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Abstract
We study microwave radiation emitted by a small voltage-biased Josephson
junction connected to a superconducting transmission line. An input–output
formalism for the radiation field is established, using a perturbation expansion
in the junction’s critical current. Using output field operators solved up to the
second order, we estimate the spectral density and the second-order coherence
of the emitted field. For typical transmission line impedances and at frequencies
below the main emission peak at the Josephson frequency, radiation occurs
predominantly due to two-photon emission. This emission is characterized by
a high degree of photon bunching if detected symmetrically around half of the
Josephson frequency. Strong phase fluctuations in the transmission line make
related nonclassical phase-dependent amplitude correlations short lived, and
there is no steady-state two-mode squeezing. However, the radiation is shown to
violate the classical Cauchy–Schwarz inequality of intensity cross-correlations,
demonstrating the nonclassicality of the photon pair production in this region.
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1. Introduction

In a resistive environment, charge tunneling across a voltage-biased Josephson junction (JJ)
triggers simultaneous microwave emission [1, 2], that carries away all or some of the gained
electrostatic energy. For voltages below the superconducting gap, eV < 1, the radiation is
purely due to Cooper-pair tunneling since charge tunneling via excitation of quasiparticles is
energetically forbidden. This mechanism leads to spectroscopically sharp features, which can
be used for the probing of environmental energy levels [3–5], as photon absorption by the
environmental modes influences the simultaneously measurable dc-current. A novel idea is to
use the voltage-biased small JJ as a source of nonclassical microwave radiation, i.e. to convert
the applied dc-voltage into correlated microwave photons [6, 7]. This has recently stimulated
theoretical studies of the emitted microwave field [7–10].

In this paper, we investigate microwave radiation produced in a dc-voltage-biased
superconducting transmission line that is terminated by a small JJ. We establish an input–output
formalism for the field operators in the transmission line. In this formalism, the electric current
across the JJ acts as a nonlinear and time-dependent boundary condition for the microwave
field [11, 12]. We solve this perturbatively as a power series in the junction’s critical current [7],
and give explicit expressions for the output field operators up to the second order in the critical
current. Assuming thermal equilibrium of the input field we recover the limit of incoherent
Cooper-pair tunneling [1, 2], where microwave emission is due to an incoherent sequence of
Cooper-pair tunneling events. The photon flux has been studied recently experimentally in this
regime, [6] and it was shown that the radiation at voltages below the Josephson frequency,
for typical transmission-line impedances, is due to simultaneous two-photon emission. Using
the formalism established in this paper, we also study the nonclassicality of the photon pair
production occurring in this region.

Using field operators up to the second order in the junction’s critical current, we
derive analytical expressions for the first- and second-order (photon) coherences for typical
transmission lines. We reproduce results for the photon-flux density and simultaneous electric
current, previously derived using the P(E)-theory [2, 6]. Further, the emission characteristic
below the Josephson frequency is shown to be highly bunched if detected symmetrically around
half the Josephson frequency, eV/h. We then further study the nonclassicality of the photon
pair production occurring below the Josephson frequency [7]. Strong phase fluctuations in the
transmission line make phase-dependent nonclassical amplitude correlations short lived, and
lead to a vanishing two-mode squeezing, in the steady state. We thus proceed to prove the
nonclassicality of the radiation in a different way, considering the classical Cauchy–Schwarz
inequality of intensity cross-correlations, a nonclassicality test that is not affected by dephasing.
Using the developed methods, we derive an equivalent inequality but expressed in terms of
P(E)-functions. This is used to show that the emitted photons below the Josephson frequency
violate the inequality, demonstrating the nonclassicality of the photon pair production in this
region.

The paper has the following structure. In section 2 we introduce the model we use to
describe the radiation in the transmission line, and the nonlinear and time-dependent boundary
condition created by the JJ. In section 3, we derive the solution by establishing a perturbation
expansion in the junction’s critical current. In section 4, we derive results for the microwave
spectral density in the used leading-order approximation, whose validity is also addressed in this
section. Higher-order coherences and the nonclassicality of the output radiation are investigated
in section 5. The technical details of the calculations are given in appendices A–D.
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Figure 1. (a) We consider a dc-voltage-biased transmission line terminated by a small
JJ. We allow for a step-like change in the characteristic impedance from Z0 to Z1,
supporting the depicted modes of a λ/4 resonator. (b) The equivalent circuit model
consists of an infinite series of capacitors δxCi and inductors δx L i , where δx is a small
discretization width, that is allowed to approach zero (δx M = d), in parallel with a JJ
(crossed box). We have Z i =

√
L i/Ci . The upper conductor consists of series of islands,

each assigned a counting parameter m.

2. The system and the model

Our system consists of a dc-voltage-biased transmission line terminated by a small JJ,
figure 1(a). We consider explicitly two types of environments: (i) a semi-infinite transmission
line (i.e. Z0 = Z1); and (ii) a semi-infinite transmission line with a λ/4 cavity (i.e. Z1 > Z0).
Case (i) allows for analytical solutions, while case (ii) enhances the output radiation at the
cavity resonances, which is important in experiments.

2.1. Heisenberg equations of motion and quantization of the electromagnetic (EM) field

Following [12], we model the system using a discretized circuit model, depicted in figure 1(b).
The total Lagrangian of the system can be decomposed as

L= Lc +Lf +LJ. (1)

The cavity (0 < x < d) and the free space (x > d) Lagrangians are, respectively [11]

Lc =

M∑
m>1

δxC18̇
2
m

2
−

N∑
m>2

(8m − 8m−1)
2

2L1δx
, (2)

Lf =

∑
m>M

1xC08̇
2
m

2
−

∑
m>M

(8m − 8m+1)
2

2L01x
. (3)

Here 8m(t) is the magnetic flux of node m, see figure 1(b). The JJ is described by the term

LJ =
CJ8̇

2
1

2
+ EJ cos

(
2π

81 − 8V

80

)
. (4)

Here CJ is the junction’s capacitance, EJ is the Josephson coupling energy, 80 = h/2e is the
flux quantum and the dc-voltage bias results in the term 8V = V t .

3
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We consider the Heisenberg equations of motion in the continuum limit δx → 0. Inside
each region, free space (i = 0) or cavity (i = 1), one obtains a Klein–Gordon equation

8̈(x, t) =
1

L iCi

∂28(x, t)

∂2x
. (5)

Here 8(x, t) is the position-dependent magnetic flux. We write down a solution for the cavity
region as (0 < x < d)

8(x, t) =

√
h̄ Z1

4π

∫
∞

0

dω
√

ω

[
ac

in(ω)e−i(kc
ωx+ωt) + ac

out(ω)e−i(−kc
ωx+ωt) + h.c.

]
. (6)

Here Z1 =
√

L1/C1 is the corresponding characteristic impedance and kc
ω = ω

√
C1L1 the wave

number. Similarly, we write the free-space solution as (x > d)

8(x, t) =

√
h̄ Z0

4π

∫
∞

0

dω
√

ω

[
af

in(ω)e−i(kf
ωx+ωt) + af

out(ω)e−i(−kf
ωx+ωt) + h.c.

]
. (7)

The in-field creation operators of photons, a†(ω), and the annihilation operators, a(ω),
satisfy the commutation relation [13][

ain(ω), a†
in(ω

′)
]

= δ(ω − ω′). (8)

As a consistency check of our theory, we will show that (8) is satisfied also for the out field
operators.

2.2. Boundary conditions for the EM field

The boundary conditions appear at the JJ (x = 0) and at the possible discrete change of the
transmission-line parameters (x = d). Generally, we will have three boundary conditions to
solve, and three unknown fields [ac

in(ω), ac
out(ω) and af

out(ω)]. The requirements of a continuous
voltage distribution and current conservation across x = d imply the linear conditions

8(d−, t) = 8(d+, t), (9)

∂8(d−, t)

L0∂x
=

∂8(d+, t)

L1∂x
. (10)

These can be solved by the Fourier transformation.
The main challenge is to solve the boundary condition at the junction, where current

conservation gives a nonlinear and time-dependent condition

CJ8̈(0, t) +
1

L0

∂8(x, t)

∂x
|x=0 = −Ic sin

[
2π

80
8(0, t) − ωJt

]
. (11)

Here, Ic = (2π/80)EJ is the junction’s critical current and ωJ = 2eV/h̄ is the Josephson
frequency. Classically, for Z0 = Z1 and T = 0 (no input), this is equivalent to a resistively and
capacitively shunted junction (RCSJ) model of a JJ [14].

4
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3. Perturbative input–output approach

We want to derive a solution for the outgoing free-space field, af
out(ω), as a function of the

incoming field in the same region, af
in(ω). The challenge is that the boundary condition at

the junction is highly nonlinear, containing all moments of the field operators ac
in/out(ω) and[

ac
in/out(ω)

]†
. A linearization of this condition, performed in appendix A, captures some of the

essential physics, but is limited to the second order in the photonic processes and does not,
for example, describe correctly the effect of low-frequency phase fluctuations. In the case of
a weakly damped resonator (Z1 � Z0), a single cavity mode can also be picked out and be
described as a damped oscillator [9, 10], but with a limited description of the important low-
frequency modes. Here, we use a different approach and derive a solution for the continuous-
mode output field operators as a power series in the junction’s critical current Ic.

