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Abstract.

We consider the approximation of trigonometric operator functions that arise in the
numerical solution of wave equations by trigonometric integrators. It is well known
that Krylov subspace methods for matrix functions without exponential decay show
superlinear convergence behavior if the number of steps is larger than the norm of the
operator. Thus, Krylov approximations may fail to converge for unbounded opera-
tors. In this paper, we propose and analyze a rational Krylov subspace method which
converges not only for finite element or finite difference approximations to differential
operators but even for abstract, unbounded operators. In contrast to standard Krylov
methods, the convergence will be independent of the norm of the operator and thus of
its spatial discretization. We will discuss efficient implementations for finite element
discretizations and illustrate our analysis with numerical experiments.
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1 Introduction

Recently, the numerical solution of large time-dependent hyperbolic problems,
especially wave equations, has been an active area of research. Several new
schemes have been proposed and analyzed. Short time error bounds have been
shown in [9, 11, 12, 13, 14, 19, 28] while long time properties have been studied
in [2, 3, 4, 15, 16, 17]. All these integrators require the evaluation or approxi-
mation of the product of a trigonometric operator function with a vector. For
simplicity, we will restrict ourselves to functions arising in the solution of linear
wave equations, namely we consider the approximation of

(1.1) y(τ) = f(τ2A)v,

for

(1.2) f(x) = cos
√
x or f(x) = sinc

√
x,

where sincx = sinx/x. Here, A is a positive self-adjoined operator with com-
pact resolvent or a matrix that results from a finite difference or finite element
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discretization of such an operator and v is a function in a suitable Hilbert space.
However, our analysis applies to other matrix functions as well, in particular to
the functions arising in trigonometric integrators for nonlinear wave equations.

Recently, rational Krylov approximations for the approximation of functions
related to the matrix exponential operator have been studied in a number of
papers [1, 6, 7, 8, 20, 21, 22, 25, 31]. All these papers deal with the case that
the differential operator is symmetric or sectorial, so that the functions decay if
the eigenvalues become larger and larger. For such problems, the idea of using
rational approximations arises naturally since this leads to fast convergence of
small eigenvalues. For hyperbolic problems, the situation is less obvious, since
trigonometric functions do not decay (or do not decay fast in the case of the
sinc function) if the eigenvalues tend to infinity. Thus uniform approximations
of highly oscillatory functions on the whole positive real line will not be possible
for polynomials or rational functions. Theoretical results on the approximation
of the cosine function by rational functions can be found in [5].

A crucial idea for our method is to take the origin of the problem into account,
i.e. we exploit that weak solutions of the wave equation can be defined only if
the initial data is spatially smooth. Under this assumption, we will prove that
our algorithm allows to approximate the matrix cosine operator with a constant
number of steps, where the constant is independent of the norm of the matrix.
The main computational cost per step is the solution of a linear system, which
can be done either by a fast direct solver [21] or by a preconditioned iterative
solver [31]. For finite element discretizations, it turns out that the standard
method requires almost the same amount of work as the rational version.

The paper is organized as follows: We motivate our method in Section 2 and
recall some results from functional analysis. The main theorem and its proof
are given in Section 3. In Section 4, we discuss the implementation of our new
method and present some numerical experiments illustrating the efficiency and
the theoretical results.

2 Motivation

Let A be a positive self-adjoint operator with compact resolvent on a Hilbert
space H, so that A has an orthonormal basis of eigenvectors ei ∈ H with eigen-
values λi > 0, i = 1, 2, . . . . Fractional powers Aα are defined on appropriate
domains

D(Aα) :=

{
v =

∞∑

i=1

µiei ∈ H |
∞∑

i=1

|λi|2α|µi|2 <∞
}

= {v | ‖Aαv‖ <∞}.

Example 2.1. For the negative Laplacian, A = −∆, with homogeneous

Dirichlet boundary conditions on the unit square Ω = [0, 1]2, and H = L2(Ω) we

have D(A
1
2 ) = H1

0 (Ω) and D(A) = H1
0 (Ω) ∩H2(Ω).

For any function F bounded on [0,∞), one can define F (A) on H via

(2.1) F (A) v :=

∞∑

i=1

F (λi)µiei, v =

∞∑

i=1

µiei ∈ H.
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We consider trigonometric functions that appear in the solution of the linear
wave equation

(2.2) u′′ = Au, u(0) = u0, u′(0) = u′0.

