric Models

An appealing hint in favor of supersymmetry is the apparent
unification of gauge couplings at a scale of about 1016 GeV
[20–22]. Gauge coupling unification is highly sensitive to the
heavy particle mass spectrum. This property allows us to
probe unification through precision measurements of low-
energy parameters like the gauge couplings at the electroweak
scale and the supersymmetric mass spectrum. The current
precision of the experimental data for the relevant input
parameters [178, 182] and the substantial progress on the
theory side [50, 103, 127, 158, 159, 183] require renormalization
group analyses even at three-loop accuracy. Within this
method, one needs 𝑛-loop RGEs and (𝑛 − 1)-loop threshold
corrections to achieve 𝑛-loop precision. We have discussed
in detail the derivation of RGEs in the previous sections.
The first part of this section is devoted to the calculation
of threshold corrections. As an example, the determination
of the two-loop SUSY-QCD threshold corrections for the
strong coupling 𝛼

𝑠
and the bottom-quark mass 𝑚

𝑏
will be

presented. In the second part of this section, we outline
the phenomenological analysis of gauge coupling unification
within the minimal SUSY SU(5) model.



30 Advances in High Energy Physics

6.1. Effective Field Theory Approach: Decoupling Coefficients.
As already stated above, the underlying motivation for the
running analysis is to relate physical parameters measured
at the electroweak scale with the Lagrange parameters at the
GUT scale. The running parameters are most conveniently
defined in mass-independent renormalization schemes such
as MS for the SM parameters and DR for the MSSM
parameters.These schemes have the advantage that the gauge
beta functions aremass independent and their computation is
much easier than in physical mass dependent schemes. How-
ever, quantum corrections to low-energy processes contain
logarithmically enhanced contributions from heavy particles
withmassesmuch greater than the energy-scale of the process
under consideration. In other words in such “unphysical”
renormalization schemes the Appelquist-Carazzone decou-
pling theorem [184] does not hold in its naive form. An
elegant approach to get rid of this unwanted behavior in the
MS orDR scheme is to formulate an effective theory (ET) (for
more details see [134, 185]) integrating out all heavy particles.
The parameters of the ET must be modified (“rescaled”) in
order to take into account the effects of the heavy fields. The
ET parameters are related to the parameters of the full theory
by the so-called matching or decoupling relations.

They have been computed in QCD including corrections
up to the four-loop order for the strong coupling [186, 187]
and three-loop order for quark masses [185]. In the MSSM
the two-loop SUSY-QCD [50, 183, 188] and SUSY-EW [189–
191] expressions are known. Very recently, even the three-
loop SUSY-QCD corrections to decoupling coefficient of the
strong coupling were computed [192].

In the following, we concentrate on the calculation of
the decoupling coefficients for the strong coupling and the
bottom-quark mass within SUSY-QCD. They are the most
interesting quantities from the phenomenological point of
view because they are on the one hand the main ingredients
for the study of the gauge and Yukawa coupling unification.
On the other hand they are the quantities that receive
the largest radiative corrections, for which next-to-next-to-
leading-order corrections are essential for high precision
predictions.

6.1.1. Framework. We consider SUSY-QCD with 𝑛
𝑓
active

quark and 𝑛𝑠 = 𝑛𝑓 active squark flavors and 𝑛𝑔 = 1 gluinos.
Furthermore, we assume that 𝑛𝑙 = 5 quarks are light (among
which the bottom quark) and that the top quark and all
squarks and the gluino are heavy. Integrating out the heavy
fields from the full SUSY-QCD Lagrangian, we obtain the
Lagrange density corresponding to the effective QCD with 𝑛𝑙
light quarks plus nonrenormalizable interactions. The latter
are suppressed by negative powers of the heavy masses and
will be neglected here.The effective Lagrangian can bewritten
as follows:

Leff (𝑔
0

𝑠
, 𝑚

0

𝑞
, 𝜉

0
; 𝑞

0
, 𝐺

0,𝑎
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0,𝑎
; 𝜁

0

𝑖
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=L
QCD

(𝑔
0󸀠

𝑠
, 𝑚

0󸀠

𝑞
, 𝜉

0󸀠
; 𝑞

0󸀠
, 𝐺

0󸀠,𝑎

𝜇
, 𝑐

0󸀠,𝑎
) ,

(112)

where 𝑞, 𝐺𝑎

𝜇
, 𝑐𝑎 denote the light-quark, the gluon, and the

ghost fields, respectively,𝑚𝑞 stands for the light quarkmasses,

𝜉 is the gauge parameter, and 𝑔
𝑠
= √4𝜋𝛼𝑠

is the strong
coupling. The index 0 marks bare quantities and LQCD is
the usual QCD Lagrangian from which all heavy fields have
been discarded. As a result the fields, masses, and couplings
associated with light particles have to be rescaled. They are
labeled by a prime in (112) and are related to the original
parameters through decoupling relations:

𝑔
0󸀠

𝑠
= 𝜁

0

𝑔
𝑔
0

𝑠
, 𝑚

0󸀠

𝑞
= 𝜁

0

𝑚
𝑚

0

𝑞
, 𝜉

0󸀠
− 1 = 𝜁

0

3
(𝜉

0
− 1) ,

𝑞
0󸀠
= √𝜁0

2
𝑞
0
, 𝐺

0󸀠,𝑎

𝜇
= √𝜁0

3
𝐺

0,𝑎

𝜇
, 𝑐

0󸀠,𝑎
= √𝜁0

3
𝑐
0,𝑎
.

(113)

Since the decoupling coefficients are universal quantities,
they are independent of the momenta carried by the incom-
ing and outgoing particles. The authors of [185] showed that
the bare decoupling coefficients 𝜁0

𝑚
, 𝜁0

2
, 𝜁0

3
, 𝜁0

3
can be derived

from the quark, the gluon, and the ghost propagators, all
evaluated at vanishing external momenta, via the relations

𝜁
(0)

3
= 1 + Π

0,ℎ
(0) ,

𝜁
(0)

2
= 1 + Σ

0,ℎ

V (0) ,

𝜁
(0)

𝑚
=
1 − Σ0,ℎ

𝑠
(0)

1 + Σ0,ℎ

V (0)
.

(114)

The superscript ℎ indicates that in the framework of DREG or
DRED only diagrams containing at least one heavy particle
inside the loops contribute and that only the hard regions
in the asymptotic expansion of the diagrams are taken into
account.

In Figure 5 are shown sample Feynman diagrams con-
tributing to the decoupling coefficients for the strong cou-
pling (a) and the bottom-quark mass (b).

For the computation of 𝜁
𝑔
one has to consider in addition

one vertex involving the strong coupling. A convenient choice
is the relation

𝜁
0

𝑔
=

𝜁0
1

𝜁0
3
√𝜁0

3

, (115)

where 𝜁0
1
denotes the decoupling constant for the ghost-gluon

vertex.
The finite decoupling coefficients are obtained upon the

renormalization of the bare parameters. They are given by

𝜁
𝑔
=
𝑍

𝑔

𝑍󸀠

𝑔

𝜁
0

𝑔
, 𝜁

𝑚
=
𝑍

𝑚

𝑍󸀠

𝑚

𝜁
0

𝑚
, (116)

where 𝑍󸀠

𝑔
and 𝑍󸀠

𝑚
correspond to the renormalization con-

stants in the effective theory, and 𝑍𝑔 and 𝑍𝑚 denote the
same quantities in the full theory. Since we are interested
in the two-loop results for 𝜁𝑖, 𝑖 = 𝑔, 𝑚, the corresponding
renormalization constants for SUSY-QCD and QCD have to
be implemented with the same accuracy. Analytical results
for the latter up to the three-loop order can be found in
the previous sections and the references cited therein, for
example, [134, 193, 194].
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Figure 5: Sample diagrams contributing to 𝜁
3
, 𝜁

3
, 𝜁

1
, and 𝜁

𝑚
with gluons (𝑔), ghosts (𝑐), bottom/top quarks (𝑏/𝑡), bottom/top squarks (𝑏̃/𝑡̃),

and gluinos (𝑔).

6.1.2. Renormalization Scheme. Apart from the renormaliza-
tion constants of the external fields, also the renormalization
of the input parameters is required. However, for the renor-
malization of the gluino and squark masses and the squark
mixing angle we choose the on-shell scheme. This scheme
allows us to use directly the physical parameters in the
running analyses making the implementation very simple.
The explicit formulae at the one-loop order can be found in
[195, 196].The two-loop counterterms are known analytically
only for specific mass hierarchies [156] and numerically for
arbitrary masses [197].

For the computation of the decoupling coefficient for the
bottom-quark mass at order O(𝛼2

𝑠
) one needs to renormalize

in addition the bottom-quarkmass and the trilinear coupling
𝐴

𝑏
as well as the 𝜖-scalar mass. As the bottom-quark mass is

neglected with respect to heavy particle masses, an explicit
dependence of the radiative corrections on 𝑚

𝑏
can occur

only through bottom Yukawa coupling. In order to avoid
the occurrence of large logarithms of the form 𝛼2

𝑠
log(𝜇2/𝑚2

𝑏
)

with 𝜇 ≃ 𝑀̃, one has to renormalize the bottom Yukawa
coupling in the DR scheme. In this way, the large logarithms
are absorbed into the running mass and the higher order
corrections are maintained small.

The renormalization prescription for the trilinear cou-
pling 𝐴

𝑏
is fixed by the tree-level relation

sin 2𝜃
𝑏
=
2𝑚

𝑏
(𝐴

𝑏
− 𝜇 tan𝛽)

𝑚2

𝑏̃
1

− 𝑚2

𝑏̃
2

. (117)

The parameters 𝜇 and tan𝛽 do not acquire O(𝛼
𝑠
) corrections

to the one-loop level. Generically, the counterterm for𝐴
𝑏
can

be expressed as

𝛿𝐴𝑏 = (2 cos 2𝜃𝑏𝛿𝜃𝑏 + sin 2𝜃𝑏
𝛿𝑚2
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2

𝑚2

𝑏̃
1

− 𝑚2

𝑏̃
2

− sin 2𝜃𝑏
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)

×
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2

𝑏̃
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2

2𝑚𝑏

, (118)

where 𝛿𝑚
𝑏
and 𝛿𝑚2

𝑏̃
1,2

are the counterterms corresponding
to bottom-quark and squark masses, respectively. Due to the
use of different renormalization prescriptions for the bottom-
quark and squarkmasses andmixing angle, the parameter𝐴

𝑏

is renormalized in amixed scheme.
Finally, the last parameter to be renormalized is the 𝜖-

scalar mass. In softly broken SUSY theories, as it is the case of
MSSMor SUSY-QCD, they get a radiatively inducedmass. As
already discussed in the previous sections, there are different
approaches in the literature to perform the renormalization
in such a case. To obtain decoupling coefficients independent
of the unphysical parameter𝑚𝜖, one has tomodify the bottom
squark masses by finite quantities [152, 164] according to the
relation (100). Such finite shifts have to be performed for both
renormalization schemes for squark masses DR and on shell.

6.1.3. Analytical Results. The exact one-loop results for the
decoupling coefficients of the strong coupling constant 𝜁

𝑠 and
bottom-quark mass 𝜁𝑚 can be found in [50, 188, 195]. We list
them below up to order O(𝜖):

𝜁
𝑠
= 1 +

𝛼(SQCD)

𝑠

𝜋

× [ −
1

6
𝐶

𝐴
𝐿

𝑔
−
1

6
𝐿

𝑡
−∑

𝑞

∑
𝑖=1,2

1

24
𝐿

𝑞
𝑖

− 𝜖(
𝐶

𝐴

12
(𝐿

2

𝑔
+ 𝜁 (2)) +

1

12
(𝐿

2

𝑡
+ 𝜁 (2))

−
1

48
∑
𝑞

∑
𝑖=1,2

(𝐿
2

𝑞
𝑖

+ 𝜁 (2)))] ,

(119)
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𝜁
𝑚
𝑏

= 1 +
𝛼(SQCD)

𝑠

𝜋
𝐶

𝐹

× ∑
𝑖=1,2
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4
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2
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𝑖

− 𝑚
2

𝑔
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]
]

]

}}

}}

}

,

(120)

where 𝜁(2) is Riemann’s zeta function with 𝜁(2) = 𝜋2/6. In
the above equations we have adopted the abbreviations

𝐿
𝑖
= ln

𝜇2

𝑚2

𝑖

, 𝑖 ∈ {𝑡, 𝑔, 𝑞
1,2
, 𝑏̃

1,2
} ,

𝑋
𝑏
= 𝐴

𝑏
− 𝜇SUSY tan𝛽.

(121)

𝛼(SQCD)

𝑠
denotes the strong coupling constant in SUSY-QCD.

The presence of the terms proportional to the parameter
𝑋

𝑏
is a manifestation of the supersymmetry breaking. They

are generated by the Yukawa interaction between left- and
right-handed bottom squarks and the CP-neutral Higgs
fields. Their contribution to the decoupling coefficient of the
bottom-quark mass can be related through the low-energy
theorem [198] to the decay rate of the Higgs boson to 𝑏𝑏

pairs. To one-loop order, the 𝑋
𝑏
term of (120) coincides

with the SUSY-QCD corrections to the decay rate 𝜙 →

𝑏𝑏 [199]. To higher orders, the relation between the two
parameters becomesmore involved (for details see Section 8).
These Yukawa-coupling-induced contributions attracted a
lot of attention due to the fact that they are the dominant
corrections for large values of tan𝛽. They may in general
become comparable with the tree-level bottom-quark mass.
Thus, they need to be resumed even at the two-loop level.

The analytical two-loop results for the decoupling coeffi-
cients are too lengthy to be displayed here. They are available
in [50] together with their expressions for some phenomeno-
logicallymotivatedmass hierarchies.The dominant two-loop
contributions to 𝜁𝑚

𝑏

, that is, the terms enhanced by tan𝛽,
have been confirmed by the independent computation of
[190, 191]. Also the dominant SUSY-QCD-EW corrections to
𝜁𝑚
𝑏

at the two-loop order have been computed in [190, 191].

6.1.4. Numerical Analysis. In this section we discuss briefly
the numerical impact of the two-loop decoupling coefficients
derived above on the prediction of the strong coupling
constant at the GUT scale. As already pointed out, the
scale 𝜇dec at which the decoupling of the heavy particles
is performed is not fixed by the theory. The dependence
of physical observables on this unphysical parameter is a
measure of the theoretical uncertainty left over. At fixed order
perturbation theory, it is expected that the relations between
the running parameters evaluated at high-energy scale and
their low-energy values become less sensitive to the choice of
𝜇dec, once higher order radiative corrections are considered.

In [200] a consistent method for the calculation of the
energy evolution of physical parameters was proposed. For
example, one derives the SM values 𝛼(5)

𝑠
(𝜇dec) and at the

heavy scale 𝜇dec from the 𝑛-loop SMRGEs. Here 𝜇dec denotes
the energy scale at which the heavy particles are supposed
to become active, that is, the scale where the matching
between the SM and the MSSM is performed. Before the
matching procedure, one has to perform also the change of
regularization scheme from MS to DR. For consistency, the
𝑛-loop running parameters have to be foldedwith (𝑛−1)-loop
conversion and decoupling relations. The latter are known in
SUSY-QCD up to two-loop order [201] and within MSSM to
one-loop order [202]. Above the decoupling scale, the energy
dependence of the running parameters is governed by the 𝑛-
loop MSSM RGEs.

The dependence of 𝛼𝑠(𝜇GUT) on the decoupling scale is
displayed in Figure 6 from [50].The dotted, dashed, and solid
lines denote the one-, two-, and three-loop running, where
the corresponding exact results for the decoupling coeffi-
cients have been implemented. One can see the improved sta-
bility of the three-loop results with respect to the decoupling-
scale variation. The uncertainty induced by the current
experimental accuracy on 𝛼𝑠(𝑀𝑍), 𝛿𝛼𝑠 = 0.001 [203], is
indicated by the hatched band.

