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Abstract

Nonlinear wave motion in dispersive media is solved numerically. The model applies to
laser propagation in a relativistic plasma. The latter causes, besides dispersion, nonlinear
effects due to relativistic mass variation in the presence of strong laser pulses. A new variant
of the Gautschi–type integrator for reducing the number of time steps is proposed as a
fast solver for such nonlinear wave–equations. In order to reduce the number of spatial
grid points, a physically motivated quasi–envelope approach (QEA) is introduced. The new
method turns out to reduce the computational time significantly compared to the standard
leap–frog scheme.
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1 Introduction

Wave motion in nonlinear dispersive media, such as the propagation of high–inten-
2sity laser pulses in plasmas, is of great interest both for technical applications as
well as the understanding of fundamental nonlinear phenomena. Because of the vast
number of different physical effects that can occur during nonlinear laser–plasma
interaction in a specific physical system, it is of course necessary to simplify the
analytical model as much as possible, while still includingthe important effects.
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But it is also necessary to tailor the numerical methods to thespecific problem,
using the physical insight gained from the analytics. This yields both efficient and
accurate numerical tools to study the dynamics of nonlinearwave equations.

In this paper we are interested in the fast numerical simulation of nonlinear wave
propagation in dispersive media. We chose for demonstration the propagation of a
laser pulse from vacuum into a cold underdense plasma layer.This can of course
be generalized to a stratified medium consisting of several such layers, as discussed
for example in [1] for pulse compression. It has been shown (see [2] and references
therein) that in such situations, when the oscillatory velocity of the electrons ap-
proaches the speed of light, the resulting variations in theelectron mass produce
a significant contribution to the refractive index which canbecome more impor-
tant than that due to ponderomotive force effects. Many results, e.g. [3–5], have
been worked out for wave motion in the weakly relativistic regime. During the past
years, slow and fast solitons caused by relativistic mass variations [6–9] have been
discussed. In many cases, a slowly varying envelope approximation has been used,
that results in nonlinear Schrödinger–type equations. The latter, however, may not
be appropriate in the cases of subcycle solitons as well as for strongly inhomoge-
neous systems, where one has to include vacuum–plasma boundaries.

In the case of very high laser intensities and steep gradients of the fields, the plasma
does not reach a local thermodynamic equilibrium and the particle distribution is
essentially non–Maxwellian even on small scales. In this case, one has to solve the
detailed dynamics of the distribution function in phase space. For that, Vlasov as
well as particle–in–cell (PIC) codes are in use [10–13]. Vlasov codes integrate the
kinetic Vlasov equation on an Eulerian grid in phase space. In PIC simulations, the
phase space is sampled by macro–particles. From the positions and momenta of
these particles the source terms of the field equations, which are solved on a grid,
are interpolated. Hybrid codes that use a fluid description for the ions and a kinetic
description for the electrons have also been developed [14], as well as codes that
include binary collions using Monte–Carlo techniques [15].

If intensities as well as gradients are only moderately high, a magneto–hydro-
dynamical description becomes possible, especially if oneis more interested in
the dynamics of the laser pulse than that of the plasma. A fluiddescription is ap-
propriate if the plasma is either locally Maxwellian or cold(which means that pon-
deromotive effects are less important than relativistic mass effects).

The present physical model results in a nonlinear wave equation for the vector po-
tential coupled to the response of the medium. From the numerical point of view the
problem is challenging because of the oscillatory behaviorof the solution in space
and in time. For discretization in space, the method of choice is the pseudospectral
method which approximates spatial derivatives by using thefast Fourier method.
The standard time integration scheme is the leap–frog method, which has a number
of desirable properties, e.g. symmetry and symplecticity [16]. However, for linear
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stability (i.e. bounded error propagation in linearized equations), the product of the
step size and the largest frequency of the system must be restricted by the value 2,
and good energy conservation requires this product to be even smaller (typically
around 1/2) [17, Chapter XIII]. In the recent papers [18, 19], methods with im-
proved stability and accuracy properties have been proposed. These methods allow
larger time steps than the leap–frog method. In fact, it can be shown that in certain
cases the error is of second order in time, independent of thehighest frequencies
arising in the system.

