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Abstract 

A novel slurry concept for the fabrication of Li-ion battery electrodes focusing on 

water based formulations is presented. Taking advantage of capillary forces inferred 

by adding a small fraction of a second fluid immiscible with the bulk continuous phase 

the low shear viscosity can be varied in a wide range without conventional polymeric 

rheology control agents disturbing the electric properties of the dry electrode. The 

new slurries provide superior storage stability and excellent shape accuracy of the 

final dry film. This reduces waste cut-off at the edges and increases the density of 

active ingredients, thus improving cost-efficiency. The viscosity at high shear rates 

remains unaffected, thus the slurries can be processed and coated using established 

equipment and process parameters. Adhesion to the conductor foil and 

electrochemical properties of the electrode layers and corresponding cells are similar 

to those made from conventional slurries. 
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1. Introduction 

 

The performance of lithium-ion batteries is strongly dependent on the electrochemical 

characteristics and the fraction of active material in the electrodes. However, the 

fabrication process also plays an important role since it determines the distribution of 

active material and the structure of the electrode layers. Optimization of the 

fabrication process leads to the cheaper production of electrodes with improved 

properties like capacity, cycleability, safety, toxicity and cost [1].   

Typically, slurries for lithium-ion electrodes consist of a solvent, the anode or cathode 

active material, carbon black to ensure the electrical conductivity and a binder for the 

cohesion between the particles and the adhesion of the electrode layer to the current 

collector respectively. Furthermore water based slurries generally contain rheology 

control agents to adjust the flow properties according to the demands of the 

respective coating operations. 

In general the process chain for electrode manufacturing is distinguished by its 

complexity and the large number of influencing factors: the first step is the dispersion 

of the solids in the solvent to receive a processible and homogeneous slurry. This 

slurry is coated in the subsequent step on the current collector followed by the drying 

and calendering of the electrode layer. The chosen technology and parameters for 

mixing and coating as well as the drying and calendering [2] conditions determine the 

slurry homogeneity, the electrode thickness, the mechanical stability or the porosity 

of the electrode layer. Therefore the electrode processing has direct influence on the 

electrode performance. Beyond that, the characteristics of the chosen active material 

and additives, the mixing sequences, ingredient ratios and potential additional 

pretreatment steps of the solids (e.g. dry mixing) have also a strong effect on the 

electrode performance [1].  
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The electrode slurry plays a central role in the fabrication process: the flow behavior 

of the slurry is determined by the ratio of raw materials, the mixing procedure and the 

mixing sequence. Furthermore, the viscosity function and the sedimentation stability 

of electrode slurries are factors with superior relevance to the subsequent coating 

process [3].  

Although there are several publications related to the processing of lithium-ion 

electrodes, the literature focusing on rheological properties of electrode slurries and 

its optimization is scarce. Kim et al. [4] and Lee et al. [5] discussed the effects of 

different mixing sequences on the rheological properties of NMP-based cathode 

slurries and its consequences on the dried electrode. In aqueous anode slurries Lee 

et al. investigated the influence of sodium carboxymethylcellulose (CMC) focusing on 

concentration and degree of substitution [6]; further Lee et al. examined the slurry 

viscosity depending on the fractions of styrene butadiene rubber (SBR) and CMC [7]. 

With rising CMC concentration the slurry viscosity increases drastically whereas the 

addition of SBR does not have a significant effect on the flow properties of the slurry. 

Beside its major effect on the slurry rheology CMC also contributes to the mechanical 

stability of dry electrodes [8]. 

In the present work, we introduce an innovative slurry concept for the fabrication of 

lithium-ion electrodes based on capillary suspensions. By adding a small amount 

(~1 vol%) of a secondary fluid, that is immiscible with the primary fluid, the flow 

properties of the suspension can be changed drastically [9]. This general physical 

phenomenon is found in various kinds of material systems [10]. By adding a 

secondary fluid to a suspension an existing sample-spanning network (e.g. van-der-

Waals) may be reinforced or such a network is created due to capillary forces 

introduced by the secondary fluid [11,12]. The corresponding change in flow 

properties can be utilized to match the specific needs of a certain downstream 
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process unit, in our case the coating of the electrode slurry on the metallic current 

collector foil.  

