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Abstract. We introduce a new class of exponential integrators for the numerical integration of
large-scale systems of stiff differential equations. These so-called Rosenbrock-type methods linearize
the flow in each time step and make use of the matrix exponential and related functions of the
Jacobian. In contrast to standard integrators, the methods are fully explicit and do not require the
numerical solution of linear systems. We analyze the convergence properties of these integrators
in a semigroup framework of semilinear evolution equations in Banach spaces. In particular, we
derive an abstract stability and convergence result for variable step sizes. This analysis further
provides the required order conditions and thus allows us to construct pairs of embedded methods.
We present a third order method with two stages, and a fourth order method with three stages,
respectively. The application of the required matrix functions to vectors are computed by Krylov
subspace approximations. We briefly discuss these implementation issues, and we give numerical
examples that demonstrate the efficiency of the new integrators.
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1. Introduction. In this paper, we are concerned with a new class of numerical
methods for the time integration of large systems of stiff differential equations

u′(t) = F (t, u(t)), u(t0) = u0. (1.1)

Such equations typically arise from spatial discretizations of nonlinear time dependent
partial differential equations. The numerical work when solving (1.1) by standard
integrators like implicit Runge–Kutta methods or backward differentiation formulas
(BDF) is often dominated by the numerical linear algebra which is required for the
solution of the arising nonlinear systems of equations. For a collection of ode solvers,
test problems and related references we refer to [21]. In particular, we point out
the codes VODEPK [1, 2] and ROWMAP [28] where the linear algebra is based on Krylov
subspace methods. Runge–Kutta discretizations of nonlinear evolution equations have
been studied in [19, 20, 22].

Exponential integrators, on the other hand, require the matrix exponential and
related functions of a certain matrix. Most exponential integrators analyzed so far in
literature [5, 6, 9, 14, 16, 17, 18, 23, 26] make use of a (rough) a priori linearization

u′(t) = Au(t) + f(t, u(t)) (1.2)

of the nonlinear problem (1.1). The matrix A then explicitly enters the formulation of
the exponential integrator as the argument where the matrix functions are evaluated.
Such an approach is justified in situations where the remainder f is small, or at least
bounded in terms of A. The latter is the case for semilinear parabolic problems, if
f is relatively bounded with respect to A. In particular, if A has a simple structure,
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Düsseldorf, Germany (E-mail: {marlis,schweitzer}@am.uni-duesseldorf.de)

∗∗Institut für Mathematik, Universität Innsbruck, Technikerstr. 13, A–6020 Innsbruck, Austria
(E-mail: alexander.ostermann@uibk.ac.at)

This work has been supported by the Deutsche Forschungsgemeinschaft through the Transregio-
SFB 18.

1



it is possible to compute the product of a matrix function with a vector in a fast
and reliable way. For instance, if A is the semi-discretization of the Laplacian on a
regular rectangular mesh, these functions can be computed by fast Fourier transform
techniques. Such an approach has been used in [16].

On the other hand, a fixed linearization like (1.2) can also lead to problems. As
the remainder f is integrated explicitly by standard exponential methods, a badly
chosen linearization can cause a severe step size restriction. This, for instance, is
the case if the numerical solution stays near an equilibrium point (e.g., a saddle
point) of the problem for a long time. If the linearization (1.2) is performed far from
this equilibrium point, the integrator is forced to take small steps due to stability
requirements. This will cause computational inefficiency.

In order to avoid these problems, we propose a new class of exponential integrators
that linearize (1.1) in each integration step. The linearization can be computed either
analytically or numerically. We first presented this approach in [15]. Here we give
a rigorous stability and convergence proof, we discuss a possible variable step size
implementation, and we give numerical comparisons. Related ideas have been used
in [12] and [27]. Since the Jacobian of the problem changes from step to step, FFT
techniques can no longer be used to compute the products of matrix functions with
vectors. We will use Krylov subspace approximations instead [7, 11].

The outline of our paper is as follows. In Section 2, we introduce the method class
and discuss a reformulation of the method which allows an efficient implementation
with Krylov subspace methods. An implementation using Leja points was proposed
in [3]. Since the reformulation speeds up the Krylov implementation considerably,
we will not consider Leja point methods in this paper. In Section 3, we introduce
the analytic framework and derive preliminary error bounds. We work in a frame-
work of C0 semigroups that covers many abstract semilinear evolution equations in
Banach spaces. In contrast to exponential Runge–Kutta methods [14], the new class
of Rosenbrock-type methods produces smaller defects when inserting the exact solu-
tion into the numerical scheme. This is due to the linearization. It facilitates the
derivation of the order conditions and gives much simpler conditions than in [14].
In particular, it is possible to construct a fourth order integrator with an embedded
third order method, using three stages only. Since the Jacobian varies from step to
step, the stability estimate of the discrete evolution operator is crucial. The necessary
stability bounds for variable step size discretizations are derived in Section 3.3.

In Section 4, we give a convergence bound for methods up to order 4. Particular
methods of order three and four are given in Section 5, a generalization to non-
autonomous problems is discussed in Section 6. In Section 7, we briefly describe
an implementation based on Krylov subspace approximations, and we present two
numerical examples: a two dimensional advection-diffusion-reaction problem and a
Schrödinger equation with time dependent potential. The possible extensions for
analytic semigroups is sketched in the Appendix.

