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Abstract

Nonlinear wave motion in dispersive media is solved numerically. The moddikeagp
laser propagation in a relativistic plasma. The latter causes, besidessdisp&onlinear
effects due to relativistic mass variation in the presence of strong lasespAlsew variant
of the Gautschi-type integrator for reducing the number of time steps is ggdpEs a
fast solver for such nonlinear wave—equations. In order to redwecaumber of spatial
grid points, a physically motivated quasi—envelope approach (QEA) ishmtex. The new
method turns out to reduce the computational time significantly compared to tlieustan
leap—frog scheme.
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1 Introduction

Wave motion in nonlinear dispersive media, such as the gt of high—inten-
2sity laser pulses in plasmas, is of great interest bothefdnrtical applications as
well as the understanding of fundamental nonlinear phenairi@ecause of the vast
number of different physical effects that can occur duringlmear laser—plasma
interaction in a specific physical system, it is of courseessary to simplify the
analytical model as much as possible, while still includihg important effects.
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But it is also necessary to tailor the numerical methods tosgiexific problem,
using the physical insight gained from the analytics. Theddg both efficient and
accurate numerical tools to study the dynamics of nonlineae equations.

In this paper we are interested in the fast numerical sinwraif nonlinear wave
propagation in dispersive media. We chose for demonsir#tie propagation of a
laser pulse from vacuum into a cold underdense plasma [&ies.can of course
be generalized to a stratified medium consisting of sevedl kyers, as discussed
for example in [1] for pulse compression. It has been showa [8] and references
therein) that in such situations, when the oscillatory ggjoof the electrons ap-
proaches the speed of light, the resulting variations inefleetron mass produce
a significant contribution to the refractive index which dacome more impor-
tant than that due to ponderomotive force effects. Manyltgse.g. [3-5], have
been worked out for wave motion in the weakly relativistiginee. During the past
years, slow and fast solitons caused by relativistic masati@ans [6—9] have been
discussed. In many cases, a slowly varying envelope appeiian has been used,
that results in nonlinear Sabdinger—type equations. The latter, however, may not
be appropriate in the cases of subcycle solitons as wellragtrangly inhomoge-
neous systems, where one has to include vacuum—plasmadreasid

In the case of very high laser intensities and steep gral@nhe fields, the plasma
does not reach a local thermodynamic equilibrium and th&gbadistribution is
essentially non—Maxwellian even on small scales. In thigcane has to solve the
detailed dynamics of the distribution function in phasecgpdor that, Vlasov as
well as particle—in—cell (PIC) codes are in use [10-13]. Wasodes integrate the
kinetic Vlasov equation on an Eulerian grid in phase spacPIC simulations, the
phase space is sampled by macro—particles. From the pwesdiod momenta of
these patrticles the source terms of the field equations,hndrie solved on a grid,
are interpolated. Hybrid codes that use a fluid descriptoife ions and a kinetic
description for the electrons have also been developed §&4lvell as codes that
include binary collions using Monte—Carlo techniques [15].

If intensities as well as gradients are only moderately hamagneto—hydro-
dynamical description becomes possible, especially if isn@ore interested in
the dynamics of the laser pulse than that of the plasma. A @agtription is ap-
propriate if the plasma is either locally Maxwellian or c@ighich means that pon-
deromotive effects are less important than relativistissretfects).

The present physical model results in a nonlinear wave exqutdr the vector po-
tential coupled to the response of the medium. From the naaigoint of view the
problem is challenging because of the oscillatory behasfidine solution in space
and in time. For discretization in space, the method of ah@¢he pseudospectral
method which approximates spatial derivatives by usingfdlse Fourier method.
The standard time integration scheme is the leap—frog rdethloich has a number
of desirable properties, e.g. symmetry and symplectidi6j.[However, for linear



stability (i.e. bounded error propagation in linearizedatpns), the product of the
step size and the largest frequency of the system must betegtby the value 2,
and good energy conservation requires this product to be swvaller (typically
around ¥2) [17, Chapter XIlII]. In the recent papers [18, 19], methodthvim-
proved stability and accuracy properties have been prabdsese methods allow
larger time steps than the leap—frog method. In fact, it Gashiown that in certain
cases the error is of second order in time, independent diigtest frequencies
arising in the system.

