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1. Introduction

In this paper we consider the problem

F (x) = y, (1)

where F : D(F ) ⊂ X → Y is a nonlinear differentiable operator between the Hilbert
spaces X and Y , whose Fréchet derivative F ′(u) is locally uniformly bounded. In the
following, we always assume that (1) has a solution x∗ ∈ D(F ) but we do not assume
that this solution is unique. We are interested in ill-posed problems, where the solution
does not depend continuously on the data y. In order to solve the perturbed problem

F (u) = yδ, (2)

with perturbed data yδ ≈ y satisfying
∥∥yδ − y

∥∥ ≤ δ, (3)

regularization is indispensable. Throughout the paper, the norm in both Hilbert
spaces X and Y is denoted by ‖·‖, the corresponding inner product by 〈· , ·〉.
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Among several regularization techniques, one possible option is asymptotic
regularization based on the Showalter differential equation [14]

u′(t) = F ′
(
u(t)

)∗(
yδ − F

(
u(t)

))
, t ≥ 0, u(0) = x0. (4)

It was shown in [15] that the exact solution of (4) yields an optimal order regularization
scheme under suitable assumptions. The explicit Euler method applied to (4) leads
to the well-known Landweber iteration analyzed in [5]. In [7] we proposed to use
the exponential Euler scheme for solving (4) numerically and we presented numerical
examples which showed that this scheme is competitive for certain applications.

In this paper, we will analyze the convergence properties of the exponential Euler
regularization method. In particular, we will prove that, under the same assumptions
as for the continuous analysis of Tautenhahn [15], the scheme converges in the limit
δ → 0 with the optimal convergence rate. Our convergence analysis is performed for
variable step sizes satisfying a suitable discrepancy principle.

The paper is organized as follows. In Section 2 we briefly recall the exponential
Euler regularization scheme and introduce some notation to improve the readability
of this paper. Section 3 is devoted to the convergence analysis. The analysis in this
section is motivated by previous work by Hanke [3]. The optimal convergence rates are
shown in Section 4. The sections about the convergence both start with a review of the
corresponding continuous results from Tautenhahn [15], so that the reader can easily
compare the assumptions and the results. Finally, we comment on generalizations of
our analysis to other regularization methods.

2. Exponential Euler regularization

The exponential Euler method is the simplest variant of the class of exponential
Rosenbrock integrators [8]. It is based on the variation-of-constants formula which
allows to integrate the linear part of semilinear differential equations exactly. In [7]
we proposed to use the following modification of the original exponential Euler scheme

un+1 = un + hnϕ(−hnJ(un))F ′(un)∗
(
yδ − F (un)

)
, u0 = x0 (5)

for solving (4). Here, we denote

J(u) = F ′(u)∗F ′(u). (6)

Hence, −J(un) is an approximation to the Jacobian of the right-hand side of (4).
Moreover, ϕ denotes the entire function

ϕ(z) =
ez − 1

z
. (7)

If un ≈ u(tn), then this scheme gives an approximation un+1 ≈ u(tn+1), at time

tn+1 = tn + hn, t0 = 0.

For the convergence of the scheme it will be essential to use appropriate time steps hn.
Details will be discussed in Section 3.3. The iteration is stopped as soon as the
standard discrepancy principle

∥∥∥∆F δ
n∗

∥∥∥ ≤ τδ <
∥∥∥∆F δ

n

∥∥∥ for all n < n∗, (8)

is satisfied. Here τ > 1 is a parameter and

∆F δ
n = yδ − F (un)
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denotes the residual of the perturbed problem. The stopping criterion (8) is the
discrete analogue of the discrepancy principle used by Tautenhahn [15], where the
regularization parameter t∗ is chosen such that

∥∥yδ − F (u(t∗))
∥∥ ≤ τδ <

∥∥yδ − F (u(t))
∥∥ , 0 ≤ t < t∗. (9)

Note that the exponential Euler method gives the exact solution for the Showalter
differential equation for linear inverse problems. For nonlinear problems this scheme
can also be interpreted as Newton’s method with asymptotic regularization for solving
the linearized problem, see [7] for details. This interpretation allows to apply the
convergence results of Rieder [12, 13], which hold for a whole class of Newton methods.
However, the convergence rates shown there are not yet optimal.

3. Convergence analysis

The aim of this section is to prove the convergence of the exponential Euler
regularization for exact and perturbed data. Before we start, we present the analytic
framework for our analysis and we review the convergence analysis for the continuous
solution of the (Showalter) differential equation (4) from [15].

3.1. Assumptions

For the convergence analysis we impose the so-called tangential cone condition, which
is also used in [4, 15].

Assumption 1. F : D(F ) ⊂ X → Y is Fréchet differentiable and satisfies

‖F (x̃) − F (x) − F ′(x)(x̃ − x)‖ ≤ η ‖F (x) − F (x̃)‖ (10)

for η < 0.7 and for all x, x̃ ∈ Br(x+) ⊂ D(F ), where Br(x+) denotes the ball of radius
r > 0 around the center x+.

This assumption guarantees the following bounds for all x, x̃ ∈ Br(x+)

1

1 + η
‖F ′(x)(x − x̃)‖ ≤ ‖F (x) − F (x̃)‖ ≤ 1

1 − η
‖F ′(x)(x − x̃)‖ . (11)

To simplify the presentation we further assume without loss of generality that the
problem is appropriately scaled, i.e.,

‖F ′(x)‖ ≤ 1, x ∈ Br(x+). (12)

Remark. Instead of the tangential cone condition, some papers impose that

‖F (x̃) − F (x) − F ′(x)(x̃ − x)‖ ≤ C ‖x− x̃‖ ‖F (x) − F (x̃)‖ ,
for x, x̃ ∈ Br(x+), cf. [4]. Our analysis is valid in this case as well. A discussion about
the different conditions can be found in [5, 11].