2. Exponential Rosenbrock-type methods. In this paper we consider the
time discretization of (possibly abstract) differential equations in autonomous form

u′(t) = F (u(t)), u(t0) = u0. (2.1)

The precise assumptions on the problem class will be stated in Section 3 below. The
numerical schemes considered are based on a continuous linearization of (2.1) along
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the numerical solution. For a given point un in the state space, this linearization is

u′(t) = Jnu(t) + gn(u(t)), (2.2a)

Jn = DF (un) =
∂F

∂u
(un), gn(u(t)) = F (u(t)) − Jnu(t) (2.2b)

with Jn denoting the Jacobian of F , and gn the nonlinear remainder, evaluated at
un, respectively. The numerical schemes will make explicit use of these quantities.

2.1. Method class. Let un denote the numerical approximation to the solution
of (2.1) at time tn. Its value at t0 is given by the initial condition. Applying an
explicit exponential Runge–Kutta scheme [14] to (2.2a), we obtain the following class
of explicit one-step methods

Uni = ecihnJnun + hn

i−1∑

j=1

aij(hnJn)gn(Unj), 1 ≤ i ≤ s (2.3a)

un+1 = ehnJnun + hn

s∑

i=1

bi(hnJn)gn(Uni). (2.3b)

Here, hn > 0 denotes a positive time step, and un+1 is the numerical approximation
to the exact solution at time tn+1 = tn + hn.

The method is built on s internal stages Uni that approximate the solution at
tn + cihn. The real numbers ci are called nodes of the method. The method is fully
explicit and does not require the solution of linear or nonlinear systems of equations.
As usual in exponential integrators, the weights bi(z) are linear combinations of the
entire functions

ϕk(z) =

∫ 1

0

e(1−σ)z σk−1

(k − 1)!
dσ, k ≥ 1. (2.4)

These functions satisfy the recurrence relations

ϕk(z) =
ϕk−1(z) − ϕk−1(0)

z
, ϕ0(z) = ez. (2.5)

The coefficients aij(z) will be chosen as linear combinations of the related functions
ϕk(ciz). Henceforth, the methods (2.3) will be called exponential Rosenbrock methods.

Without further mentioning, we will assume throughout the paper that the meth-
ods fulfill the following simplifying assumptions

s∑

i=1

bi(z) = ϕ1(z),
i−1∑

j=1

aij(z) = ciϕ1(ciz), 1 ≤ i ≤ s. (2.6)

Note that (2.6) implies c1 = 0 and consequently Un1 = un.

Methods that satisfy the simplifying assumptions (2.6) possess several interesting
features. They preserve equilibria of (2.1), they have small defects which in turn
lead to simple order conditions for stiff problems (Section 3.1), they allow a refor-
mulation for efficient implementation, see below, and they can easily be extended to
non-autonomous problems (Section 6).
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2.2. Reformulation of the method. For the implementation of an exponential
Rosenbrock method, it is crucial to approximate the application of matrix functions
to vectors efficiently. We therefore suggest to express the vectors gn(Unj) as

gn(Unj) = gn(un) +Dnj , 2 ≤ j ≤ s.

A similar approach was used in [27]. Due to the simplifying assumptions (2.6), the
method (2.3) takes the equivalent form

Uni = un + cihnϕ1(cihnJn)F (un) + hn

i−1∑

j=2

aij(hnJn)Dnj , (2.7a)

un+1 = un + hnϕ1(hnJn)F (un) + hn

s∑

i=2

bi(hnJn)Dni. (2.7b)

The main motivation for this reformulation is that the vectors Dni are expected to be
small in norm. When computing the application of matrix functions to these vectors
with some Krylov subspace method, this should be possible in a low dimensional
subspace. Consequently, only one computationally expensive Krylov approximation
will be required in each time step, namely that involving F (un). A similar idea has
also been used to make the code exp4 efficient [12].

3. Analytic framework and preliminary error analysis. For the error anal-
ysis of (2.3), we work in a semigroup framework. Background information on semi-
groups can be found in the textbooks [8, 24]. Let

J = J(u) = DF (u) =
∂F

∂u
(u) (3.1)

be the Fréchet derivative of F in a neighborhood of the exact solution of (2.1).
Throughout the paper we consider the following assumptions.
Assumption C.1. The linear operator J is the generator of a strongly continuous

semigroup etJ on a Banach space X. More precisely, we assume that there exist

constants C and ω such that

∥∥etJ
∥∥

X←X
≤ C eωt, t ≥ 0 (3.2)

holds uniformly in a neighborhood of the exact solution of (2.1).
Recall that the analytic functions bi(z) and aij(z) are linear combinations of

ϕk(z) and ϕk(ciz), respectively. These functions are related to the exponential func-
tion through (2.4). Assumption C.1 thus guarantees that the coefficients bi(hJ) and
aij(hJ) of the method are bounded operators. This property is crucial in our proofs.

In the subsequent analysis we restrict our attention to semilinear problems

u′(t) = F (u(t)), F (u) = Au+ f(u), u(t0) = u0. (3.3)

This implies that (2.2b) takes the form

Jn = A+
∂f

∂u
(un), gn(u(t)) = f(u(t)) −

∂f

∂u
(un)u(t). (3.4)

Our main hypothesis on the nonlinearity f is the following:
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Assumption C.2. We suppose that (3.3) possesses a sufficiently smooth solution

u : [0, T ] → X with derivatives in X, and that f : X → X is sufficiently often Fréchet

differentiable in a strip along the exact solution. All occurring derivatives are supposed

to be uniformly bounded.