For initial data u0 ∈ D(A) and u′0 ∈ V := D(A
1
2 ), (2.2) has a strong solution

u ∈ C2(R,H) ∩ C1(R, V ). For u0 ∈ V and u′0 ∈ H, (2.2) has a weak solution
u ∈ C1(R,H) ∩ C(R, V ), that satisfies

(2.3)
d2

dt2
(u(t), v) = a(u(t), v), for all v ∈ V,

with the inner product (·, ·) in H and a(u, v) = (A
1
2u,A

1
2 v) for u, v ∈ D(A

1
2 ). A

strong solution is also a weak solution and any weak solution can be written as

u(t) = cos(tA
1
2 )u0 + t sinc(tA

1
2 )u′0,

cf. [29]. The key observation here is that, despite of u being defined for all

u0 ∈ H and u′0 ∈ D(A− 1
2 ), u is a (weak) solution of (2.2) only for u0 ∈ D(A

1
2 )

and u′0 ∈ H. That is, all valid initial data u0 occurring in applications is at least

in D(A
1
2 ), while for u′0 only u′0 ∈ H is required. Note that this statement does

not change when we are dealing with nonlinear wave equations. It is at the very
heart of a weak solution to be in V .

For the approximation of y(τ) = f(τ2A)v by Krylov methods, it is known
from [18], that the approximation in the Krylov space

(2.4) Km(A, v) = span {v,Av,A2v, · · · , Am−1v}

starts to converge superlinearly after m ≥ ‖τA 1
2 ‖ steps. Moreover, it requires

the initial data to be in D(Am−1) which is much smoother than the natural
requirements for the initial data. The key idea now is to use a variant of a
rational Krylov method [26]. Following [21, 31] we approximate y(τ) in the
rational Krylov space

Km((I + γτ2A)−1, v), γ > 0.

The resolvent (I + γτ2A)−1 maps a vector v ∈ H into D(A), which implies that
this space is well defined for all v ∈ H and all m without additional smoothness
assumptions. However, this approximation will not converge with a convergence
rate independent of the norm of τA if the function to be approximated does not
decay. Therefore, it is necessary to exploit the additional smoothness of the data
appearing in wave equations. This can be done as follows. For v ∈ D(Aα), we
write

(2.5) f(A)v = ψα(A)Aαv + f(0)v, ψα(x) =
f(x) − f(0)

xα

and approximate ψα in the Krylov space Km((I + γτ2A)−1, Aαv). In short,
our new method is to proceed analogously to [31] for the function ψα and the
starting vector Aαv. For this method, a convergence rate will be shown.
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3 Convergence of rational Lanczos approximations

The Lanczos algorithm based on the Krylov subspace

Km((I + γτ2A)−1, Aαv), 0 ≤ α ≤ 1

yields an orthonormal basis Vm and the Lanczos recursion

(3.1) (I + γτ2A)−1Vm = VmTm + βmvm+1e
T
m,

where βVme1 = Aαv and V ∗
mVm = I. Here, A could be either a matrix or an

abstract operator. To improve the readability of the paper, we do not clearly
distinguish between matrices and operators in our notation. Following [31], we
use the relationship (2.5) between a given function f and ψα to define

gα
γ (x) := ψα

(( 1

x
− 1

) 1

γ

)
, x ∈ (0, 1].

Note that

(3.2) gα
γ ((I + γτ2A)−1) = ψα(τ2A).

This yields the approximation

yα
m(τ) ≈ y(τ) = f(τ2A)v

defined by

(3.3) yα
m(τ) = f(0)v + τ2αβVmψα

(
T̃m

)
e1, β = ‖Aαv‖

where

(3.4) T̃m =
1

γ
(T−1

m − I).

We will now prove that the artificial decay introduced by exploiting the smooth-
ness of the initial data enables us to derive a convergence rate. For simplicity,
we state the theorem for the most common cases only. From the following dis-
cussion it becomes clear that similar theorems can be derived for initial data in
different Hilbert spaces and for other functions f .