3.1. Unperturbed solution

The starting point is the solution for Ic = 0, i.e. when the Cooper-pair tunneling is neglected.
By a Fourier transformation (appendix B) we obtain the linear dependence

af
out(ω) = R(ω)af

in(ω),
(12)

R(ω) =
1 + r e−2ikc

ωd−iθ(ω)

e−iθ(ω) + r e2ikc
ωd

.

Here eiθ(ω)
= C∗(ω)/C(ω), C(ω) = 1 + iZ1CJω and r = (Z1 − Z0)/(Z0 + Z1). Similarly, we can

solve for the cavity out-field ac
out(ω) as a function of the free-space input af

in(ω),

ac
out(ω) = A(ω)af

in(ω),
(13)

A(ω) =

2
√

Z1
Z0

e−2ikc
ωd(

1 + Z1
Z0

)
e−2ikc

ωd−iθ(ω) + Z1
Z0

− 1
,

where A(ω) gives the response of the cavity to an external drive and possesses information
of its resonance frequencies. With the help of this, the operator for the phase difference at the
junction, φ0(t) ≡ 2π8(0, t)/80, can be written

φ0(t) =

√
4π h̄ Z1

80

∫
∞

0

dω
√

ω
Ā(ω)af

in(ω)e−iωt + h.c. (14)

Here, Ā(ω) = A(ω)/C∗(ω) and we also note the useful relation R(ω) = Ā(ω)/ Ā∗(ω). The
corresponding phase fluctuations are equivalent to that of the ‘tunneling’ impedance Z t(ω) [2],
defined as

Re[Z t(ω)] ≡ Z1| Ā(ω)|2,
(15)〈

φ0(t)φ0(t
′)
〉
= 2

∫
∞

−∞

dω

ω

Re[Z t(ω)]

RQ

e−iω(t−t ′)

1 − e−β h̄ω
,

5
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where RQ = h/4e2 is the (superconducting) resistance quantum. In the ensemble average we
assume thermal equilibrium for the incoming free-space modes, used throughout this paper.
For the open line (Z0 = Z1) case, the impedance (15) describes a capacitor CJ and a resistor
Z0 in parallel, whereas for the cavity case (Z1 � Z0) it describes a capacitively shunted λ/4-
resonator, with resonances approximately at ωk = (2k + 1)ω0, where ω0 = π/2d

√
C1L1 and

k ∈ [0, 1, 2, . . .].

3.2. First- and second-order solutions

To seek a solution that includes Cooper-pair tunneling (Ic 6= 0), we multiply the right-hand side
of the boundary condition (11) by a formal dimensionless parameter ξ , and correspondingly
write the solution for the annihilation operators of the outgoing field in the open space as
af

out(ω) =
∑

∞

n=0 ξ nan(ω). The zeroth-order solution, a0(ω), corresponds to Ic = 0 and was
obtained in (12). We make a similar expansion for the fields inside the cavity and for the phase
difference across the JJ. The input field in the free space, af

in(ω), is independent of ξ , as the
output in this region does not reflect back. The task is to find the other fields as a function of the
known input, af

in(ω), for small Ic 6= 0.
We solve the boundary condition at the junction order by order in ξ . By a straightforward

calculation we find the leading-order solution (appendix B)

af
1(ω) = iIc

√
Z1

h̄ωπ
Ā(ω)

∫
∞

−∞

dteiωt sin [φ0(t) − ωJt] . (16)

We observe that the operator is a (sinusoidal) function of the zeroth-order phase difference
operator (14). In the second order for ξ (and Ic) we obtain

af
2(ω) = iIc

√
Z1

h̄ωπ
Ā(ω)

∫
∞

−∞

dteiωt [sin [φ0(t) − ωJt] , z(t)] . (17)

Here, the operator z(t) (∝ Ic) is a solution to the equation φ1(t) = [φ0(t), z(t)], where φ1 is
the phase-difference operator in first order, obtained via the leading-order solution (16), see
appendix B. Important here is that the operators φi(t) do not commute with each other.

Thus, we have obtained a solution for (11) to second order in ξ as a function of the operator
z(t), which still needs to be solved. In the case of semi-infinite transmission line (Z0 = Z1), we
find a simple explicit form of z(t),

z(t) = −i
EJ

2h̄

∫
∞

−∞

dt ′

[
1 +

Sgn(t − t ′)

eωc|t−t ′| − 1

]
cos[φ0(t

′) − ωJt
′].

Here, ωc = 1/Z0CJ. The solution has an apparent divergence at t = t ′, which cancels for
symmetry reasons in all measurable quantities discussed in this paper. We observe that the
operator z(t) is also a trigonometric function of the zeroth-order phase-difference operator. Also
generally (Z0 6= Z1), z(t) has the form

∫
∞

−∞
dt ′S(t − t ′) cos[φ0(t ′) − ωJt ′], where S(t − t ′) is

a scalar function. The trigonometric functions can be decomposed into exponential operators
e±i[φ0(t)−ωJt], that correspond to charge transfers of 2e across the JJ in the two possible
directions. [2] Thus, we see that the solutions (16), (17) include all possible tunneling processes
up to the second order.

We can now study the consistency of our solution, by checking if the output radiation field
satisfies the commutation relation (8). This property is vital as, for example, it secures causality

6
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in the theory [13]. We obtain up to second order[
af

out(ω),
[
af

out(ω
′)
]†

]
= |R(ω)|2δ(ω − ω′) + ξ

(
[a1(ω), a†

0(ω
′)] + [a0(ω), a†

1(ω
′)]

)
+ξ 2

(
[a2(ω), a†

0(ω
′)] + [a0(ω), a†

2(ω
′)] + [a1(ω), a†

1(ω
′)]

)
, (18)

using the input field commutation relation [af
in(ω), [af

in(ω
′)]†] = δ(ω − ω′). Since |R(ω)| = 1,

the first term on the right-hand side produces the desired δ-function. A straightforward
calculation (appendix B) shows that the rest of the terms, order by order in ξ , sum to zero.
This confirms that the commutation relation is indeed valid, up to the order our solution allows
us to check this.

4. Emission characteristics I: photon-flux density

Thus, having derived explicit expressions for the outgoing field-operators to second order in
the junction’s critical current, we go on to study properties of the output radiation. We first
investigate general relations for the amplitude correlations, and after this consider their explicit
forms. The truncation of the power series to leading order can be made for small transparency
JJs, i.e. for small Ic. The exact definition of ‘small’ is then addressed in section 4.4. In later parts
of the paper, sections 5 and 6, we discuss results of similar calculations but done for higher-order
correlations.

4.1. General properties for the amplitude correlations

By a direct calculation, we obtain for the amplitude correlations related to the photon-flux and
power-spectral densities〈

a†
out(ω)aout(ω

′)
〉
= 2π f (ω)δ(ω − ω′). (19)

We use here the notation aout(ω) ≡ af
out(ω). The function f (ω) is identified as the photon-flux

density [15]. This diagonal form is a result of the finite phase-coherence time, present already
in the zeroth-order phase-difference (14). The phase difference performs a quantum Brownian
motion in time, [16] and it follows that expectation values of type

〈
eiφ0(t)eiφ0(t ′)

〉
are zero. This

also implies that the amplitude correlations related to possible squeezing are zero〈
aout(ω)aout(ω

′)
〉
= 0. (20)

In general, due to the random phase fluctuations there is on average no phase coherence in the
output radiation. Further, only even powers of the critical current are present in the power series
of the photon-flux density, or of any higher-order correlator considered in this paper,

f (ω) =

∞∑
n=0

I 2n
c Fn(ω), (21)

where functions Fn(ω) are independent of Ic. This follows again from the phase fluctuations,
namely because

〈
5me±iφ0(tm)

〉
= 0, for odd integers m.

We further divide the leading-order result for the output photon-flux-density, (19), as

f (ω) = ft(ω) + fth(ω). (22)

7
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Here the term ft(ω) is the photon-flux density created by inelastic Cooper-pair tunneling, and
the part fth(ω) describes reflection of the incoming thermal photons, being finite only for T 6= 0.
In the following we consider the explicit forms of ft(ω) and fth(ω).

4.2. Emission from inelastic Cooper-pair tunneling ft(ω)

Radiation due to inelastic Cooper-pair tunneling is obtained by inserting the leading-order
solution for both operators a(†)

out in (19). A straightforward calculation gives (appendix C),

ft(ω) =

∫
∞

0
dω′

1

2π
〈a†

1(ω)a1(ω
′)〉

=
I 2

c Re[Z t(ω)]

2ω
[P(h̄ωJ − h̄ω) + P(−h̄ωJ − h̄ω)] . (23)

Here, the function P(E) is the probability to exchange energy E with the electromagnetic
environment, in this case with the transmission line, defined as

P(E) =
1

2π h̄

∫
∞

−∞

dt eJ (t)+i E
h̄ t , (24)

where the phase correlator function, J (t) = 〈[φ0(t) − φ0(0)]φ0(0)〉, is a measure of phase
fluctuations in the zeroth order. Equation (23) was obtained first in [6] by applying the theory of
inelastic Cooper-pair tunneling [2], i.e. P(E)-theory, and keeping track of the simultaneously
emitted photons.