The coating of homogenous films with constant layer thickness is a key challenge for 

industrial electrode fabrication. But not only a constant thickness at the center of the 

electrode layer needs to be achieved, also the shape of the sidewise edges plays an 

important role. Blurred edges have to be cut off in order to guarantee for a constant 

amount of active material per unit area. However, at the position of the take-off lug 

the edge cannot be cut off and may lead to a local excess voltage due to the reduced 

amount of active material at this point. Moreover, depending on slurry rheology and 

coating conditions local superelevations at the layer curb, so called “heavy edges”, 

may occur with major disadvantages for the subsequent fabrication steps.  

Superelevations lead to inhomogeneous pressure distributions during calendering 

resulting in a non-uniform porosity and area capacity of the electrode. Furthermore, 

regarding production on industrial scale, up-winding of hundreds of electrode layers 

superelevations add up to several millimeters and provoke undesirable folds in the 

electrode foil [13]. For these reasons a good accuracy of the edge shape is of 

superior importance for industrial electrode processing. 

Here we want to evaluate the novel slurry concept based on capillary suspensions as 

a cost saving fabrication method for industrial electrode production. We target on an 

increase of the slurry viscosity at low shear rates in order to fabricate layers with 

superior coating properties, i.e. sharper edge contours; finally aiming at a reduction of 

cut off waste and therefore lower production costs. Furthermore, the concept shall be 

used to improve sedimentation stability of the slurry. The utilized secondary fluid 

evaporates during coating and does not remain in the dry electrode layer. The 

capillary suspension concept is intended to enable a reduction of organic additives 

like rheological additives and binders, thus allowing higher active material density 
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and better electric conductivity of the electrode layer. Due to similar viscosity data of 

capillary suspensions at high shear rates in comparison to conventional slurries the 

application of established coating equipment is possible.  

Capillary forces control the formation and strength of the network based on 

secondary fluid bridges between the particles. The three phase contact angle θS,B is 

defined as the angle of the secondary phase (S) against the solid surface while 

surrounded by the bulk fluid (B). Depending on θS,B two general states can be 

distinguished: if θS,B > 90° the secondary phase does not preferentially wet the 

particles and therefore forms droplets surrounded by particle clusters which then form 

a sample-spanning network [11]. In analogy to wet granular media this is called the 

capillary state, but it should be kept in mind that the particle loading is typically low 

and particles are by far not densely packed. In contrast to so-called Pickering 

emulsions the fluid volume trapped by these clusters is typically smaller than the 

particle volume. If θS,B < 90° the secondary fluid preferentially wets the particle 

surface and forms liquid bridges between particles. The corresponding network 

structure of the suspension is termed pendular state. The expanded Young-Dupré 

equation is used to calculate the three-phase contact angle θS,B [14-16] 

 

                                                               (1) 

 

where  stands for the contact angle of the considered fluid against the solid 

surface in air (a) and  is the surface tension of the fluid against air. In Fig. 1, a two 

sphere model exemplarily shows the relevant factors for the strength of a capillary 

bridge. The force FC acting between two spherical particles of radius r connected by 

a capillary bridge is given by 
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                                                                                 (2) 

 

where  is the interfacial tension between bulk and secondary phase [17]. The 

capillary force is proportional to . The function g further depends on the volume of 

the capillary bridge V and the particle surface separation s. If the capillary bridge is 

small compared to the particle radius equation (2) reduces to  

 

                          [9].                                                (3)  

 

It should be noted that the capillary force acting between particles is typically two 

orders of magnitude stronger than the ubiquitous van-der-Waals force. This 

corresponds to a higher network strength and high yield stresses of capillary 

suspensions compared to flocculated suspensions where van-der-Waals forces 

control network formation. 

In this work we have systematically examined the use of capillary suspensions as 

aqueous anode slurries. Their flow properties and benefits for the electrode layer are 

thoroughly discussed. A transfer of this slurry concept to cathode slurries is dedicated 

to future research.  

 

2. Experimental 

 

2.1. Material System 
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Commercially available spherical, synthetic graphite particles (China Steel Chemical 

Corporation, Kaohsiung, Taiwan) with a volume-based average diameter d50,3 of 

7.8 µm, an almost monomodal size distribution (Fig. 2), a specific surface area of 

less than 3.2 m²/g and a density of 2.2 g/cm3 were used as the active ingredient of 

the aqueous anode slurries investigated here. Carbon black (CB, Super C65, 

TIMCAL, Bodio, Switzerland) with a density of 1.8 g/cm³ was added as conductivity 

agent. The size of the primary CB particles is about 30 nm, but in the slurry they are 

present as aggregates with an average size of several microns [18]. The binder was 