By Assumption C.2, the Jacobian (3.1) satisfies the Lipschitz condition

‖J(u) − J(v)‖X←X ≤ C ‖u− v‖ (3.5)

in a neighborhood of the exact solution.
Remark. If the semigroup generated by J is not only strongly continuous but an-

alytic, more general nonlinearities can be analyzed. To keep our presentation simple,
we restrict ourselves to strongly continuous semigroups for the moment and sketch
the possible extensions to analytic semigroups later in Appendix A.

Examples will be considered in Section 7.

3.1. Defects. For brevity, we denote Gn(t) = gn(u(t)). Inserting the exact
solution into the numerical scheme gives

u(tn + cihn) = ecihnJnu(tn) + hn

i−1∑

j=1

aij(hnJn)Gn(tn + cjhn) + ∆ni, (3.6a)

u(tn+1) = ehnJnu(tn) + hn

s∑

i=1

bi(hnJn)Gn(tn + cihn) + δn+1 (3.6b)

with defects ∆ni and δn+1. The computation and estimation of the defects is carried
out in the same way as in our previous paper [14, Sect. 4.1]. In particular, expressing
the left-hand side of (3.6a) by the variation-of-constants formula

u(tn + cihn) = ecihnJnu(tn) +

∫ cihn

0

e(cihn−τ)JnGn(tn + τ) dτ

and then expanding Gn into a Taylor series at tn yields

∆ni = hnψ1,i(hnJn)Gn(tn) + h2
nψ2,i(hnJn)G′n(tn) + ∆

[2]
ni , (3.7)

with

ψj,i(z) = ϕj(ciz)c
j
i −

i−1∑

k=1

aik(z)
cj−1
k

(j − 1)!
(3.8)

and remainders ∆
[2]
ni satisfying

∥∥∆
[2]
ni

∥∥ ≤ Ch3
n. (3.9)

Small defects in the internal stages facilitate our convergence proofs considerably. This
gives a further reason for requiring (2.6) which implies ψ1,i(z) ≡ 0. Unfortunately,
explicit methods cannot have ψ2,i(z) ≡ 0 for all i. Nevertheless, the second term on
the right-hand side of (3.7) turns out to be small. This is seen from the identity

G′n(tn) =
∂gn

∂u

(
u(tn)

)
u′(tn) =

(
∂f

∂u

(
u(tn)

)
−
∂f

∂u
(un)

)
u′(tn),
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No. condition in defect order condition order

1 ψ1(z) ≡ 0
∑s

i=1 bi(z) = ϕ1(z) 1

2 ψ1,i(z) ≡ 0
∑i−1

j=1 aij(z) = ciϕ1(ciz), 2 ≤ i ≤ s 2

3 ψ3(z) ≡ 0
∑s

i=2 bi(z)c
2
i = 2ϕ3(z) 3

4 ψ4(z) ≡ 0
∑s

i=2 bi(z)c
3
i = 6ϕ4(z) 4

Table 3.1
Stiff order conditions for exponential Rosenbrock methods applied to autonomous problems.

which itself is a consequence of linearizing at each step, cf. (3.4). By Assumption C.2
this relation implies

‖G′n(tn)‖ ≤ C‖en‖ (3.10)

with en = un − u(tn), and the defects of the internal stages thus obey the bound

‖∆ni‖ ≤ Ch2
n‖en‖ + Ch3

n. (3.11)

Similarly, we get for the defects δn+1 at time tn+1

δn+1 =

q∑

j=1

hj
nψj(hnJn)G(j−1)

n (tn) + δ
[q]
n+1, (3.12)

with

ψj(z) = ϕj(z) −

s∑

k=1

bk(z)
cj−1
k

(j − 1)!
(3.13)

and remainders δ
[q]
n+1 satisfying

∥∥δ[q]n+1

∥∥ ≤ Chq+1
n . (3.14)

Again, small defects are desirable. Due to (2.6), we have ψ1(z) ≡ 0. To obtain higher
order bounds for δn+1 first observe that the h2-term in (3.12) is small due to (3.10).
Additional terms vanish if ψj = 0, j ≥ 3.

All conditions encountered so far are collected in Table 3.1. They will later turn
out to be the order conditions for methods up to order 4.

Lemma 3.1. If the order conditions of Table 3.1 are satisfied up to order p ≤ 4,
we obtain

‖δn+1‖ ≤ Ch2
n‖en‖ + Chp+1

n . (3.15)

Proof. This at once follows from (3.12).
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3.2. Preliminary error bounds. Let

en = un − u(tn) and Eni = Uni − u(tn + cihn)

denote the differences between the numerical solution and the exact solution. Sub-
tracting (3.6) from the numerical method (2.3) gives the error recursion

Eni = ecihnJnen + hn

i−1∑

j=1

aij(hnJn)
(
gn(Unj) −Gn(tn + cjhn)

)
− ∆ni, (3.16a)

en+1 = ehnJnen + hn

s∑

i=1

bi(hnJn)
(
gn(Uni) −Gn(tn + cihn)

)
− δn+1. (3.16b)

We will derive bounds for these errors.

