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1. Introduction

In this paper we present an error analysis for a family of exponential integrators for the

solution of systems of second-order differential equations

y′′(t) = −Ay(t) + g(y(t)), y(t0) = y0, y′(t0) = y′0, (1)

where A = Ω2 is a positive semi-definite symmetric matrix of arbitrarily large

norm. Such problems have been studied in a number of papers recently, see, e.g.,

[1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. So far, error bounds which do not

deteriorate when the product of the step size with the frequencies of the problem become

large or, in the case of resonances, close to multiples of π, have been proved for two

different schemes. The first one is the mollified impulse method proposed and analysed by

Garćıa-Archilla, Sanz-Serna and Skeel [6]. Using a different technique, Hochbruck and

Lubich [13] considered a Gautschi-type exponential integrator and proved error bounds

for a two-step formulation of the scheme. The analysis in [13] also gave new insight into

the convergence of the mollified impulse method.

Recently, the implication of geometric properties like symplecticity, symmetry, or

reversibility on the long-time behaviour of the schemes when applied to highly-oscillatory

problems has been studied [3, 11, 12]. As a first attempt in understanding these

phenomena, a model problem, which is a special case of (1),

y′′(t) = −

[
0 0

0 ω2I

]
y(t) + g(y(t)), y(t0) = y0, y′(t0) = y′0, (2)

with blocks of arbitrary dimension, was proposed. The behaviour of a whole family

of exponential integrators, which includes the mollified impulse method [6] and the

Gautschi-type integrator [13] as special cases, was analysed in detail for this model

problem in [11]. The analysis showed that neither of the latter two methods is the best

possible with respect to long-time behaviour. However, to the best of our knowledge,

error bounds for the most promising methods for the general problem (1) are not known

so far. Results based on the modulated Fourier expansion [3] have been proved for two-

step methods for the model problem (2) only [12, Section XIII.4]. They can probably

be generalised to the case that there is a finite number of large frequencies by using the

techniques of [4].

In the present paper, we will characterise all possible methods of the family proposed

in [12] which allow second-order error bounds for the general problem (1) by presenting

a unified error analysis for the whole family of methods. The techniques used in [6] and

[13] do not extend to this general class in an obvious way. In contrast to the analysis of

[13], where the two-step version of the Gautschi-type method is considered, the present

paper deals with the one-step formulation. A major advantage of our new analysis is that

it does not require bounds for point-wise products of matrices and therefore, generalises

to abstract differential equations, where A is an unbounded operator with infinitely

many large eigenvalues directly. A conjecture posed in [13] which states that the two-

step formulation of the Gautschi-type methods allows for error bounds independent of
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the dimension of the problem was proved by Grimm in [9].

Our paper is organised as follows: we will recall the family of methods considered

here in Section 2. The main theorem and a new choice of filter function is presented

in Section 3. In order to compare the performance of our scheme to known results in

the literature, in particular in [12, Chapter XIII], we have chosen to show the numerical

behaviour of the methods by applying it to the Fermi–Pasta–Ulam problem. The results

are presented in Section 4. It turns out that, for the Fermi–Pasta–Ulam problem, our

new method is the only one which is of second order and conserves the energy for long-

time intervals. Since the proof of our main theorem is quite involved it is postponed to

Section 5.

2. The integration scheme

The variation-of-constants formula
[
y(t)

y′(t)

]
=

[
cos(t− t0)Ω Ω−1 sin(t− t0)Ω

−Ω sin(t− t0)Ω cos(t− t0)Ω

] [
y(t0)

y′(t0)

]

+
∫ t

t0

[
Ω−1 sin(t− s)Ω

cos(t− s)Ω

]
g(y(s)) ds

suggests the following numerical integration schemes for the solution of (1)
[
yn+1

y′n+1

]
= R(hΩ)

[
yn

y′n

]
+




1
2
h2Ψg(Φyn)

1
2
h
(
Ψ0g(Φyn) + Ψ1g(Φyn+1)

)

 , (3)

where

R(hΩ) :=

[
coshΩ Ω−1 sinhΩ

−Ω sinhΩ coshΩ

]
(4)

and

Φ = φ(hΩ), Ψ = ψ(hΩ), Ψ0 = ψ0(hΩ), Ψ1 = ψ1(hΩ).