In the present paper, we propose a new variant of the Gautgphi integrator,
see [20] and further developments in [19], for reducing thehber of time steps
when solving a nonlinear wave equation. In order to redueentimber of spatial
grid points, we introduce a physically motivated quasi-etope approach (QEA).
The new method turns out to reduce the computational timefgigntly compared
to the standard leap—frog scheme. We also compare theséstC simulations
performed with the VLPL (virtual laser plasma lab) [21].

2 Physical model

The basic set of equations being used for computation, is
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wherea is the normalized vector potential,
¥ =1+laf (3)

andE the longitudinal electric field which gives the density mizdion

oE

6n:—5.

(4)

Q< 1lis a parameter ang is the normalized density profile. For the latter we shall
use either a step profile or a profile with a linear increased@utdease of density at
the plasma boundary. In vacuum= 0, which impliesk = 0.

The physical solution is a pulse localized in space. Due tefénergy it is bounded
in L2,

The validity of the model is restricted to the following asgutions. The wave
equation (1) for a circularly polarized high—frequency waxector potentiaA |



(with normalized transverse vector potent&lpropagating inz—direction is in-
fluenced by relativistic electron mass variatigrfactor). The space—variation of
the y—factor causes density modulatiod®) and plasma oscillations as described
by (2). lon motion is neglected for fast propagation. TheapagterQ = n)2*/nc
(maximum ion background density over critical density)dde less than 1 for
wave propagation in an underdense medium and greater ji#ato hvoid Raman
instability.

Scalar as well as vector potentials are measured in oritge, whereasD2x is
used as a unit for the density, velocities are measured is ohc, and momenta
are normalized wittmc. We denotane. = m as the electron rest mass. The electro-
magnetic wave has a wave—numkey the inverse of its magnitudekgl) is being
used as the unit length. Similarly, the inverse of the warestfencywy has been
used as the time unit. We hatsg = cky in vacuum. The critical density is defined

via w3 = 41ce?/m.

A derivation of the model can be found in Appendix A.

3 Numerical schemes
3.1 Spatial discretization

Due to the finite energy assumption on the physical solutiempossible to con-
sider periodic boundary conditions for the discretizatigriong as the simulation
box is big enough and one takes care of reflected pulses abtimelaries. For long
time simulations this can be combined with a moving windoghteque.

Semi-discretization in space is done by a pseudospecttalochevith N Fourier
modes on a space intervak 7+ [—L,L]|. This leads to the following system of
coupled ordinary differential equations in time (the pridemotes time—derivative):

o' — —D?%-+g(a,3n). oadn = —Qro+ania, @

E' = —w’E+ f(a), f(a) = —ngiD /14 |al2. (6)

Here,D? = 7,\,‘1@27,\,, where#y is the discrete Fourier—transform operator, and
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The jth component of the vectoegt) andE(t) are approximations ta(z;,t) and
E(z,t) atzj = 2+ j %, andw? = Qn.



3.2 Gautschi—type exponential integrator for time disizagtion

We propose to solve these equations with a modification of#sshi—type expo-
nential integrator [19]. This integrator is motivated akdws: By the variation—of—
constants formula, the exact solution of

y' = —Q%+F(y) (7)
satisfies
y(t+1) =2cogT1Q)y(t) —y(t —1)

+ /OT Q7 tsin((t-9Q) (F(y(t+s)) +F(y(t—s)))ds. ®

For a constant inhomogeneiythis yields

y(t+1) = 2y(t) - y(t - 1) + TPY(1Q) (- Q%(t) + F) ,

where
1— cosx

X2

P(x) =2 :
In the general case, a numerical scheme is obtained by suivgtia suitable ap-
proximation offF (y(t £s)) into (8). This leads to approximatiogg~: y(tx), tk = KT,
defined by

Vi1 = 2%k — Yk 1+ T°W(Q) (— Q%+ Fe) -
The simplest choice, originally proposed by Gautschi [20}o setFR = F(yk).
However, the convergence analysis in [19] shows that inraimebtain second—
order error bounds, which are independent of the produdtettep size with the
frequencies, it is necessary to evaluate the nonlinebray a filtered position, i.e.
F« = F(@(tQ)yk). If this filter function is omitted, then large errors are egfed
in the case when the product of the step gizeith one of the frequencies of the
problem (the eigenvalues 6f) is an integer multiple oft Thefilter functionqis
a suitably chosen real function whose purpose is to filteresdnant frequencies,

” Px) = (2()2 or @x) = (Si%()z(br%(l_cos}o).