Lemma 3.2. Under Assumption C.2, we have

‖gn(Uni) −Gn(tn + cihn)‖ ≤ C
(
hn + ‖en‖ + ‖Eni‖

)
‖Eni‖ , (3.17a)

‖gn(un) −Gn(tn)‖ ≤ C ‖en‖
2
, (3.17b)

∥∥∥
∂gn

∂u

(
u(tn)

)∥∥∥
X←X

≤ C ‖en‖ , (3.17c)

as long as the errors Eni and en remain in a sufficiently small neighborhood of 0.

Proof. The last bound (3.17c) is a direct consequence of the linearization and the
Lipschitz condition (3.5). Using Taylor series expansion, we get

gn(Uni) −Gn(tn + cihn) =
∂gn

∂u

(
u(tn + cihn)

)
Eni

+

∫ 1

0

(1 − τ)
∂2gn

∂u2

(
u(tn + cihn) + τEni

)
(Eni, Eni) dτ.

Setting i = 1 at once proves (3.17b). To derive (3.17a), we expand the first term on
the right-hand side once more at tn and use the identity

∂gn

∂u

(
u(tn)

)
= −

∫ 1

0

∂2gn

∂u2

(
u(tn) + τen)

)
en dτ.

This finally proves (3.17a).

Using this result, we can establish an error bound for the internal stages.

Lemma 3.3. Under Assumptions C.1 and C.2 we have

‖Eni‖ ≤ C ‖en‖ + Ch3
n,

as long as the global errors en remain in a bounded neighborhood of 0.

Proof. The assertion at once follows from (3.16a), Lemma 3.2, and (3.11).

3.3. Stability bounds. In order to establish convergence bounds, we have to
solve recursion (3.16b). For this purpose, stability bounds for the discrete evolution
operators are crucial. In a first step we will show stability along the exact solution.

We commence with two auxiliary results.
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Lemma 3.4. Let the initial value problem (3.3) satisfy Assumptions C.1 and C.2,

and let Ĵn = DF (u(tn)). Then, for any ω̃ > ω, there exists a constant CL independent

of hn−1 such that
∥∥∥et bJn − et bJn−1

∥∥∥
X←X

≤ CLhn−1e
eωt, t ≥ 0. (3.18)

Proof. Applying the variation-of-constants formula to the initial value problem

v′(t) = Ĵnv(t) = Ĵn−1v(t) +
(
Ĵn − Ĵn−1

)
v(t)

shows the representation

et bJn − et bJn−1 =

∫ 1

0

te(1−σ)t bJn−1
(
Ĵn − Ĵn−1

)
eσt bJndσ. (3.19)

The required estimate now follows from (3.5) and the smoothness of u(t).
Lemma 3.5. Under the assumptions of Lemma 3.4, the relation

|||x|||n = sup
t≥0

e−eωt
∥∥∥et bJnx

∥∥∥ , x ∈ X (3.20)

defines for any n = 0, 1, 2, . . . a norm on X. This norm is equivalent to ‖·‖ and

satisfies the bound

|||x|||n ≤ (1 + CLhn−1)|||x|||n−1 , n ≥ 1. (3.21)

Proof. Obviously, we have ‖x‖ ≤ |||x|||n. On the other hand, the bound (3.2)
yields |||x|||n ≤ C ‖x‖. Thus, the two norms are equivalent.

For arbitrary x ∈ X, we have

|||x|||n = sup
t≥0

e−eωt
∥∥∥
(
et bJn − et bJn−1 + et bJn−1

)
x
∥∥∥

≤ |||x|||n−1 + sup
t≥0

e−eωt
∥∥∥et bJn − et bJn−1

∥∥∥
X←X

‖x‖

≤ (1 + CLhn−1) |||x|||n−1

by Lemma 3.4 and the equivalence of the norms.
The following lemma proves the stability of the discrete evolution operators along

the exact solution.
Lemma 3.6. Under the assumptions of Lemma 3.4, there exists a constant C

such that
∥∥ehn

bJn · · · eh0
bJ0

∥∥
X←X

≤ C eΩ(h0+...+hn) (3.22)

with Ω = CL + ω̃.

Proof. By (3.20) and Lemma 3.5 we have
∣∣∣
∣∣∣
∣∣∣ehn

bJn · · · eh0
bJ0x

∣∣∣
∣∣∣
∣∣∣
n

= sup
t≥0

∥∥∥e−eωtet bJne−eωhneeωhnehn
bJn · · · eh0

bJ0x
∥∥∥

≤ sup
t≥0

∥∥∥e−eωtet bJneeωhnehn−1
bJn−1 · · · eh0

bJ0x
∥∥∥

= eeωhn

∣∣∣
∣∣∣
∣∣∣ehn−1

bJn−1 · · · eh0
bJ0x

∣∣∣
∣∣∣
∣∣∣
n

≤ eeωhn(1 + CLhn−1)
∣∣∣
∣∣∣
∣∣∣ehn−1

bJn−1 · · · eh0
bJ0x

∣∣∣
∣∣∣
∣∣∣
n−1

.
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Thus, the estimate 1+CLhn−1 ≤ eCLhn−1 together with an induction argument proves
the lemma.

We now turn our attention to the operators Jn = DF (un) that result from the
linearization process (2.2). These operators constitute an essential component of the
numerical scheme (2.3). The triangle inequality shows that

‖un − un−1‖ ≤ Chn−1 + ‖en‖ + ‖en−1‖ . (3.23)

We now repeat the above estimations with Jn in the role of Ĵn and, in particular,
use (3.23) in the proof of Lemma 3.4. This gives the following stability result for the
discrete evolution operators on X.