Recall that we always assume that (1) has a solution x∗ ∈ D(F ). In this case,
Assumption 1 ensures that a unique solution x+ of minimal distance to x0 exists, cf.

[11, Prop. 2.1]. This solution satisfies x+ − x0 ∈ N
(
F ′(x+)

)⊥
.
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3.2. Continuous case

We now review the main results on the convergence of the solution of (4). Theorem 3
in [15] states that the method converges when applied to the unperturbed problem (1).

Theorem 3.1. Let Assumption 1 be satisfied and let (1) be solvable in Br(x+). If
u(t) is a solution of (4), then u(t) converges to a solution of (1) in Br(x+) for t→ ∞.
If in addition N

(
F ′(x+)

)
⊂ N

(
F ′(x)

)
for all x ∈ Br(x+), then u(t) converges to x+.

Theorem 4 of [15] states the corresponding result for perturbed data.

Theorem 3.2. Let Assumption 1, (3), and
∥∥yδ − F (x0)

∥∥ > τδ > 0 be satisfied and
let (1) be solvable in Br(x+). If u(t) is a solution of (4), and t∗ is chosen from (9)
with

τ >
1 + η

1 − η
,

then u(t∗) converges to a solution x∗ ∈ Br(x+) of (1) for δ → 0. If in addition
N

(
F ′(x+)

)
⊂ N

(
F ′(x)

)
for all x ∈ Br(x+), then u(t∗) converges to x+ for δ → 0.

It is shown in [15] that the stopping-time t∗ is uniquely defined via (9) and finite.
An important auxiliary result is the monotonicity of the error function ‖u(t) − x+‖.
The analogous discrete results will be verified in the analysis of the exponential Euler
method below.

3.3. Discrete case

Next we analyze the convergence of the exponential Euler method (5). To simplify
the presentation of our paper, we introduce the following notation. The operators will
be denoted by

A+ = F ′(x+), An = F ′(un),

J+ = A∗
+A+, Jn = A∗

nAn,

K+ = A+A
∗
+, Kn = AnA

∗
n,

and the corresponding operator functions by

Φn,+ = ϕ(−hnJ+), Φn = ϕ(−hnJn),

Φ̃n,+ = ϕ(−hnK+), Φ̃n = ϕ(−hnKn).

To ensure monotonicity of the errors (cf. Lemma 3.4 below), the step sizes hn

have to be chosen appropriately. For this we propose to use the following discrepancy
principle

pδ
n(hn) :=

∥∥∥ψ(−hnKn)∆F δ
n −An∆un

∥∥∥ = µ
∥∥∥∆F δ

n

∥∥∥ , µ < 1, (13)

where the updates ∆un are written as

∆un = un+1 − un = hnA
∗
nΦ̃n∆F δ

n

and the function ψ is defined by

ψ(z) = ϕ(z)(1 − z). (14)

Due to (14), we have

pδ
n(hn) =

∥∥∥Φ̃n∆F δ
n

∥∥∥ . (15)
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We will verify later in Theorems 3.5 and 3.6 that if hn is chosen according to (13),
then there exists a parameter ν > 1 such that the nth residual satisfies

∥∥∥ψ(−hnKn)∆F δ
n +Anen

∥∥∥ ≤ µ

ν

∥∥∥∆F δ
n

∥∥∥ , (16)

where

en = un − x+ (17)

denotes the error of the nth iterate un. This will be used to prove existence of a unique
step size hn satisfying (13).

Remark. For the Levenberg-Marquardt method the situation simplifies due to
ψ ≡ 1. In this case, the step size selection (13) and assumption (16) are the same as
in [3].

Lemma 3.3. Assume that (16) holds, then there is a unique solution hn > 0 of (13).

Proof. Obviously, the function pδ
n(h) is continuous and strictly decreasing if ∆F δ

n 6= 0.
By (15) and due to ϕ(0) = 1 and ϕ(−z) → 0 for z → ∞ we have

lim
h→0

pδ
n(h) =

∥∥∥∆F δ
n

∥∥∥ , lim
h→∞

pδ
n(h) =

∥∥∥Πn∆F δ
n

∥∥∥ ,

where Πn denotes the orthogonal projection onto R(An)⊥. By definition of ψ we have
ψ(0) = 1, and thus

Πn∆F δ
n = Πn

(
ψ(−hKn)∆F δ

n +An(un − u)
)

for all u ∈ D(F ). This yields
∥∥∥Πn∆F δ

n

∥∥∥ ≤
∥∥∥ψ(−hKn)∆F δ

n +An(un − u)
∥∥∥

for all h > 0 and for all u ∈ D(F ). The existence of hn satisfying (13) then follows
from (16).

The next lemma states that the sequence of errors is monotonically decreasing.

Lemma 3.4. Let 0 < µ < 1 < ν and assume that (16) is fulfilled so that hn can be
defined according to (13). Then for ∆un 6= 0 we have

‖en‖2 − ‖en+1‖2
>

2hn(ν − 1)µ

ν

∥∥∥∆F δ
n

∥∥∥ ·
∥∥∥Φ̃n∆F δ

n

∥∥∥ , (18)

‖en‖2 − ‖en+1‖2
> −2ϕ−1(µ)(ν − 1)µ2

ν ‖An‖2

∥∥∥∆F δ
n

∥∥∥
2

. (19)

Note that ϕ−1(µ) < 0 for µ < 1.

