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Modélisation Mathématique et Analyse Numérique

REGULARIZATION OF NONLINEAR ILL-POSED PROBLEMS BY

EXPONENTIAL INTEGRATORS

Marlis Hochbruck1, Michael Hönig1 and Alexander Ostermann2

Abstract. The numerical solution of ill-posed problems requires suitable regularization techniques.
One possible option is to consider time integration methods to solve the Showalter differential equa-
tion numerically. The stopping time of the numerical integrator corresponds to the regularization
parameter. A number of well-known regularization methods such as the Landweber iteration or the
Levenberg–Marquardt method can be interpreted as variants of the Euler method for solving the
Showalter differential equation.

Motivated by an analysis of the regularization properties of the exact solution of this equation
presented by Tautenhahn [22], we consider a variant of the exponential Euler method for solving the
Showalter ordinary differential equation. We discuss a suitable discrepancy principle for selecting the
step sizes within the numerical method and we review the convergence properties of [22] and of our
discrete version [8]. Finally, we present numerical experiments which show that this method can be
efficiently implemented by using Krylov subspace methods to approximate the product of a matrix
function with a vector.
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Introduction

In this paper we consider the problem

F (u) = y, (1)

where F : D(F ) ⊂ X → Y is a nonlinear operator between two Hilbert spaces X and Y . We always require that
the operator F is Fréchet differentiable and possesses a locally uniformly bounded Fréchet derivative F ′(u). We
further assume that (1) has a solution in D(F ) but we do not assume that this solution is unique. Our main
interest is in ill-posed problems, where the solution does not depend continuously on the data y. In this case
the solution of the perturbed problem

F (uδ) = yδ, (2)

where the perturbed data yδ ≈ y satisfies ∥∥yδ − y
∥∥ ≤ δ, (3)
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requires suitable regularization techniques. Throughout the paper, we denote the inner products in X and Y
by 〈· , ·〉 and the corresponding norms by ‖·‖, respectively. It is always clear from the context which norm is
meant.

One of the most popular regularization methods is Tikhonov regularization, where an approximation uδ
α to

the searched solution is defined as a solution of the minimization problem

min
uδ∈D(F )

(∥∥F (uδ) − yδ
∥∥2

+ α
∥∥uδ − u0

∥∥2
)
.

The real number α > 0 is a suitably chosen regularization parameter, the function u0 is a given approximation
to a solution of (1). For nonlinear problems, an analysis of Tikhonov regularization is presented in [4, 15, 20].
Other options for regularization are variants of inexact Newton methods [12, 16, 17]. A nice review is given in
the recent book by Kaltenbacher et al. [14].

In this paper, we consider an asymptotic regularization based on the Showalter differential equation [21]

d

dt
uδ(t) = −F ′

(
uδ(t)

)∗(
F

(
uδ(t)

)
− yδ

)
, t ≥ 0, uδ(0) = u0. (4)

The regularization is performed by solving this differential equations up to a certain time T only. This stopping
time is used as regularization parameter. Solving the above initial value problem numerically with some time
integration method like explicit or implicit Runge–Kutta methods leads to a variety of well-known regularization
schemes. For instance, the Landweber iteration is equivalent to solving (4) by the forward Euler method [7].
Tikhonov regularization and the Levenberg–Marquardt scheme can be interpreted as the application of a linearly
implicit Euler method [6]. We will discuss these relationships in more detail in Section 1 below.

Recently, the use of Rosenbrock methods has been studied in [1], and Runge–Kutta methods for linear
problems have been analyzed in [19]. However, using explicit schemes has the major drawback that they suffer
from severe step size restrictions to ensure stability. Fully implicit schemes, on the other hand, are difficult
to analyze for nonlinear problems. A further difficulty arises when the time-integration scheme is used with
variable step sizes. To the best of our knowledge, there is no result on optimal convergence rates for this
situation.

Our motivation for this paper was twofold. First, it was shown in [22] that the exact solution of (4) yields
an optimal order regularization scheme. Second, the problem considered here seems to be related to our
recent work [11] on exponential integrators for nonlinear parabolic problems, since the operator −F ′(uδ)∗F ′(uδ)
approximating the Jacobian of the right-hand side of (4) has its spectrum on the negative real axis. However,
there is one major difference: In the analysis of parabolic problems we are faced with large norms of the Jacobian
and small step sizes whereas in the analysis of ill-posed problems, the norm of the Jacobian is small (we will
later assume that ‖F ′(u)‖ ≤ 1) but one is interested in using large time steps. Thus the convergence theory
of [11] cannot be applied directly.