Theorem 3.1. For f(x) = cos
√
x, the approximation (3.3) satisfies

‖y1
m(τ) − cos(τA

1
2 )v‖ ≤ C(γ)

m
1
2

τ2 ‖Av‖, for v ∈ D(A),

‖y
1
2
m(τ) − cos(τA

1
2 )v‖ ≤ C(γ)

m
1
4

τ ‖A 1
2 v‖, for v ∈ D(A

1
2 ),

while for f(x) = sinc
√
x, the approximation satisfies

‖y
1
2
m(τ) − sinc(τA

1
2 )v‖ ≤ C(γ)

m
1
2

τ ‖A 1
2 v‖, for v ∈ D(A

1
2 ),

‖y0
m(τ) − sinc(τA

1
2 )v‖ ≤ C(γ)

m
1
4

‖v‖, for v ∈ H.
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The constants C(γ) are independent of τ and of A.

Note that the error bounds are valid even for unbounded operators A. The
convergence depends on the smoothness of the initial data only. For bounded
operators resulting from finite difference or finite element approximations of an
(unbounded) operator, these bounds show that the approximation is independent
of the spatial discretization. The convergence is sublinear (cf. Definition 4.1.1
in [23]). In applications, where we aim for using just a small number of Krylov
steps, sublinear convergence may actually be more favorable than linear conver-
gence.

Before we prove this theorem, we need some auxiliary results. First we rewrite
the Lanczos approximations (3.3) as

βVmg
α
γ (Tm)e1 = qm

(
(I + γτ2A)−1

)
Aαv

= pm(A)(I + γτ2A)−(m−1)Aαv,

with polynomials pm, qm ∈ Πm−1, where Πm−1 denotes the space of all polyno-
mials of degree m − 1 or less. As in [21, 31], the method can be alternatively
characterized as constructing iterates from the class of restricted rational ap-
proximations defined by

Rj
i (γ) = { p(x)

(1 + γx)i
| p ∈ Πj}.

Lemma 3.2. Let A be a self-adjoint positive operator and 0 ≤ α ≤ 1. Then

‖yα
m(τ) − f(τ2A)v‖ ≤ 2Em−1

m−1,α(γ) τ2α ‖Aαv‖,

where

Em−1
m−1,α(γ) := inf

r∈R
m−1

m−1
(γ)

sup
x≥0

∣∣∣∣
f(x) − f(0)

xα
− r(x)

∣∣∣∣

= inf
q∈Πm−1

sup
x∈(0,1]

∣∣gα
γ (x) − q(x)

∣∣ .

Proof. According to [27] we have

(3.5) q
(
(I + γτ2A)−1

)
Aαv = βVmq(Tm)e1 for all q ∈ Πm−1.

From (2.5) and (3.2) we obtain

1

τ2α

(
f(τ2A)v − yα

m(τ)
)

= ψα(τ2A)Aαv − βVmq(Tm)e1(3.6)

+ βVmq(Tm)e1 − βVmψα(T̃m)e1.(3.7)

We first bound the right-hand side of (3.6). Using (3.5) we have

∥∥∥ψα(τ2A)Aαv − q((I + γτ2A)−1)Aαv
∥∥∥ ≤ sup

x≥0

∣∣∣∣ψα(x) − q

(
1

1 + γx

)∣∣∣∣ ‖A
αv‖.
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α = 1 α = 1/2

j Ej
j (γopt) γopt Ej

j (γopt) γopt

1 4.5 · 10−2 1.64 · 10−1 3.6 · 10−1 2.00 · 100

5 8.7 · 10−3 2.70 · 10−2 8.5 · 10−2 3.10 · 10−2

10 3.2 · 10−3 8.52 · 10−3 5.6 · 10−2 1.74 · 10−2

15 1.6 · 10−3 2.73 · 10−3 4.5 · 10−2 1.18 · 10−2

20 1.0 · 10−3 1.79 · 10−3 3.7 · 10−2 1.40 · 10−2

Table 3.1: Numerical approximations to the optimal value of γ, γopt, and the corre-
sponding value E

j
j (γopt) for f(x) = cos

√
x

By (3.2) and (3.4), the difference in (3.7) can be bounded by

∥∥∥q(Tm) − gα
γ (Tm)

∥∥∥‖Aαv‖ ≤ sup
ex∈(0,1]

∣∣q(x̃) − gα
γ (x̃)

∣∣ ‖Aαv‖

≤ sup
x≥0

∣∣∣∣q
(

1

1 + γx

)
− ψα(x)

∣∣∣∣ ‖A
αv‖,

by setting x̃ = 1/(1 + γx). Since q ∈ Πm−1 was an arbitrary polynomial, the
statement of the lemma is proved.