Proof. Our proof is inspired by the proof of Proposition 2.1 in [3]. The errors (17)
satisfy

‖en+1‖2 = ‖∆un + en‖2

= ‖∆un‖2
+ 2 〈∆un , en〉 + ‖en‖2

= h2
n

〈
ΦnA

∗
n∆F δ

n ,ΦnA
∗
n∆F δ

n

〉

+ 2hn

〈
ΦnA

∗
n∆F δ

n , en

〉
+ ‖en‖2
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= h2
n

〈
∆F δ

n ,KnΦ̃2
n∆F δ

n

〉

− 2hn

〈
Φ̃n∆F δ

n , ψ(−hnKn)∆F δ
n

〉

+ 2hn

〈
Φ̃n∆F δ

n , ψ(−hnKn)∆F δ
n +Anen

〉
+ ‖en‖2

= − h2
n

〈
∆F δ

n ,KnΦ̃2
n∆F δ

n

〉

+ 2hn

〈
Φ̃n∆F δ

n , hnKnΦ̃n∆F δ
n − ψ(−hnKn)∆F δ

n

〉

+ 2hn

〈
Φ̃n∆F δ

n , ψ(−hnKn)∆F δ
n +Anen

〉
+ ‖en‖2

.

By (14) we have zϕ(−z) − ψ(−z) = −ϕ(−z), so that the expression above can be
written as

‖en+1‖2 − ‖en‖2 = − h2
n

〈
∆F δ

n ,KnΦ̃2
n∆F δ

n

〉
− 2hn

〈
Φ̃n∆F δ

n , Φ̃n∆F δ
n

〉

+ 2hn

〈
Φ̃n∆F δ

n , ψ(−hnKn)∆F δ
n +Anen

〉

= − ‖∆un‖2 − 2hn

∥∥∥Φ̃n∆F δ
n

∥∥∥
2

+ 2hn

〈
Φ̃n∆F δ

n , ψ(−hnKn)∆F δ
n +Anen

〉

< − 2hn

∥∥∥Φ̃n∆F δ
n

∥∥∥
2

+ 2hn

〈
Φ̃n∆F δ

n , ψ(−hnKn)∆F δ
n +Anen

〉

≤ 2hn

∥∥∥Φ̃n∆F δ
n

∥∥∥
(∥∥∥ψ(−hnKn)∆F δ

n +Anen

∥∥∥ −
∥∥∥Φ̃n∆F δ

n

∥∥∥
)

≤ 2hnµ
1 − ν

ν

∥∥∥Φ̃n∆F δ
n

∥∥∥
∥∥∥∆F δ

n

∥∥∥ .

For the last inequality we have used (13), (15) and (16).
For the second estimate (19) we note that the relation

µ
∥∥∥∆F δ

n

∥∥∥ =
∥∥∥Φ̃n∆F δ

n

∥∥∥ ≥ ϕ(−hn ‖Kn‖)
∥∥∥∆F δ

n

∥∥∥

yields

hn ≥ −ϕ
−1(µ)

‖An‖2 .

This proves the desired result.

Using these lemmas, we will prove that the method converges if it is applied to
the unperturbed problem (1). We will write the unperturbed problem formally as a
perturbed problem with δ = 0, so that yδ = y in our scheme.

Theorem 3.5. Let 0.3 + η < µ < 1 and let in addition Assumption 1 and (12) be
satisfied. If the step sizes hn are chosen according to (13) and if yδ = y = F (x+), then
un converges to a solution of (1) as n → ∞. If in addition N

(
F ′(x+)

)
⊂ N

(
F ′(x)

)

for all x ∈ Br(x+), then un converges to x+ as n→ ∞.

Proof. The proof is done analogously to the proof of Theorem 2.2 in [3]. First we
prove that the error decreases monotonically.



Exponential Euler for nonlinear ill-posed problems 7

Let n = 0 and denote by

∆Fn = y − F (un),

the residual of the unperturbed problem. Then, by definition of ψ and (10), we have

‖ψ(−hnKn)∆Fn +Anen‖
=

∥∥∥
(
Φ̃n − exp(−hnKn)

)
∆Fn + ∆Fn +Anen

∥∥∥

≤
∥∥∥Φ̃n − exp(−hnKn)

∥∥∥ ‖∆F n‖ + ‖∆Fn +Anen‖
≤ sup

z∈[−∞,0]

|ϕ(z) − ez | ‖∆Fn‖ + η ‖∆Fn‖

≤ (0.3 + η) ‖∆Fn‖ .
Note that the function |ϕ(z)−ez| has a unique maximum for z ≤ 0. The stated bound
follows by straightforward numerical calculations. For µ > 0.3+η the above reasoning
yields (16) with ν = µ

0.3 + η
> 1. Moreover, Lemma 3.4 gives

‖en+1‖ < ‖en‖ .
Induction shows that the error decreases monotonically for all n ∈ N.

As in the proof of Theorem 4.2 of [4], we proceed by proving that ‖en‖ is a Cauchy
sequence. Let m,n ∈ N be given indices satisfying m > n and let l be an index chosen
such that n ≤ l ≤ m and

‖∆F l‖ ≤ ‖∆F i‖ , i = n, . . . ,m.

From (10) we have

‖Aiel‖ = ‖Aiei −Ai(ei − el)‖
≤ ‖∆F i +Aiei‖ + ‖F (ui) − F (ul) −Ai(ei − el)‖ + ‖∆F l‖
≤ (3η + 1) ‖∆F i‖ .