An outline of the paper is as follows: In Section 1, we review the role of time integration schemes as
regularizing methods. In Section 2, we introduce the exponential Euler method as a new regularizing method
for nonlinear ill-posed problems. We further show that the method can be interpreted as Newton’s method
with asymptotic regularization for the linearized problems. Our error analysis is partly based on the framework
and results of Tautenhahn for the continuous problem. This work will be reviewed in Section 3. Our new
convergence results are given in Section 4. We obtain convergence for a variable step size implementation
of the exponential Euler method, and we present optimal convergence rates. The proofs of our convergence
results, however, are quite involved and will appear elsewhere, see [8]. In Section 5 we give some hints on the
implementation. In particular, the evaluation of certain matrix functions requires care. Section 6 is devoted to
numerical experiments. We consider the identification of a coefficient in an elliptic PDE and an inverse problem
from groundwater hydrology.
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1. Time integration schemes as regularization methods

One possible approach to regularize the ill-posed problem (2) is asymptotic regularization or Showalter’s
method [5,21]. The idea behind this method is to solve the initial value problem (4) up to a certain time t = T .
The stopping time T serves as a regularization parameter and will be chosen such that the discrepancy principle
is satisfied, i.e.

∥∥F (uδ(T )) − yδ
∥∥ ≤ τδ <

∥∥F (uδ(t)) − yδ
∥∥ , 0 ≤ t < T (5)

with some τ > 2, see, e.g., [4]. The aim of this paper is to explore the potential of exponential integrators for
the numerical solution of the Showalter equation (4). To improve the readability of the paper, we denote in the
following

J(u) = F ′(u)∗F ′(u), K(u) = F ′(u)F ′(u)∗. (6)

Employing standard time-integration schemes for solving (4) is not a new idea. In fact, a number of well-
known regularization schemes can be interpreted as numerical methods for solving (4). The first (and simplest)
example of such a scheme is the explicit Euler method given by

uδ
n+1 = uδ

n − hnF
′(uδ

n)∗(F (uδ
n) − yδ), tn+1 = tn + hn, n = 0, 1, 2, . . . .

Here, uδ
n is an approximation to the exact solution of (4) at time t = tn. For constant step sizes hn = 1, this

method is just the Landweber iteration. In [7], its convergence was analyzed, and it was proved that the scheme
converges with optimal rates in terms of δ.

A major drawback of the explicit Euler method is that, roughly speaking, stability can be guaranteed only
for step sizes hn satisfying hn

∥∥J(uδ
n)

∥∥ ≤ 2. This means that a large number of steps is required whenever T is
large. An alternative would be to use the following variant of the linearly implicit Euler scheme

uδ
n+1 = uδ

n − hn

(
I + hnJ(uδ

n)
)−1

F ′(uδ
n)∗

(
F (uδ

n) − yδ
)
, tn+1 = tn + hn, n = 0, 1, 2, . . .

We remark that J(uδ
n) is only an approximation to the Jacobian of the right-hand side of (4). This scheme is

equivalent to the Levenberg–Marquardt iteration. In [6] a convergence analysis is presented for variable step
sizes hn chosen appropriately. Note that, if Assumption 1 below holds, then there is a unique solution u+ of
(1) with minimal distance to u0. We assume that for µn < 1 < νn, the error en = uδ

n − u+ after n iterations
satisfies ∥∥F (uδ

n) − yδ − F ′(uδ
n)en

∥∥ ≤ µn

νn

∥∥yδ − F (uδ
n)

∥∥ . (7)

In this case, Hanke proposes to choose hn based on the following discrepancy principle

pδ
n(hn) :=

∥∥F (uδ
n) − yδ − F ′(uδ

n)(uδ
n − uδ

n+1)
∥∥ = µn

∥∥yδ − F (uδ
n)

∥∥ , (8)

see [6, Section 2]. For later use we note the identity

pδ
n(h) =

∥∥∥
(
I + hK(uδ

n)
)−1(

F (uδ
n) − yδ

)∥∥∥ . (9)

Moreover, explicit and implicit Runge–Kutta methods for linear problems were proposed and analyzed in [19].
It has been shown that for variable step sizes, Runge–Kutta approximations converge with optimal rate. For
nonlinear problems, the convergence of linearly implicit Runge–Kutta methods was proved in [1]. The analysis,
however, required severe restrictions on the time steps, see [1, Sect. 3] for details.