In the present paper, we propose a new variant of the Gautschi–type integrator,
see [20] and further developments in [19], for reducing the number of time steps
when solving a nonlinear wave equation. In order to reduce the number of spatial
grid points, we introduce a physically motivated quasi–envelope approach (QEA).
The new method turns out to reduce the computational time significantly compared
to the standard leap–frog scheme. We also compare the results to PIC simulations
performed with the VLPL (virtual laser plasma lab) [21].

2 Physical model

The basic set of equations being used for computation, is

∂2a
∂z2 − ∂2a

∂t2 = Q
(n0 +δn)

γ
a , (1)

∂2E
∂t2 +Q n0 E = −n0

∂γ
∂z

, (2)

wherea is the normalized vector potential,

γ2 = 1+ |a|2 (3)

andE the longitudinal electric field which gives the density modulation

δn = −∂E
∂z

. (4)

Q< 1 is a parameter andn0 is the normalized density profile. For the latter we shall
use either a step profile or a profile with a linear increase anddecrease of density at
the plasma boundary. In vacuumn0 ≡ 0, which impliesE ≡ 0.

The physical solution is a pulse localized in space. Due to finite energy it is bounded
in L2.

The validity of the model is restricted to the following assumptions. The wave
equation (1) for a circularly polarized high–frequency wave vector potentialA⊥
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(with normalized transverse vector potentiala) propagating inz–direction is in-
fluenced by relativistic electron mass variation (γ–factor). The space–variation of
the γ–factor causes density modulations (δn) and plasma oscillations as described
by (2). Ion motion is neglected for fast propagation. The parameterQ ≡ nmax

ion /nc

(maximum ion background density over critical density) should be less than 1 for
wave propagation in an underdense medium and greater than 1/4 to avoid Raman
instability.

Scalar as well as vector potentials are measured in unitsmc2/e, whereasnmax
ion is

used as a unit for the density, velocities are measured in units of c, and momenta
are normalized withmc. We denoteme ≡ m as the electron rest mass. The electro-
magnetic wave has a wave–numberk0; the inverse of its magnitude (k−1

0 ) is being
used as the unit length. Similarly, the inverse of the wave–frequencyω0 has been
used as the time unit. We haveω0 = ck0 in vacuum. The critical densitync is defined
via ω2

0 ≡ 4πnce2/m.

A derivation of the model can be found in Appendix A.

3 Numerical schemes

3.1 Spatial discretization

Due to the finite energy assumption on the physical solution it is possible to con-
sider periodic boundary conditions for the discretizationas long as the simulation
box is big enough and one takes care of reflected pulses at the boundaries. For long
time simulations this can be combined with a moving window technique.

Semi–discretization in space is done by a pseudospectral method with N Fourier
modes on a space intervalz∈ z0 + [−L,L]. This leads to the following system of
coupled ordinary differential equations in time (the primedenotes time–derivative):

a′′ = −D2a+g(a,δn), g(a,δn) = −Q(n0 +δn)
1
γ
a , (5)

E′′ = −ω2E + f (a), f (a) = −n0iD
√

1+ |a|2 . (6)

Here,D2 = F −1
N D

2FN, whereFN is the discrete Fourier–transform operator, and

D =
π
L

diag(−N
2

,−N
2

+1, . . . ,−1,0,1, . . . ,
N
2
−1) .

The jth component of the vectorsa(t) andE(t) are approximations toa(zj , t) and
E(zj , t) atzj = z0 + j 2L

N , andω2 = Qn0.
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3.2 Gautschi–type exponential integrator for time discretization

We propose to solve these equations with a modification of a Gautschi–type expo-
nential integrator [19]. This integrator is motivated as follows: By the variation–of–
constants formula, the exact solution of

y′′ = −Ω2y+F(y) (7)

satisfies

y(t + τ) =2cos(τΩ)y(t)−y(t − τ)

+
Z τ

0
Ω−1sin

(
(τ−s)Ω

)(
F(y(t +s))+F(y(t −s))

)
ds.

(8)

For a constant inhomogeneityF this yields

y(t + τ) = 2y(t)−y(t − τ)+ τ2ψ(τΩ)
(
−Ω2y(t)+F

)
,

where

ψ(x) = 2
1−cosx

x2 .