We will now analyze the obtained photon-flux density in more detail and compare it with
the classical solution, which consists of continuous radiation at the Josephson frequency ωJ,
broadened by low-frequency phase fluctuations. The classical power spectral density, defined as
S(ω) = h̄ω f (ω), has the approximate form [14]

Scl(ω) =
h̄ I 2

c Re [Z t(ωJ)]

2

1

π

0

h̄2(ωJ − ω)2 + 02
, (25)

where we assume a small 0 = 4πkBT Z0/RQ ≡ 2h̄ D compared to h̄ωJ. The same result
is obtained also from (23) by inserting phase correlations of classical (thermal) phase
diffusion [17], J (t) = −D|t |. In particular, for T = 0 one has J (t) = 0 and P(E) = δ(E). Then
all the radiation is emitted at ω = ωJ with the total power I 2

c Re [Z t(ωJ)]/2. In an exact classical
solution also higher harmonics and a change in the dc-voltage across the junction exist, but the
main picture remains.

In the quantum-mechanical treatment of the EM fields, two qualitative differences
appear when T → 0: (i) the linewidth remains finite due to shot noise in the charge
transport [14, 18–24]; and (ii) radiation below ωJ has a finite tail due to multi-photon
emission [6, 7]. Whereas property (i) is not captured by the leading-order perturbation theory
done here (except for the derivation of the zero-frequency shot noise, see section 4.4), property
(ii) is seen as an asymmetric broadening of the P(E)-function. At zero temperature and for
Z0 = Z1, the P(E)-function has an approximate form (E > 0) [1, 2],

P(E) =
exp(−2ργE)

0(2ρ)

1

E

[
πρ

E

4ECJ

]2ρ

, (26)

8
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Figure 2. Photon-flux density ft(ω) as a function of the Josephson frequency ωJ =

2 eV/h̄ (left panels of (a) and (b)) and for a single value ωJ = 140 µ eV/h̄ (right panels).
The Josephson radiation is seen as a diagonal resonance ω = ωJ in the photon flux
density (left panels). The flux is asymmetric around the diagonal, as for ω > ωJ the
emission is suppressed by the temperature, but for ω < ωJ multi-photon production
results in extra emission. When the pair production of photons dominates, the photon
flux becomes symmetric around half of the Josephson frequency ωJ, as seen for the
single picked value ωJ = 140 µ eV/h̄ (right panels). In (b) this is approximately the
sum of the two resonance frequencies in the cavity, and emission to these modes is
enhanced. We use EJ = 15 µeV, C = 10 fF, T = 100 mK, Z0 = 100 �, (a) Z1 = 100 �
or (b) Z1 = 500 � with f0 = 1/4d

√
C1L1 = 10 GHz.

where γE is the Euler constant, ECJ = e2/2CJ is the junction charging energy and ρ = Z0/RQ

is the dimensionless resistance of the transmission line. For E < 0 one has P(E) = 0, i.e. no
energy can be extracted from the environment.

The result (26) is obtained by using [1, 16, 25] J (t) = −2ρ
[
ln(ωR|t |) + γ + iπ

2 sign(t)
]
.

This zero temperature long-time behavior is a good approximation also at finite temperatures for
frequencies ω < ωJ − kBT/h̄. For a typical low-Ohmic transmission line, ρ � 1, the resulting
power density is peaked at the Josephson frequency ωJ with the magnitude ∼ I 2

C Z0δ(ωJ − ω)/2.
A finite tail extends to lower frequencies, ω < ωJ − kBT/h̄, with the form

ft(ω) ≈ I 2
c Z0

ρ

h̄ω(ωJ − ω)
. (27)

This is symmetric around half the Josephson frequency, ωJ/2, indicating that the radiation
results from photons created in pairs [7] whose frequencies ωa and ωb add up to the Josephson
frequency ωJ. This result can be derived also by straight linearization of the boundary condition,
which includes maximally two photon emission processes, as demonstrated in appendix A.
Similar results hold also for the cavity configuration, Z1 > Z0. In particular, if the Josephson
frequency matches the sum of the frequency of two modes, strong pair production to these
modes is observed. Numerical results for the photon-flux density for the free-space and cavity
configurations are presented in figure 2.

4.3. Elastic and inelastic reflection of thermal photons, fth(ω)

In addition to the radiation created by inelastic Cooper-pair tunneling, the leading-order
result (22) has a term proportional to the Bose factor, which we further divide as

9
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fth(ω) = f0(ω) + fin(ω). The part f0(ω) describes the zeroth-order (elastic) reflection of photons
at the junction

f0(ω) ≡

∫
∞

0
dω′

1

2π

〈
a†

0(ω)a0(ω
′)
〉
=

1

2π

1

eβh̄ω − 1
. (28)

The inelastic term fin(ω) comes from correlators between the zeroth- and second-order
operators. For the free-space configuration, Z0 = Z1, we obtain (appendix C)

fin(ω) =
1

eβ h̄ω − 1

I 2
c Re[Z t(ω)]

2ω

∑
±

[P(±h̄ωJ − h̄ω) − P(±h̄ωJ + h̄ω)] . (29)

We interpret this as an inelastic reflection of thermal photons, exchanging energy with a
Cooper-pair tunneling in either direction. The term proportional to P(±h̄ωJ − h̄ω) contributes
as photon emission to the frequency ω, and the term ∝ P(±h̄ωJ + h̄ω) as photon absorption from
this frequency. Such processes do not contribute to the net current, and are a small correction to
ft(ω) for the situations considered in this paper.

4.4. Convergence

So far we have found that it is the phase fluctuations across the JJ that describe Cooper-pair
tunneling and simultaneous photon emission in the leading order. To study the convergence of
the perturbation expansion, we then investigate the spectrum of the phase fluctuations at the
junction. In particular, we compare the magnitude of the zeroth-order contribution with the
magnitude of the leading-order contribution. For a rapidly converging perturbation expansion,
the latter should be much smaller than the first. This should hold for all frequencies, since
the right-hand side of the boundary condition at the junction (11), mixes all combinations of
frequency terms summing up to ωJ. This leads to the comparison

4Re [Z t(ω)]〈a†
0a0 + a0a†

0〉 � Re [Zf(ω)]〈a†
1a1 + a1a†

1〉. (30)

Here we have defined Re [Zf(ω)] = Z1|κ+ + κ−e2ikc
ωd

|
2, where κ± =

(√
Z0/Z1 ±

√
Z1/Z0

)
/2.

This leads us to the general condition

2

π
coth

(
βh̄ω

2

)
�

I 2
c

2ω
Re [Zf(ω)]

∑
±±

[P(±h̄ωJ ± h̄ω)]. (31)

This is a relation for the smallness of the junction’s critical current Ic. For frequencies below the
cut-off frequency ωc, Re [Zf(ω)] is approximately equal to Re [Z t(ω)], and in the following we
will replace Zf(ω) by Z t(ω). We now examine the condition (31) explicitly at zero frequency,
at the Josephson frequency, and then finally for frequencies between these special frequencies.

Let us investigate the zero-frequency limit by multiplying each side of (31) by h̄ω. We
obtain

4kBT

π
� h̄ I 2

c Re [Z t(0)][P(h̄ωJ) + P(−h̄ωJ)]. (32)

Using the leading-order result for the simultaneous electric current I = Ic 〈sin[φ(t) − ωJt]〉 =

I +
− I −, where I ±(V ) = (π h̄ I 2

c /4e)P(±h̄ωJ), we obtain the relation

4kBT

Re [Z t(0)]
� 4e

[
I +(V ) + I −(V )

]
. (33)

10
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This compares Johnson–Nyquist current noise (left-hand side) with the shot-noise coming from
the charge transport (right-hand side), the noise considered also in [14, 18–24]. For an Ohmic
impedance (Z0 = Z1) this implies

kBT � π 2ρ2 EJ

2 eV
EJ. (34)

The second condition is calculated at the Josephson frequency ω = ωJ. The contribution
from ωJ would act back to the low-frequency spectrum in the next perturbation round and would
affect, for example, a possible shift in the average voltage across the junction. Analysis at the
Josephson frequency gives us

4kBT � h̄ I 2
c

Re [Z t(ωJ)]

2 eV

RQ

2πRe [Z t(0)]
. (35)

To derive this, we have used the approximation P(0) ≈ (1/0π). We assume now that the
Josephson frequency does not match with a resonance frequency in the cavity (but it still can
match a sum of two). We have then Re [Z t(ωJ)] ≈ Re [Z t(0)], and we obtain the condition

4kBT �
EJ

2 eV
EJ. (36)

For an Ohmic impedance this is usually slightly more strict as (34), as typically ρ ∼ 1/20 >

1/2π . It is also independent of Z0. For the Ohmic case this can then be converted to a demand
that thermal dephasing has to be faster than inelastic Cooper-pair tunneling, since D � I (V )/2e
is equivalent to 2kBT � E2

J /2eV (under the approximation P(h̄ω) ≈ 2ρ/h̄ω). However, if the
Josephson frequency is exactly at the resonance, we obtain

4kBT �
EJ

2eV
EJ Q2

0. (37)

Here we have used the result for the Q-factors of the resonance modes Qn = (2n + 1)π Z1/4Z0

(n = 0, 1, 2, . . .).
For the analysis at the middle frequencies kBT/h̄ < ω < ωJ − kBT/h̄ we consider the

approximation P(h̄ω) ≈ 2Z t(ω)/RQh̄ω, which gives

1 �
eIc Z t(ω)

h̄ω

eIc Z t(ωJ − ω)

h̄(ωJ − ω)
. (38)

For a resonant environment this sets a limit between the critical current and the sharpness
(Q-factor) of the mode. One then gets the condition Ic Z1 Q0 � V . For an Ohmic impedance
we obtain the condition Ic Z0 � V , a known convergence condition for the higher orders of
P(E)-theory obtained in [24].