4 TITLE WILL BE SET BY THE PUBLISHER

2. New regularization method

Instead of solving (4) by a standard time integration scheme such as explicit, implicit or linearly implicit
Runge–Kutta methods, we suggest to use a variant of exponential Runge-Kutta methods. Such methods have
been studied recently in the context of time-dependent partial differential equations in [10, 11]. The simplest
scheme is the following variant of the exponential Euler method

uδ
n+1 = uδ

n − hnϕ
(
−hnJ(uδ

n)
)
F ′(uδ

n)∗
(
F (uδ

n) − yδ
)
, tn+1 = tn + hn, n = 0, 1, 2, . . . (10)

where ϕ denotes the entire function

ϕ(z) =
ez − 1

z
= 1 +

z

2
+
z2

6
+ . . . (11)

Instead of the exact Jacobian again the operator J(uδ
n) is used as argument of the matrix function.

In case of a linear problem where F (v) = Av, an exponential integrator solves the corresponding Showalter
equation

d

dt
vδ(t) = −A∗(Avδ − yδ), vδ(0) = v0 (12)

exactly for arbitrarily large time steps. This motivates the use of exponential integrators for nonlinear problems.
Note that for linear problems this approach has been successfully used in [13].

Nonlinear problems are frequently treated with Newton’s method. Linearizing (2) at the current approxima-
tion uδ

n results in the linearized problem

F ′(uδ
n)∆uδ

n = yδ − F (uδ
n) =: ∆Fn (13)

with the update

uδ
n+1 = uδ

n + ∆uδ
n. (14)

Solving the Showalter differential equation for the linear problem (13) with initial value vδ(0) = 0 gives

∆uδ
n = hnϕ

(
−hnJ(uδ

n)
)
F ′(uδ

n)∗∆Fn.

This yields the same new approximation uδ
n+1 as the exponential Euler method applied to the nonlinear Showal-

ter differential equation (4). Therefore, the exponential Euler method can be interpreted as Newton’s method
with asymptotic (Showalter) regularization for solving the linearized problems.

3. Convergence properties: the continuous case

In [22], Tautenhahn analyzed the properties of the exact solution of (4). As these results serve as a guideline
and framework for our numerical analysis, we will first review the assumptions and main results of this paper.
The first assumption turns out to be important for controlling the linearization error of a Newton step.

Assumption 1. There exists η < 1 such that

‖F (ũ) − F (u) − F ′(u)(ũ− u)‖ ≤ η ‖F (ũ) − F (u)‖ , (15)

for all u, ũ in a ball Br(u0) of radius r > 0 around the center u0.

Under our general smoothness requirements on F and the above assumption, the asymptotic regularization
approach converges for δ → 0. More precisely, the following result given in [22, Thm. 4] holds.
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Theorem 3.1. Consider problem (2) with noisy initial data (3). Let Assumption 1 and
∥∥F (u0) − yδ

∥∥ > τδ > 0

be satisfied, and let uδ(T ) be the solution of (4), where the stopping time T = T (δ) is chosen in accordance with

the discrepancy principle (5) with τ > (1 + η)/(1 − η). If (1) is solvable in Br(u0), then uδ(T ) converges to a

solution of (1) for δ → 0.

In [22], it is further shown that the discrepancy principle implies a finite stopping time T .
For a proof of optimal convergence rates, two additional assumptions are required. The first one concerns

the source representation. Recall that u+ denotes the solution of (1) with minimal distance to u0.

Assumption 2. There exists w ∈ X and constants γ ∈ (0, 1/2] and ρ ≥ 0 such that

e0 = u0 − u+ = J(u+)γw, ‖w‖ ≤ ρ. (16)

The last assumption finally allows to represent the Fréchet derivative F ′(u) for u close to u0 by F ′(u+).

