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A MULTILEVEL JACOBI–DAVIDSON METHOD FOR POLYNOMIAL
PDE EIGENVALUE PROBLEMS ARISING IN PLASMA PHYSICS∗

MARLIS HOCHBRUCK† AND DOMINIK LÖCHEL†

Abstract. The simulation of drift instabilities in the plasma edge leads to cubic polynomial
PDE eigenvalue problems with parameter dependent coefficients. The aim is to determine the wave
number which leads to the maximum growth rate of the amplitude of the wave. This requires the
solution of a large number of PDE eigenvalue problems. Since we are only interested in a smooth
eigenfunction corresponding to the eigenvalue with largest imaginary part, the Jacobi–Davidson
method can be applied. Unfortunately, a naive implementation of this method is much too expensive
for the large number of problems that have to be solved. In this paper we will present a multilevel
approach for the construction of an appropriate initial search space. We will also discuss the efficient
solution of the correction equation, and we will show how optimal scaling helps to accelerate the
convergence.
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1. Introduction. In this paper we consider polynomial eigenvalue problems of
the form

(1.1) p0(ω, θ)φ(θ) + p1(ω, θ)
∂

∂θ
φ(θ) + p2(ω, θ)

∂2

∂θ2
φ(θ) = 0,

where

(1.2) p0(ω, θ) =

d0∑

j=0

aj(θ)ω
j , p1(ω, θ) =

d1∑

j=0

bj(θ)ω
j , p2(ω, θ) =

d2∑

j=0

cj(θ)ω
j .

Here, the coefficients aj , bj , cj are smooth, complex valued functions of θ, which might
depend on certain other parameters, and dj denotes the degree of the polynomials pj .

The application we are interested in is the study of instabilities in the plasma edge
of a tokamak, which is a magnetic fusion device. One of the problems to make mag-
netic fusion efficient is to reduce energy losses resulting from the unavoidable transport
of plasma towards the wall. These losses arise due to microinstabilities in the plasma
edge; see [15, 18, 19, 20, 36] for details. In [15, 33] a model for the simulation of the
so-called anomalous transport is derived, which—after several simplifications—leads
to a cubic eigenvalue problem of the form (1.1) with d0 = 3 and d1 = d2 = 2. The
eigenvalue of interest is the one with maximum imaginary part, since it contributes
most to the losses. All functions aj , bj , cj are 2π-periodic in θ. The 2π-periodic eigen-
function φ corresponds to the envelope of the electric potential perturbation for a
certain wave number K, which is one of the parameters entering the coefficient func-
tions aj , bj, and cj . To be more precise, the physicists aim at finding the wave number
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K which maximizes the energy loss. Solving this optimization problem requires the
solution of many nonlinear eigenvalue problems.

We would like to emphasize that the proposed algorithm can be applied to general
problems (1.1), where the desired eigenfunction is smooth. For instance, the well-
known Mathieu equation fits into this class of problems (with dj = 2, j = 0, 1, 2). One
can also approximate eigenpairs with other properties than having largest imaginary
part.

The aim of this paper is to present an efficient eigenvalue solver for polynomial
PDE eigenvalue problems based on the Jacobi–Davidson method [28, 27]. It turns out
that a naive implementation of this method is not efficient for solving a large number of
parameter dependent problems, as it is required in our application. The contribution
of this paper is twofold: first of all we propose accelerating the convergence by using
a multilevel approach for finding a good initial search space. A similar idea was
recently used in [21] for generalized eigenvalue problems, where p-hierachical finite
element spaces are used to accelerate the convergence of the Jacobi–Davidson method
in the preasymptotic convergence regime. It is mentioned in [21] that h-hierachical
finite element spaces could also be used, although this was not investigated in detail.
Clearly, a multilevel approach can also be used for the solution of the correction
equation, as discussed in [7]. Both approaches can be easily combined.

In contrast to the application considered in [21], where the dominant eigenvalues
are of interest, we are interested in the eigenpair corresponding to the eigenvalue of
largest imaginary part. It turns out that it is not at all obvious to follow the correct
eigenpair within a multilevel process for a cubic polynomial eigenvalue problem, where,
in general, three eigenvalues correspond to one eigenfunction. Therefore, we carefully
investigate the selection of the desired Ritz pair by introducing a suitable similarity
measure which also allows us to follow eigenpairs corresponding to a sequence of
parameters (such as the wave number K).

The paper is organized as follows. In section 2 we briefly discuss the spatial dis-
cretization. Moreover, we recall the standard companion linearization of polynomial
eigenvalue problems. Section 3 gives a short summary of the Jacobi–Davidson method
for polynomial eigenvalue problems. In section 4, we present our multilevel approach,
where we use a hierarchy of grids to find a suitable initial search space which will then
lead to fast convergence of the Jacobi–Davidson method. We will discuss the selec-
tion of the Ritz pair, the efficient solution of the correction equation, error control,
and scaling. Finally, in section 5 we present some numerical examples to illustrate
the performance of our method for the application of studying the instabilities in the
plasma edge. Section 5.4 is devoted to parameter dependent problems, in particular
to determine the wave number K which maximizes the growth rate.

2. Preliminaries. To solve the eigenvalue problem (1.1), we first discretize it in
space. Since the functions arising in (1.1) are 2π-periodic, we choose an even number
N of grid points and define a grid

0 = θ1 < θ2 < · · · < θN < 2π, θN/2+1 = π.