Recall that the error can be written as

en+1 = en + hnA
∗
nΦ̃n∆Fn.

Using (18) we obtain

|〈el − en , el〉| =

∣∣∣∣∣

l−1∑

i=n

〈
hiA

∗
i Φ̃i∆F i , el

〉∣∣∣∣∣

=

∣∣∣∣∣

l−1∑

i=n

〈
hiΦ̃i∆F i , Aiel

〉∣∣∣∣∣

≤ (3η + 1)ν

2(ν − 1)µ

(
‖en‖2 − ‖el‖2

)
.

The identity

‖el − en‖2
= 2 〈el − en , el〉 + ‖en‖2 − ‖el‖2

thus yields

‖el − en‖2 ≤
(

(3η + 1)ν

(ν − 1)µ
+ 1

)(
‖en‖2 − ‖el‖2

)
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and analogously

‖em − el‖2 ≤
(

(3η + 1)ν

(ν − 1)µ
+ 1

) (
‖el‖2 − ‖em‖2

)
,

so that

‖um − un‖2
= ‖em − en‖2

≤ 2 ‖em − el‖2
+ 2 ‖el − en‖2

≤ 2

(
(3η + 1)ν

(ν − 1)µ
+ 1

)(
‖en‖2 − ‖em‖2

)
.

From the monotonicity of the errors it follows that the sequence {‖en‖} converges.
Consequently, {un} is a Cauchy sequence which converges to a limit u∞. By (19) and
(12), the series

∞∑

n=0

‖∆F n‖2

converges and therefore u∞ is a solution of (1).
The second part of the theorem, the convergence of un to x+, follows as in

Theorem 2.3 in [5].

Our main result of this section is that the exponential Euler iteration applied to
the perturbed problem (2) converges to a solution of the unperturbed problem (1) if
the perturbation tends to zero.

Theorem 3.6. Let the assumptions of Theorem 3.5 and (3) be satisfied and let
µ > (1 + η + τ(0.3 + η))/τ . Then the exponential Euler iteration stopped by the
discrepancy principle (8) terminates after n∗ = n∗(δ) < ∞ iterations and the
corresponding approximations un∗ converge to a solution of (1) for δ → 0. If in
addition N

(
F ′(x+)

)
⊂ N

(
F ′(x)

)
for all x ∈ Br(x+), then un∗ converges to x+.

Proof. We follow the proof of [3, Theorem 2.3] and show the monotonic decrease of
the error as long as the discrepancy principle (8) is not fulfilled. As in the proof of
Theorem 3.5 we have for n ∈ N∥∥∥ψ(−hnKn)∆F δ

n +Anen

∥∥∥

≤
∥∥∥Φ̃n − exp(−hnKn)

∥∥∥
∥∥∥∆F δ

n

∥∥∥ +
∥∥∥∆F δ

n +Anen

∥∥∥

≤ sup
z∈[−∞,0]

|ϕ(z) − ez |
∥∥∥∆F δ

n

∥∥∥ + δ + η ‖∆Fn‖

≤ (0.3 + η)
∥∥∥∆F δ

n

∥∥∥ + δ(1 + η).

If n∗ = 0, there is nothing to prove. For n∗ > 0 and n < n∗ we have δ <
∥∥∥∆F δ

n

∥∥∥ /τ
and hence

∥∥∥ψ(−hnKn)∆F δ
n +Anen

∥∥∥ ≤ 1 + η + τ(0.3 + η)

τ

∥∥∥∆F δ
n

∥∥∥ ,

which shows that (16) holds with ν = µτ/(1+ η+ τ(0.3+ η)) for all n < n∗. Applying
Lemma 3.4 finally proves the monotonicity of {‖en‖}.
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From the discrepancy principle (8), (12), and (19) we conclude

n∗τ
2δ2 ≤

n∗−1∑

n=0

∥∥∥∆F δ
n

∥∥∥
2

≤ ν

2ϕ−1(µ)(ν − 1)µ2

(
‖en∗‖2 − ‖e0‖2

)

<∞
and therefore the stopping index n∗ is finite. The remaining part is proved as in [3,
Theorem 2.3].

Remark. The convergence results can be generalized by replacing the parameter
µ in (13) by variable parameters µn satisfying

µmin ≤ µn ≤ µmax < 1.

Theorems 3.5 and 3.6 remain true if the assumptions are fulfilled for µmin instead of µ.

4. Convergence rates

The aim of this section is to show that the exponential Euler regularization in fact
converges with optimal rates under suitable assumptions.

4.1. Assumptions

The first additional assumption is a so-called source condition. In many applications,
in particular in parameter identification problems for partial differential equations,
this condition reflects the smoothness of the initial error.

Assumption 2. There exists w ∈ X and constants γ ∈ (0, 1/2] and ρ ≥ 0 such that

e0 = x0 − x+ = J(x+)γw, ‖w‖ ≤ ρ

Moreover, we have to assume relations between the Fréchet derivatives F ′

evaluated at certain points in Br(x+).

Assumption 3. For all x, x̃ ∈ Br(x+) there exist linear bounded operators R(x, x̃) :
Y → Y and a constant CR ≥ 0 such that

(i) F ′(x) = R(x, x̃)F ′(x̃)

(ii) ‖R(x, x̃) − I‖ ≤ CR ‖x− x̃‖.
Both assumption are standard assumptions arising in the literature, see, e.g.

[10, 11].

4.2. Continuous case

As in Section 3, we first present the main result for the continuous solution of (4)
from [15, Theorem 6].