In the general case, a numerical scheme is obtained by substituting a suitable ap-
proximation ofF(y(t±s)) into (8). This leads to approximationsyk ≈ y(tk), tk = kτ,
defined by

yk+1 = 2yk−yk−1 + τ2ψ(τΩ)
(
−Ω2yk +Fk

)
.

The simplest choice, originally proposed by Gautschi [20],is to setFk = F(yk).
However, the convergence analysis in [19] shows that in order to obtain second–
order error bounds, which are independent of the product of the step size with the
frequencies, it is necessary to evaluate the nonlinearityF at a filtered position, i.e.
Fk = F(φ(τΩ)yk). If this filter function is omitted, then large errors are expected
in the case when the product of the step sizeτ with one of the frequencies of the
problem (the eigenvalues ofΩ) is an integer multiple ofπ. Thefilter functionφ is
a suitably chosen real function whose purpose is to filter outresonant frequencies,
e.g.

φ(x) =

(
sinx

x

)2

, or φ(x) =

(
sinx

x

)2

(1+
1
2
(1−cosx)).

The integrator applied to (7) then reads

yk+1 = 2yk−yk−1 + τ2ψ(τΩ)
(
−Ω2yk +Fk

)
, Fk = F(φ(τΩ)yk). (9)

In addition it is also possible to obtain approximations to the “velocities”y′ via

y′k+1 = y′k−1 +2τσ(τΩ)(−Ω2yk +Fk), (10)

whereσ(x) = sinx/x. Note that approximating the “velocities” by standard finite
differences will lead to inaccurate results due to the oscillatory behavior ofy.
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For Ω = 0 the Gautschi–type integrator reduces to the well known leap–frog or
Störmer–Verlet method. We will use (9) and, if desired, (10) for the integration of
(5) for the vector potential.

The accuracy of the integrator may be further improved if approximations to the
inhomogeneity are available at additional times. This is only true if we solve the
equations (6) for the electrical field because there the inhomogeneity only depends
on a. If we solve the equation fora first, we have approximationsa j ≈ a(t j) for
j = k− 1,k, andk+ 1. We then replacef (a) by an interpolation polynomial of
degree two interpolating in(tk−1, f (ak−1)), (tk, f (ak)), and(tk+1, f (ak+1)). Note
that we consider the circular polarized case, in whichf is a smooth function. Using
this interpolation polynomial instead ofF(y(t ±s)) in (8) yields

Ek+1 = 2Ek−Ek−1 + τ2ψ(τω)
(
−ω2Ek + f (ak)

)

+ τ4χ(τω)
(

f (ak+1)−2 f (ak)+ f (ak−1)
) (11)

for (6), where

Ek ≈ E(tk) and χ(x) = 2
cosx−1+ 1

2x2

x4 .

The scheme (11) is of order four, ifa j , j = k−1,k,k+ 1 are exact or sufficiently
accurate approximations ofa(t j). However, the coupled scheme (9), (11) cannot be
better than second order.

3.3 Choice of operators

For solving (5) the obvious choice would be using (9) withΩ = D. By construction,
the Gautschi–type integrator then solves equationsy′′ =−Ω2y+F with constantF
exactly. Due to the special form of the nonlinearityg, we can enlarge the part which
is integrated exactly by writing

g(a,δn) = −αa+ g̃(a,δn)

and settingΩ2 = D2 + α for a suitableα. If the pulse is inside the plasma, the
dominant term ofg is linear ina, which suggests to chooseα = Q. Outside the
plasma (wheren0 = 0) the nonlinearity is negligible so that one should setα = 0.

3.4 Quasi–envelope approach

The motivation behind the quasi–envelope approach (QEA) isillustrated on a nu-
merical result shown in Fig. 1: the spectrum of the vector potential splits into two
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Fig. 1. Spectrum of the vector potential while entering the plasma,K =
√

1−Q.

parts. The important part is concentrated around a certain characteristic wave num-
ber depending on whether the pulse propagates inside or outside of the plasma. In
addition there is another peak resulting from reflection which is not of interest in
our physical application. Therefore, it is sufficient to resolve the main pulse only.
The number of spatial grid points required can be reduced significantly by shifting
the spectrum appropriately, i.e. we replace the vector potential a by

a(z, t) = ã(z, t)eiκz

and solve (1) for̃a instead ofa. This yields

∂2

∂t2 ã =
∂2

∂z2 ã+2iκ
∂
∂z

ã−κ2ã−Q(n0 +δn)
1
γ
ã , γ2 = 1+ |ã|2 .