For physical reasons, it is essential to include 0 and π in the grid. The discretization
of the derivatives then leads to a cubic matrix eigenvalue polynomial

(2.1)
P (ω) = P0(ω) + P1(ω)D1 + P2(ω)D2

=: ω3M3 + ω2M2 + ωM1 +M0.
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Here, the matrices

Pj(ω) = diag
(
pj(ω, θ)

)

are diagonal, and

θ = [θ1, . . . , θN ]T

denotes the vector of grid points. The spatial discretizations of the first and the second
derivative are represented by D1 and D2, respectively. Since our application leads to
one-dimensional problems, we consider using finite differences or a spectral method
based on Fourier transformation; see, e.g., [34]. However, in two- or three-dimensional
problems, hp-hierarchical finite element discretizations might be preferable.

2.1. Finite differences. We use a standard finite difference approximation

(2.2)
∂

∂θ
φ(θj) ≈ q′j(θj),

∂2

∂θ2
φ(θj) ≈ q′′j (θj),

where qj denotes the unique interpolation polynomial of degree 2m < N interpolating

qj(θj±k) = φ(θj±k), k = 0, 1, . . . ,m.

On an equidistant grid, the approximations are of order 2m.
Let Φ = (φ(θj))j=1,...,N ∈ CN be the vector containing the function φ evaluated

on the grid. Then (2.2) can be written as

q′j(θj) = (D1Φ)j , q′′j (θj) = (D2Φ)j

with matrices D1,2 of upper and lower periodic bandwidth m, i.e., band matrices with
additional nonzero elements in the lower left and upper right corner.

2.2. Spectral method. A second option is to use a spectral method. Here we
use (2.2) with q being the trigonometric interpolation polynomial which interpolates
φ(θj) = q(θj), j = 1, . . . , N . The differentiation matrices are given by

Dj = F−1
N DjFN ,

where FN denotes the discrete Fourier matrix and

D1 = i diag (0, 1, . . . , N
2 − 1, 0,−N

2 + 1, . . . ,−1),
D2 = −diag (0, 1, . . . , N

2 − 1, N
2 ,−N

2 + 1, . . . ,−1)2.

Note that spectral approximation leads to dense, complex differentiation matrices
D1,2. The benefit is that periodic boundary conditions are fulfilled automatically and
that derivatives of a given function can be computed in O(N logN) operations by fast
Fourier transformation. Moreover, for smooth functions the accuracy is much higher
than for finite differences.

2.3. Linearization. In the Jacobi–Davidson algorithm and in our multilevel
approach we introduce later on, polynomial eigenvalue equations of the same form as
in (2.1) but of sufficiently small dimension need to be solved. The standard approach
for solving such problems is to use an equivalent linearized formulation, e.g.,

(2.3)

⎛
⎝ω

⎡
⎣
M3

I
I

⎤
⎦+

⎡
⎣
M2 M1 M0

−I
−I

⎤
⎦
⎞
⎠

⎡
⎣

ω2Φ
ω Φ

Φ

⎤
⎦ = 0
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or

(2.4)

⎛
⎝ω

⎡
⎣
M3 M2 M1

I
I

⎤
⎦+

⎡
⎣

M0

−I
−I

⎤
⎦
⎞
⎠

⎡
⎣

ω2Φ
ω Φ

Φ

⎤
⎦ = 0,

which are generalized eigenvalue problems of triple dimension. These linearizations
are called companion form linearizations [8, 9, 10]. We will discuss other linearizations
in section 4.7 and present numerical examples in section 5.3. The standard algorithm
for solving (2.3) is the QZ algorithm [1, 6, 12]. However, it requires at least O(N3)
floating point operations and is therefore inefficient for large scale problems but well
suited for small problems.

3. Jacobi–Davidson method. Since we are interested in very few eigenpairs
of the cubic eigenvalue problem (2.1), a Ritz–Galerkin method seems appropriate.
There are several Krylov subspace methods like Lanczos- and Arnoldi-type methods
which are very efficient in finding eigenvalues in a user-selected part of the spectrum.
However, the shift and invert strategies require suitable preconditioners in each it-
eration step. For our application we suggest applying the Jacobi–Davidson-scheme,
which is a Ritz–Galerkin method with a particularly clever strategy to extend the
search space. In contrast to Lanczos- and Arnoldi-type methods, the augmentation
is done via a Newton step which requires only an approximative solution of a lin-
ear system; see [28, 27]. Due to its Newton like behavior, global convergence of the
Jacobi–Davidson method cannot be ensured. However, if a good initial approximation
of an eigenpair is available, then locally quadratic convergence can be expected. Thus
the Jacobi–Davidson method will be the choice for our multilevel approach.

3.1. Basic algorithm. To keep this paper self-contained, we briefly summarize
the Jacobi–Davidson algorithm. Let V ∈ CN,k contain an orthonormal basis of the
current search space on a grid G. We want to determine a Ritz vector u = V y, y ∈ Ck

and a Ritz value ν satisfying the Galerkin condition

P (ν)V y ⊥ V.

This leads to the k-dimensional polynomial eigenvalue problem

(3.1) V HP (ν)V y = 0.

Since k � N , this eigenvalue problem can easily be solved by the QZ algorithm after
linearization.

An optimal extension to the search space V would be to take an orthogonal
correction t ⊥ V such that u+ t is an exact eigenvector to the sought eigenvalue ω,

P (ω)(u+ t) = 0, t ⊥ u.

However, since ω is unknown, we replace it by its current approximation ν. This leads
to the correction equation

(3.2)

(
I − P ′(ν)uuH

uHP ′(ν)u

)
P (ν)

(
I − uuH

uHu

)
t = −r, t ⊥ u;

see [29] and references given there. A nice interpretation is that this corresponds to
one Newton step applied to

(3.3) F (λ, x) :=

(
P (λ)x
xHx− 1

)
= 0
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with starting values (ν, u). The Jacobi–Davidson method is summarized in Algo-
rithm 1. It has been shown that it converges locally quadratically if the correction
equation (3.2) is solved exactly; cf. [23, 24, 27]. If the correction equation is only
solved approximately, then one can still expect fast convergence [35].

