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Abstract. Single-electron tunneling processes through a double quantum dot
can induce a lasing state in an electromagnetic resonator which is coupled
coherently to the dot system. Here we study the noise properties of the transport
current in the lasing regime, i.e. both the zero-frequency shot noise and the noise
spectrum. The former shows a remarkable super-Poissonian behavior when the
system approaches the lasing transition, but a sub-Poissonian behavior deep in
the lasing state. The noise spectrum contains information about the coherent
dynamics of the coupled dot–resonator system. It shows pronounced structures
at frequencies matching that of the resonator due to the excitation of photons.
For strong interdot Coulomb interaction, we observe asymmetries in the auto-
correlation noise spectra of the left and right junctions, which we trace back to
asymmetries in the incoherent tunneling channels.
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1. Introduction

A variety of fundamental quantum effects and phenomena characteristic for cavity quantum
electrodynamics (QED) has been demonstrated in superconducting circuit QED [1–4]. The
equivalent of single-atom lasing has been observed, with frequencies in the few GHz range,
when a single Josephson charge qubit is strongly coupled to a superconducting transmission
line resonator [5, 6]. This progress stimulated the study of a different circuit QED setup where
the superconducting qubit is replaced by a semiconductor double quantum dot with discrete
charge states. Incoherent single-electron tunneling through the double dot sandwiched between
two electrodes can lead to a population inversion in the dot levels and, as a consequence,
induce a lasing state in the resonator [7, 8]. The potential advantages of quantum dots are their
high tunability, both of the couplings and energy levels [9–11]. In addition, larger frequencies
are accessible since the restriction to frequencies below the superconducting gap is no longer
needed. Experimental progress has recently been made in coupling semiconductor quantum dots
to a GHz-frequency high-quality transmission line resonator [12–14].

The double quantum dot–resonator circuit lasing setup differs from the more familiar
interband transition semiconductor laser [15, 16], where the cavity mode is coupled to the lowest
quantum dot interband transition, and which is driven by carrier injection in a p–n-junction or
via optical pumping. Since the circuit considered here is driven by single-electron tunneling,
the lasing state correlates with electron transport properties. This fact allows probing the former
via a current measurement [8]. Further information about the system is contained in the current
fluctuations. Due to the charge discreteness the noise is shot noise, which has been studied
extensively [17–23]. For the double dot–resonator lasing circuit, it is therefore important to
compare the electron shot noise with the fluctuations of the photons in the resonator.

Although more difficult, experimental progress has also been made toward measuring the
finite-frequency noise spectrum of electron transport [24]. It contains information about the
full dynamics of the system, including the relevant time scales that characterize the transport
processes. In this work, we therefore investigate the frequency-dependent noise spectrum of
the transport current through the system in and near the lasing regime. It shows pronounced
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Figure 1. A double quantum dot–resonator lasing circuit. The dot is placed at
a maximum of the electric field of the transmission line in order to maximize
the dipole interaction. The population inversion in the dot levels, leading to the
lasing state, is created by incoherent electron tunneling through the dots, driven
by the bias voltage, which is assumed to be high, eV = µL − µR � ωr.

characteristic signals at frequencies close to the eigen-Rabi frequency of the coupled system or
matching that of the resonator.

This paper is organized as follows. In section 2, we introduce the model of a quantum
dot–resonator lasing circuit and the methods. We extend the work of [8], where strong interdot
Coulomb interaction was assumed, to arbitrary strength interaction [25]. The method used
for the calculation of the noise spectrum is based on a master equation combined with the
quantum regression theorem. In section 3, the stationary properties of the resonator, the
average current and the zero-frequency noise are studied. The finite-frequency noise spectrum
is evaluated in section 4 in the low- and high-frequency regimes, both for strong and weak
interdot Coulomb interaction. We find characteristic symmetric and asymmetric features in the
frequency-dependent noise spectrum. We conclude with a discussion in section 5.