Theorem 3.7. Let the initial value problem (3.3) satisfy Assumptions C.1
and C.2. Then, for any ω̃ > ω, there exist constants C and CE such that

∥∥ehnJn · · · eh0J0

∥∥
X←X

≤ C eΩ(h0+...+hn)+CE

P
n
j=1
‖ej‖ (3.24)

with Ω = CL + ω̃. The bound holds as long as the numerical solution un stays in a

sufficiently small neighborhood of the exact solution of (3.3).
The stability bound (3.24) requires some attention. Strictly speaking, stability is

only guaranteed if the term
∑n

j=1 ‖ej‖ is uniformly bounded in n for t0 ≤ tn ≤ T .
This condition can be considered as a (weak) restriction on the employed step size
sequence, see the discussion in Section 4 below.

4. Error bounds. We are now ready to present the main result of our paper.
We will show that the conditions of Table 3.1 are sufficient to obtain convergence up
to order 4 under a mild restriction on the employed step size sequence.

Theorem 4.1. Let the initial value problem (3.3) satisfy Assumptions C.1
and C.2. Consider for its numerical solution an explicit exponential Rosenbrock

method (2.3) that fulfills the order conditions of Table 3.1 up to order p for some

2 ≤ p ≤ 4. Further, let the step size sequence hj satisfy the condition

n−1∑

k=1

k−1∑

j=0

hp+1
j ≤ CH (4.1)

with a constant CH that is uniform in t0 ≤ tn ≤ T . Then, for CH sufficiently small,

the numerical method converges with order p. In particular, the numerical solution

satisfies the error bound

‖un − u(tn)‖ ≤ C
n−1∑

j=0

hp+1
j (4.2)

uniformly on t0 ≤ tn ≤ T . The constant C is independent of the chosen step size

sequence satisfying (4.1)
Proof. From (3.16b) we obtain the error recursion

en+1 = ehnJnen + hn̺n − δn+1, e0 = 0, (4.3)

with

̺n =

s∑

i=1

bi(hnJn)
(
gn(Uni) −Gn(tn + cihn)

)
.
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Solving this recursion and using e0 = 0 yields

en =

n−1∑

j=0

hj ehn−1Jn−1 · · · ehj+1Jj+1
(
̺j − h−1

j δj+1

)
. (4.4)

Employing lemmas 3.1, 3.2, and 3.3, we obtain the bound

‖̺j‖ + h−1
j ‖δj+1‖ ≤ C

(
hj ‖ej‖ + ‖ej‖

2
+ hp

j

)
. (4.5)

Inserting this into (4.4) and using the stability estimate (3.24) yields

‖en‖ ≤ C

n−1∑

j=0

hj

(
‖ej‖

2
+ hj ‖ej‖ + hp

j

)
. (4.6)

The constant in this estimate is uniform as long as

n−1∑

j=1

‖ej‖ ≤ CA (4.7)

uniformly holds on t0 ≤ tn ≤ T . The application of a discrete Gronwall lemma to (4.6)
then shows the desired bound (4.2).

It still remains to verify that condition (4.7) holds with a uniform bound CA. This
follows now recursively from (4.2) and our assumption on the step size sequence (4.1)
with CH sufficiently small.

In the remainder of this section, we discuss the encountered restriction (4.1) on
the step size sequence. For constant step sizes, this condition evidently holds with

CH =
1

2
hp−1(tn − t0)

2.

Since p ≥ 2, the size of CH tends to zero for h→ 0.
A similar bound holds for quasi-uniform step size sequences where the ratio be-

tween the maximal and minimal step length is uniformly bounded. For sequences
with increasing step sizes, condition (4.1) is fulfilled as well.

In practice, a problem with (4.1) might occur if the step size suddenly drops by
several orders of magnitude. In that case, however, it is possible to modify the above
stability analysis and to relax the condition on the step sizes. We briefly explain the
idea, but we do not work out all details. If the error at time tj , say, is large compared
to the actual step length, one should rather compare the numerical solution with
a smooth trajectory that passes close to uj . Although uj might be a non-smooth
initial value, such trajectories exist. Then the previous stability proof can be applied
once more, at the possible price of increasing the constant C in (3.23) and thus the
constants CL and Ω. As long as this is done only a fixed number of times, stability
in (3.24) is still guaranteed.

5. Methods of order up to four. The well known exponential Rosenbrock–
Euler method is given by

un+1 = ehnJnun + hnϕ1(hnJn)gn(un)

= un + hnϕ1(hnJn)F (un).
(5.1)
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It is computationally attractive since it requires only one matrix function per step.
The method obviously satisfies Condition 1 of Table 3.1, while Condition 2 is void.
Therefore, it is second-order convergent for problems satisfying our analytic frame-
work. A possible error estimator for (5.1) is described in [3].

From the order conditions of Table 3.1, it is straightforward to construct pairs of
embedded methods of order 3 and 4. For our variable step size implementation, we
consider (2.3b) together with an embedded approximation

ûn+1 = ehnJnun + h

s∑

i=1

b̂i(hJn) gn(Uni) (5.2)

which relies on the same stages Uni. The methods given below were first introduced
in [15]. They will be used in the numerical experiments in Section 7.