5. Emission characteristics II: second-order coherence

To study statistics of the emitted photons in more detail, we investigate the second-order
coherence G(2)(τ ) for the output radiation, i.e. the probability to detect a pair of photons with
time interval τ . The possibility for multi-photon emission implies bunching of the outgoing
photons, meaning an increased probability of detecting photon pairs simultaneously. In this
section, we consider our results for G(2)(τ ), obtained by including the leading contributions up
to the fourth order in the critical current Ic.

11
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5.1. Photon coherences

We start with the first-order coherence, G(1)(τ ), for a continuous-mode field defined as [26]

G(1)(τ ) ≡
h̄ Z0

4π

∫
∞

0
dω dω′

√
ωω′

〈
a†

out(ω)aout(ω
′)
〉
eiωτ .

Here we use the notation
∫

∞

0 dω dω′
≡

∫
∞

0 dω
∫

∞

0 dω′. Similarly as before, we estimate this up
to second order in Ic. We can relate this to the photon-flux density, equation (22), and obtain

G(1)(τ ) =
h̄ Z0

2

∫
∞

0
dωω [ ft(ω) + fth(ω)] eiωτ .

In the following, we are interested in the contribution due to an inelastic Cooper-pair tunneling,
ft(ω),

G(1)
t (τ ) =

I 2
C Z0

4

∫
∞

0
h̄dωeiωτ Re [Z t(ω)]P(h̄ωJ − h̄ω). (39)

Here, we have neglected the vanishing contribution due to backward Cooper-pair tunneling,
∝ P(−h̄ωJ − h̄ω).

The second-order coherence gives information on correlations between the emitted
photons. This is defined for a continuous-mode field as [26]

G(2)(τ ) ≡

(
h̄ Z0

4π

)2∫ ∞

0
dω dω′ dω′′ dω′′′

√
ωω′ω′′ω′′′eiτ(ω′

−ω′′)
〈
a†

out(ω)a†
out(ω

′)aout(ω
′′)aout(ω

′′′)
〉
.

(40)

The leading-order contribution for (40) comes again from the second order in Ic, which
describes the effect of single-Cooper-pair tunneling. To obtain analytical results we calculate
G(2)

t (τ ) for the JJ connected directly to the free space, Z0 = Z1, at very low temperatures (for a
more general expression see appendix D). After a straightforward calculation we obtain

G(2)
t (τ ) =

(
I 2

C Z 2
0

4

)2 (
1

π EJ

)2 ∫
∞

0
h̄ ds

(
2h̄

τ

)2

sin2
(τ s

2

)
P[h̄(ωJ − s)]. (41)

Here, we have neglected terms proportional to the Bose factor, i.e. ∝ f0(ω). In the following,
we use this result to study photon bunching in the output radiation.

5.2. Bunching

An important quantity describing photon emission is the relation between the first- and second-
order coherences

g(2)(τ ) =
G(2)(τ )

[G(1)(0)]2
. (42)

This basically compares probabilities for single- and two-photon detection. If g(2)(0) < 1, the
field is called antibunched, and if g(2)(0) > 1 the field is bunched. For a Poissonian process
the result is g(2)(0) = 1, while for thermal radiation g(2)(0) = 2. Arbitrarily high bunching is
possible also classically whereas antibunching is a pure sign of nonclassicality [26].
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Figure 3. The normalized second-order coherence for a JJ connected directly to the
free space, as estimated from (39) and (41) using the P(E)-function (26). We use here
ρ = 10−3, 10−2 and 10−1, from bottom to top, and we have chosen EC = h̄ωJ. We see
that the bunching, g(2)

t (0), is close to the estimate (43) when ρ � 1. The second-order
coherence decays due to finite bandwidth, and has an analogous form to the intensity
pattern in single-slit diffraction.

With the analytical values of the first- and the second-order coherences we can immediately
get an estimate for the bunching in the free-space configuration (Z0 = Z1). We consider a typical
transmission line (ρ � 1, ωJ � ωc) and solution (26), and obtain (appendix D)

g(2)
t (0) =

G(2)
t (0)

[G(1)
t (0)]2

≈

(
h̄ωJ

π EJ

)2

. (43)

This can be made arbitrarily high by decreasing the critical current, i.e. the emitted power. This
property is typical for pair production of photons. Notably, result (43) is independent of ρ, even
though the power is proportional to ρ. In figure 3, we visualize the time dependence of g(2)

t (τ ).
As Cooper-pair tunneling is also accompanied by an emission of low-energy photons,

describing a simultaneous change in the voltage across the junction, it is clearer for the
interpretation of the results not to include frequencies in the neighborhood of ω = 0 or ωJ. We
consider then a small interval 1ω of frequencies around half the Josephson frequency ωJ/2,
i.e. ωJ/2 − 1ω/2 < ω < ωJ/2 + 1ω/2, which in an experiment corresponds to a filtering of the
output radiation [27]. One obtains for the corresponding second-order coherence (appendix D)

G(2)
t (0) ≈

(
I 2

c Z 2
0

4

)2 (
h̄1ω

π EJ

)2

.

The related first-order coherence, within the same approximation, is G(1)(0) ≈ ρ I 2
c Z 2

01ω/ωJ.
Therefore, we obtain the bunching, if measured in a small frequency interval around ωJ/2,

g(2)
t (0) ≈

(
1

4ρ

)2 (
h̄ωJ

π EJ

)
. (44)
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This is proportional to 1/ρ2, and for the considered case of small ρ, is much larger than
result (43) for the complete output field.

If we consider detection in a small frequency interval completely above half the Josephson
frequency ωJ/2, we obtain the leading-order result g(2)

t (0) ≈ 0 (appendix D), and exactly zero
at the zero temperature. This is because the photon production at these frequencies occurs
through multi-photon processes, and the emission of two (or more) photons above ωJ/2 is not
possible from a single-Cooper-pair process. However, the result g(2)

t (0) = 0 does not imply that
the field is antibunched, since contributions from higher orders are neglected. The next-order
contribution for G(2)

t (0) comes from the fourth order, which has a special meaning as this is
also the leading order of |G(1)

t (0)|2. This order is also the first one to describe photon emission
from two Cooper-pair tunnelings. Analytical results can be obtained for the Ohmic environment
in the considered case ρ � 1. The most important contribution comes from a term describing
two photon emission processes due to two (correlated) Cooper-pair tunnelings, 〈a†

1a†
1a1a1〉. For

small ρ and approximation J (t) = −D|t | − iπρ Sgn(t) [17], we get through a lengthy analytical
calculation a contribution g(2)

t (0) = 2 − B̃, where for ρ � 1 and a bandwidth larger than thermal
dephasing D, we obtain B̄ ≈ 1. This implies that the photon emission at these frequencies
(ωJ/2 < ω � ωJ) and for ρ � 1 is close to a Poissonian process.

6. Nonclassicality

The electromagnetic field is nonclassical if it cannot be described by the classical theory of
electromagnetism. One example is a quadrature squeezed state of single mode, for which the
width of the Wigner quasiprobability distribution in one of the quadratures is smaller than
the width of a coherent state, i.e. the quantum description of a classical coherent signal [28].
The quadrature squeezing is measured through amplitude auto- and cross-correlations, which
are phase-sensitive quantities. In our system, the JJ is driven by a dc voltage, which suffers
from both thermal and transport noise. As we will see, this leads to a rather short phase
coherence time and no steady-state squeezing. There exists however a number of other relations,
that are satisfied by a classical field, but can be violated by a general quantum mechanical
field [29]. These are useful in our system, if they are immune to dephasing. An example of
such a nonclassicality test is the Cauchy–Schwarz inequality for intensity auto- and cross-
correlations, that is known to be violated maximally for a field created through parametric down
conversion [28].

In this section, we first address the question of quadrature squeezing in the output radiation,
and then go on to derive a Cauchy–Schwarz inequality for photon-flux correlations in the
leading-order approximation, which we find to be an optimal way of detecting nonclassicality
in the considered system.