Theorem 4.1. If in addition to the assumptions of Theorem 3.2, Assumptions 2
and 3, and (12) are satisfied and if

τ >
2 − η

1 − η
, (20)
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then there exists a constant c∗ = c∗(τ, η, CR, γ) such that

‖u(t∗) − x+‖ ≤ c∗ρ
1/(2γ+1)δ2γ/(2γ+1)

for ρ sufficiently small.

This theorem proves that asymptotic regularization converges with optimal rates.

4.3. Discrete case

Next we will derive the corresponding results for the discrete exponential Euler
regularization scheme. These results are valid under weak restrictions on the step
sizes, namely we assume that there exist constants c0 and ch such that

h0 ≤ c0, hj ≤ chtj , j ≥ 1, (21)

where, as before, tj+1 = tj + hj . Note that this step size restriction allows to choose
(hj)j≥0 as a geometric sequence, i.e. hj = h0σ

j for some σ > 1.
Our main result is the following theorem.

Theorem 4.2. Let Assumptions 1 to 3 hold and assume that the step sizes hj satisfy
(21) for all j ≤ n∗. Here, the stopping index n∗ is defined by (8), with τ satisfying (20).
Then for ρ sufficiently small, there exists a constant C = C(τ, η, CR, c0, ch, γ, r) > 0
such that

‖en∗‖ ≤ Cρ1/(2γ+1)δ2γ/(2γ+1).

The proof of this theorem is rather involved and therefore split into several pieces.
The auxiliary results required will be presented in a series of lemmas. First we give
two immediate consequences of our assumptions.

Lemma 4.3. Let Assumption 1 and (3) hold and let the stopping index n∗ be defined
by (8). Then we have

∥∥∥∆F δ
n

∥∥∥ ≤ τ

(τ − 1)(1 − η)
‖A+en‖ , n < n∗.

Proof. By (11) and (3) we have
∥∥∥∆F δ

n

∥∥∥ ≤
∥∥yδ − y

∥∥ + ‖F (x+) − F (un)‖

≤ δ +
1

1 − η
‖A+en‖ .

The estimate thus follows from the stopping criterion (8).

Lemma 4.4. Let Assumption 3 hold. Then, for x ∈ Br(x+), we have

‖F (x) − F (x+) − F ′(x+)(x − x+)‖ ≤ 1

2
CR‖x− x+‖ ‖F ′(x+)(x − x+)‖.

Proof. Proposition 4 in [15].

One of the main ingredients of the theory presented by Tautenhahn [15] is
the variation-of-constants formula for the error and the error premultiplied by A+.
Our analysis uses the discrete variation-of-constants formula (Theorem 4.8), which is
derived from the following suitably written error recursion.
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Lemma 4.5. Let Assumption 3 hold. Then the error en = un−x+ of the exponential
Euler recursion (5) satisfies

en+1 = exp(−hnJ+)en + hnΦn,+A
∗
+

(
r(1)n + yδ − y

)
− hnr

(2)
n . (22)

where

r(1)n = F (x+) − F (un) +A+en + (R∗(un, x+) − I)∆F δ
n,

r(2)n =
(
Φn,+ − Φn

)
A∗

n∆F δ
n.

Proof. By (5), the following error recursion holds

en+1 = en + hnΦnA
∗
n∆F δ

n

= en + hnΦn,+A
∗
+(F (x+) − F (un))

− hn

(
Φn,+A

∗
+ − ΦnA

∗
n

)
∆F δ

n

+ hnΦn,+A
∗
+(yδ − y).

By writing en in the form

en = exp(−hnJ+)en + hnΦn,+A
∗
+A+en

we get

en+1 = exp(−hnJ+)en

+ hnA
∗
+Φ̃n,+(F (x+) − F (un) +A+en)

− hn

(
Φn,+A

∗
+ − ΦnA

∗
n

)
∆F δ

n

+ hnA
∗
+Φ̃n,+(yδ − y).

The identity

Φn,+A
∗
+ − ΦnA

∗
n = Φn,+A

∗
+

(
I −R∗(un, x+)) + (Φn,+ − Φn)

)
A∗

n

finally proves the desired relation.

Lemma 4.6. Let Assumptions 1 and 3 hold. Then there are constants Ci =
Ci(τ, η, CR, r), i = 1, 2, 3 such that for j < n ≤ n∗ we have

∥∥∥r(1)j

∥∥∥ ≤ C1 ‖ej‖ ‖A+ej‖ ,
∥∥∥exp

(
−(tn − tj+1)J+

)
r
(2)
j

∥∥∥ ≤ C2
1√

1 + tn − tj
‖ej‖ ‖A+ej‖ ,

∥∥∥A+ exp
(
− (tn − tj+1)J+

)
r
(2)
j

∥∥∥ ≤ C3
1

1 + tn − tj
‖ej‖ ‖A+ej‖ .

Proof. From Lemmas 4.3 and 4.4 we obtain the first bound with

C1 = CR

(
1

2
+

τ

(τ − 1)(1 − η)

)
.

