
glueTK:

A Framework for Multi-modal,

Multi-display Interaction

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Florian van de Camp

aus Duisburg

Tag der mündlichen
Prüfung: 9. Mai 2014

Erster Gutachter: Prof. Dr.-Ing. Rainer Stiefelhagen

Zweiter Gutachter: Prof. Dr.-Ing. habil. Björn Hein

Zusammenfassung

In den letzten Jahren hat es eine verstärkte Entwicklung
neuartiger Eingabegeräte verschiedenster Modalitäten ge-
geben, mit einem Schwerpunkt auf natürlicher und intui-
tiver Interaktion. Diese Eingabetechnologien basieren dar-
auf, den oder die Benutzer mit geeigneter Sensorik zu beob-
achten und daraus Informationen, wie Zeigegesten, Perso-
nenlokalisierung oder die Schätzung der Kopforientierung
abzuleiten. Um diese Informationen der neuartigen Einga-
betechnologien bestmöglich nutzen zu können sind neue
Konzepte zur Entwicklung von grafischen Benutzerschnitt-
stellen notwendig, um die Eingabedaten zu komplementie-
ren. GlueTK ist ein Softwareframework, das die Entwick-
lung von Applikationen ermöglicht, die mittels neuartiger
Eingabegeräte gesteuert werden und sich über mehrere Dis-
plays erstrecken können. Eine zentrale Eigenschaft ist dabei
die bidirektionale Kommunikation zwischen der Eingabe-
schicht und der Ausgabeschicht, die den Eingabetechnolo-
gien Informationen über die aktuelle Darstellung zur Ver-
fügung stellt. Ein netzwerktransparentes Signal- und Slot-
System erlaubt eine umfassende und flexible Kommunika-
tion im gesamten Framework.
Aufbauend auf der Funktionalität von glueTK ist ein Sy-
stem zur Verbesserung der Zielerfassung für Zeigegestensy-
steme entwickelt worden. Die so genannten “dynamischen
Gauß’schen Kraftfelder”erweitern bisherige Ansätze in mehr-
facher Hinsicht. Die Modellierung der Anziehungskraft der
Felder mittels einer Gauß-Verteilung macht die Bestim-

iii

mung einer sinnvollen, statischen Anziehungskraft über-
flüssig. In dem die Orientierung der Kräfte aller Felder in
Betracht gezogen wird, kann die Platzierung der Felder in
komplexen Anwendungen auch für überlappende Felder ge-
nerisch gelöst werden. Da Kraftfelder prinzipiell immer zu
Irritationen führen können wenn sie nicht gebraucht wer-
den, treffen die dynamischen Kraftfelder Vorhersagen wel-
che Elemente anvisiert werden. Basierend auf diesen Vor-
hersagen werden dann nur die Kraftfelder anvisierter Ele-
mente aktiviert.
Kraftfelder, wie auch die Mehrheit anderer Systeme zur
Verbesserung der Zielerfassung von Zeigesytemen, benöti-
gen Informationen über die aktuelle Darstellung auf dem
Display. Diese Informationen sind bei glueTK-basierten Ap-
plikationen grundsätzlich verfügbar, allerdings nicht bei der
großen Zahl bereits bestehender Applikationen. Für solche
Anwendungen, speziell wenn kein Zugang zu dem Quell-
text der Anwendung möglich ist, wurde ein System ent-
wickelt, welches mittels Bildverarbeitung dargestellte Ele-
mente automatisch erfasst und so die notwendigen Infor-
mationen über das aktuelle Layout liefert. Diese Informati-
on werden dann genutzt um Eingabedaten um Kraftfelder
zu erweitern bevor diese an die Zielanwendung in Form
von Mauskoordinaten weitergeleitet werden. Um die dar-
gestellten Elemente zu lokalisieren wird der Bildschirmin-
halt erfasst und die einzelnen Elemente werden mit einem
Template-Matching-Verfahren gesucht. Um zu verhindern,
dass für eine große Zahl von Elementen Templates erstellt
werden müssen, werden diese zur Laufzeit erstellt indem
das Verhalten des Benutzers beobachtet wird. Durch eine

iv

automatische Generalisierung der Templates werden Mo-
delle für einzelne Elementtypen erstellt, die es erlauben,
alle Elemente so schnell zu lokalisieren, dass die gewonnene
Information zur Verbesserung von Zeigegesten für beliebige
Anwendungen verwendet werden kann.
Mit Hilfe der dynamischen Gauß’schen Kraftfelder und dem
automatischen Lokalisieren von Elementen in beliebigen
Applikationen ist die Zielerfassung präzise genug, um neue
sowie bestehende Anwendungen zu bedienen. Sobald das
Zielelement erfasst ist, muss es darüber hinaus aber auch
noch aktiviert oder angewählt werden. Eines der großen
Vorteile der Zeigegestensysteme ist ihre Natürlichkeit, da
Benutzer keinerlei Geräte tragen oder halten müssen um
zu interagieren. Es ist daher erstrebenswert, auch für die
Zielaktivierung auf zu tragende Geräte zu verzichten und
diese Information ebenfalls aus der visuellen Erfassung zu
gewinnen.
Durch eine neue, umfassende Taxonomie wird ein umfas-
sender Überblick über Möglichkeiten gegeben, Ziele ohne
zusätzliche Geräte, allein mit dem zeigenden Arm und der
Hand zu aktivieren. Dafür werden mögliche Aktivierungs-
gesten in Arm-, Hand-, und Fingergesten unterteilt, um
eine systematische Auswertung zu ermöglichen. In einer
Wizard-of-Oz Studie werden alle Klassen der Taxonomie
untersucht. Die Ergebnisse erlauben über die Empfehlung
einer optimalen Geste hinaus auch Hinweise für einen sinn-
vollen Einsatz der anderen Gesten.
Das Design von grafischen Benutzerschnittstellen ist ein
wichtiger Aspekt von glueTK Anwendungen. Dies ist zum
einen darin begründet, dass viele neuartige Eingabegeräte

v

nicht an ein einzelnes Display gebunden sind und Inter-
aktion über Displaygrenzen hinweg erlauben. Zum ande-
ren gibt es eine große Zahl von Displays mit verschiede-
nen Größen, Auflösungen und Seitenverhältnissen: Fakto-
ren die alle bei der Gestaltung von Anwendungen berück-
sichtigt werden müssen. Bei der Gestaltung hat vor allem
die Größe der Elemente einen großen Einfluss auf die In-
teraktionsleistung, also darauf, wie schnell ein Benutzer ei-
ne Anwendung bedienen kann. Für eine genauere Analyse
wird die Interaktionsleistung in zwei Phasen unterteilt. Die
Zeit, ein Element visuell zu lokalisieren und zu identifizie-
ren, wird hier als Wahrnehmungsleistung bezeichnet. Die
Zeit, dieses Element dann mit einem Eingabegerät zu ak-
tivieren, wird als Eingabeleistung bezeichnet. Um bei der
Vielfalt von Eingabegeräten und Anzeigegeräten Vorher-
sagen über geeignete Elementgrößen machen zu können,
wird das Konzept eines Referenzsystems entwickelt. Basie-
rend darauf lassen sich Aussagen darüber treffen, wie die
Interaktionsleistung sich auf einem beliebigen Zielsystem
verhalten wird. Die Vorhersage der Interaktionsleistung er-
möglicht die Entwicklung gut bedienbarer Anwendungen
für jede Kombination von Eingabegerät und Display bei
minimalem Entwicklungsaufwand.

vi

ABSTRACT

In recent years, many novel input modalities have been ex-
plored with a special focus on natural and intuitive inter-
action. These modalities focus on the user and on deriving
input data from the user’s actions such as pointing ges-
tures, person tracking, or headpose estimation. To make
use of these modalities in the best possible way, novel con-
cepts for the development of user interfaces are necessary to
complement the input. GlueTK is a framework, which al-
lows the creation of applications that can be controlled us-
ing novel input modalities, and can spread across multiple
displays and machines. A central property is the bidirec-
tional communication between the input and output layers,
which makes interface layout information available to input
modalities. A network-transparent signal and slot system
provides a coherent communication mechanism within a
glueTK application.
A pointing enhancement technique for improving the target
acquisition of a pointing gesture recognition system builds
upon the functionality provided by glueTK. The technique,
called dynamic Gaussian force fields, extends previous force
field variants in several aspects. The Gaussian modeling of
the field strength solves the problem of defining a single
fixed strength, which is always a trade-off between help
and irritation. By allocating for multi-directional forces of
overlapping fields, a generic solution to the overlap prob-
lem is presented, which allows force field placement even
for complex user interfaces. As force fields can always be

viii

a source of irritation when not needed, dynamic Gaussian
force fields predict if an interface element is targeted from
the users pointing data and dynamically turn fields on and
off.
While the layout information required by target aware point-
ing enhancements is available for glueTK applications, the
same is not true for other applications. A computer vision
based approach to automatically detect the user interface
layout of those applications, even without access to the
source code, solves this problem. By acting as an inter-
mediary between the existing user interface and the input
data of an input device to be integrated, force fields can
be used for existing applications without the applications
knowledge. The approach involves capturing the screen
and using template matching to localize targets. To avoid
the need for prior training or configuration, target tem-
plates are created on the fly by observing the user while
he interacts. By automatically generalizing target models,
using multiple acquired templates, the localization works
fast enough to enhance the target acquisition of pointing
gestures for any existing application.
With the ability to improve the speed and accuracy of tar-
get acquisition not only for glueTK applications, but also
for existing applications by utilizing the gained knowledge
about the layout of the user interface, target acquisition is
fast and accurate. Once the target is acquired, however, it
has to be selected as well. Since one of the advantages that
make pointing gesture recognition natural and intuitive, is
the lack of any devices the user is required to wear or hold,
target selection should be device free as well.

ix

A novel taxonomy gives a comprehensive overview of de-
vice free options to trigger a selection of a target in mid-air
by systematically categorizing different arm-, hand- and
finger gestures into respective classes to cover all possible
ways of target selection. In a Wizard-of-Oz study, all ges-
tures from the taxonomy are evaluated, and the results give
recommendations about which gestures should be used for
selection as well as which are suitable for secondary inter-
action tasks.
The design of user interfaces is an important aspect of
glueTK applications. This is due to the fact, that modali-
ties like pointing gestures are not bound to a single display
and allow for interaction in multi-display environments. At
the same time, the different display and modality properties
have to be taken into account. When it comes to the af-
fect the user interface has on the interaction performance,
two distinctive parts of the interaction can be identified.
Before an input device is even used, a target has to be vi-
sually acquired by the user. This perceptual performance
has been studied for text but not for graphical interface
elements. Therefore, the concept of a reference system is
introduced, which allows developers and interface designers
to put design decisions they make into perspective by al-
lowing the calculation of required element sizes for a target
system to achieve the same perceptual performance as on
the specific reference system they use. The other distinc-
tive part of the overall interaction performance is the input
performance, the time it takes a user to select a target with
a given input device, once the target is visually acquired.
An adaptation of the well known Fitts’s law allows for pre-

x

dictions with respect to a reference system for the input
performance with similar accuracy as the predictions for
the perceptual performance. In addition, the dependency
between perceptual performance and input performance is
analyzed in detail and allows for predictions of the overall
interaction performance.

xi

Acknowledgements

On April 4th 2005, I sent an E-mail to Prof. Dr. Stiefel-

hagen asking if I could participate in a seminar on multi-

modal rooms as part of my university studies even if I could

not attend the first meeting. Little did I anticipate that his

agreement would be the start of years of research in this

very field for me. I would like to thank Prof. Dr. Stiefel-

hagen for this opportunity and his guidance and support

over the years, especially throughout the course of this the-

sis. I would like to express my gratitude towards Prof. Dr.

Hein as co-referee of this thesis. I would particularly like

to thank my colleagues at the Fraunhofer IOSB, Alexander

Schick, Joris IJsselmuiden and Dr. Michael Voit. All of our

work within the scope of the Attract project complemented

one another so well that it allowed each of us to pursuit our

own specific challenges with the results culminating in the

SmartControlRoom. I would like to thank all of you for

xii

countless discussions, proofreading and companionship.

I would like to express my gratitude towards Dr. Geisler

and Dr. Peinsipp-Byma, who have not only shown great

interest in my work, but also created the frame conditions

that allowed me to work on my thesis as well as on many

interesting projects. I want to thank Prof. Dr. Beyerer,

without whom the Attract project would not exist. Though

not directly involved in this thesis, I would like to thank

my parents. From an early age on my interest in technol-

ogy was always met with encouragement, and on the way

from there to here I have received much support, morally

and financially. Finally, I would like to thank Marleen, who

has always been there for me. Always.

xiii

Contents

Contents

1 Introduction 1

1.1 New Input Modalities 4

1.2 Multi-display Environments 8

1.3 Goals and Contributions 9

1.4 Outline . 13

2 Related Work 14

2.1 Multi-modal Input and
Multi-display Environments 15

2.1.1 Multi-modal Input 16

2.1.2 Digital Tables 18

2.1.3 Visual Output 20

2.2 Pointing Gesture Enhancements 24

2.3 Inter-display Interaction 34

2.4 Proxemic Interaction 36

xiv

Contents

2.5 Interaction Performance 38

3 Framework 41

3.1 Architecture 42

3.1.1 Overview 43

3.1.2 GlueInput 46

3.1.3 Communication 55

3.1.4 GlueOutput 63

3.2 Evaluation 67

3.2.1 Performance 68

3.2.2 Developer Survey 70

4 Functionality 79

4.1 Target Acquisition 82

4.1.1 Dynamic Gaussian Force Fields . . . 83

4.1.2 Evaluation 91

4.2 Target Localization 105

4.2.1 Black-Box GUIs 106

4.2.2 Evaluation 114

4.3 Target Selection 125

4.3.1 Taxonomy 127

xv

Contents

4.3.2 Evaluation 130

4.3.3 Discussion 137

4.4 Inter-display Interaction 140

4.4.1 Acceptable Data Transfer Latencies 141

4.4.2 Bridging Latencies 143

4.4.3 Conclusion 151

4.5 Choosing Element Sizes 152

4.5.1 Perceptual Performance 154

4.5.2 Input Performance 161

4.5.3 Interaction Performance 166

5 Applications 173

5.1 Smart Control Room 174

5.2 Distance Dependent Display 187

6 Conclusion 199

List of Figures 205

List of Tables 210

Own Publications 212

xvi

Contents

Bibliography . 215

Appendices . 244

A Used Questionaires 245

A.1 glueTK - Developer Study 246

A.2 User study - Force Fields 253

A.3 User study - Black-Box GUIs 254

A.4 User study - How to click in mid air 255

A.5 User study - Acceptable Latencies 270

A.6 User study - Bridging Latencies 272

xvii

1
Introduction

Since the introduction of the first mouse based desktop
computer with a graphical user interface, the Xerox Alto
in 1973, not much has changed in the way humans inter-
act with desktop computers. The “windows, icons, menus,
pointer” (WIMP) - paradigm that was introduced to com-
plement the then novel pointing input has been prevalent
in the computing world for more than thirty years.
One reason is the generality of the paradigm that extends
to a wide range of applications for desktop computers and
was assisted by commercial widget toolkits on the rise that
followed the WIMP-paradigm. Another important reason

1

is that the mouse alongside the keyboard are an extremely
powerful pair of input devices that allows for high efficiency
in the use of a desktop computer. The combination of these
circumstances have left little demand for change.
In recent years, new computing devices and environments
have surfaced. Mobile devices have become an inherent
part of everyday computer use and are still on the rise,
while the number of desktop computers is stagnating [Gar].
Mobile devices are not well suited for mouse and keyboard
input, which has led to a rise of touch and multi-touch input
as the dominant input modality for these devices. While
there are already many commercial solutions and products
in the mobile device market, another category of computing
systems, large displays and multi-display environments, is
also on the rise but not yet as pervasive as mobile devices.
What the two categories have in common, however, is that
mouse and keyboard are not perfectly suited for large dis-
plays and multi-display environments either, since these are
commonly not used sitting down. Large displays are com-
monly used from several distances depending on whether
the user wants to get an overview or take a look at details.
In multi-display environments, users usually walk from one
display to another depending on which system is best suited
for the task at hand.
To provide the required flexibility, different input modal-
ities have been explored and several novel input devices
have recently become mature enough to be used in such
environments. For developers, however, it is still difficult
to utilize these devices as they all have different require-
ments, interfaces and partially provide very different input

2

data. Besides integration, the accuracy of many novel input
devices poses a problem as well. Since they are usually not
bound to a single display to allow for flexible use in multi-
display environments and aim at providing a natural and
intuitive user experience, most of them focus on observ-
ing the user’s actions to derive information for interaction.
While this approach has the great advantage of omitting
the need to carry a hardware device, these devices are quite
inaccurate compared to a mouse due to sensor noise and
measurement errors. Even if sensors get better, modalities
that focus on measuring movements of users are inherently
inaccurate due to the human physique. For pointing ges-
ture recognition, for example, does neither the extension
of an arm necessarily reveal the exact, intended target the
user points to [NS07], nor is a user able to keep the arm
perfectly still.
To compensate for the inaccuracy of many novel input de-
vices, interfaces have been adjusted by using larger ele-
ments where possible. A visual adjustment of interfaces
is, however, only possible to a certain degree, as larger el-
ements severely limit the possible functionality and com-
plexity of user interfaces. Other techniques for improve-
ment on the side of the interface exist, but rely on infor-
mation about the layout of the interface. Traditionally,
input devices have been unidirectional, meaning they have
no knowledge of the user interface and no means of access-
ing this information. The more natural input devices are
adopted, the more important the interface becomes, as it
directly affects the user’s actions, which in turn are cap-
tured by many input devices.

3

1.1. New Input Modalities

The following two sections will give an introduction to the
challenges involved with the integration of new devices as
well as the development of applications for multi-display
environments, followed by an overview of the goals and
contributions of this thesis.

1.1 New Input Modalities

The term “input modality” is ambiguously used in litera-
ture. Its use ranges from describing a specific device such
as a mouse [NKG13] to denoting a very broad category
such as computer vision based systems [TH13]. Within the
context of this thesis it is used to define a class of input
devices, such as touch based devices. An input device is
a specific representative of that class, such as a capacitive
touchscreen.
In recent years, many new input devices are starting to ma-
ture far enough to be used in applications, but there exists
a large variety of interfaces along with different types of in-
put data that is provided. While a first approach for many
new input devices seems to be to emulate mouse data, this
severely limits the full potential of the input modalities. In
addition, many input modalities are not bound to a sin-
gle screen or system, they are systems in their own right
and provide data relative to their own coordinate system -
which requires data transformations and projections before
the interaction with screen content is possible. Because of
the user and body focused approaches of many modalities,
the inherent inaccuracy has to be compensated to allow for

4

1.1. New Input Modalities

meaningful interaction with real world interfaces. The user
interface and its layout directly affect the user’s behavior
and while often thought of as mostly independent of the
input modality, there has always been a close correlation
between input modality and user interface.
For the first personal computers in the 1970s, text based in-
terfaces were dominant and the only available input device
was the keyboard. While the limitation to textual display
was due to technical boundaries in the beginning, it was in
perfect correspondence to the keyboard as an input device
which was capable of only text input and very basic, type-
writer like, navigation.
When Xerox introduced the Alto and later the Star in the
mid 1970s [JRV+89], they introduced the computer mouse
to be used as an input device in addition to the keyboard.
Along with this new input technology, they also introduced
a new concept of user interfaces, the graphical user interface
(GUI) based on the WIMP-paradigm. The mouse would
have been of little use in a purely text based user inter-
face, the concept of windows, icons and menus allowed the
mouse to prove its strengths. After this introduction, the
basic concepts for both input devices as well as user in-
terface have stayed the same for desktop computers until
this day. There have been improvements and minor modi-
fications like the switch from mechanical mouses to optical
ones or the introduction of the scroll-wheel in the 1990s,
when scrolling became a dominant task due to the dawn
of the world wide web, but the devices and concepts have
remained the same.

5

1.1. New Input Modalities

Figure 1.1: Microsoft Excel on Windows Mobile 5.

This changed when the first smartphones appeared in the
early 2000s. The mobility of the device itself as well as lim-
ited space due to the small size rendered the use of a mouse
impractical, which led to the widespread introduction of
touch screens. The first user interfaces in widespread use
for touch based smartphones were, however, not adapted
to this new input modality and its properties. User in-
terfaces were merely scaled down variants of desktop soft-
ware, never intended to be used with any input device but a
mouse. Figure 1.1 illustrates this with an example screen-
shot of Excel on Windows Mobile 5. Several years later
the iPhone was introduced, which used touch input as well,
but alongside a user interface that was specifically tailored
towards the properties of this input modality. Larger ele-

6

1.1. New Input Modalities

Figure 1.2: Setting an alarm on the iPhone (iOS 4).

ments to account for the lower accuracy as well as interface
elements that reacted not to simple touch but to a swipe
across them better utilized the expressiveness of the touch
modality (See Figure 1.2). The adaptation of the interface
to go along with the new modality made the device easier
to use and led to explosive growth of the smartphone mar-
ket that is still ongoing.
In 2010 the Microsoft Kinect [Kin] was introduced, and
allowed the control of games with gestures and body move-
ments. To make use of this input technology, the interface
has been adapted to it as well. Because of the fact that
the Kinect is an addition to a game console and intended
for play, there are still many open problems to make use of
this natural, intuitive input in professional applications.

7

1.2. Multi-display Environments

1.2 Multi-display Environments

While mobile devices have broadened the range of comput-
ing systems used in everyday life with displays smaller than
desktop computers in recent years, there are also more and
more systems that use much larger screens than common
desktop computers. While large displays, digital tables and
videowalls are not common for personal computing, they
become more and more common in professional settings. In
many cases, these large displays are used alongside regular
desktop computers as well as mobile devices, which leads to
an increase of installations of multi-display environments.
Especially in combination with novel input modalities, like
pointing gestures, which are not bound to a single system
or display, the demand from users for inter-display interac-
tion grows. Users usually do not care about the underlying
technical details but about applications. Since large dis-
plays and mobile devices are in fact, however, completely
different machines, simple tasks like moving an object from
one display to another can become a technical challenge.
Interacting with multiple displays also creates new expec-
tations towards the interface design. Not only should in-
terfaces provide a coherent user experience across displays
and devices, but they should also be usable. The large
variety of screen sizes, resolutions, ways of use, and new
input devices that start to establish themselves, leads to
very different requirements regarding the user interface to
allow for the same level of usability. In most cases, inter-
faces have to be adapted to account for the visual acuity
of normal sighted persons at a certain distance or for the

8

1.3. Goals and Contributions

accuracy of an input device. The basic approach of simply
increasing the size of textual and graphical elements is not
always an option. In addition, screen estate is a very lim-
ited resource, which is why elements should never be larger
than they have to be to allow for a certain level of interac-
tion quality. Another reason why the design of interfaces
for such novel interactive systems is usually a tedious and
time consuming task, is that developers still use desktop
computers to design these interfaces. This means, both
input device and screen properties differ from the target
system, which makes it hard to develop a feeling for “right”
element sizes, particularly if there are more target systems
with different properties.

1.3 Goals and Contributions

Within the scope of this work, a framework for multi-
modal, inter-display interaction was developed. The frame-
work lays the necessary ground work to allow for the im-
plementation of several contributions in the field of human
computer interaction. The framework intends to be able
to incorporate a wide variety of novel input devices and
abstract from their specific interfaces to allow for easy in-
tegration. It needs to provide means of communication
between input devices and interface elements across multi-
ple machines to enable interaction across multiple displays,
connected to different machines. To allow for interfaces tai-
lored towards the properties of input modalities, displays
and users, a flexible output system is required to render cus-

9

1.3. Goals and Contributions

tom interfaces and elements. As the interface itself plays an
important role in the utilization and improvement of many
novel input modalities, providing interface layout informa-
tion throughout the framework is an essential property.
As pointing gesture recognition is the most common novel
input modality due to its versatile use cases, it has to be
of special focus within the context of the application of the
framework.
Given the display layout information by the framework,
target aware pointing enhancements should be utilized to
improve the accuracy and speed of target acquisition. While
this can significantly improve the input performance of
pointing gesture systems, it is only available for applica-
tions utilizing the framework. There has to be a way to
make use of the framework’s input layer along with the
pointing enhancement technologies it provides or existing
applications without any modification or prior configura-
tion.
With target localization for existing applications and there-
fore target aware pointing enhancement, it is possible to
effortlessly acquire a target in any application. For actual
target selection it is important, which options exist to trig-
ger a click with device free pointing interaction in mid-air
and which options are optimal choices.
With a functional, reliable pointing gesture recognition
comes the desire to use it across displays as it is not bound
to a single one. The transfer of interface elements across
systems needs to be provided by the framework, but la-
tencies can always occur. For those cases, it is important
to know how to bridge the latencies to improve the overall

10

1.3. Goals and Contributions

user experience.
The interaction across devices and displays requires usable
interfaces on all displays. Besides the flexibility of the out-
put of the framework to allow for such a variety, there
needs to be a concept that allows a developer using the
framework to choose element sizes for arbitrary interactive
systems and to easily understand their implications on the
interaction performance.

11

1.3. Goals and Contributions

Contributions:

• An application framework that allows for rapid de-
velopment of multi-modal and multi-display applica-
tions by providing a network transparent signal and
slot system and bidirectional communication between
input modalities and user interface, including its lay-
out [vdCS13c].

• A novel force field variant for pointing enhancement,
which solves the problem of overlaps for all interface
layouts, eliminates the need to define a field strength
and detects when fields are needed to dynamically
activate them [vdCS13b].

• A computer vision based approach to locating inter-
face elements without prior knowledge to apply tar-
get aware pointing enhancements to existing applica-
tions [vdCS13a].

• A taxonomy of hand gestures for triggering click events,
which was used in an empirical study to systemat-
ically determine the best possible gesture to allow
clicking in mid-air [vdCSS13a].

• A methodology to predict element sizes for arbitrary
interactive systems to retain the interaction perfor-
mance from a reference system to any target sys-
tem [vdCSS13b].

12

1.4. Outline

1.4 Outline

This thesis is structured as follows. Chapter 2 discusses the
state of the art and related work. This covers related frame-
works and approaches to multi-modal interaction as well as
pointing enhancement technologies, the integration thereof
and the design of interfaces for a multitude of display de-
vices and cross display interaction. Chapter 3 presents the
architecture of glueTK and discusses the properties that al-
low for easy integration of new input devices, multi-display
applications and raise the interface layout as a source of
information to an equal level as the input data of input de-
vices. Building upon the technical possibilities offered by
the glueTK architecture, Chapter 4 describes several con-
tributions to enhance the integration of novel input modal-
ities with a special focus on pointing interaction. Chapter 5
describes two applications created with glueTK, one with
a focus on multi-modality and a multi-display environment
and the other with distance dependent display adaptation.
Chapter 6 summarizes this thesis.

13

2
Related Work

Human computer interaction has a long history of research
and the following sections will discuss work related to this
thesis to give an insight into the current state of the art.
As the glueTK framework is the necessary ground work for
several advances in human computer interaction introduced
in this thesis, Section 2.1 will present some of the frame-
works used today as well as the progress made towards
supporting novel input modalities and multiple displays in
recent years.
While glueTK supports various data sources as input, a
main focus of this thesis lies on pointing gesture interac-

14

2.1. Multi-modal Input and
Multi-display Environments

tion as it is a versatile input modality in multi-display en-
vironments, especially if large displays are involved. To in-
corporate pointing gesture interaction in both existing and
new applications, several challenges have to be addressed.
Section 2.2 outlines work related to enhancing pointing in-
teraction in general, as well as integrating these enhance-
ments into existing applications. An additional challenge
addressed, deals with progress made towards one of the
core challenges of pointing interaction, intuitive clicking.
Inter-display interaction is not only about input, it is also
about the displays and user interfaces. For large multi-
display environments it is common that users can move
freely between displays, which creates challenges as well
as opportunities. Section 2.3 and Section 2.4 discuss the
current state of the art of inter-display interaction and in-
teractive displays respectively.
One key concept of glueTK is the equality of input and out-
put. The display content and state are just as important
for interaction as the input. For human computer interac-
tion it is of key importance that the interface is adapted to
the display hardware as well as to the user. Section 2.5 de-
scribes related work in the field of display adaptation and
interaction performance.

2.1 Multi-modal Input and
Multi-display Environments

A framework is software that provides generic functional-
ity that can be customized by developers to create specific

15

2.1. Multi-modal Input and
Multi-display Environments

applications. A key property that differentiates a frame-
work from other software tools such as libraries, APIs or
toolkits, is that the framework dictates the flow of the ap-
plications and not the developer [RG98]. While glueTK
is a framework, there are many related projects that do
not provide a framework but provide similar functional-
ity in other ways. The following subsections will therefore
give an overview of frameworks, libraries, APIs, toolkits
and projects that are related to the functionality provided
by glueTK. The first subsection deals with projects that
focus on input alone. While all of these lack great parts
of what makes up glueTK, they address similar problems
with regard to the integration of multi-modal input. The
second subsection addresses digital tables. While projects
related to digital tables usually focus on few input devices
and a single display, they produced some early related work
that addresses input and output within the same context.
Finally, the third subsection focuses on projects that put
emphasis on the visual output.

2.1.1 Multi-modal Input

The need for applications that can handle novel input modal-
ities dates back to the first multi-modal systems. Bolt’s
“Put that there” [Bol80] is one of the first examples of
multi-modal input, in this case, speech and gestures. It
used speech to issue a command and a pointing gesture
to provide the intended spatial locations. One of the main
problems with multiple input modalities was data fusion on
different levels. Flippo et al. [FKM03] present a framework

16

2.1. Multi-modal Input and
Multi-display Environments

for rapid development of multi-modal interfaces. The goal
is the fusion of input data from different modalities and to
pass the result on as input data as well. The framework is
limited to only handling input data. A similar framework is
MUDRA [HDS11]. Its goal is the fusion of multiple modal-
ities in a generic fashion with a special focus on input data
with different levels of abstraction.
Fusion has become an important research topic of itself;
an overview of fusion engines for multi-modal input can be
found in [LNP+09].
The OpenInterface Framework [SNL+08] has the goal of
aiding the development of multi-modal applications. The
focus is enabling the use of multi-modal input and also
to provide a framework that makes applications reusable.
This allows for an easy exchange of these applications as
well as modules or components. An overview of typical
problems and settings of multi-modal systems as well as
an overview of frameworks along with their commonalities
and differences can be found in [DLO09].
While these frameworks deal with multiple modalities, they
do not include any means for output. The intelligent room
project [BDB+97] is an example that shows that multi-
modal input alone can create an intelligent environment.
It is an early approach to allow for intuitive interaction
with a room. It does not utilize any displays but offers
speech recognition as well as intelligent services based on
observations of user actions in the room. The integration
of multiple modalities is accomplished by “agent-based lay-
ers”, in which each agent offers an abstraction of the compo-
nent it wraps, so the application developer does not have

17

2.1. Multi-modal Input and
Multi-display Environments

to deal with it in detail. The goal of the QuickSet sys-
tem [CJM+97] is to use novel input modalities, speech and
gestures, to allow the control of a complex application on a
small screen. Multiple QuickSet systems, each running on
a PDA, can communicate using a blackboard based agent
system. While very flexible, the focus is neither on a generic
integration of modalities nor the creation of actual user in-
terfaces.

2.1.2 Digital Tables

Digital tables are computing systems that use large displays
as well as novel input modalities. While they do not deal
with a large range of display sizes and modalities, they are
a popular platform that differs significantly from the tra-
ditional desktop computer.
Such tabletop systems have gained much interest initially
due to the possibility of placing objects on the screen that
could be used for interaction. These so-called tangible ob-
jects close a gap between real world interaction and virtual
screen content. ReacTIVision is a computer vision frame-
work for detecting fiducial markers on a digital table to
enable interaction with tangible objects [KB07].
TUIO [KBBC05] is a communication protocol, which was
initially designed for tracking data of tangible objects but
has become a de facto standard for multi-touch data as
well. It is based on Open Sound Control (OSC) and allows
the integration of multi-touch data into applications. This
is necessary, as the default interfaces of most applications
can only deal with mouse and keyboard data. Multi-touch

18

2.1. Multi-modal Input and
Multi-display Environments

data, however, is richer and incorporates more information
than a mouse. Therefore, just emulating a mouse would
waste useful information. The protocol is specifically tai-
lored towards multi-touch data all the way down to the
format of messages, which limits its use for the integration
of other modalities.
Echtler et al. [EK08] use a similar, message based approach
for communication, but also add automatic geometric trans-
formations to provide pixel level coordinates from touch
recognition systems that do not provide these natively.
An important aspect of tabletop systems is the multi-touch
input. Common approaches to detect these touches are
usually based on computer vision, such as Touchlib [WZX11],
which includes blob detection and tracking. Similar to
Touchlib is “LightTracker”, a computer vision toolkit for
easy touch detection and tracking to build custom touch
trackers, tailored towards a specific system [GLH10]. Dia-
mondSpin is a system by Shen et al. [SVFR04], which goes
beyond multi-touch by creating a tabletop system that is
usable for multiple users at the same time. The goal is
to allow users to collaboratively work at a single display.
Much effort is spent on correctly transforming display con-
tent towards the respective users by rotating interface ele-
ments depending on the users’ position at the table.
Bader et al. present a tabletop system that does not only
use multi-touch but also incorporates a second modality,
eye gaze, to demonstrate several interaction concepts [Bad11].