In order to get an idea of the effects induced by the SUSY
mass parameters on 𝛼

𝑠
(𝜇GUT), two different mass spectra

are shown. As reference was chosen the so-called Snowmass
Point SPS1a󸀠 scenario [204] for which rather low SUSY mass
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Figure 6: 𝛼
𝑠
(𝜇GUT) as a function of 𝜇dec from [50]. Dotted, dashed,

and solid lines denote the one-, two-, and three-loop contributions,
respectively, obtained using for the input parameters their values for
the SPS1𝑎󸀠 benchmark point. The dash-dotted line shows the three-
loop running corresponding to the SPS2 point.

parameters are required: 𝑚
𝑔
= 607.1GeV, 𝑚𝑡̃

1

= 366.5GeV,
𝑚𝑡̃
2

= 585.5GeV, 𝑚
𝑏̃
1

= 506.3GeV, 𝑚
𝑏̃
2

= 545.7GeV,
𝐴DR

𝑡
(1TeV) = −565.1GeV, 𝐴DR

𝑏
(1TeV) = −943.4GeV, 𝜇 =

396.0GeV, and tan𝛽 = 10.0. In addition the dash-dotted
line shows the three-loop results when the SUSY parameters
corresponding to the SPS2 [205] scenario are adopted. Their
explicit values are 𝑚𝑔

= 784.4GeV, 𝑚𝑡̃
1

= 1003.9GeV,
𝑚𝑡̃
2

= 1307.4GeV, 𝑚
𝑏̃
1

= 1296.6GeV, 𝑚
𝑏̃
2

= 1520.1GeV, and
tan𝛽 = 10.0. One clearly notices the great impact of the SUSY
mass pattern on the predicted value of the strong coupling at
high energies. Accordingly, for precision studies concerning
gauge coupling unification the explicit mass pattern of heavy
particles must be taken into account.

At this point, a comment on the chosen mass spectrum is
in order.The nature of this plot is rather academic and aims to
quantify themass dependence of the strong coupling constant
at high energies. The two mass spectra are already excluded
by the direct searches at the LHC.Nevertheless, one can easily
estimate that for heavier SUSY particles 𝑀SUSY > 1.5TeV
the value of 𝛼

𝑠
(𝜇GUT) decreases below the value 0.398. Its

implication on the quality of the unification will be discussed
in the next section.

6.2. Gauge Coupling Unification in the Minimal SUSY SU(5)
Model. The gauge coupling unification might be predicted,
even under the assumption of a minimal particle con-
tent of the underlying GUT like in the so-called minimal
SUSY SU(5) model [206, 207]. This is the most predictive
model among the currently known candidates for SUSY
GUTs. However, immediately after its formulation it has
been noticed that new dimension-five operators may cause
rapid proton decay. Together with the requirement of gauge
coupling unification this aspect was used to even rule out

the SUSY SU(5) model [208, 209]. However, subsequent
careful analyses have shown that the proton decay rate for
the dominant channel 𝑝 → 𝐾

+] can be suppressed either
by sfermion mixing [210] or by taking into account higher
dimensional operators induced at the Planck scale [211–213].

In the following, we review the latest analysis on the
gauge coupling unification in the renormalizable version
of minimal SUSY SU(5). This model is not the best moti-
vated phenomenologically, but it requires the most severe
constraints on the GUT parameters. More precisely, we
outline the constraints on the mass of the color triplet Higgs
𝑀𝐻
𝑐

and the grand unification scale (see below the exact
definition of𝑀𝐻

𝑐

and𝑀𝐺)𝑀𝐺 taking into account the latest
experimental data for the weak scale parameters and the
most precise theoretical predictions currently available. The
two parameters are predicted in the “bottom-up” approach,
taking into account threshold corrections generated by the
superpartners of the SM particles as well as those due to
the superheavy SUSY-GUT particles. In addition, the gauge
coupling constants of the SM at the electroweak scale and the
MSSM mass spectrum are required as input parameters. The
predicted values for the two parameters have to be compared
with the constraints derived from the nonobservation of
proton decay.

For completeness, we present below our notation in the
framework ofminimal SUSY SU(5).The superpotential of the
model [206] is given by

W = 𝑀
1
Tr (Σ2

) + 𝜆
1
Tr (Σ3

) + 𝜆
2
HΣH +𝑀

2
HH

+ √2𝑌
𝑖𝑗

𝑑
Ψ

𝑖
𝜙
𝑗
𝐻 +

1

4
𝑌

𝑖𝑗

𝑢
Ψ

𝑖
Ψ

𝑗
𝐻,

(122)

where Ψ𝑖 and 𝜙𝑖 (𝑖 = 1, 2, 3 is a generation index) are matter
multiplets in the 10- and 5-dimensional representation of
SU(5). Their decomposition with respect to the SM gauge
group SU(3) × SU(2) × U(1) reads

5 = (3, 1, −1
3
) ⊕ (1, 2, +

1

2
) ,

10 = (3, 1, −2
3
) ⊕ (3, 2,

1

6
) ⊕ (1, 1, 1) .

(123)

The field 𝐻 (𝐻) is realized in the 5 (5) representation. The
gauge group SU(5) is broken to the SM gauge group if the
adjoint Higgs boson Σ ≡ Φ

𝑎𝑇𝑎 (𝑎 = 1, . . . , 24) living in the
24 representation gets the vacuum expectation value ⟨Σ⟩ =
𝑉/(2√30) × diag(−2, −2, −2, 3, 3), with 𝑉 = −4√30𝑀1/(3𝜆1)

(here, we parametrize as usual the 24 representation like a
5×5matrix). Its decomposition with respect to the SM gauge
group reads

24 = (1, 1, 0) ⊕ (1, 3, 0) ⊕ (8, 1, 0) ⊕ (3, 2, −5
6
) ⊕ (3, 2,

5

6
) .

(124)

Choosing ⟨𝐻⟩ = ⟨𝐻⟩ ≪ 𝑉 and in addition imposing the
(tree-level-) fine-tuning condition𝑀

2
= −√3𝜆

2
𝑉/√40, the
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isodoublets in 𝐻 and 𝐻 remain massless. Furthermore, one
gets the following superheavy mass spectrum:

𝑀
2

𝑋
=
5

12
𝑔
2
𝑉

2
, 𝑀

2

𝐻
𝑐

=
5

24
𝜆
2

2
𝑉

2
,

𝑀
2

Σ
≡ 𝑀

2

(8,1)
= 𝑀

2

(1,3)
= 25𝑀

2

(1,1)
=
15

32
𝜆
2

1
𝑉

2
,

(125)

where the indices in round brackets refer to the SU(3) and
SU(2) quantum numbers. Here 𝑀

Σ
denotes the mass of the

color octet part of the adjoint Higgs boson Σ and𝑀𝐻
𝑐

stands
for the mass of the color triplets of𝐻 and𝐻.𝑀

𝑋
is the mass

of the gauge bosons and 𝑔 is the gauge coupling.The equality
𝑀2

(8,1)
= 𝑀2

(1,3)
holds only if one neglects operators that are

suppressed by 1/𝑀Pl as we do here.
In the study of the energy evolution of the gauge couplings

up to scales of the order O (1016)GeV, one has to apply the
effective field theory (EFT) approach twice: once at an energy
scale comparable with the SUSY particle masses and once at
the GUT scale. In practice, this translates into the following
steps.

(1) Running within the SM from 𝜇 = 𝑀
𝑍
to the SUSY

scale 𝜇SUSY.
In this step, the three-loop beta function of QCD [111, 112]

and up to three-loop RGEs in the electroweak sector [49, 114]
are necessary in order to obtain the values of the gauge
couplings at 𝜇SUSY ≈ 1TeV. At this point we want to stress
once again that the value of 𝜇SUSY is a free parameter. Let
us mention that the top quark threshold effects are taken
into account in the determination of the input parameters
(for details see next section) and the running analysis is
performed in SM with six active quark flavors.

(2) SUSY threshold corrections.
In order to still cure the naturalness problem of the

SM, the SUSY mass spectrum has to be at most in the
TeV range. Thus, for energies of this order of magnitude, it
is expected that the SUSY particles become active and the
proper matching between the SM and the MSSM has to be
performed. The one-loop decoupling relations for 𝛼

1
and

𝛼
2
[214] and the Yukawa couplings [195] are known since

long time. The SUSY-QCD decoupling effects for 𝛼
3
and

𝑚
𝑏
are known to three- and two-loop order, respectively, as

discussed in the previous section. A fully consistent approach
would require two-loop threshold corrections not only in
the strong but also in the electroweak sector. They are not
yet available, nevertheless it is expected that their numerical
impact is relatively small.

At this stage also the change of renormalization scheme
from MS to DR has to be taken into account. To establish
the conversion relations between the running parameters
in the two schemes, one can use the method discussed in
Section 3.3.3, where such relations have been derived in the
context of nonsupersymmetric theories (for more details
see [201]). The conversion relations that are of interest for
the numerical analysis discussed in this section are those
involving the gauge couplings and the quark masses of the
third generation, as only their Yukawa couplings give sizable

effects. They are known up to the two-loop order in SUSY-
QCD [201]. For the convenience of the reader we cite them
below

𝛼
MS
𝑠

= 𝛼
DR
𝑠
[

[

1−
𝛼DR
𝑠

𝜋

𝐶𝐴

3
+(

𝛼DR
𝑠

𝜋
)

2

(−
11

9
𝐶

2

𝐴
+ 2𝑇

𝑓
𝐶

𝑅
)]

]

,

(126)

𝑚
MS
𝑞

= 𝑚
DR
𝑞
[

[

1 +
𝛼DR
𝑠

𝜋
𝐶𝑅

+(
𝛼DR
𝑠

𝜋
)

2

(
7

12
𝐶𝐴
𝐶

𝑅
+
7

4
𝐶

2

𝑅
−
1

2
𝑇𝑓
𝐶

𝑅
)]

]

,

(127)

where the group invariants are defined as in Appendix A and
𝑇
𝑓
= 𝐼

2
(𝑅)𝑛

𝑓
, with 𝑛

𝑓
being the number of active fermions.

(3) Running within the MSSM from 𝜇SUSY to the high-
energy scale 𝜇GUT.

In this step the three-loop RGEs of the MSSM [103, 127]
are required to evolve the gauge and Yukawa couplings from
𝜇SUSY to some very high scale of the order of 1016 GeV, that
we denote 𝜇GUT. At this energy scale it is expected that SUSY-
GUT particles become active.

(4) SUSY-GUT threshold effects.
At the energy scale 𝜇GUT, threshold corrections induced

by the nondegenerate SUSY-GUT spectrum have to be taken
into account. The one-loop formulas of the decoupling
coefficients for a general gauge group have been known for
a long time [215–217].The specification to the minimal SUSY
SU(5) reads [218, 219]

𝜁
𝛼
1

(𝜇) = 1 +
𝛼SU(5) (𝜇)

4𝜋
(−
2

5
𝐿

𝜇𝐻
𝑐

+ 10𝐿
𝜇𝑋
) ,

𝜁
𝛼
2

(𝜇) = 1 +
𝛼SU(5) (𝜇)

4𝜋
(−2𝐿𝜇Σ + 6𝐿𝜇𝑋) ,

𝜁
𝛼
3

(𝜇) = 1 +
𝛼SU(5) (𝜇)

4𝜋
(−𝐿

𝜇𝐻
𝑐

− 3𝐿
𝜇Σ
+ 4𝐿

𝜇𝑋
) ,

(128)

where 𝐿
𝜇𝑥
= ln(𝜇2/𝑀2

𝑥
) and for simplicity we keep from the

list of arguments of the coefficients 𝜁
𝛼
𝑖

only the decoupling
scale. 𝛼SU(5)(𝜇)/4𝜋 is the gauge coupling constant of the
unified theory, that is, of the SUSY SU(5) model.

A suitable linear combination of the three equations
above leads to the following two relations:

4𝜋(−
1

𝛼1 (𝜇)
+ 3

1

𝛼2 (𝜇)
− 2

1

𝛼3 (𝜇)
) = −

12

5
𝐿

𝜇𝐻
𝑐

,

4𝜋(5
1

𝛼1 (𝜇)
− 3

1

𝛼2 (𝜇)
− 2

1

𝛼3 (𝜇)
)

= −24 (𝐿𝜇𝑋 +
1

2
𝐿𝜇Σ) ,

(129)
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where 𝛼SU(5) has been eliminated. These equations allow
the prediction of the colored triplet Higgs boson mass 𝑀

𝐻
𝑐

from the knowledge of the MSSM gauge couplings at the
energy scale 𝜇 = 𝜇GUT. It is furthermore common to
define a new mass parameter𝑀

𝐺
= 3√𝑀2

𝑋
𝑀

Σ
, the so-called

grand unified mass scale. It can also be determined from the
knowledge of the MSSM gauge couplings at 𝜇GUT through
(129). These observations makes it quite easy to test the
minimal SUSY SU(5) model once the required experimental
data are available in combination with a high-order analysis.

(5) Running from 𝜇GUT to the Planck scale𝑀Pl.
The last sequence of this approach consists in the running

within the SUSY-SU(5) model. The three-loop RGEs for the
gauge [64], and the one-loop formulas for the Yukawa, and
Higgs self-couplings [220] are available in the literature. In
addition, the perturbativity constraints (i.e., all couplings of
the theory are smaller than unity) have to be imposed.

6.2.1. Input Parameters. As can be inferred from the discus-
sion above, to constrain the GUT parameters one needs in
addition to the precise running analysis also precise input
parameters. Explicitly, one needs the values of weak mixing
angle in the MS scheme [221], the QED coupling constant
at zero-momentum transfer, and its hadronic contribution
[222] in order to obtain its counterpart at the 𝑍-boson scale,
and the strong coupling constant [182]. (We adopt the central
value from [182]; however, we use it as our default choice for
the uncertainty 0.0020 instead of 0.0007.) Their numerical
values and uncertainties are

sin2
Θ

MS
= 0.23119 ± 0.00014,

𝛼 =
1

137.036
,

Δ𝛼
(5)

had = 0.02761 ± 0.00015,

𝛼𝑠
(𝑀

𝑍
) = 0.1184 ± 0.0020.

(130)

To determine the value of 𝛼 in the MS scheme, it is necessary
to take into account the hadronicΔ𝛼(5)

had, leptonic Δ𝛼
(5)

lep [223],
and top quarkΔ𝛼(5)

top [224] contributions to the on-shell value.
In addition, the conversion formula to the MS scheme has to
be taken into account. Thus, one obtains

𝛼
MS
(𝑀𝑍)

=
𝛼

1 − Δ𝛼
(5)

lep − Δ𝛼
(5)

had − Δ𝛼
(5)

top − (Δ𝛼
(5),MS − Δ𝛼(5),OS)

=
1

127.960 ± 0.021
.

(131)

For supersymmetric particle masses of order O (1TeV) it is
appropriate to take into account top quark threshold effects
in a separate step. For convenience, we choose the scale at
which we decouple the top quark to be 𝜇dec = 𝑀

𝑍
. The

corresponding threshold corrections are available from [221,
225, 226] and give the following contributions:

𝛼
(6),MS

(𝑀
𝑍
) =

1

(128.129 ± 0.021)
,

sin2
Θ

(6),MS
(𝑀𝑍) = 0.23138 ± 0.00014,

𝛼
(6)

𝑠
(𝑀𝑍) = 0.1173 ± 0.0020.

(132)

Even more, the supersymmetric particles can induce sizeable
effects in the extraction of the weakmixing angle from exper-
imental data. Such effects are by construction suppressed by
the square of the supersymmetric mass scale [214, 227]. For
a typical supersymmetric mass scale ≥ 1 TeV such corrections
can lead to shifts in𝑀

𝐻
𝑐

of the order of ≤10%.

6.2.2. Numerical Analysis. For illustration of the numerical
effects we adopt the mSUGRA [228] scenario for the SUSY
breaking mechanism with the following initial parameters:

𝑚
0
= 𝑚

1/2
= −𝐴

0
= 1000GeV,

tan𝛽 = 3, 𝜇 > 0
(133)

and generate with the help of the code SOFTSUSY [229]
the supersymmetric mass spectrum. This results in squark
masses of the order of 2 TeV, thus beyond the above exclusion
bounds currently established by direct searches at the LHC.

In Figure 7 from we visualize the running (and decou-
pling) of the gauge couplings where the parameters of (133)
together with 𝜇SUSY = 1000GeV and 𝜇GUT = 10

16 GeV have
been adopted. In addition we have chosen𝑀

Σ
= 1 ⋅ 1015 GeV

which leads via (129) to𝑀
𝐻
𝑐

= 1.7 ⋅ 1015 GeV and𝑀
𝑋
= 4.6 ⋅

1016 GeV.One can clearly see the discontinuities at thematch-
ing scales and the change of the slopes when passing them.
In Figure 7(b) the region around 𝜇 = 1016 GeV is enlarged
which allows for a closer look at the unification region.
The bands indicate 1𝜎 uncertainties of 𝛼

𝑖
at the electroweak

scale (cf. (132)). In Figure 7(b) we furthermore perform the
decoupling of the superheavy masses for two different values
of 𝜇GUT. One observes quite different threshold corrections
leading to a nice agreement of 𝛼SU(5) above 1016 GeV. Figure 7
stresses again that the uncertainty of 𝛼𝑠 is the most important
one for the constraints that one can set on GUTmodels from
low-energy data. Furthermore, it illustrates the size of the
GUT threshold corrections and emphasizes the importance
of precision calculations.