6.1. Quadrature squeezing and dephasing

The pair production of photons implies quadrature squeezing [28], which is characterized by
correlators of type 〈aout(ω)aout(ω

′)〉. The result (20), however, means that such nonclassical
correlations do not exist on average, due to dephasing of the phase difference across the junction.
This can be qualitatively visualized as a diffusion of the angle of quadrature squeezing. The
situation is analogous to a parametric down conversion with an nonideal drive [26].
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To investigate how long it takes for the squeezing angle to be randomized, if one knows its
value (or distribution) at time t = 0, we consider the phase-coherence function〈

eiφ0(t)e−iφ0(0)
〉
= eJ (t). (45)

In the long-time limit and for finite temperatures its behavior is defined by the zero-frequency
impedance Z0, via J (t) ∼ −D|t |, where D = 2πkBTρ/h̄. Therefore, we identify D as the
dephasing rate of quadrature squeezing. For typical values for the low-frequency impedance
Z0 = 50 � and T = 20 mK, one has 1/D ≈ 8 ns. Such dephasing times are therefore a very
relevant property of a voltage-driven system, and a challenge for a measurement of phase-
dependent system properties.

6.2. Cauchy–Schwarz inequality for intensity cross-correlations

A nonclassicality test that is not affected by phase fluctuations must be of higher order in the
operators a(†)

out. The logical thing to do is to add two more operators to the ensemble average that
characterizes squeezing, 〈aoutaout〉. Basically, we have two possibilities to consider, the second-
order coherence, of type 〈a†

outa
†
outaoutaout〉, or the intensity correlator, of type 〈a†

outaouta
†
outaout〉.

The second-order coherence was considered in section 5, and was found to reveal a high degree
of bunching, as a result of photon pair production. However, only antibunching would be a
proof of nonclassicality. Therefore, we will now investigate a nonclassicality condition based
on the intensity of cross-correlations. In the countable-mode case, a suitable Cauchy–Schwarz
inequality is of the form [29]

|〈a†
1a1a†

2a2〉|
2 6 〈(a†

1)
2a2

1〉〈(a
†
2)

2a2
2〉. (46)

In the following, we apply this condition to the considered continuous-mode case.
In the case of continuum of modes, we practically estimate G(2)(0) over a small frequency

range 1ω around ω1 or ω2, and similarly for the corresponding cross correlator. Through a
straightforward calculation we obtain for the considered auto-correlator (appendix D)∫ ωa+1ω/2

ωa−1ω/2
dω1 dω2 dω3 dω4〈a

†
1a†

2a3a4〉 =
2π I 2

c 1ω3

ω2
a RQ

P [h̄(ωJ − 2ωa)] [Re [Z t(ωa)]]
2 +O(1ω4).

(47)

To keep the notation short we mark here ai ≡ a(ωi). G(2)(0) at ωa is calculated up to the second
order in Ic and similarly for the contribution at ωb.

On the other hand, the intensity cross-correlations between the two frequencies have the
form (when |ωa − ωb| > 1ω)

∫ ωa+1ω/2

ωa−1ω/2
dω1 dω2

∫ ωb+1ω/2

ωb−1ω/2
dω3 dω4〈a

†
1a2a†

3a4〉

=
2π I 2

c 1ω3

ωaωb RQ
P [h̄(ωJ − ωa − ωb)] Re [Z t(ωa)] Re [Z t(ωb)] +O(1ω4). (48)
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Figure 4. We plot here the violation of the Cauchy–Schwarz inequality (49), N =

P [h̄(ωJ − 2ωa)] P [h̄(ωJ − 2ωb)] − P [h̄(ωJ − ωa − ωb)]
2, multiplied by the photon-

flux densities at the two frequencies, i.e. N × ft(ωa) ft(ωb). The color scale is
normalized to the maximal value, which is 2 × 105 higher for the cavity configuration
(right) compared to the JJ connected directly to free space (left). Negative values are a
sign of nonclassicality and the parameters correspond to figure 2. The violation occurs
around the condition of photon pair production ωa + ωb = ωJ = 140 µ eV/h̄. For the
cavity configuration the observed nonclassicality is enhanced when the two frequencies
match the two lowest modes of the cavity, maximizing the photon pair production.

With the results (47) and (48) we obtain then the Cauchy–Schwarz inequality (in the limit
1ω → 0 and calculated up to second order in Ic)

P [h̄(ωJ − ωa − ωb)]
2 6 P [h̄(ωJ − 2ωa)] P [h̄(ωJ − 2ωb)] . (49)

This result is valid for both the free-space and the cavity configuration.
The inequality (49) is defined only via the P(E)-function (24). The left-hand side of (49)

has a maximum when ωa + ωb = ωJ, i.e. when the argument goes to zero. If at the same time
|ωa − ωb| � kBT , the right-hand side is close to zero, as one of the P(E)-functions has a
large negative argument compared to the temperature. In this case the inequality becomes
violated, which we visualize in figure 4. The violation is due to nonclassical photon pair
production. Generally at ωa = ωb the nonclassicality cannot be tested with this inequality since
the two sides are equal by definition. The use of a resonant environment (Z1 � Z0) does not
change the violation of the inequality (49) qualitatively. However, it significantly increases the
photon emission rate at certain frequencies, which facilitates experimental detection [7]. As the
contribution from thermal radiation is neglected here, the tested frequencies ωa(b) should be well
above kBT/h̄. Also, in an experiment a detection over a finite bandwidth is used, whose effect
should be carefully analyzed.

7. Conclusions and outlook

In conclusion, we have derived a continuous-mode solution for microwave radiation in a
transmission line with a dc-voltage bias and which is terminated by a small JJ. This is done
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by a perturbative treatment of the boundary condition that describes Cooper-pair tunneling
across the JJ. We showed that the method reproduces the previously derived expression for the
created photon-flux density, obtained by applying the P(E)-theory. We extended this first by
determining the corresponding second-order coherence. We found that the emitted microwave
field has a high degree of bunching due to photon pair production at frequencies below the
Josephson frequency. We then addressed the question of nonclassicality of the emitted radiation
in this region and showed that the photon pair production violates the classical Cauchy–Schwarz
inequality for intensity cross-correlations.

The established method opens a possibility for further detailed study of the radiation
characteristics in this system. For example, calculations in the higher order access the question
of the effect of correlations between consecutive tunneling Cooper pairs. For the considered case
of low-Ohmic environment, we obtained bunching in the output radiation. On the other hand,
when the transmission-line impedance is increased beyond the resistance quantum, antibunching
of the Cooper-pair tunneling is expected, due to the Coulomb blockade [2]. In this regime, the
output photons should also be antibunched. Also, summation to all orders can be feasible, if
it is known the summation methods for this type of perturbation expansions work. Overall,
this system is very rich in physics, covering the limit of dynamical Coulomb blockade at low
impedances, to Coulomb blockade in the high-impedance limit. The question of the detailed
form and properties of the related output radiation makes this system very interesting for future
works. This is motivated also by the technical development towards simultaneous measurements
of both microwaves and electrical currents.

Appendix A. Linearization of the boundary condition at the junction

A straightforward way to solve the out-field is to linearize the boundary condition (11) and
Fourier transform the problem. The silent assumption is the small fluctuations of the phase
difference, φ(t). This is actually not usually the case, since the (zeroth-order) phase difference
performs quantum Brownian motion in time [2, 16]. However, the linearization turns out to give
correct results for frequencies ω ∼ ωJ/2 (ρ � 1), where such fluctuations stay small. This is
consistent with the pair production of photons in this frequency range.

In the following we consider linearization in the case of the free-space configuration,
Z0 = Z1, and take the limit CJ → 0. To do this properly, we rewrite the right-hand side of (11)
using the identity

sin[φ(t) − ωJt] = − cos φ(t) sin ωJt + sin φ(t) cos ωJt.

Expanding the right-hand side of this up to linear order in φ(t), and Fourier transforming, we
obtain for this

π

i
[δ(ω − ωJ) − δ(ω + ωJ)] +

∑
±

π 3/2

80

√
h̄ Z0

1
√

|ω ± ωJ|
[ain(ω ± ωJ) + aout(ω ± ωJ)].

Here, for simplicity, we have introduced negative frequencies as a(−ω) ≡ a†(ω). The first two
terms represent radiation at the Josephson frequency ωJ, while the other terms describe mixing
of this with an additional photonic process where, for example, ωJ is split into two frequencies.
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We continue by solving the corresponding boundary condition

aout(ω) + i Sgn(ω)
Z0 Icπ

80

√
1

ω

∑
±

aout(ω ± ωJ)
√

|ω ± ωJ|
= ain(ω) − i Sgn(ω)

Z0 Icπ

80

√
1

ω

∑
±

ain(ω ± ωJ)
√

|ω ± ωJ|
.