19

2.1. Multi-modal Input and
Multi-display Environments

2.1.3 Visual Output

The tabletop systems described above were early adopters
of novel input modalities for a limited space, but there were
ambitions early on to make whole rooms interactive and
also increase the number and size of displays. With multi-
ple displays and multiple machines driving those displays
arises the need for inter machine communication. There
exist many middle ware solutions that allow for easy inter-
machine communication and messaging, many of which
have been compared in [DCE+11] and have been used to
send data of input devices to a single display [FGA+07].
While these solutions allow for effortless communication,
there is always a clear distinction between messages that
are explicitly sent to remote machines and local function-
ality such as methods and functions. The event based
middle ware “Hermes” brings remote messages and local
methods conceptually closer by using a type- and attribute-
based publish/subscribe model [PB02]. For the Java lan-
guage exists a solution called RMI (Remote Method Invo-
cation) [WRW96], which is extended by the Java-Party [PZ97]
for distributed computing, such as clusters of workstations
and makes remote methods accessible while reducing the
programming overhead required for RMI. For all approaches,
however, the developer needs to be aware of the locality of
methods and decide which need to be accessed remotely.
Meaningful interaction in multi-display environments poses
more challenges than inter-machine communication.
Johanson et al. [JFW02, JF02] describe their interactive
workspace project as a project to investigate interaction

20

2.1. Multi-modal Input and
Multi-display Environments

with large high resolution displays. Their prototype sys-
tem, called iRoom, relies on a software framework called
iROS. Their main focus is not on the integration of mul-
tiple input modalities or interface adaptations to the large
displays, but on making existing WIMP applications us-
able at different displays. Due to multiple displays and
systems driving them, a coordination model based on tu-
plespaces [GC92] is used for the integration of multiple ap-
plications. An “Event Heap” is used as a central entity to
distribute events between all machines.
The “EasyLiving project” by Krumm et al. [KHM+00] is
one of the few systems that incorporate not only point-
ing gesture modalities. While touch, as well as pointing
gestures, are novel modalities that require custom tailored
interfaces for best results, they can be forced to be used as
mouse replacements, which is why non mouse-like modal-
ities are usually harder to utilize for human computer in-
teraction. They use the identity and location of users to
display information, like instant messages, at the display
closest to the user. Their main focus, however, is not the
integration of tracking data in an interface or interaction
framework, but the challenges with respect to the person
tracking itself posed by their living room scenario.
Melchior et al. [MGVVR09] describe a toolkit with a spe-
cial focus on distributing applications across multiple ma-
chines. While neither novel input modalities nor adaption
to large displays play a role in this framework, they sup-
port the transfer of data as well as the transfer of parts
of applications across multiple machines. They make use
of traditional WIMP applications and corresponding input,

21

2.1. Multi-modal Input and
Multi-display Environments

but different parts of the same application can be used at
different displays and by different users at the same time.
The ROSS API [WMJ+12] is a toolkit that allows commu-
nication between multiple devices to exchange input and
output data. The main focus is a structure to organize in-
put and output devices in a hierarchical order. This allows
for making the input data of one device available at another
system. Output, in the sense of creating user interfaces, vi-
sualization or visual adaption for modalities or displays, is
not part of the framework. While there are many frame-
works that deal with different aspects of multi-modal input
or the utilization of multiple displays and machines, very
few make the actual creation and rendering of interfaces
part of the framework.
Most application interfaces today are implemented by uti-
lizing a framework that follows the WIMP (Windows, Icons,
Menus, Pointer) paradigm. There exist several such frame-
works for most operating systems [Har99, War00, TL02].
While applications created with these frameworks are dom-
inant today, they are specifically tailored towards the tra-
ditional desktop computer with keyboard and mouse as
input. The limits of these frameworks become apparent
when creating applications for large displays or novel input
modalities.
A very flexible solution for large display visualization is the
open source programming language Processing [Pro]. As it
is a programming language, much functionality required
for multi-modal and multi-display environments needs to
be implemented manually. Communication support allows
sending and receiving of bytes over a network, but func-

22

2.1. Multi-modal Input and
Multi-display Environments

tionality built upon that is not part of the language.
Large displays are often intended for data visualization.
Vvvv [Vvv] is a commercial framework for such visualiza-
tions. It also includes the management and control of mul-
tiple render nodes and supports the control of many dis-
plays, usually as a single surface. It has limited support for
some non standard input devices. The creation of actual
applications is, however, not the focus.
One of the few examples of frameworks that incorporate
novel input technology and include dedicated output is
PyMT [HHV+09] by Hansen et al. They describe how
today’s toolkits for interface creation are not well suited
for creating interfaces for many novel input modalities. In
particular, they try to build applications tailored towards
the potentials of multi-touch as input. The integration of
input handling and output handling allows to build inter-
faces that can exploit the potential of multi-touch data un-
like many of the existing frameworks that internally map
all pointing like data to mouse coordinates. While PyMT
does control input and output, information about the in-
terface is not globally accessible or used.
While many of the challenges involved with multi-modal
and multi-display interaction have been addressed, input
is always seen as independent of the output, which is why
most frameworks do not include any means for output at
all. Those which do, are designed to control the displays in
a one-way fashion with no feedback from the output layer
to the input layer. A similarly strict distinction is made be-
tween in-application and inter-application communication.
While there are many approaches to spread applications

23

2.2. Pointing Gesture Enhancements

across multiple displays and machines, they are thought
of as different applications instead of a single application,
embracing a whole room of multiple displays.

2.2 Pointing Gesture Enhancements

The mouse is a very powerful input device for graphical
user interfaces. The ability to quickly indicate any desired
position on a screen allows for powerful interfaces, which
is why many novel input modalities generate similar input
data. Pointing gesture recognition systems, for example,
generate locations on a screen but differ from a mouse in
that they can be used freely in a room without the need for
a flat surface or holding an actual device. The advantages
of device and surface free use come at the cost of lower ac-
curacy, however. This is true for most input modalities that
rely on measuring body movements. While novel input de-
vices will become more accurate, even perfect measurement
will not result in perfect accuracy as users are not able to
make perfectly accurate movements. The accuracy of an
input device and the resulting ease or difficulty of hitting a
target with respect to the target’s size has been studied ex-
tensively, most notably by Fitts [Fit54] resulting in Fitts’s
law 2.1. Fitts’s law quantifies the relationship between the
size of and distance to a target and the difficulty of hitting
the target.

The most important conclusion drawn from the law is the
fact that the bigger a target is, the easier it is to hit. This
insight is used to improve user interfaces for mouse input,

24

2.2. Pointing Gesture Enhancements

t = a+ b · log2(1 +
2d

w
)

Figure 2.1: Fitts’s law in the Shannon formulation. a and
b are input device specific parameters, d is the distance to
the target and w is the size (width) of the target. t is the
movement time.

but is especially useful to counteract inaccuracies of many
novel input modalities. Since simply increasing the size
of targets restrains the interface design, pointing enhance-
ments were developed to increase the virtual size of a tar-
get. The key idea is to influence the cursor of a pointing
input in such a way that targets are easier to hit than
Fitts’s law would predict for their visual size. An example
for such an enhancement are Area Cursors [KB95]. While
most cursors have a single point (or pixel) “hot spot” which
is actually used for target activation, area cursors have a
larger spot. This means a target can be activated even if
the “hot spot” (usually the tip of an arrow) is not exactly
on a target. This way, the area available for target acti-
vation becomes larger than the visual area of the target,
which results in faster acquisition.
Worden et al. [WWBH97] compare area cursors and so
called “sticky icons” as well as their combined use. Mouse
movements are usually not directly mapped to screen co-
ordinates. Therefore, a small movement of the mouse can
result in a large cursor movement. The transformation be-
tween mouse movement and cursor movement is usually

25

2.2. Pointing Gesture Enhancements

dynamic and depends on the speed. The faster the mouse
is moved, the more “gain” is applied to the cursor move-
ment. Sticky icons are designed to reduce this gain factor
when the cursor is above the icon. This increases the effec-
tive size of the target, making it easier to stop the cursor
on the desired icon.
Cockburn et al. [AC05] compared sticky icons to non-speech
audio and tactile feedback in a user study. They found that
while every feedback improves the interaction in terms of
speed, sticky icons perform best. A disadvantage found are
negative influences of sticky icons when there are interfer-
ences between neighboring targets.
An improvement of area cursors for target acquisition is
the Bubblecursor [GB05]. Its functionality is depicted in
Figure 2.2. The top left illustration shows the typical op-
eration of an area cursor, with its much larger activation
area. This can cause problems if the activation area of the
cursor covers multiple targets, as it is unclear which target
is the intended one (top right). The bubble cursor solves
this problem by dynamically changing the size of the acti-
vation area depending on the surrounding targets as shown
on the bottom left. The name stems from the bubbles it
can create from the original area cursor if the cursor loca-
tion and target alignment can not be accounted for by size
adjustment alone, as depicted in the bottom right.

Area cursors have been studied and extended by other
researchers as well. Findlater et al. [FJS10] introduce sev-
eral additional functionalities based on area cursors. One
is their “cross and click” technique, which transforms all
icons in the area of the cursor to targets on a circle around

26

2.2. Pointing Gesture Enhancements

Figure 2.2: The Bubblecursor adapts its size and shape to
the surrounding targets.

27

2.2. Pointing Gesture Enhancements

the location of the cursor, which just have to be passed to
be selected. Additions like this can further enhance inter-
action beyond target acquisition, but do not only require
knowledge about the interface layout but also means of ma-
nipulating it.
An extreme variant of utilizing the knowledge about the
interface layout for pointing enhancement is “Objectpoint-
ing” by Guiard et al. [GBBL04]. The cursor is manipulated
in such a way that it can no longer be freely navigated, but
jumps to whichever target is closest to the cursor. This
causes the cursor to jump from target to target as it is
moved. This behavior results in very fast target acquisi-
tion times, but prevents several typical uses of a pointing
input like freehand drawing or scaling. The authors suggest
to understand Objectpointing as an optional mode rather
than an alternative to the common “Bitmappointing”. To
make use of the advantages of Objectpointing, an addi-
tional toggle interaction is therefore required.
An enhancement technique called the“Beam cursor”[Yin06]
is intended for a digital pen as input but could be adapted
for most pointing devices. Figure 2.3 illustrates the idea.
When the cursor comes close to a target (1 to 2), a beam
is displayed from the target to the cursor (3). If the pen
is lifted in this state, the target is selected without having
to move all the way to the target (4). Whether the cur-
sor is close to a target is determined by areas around the
targets, calculated using a Voronoi diagram. While most
enhancements aim at being invisible, the beam cursor adds
a visible element to assist users. The target size, however, is
just virtually increased as the target itself remains unmod-

28

2.2. Pointing Gesture Enhancements

Figure 2.3: The Beam cursor allows to target activation
before the cursor reaches the target.

ified. There are also approaches that actually increase the
visual target size. One example are the visually expand-
ing targets by Brock and Cockburn [Bro05, CB06]. This
technique increases the size of targets as the cursor comes
closer and decreases the size as the cursor moves further
away. The technique is illustrated in Figure 2.4 and has

29

2.2. Pointing Gesture Enhancements

become well known due to its use in the Apple OSX oper-
ating system.

Figure 2.4: Visually expanding targets on the Apple OSX
dock.

Another example of visual modification for pointing en-
hancement is the “Pointing Magnifier”
by Jansen et al. [JFW11]. The effect of this technique has
to be manually triggered. Once activated, the area around
the cursor is magnified and the user can interact within the
scaled up area. Since the magnification and the size of the
magnified area can be adjusted, this technique is particu-
larly well suited for users with motor impairments.
Ahlström et al. [AHL06] present an enhancement technique
called “force fields”. The key idea is that in a certain area
around a target the cursor position is influenced by mov-
ing it towards the targets center. The offset applied to
the original cursor position towards the target is called the
strength of the force field. They evaluate force fields in two

30

2.2. Pointing Gesture Enhancements

user studies and find that they outperform sticky icons.
The original force fields have several limitations, one of
which is lacking support for overlapping force fields. Specht
et al. [SSG+10] use force fields with a joystick as an input
device and solve the problem of overlapping fields for a lim-
ited number of cases. Using the movement direction of the
cursor and a set of rules, they can decide in several cases
which force field should be used. There are, however, cases
that are not covered, in which case no force fields are used
as a fall-back solution. The use of a joystick is one of the
few examples where pointing enhancements are used for
other input devices than the mouse. Another example is
the application of force fields, cursor speed reduction and
cursor warping to eye tracking by Zhang et al. [ZRZ08].
Eyetracking is, just like pointing gestures, an inherently
inaccurate modality as the eye jitter can not be avoided
and has to be counteracted for precise interaction. In a
user study, they find that force fields and cursor speed re-
duction significantly improve the pointing performance.
The angle mouse [WFL+09] is an atypical example as it
does not rely on information about the layout of the inter-
face like all other techniques described above. The idea is
to modify the cursor’s gain depending on the angular devi-
ation of the cursor’s movement. If it is low, the gain is kept
high, if it is high, the gain is dropped. This results in fast
movements when the cursor is moved along a straight line
and slow movements otherwise. While being target agnos-
tic, the configuration is complex and does not aid users in
all cases.

31

2.2. Pointing Gesture Enhancements

As the knowledge of the location and often also the size of
targets in the user interface is key for many pointing en-
hancements, it is important to know how this knowledge
can be obtained. This is especially difficult for existing ap-
plications with no access to the source code. In these cases
there exist essentially two approaches. The first approach
relies on operating system specific functions to reconstruct
elements of the interface and their respective locations.
This is limited to default elements and is not supported
on all operating systems, but has been used to integrate
a computer vision based touch system into existing appli-
cations [BYCH05] as well as for automatic software test-
ing [MBN03].
The other approach to localizing interface elements is based
on computer vision. The idea is to capture the screen
content and locate targets in the resulting image. This
approach is very versatile but requires additional process-
ing power. Yeh et al. [YCM09, CYM10] developed a tool
called “Sikuli”, which can be used to automatically query
documentation databases using screen shots of windows or
dialog boxes as input. The computer vision based query
relies on template matching and local features. A similar
approach is used by Dixon et al. [DF10, DLF11, DFW12].
Unlike Yeh et al., their goal is to utilize the knowledge of the
interface layout for target aware pointing enhancements.
Their “Prefab” system uses a database of target templates
to compare to the screen content. As this database has to
be created manually, they suggest, however, to allow for an
easy exchange of databases to minimize the need for man-
ual database creation.

32

2.2. Pointing Gesture Enhancements

While pointing enhancements can significantly improve the
speed and accuracy of target acquisition, to actually acti-
vate a target, a trigger - such as a click with a mouse - is
required. For many novel input modalities this trigger has
not yet been studied in detail, there is nothing ubiquitous
like the button of a mouse for most modalities yet. In ad-
dition, many novel input devices are capable of different
trigger gestures or movements, which can be used for sec-
ondary functions.
In the context of a touch based interface, Woobrock et
al. [WMW09] conducted a study to find natural gestures
for touch interaction. Twenty non-technical users were pre-
sented with the effect of a gesture and were subsequently
asked to perform the effects’ cause. More than 1000 ges-
tures were collected this way for 27 commands. Interest-
ingly, the number of fingers involved in the gestures had no
effect on the preference, however, single handed gestures
were more often used than gestures involving both hands.
While all gestures of the study were limited to touch and,
therefore, a two dimensional surface, Vogel et al.[VB05]
used the touch of a finger tip and the thumbs tip to trigger
a click event for distant hand pointing. A more recent work
by Nancel et al. [NWP+11] evaluates several mid-air ges-
tures for pan-and-zoom interaction. The remote pointing
towards a large display wall seems to affect the users’ pref-
erence for the category of gestures, as two handed gestures
were preferred over single handed gestures. In addition, the
results of their user study show that linear gestures were
preferred over circular motion gestures.

33

2.3. Inter-display Interaction

Quek et al. [Que94, Que95] have studied computer vision
based input modalities and present a first, basic taxon-
omy of gestures, which allows a general categorization of
static gestures and motion gestures. A similarly generic
taxonomy can be found as part of the elaborate taxon-
omy [GW07] of interactive table top systems, which also
includes the display variations and physical properties of
the table.

2.3 Inter-display Interaction

The previous section has described progress towards im-
proving novel pointing technologies. Unlike a mouse, many
of these are not bound to a single display. Gesture recogni-
tion is often independent of any display and the 3D pointing
data has to be mapped to the surfaces of displays. With
such a display independent input modality quickly arises
the desire for cross display interaction. This does not only
involve the mapping of the input data to different screens
but also the handling of content on multiple displays, espe-
cially the transfer of interface elements beyond the bound-
aries of a single system.
Bragdon et al. [BDHM10] use gesture interaction in an of-
fice environment to allow collaboration between users, uti-
lizing a large, shared display as well as mobile devices.
Their focus is on the social acceptability of gestures in such
a public context.
Dynamo [IBR+03] is a public interactive surface for coop-
erative sharing as well as the exchange of media. Instead

34

2.3. Inter-display Interaction

of users exchanging data from their personal devices, they
do so in this collaborative workspace, which makes the
distribution of files and users easy to understand. These
examples show that cross display interaction is an active
field of research, and easy and intuitive transfer of items
across screens has several applications. Cross display and
especially cross system transfer of data always comes with
technical limitations, which most of the time present them-
selves as latencies. If latencies can not be avoided, it is
important to find ways to mitigate their effects.
Bederson et al. [BB99] have found that animations improve
the users’ ability to remember spatial relations of interface
elements. Stasko et al. [SBL93] have studied the benefit
of using animations to aid students in their understanding
of algorithms by smoothly animating transitions between
different states. While these studies focused on using ani-
mated transitions to aid users in a specific task, animations
can be used in many places of user interfaces. Baecker et
al. [BS90] give a summary of many of the ways in which
objects can be animated in user interfaces.

While most animations in today’s operating systems are
rather subtle, Chang et al. [CU95] argue that the use of
more elaborate animations would aid in the understand-
ing of many interactions. They use cartoons as a base for
comparison, which are easy to understand due to complex
animations and suggest the use of such animations in user
interfaces as well. An example for such an elaborate ani-
mation is the so called “Genieeffect” in Apple’s OSX, used
when minimizing a window as illustrated in Figure 2.5.

35

2.4. Proxemic Interaction

Figure 2.5: The Genieeffect applied when minimizing win-
dows to aid the users spatial memory.

2.4 Proxemic Interaction

When it comes to utilizing novel input modalities, person
tracking is especially interesting for implicit interaction.
The location of users relative to a display can be used to re-
alize many interesting applications. Brignull et al. [BR03]
have studied the use of displays in public spaces and dis-
covered that fear of social embarrassment keeps many users
from interacting with such a display. By using location in-
formation, a fluid change between users interacting with
one another and users interacting with the display can be
accomplished, which they suggest.

36

2.4. Proxemic Interaction

Marquardt et al. [MDMBG11, MBB+12] present an inter-
active system for the exchange of digital content by utiliz-
ing proximity information. Both visibility of content and
transfer are affected by the location of devices relative to
each other. They utilize fine-grained measures of proximity
to trigger different functionality instead of a binary infor-
mation about the presence of a person.
In addition to location, the orientation of persons is used
to control an interactive media player in [BMG10]. If two
persons in front of a TV look at each other, for example,
the media playback is paused. As soon as they look at the
TV again, playback is continued. In this application there
are defined actions for defined locations or orientations in-
stead of a direct mapping of the location to an adaptation
of the interface.
With their “Range” white board, Ju et al. [JLK08] ex-
plore the switch between implicit and explicit interaction.
They use the distance to the white board as a cue to
when a person actually wants to interact with it instead
of simply reading its content. They utilize Hall’s distance
zones [Hal90] to define different levels of privacy at differ-
ent distances.
A similar concept of different zones is implemented in the
“Hello.Wall” project by Prante et al. [PRS+03].
The Hello.Wall is considered informative art as it emits
information using different light patterns. The distance
is detected using RFID transponders and automatically
switches from an “ambient zone” to a “notification zone”
when a person comes closer to the wall. Right in front of
the wall it switches to the “interaction zone”, where users

37

2.5. Interaction Performance

do not only receive information by means of individual light
patterns but can also interact with the light emitting cells
of the wall.
A similar concept has been realized by Vogel et al. [VB04].
Instead of RFID transponders, they used marker based per-
son tracking for localization and added a range of options
for interacting with a display by means of several hand ges-
tures. As an example application a calendar is used which
can not only switch between different overview and detail
modes but also displays personalized information depend-
ing on who stands in front of the display.

2.5 Interaction Performance

Interaction performance can be divided into perceptual per-
formance and input performance. Perceptual performance
means the time it takes to visually acquire a target and
the input performance describes the time it takes to se-
lect a visually located target by means of an input device.
The most essential work on input performance is Fitts’s
law [Fit54], which has been described above.
MacKenzie et al. [Mac92] offer a detailed study of Fitts’s
law, along with a comparison of multiple variations and
studies of the law that have been published over
time [CEB87, Dru75, JM85, KE88]. Their conclusion is
that Fitts’s law does not allow for perfect predictions, but
is a very usable tool in human computer interaction re-
search. To make it easily usable they created a tool [MB93]
for the rapid evaluation of input devices using Fitts’s law.

38

2.5. Interaction Performance

The tool also provides predictions by the several variations
of the law so it is easy to see which predicts the devices
performance best.
Fitts’s law, in its original form, always assumes direct move-
ments from the current position to the desired target. For
certain tasks in a user interface, like menu navigation, this
assumption is false. Accot et al. [AZ97] describe an adap-
tation of the law, which improves predictions for steering
based tasks and is now known as the steering law. It has
been extended later on [AZ01] to study how different sizes
affect the steering law tasks. Not only the size of interface
elements can affect the input performance but also differ-
ent display sizes. Kostakos et al. [KO08] study these effects
and derive generic rules for the adaptation of cursor speeds
for displays of different sizes.
Fitts’s law is not only used to analyze input devices, but
also to evaluate the layout of interfaces. Sears et al. [Sea93]
studied the use of existing interfaces to find the most com-
mon operations. They then suggested layout modifica-
tions which would optimize the size and distances of in-
terface elements in favor of the most common operations,
therefore improving the overall input performance. Cog-
Tool [JPSK04] is a tool that allows to create mock ups,
based on web technology, of interfaces and analyzes the
resulting input performance. The interface can then be
adjusted and multiple variants can be compared. Auto-
matically optimizing the layout of user interfaces is usually
not possible as it requires context information that has to
be provided by a user.
While input performance has been studied in detail, there

39

2.5. Interaction Performance

is little work on perceptual performance. One of the few is
a system by Gajos et al. [GWW07] which shows how they
can adapt traditional desktop user interfaces for users with
motor and vision impairments. While the interface is auto-
matically adjusted to the motor abilities, the adjustments
for the visual impairments have to be made manually by
the users.
While common, usable font sizes for desktop computers are
well known, new devices always raise the question of suit-
able sizes for optimal legibility again. A study of multiple
age groups in [DGBG05] determines an optimal font size
for the small screens of personal digital assistants.
Today, graphical interfaces are dominant and the percent-
age of text elements decreases. Icons, or graphical elements
in general, can be of great benefit for the human machine
interaction [Byr93] but it is hard to classify graphical ele-
ments or determine the factors that make them easier or
harder to recognize [MCdB99]. So unlike text for which
ISO standards [ISO11, ISO08] exist for evaluation, scaling
graphical elements to achieve optimal perceptual perfor-
mance is a problem not yet solved.

40

3
Framework

This chapter will describe the glueTK framework in detail
and how the challenges posed by interactive, multi-display
applications are addressed. These challenges fall into three
categories. First of all, the large number of input devices
which vary in their interfaces as well as in the kind of data
they provide. Different preprocessing has to be applied,
and the actual information needs to be made available in
a generic fashion. Second, when interacting across mul-
tiple screens, this often involves multiple machines that
drive the displays as well. This requires communication
across applications, displays and machines. Third, displays

41

3.1. Architecture

vary greatly in physical size, resolution and aspect ratio,
which calls for flexibility to adapt graphical user interfaces
to these different configurations.
After an initial overview, every component will be described
in detail. The focus will be on the framework itself and its
internals. Functionality enabled by, and build upon glueTK
is discussed in Chapter 4 and applications created using
glueTK are described in Chapter 5. In addition to the
architecture, this chapter also includes a performance eval-
uation of the framework as well as a user study conducted
with developers previously unfamiliar with glueTK.

3.1 Architecture

Both technically as well as conceptually, glueTK is split
into two separate parts: glueInput and glueOutput. The
input layer, glueInput, takes care of abstracting from in-
put device specific interfaces as well as preprocessing and
adaptation to present the developer with a single coherent
interface, independent of the modality and specific device.
The output layer, glueOutput, allows for the creation of
user interfaces tailored towards a wide variety of displays
from smart phones to large video walls, connected to one or
multiple machines. While it is optimal to create an appli-
cation using both glueInput and glueOutput, in many cases
this is not a feasible option, because applications already
exist and rewriting or porting them is not reasonable when
the only goal is the integration of a novel input modality. In
these cases it is possible to use glueInput independently to

42

3.1. Architecture

offer developers an easy interface to new modalities with-
out any limitations. This approach is taken to an extreme
in Section 4.2, where glueInput is used with a closed source
application without its knowledge.

3.1.1 Overview

To get an initial overview and to show how the components
that make up glueTK work together, Figure 3.2 shows the
framework’s architecture along with a few sample input de-
vices. At this point, the intention is to illustrate the rela-
tionship in-between components, while their inner workings
will be described in the following sections. The communica-
tion between all the components of glueTK is accomplished
by a network-transparent signal and slot system. It allows
to easily connect a signal of one component to a slot of
another component even across different machines, which
contributes to the flexibility of the framework.
The input devices (in light gray) are connected using dif-
ferent, device specific interfaces. The FaceID component
provides information about a person’s identity as well as
details about the identification progress and sends its in-
formation over the network. The Persontracker sends co-
ordinates of the locations of multiple persons in a room via
the network. Pointinggesture is a system for articulated
body tracking that provides the 3D pointing direction of
stretched out arms of persons. While all three devices are
connected via the network, the format as well as the type
of data they provide differs greatly. Finally the Gyromouse
is a hardware device similar to a regular mouse but usable

43

3.1. Architecture

in mid-air and is connected via a USB-port as a human
interface device (HID)1.
For each input device, there is a corresponding event han-
dler (in yellow). While each event handler is customized to
the input device at hand, they have the common goal of ab-
stracting from the device specific interface as well as data
and can also add functionality if needed. At this point,
any data input is converted to signals that are passed to
the event manager so that the different interfaces are ab-
stracted from at the earliest possible step (signal connec-
tions are indicated by solid arrows, all other communication
is indicated by dashed arrows).
The event manager keeps track of all event handlers but
also deals exclusively with all network connections. This
has the advantage, that if multiple handlers need the same
data stream, it is only requested once by the event manager
and then distributed among those subscribed to it. In ad-
dition to event handlers, context handlers can be registered
with the event manager. These subscribe to signals to gen-
erate additional, high level information. The 3D pointing
information, generated by the Pointinggesture is converted
to pixel coordinates this way, for example.
Connected to the event manager is the signal manager. To
avoid deep interweaving of the two layers, a single, clean
interface between the layers is defined here and makes the
separation of glueInput for independent use possible. The
signal manager keeps track of signal connections using a
mapping table and passes incoming signals on to subscribed
widgets and also provides information about the state and

1http://www.usb.org/developers/hidpage

44

3.1. Architecture

layout of the user interface back to the input layer. In ad-
dition, it takes care of rendering the interface by displaying
all registered widgets. Widgets are interface elements cre-
ated from building blocks provided by glueTK. A widget
can offer slots that can be connected to any signal, be it
for communication with other widgets, e.g. a button-click
triggering the display of an image, or for reacting to data
from input devices, e.g. moving the widget to the display
position provided by the Gyromouse, to create a cursor.

Figure 3.1: Illustration of the terminology for the different
parts of a glueTK application.

Because glueTK allows the creation of applications involv-
ing multiple displays that can be connected to multiple
machines, Figure 3.1 illustrates the terminology of the dif-
ferent parts of an application created with glueTK. The
application as a whole is called a glueApplication. The
interface on a single display which corresponds to an ap-

45

3.1. Architecture

plication in the traditional, technical sense is called a glue-
Frame.2 The glueFrame itself contains the user interface
which is made up of glueWidgets, which are in turn built
from elementary blocks, called glueBlocks.

3.1.2 GlueInput

The goal of the input layer is the abstraction from device
specific interfaces and to provide the developer with a single
coherent interface based on signals. In addition, the input
layer can provide auxiliary functionality and improve input
devices by utilizing context knowledge about the state and
layout of the user interface.

Event Manager

The central part of the input layer is the event manager.
Unlike the event handlers, it is not responsible for a single
input device, but for making the information of all input
devices available, as well as providing them with context
information. As the central communication hub within a
glueFrame, it also represents the interface to other glue-
Frames within the same glueApplication by passing incom-
ing signals from remote glueFrames to the local glueFrame
and vise versa. As many event handlers, as well as con-
text handlers, require the same information or access to the
same resources, the event manager takes care of handling

2Note that multiple displays connected to a single machine and
configured as a single desktop are also handled as a glueFrame.

46

3.1. Architecture

Figure 3.2: glueTK architecture overview with exemplary
input devices and corresponding event handlers.

47

3.1. Architecture

access to information and resources, as this avoids dupli-
cate requests and reduces communication overhead. One
example of information that many event handlers need and
that is handled and distributed by the event manager is the
context information of the user interface, which includes
properties of interface elements such as their position, size
and state.
This information is provided to the event manager by the
signal manager via the single interface between the input
layer and the output layer. This strict separation and clear
interface definition allows the input layer to be used inde-
pendently of the output layer by allowing developers to use
the same interface to the event manager as the signal man-
ager. Context information can be provided manually, if the
input layer is used in conjunction with an existing applica-
tion that does not automatically provide this information
as glueApplications do.

Eventhandler

The support of many, diverse input modalities requires the
support of a large variety of interfaces as there are not
only custom interfaces and device specific SDKs but also
a variety of standards like HID3, TUIO4 and MPX5. The
range of supported devices include both devices directly
connected via USB, either requiring special drivers or emu-
lating a mouse, and systems running on different machines,

3http://www.usb.org/developers/hidpage
4http://www.tuio.org
5http://www.x.org/releases/X11R7.6/doc/inputproto/XI2proto.txt

48

3.1. Architecture

providing input data via a network connection. The vari-
ety of interfaces is difficult to handle and makes the use
of multiple devices of different modality cumbersome for
the developer. This is why glueTK abstracts from them
at the earliest possible point using event handlers. Many
established input devices only need to be wrapped by an
event handler, so that their input data can be accessed in
a generic fashion. There are, however, many new input de-
vices that can be improved in the event handler.
To illustrate how input devices can be improved in the
event handler, consider a pointing gesture recognition sys-
tem as an input device. Since pointing gestures are usually
recognized by computer vision based systems, the results
are often imprecise due to sensor noise and measurement er-
rors. Filtering can be applied, but also reduces the respon-
siveness of the cursor. To avoid this, the filtering can be
applied in a context sensitive fashion by taking the layout
of the user interface into account. By only applying filter-
ing around targets, the user gets assistance with controlling
the cursor when needed but direct and fast responses ev-
erywhere else. This concept is also applied to make use of
pointing enhancements (see Section 4.1) for more advanced
improvements relying on context information.
Besides improving input devices in the event handler, it is
also possible to add new functionality. The Pointinggesture
in the architecture overview (Figure 3.2) only provides a lo-
cation on the screen and therefore allows users to acquire
a target. To actually select or click a target, additional
functionality is required. A popular way of implementing
a selection trigger for a pointing gesture is a dwell timer.

49

3.1. Architecture

The idea of the dwell timer is to trigger a click if the user
keeps the cursor at the same location for a certain amount
of time. Usually, users are provided with visual feedback
about the click progress as illustrated in Figure 3.3. Such
a dwell timer could be implemented as part of the gesture
recognition system. As it has no knowledge of the inter-
face layout, however, a click would be triggered whenever
the cursor is kept stationary, even if the cursor is not on
a click-able element such as a button. The visual feedback
going along with the click progress can be very irritating
to users if they did not intend to trigger a click. By im-
plementing the dwell timer based click functionality in an
event handler, this can be avoided. As event handlers have
knowledge of the current layout of the interface, the dwell
timer is only started if the cursor is within reach of a click-
able element, creating a much more robust user experience.

The proxy event handler is a special event handler and

Figure 3.3: Visual feedback for a dwell timer implemented
within an event handler. As long as the cursor stays within
a certain deviation from the button’s center, the progress
is increased. After the delay, the click is triggered.

50

3.1. Architecture

part of every glueFrame. Unlike all other event handlers,
it does not abstract from a single input device to provide
its data as signals to the framework, it rather distributes
signals across multiple glueFrames. All signals generated
within a frame, no matter if originating from an interface
element or an input device, are sent to other glueFrames of
the same glueApplication by the proxy event handler. In
turn, the proxy event handlers of other glueFrames receive
these signals via the network and make them available as
signals to the local glueFrame. This makes any signal gen-
erated at any point within the glueApplication available
to all glueFrames and allows to completely ignore the fact
that interface elements and even input data might be dis-
tributed across machines. Because there is no difference
between a locally connected input device and an input de-
vice connected to a different machine from the developer’s
point of view, it is possible to develop applications with
a multi-display environment in mind without taking the
underlying hardware into account.

Contexthandler

In glueTK, one of the main responsibilities of event han-
dlers is the abstraction from the specific interfaces of input
devices by translating all input data to signals and making
them available throughout the framework. In many cases,
however, the raw input provided by novel input modalities,
especially those that do not provide mouse like data, is of
little use for an application developer. To abstract from
the rather low level information provided by many input

51

3.1. Architecture

devices, context handlers subscribe to the signals provided
by event handlers to generate higher level information that
can be utilized directly. The additional layer of abstraction
is optional and only applied when necessary, but avoids
the need for additional logic in the output layer, which
would interfere with the clear separation of input and out-
put layer.
There are two designated methods to provide higher level
information from low level data: using additional infor-
mation or fusion of multiple low level data inputs. An
example of additional information is the room layout in
conjunction with the Persontracker. Using the coordinates
of locations of persons in the room, the layout informa-
tion can be used to derive spatial relations between per-
sons and displays. The context handler can then pro-
vide signals in the style of “person_x_left_display_y” or
“person_y_at_display_z”. Such signals can then be used
in applications without further analysis. The spatial rela-
tionship signals between persons and displays, for example,
are used to allow a personal workspace to automatically fol-
low its owner across displays, as described in Section 5.1.
Fusion of multiple homogeneous input devices is possible
within a context handler but not described in detail here,
as there are already many existing approaches [FKM03,
HDS11, LNP+09]. Fusion of orthogonal input data as pro-
vided by Persontracker and Pointinggesture within a con-
text handler, however, has some interesting applications. A
common problem with the automatically following workspace
mentioned above is that it is hard to select items within the
workspace with a pointing gesture when it is moved by the

52

3.1. Architecture

person tracker at the same time. By creating a context han-
dler that subscribes to the signals of both input devices, it
is possible to create a new signal for controlling the posi-
tion of the workspace that automatically locks in place if
the user points at the workspace and therefore making it
easy to interact with it. Another context handler, subscrib-
ing to the same data, can be used to differentiate between
multiple possible interpretations for touch input as illus-
trated in Figure 3.4.
Another very common use for context handlers is the con-
version between 3D room coordinates to pixel coordinates
to allow interaction with the user interface. The manage-
ment of the required calibration data and coordinate sys-
tem transformations, however, are residing in the geometry
module.

Geometry

One of the goals of glueTK is to support any input device,
but especially novel input technologies. Unlike a traditional
mouse, which is bound to the machine and display it is con-
nected to, many new input devices, such as the Kinect [Kin]
and the Leap Motion [Lea], are display independent. They
output data relative to the hardware of the input device,
not relative to any display. In addition, glueTK supports
multiple displays, connected to different machines so that
display independent modalities can be used to interact with
a user interface on any one of those displays. To put such
input data in relation to the displays, glueTK needs infor-
mation about the location of input devices and displays.

53

3.1. Architecture

Figure 3.4: Differentiation between a multi-point gesture
by a single person and two single point gestures by dif-
ferent persons by fusing Pointinggesture data and Person-
tracker data in a context handler. In both cases, the data
received from the Pointinggesture alone is the same (top).
The cause, however, is a different one (bottom).