In the following, we discuss the dependence of𝑀
𝐻
𝑐

and
𝑀

𝐺
on various parameters entering our analysis. We start

with varying the supersymmetric mass spectrum and use
(129) in order to extract both𝑀

𝐻
𝑐

and𝑀
𝐺
. The decoupling

scales are fixed to 𝜇SUSY = 1000GeV and 𝜇GUT = 1016 GeV,
respectively, which ensures that the three-loop effect is rather
small. In Figure 8 the parameter 𝑚1/2 is varied up to 4 TeV.
The solid and dashed lines correspond to 𝑀

𝐻
𝑐

and 𝑀
𝐺
,

respectively, which show a substantial variation. On the other
hand, 𝑚

0
, tan𝛽, and 𝐴

0
have only a minor influence on the

GUT masses and thus we refrain from explicitly showing the
dependence.
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An interesting aspect from the phenomenological point
of view is the study of the effects of the experimental
uncertainties of 𝛼

𝑖
(c.f. (130)) on the prediction of 𝑀

𝐻
𝑐

and
𝑀

𝐺
. For this, we fix the SUSY spectrum as before (see (133))

and set 𝜇SUSY = 𝑀𝑍
which has often been common practice

in similar analyses (see, e.g., [209]). Taking into account
correlated errors and performing a 𝜒2 analysis lead to ellipses
in the𝑀𝐻

𝑐

-𝑀𝐺 plane. In Figure 9 from the results for the two-
(dashed lines) and three-loop (continuous lines) analyses are
shown. The two concentric ellipses correspond to 68% and
90% confidence level, respectively, where only parametric
uncertainties from (132) have been taken into account. Let us,
however, stress that an optimistic uncertainty of 𝛿𝛼𝑠 = 0.0010

has been adopted for this plot. As expected, the uncertainty
of 𝛼

𝑠
induces the largest contributions to the uncertainties

on 𝑀
𝐻
𝑐

and 𝑀
𝐺
. In particular, it essentially determines the

semimajor axis of the ellipses. The three-loop corrections
induce a significant shift to higher masses of about an order

0.8

1

1.2

1.4

13 14 15 16
log10 (MH𝑐

/GeV)

M
G

(1
01

6
G

eV
)

Figure 9: Ellipses in the𝑀
𝐻𝑐
-𝑀

𝐺
plane obtained from the uncer-

tainties of the gauge coupling sat the electroweak scale. The input
parameters of (130) have been used whereas 𝛿𝛼

𝑠
= 0.0010 has been

chosen. Dashed and solid lines correspond to the two- and three-
loop analysis, respectively.

of magnitude for 𝑀
𝐻
𝑐

. In the same time 𝑀
𝐺
increases by

about 2 ⋅ 1015 GeV. This demonstrates the importance of the
precision calculations in such type of analyses. As has been
discussed in the original paper [51] they are also essential in
order to remove the dependence on 𝜇SUSY. In fact, choosing
𝜇SUSY close to the supersymmetric mass scale leads to small
three-loop effects, since the two-loop ellipses are essentially
shifted on top of the three-loop ones.

At this point a discussion about the additional constraint
on the Higgs triplet mass𝑀

𝐻c
that can be derived from the

nonobservation of the proton decay is in order. The latest
upper bound on the proton decay rate for the channel 𝑝 →

𝐾+] [230] is Γexp = 4.35 × 10−34/𝑦 . In order to translate it
into a lower bound for the Higgs triplet mass, one needs an
additional assumption about the Yukawa couplings that enter
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the expression of the decay rate Γ(𝑝 → 𝐾+]). As pointed
out in [211] this is because down quark and lepton Yukawa
couplings fail to unify within the minimal renormalizable
SUSY SU(5) model and so a completely consistent treatment
is not possible. Therefore one could either choose (𝑌

𝑞𝑙
is the

Yukawa coupling of the quark and lepton doublets to the
Higgs color triplet; 𝑌𝑢𝑑

is the corresponding coupling for
the up and down quark singlets) (i) 𝑌𝑞𝑙 = 𝑌𝑢𝑑 = 𝑌𝑑 or
(ii) 𝑌𝑞𝑙 = 𝑌𝑢𝑑 = 𝑌𝑒, which leads to completely different
phenomenological consequences. Both choices are equally
justified once higher dimensional operators are included.
Since these operators further weaken the bounds presented
below, we refrain from including these bounds into the
analysis presented here. For the case (i) and supersymmetric
particle masses around 1 TeV the lower bound for the Higgs
tripletmass can be read off fromFigure 2 of [211] and amounts
to 𝑀

𝐻
𝑐

≥ 1.05 × 1017 GeV whereas for the second choice it
becomes𝑀

𝐻
𝑐

≥ 5.25×1015 GeV. Fromour phenomenological
analysis presented above it turns out that within the minimal
SUSY SU(5) model the upper bound for 𝑀

𝐻
𝑐

is of about
1016 GeV.Thus, the substantial increase of about one order of
magnitude for the upper bound on𝑀𝐻

𝑐

induced by the three-
loop order running analysis attenuates the tension between
the theoretical predictions made under the assumption (i)
and the experimental data. The choice (ii) for the Yukawa
couplings clearly shows that the minimal SUSY SU(5) model
cannot be ruled out by the current experimental data on
proton decay rates.More experimental information about the
SUSY mass spectrum and proton decay rates is required in
order to be able to draw a firm conclusion.

7. The Mass of the Lightest Higgs
Boson in the MSSM

7.1. Higgs Boson Mass in the SM. Spontaneous symmetry
breaking was introduced into the particle physics in the
seminal papers [231–233] and the existence of the Higgs
boson was postulated by Higgs in 1964 in [234]. The next
important step was the incorporation of the spontaneous
symmetry breaking into the unified model of the weak
and electromagnetic interactions [2, 3]. The breakthrough of
these ideas came with the proof of the renormalizability of
spontaneously broken gauge theories by’ t Hooft andVeltman
[69, 235].

The direct Higgs boson searches performed at LEP 1
in 𝑍

0 → 𝐻 + 𝑓𝑓 and at LEP 2 in 𝑒+𝑒− → 𝑍0 + 𝐻

channels provided us with a lower bound on its mass of
𝑀

ℎ
> 114.4GeV at the 95% CL [236]. In parallel to the

direct searches, the high precision electroweak data obtained
at LEP allowed us to estimate the possible mass range of the
Higgs boson within the SM, namely,𝑀ℎ = 96

+31

−21
GeV [237].

Moreover, the CDF andD0 experiments at the Tevatron [238]
excluded the range of Higgs masses 156 < 𝑀ℎ < 177GeV as
well as lower masses in the range already excluded by LEP.
Only very recently, the existence of the Higgs boson could
have been experimentally confirmed by the ATLAS and CMS
collaborations at the LHC [31, 32]. Its mass is around 125-
126GeV. Currently, dedicated analysis is performed in order
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Figure 10: The Higgs boson mass as a function of the scale Λ up to
which the SM may remain valid was obtained from perturbativity
(solid dark blue line) and the stability of the electroweak vacuum
(shaded regions). The figure is taken from [52].

to establish if the observed boson is just the one predicted by
the SM or hints towards new physics.

The Higgs boson mass itself is a fundamental parameter
of the SM. Together with the top quark mass and the strong
coupling constant, it plays a crucial role in determining the
stability bounds for the SM electroweak vacuum. The usual
way to present this interplay is to display the allowed domains
for𝑀

ℎ
as a function of Λ, the scale up to which the SM may

remain valid. If 𝑀
ℎ
is too large, the RGEs of the SM drive

the Higgs self-coupling into the nonperturbative regime at
some scale Λ < 𝑀Planck. This is shown as the upper pair
bold lines in Figure 10 that is taken from [52]. In this case
new physics at a scale Λ will be required in order to prevent
the Higgs self-coupling to blow up. On the other hand if
𝑀

ℎ
is too small, the RGEs drive the Higgs self-coupling to a

negative value. In this case the Higgs potential can develop
an instability at high field values > Λ, unless there is new
physics at some scale < Λ that prevents the occurrence of
an additional minimum in the potential. This is shown as
light shaded bands in Figure 10. Between the blow-up and the
stability regions, there is a range of intermediate values of𝑀ℎ

for which the SM can survive up to the Planck scale. Taking
into account the current theoretical and experimental errors
on𝑀ℎ,𝑀𝑡, and 𝛼𝑠, stability up to the Planck scale cannot be
yet excluded [53].

Nevertheless, as shown in Figure 11 from [53] and con-
firmed by [239], the range of 𝑀ℎ as revealed by the present
searches at the LHC lies right at the edge between electroweak
stability and instability regions. The possibility that the SM
potential becomes unstable at large field values, below the
Planck scale, does not contradict any experimental obser-
vation, provided its lifetime is longer than the age of the
Universe. Indeed, the authors of [240] found that for 𝑀

ℎ
=
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and instability of the SM vacuum [53]. The three boundaries lines
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𝑠
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) = 0.1184.

125GeV, the instability scale lies around 1011±1 GeV. In this
case, tunneling through quantum fluctuations is slow enough
to ensure at least metastability of the electroweak vacuum.

It is also interesting to note that the SM extrapolation of
the Higgs parameters (the mass parameter 𝑚2 and quartic
coupling 𝜆) corresponds to near vanishing 𝜆 and its beta
function at the Planck scale. The coupling 𝜆 = 0 is the
critical value for the electroweak stability. Moreover, the
coefficient 𝑚2 of the Higgs bilinear in the scalar potential is
also approximately zero (at the Planck scale). This is again a
critical value that separates the symmetric phase (𝑚2 > 0)
from the broken phase (𝑚2 < 0). At present, we do not know
if this is just a numerical coincidence or the consequence of
an underlying symmetry.

There are different interpretations in the literature for
the near criticality of the SM parameters. For instance,
SUSY implies that 𝑚2 = 0. If SUSY is softly broken, 𝑚2

would remain near zero, solving the hierarchy problem.
Nevertheless, the analysis performed in [240] shows that
the usual low-scale SUSY scenario can accommodate a
Higgs mass around 125GeV only for extreme values of the
parameters, for example, large tan𝛽, heavy stops, or maximal
stop mixing. Other explanations of the near criticality can be
given via interpreting the Higgs as a Goldstone boson (com-
posite Higgs modes) or as a consequence of transplanckian
dynamics (like in multiverse models). In the following we
concentrate on the SUSY explanation.

7.2. Higgs Boson Mass in the MSSM. A natural possibility to
counterbalance the effects of the top quark on the evolution of
the Higgs self-coupling was found within SUSY models, via
the opposite effects induced by the top quark superpartners.
Themass of the Higgs boson within SUSYmodels is linked to
the magnitude of its self-coupling, which in turn is fixed by
SUSY in terms of the electroweak gauge couplings. Compared
to the SM, the MSSM Higgs sector is described by two
additional parameters, usually chosen to be the pseudoscalar
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Figure 12: Comparison of complete and approximate one- and two-
loop corrections to the Higgs boson mass for SPS2 scenario. The
solid (full result) and dashed lines (𝑚4

𝑡
approximation) represent

the results in the on-shell scheme where the black and gray curves
correspond to the one- and two-loop results, respectively. For
comparison, the two-loop DR results are shown as dash-dotted (full
result) and dotted (𝑚4

𝑡
approximation) curves.

mass𝑀𝐴 and the ratio of the vacuum expectation values of
the two Higgs doublets, tan𝛽 = V

2
/V

1
. The masses of the

other Higgs bosons are then fixed by SUSY constraints. In
particular, the mass of the light CP-even Higgs boson, 𝑀

ℎ
,

is bounded from above. At tree level, this constraint reads
𝑀

ℎ
< 𝑀

𝑍
. Radiative corrections to the Higgs pole mass

raise this bound substantially to values that were inaccessible
at LEP [241–243]. The dominant radiative corrections are
given by the contribution ∼ 𝛼

𝑡
𝑚2

𝑡
∼ 𝑚4

𝑡
coming from top-

and top squark loops (𝑚
𝑡
is the top quark mass and √𝛼𝑡

is
proportional to the top Yukawa coupling). For illustration,
complete and approximate (i.e., only contributions ∼𝑚4

𝑡
)

one- and two-loop corrections to the lightest Higgs boson
mass are shown in Figure 12 from [156]. In this figure, the
mass differenceΔ𝑀

ℎ
= 𝑀

𝑖−loop
ℎ

−𝑀tree
ℎ

is shown as a function
of the parameter 𝑚

1/2
in the scenario SPS2 [244, 245]. The

small differences between the solid (full result) and dashed
(𝑚4

𝑡
approximation) lines demonstrate that the leading term

∼𝑚4

𝑡
approximates the full result to a high accuracy. This

motivates the computation of higher order corrections taking
into account only the contributions that scale like ∼𝑚4

𝑡
.

From the one-loop corrections to the Higgs pole masses,
that are known without any approximations [195, 246–248],
one can show that a second approximation is appropriate.
The bulk of the numerical effects can be obtained in the so-
called effective-potential approach, for which the external
momentum of the Higgs propagator is set to zero. Most of
the relevant two-loop corrections have been evaluated in this
approach (for reviews, see, e.g., [154, 249]). In addition, two-
loop corrections including even CP-violating couplings and
improvements from renormalization group considerations
have been computed in [154, 249, 250]. In particular CP
violating phases can lead to a shift of a fewGeV in𝑀

ℎ
; see, for

example, [251, 252]. In [253] a large class of subdominant two-
loop corrections to the lightest Higgs boson mass have been
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considered. Furthermore, leading logarithmic corrections at
three-loop order have been computed in [254]. The first
complete three-loop calculation of the leading quartic top
quark mass terms within supersymmetric QCD has been
performed in [156, 255].

There are by now three computer programs publicly
available which include most of the higher order corrections.
FeynHiggs has been available already since 1998 [250, 256,
257] and has been continuously improved since then [258].
In particular, it contains all numerically important two-loop
corrections and accepts both real and complex MSSM input
parameters. The second program, CPSuperH [259, 260], is
based on a renormalization group improved calculation and
allows for explicit CP violation. Both programs compute the
masses as well as the decay widths of the neutral and charged
Higgs bosons. The third program, H3m [261], contains all
currently available three-loop results. Furthermore, H3m con-
stitutes an interface to FeynHiggs [262] and various SUSY
spectrum generators, which allows for precise predictions of
𝑀

ℎ
on the basis of realistic SUSY scenarios.

7.2.1. Calculation of O(𝛼
𝑡
𝛼2

𝑠
) Corrections in the MSSM. In

this section we focus on details of the calculation of the
lightest Higgs boson mass to three-loop accuracy in SUSY-
QCD. It was the first calculation of an observable at this order
of accuracy in the framework of SUSY-QCD and it raised
technical difficulties specific to higher order calculations.

At tree level, the mass matrix of the neutral, CP-even
Higgs bosons ℎ,𝐻 has the following form:

M
2

𝐻,tree =
sin 2𝛽
2

× (
𝑀

2

𝑍
cot𝛽 +𝑀2

𝐴
tan𝛽 −𝑀

2

𝑍
−𝑀

2

𝐴

−𝑀2

𝑍
−𝑀2

𝐴
𝑀2

𝑍
tan𝛽 +𝑀2

𝐴
cot𝛽

) .

(134)

The diagonalization of M2

𝐻,tree gives the tree-level result for
𝑀ℎ and𝑀𝐻 and leads to the well-known bound𝑀ℎ < 𝑀𝑍

which is approached in the limit tan𝛽 → ∞.
The mass matrix M2

𝐻
is obtained from the quadratic

terms in the Higgs boson potential constructed from the
fields 𝜙

1
and 𝜙

2
. They are related to the physical Higgs mass

eigenstates via the mixing angle 𝛼

(
𝐻

ℎ
) = (

cos𝛼 sin𝛼
− sin𝛼 cos𝛼)(

𝜙
1

𝜙
2

) . (135)

As usual, ℎ stands for the lightest Higgs boson. The mixing
angle 𝛼 is determined at the leading order through

tan 2𝛼 = tan 2𝛽
𝑀

2

𝐴
+𝑀2

𝑍

𝑀2

𝐴
−𝑀2

𝑍

, −
𝜋

2
< 𝛼 < 0, (136)

where𝑀
𝑍
is themass of the𝑍 boson and tan𝛽 = V

2
/V

1
. Since

𝜙
1
does not couple directly to top quarks, it is convenient

to perform the calculations of the Feynman diagrams in the
(𝜙

1
, 𝜙

2
) basis.