Proof [of Theorem 3.1]. According to Lemma 3.2 it remains to bound

(3.8) Em−1
m−1,α(γ) = inf

q∈Πm−1

sup
x∈(0,1]

∣∣q(x) − gα
γ (x)

∣∣

for α = 1 and α = 1
2 , respectively. The error of this polynomial approximation

problem can be bounded by Jackson’s theorem (cf. [30]). We have

Em−1
m−1,α(γ) ≤ Cω

(
gγ

α;
1

m

)
,

where ω (gγ
α; δ) is the modulus of continuity of gγ

α on the interval [0, 1]. For
f(x) = cos

√
x, a straightforward but tedious calculation shows that ω (gγ

α; δ) ≤
C(γ)δ

α

2 , for α ∈ { 1
2 , 1}. For the f(x) = sinc

√
x we have ω (gγ

α; δ) ≤ C(γ)δ
α

2
+ 1

4 ,
for α ∈ {0, 1

2}.
For the practical application of this method one would like to choose γ such

that the required accuracy is attained after a minimal number of steps. Lemma 3.2
shows that a priori error bounds for the proposed method can be given by choos-
ing γ minimizing Em−1

m−1,α(γ). We have computed numerical approximations to
this optimal γ with the help of the Remez algorithm [24, Section 1.3] to solve the
polynomial approximation problem (3.8). For the cosine function, the results for
α = 1 and α = 1

2 are summarized in Table 3.1. For the sinc function, the results
for α = 1

2 and α = 0 are summarized in Table 3.2.
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α = 1/2 α = 0

j Ej
j (γopt) γopt Ej

j (γopt) γopt

1 1.6 · 10−1 1.65 · 100 2.1 · 10−1 5.00 · 10−1

5 2.0 · 10−2 3.13 · 10−1 8.6 · 10−2 1.49 · 10−2

10 7.8 · 10−3 2.15 · 10−1 5.2 · 10−2 6.58 · 10−3

15 5.2 · 10−3 1.04 · 10−1 3.8 · 10−2 3.51 · 10−3

20 3.8 · 10−3 1.02 · 10−1 3.0 · 10−2 2.20 · 10−3

Table 3.2: Numerical approximations to the optimal value of γ, γopt, and the corre-
sponding value E

j
j (γopt) for f(x) = sinc

√
x.

4 Numerical experiments

4.1 Pseudospectral discretization

We start to illustrate the new error bounds by considering the following simple
problem:

u′′ = −Au, u(0) = u0 ∈ V = H1
0 (0, 1),

u′(0) = u′0 ∈ H = L2(0, 1),

with A = −uxx,

u′0 =

{
x for 0 ≤ x ≤ 1

2
1 − x for 1

2 < x ≤ 1

and u0 = 0. The solution is given by u(τ) = τ sinc(τA
1
2 )u′0. The eigenpairs

(ϕk, λk) of A are

ϕk =
√

2 sin(kπx), λk = (kπ)2, k = 1, 2, · · · .

It is easy to check that u′0 ∈ D(A
1
2 ) = H1

0 (0, 1), but u′0 6∈ D(A). Galerkin
discretization with respect to the subspace VN = {ϕ1, · · · , ϕN} and orthogonal
projection onto the subspace lead to the following system of ordinary differential
equations

(4.1) u′′N = −ANuN , uN (0) = 0, u′N (0) = u′N,0,

where

AN = diag
(
π2, (2π)2, · · · , (Nπ)2

)
, u′N,0 =

{
2
√

2

(kπ)2
sin

(
kπ

2

)}

k=1,··· ,N

.

With respect to the relation between AN and A, one has

‖A
1
2

Nu
′
N,0‖2 ≤ ‖A 1

2u′0‖ = 1
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Figure 4.1: Plot of uN (τ) = τ sinc(τA
1
2

N )u′

N,0 for τ = 0.3 and N = 63 (solid) and of the
approximations with the standard Krylov space (dash-dotted) and the rational Krylov
space (circles) for 5 steps (left picture) and 10 steps (right picture).

independent of N . Here, ‖ · ‖2 denotes the Euclidean norm in C
N and as before,

‖·‖ denotes the norm of the Hilbert spaceH (in this exampleH = L2(0, 1)). This
is a particularly simple example of what has been discussed in Section 2. This
property, possibly with a constant different from one, holds for higher dimen-
sions, as well as for finite-difference (cf. [13]) and finite element discretizations
when the projections are properly chosen.