The integrator applied to (7) then reads
Yir1 = 2%k — Y1 FTW(Q) (% +FR),  R=F(@1Qw).  (9)
In addition it is also possible to obtain approximationstte tvelocities”y via
Yier1 = Yk 1+ 210(1Q) (- Q%ic+ F). (10)

whereo(x) = sinx/x. Note that approximating the “velocities” by standard &nit
differences will lead to inaccurate results due to the oty behavior ofy.



For Q = 0 the Gautschi—-type integrator reduces to the well knowp-&ag or
Stormer—Verlet method. We will use (9) and, if desired, (10)tfee integration of
(5) for the vector potential.

The accuracy of the integrator may be further improved ifrapinations to the
inhomogeneity are available at additional times. This ily drue if we solve the
equations (6) for the electrical field because there thenmdgeneity only depends
on a. If we solve the equation foa first, we have approximatiors; ~ a(t;) for

j = k—1k, andk+ 1. We then replacd (a) by an interpolation polynomial of
degree two interpolating i1, f(ax_1)), (t, f(ax)), and (tx;1, f (ax+1)). Note
that we consider the circular polarized case, in wHigk a smooth function. Using
this interpolation polynomial instead &f(y(t £5)) in (8) yields

Exi1 = 2Ek—Ex 1+ T°P(Tw) (—0Ex + f (a))

) (Fae) —2f (@0 + Flacy) D

for (6), where

cosX — 1+ 3x2

Ex ~ E(t) and  x(x)=2 @

The scheme (11) is of order four,af, | = k— 1,k k+ 1 are exact or sufficiently
accurate approximations aft;j). However, the coupled scheme (9), (11) cannot be
better than second order.

3.3 Choice of operators

For solving (5) the obvious choice would be using (9) wik= D. By construction,
the Gautschi-type integrator then solves equatyns —Q?y+ F with constanf
exactly. Due to the special form of the nonlineagtyve can enlarge the part which
is integrated exactly by writing

g(a,on) = —aa+g(a,on)

and settingQ? = D? + a for a suitablea. If the pulse is inside the plasma, the
dominant term ofg is linear ina, which suggests to choose= Q. Outside the
plasma (wher@p = 0) the nonlinearity is negligible so that one shouldcset 0.

3.4 Quasi—envelope approach

The motivation behind the quasi—envelope approach (QEAusrated on a nu-
merical result shown in Fig. 1: the spectrum of the vectoeptil splits into two
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Fig. 1. Spectrum of the vector potential while entering the plagta,/1— Q.

parts. The important part is concentrated around a certairacteristic wave num-
ber depending on whether the pulse propagates inside ddeutksthe plasma. In
addition there is another peak resulting from reflectionolwhg not of interest in
our physical application. Therefore, it is sufficient toole the main pulse only.
The number of spatial grid points required can be reducedfgigntly by shifting
the spectrum appropriately, i.e. we replace the vectompiale by

a(z,t) = a(zt)e?
and solve (1) foainstead ofa. This yields

0> 02

a0 _ 1. ~
528 a+2|K—a—K2a—Q(no+6n)\—/a . Y =1+a72.

" 022 0z

Note that in the “classical” envelope approximatdsd/dz> is neglected, leading to
a Schdinger type equation in In the spatially discretized equation (%)2 has to
be replaced by? +k)2. The value ok can be varied for different positions of the

pulse (inside/outside of the plasma or at the boundary),esohwose& = /1 — Q,
K = 1 or the mean value of both.

3.5 Multilevel approach

Obviously, the spatial grid size is determined by the nages$§resolving reflec-
tions arising at jumps of the plasma density. If we have agshanp (for instance
in the case of a rectangular density profile shown in Fig.#&ntthe reflections
require small spatial grid sizes only when the pulse entetsaves the plasma.
This can be exploited in a standard way by using two (or moifé@rdnt grids.
In our case we used a fine grid in transitions between vacuuhpkEsma and a
coarse one in the remaining simulation. Switching betwesrse and fine grid is
done by interpolation and from the fine to the coarse grid Isyriction (both in
Fourier space). Note that this switch requires to recomihatelifferential operator
and hence the matrix operators required for the Gautsgbe-itytegrator.