Assumption 3. For all u ∈ Br(u0) there exists a linear bounded operator Ru : Y → Y and a constant C+ ≥ 0
such that

(1) F ′(u) = RuF
′(u+)

(2) ‖Ru − I‖ ≤ C+ ‖u− u+‖.
In the linear case this assumption is always satisfied with Ru = I. Without loss of generality, we can further

assume that

‖F ′(u)‖ ≤ 1, u ∈ Br(u0). (17)

The following theorem states that, under the above assumptions, the convergence rate is optimal. This result
is again taken from Tautenhahn, see [22, Thm. 6].

Theorem 3.2. Let the assumptions of Theorem 3.1 hold. If in addition Assumptions 2–3 and (17) are satisfied

and if τ > (2 − η)/(1 − η), then there exists a constant c∗ = c∗(γ, τ, η, C+) such that

∥∥uδ(T ) − u+

∥∥ ≤ c∗ρ
1/(2γ+1)δ2γ/(2γ+1)

for ρ sufficiently small.

Since γ ∈ (0, 1/2], the theorem gives
√
δ as best possible rate for the convergence uδ(T ) → u+.

4. Convergence properties: the discrete case

In this section, we present our convergence results for the new regularization method based on exponential
integrators. The proofs are quite involved and will be published elsewhere, see [8].

Since our integrator can cope with large eigenvalues, we are in particular interested in variable step sizes that
can grow unboundedly for t → ∞. In [8] we proved that one can select the step sizes hn such that the errors
are monotonically decreasing. For this, let 0 < µ ≤ µn be a sequence of parameters, and define

ψ(z) = ϕ(z)(1 − z).

Then the step size hn for our method (10) is chosen based on the following discrepancy principle

∥∥ψ(−hnK(uδ
n))∆Fn − F ′(uδ

n)∆uδ
n

∥∥ = µn ‖∆Fn‖ . (18)

Equivalently, we can write it as

∥∥ϕ(−hnK(uδ
n))∆Fn

∥∥ = µn ‖∆Fn‖ . (19)
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Remark. For the choice ϕ(x) = (1−x)−1, method (10) together with (18)–(19) corresponds to the Levenberg-
Marquardt method with step size selection (8) and (9) proposed in [6]. In this case, we have ψ(x) ≡ 1.

To minimize the computational effort the parameters µn have to be carefully chosen. Our numerical experi-
ments (see Section 6) showed that the parameter selection by Rieder [16] yields good results.

We are able to show convergence of our discrete regularization method under similar assumptions as Taut-
enhahn does for the asymptotic regularization.

Theorem 4.1. Let (1 + η+ τ(0.3 + η))/τ < µ < 1. Assume that (17), Assumption 1, and (3) hold. If the step

sizes hn are chosen according to (18), then the exponential Euler iteration stopped by the discrepancy principle

(5) terminates after n∗ = n∗(δ) <∞ iterations and the corresponding approximations un∗ converge to a solution

of (1) as δ → 0.

To the best of our knowledge it is not possible to prove optimal convergence rates in the discrete case under
the same assumptions as in the continous case. Nevertheless, under slight restrictions to the time step sizes hn,
we are able to prove the optimality of our method.

Theorem 4.2. Let Assumptions 1 to 3 and (3) hold and assume that the step sizes hj defined by (18) are

monotonically increasing and satisfy

hj ≤ ch(1 + tj)
γ−ǫ, ǫ > 0. (20)

Then, for ρ sufficiently small, there exists a constant C > 0 such that the error of the exponential Euler iteration

stopped by the discrepancy principle (5) with τ > (2 − η)/(1 − η) satisfies

‖en∗‖ ≤ Cρ1/(2γ+1)δ2γ/(2γ+1). (21)

The proofs of these two theorems are given in [8].

5. Implementation

In numerical computations we have to deal with a discrete version of (4). However, for readability reasons
we use the same notation for the discrete problem as above but fix the index n specifying the time step.