2. Methodology

2.1. The model

We consider the electron transport setup schematically shown in figure 1, where electrons
tunnel through a semiconducting double quantum dot coupled to a high-Q electromagnetic
resonator such as a superconducting transmission line. The Hamiltonian includes the interacting
dot–resonator system, HS = Hd + Hr + HI, which is responsible for the coherent dynamics. The
double dot is described by

Hd =

∑
j

ε j d
†
j d j + Ud†

l dld
†
r dr +

tc

2
(d†

l dr + d†
r dl) (1)
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with d†
j being the electron creation operators for the two levels in the dots j ( j = l, r) with

energies ε j , separated by ε = εl − εr, which are coupled coherently with strength tc. Both ε j and
tc can be tuned by gate voltages [10, 11, 26–28]. The interdot Coulomb interaction is denoted by
U . The transmission line can be modeled as a harmonic oscillator, Hr = ωra†a, with frequency
ωr and a† denoting the creation operator of photons in the resonator. The dipole moment induces
an interaction between the resonator and the double dot, HI, which will be specified below.

We further account for electron tunneling between the dots and electrodes, Ht =∑
k(VLkc†

Lkdl + VRkc†
Rkdr + H.c.), with tunneling amplitudes Vak (with α = L, R). The electrodes

with Hb =
∑

αk εαkc†
αkcαk act as baths. Here c†

αk is the electron creation operator for an electron
state in the electrode α. Below, the tunneling between the electrodes and the dots is assumed to
be an incoherent process.

The double dot can be biased such that at most one electron occupies each dot. The two
charge states |L〉 and |R〉 serve as the basis of a charge qubit [29, 30]. In this work, we consider
two limits, (i) strong U and (ii) weak U , respectively. In case (i), transport through the double
dots involves only one extra third state, namely the empty dot |0〉, whereas in case (ii), two extra
states, |0〉 and the double occupation state |2〉 ≡ |L R〉, are involved in the transport. In both
limits the dipole interaction between the resonator and the double dot is HI = h̄g0(a† + a)τz,
with Pauli matrices acting in the space of the two charge states, τz = |L〉〈L| − |R〉〈R|.

In the eigenbasis of the double dot and within rotating wave approximation, the
Hamiltonian of the coupled dot–resonator system, for strong interdot Coulomb interaction, can
be reduced to

HS =
h̄ω0

2
σz + h̄ωra

†a + h̄g(a†σ− + aσ+), (2)

while for weak interdot interaction an extra term U |2〉〈2| is to be included. In the restricted space
of states we have dl = |0〉〈L| + |R〉〈2| and dr = |0〉〈R| − |L〉〈2|, and the Pauli matrix operates in
the eigenbasis, i.e. rz = |e〉〈e| − |g〉〈g| with

|e〉 = cos (θ/2) |L〉 + sin (θ/2) |R〉,

|g〉 = sin (θ/2) |L〉 − cos (θ/2) |R〉.
(3)

Here, we fix the zero energy level by εl + εr = 0. The angle θ = arctan(tc/ε) characterizes the
mixture of the pure charge states, the coupling strength is g = g0 sin θ and ω0 =

√
ε2 + t2

c /h̄
denotes the level spacing of the two eigenstates. It can be tuned via gate voltages, which allows
control of the detuning 1 = ω0 − ωr from the resonator frequency.

2.2. Master equation

The dynamics of the coupled dot–resonator system, which is assumed to be weakly coupled to
the electron reservoirs with smooth spectral density, can be described by a master equation
for the reduced density matrix ρ in the Born–Markov approximation [31, 32]. Throughout
this paper, we consider low temperatures, T = 0, with vanishing thermal photon number and
excitation rates. Consequently, the master equation is

ρ̇ = −
i

h̄
[HS, ρ] +LL ρ +LR ρ +Lr ρ ≡ Ltot ρ, (4a)

where the dissipative dynamics is described by Lindblad operators of the form

Liρ =
0i

2
(2L iρL†

i − L†
i L iρ − ρL†

i L i). (4b)
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The first two terms LL/R account for the incoherent sequential tunneling between the
electrodes and the dots with 0α(ω) = 2π

∑
k |Vαk|

2δ(ω − εαk) ≡ 0α. For the assumed high
voltage and low temperature, i.e. in the absence of reverse tunneling processes, we have LL = d†

l
and LR = dr with tunneling rates 0L and 0R, respectively. For the oscillator we take the standard
decay term L r = a with rate 0r = κ . Here, we ignore other dissipative effects, such as relaxation
and dephasing of the two charge states, which were studied in [8], since such effects only weakly
affect the main points we wish to study.