3.6 Overall numerical method

We suggest to combine the strategies described above. ddusres the compu-
tation of three or more sets of operators: one in vacuap= 0,ky = 1, coarse
grid), one in plasmao(, = Q,kp = v/1— Q, coarse grid), and one in the transition
(at=Q/2,ki = (1++/1-Q)/2, fine grid), and possibly additional sets if the pulse
gets too steep to be resolved on the coarse grid in plasmaoduentinear pulse
compression. If background density is small (so that tHeihce between vacuum
and plasma wavelength is also small) and the density pragenb sharp jump (so
that no reflection occurs), it maybe sufficient to use the ss@i@f operators for
both the transitional region and the plasma region on thesaarse grid, with &
halfway between vacuum and plasma wave—number. Recallrthaicuum, there
is no nonlinearity, and thus the Gautschi—type integraitwes the problem exactly
for arbitrary time steps. Obviously, it is not necessarydampute filter functions in
this case.

4 Exemplary results
4.1 Description of the simulated problem

For runtime comparison we chose a simulation box of leng®020 As density
profile we used a piecewise linear function which is 0OZemaller than 10@ and
greater than 81, 1 for 105A < z< 805A and linear in between. In this case,
the multilevel approach is not necessary, because neargfiection occurs at the
plasma boundaries. To simplify the simulational setup fe& tuntime compari-
son further, for methods with QEA, only one set of operatergsed with a mean
value of vacuum and plasma wavelength. With an additionabSeperators for
the plasma part, the results discussed below would be euéar.Rut for a low
background density lik® = 0.3, which we used, the results are already very good.
For denser plasmas (e Q.= 0.6), switching of operators between plasma bound-
ary and plasma parts of the density profile becomes a negdssitthe multilevel
tests we used a rectangular density profile beginning ahld% ending at 805,

cf. Fig. 2, and we included the different operators discd$sé&ec. 3.6.

The initial conditions for the vector potential in vacuumreealculated from

_(z—zoft)2 .
a(zt)=ae "6 @V (12)

att = 0 andt = 1. The parameters wem = 35A, Wp = 10A, andag = 0.1 or
ap = 0.12. Due to our normalizatioh = 21t
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Fig. 2. Pulse propagation (solid line) shown at different times and baakgrdensity pro-
file (dashed line) fory = 0.1 (top) andag = 0.12 (bottom).

As an example, the time evolution for two different initiahglitudes (with the
rectangular plasma profile) is shown in Fig. 2. In both caBest,a compression
and then a widening of the pulse can be seen. If we calculatartiplitude for the
single soliton state of the Saidinger model for &\p = 10A wide secliz/Wp) pulse
(see [1]), we getg ~ 0.038. A simulation of such a pulse verifies that the soliton
state of our model equations is close to this. For the two #ngas above, this
implies that we are well within the nonlinear regime. It adsmgests that the initial
condition withag = 0.1 is close to a bound two—soliton state, while dgr=0.12 it

is clearly above. In the latter case the pulse compresses amok earlier, and more
energy is radiated away from the core of the pulse after thgpcession.

As benchmarks for the accuracy of the different numericaéstes, we used two
error measures. Since we do not have an analytical solutithreamonlinear model
equations, we computed a reference solution on a very fime(§ri= 217) with
very small time steps. We then used it to measure the erroaximum amplitude
squared (amplitude error) and its position (phase erraliffarent times of the sim-
ulation results. Since the simulations were computed omnseoarids (especially
the QEA solutions) we first Fourier interpolated to the sammmloer of grid points
as the reference solution.
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Fig. 4. Same as Fig. 3, but fap = 0.12.

4.2 Effect of different time—integration schemes

If the vector potential is held in Fourier space and only $farmed back for the
evaluation of the nonlinearity/inhomogeneity, one hasdmpute six fast Fourier
transforms per time step for the leap—frog method (two ferrtbnlinearity of the
wave equation, two for the inhomogeneity of the plasma nespoand two for the
transformation oE). There is one more Fourier transform needed for the Gamtsch
type integrator since in each step the filtered as well asdhéltered vector poten-
tial is required in real space. In addition, one has to comput products with the
matrix functions), @, and possibly. Obviously computing a single time step with
the Gautschi-type integrator is more expensive than one step with the leap—
frog method. But it turns out that the Gautschi—-type methtmhal larger time steps
in order to reach the same accuracy.