The main computational effort per time step consists in the approximation of the products of a matrix-
function with a vector. This is necessary for (10) and for the step size selection (19). Since the matrices
are symmetric, these products are approximated by the symmetric Lanczos process. By writing (10) in the
equivalent form

uδ
n+1 = uδ

n − hnF
′(uδ

n)∗ϕ(−hnK(uδ
n))∆Fn, (22)

one can use the same Krylov subspace for both approximations. To be more precise, let Vm = [v1 . . . , vm] be
an orthonormal basis of the mth Krylov subspace

Km(K(uδ
n),∆Fn) = span{∆Fn,K(uδ

n)∆Fn, . . . ,K(uδ
n)m−1∆Fn}.

Then Hm = V ∗
mK(uδ

n)Vm ∈ R
m,m is a tridiagonal matrix and the Krylov relation reads

K(uδ
n)Vm = VmHm + βm+1vm+1e

T
m, m = 1, 2, . . . (23)

where βm+1 denotes the (m + 1,m) element of Hm+1 and ei is the ith unit vector in R
m. This enables to

approximate
ϕ(−hnK(uδ

n))∆Fn ≈ Vmϕ(−hnHm)e1 ‖∆Fn‖ . (24)

For a convergence analysis of Krylov approximations to matrix functions we refer to [3, 9]. To avoid loss of
orthogonality within the Lanczos vectors, we applied reorthogonalization [2].
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We have to terminate this process as soon as our approximation is within a predefined distance to the
sought-after vector. We approximate the error ǫm by

‖ǫm‖ .
δm

1 − δm
‖wm‖

(cf. [23]) where wm := ϕ(−hHm)e1 and

δm =
‖wm − wm−k‖

‖wm‖ , k ≥ 1

is an approximation of the relative error in step m. Our experiments show that this is a reliable and efficient
estimate for this problem. Actually, since we are not interested in a high accuracy solution of the initial value
problem (4) but in the solution of the ill-posed problem (2) we can use quite large tolerances. We achieved good
results in the model problems from Section 6 with tolerances in the order of the norm of the noise δ.

Due to this implementation we do neither need a decomposition of K(uδ
n) nor have to solve linear systems.

The symmetric Lanczos process just needs matrix-vector products with the matrices F ′(uδ
n) and F ′(uδ

n)∗. The
matrices K(uδ

n), F ′(uδ
n) and F ′(uδ

n)∗ are not required explicitly, i.e., a matrix free implementation is possible.

6. Numerical examples

In the first example, we identify a coefficient of an elliptic PDE from the solution, the second example is
taken from hydrology.

6.1. Parameteridentification in elliptic PDEs

The first example is taken from [16]. We aim at identifying the non-negative coefficient u = u(ξ, η) in the
two-dimensional elliptic problem

−∆y + uy = f in Ω
y = g on ∂Ω

(25)

from the knowledge of the solution y = y(ξ, η) in Ω = (0, 1)2. The source function f and the boundary data g
are chosen such that

y(ξ, η) = 16ξ(ξ − 1)η(1 − η) + 1

is the solution of (25) with coefficient

u+(ξ, η) = 1.5 sin(2πξ) sin(3πη) + 3
(
(ξ − 0.5)2 + (η − 0.5)2

)
+ 2.

The latter has to be identified. This problem fits into our abstract framework with X = Y = L2(Ω), see
also [16].

For its numerical solution, the problem is discretized in space by standard finite differences on a regular,
uniform grid with N internal points in each direction. To obtain a matrix-vector representation of the discrete
problem, we reorder the grid points lexicographically. This results in the finite dimensional representation

F (u) := (A+ diag(u))
−1
f = yδ, (26)

where the square matrix −A is the standard five point discretization of the Laplacian. For the numerical solution
of (26), we endow the underlying space R

N×N with the Euclidian norm

‖z‖N =
1

N

√∑N2

j=1 z
2
j .
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Figure 1. The coefficient u+(ξ, η) (top left), its reconstruction uδ
n∗(ξ, η) (top right), and the

initial value u0(ξ, η) (bottom) of the Showalter equation

This is an approximation to the L2(Ω) norm of the continuous problem. The nonlinear function F is differentiable
with Fréchet derivative F ′(u) given by

F ′(u)w = − (A+ diag(u))
−1

diag(w) (A+ diag(u))
−1
f, w ∈ R

N2

.