Algorithm 1 Jacobi–Davidson algorithm.

Require: matrix polynomial P (ω) =
∑3

j=0 ω
lMj, Mj ∈ CN×N

1: choose an initial search space V = [v1, . . . , vk] ∈ CN×k, 1 ≤ k � N
2: loop
3: orthonormalize V
4: compute Wj := MjV and Hj := V HWj for j = 0, . . . , 3
5: compute desired eigenpair(s) (ν, y) of projected equation

P̃ (ν) :=
∑3

j=0 ν
jHjy = 0, ‖y‖ = 1

6: compute Ritz vector in original space u := V y
7: compute residual r := P (ν)u
8: if ‖r‖ < tolerance then
9: stop

10: end if
11: compute w := P ′(ν)u =

∑3
j=1 jν

j−1Mju
12: find t such that the correction equation (3.2) is solved approximately
13: expand search space V := [V, t]
14: end loop

Algorithm 1 leaves a lot of freedom in various steps, namely, the choice of the
initial subspace (line 1), the selection of the Ritz pair (line 5), and the solution of the
correction equation (line 12). The efficiency of the method for a particular application
strongly depends on these steps. We postpone the first two aspects to section 4 and
start with the solution of the correction equation.

3.2. Solution of correction equation. Assume that we are given an exact
inverse Q(ν) of the matrix polynomial P (ν), i.e., Q(ν)P (ν) = I. Then the Newton
step is equivalent to

(3.4) t =
uHQ(ν)r

uHQ(ν)P ′(ν)u
Q(ν)P ′(ν)u −Q(ν)r =

uHz

uHs
s− z.

Computing t requires the solution of two linear systems, P (ν)z = r and P (ν)s =
P ′(ν)u; cf. [29, 35]. The advantage of representing t by the so-called one-step approx-
imation (3.4) is that the orthogonality condition in (3.2) is eliminated. Moreover,
there is no need to compute t exactly, since it is only used to expand the search space.
Due to the robustness of the search space expansion [35], we recommend determining
an approximative inverse Qf(ν) such that Qf (ν)Pf (ν) = I, where Pf is the poly-
nomial resulting from a finite difference approximation of (1.1) even if the spectral
method is used to determine P . Since Pf (ν) is a periodic band matrix, its LU de-
composition is sparse, and the linear systems can be solved with O(N) operations
only.

The solution t ⊥ u is added to the search space V . At the beginning of the
next cycle, the columns of the search space V are reorthogonalized because t is not
necessarily perpendicular to the whole search space.
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4. A multilevel Jacobi–Davidson method. In this section we discuss an
efficient implementation of the Jacobi–Davidson method. We first assume that all
parameters of the problem (such as the wave number K) are fixed. The Jacobi–
Davidson algorithm can be interpreted as an accelerated Newton method, and thus
global convergence cannot be assured. A good initial guess of the desired eigenpair
enables us to enter the regime of locally quadratic convergence. Recently, in [21],
Nickel and Dyczij-Edlinger used a p-hierarchical finite element method, where the
polynomial degree of the finite element basis is increased while the approximation of
the eigenpair improves. Here we discuss the construction of an appropriate initial
vector using a multilevel approach.

We would like to note that multilevel or multigrid methods can also be employed in
the Jacobi–Davidson algorithm for solving the linear system of the correction equation
[7]. However, in our one-dimensional problem (1.1), multigrid methods do not excel
preconditioning with the finite differences derivative approximation as described in
section 3.2, but this changes in two or three space dimensions. In any case, the most
efficient solver available for a particular application should be used for the solution of
the correction equation.

4.1. A multilevel approach. The main idea of our algorithm is to use a nested
sequence G� ⊂ G�+1 of spatial grids

G� = {θj,�, j = 1, . . . , N�}, 	 = 0, . . . , L,

where Nl+1 = 2N� and

θj,� = (j − 1)
h0

2�
, j = 1, . . . , N�.

Here, h0 = 2π/N0 denotes the mesh width of the coarsest grid.
We start from the coarsest grid G0 and compute an approximation to the desired

eigenpair. The number N0 of grid points of G0 is chosen such that the dimension of
the linearized problem is so small that the QZ algorithm is efficient. Then we correct
this approximation on the sequence G� of refined grids.

4.2. Refining the approximation. Assume that we already have an approx-
imation to the desired eigenpair on grid G�−1 and want to compute the solution on
grid G�. We first prolongate the eigenfunction from G�−1 to the next finer grid G�

and call the interpolated function Φ the reference eigenfunction. The interpolation
is either done by cubic spline interpolation with periodic boundary conditions in the
case of finite difference discretizations or by trigonometric interpolation for the spec-
tral method. The reference eigenfunction Φ is used as the basis of the initial search
space V� on grid G�. The eigenvalue approximation together with the prolongated
eigenfunction becomes the reference eigenpair (ω,Φ). On grid G�, we select the Ritz
pair that is closest to the reference eigenpair; see [31] for a different application using
similarity of data.

Cubic eigenvalue problems of dimension N� have 3N� eigenpairs. Thus the eigen-
vectors are linearly dependent, and the eigenvalues are not necessarily distinct. This
requires a suitable similarity measure which takes eigenvalues and eigenvectors into
account. The similarity between the Ritz value ν and the reference eigenvalue ω is
measured via the relative distance

(4.1) sim(ν, ω) = exp

(
− |ν − ω|
|ν|+ |ω|

)
,
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while the similarity between the eigenfunctions is measured as usual via the angle
between the vectors,

(4.2) sim(u,Φ) =
∣∣uHΦ

∣∣ , ‖Φ‖2 = ‖u‖2 = 1.