10
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Fig. 5. Amplitude and phase error plotted over the time st the Gautschi—type inte-
grator including quasi—envelope approach with and without the variatritbed in Sec-
tion 3.3. Phase/amplitude error with= 0 (solid/dashed line) anal = Q within the plasma
(dotted/dash—dotted line) fap = 0.1.

In Fig. 3 and Fig. 4 maximum relative amplitude error (leftdamaximum phase
error in A (right) are plotted over computational time. Each curveespnts one
integrator on one spatial grid with different time steps.

For a given tolerance for the relative amplitude error tregidrog method (dot-
ted+triangles) needs two times smaller time steps than #uwtsBhi—type integrator
(solid+diamonds) on the same spatial giid= 212). In our examples this reduces
the computational time by a factor of 1.5 (see Table 1). Ifghase error is taken
into account, too, the gain in computational time is everatge

4.3 Effect of choice of operators

The effect of the choice of operators is illustrated in Figobthe caseag = 0.1.

It is observed that the choice af= Q within the plasma reduces the phase error
significantly while the error in the amplitude is only slightarger. However, for

ap = 0.12 switching between the operators did not pay off. The nrefmahis might

be the increased density variation compared to the smatietitade. The results

in Fig. 5 were computed including QEA of Section 3.4, but thetmd showed
the same behavior when combined with other variants destabove. The phase
error is given in terms of whereas the amplitude error is given relatively compared
to the reference amplitude. In both cases the error is agdrager pulses at 100
different positions spread evenly over the computatio@riral.

4.4 Effect of quasi—envelope approach

By applying the quasi—envelope approach to the leap—frofpadeas well as the
Gautschi-type integrator, the number of spatial grid Boaan be significantly re-

11



ap=0.1 ap=0.12

N T | time/min.| N T time/min.

LF 2121 0.1 2:10 212 1 0.04 5:07
LF + QEA 2111 0.1 1:03 2111 0.05 1:57
Gautschi 2121 0.2 1:32 2121 0.12 2:28

Gautschi+ QEA| 211 [ 0.2| 044 |2%]0.12| 1:10

Table 1

Runtimes for maximum one percent relative amplitude eiois the number of spatial
grid points,t is the time step size. Computational details: Pentium 4, 3.0 GHz, Intel C++
8.1, FFT routines from Intel Math Kernel Library 7.2.

duced without loss of accuracy (see curves with and withda&@ Fig. 3 and
4). Since the major part of computational time is spent ohFasrrier transforms,
which costo (NlogN) operations, the reduction of grid points by a factor of 2 agai
leads to a saving in computational time of more than a fadt@ another reason
for a more than linear reduction in computational time ig graaller arrays are
more likely to fit into the cache of the processor. For smatiugyh arrays, a whole
time step can run from CPU cache. We observed that QEA is méeetigé in
reducing the amplitude error, while the Gautschi-type ik more effective in
reducing the phase error.

The parameters for the discretization needed to achievexammm relative ampli-
tude error of 102 are summarized in Table 1. Exemplary runtimes for one specifi
hardware/software setup are also given.

If one compares the standard leap—frog method to the neantaof the Gautschi—
type integrator combined with QEA, the computational tismeseduced by a factor
of 3 in the first and even by a factor of54in the second example. If we set a
bound lower than 16 for the amplitude error, we see that without QEA this error
bound cannot be reached by only reducmdhis is because the error due to the
coarse spatial resolution limits the accuracy that can dehed. Thus a finer grid
is needed, which results in a corresponding increase of atatipnal time, while
the discretization for QEA can stay the same (see Fig. 6).

4.5 Effect of two—level approach

The benefit of the two—level approach suggested in Sectidns3illustrated in
Fig. 7. The reference solution as well as the simulationlteswe shown at =
700- 2mt for a plasma jump andg = 0.12. It can be seen that in this case it is
possible to work on a coarse gril & 21) in the major part of the simulation but
it is not possible to do the whole simulation on the coarse. ¢ini the transition we
interpolated to 2 grid points.