Note that in the “classical” envelope approximation∂2ã/∂z2 is neglected, leading to
a Schr̈odinger type equation inz. In the spatially discretized equation (5),D 2 has to
be replaced by(D +κ)2. The value ofκ can be varied for different positions of the
pulse (inside/outside of the plasma or at the boundary), so we chooseκ =

√
1−Q,

κ = 1 or the mean value of both.

3.5 Multilevel approach

Obviously, the spatial grid size is determined by the necessity of resolving reflec-
tions arising at jumps of the plasma density. If we have a sharp jump (for instance
in the case of a rectangular density profile shown in Fig. 2), then the reflections
require small spatial grid sizes only when the pulse enters or leaves the plasma.
This can be exploited in a standard way by using two (or more) different grids.
In our case we used a fine grid in transitions between vacuum and plasma and a
coarse one in the remaining simulation. Switching between coarse and fine grid is
done by interpolation and from the fine to the coarse grid by restriction (both in
Fourier space). Note that this switch requires to recomputethe differential operator
and hence the matrix operators required for the Gautschi–type integrator.
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3.6 Overall numerical method

We suggest to combine the strategies described above. This requires the compu-
tation of three or more sets of operators: one in vacuum (αv = 0,κv = 1, coarse
grid), one in plasma (αp = Q,κp =

√
1−Q, coarse grid), and one in the transition

(αt = Q/2,κt = (1+
√

1−Q)/2, fine grid), and possibly additional sets if the pulse
gets too steep to be resolved on the coarse grid in plasma due to nonlinear pulse
compression. If background density is small (so that the difference between vacuum
and plasma wavelength is also small) and the density profile has no sharp jump (so
that no reflection occurs), it maybe sufficient to use the sameset of operators for
both the transitional region and the plasma region on the same coarse grid, with aκ
halfway between vacuum and plasma wave–number. Recall that in vacuum, there
is no nonlinearity, and thus the Gautschi–type integrator solves the problem exactly
for arbitrary time steps. Obviously, it is not necessary to compute filter functions in
this case.

4 Exemplary results

4.1 Description of the simulated problem

For runtime comparison we chose a simulation box of length 1000 λ. As density
profile we used a piecewise linear function which is 0 forz smaller than 100λ and
greater than 810λ, 1 for 105λ < z < 805λ and linear in between. In this case,
the multilevel approach is not necessary, because nearly noreflection occurs at the
plasma boundaries. To simplify the simulational setup for the runtime compari-
son further, for methods with QEA, only one set of operators is used with a mean
value of vacuum and plasma wavelength. With an additional set of operators for
the plasma part, the results discussed below would be even better. But for a low
background density likeQ= 0.3, which we used, the results are already very good.
For denser plasmas (e.g.Q = 0.6), switching of operators between plasma bound-
ary and plasma parts of the density profile becomes a necessity. For the multilevel
tests we used a rectangular density profile beginning at 105λ and ending at 805λ,
cf. Fig. 2, and we included the different operators discussed in Sec. 3.6.

The initial conditions for the vector potential in vacuum were calculated from

a(z, t) = a0e
− (z−z0−t)2

W2
0 ei(z−t) (12)

at t = 0 andt = τ. The parameters werez0 = 35 λ, W0 = 10 λ, anda0 = 0.1 or
a0 = 0.12. Due to our normalizationλ = 2π.
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Fig. 2. Pulse propagation (solid line) shown at different times and background density pro-
file (dashed line) fora0 = 0.1 (top) anda0 = 0.12 (bottom).