Both similarity measures take values in the interval [0, 1], where one is attained if
the eigenpairs are identical. Values close to zero arise if the eigenvectors are almost
orthogonal and the eigenvalues have large distance.

We suggest combining both similarity measures and select the Ritz pair (ν, u),
which maximizes

(4.3) sim((ν, u), (ω,Φ)) := sim(ν, ω)sim(u,Φ).

Remark. It might be tempting to approximate and refine several eigenpairs si-
multaneously; see [4, 13, 17]. However, we found that in our physical application the
initial search space constructed by the multilevel procedure leads to quadratic con-
vergence behavior from the very beginning of the Jacobi–Davidson iteration. Thus
the block version turned out to be less efficient here. Nevertheless, the techniques
proposed in this paper naturally generalize to block methods.

4.3. Projection of eigenvalue equation. In the Jacobi–DavidsonAlgorithm 1,
the k-dimensional eigenvalue problem (3.1) has to be solved. This requires the com-
putation of the projected problem. The multiplication from the right can be com-
puted in O(kqN) operations if the discretization is done by finite differences and in
O(kN logN) operations via fast Fourier transformation if the spectral method is used.
To achieve this, the multiplication with V has to be done separately for each matrix
coefficient Mj of the matrix polynomial (2.1). The multiplication from the left can be
computed in O(k2N) operations only. Thus, the most expensive operation is to apply
the discrete derivative operators to the basis of the search space (i.e., the columns of
V ). Fortunately, this has to be done only once per iteration.

4.4. Error control. Since it is well known that residual bounds are not reliable
error indicators, we suggest stopping the iteration based on the forward error. The
forward error can be approximately bounded by the product of the backward error
and the condition number; see [8, 10] and [32]. The normwise variant provides sharp
estimates but is computationally expensive, since it involves the solution of standard
eigenvalue problems. The componentwise variant is applicable but invariant under
scaling [2].

Let

ΔP (λ) :=

d∑

j=0

λjΔMj

be the perturbation polynomial, and let (λ̃, x̃) be an approximative eigenpair and

r := P (λ̃)x̃ its residual. In [32] the normwise backward error η(λ̃, x̃) is defined as

η(λ̃, x̃) := min
{
ε :

(
P (λ̃) + ΔP (λ̃)

)
x̃ = 0, ‖ΔMj‖2 ≤ ε‖Ej‖2, j = 0, . . . , d

}
,

where d denotes the degree of the matrix polynomial (d = 3 in our application) and Ej

are arbitrary matrices that represent the tolerances against which the perturbations
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ΔMj to Mj will be measured. It was shown in [32, Theorem 1] that

(4.4) η(λ̃, x̃) =
‖r‖2
α̃‖x̃‖2

, α̃ =

d∑

j=0

|λ̃|j‖Ej‖2.

For an exact eigenpair(λ, x), the normwise condition number is defined as

κ(λ, P ) := lim
ε→0

sup

{ |Δλ|
ε|λ| :

(
P (λ+Δλ) + ΔP (λ+Δλ)

)
(x+Δx) = 0,

‖ΔMj‖2 ≤ ε‖Ej‖2, j = 0, . . . , d

}
.

Let y be a left eigenvector corresponding to λ. From [32, Theorem 5] we have

(4.5) κ(λ, P ) =
α‖y‖2‖x‖2
|λ||yHP ′(λ)x| , α =

d∑

j=0

|λ|j‖Ej‖2.

If the condition number κ(λ, P ) is approximated by using the approximate eigentriple

(ỹ, λ̃, x̃) instead of the exact one in (4.5), we have α̃ = α, and the forward error
estimate becomes

(4.6) η(λ̃, x̃)κ(λ̃, P ) =
‖r‖2‖ỹ‖2

|λ̃||ỹHP ′(λ̃)x̃|
.

The iteration is stopped if the forward error estimate (4.6) is below a given threshold,
which will be called the relative accuracy of the eigenvalue in the following.

4.5. Optimal scaling. Ultimately, we are interested in computing eigenvalues
as accurate as possible. Hence, we would like to find a scaling that leads to small
forward errors. The physical equations are scaled such that ‖Mj‖∞ ≈ 1. In our ap-
plication, the diagonal matrices are well conditioned but the condition of the discrete
derivative matrices grows quadratically with the number N of grid points. Besides
the general scaling of the physical equations, the optimal scaling depends on the spe-
cific eigentriple; see [2] and references given there. An optimal scaling aims at an
eigenvalue with eigenvectors whose components are of equal magnitude; see [2, The-
orem 3.3]. To be more precise, let (Φl, ω,Φr) be the desired eigentriple of P with all
components of Φl and Φr being different from zero and ω 	= 0. Then define optimally
scaled vectors

Φ̂r,l = S−1
r,l Φr,l, Sr,l = diag(|Φr,l|).

Since linearization of a polynomial eigenvalue problem leads to eigenvectors with
components multiplied by powers of the eigenvalue ω, it is also necessary to scale the
eigenvalue. Thus we define the scaled eigenvalue ω̂ via

ω = |ω|ω̂

and obtain the scaled polynomial eigenvalue problem

P̂ (ω̂)Φ̂r := SlP (|ω|ω̂)SrΦ̂r = 0.
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A good approximation (ω,Φr) leads to |ω̂| ≈ 1 and |Φ̂r| ≈ (1, . . . , 1)T so that the
entries of the eigenvector of the linearized system are of modulus close to one. This
gives a nearly optimal scaling. However, the left eigenvector of the linearized system
is not optimally scaled by companion form linearizations. Therefore we will discuss
block-symmetric linearizations in section 4.7.