In a first experiment, we compare the standard Krylov approximation to the

solution yN (τ) = uN (τ) = τ sinc(τA
1
2

N )u′N,0 of (4.1) with the rational Krylov
approximation for dimensions N = 63 and N = 1023. The parameter in the
rational method has been chosen as γ = 0.214, which is the optimal value for
10 steps. However, the method is not sensitive with respect to choosing the
optimal γ. The results for τ = 0.3 are shown in Figures 4.1 and 4.2. In both
figures, the solid line corresponds to the exact solution. The dash-dotted line is
the approximation in the standard Krylov-space and the line marked with large
circles corresponds to the rational Krylov approximation.

Figure 4.1 shows the approximations for N = 63 and after 5 and 10 Krylov
steps, respectively. As expected, the rational method first finds the low modes
of the solution, whereas the standard Krylov method takes care of the high
frequencies first. This can be seen in the softening of the kink in the first few
iterations. With a finer spatial grid, more and more high frequencies come in
and slow down the convergence of the standard Krylov method, see Figure 4.2
for N = 1023.

These simple experiments illustrate the result of our main theorem, which
shows that the error bounds are independent of the norm of the matrix. However,
they are obviously effected by the smoothness of the data.
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Figure 4.2: Plot of uN (τ) = τ sinc(τA
1
2

N )u′

N,0 for τ = 0.3 and N = 1024 (solid) and
of the approximations with the standard Krylov space (dash-dotted) and the rational
Krylov space (circles) for 5 steps (left picture) and 10 steps (right picture).

4.2 Finite element discretization

Applying the Galerkin method with linear finite elements to the wave equation
of Example 2.1 in the weak form (2.3) gives

(4.2)
d2

dt2
(uh(t), vh) = a(uh(t), vh), for all vh ∈ Vh,

where Vh is the finite element space. For the nodal basis {ϕ1, ϕ2, . . . , ϕN}, the
finite element approximation can be written as

(4.3) uh(t) =

N∑

i=1

µi(t)ϕi, µh = (µi)
N
i=1.

The initial values are chosen such that

a(uh(0), vh) = a(u(0), vh), ∀vh ∈ Vh,

(u′h(0), vh) = (u′(0), vh), ∀vh ∈ Vh.

Inserting (4.3) into (4.2) gives the following system of ordinary differential equa-
tions for the coefficients µh(t)

Mhµ
′′
h(t) +Ahµh(t) = 0, µh(0) = µh,0, µ′

h(0) = µ′
h,0,

with the mass matrix Mh and the stiffness matrix Ah, which are both sym-
metric positive definite. µh,0 and µ′

h,0 are the coefficients of uh(0) and u′h(0),

respectively. The norm in the Hilbert space L2 is given by the Mh-norm of the

coefficients, that is ‖uh‖ = ‖µh‖Mh
:= ‖M

1
2

h µh‖2.
In order to apply our convergence result, we consider the transformation

(4.4) µ̃h(t) = M
1
2

h µh(t), Ãh = M
− 1

2

h AhM
− 1

2

h
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which leads to

(4.5) µ̃′′
h(t) + Ãhµ̃h(t) = 0,

with initial values

µ̃h(0) = M
1
2

h µh,0 =: µ̃h,0, µ̃′
h(0) = M

1
2

h µ
′
h,0 =: µ̃′

h,0.

One could interpret the transformation as choosing an orthonormal basis in
the finite-dimensional space. We will now approximate the solution of (4.5) for

µ̃′
h,0 = 0 by directly approximating yh(τ) = µh(τ) = cos(τÃ

1
2

h )µ̃h,0 with the
new rational Krylov method. The approximation to the coefficient vector µh(τ)
after m Krylov steps is denoted by µh,m(τ) which corresponds to the function
uh,m(τ).