This can be done by writing the equation into the matrix form

Mout(δω)Aout(δω) = Min(δω)Ain(δω). (A.1)

Here the frequency vector A is constructed as [11]

AT
= {a[−NωJ + δω], . . . , a[NωJ + δω]},

where |δω| < ωJ. This form is possible since the boundary condition mixes only frequencies
differing by ωJ. We also have introduced a cut-off � = NωJ. The matrices M have diagonals
1 and first nondiagonals (in the nth row) d±[(−N − 1 + n)ωJ + δω], where the plus sign
corresponds to the term Mn,n+1 and we have

d±

out(ω) = Sgn(ω)iπ
Ic

80
Z0

1
√

|ω||ω ± ωJ|

and din = −dout. Equation (A.1) has to be solved generally numerically. For small d approximate
analytical solution can be sought with the ansatz

aout(ω) = ain(ω) + S+(ω)ain(ω + ωJ) + S−(ω)ain(ω − ωJ). (A.2)

We then find a solution in the lowest order for Ic

S±(ω) = −2d±(ω). (A.3)

We can now estimate the photon flux density below the Josephson frequency. Using (A.3) one
gets for ω < ωJ and at T = 0

ft(ω) =
1

2π
|S−(ω)|2 =

ρ I 2
c Z0

h̄ω(ωJ − ω)
. (A.4)

This result is consistent with (27).

Appendix B. Perturbative input–output approach

B.1. Zeroth-order solution

After the Fourier transformation of boundary conditions (9)–(10) we obtain

ac
out(ω) = κ−af

in(ω) e−2ikc
ωd + κ+af

out(ω), (B.1)

ac
in(ω) = κ+af

in(ω) + κ−af
out(ω) e2ikc

ωd . (B.2)

Here 2κ± =
√

Z0/Z1 ±
√

Z1/Z0. Considering the zeroth-order solution, EJ = 0, the Fourier
transformation (ω > 0) of the boundary condition at the junction, equation (11), gives

C(ω)ac
out(ω) − C∗(ω)ac

in(ω) = 0. (B.3)

The solution is then ac
out(ω) = eiθ(ω)ac

in(ω). Combining this with equations (B.1), (B.2) we
obtain (12)–(14).
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B.2. Higher-order solution

For higher orders we have no input field from free space and the boundary condition at x = d
gets the form (n > 1)

bn(ω) = κ+an(ω), (B.4)

cn(ω) = κ−an(ω) e2ikc
ωd . (B.5)

Here the output (input) cavity field in the nth order is labeled as bn (cn). We rewrite the boundary
condition at the junction as

bn(x = 0) = cn(x = 0)eiθ(ω) + iIc

√
Z1/h̄ωπ

C(ω)

∫
∞

−∞

eiωt dt{sin [φ(t) − ωJt]}n−1. (B.6)

Here the formal operation {·}n picks out the nth order contribution. It follows then

an(ω) = i

√
Z1

h̄ωπ

A(ω)

C∗(ω)
Ic

∫
∞

−∞

eiωt dt{sin [φ(t) − ωJt]}n−1. (B.7)

In leading order, we can only include zeroth-order phase difference in the Taylor expansion
of operators e±iφ0+ξφ1+ξ2..., and we immediately obtain (16). Generally, one can solve the phase
difference at the junction in the nth order,

φn(t) =

∫
∞

0

dω
√

ω
B(ω)an(ω)e−iωt + h.c.,

(B.8)

B(ω) =

√
h̄ Z1π

80

(
κ+ + κ−e2ikc

ωd
)
.

This is self-consistent, since the same order result for an(ω) depends only on the previous order
phase-differences.

The phase difference in the leading order has a central role when constructing the general
solution. We obtain for this

φ1(t) =
Ic Z1

80

∫
∞

−∞

dt ′ sin
[
φ0(t

′) − ωJt
′
]

C̃(t − t ′), (B.9)

C̃(t − t ′) = i
∫

∞

0

dω

ω
Ā(ω)

(
κ+ + κ−e2ikc

ωd
)

e−iω(t−t ′) + h.c. (B.10)

We calculate the explicit form for Z0 = Z1,

C̃(t − t ′) = π
[
Sgn(t − t ′)

(
1 − e−ωc|t−t ′|

)
+ e−ωc|t−t ′|

]
. (B.11)

B.3. Treatment of sin[φ(t) − ωJt] to second order

We aim to expand the term ξ Icsin[φ(t) − ωJt] to second order in ξ . We have formally φ(t) =

φ0(t) + ξφ1(t)+, · · · , and we need to properly expand the functions

e±i[φ0(t)+ξφ1(t)+ξ2φ2(t)+...−ωJt] (B.12)

to first order in ξ . We know that up to the first order in ξ we can include only operators φ0(t)
and ξφ1(t) in the Taylor expansion. Therefore we can put φ(t) = φ0(t) + ξφ1(t). We now define
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an operator z(t) through the relation φ1(t) = [φ0(t), z(t)]. Through a direct calculation of the
Taylor expansion one gets for the first-order contribution{

e±i[φ0(t)+iξφ1(t)]
}

1
= ξ [e±iφ0(t), z(t)]. (B.13)

To solve z we first evaluate commutator C(t − t ′) = [φ0(t), φ0(t ′)]. Generally

C(t − t ′) = −4i
∫

∞

0
dω

sin ω(t − t ′)

ω

Re [Z t(ω)]

RQ
. (B.14)

We obtain for the special case Z0 = Z1,

C(t − t ′) = −i
2π Z0

RQ
Sgn(t − t ′)

(
1 − e−ωc|t−t ′|

)
. (B.15)

We then investigate the commutator

[φ0(t), cos[φ0(t
′) − ωJt

′]] = −C(t − t ′) sin[φ0(t
′) − ωJt

′].

Here we have used that [φ0(t), e±iφ0(t ′)] = ±iC(t − t ′) e±iφ0(t ′). Comparing this with
solution (B.8) we deduce

z(t) = −
Ic Z1

80

∫
∞

−∞

dt ′ cos[φ0(t
′) − ωJt

′]
C̃(t − t ′)

C(t − t ′)
. (B.16)

For the open-space configuration (Z0 = Z1) we then get

C̃(t)

C(t)
= i

RQ

2Z0

[
1 +

Sgn(t)

eωc|t | − 1

]
, (B.17)

which leads to (17). This expansion (with methods shown in appendix C) can also be used to
rederive the P(E)-theory net current across the JJ, used in section 4.4.

B.4. Commutation relations for the out field

We express the zeroth-order solution in the form

a0
out(ω) =

80

2π

1

Ā∗(ω)

√
ω

4π h̄ Z1

∫
∞

−∞

eiωtφ0(t). (B.18)

We calculate now [a0(ω), a1(ω
′)] + [a1(ω), a0(ω

′)], the other cases in leading order (between
two creation operators, or between mixed operators) can be proved similarly. We obtain

[a0(ω), a1(ω
′)] =

80

h̄π 2

√
ω

ω′

Ā(ω′)

Ā∗(ω)

∫
∞

−∞

dt dt ′

×

∫
∞

0
dω′′

sin
[
ω′′(t − t ′)

]
ω′′

cos
[
φ0(t

′) − ωJt
′
] Re [Z t(ω

′′)]

RQ
. (B.19)

20



New J. Phys. 16 (2014) 015015 J Leppäkangas et al

Here we have used that [φ0(t), sin φ0(t ′)] = −C(t − t ′)cos φ0(t ′), see (B.14) and the derivation
below this. We perform integration over time t , use Re[Z t(ω)] = Z1| Ā(ω)|2, and obtain

[a0(ω), a1(ω
′)] = i

80

h̄π

√
1

ω′ω′

Z1 Ā(ω′) Ā(ω)

RQ

∫
∞

−∞

dt ′ei(ω+ω′)t ′ cos
[
φ0(t

′) − ωJt
′
]
.

We observe that the result is invariant under the change ω ↔ ω′. It follows that [a0(ω), a1(ω
′)] +

[a1(ω), a0(ω
′)] = 0, which is the desired property.

In second order the calculation goes through similar steps. We calculate first the double
commutator[
φ,

[
sin φ′′, cos φ′

]]
= C(t − t ′′)

[
cos φ′′, cos φ′

]
+ C(t − t ′)

[
sin φ′, sin φ′′

]
. (B.20)

Here we use the notation φ = φ0(t), φ′
= φ0(t ′) − ωJt ′ and φ′′

= φ0(t ′′) − ωJt ′′. Using
solution (17), we obtain

[a0(ω), a2(ω
′′)] =

Z1 I 2
c

2π h̄
Ā(ω) Ā(ω′′)

√
1

ωω′′

∫
∞

−∞

dt ′ dt ′′eiω′′t ′′

×

[
1 +

Sgn(t ′
− t ′′)

eωc|t ′−t ′′| − 1

] [
eiωt ′′

[
cos φ′′, cos φ′

]
+ eiωt ′

[
sin φ′, sin φ′′

]]
. (B.21)

We observe that the total part ∝ eiωt ′′ is symmetric under the exchange ω ↔ ω′′. Therefore it is
canceled by the corresponding term coming from [a2(ω), a0(ω

′′)].
The part proportional to eiωt ′ is equivalent to −(1/2) × [a1(ω), a1(ω

′′)], up to the extra
part ∝ Sgn(t ′

− t ′′). The contribution coming from [a2(ω), a0(ω
′′)] is obtained by changing

the overall sign and performing integration over eiωt ′′eiω′′t ′ , instead of eiω′′t ′′eiωt ′ . We observe
symmetry with respect to t ′

↔ t ′′ and
[
sin φ′, sin φ′′

]
↔

[
sin φ′′, sin φ′

]
: for terms ∝ Sgn(t ′

− t ′′)

this expression is the opposite to the original terms from [a0(ω), a2(ω
′′)]. For terms not

∝ Sgn(t ′
− t ′′), we have double summations of the expression form [a0(ω), a2(ω

′′)]. Thus,
[a0(ω), a2(ω

′′)] + [a2(ω), a0(ω
′′)] + [a1(ω), a1(ω

′′)] = 0, which is the desired property.