Unfortunately, the optimal scaling requires the unknown eigenpair. However,
our multilevel approach can also be used to provide a nearly optimal scaling (see
Algorithm 2). On the coarsest grid G0, the spatial grid size is quite large. Thus
the derivative matrices D1,2 are well conditioned, and the QZ algorithm gives enough
accuracy. On subsequently finer grids G�, 	 ≥ 1, we interpolate the approximative
eigenfunction from grid G�−1 and use this approximation for scaling.

The effect of scaling in the multilevel Jacobi–Davidson algorithm will be discussed
in section 5.3 below.

Algorithm 2 Multilevel Jacobi–Davidson approach including scaling.
solve P (ω)Φr = 0 on the coarsest grid G0

select the desired eigenpair (ω,Φr)
for 	 = 1, . . . , L do
prolongate Φr to the next finer grid G�

compute Φl

scale P : P̂ (ω̂) := diag(|Φl|)P (|ω|ω̂) diag(|Φr|)
solve P̂ (ω̂)Ψ = 0, ω ← |ω|ω̂, Φr ← diag(|Φr|)Ψ

end for

4.6. Two-sided Rayleigh quotient iteration. It is well known that the Ray-
leigh quotient iteration of standard eigenvalue equations Ax = λx converges cubi-
cally for normal matrices and quadratically for nonnormal matrices [11]. However,
Ostrowski’s two-sided Rayleigh quotient iteration [22]

ν(ul, ur) :=
uH
l Aur

uH
l ur

,

where ul and ur are approximations to the left and right eigenvectors, respectively, con-
verges cubically if the approximated eigenvalue is simple. A good overview of Rayleigh
quotient iteration can be found in [26]. In the case where left and right eigenvectors
are required for scaling or for error control, the projection of the eigenvalue problem
in the Jacobi–Davidson cycle can be modified analogously to the two-sided Rayleigh
quotient iteration [11]. Let Vl and Vr be the search spaces which are initialized by
an approximation of the left and the right eigenvector, respectively. The projected
eigenvalue equation then reads

yHl V H
l P (νl)Vr = 0 and V H

l P (νr)Vryr = 0.

The search space Vr is expanded as described in section 3.2, and Vl is expanded
analogously. Here, we have two eigenvalue approximations νl and νr, whose difference
tends to zero if the method converges.

4.7. Linearization. The conditioning and the backward error of different lin-
earizations have been studied in [8, 9, 10]. In particular, it was shown that a whole
class of block symmetric linearizations of symmetric matrix polynomials exists.
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For our problem, we suggest using one of the following block symmetric lineariza-
tions

(4.7)

⎛
⎝ω

⎡
⎣
M3

−M1 −M0

−M0

⎤
⎦+

⎡
⎣
M2 M1 M0

M1 M0

M0

⎤
⎦
⎞
⎠

⎡
⎣

ω2Φ
ω Φ

Φ

⎤
⎦ = 0,

or

(4.8)

⎛
⎝ω

⎡
⎣

M3

M3 M2

M3 M2 M1

⎤
⎦+

⎡
⎣

−M3

−M3 −M2

M0

⎤
⎦
⎞
⎠

⎡
⎣

ω2Φ
ω Φ

Φ

⎤
⎦ = 0,

because they inherit the same simple structure of the right eigenvector as the com-
panion forms (2.3) and (2.4). The main advantage of this structure is that a scaling
of Φ of the original polynomial eigenvalue problem P automatically yields the same
scaling for the linearized problem. In the complex symmetric case, left and right
eigenvectors coincide except for complex conjugation. In fact, in [10] it is shown that
the condition number of the linearization (4.7) or (4.8) is not much worse than the
one of P for eigenvalues of modulus larger than one or smaller than one, respectively,
if the coefficient matrices are balanced.

5. Numerical examples. In this section we present some numerical examples
illustrating the performance of our new method for the physical application. First we
give some more information about the physical problem, which is necessary to state
the equations. However, it is beyond the scope of this paper to explain the physical
background in full detail. We refer to [14, 15, 33] for further reading.

5.1. Details on the physical problem. The model derived in [15, 33] leads
to the rational eigenvalue problem

(5.1)
∂2φ

∂θ2
+

(
ω σ1 + σ2 + i σ3

)

(σ7 + ω σ8)

(
σ4 + ω σ5 + ω2 σ6

)
φ = 0,

where the dependence of the coefficients σj on the wave number K is as follows:

(5.2)

σ1 = β + z γ3 μK2, σ2 = −2 βK, σ3 = z γ3 C K2,

σ4 = 2
γ2
γ3

ωB, σ5 = z K − 2 z γ2 ωBK, σ6 = z,

σ7 = −z γ3
1 K, σ8 = z γ3

1

(
1 + 2 z γ3 K

2
)
.

Multiplication of (5.1) by its denominator leads to the polynomial eigenvalue problem

(5.3) (σ7 + ω σ8)
∂2φ

∂θ2
+
(
ω σ1 + σ2 + i σ3

)(
σ4 + ω σ5 + ω2 σ6

)
φ = 0,

which is of the form (1.1) with b0 = b1 = 0. Note that the left eigenvector can be
obtained from the eigenvalue and the right eigenvector by

Φl = diag(σ7 + ωσ8)−1Φr.

We would like to note that there are methods to solve rational or more general
nonlinear eigenvalue problems directly; see, for instance, [16, 25, 26, 30, 35].
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In the simplest case of a toroidal device with concentric flux surfaces we have γ1 =
γ3 = 1 and γ2 = cos(θ). Averaging the remaining plasma parameters over the poloidal
angle θ leads to a Mathieu equation [33]. There are more interesting cases where the
plasma shape is elongated, i.e., where the poloidal cross section becomes an ellipse.