supplied as an aqueous styrene-butadiene-rubber (SBR) dispersion (JSR 

Corporation, Tokyo, Japan) with a density of about 1.0 g/cm³ and a solid mass 

fraction of 48%. CMC (Daicel Corporation, Osaka, Japan) with an average molecular 

weight of 1,400,000 – 1,500,000 g/mol, a density of 1.59 g/cm³ and a degree of 

substitution of > 0.8 was added as binding agent and as rheology control agent. As 

secondary fluid 1-octanol (Alfa Aesar, Karlsruhe, Germany) with a density of 

0.83 g/cm³ and dynamic viscosity of 0.009 Pa s at 20°C was added to the 

suspension. The ratio of solids to liquids was varied throughout the experiments 

between 15 and 25 vol% whereas the weight ratio of graphite to CB to CMC to SBR 

was kept constant at 93 : 2 : 2.5 : 2.5. 

 

2.2 Processing Route 

 

The processing route is composed of mixing and coating the slurry, drying and 

calendering the electrode layer and assembling the cell. CMC was dissolved in water 

(3wt-% CMC-H2O mixture) and initially mixed with all solids except the SBR 

dispersion using a dissolver stirrer at 1,200 rounds per minute (rpm) for 30 minutes. 

In order to guarantee for a good deagglomeration and slurry homogeneity a highly 
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concentrated suspension was initially mixed while the amount of liquid was raised 

stepwise with time as shown in Fig. 3 [5]. After this first mixing step two different 

mixing sequences were employed to fabricate the reference slurry and the slurry 

based on a capillary suspension (Fig. 4). In the reference slurry SBR was added to 

the premixed suspension using a dissolver mixer at only 800 rpm. For the capillary 

suspension the secondary fluid was at first added to the premixed suspension 

followed by dissolver mixing at 800 rpm. The network formation was controlled by 

torque measurements. Afterwards the SBR was added to the capillary suspension 

using a ball mill at 48 rpm for 10 minutes. For the analysis of the mechanical strength 

of dry electrodes both slurry systems were coated onto a 10 µm thick copper foil 

(Itochu Corporation, Tokyo, Japan) applying a ZUA 2000 doctor blade (Zehntner 

GmbH, Sissach, Switzerland) with a coating width of 60 mm and a coating gap of 

300 µm. The wet film was dried for 20 minutes at 130°C and overnight at room 

temperature. Finally, the adhesion of the dry film to the copper foil was characterized 

by peel-test measurements. 

For the determination of the electrode edge contour slot die coating was employed as 

coating method. The thickness of the slot die upstream, downstream and side lip 

were constant: LU = LD = LS = 500 µm. The slot width is defined by a die-shim with a 

thickness of S = 500 µm while the coating gap was adjusted to G = 180 µm (see 

Fig. 5). The 60 mm wide and 172 µm thick wet film was dried for 20 minutes at 130°C 

and overnight at room temperature in an ambient atmosphere. For cell testing the 

electrode layers were calendered applying a force of 80 kN at 60°C, then 

dehumidified in a dry room overnight. Electrochemical tests were carried out, firstly 

using a three-electrode EL-Cell configuration (EL-Cell GmbH, Hamburg, Germany). 

Processed anodes (18mm diameter) were assembled in a dry argon-filled glove box 

using EL-Cell glass fiber membranes (thickness: 1.55mm, Whatman, Maidstone, UK) 
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as separator, LP30 as electrolyte (BASF, Ludwigshafen, Germany) and lithium foil 

(0.38mm thickness from Sigma-Aldrich, St. Louis, USA) as counter and reference 

electrode. Secondly, two-electrode Swagelok half cells were assembled in a dry 

argon-filled glove box using the processed anodes (11mm diameter), glass fiber 

membranes (thickness: 200µm, Whatman, Maidstone, UK) as separator, LP30 as 

electrolyte and lithium foil (12mm diameter, 0.75mm thickness from VWR 

International GmbH, Darmstadt, Germany) as counter electrode. Finally, full cells 

were fabricated in a dry room as pouch cells (50 mm x 50 mm). The utilized counter 

Lithium-Nickel-Cobalt-Manganeseoxide (NMC) cathode, ceramic separator with a 

thickness of 30µm and the electrolyte LP 30 are state-of-the-art products supplied by 

industrial partners.  