The scheme exprb32 consists of a third-order exponential Rosenbrock method
with a second-order error estimator (the exponential Rosenbrock–Euler method). Its
coefficients are

c1
c2 a21

b1 b2
b̂1

=

0
1 ϕ1

ϕ1 − 2ϕ3 2ϕ3

ϕ1

The scheme exprb43 is a fourth-order method with a third-order error estimator. Its
coefficients are

c1
c2 a21

c3 a31 a32

b1 b2 b3
b̂1 b̂2 b̂3

=

0
1
2

1
2ϕ1

(
1
2 ·

)

1 0 ϕ1

ϕ1 − 14ϕ3 + 36ϕ4 16ϕ3 − 48ϕ4 −2ϕ3 + 12ϕ4

ϕ1 − 14ϕ3 16ϕ3 −2ϕ3

Note that the internal stages of the above methods are just exponential Rosenbrock–
Euler steps. This leads to simple methods that can cheaply be implemented.

Evidently, the order conditions of Table 3.1 imply that the weights of any third-
order method have to depend on ϕ3, whereas that of any fourth-order method depend
on ϕ3 and ϕ4 (in addition to ϕ1).

6. Non-autonomous problems. The proposed method can easily be extended
to non-autonomous problems

u′ = F (t, u), u(t0) = u0 (6.1)

by rewriting the problem in autonomous form

U ′ = F(U) , U =

[
t
u

]
, F(U) =

[
1

F (t, u)

]
(6.2a)

with Jacobian

Jn =

[
0 0
vn Jn

]
, vn =

∂

∂t
F (tn, un), Jn =

∂

∂u
F (tn, un). (6.2b)

This transformation is standard for Rosenbrock methods as well, see [10], but it
changes a linear non-autonomous problem into a nonlinear one.

11



In order to apply our method to the autonomous system (6.2), we have to compute
the matrix functions of Jn. Using Cauchy’s integral formula and exploiting the special
structure of J , we get

ϕ(hJ ) =

[
ϕ(0) 0

hϕ̂(hJ)v ϕ(hJ)

]
, ϕ̂(z) =

ϕ(z) − ϕ(0)

z
.

For the particular functions in our method, we obtain from (2.5) the relation

ϕ̂i(hJ) = ϕi+1(hJ). (6.3)

In our formulation, we will work again with the smaller quantities

Dnj = gn(tn + cjhn, Unj) − gn(tn, un) (6.4)

where

gn(t, u) = F (t, u) − Jnu− vnt.

Applying method (2.7) to the autonomous formulation (6.2), we get

Uni = un + hnciϕ1(cihnJn)F (tn, un)

+ h2
nc

2
iϕ2(cihnJn)vn + hn

i−1∑

j=2

aij(hnJn)Dnj , (6.5a)

un+1 = un + hnϕ1(hnJn)F (tn, un) + h2
nϕ2(hnJn)vn + hn

s∑

i=2

bi(hnJn)Dni. (6.5b)

This is the format of an exponential Rosenbrock method for non-autonomous prob-
lems (6.1).

7. Numerical Experiments. We have implemented the exponential Rosen-
brock methods exprb32 and exprb43 in Matlab with adaptive time stepping. We
employ a standard step size selection strategy based on the local error [10, pp. 28–31].
The error is estimated with the help of the corresponding embedded method from Sec-
tion 5. Our implementation involves two different options for dealing with the matrix
ϕ-functions: for small examples, we employ diagonalization or Padé approximation
for the explicit computation of the matrix functions. For large problems, Krylov sub-
space methods are used for approximating the product of the matrix functions with
the corresponding vectors. For autonomous problems, we use the reformulation (2.7),
which requires one Krylov subspace with the vector F (un) and s−1 Krylov subspaces
with the vectors Dni, i = 2, . . . , s. Due to ‖Dni‖ = O(h2

n), these approximations can
be computed in very low dimensional subspaces. For non-autonomous problems, the
format (6.5) requires one additional Krylov subspace with the vector vn. Since the
term involving vn is multiplied with h2

n (compared to hn for the other vectors), this
subspace will be low dimensional, as well.

Example 7.1. As a first example we consider a two-dimensional advection-
diffusion-reaction equation for u = u(x, y, t)

∂tu = ε(∂xxu+ ∂yyu) − α(ux + uy) + γu
(
u− 1

2

)
(1 − u), (x, y) ∈ (0, 1)2 (7.1)

with homogeneous Neumann boundary conditions and the initial value

u(x, y, 0) = 256
(
(1 − x)x(1 − y)y

)2
+ 0.3,
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Fig. 7.1. Step sizes for the advection-diffusion-reaction equation (7.1) for t ∈ [0, 0.08]
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Fig. 7.2. Number of time steps versus accuracy (left) and CPU time versus accuracy (right)
for the advection-diffusion-reaction example (7.1) for t = 0.08

where ε = 1/100, α = −10, and γ = 100. The spatial discretization was done with
finite differences using 101 grid points in each direction.

This example is taken from [3], where Fortran implementations of exprb43,
combined with the real Leja point method [4], and of the Runge–Kutta–Chebyshev
method RKC from [25] were compared. Here we compare Matlab implementations
of RKC, exprb43, exp4 from [12], and Krogstad’s method [17]. The latter three make
use of Krylov subspace approximations. To improve the efficiency of the Krogstad
method, we reused information from previously computed Krylov subspaces, an ap-
proach proposed in [13]. Since an adaptive step-size control based on embedding is
not possible for Krogstad’s method, we ran this method with constant step size. For
this particular example, the step-size control of the other schemes also lead to almost
constant steps sizes, see Fig. 7.1. All simulations achieved a final accuracy of about
0.004 at t = 0.08. It can be seen that, due to the large advection part, the exponential
methods can take much larger steps than RKC with exprb43 taking the largest ones.
In total, exprb43 takes only 18 steps, Krogstad’s method takes 27 steps, exp4 takes
119 steps, while RKC uses 383 steps.