From the definition Iα(t) ≡ −e d〈nα(t)〉
dt with nα =

∑
k c†

αkcαk , it is straightforward to obtain

the transport current from the electrodes to the dots [33, 34], Iα(t) = Tr[ Î αρ(t)], with current
operators given by

Î Lρ(t) =
e

h̄
0Ld†

l ρ(t)dl, (5a)

Î Rρ(t) = −
e

h̄
0Rdrρ(t)d†

r . (5b)

In the stationary limit, t → ∞, the average current satisfies I =
1
2(IL − IR) = IL = −IR,

consistent with charge conservation.

2.3. Current noise spectrum

We consider the symmetrized current noise spectrum

S(ω) = F〈{δ Î (t), δ Î (0)}〉

≡

∫
∞

−∞

dt eiωt
〈{δ Î (t), δ Î (0)}〉

= 2 Re{G̃ I (ω) + G̃ I (−ω)}, (6)

where δ Î (t) = Î (t) − I and G̃ I (±ω) =
∫

∞

0 dt e±iωt G I (t) with G I (t) = 〈δ Î (t)δ Î (0)〉. In the
Born–Markov approximation, the current noise spectrum can be calculated via the widely used
MacDonald’s formula [35] or the quantum regression theorem [31]. Since we already know the
current operators, as expressed in equation (5), it is more convenient to calculate the current
correlation function via the quantum regression theorem

G I (t) = Tr
[
Î eLtott Îρst

]
− I 2, (7)

where ρst denotes the steady-state density matrix.
According to the Ramo–Shockley theorem, the measured quantity in most experiments [19]

is the total circuit current I (t) = aIL(t) − bIR(t), with coefficients, a + b = 1, depending on the
symmetry of the transport setup (e.g. the junction capacitances). The circuit noise spectrum is
thus composed of three components: S(ω) = a2SL(ω) + b2SR(ω) − 2abSLR(ω) [19, 36], where
Sα(ω) = F〈{δ Î α(t), δ Î α(0)}〉 are the auto-correlation noise spectra of the current from lead-α,
and SLR(ω) = (F〈{δ Î L(t), δ Î R(0)}〉 +F〈{δ Î L(t), δ Î R(0)}〉)/2 is the current cross-correlation
noise spectrum between different leads. Alternatively, in view of the charge conservation, i.e.
IL = IR + dQ/dt , where Q is the charge on the central dots, the circuit noise spectrum can be
expressed as [37–39] S(ω) = aSL(ω) + bSR(ω) − ab SC(ω) with SC(ω) ≡ F〈{δ Q̇(t), δ Q̇(0)}〉 =

2SLR(ω) + SL(ω) + SR(ω) [40]. Thus, from the behavior of the auto-correlation and cross-
correlation noise spectra, which will be studied in the following, we can fully understand the
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Figure 2. Incoherent electron tunneling induces transitions between different
states in the dot. The upper panels, (a) and (b), and the lower ones, (c) and (d),
describe the incoherent transitions in the dot-basis and eigenbasis (including
the interaction with the resonator), respectively. Panels (a) and (c) correspond
to asymmetric transition channels for strong interdot Coulomb interaction, and
panels (b) and (d) to symmetric transition channels for weak interdot Coulomb
interaction. Furthermore, we have 0+

α = 0α cos2(θ/2) and 0−

α = 0α sin2(θ/2)

with α = L, R.

circuit noise spectrum even including the charge fluctuation spectrum in the central dots, SC(ω).
At zero frequency, we have S(0) = SL(0) = SR(0) = −SLR(0) and SC(0) = 0 due to current
conservation in the steady state.

3. Stationary properties

Let us first recall the parameter regime for which, according to [8], lasing can be induced for
the present setup [12–14]. We consider the level spacing in the dots comparable to the resonator
frequency ωr in the range of a few GHZ, and a high-quality resonator with Q factor assumed
to be 5 × 104, corresponding to a decay rate κ = 2 × 10−5ωr. The coupling of the dot and the
resonator, chosen as g0 = 10−3ωr, is strong enough compared to the photon decay rate in the
resonator, and we assume weak incoherent tunneling with 0L = 0R = 0 = 10−3ωr to be a few
MHz throughout the paper, unless otherwise stated.

A crucial prerequisite for lasing is a pumping mechanism [5, 41], involving a third state,
which creates a population inversion in the two-level system. In [8], the empty state |0〉 in the
double dot was considered as the single third state under the assumption of strong charging
energy, ε j + U > µL > ε j > µR. This limit, which we call case (i), is sketched in figure 2(a).
On the other hand, the interdot Coulomb interaction may also be weaker compared to the level
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spacing of the charge states. In the tunneling regime, we have lL > e j , e j + U > lR. This limit,
called case (ii), where two extra states are involved in the incoherent tunneling, is illustrated in
figure 2(b). The question arises, which case is better for lasing.