 

2.3 Characterization Methods 

 

The particle size distribution was determined by Fraunhofer diffraction (Sympatec, 

Helos  H0309, Clausthal-Zellerfeld, Germany) with a wet dispersing unit (Sympatec 

Quixel, Clausthal-Zellerfeld, Germany). Densities of solid materials were determined 

applying helium pycnometry (Micromeritics, Multi Volume Pycnometer, Aachen, 

Germany). Rheological properties of the basic fluids and slurries were measured 

using a stress-controlled rotational rheometer (RheoStress 1, Thermo Scientific, 

Karlsruhe, Germany) with a cone/plate (diameter: 60mm, angle: 1°) and a plate/plate 

(diameter: 35mm, gap height: 1mm) geometry. The viscosity functions were 

determined applying shear stress ramps (initial stress: 0.5Pa or 1.0Pa, final stress: 

500Pa or 1,000Pa, measurement time: 300s). For oscillatory shear measurements 

the linear viscoelastic range was initially determined using stress sweeps at two fixed 

frequencies (1.0 and 10 rad s-1). Afterwards the storage and loss moduli were 
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determined by frequency sweeps (from 0.07 to 100 rad s-1) at stress amplitudes 

within the linear viscoelastic range (0.7 and 1.0 Pa). The surface and interfacial 

tension were measured using a weight-based Tensiometer (Dataphysics, DCAT 11, 

Filderstadt, Germany) with a Wilhelmy plate geometry. The contact angle was 

determined using the sessile drop method (Dataphysics, OCA15, Filderstadt, 

Germany). During slot die coating the edge geometry was detected via a two-

dimensional laser triangulation system (LJ-V7060, Keyence, Osaka). According to 

the schematic drawing in Fig. 6 the laser is positioned behind the coating machine 

and detects the edge region of the layer. Further the surface weight as well as the 

film thickness of the dried electrode were measured. Both values together with the 

mean density of the dry layer were used to estimate the electrode porosity [2]. The 

complete evaporation of octanol after drying has been verified gravimetrically with an 

accuracy of 0.8%. A precision balance was used to compare the weight of electrode 

layers before and after heating to 200°C. The adhes ion of the electrode layer to the 

current collector was investigated by a 90°-peel-te st (according to DIN 28510-1) 

using a TA.XT plus Texture Analyzer (Stable Micro Systems, Godalming, UK). 

Electrode layers with a width of 25mm and a length of 70mm were investigated by 

peel-testing at a pre-selected peel velocity and the resulting peel force was 

measured. The peel velocity had negligible influence on the measured peel force and 

was kept constant at 5 mm/s. A 5 kilo load cell force sensor (max. force: 5kg, force 

sensitivity: 0.1g) was applied for all peel-tests. Samples of dry electrode edge-regions 

were vacuum infused with epoxy resin, grinded with SiC paper and polished with a 

diamond suspension (Buehler, Düsseldorf, Germany) for crosscut scanning electron 

microscopy (SEM) images. These images were taken in backscattering mode 

(Hitachi, S-4500, Krefeld, Germany). All fabricated cells were investigated applying 

constant current/constant voltage charging and constant current discharging at 20°C. 
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The three-electrode EL-cells were tested utilizing a 100-channel Maccor Series 4000 

cell tester (Maccor Inc., Tulsa, USA), whereas Swagelok and pouch cells were both 

tested using a 64-channel cell tester (Arbin BT 2000, Hamburg, Germany). Anodes in 

EL-cells and Swagelok half cells against lithium were investigated applying varied 

charge/discharge rates for three cycles per charge/discharge rate. The cut-off 

potentials were set at 1.5 V and 5 mV. 

In addition, the cycle stability was characterized in full cells testing anodes against 

commercially available NMC-cathodes. To guarantee for a complete solid electrolyte 

interphase (SEI) formation the cells were initially loaded at a C/10 rate and five times 

cycled at a C/2 rate whereas the cut-off potentials were set at 3.0 and 4.2 V. Cell 

tests were performed at 1C-1C charge/discharge rates for 100 cycles.  

 

3. Results and Discussion 

 

Surface tension and interfacial tension of aqueous CMC-solutions against octanol are 

essentially independent of CMC concentration since the large CMC molecules are 

not surface active. For the surface tension of the CMC solutions we find 72.4 mN/m, 

which is close to the value for pure water. The surface tension of octanol is 

27.3 mN/m and the interfacial tension between the CMC-solutions and octanol is 

10.6 mN/m. The contact angle for the CMC-solutions on graphite in air is 74°, while 

octanol completely wets the graphite particles (θS,a = 0°). This results in a three 

phase contact angle of θS,B = 46° and we conclude that capillary suspensions b ased 

on graphite and water with octanol as secondary fluid are in the pendular state. In 

this study octanol was used as secondary fluid, immiscible with water. In case 

octanol would have undesirable interactions with the electrode active material, it can 

be replaced by other volatile, hydrophobic organic liquids.  
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3.1. Influence of the Mixing Technique on the Slurry Flow Properties 