The functions φ, ψ, ψ0, and ψ1 are even analytic functions, with

φ(0) = ψ(0) = ψ0(0) = ψ1(0) = 1,

bounded on the non-negative real axis. By exchanging n ↔ n + 1 and h ↔ −h in the

method, it can be seen that the method is symmetric if and only if

ψ(ξ) = sinc(ξ)ψ1(ξ), ψ0(ξ) = cos(ξ)ψ1(ξ), (5)

where sinc ξ = sin ξ/ξ. A symmetric method can be cast into an equivalent two-step

formulation

yn+1 − 2 coshΩ · yn + yn−1 = h2Ψg(Φyn), (6)

with starting values

y0, y1 = coshΩ · y0 + Ω−1 sinhΩ · y′0 +
1

2
h2Ψg(Φy0).
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The methods are equivalent with these initial values only. Multistep methods are usually

considered to be of second order if they are of second order for arbitrary starting values

that are close enough to the exact solution. According to this definition, one-step

methods (3) and their two-step formulation (6) are not equivalent with respect to their

non-smooth order. For example, the mollified impulse method is of second order as a

one-step method, but if one uses the exact solution as starting values y0 and y1, the

mollified impulse method is not of second order as a two-step method, cf. [13, Section 7].

Another example is the Gautschi-type exponential integrator (6) in which

ψ(ξ) = sinc2(
1

2
ξ), φ(ξ) = sinc(ξ)

(
1 +

1

3
sin2(

1

2
ξ)
)
. (7)

This method is of non-smooth second order for arbitrary starting values close enough

to the exact solution. However, if we rewrite this method in the one-step form (3), then

the function ψ satisfying the symmetry relation (5) yields a filter function ψ1 that has

singularities at odd integer multiples of π. This prevents the method from being of

order two as a one-step method in the form (3). A different one-step formulation of the

Gautschi-type method is given in [13]. Our paper focuses on one-step methods.

Symplectic methods possess a very good energy preservation for small step sizes h,

whenever (1) is a Hamiltonian system. The methods are symplectic, if and only if

ψ(ξ) = sinc(ξ)φ(ξ), (8)

cf. [12, p. 417]. However, with respect to oscillatory differential equations, where the

product of the highest frequency in the system with the step size h is large, the situation

is different. The analysis in [11] for linear problems (2), i.e. g(y) = By, satisfying the

finite-energy condition

1

2
‖y′(t)‖2 +

1

2
‖Ωy(t)‖2 ≤

1

2
K2, t0 ≤ t ≤ t0 + T, (9)

shows that the numerical method conserves the total energy up to O(h) for all values

of hω, if and only if

ψ(ξ) = sinc2(ξ)φ(ξ), (10)

see [12, p. 449]. The relations (8) and (10) cannot be satisfied simultaneously, and

symmetric methods that satisfy (10) are therefore expected to possess favourable energy-

conservation properties. It is not clear to us whether condition (10) is sufficient to

guarantee energy preservation for general systems (1). But the analysis in [11] clearly

shows that these methods are at least preferable to symplectic methods for oscillatory

differential equations.

3. Finite-time error analysis

The result stated in this section makes no smoothness assumptions about the highly-

oscillatory solution y except (9). The even analytic functions defining the integrator (3)

are assumed to be bounded on the non-negative real axis, i.e. χ = φ, ψ, ψ0, ψ1 satisfy

max
ξ≥0

|χ(ξ)| ≤M1, (11)
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for some constant M1. Moreover, we assume φ(0) = 1, thus the existence of a constant

M2 such that

max
ξ≥0

∣∣∣∣∣
φ(ξ) − 1

ξ

∣∣∣∣∣ ≤M2. (12)

In addition, we assume

max
ξ≥0

∣∣∣∣∣
1

sin ξ
2

(
sinc2 ξ

2
− ψ(ξ)

)∣∣∣∣∣ ≤M3 (13)

and

max
ξ≥0

∣∣∣∣∣
1

ξ sin ξ
2

(sinc ξ − χ(ξ))

∣∣∣∣∣ ≤M4, χ = φ, ψ0, ψ1. (14)