Let us first consider the key factor for lasing, i.e. the population inversion defined by
τ0 = (ρst

e − ρst
g )/(ρst

e + ρst
g ), with ρst

i =
∑

n〈i, n|ρst
|i, n〉 being the stationary population of the

state of the dots (i = e, g). Explicitly, we find that

τ0 =


(02

R/ω2
0 + 4) cos θ

02
R/ω2

0 + 3 + cos 2θ
for case (i),

(02
0/ω

2
0 + 4) cos θ

02
0/ω

2
0 + 3 + cos 2θ

for case (ii)

(8)

with 00 = 0L + 0R. The population inversion does not depend on 0L for case (i). But it depends
on both tunneling rates for case (ii), suggesting that in this case the population inversion is driven
by transitions from |R〉 to both extra states |0〉 and |2〉. See figures 2(a) and (b) for cases (i) and
(ii), respectively. Although, in general, an additional incoherent tunneling channel reduces the
population inversion slightly, for the parameters studied in the present work, i.e. 0 � ωr, it
approaches the same value for both cases (i) and (ii), τ0 ≈ 4 cos θ/(3 + cos 2θ), which reaches a
maximum, τ0 → 1, for θ → π/2. To balance the effective dot–resonator coupling g = g0 sin θ

and the population inversion τ0, following the consideration in [8], we set the interdot coupling
strength tc = 0.3ωr throughout this work.

The properties of the resonator can be characterized by the average number of photons 〈n〉

and the Fano factor Fn ≡ (〈n2
〉 − 〈n〉

2)/〈n〉
2 describing their fluctuations [16]. When reducing

the detuning between the dot and the resonator from large values to zero, we observe that the
system undergoes a transition from the nonlasing regime, where 〈n〉 < 1 and Fn = 〈n〉 + 1, to
a lasing state with a sharp increase in the photon number. Before we reach the lasing state the
photon number distribution has a thermal shape, which explains the value of the Fano factor. At
the transition to the lasing regime the amplitude fluctuations lead to a peak in the Fano factor, as
shown in figure 3(b). In the lasing state the photon number is saturated, and the Fano factor drops
to Fn < 1, indicating a squeezed photon number distribution in the resonator. Interestingly, the
average photon number in the lasing regime, as well as the corresponding peak in the Fano
factor at the lasing transition are larger for weak interdot interaction, case (ii), than for strong
one, case (i). Approximately, we obtain the average photon number [42] for case (ii)

〈n〉 '
0 cos θ

2κ
−

02 + 412

8g2
. (9)

Compared to case (i), where [8] 〈n〉i '
0 cos θ

3κ
−

02+412

96g2 (7 + cos θ), we find an increase to 〈n〉i i ≈

〈n〉i + 0

6κ
, showing that case (ii) with four levels is more suited for lasing. The difference is due

to the existence of one more incoherent tunneling channel, driven as illustrated in figures 2(b)
and (d).

Since photons in the resonator are excited by the incoherent tunneling between the dot and
the electrodes, the lasing state closely correlates with the transport current. The current can be
expressed approximately (for κ � 0 and small θ ) for case (i) as [8]

I (1) ' e0
∑
n=0

P(n)
(n + 1)

3(n + 1) + (02 + 412)/4g2
(10)
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Figure 3. (a) Average photon number 〈n〉, (b) Fano factor Fn = (〈n2
〉 −

〈n〉
2)/〈n〉

2 of photons in the resonator, (c) average current I and (d) Fano
factor of the current FI = S(0)/2I , as a function of detuning for weak Coulomb
interaction (red solid line) and strong interaction (black dashed line). Throughout
this paper, we choose the tunneling rate 0 = 10−3ωr and interdot coupling
strength tc = 0.3ωr.

with P(n) ' (0/κ)P(0)
∏n

l=1[3l + (02 + 412)/4g2]−1 being the probability of n photons in the
resonator (in [8] a factor 1

2 was missing). As shown in figure 3(c), the transport current as
function of the detuning follows closely the behavior of the average photon number. Similarly,
the corresponding transport current for case (ii) is obtained as

I (1) ' e0
∑
n=0

P(n)
(n + 1)

2(n + 1) + (02 + 412)/4g2
, (11)

where P(n) ' (0/κ)P(0)
∏n

l=1[2l + (02 + 412)/4g2]−1. Both the average photon number of the
resonator and the current for case (ii) are larger than those for case (i).