Including higher order corrections, one obtains theHiggs
boson mass matrix

M
2

𝐻
=M

2

𝐻,tree − (
Σ̂

𝜙
1

Σ̂
𝜙
1
𝜙
2

Σ̂
𝜙
1
𝜙
2

Σ̂
𝜙
2

) , (137)

which again gives the physical Higgs boson masses upon
diagonalization. The renormalized quantities Σ̂

𝜙
1

, Σ̂
𝜙
2

, and
Σ̂

𝜙
1
𝜙
2

are obtained from the self-energies of the fields 𝜙
1
, 𝜙

2
,

and𝐴, evaluated at zero external momentum, as well as from
tadpole contributions of 𝜙

1
and 𝜙

2
(see, e.g., [154]). One has

Σ̂
𝜙
1

= Σ
𝜙
1

− Σ
𝐴
sin2

𝛽

+
𝑒

2𝑀
𝑊
sin 𝜗

𝑊

𝑡𝜙
1

cos𝛽 (1 + sin2
𝛽)

−
𝑒

2𝑀
𝑊
sin 𝜗

𝑊

𝑡𝜙
2

cos2𝛽 sin𝛽,

Σ̂
𝜙
2

= Σ
𝜙
2

− Σ
𝐴
cos2𝛽

−
𝑒

2𝑀
𝑊
sin 𝜗

𝑊

𝑡
𝜙
1

sin2
𝛽 cos𝛽

+
𝑒

2𝑀
𝑊
sin 𝜗

𝑊

𝑡
𝜙
2

sin𝛽 (1 + cos2𝛽) ,

Σ̂
𝜙
1
𝜙
2

= Σ
𝜙
1
𝜙
2

+ Σ
𝐴
sin𝛽 cos𝛽

+
𝑒

2𝑀
𝑊
sin 𝜗

𝑊

𝑡𝜙
1

sin3
𝛽

+
𝑒

2𝑀
𝑊
sin 𝜗

𝑊

𝑡
𝜙
2

cos3𝛽.

(138)

In this equation, 𝜗
𝑊
is the weak mixing angle, Σ

𝐴
denotes the

self-energy of the pseudoscalar Higgs boson, and 𝑡
𝜙
𝑖

denotes
the tadpole contributions of the field 𝜙

𝑖
. Typical diagrams to

the individual contributions can be found in Figure 13.
Considering themany differentmass parameters entering

the formula for the Higgs boson mass an exact calculation of
the three-loop corrections is currently not feasible. However,
it is possible to apply expansion techniques [150] for various
limits which allow to cover a large part of the supersymmetric
parameter space. After the application of the asymptotic
expansion the resulting integrals have to be reduced to an
independent set of master integrals. For the case of the
Higgs mass corrections there will be only three-loop tadpole
integrals that can be handled with the program MATAD
[124].

A technical subtlety arises when calculating diagrams like
those shown in Figure 14. If both the external momentum
and the 𝜀-scalar mass are set to zero from the beginning,
an infrared divergence occurs and cancels the ultraviolet
divergence of the integral. In effect, the diagram will be
of order (𝑑 − 4) due to the 𝜀-scalar algebra. In order to
avoid this, one can keep the external momentum 𝑞 nonzero,
though much smaller than all other scales. The ultraviolet
polemultiplied by the algebraic factor of (𝑑−4) then produces
a finite contribution, while the infrared divergence leads to a
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𝜙1
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, Σ
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, and so forth to one, two, and three loops. Internal solid, dashed, dotted, and curly

lines correspond to top quarks, top squarks, 𝜀-scalar, and gluons, respectively. Gluinos are depicted with curly lines with an additional solid
line in the middle. The external dashed line corresponds to the Higgs bosons.
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Figure 14: Sample diagram contributing a finite term to Σ
𝜙1
, Σ

𝜙2
,

and so forth when the infrared divergence are regulated through a
small external momentum or a finite 𝜀-scalar mass.

contribution (𝑑 − 4) ln(𝑞2) that vanishes as 𝑑 → 4. Instead
of the requirement 𝑞 ̸= 0 one could also introduce a nonzero
mass for the 𝜀-scalars in order to regulate the infrared
divergences. In the final result one observes that the regulator
is multiplied by an additional factor (𝑑 − 4) leading to a finite
result for 𝑀

𝜀
→ 0. Alternatively, one can allow a nonzero

𝜀-scalar mass and shift the squark mass counterterms so that
all𝑀

𝜀
dependent contributions in the final result cancel out

(this renormalization scheme is equivalent to theDR󸀠 scheme
discussed in Section 4.2; however it is not identical). All these
renormalization prescriptions lead to identical results for the
corrections to the Higgs boson mass𝑀

ℎ
, that is a nontrivial

check of the calculation.
Concerning the renormalization, it is well known that the

perturbative series can exhibit a bad convergence behavior
in case it is parametrized in terms of the on-shell quark
masses (for a typical example we refer to the electroweak 𝜌
parameter; using the on-shell top quark mass the four-loop
corrections [263–265] are larger by a factor 50 as compared
to the MS scheme) which is due to intrinsically large contri-
butions related to the infrared behavior of the theory.Thus, it
is tempting to reparametrize the results for the Higgs boson
mass in terms of the top quark mass renormalized in the DR
scheme. Moreover, the two-loop renormalization constants
for the masses of the SUSY particles and the top squark
mixing angle, that are required for this calculation, are much

more complicated in the on-shell scheme as compared to the
DR ones. Thus, it is preferable to adopt the DR scheme also
for these parameters. The renormalization constants for the
gluino and 𝜀-scalar masses are needed only at the one-loop
order. For them, both schemes are accessible. Nevertheless,
the 𝜀-scalar mass renormalized in the on-shell scheme might
be better suited for this type of calculations. In this case, it can
be set equal to zero in the three-loop diagrams, which makes
the calculation less involved. An extensive discussion about
the calculation of the two-loop renormalization constants
required in this computation as well as explicit formulae can
be found in Section 4. In the remainder of this section we will
refer to this renormalization scheme as DR scheme although
it contains a mixture of on-shell and DR parameters in order
to distinguish between it and the genuine on-shell scheme.

At this point a comment concerning the minimal DR
renormalization constants for the masses of the top squarks
is in order. Due to diagrams involving heavy squarks 𝑞, for
example, Figure 15(a), the squaredHiggs bosonmass receives
contributions which are proportional to 𝑚

2

𝑞
and thus can

lead to unnatural large corrections. For this reason the on-
shell scheme for these contributions is better suited, because
it avoids the potentially large terms ∼𝑚2

𝑞
from the three-

loop diagrams. The renormalization of the mixing angle
is free of such enhanced contributions and can be done
in the pure DR scheme. A similar behavior is observed
when the gluino is much heavier than the top squarks [130,
266]. In this case, the two- and three-loop corrections to
the Higgs masses contain terms proportional to 𝑚

𝑔
and

𝑚2

𝑔
. These contributions are canceled when the masses are

renormalized in the on-shell scheme by the finite parts of
the relevant counterterms. Thus, in order to avoid unnatural
large radiative corrections to the Higgs mass for scenarios
with heavy gluinos a modified nonminimal renormalization
scheme for the top squark masses is required. The additional
finite shifts of top squark masses are chosen such that
they cancel the power-like behavior of the gluino contribu-
tions. Again, the renormalization of the mixing angle will
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Figure 15: (a) Feynman diagram involving a heavy virtual squark contributing to the Higgs boson self-energy. (b) Counterterm diagram
related to the diagram in (a). The same notation as in Figure 13 has been adopted.

110

120

130

140

200 400 600 800
m1/2 (GeV)

M
h

(G
eV

)

Figure 16: Renormalization scheme dependence of𝑀
ℎ
as a function

of𝑚
1/2

adopting SPS2. Dotted, dashed, and solid curves correspond
to one-, two-, and three-loop results. The DR (on-shell) results
correspond to the lower (upper) curves. The three-loop curves
obtained in the two renormalization schemes lay on top of each
other.

not be modified as compared to the genuine DR scheme.
The relevant finite shifts for commonly adopted scenarios are
explicitly given in Appendix B.

As an illustration of the renormalization scheme issue,
we show in Figure 16 from [156] the renormalization scheme
dependence of 𝑀

ℎ
as a function of the parameter 𝑚

1/2
for

the SPS2 scenario. In the left panel of Figure 16 the upper
dotted, dashed, and solid curves correspond to the one-, two-,
and three-loop prediction of 𝑀

ℎ
in the on-shell scheme

whereas the corresponding lower three curves are obtained
in the DR scheme. In the on-shell scheme one observes
large positive one-loop corrections which get reduced by 10
to 20GeV after including the two-loop terms. The three-
loop corrections amount to several hundred MeV. They are
positive or negative depending on the value of 𝑚1/2. The
situation is completely different for DR mass parameters: the
one-loop corrections are significantly smaller and lead to
values of𝑀ℎ which are already of the order of the two- and
three-loop on-shell prediction. The two-loop term leads to a
small shift of the order of −1 GeV and the three-loop term
to a positive shift of about the same order of magnitude. The
final prediction for𝑀

ℎ
is very close to the one obtained after

incorporating three-loop on-shell results. (There are regions

in the parameter space where the two-loop corrections are
accidentally small in theDR scheme leading to relatively large
three-loop terms.Nevertheless the overall size of the two- and
three-loop corrections is small).

The three-loop results have in general very long expres-
sions. However, for simplifying assumptions about the super-
symmetric mass spectrum, like for example the natural
SUSY, for which the superpartners of the first and second
generations of quarks are much heavier than the gluino
and third generations of squarks, that is, 𝑚𝑞

≫ 𝑚
𝑡̃
1

≈

𝑚𝑡̃
2

≈ 𝑚𝑔, the analytical expressions for the dominant
contributions have a quite compact form. Let usmention that
in general, for the case of quasi-degenerate masses a naive
Taylor expansion in the mass differences is sufficient, while
for large mass ratios an asymptotic expansion is necessary.
For illustration, we give below the three-loop results for the
two-point functions contributing to the Higgs boson mass,
where for the renormalization of the stop quark masses the
modified DR scheme as given in (B.1) was adopted. One has

Σ̂
𝜙
1

=
𝐺

𝐹
𝑚4

𝑡
√2

𝜋2cos2𝛽
(
𝛼
𝑠

4𝜋
)
2 𝐴2
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𝐿
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𝐺

𝐹
𝑚4
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+
𝐴 𝑡𝑚SUSY
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(139)

with𝑚
𝑡 = 𝑚𝑡(𝜇𝑟),𝑚SUSY = 𝑚SUSY(𝜇𝑟) = 𝑚𝑡̃

1

(𝜇𝑟) = 𝑚𝑡̃
2

(𝜇𝑟) =

𝑚
𝑔
(𝜇

𝑟
), 𝐿

𝜇𝑡
= ln(𝜇2

𝑟
/𝑚2

𝑡
), 𝐿

𝑡𝑆
= ln(𝑚2

𝑡
/𝑚2

SUSY), and 𝐿 𝑡𝑞
=

ln(𝑚2

𝑡
/𝑚2

𝑞
), where 𝜇

𝑟
is the renormalization scale.

7.2.2. Phenomenological Analysis. In order to quantify the
phenomenological significance of the three-loop contribu-
tions, it is interesting to investigate the dependence of𝑀

ℎ
on

SUSY parameters. In the following, we adopt the “modified
𝑚

max
ℎ

” scenario as defined in [54]. The relevant MSSM
parameters for our analysis are the top squark masses 𝑚𝑡̃

1

=

370GeV and𝑚𝑡̃
2

= 1045GeV, the gluinomass𝑚
𝑔
= 860GeV,

the squark mass scale 𝑚𝑞
= 1042GeV, the top trilinear

coupling 𝐴 𝑡 = 1500GeV, and the mass of the pseudoscalar
Higgs𝑀𝐴 = 1000GeV.

In Figure 17 from [54] is shown the comparison between
the two- (dashed line) and three-loop (full line) predictions
for the Higgs bosonmass as a function of tan𝛽 parameter. As
can be read from the plot, the genuine three-loop corrections
amount to around 2GeV for the given mass spectrum,
independently of the value of tan𝛽. Let us remind the reader
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Figure 17:The lightHiggs bosonmass as a function of tan𝛽 to three-
loop accuracy from [54].

that the experimental accuracy on𝑀
ℎ
expected at the LHC

is almost an order of magnitude smaller. It is also worth
mentioning that the three-loop corrections are positive and
increase the predicted value for 𝑀

ℎ
beyond 125GeV. For

increasing gluino and third generation squark masses, the
light Higgs boson mass becomes larger and values well above
120GeV can be reached.

We can infer from the above analysis that for a precise
comparison with the experimental data expected from the
LHC experiments, the three-loop corrections are indispens-
able. Moreover, the MSSM predictions can easily accommo-
date a light Higgs boson mass in the range 125 < 𝑀ℎ <

127GeV as observed in the current experiments at the LHC.

8. Hadronic Higgs Production and Decay in
Susy Models

After the discovery of the new scalar particle with the mass
around 125GeV the most important question to be answered
is whether it is indeed the Higgs boson predicted by the SM
or it has another origin. To obtain the answer one has to study
in detail the interaction properties of this new scalar with
the SM particles. This task requires the comparison of the
theory predictions for the production cross sections and the
decay rates of the newly discovered scalar particle with the
experimental data. In most of the cases, a precision of the
theory predictions at the percent level is required in order
to cope with the experimental accuracy. This implies that
radiative corrections even at next-to-next to leading order
(NNLO) have to be taken into account.

In the current section we concentrate on the radiative
corrections up to NNLO to the hadronic Higgs production
and decays within the MSSM. It turns out that in most
of the cases only the NNLO SUSY-QCD corrections have
to be taken into account. If available in the literature, also
the NNLO top-Yukawa corrections, expected to be the next
dominant contributions, will be discussed. As the exact

analytic calculations are not always feasible, several theoret-
ical methods employing phenomenologically well-motivated
simplifying assumptions will be presented.

8.1. Effective Field Theory Formalism. In this section we want
to derive the effective field theory formalism (EFT) following
themethod of operator product expansion (OPE) introduced
by Wilson [267] (for a pedagogical overview of the method
see also [75]). The main idea is again to disentangle the
long and short distance physics from each other. Precisely,
the long distance physics is described by local operators
constructed from light degrees of freedom O𝑖

, whereas the
effects of the heavy degrees of freedom are absorbed into
coefficient functions of the operators. For QCD the relevant
local operators have dimension four. Their renormalization
and the issue of operator mixing under renormalization have
been studied in detail in the literature [268–270]. For all
processes studied in this section, the low-energy effective
theory is QCD with five active flavors supplemented with
a light Higgs boson. For completeness, we briefly review
the main results concerning the renormalization of the local
dimension four operators below.

In the following we assume for simplicity that the funda-
mental theory is described by the SUSY-QCDparticle content
together with the two Higgs doublets of the MSSM, 𝜙𝑖, with
𝑖 = 1, 2. The corresponding interactions are described by the
following Lagrangian:

L =LQCD +LSQCD + ∑
𝑖=1,2

L
𝑞𝜙
𝑖

+ ∑
𝑖=1,2

L
𝑞𝜙
𝑖

, (140)

where

L
𝑞𝜙
𝑖

= −

6

∑
𝑞=1

𝑚𝑞

V
𝑔
𝜙
𝑖

𝑞
𝑞𝑞𝜙

𝑖
,

L
𝑞𝜙
𝑖

= −

6

∑
𝑞=1

∑
𝑟,𝑘=1,2

𝑚
𝑞
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𝑔
𝜙
𝑖

𝑞;𝑘𝑟
𝑞
⋆

𝑘
𝑞
𝑟
𝜙
𝑖
.

(141)

LQCD+LSQCD denotes the supersymmetric extension of the
full QCD Lagrangian with six quark flavors. The couplings
𝑔𝜙
𝑖

𝑞
and 𝑔𝜙

𝑖

𝑞;𝑘𝑟
are defined in Table 1, where V = √V2

1
+ V2

2
, with

V
𝑖, 𝑖 = 1, 2, is obtained from the vacuum expectation values
of the two Higgs doublets of the MSSM. The fields 𝑞

𝑖
, with

𝑖 = 1, 2, denote as before the squark mass eigenstates, while
𝜃
𝑞
stands for the mixing angle defined through

sin 2𝜃
𝑞
=

2𝑚
𝑞
𝑋

𝑞

𝑚2

𝑞
1

− 𝑚2

𝑞
2

,

𝑋
𝑞
= 𝐴

𝑞
− 𝜇SUSY {

tan𝛽, for down − type quarks,
cot𝛽, for up − type quarks,

(142)

where 𝐴
𝑞
is the trilinear coupling and 𝜇SUSY the Higgs-

Higgsino bilinear coupling.
We assume further the mass of the lightest Higgs boson

ℎ to be much smaller than the mass of the top quark and
of the SUSY particles, as well as all the other Higgs bosons.
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Table 1: Yukawa coupling coefficients for up and down type quark
and squark, where 𝑆

𝑞
= sin 2𝜃

𝑞
and𝐶

𝑞
= cos 2𝜃

𝑞
, and 𝑆

𝛽
= sin𝛽 and

𝐶
𝛽
= cos𝛽.