As an example, the time evolution for two different initial amplitudes (with the
rectangular plasma profile) is shown in Fig. 2. In both cases,first a compression
and then a widening of the pulse can be seen. If we calculate the amplitude for the
single soliton state of the Schrödinger model for aW0 = 10λ wide sech(z/W0) pulse
(see [1]), we geta0 ≈ 0.038. A simulation of such a pulse verifies that the soliton
state of our model equations is close to this. For the two amplitudes above, this
implies that we are well within the nonlinear regime. It alsosuggests that the initial
condition witha0 = 0.1 is close to a bound two–soliton state, while fora0 = 0.12 it
is clearly above. In the latter case the pulse compresses more and earlier, and more
energy is radiated away from the core of the pulse after the compression.

As benchmarks for the accuracy of the different numerical schemes, we used two
error measures. Since we do not have an analytical solution of the nonlinear model
equations, we computed a reference solution on a very fine grid (N = 217) with
very small time steps. We then used it to measure the error in maximum amplitude
squared (amplitude error) and its position (phase error) atdifferent times of the sim-
ulation results. Since the simulations were computed on coarser grids (especially
the QEA solutions) we first Fourier interpolated to the same number of grid points
as the reference solution.
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Fig. 3. Maximum amplitude and phase error vs. runtime (a0 = 0.1) for varying τ for
leap–frog (dotted+triangles), Gautschi (solid+diamonds), leap–frog +QEA (dash–dot-
ted+circles) and Gautschi + QEA (dashed+squares). We usedN = 212 for methods without
QEA andN = 211 for methods with QEA (see also Table 1).
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Fig. 4. Same as Fig. 3, but fora0 = 0.12.

4.2 Effect of different time–integration schemes

If the vector potential is held in Fourier space and only transformed back for the
evaluation of the nonlinearity/inhomogeneity, one has to compute six fast Fourier
transforms per time step for the leap–frog method (two for the nonlinearity of the
wave equation, two for the inhomogeneity of the plasma response, and two for the
transformation ofE). There is one more Fourier transform needed for the Gautschi–
type integrator since in each step the filtered as well as the nonfiltered vector poten-
tial is required in real space. In addition, one has to compute the products with the
matrix functionsψ, φ, and possiblyσ. Obviously computing a single time step with
the Gautschi–type integrator is more expensive than one time step with the leap–
frog method. But it turns out that the Gautschi–type method allows larger time steps
in order to reach the same accuracy.
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Fig. 5. Amplitude and phase error plotted over the time stepτ for the Gautschi–type inte-
grator including quasi–envelope approach with and without the variant described in Sec-
tion 3.3. Phase/amplitude error withα = 0 (solid/dashed line) andα = Q within the plasma
(dotted/dash–dotted line) fora0 = 0.1.

In Fig. 3 and Fig. 4 maximum relative amplitude error (left) and maximum phase
error in λ (right) are plotted over computational time. Each curve represents one
integrator on one spatial grid with different time steps.

For a given tolerance for the relative amplitude error the leap–frog method (dot-
ted+triangles) needs two times smaller time steps than the Gautschi–type integrator
(solid+diamonds) on the same spatial grid (N = 212). In our examples this reduces
the computational time by a factor of 1.5 (see Table 1). If thephase error is taken
into account, too, the gain in computational time is even greater.

4.3 Effect of choice of operators

The effect of the choice of operators is illustrated in Fig. 5for the casea0 = 0.1.
It is observed that the choice ofα = Q within the plasma reduces the phase error
significantly while the error in the amplitude is only slightly larger. However, for
a0 = 0.12 switching between the operators did not pay off. The reason for this might
be the increased density variation compared to the smaller amplitude. The results
in Fig. 5 were computed including QEA of Section 3.4, but the method showed
the same behavior when combined with other variants described above. The phase
error is given in terms ofλ whereas the amplitude error is given relatively compared
to the reference amplitude. In both cases the error is averaged over pulses at 100
different positions spread evenly over the computation interval.

4.4 Effect of quasi–envelope approach

By applying the quasi–envelope approach to the leap–frog method as well as the
Gautschi–type integrator, the number of spatial grid points can be significantly re-
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a0 = 0.1 a0 = 0.12

N τ time/min. N τ time/min.