The assumptions made so far are necessary to prove second-order error bounds for the

positions yn ≈ y(tn). In order to verify first order error bounds for the velocities, we

assume

max
ξ≥0

|ξ ψ(ξ)| ≤M5, max
ξ≥0

∣∣∣∣∣
ξ

sin ξ
2

(
sinc2 ξ

2
− ψ(ξ)

)∣∣∣∣∣ ≤M6, (15)

and

max
ξ≥0

∣∣∣∣∣
1

sin ξ
2

(sinc ξ − ψi(ξ))

∣∣∣∣∣ ≤M7, i = 0, 1. (16)

(16) is a consequence of (14), but possibly with M7 > M4. The constants M1 to M7

only depend on the choice of the analytic functions. It is easy to find analytic functions

such that

M := max
i=1,...,7

Mi

is a small constant; examples will be given in Section 4.

Theorem 1. In (1), let A = Ω2 be an arbitrary symmetric positive semi-definite matrix.

Suppose g, gy and gyy are bounded in the Euclidean norm or the norms induced by the

Euclidean norm, respectively. Assume the solution y satisfies the finite-energy condition

(9). If the even analytic functions of scheme (3) satisfy (11), (12), (13), and (14), then

‖y(tn) − yn‖ ≤ h2C, t0 ≤ tn = t0 + nh ≤ t0 + T.

The constant C only depends on T,K, M1, . . . ,M4, ‖g‖, ‖gy‖, and ‖gyy‖. If, in addition,

(15) and (16) are satisfied, then

‖y′(tn) − y′n‖ ≤ h C̃, t0 ≤ tn = t0 + nh ≤ t0 + T.

The constant C̃ only depends on T , K, M , ‖g‖, ‖gy‖, and ‖gyy‖.

The proof of this theorem will be given in Section 5 below.

It is important to note that the constants C, C̃ only depend on the finite energy

of the exact solution, the choice of the filter functions, and the smoothness of the

nonlinearity g but not on the norm of A or on higher derivatives of the exact solution.

This property is very desirable. For example, if system (1) is a semi-discretisation of a
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wave equation, then the bounds are independent of the mesh size used for the spatial

discretisation.

If the method is symmetric (5) and symplectic (8), with φ(ξ) vanishing at integer

multiples of π, then (11)–(16) are satisfied. These are the assumptions stated in [6] and

thus the results therein are a special case of our general Theorem 1.

However, it was shown in [11], that symmetric and symplectic methods cannot

preserve the energy for linear systems (1) with g(y) = By for large step sizes.

Interestingly, a symmetric method which additionally satisfies (10) instead of the

symplecticity condition (8), with φ(ξ) vanishing at integer multiples of π, fulfils (11)–

(16). Therefore, the method with

φ(ξ) = sinc ξ, ψ(ξ) = sinc2ξ φ(ξ), (17)

where ψ0 and ψ1 chosen such that the method is symmetric (5), fulfils all conditions of

Theorem 1 and thus allows second-order error bounds independent of the frequencies.

Moreover, it satisfies (10), so that long-time energy preservation similar to the method

proposed in [11] can be expected. The latter method does not allow a second-order

error bound independent of the norm of Ω. This can be seen in Figure 2 in the plot

labelled (E), where the resonances appear exactly at the points where condition (14)

for φ(ξ) = 1 fails to hold. A numerical comparison of the new method with existing

schemes is given in the following section.

4. Numerical Experiment

We consider the Fermi–Pasta–Ulam problem, since this allows comparisons to earlier

work, in particular in [12]. We refer the reader to [12] for a detailed description of this

problem. To avoid confusion with the notation therein, we denote our new method

with (G). Since we only consider symmetric methods, it is enough to give the analytic

functions ψ and φ to determine the one-step method uniquely:

(A) ψ(ξ) = sinc2(1
2
ξ) φ(ξ) = 1 Gautschi [7]

(B) ψ(ξ) = sinc(ξ) φ(ξ) = 1 Deuflhard [5]

(C) ψ(ξ) = sinc(ξ)φ(ξ) φ(ξ) = sinc(ξ) Garćıa-Archilla et al. [6]

(D) ψ(ξ) = sinc2(1
2
ξ) φ(ξ)of (7) Hochbruck, Lubich [13]

(E) ψ(ξ) = sinc2(ξ) φ(ξ) = 1 Hairer, Lubich [11]

(G) ψ(ξ) = sinc3(ξ) φ(ξ) = sinc(ξ)