𝑓 𝑔
𝜙1

𝑞
𝑔

𝜙1

𝑞;11
𝑔

𝜙1

𝑞;12
= 𝑔

𝜙1

𝑞;21
𝑔

𝜙1

𝑞;22

up 0 −𝜇𝑆
𝑞
/𝑆

𝛽
−𝜇𝐶

𝑞
/𝑆

𝛽
𝜇𝑆

𝑞
/𝑆

𝛽

down 1/𝐶
𝛽

(2𝑚
𝑞
+ 𝐴

𝑞
𝑆
𝑞
)/𝐶

𝛽
𝐴

𝑞
𝐶

𝑞
/𝐶

𝛽
(2𝑚

𝑞
− 𝐴

𝑞
𝑆
𝑞
)/𝐶

𝛽

𝑓 𝑔𝜙2

𝑞
𝑔
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𝑞;11
𝑔
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𝛽
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𝑞
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𝛽

In this case, the physical phenomena at low energies can be
described by an effective theory containing five quark flavors
and the light Higgs

L 󳨀→L
eff
𝑌
+L

(5)

QCD, (143)

whereL(5)

QCD denotes the Lagrangian of QCDwith five active
flavors.

At leading order in the heavy masses, the effective
Lagrangian Leff

𝑌
can be written as a linear combination

of three physical, gauge independent operators [185, 270]
constructed from the light degrees of freedom

L
eff
𝑌
= −

ℎ(0)

V(0)
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0

1
O
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1
+∑
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0

3𝑞
O

0

3𝑞
)] , (144)

where the coefficient functions 𝐶
𝑖
, 𝑖 = 1, 2𝑞, 3𝑞, parametrize

the effects of the heavy particles on the low-energy phe-
nomena. The superscript 0 labels bare quantities. The three
operators are defined as

O
0

1
= (𝐺

0,󸀠,𝑎

𝜇,] )
2

,

O
0

2𝑞
= 𝑚

0,󸀠

𝑞
𝑞
0,󸀠
𝑞
0,󸀠
,

O
0

3𝑞
= 𝑞

0,󸀠
(𝑖�𝐷

0,󸀠
− 𝑚

0,󸀠

𝑞
) 𝑞

0,󸀠
,

(145)

where 𝐺0,󸀠,𝑎

𝜇,] and 𝐷0,󸀠

𝜇
are the gluon field strength tensor and

the covariant derivative, respectively. The primes label the
quantities in the effective theory. The relations between the
parameters and fields in the full and effective theories have
been derived in Section 6.1.The explicit formulae can be read
off from (113). The operator O

3𝑞
vanishes by the fermionic

equation of motion and it will not contribute to physical
observables. Thus, the last term in (144) might be omitted,
once the coefficients 𝐶0

1
, 𝐶0

2𝑞
are determined.

For convenience of the reader we reproduce the results
for the renormalization constants of the operatorsO0

1
andO0

2𝑞

that are of interest

O
1 = 𝑍11O

0

1
+ 𝑍12O

0

2𝑞
, O2𝑞 = 𝑍22O

0

2𝑞
, (146)

where

𝑍
11
= (1 −

𝜋

𝛼󸀠

𝑠

𝛽 (𝛼󸀠

𝑠
)

𝜖
)

−1

,

𝑍12 = −
4𝛾

𝑚
(𝛼󸀠

𝑠
)

𝜖
(1 −

𝜋

𝛼󸀠

𝑠

𝛽 (𝛼󸀠

𝑠
)

𝜖
)

−1

,

𝑍
22
= 1,

𝐶
1 = 𝑍

−1

11
𝐶

0

1
, 𝐶2𝑞 = 𝐶

0

2𝑞
−
𝑍

12

𝑍
11

𝐶
0

1
.

(147)

In the above equations the beta function and quark mass
anomalous dimension 𝛾

𝑚
refer to QCD with 𝑛

𝑙
= 5 active

flavors evaluated in the MS scheme. They are needed up to
three-loop order and have been given explicitly in Section 3.

The renormalized coefficient functions and operators are
finite but not renormalization group (RG) invariant. In [271],
a redefinition of the coefficient functions and operators was
introduced so that they are separately renormalization group
invariant. The RG invariant operators are defined as follows:

O
𝑔
= −

2𝜋

𝛽
(5)

0

(
𝜋𝛽

(5)

2𝛼
(5)

𝑠

O
1
− 2𝛾

(5)

𝑚
∑
𝑞

O
2𝑞
) ,

O
𝑞 = O2𝑞,

(148)

where the superscript (5) marks that there are five active
quarks to be considered in the formulas for the beta function
and the mass anomalous dimension 𝛾𝑚. Accordingly, the
associated coefficient functions are given by

𝐶
𝑔
= −

𝛼
(5)

𝑠
𝛽
(5)

0

𝜋2𝛽(5)
𝐶

1
,

𝐶
𝑞
=
4𝛼(5)

𝑠
𝛾(5)
𝑚

𝜋𝛽(5)
𝐶

1
+ 𝐶

2𝑞
.

(149)

This procedure allows us to choose independent renormaliza-
tion scales for coefficient functions and operators. In practice,
one chooses 𝜇 ≈ 𝑀

ℎ
for the renormalization scale of the

operators and 𝜇 ≈ 𝑀̃ (where 𝑀̃ denotes an averaged mass
for the heavy supersymmetric particles) for the coefficient
functions.Thus, (148) is to be evaluated at a low-scale𝜇 ≈ 𝑀

ℎ
,

whereas (149) is to be utilized at a high scale 𝜇 ≈ 𝑀̃.
For the computation of the Higgs production and decay

rates, it is however more convenient to reexpress the effective
Lagrangian in terms of the operators O

1
and O

2𝑞
. However

now, one keeps the separation of the scales for operators and
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coefficient functions as given in (148) and (149). The new
coefficient functions read [271]

𝐶
1
(𝑀̃,𝑀

ℎ
) =

𝛼󸀠

𝑠
(𝑀̃) 𝛽(5) (𝛼󸀠

𝑠
(𝑀ℎ))

𝛼󸀠

𝑠
(𝑀

ℎ
) 𝛽(5) (𝛼󸀠

𝑠
(𝑀̃))

𝐶
1
(𝑀̃)

= −
𝜋2𝛽(5) (𝛼󸀠

𝑠
(𝑀

ℎ
))

[𝛼󸀠

𝑠
(𝑀

ℎ
)]

2
𝛽
(5)

0

𝐶
𝑔
(𝑀̃) ,

𝐶
2
(𝑀̃,𝑀

ℎ
) =

4𝛼󸀠

𝑠
(𝑀̃)

𝜋𝛽(5) (𝛼󸀠

𝑠
(𝑀̃))

× [𝛾
(5)

𝑚
(𝛼

󸀠

𝑠
(𝑀̃)) − 𝛾

(5)

𝑚
(𝛼

󸀠

𝑠
(𝑀

ℎ
))] 𝐶

1
(𝑀̃)

+ 𝐶
2𝑞
(𝑀̃) .

(150)

The explicit computation of the coefficient functions will be
discussed in detail in the next section.

8.2. Computation of the Coefficient Functions 𝐶
1
and 𝐶

2𝑞
.

To calculate the coefficient functions one has to consider
appropriate Green functions in the full and the effective
theory and relate them via the decoupling relations. For
example, the amputated Green function involving the 𝑞𝑞 pair
and the zero-momentum insertion of the operator O

ℎ
which

mediates the couplings to the light Higgs boson ℎ contains
both coefficient functions 𝐶

2𝑞
and 𝐶

3𝑞

Γ
0

𝑞𝑞O
ℎ

(𝑝, −𝑝)

= 𝑖
2
∫ d𝑥d𝑦𝑒𝑖𝑝(𝑥−𝑦)⟨𝑇𝑞0 (𝑥) 𝑞0 (𝑦)Oℎ (0)⟩

1PI

= −𝜁
(0)

2
∫ d𝑥d𝑦𝑒𝑖𝑝(𝑥−𝑦)

× ⟨𝑇𝑞
󸀠,0
(𝑥) 𝑞

󸀠,0
(𝑦) (𝐶

2𝑞
O

2𝑞
+ 𝐶

3𝑞
O

3𝑞
)⟩

1PI
,

(151)

where 𝑝 is the outgoingmomentum of the quark and we label
the quantities in the effective theory with a prime.

Upon decomposition of the Green function Γ0
𝑞𝑞O
ℎ

into its
scalar and vector components and taking the limit 𝑝 → 0,
one obtains for the coefficient function 𝐶

2𝑞
the following

expression:

𝐶
0

2𝑞
=
Γ0,ℎ
𝑞𝑞O
ℎ
;𝑠
(0, 0)

1 − Σ0,ℎ

𝑠
(0)

+
Γ0,ℎ
𝑞𝑞O
ℎ
;V
(0, 0)

1 + Σ0,ℎ

V (0)
. (152)

The quantities Σ0,ℎ

V (0) and Σ0,ℎ

𝑠
(0) have been defined in (114).

The superscript ℎ in the above equation marks that only the
hard parts of the Green functions survive when one sets the
external momenta to zero 𝑝2 = 𝑝2

ℎ
= 0.

From the technical point of view, to separate the vector
and scalar contributions to the vertex Green function Γ

𝑞𝑞O
ℎ

one has to perform a naive Taylor expansion up to linear

order in the external momenta carried by quarks. After the
projection on vector and scalar parts, the external momenta
can be set to zero. Nevertheless, the light Higgsmass approxi-
mation𝑀2

ℎ
= 𝑝2

ℎ
≈ 0 can be applied from the very beginning,

which implies that the quark momenta can be chosen to be
equal. As a consequence, vertex diagrams are reduced to two-
point functionswith vanishing externalmomenta, that can be
further mapped to vacuum integrals.

Similarly, one can compute the coefficient function𝐶
1
via

the Green function formed by the coupling of the operators
O

ℎ
to two gluons

𝛿
𝑎𝑏
Γ
0,𝜇]

𝐺𝐺O
ℎ

(𝑝1, 𝑝2)

= 𝑖
2
∫ d𝑥d𝑦𝑒𝑖(𝑝1⋅𝑥+𝑝2⋅𝑦)⟨𝑇𝐺0,𝑎,𝜇

(𝑥) 𝐺
0,𝑏,]

(𝑦)O
ℎ (0)⟩

1PI

= 𝛿
𝑎𝑏
(−𝑔

𝜇]
𝑝
1
⋅ 𝑝

2
+ 𝑝

]
1
𝑝

𝜇

2
) Γ

0

𝐺𝐺O
ℎ

(𝑝
1
, 𝑝

2
) ,

(153)

where 𝑝
1
and 𝑝

2
denote the outgoing momenta of the gluons

with the color indices 𝑎 and 𝑏. As it was shown in [124, 271]
the coefficient 𝐶

1
is given by the following relation:

𝐶
0

1
= −

1

4

1

𝜁0
3

Γ
0

𝐺𝐺O
ℎ

(0, 0)

= −
1

4

1

Π0,ℎ (0)

× (
𝑔
𝜇]𝑝1

⋅ 𝑝
2
− 𝑝

1,]𝑝2,𝜇
− 𝑝

1,𝜇
𝑝
2,]

(𝑑 − 2) (𝑝1 ⋅ 𝑝2)
2

×Γ
0,𝜇]

𝐺𝐺O
ℎ

(𝑝
1
, 𝑝

2
) )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝2
1
=𝑝
2

2
=0

,

(154)

where 𝑑 denotes as usual the number of space time dimen-
sions in dimensional regularization scheme and Π0,ℎ(0) has
been defined in (114). Let us mention at this point that
the projector given in (154) projects out the coefficient of
the term proportional to 𝑔

𝜇] in (153). To explicitly verify
the transversality of the Green function Γ0,𝜇]

𝐺𝐺O
ℎ

(𝑝1, 𝑝2), one
needs to compute also the coefficient of the Lorentz structure
proportional to𝑝]

1
𝑝

𝜇

2
using a second projector (for the explicit

formula see, e.g., [129]).
In (154), one has to keep 𝑝

1
̸= 0 and 𝑝

2
̸= 0 until the

projection is applied. When only heavy particles are running
in the loops, a naive Taylor expansion to the linear order in
the two external momenta is required. After the expansion,
the factor (𝑝

1
⋅ 𝑝

2
)
2 in the denominator cancels and the

two external momenta can be set to zero. In this way the
vertex topologies implied in (154) are reduced to vacuum
integrals. Nevertheless, when light particles are present in
the loops, for example, bottom quarks, a naive Taylor expan-
sion is not enough and one has to perform an asymptotic
expansion. In this case the resulting Feynman integrals can
be decomposed into massive vacuum integrals and vertex
integrals with external momenta satisfying 𝑝2

1
= 𝑝2

2
= 0 and



46 Advances in High Energy Physics

2𝑝
1
⋅ 𝑝

2
= 𝑀2

ℎ
and light quark masses present in the loops.

Up to now, the light quark mass effects have been evaluated
at NLO in [272, 273], which requires the computation of two-
loop massive vacuum integrals and 1-loop vertex integrals.

As explained above the computation of the coefficient
functions 𝐶

1
and 𝐶

2𝑞
involves vacuum integrals with several

mass scales. Up to two-loop order such integrals are known
exactly [274]. However, the three-loop multiscale integrals
are not known and the computation of the coefficient 𝐶1 at
NNLO can be performed only for specific mass hierarchies
between the SUSY particles, that requires application of the
asymptotic expansion method (for details see [54, 156]).

In SM, the coefficient functions 𝐶1 and 𝐶2𝑞 are known
up to the third order in perturbation theory. The first order
QCD corrections to 𝐶

1
have been computed in [275–277],

while the same order contribution to 𝐶
2𝑞
vanishes in the SM.

The second order QCD corrections to the coefficients 𝐶
1
and

𝐶
2
can be found in [271]. The leading Yukawa corrections

to the coefficient functions have been evaluated in [176]. For
the coefficient function𝐶

1
the fourth order QCD corrections

have been computed recently [186, 187]. Using the low-energy
theorem, the authors of [278] computed even the fifth order
QCD corrections to the coefficient 𝐶

1
up to contributions

originating in the 𝑛
𝑙
-dependent part of the five-loop QCD

beta function, that are currently not known.
In the MSSM, the coefficient functions 𝐶

1
and 𝐶

2𝑞
are

known at the NNLO. The NLO corrections to 𝐶
1
have been

computed within SUSY-QCD for the first time in [196, 279]
and confirmed analytically [280] and numerically [281] (see
also [282]). In [283, 284] the squark loop contributions to
Higgs boson production in the MSSM have been computed
without assuming any mass hierarchy. In SUSY models
with large values of tan𝛽, the radiative corrections due to
the bottom sector can become large and they have been
computed analytically at NLO in [272, 273] and confirmed
numerically in [281]. For the coefficient function 𝐶2𝑞 the
NLO SUSY-QCD and top Yukawa corrections are known
analytically since quite some time [199].The dominant (tan𝛽
enhanced) NNLO SUSY-QCD and top Yukawa corrections
to 𝐶

2𝑏
have been computed in [190, 191]. The SUSY-QCD

contributions have been confirmed analytically in [285].
For completeness, we display here the one-loop order

coefficients 𝐶
1
and 𝐶

2𝑏
providing also O(𝜖) terms that are

necessary for the higher order calculations:

𝐶1 = −
𝛼𝑠

3𝜋

× {+
sin𝛼
cos𝛽

× [
𝑀2

𝑡
𝜇SUSY𝑋𝑡

4𝑚2

𝑡̃
1

𝑚2

𝑡̃
2

tan𝛽

−𝜖
𝑀

𝑡
𝜇SUSY sin 2𝜃𝑡
8 tan𝛽

(
𝐿

𝜇𝑡̃
1

𝑚2

𝑡̃
1

−
𝐿

𝜇𝑡̃
2

𝑚2

𝑡̃
2

)]

−
cos𝛼
sin𝛽

× [
4𝑚

2

𝑡̃
1

𝑚2

𝑡̃
2

+ 𝑚2

𝑡̃
1

𝑀2

𝑡
+ 𝑚2

𝑡̃
2

𝑀2

𝑡
− 𝐴

𝑡
𝑀2

𝑡
𝑋

𝑡

4𝑚2

𝑡̃
1

𝑚2

𝑡̃
2

+ 𝜖
𝐴

𝑡
𝑀

𝑡
sin 2𝜃

𝑡

8
(
𝐿

𝜇𝑡̃
1

𝑚2

𝑡̃
1

−
𝐿

𝜇𝑡̃
2

𝑚2

𝑡̃
2

)