LF 212 0.1 2:10 212 0.04 5:07

LF + QEA 211 0.1 1:03 211 0.05 1:57

Gautschi 212 0.2 1:32 212 0.12 2:28

Gautschi + QEA 211 0.2 0:44 211 0.12 1:10
Table 1
Runtimes for maximum one percent relative amplitude error.N is the number of spatial
grid points,τ is the time step size. Computational details: Pentium 4, 3.0 GHz, Intel C++
8.1, FFT routines from Intel Math Kernel Library 7.2.

duced without loss of accuracy (see curves with and without QEA in Fig. 3 and
4). Since the major part of computational time is spent on fast Fourier transforms,
which costO (N logN) operations, the reduction of grid points by a factor of 2 again
leads to a saving in computational time of more than a factor of 2. Another reason
for a more than linear reduction in computational time is that smaller arrays are
more likely to fit into the cache of the processor. For small enough arrays, a whole
time step can run from CPU cache. We observed that QEA is more effective in
reducing the amplitude error, while the Gautschi–type method is more effective in
reducing the phase error.

The parameters for the discretization needed to achieve a maximum relative ampli-
tude error of 10−2 are summarized in Table 1. Exemplary runtimes for one specific
hardware/software setup are also given.

If one compares the standard leap–frog method to the new variant of the Gautschi–
type integrator combined with QEA, the computational time is reduced by a factor
of 3 in the first and even by a factor of 4.5 in the second example. If we set a
bound lower than 10−2 for the amplitude error, we see that without QEA this error
bound cannot be reached by only reducingτ. This is because the error due to the
coarse spatial resolution limits the accuracy that can be reached. Thus a finer grid
is needed, which results in a corresponding increase of computational time, while
the discretization for QEA can stay the same (see Fig. 6).

4.5 Effect of two–level approach

The benefit of the two–level approach suggested in Section 3.5 is illustrated in
Fig. 7. The reference solution as well as the simulation results are shown att =
700· 2π for a plasma jump anda0 = 0.12. It can be seen that in this case it is
possible to work on a coarse grid (N = 211) in the major part of the simulation but
it is not possible to do the whole simulation on the coarse grid. In the transition we
interpolated to 213 grid points.
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Fig. 7. Results of simulations using the two–level approach compared to a one–level simu-
lation on the (same) coarse grid only. Solid: reference solution, dashed:solution computed
on a coarse grid only, dotted: two–level approach (curve coincides withthe solid one).

4.6 Comparison with PIC

Finally, we compare with PIC simulations performed with VLPL [21]. Since PIC
simulatesE andB instead ofA, we base our comparison on intensities, calculated
by

I =
1
2

(
|E|2 + |B|2

)
=

1
2

(∣∣∣∣
∂
∂t

A

∣∣∣∣
2

+

∣∣∣∣
∂
∂z

A

∣∣∣∣
2
)

.

For the Gautschi–type method, one has to use (10) for the time–derivative, and
for QEA ∂/∂z→ ∂/∂z+ iκ. The difference in amplitudes between the reference
solution for the reduced model and PIC (see Fig. 8) and the Gautschi–type method
with QEA for the parameters given in Table 1 are of the same order. This implies
that, even with a relatively coarse discretization, the error of the simulations with
our fastest solver is within the accuracy of the reduced model, which seems to be
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with N = 2·105, τ = dz(N) and 3 particles per cell, runtime around 5 : 30h.
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Fig. 9. Phase–difference to the exact linear solution for PIC (dashed)and Gautschi+QEA
(solid), both witha0 = 0.0001.
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Fig. 10. Phase–difference to the exact linear solution for PIC (a0 = 0.12: dash–dotted and
a0 = 0.0001: dotted) and Gautschi+QEA (a0 = 0.12, solid), difference between PIC and
Gautschi+QEA fora0 = 0.12 (dashed).

at the border of applicability ata0 = 0.12.

We also noticed, that there is a systematic difference in group velocity between
PIC solutions and ours. To understand whether this is due to numerical error in
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PIC and/or our solvers, we made simulations with both for a very small amplitude
(a0 = 0.0001). The combination of small amplitude and a cold plasma allowsto
test the phase error of the numerical simulations against the known linear analyt-
ical solution. The results in Fig. 9 show that PIC (dashed) produces a slight error
in group velocity even on a fine grid, whereas Gautschi+QEA (solid) with coarse
discretization is close to the exact solution.