Depending on the model assumptions, a relation between K and the radial wave
number z is to be taken into account, e.g.,

(5.4) z = 2 max

{
1,

1

2
+
(σ9

K

)2
}

for some constant σ9. This means that the coefficients are continuous but not differ-
entiable functions of the wave number K. It is shown that this does not affect the
functionality of the algorithm presented. The parameters β, ωB, and C are functions
of certain plasma parameters such as temperature, density, etc., which also depend
on the angle θ. Therefore, we have σj = σj(θ), j = 1, . . . , 9. For more details on the
model and the application we refer to [14, 15, 33].

5.2. Comparison of spatial discretizations. In the first experiment we an-
alyze the impact of the spatial discretization along with the interpolation that is
applied for prolongating to the next finer grid. The discretization is either realized
with finite differences of order four (corresponding to the choice q = 2 in section 2.1)
or by using the spectral method as discussed in section 2.2. For the prolongation we
use linear interpolation, cubic Hermite interpolation [5], cubic spline interpolation, or
trigonometric interpolation. This gives a total of eight combinations.

We take 15 cubic eigenvalue equations of the form (1.1) that are obtained from
different physical configurations which lead to different metric coefficients γj , j =
1, 2, 3, in (5.2), (5.3). For each of the combinations, we start on a grid G0 with N0 = 8
grid points, compute the 24 eigenpairs by the QZ algorithm, and select the eigenpair
of physical interest. This eigenpair is improved on finer grids by the multilevel Jacobi–
Davidson algorithm as described in section 4. The iteration is stopped if the forward
error estimate is below a tolerance of 10−5. The correction equation is always solved
by using a finite difference approximation as discussed in section 3.2.

Statistics on the dimension k = dimV of the search space at the end of the Jacobi–
Davidson cycle and the accuracy of the eigenvalue approximation with respect to the
one on the finest grid are shown in Figure 5.1. Subfigures (a) to (d) are computed
with different types of prolongation, and within each plot, each group of bars belongs
to the specified differentiation method. The bars show the minimal, average, and
maximal value of the final search space dimension (left pictures) or the accuracy of
the eigenvalue approximation (right pictures). Here, ω∗ denotes the solution on the
finest grid.

The most obvious fact is a higher accuracy of the spectral method even on medium
sized grids. On the grid ofN = 128 points the spectral method almost reaches the final
level of accuracy, which depends on the type of prolongation. The best final accuracy is
achieved for trigonometric interpolation. If finite differences are used, the prolongation
does not affect the accuracy of the intermediate eigenvalue approximations. However,
the prolongation method has a strong impact on the number of Jacobi–Davidson
cycles. The final search space is smallest if spline or trigonometric interpolation is
used, but cubic and linear interpolation are quite good as well.

The situation is different for the spectral method, where the trigonometric in-
terpolation saves one dimension on the finer grids. This is in accordance with the
large gain of accuracy of the eigenvalue approximations and can be explained by the



3162 MARLIS HOCHBRUCK AND DOMINIK LÖCHEL
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(a) prolongation by linear interpolation
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(b) prolongation by shape preserving cubic Hermite interpolation
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(c) prolongation by splines
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(d) prolongation by trigonometric interpolation

Fig. 5.1. Dimension of search space and accuracy of eigenvalue approximation at several levels
of the multilevel Jacobi–Davidson algorithm. More information is in the text.
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fact that the high frequencies in the eigenvector have minor impact. The accuracy
of the eigenvalue approximation, which is much better than the desired tolerance,
can be explained by the fact that the stopping criterion is matched at first iteration
(dimV = 1) already.

5.3. Effect of linearization and scaling. In the next experiment, we study
the impact of different linearizations and scaling. We choose two test equations of
the form (1.1) and refer to them as examples 1 and 2 in the following. The equations
belong to a physical scenario where the plasma profiles are highly inhomogeneous and
yield strongly varying coefficients aj , cj with bj = 0. The desired eigenfunctions of
both examples are shown in Figure 5.2(a). Obviously, at least locally, a high spatial
resolution is required to approximate the derivatives of these functions accurately.

As in section 5.2, we approximate the derivatives with the spectral method, except
for the correction equation, where finite differences of fourth order are applied. The
initial approximation is computed by the QZ algorithm on a grid G0 of N0 = 64 grid
points. This coarse grid approximation is improved by our multilevel Jacobi–Davidson
method on subsequently finer grids G� of N� = 2�+6 grid points, 	 = 1, . . . , 8. The
prolongatation is done by trigonometric interpolation.

The Jacobi–Davidson cycle is iterated until the normwise forward error estimate
(4.6) is below 10−7. We stop the iteration if this accuracy is not achieved within
a certain maximum number of iterations. For illustration, we set the limit to 64
iterations, but, in practice, one should use a smaller number, since the algorithm is
expected to converge locally quadratically. The experiments below show that a proper
scaling and linearization lead to convergence within 16 steps at most.

In Figure 5.2(b), the accuracy of the eigenvalue on intermediate grids is illustrated.
For both examples 1 and 2 we consider the following combinations of two linearizations
with the nearly optimal scaling strategy of section 4.5:

without scaling with scaling
linearization (2.3) (i) (ii)
linearization (4.7) (iii) (iv)

All examples are calculated with one-sided Rayleigh quotients. On the coarsest grid,
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Fig. 5.2. (a) Real and imaginary part of the eigenfunction of Examples 1 and 2. (b) Accuracy
of eigenvalue with respect to the level of resolution given by the number N of grid points. The
tolerance of forward error is set to 10−7.
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Table 5.1
Average computational time t of the QZ algorithm including linearization for a cubic eigenvalue

equation on several resolution levels indicated by the number N of grid points.