These locations can be configured by initializing a glue-
Frame or an input device with the origin and rotation vec-
tor of their coordinate system. For displays, the x, y-plane
is assumed to be the display’s surface. This configuration
only has to be done once for each glueFrame and each input
device. GlueTK will then automatically calculate the cor-
responding rotation and transformation matrices for each
combination of input device and display and distribute this
information among all glueFrames using the signal and slot
system. This way, there is no need for a global configura-
tion, each glueFrame and each input device just provides
their own location and this information will be made avail-

54

3.1. Architecture

able throughout the glueApplication.
The availability of this location information already allows
some new functionality. The higher level information gen-
erated from Persontracker data in a context handler de-
scribed above is one example. Many new input devices
try to replace the mouse and therefore generate pointing
data. For several devices this means generating a pointing
direction within their own coordinate system. But in order
to use this input data for interaction it needs to be con-
verted into pixel coordinates of a display. Using the gen-
erated transformation matrices, the pointing information
can automatically be transformed from the input device’s
coordinate system to any display coordinate system. In
addition, intersection points are calculated and if any are
found, pixel coordinates relative to the intersected display
are generated and sent out as as signals.

3.1.3 Communication

The fact that glueTK is built in a modular fashion and
allows the creation of applications that run across multi-
ple machines makes communication within the framework a
crucial topic. The mechanism used for communication ex-
tends the signal and slot concept [WG00] by being network-
transparent. The following sections explain how this mech-
anism allows the use of input data at any point in a glueAp-
plication and how communication between glueWidgets
within a glueFrame as well as across glueFrames is accom-
plished.

55

3.1. Architecture

Signals and Slots

The signal and slot concept is a communication mecha-
nism that allows to connect components in a flexible fash-
ion, while keeping the components itself autonomous and
modular. Any component providing information emits the
information via a signal and any component requiring data
offers a slot. For a signal to reach a specific slot, the two
need to be connected explicitly. Any signal can be con-
nected to any slot, assuming they use the same signature.
This allows to replace components at any time and can
create a completely different behavior by simply updating
connections.
Traditionally, this concept is used in object oriented pro-
gramming to allow for flexible communication between ob-
jects of the same application. GlueTK extends this concept
by automatically distributing local signals over the network
in every glueFrame. As all other glueFrames receive these
signals, the ID of each glueFrame is attached to the signals
before they are sent over the network as messages using
a middle-ware [VvdCI+13]. This way, all receiving glue-
Frames can distinguish true remote signals from the ones
they sent out themselves to avoid an infinite signal duplica-
tion. The true remote signals are then converted into local
signals and made available via the event manager. Because
a glueApplication can be comprised of many glueFrames,
the way signals and slots are connected differs from the
way it is handled in previous implementations, for example
Qt [Qt2] or Boost [boo]. In these implementations, a signal
of one object is connected to the slot of another object as

56

3.1. Architecture

follows:

connect(Object1, Signal1, Object2, Slot2)

To incorporate the fact that objects in glueTK can reside
within different glueFrames, the connect command is ex-
tended:

connect(glueFrame1, glueWidget1, Signal1,

glueFrame2, glueWidget2, Slot2)

The above command connects the signal of one glueWidget,
residing on one glueFrame, to the slot of another glueWid-
get, residing on a different glueFrame. Connecting glueWid-
gets within the same glueFrame works the same way:

connect(glueFrame1, glueWidget1, Signal1,

glueFrame1, glueWidget2, Slot2)

In case the glueWidgets have globally unique identifiers,
the explicit declaration of the respective glueFrame can be
omitted. It is important to note that all identifiers in the
connect command are strings. This means that it is not
necessary to have access to the objects in code when con-
necting them. This way, it is possible to connect a signal
and a slot of glueWidgets that reside on one machine by
executing a connect command on another machine.
In a lot of cases, many connections are required and it
would be tedious to set them up individually. To overcome
this problem, glueTK uses the asterisk (*) as a wildcard
character within the connect command:

57

3.1. Architecture

connect(glueFrame1, glueWidget1, Signal1,

*, *, hide())

All interface elements in glueTK have several default slots
to allow for basic, common manipulations. One of these
slots is the hide() slot, which makes an interface element
invisible until the show() slot is called. The above com-
mand connects a single signal to the respective hide() slot
of every interface element in every glueFrame throughout
the glueApplication. With this connection, a single signal
will trigger the hiding of all interface elements. This avoids
even having to know about all existing interface elements
and having to connect every single element individually.
Communication within glueTK is always based on signals
and slots, and the network-transparency of this particular
extension allows an implementation that abstracts from the
fact that different parts of the application run on different
machines.

Data Transfer

The network-transparent signal and slot system enables
communication across machines without having to worry
about underlying technical details. The same should be
true for data transfer, more specifically, the transfer of in-
terface elements across screens. A cursor, for example, is
at its core a simple image displayed on the screen. With
modalities that are not bound to a single display, the cursor
image needs to move across displays, even if these displays
may be connected to different machines. Having to deal

58

3.1. Architecture

with multiple machines makes the movement of a cursor
much more complex than in the case of a traditional, single
machine application. The same is true for drag-and-drop
operations, which the user expects to be possible across
screens as he or she is presented with a coherent applica-
tion across displays. Since this is, just like communication,
a key part of glueApplications, it should be trivial for users
but also developers to interact across devices. Therefore,
transparent data transfer is required.
Unlike signals, which are usually just a few bytes in size,
interface elements can be significantly larger because they
often require binary data like images or videos for render-
ing. This prohibits the use of signals for transferring data
as they are designed for high performance and low latency.
Interface elements are therefore transferred using a sep-
arate mechanism. The interface element is serialized to
JSON data, with binary data attached as encoded strings.
This data is then sent over the network and deserialized to
create an identical copy at the target glueFrame. A signal,
triggered upon successful transfer, is used to remove the
original interface element, therefore creating the impression
of a move, rather than a copy operation. When transfer-
ring interface elements, especially while hiding the techni-
cal complexities in the background from the user, latency is
an important issue. The JSON format has been used over
XML as it has shown better performance [NPRI09]. Com-
pression does not reduce latencies reliably as the time it
takes to compress the data often outweighs the time saved
on transferring less data. Section 4.4 discusses this prob-
lem in more detail and evaluates a possible solution. If

59

3.1. Architecture

minimal latency is of paramount importance, a synchro-
nization flag can be set for an interface element. This will
cause any changes made to this element to be constantly
synchronized across glueFrames. This way, each glueFrame
keeps an invisible, always up to date copy of the interface
element and latencies for transferring it are eliminated. As
this can cause much data transfer in the background, it is
not activated by default for all elements, as it would quickly
exceed network limits and is seldomly required.
The transfer of an interface element across glueFrames is
triggered by setting its position. Either, by explicitly set-
ting its position within a target glueFrame (Figure 3.5):

Figure 3.5: Element transfer by explicitly defining the tar-
get glueFrame.

element.setPosition("FrameX", 1050, 300)

Or it is transferred implicitly, by setting its position beyond
the boundaries of the current glueFrame (Figure 3.6),

element.setPosition(2970, 300)

60

3.1. Architecture

Figure 3.6: Element transfer by implicitly defining the tar-
get glueFrame.

given that another glueFrame is next to the current one.
The relative position of glueFrames is known to glueTK, as
each glueFrame is configured with its origin and rotation
as described above.

Signalmanager

The signal manager connects the input layer to the appli-
cation content. This can be either an existing application
that uses glueInput to include a new input device, or a glue-
Frame within the context of glueOutput. All signals from
input devices or remote glueFrames are passed from the
event manager to the signal manager. A mapping table,
that keeps track of all connected signals and slots, is used
to pass on incoming signals to the connected slots. In addi-
tion, the signal manager gathers layout information about
all interface elements including position, size, rotation and
opacity, and passes this information to the event manager,

61

3.1. Architecture

which in turn makes it available to the event handlers that
can use this context information to improve the usability
of input devices.
When using glueInput with an existing application, not cre-
ated using glueTK, this information can not be gathered
automatically, but developers can provide this information
to glueInput manually to make use of the same enhance-
ments. If glueInput is used in conjunction with glueOut-
put, the signal manager also takes care of driving displays
as well as rendering interface elements.

62

3.1. Architecture

3.1.4 GlueOutput

GlueOutput provides what is necessary to create and ren-
der user interfaces for a large variety of displays. Despite
the fact that different input modalities have different re-
quirements towards the user interface and displays with
different sizes and resolutions put different restraints on
interface creation, the goal of the output layer of glueTK
is to provide an easy way to quickly build usable interfaces
for any input modality and any display. Section 4.3 shows
an example of how this quick interface creation can be used
for prototyping, and Section 4.5 presents a solution to the
problem of creating interfaces for target displays with dif-
fering properties. To allow this flexible creation of inter-
faces, glueTK provides elementary building blocks that can
be used to create more complex widgets. This requires ad-
ditional work, but puts no restraints on the creation of
interfaces and allows for user interfaces specifically tailored
towards the input devices and displays at hand.

GlueBlocks

Many existing GUI toolkits offer so called widgets, user in-
terface elements with a clearly defined functionality. The
advantage of offering these widgets is twofold. First, it
avoids reinventing common interactions, because develop-
ers can simply use existing widgets to achieve the required
functionality. Second, it makes it easier for users to get
used to new applications - created with the same toolkit
- as the application is new but many of the interactions

63

3.1. Architecture

are well known because of the reuse of widgets. In essence,
users can carry skills acquired at a standardized interface
from one application to another. This reuse is possible be-
cause most established toolkits or frameworks are focused
on creating applications according to the WIMP paradigm,
with a well known range of display sizes and no other input
devices but mouse and keyboard.
For glueTK, which supports a wide range of input modali-
ties and displays, it is not possible to create a set of widgets
that are guaranteed to work with any input device and dis-
play. Any such attempt would result in a compromise that
would not be able to take full advantage of the specific
properties of each modality and display. The approach of
glueTK is, therefore, to offer elementary building blocks
that are customizable and combinable. Some of the build-
ing blocks provided by glueTK are: image, animated im-
age, video, text, container, map and web-view. All of these
glueBlocks have default properties such as position, size,
rotation and opacity, which can be used for customization
and are also accessible via default slots. By combining sev-
eral glueBlocks, arbitrarily complex glueWidgets, tailored
towards a specific input modality or even input device and
display, can be created.

GlueWidgets

GlueWidgets are compositions of one or more glueBlocks.
The glueWidget as a whole has the same default proper-
ties and slots as every glueBlock, which allows to treat the
glueWidget as a single interface element. In addition to

64

3.1. Architecture

the default slots, a glueWidget can define additional slots
to allow modular access to its functionality. A simple ex-
ample of a glueWidget is a toggle button which allows the
user to toggle between two states, on and off, for example.
This kind of glueWidget can be created from an image glue-
Block, a text glueBlock and a container glueBlock to hold
the other glueBlocks. Figure 3.7 illustrates this composi-

State Imageblock Textblock Widget

Off

Pressed

On

Figure 3.7: A toggle button glueWidget created from glue-
Blocks for pointing input.

tion. The image glueBlock switches the associated texture
depending on the current state and the text glueBlock up-
dates itself as well. By emitting a signal with every state
change, this glueWidget could easily be used in any appli-
cation. Note that the container glueBlock is invisible as it
has only organizational purposes. Figure 3.8 also depicts a
toggle button. Unlike the previous button, which is meant
to be used with a pointing device, this button can be tog-
gled using a keyword via speech recognition. It needs a
slot that will be connected to the corresponding signals of

65

3.1. Architecture

State Imageblock
Animated

ImageBlock Widget

Off

Listening

On

Figure 3.8: A toggle button glueWidget created from glue-
Blocks for speech input.

a speech recognition event handler and uses an image glue-
Block and an animated image glueBlock, again, contained
within a container glueBlock. These examples show that
the reuse of glueWidgets tailored towards specific modali-
ties is limited when it comes to different modalities, but no
problem across applications.

Animationmanager

Animations are not crucial to the core functionality of glueTK,
but animations are an important aspect of user interfaces
as they can reduce confusions, give helpful feedback and
enhance the overall user experience. Especially for latency
prone operations, animations can be used to alter the per-
ception of latencies as described in Section 4.4.
GlueTK does therefore offer a convenient way of applying

66

3.2. Evaluation

animations. All changes to default properties can option-
ally be animated using a variety of easing modes. An easing
mode is a mathematical function that describes the rate of
change of a parameter over time (see Figure 3.9 for two
examples). In addition, glueTK allows to build custom an-
imations by concatenating any number of these animations
with arbitrary, individual easing modes and durations.

Figure 3.9: Two examples of a button, being scaled to 200%
of its original size. The animation on top uses a “Quad”
easing curve, while the bottom one uses an “Elastic” easing
curve.

3.2 Evaluation

Many aspects of the glueTK framework are unique com-
pared to existing frameworks, while other parts are com-
parable. The novel and unique parts are what differentiate

67

3.2. Evaluation

glueTK from previous frameworks and enable such a va-
riety of new functionality that it is hard to compare it to
existing frameworks, even more so for an evaluation. In-
stead, this evaluation focuses on two central questions:

• Is the performance sufficient to deal with several
novel input devices and multiple displays at the
same time ?

• Is the framework usable from a developers point
of view ?

The next two sections describe the results of an evaluation
and a user study with regard to these questions.

3.2.1 Performance

When it comes to the performance of the framework, the
key factor is communication. Everything that happens
within the framework relies on the network-transparent sig-
nal and slot system. The only other significant part is the
rendering and display of user interfaces. However, glueTK
utilizes an existing library for rendering [Qt2], which su-
persedes the need for evaluation within the context of this
work.
There are four kinds of signal and slot connections:

• From an event handler to a glueWidget within the
same glueFrame

68

3.2. Evaluation

• From one glueWidget to another within the same
glueFrame

• From an event handler to a remote glueFrame

• From a glueWidget in one glueFrame to a glueWidget
in another glueFrame

Technically, however, the only difference between these is
whether the signal has to be serialized or not. Therefore,
the evaluation distinguishes between serialized signals that
have to be sent over the network as remote signals and sig-
nals that do not leave the glueFrame as local signals. Sig-
nals can vary in size depending on their content. For input
devices and typical inter-glueWidget communication, the
size of signals is rather small. For evaluation, a typically
sized signal of 342 characters (∼0.33kbyte) and for compari-
son a 76480 character signal (∼74kbyte) were used. Remote
signals were sent between two machines in a switched giga-
bit ethernet network. 100000 local and remote signals were
transferred respectively, which was repeated ten times. The
time from emitting the signal to triggering the connected
slot was measured in all cases. Table 3.1 shows the average
number of signals transfered per second for the two signal
types and signal sizes.
Most input devices produce updates at 50Hz or less. For lo-
cal signals this means that glueTK could handle thousands
of locally connected input devices. For remotely connected
devices, the number of possible devices is still well above
a hundred. Of course, actually using this many devices at
the same time is not likely, even in a large multi-display en-

69

3.2. Evaluation

342 characters 76480 characters

local 115500.11sps 111844.31sps
remote 6690.75sps 407.84sps

Table 3.1: Signal performance for local and remote signals
in signals per second (sps).

vironment. However, glueWidget communication also uses
signals and will reduce these numbers slightly. Neverthe-
less, the results from this performance evaluation show that
the performance of glueTK leaves enough room for many
devices connected locally or remotely.

3.2.2 Developer Survey

A framework is primarily aimed at developers to allow the
creation of a specific category of applications. While a main
goal of a framework is to make the development of appli-
cations of that particular type easier and faster, it still re-
quires developers to learn a usually complex structure.
To get an insight into the use of glueTK by developers, a
user study was conducted with ten C++ developers, aged
25 to 33. None of the developers had any prior experience
with glueTK. The C++ proficiency among the users was
high. On a scale from 0 (= No knowledge at all) to 5 (= Ex-
pert) the average was 3.85 (σ = 0.58). All participants are
active programmers with at least 15 hours programming
per week (µ = 22.85, σ = 6.38). The experience with other
GUI development was low in comparison, on a scale from 0

70

3.2. Evaluation

(= No GUI development experience) to 5 (= GUI develop-
ment on a regular basis), the average was 1.95 (σ = 1.38).
From this data it can be assumed that the C++ knowledge
required to fulfill the tasks of the user study were no chal-
lenge for the participants, at the same time, no one had
significant GUI development experience.

Set-up and Tasks

The developers were presented with four tasks that reflect
some of the core concepts and functionality of glueTK. The
first task required users to place an image at the center of
the screen and then place another object relative to the
first image (Figure 3.10).

Figure 3.10: Task 1: Placement of images.

While this task could be solved by manual measurement,
glueTK provides a powerful anchor point system that makes
the placement much easier.
The second task involved the control of the position of an

71

3.2. Evaluation

image using the mouse (Figure 3.11).

Figure 3.11: Task 2: Mouse interaction.

Task 3 was identical to task 2, except that the position of
the image had to be controlled using the Leap Motion [Lea]
as depicted in Figure 3.12. The Leap Motion is an input
device that detects a user’s hand above the device and pro-
vides a hand model in 3D. While the mouse data in task 2
is provided by glueTK directly, the Leap Motion required
participants to use a dedicated event handler.

Since multi-display environments are a main focus of glueTK,
in addition to the integration of novel input modalities, task
4 involved moving an image across two screens that were
connected to different machines (Figure 3.13).

All participants were asked to familiarize themselves with
glueTK by looking at the overview paper [vdCS13c], the
documentation as well as a few tutorial programs that are

72

3.2. Evaluation

Figure 3.12: Task 3: Integration of the Leap Motion.

part of glueTK to provide examples for basic functional-
ity. Subsequent to this introductory task, participants were
asked to complete all four programming tasks and fill out
a questionnaire (See Appendix A.1). In addition, all de-
velopers had to complete a standardized questionnaire, the
so-called “User Experience Questionnaire (UEQ)” [LHS08].
The User Experience Questionnaire is designed to make an
assessment of the user experience of interactive products.
In addition to these questionnaires, the time required for
each task was measured.
To reduce the required time for participants, templates for
every task were provided. These templates did not contain
any code relevant to the tasks, but allowed for all tasks to

73

3.2. Evaluation

Figure 3.13: Task 4: Multi-display interaction with the
Leap Motion.

be configured within the CMake6 build system beforehand.
This eliminated the risk of time being wasted on configur-
ing the build system, which can be a time consuming task,
depending on the developer’s familiarity with it, and is not
relevant to the use and understanding of glueTK.

Results and Discussion

The average time to complete all four tasks was 65.3 min-
utes (σ = 16.96). This means that all participants managed
to successfully complete all tasks in a reasonable amount of

6http://www.cmake.org

74

3.2. Evaluation

time. The longest duration for all tasks was 106 minutes,
which, considering developers had no prior knowledge of
glueTK, is not uncommon for learning a new framework.
Users were asked to give estimates for the distribution of
time over the tasks. Figure 4.10 compares these estimates
with the actual, measured time.

Figure 3.14: Comparison of estimated and measured time
to complete each task.

Users rated the available sources of information on a five
point scale (1 = not used at all, 5 = main source of infor-
mation). Table 3.2 shows the average results along with the
respective standard deviations of each information source
used by the developers. Both, the overview paper as well as

75

3.2. Evaluation

Source Mean Standard deviation

Overview Paper 2 1.155
Documentation 3.3 0.67
Source code 1.6 1.075
Tutorials 4.7 0.48

Table 3.2: Ratings of how valuable different information
sources were to developers.

the source code, were used less than the documentation and
tutorials. While all four are valid sources of information,
the distribution shows that no deep understanding of the
framework from either the overview paper or the source
code was necessary to complete the tasks and utilize the
functionality of glueTK.

Figure 3.15 shows how the developers spent their time in
average. The strong focus on reading and testing is not
surprising since the framework was completely new to all
participants. Besides the three dominant categories, only
understanding the Leap Motion and the data it provides
was mentioned.
The User Experience Questionnaire asks users to decide
on tendencies between two opposing pairs on a seven point
scale, for example fast and slow or good and bad. All of the
26 pairs can be assigned to one of the six categories: attrac-
tiveness, perspicuity, efficiency, dependability, stimulation
and novelty. The ratings are transformed to a scale from
-3 (horribly bad) to 3 (extremely good). On this scale the
average results for each category are interpreted as follows.

76

3.2. Evaluation

Figure 3.15: Distribution of time with respect to typical
programming tasks.

A value between -0.8 to 0.8 is considered neutral. Values
larger than 0.8 represent a positive evaluation and values
lower than -0.8 are considered a negative evaluation. Ac-
cording to the authors of the UEQ, there exists a tendency
to avoid extreme answers which results in values above 2
or below -2 to be unlikely. Table 3.3 shows the results of
the User Experience Questionnaire as mean values for each
category along with the standard deviation and the 95%
confidence level.
The results show, that the participants of the user study

perceived glueTK positively with respect to all six cate-
gories. Considering the typical upper bound of 2.0 of the
UEQ, the results of more than half of the categories are
close to upper boundary of the scale. While this study can

77

3.2. Evaluation

Scale Mean Standard deviation Confidence

Attractiveness 1.733 0.639 0.396
Perspicuity 1.150 0.766 0.475
Efficiency 1.725 0.640 0.396
Dependability 1.550 0.685 0.425
Stimulation 1.850 0.428 0.265
Novelty 1.750 0.500 0.310

Table 3.3: Results for the six scales of the UEQ question-
naire.

only give a small insight into the use of glueTK, the results
show that glueTK can be used by developers to accomplish
typical tasks in multi-display environments with a feasible
learning curve. The UEQ results show that participants
were highly satisfied with all aspects of the user experience
of glueTK.

78

4
Functionality

The previous chapter described the architecture of glueTK
and the different aspects of design that are specifically tai-
lored towards multi-modal and multi-display interaction.
In this chapter, several contributions will be presented that
build upon the functionality offered by glueTK. As point-
ing gesture recognition is one of the more prominent novel
input modalities, there is a special focus on improving and
integrating it.
The first section makes use of the availability of layout in-
formation of the user interface. It describes a novel type
of force fields that do not only significantly improve the

79

accuracy of target acquisition with a pointing gesture, but
enable the use of small elements that are not usable at all
without force fields.
The second section exploits the fact that glueTK is split
into separate input and output layers by introducing a
novel, computer vision based method for target localiza-
tion for any existing application. This allows not only the
use of force fields with existing applications but also the
use of the whole input layer of glueTK.
While these two advancements allow for reliable and ac-
curate target acquisition for any application, the problem
of device-free target selection is still an unsolved problem.
Section 4.3 presents a taxonomy of gestures as a systematic
approach to finding the optimal way of triggering a target
selection with the pointing arm. GlueTK is here used for
rapid prototyping by creating a cross-device user interface
for a Wizard-of-Oz user study.
The animation manager described in the previous chapter
is not only intended for visual effects and eye-candy. An-
imations often help users understand the interface better.
Section 4.4 evaluates the effect animations have on per-
ceived latencies when transferring interface elements across
displays and machines.
The output layer and especially the concept of building
blocks, which can be used to create more complex widgets,
is extremely flexible. When multiple displays with different
sizes, resolutions and different input devices with varying
accuracies are involved, it is hard for developers to scale
blocks to work well for all systems and to understand the
implications of the design choices they make. To assist

80

developers in designing usable interfaces for multiple inter-
active systems with different input and output properties,
Section 4.5 explains how to choose element sizes for novel
interactive systems.

81

4.1. Target Acquisition

4.1 Target Acquisition

Many novel input modalities, like pointing gesture recogni-
tion, are less accurate than a mouse. With more accurate
sensors and improved algorithms the accuracy will improve.
The focus on a natural interaction, however, often directly
involves the human body as part of the input, which limits
the achievable accuracy from the start. Movements of the
human body are inherently inaccurate to a certain degree;
it is, for example, impossible to hold a hand perfectly still.
So no matter how accurate the registration of the human
body will get, there is an inherent inaccuracy every system
has to deal with.
The interaction between a user and the interface, however,
consists of more than just the input modality. It also in-
cludes the opposing side of interpreting the data and using
it for meaningful actions. Improving the overall interac-
tion is also possible on the side of the interface. A simple
example is the use of larger elements. Those are easier
to hit and can counteract a certain inaccuracy of the in-
put device. In real world applications, this is of course
limited by the available surface area to still accommodate
all interface elements and is therefore no feasible option
in most cases. There are, however, many techniques for
enhancing the accuracy of pointing data on the side of
the interface, for example area cursors, gravity wells, force
fields, sticky icons, semantic pointing, bubble cursors and
object pointing [KB95, WWBH97, FJS10, GB05, GBBL04,
Bro05]. These techniques, however, rely on context infor-
mation; at the very least, they require the position of in-

82

4.1. Target Acquisition

terface elements and in most cases also their size. One of
the design goals of glueTK, as described above, is to make
this information available throughout the framework. It is
therefore possible to immediately utilize these pointing en-
hancements in any glueTK based application. Force fields
are especially interesting as they show great improvements
on the pointing accuracy [AHL06]. Their configuration and
placement, however, is tedious. The next section describes
dynamic Gaussian force fields [vdCS13b], which address
these downsides to show how force fields can easily be used
to significantly improve pointing gesture interaction.

4.1.1 Dynamic Gaussian Force Fields

A force field is an invisible area around the center of an
interface element that manipulates the cursor position in
this area to move towards the center of the element. The
field has a defined strength, which is usually a percentage
of the total offset between the elements center and the cur-
rent cursor position. This means, a strength of 1.0 would
move the cursor directly to the center, a strength of 0.5
would move it half way and a strength of 0.0 would not
affect the cursor at all.
It is often difficult to find the right strength because more
correction means more accuracy but also a higher risk of
unwanted cursor manipulation. Another problem is the
placement of force fields. They can not overlap, which
makes placement in real world scenarios problematic and
always requires manual placement for every single layout.
As much as the force fields can help, cursor manipulation

83

4.1. Target Acquisition

can be irritating if a user did not intend to click. Sec-
tion 4.1.1 describes the modeling of force field strengths as
a Gaussian distribution to overcome the problem of finding
an optimal strength and also solve the problem of over-
lapping fields. The next subsection shows how force fields
can be integrated into a Kalman filter, eliminating an addi-
tional data manipulation step. In the following subsection,
the problem of undesired force field effects is addressed
by predicting possible targets. And finally, Section 4.1.2
presents a user study in which dynamic Gaussian force
fields were evaluated.

Gaussian Force Fields

The main reason for the difficulties involved with finding
a good strength for force fields is that “good” depends on
the situation. If the cursor is close to the target, it is likely
that the user actually wants to trigger a click and much
force should be applied. If the cursor is further away, even
within the force field, little force should be applied, as the
user might just want to pass by a target. So instead of
an area, which immediately switches from no force at all
to a fixed strength, the approach taken here increases the
force gradually as the cursor gets closer to the center. To
achieve this gradual increase, the force fields are modeled
as a Gaussian distribution around the center of a target.
Figure 4.1 illustrates the gradually increasing force around
a button. This causes a maximum strength to be used when
close to the center, providing maximum assistance, with-
out causing the cursor to suddenly jump when entering the

84

4.1. Target Acquisition

Figure 4.1: Gaussian model of the attraction force of a
button.

field. As described above, the effect of a force field is an
offset, with a magnitude depending on the field’s strength,
added to the current cursor position. Modeling the strength
as a Gaussian distribution, the offset (xw, yw) can be calcu-
lated as in Equation 4.1 using the cursor position (cx, cy),
the button’s location (bx, by) as well as the value of the bi-
variate normal distribution f with a standard deviation of
(sx, sy) at the current cursor position.

85

4.1. Target Acquisition

xw = (cx − bx)f(cx, cy, sx, sy)

yw = (cy − by)f(cx, cy, sx, sy)

(4.1)

An optimal force field depends on the context of the user
interface, its element sizes and layout. Because of the lack
of overlap handling, force fields needed to be placed manu-
ally for every new interface layout. The Gaussian modeling
allows a graceful, automatic handling of overlapping fields.
As the effects of each field are directional offsets of a cer-
tain distance, adding these offsets will eliminate opposing
forces. Figure 4.2 shows an example of two overlapping
force fields. For a cursor exactly between the fields, the

Figure 4.2: Illustration of how the attraction force modeled
by multiple Gaussians for buttons with overlapping force
fields is compensated.

86

4.1. Target Acquisition

sum of offsets would eliminate any effect of either field.
This is the best possible behavior in this case, as there is
no information about which button is a more likely target.
As the cursor moves closer to either button, a force is ap-
plied, however, weakened by the other nearby field as it is
still possible that the user actually intended to click the
other button. The offset (xnw, y

n
w) applied by the n-th force

field is then calculated as in Equation 4.2 using the cur-
sor position (cx, cy) with f being the normalized value at
the current cursor position of the bivariate normal distribu-
tion around the buttons center (bx, by). Normalization here
means a maximum of 1.0, which would cause a maximum
correction and move the cursor to the exact center of the
button, while 0.0 does not manipulate the cursor position
at all.

xnw = (cx − bnx)fn(cx, cy, sx, sy)

ynw = (cy − bny)fn(cx, cy, sx, sy)

(4.2)

The final offset (xw, yw) applied to the cursor by the N
force fields is calculated using Equation 4.3.

xw =

N∑
n=0

xnw yw =

N∑
n=0

ynw (4.3)

87

4.1. Target Acquisition

Kalman Filter Integration

Input data is often noisy, especially when input devices are
based on computer vision. To improve the user experience,
this data can be filtered to smooth the trajectories. One
option to do so is the Kalman filter [Kal60]. It models the
system by using previous observations to make predictions
about the future state of the system. The design of the
interface, especially the layout, heavily affects the user’s
movements. Typically, however, for filtering input device
data with a Kalman filter, this information is not incorpo-
rated. Usually, the filter will only improve the noisy data
by compensating for measurement errors and bridge short
gaps of missing data. To show how the layout information
of the interface can be incorporated into a Kalman filter
as force fields, initially the setup of the Kalman filter for
pointing data is described. The measurements are the coor-
dinates on the screen (x, y), received from the input device.
The system state is modeled using this position and the ve-
locity (vx, vy). To account for the position and velocity, the
transition model M is set up as shown in Equation 4.4.

M =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 (4.4)

With an estimate for the measurement error w, the current
state of the system st can be derived from the previous state
st−1 using the Kalman filter as in Equation 4.5.

88

4.1. Target Acquisition

st = Mst−1 + w (4.5)

A Kalman filter set up like this will smooth the cursor
movement noticeably. To incorporate the above mentioned
context information, the control input of the Kalman filter
is used as it is well suited to introduce additional parame-
ters to the system model. By calculating the total offset at
the current cursor position as described above, the control
vector bt can be set up to model the force fields as shown
in Equation 4.6.

bt =


xtw
ytw
−vt−1

x

−vt−1
y

 (4.6)

Since getting close to a button makes it more likely that
the user will try to stop the cursor, the velocity is elimi-
nated by setting the velocities in the control vector to the
inverse of the last known velocity. This allows the use of
a control matrix C identical to the transition matrix M .
The additional control input results in an overall Kalman
filter step as in Equation 4.7.

st = Mst−1 + Cbt + w (4.7)

89

4.1. Target Acquisition

Dynamic Force Fields

Force fields, like most other target enhancement techniques,
are only helpful when needed. That is, if the user actually
intends to click on a target. Otherwise, they can interfere
with the interaction by causing irritations or even errors.
To achieve an optimal solution in all cases, it is possible to
predict the user’s behavior and dynamically activate and
deactivate force fields accordingly. Human motion has been
studied in detail [MU02] and results in cursor movements
that always include acceleration and deceleration phases.
Deceleration phases are typically observed before a click is
triggered, as the user slows down the cursor to accurately
hit a target. This indicator can be more or less distinct,
but an immediate stop from full speed is neither natural
nor common. A deceleration phase D can be detected as
shown in Equation 4.8 by comparing the current (vtx, v

t
y)

and the previously observed (vt−1
x , vt−1

y) velocity.

D =

{
1 (vtx − vt−1

x < 0) ∨ (vty − vt−1
y < 0)

0 else
(4.8)

Using this detection mechanism, the input data is contin-
ually analyzed and force fields are only activated if a de-
celeration phase is detected. They stay active until a click
occurs or an acceleration is detected.

90

4.1. Target Acquisition

4.1.2 Evaluation

A user study was conducted to evaluate dynamic Gaus-
sian force fields for pointing enhancement. Participants
were asked to use three different variants of a pointing
system. All relied on a computer vision based pointing
recognition system described in [SvdCIS09]. For the first
variant, PLAIN, the input data is smoothed by a Kalman
filter but no force fields are used at all. For the second vari-
ant, SFF, the input data is smoothed using a Kalman filter
as well and, in addition, static force fields are applied in a
further step. These force fields are always active and have
a fixed strength. The third variant, DGFF, are the dy-
namic Gaussian force fields described above, using a Gaus-
sian distribution to model the strength and dynamic acti-
vation. In addition to measuring cursor positions, speed,
accuracy, duration and errors for a quantitative evaluation,
users were also asked to fill out a short questionnaire (see
Appendix A.2) to get feedback on their impressions.
As a display, a 4m× 1.5m back projection video wall with
a resolution of 4096px × 1536px was used as depicted in
Figure 4.3.
The pointing gesture system extracts the pointing direc-

tion by calculating a 3D reconstruction of the area in front
of the video wall from two color cameras with an overlap-
ping field of view. Using the location of the display and
the coordinate system of the calibrated cameras, the 2D
intersection point of the extension of a pointing arm with
the video wall’s surface can be calculated and converted to
pixel coordinates. This allowed users to control the cursor

91

4.1. Target Acquisition

Figure 4.3: Video wall used for the user study with initial
button layout in practice mode.

by simply pointing towards the desired position on the wall
as shown in Figure 4.4.

The pointing position is updated at 30Hz and a click is
triggered using a dwell timer as described in Chapter 3.
The configuration of the dwell timer used for this evalua-
tion was an allowed deviation of 5px to consider the cursor
to be stationary and keeping it this way for 0.5sec to trigger
a click. Users got visual feedback about the click progress
as shown in Figure 4.5.
Of the eleven participants, aged from 21 to 32, there were

ten male users. Nine users were right handed and all of
them used their respective primary arm over the course
of the entire experiment. Seven users had used a point-
ing gesture recognition system before, but not necessarily
the one used in this experiment. All users had normal or

92

4.1. Target Acquisition

Figure 4.4: User interacting by means of a pointing gesture.