Figure 1 shows the maximum error of the total energy as a function of the scaled

frequency hω on the interval [0, 1000]. Only methods (E) and (G) show a uniformly

good energy preservation for all frequencies. To compare the accuracy, we used the

Fermi–Pasta–Ulam problem with very stiff springs, ω = 1000. Methods (C), (D), and

(G) are the only methods with uniformly good accuracy for all frequencies, as can be

seen in Figure 2. Method (G) is the only method that has a good behaviour with

respect to accuracy and energy conservation uniformly in the frequencies for the Fermi–

Pasta–Ulam problem. Theorem 1 and the result about the conservation of energy for
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linear problems in [11] suggested this new method. The Fermi–Pasta–Ulam problem

has another nearly conserved quantity, the oscillatory energy

I = I1 + I2 + I3 with Ij =
1

2
(y′)2

2,j +
1

2
ω2y2

2,j.

Figure 3 shows the maximum error of the oscillatory energy. It can be seen that method

(G) is the only method that has a uniformly good preservation of the oscillatory energy

for hω bounded away from zero. This good performance compared to the other methods

comes as a surprise. In [11], Hairer and Lubich could show that no method can uniformly

conserve the oscillatory energy in an interval of length more than 2π for linear systems.

Methods (A)-(F) of [11] show severe resonances for the oscillatory energy in any interval

of length more than 2π in the nonlinear Fermi–Pasta–Ulam problem. The new method

(G) does not show severe resonances in the oscillatory energy for the Fermi–Pasta–Ulam

Problem even on a finer temporal grid than that shown in the figure.
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Figure 1. Maximum error of total energy on the interval [0, 1000] as a function of hω

(step size h = 0.02).

5. Proof of Theorem 1

The proof of Theorem 1 is tedious and split into several lemmas. In the following, C is a

generic constant, depending only on the constants mentioned in Theorem 1, that takes

on different values on different occurrences. By assumption, Ω = A1/2 is symmetric,

positive semi-definite. If Ω is singular, Ω−1 sin tΩ is interpreted as t sinc tΩ, which is

defined for an arbitrary matrix Ω.

Proof of Theorem 1. Substitution of the exact solution into the integration scheme (3)

with R = R(hΩ) gives
[
y(tn+1)

y′(tn+1)

]
= R

[
y(tn)

y′(tn)

]
+




1
2
h2Ψg(Φy(tn))

1
2
h
(
Ψ0g(Φy(tn)) + Ψ1g(Φy(tn+1))

)

+

[
dn

d′n

]
,
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Figure 2. Global error in positions at t = 1 of the methods versus step size
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Figure 3. Maximum deviation of the oscillatory energy on the interval [0, 1000] as a

function of hω (step size h = 0.02).

with the defects dn and d′n. Subtraction of equation (3) and summation leads to
[
en+1

e′n+1

]
= Rn+1

[
e0
e′0

]
+

n∑

j=0

Rn−j

[
1
2
h2ΨFjej

1
2
hΨ0Fjej + 1

2
hΨ1Fj+1ej+1

]
+

[
Dn

D′
n

]
, (18)

where en := y(tn) − yn and e′n := y′(tn) − y′n,

Fn :=
∫ 1

0
gy

(
Φ(yn + uen)

)
du · Φ, ‖Fn‖ ≤ ‖gy‖M1,

and
[
Dn

D′
n

]
=

n∑

j=0

[
cos(n− j)hΩ Ω−1 sin(n− j)hΩ

−Ω sin(n− j)hΩ cos(n− j)hΩ

] [
dj

d′j

]
. (19)
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The proof proceeds as follows: we start by giving expressions for dj and d′j in Lemma 1

and Lemma 2, respectively. Using these expressions, we provide bounds for the four

sums in the right-hand side of (19) in Lemmas 3–6. These bounds yield

‖Dn‖ ≤ Ch2 and ‖D′
n‖ ≤ Ch.

Due to e0 = e′0 = 0 the recursion (18) reads

en+1 = h
n∑

j=1

Ljej +Dn,

where

Lj :=
1

2
(h cos(n− j)hΩ · Ψ + (n− j)h sinc(n− j)hΩ · Ψ0

+ (n+ 1 − j)h sinc(n+ 1 − j)hΩ · Ψ1))Fj.