N 23 24 25 26 27 28 29 210

t/min 0.00007 0.00038 0.0025 0.019 0.17 1.7 13 103

Table 5.2
Average computational time t of one Jacobi–Davidson cycle in the multilevel Jacobi–Davidson

algorithm. We estimated the cost for the final cycle as half because one can save the solution of the
correction equation for it.

N 27 28 29 210 211 212 213 214

t/sec 0.01 0.02 0.05 0.07 0.10 0.18 0.27 0.32

the relative accuracy |ωN−ω214 |/|ω214 | is 10−1 and 10−3, respectively, and it decreases
marginally until 29 grid points, where superlinear convergence starts. The accuracy
improves monotonically except for the cases where a Jacobi–Davidson cycle does not
converge until the dimension of the search space reaches the maximum number. For
grids with at least 212 points, the accuracy is much better than the desired accuracy
of 10−7. This is due to the fact that here the Jacobi–Davidson procedure is in the
regime of quadratic convergence.

In additional numerical experiments we observed that both examples can be cal-
culated by starting on a very coarse grid of eight grid points only. However, it is more
reliable to start with a finer grid. 64 grid points turned out to be a good compromise
between computational time and reliability to find an approximation of the desired
eigenpair. Table 5.1 shows the average computational time of the QZ algorithm to
compute the eigenvalues of a complex cubic eigenvalue equation. To be more precise,
the time measurements include the linearization and the solution of the linearized sys-
tem by the QZ algorithm (but not the initialization of the matrices). The four types
of linearizations (2.3), (2.4), (4.7), and (4.8) have been tested without noteworthy
difference in computational time.

For comparison, the average time of one Jacobi–Davidson cycle is given in
Table 5.2. In the final iteration, the projected system is solved, but since the correc-
tion equation does not need to be solved, we estimated the cost for the final iteration
as half the cost of the remaining iterations. Doubling the number of grid points in-
creases the computational time of the QZ algorithm by about a factor of ten, while
the computational time of the Jacobi–Davidson cycle increases by a factor of about
two. Therefore, the aim is to reduce the number of Jacobi–Davidson cycles in total
and in particular on fine grids.

The number of inner cycles that the multilevel Jacobi–Davidson approach takes
to achieve the desired accuracy of 10−7 is shown in Figure 5.3. On the coarse grids,
the final dimension of the search space is dim V = 9±1. Without scaling, in example 2
(circles in Figures 5.3(c) and 5.3(d)) the companion linearization (2.3) does not reach
the desired accuracy within 64 Jacobi–Davidson cycles, and this leads to the large
slopes of the cut-off curves. In general the slopes of the curves and so the numbers of
Jacobi–Davidson cycles is almost constant until N = 211. On higher resolutions the
slopes reduce to one. This is in accordance with the fact that the final accuracy of
the eigenvalue is almost reached (cf. Figure 5.2(a)).

Without scaling, the results with linearization (2.3) are the worst. This is in
accordance with the theory in [10], where this linearizations is only recommended for
eigenvalues with modulus greater than one. However, the eigenvalues in our example



MULTILEVEL JACOBI–DAVIDSON METHOD 3165

0

20

40

60

80

cu
m
u
la
ti
v
e
J
D
-c
y
cl
es

N
27 28 29 210 211 212 213 214

(a) Example 1, one-sided Rayleigh quotients
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(b) Example 1, two-sided Rayleigh quotients
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(c) Example 2, one-sided Rayleigh quotients
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(d) Example 2, two-sided Rayleigh quotients

Fig. 5.3. Cumulative number of Jacobi–Davidson cycles in the multilevel Jacobi–Davidson
Algorithm 2, where the linearizations are (2.3) (solid), (2.4) (dashed), (4.7) (dash-dotted), and
(4.8) (dotted). The calculation is done without scaling (circles) and with the scaling described in
section 4.5 (squares).

are of modulus less than one. The curves of the other three linearizations are very
close. If we compare the computations with scaling (squares) and without scaling
(circles), we obviously see a reduction of the dimensions of the search spaces if scaling
is applied. This reduction is significant for two-sided Rayleigh quotients where the
differences due to the choice of the linearization becomes negligible.

The total computation time of the multilevel Jacobi–Davidson algorithm is about
five seconds for the scaled examples and thus significantly smaller than the QZ al-
gorithm, which already takes almost two hours on a grid of only 210 points. To
summarize, the most efficient variant of the multilevel Jacobi–Davidson algorithm is
scaling combined with the two-sided Rayleigh quotients.

5.4. Parameter dependent problems. So far, we fixed all parameters in the
eigenvalue problems (1.1) and (5.3). However, as discussed in the introduction, we
would like to determine the wave number K which solves the following optimization
problem:

Kmax = argmax
K

max
ω eigenvalue of P [K]

Im(ω).

Here we write P [K] to emphasize the dependence of the coefficients of the polynomial
on the wave number K. The eigenvalues of P [K] are the solutions of det(P [K](ω)) = 0;
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Re(ω)

Im(ω)

2
3

12
1

3

(a) eigenvalues in complex plane

−1

0

1

Re(Φ)

HFS θ LFS

2

2

3

1

13

(b) eigenvectors

sim(ω , ω•) =

⎡
⎣
0.99 0.99 1.00
0.97 1.00 1.00
1.00 0.96 0.98

⎤
⎦ , sim(Φ ,Φ•) =

⎡
⎣
0.47 0.87 0.99
0.28 0.99 0.87
1.00 0.34 0.45

⎤
⎦ ,

S =

⎡
⎢⎣

0.47 0.86 0.99

0.27 0.99 0.87

1.00 0.33 0.44

⎤
⎥⎦

Fig. 5.4. Assignment of eigenpairs into modes. At two wave numbers K1 (stars) and K2

(circles) the three eigenpairs with maximal Im(ω) are computed. The eigenvalues are plotted in the
complex plane at the left side, and the phase normalized real part of each eigenfunction is plotted on
the right. In the similarity matrices (4.1) and (4.2) the assigned components are indicated by boxes.

hence the eigenvalues are continuous functions ofK. We thus write (ω(K),Φ(K)) and
call this pair a mode. For each mode, ω(K) is a continuous curve in the complex plane.