+𝜖
𝑀2

𝑡

4
(
4𝐿𝜇𝑡

𝑀2

𝑡

+
𝐿

𝜇𝑡̃
1

𝑚2

𝑡̃
1

+
𝐿

𝜇𝑡̃
2

𝑚2

𝑡̃
2

)]} , (155)

𝐶
2𝑏
= −

sin𝛼
cos𝛽

×((1+
𝛼
𝑠

2𝜋
𝐶

𝐹
𝐴

𝑏
𝑚

𝑔

× [𝐹
1
(𝑚

2

𝑏̃
1

, 𝑚
2

𝑏̃
2

, 𝑚
2

𝑔
)+𝜖𝐹

2
(𝑚

2

𝑏̃
1

, 𝑚
2

𝑏̃
2

, 𝑚
2

𝑔
)] )

× (1 +
𝛼
𝑠

2𝜋
𝐶

𝐹
𝑋

𝑏
𝑚

𝑔

× [𝐹
1
(𝑚

2

𝑏̃
1

, 𝑚
2

𝑏̃
2

, 𝑚
2

𝑔
)

+𝜖𝐹
2
(𝑚

2

𝑏̃
1

, 𝑚
2

𝑏̃
2

, 𝑚
2

𝑔
)] )

−1

)

+
cos𝛼
sin𝛽

× (
𝛼
𝑠

2𝜋
𝐶

𝐹
(−𝜇SUSY tan𝛽)𝑚𝑔

× [𝐹1 (𝑚
2

𝑏̃
1

, 𝑚
2

𝑏̃
2

, 𝑚
2

𝑔
)+𝜖𝐹2 (𝑚

2

𝑏̃
1

, 𝑚
2

𝑏̃
2

, 𝑚
2

𝑔
)] )

× (1 +
𝛼
𝑠

2𝜋
𝐶

𝐹
𝑋

𝑏
𝑚

𝑔

×[𝐹
1
(𝑚

2

𝑏̃
1

, 𝑚
2

𝑏̃
2

, 𝑚
2

𝑔
)+𝜖𝐹

2
(𝑚

2

𝑏̃
1

, 𝑚
2

𝑏̃
2

, 𝑚
2

𝑔
)])

−1

,
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where the functions 𝐹
1
and 𝐹

2
are defined through

𝐹
1
(𝑥, 𝑦, 𝑧) = −

𝑥𝑦 ln (𝑦/𝑥) + 𝑦𝑧 ln (𝑧/𝑦) + 𝑧𝑥 ln𝑥𝑧
(𝑥 − 𝑦) (𝑦 − 𝑧) (𝑧 − 𝑥)

,

𝐹
2
(𝑥, 𝑦, 𝑧) =

1

(𝑥 − 𝑦) (𝑦 − 𝑧) (𝑧 − 𝑥)

× [𝑥𝑦 ln
𝑦

𝑥
(1 +

1

2
ln

𝜇2

√𝑥𝑦
)

+ 𝑦𝑧 ln 𝑧
𝑦
(1 +

1

2
ln

𝜇2

√𝑦𝑧
)

+𝑧𝑥 ln𝑥𝑧(1 + 1
2
ln

𝜇2

√𝑥𝑧
)] .

(157)

The corresponding expression for up-type quarks can be
easily obtained by replacing sin𝛼 with cos𝛼 and sin𝛽 with
cos𝛽 and vice versa.
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The approach outlined above has the advantage that it
simplifies significantly the calculation, once the limit 𝑀2

ℎ
=

𝑝2

ℎ
≈ 0 is applied. The validity of this approximation

has been proved within the SM at the NNLO [286, 287]
(for the SM, it is known as the infinite top quark mass
approximation). Since the SUSY particle masses are expected
to be considerably heavier than the top quarkmass, we expect
that this approximation holds in the MSSM even with higher
accuracy.

A second possibility to compute the coefficient functions
is to relate them via the low-energy theorem (LET) to
vacuum polarization and quark self-energy corrections. This
approach resides heavily on the fact that themomenta carried
by the Higgs boson can be set to zero. In this case, it was
shown (within the SM) that the amplitude of a process
containing (𝑁 + 1) external particles, from which one is
a Higgs boson with vanishing momenta, can be computed
from the amplitude with𝑁 external particles, obtained in the
absence of the Higgs external leg [288–293]:

lim
𝑝
ℎ
→0

Γ
ℎ,𝐴
1
,𝐴
2
,...,𝐴
𝑁 (𝑝ℎ, 𝑝𝐴

1

, 𝑝𝐴
1

, . . . , 𝑃𝐴
𝑁

)

=
𝜕

𝜕V
Γ
𝐴
1
,𝐴
2
,...,𝐴
𝑁 (𝑝

𝐴
1

, 𝑝
𝐴
1

, . . . , 𝑃
𝐴
𝑁

) ,

(158)

where V denotes the vacuum expectation value (VEV) of the
theory. Beyond tree level, all kinematic parameters must be
considered as bare quantities. For certain special theories
and renormalization schemes the above equation holds even
for renormalized parameters (for details see [294]). Within
QCD all-order formulae relating the coefficient functions of
dimension four operators with the decoupling coefficients for
the strong coupling and the quark masses have been derived
[185]. Within the MSSM, (158) has to be generalized to the
case where two Higgs fields acquire VEVs. Nevertheless,
it has been proved [192, 280, 285] that within SUSY-QCD
the coefficient functions 𝐶

1
and 𝐶

2𝑞
can be derived up to

NNLO from the decoupling coefficients 𝜁
𝑠
and 𝜁

𝑚
𝑞

through
the following relations:

𝐶
0

1
= (− sin𝛼𝐷0

𝜙
1

+ cos𝛼𝐷0

𝜙
2

) ln 𝜁0
𝑠
≡ 𝐷

0

ℎ
ln 𝜁0

𝑠
,

𝐶
0

2𝑞
= (− sin𝛼𝐷0

𝜙
1

+ cos𝛼𝐷0

𝜙
2

) ln 𝜁0
𝑚
𝑞

≡ 𝐷
0

ℎ
ln 𝜁0

𝑚
𝑞

.
(159)

As usual, the superscript 0 labels bare quantities. The oper-
ators 𝐷0

𝜙
𝑖

, with 𝑖 = 1, 2, contain the derivatives with
respect to the two VEVs of the MSSM. They have been
derived using the field dependent definitions of quark and
squark masses and mixing angles in [280]. However, for the
computation of the coefficient function𝐶1

at the NNLO, also
the dependence of the 𝜀-scalar mass on the VEVs through
the loop inducedHiggs-𝜀-scalar coupling has to be taken into
account [192]. As can be understood from equations (21) and
(22) in [280] the dominant contributions to the differential
operators originate from the pure SUSY-QCD terms. For
exemplification and to fix the normalization, we reproduce
here the terms corresponding to the third generation quarks
keeping only the linear terms in bottom quark masses (please

note the sign difference in the definition of parameter 𝜇SUSY
between [280] and [192, 285]):

𝐷
𝜙
1

=
1

cos𝛽
(𝑚

𝑏
𝐴

𝑏
F

𝑏
+ 𝑚

𝑏
G

𝑏
)

−
1

sin𝛽
𝑚𝑡𝜇SUSY sin 2𝜃𝑡F𝑡,

𝐷
𝜙
2

=
1

cos𝛽
(−𝑚

𝑏
𝜇SUSYF𝑏

)

+
1

sin𝛽
(𝑚

𝑡
𝐴

𝑡
sin 2𝜃

𝑡
F

𝑡
+ 2𝑚

2

𝑡
G

𝑡
) ,

with F
𝑏
=

2

𝑚2

𝑏̃
1

− 𝑚2

𝑏̃
2

(1 − sin2
2𝜃

𝑏
)

𝜕

𝜕 sin 2𝜃
𝑏

,

G
𝑏
=

𝜕

𝜕𝑚𝑏

,

F
𝑡
=

𝜕

𝜕𝑚2

𝑡̃
1

−
𝜕

𝜕𝑚2

𝑡̃
2

+
2

𝑚2

𝑡̃
1
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𝑡̃
2

(1 − sin22𝜃
𝑡
)

sin 2𝜃
𝑡

𝜕

𝜕 sin 2𝜃
𝑡

,

G
𝑡
=

𝜕

𝜕𝑚2

𝑡̃
1

+
𝜕

𝜕𝑚2

𝑡̃
2

+
𝜕

𝜕𝑚2

𝑡

.

(160)

On the right hand side of the above equations, all parameters
are the bare ones. We omitted the superscript “0” to avoid
clumsy notation. For large values of tan𝛽 the dominant
contributions to the coefficient functions, that is, the terms
proportional to 𝜇SUSY tan𝛽, are generated through the term
containing the derivative F

𝑏 in 𝐷𝜙
2

. Taking into account
the parametric dependence of the quark self-energy Σ0,ℎ

on masses and mixing angles, one can easily derive these
contributions from the terms proportional to sin 2𝜃

𝑏 in Σ
0,ℎ

𝑠
.

In this section we study the phenomenological applica-
tions of the computations discussed above. We concentrate
on the calculation within the MSSM of the total decay rate
into hadrons Γ(ℎ → hadrons), that is composed of the
partial decay widths into quarks Γ(ℎ → 𝑞𝑞) and gluons
Γ(ℎ → 𝑔𝑔). Although, the channel Γ(ℎ → 𝑏𝑏) gives
the dominant contributions to the total Higgs decay rate,
it was not used among the Higgs discovery channels at the
LHC, due to its huge background. Nevertheless, it has a big
impact on all branching ratios and is an important channel
for the identification of the Higgs properties. Precisely, the
uncertainties on the partial decay width Γ(ℎ → 𝑏𝑏) translate
into significant systematic errors for all the other nonleading
branching ratios. For illustration we show in Figure 18 from
[55] the branching ratios of the Higgs boson in the SM at the
LO. For precise analysis they have to be complemented by
genuine SM radiative corrections together with corrections
due to the supersymmetric particles, that can be embedded
in the decoupling coefficients as discussed in the previous
section.
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Figure 18: Higgs boson branching ratios in the SM at the LO from
[55].

Starting from the effective Lagrangian (144) one can
derive the following formula for the total decay width into
hadrons:

Γ (ℎ 󳨀→ hadrons)

= (1 + 𝛿𝑢)
2

{∑
𝑞

Γ
(0)

𝑞𝑞

× [(1 + Δ
22
)C

2

2
+ Δ

12
C

1
C

2
]

+Γ
(0)

𝑔𝑔
(1 + Δ

11
)C

2

1
} ,

(161)

where the coefficient functionsC
1
andC

2
have been defined

in (150).
At the lowest order in perturbation theory, the first line

corresponds to Γ(ℎ → 𝑞𝑞), whereas the second one stands
for Γ(ℎ → 𝑔𝑔). At higher orders, however, the splitting of
(161) into the decay widths to fermions and gluons is not
straightforward anymore, due to the occurrence of diagrams
contributing to both channels.

The LO expressions for the branching ratios are given by

Γ
(0)

𝑞𝑞
=
𝑁

𝑐
𝐺

𝐹
𝑀

ℎ
𝑚2

𝑞

4𝜋√2
(1 −

4𝑚2

𝑞

𝑀2

ℎ

)

3/2

,

Γ
(0)

𝑔𝑔
=
𝑁𝑐𝐶𝐹𝐺𝐹𝑀

3

ℎ

𝜋√2
,

(162)

where 𝐺
𝐹
denotes the Fermi constant. As is well known

[207, 277, 295], the large logarithms of the type ln(𝑀2

ℎ
/𝑚2

𝑞
)

can be resumed by taking 𝑚
𝑞
in (162) to be the MS mass

𝑚MS
𝑞
(𝜇) evaluated at the scale 𝜇 = 𝑀

ℎ
.

The coefficients Δ
11
, Δ

12
, Δ

22
describe the low-energy

physics. Therefore, they have to be computed in the effective
theory and are independent of the heavy masses. Using the
method of operators described in the previous section, they
can be related via the optical theorem to the absorptive parts
of the scalar correlators Π

𝑗𝑘
:

Δ
𝑗𝑘
=

1

𝑀ℎ

Im (Π
𝑗𝑘
)

=
1

𝑀
ℎ

Im(𝑖∫ d𝑥𝑒𝑖𝑝𝑥 ⟨0 󵄨󵄨󵄨󵄨󵄨𝑇 [O𝑗 (𝑥)O𝑘 (0)]
󵄨󵄨󵄨󵄨󵄨
0⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝2=𝑀2

ℎ

) ,

𝑗, 𝑘 = 1, 2,

(163)

where 𝑝 is the momentum of the external Higgs boson.
They have been computed within SM up to three-loop order
(see [134] for a comprehensive review on this topic). For
the analysis discussed in this section, their one- and two-
loop QCD corrections are required. The two-loop QCD
contributions to the coefficients Δ

22
and Δ

11
are given by

[296, 297]. One has

Δ
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=
𝛼󸀠

𝑠
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(164)
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+
263

12
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ℎ

+
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4
ln2 𝜇

2

𝑀2

ℎ
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𝑙
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(165)

with 𝜁(𝑥) being the Riemann’s zeta function.
The additional QCD correction Δ 12 is generated through

double-triangle topologies. It was first computed in [271] and
it reads

Δ 12 =
𝛼󸀠

𝑠
(𝜇)

𝜋
𝐶𝐹(−19 + 6𝜁 (2) − ln2

𝑚2

𝑞

𝑀2

ℎ

− 6 ln
𝜇2

𝑀2

ℎ

) .

(166)

The universal corrections 𝛿
𝑢

of O(𝛼𝑛

𝑠
𝑥
𝑡
), where 𝑥

𝑡
=

(𝛼𝑡/4𝜋)
2
= 𝐺𝐹𝑀

2

𝑡
/(8𝜋2√2), with 𝛼𝑡 being the top-Yukawa

coupling, contain the contributions from the renormalization
of theHiggs wave function and the vacuum expectation value
[298]. It is given by

𝛿𝑢 = 𝑥𝑡 [
7

2
+
𝛼
󸀠

𝑠
(𝜇)

𝜋
(
19

3
− 2𝜁 (2) + 7 ln

𝜇2

𝑀2

𝑡

) + O (𝛼
2

𝑠
)] .

(167)

Now, we are in a position to interpret the phenomenological
significance of (161). In the following section we concentrate
on the numerical effects of the radiative corrections to the
hadronic Higgs decay.

The SM input parameters are the strong coupling constant
at the 𝑍-boson mass scale 𝛼

𝑠
(𝑀

𝑍
) = 0.1184 [182], the top

quark pole mass 𝑀𝑡
= 173.1GeV [178], and the running

bottom-quark mass in the MS scheme 𝑚𝑏(𝑚𝑏) = 4.163GeV
[299]. For the supersymmetric parameters we adopted the
corresponding values of the “modified 𝑚

max
ℎ

” scenario as
described in Section 7.2.2 (for details see [54]).

In Figure 19 we focus on the decay channel ℎ → 𝑏𝑏

and display the decay width as a function of the Higgs
boson mass 𝑀

ℎ
. We chose in this case tan𝛽 = 50. The

two-loop genuine QCD and electroweak corrections (i.e.,
computed in the effective theory) to the process ℎ → 𝑏𝑏,
as well as the two-loop SUSY-QCD corrections to the Higgs
boson mass, are depicted by the dotted line. More precisely,
they are derived from (161), where the coefficient functions
C

1
and C

2
are set to their tree-level values. The additional

SUSY-QCD vertex corrections parametrized through the
coefficient functions C

1
and C

2
are represented at the one-

and two-loop order by the dashed and solid lines, respectively.
We also take into account the one-loop SUSY-EWcorrections
to the coefficient function C

2
and fix their renormalization

scale at 𝜇SEW = (𝑚𝑡̃
1

+ 𝑚𝑡̃
2

+ 𝜇SUSY)/15, for which the two-
loop SUSY-EW corrections become negligible [190, 191]. The
genuine two-loop corrections are negligible. Nevertheless,
they are essential tools for the proof of the convergence of the
perturbative expansion.

The large one-loop SUSY-QCD radiative corrections to
Γ(ℎ → 𝑏𝑏) have only a relatively small impact on the
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Figure 19: Γ(ℎ → 𝑏𝑏) for the “modified𝑚max
ℎ

” scenario as a function
of𝑀

ℎ
. The dotted line displays the two-loop QCD and electroweak

corrections together with two-loop corrections to the Higgs boson
propagator. The dashed and solid lines depict in addition the one-
and two-loop SUSY-QCD vertex corrections, respectively.

branching ratio BR(ℎ → 𝑏𝑏), but they can have a large
impact on BR(ℎ → 𝜏+𝜏−). For sufficiently large tan𝛽 and
𝜇SUSY, the measurement of BR(ℎ → 𝜏+𝜏−) can provide
information about the distinction between the SMandMSSM
predictions.