The perturbed right-hand side yδ of (26) is defined as

yδ = y + δz/ ‖z‖N ,

where the entries of z are uniformly distributed random variables in [−1, 1]. As initial value for the Showalter
equation, we choose the function

u0(ξ, η) = 3
(
(ξ − 0.5)2 + (η − 0.5)2

)
+ 2 + 128ξ(ξ − 1)η(1 − η).

Since u0 − u+ is smooth and satisfies homogeneous Dirichlet boundary conditions, we obtain γ = 1/2 in the
source condition (16).
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Figure 2. Reconstruction error as function of the perturbation parameter δ (exponential Euler
method vs. cg-REGINN)
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Figure 3. Number of outer iterations (left), overall matrix-vector-multiplications (middle)
and cpu-time (right) as function of the perturbation parameter δ (exponential Euler method
vs. cg-REGINN)

Using N = 50, δ = 10−2.5, τ = 1.5 and constant µn = 0.95, the exponential Euler method gives a regulariza-
tion with a relative error of

∥∥uδ
n∗ − u+

∥∥
N
/ ‖u+‖N ≈ 5%, see Figure 1.

Figure 2 shows the regularization property of our scheme compared to the regularization based on inexact
Newton iteration with conjugate gradient method as inner iteration (cg-REGINN [18]). The figure demonstrates

that both regularization schemes reflect the expected error decay
√
δ as δ → 0 from Theorem 4.2. Figure 3

reveals that both schemes require approximately the same work for small δ.

6.2. Inverse problem in groundwater hydrology

The second example is taken from [6]. We consider the boundary value problem

−div(u grad y) = f in Ω
y = g on ∂Ω

(27)

in Ω = [0, 6]2 with mixed Dirichlet–Neumann boundary data

y(ξ, 0) = 100, yξ(6, η) = 0, (uyξ)(0, η) = −500, yη(ξ, 6) = 0

and right-hand side

f(ξ, η) =





0 0 < η < 4,

137 4 < η < 5,

274 5 < η < 6.
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Again we are interested to identify the coefficient. This time, it is a piecewise constant function u+ displayed
in Figure 4. This problem serves as a model problem for steady states in groundwater filtration. The searched
coefficient u+ plays the role of the diffusivity of the sediment. For details, we refer to [6].

Since u+ is discontinuous, our assumptions are not satisfied and the theoretical results from Section 3 do
not apply to this example. For details, see [6]. However, our numerical experiments show the usefulness of our
regularization scheme for a larger class of problems.

We implimented the inverse problem from (27) using finite elements. Figure 4 shows the exact solution and
a reconstruction of u+ with δ = 0.001 on a triangulation with 288 triangles and 169 grid pionts. The relative
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Figure 4. The diffusivity u+ (left) and its reconstruction uδ
n∗ (right)
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Figure 6. Number of outer iterations (left), overall matrix-vector-multiplications (middle)
and cpu-time (right) as function of the perturbation parameter δ (exponential Euler method
vs. cg-REGINN)
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error is 18%. The computations of Figure 5 and 6 are done on a finer grid with 1152 triangles and 625 grid
points.

Again, as in the first example both regularization schemes (exponential Euler method and cg-REGINN) show
the same error decay, see Figure 5. Furthermore, Figure 6 shows that both methods require approximately
the same number of matrix-vector products though the exponential Euler scheme needs significantly less outer
iterations than cg-REGINN. Since every nonlinear step itself is expensive, this indicates that our scheme is much
more efficient for this problem.

7. Concluding Remarks

In this paper we have considered exponential integrators for the regularization of nonlinear ill-posed problems.
We have concentrated on a variant of the exponential Euler method, but we strongly believe that higher order
exponential integrators will have favorable regularization properties as well. Our convergence proofs given in [8]
only cover the case of the exponential Euler method. An extension of these proofs to higher order methods
seems to be possible even though quite technical.

Our numerical experiments clearly indicate that both the exponential Euler method and the cg-REGINN

scheme show a similar error decay as the perturbation tends to zero. For small perturbations, the number
of outer iterations, however, is significantly smaller for the exponential Euler scheme. In situations when this
nonlinear step is expensive we obtain computational efficiency of the exponential Euler method. This fact can
be observed in the second example from groundwater hydrology.
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