For the solution of the optimization problem we compute the eigenpairs for a
discrete set of wave numbers Kj . For each value Kj we obtain a set of eigenpairs,
and we have to determine which eigenpairs belong to the same mode. Assume that
the sequence {Kj} is monotonically increasing. Given a subset (ωl(Kj),Φl(Kj))
of eigenpairs corresponding to Kj, we have to assign each of them to an eigenpair
(ωl(Kj+1),Φl(Kj+1)) corresponding to Kj+1. If the subset of eigenpairs is a proper
subset of all the eigenpairs, there may exist eigenpairs without a valid partner.

We assume that Kj and Kj+1 are sufficiently close so that eigenpairs of the same
mode are closer to each other than to any other eigenpair. In order to measure the
distance we use the similarity measure (4.3). For simplicity, we set j = 1. We define
the similarity matrix S = (sk,l) by

sk,l := sim((ωk(K1),Φk(K1)), (ωl(K2),Φl(K2))).

By definition of the similarity measure we have 0 ≤ sk,l ≤ 1, where 1 indicates that
the modes coincide. A value of 0 is attained for orthogonal eigenvectors. To assign
the mode we choose a threshold τ ∈ [0, 1]. If the largest entry sm,n of S satisfies
sm,n ≥ τ , we assign the eigenpair (ωm(K1),Φm(K1)) to (ωn(K2),Φn(K2)). Then we
remove the mth row and the nth column from S and repeat the procedure until all
the eigenpairs at one wave number are assigned or the largest element in S is below
the threshold τ .

We illustrate this procedure in Figure 5.4. The asterisks represents K1 and the
full circles represent K2. For each wave number we compute the three most dominant
eigenpairs. The eigenvalues are displayed in the complex plane in the left picture,
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Fig. 5.5. Tracing eigenpairs as a function of the wave number K.

where the numbering is by decreasing value of Im(ω). The real part of the phase nor-
malized eigenvector Φ is displayed in the right graph. The eigenvalue and eigenvector
similarity matrices are shown below the plots. Their elementwise product yields the
similarity matrix S. The procedure above carries out the indicated assignment.

For our next experiment, we assigned the modes for 99 wave numbers. The results
are presented in Figure 5.5. Figure 5.5(a) shows four eigenvalue curves in the complex
plane. Figure 5.5(b) shows the growth rate (Im(ω)) as a function of the wave number
K. The coefficient functions in (1.1) are continuous, but the derivatives of these
functions emerge a jump at K ≈ 0.1 due to (5.4). This results in the kink of the
first eigenvalue curve at −0.07+ 0.078i. In Figure 5.5(c) the intensity |Φ|2 of the four
eigenfunctions are plotted for the wave number Kmax where the growth rate of the
mode is maximal.

The huge number of wave numbers has been taken for visualization only. In
general, 10 to 20 wave numbers are sufficient to assign the modes correctly. From
these results, the maximum is found by a prediction correction strategy via polynomial
interpolation.

A more challenging situation occurs if eigenvalues cross each other. To illustrate
this phenomenon, we consider the cubic polynomial

P [K](ω) :=

(
(ω − iK)(ω2 − 1) 0

0 (ω − iK2)(ω2 − 4)

)

with eigenvalues {iK, iK2,±1,±2}. At K = 1 the curves of iK and iK2 cross each
other, but the eigenvectors are orthogonal. Since our similarity measure (4.3) involves
eigenvalues and eigenvectors, it is able to distinguish these eigenpairs.
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6. Conclusion and outlook. In this paper we presented a multilevel Jacobi–
Davidson algorithm for parameter dependent polynomial PDE eigenvalue problems.
The multilevel approach provides a good initial search space for the Jacobi–Davidson
method, and it also helps to scale the problem in a nearly optimal way. In our
application from plasma physics, this algorithm reduced the computational time from
hours (QZ) to seconds.

The fast solution of the eigenvalue problem enabled us to compute plasma pa-
rameters self-consistently [14, 15] and to analyze the impact of different geometries on
the energy losses. Since such simulations require the solution of 103 to 105 eigenvalue
equations, an efficient numerical solver is indispensable.

Here, we presented the method for cubic eigenvalues problems only, but since the
algorithm is independent of the degree of the matrix polynomial, it can be general-
ized in an obvious way. The essential requirement to successfully apply the multi-
level Jacobi–Davidson algorithm is that the desired eigenfunction is spatially smooth
enough to be well approximated on a sequence of nested grids.

We would like to note that the original problem is given as a rational eigenvalue
problem. Since the application we presented here could be rewritten as a well condi-
tioned polynomial eigenvalue problem, we presented the multilevel approach for such
problems only. However, for other geometries, it turns out that the rational formula-
tion is better conditioned than the polynomial one. Thus we intend to generalize our
techniques to the solution of rational problems [3, 30].
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[14] D. Löchel, Numerical Methods for Eigenvalue Problems in the Description of Drift Instabili-
ties in the Plasma Edge, Ph.D. thesis, Mathematisches Institut, Heinrich-Heine Universität
Düsseldorf, Lehrstuhl für Angewandte Mathematik, Düsseldorf, Germany, 2009.
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