Figure 4.5: Visual feedback for a dwell used for all three
techniques.

corrected to normal sight. The average height of partici-
pants was 180.3cm and buttons were placed at heights from
99cm to 196cm from the ground. Following the ISO 9241-
9 standard [ISO00], participants had to perform a multi-

93

4.1. Target Acquisition

directional pointing task (compare Figure 4.6).
As suggested in the ISO standard, the circle size was var-

Figure 4.6: The multi-directional pointing task as described
in ISO 9241-9. Participants have to click the targets in the
indicated order.

ied. Two sizes, a 1000px (≈ 1024mm) and a 400px (≈
409mm) diameter circle, were used. For the targets, but-

94

4.1. Target Acquisition

tons of three different sizes were used (12px (≈ 11.7mm),
25px (≈ 24.4mm) and 50px (≈ 48.8mm) in diameter). The
ISO standard only requires the display of the actual targets
that will be used. This, however, does not reflect the layout
of real world applications accurately. Especially in the case
of force fields, which can negatively influence the cursor if
they are not needed, it does not account for all aspects of
a real world application. Therefore, in addition to the 15
numbered green buttons, 24 additional red buttons were
added to the interface (see Figure 4.7). The placement of
these non target buttons was randomized once for every
combination of circle diameters and button sizes, and then
remained the same for all users participating. The red but-
tons behaved exactly the same as the green buttons, but
users were instructed to never target them on purpose. The
green buttons were labeled according to the order suggested
in ISO 9241-9. To avoid any confusion about the next tar-
get, a white, dashed indicator circle was displayed around
the current target. Figure 4.7 shows the button layout for
the 400px circle and 50px buttons in its initial state with
the indicator circle around button 1.
Each participant had to click all 15 buttons in the prede-

fined order for both circle sizes and all three button sizes,
resulting in a total of 6 runs per technique. Users were
asked to perform each task as quickly as possible, but to
balance speed and accuracy. To avoid any effects of fa-
tigue, users were able to take breaks between tasks at will.
The order in which the participants used the three differ-
ent techniques was randomized and users were allowed to
practice each new technique before the start of the exper-

95

4.1. Target Acquisition

Figure 4.7: One of the two button layouts with the largest
of the three button sizes used in the evaluation.

iment until they felt comfortable. To maximize the repro-
ducibility of the accuracy of the pointing system, a small
mark on the floor, 74cm from the video wall, was used for
users to stand on to avoid any influence the distance might
have on the pointing recognition. Unlike dynamic Gaus-
sian force fields, which vary their strength depending on
the cursor’s distance to a target’s center, a fixed strength
for static force fields needs to be defined. In [AHL06], a
strength of 0.8 is recommended and was used in this ex-
periment for the static force fields. The size of the static
force fields depended on the available space due to the lack

96

4.1. Target Acquisition

of overlap handling, which resulted in force field sizes from
the size of the target buttons to a maximum of three times
the size of the target buttons. For the dynamic Gaussian
force fields, a standard deviation of 30px was used through-
out the experiment.
During the experiment, all clicks with time-stamp and po-
sition, along with the ID of the clicked button and the
current target were recorded. Independent of clicks, all
cursor positions over the course of the whole experiment
were recorded as well. From this data, a number of mea-
surements were calculated: the number of erroneous clicks,
the time it took to perform a click and the offset to the
target’s center at the time of the click. Especially with the
additional buttons, which were not intended as targets, it
was interesting to see if this would lead to an increase of
erroneous clicks due to the force fields. Figure 4.8 shows
the total number of erroneous clicks by technique and but-
ton size.

While the number of erroneous clicks is higher for static
force fields (SFF) than for the dynamic Gaussian force
fields (DGFF) or the variant without any force fields
(PLAIN), considering the total number of more than 900
clicks per technique, this still seems marginal and without
serious impact on the usability of either variant.
The recorded offsets to the targets’ centers give an insight
into the accuracy of each technique, as a large offset means
it is more likely that a click will miss a button. Figure 4.9
shows the average offsets for each variant and button size
respectively.
The offsets for the SFF show that the fields improve the

97

4.1. Target Acquisition

Figure 4.8: Total number of erroneous clicks.

accuracy compared to the PLAIN technique. The DGFF
achieve results for all button sizes that are close to elim-
inating any offset at all. The reason for this is the high
strength of the force fields at the very center, which causes
the cursor to be pulled towards it with enough force that
it reaches the center before the click is triggered. Another
important property is the interaction speed. The time it
took to click a button is defined for this experiment as the
duration from leaving the previous target to the click on the
current target. Since two different circle sizes were used,
times were normalized to a distance of 1000px to allow for

98

4.1. Target Acquisition

Figure 4.9: Average offset of the actual click position from
the targets center.

comparison of all results. A comparison of the circle sizes
in separate did not show any noticeable differences. Fig-
ure 4.10 shows the overall average results as well as the
average results for each button size by variant.
Standing out especially are the long times it took to click

smaller buttons with the PLAIN technique. Considering
an average time of more than six seconds renders this tech-
nique unusable for real world applications. Here, the point-
ing enhancements make the input modality usable in the
first place. Both types of force fields show significant im-

99

4.1. Target Acquisition

Figure 4.10: Average number of seconds to click a target
at a distance of 1000px.

provements over the PLAIN technique (SFF are 32% faster
and DGFF are 48% faster). The advantage of the auto-
matic overlap handling of the DGFF becomes especially
apparent for the smaller button sizes, where larger force
fields can be used, which leads to significant improvements
over the SFF. In Table 4.1, the average durations in sec-
onds (standard deviation in brackets) are given for each
variant and button size. The fifth and sixth column show
the t-test p-value for DGFF over PLAIN (*PLAIN) and
DGFF over SFF (*SFF) respectively. Statistically signifi-

100

4.1. Target Acquisition

cant values are printed in bold font.

Size PLAIN SFF DGFF *PLAIN *SFF

Avg. 6.27(2.50) 4.26(0.83) 3.20(1.42) 0.002 0.045
12px 8.50(2.67) 5.52(0.76) 3.35(1.17) 0.000 0.000
25px 5.81(1.47) 4.21(0.96) 3.20(1.03) 0.000 0.027
50px 4.50(1.03) 3.05(0.72) 3.04(0.79) 0.001 0.975

Table 4.1: Average time in seconds for all variants and
button sizes as well as overall average (Avg.). The standard
deviation is given in brackets, the last two columns show
the respective p-values of a t-test.

Figure 4.11: Cursor movements with no force fields.

The results from the questionnaire given to participants to
complete during the experiment coincided with the conclu-
sions drawn from the measurements. Users perceived the
DGFF as the fastest technique (“Which technique seemed

101

4.1. Target Acquisition

Figure 4.12: Cursor movements with static force fields.

to be the fastest?” PLAIN :0, SFF :1, DGFF :10) and also
favored the DGFF overall (“Which technique did you like
best?” PLAIN :0, SFF :2, DGFF :9). The recorded cursor
positions over time from all experiments were used to plot
heat maps to get an insight into the movement properties
of each technique. To avoid clutter, only the cursor posi-
tions for experiments with the 1000px circle are plotted in
Figure 4.11, Figure 4.12 and Figure 4.13.
The heat maps show, that the movement with the PLAIN
technique is very smooth (Figure 4.11), but also that there
is much scattering around the targets, which is the result
of users trying to keep the cursor on the buttons. The heat
map for the SFF shows much more convergence towards

102

4.1. Target Acquisition

Figure 4.13: Cursor movements with dynamic Gaussian
force fields.

the centers of targets (Figure 4.12) but also shows how non
target buttons affected the cursor movement and led to a
“jumpy” behavior, which was mentioned in the comment
section of the questionnaire by several participants as well.
The DGFF produced a heat map that results from a cur-
sor movement that combines the advantages of the other
variants without their downsides (Figure 4.13). The cursor
movement is smooth, without much irritation from the non
target buttons just like the PLAIN variant, while achiev-
ing a strong focus around the targets’ centers similar to the
SFF.

103

4.1. Target Acquisition

With the automatic handling of overlapping fields and the
intuitive field strengths of dynamic Gaussian force fields, a
pointing gesture becomes accurate and fast enough to be
used with complex interfaces. The natural interaction of
the modality is preserved due to the automatic activation
of force fields, which allows for natural movement. The only
condition is that the layout of the user interface is known,
so that force fields can be placed at those locations.

104

4.2. Target Localization

4.2 Target Localization

Software development is always an expensive and time-
consuming endeavor. For this reason, it is not realistic to
expect existing software to be reimplemented using glueTK
to integrate new input modalities or make use of its multi-
display support. This is why glueTK is designed to offer
benefits for existing applications as well. Chapter 3 de-
scribed how glueTK is split into an input layer and an
output layer, which allows independent use of the input
layer in existing applications to easily integrate new input
modalities. In cases were the source code of an application
is accessible, glueTK can easily be integrated as an addi-
tional library. There are, however, cases were the existing
application can not be modified. This is true for closed
source applications with no intention by its original cre-
ators to integrate new input modalities, but also in many
high security environments. For both military and civil
control rooms it is common that application software runs
on an isolated machine. It is not allowed to run any addi-
tional software on this machine and the only way to interact
with it are mouse and keyboard signals which are streamed
via a network just like the application’s visual output. The
following sections present how computer vision techniques
can be used to utilize the pointing enhancement of glueTK
even in such extreme cases.

105

4.2. Target Localization

4.2.1 Black-Box GUIs

To integrate, for example, a pointing gesture system into
an existing application with no access to its source - hence
black-box GUI - while making use of a pointing enhance-
ment like force fields, two aspects are crucial. First of all, as
existing applications usually understand nothing but mouse
input, it is necessary to be able to manipulate the mouse
cursor programmatically. This is possible on all major op-
erating systems and therefore does not pose a challenge.
Second of all, a crucial condition for the use of pointing
enhancement techniques is the knowledge of the interface
layout, e.g. the location and size of interface elements. As
these properties can change when windows are moved, re-
sized or the context of an application changes, it is not
feasible or sufficient to provide the initial locations of those
elements manually. The key idea of the black-box GUI ap-
proach [vdCS13a] is to exploit the fact that user interface
elements are designed to visually stand out and are easily
recognizable. This makes it possible to reliably and auto-
matically detect them using computer vision. Instead of
building a library of known elements as in the Prefab sys-
tem [DF10], the goal is to observe the user’s behavior and
automatically learn the appearance of elements on the fly,
which allows the system to work with any user interface
without prior annotation or knowledge.

106

4.2. Target Localization

Screen Scraping

To analyze the screen content, it needs to be captured with-
out a large overhead. For high security systems, where the
screen content is streamed via a network, this is a given, as
the screen content is immediately available as video data.
But also in the case of closed source applications it is pos-
sible to efficiently capture the screen content on all ma-
jor operating systems as demonstrated by the many estab-
lished applications with screen sharing capabilities such as
Skype [Sky]. This ensures access to the screen content for
further analysis. As mentioned before, the programmatic
control of the mouse cursor is possible on all major oper-
ating systems. For new input modalities, however, visual
feedback is often important. Just like controlling the posi-
tion of a mouse cursor programmatically, it is often possible
to manipulate the pointer icon as well, which allows to give
basic visual feedback even without modification of the op-
erating system or the application. Figure 4.14 shows how
cursor icon manipulation is used to allow for basic visual
feedback of a dwell timer for clicking.

Figure 4.14: Cursor icons to indicate click progress.

107

4.2. Target Localization

Template Matching

Virtually all desktop applications are built using a GUI
toolkit, which provides a set of reusable widgets. These
widgets look and behave the same way, no matter in which
application they are used. Besides assisting the developer,
this has the advantage of quickly familiarizing users with
new applications as they already know parts of it. The
reuse of interface elements and the fact that these are de-
signed to be easily recognizable allows the use of template
matching to automatically locate these elements on the
screen. In computer vision in general, the use of template
matching is often futile as sensor noise, camera movements
and angle as well as changing illumination result in a high
failure rate. All these factors, however, do not play a role
when analyzing screen content. A widget will, pixel by
pixel, look identical from one frame to another. This is
true for identical widgets but often also for widgets of the
same type, e.g. multiple checkboxes. Because of the limited
number of widgets provided by GUI toolkits, templates for
all widgets could be created beforehand. In a real world
scenario this would, however, fail quickly. Most operating
systems, not to mention the web, allow for custom skins
which results in a virtually unlimited number of possible
variations in appearance. Therefore, building a database of
templates is tedious and error prone. The approach taken
here takes advantage of the fact that it aims at integrating
an input device. This provides information about the user’s
input and, assuming that locations where a user triggers a
click are likely candidates for the location of interface ele-

108

4.2. Target Localization

ments, it is possible to automatically extract the element
to be used as a template. This template can immediately
be used to find further, identical widgets but also serves as
a starting point to built a more generic widget model as
described in the following section.

Automatic Template Learning

The automatic template learning module constantly mon-
itors the input data. Once a click occurs, the location of
the click is used as a starting point to search for a possible
interface element at that position on the screen. Since wid-
gets are made to visually stand out, performing canny edge
detection allows for a reliable extraction of potential wid-
get borders. To find larger contours within the extracted
edges, the Teh-Chin chain approximation algorithm [TC89]
is used. Since a successful click would be within the bound-
aries of the widget, a point-in-polygon test, using the posi-
tion of the registered click and the found contours, allows
the extraction of boundary candidates. From these can-
didates, the smallest enclosing, convex contour is selected.
Figure 4.15 shows three examples of located boundaries of
three different widget types starting from the click position
indicated by the mouse cursor.
Using the extracted area directly as a template will only

allow to locate identical or very similar widgets. To im-
prove this, a widget model is created by expanding the ex-
tracted template by 5 pixels in all directions and splitting it
horizontally and vertically into four equal parts. The orig-
inal corners of the contour used for extraction are saved as

109

4.2. Target Localization

Figure 4.15: The mouse cursor indicates the click position,
the red boundaries show the extracted contour.

anchor points along with the four image patches (see Fig-
ure 4.16). Instead of performing template matching on the

Figure 4.16: Creation of an initial target model (Anchor
points are indicated by the red dots).

screen data using a single template for the whole widget,
template matching is performed for each of the four patches
of the model individually. Matches are then analyzed for
their relative position towards each other. A top-left patch
must always be to the top-left of a bottom-right patch, left
to a top-right patch and above a bottom-left patch. The
respective constraints apply to the other patches as well.
In addition, there can not be any matches between, for
example, a top-left and a top-right patch. These geomet-
ric constraints of the widget model ensure that only four
matches in the correct configuration will be interpreted as a

110

4.2. Target Localization

successfully located widget. While this model is the start-
ing point for further model refinement, the splitting alone
already causes some generalization for widgets of the same
type that only vary in size. A simple example of this auto-
generalization can be seen for a text-box in Figure 4.17.
Generalization means, that after the first click on a text-

Figure 4.17: Generalisation of an initial target model.

box, every text-box in the interface will be found and force
fields can be applied to them. This, however, is usually
only the case for very simple widgets like empty text boxes
or line edits. For widgets with a higher level of detail and
unique areas, further generalization is required to build a
model that can locate all widgets of one type. The more
examples of the same widget type are available, the eas-
ier it becomes to identify which parts of the image patches
stem from the general widget type and which are specific
to an individual widget e.g. text or labels. The first chal-
lenge is to detect if extracted templates are of the same
widget type. For this reason, whenever a new template
is extracted, its patches are compared to those of already

111

4.2. Target Localization

existing widget models by aligning them at their anchor
points. If there are at least 20 consecutive, matching pix-
els in each of the four patches, the models are assumed to
stem from the same widget type and the original model is
refined.
The refinement is performed individually for each of the
four patches. The first step is aligning the corresponding
patches at their anchor points and reducing the patches
to the overlapping area as shown in Figure 4.18 for the
bottom-right patch. Corresponding patches are then com-
pared, pixel by pixel, and all pixels that differ are set to be
transparent. Transparent pixels are simply ignored when
comparing them during template matching. In Figure 4.20,

Figure 4.18: Patch alignment for refinement.

the refinement of an existing model of a button (bottom) by
a newly extracted template of a button (top) is illustrated.
The two buttons differ in size and also have different labels.
The refinement process reduces the patches to the area both
buttons have in common and eliminates pixels that differ
because of the different labels. In this step, another con-
dition for successful refinement is introduced: the edges

112

4.2. Target Localization

Figure 4.19: Model refinement for generalization (transpar-
ent pixels are drawn red for visualisation).

have to remain unchanged in the refined patches. Oth-
erwise it is likely that the refinement would produce over
generalizing models that simply match anything. If, how-
ever, this condition is met, the newly extracted template
is discarded as its information is now contained within the
refined model. Otherwise, the newly extracted template is
kept as an additional model, which slightly increases the
runtime but guarantees that the new target will be found
and enhancements can be applied immediately.

Runtime Considerations

Because template matching works by comparing each pixel
of the template with each pixel of the screen, both the num-
ber and size of templates as well as the screen resolution
heavily influence the runtime of the widget localization.
The generalizing models presented above significantly re-
duce the search time as they eliminate the need for many
individual templates. Still, considering that many novel in-

113

4.2. Target Localization

put modalities are targeted at large screens, scanning the
whole screen can take too long and result in, for example,
incorrect force field placement if the layout information is
outdated. To avoid runtime related problems, the search
area is limited to an area of 500px× 500px. This is possi-
ble because the current pointing direction is always known
from the input data and this “spotlight” can be shifted to
the current pointing position. The current pointing posi-
tion is, at the same time, the only area that needs enhance-
ment as the user is pointing towards this area. Limiting the
search area allows for an update rate of 1.4fps using a set
of 10 widget models which is sufficient considering most in-
terface elements rarely move. Limiting the search area in
this way guarantees a constant performance independent of
the display size, which makes this approach usable in real
world applications.

4.2.2 Evaluation

To evaluate the system described above, two factors are im-
portant. First, the template learning needs to be analyzed
to evaluate how well interface elements can be extracted
based on the presented computer vision based approach.
Second, it is crucial to assess if the locations provided by
user interaction actually allow for the placement of force
fields and that it leads to an improvement of the point-
ing interaction. The interface element localization depends
on successful target extraction and reliable model gener-
alization for target matching. Both aspects are evaluated
separately on a variety of interface elements below.

114

4.2. Target Localization

Figure 4.20: The search area is automatically limited to a
spot around the current pointing position.

The first condition for creating a target model that can be
used for localization is successful extraction. The extrac-
tion process described above was evaluated on the default
widget sets of the three major operating systems (Microsoft
Windows 7, OSX Lion and Ubuntu 12.04), each with their
respective default theme, and did not produce any errors.
This is due to the visually articulate design of these wid-
get sets. To show the limits of the extraction algorithm,
209 buttons from the web (Figure 4.21) with non-standard
designs were used. Four users were asked to click all 209
buttons in random order. This was repeated 10 times. In
average, 198 of the 209 buttons were successfully extracted

115

4.2. Target Localization

after a single click of a button.
After extracting an initial template from a clicked target, it
is important that the model refinement is fast and reliable.
The sooner a model abstracts from an individual widget to
all widgets of the same type, the sooner all widgets can be
enhanced. The refinement is especially challenging if the
widgets vary in size and appearance, due to text or labels.
A test interface consisting of 38 buttons, 15 text fields and
15 line edits of varying sizes and with different content and
labels was created in style of the themes of the three ma-
jor operating systems. An examplary interface is shown in
Figure 4.22. Ten users were asked to randomly click on but-
tons, text fields and line edits. In the background, without
the users knowledge, the application built models for each
widget type and kept track of the number of widgets the
current model generalized to. In average, it took 3.4 clicks
for buttons, 4.4 clicks for text fields and 3.9 clicks on line
edits for the respective model to generalize to all widgets
of the same type.

In order to evaluate the interaction of the system with
the user, a user study was conducted. A simple applica-
tion with buttons as targets was displayed on a video wall
and users were asked to click the buttons using a point-
ing gesture recognition system. To compare the automatic
force field placement (ATFF) by the system above, two ad-
ditional systems were used. One without any force fields
as a baseline (NFF) and one with force fields placed by
locating targets by means of a manually created template
(MTFF). The manually created template was able to lo-
cate all buttons successfully, which made a system with

116

4.2. Target Localization

Figure 4.21: Sample of web buttons for automatic widget
extraction.

manually placed force fields for comparison redundant.
For the user study, a pointing gesture recognition system
based on 3D pose estimation with multiple cameras, de-
scribed in [SvdCIS09], was used. As a display, a 4m×1.5m
video wall with a resolution of 4096px× 1536px was used.
The pointing system allowed users to control the mouse cur-
sor with an update rate of 30Hz and to click using a dwell
timer with a trigger time of one second along with simple
visual feedback as shown in Figure 4.14. An application,
created using the Qt framework [Qt2], was used as a user
interface with buttons arranged according to the ISO 9241-
9 [ISO00] multi-directional pointing test requirements (See

117

4.2. Target Localization

Figure 4.22: Variety of widgets to test model refinement.

Figure 4.23). The application was in no way aware of the
pointing system or any pointing enhancements, it would
just react to movements of the operating system’s mouse
cursor. Ten users (9 male), aged from 22 to 32, partici-
pated in the user study. Eight users were right handed, all
users used their primary arm during the entire experiment.
All users had normal or corrected to normal sight. Eight
of the users had previous experience with pointing inter-
action. The average height of participants was 176.8cm
and buttons of the interface were at heights from 108cm to
205cm above the ground. In accordance with ISO 9241-9,
the size of the circle in which buttons were arranged was

118

4.2. Target Localization

Figure 4.23: User interacting with pointing gesture.

varied using a circle with a 1000px diameter and a smaller
circle with a 600px diameter. Each circle consisted of 15
buttons, sized 80px × 30px. The order in which buttons
had to be clicked was indicated by numbered labels on the
buttons and in addition, the current target was labeled in
green while all other buttons had red labels. Users had
to click all buttons of both circles in the compulsory order
using each of the three different systems NFF, MTFF and
AFF respectively. Users were given as much time as they
wished to practice before the start of each run. The order
in which participants used the three systems was random-
ized for each user. To avoid fatigue, users were free to take
breaks between runs at will. Users were asked to stand
on a small mark at 92cm from the video wall to eliminate

119

4.2. Target Localization

any effect the distance might have on the accuracy of the
pointing gesture recognition. Users were encouraged to se-
lect targets as fast as possible but to balance speed and
accuracy.
As suggested in [AHL06], a force field strength of 0.8 was
used throughout the user study along with a circular field
with a diameter of 60px. All cursor positions during the
user study were recorded along with timestamps. In addi-
tion, all clicks along with the id of the clicked button, as
well as the current target were recorded. This data was
used to calculate the time it took users to click buttons
as well as the accuracy of each click. The time to click a
button is here defined as the time from leaving the area of
the previous button to triggering a click on the next but-
ton. Accuracy of a click is defined as the offset of the click
from the center of a button. Since two different circle sizes
were used, the time values were normalized to a distance
of 500px to allow for all data to be compared. In addi-
tion, heat maps from the cursor positions were plotted to
gain additional insight into the effects of the force fields on
the cursor movement. In a short questionnaire (see Ap-
pendix A.3), users were able to report their impressions of
the different systems.
The fastest system was MTFF (3.5 seconds) which is a
significant improvement over the NFF system without any
enhancement (4.66 seconds). The ATFF system achieves
comparable performance at 3.66 seconds. The enhanced
systems compare similarly in accuracy as the average off-
sets show: NFF :17.12px, MTFF :5.25px and ATFF :8.59px.
The above results are also reflected in the answers given by

120

4.2. Target Localization

participants in the questionnaire. Asked about which sys-
tem was perceived as the fastest, the enhanced systems got
all votes (NFF :0, MTFF :4, ATFF :5, MTFF+ATFF :1).
Only two participants saw NFF as a viable option to con-
trol existing desktop applications, however, all participants
perceived the enhanced techniques as viable options to do
so (NFF :2, MTFF :9, ATFF :8) (All questions allowed for
multiple choices).

Figure 4.24: No force fields (NFF).

The heat maps plotted from the cursor positions clearly
show the effect of the force fields. While there is much scat-
tering around the targets in Figure 4.24 (NFF), the cursor

121

4.2. Target Localization

Figure 4.25: Force fields from manually created templates
(MTFF).

positions are much more focused in Figure 4.25 (MTFF)
and also in Figure 4.26 (ATFF). Especially insightful is
Figure 4.26. It shows the cursor positions for the ATFF
system, which automatically extracts widgets and builds a
model, which the system tries to refine with every click.
The red numbers around the plot indicate the order in
which buttons had to be clicked. It shows that, especially
around the first button, the scattering is similar to that
around all buttons in Figure 4.24. This is consequent as
there is no way for the system to place a force field before
the first click. After the first click, the scattering is imme-

122

4.2. Target Localization

Figure 4.26: Force fields from automatically created tem-
plates (ATFF).

diately reduced noticeably around button 2. As the model
is refined with each further click, more and more buttons
are located due to the generalization of the model and can
be enhanced by placing force fields at their locations. This
leads to a cursor pattern around the later buttons, similar
to the MTFF system where all buttons are enhanced from
the start.
The automatic localization of interface elements allows to
apply pointing enhancements to any existing interface as
the interface layout is the information many enhancement
technologies rely on. With the dynamic Gaussian force

123

4.2. Target Localization

fields, described in the previous section, and the automatic
target localization for existing applications, pointing ges-
tures can be used for fast and accurate target acquisition
in any application.

124

4.3. Target Selection

4.3 Target Selection

The previous sections of this chapter have shown that the
target acquisition of a pointing gesture recognition system
can be significantly improved by utilizing knowledge about
the interface and its layout. They have also shown that it
is possible to extract the required layout information from
existing applications without access to the source code and
that pointing gestures can be used for accurate target ac-
quisition in all applications utilizing the presented tech-
nologies.
Target acquisition is, however, only the first part of a typ-
ical pointing interaction. In addition, the target has to
be selected, or, as many years of the mouse as a dom-
inant input device have coined it: the target has to be
clicked. For a mouse, where the user is required to hold
a device to point, it seems natural to simply add a but-
ton for target selection. Pointing gestures, however, do not
require the user to hold a device, so introducing a device
just for target selection would take from the natural use of
the input modality. While gestures have been an impor-
tant topic in human-computer interaction for a long time,
e.g. [Bol80, Ken04, PSH97, VB05], much of the work is
very broad and includes triggering a click with two arms
or additional hardware devices. Using anything but the
pointing arm puts additional strain on the user. While
gestures in general can be used for more complex inter-
actions than target selection [BRB09, NWP+11] it is one
of the most fundamental interactions, which makes it very
powerful. While several clicking gestures have been pro-

125

4.3. Target Selection

posed, there are two fundamental drawbacks in previous
work. First, the number of gestures is small and does not
allow for a comprehensive overview [VB05]. Second, the
evaluations are usually based on actual, computer vision
based systems [VB05, BRB09, SvdCIS09]. Such systems
are not perfect and the quality of a specific recognition
system will influence a user’s assessment of the quality of
a gesture.
Existing taxonomies [GB05, McN92, Que94, Que95] for
gesture interaction are not fine grained enough to differen-
tiate different clicking gestures of the pointing arm. There-
fore, a systematic analysis of gestures for target selection
using the pointing arm will be presented in the following
sections. First of all, a taxonomy of clicking gestures will
be introduced that covers all possible options to trigger a
click with one arm. Secondly, the gestures of the taxonomy
are evaluated in a Wizard-of-Oz 1 user study, followed by
a thorough discussion of the results and their implications.
The Wizard-of-Oz setup requires complex control of the
interface, as users need to feel like they are triggering ac-
tions while the hidden experimenter needs to observe the
participants and trigger events remotely. GlueTK is there-
fore used as a rapid prototyping tool that allows to quickly

1The term “Wizard-of-Oz” is used for a type of experiment in
which a technology is simulated by a hidden (usually in a different
room) experimenter. This is especially useful for technologies which
involve tasks that can be perfectly executed by a human but not a
machine or might not even exist yet. As this is usually carried out
without the knowledge of participants, they perceive a system as if a
perfect technology would exist and allows for independent judgment,
not influenced by errors an actual implementation might (still) have.

126

4.3. Target Selection

create a mock-up interface for users and enables remote
control from a different machine in a different room for the
experimenter.

4.3.1 Taxonomy

Figure 4.27: The interface for the user study.

Pointing gestures are typically used with large displays such
as video walls (Figure 4.27). The target acquisition using a
pointing gesture can be split into three distinctive phases:
preparation, stroke and recovery [Ken04]. The stroke phase
is when the target is actually acquired and the selection is
made. All gestures discussed here are therefore meant to be
executed in the stroke phase of the pointing gesture. Pre-

127

4.3. Target Selection

Figure 4.28: Taxonomy for distant one-arm clicking.

128

4.3. Target Selection

vious categorizations of one-arm gestures [Que94, Que95]
divide possible gestures into very broad categories of deic-
tic or manipulative gestures and do not capture the range
of possible variations. Considering possible movements of a
single arm, the first level of differentiation is the part of the
arm that is involved in the gesture. This can be the whole
arm, just the hand or multiple or individual fingers. Taking
different numbers of fingers and the range of anatomically
possible movements of hand and arm into account leads
to a categorization depicted in Figure 4.28. For each leaf
node of the taxonomy an example is given on the right of
each leaf node. Each gesture is split into three consecutive
phases that are shown from top to bottom. The click event
is triggered in the last phase. If the whole arm is used
for target selection, the possible movements are limited be-
cause it must not affect the pointing location. This reduces
possible movements to orthogonal ones (towards and away
from the display) and rotation. Not moving the arm is the
third option.
The hand alone does not offer much variation and gestures
for triggering a selection are limited to bending the hand
either vertically, horizontally or diagonally.
The fingers offer many more options and to characterize
them, they are divided by the number of fingers involved
in a gesture. Since preliminary experiments showed that
the use of three or four fingers for a click gesture was per-
ceived as unnatural and awkward, no examples for these
two options are given in the taxonomy in Figure 4.28.
The main criteria used for differentiation in the taxonomy
is the body part primarily involved in executing the gesture

129

4.3. Target Selection

and the type or direction of movement. The first criterion
heavily affects the difficulty of implementing a recognition
system, as larger body parts are easier to detect, and also
affect the physical strain on the user’s body, as finger move-
ments usually cause less fatigue than arm movements. The
second criterion mostly affects the physical strain, as some
movements are more common and therefore more natural
and familiar to the user. While each leaf node of the tax-
onomy proposes an individual gesture, it would be possible
to combine multiple gestures for a more complex input.
This would, however, require more coordination and result
in gestures too complex for such a common operation as
clicking.

4.3.2 Evaluation

While the taxonomy introduced above gives an overview of
the possible options for device free clicking, it is not imme-
diately apparent which gestures work best. To evaluate the
gesture types proposed by the taxonomy, one example was
selected for each leaf node (as depicted beside the nodes
in Figure 4.28). The gestures used, that involve the whole
arm, were push and pull, 90◦ rotation, point, and dwell.
The delay chosen for the dwell timer was one second, as
this is the delay used by the most prominent device using
a dwell timer, the Microsoft Kinect, and has proven to be
a good trade-off between preventing accidental clicks and
tolerability. The pointing gesture is just like a dwell timer
with no delay, triggering a click as soon as the arm move-
ment stops. In preliminary experiments, both horizontal

130

4.3. Target Selection

and vertical hand movements were not well perceived. For
the hand based gestures, a vertical bending of the hand was
used instead. As mentioned before, three and four finger
gestures were often perceived as awkward, which is why the
finger based gestures used for the evaluation were one, two,
and five finger movements: airtap, pistol and grab. As the
pistol gesture involves all five fingers, but only two fingers
are actively used to define the selection, it is categorized as
a two finger gesture. Not moving a finger is similar to the
point and dwell gestures and was omitted.
The problem with evaluating gestures that rely on a tech-
nical system for recognition is that there will always be a
bias, introduced by the accuracy of the detection for each
gesture. Gestures might be perceived as bad by users, only
because the recognition rate for the gesture is worse than
for others. The only way to achieve a fair comparison is
if all gestures work equally well from a technical stand-
point. This problem is overcome by using a Wizard-of-
Oz setup [Kel83], where participants are interacting with a
pretense system that is controlled by a hidden human ex-
perimenter. This way, users can experience every gesture
as if a perfect recognition would exist, which allows to draw
conclusions about the preferred gestures independent of an
actual implementation.
All techniques were evaluated in front of a large video wall,
where a user interface was displayed on the right half of the
wall (Figure 4.27). The video wall has a size of 4m× 1.5m
and a height of 2.37m with a resolution of 4096px×1536px.
The eighteen participants (13 males) were aged from 20 to
64, two of which were left-handed. Each participant was

131

4.3. Target Selection

presented with all nine gestures, the order in which the
gestures were used was randomized for each user. The task
for users was to click buttons that appeared in succession
on the video wall at random locations within the user in-
terface. The actual clicks that caused the current button
to disappear, were triggered by an experimenter in another
room observing the participant via a live video feed. By
carefully observing the scene, it was possible to only trigger
click events when the participants were actually pointing at
the button (which some did not to test the system limits).
The perceived system reaction time was minimal and only
affected by the latency of the cameras and the reaction time
of the hidden experimenter. The exact pointing direction,
however, did not influence the accuracy and allowed the use
of a single button size of 13.6cm for all experiments. For
each new gesture, users were allowed to try the gesture for
as long as they wished. When users were ready, they had to
click 25 buttons. Whenever a button was clicked, the next
one automatically appeared. While the order of appear-
ance of the buttons was randomized, they were equally dis-
tributed across the screen. In addition to the experimenter
in the other room, another experimenter was with the par-
ticipants at all times and guided them through the whole
experiment. After each gesture, participants were asked to
rate the gesture using a NASA TLX based questionnaire
(see Appendix A.4). The NASA TLX questionnaire aims
at evaluating the mental, physical and temporal demand,
overall performance, frustration level and effort. Partici-
pants were asked to give their ratings for each of these cat-
egories on a 7-point Likert scale. The questionnaires were

132

4.3. Target Selection

presented after the use of each gesture to make sure that
the users’ impressions were still detailed and present. Af-
ter the use of all gestures, users were asked for additional,
general comments and to select which gestures they liked
best from the perspective of having used all gestures. To
get a ranking of all gestures, users were asked to order the
gestures from 1 to 9, from their most to their least favored
method.

The ranking allows to get an overview of the results, as it
summarizes the overall perception of the participants. The
results of the NASA TLX questionnaires focused on the
physical and temporal demands and added more detail to
this overview, while the other factors evaluated show less
influence on the overall preference but are in line with the
overall ranking. This is most likely due to the fact that the
TLX questions are tailored towards more complex tasks.
While physical and temporal demands can be directly re-
lated and are meaningful for the simple task of clicking, the
other categories like mental demand do not fit as well. Ta-
ble 4.2 shows the mean values as well as standard deviation
for each gesture and the pair-wise significance comparisons.
Tables 4.3 and 4.4 show results for physical and temporal
demands, respectively. The Wilcoxon rank sum test was
used, as the data did not follow a normal distribution in all
cases. A t-test did, however, show comparable results with
a significance level of 0.05.