As had been pointed out in [43], for a superconducting single-electron transistor (SSET)
coupled to a resonator, the noise spectra of the fluctuations of the photons are correlated with the
zero-frequency shot noise of the current. This fact is illustrated for the Fano factor FI = S(0)/2I
in figure 3(d). For strong detuning in the nonlasing regime, where the dots effectively do not
interact with the resonator, the shot noise shows a Poissonian distribution, i.e. FI ' 1. Near
the lasing transition the shot noise is enhanced strongly with a super-Poissonian distribution.
Compared to the Fano factor of the photons, the signal in the shot noise is stronger with a
narrower transition window and sharper peak. In the lasing state, where the photons are saturated
and the transport current reaches the maximum value, we find sub-Poissonian current noise,
FI ' 0.5, while the photon Fano factor Fn describes a squeezed state of the radiation field in this
nonclassical regime, differing from a conventional coherent state with Poissonian distribution.
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Figure 4. The noise spectra in the low-frequency regime for strong interdot
Coulomb interaction. (a) Auto-correlation SL(ω) = SR(ω). (b) Cross-correlation
SLR(ω). Different colors of the plotted noise spectra refer to different values of
the detuning, as denoted in the inset of (a) by color circles. The other parameters
are the same as in figure 3.

The cross-correlation noise (not displayed in the figures) shows a similar behavior with the
opposite sign due to the relation SL(0) = SR(0) = −SLR(0).

4. Noise spectrum

Since in the nonlasing regime the noise spectrum displays only trivial features, we focus in the
following on the finite-frequency noise spectra in the lasing regime and at the lasing transition,
as shown in the inset of figure 4(a). For tunneling dissipative operators LL and LR as defined
after equation (4b) it has been demonstrated [44] that all correlation functions can be expanded
in terms of the eigenvalues λk of Ltot and the coefficients ck = [V̂ −1 Î α V̂ ]kk . Here V̂ is built from
the eigenvectors of Ltot, and Î α is the current operator described in equation (5). For example,
we have

Sα(ω)

2I
= 1 − 2

∑
k

Re(ck)Re(λk) + Im(ck)[ω + Im(λk)]

[ω + Im(λk)]2 + [Re(λk)]2
, (12)

where the imaginary part Im(λk) and the real part Re(λk) represent the coherent and
dissipative dynamics, respectively. The coherent dynamics follows from the Jaynes–Cummings
Hamiltonian, equation (2), with eigenstates [3, 45]

|+, n〉 = cos θn|e, n〉 + sin θn|g, n + 1〉, (13)

|−, n〉 = sin θn|e, n〉 − cos θn|g, n + 1〉 (14)

and eigenenergies

E±,n = (n + 1)ωr ±
1

2

√
4g2(n + 1) + 12 (15)
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with θn =
1
2 tan−1(

2g
√

n+1
1

). The typical signal in the noise spectrum is dominated by these
eigenenergies, while the linewidth of the signal follows from the jump operators in
equation (4b).

4.1. Low-frequency regime

Let us first consider the low-frequency regime around ω ∼ 0 displayed in figure 4. We find
a zero-frequency peak and dip in the auto- and cross-correlation noise spectra, respectively.
Both decrease and finally disappear when one approaches the lasing state. The height of the
zero-frequency peak as a function of a detuning is shown in figure 3(d). Since in the absence
of a resonator we have Sα(ω ≈ 0)/2I = −SLR(ω ≈ 0)/2I ' 1, the peak/dip feature at zero
frequency in the noise spectra must be the effect of the resonator.

The noise spectra in figure 4 have a Lorentzian shape with linewidth γ0 ∼ κ , determined by
the emission spectrum of the photons [32]. In the regime around zero frequency, corresponding
to the long-time limit, the noise spectra are determined by the single minimum eigenvalue
λmin with the real part dominated by the weakest decay rate, i.e. κ . For weak interdot
Coulomb interaction, where we have to account for one more incoherent tunneling channel (see
figures 2(b) and (d)) the low-frequency noise spectra display a similar behavior as in figure 4(d),
except for the enhancement of the zero-frequency peak as shown in figure 3. It is worth noting
that in this low-frequency regime, the relation SL(ω ∼ 0) = SR(ω ∼ 0) = −SLR(ω ∼ 0) is still
satisfied. However, as we will show below, the cross-correlation noise changes sign beyond the
low-frequency regime.