The gluonic Higgs decay rate can be directly measured
only at 𝑒+𝑒− colliders. At hadron colliders, they can be
measured only indirectly with rather bad accuracy of the
order of 20%. As it has been shown, the genuine SUSY-QCD
corrections to the gluonic Higgs decay are rather small [300].
For the experimental analysis relevant at the LHC they can be
neglected with respect to the standard quark contributions to
the hadronic decay rate. The QCD corrections are known in
the SM up to the NNNLO [186, 187, 278] in the heavy-top-
mass limit (here, the mass of the Higgs boson is assumed to
be much smaller than the mass of the top quark). Even the
mixed QCD-electroweak corrections at the three-loop level
are known [176] in the same approximations. The genuine
NLO SUSY-QCD corrections have been evaluated in [196,
280] and amount to about −5% from the QCD corrections
at NLO.

A much more interesting Higgs decay channel from the
perspective of the ongoing experiments conducted at the
LHC is the rare ℎ → 𝛾𝛾 channel. In this case the coupling
of the Higgs to photons is mediated by loops containing
electrically charged particles. If the masses of the particles
inside loops are generated through the Higgs mechanism, as
in the case of the SM, the couplings to the Higgs boson grow
with the masses, balancing the decrease due to rising loop
masses. If themasses of the particles are generated by different
mechanisms, as is the case in SUSY, the effect of the heavy
particles on the ℎ𝛾𝛾 coupling is in general small.

In SM with the Higgs boson mass of about 125GeV only
the top quark and the W boson effectively contribute and
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Figure 20: One-, two-, and three-loop Feynman diagrams contributing to the Higgs boson propagator in SUSY-QCD. Dashed lines denote
Higgs bosons, whereas oriented dashed lines represent the squarks. For the other particles we use the same convention as before.

they interfere destructively.The radiative corrections are well
under control. The QCD contributions are known up to
NNLO [301] and the electroweak corrections to NLO [302–
304]. The SUSY-QCD corrections to Γ(ℎ → 𝛾𝛾) are known
with the same accuracy as in the case of Γ(ℎ → 𝑔𝑔).TheNLO
corrections have been computed in [300, 305] and the NNLO
contributions can be found in [306]. Also for this channel, the
SUSY corrections are small as compared to the SM ones.

For an intermediate Higgs mass of about 125GeV it is
legitimate to investigate the quality of the approximation dis-
cussed in the previous section. For accurate results, one has to
take also into consideration in (144) operators of dimension
six and higher, that are suppressed at least by a factor𝑀2

ℎ
/𝑀2

𝑡
.

However, the application of higher dimensional operators in
the context of SUSY is quite tedious. Amore familiar method
for this purpose is to use the optical theorem. Hereby, one
has to consider corrections to the Higgs boson self-energy
Π

ℎ
(𝑞2). The imaginary part of this quantity provides us with

the total decay rate of the Higgs boson

Γℎ =
1

𝑀
ℎ

ImΠℎ (𝑀
2

ℎ
) . (168)

According to the Cutkosky cutting rules, nonvanishing con-
tributions to the imaginary part of the Higgs boson self-
energy will provide only those diagrams, that can be cut
in such a way that all resulting final state particles can be
set simultaneously on their mass shell. Sample diagrams
contributing to the hadronic decay rate can be seen in
Figure 20.

The imaginary parts originate from the 𝑖𝜖-prescription
for on-shell propagators. In the results obtained using DRED

they are embedded in complex logarithms occurring in the
𝜖-expansion of the expression

(
−𝜇

2

𝑞2 + 𝑖𝜖
)

𝜖

= 1 − 𝜖 log(
−𝑞2 − 𝑖𝜖

𝜇2
)

+
1

2
𝜖
2log2 (

−𝑞2 − 𝑖𝜖

𝜇2
) + O (𝜖

3
) .

(169)

After setting the external momenta on the Higgs mass shell
𝑞2 = 𝑀2

ℎ
, one obtains further

log(
−𝑞2 − 𝑖𝜖

𝜇2
) = log(

𝑀2

ℎ

𝜇2
) − 𝑖𝜋. (170)

Theanalytic calculation of the three-loopdiagrams contribut-
ing to Γ

ℎ
in SUSY-QCD is not yet possible. Nevertheless,

for fixed mass hierarchies between the occurring particles,
the method of asymptotic expansion can be successfully
applied. For illustration, we consider a degenerate SUSYmass
spectrum satisfying the following inequality with respect to
the SM particle masses:

𝑚
𝑞
≪ 𝑀

ℎ
≪ 𝑚

𝑡
≪ 𝑀S ≡ 𝑚𝑔

= 𝑚
𝑞
. (171)

Similar to the computation of three-loop SUSY-QCD correc-
tions to the light Higgs bosons mass, also in this calculation
one has to make an additional Taylor expansion of bottom
squark propagator in bottom squark mass differences Δ

𝑏

defined like

Δ
𝑏 =

𝑚2

𝑏̃
1

− 𝑚2

𝑏̃
2

𝑚2

𝑏̃
1

. (172)
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This procedure allows to correctly take into account the
contributions generated by the bottom squark mixing angle
renormalization.

In the following we consider the same renormalization
scheme as in Section 7.2.1. The results for Γ

ℎ
including the

dominant mass corrections at 𝑂(𝛼2

𝑠
) read [307]
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]]}
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sin𝛽

)
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144
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1

144

𝑚2

𝑡
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𝑆

+
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8640
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𝑡

+
7

17280
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ℎ

𝑀2

𝑆

+
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2073600

𝑀4

ℎ

𝑚4

𝑡

+
1

24192

𝑀4

ℎ

𝑚2

𝑡
𝑀2

𝑆

]

+ O(
𝑀4

ℎ

𝑀4

𝑆

,
𝑀4

𝑡

𝑀4

𝑆

,
𝑀6

ℎ

𝑚6

𝑡

) . (173)

For a light Higgs mass 𝑀
ℎ
= 125GeV and SUSY masses

of about 1 TeV, tan𝛽 = 40, and SM parameters chosen as
in the previous sections, the mass corrections at NLO and
NNLO amount to below one percent from the dominant
contribution (i.e., computed in the EFT) at the corresponding
order in perturbation theory. They are beyond the reach of
the LHC accuracy, but they might be of phenomenological
interest at a future linear collider.

During the last years, a lot of effort has been devoted to
precise predictions for Higgs production at hadron colliders
(for reviews, see [36, 308–310]). They constituted basic
ingredients for the discovery of the new scalar particle at the
LHC. The main production channel for the SM Higgs boson
at the LHC is the loop-induced gluon-fusion channel. For
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Figure 21: Higgs production cross sections at the LHC for √𝑠 =
8TeV together with the uncertainties from the missing higher order
corrections and the parton density functions from [55].

illustration, we reproduce in Figure 21 from [55] the theo-
retical predictions for the main Higgs production channels
together with the uncertainties due to missing higher order
corrections and to the uncertainties on the parton density
functions (PDFs).

An important application of the Higgs discovery is
to constrain the parameters of theories predicting physics
beyond the SM. This is also the case for SUSY theories.
Given the high sensitivity of the Higgs observables (its mass,
production cross sections, and decay rates) on the parameters
of the top sector in the MSSM, one can derive lower bounds
for top squark masses and set constraints for their mixing
angle. For this task one needs, among other ingredients,
precise predictions for the Higgs production cross section,
including even NNLO SUSY-QCD corrections. As discussed
in Section 8.2, exact analytic calculations at this order in
perturbation theory are not yet feasible. Instead one has to
use the EFT approach togetherwith themethod of asymptotic
expansions. In the SM, it was shown [286, 287, 311–314] that
the exact result for the hadronic cross section for intermediate
Higgs masses (𝑀

ℎ
< 2𝑚

𝑡
) is approximated to better than 1%

level by the result derived with EFT approach, if the full top
mass dependence at LO is factored out.

Following the same reasoning for the case of the MSSM,
one can write the hadronic cross section 𝜎 ≡ 𝜎(𝑝𝑝 → ℎ+𝑋)

as as a function of the hadronic center-of-mass energy √𝑠. It
reads [196]

𝜎 (𝑧) = 𝜌0𝜎0(−3𝜋
𝐶

𝑔 (𝜇ℎ)

𝑐
(0)

1

)

2

× [Σ
(0)
(𝑧) +

𝛼
𝑠 (𝜇𝑠)

𝜋
Σ

(1)
(𝑧)

+(
𝛼
𝑠
(𝜇

𝑠
)

𝜋
)

2

Σ
(2)
(𝑧) + ⋅ ⋅ ⋅ ] .

(174)

The exact LO contribution, denoted here by 𝜎
0
, is factored

out, as discussed above. The higher order corrections are
computed within the EFT approach and the separation of
short and long distance contributions is explicit in (174). For a
better convergence of the perturbative expansion and to avoid
the occurrence of large logarithms, one makes use of scale
separation as discussed in Section 8.1. Thus, the coefficient
functions 𝐶

𝑔
and 𝑐(0)

1
that contain the radiative corrections

due to heavy particles are evaluated at a heavy scale of the
order of the SUSY particle masses 𝜇

ℎ
= O(𝑀̃). The partonic

cross sections Σ(𝑛)(𝑧) are computed at a low scale of the order
of theHiggsmass𝜇

𝑠
= O(𝑀

ℎ
).The individual building blocks

in (174) are discussed below.
The normalization coefficient 𝜌

0
is given by

𝜌
0
=
𝐺

𝐹
[𝛼

𝑠
(𝜇

𝑆
)]

2

288𝜋√2
, (175)

where the presence of the strong coupling evaluated at the
low-energy scale 𝜇

𝑠
is due to the use of renormalization group

invariant operators and coefficient functions as given in (148)
and (150).

𝜎
0
contains the exact dependence on all masses and

momenta at the LO. Its analytic expression is known for quite
long time. For convenience of the reader, we reproduce it
here, in the normalization of [54]:

𝜎
0
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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)
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𝑖

+
𝑚2

𝑡
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𝑡
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𝑡̃
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𝑡

− 4(−1)
𝑖
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× 𝐴 (𝜏
𝑡
𝑖

)} +O(
𝑀2

𝑍

𝑚2

𝑡̃
𝑖

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

,

(176)
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with

𝜏
𝑖
=
4𝑚2

𝑖

𝑀2

ℎ

, 𝐴 (𝜏) = 𝜏 [1 + (1 − 𝜏) 𝑓 (𝜏)] ,

𝐴 (𝜏) = 𝜏 (1 − 𝜏𝑓 (𝜏)) ,

𝑓 (𝜏) =

{{{

{{{

{

arcsin2 (
1

√𝜏
) , 𝜏 ≥ 1,

−
1

4
(ln 1 +

√1 − 𝜏

1 − √1 − 𝜏
− 𝑖𝜋)

2

, 𝜏 < 1.

(177)

The coefficient 𝑐0
1
is defined through the one-loop relation

𝑐
0

1
= −

3𝜋

𝛼
𝑠

𝐶
(1−loop)
1

. (178)

Its SUSY-QCD part can be read off directly from (155). The
coefficient 𝑐0

1
is factored out because it is already contained

in the LO contribution 𝜎
0
as can be easily understood from

(176). Indeed, in the limit of light Higgs masses 𝑀
ℎ
≪

𝑚
𝑡
, 𝑚𝑡̃, 𝑚𝑔

and neglecting mass suppressed contributions
of the order of O(𝑀2

ℎ
/𝑚2

𝑡
), O(𝑀2

ℎ
/𝑚2

𝑡̃
), and O(𝑀2

𝑍
/𝑚2

𝑡̃
) the

LO contribution 𝜎0 takes the form (we adopt here the
normalization of [54])

𝜎
0
󳨀→

󵄨󵄨󵄨󵄨󵄨
𝑐
(0)

1

󵄨󵄨󵄨󵄨󵄨

2

. (179)

The coefficient 𝐶𝑔 was defined in (149) and has to be
evaluated at the heavy scale. Let us point out that the factor
−3𝜋𝐶

𝑔
(𝜇

ℎ
)/𝑐0

1
expanded in the strong coupling 𝛼

𝑠
(𝜇

ℎ
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the form

−3𝜋
𝐶

𝑔 (𝜇ℎ)
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𝑔
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𝜋
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2

𝑐
(2)

𝑔
+ ⋅ ⋅ ⋅ ,

(180)

where the coefficients 𝑐(𝑖)
𝑔
, with 𝑖 = 1, 2, are known, once the

coefficient 𝐶1
is computed up to the NNLO.

Finally, Σ(𝑛)(𝑧) is defined through the convolution

Σ
(𝑛)
(𝑧)

= ∑
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1
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2
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) 𝑓
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(𝑥

2
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(

𝑧
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) ,
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𝑀2

ℎ

𝑠
(181)

of 𝑓
𝑗/𝑝
(𝑥), the density of parton 𝑖 inside the proton, and

Σ̂
(𝑛)

𝑖𝑗
(𝑥), the partonic cross section expanded up to the

𝑛th order in 𝛼
𝑠
(𝜇

𝑠
), and computed in the effective-theory

approach. At the LO, it reads

Σ̂
(0)

𝑖𝑗
(𝑥) = 𝛿𝑖𝑔𝛿𝑗𝑔𝛿 (1 − 𝑥) . (182)
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Figure 22:The cross section 𝜎SUSY-QCD
𝑡

(𝜇
𝑠
, 𝜇

ℎ
) as a function of tan 𝛽

using the parameters in to LO (bottom), NLO (middle), and NNLO
(top) from [54]. The dotted line corresponds to the SM and the
dashed and solid lines to the MSSM.

The NLO and NNLO contributions contain the real and
virtual corrections associated with the operator O1 and its
mixturewith the operatorO2. Since they are computedwithin
the effective theory, they can be taken over from the SM
computations reported in [275, 276, 286, 314].

Let us mention that there is also a third scale present
in (174), namely, the factorization scale 𝜇𝐹 embedded in the
PDFs. Usually it is chosen to be equal to the low-scale 𝜇

𝑠
,

that is, 𝜇
𝐹
= 𝜇

𝑠
. The choice of scales plays an important role

in precision calculations of the hadronic Higgs production
cross section, especially when particles much heavier than
the SM ones are present. We discuss in the next section the
phenomenological impact of the NNLO corrections.

For the numerical analysis we choose a supersymmetric
mass spectrum in the so-called “modified 𝑚max

ℎ
scenario” as

defined in [54]. It is a modification of the original “𝑚max
ℎ

”
scenario [315] such that one of the top squarks becomes light
and the other one remains heavy, at the TeV scale. At the same
time Higgs masses as large as 127GeV can be achieved.

For illustration, we reproduce in Figure 22 the results
of [54] that constitute the most precise prediction for the
hadronic cross section in the gluon fusion channel in the
framework of the MSSM. Here, 𝜎SUSY-QCD

𝑡
(𝜇𝑠, 𝜇ℎ) denotes

the dominant contribution originating from the top sector.
From bottom to top, the LO, NLO, and NNLO results are
depicted for 5 ≤ tan𝛽 ≤ 30 and choosing 𝑚𝑡̃

1

= 400GeV.
The dotted lines represent the SM results. The solid and the
dashed lines show the MSSM predictions for two different
scale choices: 𝜇ℎ = 𝑀𝑡 and 𝜇𝑠 = 𝑀ℎ/2 and 𝜇ℎ =

𝜇𝑠 = 𝑀ℎ/2, respectively. The MSSM results are reduced by
a few percent as compared to the SM prediction. This effect
increases when going from LO to NLO and finally to NNLO
where a difference of about 5% is observed. This behavior
is specific for supersymmetric mass spectra containing at
least one light squark of the third generation. For the case
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when all SUSY particles are heavy, at the TeV scale (the so-
called decoupling limit) the genuine SUSY-QCD corrections
to the production cross section become negligible. The fact
that the difference between the SM and MSSM predictions
increases when higher order radiative corrections are taken
into account can be explained by the occurrence ofmany new
SUSY contributions.

As can be seen from the figure, the effect of scale choice
is not negligible: the results for 𝜇

ℎ
= 𝜇

𝑠
are in general

a few percent above the ones with 𝜇
ℎ
̸= 𝜇

𝑠
. At NLO, the

scale dependence increases as compared to the LO case as a
consequence of the special organisation of the perturbative
series. Nevertheless, the scale dependence decreases when
going from NLO to NNLO as expected.