Appendix C. Calculating averages
〈
eiφ(t)e−iφ(t′)

〉

C.1. Derivation of the term ft(ω)

Using the leading order solutions for both operators a(†)
out in the expression 〈a†

out(ω)aout(ω
′)〉, we

obtain a contribution for the photon flux〈
a†

1(ω)a1(ω
′)
〉
=

I 2
c Z1

4h̄π
√

ωω′
Ā(ω′) Ā∗(ω)

∫
∞

−∞

dt
∫

∞

−∞

dt ′e−iωteiω′t ′

×〈e−iωJ(t−t ′)eiφ0(t)e−iφ0(t ′) + eiωJ(t−t ′)e−iφ0(t)eiφ0(t ′)〉. (C.1)

Here we have used the fact that expectation values of the form
〈
eiφ0(t)eiφ0(t ′)

〉
are zero due to

random phase fluctuations. Also contributions such as 〈a0(ω)a1(ω
′)〉 vanish for the same reason.

We use now the following property of bosonic operators [2],

〈eiφ0(t)e−iφ0(t ′)〉 = 〈e−iφ0(t)eiφ0(t ′)〉 = eJ (t−t ′), (C.2)
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where J (t) = 〈[φ0(t) − φ0(0)]φ0(0)〉. We then perform a change of variables, x = t − t ′, y =

(t + t ′)/2, do integrations over x and y, and obtain〈
a†

1(ω)a1(ω
′)
〉
= δ(ω − ω′)

π I 2
c Z1| Ā(ω)|2

ω
[P(h̄ωJ − h̄ω) + P(−h̄ωJ − h̄ω)]. (C.3)

C.2. Derivation of the term fin(ω)

We derive now the inelastic reflection of thermal photons, fin(ω). To do this we take use of the
zeroth-order solution (B.18) and the second-order solution (17). We obtain〈
a†

2(ω)a0(ω
′′)

〉
=

RQ I 2
c

8π2

Ā∗(ω)

Ā∗(ω′′)

√
ω′′

ω

∫
∞

−∞

dt dt ′ dt ′′

[
1 +

Sgn(t − t ′)

eωc|t−t ′| − 1

]
×

〈{
cos[φ0(t

′) − ωJt
′] sin[φ0(t) − ωJt] − h.c.

}
φ0(t

′′)
〉
. (C.4)

The next step is to calculate the ensemble average. By applying Wick’s theorem we obtain〈
e±iφ0(t)e∓iφ0(t ′)φ0(t

′′)
〉
= ±i

[
J (t − t ′′) − J (t ′

− t ′′)
]

eJ (t−t ′).

We also have
〈
e±iφ0(t)e±iφ0(t ′)

〉
= 0. These relations lead to〈{

cos[φ(t ′) − ωJt
′] sin[φ(t) − ωJt] − h.c.

}
φ(t ′′)

〉
=

1
2 cos[ωJ(t − t ′)]

[
J (t − t ′′) − J (t ′

− t ′′)
] (

eJ (−t+t ′)
− eJ (t−t ′)

)
. (C.5)

We can perform integration over t ′′ by using

J (t) = 2
∫

∞

0

dω

ω

Re [Z t(ω)]

RQ

{
coth

(
1

2
βh̄ω

)
[cos(ωt) − 1] − i sin(ωt)

}
and obtain∫

∞

−∞

eiω′′t ′′[J (t − t ′′) − J (t ′
− t ′′)]

= 2π
Re [Z t(ω

′′)]

RQω′′

{
coth

(
1

2
β h̄ω′′

) [
eiω′′t

− eiω′′t ′
]
−

[
eiω′′t

− eiω′′t ′
]}

.

The term inside the last parentheses can be put into the form

4i

(
1

eβω′′−1

)
sin

(
ω′′

t − t ′

2

)
exp

[
iω′′

t + t ′

2

]
.

Using these relations, we obtain〈
a†

2(ω)a0(ω
′′)

〉
= i

I 2
c

2π h̄

Ā∗(ω)

Ā∗(ω′′)

√
ω′′

ω

Re [Z t(ω
′′)]

ω′′

×

∫
∞

−∞

dt dt ′e−iωteiω′′t ′′ cos[ωJ(t − t ′)]
[
eJ (t ′−t)

− eJ (t−t ′)
]

× sin

(
ω′′

t − t ′

2

)
1

eβ h̄ω′′

− 1

[
1 +

Sgn(t − t ′)

eωc|t−t ′| − 1

]
. (C.6)
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For the last two time integrations we do a change of variables x = t − t ′ and y = (t + t ′)/2.
The resulting y-dependence is in a factor exp[iy(ω′′

− ω)]. The integration over y leads to the
factor 2πδ(ω − ω′′). Performing integration over ω′′ and division by 2π (to obtain fin), one gets

∫
∞

0
dω′′

1

2π

〈
a†

2(ω)a0(ω
′′)

〉
=

2I 2
c

h̄
f0(ω)

Re [Z t(ω)]

ω

×

∫
∞

−∞

dx cos(ωJx)Im [eJ (x)]e−i xω
2 sin

(ωx

2

) [
1 +

Sgn(x)

eωc|x | − 1

]
. (C.7)

Adding this with the contribution 〈a†
0(ω)a2(ω

′′)〉 = 〈a†
2(ω

′′)a0(ω)〉∗, and using ω = ω′′, one sees
that only two times the real part of (C.7) survives. Thus,

fin(ω) = f0(ω)
2I 2

c

h̄ω
Re [Z t(ω)]

∫
∞

−∞

dx Im[eJ (x)] cos(ωJx) sin(ωx)

[
1 +

Sgn(x)

eωc|x | − 1

]
. (C.8)

We know that J (−x) = J ∗(x), and therefore Im [eJ (−x)] = −Im [eJ (x)]. Therefore the part
∝ Sgn(x) cancels out due to symmetry reasons. Because only eJ (x) is a complex number, the
result does not change if we take the imaginary part over the whole expression (without the part
∝ Sgn(x)), instead of only over eJ (x). This leads to result (29).

Appendix D. Estimating higher-order coherences up to second order in Ic

We want to calculate expressions such〈
a†

out(ω)a†
out(ω

′)aout(ω
′′)aout(ω

′′′)
〉
, (D.1)

up to second order in Ic. We do this by inserting the first-order solution a(†)

1 and the zeroth-order
solution a(†)

0 both twice into the four operators a(†)
out. We neglect the contribution if using the

second-order solution a†
2 once, as this is proportional to f0(ω). We will also neglect backward

directed Cooper-pair tunneling, i.e. we take the approximation a1(ω) ∝
∫

dtei(ω−ωJ)teiφ0(t) and
neglect terms of type ∝

∫
dtei(ω+ωJ)te−iφ0(t). Such tunneling against the voltage is well suppressed

by the temperature.
We make use of the following result for the ensemble average of bosonic operators φ:

〈e−iφφ′φ′′eiφ′′′

〉 = 〈e−iφeiφ′′′

〉{〈φ′φ′′
〉 + [〈φ′′φ′′′

〉 − 〈φφ′′
〉][〈φφ′

〉 − 〈φ′φ′′′
〉]}. (D.2)

Here we use the notation φ′
= φ0(t ′) and similarly for others. The result can be derived by

expressing the exponential functions as a power series and applying Wick’s theorem. Important
here is that the order of the operators φi stays the same when contracted into the pairs. This
is then also valid for permutations of the initial operators. The result (D.2) is also immune to
exchanging the signs in the exponents.

D.1. Intensity cross-correlations

We consider first the correlator〈
a†

out(ω)aout(ω
′)a†

out(ω
′′)aout(ω

′′′)
〉
. (D.3)
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Once we obtain an expression for this, the other orderings of the operators a(†)
out can be deduced

by using general relations for the field operators, equation (8). We need to calculate the sum of
all the orderings

〈e−iφφ′φ′′eiφ′′′

〉 + 〈e−iφeiφ′′′

φ′′φ′
〉 + 〈φ′′φ′e−iφeiφ′′′

〉 + 〈φ′′eiφ′′′

e−iφφ′
〉.