At higher frequencies but still within the range |ω| < ωr, the spectra are no longer
Lorentzian due to the contributions from several λk in equation (12). We find characteristic
features showing a step and peak in the auto- and cross-correlation noise spectra, respectively,
as shown in figure 5. The position of the step/peak is nearly independent of the detuning,
while the magnitude is sensitive to it. With increasing dot–resonator interaction, both the step
and peak are shifted as shown in figure 6. These characteristics are a consequence of the
coherent dynamics of the coupled dot–resonator system. The step/peak occurs at ω = δE , where
δE = |E+,〈n〉 − E−,〈n〉| =

√
4g2(〈n〉 + 1) + 12 ≈ 2g(〈n〉 + 1) is the Rabi frequency corresponding

to the photon number 〈n〉. As expected, this coherent signal of the step/peak becomes weak
and even disappears with increasing incoherent tunneling rate 0 (not shown in the figure).
Interestingly, as shown in figure 6(b), we find that with increasing dot–resonator interaction,
the coherent signal for weak interdot Coulomb interaction is not only shifted, but the step also
turns into a dip. This is consistent with the coherent signal of the Rabi frequency in the double
dot in the absence of the resonator showing a dip and peak in the auto- and cross-correlation
noise spectra, respectively [39, 46]. It arises from the recovered symmetrical transition tunneling
channels (figures 2(b) and (d)). In the low-frequency regime, ω < |ωr|, the auto-correlation noise
spectra of left and right leads satisfy SL(ω) = SR(ω). This is no longer true in the high-frequency
regime ω & |ωr| for strong interdot Coulomb interaction, as will be shown in the following
subsection.

4.2. Regime close to the resonator frequency

Before addressing the noise spectrum in the high-frequency regime, let us briefly discuss its
properties in the absence of the resonator. It has been demonstrated [38, 39] that the signal of
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Figure 5. The low-frequency auto-correlation and cross-correlation noise
spectrum for different values of the detuning in the lasing regime. Panels (a)
and (b) are for strong interdot Coulomb interaction, and (c) and (d) for weak
interdot Coulomb interaction. The other parameters are the same as in figure 3.

the intrinsic Rabi frequency ω0 of the double dots can be extracted from the noise spectra.
For instance, the auto-correlation noise spectrum shows a dip-peak structure and a dip at
ω = ω0 for strong and weak interdot Coulomb interactions, respectively [38, 39]. Considering
the present parameter regime, where lasing is induced for ω0 ≈ ωr with very weak incoherent
tunneling, 0 = 10−3ω0, we find in the strong Coulomb interaction case nearly Poissonian noise
in the full-frequency regime, with a small correction due to a weak coherent Rabi signal, i.e.
Sα(ω0)/2I ∼ 1 ± 5 × 10−5. The correction can be neglected compared to the signal induced by
the coupled resonator as shown in figure 7.

The signals in the high-frequency noise spectrum arise because of transitions with the
energy E±,n − E±,n−1 ≈ ωr. They depend on the detuning in the same way as the spectrum of
the oscillator [47]. Namely, for positive detuning we find a signal at frequencies somewhat
higher than ωr and for negative detuning at frequencies below ωr.

In contrast to the low-frequency case, for high frequencies the spectra of the current in
the left and right junction, SL(ω) and SR(ω), do not have to be identical due to the overall
symmetry of the circuit broken by the resonator. This feature has been demonstrated by the
previous studies in [48, 49] for investigating the spectral properties of a resonator coupled
to a single-electron transistor (SET) and a superconducting single-electron transistor (SSET),
respectively, in the nonlasing regime. For the present studied setup in the lasing regime, in this
case we find significant differences between the cases (i) and (ii) of strong and weak Coulomb
interactions, as illustrated in the left and right columns of figure 7, respectively. For strong
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Figure 6. The low-frequency noise spectra for different dot–resonator coupling
strengths in the lasing state at 1 = 0: (a) for strong interdot Coulomb interactions
and (b) for weak interdot Coulomb interaction. The other parameters are the
same as in figure 3.