9. Conclusions

In this review we report on precision calculations in super-
symmetric theories. They are not only important ingredients
for the development of quantum field theories in general,
but they are also required by the current experimental
analyses searching for indirect manifestations of SUSY in
collider experiments at the TeV scale. The latter topic is of
utmost importance for particle physics: the nonobservation
of any supersymmetric particle at the TeV scale renders
low-energy supersymmetric theories debatable. Obviously,
to prove or disprove a theory for which enormous efforts
both at theoretical and experimental level have been devoted
over the last four decades is a very complex task. In this
review, we concentrate on the indirect searches for SUSY that
can be carried through precision tests of the gauge coupling
unification hypothesis, the prediction of a light Higgs boson
mass, and the interaction properties of the Higgs boson with
the SM particles.

It turns out that the hypothesis of gauge coupling uni-
fication even in the framework of minimal SUSY SU(5)
model cannot be falsified with the help of currently available
experimental data. Let us mention that the contributions at
the three-loop order in perturbation theory are essential in
this analysis. The conclusion drawn from precision calcula-
tions reconfirm earlier results derived from model building
arguments.

Furthermore, the theoretical prediction of the light Higgs
boson mass within SUSY with an accuracy comparable with
the one reached by the ongoing experimental analyses con-
ducted at the LHC is an important tool for constraining the
supersymmetric parameter space. For this purpose one needs
to calculate even three-loop Feynman integrals involving
many different mass scales. At present, an exact analytic
computation is not feasible. Nevertheless, the method of
asymptotic expansion can be applied successfully also in
SUSY theories and provides us with precise results. Specifi-
cally, the lightest Higgs bosons mass within theMSSM can be
predicted at present with an accuracy of about 1 GeV for the
parameter space of phenomenological interest.

Moreover, after the recent discovery of the Higgs boson
at the LHC, the natural question is whether it has the
characteristics of the particle predicted by the SM or new

theories are required to describe it. To answer this question
from the perspective of supersymmetric theories, one needs
predictions of the hadronic Higgs production cross section
and its decay rates into SM particles with the same precision
as in the SM. To achieve such an accuracy, again multiloop
calculations up to the three-loop order are required.

Detailed analyses of the data taken or to be taken at
the LHC running at energies up to 14TeV are expected to
provide us with new insights into the particle physics and
hopefully with the answer to the question whether low-
energy supersymmetry is the right theory to describe the
phenomena at the TeV scale.

Appendices

A. Group Theory

We consider a gauge group G with generators 𝑅𝑎 satisfying
the Lie algebra (useful sources for some of thematerial in this
section have included [119, 136, 139])

[𝑅
𝑎
, 𝑅

𝑏
] = 𝑖𝑓

𝑎𝑏𝑐
𝑅

𝑐
. (A.1)

We work throughout with a fermion representation con-
sisting of 𝑁

𝑓
sets of Dirac fermions or 2𝑁

𝑓
sets of two-

component fermions, in irreducible representations with
identical Casimir invariants, using 𝑅𝑎 to denote the genera-
tors in one such representation.Thus 𝑅𝑎𝑅𝑎 is proportional to
the unit matrix:

𝑅
𝑎
𝑅

𝑎
= 𝐶𝑅 ⋅ 𝐼. (A.2)

For the adjoint representation we have

𝐶
𝐴
𝛿
𝑎𝑏
= 𝑓

𝑎𝑐𝑑
𝑓
𝑏𝑐𝑑
. (A.3)

𝐼
2
(𝑅) is defined by

Tr [𝑅𝑎
𝑅

𝑏
] = 𝐼

2 (𝑅) 𝛿
𝑎𝑏
. (A.4)

Thus we have

𝐶
𝑅
𝑑
𝑅
= 𝐼

2 (𝑅)𝑁𝐴
, (A.5)

where 𝑁
𝐴
is the number of generators and 𝑑

𝑅
is the dimen-

sionality of the representation 𝑅. Evidently 𝐼
2
(𝐴) = 𝐶

𝐴
. The

fully symmetric tensors 𝑑𝑎𝑏𝑐𝑑

𝑅
and 𝑑𝑎𝑏𝑐𝑑

𝐴
are defined by

𝑑
𝑎𝑏𝑐𝑑

𝑅
=
1

6
Tr [𝑅(𝑎
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𝐴
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] ,

(A.6)

where

(𝐹
𝑎
)
𝑏𝑐
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, (A.7)
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,

(A.8)

(similar to 𝐹(𝑎𝐹𝑏𝐹𝑐𝐹𝑑)).
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Table 2: SU(𝑁) Group invariants (here 𝑅 is the fundamental
representation).

Group SU(𝑁)
𝐶

𝐴
𝑏𝑁

𝐶
𝑅

𝑏 ((𝑁2 − 1) /2𝑁)

𝐼
2
(𝐴) 𝑏𝑁

𝐼
2
(𝑅) 𝑏/2

𝑁
𝐴

𝑁
2
− 1

𝐷
4
(𝐴𝐴) (𝑏4/24) (𝑁2 + 36)𝑁2

𝐷
4
(𝑅𝐴) (𝑏4/48)𝑁(𝑁2 + 6)

𝐷
4
(𝑅𝑅) (𝑏

4
/96𝑁

2
) (18 − 6𝑁

2
+ 𝑁

4
)

𝐷
4
(𝐴𝐴𝐴) (𝑏6/216)𝑁2(324 + 135𝑁2 + 𝑁4)

𝐷
4
(𝑅𝐴𝐴) (𝑏6/432)𝑁3(51 + 𝑁2)

The additional tensor invariants occurring in the results
are defined as

𝐷
3 (𝑅𝑅) =

𝑑𝑎𝑏𝑐

𝐴
𝑑𝑎𝑏𝑐

𝐴
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𝐴

,

𝐷4 (𝐴𝐴) =
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𝐴
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𝐴
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𝐴

,

𝐷
4 (𝑅𝐴) =

𝑑
𝑎𝑏𝑐𝑑

𝑅
𝑑𝑎𝑏𝑐𝑑

𝐴

𝑁𝐴

,

𝐷
4 (𝐴𝐴𝐴) =

𝑑
𝑎𝑏𝑐𝑑

𝐴
𝑑
𝑐𝑑𝑒𝑓

𝐴
𝑑
𝑎𝑏𝑒𝑓

𝐴

𝑁
𝐴

,

𝐷
4 (𝑅𝐴𝐴) =

𝑑𝑎𝑏𝑐𝑑

𝑅
𝑑
𝑐𝑑𝑒𝑓

𝐴
𝑑
𝑎𝑏𝑒𝑓

𝐴

𝑁
𝐴

.

(A.9)

In Tables 2, 3, and 4 we present results for the various tensor
invariants for the groups SU(𝑁), SO(𝑁), and Sp(𝑁), when
the fermion representation 𝑅 is the fundamental representa-
tion.

The canonical choice of 𝑏 is 𝑏 = 1 for all groups, but
sometimes different choices are more convenient [139].

B. Modification of the DR Scheme: MDR

In the following we provide analytic expressions for the finite
shifts introduced in the top squark mass counterterms as
compared to the DR scheme. According to the discussion
in Section 7, one can distinguish four cases for the mass
hierarchies.

Case 1. 𝑚
𝑞
≫ 𝑚𝑡̃

𝑖

(𝑖 = 1, 2)

(
𝑚MDR

𝑡̃
𝑖

𝑚𝑡̃
𝑖

)

2

= 1 − (𝛼
𝑠
)
2
𝐶

𝑅
𝑁

𝑞
𝐼
2 (𝑅)

× (−
1

2
+ 𝐿

𝜇𝑞
+ 𝜁 (2))

𝑚
2

𝑞

𝑚2

𝑡̃
𝑖

.

(B.1)

Table 3: SO(𝑁) Group invariants (here 𝑅 is the fundamental
representation).

Group SO(𝑁)
𝐶

𝐴 𝑏(𝑁 − 2)

𝐶
𝑅 (𝑏/2) (𝑁 − 1)

𝐼
2
(𝐴) 𝑏(𝑁 − 2)

𝐼
2
(𝑅) 𝑏

𝑁
𝐴 (1/2)𝑁(𝑁 − 1)

𝐷
4
(𝐴𝐴) (𝑏4/24) (𝑁 − 2)(−296 + 138𝑁 − 15𝑁2 + 𝑁3)

𝐷
4
(𝑅𝐴) (𝑏

4
/24) (𝑁 − 2)(22 − 7𝑁 + 𝑁

2
)

𝐷
4
(𝑅𝑅) (𝑏

4
/24) (4 − 𝑁 + 𝑁

2
)

𝐷
4
(𝐴𝐴𝐴)

(𝑏6/432) (𝑁 − 2)(−29440 + 23272𝑁 − 7018𝑁2 +

971𝑁
3
− 47𝑁

4
+ 2𝑁

5
)

𝐷
4
(𝑅𝐴𝐴) (𝑏6/432) (𝑁−2)(2048−1582𝑁+387𝑁2−31𝑁3+2𝑁4)

Table 4: Sp(𝑁) Group invariants (here 𝑅 is the fundamental
representation).

Group Sp(𝑁)
𝐶

𝐴 𝑏(𝑁 + 2)

𝐶
𝑅 (𝑏/4) (𝑁 + 1)

𝐼
2
(𝐴) 𝑏(𝑁 + 2)

𝐼
2
(𝑅) 𝑏/2

𝑁
𝐴 (1/2)𝑁(𝑁 + 1)

𝐷
4
(𝐴𝐴) (𝑏

4
/384) (𝑁 + 2)(296 + 138𝑁 + 15𝑁

2
+ 𝑁

3
)

𝐷
4
(𝑅𝐴) (𝑏

4
/384) (𝑁 + 2)(22 + 7𝑁 + 𝑁

2
)

𝐷
4
(𝑅𝑅) (𝑏4/384) (4 + 𝑁 + 𝑁2)

𝐷
4
(𝐴𝐴𝐴)

(𝑏6/27648) (𝑁 + 2)(29440 + 23272𝑁 + 7018𝑁2 +

971𝑁3 + 47𝑁4 + 2𝑁5)

𝐷
4
(𝑅𝐴𝐴)

(𝑏6/27648) (𝑁 + 2)(2048 + 1582𝑁 + 387𝑁2+

31𝑁3 + 2𝑁4)

The label 𝑁𝑞 = 5 has been introduced for convenience and
for the logarithms the abbreviation 𝐿

𝜇𝑞 = ln(𝜇2/𝑚2

𝑞
) has been

introduced.

Case 2. 𝑚𝑡̃
2

≫ 𝑚𝑡̃
1

(
𝑚MDR

𝑡̃
1

𝑚
𝑡̃
1

)

2

= 1 − (𝛼𝑠)
2
𝐶𝑅𝐼2 (𝑅)

× (−
1

4
+
1

2
𝐿𝜇𝑡̃
2

+
1

2
𝜁 (2))

𝑚
2

𝑡̃
2

𝑚2

𝑡̃
1

.

(B.2)

In this equation we have 𝐿
𝜇𝑡̃
2

= ln(𝜇2/𝑚2

𝑡̃
2

).
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Case 3. 𝑚
𝑔
≫ 𝑚𝑡̃

𝑖

, (𝑖 = 1, 2) and𝑚
𝑞
≫ 𝑚

𝑔

(
𝑚MDR

𝑡̃
𝑖

𝑚𝑡̃
𝑖

)

2

= 1 + 𝛼
𝑠
𝐶

𝑅
[1 + 𝐿

𝜇𝑔
]
𝑚2

𝑔

𝑚2

𝑡̃
𝑖

+ (𝛼
𝑠
)
2

× {𝐶
2

𝑅
[−
11

4
−
3

2
𝐿𝜇𝑔 + 𝜁 (2)]

𝑚
2

𝑔

𝑚2

𝑡̃
𝑖

+ 𝐶
𝐴
𝐶

𝑅
[
21

8
+
7

2
𝐿

𝜇𝑔

+
9

8
𝐿
2

𝜇𝑔
−
1

4
𝜁 (2)]

𝑚2

𝑔

𝑚2

𝑡̃
𝑖

+ 𝐶
𝑅
𝑁

𝑡
𝐼
2 (𝑅)

× [−(2 + 2𝐿
𝜇𝑔
+
3

4
𝐿
2

𝜇𝑔
)
𝑚2

𝑔

𝑚2

𝑡̃
𝑖

+ (1 − 2𝜁 (2))
𝑚

𝑔
(𝑚

𝑔
− 𝑚𝑡̃

2

)

𝑚2

𝑡̃
𝑖

+(
1

4
−
1

2
𝐿𝜇𝑡̃
2

−
1

2
𝜁 (2))

𝑚
2

𝑡̃
2

𝑚2

𝑡̃
𝑖

]

+ 𝐶𝑅𝑁𝑞𝐼2 (𝑅)

× [(−
5

8
−
3

4
𝐿𝜇𝑔 −

5

4
𝐿𝜇𝑞 −

3

2
𝐿𝜇𝑔𝐿𝜇𝑞

+
3

4
𝐿
2

𝜇𝑞
+
3

2
𝜁 (2))

𝑚2

𝑔

𝑚2

𝑡̃
𝑖

+ (−
43

36
−
5

6
𝐿

𝑞𝑔
)

𝑚4

𝑔

𝑚2

𝑞
𝑚2

𝑡̃
𝑖

+ (−
67

288
−
7

24
𝐿𝑞𝑔

)
𝑚6

𝑔

𝑚4

𝑞
𝑚2

𝑡̃
𝑖

+(+
1

2
− 𝐿

𝜇𝑞
− 𝜁 (2))

𝑚2

𝑞

𝑚2

𝑡̃
𝑖

]} .

(B.3)

Here𝑁
𝑡
= 1, 𝐿

𝜇𝑔
= ln(𝜇2/𝑚2

𝑔
), and 𝐿

𝑞𝑔
= ln(𝑚2

𝑞
/𝑚2

𝑔
).

Case 4. 𝑚
𝑔
≫ 𝑚𝑡̃

1

and𝑚
𝑞
≈ 𝑚

𝑔

(
𝑚MDR

𝑡̃
𝑖

𝑚
𝑡̃
𝑖

)

2

= 1 + 𝛼
𝑠
𝐶

𝑅
[1 + 𝐿

𝜇𝑔
]
𝑚2

𝑔

𝑚2

𝑡̃
𝑖

+ (𝛼
𝑠
)
2

× {𝐶
2

𝑅
[−
11

4
−
3

2
𝐿𝜇𝑔 + 𝜁 (2)]

𝑚2

𝑔

𝑚2

𝑡̃
𝑖

+ 𝐶
𝐴
𝐶

𝑅
[
21

8
+
7

2
𝐿

𝜇𝑔

+
9

8
𝐿
2

𝜇𝑔
−
1

4
𝜁 (2)]

𝑚2

𝑔

𝑚2

𝑡̃
𝑖

+ 𝐶
𝑅
𝑁

𝑡
𝐼
2 (𝑅)

× [−(2 + 2𝐿𝜇𝑔 +
3

4
𝐿
2

𝜇𝑔
)
𝑚2

𝑔

𝑚2

𝑡̃
𝑖

+ (1 − 2𝜁 (2))
𝑚

𝑔
(𝑚

𝑔
− 𝑚𝑡̃

2

)

𝑚2

𝑡̃
𝑖

+(
1

4
−
1

2
𝐿

𝜇𝑡̃
2

−
1

2
𝜁 (2))

𝑚
2

𝑡̃
2

𝑚2

𝑡̃
𝑖

]

+ 𝐶
𝑅
𝑁

𝑞
𝐼
2 (𝑅)

× [(−
3

4
𝐿𝜇𝑔 −

5

4
𝐿𝜇𝑞 −

3

2
𝐿𝜇𝑔𝐿𝜇𝑞

+
3

4
𝐿
2

𝜇𝑞
+
3

2
𝜁 (2))

𝑚2

𝑔

𝑚2

𝑡̃
𝑖

− 4𝜁 (2)
𝑚𝑔

(𝑚
𝑔
− 𝑚𝑡̃

2

)

𝑚2

𝑡̃
𝑖

−(
7

4
+ 𝐿

𝜇𝑞
+ 𝜁 (2))

𝑚2

𝑞

𝑚2

𝑡̃
𝑖

]} .

(B.4)

All the masses on the right hand side of (B.1), (B.2), (B.3),
and (B.4) are DR masses. Let us also mention that the above
formulae are valid for the case 𝑀

𝜀
= 0. The finite shifts

given for the Cases 3 and 4 can also be used for other mass
hierarchies like, for example, 𝑚

𝑞
≫ 𝑚𝑡̃

2

≈ 𝑚
𝑔
≫ 𝑚𝑡̃

1

or
𝑚

𝑞
≈ 𝑚𝑡̃

2

≈ 𝑚
𝑔
≫ 𝑚𝑡̃

1

.
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