However, it turns out that only the first of these four terms is important, as the other terms
are proportional to f0(ω) and can be neglected. This can be understood by rewriting the
ensemble average with the help of a formal density matrix ρ̂ of the unperturbed system,
Tr

{
a(ω′)a†(ω′′)a(ω′′′)ρ̂a†(ω)

}
: tunneling with radiation (∝ e±iφ0(t)) has to be inserted around

the density matrix, otherwise the result is zero at T = 0.
To calculate (D.3), the difficulty is to perform integration over all times of the term

〈e−iφφ′φ′′eiφ′′′

〉ei(−ω+ωJ)t+iω′t ′−iω′′t ′′+i(ω′′′
−ωJ)t ′′′ . (D.4)

In result (D.2) the first term inside the brackets is the easiest to calculate, as the time-dependent
terms are only functions of t − t ′′′ or t ′

− t ′′. Twice we do similar change of variables as when
calculating ft(ω) (appendix C) and obtain the first contribution for the term (D.4),

(2π)2

∫
∞

−∞

dx1

∫
∞

−∞

dx2eJ (x1) p(x2)e
ix1(ωJ−ω)eix2ω

′

δ(ω−ω′′′)δ(ω′
−ω′′)= (2π)2 [2π h̄ P(h̄ωJ − h̄ω)]

×

[
4π

1

ω′

Re [Z t(ω
′)]

RQ

]
δ(ω − ω′′′)δ(ω′

− ω′′). (D.5)

Here we mark p(t ′
− t ′′) ≡ 〈φ(t ′)φ(t ′′)〉 and it is determined by equation (15). We have

neglected a contribution proportional to f0(ω).
Only the last term, proportional to 〈φφ′′

〉〈φ′φ′′′
〉, gives another finite contribution at T = 0,

2π
[
2π h̄ P(h̄ωJ − h̄ω − h̄ω′′)

][
4π

1

ω′

Re [Z t(ω
′)]

RQ

][
4π

1

ω′′

Re [Z t(ω
′′)]

RQ

]
δ(−ω + ω′

− ω′′ + ω′′′).

(D.6)

We note that in this case the operators of the same type are paired [a(ω′) ↔ a(ω′′′), a†(ω) ↔

a†(ω′′)]. To obtain the expression for (D.3) we sum up these two results and multiply them with

Ã
√

ω′ω′′

ωω′′′

(
Ic

8eπ

)2
, where

Ã =
Ā∗(ω) Ā(ω′′′)

Ā∗(ω′) Ā(ω′′)
. (D.7)

We obtain the intensity cross-correlations up to second order in Ic,

2π
I 2

c

2ω
P(h̄ωJ − h̄ω)Re [Z t(ω)]δ(ω − ω′′′)δ(ω′

− ω′′) + Ãδ(ω − ω′ + ω′′
− ω′′′)

2π I 2
c

√
ωω′ω′′ω′′′

×P[h̄(ωJ − ω − ω′′)]

{
Re [Z t(ω

′)]Re [Z t(ω
′′)]

RQ

}
. (D.8)
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D.2. Second-order coherence G(2)

We consider now the expectation value
〈
a†(ω)a†(ω′)a(ω′′)a(ω′′′)

〉
. By using the identity

[aout(ω), a†
out(ω

′)] = δ(ω − ω′) and doing the exchange ω′
↔ ω′′ in term (D.8), we obtain the

result

〈
a†(ω)a†(ω′)a(ω′′)a(ω′′′)

〉
= Ã(ω, ω′′, ω′, ω′′′)δ(ω + ω′

− ω′′
− ω′′′)

2π I 2
c

√
ωω′ω′′ω′′′

×P[h̄(ωJ − ω − ω′)]

{
Re [Z t(ω

′)]Re [Z t(ω
′′)]

RQ

}
. (D.9)

This can also be derived through a direct calculation, as was done for the intensity cross-
correlator.

D.3. Cauchy–Schwarz inequality

The Cauchy–Schwarz inequality compares intensity correlations with the second-order
coherence. We calculate these in a small frequency interval 1ω around the frequencies ωa and
ωb. This assumes a filtering of the measured output signal into these frequencies (intensity-
correlations).

We integrate result (D.9) over four frequencies, each of them having the interval ω ∈

[ωa − 1ω/2, ωa + 1ω/2]. We obtain by assuming a small 1ω,

G(2)(0) ≈
2π I 2

c 1ω3

ω2
a RQ

P [h̄(ωJ − 2ωa)] [Re [Z t(ωa)]]
2 . (D.10)

Here we have used Ã(ωa, ωa, ωa, ωa) = 1. Similarly for the contribution at ωb.
The cross-correlations between the two frequencies, ωa − ωb � 1ω, give∫ ωa+1ω/2

ωa−1ω/2
dωdω′

∫ ωb+1ω/2

ωb−1ω/2
dω′′dω′′′

〈
a†(ω)a(ω′)a†(ω′′)a(ω′′′)

〉

≈ Ã(ωa, ωa, ωb, ωb)
2π I 2

c 1ω3

ωaωb RQ
P [h̄(ωJ − ωa − ωb)] Re [Z t(ωa)] Re [Z t(ωb)] .

(D.11)

We notice from (D.7) that also Ã(ωa, ωa, ωb, ωb) = 1. (Actually an additional factor 2/3 appears
for both cross- and autocorrelations, due to the specific form of the bandwidth cutoff, but is
neglected here for simplicity.)

D.4. Bunching for Z0 = Z1

For the free-space configuration (Z0 = Z1) we have a simple result Ã =

C∗(ω′)C(ω′′)/C∗(ω)C(ω′′′). In the following we will assume that ωJ � ωc, so that Ã = 1
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and Re [Z(ω)] = Z0. One obtains for the second-order coherence (when integrated over all
frequencies)

G(2)(0) =
2π

RQ

(
Ich̄ Z 2

0

4π

)2 ∫
∞

0
dω

∫
∞

0
dω′

∫ ω+ω′

0
dω′′ P[h̄(ωJ − ω − ω′)]

=
2π

RQ

(
Ich̄ Z 2

0

4π

)2 ∫
∞

0
dω

∫
∞

0
dω′(ω + ω′)P[h̄(ωJ − ω − ω′)]. (D.12)

We now do a change of variables: s = ω + ω′, t = (ω − ω′)/2, and get

G(2)(0) =
2π

RQ

(
Ich̄ Z 2

0

4π

)2 ∫
∞

0
ds

∫ s/2

−s/2
dts P[h̄(ωJ − s)]

=
2π

RQ

(
Ich̄ Z 2

0

4π

)2 ∫
∞

0
dss2 P[h̄(ωJ − s)]. (D.13)

On the other hand, in the same approximation the first-order coherence is

G(1)
t (0) =

I 2
c Z 2

0

4

e−2γρ

0(1 + 2ρ)

(
πρh̄ωJ

4EC

)2ρ

. (D.14)

This gives

g(2)
t (0) =

(
h̄ωJ

π EJ

)2 [
πρ

h̄ωJ

4EC

]−2ρ
0(1 + 2ρ)e2γρ

1 + 3ρ + 2ρ2
. (D.15)

For small ρ we obtain g(2)
t (0) = (h̄ωJ/π EJ)

2. For a general time τ we substitute

s2
→

(
2

τ

)2

sin2
(τ s

2

)
, (D.16)

in equation (D.13).
Let us consider a restricted region of frequency interval, ω0 − 1ω/2 < ω < ω0 + 1ω/2, for

all frequencies. We obtain a new integration range∫ 2ω0+1ω

2ω0

ds
∫

−(s/2−ω0)+1ω/2

s/2−ω0−1ω/2
dt

∫ ω0+1ω/2

s−ω0−1ω/2
dω′′ +

∫ 2ω0

2ω0−1ω

ds
∫ s/2−ω0+1ω/2

−(s/2−ω0)−1ω/2
dt

∫ s−ω0+1ω/2

ω0−1ω/2
dω′′.

Since the integrant (D.12) is independent of both ω′′ and t , the integration range gets the form∫ 2ω0+1ω

2ω0−1ω

ds (−|2ω0 − s| + 1ω)2 ,

and one obtains for the corresponding second-order coherence

G(2)
t (0) =

2π

RQ

(
Ich̄ Z 2

0

4π

)2 ∫ 2ω0+1ω

2ω0−1ω

ds (−|2ω0 − s| + 1ω)2 P[h̄(ωJ − s)].

For low temperatures we have P(E) ≈ 0 for E < −kBT . Therefore the result is practically zero
if the lower limit of integration is above ωJ. An optimal result is obtained for the integration
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range that covers symmetrically the P(E) peak at E = 0, i.e. for ω0 = ωJ/2. For small 1ω, but
still larger than the thermal width 0, the P(E)-function can be approximated as δ(E), and the
integration gives in this case (ρ � 1, 1ω � 0)

G(2)
t (0) =

2π h̄

RQ

(
Ic Z 2

0

4π

)2

1ω2
=

(
I 2

c Z 2
0

4

)2 (
h̄1ω

π EJ

)2

.

This leads to result (44).
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