133

4.3. Target Selection

airtap point pistol 90◦ bend

µ 2.78 3.00 4.61 4.89 5.11

σ 1.93 2.13 2.16 2.26 2.38

airtap - 0.95 < 0.01 < 0.01 � 0.01

point 0.95 - 0.02 0.02 0.01

pistol < 0.01 0.02 - 0.62 0.54

90◦ < 0.01 0.02 0.62 - 0.78

bend � 0.01 0.01 0.54 0.78 -

grab � 0.01 < 0.01 0.41 0.75 0.94

dwell � 0.01 � 0.01 0.30 0.54 0.72

push � 0.01 � 0.01 0.03 0.10 0.18

pull � 0.01 � 0.01 � 0.01 � 0.01 � 0.01

grab dwell push pull

µ 5.28 5.39 6.22 7.72

σ 2.28 2.31 2.15 1.19

airtap � 0.01 � 0.01 � 0.01 � 0.01

point < 0.01 � 0.01 � 0.01 � 0.01

pistol 0.41 0.30 0.03 � 0.01

90◦ 0.75 0.54 0.10 � 0.01

bend 0.94 0.72 0.18 � 0.01

grab - 0.87 0.28 < 0.01

dwell 0.87 - 0.28 � 0.01

push 0.28 0.28 - 0.04

pull < 0.01 � 0.01 0.04 -

Table 4.2: All gestures were ranked by participants on a
Likert scale from 1 (liked best) to 9 (liked worst). The
table shows the results from left (best) to right (worst)
with mean and standard deviation in the top rows and
the significance analysis results (p-values) for the pair-wise
comparisons below (using the Wilcoxon rank sum test).

134

4.3. Target Selection

point airtap 90◦ pistol bend

µ -2.83 -2.28 -1.39 -1.11 -1.11

σ 0.37 0.93 1.70 1.63 1.49

point - 0.04 � 0.01 � 0.01 � 0.01

airtap 0.04 - 0.15 0.03 0.02

90◦ � 0.01 0.15 - 0.55 0.47

pistol � 0.01 0.03 0.55 - 0.95

bend � 0.01 0.02 0.47 0.95 -

push � 0.01 < 0.01 0.31 0.59 0.68

dwell � 0.01 0.04 0.48 0.85 0.85

grab � 0.01 < 0.01 0.22 0.47 0.47

pull � 0.01 � 0.01 0.02 0.05 0.05

push dwell grab pull

µ -0.89 -0.89 -0.67 0.00

σ 1.45 1.94 1.73 1.49

point � 0.01 � 0.01 � 0.01 � 0.01

airtap < 0.01 0.04 < 0.01 � 0.01

90◦ 0.31 0.48 0.22 0.02

pistol 0.59 0.85 0.47 0.05

bend 0.68 0.85 0.47 0.05

push - 0.82 0.68 0.09

dwell 0.82 - 0.68 0.13

grab 0.68 0.68 - 0.28

pull 0.09 0.13 0.28 -

Table 4.3: Participants were asked how physically exhaus-
tive each interaction with the given technique was. They
rated the techniques on a Likert scale from -3 (not exhaus-
tive at all) to +3 (very exhaustive). The table shows the
results from left (best) to right (worst) with mean and stan-
dard deviation in the top rows and the significance analysis
results (p-values) for the pair-wise comparisons below (us-
ing the Wilcoxon rank sum test).

135

4.3. Target Selection

point airtap bend pistol 90◦

µ -2.94 -2.06 -2.00 -1.83 -1.78

σ 0.23 1.22 1.00 1.30 1.23

point - < 0.01 � 0.01 < 0.01 � 0.01

airtap < 0.01 - 0.67 0.61 0.47

bend � 0.01 0.67 - 0.89 0.69

pistol < 0.01 0.61 0.89 - 0.82

90◦ � 0.01 0.47 0.69 0.82 -

grab � 0.01 0.14 0.23 0.33 0.41

push � 0.01 0.20 0.25 0.33 0.40

pull � 0.01 � 0.01 � 0.01 < 0.01 < 0.01

dwell � 0.01 � 0.01 � 0.01 < 0.01 < 0.01

grab push pull dwell

µ -1.28 -1.22 -0.28 0.06

σ 1.59 1.69 1.56 2.12

point � 0.01 � 0.01 � 0.01 � 0.01

airtap 0.14 0.20 � 0.01 � 0.01

bend 0.23 0.25 � 0.01 � 0.01

pistol 0.33 0.33 < 0.01 < 0.01

90◦ 0.41 0.40 < 0.01 < 0.01

grab - 0.97 0.07 0.06

push 0.97 - 0.10 0.06

pull 0.07 0.10 - 0.68

dwell 0.06 0.06 0.68 -

Table 4.4: The temporal demand of each technique was
rated on a Likert scale from -3 (very short) to +3 (very
long). The table shows the results from left (best) to
right (worst) with mean and standard deviation in the top
rows and the significance analysis results (p-values) for the
pair-wise comparisons below (using the Wilcoxon rank sum
test).

136

4.3. Target Selection

4.3.3 Discussion

The smooth descent from airtap as the best rated gesture
to pull as the worst, immediately reveals the favorite among
the evaluated gestures. An analysis of the pair-wise signif-
icance (Table 4.2) reveals additional insights. The gestures
can be divided into three groups of similar ratings. This
means, the ratings are comparable within the group but dif-
fer significantly from those of gestures in the other groups.
The results of the physical and temporal demand ratings
are in line with the ranking of the gestures and support this
grouping. The highest ranked gestures, airtap and point,
constitute the first group. The resemblance to a mouse
click and the minimal effort required makes airtap a very
intuitive gesture. It is no surprise that the pointing gesture
is highly favored as well, as it requires even less effort. It
has to be noted, however, that an actual implementation
of a dwell timer with zero delay is very unlikely. As it im-
mediately triggers a click when over a target, it is far too
likely that clicks would be triggered accidentally. In addi-
tion, several participants pointed out that they missed the
active control of triggering the click. It does show, how-
ever, that techniques that reduce the required dwell time,
like the target prediction discussed in Section 4.1, are de-
sirable. Considering these caveats, airtap should be used
as the primary gesture for triggering target selections.
The second group consists of pistol, bend, 90◦, grab, dwell,
and push. All of these gestures were not as highly rated as
those in the first group, but were often among those that
users considered useful in everyday life. Many interfaces

137

4.3. Target Selection

are too complex to display all information available, which
is why context information often has to be revealed with a
secondary type of click. For the mouse this is typically the
right mouse button. The gestures of the second group are
candidates to fulfill this functionality for a pointing ges-
ture based system. The gestures are rated well enough to
be used, but not well enough for the most common task.
As there are multiple gestures in this group, it would even
be possible to assign to them several secondary functions or
shortcuts to fully utilize their potential. The final and third
group consists of only one gesture: pull. Its ratings were
peculiarly bad and almost no user mentioned this gesture
when asked which would be usable for a real application.
The reason for this seems to be the counterintuitive mo-
tion of pulling the arm away from the display. Due to this
finding, the gesture should not be used at all in an actual
application.
It is striking, that the ranking follows the general obser-
vation that a gesture with less required effort results in a
better overall rating. The first group of gestures add little
to no additional strain to the always required pointing ges-
ture, the pull gesture of the third group requires movement
of the complete arm which, depending on the execution of
the gesture, can even include the upper body. In between
are the gestures of the second group that mostly require
movement of multiple fingers or the whole hand. While
no movement is necessary for the dwell gesture, the long
delay during which the arm has to remain extended is tir-
ing. Comparing the dwell gesture to the pointing gesture,
the delay seems to play the key role in how the gesture is

138

4.3. Target Selection

perceived. While the gestures are identical except for the
delay, the dwell gesture was rated much worse than the
pointing gesture. Since the dwell gesture is used in several
existing systems despite these results, its major advantage
has to be pointed out: It is very easy to detect, which makes
it very robust for systems that actually recognize the ges-
ture and is comparably easy to implement. If recognition
works well enough, however, most other gestures should be
preferred. Almost all of the gestures have three distinctive
phases that can be compared to a mouse click, which con-
sists of mouse down, hold and mouse up. When clicking
with the mouse, the hold phase is usually extremely short.
A prolonged hold phase is actually used for an additional
functionality: drag-and-drop. The similarity of the phases
would allow to implement this functionality for most of
the gestures as well. While the gestures in this evaluation
were based on the Wizard-of-Oz concept for the aforemen-
tioned reasons, note that all gestures can be implemented
in a real-world system; in fact, most of them are already
available to different degrees of robustness at the Fraun-
hofer IOSB digital situation table [PBERG07]. As pointed
out, the ranking of the gestures shows a smooth descent,
which indicates that several gestures can be considered use-
ful. This leads to the conclusion that gestures of the first
group could be used for common operations, like clicking,
because they were generally perceived as being faster and
more efficient. Gestures of the second group would then be
a good choice for less frequent but still common operations
such as drag-and-drop or opening a context menu.

139

4.4. Inter-display Interaction

4.4 Inter-display Interaction

One of the goals of glueTK is to enable the creation of im-
mersive multi-display applications. An important aspect
of these multi-display applications is that interaction is not
bound to a single screen and users may use the same in-
put device to interact with different interfaces and different
screens and also transfer data between them. Allowing for
cross display interaction and data transfer allows to per-
ceive a whole room, with all displays in it, as the interface
and ignore technical details as well as the fact that there
are different machines and applications involved to drive
all displays.
However, enabling the abstraction from multiple machines
is a technical challenge. Interfaces have to communicate,
synchronize and exchange data over a network to create
the illusion of a single coherent interface. No matter how
fast network connections are, latencies can not always be
avoided. Ever since computers became powerful enough,
animations of various kinds have been used to enrich the
user interface. It has been shown that animations can help
to alter the users’ perception of lags or latencies [Gon96,
HS93]. Work by Miller et al. [Mil68] and later Card et
al. [CRM91] provides a rough guideline for system response
times:

• 100ms is about the limit for the perception of instan-
taneous reaction

• 1000ms is about the limit to keep the user’s flow of
thought uninterrupted

140

4.4. Inter-display Interaction

• 10000ms is about the limit to keep the user’s atten-
tion focused on the current activity

The following sections present two user studies that inves-
tigate what the limits of acceptable latencies are, and also
what can be done to bridge those latencies for the best
possible user experience in the case of multi-display en-
vironments [Rot12]. A final conclusion will compare the
results to the prior work.

4.4.1 Acceptable Data Transfer Latencies

As latencies can cause irritation and frustration, it is obvi-
ous that the elimination or reduction is an important goal.
When it comes to reducing latencies, especially when com-
plete elimination is not possible, it is important to know
what kind of reduction actually has the desired effect, e.g.
what latency is acceptable to users. The goal of the user
study described below is therefore to find such a limit of
latency for transferring interface elements across screens.
The study is set up by presenting participants with a task of
sorting geometric shapes. Starting out with all shapes on a
screen right in front of the user, rectangles have to be moved
to the screen immediately to the left of the user and circles
have to be moved to a screen to the right of the user in a
distance of about 2.5m (see Figure 4.29 for an illustration
of the setup). Using a mouse, the geometric shapes can be
transferred to either adjacent screen via drag-and-drop by
placing a shape in the corresponding transfer area, which
is indicated by a vertical, dashed line on both sides. The

141

4.4. Inter-display Interaction

Figure 4.29: Initial user study set up for finding a limit of
acceptable latency for inter-display data transfer.

shapes have different colors, which are associated with dif-
ferent artificially induced transfer latencies. Table 4.5 gives
an overview of all colors and latencies. The latencies are
independent of the shape, however. While each color corre-
sponds to an artificial latency, the actual latency is longer
as the actual system latency for transferring the shape has
to be incorporated. This additional overhead equates to
18ms and is the same for any shape and target display. In
each run, a user was presented with ten rectangles and ten
circles at random positions on the center screen. Every par-
ticipant had to complete four runs of sorting these shapes.
Each set of shapes contained every color twice. Whenever
a user transferred a shape to either screen, the interface
was locked for the corresponding time. This required users
to wait for the shape to appear on the target screen before
the next shape could be transferred, and forced them to
experience the latency instead of simply dragging the next
shape while the previous one was still being transferred.
Ten male users, aged 22 to 32 (average 28), participated in
the study and in addition to performing the task described

142

4.4. Inter-display Interaction

above, answered a questionnaire (see Appendix A.5) to get
an insight into their subjective impressions.

Color Blue Green Red Yellow Black

Latency 0ms 500ms 900ms 1200ms 1800ms

Table 4.5: Overview of how latencies correspond to colors.

Table 4.6 shows the average rating of how acceptable the
experienced latency was to users for the respective colors
on a Likert scale form 1 (very fast) to 7 (very slow). This
shows, that the limit of acceptance lies between 518ms
(green) and 918ms (red). In addition to rating each color
individually, users were also asked which was the slowest
color acceptable to them, which results in an average ac-
ceptable limit of 640ms (337.31ms standard deviation) for
the latency when transferring data across screens.
Interestingly, there was no significant difference between
the rectangles (nearby target screen) and circles (distant
target screen). This is important in the context of appli-
cations in a multi-display environment, as it can not be
expected that users are more forgiving when it comes to
latency for displays that are further away.

4.4.2 Bridging Latencies

The user study described above gives an insight into what
latency needs to be achieved to be acceptable for users.

143

4.4. Inter-display Interaction

Color Blue Green Red Yellow Black

Average Rating 1.4 2.1 4.5 5.7 7.0

Table 4.6: Average user ratings of the perceived speed on
a seven point Likert scale.

Since this is not always possible, it is important to investi-
gate what options exist to bridge the difference between ac-
ceptable and actual latency. Animations are used in many
interfaces today to improve the user experience, as they
often help the user understand what is going on. When
it comes to transferring objects across screens, a sudden
disappearance on one screen and a reappearance on a dif-
ferent screen can be irritating. In addition, the animation
itself gives the user something to do, which can alter the
user’s perception of time in a subtle manner. Because the
animation takes time, it is possible that the animation will
allow for a higher tolerance towards latency, as it is not
perceived by users the same way. To test this hypothesis,
seven different animations for cross display transfer were
created and evaluated in a user study.

The first animation is Shrink, as depicted in Figure 4.30.
In this animation, the object is moved to the edge of the
origin screen and scaled down. As it reaches the edge, it
disappears on the origin screen and appears on the tar-
get screen, where it expands to its original size. The Slide
animation moves the object along a horizontal line to the
edge of the origin screen, where it disappears. It then reap-

144

4.4. Inter-display Interaction

Figure 4.30: Shrinking animation for object transfer.

pears at the adjacent border of the target screen and slides
along the horizontal line to a target position as show in
Figure 4.31. By fading out the object on the origin display,

Figure 4.31: Sliding animation for object transfer.

the start of the transfer is indicated for the Fade animation
(Figure 4.32). Right before the object becomes invisible,
the object is faded in at a faster speed on the target dis-
play until fully opaque. Figure 4.33 illustrates the Notifi-
cation animation, which shows a notification banner to let

145

4.4. Inter-display Interaction

Figure 4.32: Fade in and out animation to indicate object
transfer.

the user know about the ongoing transfer. The banner is
hidden once the transfer is complete. Similar to the Slide

Figure 4.33: A notification is shown to let the user know
the transfer is in progress.

animation is the Slingshot animation. Instead of directly
moving an object across screens along a horizontal line, the
object is first pulled in the opposite direction and upon “re-
lease” moved along the horizontal line to the target screen.

146

4.4. Inter-display Interaction

The movement is shown in Figure 4.34. The Placeholder

Figure 4.34: The slingshot animation slightly moves the
object in the opposite direction before moving it quickly
along a horizontal line.

animation is an atypical animation, as no movement is in-
volved. Once the transfer is triggered, a placeholder image
(as shown in Figure 4.35) is immediately displayed on the
target display. Once the transfer is completed, the place-
holder object is simply replaced by the actual object. The
Loader animation shows a spinning circle as to indicate that
the transfer is in progress. After the transfer, the object is
immediately displayed on the target display and removed
from the origin display along with the loader animation.
The spinning circle directly displayed on the object to be
transfered is shown in Figure 4.36. These animations can
be divided into two groups. The first group of animations,
Shrink, Slide, Fade, Slingshot and Placeholder, animate the
object on the origin display as well as on the target display,
which requires the object to be completely transferred be-
fore the animation can be shown on the target display. Such

147

4.4. Inter-display Interaction

Figure 4.35: A placeholder image is used to indicate where
an object will show up before it is transferred.

Figure 4.36: A loader animation is shown on the object
while its data is being transfered.

an animation after the transfer comes at the cost of a higher
latency but can be beneficial for the comprehensibility. All
animations from this first group took 2.5sec to complete.
The second group, consisting of Notification and Loading,
can be stopped immediately when the transfer is complete
and therefore require less time in comparison. Both were

148

4.4. Inter-display Interaction

configured to require 2sec.
To evaluate if animations like the ones described above can
assist in reducing the perceived latency, the user study was
set up as follows: Two screens were set up next to each
other with the task for the ten male participants to move
all circles on the left screen to the screen on the right by
simply clicking on them. Ten objects had to be transferred
with each animation. While an animation was running, the
user was not able to trigger further transfers. Users were
asked to rate the different animations with respect to speed
and intuitivity on a scale from one (very good) to five (very
bad). The results are shown in Table 4.7. While it is not
surprising that the ratings of intuitivity differ significantly
(the p-value of the t-test between Shrink and Placeholder
is 0.002), there are even significantly different ratings of
the perceived speed within the first group of animations
that all took the exact same time (t-test p-value: 0.036).
The differences between the best and worst rated anima-
tions across both groups are significant for both factors as
well: The t-test p-value between best (Loading) and worst
(Fade) animation with respect to the rating of perceived
speed is 0.013 and the t-test p-value between best (Shrink)
and worst (Placeholder) with respect to the rating of intu-
itivity is 0.002.

In addition to rating the different animations on a Likert
scale, participants had to order them from most to least
preferred, which resulted in the following order: Shrink,
Loading, Slide, Notification, Placeholder, Fade, Slingshot.
Two interesting conclusions can be drawn from these re-
sults. First of all, several animations have been rated well

149

4.4. Inter-display Interaction

Animation Speed Intuitivity

Shrink 2.5 1.6
Slide 2.7 1.9
Fade 3.2 2.5
Notification 2.6 2.4
Slingshot 3.1 2.3
Placeholder 2.8 3.0
Loading 2.4 2.2

Table 4.7: Animations rated with respect to speed and
intuitivity on a five point Likert scale.

with respect to the perceived speed even though the trans-
fer delay was well above the maximum acceptable latency
discovered in the previous user study for all animations.
This is in line with observations made in many everyday
software products as well as websites, where animations are
used to distract from delays. Second of all, even though the
Shrink animation took 0.5 seconds longer than the Notifi-
cation animation, there is no significant difference in their
speed rating (t-test p-value: 0.377), the intuitivity of the
Shrink animation, however, is rated significantly higher (t-
test p-value: 0.024).
Besides these general observations, the feedback sections
of the user questionnaire provided detailed insight into the
participants’ ratings. It was pointed out several times that
the fact that the Shrink animation guides the users gaze
made the operation easy to understand. The immediate
feedback of the Placeholder animation was well perceived,

150

4.4. Inter-display Interaction

but the fact that there is no feedback on the origin display
caused some irritations. The second group of animations,
without visualization on the target display, was criticized
for the missing feedback about where the object would show
up after the transfer.

4.4.3 Conclusion

The limit of an acceptable latency for inter display trans-
fer lies between 518ms and 918ms, as the first user study
has shown. This is in line with the guidelines for single
screen system response times [Mil68, CRM91]. Transfer-
ring an object across screens is a more complex operation
than a button click for example, which explains the accept-
able limit to be above 100ms. The upper limit of 918ms is
just below the limit according to the guidelines to keep a
user’s thought uninterrupted.
For many interactions in the user interface, animations can
improve the user experience as they can bridge occurring
latencies [Gon96, HS93]. The second user study has shown
that this is also the case for inter-display interaction. Ani-
mations are capable of altering the way users perceive de-
lays in the interface and therefore provide important func-
tionality above pure eye-candy. The importance of the de-
sign of static interface elements, especially their size, is the
focus of the next section of this chapter.

151

4.5. Choosing Element Sizes

4.5 Choosing Element Sizes

The approach of glueTK for creating interfaces and widgets
is to offer basic blocks that allow for the easy creation of
custom interfaces tailored towards a specific system. While
this approach offers great flexibility, it does not dictate any
layouts or element sizes. Specifically the element size is an
important property when designing interfaces for novel in-
teractive systems. Developers need to know what element
sizes will be usable for a target system.
For a long time, there was little variation in the properties
of computer systems. Developers of applications, just like
users, used desktop computers with a mouse and keyboard
for input and a screen within a small range of physical sizes
and resolutions. The first widespread deviation from this
homogeneity were smartphones and tablet computers. Not
only do these systems use touch input, which is less accu-
rate than a mouse, but the display sizes also differ greatly
from those of desktop computers which are still used by
developers to create applications for these new systems.
The two most dominant representatives, iOS and Android,
of this new class of systems have rudimentary solutions to
the problem of different display sizes and resolutions, not
only between a developer’s system and the target system,
but also between multiple target systems like smartphone
and tablet. The approach of iOS is to design a specific in-
terface for each device class. It is then possible to bundle
multiple, manually designed interfaces in a single applica-
tion and depending on the system that runs the application,
the corresponding interface is automatically used [App].

152

4.5. Choosing Element Sizes

The device landscape for Android is a lot more diverse,
which is why creating custom interfaces for each supported
screen size and resolution is not an option. Instead, An-
droid allows developers to define the size of elements as
density-independent pixels (dp). These are a virtual pixel
unit that abstracts from one of the parameters that differ
between devices: the display density, which is dependent
on the physical size and resolution. This way, interface ele-
ments, can be scaled on devices with different display den-
sities automatically [And]. The solutions, however, only
work in the class of mobile devices and only account for
different displays, not different input modalities.
GlueTK on the other hand supports a much larger range of
display devices, especially with very different input modal-
ities. The goal is to find a solution for any interactive
system, that means both output and input, display and
corresponding input device. Also in the case of glueTK,
a developer will usually use a different display and input
device for development than the application will later run
on. Because of this, a developer can not develop a feeling
for the right sizes of elements but needs a way to know up
front what element sizes work for a target system.
Different element sizes will affect the time it takes a user
to select an element. To accurately describe this influence,
the following terms will be used throughout this chapter.
We define the interaction performance as the total time it
takes a user to select an element, from the initial inten-
tion to locating the element and successfully selecting it.
This overall time is split into two distinctive phases. We
define the time it takes for a user to visually perceive and

153

4.5. Choosing Element Sizes

locate an element as the perceptual performance. After lo-
cating an element the user has to perform a selection or
activation using an input device. We define this share of
the time of the overall interaction performance as the input
performance. The following sections describe how to find
usable element sizes for any interactive system consisting
of a screen and an input device. The first section will deal
with the perceptual performance, addressing different dis-
play properties, and the second section will deal with the
input performance to show how the performance of differ-
ent input devices can be matched. The third section ana-
lyzes the combination of perceptual and input performance
to control the overall interaction performance by adjusting
the sizes of interface elements.

4.5.1 Perceptual Performance

The perceptual performance describes how well visual in-
formation can be perceived. This includes both the search
speed when localizing elements as well as the speed of recog-
nition when visually selecting the desired target. For infor-
mation displayed on a computer screen, this does not only
depend on the visual acuity of the user and the distance
of the display to the user, but also on the physical size of
elements and the display’s resolution. For text, these prop-
erties can be used to calculate font sizes which will yield
good legibility. Equation 4.9 from ISO 9241-303 [ISO11]
shows how the optimal font size hr is affected by the dis-
tance to the screen dr and the visual acuity δ, which is 0.3◦

for normal sighted persons.

154

4.5. Choosing Element Sizes

hr = 2 · tan(
δ

2
) · dr (4.9)

The physical size can be converted to the corresponding
pixel size using the display’s size and resolution. Given
a fixed distance of use, this allows to calculate optimal
text sizes for any display. Interfaces are, however, not
only made up of text elements but also of graphical el-
ements, e.g. icons. Both have their respective advan-
tages [BT93, Wie99], which is why most interfaces make
use of both types of elements. For text, the main factor
of legibility is the effective visual acuity, e.g. how well two
parallel lines can be distinguished at the given distance.
Graphical elements, however, are often much more com-
plex than text, and many additional factors play a role
in the perceptual performance. Some of these factors are:
contrast, level of detail, context, and the user’s familiarity
with the elements. As these factors are not only hard to
measure but also person specific, it is infeasible to find a
generic equation to calculate an optimal size for graphical
elements factoring in all of these parameters. As a solu-
tion to this problem, the concept of a reference system is
introduced in the next section.

Reference System

The idea of a reference system [vdCSS13b] originates from
the fact that despite the multitude of new devices extending
the range of available displays and input modalities, devel-
opers still tend to use traditional desktop computers with

155

4.5. Choosing Element Sizes

keyboard and mouse input for development. The problem
that arises from the fact that developers and users do not
use the same systems has already been described above.
To close the gap between these different systems with their
specific properties, the two need to be put in relation. If
developers know how element sizes on their system relate to
a target system, it is much easier to design interfaces that
will work on that target system and also to spot poten-
tial problems before testing on the actual target system.
The great advantage of using the concept of a reference
system is not only the intuitivity for developers, but first
and foremost the fact that only the parameters that change
between systems need to be compensated for. The soft fac-
tors of graphical items described above, like context and
familiarity, stay the same and do not have to be taken into
account. If these factors can be ignored, it is a valid hy-
pothesis that Equation 4.9 can be used to calculate the
required visual acuity to perceive any element on the refer-
ence system by solving it for the visual acuity δ as shown
in Equation 4.10a. This way, the visual acuity required to
perceive the element as well as the developer intended is
known. By inserting it in Equation 4.9 the element size re-
quired on the target system ht with its associated distance
of use dt can be calculated as shown in Equation 4.10b.
This can be further simplified to Equation 4.10c because
of the periodicity of the tangent. The goal is essentially to
preserve the visual properties of each element by adjusting
its scale to match those of the reference system, while all
parameters not accounted for stay the same.

156

4.5. Choosing Element Sizes

δ = 2(tan−1(
hr
2dr

) + π ∗ n), n ∈ Z (4.10a)

ht = 2 · tan(tan−1(
hr
2dr

) + π ∗ n) · dt, n ∈ Z (4.10b)

ht =
hrdt
dr

(4.10c)

Experimental Evaluation

To evaluate the validity of the hypothesis that the reference
system allows to adjust element sizes to retain perceptual
performance on a target system not only for text but also
for graphical items, a user study was conducted. A 24 inch
LCD monitor was used as a reference system and a Nexus
7 tablet computer and a Galaxy Nexus smartphone were
used as target systems. After selecting a text size as well
as a size for graphical elements on the reference system,
both were scaled using Equation 4.10c to achieve the same
perceptual performance on the respective target system.
To measure the perceptual performance, a test setup sug-
gested in ISO 9241-304 [ISO08] was used. The task de-
scribed, involves the display of random characters following
several constraints with respect to the layout and character
frequency. In this random text, all occurrences of a target
character have to be located and counted. The number of
target characters is always the same but a different tar-
get character is selected for each participant. The average
time it takes users to count all occurrences is the achieved

157

4.5. Choosing Element Sizes

Figure 4.37: Example displays from the textual and graph-
ical experiments on a Nexus 7 tablet.

perceptual performance. In addition to a task with text
consisting of 306 random characters, a comparable test for

158

4.5. Choosing Element Sizes

Figure 4.38: Set up of the user study with the three displays
from left to right: Samsung Galaxy Nexus, ASUS Nexus 7
and Samsung 24” LCD display.

icons was designed. In this test, 80 random icons were dis-
played and users had to count the occurrences of a target
icon. Again, the number of target icons was always the
same but the target icon was different for every user. Fig-
ure 4.37 shows an example layout for both experiments.
The reference system had a display diagonal of 60.96cm
and a resolution of 1920px× 1080px and a distance of use
of 60cm. The first target system was a Samsung Galaxy
Nexus smartphone with a display diagonal of 11.81cm and
a resolution of 1280px×720px, used at a distance of 25cm.

159

4.5. Choosing Element Sizes

LCD Galaxy Nexus Nexus 7

Characters 23,83 23,17 23,08
Icons 7,42 7,5 7,33

Table 4.8: Average durations for both experiments for each
display.

The second target system was an ASUS Nexus 7 tablet
computer with a display diagonal of 17.78cm and a resolu-
tion of 1280px× 800px at a distance of use of 40cm.
The twelve (ten male, two female) participants, aged from
14 to 52, all had normal or corrected to normal sight. Each
participant was assigned a random target character and
icon and was asked to count the occurrences on every dis-
play. Figure 4.38 illustrates the set-up of the experiment.
The order of displays was randomized for every user. Ta-
ble 4.8 shows the average time it took to locate all targets
in seconds for both text and icons for all systems. The
results show that the performance on all three systems is
almost identical. The aberration between the average time
it took users to locate and count all occurrences of a target
is less than one second for text as well as icons. This dif-
ference is not significant as the one-way ANOVA [Win70]
results presented in Table 4.9 show. These results confirm
that the concept of the reference system, along with the
adapted equation to calculate element sizes for target sys-
tems, allows for retaining the perceptual performance of
the reference system on a target system.

160

4.5. Choosing Element Sizes

Source SS df MS F p

Text
Between 4.05 2 2.02 0.05 0.95

Within 1436.25 33 43.52

Icons
Between 0.16 2 0.0833 0.03 0.97

Within 102.58 33 3.10

Table 4.9: ANOVA results for the perceptual performance
tests.

4.5.2 Input Performance

As described above, the complete interaction between a
user and an interactive system consists of two distinctive
parts. The first part, the perception, has been described
above and with the introduction of the concept of a ref-
erence system it has been shown that the perceptual per-
formance can be adapted for every display by choosing the
right element sizes. The second part deals with the ac-
tual user input, utilizing the input device available for a
given interactive system. The input performance has been
studied in great detail. The most prominent result of this
research is Fitts’s law [Fit54], which allows for predictions
of the input performance. However, Fitts’s law and the
many extensions to it focus on the prediction of the input
performance and the take away for most developers is the
simplified conclusion “bigger is better” when it comes to
interface elements. Of course, it is true that bigger targets
are easier to hit and that this is an implication of Fitts’s

161

4.5. Choosing Element Sizes

law. For real world applications, however, there is a limit
to the maximum size of interface elements as there is only
limited screen estate. The more complex applications be-
come, the more interface elements need to be incorporated
into the interface. Therefore, the goal has to be to find
element sizes that allow for a certain input performance
but not more to still allow for meaningful user interfaces.
Solving Fitts’s law (Equation 4.11) for the size of the in-
terface element w results in Equation 4.12. This defines
the element size depending on the parameters a,b,d and t.
The parameters a and b are empirically determined for an
input device and are therefore easy to obtain.2 The dis-
tance to the element d as well as the movement time t are
variable. Especially the distance depends on the location
of the element and the current position of a cursor. To find
a generic solution to this problem, we define the distance
d as the diagonal of the display for the following rationale.
Movements are always thought of as direct movements in
the context of Fitts’s law. This means, that the diagonal
of the display is the maximum possible distance for a given
interactive system and therefore the worst possible case. If
the diagonal is used as the distance in Equation 4.12, the
time t can intuitively be selected as the upper boundary
for the time a single input action should take. By selecting
this upper boundary, an element size can be calculated that

2To determine the parameters a and b, the time it takes to click
several targets of varying size and distance is measured. In a co-
ordinate system with time on the y-axis and the index of difficulty
(log2(2d

w
)) on the x-axis, a regression line is calculated from all mea-

surements. The intercept of that line defines the parameter a and the
slope defines the parameter b.

162

4.5. Choosing Element Sizes

satisfies this requirement for the given interactive system.

t = a+ b · log2(
2d

w
) (4.11)

w = d · 2
a+b−t

b (4.12)

The concept of the reference system is not only used to be
able to transfer soft factors that influence the perceptual
performance of graphical elements. It can also be used as a
model of the way novel interactive systems are usually de-
veloped, that is on traditional desktop computers instead
of the actual target system. To incorporate the calculation
of element sizes with respect to the properties of the input
device into the concept of the reference system, the fol-
lowing shows how input performance can be retained from
a reference system to a novel interactive system using the
adaptation of Fitts’s law using the display diagonal as a
fixed value for the distance. Equation 4.13 shows how how
Fitts’s law can be used to calculate the maximum input
time tr for an element on the reference system using the
display diagonal dr as the distance, the size of the element
as defined by the interface designer wr and the empirically
found parameters of the input device of the reference sys-
tem, ar and br. The goal for the target system is to find
the element size that guarantees the same maximum input
time tr on the target system. Equation 4.14 shows how
this can be accomplished by inserting the time tr into the
Fitts’s law formula solved for the element size on the target
system wt. The use of the input device specific parameters

163

4.5. Choosing Element Sizes

of the target system at and bt as well as the diagonal of
the targets system display dt result in an element size with
the same upper boundary for the input time on the target
system as the original element on the reference system with
its input device.

tr = ar + br · log2(
2dr
wr

) (4.13)

wt = dt · 2
at+bt−tr

bt (4.14)

To evaluate this adaptation of element sizes based on the
concept of the reference system, a user study was con-
ducted in which participants had to perform the same task
on three different interactive systems. The task involved
selecting 300 randomly placed squares with the respective
input device. The first system, which served as the refer-
ence system, was a 60.96cm LCD screen with a resolution
of 1920px × 1080px in conjunction with an optical mouse
as an input device. The second system was a 132cm TV
screen with a resolution of 1920px×1080px connected to a
gyro mouse. A gyro mouse is an input device similar to a
mouse but instead of moving it on a flat surface it is freely
moved in the air to control the application’s cursor. The
third system was a SMART 685i3 board with a touch sensi-
tive surface. The diagonal of the board is 221.3cm and the
image projected onto it has a resolution of 1280px×800px.
The size for the squares was chosen to work well on the
reference system with an edge length of 100px. The re-
spective edge lengths for the TV system and the SMART

164

4.5. Choosing Element Sizes

LCD + TV + SMART Board +
Mouse Gyromouse Touch

Element
size

100px 197px 27px

Avg. time 797.2 857.3 855.7

Table 4.10: Average input performance for each system in
seconds.

board were calculated as described above. This resulted in
197px for the TV + gyro mouse system and 27px for the
touch sensitive SMART board.
Ten users (8 male), aged 21 to 42, participated in the user
study. Each user was asked to click all targets on each of
the systems using the respective input device. Users were
given time to familiarize themselves with each system and
the order in which they used the systems was randomized.
Users were asked to click all targets as fast as possible, but
to balance speed and accuracy. For each system and user
the time from the click on the first target to the click on
the last target was measured.
Table 4.10 shows the average time in seconds for each sys-
tem. The differences between the three systems are not
significant as the results of the one-way ANOVA test in
Table 4.11 show. The results allow the conclusion, that the
incorporation of the adapted Fitts’s law, based on the dis-
play diagonal, into the reference system allows to retain the
input performance from one system to another by making
the proper adjustments to the size of the interface elements.

165

4.5. Choosing Element Sizes

Source SS df MS F p

Between 23456.06 2 11728.03 1.55 0.23

Within 203897.8 27 7551.77

Table 4.11: ANOVA results for the input performance test.