In Fig. 10 we compare the phase shift (with respect to the exact linear solution) of
VLPL (dash–dotted) and the Gautschi+QEA simulation from Table 1 (solid) in the
nonlinear case (a0 = 0.12). The difference between the two (dashed) is consistent
with the linear phase error of PIC (dotted). This shows that the difference in phase
between nonlinear PIC and Gautschi+QEA is mostly linear phase error of PIC,
which could also influence the accuracy of the amplitude calculation.

5 Conclusion

In the present paper, we have investigated numerically a physical model for wave
propagation in a nonlinear, dispersive medium. The model applies to strong laser
pulse propagation into a relativistic plasma. It consists of two coupled equations
for the high–frequency laser field and the low–frequency plasma response. The lat-
ter causes, besides dispersion, nonlinear effects due to relativistic mass variation.
A fast numerical solver for the coupled equations is presented. It incorporates two
main ideas. First, a new variant of the Gautschi–type integrator for reducing the
number of time steps is proposed. Secondly, in order to reduce the number of spatial
grid points, a physically motivated quasi–envelope approach (QEA) is introduced.
The new method turns out to reduce the computational time significantly (for ex-
ample by a factor of 5 even for low accuracy demands) comparedto the standard
leap-frog scheme. We also found that for the weakly nonlinear regime the combi-
nation of the reduced model and our fast solver is as accurateas a first–principle
PIC simulation. The latter, however, needs much more time.

The advantages of the present scheme for oscillatory problems are discussed in
detail. It can be expected that the main ideas will also be useful for other physi-
cal problems being highly oscillatory in nature, eg. the non–linearized model. We
currently investigate the extension to a three dimensionalgeometrie.
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A Details of the physical model

From Maxwell’s equations we get for the vector potentialA and scalar potentialϕ
in Coulomb gauge

−∇2A +
1
c2

∂2A
∂t2 =

1
c

∂∇ϕ
∂t

+

(
4π
c

)
j . (A.1)

For fixed ions (we are considering fast solitary waves) the current density is

j = −eneve . (A.2)

By electron velocity and density, the wave equation is coupled to the continuity
equation for the electron density

∂
∂t

ne+∇ · (neve) = 0 (A.3)

and the electron momentum balance
(

∂
∂t

+ve ·∇
)

Pe = e

[
−∇ϕ− 1

c
∂A
∂t

+
1
c

ve× (∇×A)

]
, (A.4)

which describe the nonlinear response of the medium. We can thus identify two
sources of nonlinearity, density oscillation and the relativistic mass factor, because

ve =
Pe

me γe
, (A.5)

with

γe =
1√

1−
(ve

c

)2 =

√

1+

(
Pe

me c

)2

. (A.6)

By some straightforward manipulations, we can write the momentum balance in
the form

∂
∂t

(
Pe−

e
c

A
)

= e∇ϕ−mc2 ∇γe+
1

meγe
Pe×

[
∇×

(
Pe−

e
c
A
)]

. (A.7)

To normalize the equations we use the inverse wave–number (k−1
0 ) and inverse

wave–frequencyω−1
0 of the laser carrier as unit length and time (ω0 = ck0 in vac-
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uum). A wave can propagate in a medium with (constant) electron densityne pro-
videdω0 > ωp where

ωp =

√
4πnee2

me
(A.8)

is the electron plasma frequency. We use the maximum ion background density
nmax

ion as the density unit. The critical density for wave propagation nc follows from
the condition

4πnce2

me
= ω2

0 . (A.9)

Thus, the parameter

Q =
nmax

ion

nc
(A.10)

can be introduced; it has to be less than 1 for wave propagation.

Scalar as well as vector potentials are measured in units ofmec2/e. Velocities are
measured in units ofc, and momenta are normalized withmec. From now on, we
omit the indexe for electrons. The electron momentum balance then is

∂
∂t

(P−A)− P
γ
×∇× (P−A) = ∇(ϕ− γ) . (A.11)

Let us now write the basic equations under the assumption that the wave propagates
in z–direction, so that all variables depend only on one space coordinate, i.e.