 

Dissolver mixing was found to be inappropriate for the SBR addition to the capillary 

suspension since with this mixing technique the network strength was reduced 

significantly before reaching a homogeneously mixed state. This might be due to the 

destruction of capillary bridges at high rotational speed in the dissolver mixer followed 

by the covering of the graphite surface through SBR polymers. This in turn prevents 

the reformation of a stable network of capillary bridges after the stirring process 

stops. By applying a ball mill at low speed, i.e. low energy input during mixing, the 

destruction of the capillary network was mostly prevented.  

 

3.2. Rheological Characterization 

 

In Fig. 7 the texture of capillary anode slurries with a constant volume fraction of 

ϕ = 20 vol% and different amounts of secondary fluid is shown. The suspensions 

without and with a marginal amount of added secondary fluid, respectively (0 vol% 

and 0.1 vol%) spread like dilute suspensions. Adding a slightly larger amount of 

secondary fluid (0.3 vol%) results in a drastic change of texture and a rather paste-

like behavior, i.e. the low shear viscosity increases drastically due to the creation of a 

sample-spanning particle network induced by capillary forces. With further addition of 

secondary fluid (from 0.5 vol% to 5 vol%) the suspensions become more and more 

gel-like or paste-like which implies improved sedimentation stability. Fig. 8a displays 

the viscosity as a function of the shear rate for anode slurries containing 2 vol% 

octanol and slurries without secondary fluid. The solid volume fraction was varied for 

both slurry types between 15 vol% and 25 vol%.  
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A strong decrease in viscosity with increasing shear rate can be observed even at 

these intermediate concentrations for both electrode slurry types indicating that 

attractive interactions among particles are present. However, adding an amount of 

2 vol% octanol to the suspension leads to a drastic increase in the low shear 

viscosity which is due to the formation of a strong network induced by capillary 

forces. Remarkably, the viscosity at high shear rates of such capillary anode slurries 

is similar compared to samples without secondary fluid (Fig. 8a). Obviously, the 

capillary network breaks down when high shear forces are applied. When decreasing 

the shear force the capillary network recovers quickly as the viscosity data obtained 

from subsequent stress ramps taken after one minute waiting time coincide.  

Viscosity at a low shear rate of  = 0.01 s-1 is shown in Fig. 8b as a function of the 

secondary fluid fraction for differing solid contents. The viscosity at this low shear rate 

increases with rising amount of secondary fluid by at least one order of magnitude. 

Similar results have been reported for various other material systems [9-12, 19]. At a 

secondary fluid fraction of 0.5 vol% a plateau value in the low shear viscosity is 

reached indicating that network formation is completed and larger amounts of 

secondary fluid do not further change structure and flow properties. For the sample 

with the lowest particle loading the low shear viscosity even drops slightly when 

5 vol% of secondary fluid is added compared to the 2 vol% sample. This might be 

due to the formation of compact agglomerates immobilizing less fluid as observed for 

ceramic capillary suspensions [19]. 

The drastic change in flow properties after adding minor amounts of secondary fluid 

is also obvious from oscillatory shear measurements. In Fig. 9 the storage modulus 

(G′) and the loss modulus (G′′) are shown as a function of the angular frequency for 

two anode slurries, both composed of 20 vol% solids. For the slurry without 

secondary liquid both moduli show a frequency dependence and G′′ is consistently 
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higher than G′. Therefore, the slurry behavior can be characterized as a well-

dispersed sol [5]. By adding 2 vol% of octanol a sample-spanning network is created 

which strongly affects the viscoelastic properties. A frequency dependency of G′ and 

G′′ is no longer observable and the storage modulus G′ dominates over the loss 

modulus G′′, i.e. the slurry exhibits gel-like behavior.  

These observations demonstrate that the formation of a capillary suspension affects 

greatly the low shear viscosity but has minor influence on the flow properties at high 

shear rates.  

After the formation of the sample-spanning network the addition of the SBR binder 

was carried out using a ball mill. In Fig. 10a the viscosity is shown as a function of 

shear rate for the basic slurry containing neither secondary fluid nor SBR, the 

corresponding capillary suspension including 2 vol% octanol and the complete 

suspension after addition of SBR at different kneading times in the ball mill. With the 

addition of secondary fluid the low shear viscosity increases drastically. But during 

kneading the SBR-binder into the capillary suspension the low shear viscosity drops 

monotonically with increasing kneading time as shown in Fig. 10b. This phenomenon 

can be explained with the change in interfacial properties due to the SBR addition. 