4.5.3 Interaction Performance

As shown in the previous sections, by taking the relevant
parameters into account it is possible to adapt user inter-
face elements to yield the same perceptual performance on
target systems as on a reference system. It was also shown
how Fitts’s law can be adapted to calculate element sizes to
retain input performance from the reference system’s input
device to a target system’s input device. However, to make
predictions about the overall interaction performance, it is
important to know how input performance and perceptual
performance can be combined to calculate the overall in-
teraction performance. While Fitts’s law assumes direct
and straight motions, a low perceptual performance could
irritate the user and influence the movement and therefore
the input performance. If the perception, which precedes
the input, influences the input performance in any way, the
two parts of the overall interaction are not independent and
the interface adaptation becomes much more complex.
An experiment was designed to study if and how the input
performance is influenced by a degrading perceptual per-
formance. In the style of the previous experiments, a grid
layout of 112 buttons was used, each with a single random

166

4.5. Choosing Element Sizes

character in the center as a label (see Figure 4.40). Again,
the task for users was to count the occurrences of a target
character. The experiment was conducted in three vari-
ants. The first variant involved only counting the occur-
rences. The second variant required the participants to also
click the target buttons with a mouse and the third vari-
ant required the users to touch the target buttons on the
screen. The experiment was conducted eight times for each
variant, each time with a different font size for the labels.
The size of the buttons stayed the same at all times. The
intention behind decreasing the font size was to provoke
a degradation of perceptual performance. Adding an in-
put task to the otherwise identical experiment in the other
two variants had the goal of putting the perceptual per-
formance in contrast to the input and overall interaction
performance. To make this comparison possible, both the
time for the whole experiment and the time used for in-
put alone (mouse movement time / hand movement time)
was measured3. A Samsung Nexus 10 tablet computer
was used as a display (Figure 4.41), which has a 255.4mm
screen with a resolution of 2560px × 1600px, to avoid any
effects a low pixel density might have on the legibility of
small fonts. By asking users to sit on a chair with their head
leaned against a wall, a distance of 60cm from the eyes to
the screen was ensured (Figure 4.39 shows the experiment’s
setup). The order in which participants were presented
with the three variants was randomized. For each variant,

3Participants had to put their hand as well as the mouse back to a
fixed position. The moment they left that position to the occurrence
of the click was measured to determine the input time alone.

167

4.5. Choosing Element Sizes

Figure 4.39: Set up for the user study on interaction per-
formance. By asking users to lean their head on the wall a
fixed distance to the display was ensured.

Figure 4.40: Example screen-shots from the user study on
the Nexus 10 tablet using the largest font and the second
to smallest font size respectively.

the order of font sizes (10.1mm, 8.5mm, 5.1mm, 3.4mm,
2.0mm, 1.4mm, 1.0mm,0.5mm) was randomized as well.
Fifteen users took part in the experiment (12 male) aged
from 21 to 42, all with normal or corrected to normal sight.
All users were asked to take an eyesight test before the ex-
periment to ensure normal vision. Figure 4.42 shows the

168

4.5. Choosing Element Sizes

Figure 4.41: The Nexus 10 tablet used in the user study,
displaying buttons of the same size with random letters as
labels.

average durations of the experiments for all three variants
and all font sizes. In addition, it shows the mouse and
touch variants with the input time subtracted for each ex-
periment. The graph shows that down to 3.4mm, the per-
formance does not degrade considerably. The optimal font
size, calculated using Equation 4.9, is 3.1mm. This is in ac-
cordance with the results, as it is around this point that the
performance degradation begins. From that point on, the
performance constantly degrades. While the smallest font
size used had a height of 0.5mm, none of the participants
were able to correctly read the characters at this size. It is
therefore safe to assume that between 1.0mm and 0.5mm

169

4.5. Choosing Element Sizes

Figure 4.42: Average task durations for all font sizes.

lies the limit of human perception at the used distance of
60cm. The fact that the input time subtracted mouse and
touch curves are almost congruent to the perception curve,
suggests that the input performance was consistent for all
font sizes, which means that the input performance is in-
dependent of the perceptual performance. This insight al-
lows to make predictions about the interaction performance
by simple summation of input performance and perceptual
performance.

170

4.5. Choosing Element Sizes

The experiments described in the sections above have shown
that the concept of a reference system enables developers
to easily calculate element sizes for target systems. It is
important to note that since perceptual performance and
input performance are independent of each other, in most
cases one of the two puts a larger constraint on the element
size. Usually the bigger constraint originates from the in-
put performance due to the low accuracy of many novel
input devices compared to a mouse. And while the percep-
tual performance could have been matched with a smaller
element, due the input performance, the final element will
be bigger. The fact that most developers use a mouse as
a pointing device, which is extremely accurate, results in
a problem when it comes to retaining interaction perfor-
mance. While it is possible to retain the performance for
a single element from a mouse based reference system to
most target systems by scaling the element up, this is not
practical for real world applications as there is not enough
screen estate for enough large elements to allow for suffi-
cient application complexity. Retaining the performance
of a mouse, however, is an overly ambitious goal for most
novel devices. Their strengths do not lie in speed and accu-
racy but in new use cases and natural interaction, without
the need to wear or hold any device. The reference sys-
tem concept can aid the developer nevertheless, because it
puts the developer’s system in relation to the target sys-
tem. Equation 4.13 is used to find the time to use as an
upper boundary if the performance of the reference system
has to be matched. Adjusting this upper boundary before
inserting it into Equation 4.14 allows for an intuitive ad-

171

4.5. Choosing Element Sizes

justment of how fast the interaction with the target system
will be in comparison to the developer’s system. Using the
same equations, it is also possible to calculate the upper
boundary of the input performance for an element size on
the target system and therefore getting an intuitive feeling
for the usability of the element on the target system.

172

5
Applications

This chapter will present two applications that have been
created using glueTK. While many of the characteristics
and features of glueTK have been described above, the
way everything works together to enable new kinds of in-
teractive systems is best demonstrated in an application
context. The first application is a next generation control
room, that utilizes multiple input modalities, from pointing
interaction to person tracking, and several displays, from a
smartphone to a video wall, to provide users with intuitive
assistance in such a high pressure environment. The main
focus of the technical perspective of these applications is

173

5.1. Smart Control Room

the integration of many different modalities as well as the
multi-display interaction.
The second application is an interactive terminal for mar-
itime situation analysis and consists of only three input
technologies and two displays. The main focus of this ap-
plication is to make use of the insights into element adapta-
tion described in Section 4.5. Instead of adapting the inter-
face to multiple interactive systems, however, the principle
of the reference display is used to modify the screen con-
tent depending on the users’ position, creating a distance
dependent display.

5.1 Smart Control Room

Control rooms are centralized spaces from which missions
are monitored and controlled. The military sector is a typi-
cal example for users of control rooms, but they are used in
many branches of civil security forces and large industrial
companies as well. Common tasks for the users in a con-
trol room, besides monitoring incoming information, is the
planning and dispatching of emergency vehicles and relief
units. Across the board, it is very common to make use of
the continental staff system [Bmi09] in these rooms, which
assigns each user with a specific role. This results in users
requiring different information and often also different or
specialized interfaces with functionality that supports their
assignment.
Today’s control rooms often incorporate large displays like
video walls which are, however, mostly used as passive dis-

174

5.1. Smart Control Room

Figure 5.1: The Smart Control Room, including digital
situation table and video wall.

plays and serve as an overview. Users usually only interact
with personal desktop computers. Any manipulation of
the content on the video wall has to be controlled from a
desktop computer, which makes direct interaction with the
video wall tedious. A controlled environment with strictly
regulated activities and clearly assigned roles, such as a
control room, is well suited to be enhanced by new tech-
nology as it is of manageable complexity. It has been shown
early on [CJM+97] that technology can be of great assis-
tance in a command and control environment, therefore the
goal of this application is the creation of a next generation
control room - a smart control room.
The idea of the smart control room is to allow intuitive in-

175

5.1. Smart Control Room

teraction with large displays by utilizing novel input tech-
nology. This interaction can be explicit or implicit, as
some of the input modalities are not directly suitable for
interaction but provide information that can be utilized
to improve the user experience within the room, as will
be shown in the following description. The room is de-
picted in Figure 5.1, where all stationary displays can be
seen. These are a 4m×1.5m video wall with a resolution of
4096px×1536px, which is intended to give an overview and
to be used by multiple users at the same time, and a table
display, which has a resolution of 1400px×1050px and mea-
sures 0.9m×1.2m. In addition to these stationary displays,
two mobile display devices are used: A motion computing
j3500 tablet with a diagonal of 30.73cm and a resolution
of 1280px × 800px as well as a NOKIA N900 smartphone
with a display diagonal of 8.9cm and a display resolution
of 800px× 480px. Besides these two mobile devices, which
constitute two separate machines, both the video wall and
the digital table are driven by one computer respectively.
Most of the input devices used are computer vision based
and utilize nine Axis 211a cameras and one Logitech Quick-
cam Pro placed at different positions throughout the room.
The first input technology is a commercial face recognition
system [vid] that is able to identify persons who have pre-
viously been added to its database via the webcam. The
webcam is attached to the right side of the video wall and
allows persons to actively identify themselves by looking
into it. This identification allows for personalized func-
tionality and is especially useful because of the clear con-
tinental staff role assignment described above as roles can

176

5.1. Smart Control Room

be assigned automatically using the identity. To keep the
identity of a person for a longer period of time and also
to obtain the locations of all persons throughout the whole
room at all times, a person tracker is used that relies on
a single camera with a fisheye lens installed in the ceiling.
Whenever the face recognition system recognizes a person,
the identity is linked to the corresponding track of the per-
son tracker closest to the webcam. A 3D reconstruction of
the area in front of the video wall is created using two cam-
eras on each side of the wall and a voxel carving approach,
described in [SvdCIS09], uses this information to derive the
pointing gestures of persons in front of the video wall. The
digital table is equipped with a stereo camera setup above
the display that allows for accurate hand gesture recogni-
tion in the 3D space above the display’s surface as described
in [PBGB09] and is from here on called digital situation ta-
ble. The digital situation table is a back-projection display,
which allows the installation of a camera looking along the
axis of the projector, allowing to see the underside of the
projection surface and locate MCMXT markers [GER+07].
By attaching MCMXT markers to the backside of the mo-
bile devices, these can be be located and identified on the
table when placed on its surface. Another camera, ori-
ented towards the table, is used by a head pose estimation
system [VNS07] to determine the line of sight of a person
standing in front of the table.
With all the input devices and displays available, the fol-
lowing will describe an examplary course of events and how
glueTK is used to utilize the available input as well as out-
put to aid users in interacting with the smart control room.

177

5.1. Smart Control Room

As the video wall is intended for multi-person use and
serves as an overview display for all users, it displays a
complete map of a city. A person, S1, is standing at the
digital situation table which displays a subsection of the
map in more detail. A second person, S2, enters the room.
While the application is aware of the new person due to
the person tracker data, S2 is not able to interact with
any display yet as all functionality is assigned to specific
roles and S2 is not identified yet, and therefore not as-
signed a role. When S2 walks up to the webcam attached
to the video wall, the face identification component detects
that a person is present and compares the person to its
database of known users. The component is handled by
an event handler within glueTK, which triggers several sig-
nals during this process. The first signal that is sent out
is: faceid identifying. This signal is connected to a wid-
get that is intended to give the user visual feedback about
the ongoing identification process by first displaying a ban-
ner as shown in Figure 5.2. Depending on whether the
person is known to the system, corresponding signals are
emitted and result in according visual feedback of the same
banner widget. In this example it is assumed that the per-
son is known. This does not only inform the user about
the successful identification (see Figure 5.3) but the corre-
sponding signal faceid identified S2 is also connected to a
widget that manages personal workspaces and triggers the
appearance of the workspace that belongs to S2 and can
be seen in Figure 5.4. The workspace appears in front
of S2 and follows S2 along the video wall. To enable this,
the person tracker information is received by a correspond-

178

5.1. Smart Control Room

Figure 5.2: The user gets visual feedback about the
progress of face identification.

ing event handler which passes the 3D room coordinates of
persons along as signals. A context handler is connected
to the trackers’ signals and those of the face identification
event handler. It uses this information to correlate iden-
tities with tracks and also converts the 3D room coordi-
nates from the tracker to display coordinates of the display
closest to each track. The person specific signal, contain-
ing pixel coordinates of the display closest to the person,
is connected to the person’s workspace. This causes the
workspace to not only appear right in front of S2, it also
causes the workspace to follow S2 along the wall so it is
always within reach without explicit interaction.
To get an overview of various activities in the city, S2 has

179

5.1. Smart Control Room

Figure 5.3: The user gets visual feedback about the suc-
cessful identification.

several tools at his disposal that can be selected from the
personal workspace using a pointing gesture. The pointing
gesture uses a dwell timer for triggering a click as described
in Chapter 3. This requires the user to keep the cursor
still above the targeted menu item. Since the position of
the workspace depends on the user’s position, movement
can cause problems with the dwell timer as an item could
move relative to the cursor. To avoid this, the context
handler mentioned above is also connected to signals from
the pointing gesture event handler. This way, it can lock
the position of the workspace in place whenever the user
points towards it. To correlate the pointing direction with
the workspace position, the 3D pointing direction of the

180

5.1. Smart Control Room

Figure 5.4: The user selects an item from his personal menu
using a pointing gesture, while the position of the menu is
locked in place.

pointing gesture recognition system is converted to display
coordinates in another context handler by intersecting the
pointing direction with the surfaces of all known displays
in the room. An example tool is a map overlay which dis-
plays a rectangular overlay of a different map layer around
the current pointing position as shown in Figure 5.5. This
allows S2 to get an overview, after which he walks over
to the digital situation table to join S1. At some point
between the two displays, S2 will be closer to the table
than to the wall. The signal that controls the position of
the workspace again just sets its position and it appears
on the table and disappears from the wall. The fact that

181

5.1. Smart Control Room

Figure 5.5: A map overlay can be freely moved across the
video wall by pointing to the desired location. A click dis-
cards the tool.

video wall and table are controlled by different machines,
each running their own glueFrame, is not a problem as the
element transfer happens automatically within the room-
embracing glueTK application as described in Section 3.1.3.
So while the workspace widget is actually serialized, sent
over the network and recreated on the table while being
deleted from the wall, it appears to the user as if the wid-
get simply followed from one display to another. The same
kind of transfer happens in the background when an alarm
message is shown and both users walk up to the video wall
to assess the situation (see Figure 5.6). They can both use
the tools present in their respective workspaces to analyze

182

5.1. Smart Control Room

the current situation. One of the users attaches the alarm
message to the personal workspace and takes responsibil-
ity for handling the task this way. When the users return
to the table, the map is automatically moved and zoomed
to the area the alarm message originated from. The table
can then be used to plan the deployment of relief squads
and the table content can be manipulated by using differ-
ent hand gestures (see Figure 5.7). Which hand gesture
triggers which functionality is a matter of configuration,
e.g. appropriate connections between signals and slots.

Figure 5.6: Multiple users interacting with the video wall.

While S2 is interacting with the table, where the tablet
computer can be used to make annotations, another alarm
message is displayed. To make sure that S2 will see the
message but at the same time not disturb other users, the
message is only displayed on the table, as S2 is focused on
it. When S2 looks up at the video wall, the alarm mes-

183

5.1. Smart Control Room

Figure 5.7: A hand gesture consisting of a single, streched
out finger allows to trigger clicks and choose between dif-
ferent map layers, for example.

sage is displayed there. This way, the message is always
within the users view. This is accomplished by utilizing
the head pose estimation system. An event handler pro-
vides signals that indicate the focus of the user at the table
and can be used to move the alarm message to the correct
display. The user has to options to acknowledge the alarm
message: Either select the message on the table or point
towards it on the video wall. This is possible because the
hand gesture recognition system is available throughout the
glueApplication. It is physically connected to the machine
that drives the table display due to spatial proximity, but
the intersection points with all displays that are calculated

184

5.1. Smart Control Room

Figure 5.8: By pointing to the map on the digital situation
table and the smartphone as well, the map data from the
table is automatically transferred to the smartphone.

within a context handler are passed on by the proxy event
handler of glueTK, which makes the signals available to all
glueFrames.
Another example of the use of a remotely connected in-
put device is the use of the smartphone. A third user,
S3, enters the room with the smartphone described above.
Using the internal gyroscope, which is made available as
signals within the glueTK application, it is possible to con-
trol a cursor on the video wall. By simply touching se-
lected images on the smartphone, they are transferred from
the smartphone to the video wall and placed at the loca-
tion of the cursor. This transfer is, unlike the following of
workspaces, explicitly triggered by the user and animations
are used to bridge the small latencies that occur. S3 then

185

5.1. Smart Control Room

places the smartphone on the digital situation table where
it is localized and identified by the MCMXT marker on its
back. This information, along with a hand gesture pointing
with one hand to the map on the table and with the other
to the smartphone, initiates a transfer of the map data to
the smartphone.
The application was created with the intent to be a demon-
stration, not a real world application. All input, interface
control and cross display and device interaction, however,
are usable and work in real time. The application has been
showcased many times, including exhibitions like CeBIT
2011, and has proven to work under these challenging con-
ditions.

186

5.2. Distance Dependent Display

5.2 Distance Dependent Display

Figure 5.9: An illustration of the concept of a distance de-
pendent display: The distance of the user (top) influences
the level of detail used in the user interface (bottom).

The application described in this section is an interactive
terminal for maritime situation analysis. One of the tasks
in maritime situation analysis is the tracking and analysis
of vessels in order to detect anomalies early on, e.g. pirate
ships or refugee ships that do not identify themselves or try
to actively spoof the identity of other vessels. While much
of the analysis is done automatically using machine learning
techniques, final analysis and decision by an operator is re-
quired. Thus he is presented with preprocessed, high-level
data. An operator is usually assigned a certain geographi-
cal area to keep track of by reviewing different information
about vessels in this area. The application consists of two

187

5.2. Distance Dependent Display

screens, in front of which a user can interact with the user
interface using pointing gestures from further away as well
as close to the display, and is tracked in this area up to a
distance of about three meters.
To create a useful digital map interface, it is helpful to ana-
lyze people interacting with a printed map for comparison.
They tend to move further away to get an overview and
move closer to the map to see details.
For the digital variant, this behavior is exploited by mod-
ifying the interface on the display depending on the users
distance to the screen. Section 4.5 has shown that distance
is one of the key factors influencing the perceptual perfor-
mance. The obvious idea of scaling elements depending on
the distance is problematic as scaling would result in the
need for rearrangement of interface elements from a certain
scale factor on. There have been approaches to solve the
rearrangement problem [Sea93, MP02], but due to the re-
quired context information this can not be accomplished
automatically. The maritime situation analysis involves
different tasks at different levels of details, so even if re-
arrangement of scaled interface elements was possible, it
would not be the appropriate solution for this application.
To exploit the printed map metaphor, the interface of-
fers different functionalities and options at different dis-
tances, from an overview to detailed information. Unlike
a real map, however, not all details are displayed all the
time. The concept of the reference display described in
Section 4.5 allows the accurate prediction of element sizes
that are legible at a given distance and yield consistent per-
ceptual performance. At a great distance to the displays

188

5.2. Distance Dependent Display

the user is presented with overview information as shown
in Figure 5.11. As the user moves closer to the displays,
more details are revealed as illustrated in Figure 5.9.
This adaptation matches the behavior metaphor of the in-
teraction with a printed map and at the same time keeps
the interface free of clutter, always assuring that what is
displayed allows for optimal perceptual performance at the
current distance.
At the same time, the distance dependent display helps to
deal with limited screen estate, because instead of having
to select information or layers explicitly using menus or
similar methods, the subset of displayed information is au-
tomatically selected by the users’ distance to the displays.
When modifying the interface automatically, it is not only
important that it does not irritate users but also that users
are able to discover this functionality. Because users are
not explicitly triggering the display and hiding of layers, it
needs to be communicated to them. To accomplish this, all
information is spread over different layers that are associ-
ated with a different level of detail. Layers have a fade-in
area, a visible area and a fade-out area as illustrated in
Figure 5.10. This does not only prevent sudden changes
or flicker that could irritate users when the distance and
therefore the layers change, but is also useful for entice-
ment.

When moving towards or away from the display, users get
subtle hints about the adaptation and the ability to con-
trol the level of detail by their position. From about three
meters away, which is the furthest distance that still allows

189

5.2. Distance Dependent Display

Figure 5.10: Layers are assigned a certain area in front of
the display in which they are visible and fade-in/-out before
and after this visible section.

Figure 5.11: From further away, pointing interaction allows
to get a rough overview. The inaccuracy of pointing from
a distance and the large elements visible at this distance
complement each other.

190

5.2. Distance Dependent Display

Figure 5.12: A magnifying map overlay allows to obtain
addional information from a distance.

Figure 5.13: As the user approaches the display, more de-
tails are revealed.

191

5.2. Distance Dependent Display

Figure 5.14: Right in front of the display a high level of
details is shown, including individual vessels.

for accurate registration of position and pointing gestures,
a user can get a rough overview of the displayed map region.
The water surface is divided into hexagonal sections that
only indicate how many vessels are in a particular section.
When pointing to individual sections, more details are dis-
played as shown in Figure 5.11. This distance is best suited
for getting an overview and therefore details are not yet vis-
ible. The tools available also reflect this, such as combined
map overlay and magnifier shown in Figure 5.12. As the
user moves closer to the display, some of the overview re-
lated information layers disappear and other layers with a
higher level of detail appear, such as borders of territory
or elevation data as depicted in Figure 5.13. Right in front
of the displays, the level of detail is increased to show in-
dividual vessels (Figure 5.14). At this distance, even small

192

5.2. Distance Dependent Display

Figure 5.15: A fingertip detector allows pointing interac-
tion with a single finger, accurate enough to select small
items such as individual boats.

elements allow for a high perceptual performance, which is
why the user can interact with individual vessels by point-
ing (Figure 5.15) towards or touching (Figure 5.16) them
and get detailed information about the vessel’s origin, des-
tination, speed and identification data.

The technical setup includes two 121.92cm TV screens with
a resolution of 1920px × 1080px, used as a single surface
across both displays, ignoring the display borders that run
across the interface. Two Microsoft Kinects [Kin] are in-
stalled above the screens as depicted in Figure 5.18. The
Kinect on the bottom is oriented to look straight down,
while the other is rotated into the room to observe the

193

5.2. Distance Dependent Display

Figure 5.16: The fingertip detector works up to the displays
surface and allows pointing as well as touch interaction.

Figure 5.17: By waving, another user can take control of
the distance dependent display.

194

5.2. Distance Dependent Display

Figure 5.18: The technical setup of the distance dependent
display along with the obverlapping fields of view of the
two Kinect cameras.

area in front of the displays. In the field of view of the
upper Kinect (indicated as a green area in Figure 5.18)
the person is tracked, meaning the location and therefore
the distance is known. In addition, the user can control
a cursor using a pointing gesture. The system responsible
for the pointing gesture recognition is based on OpenNIs’
skeleton tracking [ope]. In the field of view of the bottom
Kinect (indicated as a blue area in Figure 5.18), a fingertip
detector [Hen11] is used to detect the pointing direction

195

5.2. Distance Dependent Display

more accurately. While the pointing gesture recognition,
lacking the resolution to detect individual fingers from fur-
ther away, only detects the pointing direction of the arm
as a whole, the fingertip detector enables the detection of
the pointing direction of an individual finger. This gives
the user much more fine-grained control right in front of
the displays. This is important, because the level of detail
on the interface is much higher at this distance due to the
distance dependent display. As shown in Figure 5.18, the
fields of view of the two sensors overlap. In the situation
where the pointing arm is registered by both systems, two
results for the pointing position are available and the sys-
tem needs to deal with this conflict of input. The pointing
gesture system works best if the entire person is in the field
of view as it is based on a skeleton tracking approach and
therefore benefits from a more comprehensive view on the
person to deliver robust input data. The fingertip detec-
tor works best right in front of the screen, as there are
few sources of irritation for the sensor because of the flat
and uniform background. As the user is approaching the
displays, in the overlapping area of the two sensors, the
pointing gesture gets continuously less accurate while the
accuracy of the fingertip detector increases. Accordingly,
the two results are fused by averaging the respective posi-
tions, weighting them depending on the user’s position in
the overlapping interval I as shown in Equation 5.1.

196

5.2. Distance Dependent Display

w =
I

‖I‖

x =
(w ∗ xp + (1− w) ∗ xf)

2

y =
(w ∗ yp + (1− w) ∗ yf)

2

(5.1)

The weight w is calculated by normalizing the interval.
This way, the influence of the position originating from
the pointing gesture (xp, yp) is maximized when the user
just entered the interval and minimized right in front of
the displays. The influence of the position produced by the
fingertip detector (xf , yf) is scaled to have the reverse ef-
fect, resulting in the final position (x, y).
In addition to the gradual transition between the two point-
ing systems, the position of the user in the overlapping in-
terval is used to control the opacity of the cursor. Since the
fingertip detector is not only much more accurate than the
pointing gesture recognition, but can also be used to di-
rectly touch the screen, a cursor is unnecessary. The point-
ing gesture benefits from a cursor as visual feedback of the
current pointing position. By controlling the opacity in de-
pendence of the users distance, the cursor is automatically
available when further away, but hidden when right in front
of the displays. The fusion of input data is implemented as
a context handler in glueTK, which also generates signals
that are connected to the cursor’s setOpacity() slot. This
way, the interface developer does not have to deal with mul-
tiple, changing modalities and their different requirements,

197

5.2. Distance Dependent Display

as the fusion is done at this early stage in the context han-
dler and after that, both inputs are available as a single
coherent input.
Because the distance of a user to the displays is used as
input data, only one user can have control, which is a
problem if multiple users are in front of the terminal or
different users want to interact. Unlike the Smart Control
Room application, there is no face identification system in-
tegrated here and while the Kinect can distinguish between
different users, it can not identify them. So a role-based
assignment of control is not an option. Therefore, the de-
cision of control when multiple users are standing in front
of the terminal has to be solved in a different manner. It
is implemented as a hand waving gesture. This can be eas-
ily recognized from the skeleton tracking data and allows
users to explicitly decide who has control as shown in Fig-
ure 5.17.
While the distance dependent interaction presented in this
section is demonstrated by means of a special purpose ap-
plication, the concepts are easily transferable to other fields
as well. Of particular interest are interactive info-terminals
in public spaces as the distance dependent display allows
for user enticement and different stages of engagement.

198

6
Conclusion

This thesis presented the glueTK framework, which allows
the creation of applications that can be controlled using
novel input modalities and can spread across multiple dis-
plays and machines. A central property is the bidirectional
communication between the input and output layers, which
makes interface layout information available to input de-
vices. The network-transparent signal and slot system pro-
vides a coherent communication and transfer mechanism
within a glueApplication, spanning multiple glueFrames
on multiple machines, and makes input data available at
all displays. It allows to transfer interface elements across

199

screens and machines without differentiation between in-
application and inter-application communication. No other
framework provides all of these aspects required for interac-
tion in multi-display environments in a single package. The
equality of input and output enables novel opportunities to
improve input devices as well as interactive applications.
Building upon the functionality provided by glueTK, such
as access to the interface layout and separation between the
input and output layer, a pointing enhancement technique
for improving the target acquisition of a pointing gesture
recognition system was presented. The technique, called
dynamic Gaussian force fields, extends previous force field
variants in several aspects. The Gaussian modeling of the
field strength solves the problem of defining a single fixed
strength, which is always a trade-off between help and irri-
tation. By allocating for multi-directional forces of overlap-
ping fields, a generic solution to the overlapping problem is
presented, which allows force field placement even for com-
plex user interfaces. As force fields can always be a source
of irritation when not needed, the dynamic Gaussian force
fields predict if an interface element is targeted from the
user’s pointing data and dynamically turn fields on and
off. These improvements lead to faster, more accurate and
smoother interaction, as has been shown in a user study
following the ISO standard evaluation for multi-directional
pointing tasks.
While the layout information required by target-aware point-
ing enhancements is available in glueTK, the same is not
true for existing applications. The split of glueTK into
input and output layers allows to utilize the input layer

200

and the abstraction from input device specific interfaces it
provides, in combination with existing applications as well.
Since this still requires access to and modification of the
source code of an existing application, an approach to auto-
matically detect the user interface layout for existing appli-
cations without such access has been presented. By acting
as an intermediary between the existing user interface and
the input data of an input device to be integrated, force
fields can be used with existing applications without their
knowledge. The approach involves capturing the screen
and using template matching to localize targets. Unlike
previous approaches, the need for prior training or configu-
ration is avoided, as target templates are created on the fly
by observing the user interact. By automatically general-
izing target models using multiple acquired templates, the
localization works fast enough to enhance the target acqui-
sition with pointing gestures for any existing application,
as a user study utilizing an application written using the
desktop application framework Qt has revealed.
With the ability to improve the speed and accuracy of
pointing input not only for glueTK applications but also
for existing applications by utilizing the gained knowledge
about the layout of the user interface, target acquisition is
sufficiently fast and accurate for pointing gesture recogni-
tion. Once the target is acquired, however, it has to be
selected as well. Since one of the advantages that make
pointing gesture recognition natural and intuitive is the
lack of any devices the user is required to wear or hold,
target selection should be device-free as well. To give a
comprehensive overview of device-free options to trigger a

201

selection of a target in mid-air, a novel taxonomy was pre-
sented that systematically categorized different arm-, hand-
and finger gestures into respective classes to cover all pos-
sible kinds of target selection. In a Wizard-of-Oz study,
all gestures from the taxonomy have been evaluated. The
results show the“airtap”gesture as a clear favorite with sig-
nificantly better results. In addition, the ranking created
from all results allows for predictions about which gestures
should be used for secondary interaction tasks and which
should not be used at all.
GlueTK is tailored towards multi-display environments and
pointing gestures are not bound to a single display, which
makes them usable across multiple displays. Therefore, the
design of user interfaces for different systems, taking into
account the display and input device properties, is an im-
portant aspect of glueTK applications. When it comes to
the effect the user interface has on the interaction perfor-
mance, two distinctive parts of the interaction have been
identified. Before an input device is even used, a target has
to be visually acquired by the user. This perceptual per-
formance has been studied for text but not for graphical
interface elements. Therefore, the concept of a reference
system has been introduced, which allows developers and
interface designers to put design decisions they make into
perspective by allowing the calculation of required element
sizes for a target system to achieve the same perceptual
performance as on the specific reference system they use.
The accuracy of this relation has been shown to be below a
second in a user study, involving multiple mobile devices as
target systems with a desktop computer as a reference sys-

202

tem. The other distinctive part of the overall interaction
performance is the input performance, the time it takes
a user to select a target with a given input device once
the target is visually acquired. An adaptation of the well
known Fitts’s law has been presented, which allows pre-
dictions with respect to a reference system for the input
performance with similar accuracy as the predictions for
the perceptual performance. An additional user study that
analyzed the correlation between perceptual performance
and input performance by provoking a decline of percep-
tual performance has shown that perceptual performance
and input performance can be considered independent of
each other, which allows predictions about the overall in-
teraction performance by simple summation. The novel
concept of the reference system allows developers to make
design decisions by calculation instead of a tedious trial
and error approach.
One of the guiding themes of this thesis is the coupling of
input data and output of interactive systems. The glueTK
framework lies the technical groundwork for the informa-
tion exchange and the sections in Chapter 4 describe several
improvements of pointing gesture interaction in a multi-
display environment that utilize this tight integration. Be-
sides pointing interaction, more and more modalities are
explored and new input devices become available. Some
have already been integrated into glueTK, but not to the
extent of pointing gestures. The prediction of intended
targets used to dynamically activate force fields is a first
step to predicting the users intentions. Those are of course
much more complex and vary with the application. Pre-

203

dicting more complex intentions however, could make many
input devices even more robust and could also lead to in-
telligently adapting user interfaces. While the reference
system concept introduced in this thesis allows to calculate
the size of interface elements to be usable for a given inter-
active system, the layout of elements is left out. Especially
with new display sizes and aspect ratios being constantly
introduced, automatic layout adaptation will become a sig-
nificant problem in the future as it will not be feasible to
target every single device manually. The approaches so
far require manual annotation, as context knowledge about
the relationship of interface elements is required to cre-
ate meaningful rearrangements. An interesting approach
would be to derive this context information from observing
the user interact, which would not only eliminate the need
for providing context information manually but also create
interface adaptations that are tailored towards the specific
work flow of a user.

204

List of Figures

List of Figures

1.1 Microsoft Excel on Windows Mobile 5. . . . 6

1.2 Setting an alarm on the iPhone (iOS 4). . . 7

2.1 Fitts’s law 25

2.2 Bubblecursor 27

2.3 Beam Cursor 29

2.4 Visually expanding targets 30

2.5 Genieeffect 36

3.1 glueTK terminology 45

3.2 glueTK architecture 47

3.3 Visual feedback of a dwell timer 50

3.4 Different causes for touch data 54

3.5 Explicit element transfer 60

3.6 Implicit element transfer 61

205

List of Figures

3.7 A button for pointing input 65

3.8 A button for speech input 66

3.9 Easing modes 67

3.10 Task 1 . 71

3.11 Task 2 . 72

3.12 Task 3 . 73

3.13 Task 4 . 74

3.14 Task completion time 75

3.15 Time distribution 77

4.1 Model of the attraction force of a button . . 85

4.2 Handling of overlapping force fields 86

4.3 Video wall 92

4.4 User interacting 93

4.5 Visual feedback for a dwell timer 93

4.6 The multi-directional pointing task 94

4.7 Exemplary button layout 96

4.8 Total number of erroneous clicks. 98

4.9 Average offset 99

4.10 Average speed 100

4.11 Movements with no force fields 101

206

List of Figures

4.12 Movements with static force fields 102

4.13 Movements with dyn. Gaussian force fields 103

4.14 Cursor icons to indicate click progress. . . . 107

4.15 Examples for initial target extractions . . . 110

4.16 Creation of an initial target model 110

4.17 Auto-generalisation of a target model . . . 111

4.18 Patch alignment for refinement. 112

4.19 Model refinement 113

4.20 Spotlight search 115

4.21 Exemplary web buttons 117

4.22 Variety of widgets to test model refinement. 118

4.23 User interacting 119

4.24 No force fields 121

4.25 Manually created templates 122

4.26 Automatically created templates 123

4.27 The interface for the user study. 127

4.28 Taxonomy for distant one-arm clicking. . . 128

4.29 User study setup for an acceptable latency . 142

4.30 Shrinking animation for object transfer. . . 145

4.31 Sliding animation for object transfer. 145

4.32 Fade in and out animation 146

207

List of Figures

4.33 Notification animation 146

4.34 Slingshot animation 147

4.35 Placeholder animation 148

4.36 Loader animation 148

4.37 Example displays on a Nexus 7 158

4.38 User study setup 159

4.39 Interaction performance user study setup . 168

4.40 Example screen-shots of the Nexus 10 . . . 168

4.41 Photo of the tablet used in the user study . 169

4.42 Average task durations for all font sizes . . 170

5.1 Smart Control Room 175

5.2 Progress of the face identification 179

5.3 Success of the face identification 180

5.4 Selecting a menu item 181

5.5 Mapoverlay tool 182

5.6 Users interacting with the video wall 183

5.7 Layers on the digital table 184

5.8 Transfer of map data from table to phone . 185

5.9 Illustration of the distance depedent display 187

5.10 Fading of layers 190

208

List of Figures

5.11 Remote pointing 190

5.12 Magnifier tool 191

5.13 User is approching the display 191

5.14 User in front of the display 192

5.15 Touch without touch 193

5.16 Touch interaction 194

5.17 User switching 194

5.18 Technical setup 195

209

List of Tables

List of Tables

3.1 Signal performance 70

3.2 Information sources 76

3.3 Results UEQ scales 78

4.1 Pointing enhancement user study results . . 101

4.2 Gesture ranking evaluation 134

4.3 Physical exhaustion 135

4.4 Temporal demand 136

4.5 Color-coding of latencies 143

4.6 Perceived speed results 144

4.7 Results for animations 150

4.8 Average durations 160

4.9 Results for the perceptual performance . . . 161

4.10 Average input performance 165

210

List of Tables

4.11 Results for the input performance 166

211

Own Publications

Own Publications

[BvdCS07] Keni Bernardin, Florian van de Camp, and
Rainer Stiefelhagen. Automatic Person De-
tection and Tracking using Fuzzy Controlled
Active Cameras. In The Seventh IEEE In-
ternational Workshop on Visual Surveillance
(VS2007), pages 1–8, 2007.