The following two propositions are easy to prove.
Proposition 4.1. Let µh be the vector consisting of the coefficients of the

Ritz projection (4.3) of u. Then the finite element discretization satisfies

‖M− 1
2

h Ahµh‖2 = ‖Ãhµ̃h‖2 ≤ ‖Au‖, ∀u ∈ D(A),

where µ̃h and Ãh are defined in (4.4).
With this proposition and Theorem 3.1, the more important following propo-

sition can be shown.
Proposition 4.2. For u0 ∈ D(A) let uh(τ) be the finite element approxima-

tion of u(τ) = cos(τA)u0 and let uh,m(τ) be the rational Krylov approximation

of uh(τ). Then the error is bounded by

‖uh(τ) − uh,m(τ)‖ = ‖µh(τ) − µh,m(τ)‖Mh
≤ τ√

m
C‖Au0‖.

Note that the right-hand side is independent of the dimension of the finite element

subspace.

In a similar way as for the preconditioned conjugate gradient method (cf.
[10]), one can compute approximations to µh(t) without explicitly conducting
the transformation. This yields the following algorithm to compute the approx-
imation µh,m(τ) to µh(τ)

v = M−1
h Ahµh,0, w = Mhv, β =

√
vHw > 0;

v1 = v/β, w1 = w/β
form = 1, 2, . . . do

tm−1,m = tm,m−1

zm = (Mh + γτ2Ah)−1wm

tm,m = wH
mzm

ṽm+1 = zm − tm,mvm − tm−1,mvm−1

w̃m+1 = Mhṽm+1

tm+1,m =
√
ṽH

m+1w̃m+1

vm+1 = ṽm+1/tm+1,m, wm+1 = w̃m+1/tm+1,m

end for



RATIONAL APPROXIMATION TO TRIGONOMETRIC OPERATORS 11

Figure 4.3: Coarsest mesh used in first experiment

number of grid points 9 961 3969 16129
error 1.9 · 10−9 1.5 · 10−8 1.3 · 10−8 1.3 · 10−8

Table 4.1: Exact error after 10 rational Krylov steps for τ = 0.3 for the second exper-
iment

The algorithm requires the solution of one linear system with the coefficient
matrix Mh + γτ2Ah per step and one solve with Mh in the initial step. The
algorithm corresponds to the Lanczos iteration

(Mh + γτ2Ah)−1MhVm = VmTm + βmvm+1e
T
m,

where Vm = [v1 . . . vm] and Tm = (ti,j)
m
i,j=1 is a tridiagonal matrix. In finite

element approximations, the solution of such linear systems can be computed
efficiently by the preconditioned conjugate gradient method. The approximation

to yh(τ) = µh(τ) = M
− 1

2

h cos(τÃ
1
2

h )µ̃h,0 for α = 1 is then given by

y1
h,m(τ) = µh,m(τ) = µh,0 + τ2 Vmg

1
γ(Tm)e1.

To illustrate our theoretical convergence results, we consider (4.2) in the two-
dimensional unit square for the Laplace operator with homogeneous Dirichlet
boundary conditions and initial values chosen as

u0 : (x, y) 7→ x(1 − x)y(1 − y), u′0 = 0.

The initial value u0 is in D(A) but not in D(A2). We use a sequence of refined
regular triangulations. The coarsest grid is shown in Figure 4.3. In Table 4.2,
we present the error of ‖uh(0.3) − uh,10(0.3)‖ obtained by the rational Krylov
method with γ being optimal for 10 steps. As predicted by Proposition 4.2, the
error is independent of the spatial discretization.

In a second experiment, we use the domain and the mesh with 546 nodes,
shown in Figure 4.4, as well as a coarser mesh with 43 nodes and a finer mesh
with 5723 nodes. We use the same initial data as before on the inner square of
the domain and zero elsewhere. Then we compare the rational Krylov method
with the standard Krylov method, which can be applied to (4.5) in an analogous

way (i.e. without using M
1
2

h explicitly). The standard Krylov method requires
the solution of a linear system with Mh in each step whereas the rational Krylov
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Figure 4.4: Mesh and domain for the second experiment.

method requires the solution of a linear system with Mh + γτ2Ah. We used a
direct solver for both methods, so that both methods required roughly the same
computational work per step. The error ‖uh(0.3)−uh,m(0.3)‖ for both methods
and for the three different meshes is presented in Figure 4.5.
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