A = A(z) , n = n(z) , ϕ = ϕ(z) , Pz → P . (A.12)

From the Coulomb gauge follows the purely transverse nature of the wave(A =
A⊥). The wave equation for the transverse componentA⊥ now reads

∂2

∂z2A⊥− ∂2

∂t2A⊥ = Q n
P⊥
γ

. (A.13)

The longitudinal part of the wave equation simplifies to

∂2ϕ
∂t∂z

+Qn
P
γ

= 0 . (A.14)

Within the plasma, the perpendicular electron momentum balance

∂
∂t

(P⊥−A⊥)+

(
P
γ

)
∂(P⊥−A⊥)

∂z
= 0 (A.15)

has the special solution
P⊥ = A⊥ , (A.16)

which also simplifies the longitudinal electron momentum balance

∂P
∂t

−P⊥ · ∂(P⊥−A⊥)

∂z
=

∂(ϕ− γ)
∂z

. (A.17)
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This leads to the basic set of equations:

∂2

∂z2A⊥− ∂2

∂t2A⊥ = Q n
A⊥
γ

, (A.18)

∂2ϕ
∂t∂z

+Qn
P
γ

= 0 , (A.19)

∂2ϕ
∂z2 = Q(n−n0) , (A.20)

∂n
∂t

+
∂
∂z

(
nP
γ

)
= 0 , (A.21)

∂P
∂t

=
∂(ϕ− γ)

∂z
, (A.22)

wheren0 is the time–independent part ofn (which is identical to the fixed ion
background), while in the followingδn denotes the first order density oscillation.

Next, we specify to circular polarized waves, introducing

a = Ax + i Ay . (A.23)

This yields
γ2 = 1+ |a|2 +P2 . (A.24)

Writing

n = n0 +δn = n0 +
1
Q

∂2ϕ
∂z2 ≡ n0−

1
Q

∂Ẽ
∂z

, (A.25)

the wave equation has the form

∂2a
∂z2 − ∂2a

∂t2 = Q
(n0 +δn)

γ
a . (A.26)

The plasma response is determined via the equations

∂δn
∂t

= − ∂
∂z

[
(n0 +δn)P

γ

]
, (A.27)

∂P
∂t

= −Ẽ− ∂γ
∂z

, (A.28)

∂Ẽ
∂t

= Q
(n0 +δn)P

γ
. (A.29)

Note that the additional equation

1
Q

∂Ẽ
∂z

≡ ∂E
∂z

= −δn (A.30)

is the solvability condition of (A.29) and (A.27).
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We may simplify the plasma response by taking a time derivative of (A.29) and
substituting the corresponding expressions from (A.28) and (A.27). The final result
is

∂2Ẽ
∂t2 +Qn0 Ẽ = −Qn0

∂γ
∂z

+R , (A.31)

where

R := −Qn0
∂
∂t

[(
1− 1

γ

)
P

]
+Qn0

∂
∂t

(
δn

P
γ

)
. (A.32)

In the main text we assumeR≈ 0. The reason isR∼ O (ε4), whereas the other terms
in Eq. (A.31) are of orderε2. Here,ε characterizes the order of magnitude ofa. Then
the balance (A.28) suggests the orderingδn ∼ P ∼ a2 ∼ O (ε2). Note that we do
not scale the space– and time–variables. From (A.32) we thenfind R∼ O (ε4).

By similar arguments, to leading order, we can setP≈ 0 in (A.24) such that

γ2 = 1+ |a|2 . (A.33)

Together with (A.30) the basic set of equations is

∂2a
∂z2 − ∂2a

∂t2 = Q
(n0 +δn)

γ
a , (A.34)

∂2E
∂t2 +Qn0 E = −n0

∂γ
∂z

. (A.35)

The last equation may also be written in the form

∂2δn
∂t2 +Qn0 δn = n0

∂2γ
∂z2 , (A.36)

if the density profilen0 is piecewise constant or depends only very slowly onz.

In the vacuum part of the density profile, wheren0 = 0, equations (A.34) and (A.35)
reduce to

∂2a
∂z2 − ∂2a

∂t2 = 0 . (A.37)
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