In Fig. 7.2, we compare the performance of the Krylov implementations of exp4,
exprb43 and Krogstad’s method with a Matlab implementation of RKC. Our im-
plementation of RKC is based on the well established Fortran code by Sommeijer
available from the netlib repository. Our implementations of exp4 and exprb43

allow a maximum dimension of the Krylov subspaces of 36, which is the default
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Fig. 7.3. Number of time steps versus average number of Krylov steps (left) and number of
Krylov steps versus accuracy (right) for the advection-diffusion-reaction example (7.1) for t = 0.08

value suggested in [12]. The codes were run with tolerances atol = rtol =
10−4, 10−4.5, . . . , 10−6.5 (except for Krogstad’s method, which was used with con-
stant step size). In the left diagram, we plot the achieved accuracy as a function of
the required number of steps. It turns out that, for a given accuracy, the exponential
Rosenbrock method exprb43 uses significantly larger time steps than exp4 and RKC.
The number of time steps required for Krogstad’s method is about the same as for
exprb43.

However, the efficiency of a code should also take the cost per time step into
account. Therefore, we next consider the CPU time required to achieve a certain
accuracy. We are fully aware of the fact that comparing CPU times strongly depends
on the available computer architecture, the implementation, and the programming
language. Nevertheless, we think that Matlab comparisons might be of interest.

In Fig. 7.2 we show the achieved accuracy as a function of the required CPU time.
It can be seen that for moderate tolerances, exp4 is faster than exprb43 while for
more stringent tolerances, exprb43 requires less CPU time. This can be explained by
considering the number of Krylov steps used by these methods. In the left diagram
in Fig. 7.3 we plotted the average number of Krylov steps over the total number of
time steps. Since exprb43 uses significantly larger time steps, we know from the con-
vergence analysis of Krylov subspace methods [7, 11] that this requires more Krylov
steps. The right diagram of Fig. 7.3 shows the achieved accuracy versus the total num-
ber of Krylov steps. Since the Krylov approximations dominate the computational
cost, this explains the right diagram of Fig. 7.2. Note that, it is impossible to give
a reformulation of Krogstad’s method in such a way that only one expensive Krylov
subspace is required in each step. The gain achieved by reusing previously computed
Krylov subspaces [13] does not compensate this disadvantage. Moreover, Krogstad’s
method has four stages and uses even more matrix functions than exprb43.

Example 7.2. As a second example, we consider the one-dimensional Schrödin-
ger equation [12] for ψ = ψ(x, t)

i
∂ψ

∂t
= H(x, t)ψ (7.2a)

with the time-dependent Hamiltonian

H(x, t) = −
1

2

∂2

∂x2
+ κ

x2

2
+ µ(sin t)2 x . (7.2b)
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Fig. 7.4. Step sizes taken by exp4, radau5, and exprb43 for the laser example (7.2) for t ∈ [0, 3]
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Fig. 7.5. Number of time steps versus accuracy (left) and CPU time versus accuracy (right)
for the laser example (7.2) for t = 3

We used the parameter values κ = 10 and µ = 100. The initial value was chosen as
ψ(x, 0) = e−

√
κx2/2, which corresponds to the ground state of the unforced harmonic

oscillator. Semi-discretization in space was done by a pseudospectral method with
512 Fourier modes on the interval [−10, 10] with periodic boundary conditions.

It was shown in [12] that the Matlab implementation of exp4 outperforms Mat-
lab’s standard nonstiff ode45 method and matrix-free implementations of the stiff
solvers radau5 and ode15s. We refer to [12] for details. Here, we use exactly the
same spatial discretization but run the simulation until t = 3.

In Fig. 7.4, we display the step sizes chosen by the adaptive step-size control for
exp4, radau5, and exprb43. The tolerances were set in such a way that all methods
achieved a final accuracy of about 0.05. As illustrated in Fig. 7.4, exprb43 advances
with larger step sizes than the other two methods. In total exprb43 uses 256 steps,
exp4 uses 1906 steps, and radau5 uses 537 steps. In our implementation of radau5,
the linear systems arising within the Newton iteration are solved directly while exp4

and exprb43 are used with Krylov subspace approximations. The direct solution of
the linear systems arising in the radau5 code result in a total cpu time which is more
than 10 times longer than exprb43. Since it has been shown in [12] that a much more
efficient W-version of radau5 was still slower than exp4, we did not include radau5

into our run time comparisons.

In Fig. 7.5, we compare the performance of the Krylov implementations of exp4
and exprb43. Both codes were run with tolerances atol = rtol = 10−4, 10−4.5,
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. . . , 10−6.5. The diagrams show that the exponential Rosenbrock method exprb43

uses significantly larger step sizes than exp4. Moreover, it is also much faster in
terms of total CPU time.

8. Concluding remarks. In this paper we have analyzed the convergence prop-
erties of exponential Rosenbrock-type methods in an abstract framework of C0 semi-
groups. A local error analysis revealed the stiff order conditions which in turn enabled
us to construct methods of orders three and four with embedded error estimates of or-
ders two and three, respectively. To control the error propagation, we derived stability
bounds for variable step sizes. This enabled us to give a variable step size convergence
proof. We implemented the methods in Matlab, using Krylov subspace methods to
approximate the applications of matrix functions to vectors. The numerical results
clearly demonstrate the efficiency of the new integrators.