The terms involving r
(2)
j can be written with the help of the Cauchy integral formula

Φj,+ − Φj =
1

2πi

∫

Γ

ϕ(λ)
(
(λI + hjJ+)−1 − (λI + hjJj)

−1
)

dλ, (23)
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see [1] and [2]. The contour Γ is parameterized by

s 7→ 1 − |s| eiθ sign s, s ∈ R (24)

for some 0 < θ < π/2. Using the resolvent identity

(λ+ hjJ+)−1 − (λ+ hjJj)
−1

= hj(λ+ hjJ+)−1(Jj − J+)(λ + hjJj)
−1

= hj(λ+ hjJ+)−1
(
(A∗

j −A∗
+)Aj −A∗

+(A+ −Aj)
)
(λ+ hjJj)

−1

= hj(λ+ hjJ+)−1A∗
+

(
R∗(uj , x+) −R(x+, uj)

)
Aj(λ+ hjJj)

−1

we obtain

(Φj,+ − Φj)A
∗
j =

1

2πi

∫

Γ

ϕ(λ)(λ + hjJ+)−1A∗
+∆RjhjKj(λ+ hjKj)

−1 dλ (25)

with ∆Rj = R∗(uj , x+) −R(x+, uj). From

sup
σ≥0

∣∣∣ σ

λ + σ

∣∣∣ ≤ 1 +
∣∣∣ λ

Imλ

∣∣∣ = 1 +
∣∣∣ λ

λ − 1

∣∣∣ 1

sin θ
, λ ∈ Γ

we have the bound
∥∥∥exp

(
−tJ+

)
r
(2)
j

∥∥∥ ≤ C4

∫

Γ

|ϕ(λ)|
∥∥exp(−tJ+)(λ + hjJ+)−1A∗

+

∥∥ ‖ej‖ d |λ|
∥∥∥∆F δ

n

∥∥∥

with C4 = C4(CR, θ). By Lemma 4.7, we thus obtain the second bound of Lemma 4.6.
In order to prove the third estimate, we start with

Φj,+ − Φj = χj,+ − χj + (I + hjJ+)−1 − (I + hjJj)
−1

with χj,+ = χ(−hjJ+) and χj = χ(−hjJj), where

χ(λ) = ϕ(λ) − 1

1 − λ
.

Note that χ(λ) = O(λ−2) for Reλ → −∞. Using the Cauchy integral formula again
yields

A+ exp(−tJ+)(χj,+ − χj)A
∗
j

=
1

2πi

∫

Γ

χ(λ) exp(−tK+)(λ + hjK+)−1K+∆RjhjKj(λ+ hjKj)
−1 dλ.

By Lemma 4.7, we have

∥∥exp(−tK+)(λ + hjK+)−1K+

∥∥ ≤ C5

1 + t+ hj

which shows that the above integral possesses the desired bound. Using the above
resolvent identity with λ = 1 finally shows

A+ exp(−tJ+)
(
I + hjJ+)−1 − (I + hjJj)

−1
)
A∗

j

= exp(−tK+)(I + hjK+)−1K+∆RjhjKj(λ+ hjKj)
−1.

This can be bounded with the help of Lemma 4.7.
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Lemma 4.7. For 0 ≤ α ≤ 1 and λ ∈ Γ, where the curve Γ is defined by (24), it holds

sup
0≤σ≤1

∣∣σαe−σtϕ(−σh)
∣∣ ≤ min

{
1

(t+ h)α
,

2

(1 + t+ h)α

}
,

sup
0≤σ≤1

∣∣∣σαe−σt 1

λ + σh

∣∣∣ ≤ C5

(1 + t+ h)α |λ|1−α ,

with a constant C5 = C5(θ).

Proof. We consider the function f(x, y) = (1 + x + y)αe−xϕ(−y) on the cone
Ω = {x, y ≥ 0}. It is easily verified that f does not have stationary points in the
interior of Ω. Since f is bounded in Ω, local extrema have to appear on the boundary
∂Ω. Obviously, |f(x, y)| ≤ 2 for (x, y) ∈ ∂Ω. The other bounds follows in the same
way.

We are now ready to prove that the errors ‖en‖ and ‖A+en‖ decay with the
same rate proportional to (1+ tn)γ and (1+ tn)γ+1/2, respectively, as their continuous
counterparts in [15].

Theorem 4.8. Let the assumptions of Theorem 4.2 hold. Then for ρ sufficiently small
there is a constant C∗ = C∗(τ, η, CR, c0, ch, γ, r) such that for n < n∗

‖en‖ ≤ C∗

ρ

(1 + tn)γ
,

‖A+en‖ ≤ C∗

ρ

(1 + tn)γ+1/2
.

Proof. For an arbitrary n ∈ N the error recursion (22) leads to the following discrete
variation-of-constants formulas

en = exp(−tnJ+)e0 (26)

+

n−1∑

j=0

hj exp
(
−(tn − tj+1)J+

)(
Φj,+A

∗
+

(
r
(1)
j + yδ − y

)
− r

(2)
j

)

and

A+en = exp(−tnK+)A+e0 (27)

+

n−1∑

j=0

hj exp
(
−(tn − tj+1)K+

)
Φ̃j,+K+

(
r
(1)
j + yδ − y

)

−
n−1∑

j=0

hjA+ exp
(
−(tn − tj+1)J+

)
r
(2)
j .

By Lemma 4.7, the sum multiplying yδ − y in (26) can be bounded by
∥∥∥∥∥

n−1∑

j=0

hj exp(−(tn − tj+1)J+)A∗
+Φ̃j,+

∥∥∥∥∥ ≤
n−1∑

j=0

hj√
tn − tj

≤
∫ tn

0

1√
tn − s

ds = 2
√
tn (28)
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while the corresponding sum in (27) can be bounded by one by using the (telescopic)
identity

n−1∑

j=0

hj exp(−(tn − tj+1)K+)K+Φ̃j,+ = I − exp(−tnK+). (29)

Thus, by Assumption 2, Lemmas 4.6 and 4.7 we have

‖en‖ ≤ ρ

(1 + tn)γ
+ 2

√
tn δ

+ (2C1 + C2)

n−1∑

j=0

hj
1√

1 + tn − tj
‖ej‖ ‖A+ej‖

and

‖A+en‖ ≤ ρ

(1 + tn)γ+1/2
+ δ

+ (2C1 + C3)
n−1∑

j=0

hj
1

1 + tn − tj
‖ej‖ ‖A+ej‖ .