[SvdCIS09] Alexander Schick, Florian van de Camp, Joris
Ijsselmuiden, and Rainer Stiefelhagen. Ex-
tending Touch: Towards Interaction with
Large-Scale Surfaces. In Proceedings of the
ACM International Conference on Interactive
Tabletops and Surfaces, ITS 2009, pages 117–
124, 2009. 126

[vdCBS09] Florian van de Camp, Keni Bernardin, and
Rainer Stiefelhagen. Person Tracking in Cam-
era Networks using Graph-Based Bayesian In-
ference. In The Third ACM/IEEE Interna-
tional Conference on Distributed Smart Cam-
eras, ICDSC 2009., pages 1–8, 2009.

[vdCS13a] Florian van de Camp and Rainer Stiefelhagen.

212

Own Publications

Applying Force Fields to Black-Box GUIs Us-
ing Computer Vision. In Proceedings of the 1st
IEEE Workshop on User-Centred Computer
Vision, UCCV 2013, pages 1–6. ACM, 2013.

[vdCS13b] Florian van de Camp and Rainer Stiefelha-
gen. Dynamic Gaussian Force Field Con-
trolled Kalman Filtering for Pointing Interac-
tion. In Mensch & Computer 2013: Interak-
tive Vielfalt, pages 261–270, München, 2013.
Oldenbourg Verlag.

[vdCS13c] Florian van de Camp and Rainer Stiefelha-
gen. glueTK: A Framework for Multi-Modal,
Multi-Display Human-Machine-Interaction.
In Proceedings of the 18th International
Conference on Intelligence user interfaces,
IUI 2013, pages 329–338. ACM, 2013.

[vdCSS13a] Florian van de Camp, Alexander Schick, and
Rainer Stiefelhagen. How to Click in Mid-
Air. In Proceedings of the 15th International
Conference on Human-Computer Interaction,
HCII 2013, pages 78–86. Springer, 2013.

[vdCSS13b] Florian van de Camp, Patrick Schührer, and
Rainer Stiefelhagen. How to Choose Element
Sizes for Novel Interactive Systems. In Pro-
ceedings of the ACM International Conference
on Interactive Tabletops and Surfaces, ITS
2013, pages 385–388. ACM, 2013.

213

Own Publications

[vdCVS10] Florian van de Camp, Michael Voit, and
Rainer Stiefelhagen. Efficient Person Identifi-
cation using Active Cameras in a Smartroom.
In Proceedings of the 1st ACM international
workshop on Multimodal pervasive video anal-
ysis, MPVA 2010, pages 17–22, New York,
NY, USA, 2010. ACM.

[VvdCI+13] Michael Voit, Florian van de Camp, Joris
Ijsselmuiden, Alexander Schick, and Rainer
Stiefelhagen. Visuelle Perzeption für die Mul-
timodale Mensch-Maschine-Interaktion in und
mit Aufmerksamen Räumen. at - Automa-
tisierungstechnik, 61(11), 2013.

214

Bibliography

Bibliography

[AC05] Stephen Brewster Andy Cockburn.
Multimodal Feedback for the Acquisition of
Small Targets. Ergonomics,
48(9):1129–1150, 2005. 26, 23

[AHL06] David Ahlström, Martin Hitz, and Gerhard
Leitner. An Evaluation of Sticky and Force
Enhanced Targets in Multi Target
Situations. In 4th Nordic conference on
Human-Computer-Interaction (NordiCHI),
pages 14–18, 2006. 30, 83, 96, 120, 27, 73,
86, 109

[And] Google Android Developer Guide.
http://developer.android.com/guide
(accessed November 2013). 153, 141

[App] Apple iOS Programming Guide.
https://developer.apple.com/library/ios
(accessed November 2013). 152, 140

[AZ97] Johnny Accot and Shumin Zhai. Beyond
Fitts’ Law: Models for Trajectory-based

215

Bibliography

HCI Tasks. In Proceedings of the ACM
SIGCHI Conference on Human factors in
computing systems, CHI ’97, pages 295–302,
New York, NY, USA, 1997. ACM. 39, 36

[AZ01] Johnny Accot and Shumin Zhai. Scale
Effects in Steering Law Tasks. In
Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI
’01, pages 1–8, New York, NY, USA, 2001.
ACM. 39, 36

[Bad11] Thomas Bader. Multimodale Interaktion in
Multi-Display-Umgebungen. PhD thesis,
Karlsruhe Institute of Technology (KIT),
2011. 19, 18

[BB99] B.B. Bederson and A. Boltman. Does
Animation Help Users Build Mental Maps
of Spatial Information? In Information
Visualization, 1999. (Info Vis ’99)
Proceedings. 1999 IEEE Symposium on,
pages 28–35, 1999. 35, 32

[BDB+97] Rodney A. Brooks, Darren Dang,
Jeremy De Bonet, Joshua Kramer, Tomas
Lozano-perez, John Mellor, and Polly Pook.
The Intelligent Room project. In
Proceedings of the 2nd International
Conference on Cognitive Technology, CT
’97, pages 271–, Washington, DC, USA,
1997. 17, 18

216

Bibliography

[BDHM10] Andrew Bragdon, Rob Deline, Ken
Hinckley, and Meredith Ringel Morris.
Code Space : Touch + Air Gesture Hybrid
Interactions for Supporting Developer
Meetings. In ACM International Conference
on Interactive Tabletops and Surfaces, ITS
2010, Kobe, Japan, 2010. 34, 31

[BMG10] Till Ballendat, Nicolai Marquardt, and Saul
Greenberg. Proxemic Interaction: Designing
for a Proximity and Orientation-aware
Environment. In ACM International
Conference on Interactive Tabletops and
Surfaces, ITS ’10, pages 121–130, New
York, NY, USA, 2010. ACM. 37, 34

[Bmi09] Feuerwehr-Dienstvorschrift 100. Technical
report, Bundesministerium des Inneren,
2009. 174

[Bol80] Richard A Bolt. Put-that-there: Voice and
Gesture at the Graphics Interface.
Proceedings of the 7th annual conference on
Computer graphics and interactive
techniques, 14(3):262–270, 1980. 16, 125, 14

[boo] Boost. http://www.boost.org (accessed
November 2013). 56, 55

[BR03] Harry Brignull and Yvonne Rogers.
Enticing People to Interact with Large
Public Displays in Public Spaces. In

217

Bibliography

Matthias Rauterberg, Marino Menozzi, and
Janet Wesson, editors, In Proceedings of the
IFIP International Conference on
Human-Computer Interaction (INTERACT
2003), pages 17–24, 2003. 36, 33

[BRB09] T. Bader, R. Räpple, and J. Beyerer. Fast
Invariant Contour-Based Classification of
Hand Symbols for HCI. In Proceedings of
Computer Analysis of Images and Patterns,
pages 689–696, 2009. 125, 126

[Bro05] PJ Brock. An Investigation of Target
Acquisition with Visually Expanding
Targets in Constant Motor-space. Master’s
thesis, University of Canterbury, New
Zealand, 2005. 29, 82, 26, 72

[BS90] R. Baecker and I. Small. Animation at the
Interface. Addison-Wesley, New York, 1990.
35, 32

[BT93] Izak Benbasat and Peter Todd. An
Experimental Investigation of Interface
Design Alternatives: Icon vs. Text and
Direct Manipulation vs. Menus.
International Journal of Man-Machine
Studies, 38(3):369–402, March 1993. 155,
143

[BYCH05] Darius Burschka, Guangqi Ye, Jason J.
Corso, and Gregory D. Hager. A Practical

218

Bibliography

Approach for Integrating Vision-Based
Methods Into Interactive 2D/3D
Applications. Technical report, The Johns
Hopkins University, 2005. 32, 29

[Byr93] Michael D. Byrne. Using Icons to Find
Documents: Simplicity is Critical. In
Proceedings of the ACM SIGCHI conference
on Human factors in computing systems,
INTERCHI ’93, pages 446–453,
Amsterdam, The Netherlands, 1993. 40, 37

[CB06] Andy Cockburn and Philip Brock. Human
On-line Response to Visual and Motor
Target Expansion. In Graphics Interface,
pages 81–87. Canadian Human-Computer
Communications Society, 2006. 29, 26

[CEB87] S. K. Card, W. K. English, and B. J. Burr.
Human-computer Interaction. chapter
Evaluation of Mouse, Rate-controlled
Isometric Joystick, Step Keys, and Text
Keys, for Text Selection on a CRT, pages
386–392. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1987. 38, 35

[CJM+97] Philip R. Cohen, Michael Johnston, David
McGee, Sharon Oviatt, Jay Pittman, Ira
Smith, Liang Chen, and Josh Clow.
QuickSet: Multimodal Interaction for
Simulation Set-up and Control. In
Proceedings of the fifth conference on

219

Bibliography

Applied natural language processing, ANLC
’97, pages 20–24, Stroudsburg, PA, USA,
1997. Association for Computational
Linguistics. 18, 175, 163

[CRM91] Stuart K. Card, George G. Robertson, and
Jock D. Mackinlay. The Information
Visualizer, an Information Workspace. In
Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI
’91, pages 181–186, New York, NY, USA,
1991. ACM. 140, 151

[CU95] Bay-Wei Chang and David Ungar.
Animation: From Cartoons to the User
Interface. Technical report, Mountain View,
CA, USA, 1995. 35, 32

[CYM10] Tsung-Hsiang Chang, Tom Yeh, and
Robert C. Miller. GUI Testing using
Computer Vision. In International
conference on Human factors in computing
systems, CHI ’10, pages 1535–1544, New
York, NY, USA, 2010. 32, 29

[DCE+11] A. Dworak, P. Charrue, F. Ehm,
W. Sliwinski, and M. Sobczak. Middleware
Trends and Market Leaders 2011. In 13th
International Conference on Accelerator
and Large Experimental Physics Control
Systems, 2011, pages 1334–1337, 2011. 20,
18

220

Bibliography

[DF10] Morgan Dixon and James Fogarty. Prefab:
Implementing Advanced Behaviors using
Pixel-based Reverse Engineering of
Interface Structure. In Proceedings of the
28th international conference on Human
factors in computing systems, CHI ’10,
pages 1525–1534, New York, NY, USA,
2010. ACM. 32, 106, 29, 96

[DFW12] Morgan Dixon, James Fogarty, and Jacob
Wobbrock. A General-purpose
Target-aware Pointing Enhancement Using
Pixel-level Analysis of Graphical Interfaces.
In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems,
CHI ’12, pages 3167–3176, New York, NY,
USA, 2012. ACM. 32, 29

[DGBG05] Iain Darroch, Joy Goodman, Stephen
Brewster, and Phil Gray. The Effect of Age
and Font Size on Reading Text on Handheld
Computers. In INTERACT 2005, volume
3585 of Lecture Notes in Computer Science,
pages 253–266. Springer, 2005. 40, 37

[DLF11] Morgan Dixon, Daniel Leventhal, and
James Fogarty. Content and Hierarchy in
Pixel-based Methods for Reverse
Engineering Interface Structure. In
Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI

221

Bibliography

’11, pages 969–978, New York, NY, USA,
2011. ACM. 32, 29

[DLO09] Bruno Dumas, Denis Lalanne, and Sharon
Oviatt. Multimodal Interfaces : A Survey
of Principles , Models and Frameworks. In
Human Machine Interaction, volume 5440
of Lecture Notes in Computer Science,
pages 3–26. Springer, 2009. 17, 15

[Dru75] Colin Drury. Application of Fitts’ Law to
Foot-Pedal Design. Human Factors: The
Journal of the Human Factors and
Ergonomics Society, 1975. 38, 35

[EK08] Florian Echtler and Gudrun Klinker. A
Multitouch Software Architecture. In
Proceedings of the 5th Nordic conference on
Human-computer interaction: building
bridges, NordiCHI ’08, pages 463–466, New
York, NY, USA, 2008. ACM. 19, 17

[FGA+07] Vitor Fernandes, Tiago Guerreiro, Bruno
Araújo, Joaquim Jorge, and João Pereira.
Extensible Middleware Framework for
Multimodal Interfaces in Distributed
Environments. In Proceedings of the 9th
international conference on Multimodal
interfaces, ICMI ’07, pages 216–219, New
York, NY, USA, 2007. ACM. 20, 18

[Fit54] Paul M. Fitts. The Information Capacity of
the Human Motor System in Controlling

222

Bibliography

the Amplitude of Movement. Journal of
Experimental Psychology, 47(6):381–391,
1954. 24, 38, 161, 22, 35

[FJS10] Leah Findlater, Alex Jansen, and Kristen
Shinohara. Enhanced Area Cursors:
Reducing Fine Pointing Demands for
People with Motor Impairments. UIST ’10,
October 3-6, 2010, NY, New York., 2010.
26, 82, 23, 72

[FKM03] Frans Flippo, Allen Krebs, and Ivan Marsic.
A Framework for Rapid Development of
Multimodal Interfaces. In Proceedings of the
5th International Conference on Multimodal
Interfaces, ICMI ’03, pages 109–116, New
York, NY, USA, 2003. ACM. 16, 52, 15, 50

[Gar] Forecast: Devices by Operating System and
User Type, Worldwide, 2010-2017, 1Q13
Update.
https://www.gartner.com/doc/2396815
(accessed November 2013). 2

[GB05] Tovi Grossman and Ravin Balakrishnan.
The Bubble Cursor: Enhancing Target
Acquisition by Dynamic Resizing of the
Cursor’s Activation Area. Proceedings of
the SIGCHI Conference on Human Factors
in Computing Systems, pages 281–290,
2005. 26, 82, 126, 23, 72

223

Bibliography

[GBBL04] Yves Guiard, Renaud Blanch, and Michel
Beaudouin-Lafon. Object Pointing: A
Complement to Bitmap Pointing in GUIs.
In Proceedings of the 2004 Graphics
Interface Conference, GI ’04, pages 9–16,
School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada, 2004.
Canadian Human-Computer
Communications Society. 28, 82, 25, 72

[GC92] David Gelernter and Nicholas Carriero.
Coordination Languages and Their
Significance. Communications of the ACM,
35(2):97–107, February 1992. 21, 19

[GER+07] Jürgen Geisler, Ralf Eck, Nils Rehfeld,
Elisabeth Peinsipp-Byma, Christian Schütz,
and Sven Geggus. Fovea-Tablett : A New
Paradigm for the Interaction with Large
Screens. In Human Interface and the
Management of Information., volume 4557
of Lecture Notes in Computer Science,
pages 278–287. Springer, 2007. 177, 165

[GLH10] Adam Gokcezade, Jakob Leitner, and
Michael Haller. LightTracker: An
Open-Source Multitouch Toolkit.
Computers in Entertainment (CIE),
8(3):19:1–19:16, December 2010. 19, 17

[Gon96] Cleotilde Gonzalez. Does Animation in
User Interfaces Improve Decision Making ?

224

Bibliography

In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems,
CHI ’96, pages 27–34, New York, NY, USA,
1996. ACM. 140, 151

[GW07] Tovi Grossman and Daniel Wigdor. Going
Deeper: a Taxonomy of 3D on the Tabletop.
In Second Annual IEEE International
Workshop on Horizontal Interactive
Human-Computer Systems, TABLETOP
’07, pages 137–144, 2007. 34, 31

[GWW07] Krzysztof Z. Gajos, Jacob O. Wobbrock,
and Daniel S. Weld. Automatically
Generating User Interfaces Adapted to
Users’ Motor and Vision Capabilities. In
ACM Symposium on User Interface
Software and Technology (UIST), UIST ’07,
pages 231–240, New York, NY, USA, 2007.
ACM. 40, 36

[Hal90] Edward Hall. The Hidden Dimension.
Peter Smith Publisher Inc., Gloucester,
MA, USA, 1990. 37, 34

[Har99] Eric Harlow. Developing Linux
Applications: With Gtk+ and Gdk. New
Riders Publishing, Thousand Oaks, CA,
USA, 1999. 22, 15

[HDS11] Lode Hoste, Bruno Dumas, and Beat
Signer. Mudra: A Unified Multimodal

225

Bibliography

Interaction Framework. In Proceedings of
ICMI, 13th International Conference on
Multimodal Interaction, 2011, pages 97–104,
2011. 17, 52, 15, 50

[Hen11] Vitali Henne. Hand Gesture Recognition
with a Depth-Sensing Camera.
Bachelorthesis, Karlsruhe Institute of
Technology (KIT), 2011. 195, 182

[HHV+09] Thomas E. Hansen, Juan Pablo Hourcade,
Mathieu Virbel, Sharath Patali, and Tiago
Serra. PyMT: A Post-WIMP Multi-touch
User Interface Toolkit. In Proceedings of the
ACM International Conference on
Interactive Tabletops and Surfaces, ITS ’09,
pages 17–24, New York, NY, USA, 2009.
ACM. 23, 20

[HS93] Scott E. Hudson and John T. Stasko.
Animation Support in a User Interface
Toolkit: Flexible, Robust, and Reusable
Abstractions. In Proceedings of the 6th
Annual ACM Symposium on User Interface
Software and Technology, UIST ’93, pages
57–67, New York, NY, USA, 1993. ACM.
140, 151

[IBR+03] Shahram Izadi, Harry Brignull, Tom
Rodden, Yvonne Rogers, and Mia
Underwood. Dynamo: A Public Interactive
Surface Supporting the Cooperative Sharing

226

Bibliography

and Exchange of Media. In Proceedings of
the 16th annual ACM symposium on User
interface software and technology, UIST ’03,
pages 159–168, New York, NY, USA, 2003.
ACM. 34, 31

[ISO00] ISO. Ergonomic Requirements for Office
Work with Visual Display Terminals
(VDTs) – Part 9: Requirements for
Non-keyboard Input Devices. ISO 9241-9
2000, International Organization for
Standardization, Geneva, Switzerland, 2000.
93, 117, 83, 107

[ISO08] ISO. Ergonomics of Human-system
Interaction – Part 304: User Performance
Test Methods for Electronic Visual
Displays. ISO 9241-304 2008, International
Organization for Standardization, Geneva,
Switzerland, 2008. 40, 157, 37, 145

[ISO11] ISO. Ergonomics of Human-system
Interaction – Part 303: Requirements for
Electronic Visual Displays. ISO 9241-303
2011, International Organization for
Standardization, Geneva, Switzerland, 2011.
40, 154, 37, 142

[JF02] Brad Johanson and Armando Fox. The
Event Heap: A Coordination Infrastructure
for Interactive Workspaces. In Proceedings
of the Fourth IEEE Workshop on Mobile

227

Bibliography

Computing Systems and Applications,
WMCSA ’02, pages 83–, Washington, DC,
USA, 2002. IEEE Computer Society. 20, 19

[JFW02] B. Johanson, A. Fox, and T. Winograd.
The Interactive Workspaces Project:
Experiences with Ubiquitous Computing
Rooms. IEEE Pervasive Computing,
1(2):67–74, April 2002. 20, 19

[JFW11] Alex Jansen, Leah Findlater, and Jacob O.
Wobbrock. From the Lab to the World:
Lessons from Extending a Pointing
Technique for Real-world Use. In
Proceedings of the 2011 annual conference
extended abstracts on Human factors in
computing systems, CHI EA ’11, pages
1867–1872, New York, NY, USA, 2011.
ACM. 30, 27

[JLK08] Wendy Ju, Brian A. Lee, and Scott R.
Klemmer. Range: Exploring Implicit
Interaction Through Electronic Whiteboard
Design. In Proceedings of the 2008 ACM
conference on Computer supported
cooperative work, CSCW ’08, pages 17–26,
New York, NY, USA, 2008. ACM. 37, 34

[JM85] Richard Jagacinski and Donald Monk.
Fitts’ Law in Two Dimensions with Hand
and Head Movements. Journal of Motor
Behavior, 1985. 38, 35

228

Bibliography

[JPSK04] Bonnie E. John, Konstantine Prevas,
Dario D. Salvucci, and Ken Koedinger.
Predictive Human Performance Modeling
Made Easy. In Proceedings of the SIGCHI
Conference on Human Factors in
Computing Systems, CHI ’04, pages
455–462, New York, NY, USA, 2004. ACM.
39, 36

[JRV+89] Jeff Johnson, Teresa L. Roberts, William
Verplank, David C. Smith, Charles H. Irby,
Marian Beard, and Kevin Mackey. The
Xerox Star: A Retrospective. Computer,
22(9):11–26, 28–29, September 1989. 5

[Kal60] R. E. Kalman. A New Approach to Linear
Filtering and Prediction Problems.
Transactions of the ASME Journal of Basic
Engineering, pages 35–45, 1960. 88, 78

[KB95] Paul Kabbash and William A S Buxton.
The “Prince” Technique. In Proceedings of
the SIGCHI conference on Human factors
in computing systems CHI 95, pages
273–279, 1995. 25, 82, 22, 72

[KB07] Martin Kaltenbrunner and Ross Bencina.
reacTIVision: A Computer-vision
Framework for Table-based Tangible
Interaction. In Proceedings of the 1st
international conference on Tangible and

229

Bibliography

embedded interaction, TEI ’07, pages 69–74,
New York, NY, USA, 2007. ACM. 18, 17

[KBBC05] M. Kaltenbrunner, T. Bovermann,
R. Bencina, and E. Costanza. TUIO: A
Protocol for Table-Top Tangible User
Interfaces. In Proceedings of the The 6th
International Workshop on Gesture in
Human-Computer Interaction and
Simulation, Vannes, France, 2005. 18, 17

[KE88] B. Kantowitz and G. Elvers. Fitts’ with an
Isometric Controller: Effects of Order of
Control and Control-display Gain. Journal
of Motor Behavior, 1988. 38, 35

[Kel83] J.F. Kelley. An Empirical Methodology for
Writing User-friendly Natural Language
Computer Applications. In ACM SIGCHI
Conference on Human Factors in
Computing Systems, pages 193–196, 1983.
131, 120

[Ken04] A. Kendon. Gesture: Visible Action as
Utterance. Cambridge University Press,
2004. 125, 127, 115

[KHM+00] J. Krumm, S. Harris, B. Meyers,
B. Brumitt, M. Hale, and S. Shafer.
Multi-camera Multi-person Tracking for
EasyLiving. Proceedings of the third
International Workshop on Visual
Surveillance, pages 3–10, 2000. 21, 19

230

Bibliography

[Kin] Microsoft Kinect.
http://www.microsoft.com/en-
us/kinectforwindows (accessed November
2013). 7, 53, 193, 6, 51, 181

[KO08] Vassilis Kostakos and Eamonn O’Neill. Size
Matters: Performance Declines if Your
Pixels are too Big or too Small. Computing
Research Repository, abs/0804.3103, 2008.
39, 36

[Lea] Leap Motion. https://www.leapmotion.com
(accessed November 2013). 53, 72, 51

[LHS08] Bettina Laugwitz, Theo Held, and Martin
Schrepp. Construction and evaluation of a
user experience questionnaire. In
Proceedings of the 4th Symposium of the
Workgroup Human-Computer Interaction
and Usability Engineering of the Austrian
Computer Society on HCI and Usability for
Education and Work, USAB ’08, pages
63–76, Berlin, Heidelberg, 2008.
Springer-Verlag. 73

[LNP+09] Denis Lalanne, Laurence Nigay, Philippe
Palanque, Peter Robinson, and Jean
Vanderdonckt. Fusion Engines for
Multimodal Input : A Survey. Interfaces,
pages 153–160, 2009. 17, 52, 15, 50

[Mac92] I. Scott MacKenzie. Fitts’ Law as a
Research and Design Tool in

231

Bibliography

Human-computer Interaction.
Human-Computer Interaction, 7(1):91–139,
1992. 38, 35

[MB93] I. Scott MacKenzie and William Buxton. A
Tool for the Rapid Evaluation of Input
Devices using Fitts’ Law Models. ACM
SIGCHI Bulletin, 25(3):58–63, 1993. 38, 35

[MBB+12] N. Marquardt, T. Ballendat, S. Boring,
S. Greenberg, and K. Hinckley. Gradual
Engagement between Digital Devices as a
Function of Proximity: From Awareness to
Progressive Reveal to Information Transfer.
Technical Report 2012-1025-08, Department
of Computer Science, University of Calgary,
Calgary, Alberta, Canada, April 2012. 37,
34

[MBN03] Atif Memon, Ishan Banerjee, and Adithya
Nagarajan. GUI Ripping: Reverse
Engineering of Graphical User Interfaces for
Testing. In Working Conference on Reverse
Engineering, WCRE ’03, pages 260–,
Washington, DC, USA, 2003. IEEE
Computer Society. 32, 29

[MCdB99] S.J. McDougall, M.B. Curry, and
O. de Bruijn. Measuring Symbol and Icon
Characteristics: Norms for Concreteness,
Complexity, Meaningfulness, Familiarity,
and Semantic Distance for 239 Symbols.

232

Bibliography

Behavior Research Methods, Instruments &
Computers, 31(3):487–519, 1999. 40, 37

[McN92] D. McNeill. Hand and Mind: What
Gestures Reveal about Thought. University
of Chicago Press, 1992. 126

[MDMBG11] Nicolai Marquardt, Robert Diaz-Marino,
Sebastian Boring, and Saul Greenberg. The
Proximity Toolkit: Prototyping Proxemic
Interactions in Ubiquitous Computing
Ecologies. In Proceedings of the 24th annual
ACM symposium on User interface software
and technology, UIST ’11, pages 315–326,
New York, NY, USA, 2011. ACM. 37, 34

[MGVVR09] Jérémie Melchior, Donatien Grolaux, Jean
Vanderdonckt, and Peter Van Roy. A
Toolkit for Peer-to-peer Distributed user
Interfaces: Concepts, Implementation, and
Applications. In Proceedings of the ACM
SIGCHI symposium on Engineering
interactive computing systems, EICS ’09,
pages 69–78, New York, NY, USA, 2009.
21, 20

[Mil68] Robert B. Miller. Response Time in
Man-computer Conversational Transactions.
In Proceedings of the December 9-11, 1968,
Fall Joint Computer Conference, Part I,
AFIPS ’68 (Fall, part I), pages 267–277,
New York, NY, USA, 1968. ACM. 140, 151

233

Bibliography

[MP02] Guido Menkhaus and Wolfgang Pree. A
Hybrid Approach to Adaptive User
Interface Generation. In Proceedings of the
24th International Conference on
Information Technology Interfaces, ITI,
2002, volume 1, pages 185–190, 2002. 188,
176

[MU02] Takaki Mori and Kuniaki Uehara.
Extraction of Primitive Motion and
Discovery of Association Rules from Motion
Data. In Proceedings 10th IEEE
International Workshop on Robot and
Human Interactive Communication, pages
200–206. IEEE, 2002. 90, 80

[NKG13] Matthias Nielsen, Mikkel Baun Kjærgaard,
and Kaj Grønbæk. Exploring Interaction
Techniques and Task Types for
Direct-Touch as Input Modality. In
Proceedings of the IEEE Visual Analytics
Science and Technology, IEEE Information
Visualization, and IEEE Scientific
Visualization (IEEE VIS), 2013, October
2013. 4

[NPRI09] Nurzhan Nurseitov, Michael Paulson,
Randall Reynolds, and Clemente Izurieta.
Comparison of JSON and XML Data
Interchange Formats: A Case Study. In
CAINE’09, pages 157–162, 2009. 59, 58

234

Bibliography

[NS07] Kai Nickel and Rainer Stiefelhagen. Visual
Recognition of Pointing Gestures for
Human-robot Interaction. Image and
Vision Computing, 25(12):1875–1884,
December 2007. 3

[NWP+11] M. Nancel, J. Wagner, E. Pietriga,
O. Chapuis, and W. Mackay. Mid-air
Pan-and-zoom on Wall-sized Displays. In
Proceedings of SIGCHI Conference on
Human Factors in Computing Systems,
pages 177–186, 2011. 33, 125, 30

[ope] OpenNI. http://www.openni.org (accessed
November 2013). 195, 182

[PB02] Peter R. Pietzuch and Jean Bacon. Hermes:
A Distributed Event-Based Middleware
Architecture. In Proceedings of the 22Nd
International Conference on Distributed
Computing Systems, ICDCSW ’02, pages
611–618, Washington, DC, USA, 2002.
IEEE Computer Society. 20, 18

[PBERG07] Elisabeth Peinsipp-Byma, Ralf Eck, Nils
Rehfeld, and Jürgen Geisler. Situation
Analysis at a Digital Situation Table with
Fovea-Tablett. volume 6495, page 64950E.
SPIE, 2007. 139

[PBGB09] Elisabeth Peinsipp-Byma, Jürgen Geisler,
and Thomas Bader. Digital Map and

235

Bibliography

Situation Surface: a Team-oriented
Multidisplay Workspace for Network
Enabled Situation Analysis. In John T.
Thomas and Daniel D. Desjardins, editors,
Display Technologies and Applications for
Defense, Security, and Avionics III, volume
7327, page 732703. SPIE, 2009. 177, 165

[Pro] Processing libraries.
http://www.processing.org (accessed
November 2013). 22, 16

[PRS+03] Thorsten Prante, Carsten Röcker, Norbert
Streitz, Richard Stenzel, Carsten
Magerkurth, Daniel van Alphen, and
Daniela Plewe. Hello.Wall - Beyond
Ambient Displays. In Proceedings of
Ubicomp’03, pages 277–278, Seattle, WA,
USA, 2003. Springer. 37, 34

[PSH97] V.I. Pavlovic, R. Sharma, and T.S. Huang.
Visual Interpretation of Hand Gestures for
Human-Computer Interaction: A Review.
In Pattern Analysis and Machine
Intelligence, pages 677–695, 1997. 125

[PZ97] Michael Philippsen and Matthias Zenger.
JavaParty - Transparent Remote Objects in
Java. Concurrency: Practice and
Experience, 9(11):1225–1242, 1997. 20, 18

[Qt2] Qt Project. http://qt-project.org/doc/qt-

236

Bibliography

5.0/qtcore/signalsandslots.html (accessed
November 2013). 56, 68, 117

[Que94] F.K.H. Quek. Toward a Vision-Based Hand
Gesture Interface. In Proceedings of Virtual
Reality Software and Technology, pages
17–29, 1994. 34, 126, 129, 30, 115

[Que95] F.K.H. Quek. Eyes in the Interface. In
Image and Vison Computing, pages
511–525, 1995. 34, 126, 129, 30, 115

[RG98] Dirk Riehle and Thomas Gross. Role Model
Based Framework Design and Integration.
In Proceedings of the 13th ACM SIGPLAN
Conference on Object-oriented
Programming, Systems, Languages, and
Applications, OOPSLA ’98, pages 117–133,
New York, NY, USA, 1998. ACM. 16

[Rot12] Frank Roth. Interactive Data Transfer in
Multi Display Environments.
Bachelorthesis, Hochschule Karlsruhe
University of Applied Sciences, 2012. 141,
129

[SBL93] John Stasko, Albert Badre, and Clayton
Lewis. Do Algorithm Animations Assist
Learning?: An Empirical Study and
Analysis. In Proceedings of the INTERACT
’93 and CHI ’93 Conference on Human
Factors in Computing Systems, CHI ’93,

237

Bibliography

pages 61–66, New York, NY, USA, 1993.
ACM. 35, 32

[Sea93] Andrew Sears. Layout Appropriateness: A
metric for Evaluating User Interface Widget
Layout. IEEE Transactions on Software
Engineering, 19:707–719, 1993. 39, 188, 36,
176

[Sky] Skype. http://www.skype.com (accessed
November 2013). 107, 97

[SNL+08] Marcos Serrano, Laurence Nigay,
Jean-yves L Lawson, Andrew Ramsay,
Roderick Murray-smith, Sebastian Denef,
and Sankt Augustin. The OpenInterface
Framework : A Tool for Multimodal
Interaction. In Design, pages 3501–3506,
2008. 17, 15

[SSG+10] Marcus Specht, Andrea Söter, Jens Gerken,
Hans-christian Jetter, Harald Reiterer,
Arbeitsgruppe Mensch-computer
Interaktion, Universität Konstanz, and
Volkswagen Ag. Dynamic Force Fields zur
Präzisionserhöhung von zeigegeräten.
Mensch & Computer 2010, 2010. 31, 28

[SVFR04] Chia Shen, Frédéric D. Vernier, Clifton
Forlines, and Meredith Ringel.
DiamondSpin: An Extensible Toolkit for
Around-the-table Interaction. In

238

Bibliography

Proceedings of the SIGCHI conference on
Human factors in computing systems, CHI
’04, pages 167–174, New York, NY, USA,
2004. ACM. 19, 17

[TC89] C. H. Teh and R. T. Chin. On the
Detection of Dominant Points on Digital
Curves. IEEE Transactions on Pattern
Analysis and Machine Intelligence,
11(8):859–872, August 1989. 109, 99

[TH13] Matthew Turk and Gang Hua.
Vision-Based Interaction. Synthesis
Lectures on Computer Vision. Morgan &
Claypool Publishers, 2013. 4

[TL02] Thuan L. Thai and Hoang Lam. .NET
Framework Essentials (2nd Edition). O’
Reilly & Associates, Inc., 2002. 22, 15

[VB04] Daniel Vogel and Ravin Balakrishnan.
Interactive Public Ambient Displays:
Transitioning from Implicit to Explicit,
Public to Personal, Interaction with
Multiple Users. In Proceedings of the 17th
annual ACM symposium on User interface
software and technology, UIST ’04, pages
137–146, New York, NY, USA, 2004. ACM.
38, 35

[VB05] D. Vogel and R. Balakrishnan. Distant
Freehand Pointing and Clicking on Very

239

Bibliography

Large, High Resolution Displays. In ACM
symposium on User Interface Software and
Technology, pages 33–42, 2005. 33, 125, 126,
30, 114

[vid] Videmo Face SDK.
http://videmo.de/products (accessed
November 2013). 176, 164

[VNS07] Michael Voit, Kai Nickel, and Rainer
Stiefelhagen. Neural Network-Based Head
Pose Estimation and Multi-view Fusion. In
Multimodal Technologies for Perception of
Humans, volume 4122, pages 291–298.
Springer, 2007. 177, 165

[Vvv] vvvv - a multipurpose toolkit.
http://www.vvvv.org (accessed November
2013). 23, 16

[War00] Patrick Ward. QT Programming for Linux
and Windows. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2000. 22, 15

[WFL+09] Jacob O. Wobbrock, James Fogarty,
Shih-Yen (Sean) Liu, Shunichi Kimuro, and
Susumu Harada. The Angle Mouse:
Target-agnostic Dynamic Gain Adjustment
based on Angular Deviation. In Proceedings
of the 27th international conference on
Human factors in computing systems, CHI
’09, pages 1401–1410, New York, NY, USA,
2009. ACM. 31, 28

240

Bibliography

[WG00] Torben Weis and Kurt Geihs. Components
on the Desktop. In Proceedings of the
Technology of Object-Oriented Languages
and Systems, TOOLS ’00, Washington, DC,
USA, 2000. 55, 53

[Wie99] Susan Wiedenbeck. The Use of Icons and
Labels in an End User Application
Program: An Empirical Study of Learning
and Retention. Behaviour & Information
Technology, 18(2):68–82, 1999. 155, 143

[Win70] B. J. Winer. Statistical Principles in
Experimental design. McGraw-Hill, 1970.
160

[WMJ+12] Andy Wu, Sam Mendenhall, Jayraj Jog,
Loring Scotty Hoag, and Ali Mazalek. A
Nested API Structure to Simplify
Cross-device Communication. In
Proceedings of the Sixth International
Conference on Tangible, Embedded and
Embodied Interaction, TEI ’12, pages
225–232, New York, NY, USA, 2012. ACM.
22, 20

[WMW09] J.O. Woobrock, M.R. Morris, and A.D.
Wilson. User-Defined Gestures for Surface
Computing. In Proceedings of Human
Factors in Computing Systems, pages
1083–1092, 2009. 33, 30

241

Bibliography

[WRW96] Ann Wollrath, Roger Riggs, and Jim
Waldo. A Distributed Object Model for the
Java System. In Proceedings of the 2nd
Conference on USENIX Conference on
Object-Oriented Technologies (COOTS) -
Volume 2, COOTS’96, pages 17–17,
Berkeley, CA, USA, 1996. USENIX
Association. 20, 18

[WWBH97] Aileen Worden, Nef Walker, Krishna
Bharat, and Scott Hudson. Making
Computers Easier for Older Adults to use:
Area Cursors and Sticky Icons. In
Proceedings of the ACM Conference on
Human Factors in Computing Systems,
volume 97p of ACM Conference on Human
Factors in Computing Systems, pages
266–271. ACM New York, NY, USA, ACM,
1997. 25, 82, 22, 72

[WZX11] Xibo Wang, Qiao Zhou, and Yizhong Xin.
The Construction and Application of
Multitouch Interactive Platform Based on
Touchlib. In Proceedings of the 2011 4th
International Conference on Intelligent
Networks and Intelligent Systems, ICINIS
’11, pages 153–156, Washington, DC, USA,
2011. IEEE Computer Society. 19, 17

[YCM09] Tom Yeh, Tsung-Hsiang Chang, and
Robert C. Miller. Sikuli: Using GUI
Screenshots for Search and Automation. In

242

Bibliography

ACM Symposium on User Interface
Software and Technology (UIST), UIST ’09,
pages 183–192, New York, NY, USA, 2009.
ACM. 32, 29

[Yin06] Jibin Yin. The Beam Cursor: A Pen-based
Technique for Enhancing Target
Acquisition. In Proceedings of the ACM
Conference on
Human-Computer-Interaction, HCI 2006,
pages 119–134, 2006. 28, 25

[ZRZ08] Xinyong Zhang, Xiangshi Ren, and Hongbin
Zha. Improving Eye Cursor’s Stability for
Eye Pointing Tasks. In Proceeding of the
twenty-sixth annual SIGCHI conference on
Human factors in computing systems, pages
525–534. ACM, 2008. 31, 28

243

Appendices

244

A
Used Questionaires

245

A.1. glueTK - Developer Study

A.1 glueTK - Developer Study

246

A.1. glueTK - Developer Study

Developer
Questionnaire

Task 0 : Get to know glueTK

Take a look at the documentation ☐

Find the tutorials, compile & run them and take a look at the code ☐

Do an initial commit (git commit -am “task0”) ☐

Task 1: Display

The frame id is set to “taskApp” for all task templates, which is already defined in the
task.xml file that is loaded by the frame - there is no need to modify this configuration!
However, feel free to take a look !