12
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Fig. 7. Results of simulations using the two—level approach compared te-&evaksimu-
lation on the (same) coarse grid only. Solid: reference solution, dasbledion computed
on a coarse grid only, dotted: two—level approach (curve coincidesthétholid one).

4.6 Comparison with PIC

Finally, we compare with PIC simulations performed with MLR21]. Since PIC
simulatesE andB instead ofA, we base our comparison on intensities, calculated
0 0

by
1/ o2\ L 2
= (EF e )7(& oz ) -
For the Gautschi—type method, one has to use (10) for the-tieresative, and
for QEA 0/0z — 0/0z+ ik. The difference in amplitudes between the reference
solution for the reduced model and PIC (see Fig. 8) and thésGhiktype method
with QEA for the parameters given in Table 1 are of the sameroithis implies

that, even with a relatively coarse discretization, thereof the simulations with
our fastest solver is within the accuracy of the reduced maedach seems to be

2
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Fig. 10. Phase—difference to the exact linear solution for B§C=0.12: dash—dotted and
ap = 0.0001: dotted) and Gautschi+QE&Ay(= 0.12, solid), difference between PIC and
Gautschi+QEA folgg = 0.12 (dashed).

at the border of applicability &y = 0.12.

We also noticed, that there is a systematic difference ingneelocity between
PIC solutions and ours. To understand whether this is duaiteenical error in

14



PIC and/or our solvers, we made simulations with both forrg genall amplitude

(ag = 0.0001). The combination of small amplitude and a cold plasma alltws
test the phase error of the numerical simulations agaiesktiown linear analyt-
ical solution. The results in Fig. 9 show that PIC (dashedylpces a slight error
in group velocity even on a fine grid, whereas Gautschi+QEMAdswith coarse

discretization is close to the exact solution.

In Fig. 10 we compare the phase shift (with respect to thetdixaar solution) of
VLPL (dash—dotted) and the Gautschi+QEA simulation frorhl&d. (solid) in the
nonlinear caseap = 0.12). The difference between the two (dashed) is consistent
with the linear phase error of PIC (dotted). This shows thatdifference in phase
between nonlinear PIC and Gautschi+QEA is mostly linearspharror of PIC,
which could also influence the accuracy of the amplitudeutaton.

5 Conclusion

In the present paper, we have investigated numerically gipadlymodel for wave
propagation in a nonlinear, dispersive medium. The modeliepto strong laser
pulse propagation into a relativistic plasma. It consigtsa@ coupled equations
for the high—frequency laser field and the low—frequencgmiaresponse. The lat-
ter causes, besides dispersion, nonlinear effects dudatvigtic mass variation.
A fast numerical solver for the coupled equations is presgnt incorporates two
main ideas. First, a new variant of the Gautschi—type imttegrfor reducing the
number of time steps is proposed. Secondly, in order to eetheenumber of spatial
grid points, a physically motivated quasi—envelope ap@td®EA) is introduced.
The new method turns out to reduce the computational tinafgigntly (for ex-
ample by a factor of 5 even for low accuracy demands) comparédte standard
leap-frog scheme. We also found that for the weakly nonfinegime the combi-
nation of the reduced model and our fast solver is as accagagefirst—principle
PIC simulation. The latter, however, needs much more time.

The advantages of the present scheme for oscillatory prabkre discussed in
detail. It can be expected that the main ideas will also béutiger other physi-
cal problems being highly oscillatory in nature, eg. the-Amearized model. We
currently investigate the extension to a three dimensigaametrie.
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A Details of the physical model

From Maxwell's equations we get for the vector potenfiadnd scalar potentia
in Coulomb gauge

—[PA +

2
16A_16D¢+(41T). (A1)

2oz cat  \cC

For fixed ions (we are considering fast solitary waves) threetul density is
] = —ensVe. (A.2)

By electron velocity and density, the wave equation is caliptethe continuity
equation for the electron density

0
and the electron momentum balance
0 10A 1
(a—f-VeD)Pe—e|:—D¢—EE+EVeX(DXA) R (A4)

which describe the nonlinear response of the medium. We laas itdentify two
sources of nonlinearity, density oscillation and the reistic mass factor, because

Pe
Ve = , A5
°= meve (A.5)
with
1 / Pe \?
Vo= ————==/1+ (%ec) . (A.6)
1-(¢)