The used SBR is an aqueous polymer dispersion stabilized by minor amounts of 

surfactant. By adding 1 vol% of SBR to a 1 wt% CMC-water solution the interfacial 

tension against octanol decreases from 10.6 to 7.8 mN/m which results in lower 

capillary forces and therefore a weaker capillary network. Finally, we conclude that 

the kneading time is another parameter to adjust rheological properties of anode 

slurries based on capillary suspensions with added SBR-binder.  

 

3.3.  Characterization of Mechanical Properties 
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The adhesion force between anode layer and copper foil was analyzed using a 

90°-peel-test. Fig. 11 shows an electrode before te sting and the copper foil surface 

after peeling which proves that the peel test is qualified to determine the adhesion 

strength since the failure is obviously located between the metal surface and the 

anode layer and not inside the anode layer. Slurries with differing solid fractions have 

been coated at a constant gap width of 300 µm onto copper foil using a doctor blade. 

In Fig. 12a the line load, which is defined as the peel force divided by the layer width, 

is shown for different coating layers obtained from capillary anode slurries as a 

function of the ball milling time after SBR addition. Obviously thinner layers show 

higher force values during peeling which can be due to slower drying since the slurry 

contains a higher fluid fraction. As expected, samples without added SBR-binder 

have low adhesion values. Already short kneading times between 5 and 15 minutes 

after SBR addition lead to a significant increase in line load. Surprisingly, longer 

kneading times resulted in weaker adhesion. Due to this finding a kneading time of 

10 minutes was chosen for the electrodes used for cell testing. In general, the 

electrodes made from capillary suspensions showed 20% - 30% lower adhesion 

strength compared to those made from regular suspensions (Fig. 12b). Presumably, 

octanol prevents the SBR from making contacts between the graphite particles and 

the copper substrate. 

 

3.4. Edge Contour Characterization 

 

Edge contours of wet electrode layers were analyzed using a 2D laser triangulation 

system. The investigated wet films were fabricated applying slot die coating, a 

common method in industrial Li-ion electrode manufacturing [20-23]. Using this 

coating method the slurry is pumped through a die with a rectangular cross-section 
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(Fig. 5) in which high shear rates ( ) up to 10,000 s-1 occur. At the outlet of the die a 

uniform distribution of fluid over the cross section is achieved. With the help of a 

syringe pump the flow rate can be defined with high precision. Furthermore, the 

rotational speed of the backing roll is adjustable; as a result the layer thickness of the 

wet film can be controlled accurately. The laser triangulation sensor has been 

positioned at the top of the steel roll directly behind the slot die (as shown in Fig. 6) in 

order to detect the edge contour of the wet layer. 

In Fig. 13 the wet film thickness at the edge of the coated layer is shown for two 

slurries differing in the addition of secondary fluid. As it can be seen, the slurry based 

on a capillary suspension has a significantly sharper increase in layer thickness at 

the electrode side compared to the slurry without secondary fluid. This behavior can 

be explained with the differences in rheological properties: a good contour accuracy 

is achieved because of high viscosity values in the low shear region which prohibits 

spreading and flow due to gravitational force or surface tension. Furthermore no 

superelevations were found for this slurry type. In contrast, the slurry without added 

secondary fluid does not maintain the shape of the coating instrument as accurately. 

This slurry flows even under the action of low gravitational stress or surface tension 

due to its low viscosity. Therefore the edge area, the transient region with rising layer 

thickness, is significantly larger compared to the capillary suspension. Moreover, 

superelevations of about 15 µm were detected for this slurry type during slot die 

coating.  

Dried and calendered electrodes from different slurries exhibit similar differences in 

the edge shapes. In Fig. 14 SEM pictures of the side-edges of two electrodes are 

shown. In good agreement with the results for the wet films the electrode based on a 

capillary suspension has a characteristically sharp contour with a fast increase in 

thickness compared to the electrode fabricated from the conventional slurry. The 
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angle of elevation characterizing the increase of the coating layer thickness 

perpendicular to the edge is by a factor of three higher for the electrode made from 

the capillary suspension compared to the one originating from the regular slurry. 