The proof now proceeds by induction for n = 0, 1, . . . , n∗ − 1. By Assumption 2,
the statement is true for n = 0 if C∗ ≥ 1. Assuming that the bounds hold for all
indices up to n− 1, we obtain

‖en‖ ≤ ρ

(1 + tn)γ
+ 2

√
tn δ + C2

∗ρ
2 (2C1 + C2)Sn

(
1

2
, 2γ + 1

2

)

and
‖A+en‖ ≤ ρ

(1 + tn)γ+1/2
+ δ + C2

∗ρ
2 (2C1 + C3)Sn

(
1, 2γ + 1

2

)

where

Sn(α, β) =

n−1∑

j=0

hj

(1 + tn − tj)α(1 + tj)β
. (30)

The inequalities in Lemma 4.11 below lead to

‖en‖ ≤ ρ

(1 + tn)γ

(
1 + C2

∗ρC6

)
+ 2

√
tn δ, (31)

‖A+en‖ ≤ ρ

(1 + tn)γ+1/2
(1 + C2

∗ρC7) + δ (32)

with

C6 = (2C1 + C2)C9,

C7 = (2C1 + C3)C9.

Applying (8) and Lemma 4.3 we get

δ ≤ 1

(τ − 1)(1 − η)
‖A+en‖

≤ 1

(τ − 1)(1 − η)

(
ρ

(1 + tn)γ+1/2

(
1 + C2

∗ρC7

)
+ δ

)
.
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By (20), this yields for n < n∗

δ ≤ C8
ρ

(1 + tn)γ+1/2
(33)

with

C8 =
1

(τ − 1)(1 − η) − 1

(
1 + C2

∗ρC7

)
.

Inserting this relation into (31) shows

‖en‖ ≤ ρ

(1 + tn)γ

(
1 + C2

∗ρC6 + 2C8

)
.

This yields the desired result, as long as

1 + C2
∗ρC6 + 2C8 ≤ C∗,

1 + C2
∗ρC7 + C8 ≤ C∗

hold. This can be achieved for ρ sufficiently small.

Remark. If the maximum possible step sizes hj = chtj , j = 1, . . . , n∗ − 1 are
chosen, then Lemma 4.3, Theorem 4.8, and (8) show that there is a constant c such
that the stopping index satisfies n∗ ≤ c |log δ|.
Theorem 4.9. Let the assumptions of Theorem 4.2 be satisfied. If in addition the
step size sequence is bounded away from 0, then the stopping index n∗ defined by (8)
is finite and the iterates un satisfy un ∈ BC∗ρ(x+) for n = 0, 1, . . . , n∗, and C∗ as
in Theorem 4.8. Moreover, the approximation un∗ converges to a solution of (1) for
δ → 0.

Proof. The assumption that the step sizes are bounded away from 0 ensures that
tn → ∞ for n → ∞. By Lemma 4.3 and Theorem 4.8 we have that

∥∥∆F δ
n

∥∥ → 0 for
n → ∞. Hence the discrepancy principle (8) is satisfied for n∗ < ∞. Moreover, by
Theorem 4.8 we have ‖en‖ ≤ C∗ρ for n = 0, 1, . . ., which shows that the method is
well-defined with un ∈ BC∗ρ(x+).

We close this section with two auxiliary lemmas which are used to prove our main
theorem.

Lemma 4.10. Let fT : [0, T ] → [0,∞), T > 0, be a family of convex integrable
functions and let I : [0,∞) → [0,∞) be a function such that

fT (0) ≤ CfI(T ) and

∫ T

0

fT (t) dt ≤ I(T ).

Then, for any step size sequence (hj)0≤j≤n−1 satisfying (21), we have

n−1∑

j=0

hjftn
(tj) ≤ CII(tn), CI = 1 + c0Cf + ch. (34)

We stress the fact that the constant CI is independent of the particular choice of the
step size sequence.
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t0 tn

t

f̃tn

ftn

Figure 1. Illustration of the construction in the proof of Lemma 4.10.

Proof. Let T ∗ denote the point in [0, tn] at which ftn
achieves its minimum. Then ftn

is monotonically decreasing on [0, T ∗]. For 0 ≤ t ≤ (1 + ch)T ∗ we define the auxiliary
function

f̃tn
(t) = ftn

(
1

1+ch

t
)
.

This function is constructed such that on the interval [0, T ∗], any Riemann sum of ftn

is a lower sum if the step size sequence satisfies (21), see Fig. 1 for an illustration. Let
1 ≤ j∗ ≤ n be such that tj∗−1 < T ∗ ≤ tj∗ . By construction we have

∫ T∗

0

ftn
(t) dt ≤

j∗−1∑

j=0

hjftn
(tj)

≤ h0ftn
(0) +

∫ (1+ch)T∗

0

f̃tn
(t) dt

= h0ftn
(0) + (1 + ch)

∫ T∗

0

ftn
(t) dt.

For t ≥ T ∗, the Riemann sum is in fact a lower sum for the integral so that

n−1∑

j=j∗

hjftn
(tj) ≤

∫ tn

T∗

ftn
(t) dt.

Due to the assumptions this finally yields (34).