This yields

‖Lj‖ ≤
3

2
T‖gy‖M

2
1 ,

so that ‖en‖ ≤ Ch2 follows from Gronwall’s Lemma. Assumption (15) and the recursion

for e′n finally shows ‖e′n‖ ≤ Ch.

Lemma 1. The defects dn can be written as

dn =
1

2
h2

(
sinc2h

2
Ω − Ψ

)
g(Φy(tn)) + h3zn,

with

‖zn‖ ≤ C and ‖hΩzn‖ ≤ C.

Thereby C only depends on K, ‖gy‖, and M2.

Proof. With the help of the variation-of-constants formula, the defects dn are given as

dn =
∫ tn+1

tn
Ω−1 sin ((tn+1 − s)Ω) g(y(s)) ds−

1

2
h2Ψg(Φy(tn)).

Transforming the integration interval to [0, 1], applying the variation-of-constants

formula and Taylor expansion for g leads to the representation given above with

zn =
∫ 1

0
(1 − s)sinch(1 − s)Ω ·

(

∫ 1

0
gy(y(tn) + u(y(tn + hs) − y(tn))) du

[
s
∫ 1

0
y′(tn + hsv) dv

]

−
∫ 1

0
gy(y(tn) + u(Φ − I)y(tn)) du

[Φ − I

hΩ
Ωy(tn)

])
ds.

Hence we have

‖zn‖ ≤
1

2

(
1

3
+M2

)
‖gy‖K.

The bound for ‖hΩzn‖ follows by multiplying the equation above with hΩ since (1− s)

drops out and sinc turns into sin.
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Lemma 2. The defects d′n can be written as

d′n =
1

2
h
(
sinchΩ − Ψ0

)
g(Φy(tn)) +

1

2
h
(
sinchΩ − Ψ1

)
g(Φy(tn + h))

+
1

2
h
∫ 1

0
cosh(1 − s)Ω · gy(Φy(tn)) ·
[(

coshsΩ − Φ
)
y(tn) + Ω−1 sinhsΩ · y′(tn)

]
ds

+
1

2
h
∫ 1

0
cosh(1 − s)Ω · gy(Φy(tn+1)) ·
[(

cosh(s− 1)Ω − Φ
)
y(tn + h)

+ Ω−1 sinh(s− 1)Ω · y′(tn + h)

]
ds+ h3z′n,

with ‖z′n‖ ≤ C. Here C only depends on K, ‖g‖, ‖gy‖, ‖gyy‖, and M2.

Proof. The defects are given as

d′n =
∫ h

0
cos(h− s)Ω · g(y(tn + s)) ds−

1

2
h
(
Ψ0g(Φy(tn)) + Ψ1g(Φy(tn+1))

)

=
1

2
h
(
sinchΩ − Ψ0

)
g(Φy(tn)) +

1

2
h
(
sinchΩ − Ψ1

)
g(Φy(tn + h))

+
1

2
h
∫ 1

0
cosh(1 − s)Ω · (g(y(tn + hs)) − g(Φy(tn))) ds

+
1

2
h
∫ 1

0
cosh(1 − s)Ω · (g(y(tn + hs)) − g(Φy(tn + h))) ds.

Taylor expansion for g and the variation-of-constants formula lead to the representation

given above with ‖z′n‖ ≤ 1
6
‖g‖‖gy‖ + ‖gyy‖ (1 +M2)

2K2.

Lemma 3. For n with 0 ≤ (n+ 1)h ≤ T , it holds that
∥∥∥∥∥∥

n∑

j=0

cos(n− j)hΩ · dj

∥∥∥∥∥∥
≤ Ch2,

where C depends on K, T , ‖g‖, ‖gy‖, M1, M2, and M3.

Proof. According to Lemma 1, we have
∥∥∥∥∥∥
h3

n∑

j=0

cos(jhΩ) · zn−j

∥∥∥∥∥∥
≤ TCh2,

where C depends on K,‖gy‖ and M2. Thus it remains to bound

1

2
h2

n∑

j=0

cos(jhΩ)

(
sinc2h

2
Ω − Ψ

)
gn−j =:

1

2
h2un, gj = g(Φy(tj)).
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By partial summation, un can be written as

un = En(hΩ)g0 +
n−1∑

j=0

Ej(hΩ)(gn−j − gn−j−1),

where

Ej(ξ) :=
1

2 sin( ξ
2
)

(
sinc2 ξ

2
− ψ(ξ)

)(
sin(jξ +

ξ

2
) + sin

ξ

2

)
.