 

3.5. Electrochemical Characterization 

 

The cycle performance of electrodes based on the two different slurry types is 

compared in Fig. 15 and Fig. 16. Cycling tests were executed with the anodes in 

three-electrode half cells against lithium at a C-rate of C/10 (Fig. 15). In addition, 

anodes were tested in Swagelok two-electrode half cells at varied C-rates against 

lithium (Fig. 16a) and 1C-1C cycling tests in full cells (Fig. 16b).  

In Fig. 15, are reported the voltage vs. capacity curves for both anode types at a 

charge/discharge rate of C/10 for the first cycle (Fig. 15a) and for the second and 

third cycle (Fig. 15b). During the first charging cycle a slight difference between both 

anode types in the voltage range between 0.7 and 0.1 V can be observed. The 

anode based on the slurry with added octanol shows a slightly higher irreversible 

capacity in comparison with the conventional anodes. This difference might be due to 

traces of octanol still present in the porous active material undergoing a reaction 

during the first charging cycle (more than 99% of the added octanol is evaporated 

during drying) resulting in a slightly lower efficiency value compared to the 

conventional anode (capillary suspension slurry: 91.9%, conventional slurry: 93.8%). 

During the first discharging cycle no differences between the two anodes are 

observable. Despite of this result for the first cycle, regarding the second and third 

charging/discharging cycles no differences are found for the two anode types 

(Fig. 15b). Obviously, no evidence for undesirable side reactions is observable after 
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the first charging cycle, i.e. the electrodes perform similar after the first charging 

cycle.  

In the two-electrode cell tests against lithium as counter-electrode we observed 

discharge capacity values of the cells close to the capacity of the material given by 

the supplier (310 mAh/g) at relatively low charging/discharging rates of C/10. With 

increasing C-rates the cells show a typical behavior of decreased capacity due to the 

high thickness (200µm) of the glass fiber separator. Using such types of separator 

the electrical resistance is increased as well as the diffusion limitation which explains 

the drop in capacity at higher C-rates [24]. No significant differences between the 

anodes based on the two slurry concepts are observable regarding the capacity 

during cell testing in half cells. The cell efficiency of both electrodes is high and the 

relatively low capacity value for the first cycle can be explained with an irreversible 

capacity loss due to the SEI formation [25]. Furthermore, the cycling stability over 

100 cycles was investigated in pouch cells against commercially available 

NMC-cathodes. Experiments were repeated five times for each anode with excellent 

reproducibility. The discharge capacity at 1C-1C charging/discharging in pouch cells 

is considerably higher compared to the tests in half cells. This can be explained by 

the lower thickness of the ceramic separator used in the pouch cell. Both electrodes 

show a good cycling stability over 100 cycles and a capacity loss of only about 2%. 

Although during the first charging cycle differences could be observed for the two 

anode types, the addition of secondary fluid to the electrode slurry does not have a 

negative impact on the cycling stability. Therefore the consequences of the octanol 

addition on the cycling behavior can be considered as negligible. Differences in the 

edge contour do not show up in the electrochemical properties of our cells since the 

edge areas had been cut off during the cell assembling step, except for the take-off 

lug.  
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4. Conclusions 

 

In this study we introduce a novel slurry concept based on capillary suspensions for 

the fabrication of Lithium-Ion electrodes. Addition of a secondary fluid, immiscible 

with the main fluid of the suspension, can create a sample spanning network 

controlled by capillary forces. This changes the rheological behavior of the 

suspension drastically, the low shear viscosity increases by orders of magnitude 

while the high shear viscosity remains unchanged.  

The utilized secondary fluid evaporates during drying and does not remain in the 

electrode layer in contrast to conventional rheological additives.  

Adjusting the rheological properties of the slurries by the use of capillary suspensions 

has beneficial consequences for the manufacturing of electrodes. Besides the 

improvement of the sedimentation stability, the coating behavior of slurries based on 

capillary suspensions is advantageous. High viscosity values in the low shear region 

result in superior edge contours and reduced cut-off waste. Since in industrial coating 

operations generally high shear stresses are applied and the flow properties in this 

range are not changed notably, established coating equipment can be used for 

processing slurries based on the novel formulation concept. Therefore, we consider 

its feasibility in industrial electrode fabrication as excellent.   

The mechanical properties of layers based on capillary suspension slurries are 

sufficient and cycling stability tests confirmed that the new paste formulation concept 

has a negligibly negative impact, observable only during the first formation cycle, on 

the electrochemical properties.  
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Figures 

 

Fig. 1. 

 

Fig. 1. Schematic drawing of two spherical solid particles connected by a liquid drop 
in the pendular state giving the essential parameters. The contact angle θS,B 
determines if the admixture is in the pendular state (θS,B < 90°) or capillary state 
(θS,B > 90°). 
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Fig. 2. 