Lemma 4.11. Let 0 < γ ≤ 1/2 and let Sn be given by (30) and assume that (21)
holds. Then, for α = 1

2
, 1, 1

2
− γ, there is a constant C9 = C9(α, γ, c0, ch) such that

Sn

(
α, 2γ + 1

2

)
≤ C9

1

(1 + tn)α+γ−1/2
. (35)
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Proof. The bound follows from Lemma 4.10 for the function

ftn
= (1 + tn − t)−α(1 + t)−β , β = 2γ + 1

2
.

This function satisfies all the assumptions of Lemma 4.10 with

I(t) = I
(
t, α, 2γ + 1

2

)
= cα,γ

1

(1 + t)α+γ−1/2
, α = 1

2
, 1, 1

2
− γ,

for some constants cα,γ and Cf = 1/cα,γ, see [15, Proposition 6].

It remains to prove our main theorem.

Proof of Theorem 4.2. We write (26) for n = n∗ in the form

en∗ = Jγ
+v∗ +

n∗−1∑

j=0

hj exp(−(tn∗ − tj+1)J+)Φj,+A
∗
+(yδ − y)

where

v∗ = exp(−tn∗J+)w +

n∗−1∑

j=0

hj exp(−(tn∗ − tj+1)J+)J−γ
+

(
Φj,+A

∗
+r

(1)
j − r

(2)
j

)
.

Note that v∗ is well defined as r
(2)
j ∈ R(A∗

+), see (25), and since

J−γ
+ A∗

+ : N (A∗
+)⊥ → X

is a bounded operator for γ ≤ 1
2 .

Using (25) and Lemmas 4.7 and 4.11, we bound v∗ by

‖v∗‖ ≤ ρ+ C2
∗ρ

2(2C1 + C5)Sn∗

(
1

2
− γ, 2γ + 1

2

)

≤ C10ρ

with

C10 = 1 + C2
∗ρ(2C1 + C5)C9.

Next using the telescopic identity (29)

A+J
γ
+v∗ = A+en∗ −

n∗−1∑

j=0

hj exp(−(tn∗ − tj+1)K+)K+Φ̃j,+(yδ − y)

= A+en∗ + (exp(−tn∗K+) − I)(yδ − y)

implies
∥∥∥Jγ+1/2

+ v∗

∥∥∥ =
∥∥A+J

γ
+v∗

∥∥ ≤ ‖A+en∗‖ + δ

≤ (1 + η) ‖F (un∗) − F (x+)‖ + δ

≤ (1 + η)
(∥∥∥∆F δ

n∗

∥∥∥ + δ
)

+ δ

≤ C11δ

with

C11 = (1 + η)(1 + τ) + 1
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by (11) and the discrepancy principle (8).
With the help of the moment inequality, we obtain

∥∥Jγ
+v∗

∥∥ ≤
∥∥∥Jγ+1/2

+ v∗

∥∥∥
2γ/(2γ+1)

‖v∗‖1/(2γ+1)

≤ (C11δ)
2γ/(2γ+1)(C10ρ)

1/(2γ+1).

Using (28), we obtain

‖en∗‖ ≤
∥∥Jγ

+v∗
∥∥ + 2

√
1 + tn∗ δ. (36)

By (33) for n = n∗ − 1 we further have

δ ≤ C8 (1 + ch)γ+1/2 ρ

(1 + tn∗)
γ+1/2

so that
√

1 + tn∗δ
1/(2γ+1) ≤ C

1/(2γ+1)
8 (1 + ch)1/2 ρ1/(2γ+1).

Inserting this into (36) and defining

C = C
2γ/(2γ+1)
11 C

1/(2γ+1)
10 + 2C

1/(2γ+1)
8 (1 + ch)1/2

gives the desired result.

5. Concluding Remarks

In this paper we proved that the exponential Euler regularization method converges
with optimal rates under suitable assumptions. If the step sizes are chosen according to
the discrepancy principle (13), then the method converges without requiring a source
condition. If the source condition (cf. Assumption 2) is satisfied, then Theorem 4.2
shows that the rate of convergence is optimal, if the step sizes chosen by (13) do not
grow faster than (21). Note that (21) is satisfied if hj+1/hj ≤ const, j = 0, 1, . . ., so
that this result appears to be relevant for practical applications. However, if (21) fails
to be true, then the results of Theorems 4.2 and 4.9 guarantee that one can switch to
any step size sequence satisfying hmin ≤ hj ≤ chtj and still gets optimal convergence
rates.

It is possible to generalize the results of this paper to other methods, for instance
to the closely related Levenberg–Marquardt scheme, where the function ϕ in (5) is
taken as

ϕ(z) = (1 − z)−1.

As noted before, Hanke [3] proved that the convergence results of Section 3 hold
without any changes for this method as well. A proof of optimal convergence rates is
presented in [6]. The convergence of more general methods will be studied elsewhere.

Further, we would like to mention the recent paper by Jin and Tautenhahn [10],
where the authors analyze Newton type methods of the form

un+1 = x0 + hnϕ(−hnJn)A∗
n

(
∆F δ

n +An(un − x0)
)
.

In that paper, optimal convergence rates have been proved for a whole class of
ϕ functions, among those the function (7) of the exponential Euler scheme. The
techniques used in that paper, however, are quite different from ours and cannot be
used to analyze our method (5).
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During the revision of the present paper, the new preprint [9] by Jin appeared
where optimal convergence rates for the Levenberg–Marquardt scheme for an a priori
given step size sequence hj = h0σ

j , j ≥ 0 are shown.
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