Due to (13), we have ‖Ej(hΩ)‖ ≤M3 and therefore

‖un‖ ≤M3‖g‖ +
n−1∑

j=0

M3M1‖gy‖hK ≤M3(‖g‖ + TM1‖gy‖K).

This completes the proof.

Lemma 4. For n with 0 ≤ (n+ 1)h ≤ T , it holds that
∥∥∥∥∥∥

n∑

j=0

Ω−1 sin(n− j)hΩ · d′j

∥∥∥∥∥∥
≤ Ch2,

where C depends on T , K, ‖g‖, ‖gy‖, ‖gyy‖, M1, M2, and M4.

Proof. According to Lemma 2, it remains to bound
n∑

j=0

Ω−1 sin(n− j)hΩ ·

{
1

2
h
(
sinchΩ − Ψ0

)
g(Φy(tj)) (20)

+
1

2
h
(
sinchΩ − Ψ1

)
g(Φy(tj + h)) (21)

+
1

2
h
∫ 1

0
cosh(1 − s)Ω · gy(Φy(tj)) · (22)

[(
coshsΩ − Φ

)
y(tj) + Ω−1 sinhsΩ · y′(tj)

]
ds

+
1

2
h
∫ 1

0
cosh(1 − s)Ω · gy(Φy(tj+1)) ·

[(
cosh(s− 1)Ω − Φ

)
y(tj + h) (23)

+ Ω−1 sinh(s− 1)Ω · y′(tj + h)
]
ds

}
.

The first and the second sum within the curly braces, (20) and (21), can be seen to be

bounded by partial summation as in the lemma above. The third and the fourth term,

(22) and (23), require more work. The third term (22) can be written as

an = a(1)
n + a(2)

n ,

where Gj = gy(Φy(tj)) and

a(1)
n =

1

2
h3

n∑

j=0

sin(n− j)hΩ ·
∫ 1

0
(1 − s)

(
cosh(1 − s)Ω − I

h(1 − s)Ω

)
Gj·

[
s
coshsΩ − I

hsΩ
Ωy(tj) +

I − φ(hΩ)

hΩ
Ωy(tj) + s sinchsΩ · y′(tj)

]
ds,
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and

a(2)
n =

1

2
h

n∑

j=0

Ω−1 sin(n− j)hΩ ·
∫ 1

0
Gj

[
(coshsΩ − Φ)y(tj) + Ω−1 sinhsΩ · y′(tj)

]
ds.

Here, we wrote 1/Ω instead of Ω−1 in order to improve the readability. We have

‖a(1)
n ‖ ≤

1

2
h2T

(
1

3
+M2

)
‖gy‖K.

Analogously, the fourth term, (23), can be written as

bn = b(1)n + b(2)n ,

where

b(1)n =
1

2
h3

n∑

j=0

sin(n− j)hΩ ·
∫ 1

0
(1 − s)

(
cosh(1 − s)Ω − I

h(1 − s)Ω

)
Gj+1·

[
(s− 1)

cosh(s− 1)Ω − I

h(s− 1)Ω
Ωy(tj+1) +

I − φ(hΩ)

hΩ
Ωy(tj+1)

+(1 − s) sinchsΩ · y′(tj+1)
]
ds

and

b(2)n = 1
2
h

n∑

j=0

Ω−1 sin(n− j)hΩ·

∫ 1

0
Gj+1

[
(cosh(s− 1)Ω − Φ)y(tj+1) + Ω−1 sinh(s− 1)Ω · y′(tj+1)

]
ds.

One readily observes

‖b(1)n ‖ ≤
1

2
h2T

(
2

3
+M2

)
‖gy‖K.