 

Fig. 2. Particle size distribution and SEM image of the used graphite powder. Q3 and 
q3 represent the cumulated and differential particle size distribution determined by 
Fraunhofer diffraction. 
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Fig. 3. 

 

Fig. 3. Mixing procedure given as solid volume fraction over mixing time (exemplarily 
given for the 15 vol% slurry). Starting from high solid fractions water is stepwisely 
added during the dissolver mixing process in order to guarantee for a good 
deagglomeration of solid particles.  
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Fig. 4. 

 

Fig. 4. Schematic drawing of the slurry preparation processes: preparation of a slurry 
without added secondary fluid (left) and with added secondary fluid (right). 
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Fig. 5. 

 

Fig. 5. Two-dimensional sketch of the slot die’s cross section in coating direction 
(top) and in cross-web direction (bottom). 
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Fig. 6. 

 

Fig. 6. Schematic drawing of the experimental set-up to determine edge contours via 
laser triangulation subsequent to slot die coating and before drying the electrode 
layer.  

 

 

 

Fig. 7. 

 

Fig. 7. Characteristic texture of anode slurries (ϕtotal = 20 vol%: graphite, CB and 
CMC in water; the ratio of graphite to CB to CMC is 95.4 : 2.0 : 2.6) with different 
amounts of secondary fluid octanol as indicated above. 
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Fig. 8. 

 

Fig. 8. Viscosity curves (a) and low shear viscosity data (b) (symbols with error bars) 
for slurries containing different solid fractions and varied fractions of secondary fluid 
(without SBR addition). 
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Fig. 9. 

 

Fig. 9. Storage and loss modulus for a slurry containing 2 vol% of secondary fluid 
and a slurry without secondary fluid at a constant solid fraction (ϕsolid = 20 vol%).   
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Fig. 10. 

 

Fig. 10. Viscosity curves (a) and low shear viscosity data (b) for slurries after SBR 
addition and varied kneading times.  
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Fig. 11. 

 

Fig. 11. Electrode section before (top) and after (bottom) peel-testing. 
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Fig. 12. 

 

Fig. 12. Line load derived from peel-test as function of kneading time after SBR 
addition for slurries with addition of 2 vol% octanol and varied solid fraction (a). Line 
load comparison for conventional slurries without added octanol and capillary 
suspensions with 2 vol% added SBR, 10 min kneaded and varied solid fraction (b).    
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Fig. 13. 

 

Fig. 13. Edge contour of wet, coated slurries determined via laser triangulation.  

 

Fig. 14. 

 

Fig. 14. SEM crosscut pictures of the edge area for a conventional slurry (a) 
(ϕtotal = 20 vol%, ϕoctanol = 0 vol%)  and a capillary suspension slurry (b) 
(ϕtotal = 20 vol%, ϕoctanol = 2 vol%). 
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Fig. 15. 

 

Fig. 15. Voltage profile vs. capacity for anodes made from a capillary suspension 
slurry (ϕtotal = 20 vol%, ϕoctanol = 2 vol%) and a corresponding regular slurry 
(ϕtotal = 20 vol%, ϕoctanol = 0 vol%) derived from cycling tests at a charging/discharging 
rate of C/10 in a half cell with lithium as counter and reference electrode. a) First 
charge/discharge cycle, b) second and third charge/discharge cycle. 
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Fig. 16. 

 

Fig. 16. Discharge capacity and coulomb efficiency values for electrodes made from 
a capillary suspension slurry (ϕtotal = 20 vol%, ϕoctanol = 2 vol%) and a corresponding 
regular slurry (ϕtotal = 20 vol%, ϕoctanol = 0 vol%) derived from cycling tests. a) Results 
from tests executed against lithium as counter electrode in Swagelok cells using a 
200µm thick separator. Tests were performed at different C-rates as indicated in the 
figure. b) Results from cycling tests executed in pouch cells against commercially 
available NMC-cathodes at a charge-discharge rate of 1C-1C using a 30µm thick 
separator (formation cycles at lower C-rates are not shown). 
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• We present a new slurry concept based on capillary suspensions for Li-ion 

electrodes. 

• The slurry viscosity in the low shear region is tunable in a wide range without 

further additives. 

• The slurry viscosity in the high shear region remains unchanged which is 

desirable during coating.  

• Storage stability and shape accuracy during coating are improved significantly. 

• Good mechanical and electrochemical properties of the novel electrodes are 

shown.  