By some straightforward manipulations, we can write the mutoma balance in
the form

0 e 1
= <Pe—EA> —elp—mc et o

Pe x [Dx (Pe—§A>] A7)

e

To normalize the equations we use the inverse wave—nunkgé} and inverse
wave—frequencyoa1 of the laser carrier as unit length and timeay (= ckg in vac-
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uum). A wave can propagate in a medium with (constant) elaadensityne pro-

videdwy > wp Where
4TNeE2
Wp = A8
P Tme (A.8)

is the electron plasma frequency. We use the maximum iongoauakd density

nva* as the density unit. The critical density for wave propawati; follows from

the condition

4
T:;ez — . (A.9)
Thus, the parameter
nmax
Q= _Ir(:: (A.10)

can be introduced; it has to be less than 1 for wave propagatio

Scalar as well as vector potentials are measured in un'mm?f/e. Velocities are
measured in units of, and momenta are normalized witlgc. From now on, we
omit the indexe for electrons. The electron momentum balance then is

0 P
E(P—A)—VXDX(P—A)ZD(¢—V)~ (A.11)

Let us now write the basic equations under the assumptidtitbavave propagates
in z—direction, so that all variables depend only on one spacedauate, i.e.

A=Az, n=n(z, ¢=0¢(20, P,—P. (A.12)

From the Coulomb gauge follows the purely transverse natiiteeowave(A =
A ). The wave equation for the transverse comporenhow reads

0° 0? P,
@AL—WAJ_—QFIT. (A13)

The longitudinal part of the wave equation simplifies to

0% P

— —=0. A.14
otoz + Qr]y 0 ( )
Within the plasma, the perpendicular electron momenturariza

d

P\ 0(P.—A)) _
R e (A15)
has the special solution
P, =A,, (A.16)
which also simplifies the longitudinal electron momenturtabee
oP O(PL-A1) _0(9—-vV
- _P, . = ) A.17
a - 0z 0z (AL7)
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This leads to the basic set of equations:

(%;AL—;—ZZAL:Qn%, (A.18)
gti(;’;mn%’ o, (A19)
?9271) = Q(n—ny), (A.20)

2 (%’) o, (A.21)
%_';’ _ a(¢a;V) , (A.22)

whereng is the time—independent part af (which is identical to the fixed ion
background), while in the followingn denotes the first order density oscillation.

Next, we specify to circular polarized waves, introducing

This yields
Y =1+|a®+P?. (A.24)
Writing
10% 10E
n—n0+6n—n0+aﬁzn0—65, (A25)
the wave equation has the form
0’a 0%a (np+ dn)
The plasma response is determined via the equations
odon 0 [(np+on)P
ot oz { y } ’ (A.27)
oP ~ 0y
E__E_a_z’ (A.28)
OE _(ng+dn)P
e N el A2
5=, (A.29)
Note that the additional equation
10E _OE
YR —on (A.30)

is the solvability condition of (A.29) and (A.27).
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We may simplify the plasma response by taking a time devieatf (A.29) and
substituting the corresponding expressions from (A.28)(@n27). The final result
IS

9%E . oy
W‘i‘QrbE——Qrba—Z—i—R, (A31)
where 3 1 3 B
R:= —-Qng o [(1— \—/) P} +Qno 3 (6n V) . (A.32)

In the main text we assunie= 0. The reason iR~ 0 (¢*), whereas the other terms
in Eq. (A.31) are of ordeg?. Here £ characterizes the order of magnitudeoThen
the balance (A.28) suggests the orderdimg~ P ~ a® ~ 0(£?). Note that we do
not scale the space— and time—variables. From (A.32) wefiheé®R ~ 0 (£4).

By similar arguments, to leading order, we canRet 0 in (A.24) such that
Y =1+a. (A.33)
Together with (A.30) the basic set of equations is

d’a 0%a (no+6n)a

i Q-7 A.34
072 ot2 y ’ (A.34)
0°E 0
ﬁ‘I‘QrbE:—noa—Z. (A.35)
The last equation may also be written in the form
0%5n 0%y
Fa +Qnpdn= noﬁ , (A.36)

if the density profileng is piecewise constant or depends only very slowly.on

In the vacuum part of the density profile, whege= 0, equations (A.34) and (A.35)
reduce to
Pa_oa
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