Hence it remains to bound a(2)
n + b(2)n . Using

∫ 1

0
coshsΩ ds =

∫ 1

0
cosh(s− 1)Ω ds = sinchΩ

and
∫ 1

0
Ω−1 sinhsΩ ds = −

∫ 1

0
Ω−1 sinh(s− 1)Ω ds =

h

2
sinc2h

2
Ω,

one can rewrite

a(2)
n + b(2)n =

1

2
h

n∑

j=0

Wn−j Gj (sinchΩ − Φ) y(tj) (24)

+
1

2
h

n∑

j=0

Wn−j Gj+1 (sinchΩ − Φ) y(tj+1) (25)

+
h2

4

n∑

j=0

Wn−j Gj sinc2h

2
Ω · y′(tj) (26)

−
h2

4

n∑

j=0

Wn−j Gj+1 sinc2h

2
Ω · y′(tj+1), (27)
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where

Wj := Ω−1 sin jhΩ.

Since (26)–(27) can be written as

h2

4
WnG0 sinc2h

2
Ω · y′(t0) +

h2

4

n∑

j=1

(Wn−j −Wn+1−j) Gj sinc2h

2
Ω · y′(tj)

and

‖Wn−j −Wn+1−j‖ =
∥∥∥∥h
∫ 1

0
cosh(n− j + s)Ω ds

∥∥∥∥ ≤ h and ‖Wj‖ ≤ T,

the sums in (26) and (27) are bounded. After once more applying the variation-of-

constants formula to y(tj) in (24) and using a trigonometric identity, one has to bound

h2

2

n∑

j=0

Wn−j Gj (sinchΩ − Φ)
1

hΩ
cos(tj − t0)Ωw

1
j

+
h2

2

n∑

j=0

Wn−j Gj (sinchΩ − Φ)
1

hΩ
sin(tj − t0)Ωw

2
j ,

where

w1
j := Ωy(t0) +

∫ tj

t0
sin(t0 − s)Ω · g(y(s)) ds,

w2
j := y′(t0) +

∫ tj

t0
cos(t0 − s)Ω · g(y(s)) ds.

Since

‖Wj+1 −Wj‖ ≤ hC and ‖w1,2
j+1 − w1,2

j ‖ ≤ hC,

partial summation with the sums
n∑

j=0

(sinc ξ − φ(ξ))
1

ξ
cos jξ and

n∑

j=0

(sinc ξ − φ(ξ))
1

ξ
sin jξ,

(due to (14)), shows the bound. (25) is bounded analogously.

Lemma 5. For n with 0 ≤ (n+ 1)h ≤ T , it holds that
∥∥∥∥∥∥

n∑

j=0

Ω sin(n− j)hΩ · dj

∥∥∥∥∥∥
≤ Ch,

where C depends on T , K, ‖g‖, ‖gy‖, M1, M2, and M6.

Proof. According to Lemma 1,
∥∥∥∥∥∥
h2

n∑

j=0

sin jhΩ · (hΩzn−j)

∥∥∥∥∥∥
≤ hTC,

where C depends on K, ‖gy‖, and M2, we have to bound

1

2
h

n∑

j=0

(hΩ) sin jhΩ ·

(
sinc2h

2
Ω − Ψ

)
gn−j =:

1

2
hvn.
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By partial summation, vn can be written as

vn = E ′
n(hΩ)g0 +

n−1∑

j=0

E ′
j(hΩ)(gn−j − gn−j−1),

where

E ′
j(ξ) :=

−ξ

2 sin( ξ
2
)

(
sinc2 ξ

2
− ψ(ξ)

)(
cos(jξ +

ξ

2
) − cos

ξ

2

)
.

Due to (15), we have ‖E ′
j(hΩ)‖ ≤M6 and therefore

‖vn‖ ≤M6‖g‖ +
n−1∑

j=0

M6M1‖gy‖hK ≤M6(‖g‖ + TM1‖gy‖K)

yields the desired result.

Lemma 6. For n with 0 ≤ (n+ 1)h ≤ T , it holds that
∥∥∥∥∥∥

n∑

j=0

cos(n− j)hΩ · d′j

∥∥∥∥∥∥
≤ Ch,

where C depends on T , K, ‖g‖, ‖gy‖, ‖gyy‖, M1, M2, and M7.

Proof. From Lemma 2 we have
n∑

j=0

cos(n− j)hΩ ·

{
1

2
h
(
sinchΩ − Ψ0

)
g(Φy(tj))

+
1

2
h
(
sinchΩ − Ψ1

)
g(Φy(tj + h))

}
.

This can be bounded by using partial summation.
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