Appendix A. Analytic semigroups.

So far we restricted our attention to strongly continuous semigroups. This frame-
work, however, limits the class of possible nonlinearities due to Assumption C.2. If the
semigroup is even analytic, we can allow more general nonlinearities. In this appendix
we sketch how to extend our analysis to this case. For the theoretical background of
analytic semigroups, we refer to [8, 24].

Assumption A.1. The linear operator A in (3.3) is the generator of an analytic

semigroup.

Without loss of generality, we can assume that A is invertible (otherwise we shift
it by an appropriate multiple of the identity). Therefore, fractional powers of A are
well defined. We choose 0 ≤ α < 1 and define V = D(Aα) ⊂ X. The linear space V
is a Banach space with norm ‖v‖V = ‖Aαv‖.

Our basic assumptions on f are the following:
Assumption A.2. We suppose that (3.3) possesses a sufficiently smooth solution

u : [0, T ] → V with derivatives in V , and that f : V → X is sufficiently often Fréchet

differentiable in a strip along the exact solution. All occurring derivatives are supposed

to be uniformly bounded.

A consequence of Assumption A.1 is that there exist constants C and ω such that
∥∥etJ

∥∥
V←V

+
∥∥tαetJ

∥∥
V←X

≤ C eωt, t ≥ 0 (A.1)

holds in a neighborhood of the exact solution.
With these assumptions at hand, we derive once more the bounds of Section 3.

Instead of (3.11), we now get

‖∆ni‖X + hα
n ‖∆ni‖V ≤ Ch2

n‖en‖V + Ch3
n, (A.2)

and (3.15) is replaced by

‖δn+1‖X + hα
n‖δn+1‖V ≤ Ch2

n‖en‖V + Chp+1
n . (A.3)

The same arguments as in the proofs of Lemma 3.2 and 3.3 show the following refined
estimates.

Lemma A.1. Under Assumptions A.1 and A.2, we have

‖gn(Uni) −Gn(tn + cihn)‖X ≤ C
(
hn + ‖en‖V + ‖Eni‖V

)
‖Eni‖V , (A.4a)

‖gn(un) −Gn(tn)‖X ≤ C ‖en‖
2
V , (A.4b)

∥∥∥
∂gn

∂u

(
u(tn)

)∥∥∥
X←V

≤ C ‖en‖V , (A.4c)
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and

‖Eni‖V ≤ C ‖en‖V + Ch3−α
n , (A.4d)

as long as the errors Eni and en remain in a sufficiently small neighborhood of 0.

Further, Assumption A.2 implies
∥∥∥Ĵn − Ĵn−1

∥∥∥
X←V

≤ Chn−1, n ≥ 1 (A.5)

with a constant C that is independent of hn−1. The same arguments as in the proof
of Lemma 3.4 with (3.2) replaced by (A.1) now show that

∥∥∥et bJn − et bJn−1

∥∥∥
V←V

≤ CLhn−1e
eωt. (A.6)

This implies the desired stability estimate in V . For the convergence proof, we need
an additional stability result that reflects the parabolic smoothing.

Lemma A.2. Let the initial value problem (3.3) satisfy Assumptions A.1 and A.2,

and let Ĵn = DF (u(tn)). Then, for any ω̃ > ω, there exists a constant C independent

of hn−1 such that

∥∥ehn
bJn · · · eh0

bJ0

∥∥
V←X

≤ C
eΩ(h0+...+hn)

(h0 + . . .+ hn)α
, (A.7)

with Ω = CL + ω̃ and CL from (A.6).
Proof. Using the same arguments as in [22, Sec. 5] shows this bound.
We are now in the position to state the convergence proof for exponential Rosen-

brock methods in the framework of analytic semigroups. For notational simplicity,
we formulate the result for constant step sizes only.

Theorem A.3. Let the initial value problem (3.3) satisfy Assumptions A.1
and A.2 and consider for its numerical solution an explicit exponential Rosenbrock

method (2.3) with constant step size h. Assume that the order conditions of Table 3.1
hold up to order p with p = 2 or p = 3. Then, for h sufficiently small, the numerical

method converges with order p. In particular, the numerical solution un satisfies the

uniform error bound

‖un − u(tn)‖V ≤ C hp.

The constant C depends on T , but it is independent of n and h for 0 ≤ nh ≤ T − t0.
Proof. We proceed as in the proof of Theorem 4.1. Due to (A.3) and (A.4), we

can bound

‖̺n‖X + h−1‖δn+1‖X ≤ C
(
h ‖en‖V + ‖en‖

2
V + hp

)
. (A.8)

By the stability estimate, we now have

‖en‖V ≤ C
n−1∑

j=0

h

(tn − tj+1)α

(
h ‖ej‖V + ‖ej‖

2
V + hp

)
.

The desired error bound thus follows from the application of a discrete Gronwall
lemma with weakly singular kernel.

Remark. For p ≥ 4, the analysis is much more delicate. Due to (A.4d), the
bound (A.8) now contains a term of the order h4−α. Under additional assumptions
on f , this order reduction can be avoided. For exponential Runge–Kutta methods,
this has been detailed in [14]. We do not elaborate this point here.
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