Use the application template “task1” to create a
fullscreen application that displays the image
“blue.png” in the exact center.

☐

Place a second image “green.png” in such a way
that its bottom left corner touches the top right
corner of “blue.png”

☐

Commit your work (git commit -am “task1”) ☐

247

A.1. glueTK - Developer Study

Task 2: Interaction

Here you will use the connect command for the first time. See tutorials 4+5 to understand
how the connect command works.

Slots used in the connect command are just strings but the method name and variable
names passed are parsed and used !

Use the application template “task2” to create a
fullscreen application that displays the image
“blue.png” and make the image follow the mouse
position

☐

Commit your work (git commit -am “task2”) ☐

Task 3: Modalities

The task3 template comes with an EventHandler for the Leapmotion which provides the
pointing data as a signal called “leapPoint” containing the frame (called “frame”) it
intersects as well as the x (called “x”) and y (called “y”) coordinates of the intersection

Use the application template “task3” to create a
fullscreen application that displays the image
“blue.png” and make the image follow the pointing
direction of the index finger, using the leap motion.

☐

Commit your work (git commit -am “task3”) ☐

248

A.1. glueTK - Developer Study

Task 4: Transfer

The target frames name is “receiverApp”

If you have not yet, take a look at the different variants of setting the position of a block in
the documentation.

Use the application template “task4” to modify the
code of task3 to allow for the image to be moved
across screens.

☐

Commit your work (git commit -am “task4”) ☐

249

A.1. glueTK - Developer Study

Feedback

Demographics

Age

Gender (m/w)

Coding

How would you rate your C++ knowledge
(0 = No knowledge at all, 5 = Expert)

How much experience do you have with GUI development ?
(0 = No experience at all, 5 = I do GUI development on a
regular basis)

How many hours do spend coding / week ?

How many of those are coding C++ ?

Did you have any prior experience with glueTK ?

Frameworks
How well do you know the following software ?
(1=never heard of it, 2=heard of it, 3=used it, 4=use it regularly, 5=expert)

Software Level of
experience

Qt

Gtk

PyMT / Kivy

Cocos2d

TuIO

Microsoft Surface SDK

LeapMotion SDK

Squid Middleware

250

A.1. glueTK - Developer Study

Sources of Information about glueTK
How valuable were the following sources of information to you ?
(1=did not use it at all, 2=hardly used it, 3=used it some, 4=used it regularly, 5=main source of information)

Overview Paper

Doxygen Documentation

Source code

Tutorials

Time
Order the tasks according to the time you needed to complete them
(1=fastest, 5=slowest)

Task 0

Task 1

Task 2

Task 3

Task 4

How would you say you spend your time ?
(Give percent values adding up to 100%)

Reading (Documentation, Code, Tutorials, Overview)

Coding

Testing/Debugging

Other

If Other > 0%, please elaborate:

251

A.1. glueTK - Developer Study

Complexity
How would you judge the difficulty of each task ?
(1=unable to complete, 2=help required to complete, 3=it took effort, 4=no problem, 5=very easy)

Task 0

Task 1

Task 2

Task 3

Task 4

Comments
Do you have any suggestions, ideas for improvement ?

252

A.2. User study - Force Fields

A.2 User study - Force Fields

User Study : Klicken mit Gesten

Alter (in Jahren) :

Geschlecht :

Größe (in cm) :

Rechtshänder ? (ja/nein) :

Erfahrung mit Gesteninteraktion ? (ja/nein) :

Welche Technik hat Ihnen am besten gefallen ? (1,2 oder 3) :

Welche Technik empfanden Sie als die schnellste ? (1,2 oder 3) :

Welche Technik(en) empfanden Sie als natürlich ? (1,2,3) :

Anmerkungen:

253

A.3. User study - Black-Box GUIs

A.3 User study - Black-Box GUIs

User Study : Gestensteuerung von Desktopanwendungen

Alter (in Jahren) :

Geschlecht :

Größe (in cm) :

Rechtshänder ? (ja/nein) :

Erfahrung mit Gesteninteraktion ? (ja/nein) :

Welche Technik hat Ihnen am besten gefallen ? (1,2 oder 3) :

Welche Technik empfanden Sie als die schnellste ? (1,2 oder 3) :

Könnten Sie sich vorstellen mit einer der Techniken eine
Desktopanwednung (z.B. Videoplayer) zu bedienen ? :

Wenn ja, mit welcher/welchen ? :

Anmerkungen:

254

A.4. User study - How to click in mid air

A.4 User study - How to click in mid
air

Allgemeine Fragen

Geschlecht (m/w):

Wie groß sind Sie (in cm)?

Wie alt sind Sie?

Üben Sie einen technischen Beruf aus oder haben Sie eine technische Ausbildung absolviert?

Sind Sie Rechtshänder?

Wie viel Erfahrung haben Sie mit Gesteninteraktion (z.B. Kinect, Wii, Touchscreens)?

 -3 -2 -1 0 1 2 3

keine viel

255

A.4. User study - How to click in mid air

Geistige Anforderungen Technik: Drücken

Wie viel geistige Anstrengung war für die korrekte Ausführung der Geste erforderlich (z.B. Denken,

Entscheiden, Rechnen, Erinnern, Hinsehen, Suchen …)? War die Geste leicht oder anspruchsvoll,

einfach oder komplex, erfordert sie hohe Genauigkeit oder ist sie fehlertolerant?

 -3 -2 -1 0 1 2 3

gering hoch

Körperliche Anforderungen

Wie viel körperliche Aktivität war erforderlich? War die Geste körperlich leicht oder schwer, einfach

oder anstrengend, erholsam oder mühselig?

 -3 -2 -1 0 1 2 3

gering hoch

Zeitliche Anforderungen

Wie empfanden Sie den Zeitaufwand für die Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

Ausführung der Aufgaben

Wie erfolgreich haben Sie ihrer Meinung nach die Aufgabe erreicht? Wie zufrieden waren Sie mit

Ihrer Leistung bei der Verfolgung dieser Ziele?

 -3 -2 -1 0 1 2 3

gut schlecht

Anstrengung

Wie hart mussten Sie arbeiten, um Ihren Grad an Aufgabenerfüllung zu erreichen?

 -3 -2 -1 0 1 2 3

gering hoch

Frustration

Wie unsicher, entmutigt, irritiert, gestresst und verärgert (versus sicher, bestätigt, zufrieden,

entspannt und zufrieden mit sich selbst) fühlten Sie sich während der Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

256

A.4. User study - How to click in mid air

Geistige Anforderungen Technik: Ziehen

Wie viel geistige Anstrengung war für die korrekte Ausführung der Geste erforderlich (z.B. Denken,

Entscheiden, Rechnen, Erinnern, Hinsehen, Suchen …)? War die Geste leicht oder anspruchsvoll,

einfach oder komplex, erfordert sie hohe Genauigkeit oder ist sie fehlertolerant?

 -3 -2 -1 0 1 2 3

gering hoch

Körperliche Anforderungen

Wie viel körperliche Aktivität war erforderlich? War die Geste körperlich leicht oder schwer, einfach

oder anstrengend, erholsam oder mühselig?

 -3 -2 -1 0 1 2 3

gering hoch

Zeitliche Anforderungen

Wie empfanden Sie den Zeitaufwand für die Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

Ausführung der Aufgaben

Wie erfolgreich haben Sie ihrer Meinung nach die Aufgabe erreicht? Wie zufrieden waren Sie mit

Ihrer Leistung bei der Verfolgung dieser Ziele?

 -3 -2 -1 0 1 2 3

gut schlecht

Anstrengung

Wie hart mussten Sie arbeiten, um Ihren Grad an Aufgabenerfüllung zu erreichen?

 -3 -2 -1 0 1 2 3

gering hoch

Frustration

Wie unsicher, entmutigt, irritiert, gestresst und verärgert (versus sicher, bestätigt, zufrieden,

entspannt und zufrieden mit sich selbst) fühlten Sie sich während der Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

257

A.4. User study - How to click in mid air

Geistige Anforderungen Technik: Warten

Wie viel geistige Anstrengung war für die korrekte Ausführung der Geste erforderlich (z.B. Denken,

Entscheiden, Rechnen, Erinnern, Hinsehen, Suchen …)? War die Geste leicht oder anspruchsvoll,

einfach oder komplex, erfordert sie hohe Genauigkeit oder ist sie fehlertolerant?

 -3 -2 -1 0 1 2 3

gering hoch

Körperliche Anforderungen

Wie viel körperliche Aktivität war erforderlich? War die Geste körperlich leicht oder schwer, einfach

oder anstrengend, erholsam oder mühselig?

 -3 -2 -1 0 1 2 3

gering hoch

Zeitliche Anforderungen

Wie empfanden Sie den Zeitaufwand für die Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

Ausführung der Aufgaben

Wie erfolgreich haben Sie ihrer Meinung nach die Aufgabe erreicht? Wie zufrieden waren Sie mit

Ihrer Leistung bei der Verfolgung dieser Ziele?

 -3 -2 -1 0 1 2 3

gut schlecht

Anstrengung

Wie hart mussten Sie arbeiten, um Ihren Grad an Aufgabenerfüllung zu erreichen?

 -3 -2 -1 0 1 2 3

gering hoch

Frustration

Wie unsicher, entmutigt, irritiert, gestresst und verärgert (versus sicher, bestätigt, zufrieden,

entspannt und zufrieden mit sich selbst) fühlten Sie sich während der Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

258

A.4. User study - How to click in mid air

Geistige Anforderungen Technik: Zeigen

Wie viel geistige Anstrengung war für die korrekte Ausführung der Geste erforderlich (z.B. Denken,

Entscheiden, Rechnen, Erinnern, Hinsehen, Suchen …)? War die Geste leicht oder anspruchsvoll,

einfach oder komplex, erfordert sie hohe Genauigkeit oder ist sie fehlertolerant?

 -3 -2 -1 0 1 2 3

gering hoch

Körperliche Anforderungen

Wie viel körperliche Aktivität war erforderlich? War die Geste körperlich leicht oder schwer, einfach

oder anstrengend, erholsam oder mühselig?

 -3 -2 -1 0 1 2 3

gering hoch

Zeitliche Anforderungen

Wie empfanden Sie den Zeitaufwand für die Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

Ausführung der Aufgaben

Wie erfolgreich haben Sie ihrer Meinung nach die Aufgabe erreicht? Wie zufrieden waren Sie mit

Ihrer Leistung bei der Verfolgung dieser Ziele?

 -3 -2 -1 0 1 2 3

gut schlecht

Anstrengung

Wie hart mussten Sie arbeiten, um Ihren Grad an Aufgabenerfüllung zu erreichen?

 -3 -2 -1 0 1 2 3

gering hoch

Frustration

Wie unsicher, entmutigt, irritiert, gestresst und verärgert (versus sicher, bestätigt, zufrieden,

entspannt und zufrieden mit sich selbst) fühlten Sie sich während der Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

259

A.4. User study - How to click in mid air

Geistige Anforderungen Technik: Handknicken

Wie viel geistige Anstrengung war für die korrekte Ausführung der Geste erforderlich (z.B. Denken,

Entscheiden, Rechnen, Erinnern, Hinsehen, Suchen …)? War die Geste leicht oder anspruchsvoll,

einfach oder komplex, erfordert sie hohe Genauigkeit oder ist sie fehlertolerant?

 -3 -2 -1 0 1 2 3

gering hoch

Körperliche Anforderungen

Wie viel körperliche Aktivität war erforderlich? War die Geste körperlich leicht oder schwer, einfach

oder anstrengend, erholsam oder mühselig?

 -3 -2 -1 0 1 2 3

gering hoch

Zeitliche Anforderungen

Wie empfanden Sie den Zeitaufwand für die Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

Ausführung der Aufgaben

Wie erfolgreich haben Sie ihrer Meinung nach die Aufgabe erreicht? Wie zufrieden waren Sie mit

Ihrer Leistung bei der Verfolgung dieser Ziele?

 -3 -2 -1 0 1 2 3

gut schlecht

Anstrengung

Wie hart mussten Sie arbeiten, um Ihren Grad an Aufgabenerfüllung zu erreichen?

 -3 -2 -1 0 1 2 3

gering hoch

Frustration

Wie unsicher, entmutigt, irritiert, gestresst und verärgert (versus sicher, bestätigt, zufrieden,

entspannt und zufrieden mit sich selbst) fühlten Sie sich während der Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

260

A.4. User study - How to click in mid air

Geistige Anforderungen Technik: Tippen

Wie viel geistige Anstrengung war für die korrekte Ausführung der Geste erforderlich (z.B. Denken,

Entscheiden, Rechnen, Erinnern, Hinsehen, Suchen …)? War die Geste leicht oder anspruchsvoll,

einfach oder komplex, erfordert sie hohe Genauigkeit oder ist sie fehlertolerant?

 -3 -2 -1 0 1 2 3

gering hoch

Körperliche Anforderungen

Wie viel körperliche Aktivität war erforderlich? War die Geste körperlich leicht oder schwer, einfach

oder anstrengend, erholsam oder mühselig?

 -3 -2 -1 0 1 2 3

gering hoch

Zeitliche Anforderungen

Wie empfanden Sie den Zeitaufwand für die Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

Ausführung der Aufgaben

Wie erfolgreich haben Sie ihrer Meinung nach die Aufgabe erreicht? Wie zufrieden waren Sie mit

Ihrer Leistung bei der Verfolgung dieser Ziele?

 -3 -2 -1 0 1 2 3

gut schlecht

Anstrengung

Wie hart mussten Sie arbeiten, um Ihren Grad an Aufgabenerfüllung zu erreichen?

 -3 -2 -1 0 1 2 3

gering hoch

Frustration

Wie unsicher, entmutigt, irritiert, gestresst und verärgert (versus sicher, bestätigt, zufrieden,

entspannt und zufrieden mit sich selbst) fühlten Sie sich während der Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

261

A.4. User study - How to click in mid air

Geistige Anforderungen Technik: Greifen

Wie viel geistige Anstrengung war für die korrekte Ausführung der Geste erforderlich (z.B. Denken,

Entscheiden, Rechnen, Erinnern, Hinsehen, Suchen …)? War die Geste leicht oder anspruchsvoll,

einfach oder komplex, erfordert sie hohe Genauigkeit oder ist sie fehlertolerant?

 -3 -2 -1 0 1 2 3

gering hoch

Körperliche Anforderungen

Wie viel körperliche Aktivität war erforderlich? War die Geste körperlich leicht oder schwer, einfach

oder anstrengend, erholsam oder mühselig?

 -3 -2 -1 0 1 2 3

gering hoch

Zeitliche Anforderungen

Wie empfanden Sie den Zeitaufwand für die Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

Ausführung der Aufgaben

Wie erfolgreich haben Sie ihrer Meinung nach die Aufgabe erreicht? Wie zufrieden waren Sie mit

Ihrer Leistung bei der Verfolgung dieser Ziele?

 -3 -2 -1 0 1 2 3

gut schlecht

Anstrengung

Wie hart mussten Sie arbeiten, um Ihren Grad an Aufgabenerfüllung zu erreichen?

 -3 -2 -1 0 1 2 3

gering hoch

Frustration

Wie unsicher, entmutigt, irritiert, gestresst und verärgert (versus sicher, bestätigt, zufrieden,

entspannt und zufrieden mit sich selbst) fühlten Sie sich während der Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

262

A.4. User study - How to click in mid air

Geistige Anforderungen Technik: Rotieren

Wie viel geistige Anstrengung war für die korrekte Ausführung der Geste erforderlich (z.B. Denken,

Entscheiden, Rechnen, Erinnern, Hinsehen, Suchen …)? War die Geste leicht oder anspruchsvoll,

einfach oder komplex, erfordert sie hohe Genauigkeit oder ist sie fehlertolerant?

 -3 -2 -1 0 1 2 3

gering hoch

Körperliche Anforderungen

Wie viel körperliche Aktivität war erforderlich? War die Geste körperlich leicht oder schwer, einfach

oder anstrengend, erholsam oder mühselig?

 -3 -2 -1 0 1 2 3

gering hoch

Zeitliche Anforderungen

Wie empfanden Sie den Zeitaufwand für die Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

Ausführung der Aufgaben

Wie erfolgreich haben Sie ihrer Meinung nach die Aufgabe erreicht? Wie zufrieden waren Sie mit

Ihrer Leistung bei der Verfolgung dieser Ziele?

 -3 -2 -1 0 1 2 3

gut schlecht

Anstrengung

Wie hart mussten Sie arbeiten, um Ihren Grad an Aufgabenerfüllung zu erreichen?

 -3 -2 -1 0 1 2 3

gering hoch

Frustration

Wie unsicher, entmutigt, irritiert, gestresst und verärgert (versus sicher, bestätigt, zufrieden,

entspannt und zufrieden mit sich selbst) fühlten Sie sich während der Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

263

A.4. User study - How to click in mid air

Geistige Anforderungen Technik: Pistole

Wie viel geistige Anstrengung war für die korrekte Ausführung der Geste erforderlich (z.B. Denken,

Entscheiden, Rechnen, Erinnern, Hinsehen, Suchen …)? War die Geste leicht oder anspruchsvoll,

einfach oder komplex, erfordert sie hohe Genauigkeit oder ist sie fehlertolerant?

 -3 -2 -1 0 1 2 3

gering hoch

Körperliche Anforderungen

Wie viel körperliche Aktivität war erforderlich? War die Geste körperlich leicht oder schwer, einfach

oder anstrengend, erholsam oder mühselig?

 -3 -2 -1 0 1 2 3

gering hoch

Zeitliche Anforderungen

Wie empfanden Sie den Zeitaufwand für die Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

Ausführung der Aufgaben

Wie erfolgreich haben Sie ihrer Meinung nach die Aufgabe erreicht? Wie zufrieden waren Sie mit

Ihrer Leistung bei der Verfolgung dieser Ziele?

 -3 -2 -1 0 1 2 3

gut schlecht

Anstrengung

Wie hart mussten Sie arbeiten, um Ihren Grad an Aufgabenerfüllung zu erreichen?

 -3 -2 -1 0 1 2 3

gering hoch

Frustration

Wie unsicher, entmutigt, irritiert, gestresst und verärgert (versus sicher, bestätigt, zufrieden,

entspannt und zufrieden mit sich selbst) fühlten Sie sich während der Ausführung der Geste?

 -3 -2 -1 0 1 2 3

gering hoch

264

A.4. User study - How to click in mid air

Abschließende Fragen
Welche Technik hat Ihnen am besten gefallen?

Drücken Ziehen Warten Zeigen Handknicken Tippen Greifen Rotieren Pistole

Welche Technik hat Ihnen am wenigsten gefallen?

Drücken Ziehen Warten Zeigen Handknicken Tippen Greifen Rotieren Pistole

Welche Technik hat Sie geistig am meisten gefordert?

Drücken Ziehen Warten Zeigen Handknicken Tippen Greifen Rotieren Pistole

Welche Technik hat Sie geistig am wenigsten gefordert?

Drücken Ziehen Warten Zeigen Handknicken Tippen Greifen Rotieren Pistole

265

A.4. User study - How to click in mid air

Welche Technik war körperlich am meisten fordernd?

Drücken Ziehen Warten Zeigen Handknicken Tippen Greifen Rotieren Pistole

Welche Technik war körperlich am wenigsten fordernd?

Drücken Ziehen Warten Zeigen Handknicken Tippen Greifen Rotieren Pistole

Welche Technik empfanden Sie am schnellsten?

Drücken Ziehen Warten Zeigen Handknicken Tippen Greifen Rotieren Pistole

Welche Technik empfanden Sie am langsamsten?

Drücken Ziehen Warten Zeigen Handknicken Tippen Greifen Rotieren Pistole

266

A.4. User study - How to click in mid air

Mit welcher Technik konnten Sie die Aufgabe am besten erfüllen?

Drücken Ziehen Warten Zeigen Handknicken Tippen Greifen Rotieren Pistole

Mit welcher Technik konnten Sie die Aufgabe am schlechtesten erfüllen?

Drücken Ziehen Warten Zeigen Handknicken Tippen Greifen Rotieren Pistole

Welche Technik war am meisten anstrengend?

Drücken Ziehen Warten Zeigen Handknicken Tippen Greifen Rotieren Pistole

Welche Technik war am wenigsten anstrengend?

Drücken Ziehen Warten Zeigen Handknicken Tippen Greifen Rotieren Pistole

267

A.4. User study - How to click in mid air

Welche Technik frustrierte Sie am meisten?

Drücken Ziehen Warten Zeigen Handknicken Tippen Greifen Rotieren Pistole

Welche Technik frustrierte Sie am wenigsten?

Drücken Ziehen Warten Zeigen Handknicken Tippen Greifen Rotieren Pistole

268

A.4. User study - How to click in mid air

Mit welchen Techniken könnten Sie sich vorstellen über einen längeren Zeitraum zu arbeiten

(Mehrfachnennung möglich)?

Drücken Ziehen Warten Zeigen Handknicken Tippen Greifen Rotieren Pistole

Bitte bringen Sie die Techniken in die Reihenfolge, in der sie Ihnen am besten gefallen haben.

(1 = am besten gefallen, 9 = am wenigsten gefallen)

Drücken Ziehen Warten Zeigen Handknicken Tippen Greifen Rotieren Pistole

Haben Sie weitere Anmerkungen oder Kommentare?

269

A.5. User study - Acceptable Latencies

A.5 User study - Acceptable
Latencies

Testszenario 1 – Nachbefragung

Fragen zur Person

Alter: ____________

Geschlecht: ____________

Fragen zur Erfahrungen im Bereich Computer

Ist Ihnen der Umgang mit dem PC vertraut? (Schulnote 1-6): ____________

Wie häufig arbeiten Sie an Dual-Monitor-Systemen ?

1 2 3 4 5 6 7

sehr häufig        nie

Wie häufig arbeiten Sie an Systemen mit mehr als zwei Monitoren?

1 2 3 4 5 6 7

sehr häufig        nie

Fragen zum Spiel

Gab es Probleme beim Verstehen der geforderten Aufgabe?

Hat Sie am Spiel etwas gestört?

Hat Sie das Spiel gelangweilt?

1 2 3 4 5 6 7

ja, sehr stark        nein, gar nicht

270

A.5. User study - Acceptable Latencies

Ordnen sie alle Farben, bezüglich der Übertragungsgeschwindigkeit, aufsteigend an.

Beispiel.: rot war am schnellsten, grün am zweit schnellsten, blau und gelb am dritt schnellsten!

Beispiel-Lösung: rot, grün, (gelb;blau).

Farben siehe Bildschirm:

Bitte ordnen sie den Farben der Formen Werte zu(1-7). Hat ihnen das Übertragen zu lange
gedauert oder waren sie mit der Übertragungszeit zufrieden?

1 2 3 4 5 6 7

sehr schnell        sehr langsam Rot

sehr schnell        sehr langsam Grün

sehr schnell        sehr langsam Schwarz

sehr schnell        sehr langsam Blau

sehr schnell        sehr langsam Gelb

Zusatzfragen

Welche Farbe empfanden sie als gerade noch akzeptabel?

Haben sie einen Unterschied zwischen Kreis und Rechteck bezüglich der durchschnittlichen
Übertragungszeit feststellen können? (Bitte nur eine Antwort ankreuzen)

 Rechtecke sind durchschnittlich schneller als Kreise übertragen worden.

 Kreise sind durchschnittlich schneller als Rechtecke übertragen worden.

 Kreise und Rechtecke sind durchschnittlich gleich-schnell Übertragen worden.

271

A.6. User study - Bridging Latencies

A.6 User study - Bridging Latencies

Testszenario 1 – Nachbefragung

Fragen zur Person

Alter: ____________

Geschlecht: ____________

Fragen zur Erfahrungen im Bereich Computer

Ist Ihnen der Umgang mit dem PC vertraut? (Schulnote 1-6): ____________

Wie häufig arbeiten Sie an Dual-Monitor-Systemen ?

1 2 3 4 5 6 7

sehr häufig        nie

Fragen zum Spiel

Gab es Probleme beim Verstehen der geforderten Aufgabe?

Hat Sie am Spiel etwas gestört?

Hat Sie das Spiel gelangweilt?

1 2 3 4 5 6 7

ja, sehr stark        nein, gar nicht

272

A.6. User study - Bridging Latencies

Animationen
Shrink-Out/In (Schrumpfen)

Wie empfanden sie die Übertragungsgeschwindigkeit?

1 2 3 4 5

sehr schnell      sehr langsam

Wie gut hat Ihnen diese Animation gefallen?

1 2 3 4 5

sehr gut      sehr schlecht

Wie intuitiv verständlich hat die Animation auf sie gewirkt?

1 2 3 4 5

sehr verständlich      überhaupt nicht verständlich

Was hat sie an der Animation besonders gestört oder was hat ihnen an der Animation
besonders gefallen?

273

A.6. User study - Bridging Latencies

Slide-Out/In (Fliegen)

Wie empfanden sie die Übertragungsgeschwindigkeit?

1 2 3 4 5

sehr schnell      sehr langsam

Wie gut hat Ihnen diese Animation gefallen?

1 2 3 4 5

sehr gut      sehr schlecht

Wie intuitiv verständlich hat die Animation auf sie gewirkt?

1 2 3 4 5

sehr verständlich      überhaupt nicht verständlich

Was hat sie an der Animation besonders gestört oder was hat ihnen an der Animation
besonders gefallen?

274

A.6. User study - Bridging Latencies

Fade-Out/In (Einblenden / Ausblenden)

Wie empfanden sie die Übertragungsgeschwindigkeit?

1 2 3 4 5

sehr schnell      sehr langsam

Wie gut hat Ihnen diese Animation gefallen?

1 2 3 4 5

sehr gut      sehr schlecht

Wie intuitiv verständlich hat die Animation auf sie gewirkt?

1 2 3 4 5

sehr verständlich      überhaupt nicht verständlich

Was hat sie an der Animation besonders gestört oder was hat ihnen an der Animation
besonders gefallen?

275

A.6. User study - Bridging Latencies

Notification (Benachrichtigung)

Wie empfanden sie die Übertragungsgeschwindigkeit?

1 2 3 4 5

sehr schnell      sehr langsam

Wie gut hat Ihnen diese Animation gefallen?

1 2 3 4 5

sehr gut      sehr schlecht

Wie intuitiv verständlich hat die Animation auf sie gewirkt?

1 2 3 4 5

sehr verständlich      überhaupt nicht verständlich

Was hat sie an der Animation besonders gestört oder was hat ihnen an der Animation
besonders gefallen?

276

A.6. User study - Bridging Latencies

Slingshot (Schleuder)

Wie empfanden sie die Übertragungsgeschwindigkeit?

1 2 3 4 5

sehr schnell      sehr langsam

Wie gut hat Ihnen diese Animation gefallen?

1 2 3 4 5

sehr gut      sehr schlecht

Wie intuitiv verständlich hat die Animation auf sie gewirkt?

1 2 3 4 5

sehr verständlich      überhaupt nicht verständlich

Was hat sie an der Animation besonders gestört oder was hat ihnen an der Animation
besonders gefallen?

277

A.6. User study - Bridging Latencies

Placeholder (Platzhalter)

Wie empfanden sie die Übertragungsgeschwindigkeit?

1 2 3 4 5

sehr schnell      sehr langsam

Wie gut hat Ihnen diese Animation gefallen?

1 2 3 4 5

sehr gut      sehr schlecht

Wie intuitiv verständlich hat die Animation auf sie gewirkt?

1 2 3 4 5

sehr verständlich      überhaupt nicht verständlich

Was hat sie an der Animation besonders gestört oder was hat ihnen an der Animation
besonders gefallen?

278

A.6. User study - Bridging Latencies

Loading-Animation (Ladeanimation)

Wie empfanden sie die Übertragungsgeschwindigkeit?

1 2 3 4 5

sehr schnell      sehr langsam

Wie gut hat Ihnen diese Animation gefallen?

1 2 3 4 5

sehr gut      sehr schlecht

Wie intuitiv verständlich hat die Animation auf sie gewirkt?

1 2 3 4 5

sehr verständlich      überhaupt nicht verständlich

Was hat sie an der Animation besonders gestört oder was hat ihnen an der Animation
besonders gefallen?

279

A.6. User study - Bridging Latencies

Bitte ordnen sie den Animationen nach Gefallen die Zahlen 1(was hat Ihnen am Besten
gefallen) bis 7(was hat Ihnen am schlechtesten gefallen) ein Ranking zu. Jede Zahl darf nur
einmal vorkommen.

280

	Title
	Table of Contents
	1 Introduction
	1.1 New Input Modalities
	1.2 Multi-display Environments
	1.3 Goals and Contributions
	1.4 Outline

	2 Related Work
	2.1 Multi-modal Input and Multi-display Environments
	2.1.1 Multi-modal Input
	2.1.2 Digital Tables
	2.1.3 Visual Output

	2.2 Pointing Gesture Enhancements
	2.3 Inter-display Interaction
	2.4 Proxemic Interaction
	2.5 Interaction Performance

	3 Framework
	3.1 Architecture
	3.1.1 Overview
	3.1.2 GlueInput
	3.1.3 Communication
	3.1.4 GlueOutput

	3.2 Evaluation
	3.2.1 Performance
	3.2.2 Developer Survey

	4 Functionality
	4.1 Target Acquisition
	4.1.1 Dynamic Gaussian Force Fields
	4.1.2 Evaluation

	4.2 Target Localization
	4.2.1 Black-Box GUIs
	4.2.2 Evaluation

	4.3 Target Selection
	4.3.1 Taxonomy
	4.3.2 Evaluation
	4.3.3 Discussion

	4.4 Inter-display Interaction
	4.4.1 Acceptable Data Transfer Latencies
	4.4.2 Bridging Latencies
	4.4.3 Conclusion

	4.5 Choosing Element Sizes
	4.5.1 Perceptual Performance
	4.5.2 Input Performance
	4.5.3 Interaction Performance

	5 Applications
	5.1 Smart Control Room
	5.2 Distance Dependent Display

	6 Conclusion
	List of Figures
	List of Tables
	Own Publications
	Bibliography
	Appendices
	A Used Questionaires
	A.1 glueTK - Developer Study
	A.2 User study - Force Fields
	A.3 User study - Black-Box GUIs
	A.4 User study - How to click in mid air
	A.5 User study - Acceptable Latencies
	A.6 User study - Bridging Latencies