Coulomb interaction the correlators are

〈IL(t)IL(0)〉 =

∑
n

〈n|〈0|ρIL(t)|0〉|n〉,

〈IR(t)IR(0)〉 =

∑
n

〈n|〈R|ρIR(t)|R〉|n〉,
(16)

while for weak Coulomb interaction we have

〈IL(t)IL(0)〉 =

∑
n

〈n|
[
〈0|ρIL(t)|0〉 + 〈R|ρIL(t)|R〉

]
|n〉,

〈IR(t)IR(0)〉 =

∑
n

〈n|
[
〈R|ρIR(t)|R〉 + 〈2|ρIR(t)|2〉

]
|n〉.

(17)

Here we introduced the density matrix ρIi (t) which satisfies the master equation (4) with the
initial condition ρIi (0) = Î iρ

st (i = L, R).
For strong Coulomb interaction only SR(ω) couples directly to the state |R〉, which in turn

couples resonantly to the oscillator. As a result we observe the signal at ω ≈ ωr only in SR(ω),
while SL(ω) ≈ 1 is unaffected by the oscillator. In contrast, in case (ii), where we allow the
state |2〉 to participate, we again find a symmetry between the currents through the right and
left junctions and SL(ω) = SR(ω), as well as the anti-symmetry between the auto- and cross-
correlation noise spectrums, i.e. roughly Sα(ω)/2I ≈ 1 + 1S(ω) and SLR(ω)/2I ≈ −1S(ω)

with the signal 1S(ω) changing sign leading to a peak and a dip as function of frequency.
Furthermore, in contrast to the low-frequency regime, the noise spectrum at high frequency
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Figure 7. The finite-frequency noise spectra for strong Coulomb interaction in
the lasing regime. Panels (a) and (b) are for strong interdot Coulomb interaction
and panels (c) and (b) are for weak interdot Coulomb interaction. The other
parameters are the same as in figure 3.

shows a Fano-resonance profile. It displays the same mechanism as observed by Rodrigues [50]
that the detector (here the double quantum dot) feels the force in two ways, namely the
original one from the voltage-driven tunneling and the one from the resonator. It arises from
a destructive inference between the two transition paths between |g〉 and |e〉, i.e. a direct
tunneling channel through the leads and a transition assisted by the absorption and emission
at the detection frequency. We would like to mention that the present result differs from the
observation mode in [50]. These authors found a Fano-resonance in the charge noise spectrum
of a single-electron transistor coupled to a resonator and conjectured that it should also show
up in other experimentally more accessible variables. We find the Fano-resonance in the
current noise spectrum, which is directly observable.

5. Summary and discussion

We have evaluated the frequency-dependent noise spectrum of the transport current through a
coupled dot–resonator system in the lasing regime, in a situation where incoherent tunneling
induces a population inversion. We considered both strong and weak interdot Coulomb
interactions, in the latter case taking into account the doubly occupied state as well. Both
situations lead to a similar behavior of the zero-frequency shot noise but to different features in
the finite-frequency noise spectrum.

When the system approaches the lasing regime the zero-frequency shot noise is enhanced
strongly showing a remarkable super-Poissonian distribution. When the resonator is in the
lasing state, the shot noise displays sub-Poissonian characteristics. The current follows here
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the behavior of the photon distribution, which is also super-Poissonian as one approaches the
lasing regime and becomes sub-Poissonian near resonance.

We found that the average photon number and the corresponding Fano factor, as well as the
average current and its Fano factor in the lasing regime, are larger for weak interdot Coulomb
interaction than for strong interaction. The zero-frequency shot noise could be detected with
current experimental technologies. For example, a quantum point contact coupled to the dots
has been demonstrated to detect in real-time single-electron tunneling through the double
dot [22, 23].

Considering the finite-frequency noise spectra, we found pronounced characteristic
structures in the low- and high-frequency regimes reflecting the coherent dynamics of the
coupled dot–resonator system. At low but finite frequencies the coherent dynamics of the
oscillator leads to a peak at the eigen-Rabi frequency of the coupled system. At frequencies
close to that of the resonator, due to the excitations of the photons in the resonator, we found
for strong interdot Coulomb interaction a strongly asymmetric signal in the auto-correlation
noise spectra of the left and right junctions. Symmetry is restored for weak interdot Coulomb
interaction. The difference arises from the asymmetrical and symmetrical incoherent tunneling
channels induced by strong and weak interdot Coulomb interactions, respectively.
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